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PREFACE

This book is devoted to statistical learning theory, the theory that explores
ways of estimating functional dependency from a given collection of data.
This problem is very general. It covers important topics of classical statistics—
in particular, discriminant analysis, regression analysis, and the density esti-
mation problem.

In this book we consider a new paradigm for solving these problems: the
so-called learning paradigm that was developed over the last 30 years. In
contrast to the classical statistics developed for large samples and based on
using various types of a priori information, the new theory was developed
for small data samples and does not rely on a priori knowledge about a
problem to be solved. Instead it considers a structure on the set of functions
implemented by the learning machine (a set of nested subsets of functions)
where a specific measure of subset capacity is defined.

To control the generalization in the framework of this paradigm, one has
to take into account two factors, namely, the quality of approximation of
given data by the chosen function and the capacity of the subset of functions
from which the approximating function was chosen.

This book presents a comprehensive study of this type of inference (learn-
ing process). It contains:

e The general qualitative theory that includes the necessary and sufficient
conditions for consistency of learning processes

e The general quantitative theory that includes bounds on the rate of
convergence (the rate of generalization) of these learning processes

¢ Principles for estimating functions from a small collection of data that
are based on the developed theory

¢ Methods of function estimation and their application to solving real-life
problems that are based on these principles

The book has three parts: “Theory of Learning and Generalization,”
“Support Vector Estimation of Functions,” and “Statistical Foundation of
Learning Theory.”

The first part, “Theory of Learning and Generalization,” analyzes factors

xxi



xxii PREFACE

responsible for generalization and shows how to control these factors in order
to generalize well.

This part contains eight chapters. Chapter 1 describes two different
approaches to the learning problem. The first approach considers lecarning
as a problem of minimizing an expected risk functional in the situation when
the probability measure that defines the risk is unknown but i.i.d. observa-
tions are given. To obtain a solution in the framework of this approach. one
has to suggest some inductive principle. That is, one has to define a con-
structive functional that should be minimized (instead of the expected risk
functional) in order to find a function that guarantees a small expected loss.
The second approach considers learning as a problem of identification of the
desired function: Using observations, one has to find the function that is close
to the desired one. In general, this approach leads to the necessity of solving
the so-called ill-posed problems.

Chapter 2 discusses connections between the main problems of learning
theory and problems of the foundation of statistics, namely the problem of
estimating the probability measure from the data. It describes two ways of
cstimating the probability measure. One way is based on the convergence of
an ¢stimate of the probability measure in a weak mode, and another way is
based on convergence in a strong mode. These two ways of estimating the
unknown measure imply two approaches to the learning problem described
in Chapter 1.

Chapter 3 is devoted to the qualitative model of learning processes, namely.
to the theory of consistency of the learning processes based on the empirical
risk minimization induction principle. It shows that for consistency of the
learning processes based on this principle the convergence of some empirical
processes (the existence of uniform law of large numbers) is necessary and
sufticient. In Chapter 3 these conditions are discussed. (The corresponding
theorems will be proven in the third part of the book.)

Chapters 4 and 5 estimate the bounds on the rate of convergence of the
empirical processes. Using these bounds we obtain bounds on the risk for the
functions that minimize the empirical risk functional. In Chapter 4 we obtain
bounds for sets of indicator [unctions (for the patlern recognition problem),
and in Chapter 5 we generalize these bounds for sets of real-valued functions
(for regression estimation problems). The bounds depend on two factors: the
value of empirical risk and the capacity of the set of functions from which
the function minimizing empirical risk was chosen.

In Chapter 6 we introduce a new induction principle, the so-called “struc-
tural risk minimization™ principle, which minimizes bounds obtained in Chap-
ters 4 and 5 with respect to two factors, the value of empirical risk and the
capacity. This principle allows us to find the function that achieves the guar-
anteced minimum of the expected risk using a finite number of observations.

Chapter 7 is devoted to solving stochastic ill-posed problems, including
the problems of density estimation, conditional density estimation, and con-
ditional probability estimation. For solving these problems, we utilize the
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regularization method (which is based on the same ideas as the structural
risk minimization principle). Using this method, we obtain both the classical
methods for the solution of our problems and new ones.

In Chapter 8 we consider a new statement of the learning problem. We
introduce the problem of estimating values of a function at given points of
interest. For a restricted amount of empirical data, the generalization abil-
ity using the direct methods of estimating the values of a function at given
points of interest can be better than using methods of estimating the func-
tion. Therefore, we consider methods of direct estimation of the values of
the function at given points of interest that are not based on the estimation
of the functional dependency.

The second part of this book, “Support Vector Estimation of Functions,”
introduces methods that provide generalization when estimating a multi-
dimensional function from a limited collection of data.

This part contains five chapters. Chapter 9 describes classical algorithms:
Perceptrons, neural networks, and radial basis functions.

Chapters 10, 11, 12, and 13 are devoted to new methods of solving depen-
dency estimation problems, the so-called support vector method. Chapter
10 considers support vector machines for estimating indicator functions (for
pattern recognition problems). Chapter 11 considers support vector machines
for estimating real-valued functions.

Chapters 12 and 13 discuss solutions of real-life problems using support
vector machines. Chapter 12 discusses pattern recognition problems, and
Chapter 13 discusses various real-valued function estimation problems such
as function approximation, regression estimation, and solving inverse prob-
lems.

The third part of this book “Statistical Foundation of Learning Theory,”
studies uniform laws of large numbers that make generalization possible.

This part contains three chapters. Each of these chapters studies a different
empirical process: uniform convergence of frequencies to their probabilities
over a given set of events (Chapter 14), uniform convergence of means to
their expectations over a given set of functions (Chapter 15), and uniform
one-sided convergence of means to their expectations over a given set of
functions (Chapter 16). Convergence of these processes forms the basis for
the theory of learning processes and for theoretical statistics.

Bibliographical, historical, and general comments, reflecting the author’s
point of view on the development of statistical learning theory and related
disciplines, are given at the end of the book.

The first two parts of the book are written at a level for use in a graduate
course on learning theory in statistics, mathematics, engineering, physics, and
computer science. It should also appeal to professional engineers wishing
to learn about learning theory or to use new methods for solving real-life
problems. The third part is written at a higher level. It can be used in a
special course on empirical processes for Ph.D. students in mathematics and
statistics.
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INTRODUCTION:

THE PROBLEM OF
INDUCTION AND
STATISTICAL INFERENCE

0.1 LEARNING PARADIGM IN STATISTICS

The goal of this book is to describe a new approach to dependency estimation
problems which originated within learning theory.

The development of this approach started in the 1960s after the appearance
of the first generation of computers capable of conducting multidimensional
analysis of real-life problems. From the very first results of these analyses it
became clear that existing classical approaches to low-dimensional function
estimation problems do not reflect singularities of high-dimensional cases.
There was something in high-dimensional cases that was not captured by the
classical paradigm. R. Bellman called this something “the curse of dimension-
ality.” In attempts to overcome this curse a new paradigm was developed.

When developing the new paradigm it was fortunate that in the late 1950s
F Rosenblatt started analysis of the pattern recognition problem. From the
formal point of view the pattern recognition problem belongs to the gen-
eral statistical problem of function estimation from empirical data. However,
in this problem one has to estimate a function belonging to simple sets of
functions—sets of indicator functions. Analysis of these simple sets was cru-
cial for discovery of the concepts that determine the generalization ability,
the so-called capacity concepts of a set of functions. These concepts would
be hard to extract from analysis of more sophisticated sets of functions—sets
of real-valued functions. Capacity control became one of the main tools in
the new approach.

Later, in the 1980s, when the theory of this approach had been essentially
developed, it was noted that a generalized version of one of the problems
at the cornerstone of statistics (the Glivenko—Cantelli problem) leads to the
same analysis that was developed for the theory of learning and generaliza-

1
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tion 1n pattern recognition. In the mid-1980s these results were rewritten in
traditional statistical terms. Nevertheless. the new paradigm in statistics was
developed at the periphery of statistical science as an attempt to analyze the
problem of generalization in the simplest model of statistical inference—the
pattern recognition problem.

This fact constitutes an important methodological discovery. The pattern
recognition problem is one of the simplest models of inductive inference.
Results for this model can be generalized for other (more complex) models
using more or less standard mathematical techniques. Therefore in studies
of statistical inference. the pattern recognition model plays the same role as
the drosophila fly in studies of genetic structures.

[n this book we try to develop a general approach to statistical inference.
For this purpose we analyze the pattern recognition problem in great de-
tail and then generalize the obtained results for solving main problems of
statistical inference.

0.2 TWO APPROACHES TO STATISTICAL INFERENCE: PARTICULAR
(PARAMETRIC INFERENCE) AND GENERAL (NONPARAMETRIC
INFERENCE)

The clements of statistical inference have cxisted for more than 200 years
(one can find them in the works of Gauss and Laplace): however, the sys-
tematic analysis of these problems started only in the late 1920s.

By that time, descriptive statistics was mostly complete: [t was shown that
there are different statistical laws (distribution functions) that describe well
many cvents of reality. The next question to be investigated was finding a
reliable method of statistical inference. The problem was as follows:

Given a collection of empirical data originating from some functional de-
pendency, infer this dependency.

In the 1920s the analysis of methods of statistical inference began. Two
bright ¢vents signaled this start:

1. Fisher introduced the main models of statistical inference in the uni-
ticd framework of parametric statistics. He described different problems
ol estimating functions (rom given data (the problems of discriminant
analysis, regression analysis, and density estimation) as the problems of
parameter estimation of specitic (parametric) models and suggested one
method for estimating the unknown parameters in all these models—
the maximum likelihood method.

Glivenko, Cantelli, and Kolmogorov started a general analysis of sta-
tistical inference. Glivenko and Cantelli proved that the empirical dis-
tribution function always converges to the actual distribution function.
Kolmogorov found the asymptotically exact rate of this convergence.

[g=]



0.2 TWO APPROACHES TO STATISTICAL INFERENCE 3

The rate turns out to be fast (exponential) and independent of the
unknown distribution function.

These two events determined two main approaches to statistical inference:

1. The particular (parametric) inference, which aims to create simple
statistical methods of inference that can be used for solving real-life
problems, and

2. The general inference, which aims to find one (induction) method for
any problem of statistical inference.

The philosophy that led to the creation of parametric statistical inference is
based on the following belief:

The investigator knows the problem to be analyzed rather well. He knows
the physical law that generates the stochastic properties of the data and
the function to be found up to a finite number of parameters. Estimat-
ing these parameters using the data is considered to be the essence of
the problem of statistical inference. To find these parameters using in-
formation about the statistical law and the target function, one adopts
the maximum likelihood method.

The goal of the theory is to justify this approach (by discovering and
describing its favorable properties).

The philosophy that led to general statistical inference is different:

One does not have reliable a priori information about the statistical law
underlying the problem or about the function that one would like to
approximate. It is necessary to find a method to infer an approximating
function from the given examples in this situation.

The corresponding theory must:

1. Describe conditions under which one can find in a given set of func-
tions the best approximation to an unknown function with an increasing
number of examples.

2. Find the best method of inference for a given number of examples.

Kolmogorov’s discovery that the empirical distribution function has a univer-
sally (i.e., independent of the actual distribution function) asymptotic expo-
nential rate of convergence fostered hope that the general type of inference
is feasible. The results of Glivenko, Cantelli, and Kolmogorov started more
than 40 years of research on general statistical inference before it culminated
in inductive methods.

The theory of these methods is the subject of this book.
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0.3 THE PARADIGM CREATED BY THE PARAMETRIC APPROACH

In contrast to the slow development of general inductive inference, the para-
metric approach to inductive inference was developed very quickly. In fact.
the main ideas of parametric inference were developed in the 1930s, and dur-
ing the next 10 years the main elements of the theory of parametric inference
were introduced.

The 30-year period between 1930 and 1960 can be called the “golden
age” of parametric inference. During this period, one approach to statistical
inference dominated: the approach based on parametric paradigms. Only one
theory of statistical inference was accepted, namely the theory that served
the parametric paradigm.

Of course. the results of Glivenko. Cantelli, and Kolmogorov were known:
however. they were considered as inner technical achievements that are nec-
essary for the foundation of statistical theory rather than an indication that
there could be a different type of inference which is more general and more
powerful than parametric inference.

In any case, almost all standard statistical textbooks considered the prob-
lem of inference from the point of view of the parametric paradigm. and thus
several generations of statisticians were educated in this framework.'

The philosophy of the classical parametric paradigm is based on the fol-
lowing three beliefs:

L. To find a functional dependency from the data, the statistician is able to
define a set of functions, linear in their parameters, that contain a good
approximation to the desired function. The number of free parameters
describing this set is small.

This belief was supported by referring to the Weierstrass theorem, according
to which any continuous function can be approximated on a finite inter-
val by polynomials (functions linear in their parameters) with any degree
of accuracy. The idea was that if polynomials can approximate the desired
function well, then a smart statistician can define a set of functions, lincar in
their parameters (not necessarily polynomials) with a small number of free
parameters that provides a good approximation to the desired function.

2. The statistical law underlying the stochastic component of most real-life
problems is the normal law.

This belief was supported by referring to the Central Limit Theorem, which
states that under wide conditions the sum of a large number of random

Tt s fair to note that in the time before wide availability of computers (before 1960s) the goal
of applied statistics was to create computationally simple methods, and parametric statistics was
responsive to these limitations.
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variables is approximated by the normal law. The idea was that if randomness
in the problem is the result of interaction among a large number of random
components, then the stochastic element of the problem is described by the
normal law.

3. The induction engine in this paradigm—the maximum likelihood method
—is a good tool for estimating parameters.

This belief was supported by many theorems about conditional optimality of
the method (optimality in a restricted set of methods and/or in the asymptotic
case). The maximum likelihood method was hoped to be a good tool for
estimating parameters of models even for small sample sizes.

Note that these three beliefs were also supported by the philosophy:

If there exists a mathematical proof that some method provides an asymp-
totically optimal solution, then in real life this method will provide a
reasonable solution for a small number of data samples.

0.4 SHORTCOMING OF THE PARAMETRIC PARADIGM

In the 1960s, the wide application of computers for solving scientific and
applied problems started. Using computers, researchers for the first time tried
to analyze sophisticated models (that had many factors) or tried to obtain
more precise approximations. These efforts immediately revealed shortcom-
ings of the parametric paradigm in all three of the beliefs upon which the
paradigm was based.

1. First, the computer analysis of large multivariate problems resulted in
the discovery of the phenomenon that R. Bellman called “the curse of
dimensionality.” It was observed that increasing the number of factors
that have to be taken into consideration requires exponentially increas-
ing the amount of computational resources. For example, according to
the Weierstrass theorem, any continuous function (of n variables) de-
fined on the unit cube can be approximated by polynomials with any
degree of accuracy. However, if the desired function has only s deriva-
tives, then using polynomials with N terms one can only guarantee the
accuracy O (N‘s/"). If the unknown function is not very smooth (i.e.,
it possesses only a small number of derivatives), then to obtain the de-
sired level of accuracy one needs an exponentially increasing number
of terms with an increasing number, n, of variables.

Therefore, in real-life multidimensional problems in which one may
consider dozens or even hundreds of variables, the belief that one can
define a reasonably small set of functions that contains a good approx-
imation to a desired one looks naive.
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2. Approximaltely at the same time, by analyzing real-life data, Tukey
demonstrated that the statistical components of real-life problems can-
not be described by only classical statistical distribution functions. Often
rcal-life distributions are different, and one must take this difference
into account in order to construct effective algorithms.

3. In addition, James and Stein showed that even for simple problems of
density estimation, such as the problem of estimating the location pa-
rameters of n > 2 dimensional normal law with unit covariance
matrix (for estimating means), the maximum likelihood method is not
the best one. They suggested an estimator that for this specitic problem
is uniformly better than the maximum likelihood estimator.

Thus, all three beliets on which the classical paradigm relied turned out to
be inappropriate for many real-life problems. This had an enormous conse-
quence for statistical science: It looked as if the idea of constructing statistical
inductive inference methods for real-life problems had failed.

0.5 AFTER THE CLASSICAL PARADIGM

The discovery of difficulties with the classical paradigm was a turning point in
statistics. Many statisticians reconsidered the main goal of the entire statisti-
cal analysis business. A new direction in statistics was declared, the so-called
“data analysis.” where the goal was to help researchers perform inductive
inferences from data, rather than to do so using purely statistical techniqgues.
Therefore, various techniques were developed for visualizing data, for clus-
tering data, for constructing features. and so on. In other words. tools were
developed that would enable a researcher to make informal inferences.

One can summarize the philosophy of the data analysis approach as the
following declaration:

Inductive inference is an informal act, and statisticians contribute to this act
only by technical assistance.

One must note, however, that tremendous efforts have been made to save
the classical paradigm by generalizing all three of its main presumptions:

[. In the 1960s, P. Huber developed the so-called robust approach to para-
metric statistics, where one does not need to specify a statistical law in
order Lo estimate 4 function from a given parametric set ol functions.

I

In the 1970s, in an attempt to use a wider set of functions, J. Nedler
and R. Wedernburn suggested the so-called generalized linear models.
Attempts to use wide sets of functions created the problem of model
selection. Several asymptotic results regarding solutions ot this problem
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were obtained. (However, understanding of the model-selection prob-
lem as a small sample size problem came later when a new inductive
paradigm was created. We will discuss the small sample size problem
in this book.)

3. In the 1980s L. Breiman, P. Huber, and J. Friedman started to consider
special types of functions, nonlinear in their parameters, and started to
use the regularized empirical risk minimization method instead of the
maximum likelihood method.

Nevertheless, in spite of these and many other achievements, the limitations
of the classical parametric paradigm remain, and therefore currently not many
researchers consider the classical paradigm as the main approach to statistical
inference.

0.6 THE RENAISSANCE

The return to the general problem of statistical inference occurred so imper-
ceptibly that it was not recognized for more than 20 years.

In 1958, F Rosenblatt, a physiologist, suggested a learning machine
(computer program) called the Perceptron for solving the simplest learning
problem: namely, the classification (pattern recognition) problem. The con-
struction of this machine reflected some existing neurophysiological models
of learning mechanisms. With the simplest examples, F. Rosenblatt demon-
strated that the Perceptron could generalize. After the Perceptron, many
different types of learning machines were suggested. They didn’t generalize
worse than the Perceptron, but they had no neurobiological analogy.

The natural question arose:

Does there exist something common in these machines? Does there exist a
general principle of inductive inference that they implement?

Immediately a candidate was found for such a general induction princi-
ple: the so-called empirical risk minimization (ERM) principle. In order to
achieve good generalization on future (test) examples, the ERM principle
suggests a decision rule (an indicator function) that minimizes the number
of training errors (empirical risk). The problem was to construct a theory for
this principle.

At the end of the 1960s, the theory of ERM for the pattern recognition
problem was constructed.! This theory included both (a) the general qual-
itative theory of generalization that described the necessary and sufficient

fSee¢ monograph by V. N, Vapnik and A. Ya. Chervonenkis Theory of Pattern Recognition.
Nauka, Moscow, 1974, 416 pages. German translation: W. N. Wapnik and A. Ya. Tscherwonenkis
Theorie der Zeichenerkennung, Akademia, Berlin, 1979, 352 pages.
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conditions for consistency of the ERM induction principle (valid for any set
of indicator functions—that is, {0, 1} valued functions on which the machine
minimizes the empirical risk) and (b) the general guantitative theory that
described the bounds on the probability of the (future) test crror for the
function minimizing the empirical risk.

It must be noted that the ERM principle was discussed in the statistical
literature several times before. The essential difference, however, was that in
the pattern recognition problem ERM inference is applied to sets of simple
functions—namely to sets of indicator functions—while in classical statistics
it was applied to various sets of real-valued functions. Within 10 years, the
theory of the ERM principle was gencralized for sets of real-valued func-
tions as well.m However. it was extremely lucky that at the first and the most
important stage of developing the theory. when the main concepts of the
entire theory had to be defined, simple sets of functions were considered.
Generalizing the results obtained for estimating indicator functions (pattern
recognition) to the problem of estimating real-valued functions (regressions.
density functions, cte.) was a purely technical achievement. To obtain these
generalizations, no additional concepts needed to be introduced.

0.7 THE GENERALIZATION OF THE GLIVENKO-CANTELLI-
KOLMOGOROV THEORY

Application of the ERM principle docs not necessarily guarantee consistency
(1.c., convergence to the best possible solution with an increasing number of
observations). Therefore, the main issues that drove the development of the
ERM theory were as follows:

1. To describe situations under which the method is consistent—that 1s. to
tind the necessary and sufficient conditions {or which the ERM method
detines functions that converge to the best possible solution with an
increasing number of observations. The resulting theorems thereby de-
scribe the qualitative model of ERM inference.

ra

. To estimate the quality of the solution obtained on the basis of the
given sample size——that is, to estimate both the probability of error
for the function that minimizes the empirical risk on the given set of
training examples and to ¢stimate how close this probability is to the
smallest possible for the given set of functions. The resulting theorems
characterize the generalization ability of the ERM principle.

To address both these issues for the pattern recognition problem. it was

'See monograph by V. N. Vapnik Estimation of Dependencies Based on Empirical Data, Nauka,
Moscow, 1979, 442 pages. English translation: Springer-Verlag, New York, 1982, 300 pages.
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necessary to construct a theory that can be considered as a generalization of
the Glivenko-Cantelli-Kolmogorov results.

According to the classical law of large numbers, the frequency of any
event converges to the probability of this event with an increasing number
of observations. However, the classical law of large numbers is not sufficient
to assert that for a given set of events the sequence of probabilities of events
with the smallest frequency converges to the smallest possible value for this
set (i.e., to assert the consistency of the ERM method). Instead, it was proven
that in order to ensure the consistency of the ERM method, it is necessary and
sufficient that the uniform law of large numbers holds (uniform over all events
of the set of events defined by the set of indicator functions implemented by
the learning machine).

One can reformulate the Glivenko-Cantelli theorem as an assertion that
for some specific set of events there exists a uniform law of large numbers
and the Kolmogorov’s bound as the bound on the asymptotic rate of uniform
convergence of the frequencies to their probabilities over this specific set of
events. Therefore, to construct a general theory of the ERM method for pat-
tern recognition, one has to generalize the Glivenko-Cantelli-Kolmogorov
theory; that is:

1. For any given set of events, to determine whether the uniform law of
large numbers holds (i.e., does uniform convergence take place?).

2. If uniform convergence holds, to find the bounds for the nonasymptotic
rate of uniform convergence.

Note that these bounds are generalizations of Kolmogorov’s bound in two
respects: They must be valid for a finite number of observations and they
must be valid for any set of events.

This theory was constructed in the late 1960s (Vapnik and Chervonenkis,
1968, 1971). The cornerstone in this theory is a collection of new concepts, the
so-called capacity concepts for a set of events (a set of indicator functions).
Of particular importance is the so-called VC dimension of the set of events
(the VC dimension of the set of indicator functions implemented by the
learning machine) which characterizes the variability of the set of events
(indicator functions). It was found that both the necessary and sufficient
conditions of consistency and the rate of convergence of the ERM principle
depend on the capacity of the set of functions implemented by the learning
machine.

In particular, it was proven that for distribution-independent consistency
of the ERM principle, it is necessary and sufficient that the set of functions
implemented by the learning machine has a finite VC dimension. It was
also found that distribution-free bounds on the rate of uniform convergence
depend on the VC dimension, the number of training errors, and the number
of observations.
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0.8 THE STRUCTURAL RISK MINIMIZATION PRINCIPLE

The bounds for the rate of uniform convergence not only provide the main
theoretical basis for the ERM inference, but also motivate a new method of
inductive inference.

For any level of confidence, an cquivalent form of the bounds define
bounds on the probability of the test error simultaneously for all functions of
the learning machine as a function of the number of training crrors, of the
VC dimension of the set of functions implemented by the learning machine.
and of the number of observations.

This form of the bounds led to a new idea for controlling the generalization
ability of tcarning machines:

To achieve the smallest bound on the test error by controlling (minimizing)
the number of training errors, the machine (the set of functions) with the
smallest VC dimension should be used.

These two requirements—to minimize the number of training errors and
to use a machine (a set of tunctions) with a small VC dimension—are con-
tradictory: To minimize the number of training errors, one needs to choose
a function from a wide set ol tunctions, rather than from a narrow sct.
with small VC dimension. Therefore, to tind the best guaranteed solution.
one has to make a compromise between the accuracy of approximation of
the training data and the capacity (the VC dimension) of the machine that
one uses to minimize the number of errors. The idea of minimizing the test
crror by controlling two contradictory lactors was formalized by introducing
a new induction principle. the so-catted Structural Risk Minimization (SRM)
principle.|

One has to note that the idea of the existence of a compromise in inductive
inference has been discussed in phitosophy for almost 700 years. since William
of Occam proposed in the fourteenth century the general principle known as
Occam’s razor:

Entities should not be multiplied bevond necessity.

The attempt to provide Occam’s razor with an exact sense underlies these
discussions. The most common interpretation of Occam’s razor is:

The simplest explanation is the best.
The assertion that comes from the SRM theory is different:

Sce footnote on page 8.
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The explanation by the machine with the smallest capacity (VC dimension)
is the best.

Two important points should be mentioned in connection with introducing
the capacity concept (instead of the simplicity concept).

First, capacity determines both the necessary and sufficient conditions for
consistency of learning processes and the rate of convergence of learning
processes. Therefore, it reflects intrinsic properties of inductive inference.

Second, naive notions of complexity (for example, the number of parame-
ters) do not necessarily reflect capacity properly. In this book, we will describe
an example of a simple set of [unctions that depends on only one parameter
and that has infinite VC dimension, as well as a set of functions with a billion
parameters that has low VC dimension. We will see that if the VC dimen-
sion of a set of functions is infinite (even if we consider a set of “simple”
functions), then the so-called situation of nonfalsifiability (described by K.
Popper in his analysis of philosophy of science) prevents generalization from
taking place. On the other hand, we will also describe a learning machine,
which uses a high-order of polynomials (say five) in a high-dimensional space
(say 400) which has a good generalization ability due to capacity control.

The discovery that the generalization ability of the learning machine de-
pends on the capacity of the set of functions implemented by the learning
machine which differ from the number of free parameters is one of the most
important achievements of the new theory.

Capacity control in inductive inference makes it possible to take into
account the amount of training data. This was discovered in the mid-1970s
for the pattern recognition problem; and by the beginning of 1980, all of the
results obtained for sets of indicator functions were generalized for sets of
real-valued functions (for the problem of regression estimation).

Capacity control in a structured set of functions became the main tool
of the new paradigm. It is especially important when one tries to make an
inference based on a small sample sizes.!

0.9 THE MAIN PRINCIPLE OF INFERENCE FROM A SMALL
SAMPLE SIZE

The key idea for creating effective methods of inference from small sample
sizes is that one performs inference in situations where one possesses a re-
stricted amount of information. To take this fact into account, we formulate
the following Main Principle:

f We consider the size ¢ of data to be small for estimating functions on the basis of the set of
functions with VC dimension 4 if the ratio £/h is small (say ¢/h < 20).
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If vou possess a restricted amount of information for solving some problem,
trv to solve the problem directly and never solve a more general problem
as an intermediate step. It is possible that the available information is
sufficient for a direct solution but is insufficient for solving a more general
intermediate problem.

In spite of the obviousness of the Main Principle, it is not casy to follow
it. At least the classical approach to statistical inference does not follow this
principle. Indeed, in order to estimate decision rules, the classical approach
suggests estimating densities as a first step (recall the classical parametric
paradigm based on the maximum likelihood method). Note that estimating
probability densities is a universal problem of statistics. Knowing the den-
sity, one can solve many different problems. For example, one can estimate
the conditional density, which can be described as a ratio of two densitics.
Theretore, in general. density estimation is a hard (ill-posed) problem that
requires a large number of observations to be solved well.

However, even if one needs to estimate the conditional density, one must
try to find it directly, and not as a ratio of two estimated densities. Note that
often conditional densitics can be approximated by low-dimensional functions
even if the densities are high-dimensional functions.

[n an attempt to solve the function estimation problem directly, we derived
bounds on the quality of any possible solution (bounds on the generalization
ability) and introduced a method to control the gencralization ability by
minimizing these bounds. This brought us to the SRM inductive principle
which explicitly incorporates capacity control.

Following the logic of the Main Principle a step further brings us to an
idea ol inference that goes beyond induction.

[n many real-life problems. the goal is to find the values of an unknown
function only at points of interest (i.c.. on the test set). To solve this problem.
the established paradigm uses a two-stage procedure: At the first (induction)
stage we estimate the function from a given set of functions using an induc-
tion principle. while at the second (deduction) stage we use this function to
evaluate the values of the unknown [unction at the points ol interest. At the
first stage of this two-stage scheme, we thus solve a problem that is more
general than the one we need to solve. To estimate an unknown function
means to estimate its values at all points in the domain of this function. Why
solve a much more general problem-——function estimation—if we only need
to estimate the values of a function at a few (> 1) points of interest? In sit-
uations where we have a restricted amount of information. it is possible that
we can estimate the values of the unknown function reasonably well at given
points of interest but cannot estimate the values of the function well at «//
points of its domain.

The direct estimation of values of a function only at points of interest using
a given sct of functions forms a new type of inference which can be called
transductive inference. In contrast to the inductive solution that derives results
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in two steps, from particular to general (the inductive step) and then from
general to particular (the deductive step), the transductive solution derives
results in one step, directly from particular to particular (the transductive
step).

Therefore the classical paradigm often contradicts the Main Principle. To
avoid these contradictions a new approach was developed.

0.10 WHAT THIS BOOK IS ABOUT

This book is devoted to the theory of inductive inference, a model of which
is statistical inference (inference for the simplest statistical models).

The main problem in inductive inference lies in philosophy, in finding
the principles of inference! rather than in the mathematical analysis of the
formulated principles. However, to find the principles of inference that reflect
the phenomenon of human inference, one cannot utilize two thousand years
of philosophical heritage. Recall that when in the beginning of the 1960s
the problem of modeling learning processes on computers arose, the only
inspiration for constructing learning machines was a physiological analogy
(the Perceptron), but not general philosophical principles.

For this reason, it is important to analyze in great detail a simple math-
ematical problem of induction and try to discover the general principles of
inference from this analysis. Such a simple mathematical problem is the pat-
tern recognition problem.}

The following three claims constitute the most important results of ana-
lyzing the pattern recognition problem and its generalization, the estimation
of real-valued functions:

1. The theory of induction is based on the uniform law of large numbers.
2. Effective methods of inference must include capacity control.

3. Along with inductive inference there exists transductive inference which
in many cases may be preferable.

Not all of these claims are justified equally well.

From this point of view, the methodology of research of inductive inference is similar to the
methodology of physical science: There exists some phenomenon of nature for which a model
should be found. The mathematical analysis presented here is a tool that helps one to find this
model. The result of any analysis should be confirmed by experiments.

} The simplest induction problem is estimating the function from a set of constants—that is,
functions that take on only one value. This was the case actually under consideration when
the classical theory was developed. However, the structure of the set of constant functions
is too simple, since any subset of constant functions has the same VC dimension. equal to
one. Therefore, the simplest model of induction that requires capacity control is the pattern
recognition problem.
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. The analysis of the uniform law of large numbers and its relation to
the problem of induction inference is almost complete. It includes both
the qualitative analysis of the model (the analysis of the necessary and
sutticient conditions for consistency) and the quantitative analysis of the
model (the theory of bounds). The largest part of this book (Chapters
3.4.5. 14,15 and 16) is devoted to this analysis.

In spite of the fact that the capacity control principle (the SRM princi-
ple) was discovered in the middle of the 1970s, the development of this
principle—which led to new types of algorithms, the so-called Support
Vector Machines (SVM)—started only in the 1990s. So far. we have
only the first results of the theoretical analysis, along with the first re-
sults of practical applications. Chapters 6, 10, 11, 12, and 13 are devoted
to this subject. Chapter 7 is closely related to capacity control methods.
It describes a theory of stochastic ill-posced problems and its application
to the problem of density and conditional density estimation.

I 9

%)

. Lastly, the theory of transductive inference is only at a very carly stage
of development. We have described only very general combinatorial
tdeas on factorizing a given sct of functions based on a given set of
data. However. new methods tor capacity control developed in the Tast
few vears (described in Chapters 10, 11, 12, and 13) appear to be a
good tool for implementing transductive inference. Only one chapter
(Chapter 8) s devoted to analysis of this type of inference.

In spite of the fact that this book explicitly deals only with the mathe-
matical problems of inductive inference, it implicitly contatns two additional
subjects of discussion: (1) a discussion of the general problem of induction
and (2) a discussion of the existence of various methods of inference, namely,
interence through induction (generalization) and inference through transduc-
tion, the direct (ad hoc) inference. In Chapter 3, there is a direct comparison
ol the capacity concepts with some tfundamental concepts developed by K.
Popper in the philosophy of science. The problem of transductive inference
has no such remarkable achievement in philosophy as Popper's theory. The
existence of a direct type of inference is still under discussion in philosophy.
Therefore any evidence that an advanced transductive inference for comput-
ers exists is very important for understanding the nature of human reason.

This book was almost finished when I realized that it would not be casy
for a recader to discern the general philosophy (which is nontrivial) that ties
together many technical details (some of which are very sophisticated). There-
fore. | decided to stop working on this book [or a while and to write a short.
simplified version that would contain neither proofs nor unnecessary techni-
cal details, but would contain informal reasoning and comments. In 1995, 1
published that book.

Mladmu NoVapnik Phe Nattire of Swatstical Learning Pheory, Springer-Verlag, 1995189 pages.,
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In contrast to the short one, the present book contains the proofs of all
the main assertions. Nevertheless, it is not merely a collection of proofs of
the statements described in The Nature of Statistical Learning Theory. More
details of the theory made it possible to display more deeply both the details
of the philosophy and the details of the new methods.

The three years between completion of the short book and this one were
very fruitful in developing SRM methodology. During this time, new meth-
ods of function estimation in multidimensional spaces based on the SVM
techniques were developed. These methods go beyond learning theory. They
can be considered as a general approach to function representation in high-
dimensional spaces that in many cases can overcome the “curse of dimen-
sionality.” The details of these methods are described in the book.

As with the short one, this book is devoted to an approach that in many
respects differs from classical statistical approaches. One can consider it as an
attempt to create a new paradigm in statistics that depends less on heuristics
and instead is connected to the inductive theory of inference.

It is my hope that the book displays how deeply learning theory is con-
nected to both induction theory and the fundamentals of statistics and how
these connections give rise to effective practical methods of inference.






THEORY OF LEARNING
AND GENERALIZATION

Part I analyses factors responsible for generalization and shows how to control
these factors in order to generalize well.






TWO APPROACHES TO
THE LEARNING PROBLEM

In this chapter we consider two approaches to the learning problem—the
problem of choosing the desired dependence on the basis of empirical data.

The first approach is based on the idea that the quality of the chosen
function can be evaluated by a risk functional. In this case the choice of the
approximating function from a given set of functions is a problem of min-
imizing the risk functional on the basis of empirical data. This problem is
rather general. It embeds many problems of statistics. In this book we con-
sider three of them: pattern recognition, regression estimation, and density
estimation.

The second approach to the learning problem is based on estimating
desired stochastic dependencies (densities, conditional densities, conditional
probabilities). It requires solution of integral equations (determining these
dependencies) in situations where some elements of the equations are known
only approximately. Using estimated stochastic dependence, the pattern recog-
nition and regression estimation problems can be solved as well. However,
the function obtained by solution of the integral equations provides much
more details than is required for these problems. The price we pay for these
details is the necessity to solve ill-posed problems.

1.1 GENERAL MODEL OF LEARNING FROM EXAMPLES

Consider the following model of searching for functional dependency. which
we call the model of learning from examples.
The model contains three elements (Fig 1.1):

1. The generator of the data (examples), G.
19
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FIGURE 1.1. A model of learning from examples. During the learning process, the
learning machine observes the pairs (x,y) (the training set). After training, the machine
must on any given x return a value y. The goal is to return a value y which is close to
the supervisor's response V.

2. The target operator (sometimes called supervisor's operator or. for sim-
plicity. supervisor), S.
3. The learning machine, LM.

The generator G is a source of situations that determines the environment in
which the supervisor and the learning machine act. In this book, we consider
the simplest environment: G generates the vectors x € X independently and
identicallv distributed (i.4.d.) according to some unknown (but fixed) proba-
bility distribution function F'(x).

These vectors are inputs to the target operator (supervisor): the target
operator returns the output values y. The target operator, which transforms
the vectors x into values v, is unknown, but we know that it exists and does
not change.

The learning machine observes ¢ pairs

(.’C|,_V]), . (.’C;,v\';)

(the training set) which contain input vectors x and the supervisor’s response
v. During this period. the learning machine constructs some operator which
will be used for prediction of the supervisor's answer y; on any specific vector
x, generated by the generator G. The goal of the learning machine is to
construct an appropriate approximation.

To be a mathematical statement, this general scheme of learning from
examples needs some clarification. First of all, we have to describe what kind
of operators are used by the supervisor. In this book. we suppose that the
supervisor returns the output y on the vector x according to a conditional
distribution function F(v|x) (this includes the case when the supervisor uses
some lunction v = f(x)).

Thus, the learning machine observes the training set. which is drawn ran-
domly and independently according to a joint distribution function F(x,v) =
F{x)F(v|x). (Recall that we do not know this function but we do know that
it exists.) Using this training set, the learning machine constructs an approx-
imation to the unknown operator.

To construct an approximation, the learning machine chooses one of the
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two goals to pursue:

¢ To imitate the supervisor’s operator: Try to construct an operator which
provides for a given generator G, the best prediction to the supervisor’s
outputs.

¢ To identify the supervisor’s operator: Try to construct an operator which
is close to the supervisor’s operator.

There exists an essential difference in these two goals. In the first case. the
goal is to achieve the best results in prediction of the supervisor’s outputs for
the environment given by the generator G. In the second case, to get good
results in prediction is not enough; it is required to construct an operator
which is close to the supervisor’s one in a given metric. These two goals of
the learning machine imply two different approaches to the learning problem.

In this book we consider both approaches. We show that the problem
of imitation of the target operator is easier to solve. For this problem, a
nonasymptotic theory will be developed. The problem of identification is
more difficult. It refers to the so-called ill-posed problems. For these prob-
lems, only an asymptotic theory can be developed. Nevertheless, we show
that the solutions for both problems are based on the same general prin-
ciples.

Before proceeding with the formal discussion of the learning problem, we
have to make a remark. We have to explain what it means “to construct
an operator” during the learning process. From a formal point of view, this
means that the learning machine can implement some fixed set of functions
given by the construction of the machine. During the learning process, it
chooses from this set an appropriate function. The rule for choosing the
function is one of the most important subjects of the theory and it will be
discussed in this book. But the general assertion is:

The learning process is a process of choosing an appropriate function from
a given set of functions.

We start our discussion of the learning problem with the problem of im-
itation. It is based on the general statistical problem of minimizing the risk
functional on the basis of empirical data. In the next section we consider a
statement of this problem, and then in the following sections we demonstrate
that different learning problems are particular cases of this general one.

1.2 THE PROBLEM OF MINIMIZING THE RISK FUNCTIONAL
FROM EMPIRICAL DATA

Each time the problem of selecting a function with desired quality arises, the
same model may be considered: Among the totality of possible functions, one



22 1 TWO APPROACHES TO THE LEARNING PROBLEM

looks for the one that satisties the given quality criterion in the best possible
manncr.

Formally this means that on the subset Z of the vector space R”. a set set
ol admissible functions {g(z)}. 7 € Z. is given. and a functional

R = R(g(2)) (1.1)

is detined which is the criterion of quality of the chosen function. It is then
required to find the function g*(z) from the set {g(z)} which minimizes the
functional (1.1). (We shall assume that the minimum of the functional corre-
sponds to the best quality and that the minimum of (1.1) exists in {g(2)}.)
In the case when the set of functions {g(z)} and the functional R{g(z)) are
explicitly given, the search for the function g*(z) which minimizes Rig(z)) is
the subject of the calculus of variations.

In this book. another case is considered, when a probability distribution
function £(z) 1s delined on Z and the functional is defined as the mathemat-
ical expectation

R(g(z)) - / L(z.9(2)) dE(3). (12)

where function £L.(z.g(2)) 1s integrable for any g(z) € {g(2)}. The problem is
to minimize the functional (1.2) in the case when the probability distribution
£(z) is unknown but the sample

N T (13)

ol observations drawn randomly and independently according to F(2) is avail-
able.

Sections 1.3, 1.4, and 1.5 shall verity that the basic statistical problems
related to function estimation problem can be reduced to the minimization
of (1.2) based on empirical data (1.3). Meanwhile, we shall note that there is
a substantal difference between problems arising when the functional (1.1)
is minimized directly and those encountered when the functional (1.2) is
minimized on the basis of empirical data (1.3).

In the casce of minimizing (1.1), the problem is to organize the search for
a function g'(z) from the set {g(z)} which minimizes (1.1). When (1.2) is
to be minimized on the basis of empirical data (1.3), the basic problem is
to formulate a constructive criterion for choosing the function rather than
organizing the scarch of the functions in {g(2)}. (The functional (1.2) by
itself cannot serve as a sclection criterion, since the measure F(7) involved
in it is unknown.) Thus. in the first case, the question is;

How can we obtain the minimum of the functional in the given set of func-
tions?

While in the second case the question is:



1.2 THE PROBLEM OF MINIMIZING THE RISK FUNCTIONAL FROM EMPIRICAL DATA 23

What should be minimized in order to select from the set {g(z)} a function
which will guarantee that the functional (1.2) is small?

Strictly speaking, one cannot minimize (1.2) based on (1.3) using methods
developed in optimization theory. The minimization of the functional (1.2) on
the basis of empirical data (1.3) is one of the main problems of mathematical
statistics.

When formulating the minimization problem for functional (1.2), the set
of functions g(z) will be given in a parametric form {g(z, @), a € A}.! Here
« is a parameter from the set A such that the value a = a* defines the
specific function g(z, a*) in the set g(z,a). Finding the required function
means determining the corresponding value of the parameter a € A.

The study of only parametric sets of functions is not a restriction on the
problem, since the set A, to which the parameter a belongs, is arbitrary: It
can be a set of scalar quantities, a set of vectors, or a set of abstract elements.

In the new notation the functional (1.2) can be rewritten as

R(a) = /Q(z,a) dF(z),  a€A, (1.4)

where

O(z,a) = L(z,g(z, a)).

The function Q(z, ), which depends on two variables z and «, is called the
loss function.

The problem of minimizing functional (1.4) admits a simple interpretation:
It is assumed that each function Q(z,a*), a* € A (i.e., each function of z
for a fixed @ = a*), determines the amount of the loss resulting from the
realization of the vector z. The expected loss (with respect to z) for the
function Q(z, a*) is determined by the integral

R(a") = / 0(z, o) dF(2).

This functional is called the risk functional or the risk. The problem is to
choose in the set Q(z,a), a € A, a function Q(z, o) which minimizes the
risk when the probability distribution function is unknown but random inde-
pendent observations zy, ..., z, are given.

Remark. Let us clarify the phrase “probability distribution function is un-
known.” Denote by Py the set of all possible probability distribution func-
tions on Z and by P some subset of probability distribution functions from
Po.

We shall always omit the braces when writing a set of functions. A single function is distin-
guished from a set of functions by indicating whether the parameter « is fixed or not.
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We will distinguish between two cases:

1. Case where we have no information about the unknown distribution
function. (We have only the trivial information that £(z) € 7,.)

9

. Case where we have nontrivial information about the unknown distri-
bution function. We know that £(z) belongs to the subset P which does
not coincide with P,.

In this book, we consider mostly the first case, where we have no a priori
information about the unknown distribution function. However. we will con-
sider the general method for constructing a theory which is valid for any
given set of probability measures.

The problem of minimizing the risk functional (1.4) on the basis of empir-
ical data (1.3) is rather general. It includes in particular three basic statistical
problems:

. The problem of pattern recognition
. The problem of regression estimation

N —

. The problem of density estimation

In the next sections we shall verify that all these problems can be reduced
to the minimization of the risk functional (1.4) on the basis of the empirical
data (1.3).

1.3 THE PROBLEM OF PATTERN RECOGNITION

The problem of pattern recognition was formulated in the late 1950s. In
essence it can be stated as follows: A supervisor observes occurring situa-
tions and determines to which of k classes each one of them belongs. It is
required to construct a machine which. after observing the supervisor’s clas-
sification, carries out the classification approximately in the same manner as
the supervisor.

Using formal language, this statement can be expressed as follows: In a cer-
tain environment characterized by a probability distribution function £(x),
situation x appears randomly and independently. The supervisor classifics
cach situations into one of k classes. We assume that the supervisor car-
ries out this classification using the conditional probability distribution func-
tion F(w|x), where w € {0,1.....,k — 1} (w = p indicates that the supervisor
assigns situation x to the class number p).!

UThis is the most general case which includes a case when a supervisor classifies situations x
using a function @ = f(x)
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Neither the properties of the environment F(x) nor the decision rule of
the supervisor F(w|x) are known. However, we do know that both functions
exist. Thus, a joint distribution F(w,x) = F(w|x)F(x) exists.

Now, let a set of functions ¢(x,a), a € A, which take only k values
{0,1,...,k — 1} (a set of decision rules), be given. We shall consider the sim-

plest loss function
_ |0 ifw=4¢

The problem of pattern recognition is to minimize the functional
R@) = [ Liw,d(x,0) dF(, ) (16)

on the set of functions ¢ (x, a), @ € A, where the distribution function F(w, x)
is unknown but a random independent sample of pairs

(0)1,X1),---,(0)[,Xp) (17)

is given. For the loss function (1.5), the functional (1.6) determines the prob-
ability of a classification error for any given decision rule ¢ (x, ) .

The problem, therefore, is to minimize the probability of a classification
error when the probability distribution function F(w, x) is unknown but the
data (1.7) are given.

For simplicity consider the two-class classification problem (i.e., w € {0,1})
where we use the simplest loss function (1.5).

Thus, the problem of pattern recognition has been reduced to the problem
of minimizing the risk on the basis of empirical data. The special feature of
this problem is that the set of loss functions Q(z,a), a € A, is not arbitrary
as in the general case described in Section 1.2. The following restrictions are
imposed:

o The vector z consists of n + 1 coordinates: coordinate w, which takes on
only a finite number of values (two values for a two classes problem),
and n coordinates x!, ..., x" which form the vector x.

e The set of functions Q(z, a), @ € A, is given by
Q(z,a)zL(w,dJ(x,a)), a €A

and also takes on only a finite number of values (zero and one for the
simplest loss function).

This specific feature of the risk minimization problem characterizes the pat-
tern recognition problem. The problem of pattern recognition forms the sim-
plest learning problem because it deals with the simplest loss function. The
loss function in the pattern recognition problem describes a set of indicator
functions—that is, functions that take only two values, zero and one.
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1.4 THE PROBLEM OF REGRESSION ESTIMATION

Two sets of elements X and Y are connected by a functional dependence
if to cach clement x € X there corresponds a unique clement y € Y. This
relationship is called a function if X is a scet of vectors and Y is a sct of
scalars.

However. there exist relationships (stochastic dependencies) where to cach
vector x there corresponds a number v which we obtain as a result of random
trials. For cach x. let a distribution F(v|x) be defined on Y according to which
the selection of the value of y is implemented. The function of the conditional
probability expresses the stochastic relationship between y and x.

Now. let the vectors x appear randomly and independently in accordance
with a distribution F(x). Then, in accordance with F(y|x), the values of v
are realized in random trials. In this case, there exists a joint distribution
function £(x,v). In accordance with this measure the observed pairs

(_"[.X[ ), I (_V/ ‘.\';)

are formed randomly and independently. Estimating the stochastic depen-
dence based on this empirical data means estimating the conditional distri-
bution function F(y|x), and this is indeed quite a difficult problem. As we
show, it leads to the need to solve so-called ill-posed problems.

However, the knowledge of the function F(y|x) is often not required: it is
sufticient to determine one of its characteristics, for example the function of
conditional mathematical expectation:

rix) = /y dF{v]x). (1.8)

This function is called the regression, and the problem of its estimation in
the set of functions f(x, «), a € .\, is referred to as the problem of regression
estimation. We now show that undcer conditions

/,\'3 dF(v.x) < x, /’:(lr)dl’(y,x) < x

the problem of regression estimation is reduced to the model of minimizing
risk based on empirical data.

Indeed. on the set flyv,a),a € A (f(x,a) € L-(P)), the minimum of the
functional

R(a) = / (v - flx.a)) dF(v.2) (1.9)

(provided the minimum exists) is attained at the regression function if the
regression r(x) belongs to f(x, a), @ € A. The minimum of this functional is
attained at the function f(x. «7), which is the closest to regression r(x) in the
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metric L,(P)

= [0 = A are)
if the regression r(x) does not belong to the set f(x, @), a € A.
To show this, denote
Af(x, @) = f(x, @) = r(x).
Then functional (1.9) can be written in the form
R@) = [0=r@)dFo0+ [ a)?dFo.x
-2 [ f(x @)y = () dF 3, 2).

In this expression, the third summand is zero, since according to (1.8)

[ st = r) dF )
- [arex. [ [o-rw) dF(ylx)] dF(x) =0,
Thus we have verified that
R@) = 5= r0f dF .0+ [ (500 = r(0) dF (s),

Since the first summand does not depend on «, the function f(x, ap),
which minimizes the risk functional R(«), is the regression if r(x) €
f(x, ), or the function f(x, ag) which minimizes the risk functional R(«)
is the closest function to the regression (in the metric L,(P)), if r(x) does
not belong to f(x, a).

This equation also implies that if the regression function r{x) = f(x, ay)
belongs to the given set of functions f(x,«),a € A, and if for some func-
tion f(x, a*) the risk functional R(a*) is &-close to the minimal one

R(a™) — inf R(a) < &,
acA

then the function f(x, a*) is \/e-close to the regression in the metric L,(P):

plftrar) = ot - repare < ve.
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Thus. the problem of estimating the regression may be also reduced to the
scheme of minimizing expected risk. The specific feature of this problem is
that the set of functions Q{z. @). @ € A, is subject to the following restrictions:

e The vector 2 consists of n + 1 coordinates: the coordinate v and n coordi-
nates x', ... x" forming the vector x. However. in contrast to the pattern
recognition problem, the coordinate y as well as the function f(x. «) may
take any value in the interval (-, )

e The set of loss functions Q(z.a). a € A, is of the form
Oz.a) = (y - flx, ).

The important feature of the regression estimation problem is that the loss-
function Q(z, &) can take on arbitrary non-negative values whereas in pattern
recognition problem it can take only two values.

1.5 PROBLEM OF INTERPRETING RESULTS OF INDIRECT MEASURING

Along with the problem of regression estimation we consider the problem of
estimating functional dependencies from indirect measuring.

Suppose one would like to estimate a function f(r) that can be measured
at no point of 7. At the same time, another function F(x) which is connected
with f(1) by operator

Af(t) = F(x)

may admit measurements. It is then required on the basis of measurements
(with errors &)

Ve ¥ v =Flo)+§

of function F(x) at points x, ..., x, to obtain in a set f(¢, a) the solution of
the equation. This problem is called the problem of interpreting results of
1'11(11'rect measurerments.

The formation of the problem is as follows: Given a continuous operator
A which maps in one-to-one manner the elements f(f, a) of a metric space
E| into the elements F(x.a) of a metric space E-, it is required to obtain a
solution of the operator equation in a set of functions f(¢, «), « € A, provided
that the function F(x) is unknown, but measurements vy, .... v, are given.

We assume that the measuring F'(x) does not involve systematic error. that
is.
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and the random variables y,, and y, (i # j) are independent. We also assume
that function is defined on the interval [a, b]. The points x at which measure-
ments of the function F(x) are carried out are randomly and independently
distributed on [a, b] according to uniform distribution.f

The problem of interpreting results of indirect experiments also can be
reduced to the problem of minimizing the expected risk based on empirical
data. Indeed, consider the functional

R(a) = / (v — Af(t, ) ?p(y|x) dy dx

Using the same decomposition technique as in the previous section we obtain

R(a) = / (v — F(x,0)2p(y}x) dy dx
/ (v — AF(1)p(y|x) dy dx + / (F(x,a) — F(x))* dx

where f(t) and F(x) are the solution of integral equation and its image in £
space.

We have thus again arrived at setup for minimizing expected risk on the
basis of empirical data. To solve this problem, we have to find function
f(t, o), the image of which is the regression function in E, space.

e The vector z consists of 7 + 1 coordinates: the coordinate y and n co-
ordinates x', ..., x" forming the vector x.

e The set of loss-functions Q(z, a), @ € A, is of the form

O(z,a) = (y — Af(t, @))".

The specific feature of interpreting results of indirect experiments that the
problem of solving operator equation

Af()=F(x), ft)ef(t,a)

may be ill-posed (we will discuss this problem below). In this case not all
good approximations to the regression F(x) imply good approximations to
the desired solution f(¢). In order to approximate the solution of the operator
equation well, one has to choose the function that not only provides a small
value to the risk functional, but also satisfies some additional constraints that
we will discuss later.

"The points x can be defined by any nonvanishing density on [a. b].
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1.6 THE PROBLEM OF DENSITY ESTIMATION (THE FISHER-WALD
SETTING)

Let pix,a), a .\ be a set of probability densitics containing the required
density

dF(x
ply, ay) = ( )~
dx
Consider the functional
R(a) = /lnp(.\’.a)dF(.\') . (1.10)

Below we show that:

I. The minimum of the functional (1.10) (i it cxists) is attained at the
functions p(x.«*) which may differ from p(x. «;) only on a set of zero
measure,

2. The Bretagnolle-=Huber inequality

/‘ ply.a) - pla,ay) | dx < 2\/1 —exp{R(a)) — R(a)} (1.1H
is vahd.
Therefore, the functions p(x, «’) which are e-close to the minimum

R(e’) — inf R(a) < &

arA

will be 2,/1 - exp{ —&}-close to the required density in the metric 1.
The proof of the first assertion is based on the Jensen inequality, which
states that for a concave function ¢ the inequality

/ U (D) dF(x) < (/‘D(.\‘)(!F(.\’)) (1.12)

1s valid.
Consider the functions

Y(u) = Inu. Plx) = M
[)(.r. Xy ).

Jensen's inequality implies

Loplea) plx. a)
! F(x) <1 — . plx Ix =1Inl = 0.
/ . [7(1—. (Y“) ¢ (l) = n / p(.\“ (10)[7(\ (1“)( X n
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So, the inequality

pix, a) _ N
/ln (x. a0 dF (x) = /lnp(x,a)dF(x) /lnp(x,ag) dF(x) <0

is valid. Taking into account the sign in front of the integral (1.10), this
inequality proves our first assertion.
To prove the Bretagnolle-Huber inequality, use the following identity:

pix,a) . N . (MLG) )]
[t s ar = [ pwannfmin (755 1) i
+/p(x,a0)ln[max (%, 1)} dx.

We apply Jensen’s inequality to both terms on the right-hand side of this
equality

p(x, @) :
/p(x,ao) In px. a0) dx < In/mm(p(x,a), plx, ap)) dx

+ln/max(p(x,a), plx, ap))dx. (1.13)

Note that the following identities are true:

a+b—|a-b|

min(a,b) = 5 ,
(1.14)

a+b+|a—b

max(a,b) = —

Substituting (1.14) into (1.13), we obtain

px, )
/p(x, ap) In (. o) dx

< ln{(1—§ / tp(x,a)—pu,an)ldx) (1+§ / lp(x,a)—pu,awx)}
2
:Iﬂ(l*(%/|P(xaa)“l?(x’a())|dx) ) (1.15)

This inequality implies Bretagnolle-Huber inequality.

Thus, the problem of estimating the density in L, is reduced to the min-
imization of the functional (1.10) on the basis of empirical data. We call
this setting of the density estimation problem the Fisher-Wald’s setting. (In
Section 1.8 we consider another setting of this problem.)

The special feature of the density estimation problem in the Fisher—-Wald
setting is that the set of functions Q(z, a) is subject to the following restric-
tions:
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e The vector : coincides with the vector x.
e The set of functions Q(z. @), a € A, is of the form

gz, a) = —logp(x. a),

where p(x, @) 1s a set of density functions. The loss function Q(z, «) takes
on arbitrary values on the interval (—>. o), whereas in the regression
estimation problem it takes on only nonnegative values.

We will restrict our analysis to these three problems. However, many other
problems of estimating empirical dependencies can be reduced to the model
of risk minimization based on empirical data.

1.7 INDUCTION PRINCIPLES FOR MINIMIZING THE RISK
FUNCTIONAL ON THE BASIS OF EMPIRICAL DATA

In the previous sections, we considered the problem of minimizing the risk

functional on the basis of empirical data. It was shown that different problems

such as pattern recognition, regression estimation. and density estimation can

be reduced to this scheme by specitying a loss function in the risk functional.
Now a main guestion arises:

How can we minimize the risk functional?

We cannot minimize the functional directly since the probability distri-
bution function F(x) that defines the risk is unknown. What shall we do
instead? The answer to this question determines an induction principle lor
solving learning problems.

In this book. two induction principles will be considered: (1) the classical
one which we introduce in this section and (2) a new one which we consider
in Chapter 6.

Principle of Empirical Risk Minimization. 1ct us, instead of minimizing
the risk functional

Rla) = /IQ(:,Q)(IF(::), a € A\,

minimize the functional

] ¢
RU,,,p((I):?ZQ(;,.(r). @€\, (1.16)

1
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which we call the empirical risk functional. The empirical risk functional is
constructed on the basis of data

J1,---2¢

obtained according to distribution function F(z). This functional is defined
in explicit form, and it is subject to minimization.

Let the minimum of the risk functional be attained at Q(z, ay) and let the
minimum of the empirical risk functional be attained at Q(z, «;). We shall
consider the function Q(z, o) as an approximation to the function Q(z, ay).
This principle of solving the risk minimization problem is called the empirical
risk minimization (induction) principle.

The study of this principle is one of the main subjects of this book. The
problem is to establish conditions under which the obtained function Q(z, a;)
is close to the desired one, Q(z, ap).

1.8 CLASSICAL METHODS FOR SOLVING FUNCTION
ESTIMATION PROBLEMS

Below we show that classical methods for solving our three statistical prob-
lems (pattern recognition, regression estimation, and density estimation) are

implementations of the principle of empirical risk minimization.

Method of Minimizing Number of Training Error. In Section 1.3 we
showed that the minimization using empirical data (training data)

(w1,x1), ..., (g, X¢)
of the risk functional

R(a) = /L(w,¢(x,a)) dF(0,x), acA

on a set of functions ¢(x,a),a € A, that take on only a finite number of
values renders the pattern recognition problem.
Consider the empirical risk functional

1 4
Remp(@) = 7 ) L(w, (xi,0)),  a€A.
i=1

In the case when L(w;, ¢) € {0,1} 0 if w = ¢ and | if w # ¢ ). minimization
of the empirical risk functional produced a function which has the smallest
number of errors on the training data.
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Least Squares Method for the Regression Estimation Problem. In
Section .4, we considered the problem of regression estimation as the prob-
lem of minimization of the functional

Ria) = /(,\' - f{.\"a())2 dF(v.x), w ¢\
on the set of functions f(x.«a). « € A, on the basis of empirical data

(Vi X))o (e g )

For this functional, the empirical risk functional is
1 ¢
Rempla) = - Zl(y, — flx, a)), a€ A
!

According to the empirical risk minimization principle. to estimate the regres-
sion function we have to minimize this functional. In statistics, the method
of minimizing this functional is known as the “least-squares method.”

Maximum Likelihood Method for Density Estimation. In Scction 1.5,
we considered the problem of density estimation as the problem of minimiza-
tion of the functional

Rla) = /Inp(.\‘. a)dF{x). a €A

on the set of densities p(x,«), « € A, vsing independent identically dis-
tributed data
Xp.. Xy

For this functional, the empirical risk functional is

[
Rcmp(ﬂ) = = Z Inp(x,. a).
[t

According to the principle of empirical risk minimization. the minimum of
this functional provides an approximation of the density. It is the same solu-
tion which comes from the maximum likelihood method. (In the maximum
likelihood method. a plus sign is used in front of the sum instead of a minus.)

Thus, we tind that the classical methods of solving our statistical problems
are realizations of the general induction principle of minimizing empirical
risk. In subsequent chapters, we will study the general methods of minimizing
the risk functionals and then apply them to our specific problems. But before
that, we will consider a second approach to the learning problems, which is
not based on the scheme of minimizing the risk functional from cmpirical
data.
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1.9 IDENTIFICATION OF STOCHASTIC OBJECTS: ESTIMATION OF
THE DENSITIES AND CONDITIONAL DENSITIES

1.9.1 Problem of Density Estimation. Direct Setting

Consider methods for identifying stochastic objects. We start with the prob-
lem of density estimation. Let £ be a random variable. The probability of
random event

F(x) = P{{ <x}
is called a probability distribution function of the random variable ¢. A ran-
dom vector ¢ is a generalization of the notion of a random variable. The
function )

F(x) = P{E < i},
where the inequality is interpreted coordinatewise, is called a probability
distribution function of the random vector . :

We say that the random variable £ (random vector £) has a density if there

exists a nonnegative function p(u) such that for all x the equality

Fx)= /X pu)du

— G

is valid.

The function p(x) is called a probability density of the random variable
(random vector). So, by definition, to estimate a probability density from the
data we need to obtain a solution of the integral equation

/x p(u, @) du = F(x) (1.17)

20

on a given set of densities p(x, ), a € A, under conditions that the distribu-
tion function F(x) is unknown and a random independent sample

Xy oy Xty (1.18)

obtained in accordance with F(x), is given.

One can construct approximations to the distribution function F(x)
using the data (1.18)—for example, the so-called empirical distribution func-
tion (1.18) (see Fig. 1.2):

¢
Fi(x) —-%ge(x~x, (1.19)

where we define for vector! u the step function

o) = 1 all coordinates of the vector u are positive,
0 otherwise.

P Including scalars as one-dimensional vectors.
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145514“_ - - O - —— >

x, X, 0 X, X

FIGURE 1.2. The empirical distribution function F, (x), constructed from the data
x;... .x, approximates the probability distribution function F(x).

In the next section, we will show that empirical distribution function F; (x) is
a good approximation to the actual distribution function F(x).

Thus. the problem of density cstimation is to find an approximation to the
solution ol the integral equation (1.17) if the probability distribution function
is unknown; however. an approximation to this function can be defined.

We call this setting of the density estimation problem direct setting because
it based on the definition of density. In the following sections we shall discuss
the problem of solving integral equations with an approximate right-hand
side, but now we turn to a direct setting of the problem of estimating the
conditional probability. Using the conditional probability. one can easily solve
the pattern recognition problem.

1.9.2 Problem of Conditional Probability Estimation

Consider pairs (w.x), where x is a vector and w is a scalar which takes on
only & values {0,1....k~ 1}. According to the definition, the conditional
probability P(w|x) is a solution of the integral equation

/ Plowlt)dF (1) = F(w.x), (1.20)

where F(x) is the distribution function of random vectors x. and F(w, x) is
the joint distribution function of pairs (w, x).

The problem of estimating conditional probability in the set of functions
P, (w]x). a € A, is to obtain an approximation to the solution of the inte-
gral equation (1.20) when both distribution functions F(x) and F(w.x) are
unknown but the data

(w] ..\’]), (w,.x;)

is given. As in the case of density estimation, we can approximate the un-
known distribution functions £(x) and F(w.x) by the empirical distribution
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functions (1.19) and function

¢
F(J(Q),.X): Ze(x—xi)a(waxi)’
i=1

N

where

5(w, x) = 1 if the vector x belongs to the class w,
7710 otherwise.

Thus, the problem is to obtain an approximation to the solution of integral
equation (1.20) in the set of functions P,(w|x), a € A, when probability
distribution functions F(x) and F(w,x) are unknown, but approximations
F¢(x) and F;(w, x) are given.

Notc that estimation of the conditional probability function F(w|x) is a
stronger solution to the pattern recognition problem than the one consid-
ered in Section 1.3. In Section 1.3, the goal was to find the best decision
rule from the given set of decision rules; it did not matter whether this set
did or did not contain a good approximation to the supervisor’s decision
rule. In this statement of the identification problem, the goal is to find the
best approximation to the supervisor’s decision rule (which is the conditional
probability function according to the statement of the problem). Of course, if
the supervisor’s operator F(w|x) is known, then one can easily construct the
optimal decision rule. For the case where @ € {0,1} and a priori probability
of classes are equal, it has the form

f) = 0(P(w=1|x) - 3).

This is the so-called Bayes rule; it assigns vector x to class 1 if the probability
that this vector belongs to the first class is larger than 1/2 and assigns 0
otherwise. However, the knowledge of the conditional probability not only
gives the best solution to the pattern recognition problem, but also provides
an estimate of the error probability for any specific vector x.

1.9.3 Problem of Conditional Density Estimation

Finally, consider the problem of conditional density estimation. In the pairs
(y,x), let the variables y be scalars and let x be vectors. Consider the equality

/j /j p(tlu)dF (u)dt = F(y,x), (1.21)

where F(x) is a probability distribution function which has a density, p(y|x)
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ts the conditional density of v given x. and F(y,x) is the joint probability
distribution function’ defined on the pairs (v.x).

As before, we are looking {or an approximation to the conditional density
ply[x) by solving the integral equation (1.21) on the given set of functions
when both distribution functions F(xj and F(y,x) are unknown: and the
random, ri.d. pairs

(vi. ) v xy) (1.22)

are given. As before, we can approximate the empirical distribution function
F,(x) and empirical distribution function

l {
iy, x) =7 E O - v)B(x  x).
[

Thus, our problem is to get an approximation to the solution of the integral
equation (1.21) in the set of functions p.(y|x), @ € .\, when the probability
distribution functions are unknown but we can construct the approximations
F,(x) and £, {y, x) using data (1.22).

Note that the conditional density p(y|x) contains much more information
about the behavior of the random value y for fixed x than the regression
function. The regression function can be casily obtained [rom conditional
density (see the delinition of the regression lunction (1.8)).

1.10 THE PROBLEM OF SOLVING AN APPROXIMATELY DETERMINED
INTEGRAL EQUATION

All three problems ol stochastic dependencies estimation can be deseribed
in the following general way. 1t is necessary 1o solve a lincar continuous
operator cquation

Af=F, feF (1.23)

if some functions which [orm the equation are unknown, but data are given.
Using these data the approximations to the unknown functions can be ob-
tained. Let F, (x) and £ (v, x) be approximations to the distribution functions
Fix) and F(y,x) obtained from the data.

A difference exists between the problem of density estimation and the
problems of conditional probability and conditional density estimation. In the
problem of density estimation. instead of an accurate right-hand side of the

PActually, the solution of this equation is the definition of conditional density. Suppose that
poviand plvovy are the densities corresponding to probability distribution tunctrons (41 and
Fovovy Then equabiny (F21 s equivalent to the equality pOviapiud ptvov,
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equation we have its approximation. We would like to get an approximation
to the solution of Eq. (1.23) from the relationship

Asz[, fEf

In the problems of conditional probability and conditional density estimation,
not only the right-hand side of Eq. (1.23) is known approximately, but the
operator A is known approximately as well (in the left-hand side of integral
equations (1.20) and (1.21), instead of the distribution functions. we use their
approximations). So our problem is to get an approximation to the solution
of Eq. (1.23) from the relationship

AfszF’ fEf,

where A, is an approximation of the operator A.

The good news about solving these problems is that the empirical dis-
tribution function forms a good approximation to the unknown distribution
function. In the next section we show that as the number of observations
tends to infinity, the empirical distribution function converges to the desired
one. Moreover, we shall give an asymptotically exact rate of the convergence
for different metrics determining different definitions of a distance between
functions.

The bad news is that the problem of solving operator equation (1.23) is
the so-called ill-posed problem. In Section 1.12 we shall define the concept of
“ill-posed” problems and describe the difficulties that arise when one needs
to solve ill-posed problems. In the appendix to this chapter we provide the
classical theory of solving ill-posed problems which is generalized in Chapter
7 to the case of stochastic ill-posed problems. The theory of solving stochastic
ill-posed problems will be used for solving our integral equations.

1.11 GLIVENKO-CANTELLI THEOREM

In the 1930s Glivenko and Cantelli proved one of the most important theo-
rems in statistics. They proved that when the number of observations tends
to infinity, the empirical distribution function F,(x) converges to the actual
distribution function F(x).

This theorem and its generalizations play an important part both in learn-
ing theory and in foundations of theoretical statistics. To discuss this theorem
and results related to it accurately, we need to introduce some general con-
cepts which describe the convergence of a stochastic variable.
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1.11.1 Convergence in Probability and Almost Sure
Convergence

Note that an empirical distribution function is a random function because
it is formed on the basis of a random sample of observations. To discuss
the problem of convergence of this function we need to measure distance
between the empirical distribution function and the actual one. To measure
the distance between two functions, different metrics are used. In this book
we use three of them: the uniform metric C

p(g(x), g2(x)) = sup g (x) — ga(x)].

[.~(F) metric

ple(x) g () = \/7(1:1(1') — (X)) dF(x),

and 1., (/) metric
Pl () () = / 1 (00) — g2 ()] dF (x).

In the case when we measure the distance between random functions F; ()
and some tixed function F(x). random variables

dap = dp(xy, . x) = plFx), Fr(x))
are considered. Consider a sequence of random variables
dy, ...y, ... .

We say that a sequence of random variables a; converges to a random vari-
able ay in probability if for any & > 0 the relation

P{la; — ay| > 3}‘~+ 0 (1.24)

is valid.

We say also that a sequence of random variables a, converges to the
random variable ay almost surely (with probability 1) if for any & > 0 the
relation

Pi{sup |[a, —ay| > 6} — 0 (1.25)
i Hox
is valid.

It is easy to see that the convergence (1.25) implies the convergence (1.24)
which is a weaker mode of convergence, Generally, the convergence (1.24)
does not imply the convergence (1.25).
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The following classical lemma provides conditions under which conver-
gence in probability implies almost sure convergence (Shiryayev, 1984).

Let Ay, ..., An, ... be a sequence of events.! Denote by
A= 1limA,
n—0oC
the event that an infinite number of events from A, ..., A,, ... have occurred.

Lemma 1.1 (Borel-Cantelli). (a) If

ZP{A,,} < 00,
n=1
then
P{limA,} =0.
(b) If
Y P{A,} = o0
n=1
and Ay, ..., Ay, ... is sequence of independent events, then

P{TmA,} = 1.

Corollary 1. In order for a sequence of random variables a, to converge to a
random variable ag almost surely, it is sufficient that for any 6 > 0 the inequality

o o]
ZP{|an—a0| > 8} < oo

n=1
be fulfilled.

This inequality forms necessary conditions if a, is a sequence of indepen-
dent random variables.

Corollary 2. Let ¢,, n = 1,..., be a sequence of positive values such that &, — (
when n — oo. Then if

o0
ZP{ |an—ag | > &5} < 00,
n=1

the random variables a,, converge to a random variable ay almost surely.

' See Chapter 2 for definition of events.



42 1 TWO APPROACHES TO THE LEARNING PROBLEM

Convergence in probability will be denoted by
ay, — dgy .

[N

Almost sure convergence will be denoted by

T
ay — dy.
toex

1.11.2 Glivenko-Cantelli Theorem

Now we can formulate the Glivenko—Cantelli theorem.

Theorem 1.1 (Glivenko-Cantelli). The convergence

sup |F(x) - F, (,\')[IJ‘* 0

[N

takes place.

In this formulation. the Glivenko-Cantelli theorem asserts the conver-
gence in probability” in the uniform metric, of the empirical distribution
function F, (x) to the actual distribution function F(x).

We will not prove this theorem here. which was proved originally for
the one-dimensional case. This theorem and its generalization for the multi-
dimensional case will be derived from the more general assertion, which we
shall prove in Chapter 4.

As soon as this theorem has been proved. the problem of the rate of
convergence F, (x) to Fix) emerged.

1.11.3 Three Important Statistical Laws
Investigations of the rate of convergence of £ (x) to F(x) for one-dimensional
continuous functions F(x) resulted in the establishment of several laws of
statistics. in particular the following three:
I. Kolmogorov=Smirnov Distribution. The random variable
&~ \F(sup | Fx) - £ (x) ]
1

has the following limiting probability distribution (Kolmogorov):

lim P{VE sup | Fle)- Fgf<el =125 1 e R

+

PBelow we will see that almost sure convergence takes place as well.
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The random variables

& = VEsup(F(x) — Fy(x)),

& = Vesup(Fy(x) - F(x))
have the following limiting probability distributions (Smirnov):

Ilim P{Ve sup(F(x) — F(x)) < e} =1- e,

, (1.27)
lim P{Ve sup(Fe(x) —F(x)) < e} =1-¢%,

2. The Law of the Iterated Logarithm. The equality

[ 2¢
i P— —_ = 1 e .
P {n"l’i Sup supy/ e | F(x) — Fi(x) | } 1 (1.28)

holds true.
3. Smirnov Distribution. The statistic

Wl =1 / (F(x) — Fy(x))2 dF(x)

(the so-called omega square statistic) has the limiting distribution

Jim P{¢ /(F(x) — F/(x))*dF(x) < &}

AZ

2 2. [T exp{——g}

=1-— f ———2 dA
Qk-nm V—ASInA

7=
We shall not prove these statistical laws. For our purpose of constructing
the learning theory, we need more general laws which we shall derive in
Chapters 4 and 5. Now our goal is to use the laws above to estimate the
bounds for distribution function F(x) provided the estimate F,(x).
We derive these bounds from the Kolmogorov—-Smirnov law (1.27). For
this purpose we consider for some n (0 < n < 1) the equality

1_6—2821’:1_1’

which we solve with respect to ¢

[ Inqg
£ = _—EE—
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Now (1.27) can be described as follows: With probability I ~ 7 simultancously
for all x the inequalities

Froe) - /- by < B4y /- T

26 Y

are valid as { — .
Similarly. the iterated logarithm law (1.28) implies that when

¢ — o

simultancously for all x. the incqualities

Inln ¢ Inin¢
Fi(-")“\/ Y, < Fv)y < Fi(x)+ T,

are valid. These inequalities are tight.

To estimale the density we have Lo solve an integral equation where the
right-hand side of the equation is unknown, but approximations which con-
verge to the actual function are given. But even if the approximation F; (x)
tends to F(x) with a high asymptotic rate of convergence, the problem of
solving our integral equations is hard, since (as we will sce in the next sec-
tion) it is an ill-posed problem.

1.12 ILL-POSED PROBLEMS
We say that the solution of the operator equation
Af(t) = F(x) (1.30)

is stable if a small variation in the right-hand side F{x) € F(x, a) results in a
small change in the solution: that is, if for any ¢ there exists 8(&) such thal
the incquality

pe flt,ay). flt,a)) < e

is valid as long as inequality
pr(Flx ). Flx o)) < 8(e)

holds. Here the indices £, and E> denote that the distance is defined 1n the
metric spaces E, and E,. respectively (the operator equation (1.30) maps
functions of space E, into functions of space E,).

We say that the problem of solving the operator equation (1.30) is well-
posed in the Hadamard sense if the solution of the equation
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® exists,
e is unique, and
e is stable.

The problem of solving an operator equation is considered ill-posed if the
solution of this equation violates at least one of the above-mentioned re-
quirements. In this book, we consider ill-posed problems when the solution
of the operator equation exists, is unique, but is not stable.

This book considers ill-posed problems defined by the Fredholm integral
equation of type I:

/b K(t,x)f(t)dt = F(x).

However, all the results obtained will also be valid for equations defined by
any other linear continuous operator.
Thus, consider Fredholm’s integral equation of type I:

/1 Kt,x)f(t)dt = F(x) (1.31)
0

defined by the kernel K(¢,x), which is continuous almost everywhere on
0 <t <1, 0<x < 1. Thiskernel maps the set of functions {f(r)}, continuous
on [0, 1], onto the set of functions {F(x)} also continuous on [0, 1].

We shall now show that the problem of solving the equation (1.31) is an
ill-posed one. For this purpose we note that the continuous function G, (x)
which is formed by means of the kernel K(¢, x):

1
G.(x)= /0 K(t,x)sinvt dt

possesses the property

G,(x) — 0.

| damde ]

Consider the integral equation

/1 K(t, x)f*(t)dt = F(x) + G, (x).
0

Since the Fredholm equation is linear, the solution of this equation has the
form

()= f(t) +sinve,
where f(r) is the solution of Eq. (1.31). For sufficiently large v, the right-hand
side of this equation differs from the right-hand side of (1.31) only by the
small amount G, (x), while its solution differs by the amount sinwt.
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The Fredholm integral equation is the equation we shall consider in this
book. Here are some examples of problems connected with a solution of this
cquation:

Example 1 (The Problem of Identifying Lincar Dynamic Systems). It is
known that dynamic propertics of linear homogencous objects

V(1) = Ax(r)

with one output are completely described by the impulse response function
f(7). The function f(7) is the response of the system to a unit impulse 6 (¢)
served at the system at time 7 = 0.

Knowing this function, onc can compute the response of the system to the
disturbance x(r) using the formula

3
v(r) = / x(t—7n)f(r)dr.
0
Thus, the determination of the dynamic characteristics of a system is reduced
to the determination of the weight function f(x).
It is also known that for a linecar homogenceous system, the Wiener-Hopl
cquation

/ R\\([ - T)f[‘T)t[T = RH([] (132)
0

i valhd.

Equation {1.32) connects the aulocorrelation function R, (1) ol a station-
ary random process at the iput of the object with the weight function f(7)
and the joint correlation function of the input and output signals R, (7).

Thus. the problem of identifying a lincar system involves determining the
welght function based on the known autocorretation function of the input
signal and the measured (observed) joint correlation function of the input
and output signals: that is, it is a problem ol solving integral cquation (1.32)
on the basis of empirical data.

Example 2 (The Problem of Estimating Derivatives). Let measurements ol a
smooth function £(x) at ¢ points of the interval [0, ] be given. Suppose that
the points at which the measurements were laken are distributed randomly
and independently according to the uniform distribution. The problem is to
estimate the derivative f(x) of the function F(x) on [0, 1].

[t 1s casy to see that the problem is reduced to solving the Volterra integral
cquation of type 1,

"y
/ feyde = F(x) - F(O).
()
under the condition that the £ measurements

Yis oo Wy
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of the function F(x) at the points
X1y eeey Xy

are known. Equivalently, it is reduced to the solution of the Fredholm equa-
tion of the type I,

/I 6(x —0)f(t)dt = F(x) — F(0),
0

where

1 if u >0,
0(u) = { 0 otherwise.

Note that in the case when F(x) is a monotonically increasing function sat-
isfying the conditions F(0) =0, F(1) =1, we have the problem of density
estimation.

In the general case when the kth derivative has to be estimated, the fol-

lowing integral equation has to be solved:

k-1

1 k-1 )
(x-—1) F(0)
M (- Of(t)dt = F(x) — ,
[ o= o= -3 5
where in place of F(x) the empirical data yi, ...,y are used. Here FU'(0) is

the value of the jth derivative at zero.

The main difficulty in solving integral equations stems from the fact that
this is an ill-posed problem since the solution of the equation is unstable. In
the mid-1960s, several methods for solving unstable problems of mathemati-
cal physics were proposed. In the appendix to this chapter, we shall present
the so-called “regularization method” proposed by A. N. Tikhonov. This
method is applicable for solving integral equations when instead of knowing
the function on the right-hand side of an equation, one knows the sequence
of approximations which converges to an unknown function with probability
one.

In the 1970s we generalized the theory of the regularization method for
solving the so-called stochastic ill-posed problems. We define stochastic ill-
posed problems as problems of solving operator equations in the case when
approximations of the function on the right-hand side converge in probabil-
ity to an unknown function and/or when the approximations to the operator
converge in probability to an unknown operator. This generalization will
be presented in Chapter 7. We show that the regularization method solves
stochastic ill-posed problems as well. In particular, it solves our learning prob-
lems: estimating densities, conditional densities, and conditional probabilities.
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1.13 THE STRUCTURE OF THE LEARNING THEORY

Thus. in this chapter we have considered two approaches to learning prob-
lems. The first approach (imitating the supervisor’s operator) brought us to
the problem of minimizing a risk functional on the basis of empirical data.

The second approach (identifying the supervisor's operator) brought us
to the problem of solving some integral equation when the elements of an
cquation are known only approximately.

It has been shown that the second approach gives more details on the
solution of pattern recognition and regression estimation problems.

Why in this case do we need both approaches? As we mentioned in the
last section. the second approach, which is based on the solution of the in-
tegral equation, forms an ill-posed problem. For ill-posed problems. the best
that can be done is to obtain a sequence of approximations to the solution
which converges in probability to the desired function when the number of
obscrvations tends to infinity. For this approach, there exists no way to eval-
uate how well the problem can be solved if a finite number of observations is
used. In the framework of this approach to the learning problem. any exact
asscertion Is asymptotic.

That is why the tirst approach, based on minimizing the risk tunctional
from cmpirical data of the finite size £, may be more apropriate for our
purposes.

In the following chapters, we show that in the framework of the first
approach onc can estimate how close the risk tunctional of the chosen func-
tion is to the smallest possible one (for a given set of functions).

This means that if the function Q(z. o) has been chosen via an appro-
priate induction principle (for example, the principle of empirical risk min-
imization), one can assert that with probability 1 — n the value of the risk
R{«,) for this function does not exceed the smallest possible value of risk
inf,,, \ R(«) (for a given set of functions) by more than &. Here & depends
only on 7, { and one more parameter describing some general properties
(capacity) of a given set of tunctions.

In other words, it will be shown that for algorithms selecting functional
dependencies based on empirical risk minimization induction principles, one
can guarantee that with probability at least 1 — n the inequality

Rias) — int R(a) < e(¢,m,-) (1.33)

aeA

holds true.

Recall that for the pattern recognition problem the goal is to obtain the
solution for which the value of risk is g-close to minimal (see Section 1.3).

For the regression estimation problem. the e-closeness of the risk func-
tional to the minimal one guarantees that the chosen function is \/g-close to
the regression function in the L, (F) metric (see Section 1.4).

For the density estimation problem, the e-closeness of the risk functionals



1.13 THE STRUCTURE OF THE LEARNING THEORY 49

to the minimal one implies the (21/1 ~ exp{—¢})-closeness of approximation
to the actual density in the L,(F) metric (see Section 1.5).

Therefore the main problem in this approach (both theoretical and prac-
tical) is to find the method which provides the smallest £ on the right-hand
side of inequality (1.33) (for a given number of observations).

To do this well, four levels of the theory should be developed. These are:

1. Theory of Consistency of the Learning Processes. The goal of this part
of the learning theory is to give a completc description of the con-
ceptual (asymptotic) models of the learning processes—that is, to find
the necessary and sufficient conditions of consistency of the learning
processes. (Informally, the conditions for convergence to zero of the ¢
in (1.33) as the number of observations ¢ tends to infinity. The exact
definition of consistency is given in Chapter 3.)

Why do we need this asymptotic (conceptual) part of the theory if our
goal is to obtain the best solution for a finite number of observations?
The conceptual (asymptotic) part of the learning theory is important
since to find the condition for consistency one has to introduce some
concepts in terms of which the theory can be developed. For example,
the concept which characterizes the capacity of a given set of functions
(the dot in arguments of ¢ in the inequality (1.33)). Generally, it is
possible to use several different constructions. However, it is important
to develop the theory on the basis of such constructions which are not
only sufficient for the consistency of learning process, but are necessary
as well. This gives us a guarantee that the theory which we develop
using these constructions is general and from the conceptual point of
view cannot be improved.

2. Theory of Estimating the Rate of Convergence of the Learning Processes.
This part of the learning theory is devoted to obtaining nonasymptotic
bounds on the generalization ability of the learning machines (¢ on
the right-hand side of inequality (1.33)). We obtain these bounds using
the concepts developed in the conceptual part of the theory. In this
book, we consider a theory of distribution-free bounds of the rate of
convergence (the theory that does not use a priori information about
the unknown probability measure). The main requirement of this part
of the theory is to find a way to construct bounds for different sets of
functions.

3. Theory for Controlling the Rate of Convergence of the Learning Pro-
cesses. The bounds on generalization ability will be used for developing
the new induction principles that guarantee the best solution of the
learning problem for a given finite set of observations.

These induction principles are based on the trade-off between com-
plexity of the chosen function (capacity of the set of functions from
which the function is chosen) and the value of empirical risk which can
be achieved using this function. This trade-off led to some functional
different from the empirical risk functional that should be minimized.
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Table 1.1. Structure of Learning Theory and Iis Representation in this Book

f Parts of the Theory Chapters Content of the Chapters

( 1. Theory of Chapter 3 Review of the theory

| consistency Chapter 14 Proofs of the theorems

l of the learning Chapter 15 Proofs of the theorems
processes Chapter 16 Proofs of the theorems

} 2. Theory ol Chapter 4 For indicator functions

J bounds Chapter 5 For real-valued functions

r

} 3. Theory of Chapter 6 SRM induction principle
controlling the Chapter 7 Stochastic ill-posed problems
generalization Chapter 8 New setting of the problem

{ 4. Theory Chapter 9 Classical approaches
of the learning Chapter 10 SVM for pattern recognition

/ algorithms Chapter 11 SVM for function estimation

; and its Chapter 12 Examples of pattern recognition

[ applications Chapter 13 Examples of function estimation

Obtaining these functionals in explicit form is the goal of this part of
the theory.

4. Theory of the Algorithms. Finally, there is a theory of learning algo-
rithms. The goal of this part of the theory is to develop tools for min-
imizing the functionals describing the trade-off. In order to minimize
these functionals, it is necessary to develop algorithms which can con-
trol both the minimization of empirical risk in a given set of functions
and the choice of a set of functions with appropriate capacity.

In this book. we consider all parts of the theory of minimization ol the
risk functional from empirical data.

We consider the theory of solving stochastic ill-posed problem as well, and
we apply it to estimate density, conditional density. and conditional probabil-
ity. This theory describes sufficient conditions for consistency of the solution
and, for some cases. the asymptotic rate of convergence of the solution. Of
course, the results of asymptotic theory is not enough to guarantece the suc-
cess if the algorithms use limited samples. In the framework of this theory.
our hope is that asymptotic properties established in the theory are also valid
for not very large .

Table 1.1 shows the structure of the learning theory and its representation
in this book.

Chapter 2 is not indicaled in this table. The content of that chapter goes
bevond the learning theory. [t. however, is very important for the general
understanding of the nature of learning problems. We show in this chapter
how deeply these problems are connected with fundamental problems of
theoretical statistics.



APPENDIX TO CHAPTER 1:
METHODS FOR SOLVING
ILL-POSED PROBLEMS

Al.1 THE PROBLEM OF SOLVING AN OPERATOR EQUATION

We say that two sets of elements f € M and F € N are connected by
functional dependency if to each element f € M there corresponds a unique
element F € N.

This functional dependence is called a funcrion if the sets M and A/ are
sets of numbers; it is called a functional if M is a set of functions and NV is a
set of numbers, and it is called an operator if both sets are sets of functions.

Each operator A uniquely maps elements of the set M onto elements of
the set AV. This is denoted by the equality

AM=N.

In a collection of operators we shall single out those which realize a one-to-
one mapping of M into N. For these operators the problem of solving the
operator equation

Af(t) = F(x) (Al.1)

can be considered as the problem of finding an element f(¢) in M to which
an element F(x) corresponds in V.

For operators which realize a one-to-one mapping of elements M onto
N and a function F(x) € NV, there exists a unique solution of the operator
equation (A.1). However, finding a method for solving an operator equation
of such generality is a hopeless task. Therefore we shall investigate operator
equations with continuous operators only.

Let the elements f € M belong to a metric space E; with metric p;(-.-).
and the elements F € A belong to a metric space E, with metric p2(-,-). An

51
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operator A is called continuous if “close™ elements (with respect to metric
p)in Ey are mapped into “close™ elements (with respect to metric p;) in £5.
We shall consider an operator equation defined by a continuous one-to-
one operator M onto V. The solution of such an operator equation exists
and is unique, that is. there exists inverse operator A ! from NV onto M:

M=A'N.

The basic problem is whether the inverse operator is continuous.

If the operator A ! is continuous, then close preimages will correspond to
close function in A, that is, the solution of the operator equation (Al.1) will
be stable.

If. however, the inverse operator is not continuous. then the solution of
the operator equation can be nonstable. In this case according to Hadamard’s
definition (Chapter 1. Section 1.12), the problem of solving an operator equa-
tion is ill-posed.

It turns out that in many tmportant cases, for example, for a so-called
completely continuous operator A, the inverse operator A ! is not continuous
and hence the problem of solving the corresponding operator equation is ill-
posed.

Definition. We say that a linear operator A defined in a lincar normed space
£, with the range of values in a linear normed space E» is completely con-
ttnueows i 1t maps any bounded set of the functions in the space £ into a
compact set of the space £>—that is. if cach bounded infinite sequence in £

fiofroonten Il < (A12)

(here

If}]] s the norm in E/) is mapped in E; into a sequence
Af . LALL (A1.3)
such that a convergent subsequence
Afi AL (Al4)
can be extracted from it.

We will show that if the space £ contains bounded noncompact sets, then
the inverse operator A ! for an absolutely continuous operator A need not
be continuous.

Indeed, consider a bounded noncompact set in £, Select in this set an
intinite sequence (Al.2) such that no subsequence of it 1s convergent. An
infinite sequence (A1.3) from which convergent subscquence (A1.4) may be
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selected (since operator A is absolutely continuous) corresponds in £ to this
sequence. If the operator A~! were continuous, then a convergent sequence

fiw-"afik»"'a (A]S)

would correspond to the sequence (Al.4) in £, which is a subsequence of
(A1.2). This, however, contradicts the choice of (A1.2).

Thus, the problem of solving an operator equation defined by a completely
continuous operator is an ill-posed problem. In the main part of this book
we shall consider linear integral operators

Af = /bK(t,x)f[t)dt

with the kernel K (¢, x) continuous in the domaina <t < b, a < x < b. These
operators are completely continuous from C|a, b] into C|a, b]. The proof of
this fact can be found in textbooks on functional analysis (see, for example,
Kolmogorov and Fomin (1970)).

Al1.2 PROBLEMS WELL-POSED IN TIKHONOV'S SENSE
Definition. The problem of solving the operator equation
Af=F (AL6)

is called well-posed (correct) in Tikhonov’s sense on the set M* C M, and
the set M* is called the set (class) of correctness, provided that:

1. The solution of (A1.6) exists for each F € AM* = A" and belongs to
M.

2. The solution belonging to M* is unique for any F € A/*.

3. The solutions belonging to AMM* are stable with respect to F € A*.

If M*=M and N* =N, then correctness in Tikhonov’'s sense corre-
sponds to correctness in Hadamard’s sense. The meaning of Tikhonov's cor-
rectness is that correctness can be achieved by restricting the set of solutions
M to a class of correctness M*.

The following lemma shows that if we narrow the set of solutions to a
compact set M*, then it constitutes a correctness class.

Lemma. If A is a continuous one-to-one operator defined on a compact set
M* C M, then the inverse operator A~ is continuous on the set N* = AM".
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Proof. Choose an arbitrary clement Fy € N and an arbitrary sequence con-
vergent 1o it
{F} AT, F, -F.
o

Hnoo

It 15 required to verify the convergence

w= AE A TE =
Hnoex
Since {f,} < M . and M is a compact set, the limit points of the sequence
{£.} belong to M. Let £, be such a limit point. Since f is a limit point.
there exists a sequence {f,, } convergent to it, to which there corresponds
asequence {F, } convergent to Fy. Therefore, approaching the limit in the
cquality
Aﬁu = Fn,\

and utilizing the continuity of the operator A, we obtain

Afy = Fo.

Since the operator A ! is unique. we have

A TEy =

which implies the uniqueness of the limit point of the sequence {f, }.

It remains to verity that the whole sequence {f,,, } converges to f. Indecd.
tf the whole sequence is not convergent to f,, one could tind a neighborhood
of the point f; outside of which there would be infinitely many members

point f,; which, by what has been proven above, coincides with f). This.
however, contradicts the assumption that the selected sequence lies outside
a neighborhood of point f;.

The lemma is thus proved.

Henee correctness in Tikhonov's sense on a compactum M follows from
the conditions of the existence and uniquencess of a solution of an operator
cquation. The third condition (the stability of the solution) is automatically
satisfied. This fact is essentially the basis for all constructive ideas for solving
ill-posed problems. We shall consider one of them.

A1.3 THE REGULARIZATION METHOD

A1.3.1 Idea of Regularization Method
The regularization method was proposed by A. N. Tikhonov in 1963,
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Suppose that it is required to solve the operator equation
Af=F (A1.7)

defined by a continuous one-to-one operator A acting from M into . Sup-
pose the solution of (A1.7) exists.

Consider a lower semicontinuous functional W (f), which we shall call the
regulizer and which possesses the following three properties:

1. The solution of the operator equation belongs to the domain of defini-
tion D(W) of the functional W(f).

2. On the domain of the definition, functional W (f) admits real-valued
nonnegative values.

3. The sets
M= {f: W(f) <c}, c>0,

are all compact.

The idea of regularization is to find a solution for (A1.7) as an element
minimizing a certain functional. It is not the functional

p=p(Af,F)

(this problem would be equivalent to the solution of Eq. (A1.7) and therefore
would also be ill-posed) but is an “improved™ functional

Ry(f.F) = p3(Af,F)+yW(f), feDW) (A18)

with regularization parameter y > 0. We will prove that the problem of min-
imizing the functional (A1.8) is stable, that is, to the close functions F and
F5 (where py(F, F5) < 8) there correspond close elements f* and f] which
minimize the functionals R, (f, F) and R, (f, F3).

Al1.3.2 Main Theorems About the Regularization Method

The problem in the theory of regularization is to determine a relationship
between 8 and vy such that the sequence of solutions fJ of regularized prob-
lems R, (f, F5) converges as 8 — 0 to the solution of the operator equation
(A1.7).

The following theorem establishes these relations.

Theorem 1. Let E, and E, be metric spaces, and suppose for F € N there
exists a solution f € D(W) of Eq. (A1.7). Let instead of an exact right-hand
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side £ of Eq. (AL7), approximations’ Iy € Ey be given such that p>(F |, Fs) <
d. Suppose the values of parameter y are chosen in such a manner that

y(8) -0 for & —-- 0,

5

lim <r < . [{AL1.9)

s 0 y(d)

iy (S} NP . .
Then the elements {77 minimizing the functionals R ,5,(f. F5) on D(W) con-
verge to the exact solution f as 6 — (.

Proof. The proof of the theorem utilizes the following fact: For any fixed
y > 0and an arbitrary F € A an clement f¥ € D(W) exists which minimizes
the functional R, (f. F) on D(W).

Let v and 6 satisfy the relation (A1.9). Consider a sequence of elements
f7°" minimizing R, (f. F5). and show that the convergence

is valid.
Indeed. by definition of fgm’ we have

Ryxm(‘f‘;(m»Fs)

IA

R,s)(f. Fs) = pi(Af. Fs)+ y(8)W(f)

IA

N . . 5
52+ Y(OW(S) = 7() (wm R —) |
Taking into account that

Ry (f1° Fs) = p3(Af]  Es) + y(&)W (1)

we conclude

y“s] < Y 62
W(.f;, )< W LH*'}/(S).
2 ~y{81 52
pr(AfST Fs) < v(8) (W(f) + —7(5))

Since the conditions (A1.9) are fulfilled, all the elements of the sequence
,-ﬁ,wm for a & > 0 sufficiently small belong to a compactum M,., where ¢ =

W(f)+r+e>0, &>0.and their images Fgm = Afgm' are convergent:

p F]VFY < p(F Fs) + 8

< 5+ \/32 LYEW) 0.

TThe clements £5 need not belong to the set A
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This implies, in view of the lemma, that their preimages

()

s —f for 6 — 0

are also converged.
The theorem is thus proved.

In a Hilbert space the functional W (f) may be chosen to be equal to ||f]|?
for a linear operator A. Although the sets M, are (only) weakly compact in
this case, the convergence of regularized solutions—in view of the properties
of Hilbert spaces—will be, as shown below, a strong one. Such a choice of
a regularizing functional is convenient also because its domain of definition
D(W) coincides with the whole space E;. However, in this case the conditions
imposed on the parameter 7y are more rigid than in the case of Theorem 1;
namely, vy should converge to zero slower than 82,

Thus the following theorem is valid.

Theorem 2. Let E| be a Hilbert space and W (f) = ||f||°. Then for y(8) sat-

isfying the relations (Al1.9) with r = 0, the regularized elements fg @) converge
as 8 — 0 to the exact solution f in the metric of the space E,.

Proof. Tt is known from the geometry of Hilbert spaces that the sphere
[Ifll < ¢ is a weak compactum and that from the properties of weak con-
vergence of elements f; to the element f and convergence of the norms ||f;||
to ||f]| there follows the strong convergence

Ifi = Il — 0.

Moreover, it follows from the weak convergence f; — f that

|If]l < lim inf ||fi]]. (A1.10)

Utilizing these properties of Hilbert spaces, we shall now prove the theorem.
It is not difficult to check that for a weak convergence in the space E; the
preceding theorem is valid: fg(a) converges weakly to f as 8 — 0. Therefore

in view of (A1.10) the inequality
111 < bim in |17

is valid. On the other hand, taking into account that W(f) = ||f]|* and that
r =0, we obtain

imsup 7017 < tim (1717 + %) = i1
50 5-—0 ¥(8)
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Hence the convergence ol the norms is valid:

N

AL .
11

and along with it the validity of weak convergence implies, in view of the
properties of Hilbert spaces, the strong convergence

?‘(ﬁi A0
17 il 0.
The theorem is thus proved.

The theorems presented above are fundamentals in regularization theory.
Using these theorems the feasibility of solving ill-posed problems is estab-
lished.

In Chapter 7 we consider the so-called stochastic ill-posed problems and
generalize these theorems for the stochastic case. Using the method of regu-
larization {or stochastic ill-posed problems we consider our learning problems
ol estimating densities. conditional probabilities, and conditional densities.



ESTIMATION OF

THE PROBABILITY
MEASURE AND
PROBLEM OF LEARNING

The two approaches to the learning problem presented in the first chapter
were not chosen accidentally. These approaches correspond to two different
cases for which the estimation of probability measure on the basis of empir-
ical data is possible. Recall that the common part in both approaches is the
fact that the probability measure (distribution function) is unknown and the
information about the measure has to be extracted from the data.

Generally, however, it is impossible to estimate a probability measure using
only empirical data.

One can estimate the probability measure if:

1. The measure belongs to specific sets of measures or
2. The measure is estimated partially.

These two options for estimating probability measures imply two different
approaches to the statement of the learning problem.

2.1 PROBABILITY MODEL OF A RANDOM EXPERIMENT

The goal of this chapter is to demonstrate that the analysis of consistency of
the learning processes is in many ways equivalent to the analysis of the core
problem of statistics—estimation of probability measure.

To start the discussion about different ways of estimating probability mea-
sure based on the results of a random experiment, let us briefly recall the
model of a random experiment used in probability theory. This model is
described in advanced textbooks on probability theory.

59
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According to Kolmogorov’s axiomatization, to every random cxperiment
there corresponds a set £ of elementary events w which defines all the pos-
sible outcomes of an experiment (the clementary events). On the set € of
clementary events, a system {A} of subscts A € {2, which are called events,
is defined. The entire set €) considered as an event determines a situation
corresponding to the sure event (an event that always occurs). It is assumed
that the set {A} contains the empty set §), describing the event that never
oceurs.

For the set {A} the following operations are defined: union, complement,
and intersection.

On the set () the o-algebra F of the events A is deflined. The set F of
subscets of () 1s called the o-algebra of events A € (1 if the following hold:

. Qe F
. IfAe F.then A € F.
.M A, € Fothen ™ A, € F.

‘2 LD e

The pair (2. F) is an idealization of the gualitative aspect of a random ex-
periment.

The quantitative aspect of an experiment is determined by the probability
meastre P(A) defined on the elements A of the set F.

The function P{A) defined on the elements A € F is called the countably

additive probability measure on F or, for simplicity, the probability measure
provided that

L. P(A) > 0:
2. PO =1,
3PN A) =20 PLA) i ALA € F and A, NA, =0, i # .

We say that a probabilistic model of an experiment is specified if the
probability space defined by the triple (£, F, P) is given.

Now consider the experiment consisting of ¢ distinct trials in the proba-
bility space (€. F, P) and let

Wi Wy
be the outcomes of these trials. We say that sequence w, ..., wy 1s a sequence
of ¢ independent trials if for any A,..... Ay € F the cquality

¢
Piw e Aow € Ay} = [ Piw e AL}
01
is valid.

The concept of a random variable plays an important role in stochastic
analysis. Let the mapping
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Q- R!

be given, performed by a real-valued function
£(w) = ¢. (2.1)

For this random variable (function) to be measurable, we need that the
relation

{w:élw)<z}eF (2.2)

be valid for any z.

Suppose that the o-algebra F of events A is related to the function £(w) =
£ in such a way that for any z, relation (2.2) holds true. In this case there
exists the function

Fe(z) = P{w: é(w) < z} (2.3)

which we call the probability distribution function of the random variable §.
A random vector

Ew)=¢

determined by the mapping
O—-R"

is a generalization of the notion of a random variable.
For the vector function £(w) to be measurable, we need that the relation

{w:tw)<zZ}eF (2.4)

be valid for any vector z. The inequality in the braces should be interpreted
coordinatewise.

Suppose that the o-algebra F of events A is related to the function £(w) =
£ in such a way that for any 7 the relation (2.4) holds true. In this case there
exists the function

Fe(z) = P{w: &(w) < z} (2.5)

which we call the probability distribution function of the random vector &.

2.2 THE BASIC PROBLEM OF STATISTICS

2.2.1 The Basic Problems of Probability and Statistics

In the preceding section we defined a model of a random experiments by the
triple (2, F, P). Now let
Wi, ..., Wy
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be the result of ¢ independent trials with the model (€2, F. P). Consider the
random variable v(A:;w,, ....w,) defined for a fixed event A ¢ F by the value

v (A)y =v{Awy, owy) = '—11—1

where 14 1s the number of elements in the set wy. ..., w; belonging to cvent
A. The random variable v, (A) is called the frequencey of occurrence of an
event A in a series of independent, random trials.

In terms of the probability distribution function of the random variable
v, (Avwy,oowyg), we can formulate the basic problem of the probability theory.

Basic Problem of Probability Theory. Given model (€2, F. P) and the event
A« F.estimate the distribution function

Fz:A )y = Plug(A) < o}
(or some of its properties).

In this book we are concerned with the inverse problem. Let a qualitative
modcl of a random experiment (€0, F) be given. Our goal 1s to estimate the
probability measure from a given sampie

Wiy Wy (2.6)

this means that we are attempting to estimate the values P{A) for all events
A
This problem forms the basic problem of mathematical statistics.

Basic Problem of Mathematical Statistics. Given pair (2. F) and the data
(2.6) obtained from a series of random and independent trials under prob-
ability measure P, estimate this probability measure P = {P(A): A e F}
(defined on the subscts A € F).

To estimate the probability measure we have to define an estimator £, (A)
which approximates the probability measure for all clements A of the o-
algebra of events F. We want to find an estimator that defines a sequence
of approximations converging to the unknown probability measure—in some
modes—when the number of observations increases. To begin to analyze the
possibilities of estimating the probability measure. we have to define these
modes.

2.2.2 Uniform Convergence of Probability Measure Estimates
Definition. We say that the estimator

E(A)Y = E(ATw, ..owy), AeF
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defines a sequence of measure approximations that converge uniformly to
the probability measure P if the relation

sup [P (4) — £(A)] 0 27)
AcF -

holds true.

According to the definition of convergence in probability, this means that
for any given positive ¢ the convergence

P{sup |P(A) — &(A)| > e} — 0 (2.8)
AeF f—oc

takes place.

When the o-algebra F of the events A is poor (for example. it contains a
finite number of elements A), the estimator which provides uniform conver-
gence to the probability measure can be found easily. For example, we can
estimate the probability measure with frequencies at all elements A of the
finite o-algebra F:

n(A
Vf(A):V(A;Wl,...,W[): (f )1
where n(A) is the number of elements from the set w;, ..., w; belonging to

A € F. The estimator v,(A) is called the empirical measure.
Indeed, when the number of elements A, of o-algebra is finite and is equal
to N, the following inequality is true:

N

P{]srleP(Ak) —vi(A)l > 8} <Y P{IP(AL) — vi(Ao)| > &} 20
<k< k=1 o

The convergence to zero here is due to the law of large numbers. According to
this law, any summand tends to zero as the number of observations increases.
Since the number of summands is finite, the whole sum converges to zero as
well.

The problem of whether or not convergence (2.8) takes place arises when
o-algebra F is rich. For our goal of estimating the function on the basis
of empirical data, we consider R" as a space of elementary events where
o-algebra F is defined by Borel’s sets'; that is, we consider the qualitative
model (R”, F).

"The o-algebra of Borel sets B in R' is the smallest g-algebra that contains all semiclosed
intervals (a.b].
Let K be a set of parallelepipeds:

II:’;[[ahbl) = {g g: (gls"-\gn): a( S f < b,, l—‘— 1,...,}1}.

The o-algebra F of Borel sets in R" is the smallest o-algebra which contains A
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For this model. the knowledge of the distribution function
F(z)=P{é< )}
iy cquivalent to the knowledge of the probability measure £. Thus the model
in which we are interested may be described by triple (R, F, P).
Untortunately, for this model of random cvents, one cannot estimate the

probability measure using the empirical measures v, (A).

Example. Let R be the interval (0. 1) and let the unknown measure given by
the uniform probability distribution function be

Flo)=PléE<z) =2 0<z<l.

Let F be the Borel o-algebra. It contains all unions of a tinite number of
subintervals of the interval (0, 1). Clearly (see Fig. 2.1). for any sample

§| ey §/
and for any &£ > 0 one can find an event A* € F such that two equalitics

(AT = (A6 ) = ]

P(A™Y < &

ltake place.
Thus, in this case, for any ¢ the equality

P{sup |P(A) — v (A) =1} =1 (2.9)
A F

holds true.

This example shows that in genceral the empirical estimator of probability
measures does not provide the uniform convergence to the desired probabil-
tty measure.

X X9 e RO ¥
: (] T - 7 [as] =X

FIGURE 2.1. For any sample one can find an event A' with small probability measure
+ that contains this sample.
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2.3 CONDITIONS FOR THE UNIFORM CONVERGENCE OF ESTIMATES
TO THE UNKNOWN PROBABILITY MEASURE

2.3.1 Structure of Distribution Function

Thus, the special estimator (empirical probability measure v¢(A)) does not
provide the uniform convergence to any probability measure. The important
question is:

Does another estimator £ (A) exist that can provide the uniform conver-
gence to any probability measure?

The answer is no. In general, no estimator provides uniform convergence
to any unknown probability measure. To explain why this is true we need to
recall some facts from the theory of probability measures.

We start with Lebesgue’s theorem about the structure of probability dis-
tribution functions on the line (Shiryayev, 1984).

Theorem 2.1 (Lebesgue). Any probability distribution function on the line
can uniquely be represented as the sum

F(x) = Fp(x) + F4c(x) + Fg(x)
of three nonnegative monotone functions where:

1. Fp is a discrete component representable in the form

Fp)=3"p()  p) 20, S pla) <1

X, <X

2. Fac(x) is an absolutely continuous component representable in the form

Fac(x) = / " pydx

—00

where p(x) > 0;

3. Fe(x) is a singular component—a continuous function whose set of
jumps (points x for which F(x + &) — F(x — €) > 0, £ — 0) has Lebes-
gue measure equal to zero.'

This theorem actually asserts that any measure on the line is a composition
of three different types of measures:

TThe standard example of a singular component is the Cantor function.
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[. A measure of the first type is concentrated on at most countably many
points cach of which has a positive measure.

[

. A measure of the second type possesses a density.

S

. A mcasure of the third type is concentrated on a subset of the line with
measure zero which has no point with positive measure.

Note that according to the Glivenko—Cantelli theorem the empirical distri-
bution function F; (x) converges to the actual F(x) in € metric as ¢ increases.
However, to construct an estimator of probability measure which provides
uniform convergence. it is necessary to find a way for estimating function
d F(x) rather than F(x).

The following theorem asserts that in general (if an unknown probability
measure contains all three components) no estimator of probability measure
provides uniform convergence to the desired one.

Theorem 2.2 (Chentsov). Let Py be the set of all admissible probability miea-
sures on B, Then for any estimator £ (A) of an unknown probability measure
defined on the Borel subsets A C (0, 1) there exists a measure P € Py for which
E () does not provide uniform convergence.

The proof of this theorem is based on the fact that there is no method that
allows us to distinguish between absolutely continuous Fy (7)) and singular
distribution laws Fg(x) using samples of increasing size.

This theorem implics that an estimator providing uniform convergence 1o
the unknown probability measure can be constructed only for some special
familics of probability measures that do not include simultancously both an
absolutely continuous and a singular components.

Consider a special set of probability measures whose distribution functions
have no singular component.

Let Ppe ¢ be the collection of probability measures on (R'. B) that have
only an absolutely continuous component £4¢ (2) and a purcely discrete com-
ponent Fp(z).

Theorem 2.3 (Chentsov). There exists an estimator E,(A) which provides uni-
form convergence to any measure in the set Ppy .

The proof of this theorem is based on the idea that it is possible to arrange
¢ obscrvations in a ordered array and use cach group of coinciding obser-
vations to estimate the probability of the corresponding atom in a discrete
distribution function. From the remaining part of the samples we construct
the empirical distribution function and smooth it as described below. There-
lore, 1t is possible to consider approximations both to the discrete component
ol a distribution function and to the absolutely continuous component of the
distribution function.



2.3 UNIFORM CONVERGENCE OF PROBABILITY MEASURE 67

To estimate the discrete component, one has to note that for any given
€ there exist a finite number N (€) of points of discrete components with
probability measure of at least 1 — €. As was shown above, for a finite number
of events, uniform convergence of the estimates to the probability measure
takes place. For any given €, one estimates the probability measure for these
points and assign zero for the rest.

Therefore, the estimates of the discrete component of probability measure
converge to the actual discrete component in the uniform mode.

According to the Glivenko-Cantelli theorem when the number of obser-
vations increases, the empirical distribution function converges in probability
to the original absolutely continuous component of the probability distribu-
tion function. In Chapter 7 we introduce an estimator of density which in
this case converges in probability to the desired one in the L; metric. As will
be shown in Scheffe’s theorem at the end of this section, in this case there
exists an estimator of probability measure which converges uniformly to the
desired measure.

Thus, Chentsov theorem asserts the existence of an estimator of proba-
bility measure that provides uniform convergence to the unknown measure
from the set Ppg 4. However, this theorem gives no answer to the question
whether this estimator is stable.

Recall that in the first chapter we called the solution stable if small varia-
tions in the information (given data) caused small variations in the results.

Chentsov theorem asserts that there exists a solution to the problem of
uniform convergence to any probability measure from Ppg 4. However, this
solution is unstable. Indeed, for the problem of estimating the measure to
be solved, it is necessary to estimate two components of the distribution
function (the discrete component and the absolutely continuous component)
separately.

To estimate the discrete component, one needs to verify the exact coinci-
dence of two observations. Such a requirement does not provide a stable
method for separation of the two components of distribution functions. Thus,
the methods of estimating the probability measure that contains both discrete
and absolutely continuous components are unstable.

Finally, consider the set of measures P, which contains only absolutely
continuous functions F,-(z). In other words, consider measures that have
densities; that is, consider measures that have the following structure

/z p(x)dx = F(x). (2.10)

o

The problem of density estimation on the basis of empirical data (the solu-
tion of the integral equation (2.10) when instead of the function F(z) the
approximation F;(A) is given) was considered in Chapter 1 as one of two
approaches to the statement of the learning problem.
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In spite of the fact that solving this equation is an ill-posed problem, in

Chapter 7 we show that the regularization method described in Appendix to
Chapter | provides a solution to the density estimation problem.

2.3.2 Estimator that Provides Uniform Convergence

On the basis of the estimated density p, (7). one can construct the following
estimator of the probability measure:

E(A) = /p, (x)dx, AeF. (2.11)
A

The next theorem actually shows that if the sequence of densities p(z)
converges in L, metric to the original one, then the estimators (2.11) of
probability measure provide uniform convergence to the desired probability
measure.

Let p(x) and g(x) be densities, let F be Borel sets of events A, and let

P(A):/p(x)dxi Q(A):/q(x)dx
A A

be probabilities of the set A € F corresponding to these densities. The fol-
lowing theorem is then valid.

Theorem 2.4 (Scheffe)

sup |P(A) - Q(A)| = 1/2/{[1(1‘) — g(x)| dx.
A F X

As a consequence of the Scheffe theorem, the estimator
E(A) = /;p, (x)dx
provides uniform convergence to the probability measure
P(A) = /‘p(x)d_r, AeF,
it the density g, (2) converges in probability to p(z) in the L metric
/|p(,\’) — pe()] dx{-% 0. (2.12)

Thus, uniform convergence based on estimator (2.11) to any probability
measure is possible for a set of measures that can be described by the ab-
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solutely continuous distribution function F4c(x). To construct this estimator,
one has to estimate a probability density from data.

Note that this is the problem we face in the second approach
considered in Chapter 1. In this approach we have to estimate densities (con-
ditional densities) on the basis of data.

Thus, the second approach to the learning problem (identification of the
supervisor’s operator) is connected with uniform convergence of an esti-
mate to the unknown probability measure.

In the next section we consider another mode of convergence: the so-called
partial uniform convergence. We show that the first approach to the learning
problem is based on this mode convergence to the probability measure.

2.4 PARTIAL UNIFORM CONVERGENCE AND GENERALIZATION OF
GLIVENKO—-CANTELLI THEOREM

2.4.1 Definition of Partial Uniform Convergence

Definition. We say that estimator £,(A) provides partial uniform conver-
gence to the probability measure P determined by the set of events F~ if the
following convergence in probability

sup |P(A) —&(A)| P— O (2.13)
AeF* £-roc

holds true, where F* C F is a subset of the set F.

According to the definition of convergence in probability, this means that
for any given positive ¢ the convergence

P{sup |P(A) — E(A)| > e} — 0 (2.14)
AeF? (o0

takes place.

The difference in the definitions of uniform convergence and partial uni-
form convergence is in the set of events that should be taken into account
when the probability measure is estimated:

1. For the uniform convergence, the supremum is taken over all elements
A of the o algebra of events F.

2. For the partial uniform convergence, the supremum is taken only over
the subset 7* C F. (The subset F* need not be a o algebra.)



70 2 ESTIMATION OF THE PROBABILITY MEASURE AND PROBLEM OF LEARNING

It 1s possible that partal uniform convergence takes place when uniform
convergence fails.

Now consider random experiments, which are deseribed by the triple
(R'. F.P). Supposec that on the space of elementary cevents defined by the
Borel set F we would like to estimate the probability measure on the basis
of independent identically distributed samples:

ISPRTRY 2
According to Chentsov theorem it is impossible to find an estimator that

provides uniform convergence to any given probability measure.
Now consider a subset F* of the set F containing the elements

{3
N

Foo{A (<, X)), v e (o xLox )} (

In other words, F° contains all sets (- . x).
Consider the estimator that we called the empirical measure:

R N
PAGE . E) {—ZIH(.\ £).

where 6{u) is the step tunction:

i
o) - { 1 i >0,

0 otherwise.

This estimator determines the frequency of any given event A, { ~.y)
using the examples &, ... &. We will use this empirical measures to estimate
the unknown measure partially.

In order to show that for set F* there exists a uniform convergence ol the
cmpirical measures to desired one. we need to show that for any positive «
the following relation takes place:

Plsup \P(A)Y () ~&} -0 (2.16)

{ K- [N
To show this, we note that by delinition
Py PleE< ) Fu,

(A = Folx.
where F(v) 1s the distribution function and F, (x) 1s the empirical distribution
function. and (2.16) is the assertion ol the Glivenko—Cantelli theorem (see
Chapter | Scction 1.10).
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2.4.2 Generalization of the Glivenko-Cantelli Problem

Let us reformulate the Glivenko—Cantelli theorem in the following way:

Theorem 2.5 (Glivenko—Cantelli). For any given probability measure P € P,
and any given & > 0 the following relation always hold true:

P{sup |P(A,) — v, (Ay)| > e} — 0. (2.17)
AEF fox

Remark. A stronger assertion follows from the Kolmogorov-Smirnov law
(Chapter 1, Eq. (1.26)): The asymptotic rate of convergence does not depend
on the probability measure and has an exponential form (Fig. 2.2):

sup P{ sup |P(A;) — vi(Ay)| > e} < 2exp{—-2&%¢}.
PE'P“ A EF*

This formulation of the Glivenko-Cantelli theorem is extremely important
because it leads to a statement of the general problem of partial uniform
convergence of the probability measure estimates. Consider once more the
probability

P{sup |P(A) — vi(A)| > &}. (2.18)
AeF
As follows from the Chentsov theorem, if the set of events is rich (F' is
a Borel set), then no estimator can provide uniform convergence to any
probability measure. In particular, this is true for empirical measure estimator
V[(A)‘

FIGURE 2.2. The uniform convergence of the frequencies 1o their probabilities over set
of events Ax defined by all rays on the interval x € (—x, ~) is equivalent o assertion of
the Glivenko—Cantelli theorem.
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But on the other hand, according to the Glivenko-Cantelli theorem, if the
set of events is rather poor (F' = F7), then (2.18) converges to zero for any
probability measure.

The question i1s, What conditions should hold for the set of events F
(how rich can the set of events be) to guarantee that the empirical estimator
v, (A1) provides uniform convergence with an asymptotic cxponential rate
of convergence which is independent on the probability measure? In other
words, when do there exist for any positive ¢ positive constants ¢ and b such
that for sufficiently large ¢ the inequality

sup P{sup |[P(A) — v, (A)] > &} < bexp{—ae’i}
PP A F

holds true?

The problem of finding these conditions on set F' can be called the Gen-
cralized Glivenko—Cantelli problem. As we will show in the next chapter. the
solution of the Generalized Glivenko-Cantelli problem forms one of the main
conceptual parts of learning theory. In this book we shall give the complete

existence of this inequality).

2.5 MINIMIZING THE RISK FUNCTIONAL UNDER THE CONDITION OF
UNIFORM CONVERGENCE OF PROBABILITY MEASURE ESTIMATES

In Chapter 1 we considered two approaches to the learning problem. The
first approach was based on the idea of minimizing the risk functional

Riw) - /Q[:,(r)di’[:) (2.19

in the set of functions Q(z, ), e € A, when the probability distribution func-
tion /() 1s unknown but the data

- -
TN N

are given. The second approach was based on the 1dea of estimating densities
(conditional density, conditional probability) by solving integral equations of
the type

/ plx)dx = F(z).

when the right-hand side of this equation 1s unknown but the data are given.

In Scction 2.3 we showed that if one knows a priori that the distribution
function is absolutely continuous then the solution of this equation on the
basis of empirical data implics the solution of the problem of estimating the
probability measure in the uniform mode. From this point of view, the learn-
ing problem based on the second approach is connected with the problem of



2.5 MINIMIZING THE RISK FUNCTIONAL UNDER UNIFORM CONVERGENCE 73

estimating the probability measure in the uniform mode, when the unknown
distribution function is absolutely continuous.

Note that under conditions of uniform convergence of probability measure
estimates, the functional (2.19) can be minimized as well. In this section we
show that when uniform convergence takes place, one can achieve a more
general solution of the learning problem than was considered in Chapter 1.

Consider the problem of minimizing the functional (2.19) on the basis of
data. (The problem of minimizing (2.19) when the distribution function F(z)
is unknown but a random, independent sample obtained in accordance with
F(z) is given.)

For the time being, assume that the absolute values of the loss function
Q(z,a), a € A, are uniformly bounded by a quantity B. (This is always true
for the pattern recognition problem.)

Let F(z) be an absolutely continuous function. Then the risk functional
(2.19) can be rewritten in the form

R(a) = / 0(z,a)dF(z) = / 0z, a)p(z) dz.,

where p(z) is the corresponding probability density.
Let us use the data to estimate the probability density p(x). Assume that an
estimator p,(z) converges in L; to the density p(z). Consider the functional

Rino(@) = / 0(z, @)pi(2) dz (2.20)

defined by the means of the estimator p,(z).
We state the following inductive principle for minimizing risk (2.19):

As an approximation to the function Q(z,ay) which yields the minimum
(2.19), we shall select the function Q(z, a,) which minimizes (2.20).

We will show that if the estimator p,(z) converges to p(x) in L;, then
the principle of minimizing the risk (2.20) provides solutions with risks that
converge to the smallest possible risk for any set of bounded functions
Q(z,a),a € A.

Indeed, for the set of bounded functions |Q(z, @)| < B, a € A, it follows
from (2.12) that

SléIAJ /Q(z,a)dF(X)—/Q(z,a)m(Z)dz
< sup 10(z, @)||p(z) — pe(2)] dz

<B [1p@) - petaldz 2 0
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From this relationship we derive that for any ¢ and any 7 there exists a value
¢(&, n) such that for any ¢ > ¢(&, ) with probability 1 — 7 the following two
inequalities hold true:

/Q(z,ap)p(Z)dz - /Q(z,af)pf(Z)dz <e,

—/Q(z,ao)p(Z)dz +/Q(z,an)pz(2)dz <e.
On the other hand, by definition,

/ Oz, a)pe(z) dz < / 0(z, a0)ps (2) dz.

Combining these three inequalities we obtain the result that with a probability
of at least 1 — n the inequality

/ 0(z, a)p(2) dz - / O(z. a0)p(2) dz < 2¢

holds true.
That means convergence in probability of the functionals

[ecwdr@ L, [ oG wdry

that is, the functions Q(z,a;) minimizing the functional (2.20) form a
sequence of risks that converges in probability to the minimal one as the
number of observations increases.

Thus, under the condition of uniform convergence of estimates £,(A) to
the probability measure, the induction principle (2.20) guarantees the exis-
tence of a solution which makes the risk g-close to the minimal possible for
any uniformly bounded set of functions Q(z,a),a € A.

In the next section we show that under conditions of partial uniform con-
vergence of probability measure estimates, the principle of empirical risk
minimization provides solutions with risks that converge to the smallest pos-
sible risk (as the number of examples increase) if the set of events F* that
determines the partial uniform convergence is connected with a set of func-
tions Q(z, @), a € A, in the special way.

2.6 MINIMIZING THE RISK FUNCTIONAL UNDER THE CONDITION OF
PARTIAL UNIFORM CONVERGENCE OF PROBABILITY MEASURE
ESTIMATES

Let us start this section by writing the Lebesgue-Stieltjes integral for the
bounded nonnegative function 0 < Q(z, @*) < B (here « is fixed) in explicit
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form. According to the definition of the Lebesgue-Stieltjes integral, the func-
tional of risk R(a*) is

ria') = [ 0. a)dF@) = tim > 7P {020 > T,
i=1

where
IB

P {Q(z,a) > 7}

is the probability of event
iB
A,’ = {Z : Q(Z,a*) > 7}

(see Fig. 2.3). Consider in a similar form the means of this event estimated
from the data z,,...,z¢, £ =1, ...

1 ¢ "\ B iB
Reap(o) = 13200z, o) = Jim Y~ Mo { 002,07 > 7
i=1 i=1

where -
o{0ar> 2

is the frequency of events A; estimated from this data.

Q
Qlz,a)
PQ(za) > 5
/
. /
y Y
¥ A
A \
y \
4
A
¥
7
0 4

FIGURE 2.3. The Lebesgue integral of a nonnegative bounded function 0 < Q(za*) < B
is the limit of a sum of products, where factor P{Q(z.a*) > iB/n} is the (probability)
measure of the set {2:Q(za™) > iB/n} and the factor B/mis the height of a slice.
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Now let Q(z, ), « € A be a set of bounded functions:
0<Q(z,a) < B, a €A
Consider the following set F* of events
Aap ={2:Q(z,0) 2B}, acA Bel0B]

Suppose that the empirical estimator v¢(A) defines measures that partially
converge to the unknown probability measure P:

sup |P(A) — ve( A)| LN () (2.21)
A€F-

Then, from the definitions of the I.ebesgue-Stieltjes integral and of the
partial uniform convergence (2.21) we obtain

sup

[eewar@ - ZQul,

n

= lim sup Z

n—x
acA i=1

< Bsup [P(Aqp) = vi(Aap)]
a.f

';(P(Aa,iB/n) - Uf(Aa,iB/n))

= B sup |P(A) —v,(A)] — 0. (2.22)
AeF* o

It follows from this that the uniform convergence of means to their mathemat-
ical expectations on the set of uniformly bounded functions Q(z, a),a € A is
valid.

Now we prove that under the conditions of the existence of uniform con-
vergence (2.22), the principle of minimizing the empirical risk provides a
sequence of functions that converges in probability to the best solution.

As above, it follows from the uniform convergence (2.22) that for any &
and any m a value (¢, 1) exists such that for any ¢ > £(&, n) with probability
1 — 7 the following two inequalities hold true:

&]»—A

/Qzade

£
Z (2i, ) < &,

/
1
/QzaodF zz; (zi, ) < &.
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Note that by the definition the inequality
1¢ 1

720 ) < 330z a0)
i=1 i=1

is valid.
Combining these three inequalities, we obtain that with probability of at
least 1 — n the inequality

/Q(z,ap)dF(Z) —/Q(z,ao)dF(Z) <2e (2.23)

holds true.
In other words we get convergence in probability

[ ecarare 2, [ o awdrey: (224)

that is, as the sample size increases, the functions that minimize empirical
functional on Q(z, @), @ € A, form a sequence of values R(a; ) that converges
in probability to the minimal value of the risk R(ay).

2.7 REMARKS ABOUT MODES OF CONVERGENCE OF THE
PROBABILITY MEASURE ESTIMATES AND STATEMENTS OF THE
LEARNING PROBLEM

Earlier in this chapter we considered the basic problem of mathematical
statistics: the problem of estimating a probability measure from empirical
data. We showed that, in general, it is impossible to construct a universal
estimator of probability measure (applicable to any probability measure).

This fact splits the study of the problem of estimating probability measure
into two parts:

1. The study of conditions on probability measures P € P under which
the uniform convergence

sup |P(A) — £(A)] 2> 0

A€eF f—x
holds true for any set F.

2. The study of the conditions on sets F* under which the uniform con-
vergence

. P
sup |P(A) — v (A)] —0
AeF- o

holds true for any probability measure.
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The main problem in the study of uniform convergence over the entire set
of o-algebra is to define the estimator £(A) and the set of measures P for
which such convergence takes place. (In Section 2.3 it was shown that one
can use the estimator (2.11).)

The main problem in the study of the partial uniform convergence is to
describe conditions on the set 7* under which the estimator of empirical mea-
sure provides the partial uniform convergence for any probability measure
P € P, (the Generalized Glivenko-Cantelli problem).

The analysis of these two ways of estimating probability measure forms
the foundation of theoretical statistics.

In the first chapter we formulated two approaches to the learning problem:
One was based on the idea of imitating the supervisor’s operator, while the
other was based on the idea of identifying the supervisor’s operator.

From the mathematical point of view the idea of identification of supervi-
sor’s operator is based on estimating the probability measure uniformly over
the entire set of o-algebra.

The idea of imitating the supervisor’s operator can be described by the
scheme of minimizing the risk functional on the basis of empirical data. The
solution of this problem is based on partial estimating of the probability
measure.

Therefore from the conceptual point of view, analysis of consistency of
the learning processes is in many ways equivalent to analysis of the prob-
lem of estimating the probability measure, which is the central problem of
theoretical statistics.

The next chapter is devoted to the theory of consistency of learning pro-
cesses for the scheme of imitation of the supervisor’s operator, while Chapter
7 is devoted to the theory of consistency for the scheme of identification of
the supervisor's operator. The results obtained in these chapters can also be
described in terms of convergence (in two different modes) of estimates of
probability measures.



CONDITIONS FOR
CONSISTENCY OF
EMPIRICAL RISK
MINIMIZATION PRINCIPLE

In this chapter we present necessary and sufficient conditions for consistency
of the empirical risk minimization principle. First we formulate and prove
the key theorem of the empirical risk minimization theory—the theorem
about equivalence. According to this theorem, the following two facts are
equivalent:

1. The principle of empirical risk minimization is consistent.
2. The specific empirical process converges.

Then we describe the theorems about the convergence of this empirical pro-
cess (proofs of the theorems are the subject of the third part of this book).
We show that proofs of these theorems are based on the idea of the non-
falsifiability of the learning machine, where the concept of nonfalsifiability is
closely related to Popper’s nonfalsifiability concept introduced in philosophy
of science. At the end of the chapter we discuss the necessity of the ways in
which learning theory is constructed in this book.

3.1 CLASSICAL DEFINITION OF CONSISTENCY
In Chapter 1 we introduced the problem of minimizing the risk-functional
R(a) = /Q(z, a)dF(z), a€cA (3.1)

on the set of functions Q(z, «), a € A, where the distribution function F(z)
is unknown; however, independent identically distributed data according to

79
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this function
Lyy ooy Ly (32)

are given.

To solve this problem, the principle of empirical risk minimization was
proposed. According to this principle, instead of minimizing functional (3.1),
one has to minimize the empirical risk functional

[ SN

¢
Remp(a) = 53 Q(zi,a),  a €A (33)
=1

Let
Qz,a0) = Q(z,a(zy, ..., 2¢))

be a function that minimizes' the functional (3.3). The fundamental problem
of empirical risk minimization theory is to describe the situations where this
principle is consistent. Below we give a classical definition of consistency.

Definition. We say that the principle (method) of empirical risk minimization
is consistent for the set of functions Q(z,a),a € A, and for the probability
distribution function F(z) if the following two sequences converge in proba-
bility to the same limit:

R(a,) -2 inf R(a) (3.4)
f—ox a€A
Remp(ety) ~ inf R(a). (3.5)

In other words the empirical risk minimization method is consistent if it
provides the sequence of functions Q(z,a,),¢ = 1,2, ..., for which both the
expected risk and the empirical risk converge in probability to the minimal
possible (for a given set of functions) value of risk (Fig 3.1). Equation (3.4)
asserts that the sequence of values of achieved risks converges to the smallest
possible risk for the given set of functions, and Eq. (3.5) asserts that the limit
of a sequence of empirical risks estimates the minimal possible value of the
risk.

The goal of this chapter is to describe conditions for consistency of the em-
pirical risk minimization method. We would like to obtain these conditions in
terms of general characteristics of a set of functions and probability measure.
Unfortunately, for the classical definition of consistency given above, this is
impossible since the definition includes trivial cases of consistency.

What is a trivial case of consistency?

' For simplicity we assume that the minimum of empirical risk functional does exist; otherwise
we choose a function that provides the value of empirical risk close to infimum.
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inf Rla )

[

FIGURE 3.1. The learning process is consistent if both the expected risks R(«,) and the
empirical risks R.mp (o) converge to the minimal possible value of the risk, inf . y R(a).

Suppose we have established that for some set of functions Q(z, a),a € A,
the method of empirical risk minimization is not consistent. Consider the
extended set of functions which includes the initial set of functions and one
additional function, ¢ (z). Suppose that the additional function satisfies the
inequality

inf Oz, a) > ¢(2).

It is clear (Fig. 3.2) that for the extended set of functions [containing ¢ (z)] the
method of empirical risk minimization is consistent. Indeed, for any distribu-
tion function and any number of observations the minimum of the empirical
risk is attained at the function ¢ (z) that gives the minimum of the expected
risk.

This example shows that there exist trivial cases of consistency that depend
on whether a given set of functions contains a minorizing function.

Therefore, any theory of consistency that uses the classical definition needs

Q(z, a), aeA

¢(z)

>
0 z

FIGURE 3.2. A case of trivial consistency. The ERM method is inconsistent on the set of
functions Q(z, «), a € A, and is consistent on the set of funclions ¢(z)U Xz, a), a € A.
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to check whether the case of trivial consistency is possible. That means that
the theory should take into account specific functions in a given set. Our goal,
however, is to find conditions for consistency that could be easily checked.
We would like to get the conditions that depend on general properties of a
set of functions and do not depend on specific functions in a set.

3.2 DEFINITION OF STRICT (NONTRIVIAL) CONSISTENCY

In order to develop the theory of consistency of the empirical risk minimiza-
tion method which does not depend on the properties of elements of a set
of functions, but depends only on general properties (capacity) of this set
of functions, we need to adjust the definition of consistency to exclude the
trivial consistency case.

3.2.1 Definition of Strict Consistency for the Pattern Recognition
and the Regression Estimation Problems

Definition. We say that the method of minimizing empirical risk is strictly
(nontrivially) consistent for the set of functions Q(z,a), « € A, and the
probability distribution function F(z) if for any nonempty subset A(c), ¢ €
(—oc, 00), of Lhis set of functions such that

A(c) = {a : /Q(z,a)dF(z) > c}

the convergence
inf Remp(a) — inf R(a) (3.6)

acA(c) - acA{c)
is valid.

[n other words, the method of empirical risk minimization is strictly con-
sistent if it provides convergence (3.6) both for the given set of functions
and for all subsets A(c) of functions that remain after the functions with the
values of the risks smaller than ¢ are excluded from this set.

Note that according to the classical definition of consistency, described
in the previous section, the method is consistent if it satisfies two condi-
tions: (3.4) and (3.5). In the definition of strict consistency we use only one
condition. The following LLemma shows that under the condition of strict
consistency the other condition is satisfied automatically.

Lemma. If the method of empirical risk minimization is strictly consistent, the
following convergence in probability holds

Ria) ~, nf Rlco)
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Proof. Denote
inf R(a) = / 0z, a0)dF(z) = T.

For an arbitrary ¢ > 0, consider the subset A(7T + &) of the set of functions
Q(z,a), a € A, such that

A(T+a):{a:/Q(Z,a)dF[z)2T+s}.

We choose ¢ such that A(T + ¢) is not empty. Let (3.6) be satisfied. Then the

equalities
¢
. 1 £
}LrgP {Z iE_] O(zi,op) 2 T + 5} =0,
. &
i i - ) > i
e {GEA?LQ § 2 Q) 2T 2} !
are valid.

These equalities imply

plim Pla, e A(T+¢e)}=0.
If on the other hand, a; ¢ A(T + ¢), then the inequality
T < /Q(z,a;)dF(z) <T+e¢

holds. This inequality implies (3.4).

Thus, we have proven that strict consistency implies the convergence (3.4),
but not vice versa. The following example demonstrates that in some cases
the convergence (3.4) does exist and the convergence (3.5) does not.

Example. Consider the following set of indicator functions Q(z,«a), a € A,
which are defined on the interval [0, 1]. Each function of this set is equal to
1 for all z except a finite number of intervals of measure £ where it is equal
to 0 (Fig. 3.3). The parameters «a define the intervals at which the function is
equal to zero. The set of functions Q(z,a), a € A, is such that for any finite
number of points z,, ..., 2., one can find a function that takes the value of
zero on this set of points. Let F(z) be the uniform distribution function on
the interval [0, 1].
For this set of functions, the equalities

¢
o1
Remp(af) = ;relg Z 2—1: Q(zi,a) =0,
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Qiz, a)

0 2y 23 23 Tt z¢ 2

FIGURE 3.3. An example where the convergence (3.4) does exist and the convergence
(3.5) does not.

R(a) = /Q(z, a)dF(z) =1,

hold. So for this set of functions, the relation

ifelgR(a) ~ Remplag) =1~¢

takes place. On the other hand, for any function of this set (including the
function Q(z, a,)), the relation

R(ar) ~ inf R(a) = / Q(z, ) dF(2) ~ inf / Q(z,a)dF(z) = 0

holds true.
Thus, in this example, convergence (3.4) takes place though convergence
(3.5) does not.

3.2.2 Definition of Strict Consistency for the Density
Estimation Problem

In Chapter 1 we showed that for the density estimation problem (in the
Fisher-Wald setting) the principle of empirical risk minimization implies the
maximum likelihood method. For this problem the loss function associated
with the set of densities p(z,«), a € A (where the optimal p(z, ay) is being
searched for), has the form

Q(z,a) = ~logp(z, a), a € A.
To minimize the functional

R(a) = - /p(z,ao) logp(z,a)dz

with unknown density p(z, o) using the data

L1y ee0y Loy



3.3 EMPIRICAL PROCESSES 85

we minimize the empirical risk functional

¢
1
Remp(a) = —Z _—>_ :logp(zi,a)
i—1

(the maximum likelihood method).

For the case of density estimation by the maximum likelihood method, we
will use another definition of strict consistency which requires consistency for
estimating any density in a given set of densities.

Definition. The maximum likelihood method is strictly consistent with
respect to the set of densities p(z, ), a € A, if for any p(z, ay), ay € A. the
relation

¢
%Z logp(z,-,a))e—_%o/P(Z,%)(—IOSP(Z,a()))dZ

holds true where i.i.d. samples z,, ..., z, are drawn from the density p(z, ap).

Below, we consider necessary and sufficient conditions of strict consistency
both defined for the method of minimizing empirical risk and defined for
the method of maximum likelihood. In this chapter we shall refer to strict
consistency as simply consistency.

3.3 EMPIRICAL PROCESSES

The analysis of consistency of the empirical risk minimization method is
essentially connected with the analysis of the convergence of two empirical
processes.

Let the probability distribution function F(z) be defined on the space
Z € R", and let Q(z,a),a € A, be a set of measurable (with respect to this
distribution) functions. Let

Zlyeeey Ty eoer

be a sequence of independent identically distributed vectors.
Consider the sequence of random variables

¢ = sup

a€A

{
/QZa)sz) %Z Q@zi,a)|, ¢=1.2,... (3.7)

We call this sequence of random variables that depends both on the proba-
bility measure F(z) and on the set of functions Q(z,a),a € A, a two-sided
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empirical process. The problem is to describe conditions under which this
empirical process converges in probability to zero.

In other words, the problem is to describe conditions such that for any
positive ¢ the convergence

{sup
a€A
takes place.

We call this relation uniform convergence of means to their mathematical
expectations over a given set of functions or, for simplicity, uniform conver-
gence.

Along with the empirical process ¢, we consider a one-sided empirical
process given by the sequence of random values

¢ =sup (/Q(z a)dF(z ZQ(z,, ) , ¢=12 .. (39

[eeadr@ -5 ZQ(z,,a)

> a} ——»0 (3.8)

ae\

where we denote

) u ifu>0,
() = otherwise.

The problem is to describe conditions such that for any positive &, the fol-
lowing relation

1
{sup (/Q z,a)dF(z) —ZZ z,,a)) >a}:—>0 (3.10)

we x

takes place.

We call this relation uniform one-sided convergence of means to their math-
ematical expectations over a given set of functions or, simply, uniform one-sided
convergence.

In Chapter 2, when we considered the generalization of the Glivenko-
Cantelli theorem, we actually considered special cases of the empirical pro-
cess (3.8): namely, the case where the set Q(z, a), @ € A, was a set of indicator
functions. This case will play an important part in our considerations. For a
set of indicator functions, the empirical process (3.8) determines uniform con-
vergence of frequencies to their probabilities, and process (3.10) determines
uniform one-sided convergence of frequencies to their probabilities.

3.3.1 Remark on the Law of Large Numbers and Its Generalization

Note that if the set of functions Q(z,a),« € A contains only one element,
then the sequence of random variables ¢/ defined in Eq. (3.7) always con-
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verges in probability to zero. This fact constitutes the main law of statistics,
the Law of Large Numbers:

The sequence of means converges to expectation of a random variable (if it
exists) as the number £ increases.

It is easy to generalize the Law of Large Numbers for the case where a set
of functions Q(z, @), @ € A, has a finite number of elements. In contrast to
the cases with a finite number of elements, the sequence of random variables
& for a set Q(z,a),a € A, with an infinite number of elements does not
necessarily converge to zero. The problem is:

To describe the properties of the set of functions Q(z,a), a € A, and the
probability measure F(z) under which the sequence of random variables
¢ converges in probability to zero.

In this case, one says that the Law of Large Numbers in a functional space
(space of functions Q(z,a),a € A) takes place or that there exists uniform
(two-sided) convergence of the means to their expectation over a given set
of functions.

Thus, the problem of the existence of the Law of Large Numbers in a
functional space (uniform two-sided convergence of the means to their ex-
pectations) can be considered as a generalization of the classical Law of Large
Numbers.

Note that in classical statistics the problem of existence of uniform one-
sided convergence has not been considered; it became important due to the
Key Theorem (which we formulate in the next section) pointing the way for
analysis of the problem of consistency of the ERM inductive principle.

The uniform convergence (3.8) means that for sufficiently large ¢, the
empirical risk functional approximates the risk functional uniformly well over
all functions in a given set of functions. In Chapter 2, Section 2.6 we showed
that when uniform convergence takes place, the function which minimizes
empirical risk provides the value of the risk that is close to the smallest
possible risk.

So the uniform convergence gives sufficient conditions for the consistency
of the empirical risk minimization method. In this situation arises the ques-
tion:

Is it possible that the requirement of uniform convergence is too strong? Can
there exist a situation such that the empirical risk minimization method
is consistent, but at the same time, the uniform convergence does not take
place?

In the next section we show that such a situation is impossible. We show
that one-sided uniform convergence forms not only the sufficient condi-
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tions for the consistency of the empirical risk minimization method, but the
necessary conditions as well.!

3.4 THE KEY THEOREM OF LEARNING THEORY (THEOREM
ABOUT EQUIVALENCE)

In this section we formulate the key theorem of learning theory which we
prove in the next section. We show that for strict consistency of the empirical
risk minimization method, it is necessary and sufficient that one-sided uniform
convergence over a given set of functions takes place.

Theorem 3.1. Let there exist the constants a and A such that for all func-
tions in the set Q(z, ), a € A, and for a given distribution function F(z), the
inequalities

a< /Q(z,a)dF(z)gA, @eA

hold true.
Then the following two statements are equivalent:

1. For the given distribution function F(z), the empirical risk minimization
method is strictly consistent on the set of functions Q(z,a), a € A.

2. For the given distribution function F(z), the uniform one-sided conver-
gence of the means to their mathematical expectation takes place over the
set of functions Q(z,a),a € A.

This theorem is stated for some fixed probability measure. However, the
main interest of learning theory is to find conditions under which the em-
pirical risk minimization method is consistent for any probability measure in
the set P. (If we have no a priori information about the problem at hand,
and the distribution that performs the generator of random vectors, then
the set P = P, is the set of all possible probability measures.) The follow-
ing corollary describes conditions of consistency for the set of distribution
functions:

Corollary. Let there exist such constants a and A that for all functions in the
set Q(z,a),a € A, and all distribution functions: F = F(2) in the set P, the
inequalities

a<_/Q(Z,a)dF(z)§A, a€A, F(z)eP

hold true.

I Note that necessary and sufficient conditions for consistency of the learning processes is given
by uniform one-sided convergence but not two-sided because we face a nonsymmetric situation:
We are looking for consistency of results in minimizing the empirical risk, but we do not bother
about consistency of results in maximizing the empirical risk.
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Then the following two statements are equivalent:

1. For any distribution function in the set P, the empirical risk minimiza-
tion method is strictly consistent on the set of functions Q(z, @), a € A.

2. For any distribution function in the set P, the uniform one-sided con-
vergence of the means to their mathematical expectation takes place
on the set of functions Q(z, a), @ € A.

3.5 PROOF OF THE KEY THEOREM

Let the empirical risk minimization method be strictly consistent on the set
of functions Q(z, a), @ € A. According to the definition of strict consistency
(for a fixed measure) this means that for any ¢ such that the set

Ac) = {a: /Q(z,a)dF[z) > c}

is nonempty the following convergence in probability is true:

¢

) 1 ) I
f - i f ,a)dF(z). 3.11
7 Q) T i [ ecwdr) (311)
Consider a finite sequence of numbers ay, ...,a, such that
|ai+1_ai|<%, a=a, a;,=A.

We denote by 7, the event

¢
P Z : £
nf 7 i=1 Ol o) < ae'?&k)/Q(z’a)dF(z)_ 2

aEA(ak)
Then by virtue of (3.11),
P(Ty) P~ 0. (3.12)

We denote
T=JT
k=1

Since n is finite and for any k the relation (3.11) is true, it follows that

P(T) —0. (3.13)

{—o0
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We denote by A the event

4
sup (/Q(z, a)dF(z) - %ZQ(ZMJ)) > &
i—1

acA

Suppose that A takes place. Then there will be a* € A such that

/Qza dF(z %Z O(zi

From a* we find k such that a* € A(a,) and

~

/mawmna—@<§

For the chosen set A(a,) the inequality

/Q(z,a‘)dF( — inf /QzadF()

a€l(a)

NI%

holds true.
Therefore for the chosen a* and A(ay), the following inequalities hold:

inf | O(z,a)dF(z ——>/Qzadn)

acla)
f

> %ZQ(Z.-,a‘) > inf %ZQ(Z:‘,C’),

i=1 i=|

that is, the event T, does occur and, hence, so does T.

Therefore,
P(A) < P(T).
By (3.13),
plim P(T) =0,

which expresses uniform one-sided convergence

1
{il:]z (/Q(Z a)dF(z) - ZZ:I: Z,,a)) }[::0 (3.14)

The first part of the theorem is proved.
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Now suppose that uniform one-sided convergence (3.14) takes place. Let

us prove that in this case the strict consistency takes place—that is, that for
any ¢ the convergence
> 8} =0

Iim P {
f—0
> E£.

£
inf / Q(z,a)dF(z) — aiErHC) % ; Q(zi, )

acA(c

holds. Let us denote by A the event

acA(c)

1 ¢
inf /Q(z «)dF(z) - inf FEQ(zi,a)

Then the event A is the union of the two events
A=A U Ay,

where

¢
Al—{z: mf Q(z,a)dF(z) + & < inf %;Q(Z"’a)}’

acA( acA(c)

and

a€A(c

¢
Azz{z: inf /Qz a)dF(z)—s> 1nf %ZQ(z,,a)}.
=1

The goal is to bound the probability of the event A4
P(A) < P(A) + P(A)

Suppose that the event A, occurs. To bound P(A4,) we take a function
Q(z, a*) such that

[oeardre < int [o@wdr@)+3.
Then the inequality
1 2
;L 0na) > [0 o dF @)+
=1

holds. The probability of this inequality is therefore not less than probability
of the event A;:

L
P(A) <P {ZgQ(Zi,a') - /Q(z,a*)dF(z) > g}[:;(l. (3.15)
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The probability on the right-hand side tends to zero by the law of large
numbers.

If, on the other hand, the event A; occurs, then there is a function Q(z, a**),
a** € A(c) such that

1 R inf IF gp
ZgQ(Zi,a )+ E < aél}(c)‘/‘Q(z,a) (z) < /Q(Z,a ) (Z),

and, therefore,

14
P(4) <P {/ O(z,a**)dF(z) - %Z Q(z;,a™) > g} (3.16)
i=1

acA ()

¢
<P {sup (/Q(z,a)dF(z) ~ %ZQ(z,-,co) > g} — 0
=1

by virtue of (3.14).
Because

P(A) < P(Ay) + P(A)
from (3.15) and (3.16) we conclude that

P(A) — 0.

f—o0

The theorem is proven.

3.6 STRICT CONSISTENCY OF THE MAXIMUM LIKELIHOOD METHOD

As was shown in Chapter 1, the empirical risk minimization method en-
compasses the maximum likelihood method. However, for the maximum
likelihood method, we define another concept of strict consistency. This
definition requires that for any density p(x, ap) from the given set of densities
plx,a), a € A, the convergence in probability

14
.o 1 P .
i 32 (- ogp(aa)) - inf f (~logp(r.a) ptr.an)

has to be valid.
For the consistency of the maximum likelihood method on a set of densities
the following theorem is true:
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Theorem 3.2. For the maximum likelihood method to be strictly consistent on
the set of densities

O0<a<px,a)<A<oo, a€A

it is necessary and sufficient that uniform one-sided convergence takes place
for the set of functions

Q(x,a)= —logp(x,a), a€A
with respect to some measure p(x,ay), oy € A.

Remark. It will be clear from the proof that this theorem contains in implicit
form the following assertion: If one-sided uniform convergence on the set of
functions

O(x,a) = —log p(x, a), a €A

takes place with respect to some density p(x, ay), then it will take place with
respect to any density of the set p(x, a), a € A.
This theorem will be proved in Chapter 16.

Thus, the theorems about equivalence replaced the problem of the strict
consistency of the empirical risk minimization method with the problem of
existence of uniform one-sided convergence of means to their mathematical
expectations or, in other words, with convergence of some empirical process.
The third part of this book is devoted to studying in detail the convergence of
appropriate empirical processes. However, in the next sections of this chapter
we describe the main results of these studies.

3.7 NECESSARY AND SUFFICIENT CONDITIONS FOR UNIFORM
CONVERGENCE OF FREQUENCIES TO THEIR PROBABILITIES

3.7.1 Three Cases of Uniform Convergence

Up until now in our consideration of the problem of risk minimization from
empirical data, we did not care what specific properties the set of functions
Q(z,a), a € A has. Now, to describe the necessary and sufficient conditions
for uniform convergence (in this section we consider the problem of uniform
two-sided convergence, rather than uniform one-sided convergence), we will
distinguish between three classes of functions:

1. First, we consider sets of indicator functions Q(z, a), @ € A. For this set
of functions, we formulate the necessary and sufficient conditions for
uniform convergence of frequencies to their probabilities.
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2. Then, we generalize this result for uniformly bounded sets of func-
tions Q(z,a),a € A. The set of functions Q(z, @), @ € A, is uniformly
bounded if there exists a constant C such that for any function in this
set, the inequality |Q(z, a)| < C is valid. For such sets of functions,
we describe the necessary and sufficient conditions for uniform conver-
gence of means to their mathematical expectations.

3. Lastly, using the results for uniformly bounded set of functions we will
describe the necessary and sufficient conditions for uniform conver-
gence of means to their mathematical expectations for the general case,
namely, when Q(z, a), a € A, is a set of unbounded functions.

Thus, we shall obtain the general result in three steps.

3.7.2 Conditions of Uniform Convergence in the Simplest Model

Now let Q(z, a), a € A, be a set of indicator functions. Our goal is to describe
the necessary and sufficient conditions for uniform two-sided convergence—
that is, the convergence

¢
P {supl O(z,a)dF(z2) - %;Q(zi,a)l > s};—; (3.17)

a€A

for any £ > 0.
For the set of indicator functions Q(z, o), @ € A, we can rewrite (3.17) in
the form

P {suglP{Q(z,a) >0} — v {Q(z,a) > 0} > s} F—:;O, (3.18)

where P{Q(z, a} > 0} are probabilities of the events A, = {z : Q(z, @) > 0},
a € A, and v, {Q(z, @) > 0} are frequencies of these events obtained on the
given data z;, ..., 2y.

According to the Bernoulli theorem for any fixed event A* =
{z : O(z, a*) > 0}, the frequencies converge to the probability when the num-
ber of observations tends to infinity. The inequality

P {|P{Q(z,a") >0} — v;{0(z;, ") > 0} > &} < 2exp{-2£¢} (3.19)

(Chernoff inequality) describes the rate of convergence.

Our goal, however, is to describe the conditions for uniform convergence
(3.17) over the set of events a, = {z: O(z, @) > 0}, a € A. Let us start with
the simplest model.
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The Simplest Model. Let our set of events contain a finite number N of
events A, = {z: Q(z,) > 0}, k =1,2,..,N.For this set of events, uniform
convergence does hold. Indeed, the following sequence of inequalities is valid:

P{]r<nka<xN|P{Q(z,ak) > 0} - v {Q(zi, &) > 0}] > ¢}

N
<Y P{P{Q(z,) > 0} — v {Q(z;, &) > 0}| > &}

k=1
< 2N exp{-2£%¢} (3.20)

:2exp{(!n?N- —232) e}, (3.21)

(To get (3.20) we use the Chernoff inequality (3.19).) The last expression
suggests that in order to obtain uniform convergence for any &, the expression

LA (3.22)

{ t-o

has to be true.

Of course, for the case when our set contains a finite number N of events
and the number of observations tends to infinity, this relation is true. This also
proves that for any set with a finite number of events, uniform convergence
takes place. However, relations of type (3.22) will be indicative for uniform
convergence also in the case where the number of events in a set is infinite.

3.7.3 Entropy of a Set of Functions

The main idea of the conditions for uniform convergence that will be de-
scribed below and will be proved in Chapter 14 is as follows. Even if the set
of events contains infinitely many elements, only a finite number of clusters
of events is distinguishable on the given sample z;, ..., z,. (Two events are
distinguishable on a sample if there exists at least one element in the sample
that belongs to one event and does not belong to the other.)

It is clear that in this case the number of clusters is not fixed and depends
both on a sample and on a given set of functions. Let us denote the number of
clusters by N3(zy, .., z¢). Roughly speaking, the idea is to substitute in (3.22)
the value N(z,..,z,) that depends on the sample z,,..,z; and on the set
of events A, = {z: Q(z,a) >0}, a € A. We will show that if N(z;,...z;)
increases slowly as the sample size increases (slower than any exponential
function), then (3.21) converges to zero as ¢ — oo, and uniform convergence
takes place.

Now we determine a new concept which we will use for constructing the
necessary and sufficient conditions for uniform convergence. Let a set of
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Qlz/q)

Qlz,,0)

Q(21 ,00)

FIGURE 3.4. The set of /-dimensional binary vectors g(a), « € A, is a subset of the set of
vertices of the /-dimensional unit cube.

indicator functions Q(z, ), « € A be determined on the set Z. Consider an
arbitrary sequence of ¢ vectors from the set Z:

21,0 2o (3.23)

Using these data, along with the set of indicator functions, let us determine
the set of ¢-dimensional binary vectors

q(a) = (Q(zy,a),...,Q(zs, a)), ac A

For any fixed a = a~ the binary vector g(a*) determines some vertex of the
unit cube (Fig. 3.4). Denote the number of different vertices induced both
by the sample (3.23) and by the set of functions Q(z, a),a € A:

NA(Zl,--',Zr)-
[t 1s clear that
Nz, oy 2g) < 2,

Let for any / the function N*(zy,...,z;) be measurable with respect to the
probability measure

¢
P(zi,...,2¢) = HP(Zi)-
=1

Definition. We say that the quantity
HA(ZI PRIT} Z!’) = lnNA(le ""zf)

is the random entropy of the set of indicator functions Q(z, a), @ € A, on the
sample zy,..., Z,.
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We also say that the quantity
H“(e):/HA(zl,...,z»dF(zl,...,zf)

is the entropy of the set of indicator functions Q(z, a), a € A, on samples of
size ¢.

3.7.4 Theorem About Uniform Two-Sided Convergence

Under the appropriate conditions of measurability of a set of functions the
following theorem is valid.

Theorem 3.3. In order that uniform convergence

sup > ¢ 2 0
acA £

over the set of indicator functions Q(z, @), a € A be valid it is necessary and
sufficient that the condition

e ware) - —ZQ(z,, @)

A
ﬂg—(f—) —0 (3.24)

be satisfied.
In Chapter 14 along with Theorem 3.3 we will prove a stronger assertion:

Theorem 3.3a. If condition (3.24) of Theorem 3.3 is satisfied, then almost sure
uniform convergence takes place

sup —» ()

a€EA

¢
/Q(Z,a)dF(z) - % Z z,,a)

Therefore condition (3.24) i1s necessary and sufficient for almost sure uniform
two-sided convergence of frequencies to their probabilities.

Thus, the conditions for uniform convergence (3.24) for an infinite number
of functions have the same form as for a finite number (3.22). The difference
is only in characterizing the capacity of a set of functions. In the simplest
case, it was the number of functions in the set; in the general case, it is the
entropy of the set of indicator functions on a sample of size ¢.



98 3 CONDITIONS FOR CONSISTENCY OF EMPIRICAL RISK MINIMIZATION PRINCIPLE

3.8 NECESSARY AND SUFFICIENT CONDITIONS FOR UNIFORM
CONVERGENCE OF MEANS TO THEIR EXPECTATIONS FOR A SET
OF REAL-VALUED BOUNDED FUNCTIONS

3.8.1 Entropy of a Set of Real-Valued Functions

Below, we generalize the theorem about uniform convergence obtained for
sets of indicator functions to sets of real-valued functions.
We start with uniformly bounded functions Q(z, ), a € A, where

|0(z,a)| < C, a € A.

First we generalize the definition of entropy for sets of indicator functions to
sets of bounded functions. As in the last section, let us consider the sequence
of vectors

L1y ey X

and the set of ¢-dimensional vectors

q*(a) - (Q(Zlva)» "')Q(Zl'» a))v a €A

The set of vectors ¢g*(a), a € A, is induced both by the sample zy,...,z, and
by the set of uniformly bounded functions Q(z, @), a € A.

In the last section, we considered the set of binary vectors g(«), a € A,
that was induced by the set of indicator functions Q(z,a), @ € A. For the
given definition of entropy, it was important that the set of vectors g(a), @ € A
contained a finite number of elements. Now our set of vectors g*(a), a € A,
contains an infinite number of elements, from the ¢-dimensional cube with
edges of length 2C. Note that the set of vectors g*(a), a € A, belongs to the
cube, but does not necessarily coincide with it (Fig. 3.5).

In mathematics, the necessity often arises to extend results valid for a finite
set of elements to the infinite case. Usually such a generalization is possible
if the infinite set can be covered by a finite €-net.

Qz;, a)

q*(a),aeA

H—t—

O

/ Q(z, o)
Q(Zl, a)

FIGURE 3.5. The set of /-dimensional vectors g(a), a € A, belongs to an /-dimensional
cube.
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Definition. The set B of elements b in a metric space M is called an e-net of
the set G if any point g € G is distant from some point b € B by an amount
not exceeding e, that is,

p(b,g) <e.

We say that the set G admits a covering by a finite e-net if for each € there
exists an e-net B, consisting of a finite number of elements.

We say that the e-net B} is a minimal €-net if it is finite and contains a
minimal number of elements.

To consider a minimal e-net of the set of vectors g*(«), @ € A, it is nec-
essary to choose a metric in £-dimensional Euclidean space. In Chapter 15
we show that the necessary and sufficient conditions of uniform convergence
can be constructed using the C metric

pc(q*(ar),q" (o)) = max 1Q(zk, 1) — Q(zk, a2)|.

Let the number of elements of a minimal e-net of the set of the vectors
g*(a), a € A, be
NA(E;ZI:---aZI)-

This number depends on the value of €, on the set of functions Q(z, «),
a € A, and on the random sample z, ..., z,. Using this number, we introduce
the concept of random entropy, and the entropy for a given set of real-
valued functions. Suppose that for any ¢ the function InN*(g;zy,...,2/) is
measurable.

Definition. We say that the quantity
HA(E;ZH 2] Z(’) = InNA(E;le 2] Z{)
is the random e-entropy of the set of uniformly bounded functions Q(z, a),

a € A on the sample z|, ..., z,.
We say also that the quantity

M) = [H\ (€120 dF (@120

is the e-entropy of the set of uniformly bounded functions Q(z,a).a € A. on
samples of size ¢.

3.8.2 Theorem About Uniform Two-Sided Convergence

Under the appropriate conditions of measurability of a set of functions the
following theorem is valid:
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Theorem 3.4. In order that uniform convergence

¢
sup Y 0Gia)|>63 —0
a€cA i=1 -0

over a set of uniformly bounded functions Q(z,a),a € A be valid, it is
necessary and sufficient that for any & > 0 the conditions

NI»—

/ 0z, a) dF(2) -

Ar,.
ﬂ%‘]—) 0 (3.25)

be satisfied.

In Chapter 15 along with this theorem we will prove a stronger assertion:

Theorem 3.4a. If condition (3.25) of Theorem 3.4 is satisfied, then almost sure
uniform convergence takes place

sup 0.

acA

£
[eemare - >0t

Therefore condition (3.25) is necessary and sufficient for almost sure uniform
two-sided convergence of means to their expectations.

These theorems are generalizations of the theorems for the sets of indica-
tor functions described in the last section. Indeed, for the C metric if € < 1,
the number of elements of the minimal e-net of the set of indicator functions
coincides with the number of different vertices on the unit cube induced by
the set of indicator functions.

3.9 NECESSARY AND SUFFICIENT CONDITIONS FOR UNIFORM
CONVERGENCE OF MEANS TO THEIR EXPECTATIONS FOR SETS
OF UNBOUNDED FUNCTIONS

In order to complete the description of the theory of uniform two-sided
convergence, it remains to establish the necessary and sufficient conditions of
uniform two-sided convergence for the general case, namely, when Q(z, @),
a € A, is a set of arbitrary real-valued functions with bounded expectations

~—o<a< /Q(z,a)dF(z) < A < oo, Q(z,a),a € A.

To state the necessary and sufficient conditions for this case we shall con-
sider a new notion: the envelope of a set of functions.
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Definition. We say that function K(z) is an envelope of the set of functions
Q(z,a),a € A, under the probability measure F(z) if

sup |Q(z, a)| < K(2)

acA

and

/K(z)dF(z) < 00.

Consider along with the set of functions Q(z,a), @ € A, the set of C-
bounded functions

C for Q(z,a)>C
Qclz,a) = { Q(z,a)  for [Q(x,a)| < C

~C for Q(z,a) < -C
for C > 0. For any given C, the conditions of uniform convergence for the set
Oc(z,a), a € A, are given in Theorem 3.4. The next theorem asserts that for
uniform convergence on a set of arbitrary real-valued functions it is necessary
and sufficient that the envelope exists and that for any C the entropy of the
set of functions Q¢(z, «), a € A, satisfies the conditions of Theorem 3.4.

Theorem 3.5 (Gine and Zinn). In order that on the set of functions Q(z, a),
a € A, with bounded expectations almost sure uniform convergence

sup

¢
[e@adre -3 0| 2o

takes place, it is necessary and sufficient that the set of functions Q(z,«a),
a € A, has the envelope K(z) and that for any C and any € > 0 on the set of
bounded functions Q¢(z,a), a € A, conditions (3.25) be satisfied.

3.9.1 Proof of Theorem 3.5

Proof of the Sufficiency. Let there exist an envelope for the set of functions
Q(z,a),a € A:
sup|Q(z, a)| < K(2),

acA
/ K(z)dF(z) < co.

and suppose that for any C and for any € the set of functions Q¢(z, a), a € A,
has an entropy satisfying the condition

HA(e;0)
oY
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To prove that in this case almost sure convergence

sup
acA

1y as
[ocmar@ - > Qe 210
takes place we choose C such that for a given ¢ the inequality

/ (K(z)~ C), dF(2) < &

is valid, where
(1), = max(u,0).

Let Q(z,a*) be a function on which the supremum is achieved. Then the
inequalities

14
/Q(z, @) dF (@)~ > 0tea)

sup
ael

z.a')dF(z) - —ZQc(z,,a )

- Z(K(z)—cx JICGRRE

< sup
acA

£
: % ; (K(z) — C). +&.

[octmdr) - LS 0ctena)
i=1

hold. Since the first term on the right-hand side of the inequalities converges
almost surely to zero (according to Theorem 3.4a), and the second term con-
verges almost surely to a nonnegative value that is less than ¢ (according to
the Strong Law of Large Numbers), one can assert that the whole expres-
sion on the right-hand side converges almost surely to zero. Therefore the
nonnegative expression on the left-hand side converges almost surely to zero.

Proof of Necessity. Suppose almost sure uniform convergence takes place.
We have to prove that:

1. There exists an envelope

sup |Q(z, a)] < K(2)

ac \

/K(z)dF(z) < o0.
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2. For the set of functions Qc(z,a),a € A, defined by any C >0 the
equality
A
lim H.0)

f—x { =0

holds true.

Existence of the envelope. We prove existence of the envelope in four
steps.

1. First we prove that almost sure convergence to zero of the sequence of
random variables

£
/Q(z a)dF(z) —zg Qzi,

sup —0 as { — oo

ach

implies almost sure convergence to zero of the following sequence of
random variables

sup fQ(Zva) dF(Z) B Q(Zi’va)

7 — 0 as { — oc.

ac\

Let us denote by Q(z, o;) the function that maximizes the difference

/Q(z a)dF(z) - Q(zr, ).

O(zr.a) = argsup

The following inequalities hold true:

sup
a€A

£
[ec@dr@ -3 Y 0a
i=1

fQ(z’ a)dF(z) B Q(Ziva)

= sup

a€A i=1 ¢
S | [ @ a)) dF(2) — Ozr, &)
= [;
£ -1 [0, &) dF (z) - Qzi, af)
o Z{ : -1 all

Therefore
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0 < fQ(z,a;)dF((f) - 0z, o))

IA

¢
[eewdre -5y 06
i=1

sup
acl

-1 N[Oz, 0))dF (2) — Q(zi, a})
+ ¢ Z f [ {—1 [

=1

Since both terms on the right-hand side converge to zero almost surely
(the first term duc to the condition of the theorem and the second term
due to strong law of large numbers), the nonnegative random variable
on the left-hand side converges almost surely to zero.

2. Second we prove that existence of the expectation E¢ of the non-
negative random variable is equivalent to convergence of the sum

Y P{e>ist <o (3.26)
i=1

for any £ > 0.
Indeed, using the Lebesgue integral one defines expectation as the
limit (for £ — 0) of the sums

eiP{§>i8}SEgga(iP{§>i5}+l).
i=1

i=1

Therefore existence of the expectation £¢ is equivalent to convergence
of the sum (3.26) for any & > 0.

3. Third. using this fact we prove that the expectation

E sup
acA

< o0 (3.27)

/ 0z, @) dF(z) - Q(zr, a)

exists. Indeed, note that the sequence of random variables

¢ = \fQ(z,a;)dF(Z) — Q(z, @)
¢

L =12,

is independent. Therefore according to the Borel-Cantelli lemma (see
Chapter 1, Section 11.1), if the sequence of independent random vari-
ables & converges almost surely, then the sum

gp{}/Q(Z»a;)dF(Z)~Q(zf,a;) >é’e} < oo

is bounded. Hence Eq. (3.27) holds.
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4. Furthermore, we have

E'sup |Q(z, a)
acA

< E'sup

a€A

/ 0(z, @) dF(z) - Q(z, )|+ Esp| [ 0(z, ) dF(2)
(3.28)

Recall that we consider a set of functions satisfying constraints
—oo <a< /Q(z,a)dF(z) <A < oo.

Therefore from (3.27) and (3.28) we conclude that
Esup |Q(z, )| < o0

acA

which imply the existence of an envelope.

Sublinear growth of the entropy. Now we have to prove that for any C > 0
the entropy of the set of functions Qc(z,a), « € A, satisfies the required
conditions. Note that if condition (3.25) is satisfied for a set of functions with
some C*, then it is satisfied for sets with C < C*. Therefore it is enough to
prove that condition (3.25) is satisfied for a set of functions with sufficiently
large C*.

Let us choose such large C* that for a given small £ > 0 the inequality

/ (K(2) - ) dF() < 2

holds true. We have

sup
acA

4
[eewdr@) - 1Y 0w
i=1

2> sup
a€A

[4
[occayar@) - ;3 0c i)
i=1

acA

1 ¢
—sup [ (K(z) - C), dF(2) - ; Z(K(z)
Therefore we have

sup
acA

14
[emar@ -7y ocmw

1 ¢
+ & + ZZ K(Z)

12
/Q(z o) dF(z) — ?Z 0(zi, @)

S Sl.lp
acA
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The left-hand side of this expression converges almost surely to zero since the
first term on the right-hand side converges almost surely to zero (according
to condition of the theorem), and the last term converges almost surely to
the corresponding expectation that is not larger than &. Therefore for the
uniformly bounded set of functions Q¢.(z, a), @ € A, the uniform two-sided

convergence takes place. According to Theorem 3.4, this implies condition
(3.25).

3.10 KANT'S PROBLEM OF DEMARCATION AND POPPER’S THEORY
OF NONFALSIFIABILITY

Thus far we have considered theorems about two-sided uniform convergence.
We have constructed the characteristics of the capacity of sets of functions
(which in some sense generalizes the number of functions in a finite set
of functions) and then have used these characteristics (entropy of sets of
indicator functions or entropy of sets of real-valued functions) to obtain the
necessary and sufficient conditions for (two-sided) uniform convergence.

However, our goal is to obtain the necessary and sufficient conditions
for consistency of the principle of empirical risk minimization. In Section
3.4, we showed that the condition of consistency of this induction principle
coincides with the conditions of uniform one-sided convergence of means to
their mathematical expectations over a given set of functions. As we shall
see, the conditions for uniform one-sided convergence are expressed on the
basis of conditions for uniform two-sided convergence.

However, obtaining uniform one-sided convergence using uniform two-
sided convergence is not only a technical detail. To find these conditions, it
is necessary to construct a mathematical generalization of one of the most
impressive ideas in the philosophy of science—the idea of nonfalsifiability. In
Section 3.11 we shall consider theorems about nonfalsifiability, but for now
let us remind the reader what the subject of philosophy of science and the
idca of nonfalsifiability are.

Since the era of ancient philosophy, two models of reasoning have been
accepted:

e deductive, which means moving from general to particular, and
e inductive, which means moving from particular to general.

A model in which a system of axioms and inference rules is defined by means
of which various corollaries (consequences) are obtained is ideal for the de-
ductive approach. The deductive approach should guarantee that we obtain
true consequences from frue premises.

The inductive approach to reasoning consists of the formation of general
judgments from particular assertions. However, general judgments obtained
from true particular assertions are not always true. Nevertheless, it is assumed
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that there exist such cases of inductive inference for which generalization

assertions are justified.
The demarcation problem, originally proposed by I. Kant, is a central
question of inductive theory:

What is the difference between the cases with a justified inductive step and
those for which the inductive step is not justified?

The demarcation problem is usually discussed in terms of the philosophy of
natural science. All theories in the natural sciences are the result of gen-
eralizations of observed real facts and therefore are built using inductive
inference. In the history of natural science, there have been both true theo-
ries that reflect reality (say chemistry) and false ones (say alchemy) that do
not reflect reality.

The question 1s the following;:

Is there a formal way to distinguish between true and false theories?

Let us assume that meteorology is a true theory and astrology is a false
one.
What is the formal difference between them?

Is it in the complexity of their models?

Is it in the predictive ability of their models?
Is it in their use of mathematics?

Is it in the level of formality of inference?

None of the above gives a clear advantage to either of these two theories.

The complexity of astrological models is no less than the complexity of
the meteorological models.

Both theories fail in some of their predictions.

Astrologers solve differential equations for restoration of the positions
of the planets, which are no simpler than the basic equations in the
meteorological theory.

Finally, both theories have the same level of formalization. It contains
two parts: (1) the formal description of reality and (2) the informal
interpretation of it.

In the 1930s, K. Popper suggested his famous criterion for demarcation be-
tween scientific and nonscientific theories.! According to Popper. a necessary
condition for justifiability of a theory is the feasibility of its falsification. By
the falsification of a theory, Popper means the existence of a collection of

P Popper used the terminology of empirical and metaphysical theories.
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particular assertions which cannot be explained by the given theory although
they fall into its domain. If the given theory can be falsified, it satisfies the
necessary conditions of a scientific theory.

Let us come back to our example. Both meteorology and astrology make
weather forecasts. Consider the following assertion:

In the New York area, both a tropical storm and snowfall can happen in
one hour.

Suppose that according to the theory of meteorology, this is impossible.
Then this assertion falsifies the theory because if such a situation rcally will
happen (note that nobody can guarantee with probability one that this is
impossible) the theory will not be able to explain it. In this case the theory
of meteorology satisfies the necessary conditions to be viewed as a scientific
theory.

Suppose that this assertion can be explained by the theory of astrology.
(There are many elements in the starry sky, and they can be used to create an
explanation.) In this case, this assertion does not falsify the theory. If there is
no example that can falsify the theory of astrology, then astrology according
to Popper should be considered a nonscientific theory.

In the next section we describe the theorems of nonfalsifiability. We show
that if for some set of functions, conditions for uniform convergence do not
hold, the situation of nonfalsifiability will arise.

3.11 THEOREMS ABOUT NONFALSIFIABILITY

In this section we show that if uniform two-sided convergence does not take
place, then the method of empirical risk minimization is nonfalsifiable.

3.11.1 Case of Complete Nontalsifiability

To give a clear explanation of why this happens, let us start with the simplest
case. Suppose for the set of indicator functions Q(z, a), « € A, the following
equality is true:
A
lim H(®) =
-
Intuitively, it is clear that the ratio of the entropy to the number of observa-
tions HA(¢)/¢ monotonically decreases when the number of observations ¢
increases. (This is proven formally in Chapter 14.) Thus, if (3.29) happened,

then for any finite number ¢ the equality

HAE) _
;=

In2. (3.29)

In2

holds true.
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FIGURE 3.6. A learning machine with the set of functions €(z. a), a € A, is nonfaisifiable
if for almost all samples z,,...,2, given by the generator of examples and for any
possible labels 5;,..., 5, for these Zs, the machine contains a function &z «*) that
provides equalities 5; = Q(x;,a), i=1,...,¢.

According to the definition of entropy, this means that for almost all sam-
ples zi, ..., z¢ the equality

NA(Zh seey Zf) = 2(

is valid.
In other words, the set of functions of the learning machine is such that
almost any sample z, ..., z, (of arbitrary size £) can be separated in all possi-

ble ways by functions of this set. This implies that the minimum of empirical
risk for this machine equals zero. We call this learning machine nonfalsifiable
because it can give a general explanation (function) for almost any data (see
Fig. 3.6).

3.11.2 Theorem About Partial Nonfalsifiability

In the case when entropy of the set of indicator functions over the number of
observations tends to a nonzero limit, the following theorem shows that there
exists some subspace of the original space Z where the learning machine is
nonfalsifiable.

Theorem 3.6. For the set of indicator functions Q(z,a), a € A, let the conver-
gence

A
limH (&) =c>0

{0

be valid.
Then there exists a subset Z* of the set Z such that

(a) P(Z*)=c
and (b) for the subset

e 2 = (2150, 20) N2
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Q

FIGURE 3.7. A learning machine with the set of functions Q(z, a), a € A, is partially
nonfaisitiableif there exists a region Z* ¢ Zwith nonzero measure such that for almost all
samples z,....z; given by the generalor of examples and for any labels §,,....§; for
these Z's, the machine contains a function &(z. o*) that provides equalities §; = Q(z, a)
for all z; belonging to the region Z*.

of almost any training set
25 2

that belongs to Z* and for any given sequence of binary values
By, eeny Oy 6 € {0,1}
there exists a function Q(z, a*) for which the equalities
8, = Q(z], a"), i=1,2,...k
hold true.
This theorem shows that if conditions of uniform convergence fail, then

there exists some subspace of the input space where the learning machine is
nonfalsifiable (see Fig. 3.7).

3.11.3 Theorem About Potential Nonfalsifiability
Now let us consider the set of uniformly bounded real-valued functions
|Q(z,a)| < C, a €A

For this set of functions a more sophisticated model of nonfalsifiability will
be used. So we give the following definition of nonfalsifiability:

Definition. We say that the learning machine that has an admissible set of
real-valued functions Q(z, @), € A, is potentially nonfalsifiable if there exist



3.11 THEOREMS ABOUT NONFALSIFIABILITY 11

two functions!
n(z) = Yo(z)
such that:

1. There exists some positive constant ¢ for which the equality

/(zm (2) - do(2)) dF(z) = ¢ > 0

hoids true.
For almost any sample

]

1y ey Xy

any sequence of binary values,
8y, ..ry Bp, & € {0,1},

and any &, one can find a function Q(z,«*) in the set of functions
Q(z,a), « € A, for which the inequalities

|5 (z:) — Qz;, )| < &, 8 € {0,1}
hold true.

In this definition of nonfalsifiability, we use two essentially different func-
tions ¢, (z) and yy(z) to generate the values y; of the function for the given
vectors z;. To make these values arbitrary, one can switch between these
two functions using the arbitrary rule ;. The set of functions Q(z, a), a € A,
forms a potentially nonfalsifiable machine if for almost any sequence of pairs
(¥5(;1(zi), z;) obtained on the basis of random vectors z; and this switching
rule 6(7), one can find in this set a function Q(z, a*) that describes these pairs
with high accuracy (Fig. 3.8).

Note that this definition of nonfalsifiability generalizes Popper’s notion. In
our simplest example considered in the beginning of Section 3.10, for the set
of indicator functions Q(z, a), « € A, we use this notion of nonfaisifiability
where ¢, (z) = 1 and p(z) = 0. In Theorem 3.6 we actually use the functions

1 if zeZ* 0 if zeZ,

(@) ‘{Q(z,a) if z ¢ Z°, "’O(Z)*{Q(z,a) if 2 ¢ 27,

where Q(z, &) is some function from the given set of indicator functions.
On the basis of this concept of potential nonfalsifiability, we formulate

the following theorem that holds for an arbitrary set of uniformly bounded
functions (including sets of indicator functions).

' These two functions need not necessarily belong to the set Q(z,a), « € A.
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Q

FIGURE 3.8. A learning machine with the set of functions €(z, o), a € A, is potentially
nonfalsifiable if for any £ > 0 there exist two essentially different functions y, (z) and ¢n(2)
such that for almost all samples z;, ...,z given by the generator of examples, and for
any values u, ... u, constructed on the basis of these curves using the rule u; = ;5 (2)),
where 8, C {0,1} is an arbitrary binary function, the machine contains a function €(z. a*)
that satisfy inequalities |y (2)) - (2, a*)| < &, I=1,... 4.

Theorem 3.7. Suppose that for the set of uniformly bounded real-valued func-
tions Q(z,a), a € A, there exist & such that the convergence

A
f—x ¢/
is valid.
Then the learning machine with this set of functions is potentially nonfalsi-
fiable.

This theorem will be proved in Chapter 16.

3.12 CONDITIONS FOR ONE-SIDED UNIFORM CONVERGENCE AND
CONSISTENCY OF THE EMPIRICAL RISK MINIMIZATION PRINCIPLE

We start this section with an example of a learning machine that has a
set of functions which make it nonfalsifiable, but, nevertheless, the machine
can generalize using the empirical risk minimization principle. This happens
because learning theory considers the nonsymmetric situation where the
machine must generalize by minimizing risk rather than by maximizing risk.

Example. Let z € (0,1), and let F(z) be a uniform distribution function.
Consider the following set of two parametric indicator functions Q(z, a, 8),
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aceA=(0,1), BeB: Q(z,a,B)=1, for z > a and Q(z,a,B) =0 for all
7z < a except for a finite number of points where it equals 1. This specific
finite number of points is determined by the parameter 8. The set of functions
is such that for any finite set of points in the region (0,1) there exists a
function specified by the parameter 8 € B which takes the value of one at
these points. It is easy to see that the learning machine that contains this set
of functions is nonfalsifiable (see Fig. 3.9). Indeed, for any set of (different)

vectors
Lyye-es o

and any sequence
dy, ..., &, 6 € {0,1}

there exist parameters a = a* and 8 = B* which provide equalities
8 = Q(z;,a*, B*), i=12..,¢
For this set of functions, the equality

HA'B(E) _ flﬂNA‘B(Z),...,Z()dZ),.“,dZ{
¢ ¢

=1In2

is valid.
Note that the value of the risk functional

R(a, B) = / 0z, a, B) dz

depends on a and does not depend on 3.
Consider another learning machine that contains the following sct of func-

tions:
e - 0 ifz<a - ,
Q(Z$a)—{1 lfzza ae[(]vl]
Now, suppose that both of our learning machines use the empirical risk min-
imization induction principle and the same training set

Lyees -
A
Qz, a, B) Qz, a)
1+ — 1+ —
0 o z 0 a z

(a) (b)

FIGURE 3.9. Two learning machines, one nonfalsifiable (with set of functions in part a)
and another falsifiable (with set of functions in part b), provide the same results.
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It is clear that for any function Q(z, «, ) of the first machine, there exists a
function Q*(z, &) of the second machine such that

¢
ZQ(ZHQ B) ;;'g Z,,(—I)

/Q(z ap)dz = [ Q' @) dz.

—_

But, according to the Glivenko-Cantelli theorem for the class of functions
used in the second machine, uniform convergence takes place (see Chapter 2,
Section 2.4). If for the second machine uniform convergence takes place, then
for the first machine one-sided uniform convergence takes place. According
to Theorem 3.1, this implies the consistency of the learning machine using
the empirical risk minimization principle.

This example is important because it describes the general idea when such
a situation is possible. Let us repeat once more the idea of this example. We
considered the set of real-valued functions Q(z, «, 8), a € A, B € B, for which
(two-sided) uniform convergence does not take place. Then we introduced a
new set of functions Q*(z,a), @ € A, which had the following property: For
any function Q(z, a,B) in the first set there was a function Q*(z, &) in the
second set such that

0@, a,B) > Q'(z,)
/ (Q(z, e, B) — Q" (z,&)) dF(2) < & (330)

(in the example F(z) = z), where ¢ is a arbitrary small value. We used the
fact that if for the second set of functions uniform convergence was valid,
then for the first set of functions one-sided uniform convergence takes place
(Fig. 3.10).

Exactly this scheme of reasoning will be repeated in the theorem about
one-sided uniform convergence. Let us consider a set of uniformly bounded
functions Q(z, a), a € A. We assume that all constructions we used to prove
the theorem are measurable with respect to the distribution function F(z).

Theorem 3.8. For uniform one-sided convergence to take place on a set of
uniformly bounded functions Q(z, a), a € A, it is necessary and sufficient that
for any positive €, 8, and €, there exists a set of functions Q*(z, &), & € A, such
that (see Fig. 3.10):

1. For any function Q(z,«) there exists a function Q*(z, &) satisfying the
conditions

Q(z,a) > Q% (z, &)
/(Q(z,a)) — Q' (z,a)) dF(2) < &.



3.12 CONDITIONS FOR ONE-SIDED UNIFORM CONVERGENCE 1156

%

Qz,a)

,\/\/\/\/—- ez a®)
? o

Ny

0

FIGURE 3.10. Forany function €z, a), o € A, one considers a function & (z, a*), a* € A*,
such that @ (z,a*) does not exceed €z, «) and is close to it.

2. The e-entropy of the set of functions Q*(z, &), & € A, satisfies the in-
equality
Ale,
lim H(e,6) (€, 6) <

lim = 5. (3.31)

Remark. This theorem gives necessary and sufficient conditions for one-sided
uniform convergence for some fixed probability measure F(z). In order that
uniform convergence take place for any probability measure F € P it is nec-
essary and sufficient that inequality (3.31) be valid for any F € P.

Chapter 16 is devoted to the proving this theorem. As we shall see, to
prove the sufficient conditions of this theorem, we use the same technique as
we use for proving sufficient conditions for two-sided uniform convergence
in Theorem 3.4. This technique is actually based on the same idea which in
three lines gives the result for the Simplest Model (Section 3.6). The essential
difference, however, is that instead of a number of functions in set N, we use
the entropy H%(e, ¢).

The main difficulties in proving this theorem arise in proving the necessity
of the conditions (3.31). The proof of the necessity of these conditions is
based on the theorem about potential nonfalsifiability and will be done in
three steps:

1. First, we shall derive the following necessary (but not sufficient) condi-
tions:

Theorem 3.9. For one-sided uniform convergence to take place, it is
necessary that for any € there should exist a finite €-net of the set Q(z, a),
a € A in the metric Li(P):

plan, o) = / 0z, 1) - Oz, )| dF ().
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2. Next we shall prove that if the learning machine with a set of func-
tions Q*(z, a), a € A, satisfying (3.30) is potentially nonfalsifiable, then
there exist in the set Q(z, @), a € A, two functions Q(z, ¢*) and Q(z, a.)
which are e-close to the functions ¢4 (z) and ¢4 (z) in the metric L{(P).
For these functions, the inequality

/|Q(Z’a*)—Q(Z’a*)|dF(z)>c—2£, c>0

holds true.

3. Using these two facts, we prove the necessity of the conditions (3.31)
by the following reasoning.
We assume that one-sided uniform convergence takes place; and at the
same time for the set of functions satisfying (3.30), condition (3.31) fails.
This will bring us to a contradiction. On the one hand since uniform
one-sided convergence holds, there exists a finite £-net (Theorem 3.9)
and therefore the distance in L,(F) between any functions within one
element of the £-net is less than 2e¢.
On the other hand since condition (3.31) does not hold, there exists
among the elements of a finite &£-net at least one that contains func-
tions for which condition (3.31) does not hold. Since the machine that
contains functions of this element is potentially nonfalsifiable, it has
two functions with distance larger than ¢ — 2¢. Appropriate choices of
¢ and ¢ give the contradiction.

Thus, Theorem 3.8 gives the necessary and sufficient conditions for uni-
form one-sided convergence. According to the corollary to Theorem 3.1,
these conditions are equivalent to the necessary and sufficient conditions for
consistency of the learning machine which uses the empirical risk minimiza-
tion induction principle.! This theorem, therefore, completes the theory of
consistency of the learning processes.

However, to complete the conceptual model of the learning theory we
have to answer two additional questions.

Theorem 3.8 determines the conditions when the learning machine is
consistent. However, it says nothing about the rate of convergence of the
obtained risks R(a¢) to the minimal risk R(ap). It is possible to construct
examples where the ERM principle is consistent but has an arbitrary slow
rate of convergence.

The fundamental questions are:

1. What are the conditions for the existence of a fast (with exponential

t This theorem also gives the necessary and sufficient conditions for the consistency of the maxi-
mum likelihood method in the case when the set of densities is uniformly bounded and uniformly
separated from zero (see Theorem 3.2 in Section 3.6).
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bounds) asymptotic rate of uniform convergence for a given probability
measure?

To answer this question means to describe the conditions under which
there exist two positive constants b and ¢ such that for sufficiently large
¢ > £(e, A, P), the inequality

P {sup
acA

holds true.

2. What are the conditions for existence of a fast asymptotic rate of uniform
convergence for any probability measure F(z) € Py?
To answer this question means to describe the necessary and sufficient
conditions under which there exist two positive constants b and ¢ such
that for sufficiently large £ > ¢(&, A) the inequality

/Q(z’a) dF(z) — %ZQ(zi, a)| > e} < bexp{~C£2€}
' i=1

(3.32)

F(Z )EP{) aEA

> E} < bexp{—cet}

(3.33)

¢
sup P {sup /Q(z,a)dF(Z) - %ZQ(Z:',Q)
izl

holds true. Note that this question for the set of indicator functions
Q(z, @), @ € A, forms the general Glivenko-Cantelli problem! (see Chap-
ter 2, Section 2.4).

In the subsequent chapters we shall give in detail the answers to both
questions.

These answers will be based on some fundamental concepts of capacity of
a set of functions implemented by the learning machine. These concepts are
constructed on the basis of the concept entropy of a set of functions for the
sample of size ¢, considered in this chapter.

3.13 THREE MILESTONES IN LEARNING THEORY

The most important result of the described conceptual part of the learning
theory is the fact that the introduced capacity concept (the entropy) com-
pletely defines the qualitative behavior of the learning processes: the consis-
tency of learning. As we will see, the robust characteristics of this concept

' The Generalized Glivenko-Cantelli problem introduced in Chapter 2 considers convergence
in probability uniformly for all probability measures. However, if this convergence takes place,
the bound (3.32) is valid as well.
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define quantitative singularity of learning processes as well: the nonasymp-
totic bound on the rate of convergence of the learning processes for both the
distribution-dependent and the distribution-independent cases.

Obtaining these bounds is the subject of Chapter 4 and Chapter 5. The
goal of this last section is to define the structure of capacity concepts that we
use in this book and demonstrate their connections.

For simplicity, we first consider the set of indicator functions Q(z,a),a € A
(i.e., the problem of pattern recognition), and then consider the set of real-
valued functions.

As mentioned above, in the case of indicator functions Q(z, @), a € A,
the minimal e-net of the vectors g(a), a € A (see Section 2.3.3), does not
depend on ¢ if £ < 1. The number of elements in the minimal e-net

NA(Z],---,Z[) :NA(E;ZI""’ZI’)

is cqual to the number of different separations of the data z,, ..., z, by func-
tions of the set Q(z, a), a € A.
For this set of functions the entropy also does not depend on &:

H'(¢) = EInN™(zy,...,2),

where expectation is taken over (zy, ..., Z7).
Consider two new concepts that are constructed on the basis of the values
of NV(zy,...,2):

1. The annealed entropy
H3o(6) =InENMzy,..., 20);
2. The growth function

G\(0) =1n sup N(zy,..., 2¢).

Tyseeanly
These concepts are defined in such a way that for any ¢ the inequalities
HA(0) < Hy,, () < GNO)

are valid.

Indeed, the first inequality immediately comes from applying the Jensen
inequality to the entropy (for Jensen’s inequality see Chapter 1, Eq. 1.12),
the second inequality is obvious. On the basis of these functions the main
milestones of learning theory are constructed.

In Theorem 3.3 we introduce the condition

A
lim H(®) =

f—oo ¢

0 (3.34)
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describing a sufficient condition for consistency of the ERM principle (the
necessary and sufficient conditions are given by a slightly different condition
described in Theorem 3.8). This equation is the first milestone in the pattern
recognition theory: We require that any machine minimizing empirical risk
should satisfy it.

However, this equation says nothing about the rate of convergence of the
obtained risks R(a;) to the minimal one R(ay). It is possible to construct
examples where the ERM principle is consistent, but where the risks have
arbitrarily slow asymptotic rate of convergence.

It turns out that the equation

A
lim ——Ha";“) =0 (3.35)

is a sufficient condition for a fast rate of convergence' defined by condition
(3.32). This equation is the second milestone in the pattern recognition theory:
It guarantees a fast asymptotic rate of convergence.

Thus far, we have considered two equations: One equation describes the
necessary and sufficient condition for the consistency of the ERM method,
and the other describes the sufficient condition for fast rate of convergence of
the ERM method. Both equations are valid for a given probability measure
F(z) on the observations (both the entropy H*(¢) and the annealed entropy
H_: . (£) are constructed using this measure). However, our goal is to construct
a learning machine capable of solving many different problems (for many
different probability measures).

The following equation describes the necessary and sufficient conditions
for consistency of ERM for any probability measure:

A
lim G') =

¢ —o0 £l

0. (3.36)

It is also the casc that if this condition holds true, then the rate of convergence
1s fast.

This equation is the third milestone in the pattern recognition theory. It de-
scribes the necessary and sufficient condition under which a learning machine
that implements the ERM principle has high asymptotic rate of convergence
independent of the probability measure (i.e., independent of the problem
that has to be solved).

In more general case when we consider bounded real-valued functions the
necessary and sufficient conditions for consistency of empirical risk minimiza-
tion method is dependent on & entropy

H*(&,¢) = EInN%(&;21, ...2¢)

! The necessity of this condition for a fast rate of convergence is an open question.
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(for simplicity we consider the minimal e-net in C-metric). According to
Theorem 3.4 the convergence

H—A%ﬂz———»(), Ye >0
{—oc

defines the sufficient condition for consistency of learning processes (the
slightly different condition given in Theorem 3.8 defines the necessary and
sufficient conditions).

This equality is the first milestone in the learning theory.

In Chapter 15 we prove Theorem 152, which states that the fast rate of
convergence of a learning process is valid if the annealed e-entropy

H) . (£:6) =InENMe:zy,...2/)
is such that convergence

Ve >0
V4 {0 ’ “

takes place.
This equality is the second milestone in learning theory.

Lastly, consider the growth function

GM(£;0) =In sup N (&;24,...24).-

The equation

Af g
w — 0, Ve >0
/{ f—o0

describes the condition under which the learning process is consistent and
has a fast rate of convergence for any probability measure. This equation is
the third milestone in the learning theory.

These milestones form the cornerstones for constructing bounds for the
rate of convergence of learning machines which we consider in Chapters 4
and 5.



BOUNDS ON THE
RISK FOR INDICATOR
LOSS FUNCTIONS

Beginning with this chapter we start to study the rate of convergence of the
learning processes. We look for the bounds that estimate two quantities:

1. The value of achieved risk for the function minimizing the empirical
risk.

2. The difference between the value of achieved risk and the value of
minimal possible risk for a given set of functions.

These bounds determine generalization ability of the learning machines uti-
lizing the empirical risk minimization induction principle.

In this chapter we consider the special set of loss functions, namely, the
set of indicator functions (that are specific for the pattern recognition prob-
lem). Our goal is to obtain the bounds on the rate of uniform convergence
of frequencies to their probabilities over a given set of events (defined by
indicator functions).

Deriving two types of bounds constitutes the main contents of this chapter:

1. Bounds on the rate of uniform convergence
2. Bounds on the rate of relative uniform convergence

To obtain these bounds we use two capacity concepts introduced in Chap-
ter 3: the annealed entropy and the growth function. Using these concepts
we derive both distribution-dependent bounds and distribution-independent
bounds. These bounds, however, are nonconstructive since the theory does
not provide us with clear methods to evaluate them in specific cases. There-
fore we consider a new capacity concept: the VC dimension of a set of func-
tions that can be evaluated for any given set of functions.

21
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In terms of the VC dimension we obtain constructive distribution-
independent bounds on the rate of uniform convergence.

4.1 BOUNDS FOR THE SIMPLEST MODEL: PESSIMISTIC CASE

Consider the problem of minimizing the risk functional

R(a) = /Q(z,a)dF(z), acA (4.1)
on the basis of empirical data

Zyy e Tty (4.2)

where Q(z,a), a € A, is a set of indicator functions.

To minimize risk (4.1) on the basis of data (4.2) we use the principle of
empirical risk minimization. Instead of (4.1) we minimize the empirical risk
functional

emp 0’)

3
Z (zioa), a€A (4.3)

N]»—A

over the set of functions Q(z, a), @ € A. For the indicator functions the risk
(4.1) describes the probability of events A, = {z: Q(z,a) =1},a € A, and
the empirical risk functional (4.3) describes the frequency of these events.

Suppose the minimum of the risk functional (4.1) is achieved on the
function Q(z,ay) and the minimum of the empirical risk functional (4.3)
is achieved on the function Q(z, ay), ay = a(zy, ..., 2¢).

To estimate the generalization ability of the principle of empirical risk
minimization we have to answer two questions:

e What value of the risk does the function Q(z,a;) provide?
To answer this question means to estimate the value R(ay).

e How close is this risk to the smallest possible for a given set of functions?
To answer this question means to estimate the difference

A(ay) = R(ay) — R(ap).

The answers to both these questions are based on the study of the rate of
uniform convergence

1 4
i‘éE(/Q 2,0)dF(2) - ;;Q(z.,a)) -

We start our studies with the simplest model which we have already met
in Chapter 3 (Section 3.7.2).
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4.1.1 The Simplest Model

We consider the model where a ser of indicator functions contains a finite
number N of elements Q(z,ay), k =1,2,...,N.

In this section and in the next two sections we shall estimate the rate
of uniform convergence for the simplest model. We shall obtain the rate of
convergence which depends on the capacity of a set of functions (logarithm
of the number N of functions in a set).

The main goal of this chapter is the generalization of the results obtained
for sets with a finite number of functions to sets of functions that contain
an infinite number of elements. To get this generalization we shall introduce
appropriate concepts of capacity of the set of functions, and then in terms
of these concepts we will obtain expressions for the bounds of the rate of
uniform convergence. These expressions are similar to ones derived for the
Simplest Model.

Below we will use additive Chernoff bounds which are valid for the ¢
random independent trials in the Bernoulli scheme:

Plp—w>e)< exp{—Zazé} , (4.4)

Plve—p>e}< exp{—Zszé} . (4.5)

To estimate the rate of uniform convergence we consider the sequence of
inequalities

4
P { sup ( [ emar@ -3 Q(z,-,ak)) > }
i=1

1<k<N

N 1<
< ZP { (/Q(Z, ay)dF(z) — 7 ZQ(Z,‘,ak)) > 8}
k=1 i=1
< Nexp]—2¢&%¢}. (4.6)

To get (4.6) we use Chernoff inequality (4.4) (recall that for indicator func-
tions the risk functional defines probabilities and the empirical risk functional
defines frequency).

Let us rewrite this inequality in the equivalent form. To do this we intro-
duce a positive value 0 < 9 <1 and the equality

Nexp{-2&} =7

which we solve with respect to £. We obtain

_ {InN —Inn
6“/2—4‘ (4.7)
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Now the assertion (4.6) has the following equivalent form:
With probability 1 — n simultaneously for all N functions in the set Q(z, ay),
k=1,2,...,N, the inequality

InN —1Inn

= (4.8)

1 ¢
[e@adr@ - ;3 0 an <
i=1

is valid.

Let Q(z, ax()) be a function from our finite set of functions that minimizes
the risk (4.1) and let Q(z, ayx)) be a function from this set that minimizes
the empirical risk (4.3). Since the inequality (4.8) is true for all functions in
the set, it is true as well for the function Q(z, ay).

Thus with probability at least 1 — 5 the following inequality

¢
InN —Inn

i _ 49

E: O(z;, axey) 57 (4.9)

mlu—t

/ 0(z, ayey) dF(2) <

is valid.

This inequality estimates the value of the risk for the chosen function
Q(z, ay)). It answers the first question about the generalization ability of
the principle of empirical risk minimization for the simplest model.

To answer the second question (how close is the risk for the chosen func-
tion to the minimal one), note that for the function Q(z, ay)) which mini-
mizes the expected risk (4.1) the Chernoff inequality

¢
P {% §Q(Zi, A 0)) — /Q(Z,ak(o)) dF(z) > g} < exp{—26%¢)  (4.10)

holds true.
This inequality implies that with probability 1 — 7 the inequality

~Inn
24

4
[ oo dr@ 2 > 0t au) - (@11)

holds true.
Since Q(z, «,) minimizes empirical risk the inequality

¢ ¢
> 0@ a@) = D Qi axey) 20
i=t im1

is valid. Taking this inequality into account from (4.9) and (4.11) we conclude
that with probability at least 1 — 27 the inequality

~1Inn

T (4.12)

InN —In
A(ak([)) = R(a'k(g)) - R(a'k(O)) < \/ 20 K + \/

holds true.
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Thus the two inequalities, namely (4.9) and (4.12), give complete infor-
mation about the generalization ability of the method of empirical risk min-
imization for the case when a set of functions contains a finite number of
elements: Inequality (4.9) estimates the upper bound of the risk for chosen
function, and inequality (4.12) estimates how close is this bound of the risk
to the minimal possible risk for this set of functions.

Note that these bounds are tight. In general it is impossible to improve the
right-hand side of inequalities (4.9) or (4.12). Indeed, consider the case when
N = 1. Let the function Q(z, a;) be such that the risk R(«a;) (probability of
the event {z : Q(z,a;) = 1}; let us call this event the error) is close to 1/2.
In this case the empirical risk describes the frequencies of error v, estimated
in the Bernoulli scheme with £ trials. When ¢ is rather large the following
approximation

Pi{p—ve> e}~ exp{—232€}

is quite tight.
Thus the inequalities (4.9), (4.12) cannot be improved if a ser of functions
contains only bad functions (that provide probability of error close 10 1/2).

4.2 BOUNDS FOR THE SIMPLEST MODEL: OPTIMISTIC CASE

However, the situation changes dramatically if a set of functions contains at
least one good function (which provides probability of error equal to zero).
Suppose that among our N functions there exists at least one with zero
probability of error. Then in accordance with the principle of empirical risk
minimization, one should choose the function which provides zero error on
a given sample. It is possible that there exist several such functions. Let us
choose any of them.

What is the probability that the function that provides zero empirical risk
has the expected risk larger than a given positive constant £? To estimate
this probability, one has to bound the expression

P{ sup |R(ex) — Remp(ax) |6 (Remp(a)) > 8},

1<k<N

where R(ay) is the value of the expected risk (4.1) for the function Q(z, ay)
and Renp(ay) is the value of the empirical risk (4.3) for this function, and

0 (Remp(ax)) is the following indicator:

, I ifu=0,
mm={0 if u > 0.

Let us bound this probability. The following sequence of inequalities is valid
for N > 1:
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P {ISEEN |R(oy) — Remp(ak)m(Remp(ak)) > 8}

N
< ZP {lR(ak) - Remp(ak)‘é(Remp(ak)) > g}
k=1

S(N-1) sup P {IR(24) = Remp()|8 (Remp(a)) > £} < (N = 1)P.,

(4.13)

where P, is the probability that a function with probability of error larger
than ¢ has zero empirical risk (zero frequency of error). (Note that in (4.13)
we have coefficient N — 1 rather than N since at least one of the probabilities
in the sum is equal to zero.)

This probability can be easily bounded:

P, <(1-¢).

Substituting the bound of P, into (4.13), we obtain

P { sup |R(ay) — Rcmp(ak)lf)(Remp(ak) > s} < (N =11 -¢). (4.14)

1<k<N

As was done in the last section we rewrite this inequality in equivalent form.
To do this let us consider the equality for arbitrary 0 < n < 1:

(N-D(l-e&f=nN>1
and solve it with respect to &:

szl—exP{_I"(N—U—lnn} IV =1~ I

7 7 , N > 1.

Now we can rewrite inequality (4.14) in the following equivalent form:
With probability 1 — n simultaneously all functions Q(z, «}) from a given
finite set of functions that have empirical risk equal to zero satisfy the inequality

In(N —1)—1Inn
4

R(ap) < , N > 1. (4.15)

This bound is tight. It is achieved when the set of functions Q(z, ay),
k =1,2,...,N, contains one function with value of risk equal to zero and
the remaining N — 1 functions form statistically independent events A; =
{z : Q(z, ax) > 0} (with respect to probability measure F(z)) and have the
same value ¢ of error probability.
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For this optimistic case the minimal value of the risk equals zero. Therefore
with probability 1 — 7 one can assert that the difference between the value
of the guaranteed risk and the value of the best possible risk has the bound

In(N —1)—Inn
7 i

Alag) < (4.16)
Thus the bounds (4.15) and (4.16) give complete information about the
generalization ability of the principle of empirical risk minimization for the
optimistic case of the simplest model.

Note that in the optimistic case we have obtained significantly better
bounds for the generalization ability than in the pessimistic case (the bounds
are proportional to 1/¢ instead of 1/\/17).

4.3 BOUNDS FOR THE SIMPLEST MODEL: GENERAL CASE

The bounds for the Simplest Model that combine in one formula both the
bound for the pessimistic case and the bound for the optimistic case and (what
is more important) consider the intermediate cases based on the multiplica-
tive Chernoff inequalities: For £ random independent trials in the Bernoulli
scheme the inequalities

P {P;ﬁ”‘ > s} < exp{ “;‘”}, (4.17)
P { ”"\/_ﬁp > a} < exp{ _gzg } (4.18)

are valid.

Now consider the finite set of indicator functions Q(z, &), k = 1,2,....N.
Using the inequality {4.17) one can derive (as was done in previous sections)
that the following incquality is valid:

R(ak) - Remp(ak) { —&%¢ }
P {EEEN JR(a) > 8} < Nexp 5 . (4.19)

Let us rewrite this inequality in the equivalent form.

t These hounds usually are given in the following equivalent form:

2
Plv <(1-7)p) <exp{fT"’},

Pive > (1 + y)p} <exp{—%p{}.
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With probability 1 ~ n simultaneously for all N functions in the set Q(z, ay),
k=1,2,...,N, the inequality

R(a) < Remplaw) + InN —Inn (1 + \ﬂ+ 2R°"‘P(“")€) (4.20)

¢ InN —inn

holds true.
To obtain these bounds, one has to equate the right-hand side of inequality
(4.19) to some positive value 0 < 5 <1

.
Nexp{ ;E}:n

and solve this equation with respect to &

. /zlnNe—ln n

Then using this £ one can obtain (4.20) as the solution of the inequality

R(ak) - Remp(ak) < e

v R(a) N

Since with probability at least 1 — n inequality (4.20) is true for all N
functions in a given set, it is true in particular for the function Q(z, ay))
which minimizes the empirical risk functional.

For this function with probability 1 — 5 the bound

InN —Inn Remp (@)
R(ak((’)) < Rcmp(ak(f)) + f (1 + \/1 + ZM (421)

holds true.

To estimate how close the risk R(ay ) is to the minimal risk for this set of
functions let us define a lower bound on the risk for the function Q(z, ay))
which minimizes the expected risk. To do this we rewrite for this function
the additive Chernoff bound (4.11) in the following equivalent form: With
probability at least 1 — 7 the inequality

~lInn

R(agw)) > Remplako)) — T,

holds true.
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Using this bound and the bound (4.21) we obtain that with probability
1 — 27n the inequality

Aagry) = R(aey) — R(ay))

[—-lnm InN —Inng \/ Remp(ay() )€
< T, + 7 1+ 1+21nN—ln~q (4.22)
is valid.

The inequalities (4.21), (4.22) describe the generalization ability of the
method of empirical risk minimization for the Simplest Model.

Note that when the empirical risk equals zero the bound (4.21) differ
from the bound (4.15) (derived for the optimistic case) only by the factor of
2. When the value of the empirical risk is close to 1/2 and ¢ is rather large,
the bound (4.22) is close to the bound (4.9) derived for the pessimistic case.

The next sections of this chapter are devoted to deriving the bounds on the
generalization ability for an infinite set of indicator functions Q(z, a),a € A.
First we derive the bounds for pessimistic case and then, using them we derive
the bounds for the general case. The bounds for infinite sets of functions have
the same form as the bounds for finite sets of functions. However, instead
of a logarithm of the number of functions in the set we shall use another
measure of the capacity of a set of functions.

4.4 THE BASIC INEQUALITIES: PESSIMISTIC CASE

Now let a set of indicator functions Q(z, @), « € A, contain an infinite number
of elements. As before, our goal is to estimate the rate of uniform conver-
gence of the frequencies Remp(a) to their probabilities R(a).
Let
21y 20 (4.23)

be a random independent observation of size £.
Let
NMz, .y z) <2

be the number of different separations of the sample (4.23) by a given set
of functions. Assume that N*(zy, ..., z¢) is measurable with respect to the
probability measure F(z,..., z¢). Therefore the expectation ENA(z,, ..., z¢)
exists.

In the last section of Chapter 3 we introduced the concept of annealed
entropy of a set of indicator functions on a sample of size £:

HM () =InEN*(zy,...,2,). (4.24)

Using this concept we formulate the basic theorem of the theory of the
rate of uniform convergence, which we will prove in the next section.
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Theorem 4.1. The inequality

2
P {sup|R(a) — Remp(a)| > £} < 4exp {( an}[?j) (a _ %) g}

acl
(4.25)
holds true.

Corollary. For the existence of nontrivial exponential bounds on uniform con-
vergence,

Y AN (4

hm ann( ) — O

o0

is sufficient.

In Chapter 3 we called this equation the second milestone in the learning
theory.

In the next section we prove this theorem; however, before that we rewrite
the inequality (4.25) in the equivalent form.

With probability at least 1 — v simultaneously for all functions in the set
Q(z,a), a € A, the inequality

R(a) < Remp(a) + \/Ham.(Zé’) ~inn/4 1

o~

holds true.

In particular this inequality holds for the function Q(z, &), which mini-
mizes the empirical risk functional. Thus with probability at least 1 — # the
inequality

R[ai) < Remp(af) + \/Hé\nn(é)gﬂ In 7)/4 + % (426)

holds true. As was shown in Section 4.1 for the function Q(z, ay) which
minimizes the expected risk, with probability 1 — 5 inequality

—Inn
27

R(a()) > Remp(a()) -

is valid. From these two inequalities we obtain that with probability at least
1 — 27 the inequality

Alar) < Rlas) — Rlay) = \/”a""(”)"“”/“ \/—;}m;

(4.27)

holds true.
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The incqualitics (4.26) and (4.27) havc the same form as inequalities (4.9)
and (4.12) in the simplest model. The only difference is that here we use a
different concept of capacity, namely, annealed entropy H. (¢). These in-
equalities form one (from the two) pair of basic inequalities in the theory
of the generalization ability of learning machines. The second pair of basic

inequalities will be derived in Section 4.6, but first we prove Theorem 4.1.

4.5 PROOF OF THEOREM 4.1

The proof of Theorem 4.1 is based on the following lemma.

45.1 The Basic Lemma

Let us consider a space of random independent observations of size 2¢:
2¢
L7 =24y ey Zay Zaaly s 226

For any function in the set Q(z, @), @ € A, we determine the frequency

[2
V@ Z) = 7 0
i=1

on the first part of a sample
Z1 =21,
and determine the frequency

(@,Z2) = Z Q(z;, @)

i=¢+1
on the second part of a sample
Zz = 2+l -9 32

Let us denote by Z;(¢) and Z,(¢) two spaces of half-samples of length ¢.
Consider the random variables

1t 12
7 ZQ(Zi,G) 7 Z Q(zi, a)],
i=1

i=f+1

pA(a’ZZ(’) —

p\(Z¥) = sup
aeA

1 ¢ 1 2
72_.0Gna) — 5 3 0.,
i=1

i=Ff+1
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and consider the random variable

bl

A 1 -
a2 = | [ 0@ dF@) - 730G
i=1

7\ (Z,) = sup

a€A

4
[o@ar@ -3 0w
i=1

We assume that functions 7*(Z;) and p*(Z?%) are measurable with respect
to probability measures defined by F(z). So pA(Z%/) and 7A(Z,) are random
variables.

Basic Lemma. The distribution of the random variable w*(Z,) is connected
with the distribution of the random variable p*(Z?*) by the inequality

1

P {wﬁ(z,) > a} <2P {pA(Z”) >&— Z} . (4.28)

Therefore according to the basic lemma to estimate the rate of conver-
gence to zero of the random variable m2(Z;) one can estimate the rate of
convergence to zero of the random variable pA(Z%).

Below we first prove this lemma, then describe the idea of how to estimate
the rate of convergence of the random variable p?(Z?¢), and at the end give
the formal proof of the theorem.

4.5.2 Proof of Basic Lemma
By definition,

P {pf‘(zz") > & %} = /Zm) 6 [p/‘(zz") —c+ %] dF(Z?).

Taking into account that the space Z(2¢) of samples of size 2¢ is the direct
product of Z(¢) and Z,(¢) of half samples of size ¢, by Fubini’s theorem we
have

P {pA(ZN) >e— %} = /Zm dF(Z,) » 6 [pA(zz’) —e+ H dF(Z5)

(in the inner integral the first half of the sample is fixed). Denote by Q the
following event in the space Z;(¢):

Q= {Z1  NZy) > e}.
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Reducing the domain of integration we obtain

P {pf‘(zz") >e— %} > /QdF(Zl) /Z Y ] [pA(z”) —e+ H dF(Z,).
2 (4.29)

We now bound the inner integral on the right-hand side of the inequality
which we denote by /. Recall that here the sample Z; is fixed and is such
that

7Zy) > e.

Consequently there exists an a” € A such that
|P(a”) —v(a", Zy)| > &,

where we denote

P(a”) = / 0(z, a") dF (2).

Then .
I = / 6 [sup pla,Z*) — e+ —] dF(Z;)
Zy(¢) aelA ¢
> / 6 [p(a*, Z) — e+ 1] dF(Z,).
Z:(8) £
Now let

via*,Z)) < P(a™) — ¢
(the case v(a*, Z;) > P(a*) + ¢ is dealt with completely analogously). Then
in order for the condition

1
lv(a*,Zy) —v(a*, Zy)| > ¢ — 7

to be satisfied, it is sufficient that the relation

1
via*,Z;) > P(a*) — 7
holds, from which we obtain

!

v

e [v(a*,zz) > Pa) - H dF(Z2) = P {v(a", Z3) > P(a")}

= > CfPE)-P@)t

kje>P(a*)-1/¢

The last sum exceeds % Therefore returning to (4.29) we obtain
. 1 1 1
P A 2¢ _ - - - - A )
{p (Z*) > ¢ e}>2/QdF(Zl) zp{w (Z1)>8}

The lemma is proved.
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4.5.3 The Idea of Proving Theorem 4.1

Below we give an idea of proving Theorem 4.1. The formal proof will be
given in the next section.
Denote
e =¢-1/¢.

Suppose the sample
Ly evey 20

is split randomly into two half-samples
FATITIN 4 ] and Zpaely vey <28

For any fixed sample of size 2¢, any function Q(z,a*) and any two randomly
chosen half-samples the classical inequality

|

holds true.

To estimate the probability that the largest deviation over a given set of
functions exceeds &, we note the following. For any fixed sample Z*‘ there ex-
ists only a finite set of distinguishable functions Q(z,a*) € A" = A*(z4, ..., 22¢)
of cardinality N%'(z;..., zo/). Therefore we can use the same reasoning that
we used for the Simplest Model

> 8*|Zl..., sz}

2
%W Zm@m Eymw>
as i é+1
=P { sup ZQ(ZH *) -7 Z Q(Zlaa ) > 8*|Zl 722f}
aredt i=(+1
< Z P {} ZQ ,a’) — — Z Q(z;,a™)| > ezy.. 7Z’)f}
a*eA =41
< 2NA(zy, ...,Zz;) exp{—&2(}.
To get the bounds for a random sample of size 2/ it is sufficient to take
expectation with respect to probability measure on the sample space
2%
{su;z ZQ(Z,,G) Z Oz, )| > 6\}
ac
Ly eeny ZZf‘}

i f+1
2f
{sug Z Q(zi, a) - Z Q(zi, a)| > &.

i=l+l
< ENMzy, ..., z20) exp{—&*t} = exp { (——‘"lp(& sf) €} .

f 2¢f

%Z (na) =7 3 Oz e)

i=1 i=f+1

> e.} < 2exp{—e’¢}
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Combining this bound with the statement (4.28) of basic lemma proves
the theorem.

4.5.4 Proof of Theorem 4.1

Now we proceed with the formal proof of this theorem. Let us denote by
Z(2¢) the space of samples of size 2¢ and by Z% = (zy,...z2/) the specific
sample. In view of the inequality (4.28) it is sufficient to bound the quantity

P {pA(sz) > g*} = /Z(ZF) ] [pf\(ZZf) _ 8*] dF(Z¥).

Consider the mapping of the space Z(2¢) into itself obtaining by a permu-
tation 7; of the elements of sequence Z%‘. There are (2¢)! different permu-
tations of the sample of size 2¢.

In view of symmetry of the definition of the measure, the equality

f(ZZ’)dF(ZZ’):/ T, Z¥YdF (Z%), i=1,2,..,(2¢)!
Z(2¢) Z(2F)

holds for any integrable function f(Z?%/). Therefore

21! 2N
Yini 0 [p(TiZ) — &.] dF (Z%). (4.30)

PLMZ) > 0} =

Z(26) (20)!
Observe that
¢ 2%
6 [p“(zz’)—s*] = [sup ZQ(z,,a> Z Q(zi, a) —e.]
i=1 i:f+1
¢ 1 X
= Sup6 ! Z Zlva) - Z Z Q(Zi’a) —6*} .
a€A i=1 =41

Clearly if two functions Q(z, a;) and Q(z, a;) are nondistinguishable on the
sample zy, ..., 25, then

pMTZH, a) = pM(TiZ¥ )

is true for any permutation 7;. In other words, if two functions are equivalent
with respect to the sample z, ..., 2y, then deviations in frequencies for these
two functions are the same for all permutations T;. Therefore. for each class
of equivalent functions one can choose only one function Q(z,a*) which
forms a finite set of functions Q(z, a*) € A* C A such that

sup p(T:Z%, @) = sup p(T:Z%,a%), i=1,...(20)!

ael a*cA*
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The number of functions in the set A* is finite and does not exceed
N*(zy, ..., z20). Replacing the sup operation by summation, we obtain

sup 6 [p(T,-Z”, a) — a,] = sup 0 [p(T,-Z”, a’) — a,]

a€l a*eA*

< Z 6 [p(T,-ZN,a’) — s,] :

a*cA®

These relations allow us to bound the integrand in (4.30):

&6 [pMT.Z2%) - &) 2(2’ SUPg-ch- 0 [p(TiZ%, a%) — &.]

(2¢)! (2¢)!
2(21)' [p(TiZN, a*) — 3,,]
- a% (2¢)! )

Note that the summand on the right-hand side of the last inequality is the
ratio of the number of orderings in a sample (of fixed composition) such that

> &,

1 2¢
(zna’) =7 ) Qi a)

i=F+1

to the total number of permutations. It is easy to see that this value is equal
to

Z C,’:,C;e km
k m-—k
{k . ‘? - e > 8:}7
where m is the number of elements z; in the sample zi,...,z, for which

Q(zj,a") = 1.

In Section 4.13 we shall obtain the following bound for I’

r <2exp{—sf£}.
Thus

@
e (T;Z*, - &)
3 Al oo <2y exp{ }

a*eAr a*cA’

= 2NA(z,, .oy 22¢) €XP {—a;"@} .
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Substituting this bound into integral (4.30), we obtain

P {pA(z”) > s,} < ZENA(zl,...,Zzp)exp{—aff}

= 26xp{(w - ef) 6},

from which, in view of the basic lemma, we obtain

P{aMZ¥) > ¢} < 4exp{(w — ef) Z} :

Recalling that we denote &, = ¢ — 1/ we obtain the desired bound. The
theorem is proved.

4.6 BASIC INEQUALITIES: GENERAL CASE

In this section we discuss the theorem about the rate of relative uniform
convergence of frequencies to their probabilities. (Proof of this theorem is

given in the next section.)

Theorem 4.2. For any ¢ the inequality

R(a) — Remp(a) H) (2¢) &
P {ilex;: —R(a)p > e} < 4exp { (—7— — T) E} (4.31)

holds true.

Corollary. For the existence of nontrivial exponential bounds on uniform rel-
ative convergence it is sufficient that

A
lim HT(” = 0. (4.32)

Let us rewrite inequality (4.31) in the equivalent form. As before we
equate the right-hand side of inequality (4.31) to a positive value n (0 <

n<1)
A 2
4exp{(i’#—%)£}:n

and solve this equation with respect to £°. The solution

A ————
g(f) = 82 — 4Hann(2£)£ In 1’/4
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is used to solve inequality

sup R(a) — Remp(a)

acA v R(a)

As a result we obtain that with probability at least 1 — n simudtaneously for
all functions in the set of indicator functions Q(z, a), a € A, the inequality

R(a) < Remp(a) + £ (1 +\/1+ M)

< E(¢).

7] £(0)

is valid.

Since with probability 1 — 7 this inequality holds for all functions of the
set Q(z,a), a € A, it holds in particular for the function Q(z, «,) which
minimizes the empirical risk functional. For this function with probability
1 — n the bound

Rlay) < Rempla) + 2 (1 Pyl 4’?5‘“(%) (4.33)
holds true.

Taking into account that for the function Q(z, ay) which minimizes the
expected risk in the set of functions Q(z,a), a € A, the additive Chernoff
inequality (4.4) holds true, one can assert that with probability at least 1 — 7
the inequality
—Iny

R(ap) > Remp(ap) — 27

is valid.
Note that
Remp(a()) > Remp(a(’) (4.34)

From (4.33), the lower bound for R(ay), and (4.34) we deduce that with
probability at least 1 — 27 the inequality

A(ar) = R(ar) — R(ap)
—lnnp £ 4Remp(ay)
<\/2£ +—5-G+ 1+—7ﬁ5~) (4.35)
Is valid.

Thus, the bounds (4.33) and (4.35) describe the generalization ability of
algorithms that minimize empirical risk: Bound (4.33) evaluates the risk for
the chosen function, and bound (4.35) evaluates how close this risk is to the
smallest possible risk for a given set of functions.
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These two bounds are the basic bounds for the generalization ability of

algorithms that minimize empirical risk in the problem of pattern recognition.

They have exactly the same form as the bound for generalization ability in the

simplest model. The only difference is that here we use a more sophisticated
concept of capacity than in the simplest model.

4.7 PROOF OF THEOREM 4.2

In this section we prove a more general version of Theorem 4.2 to be used
in the next chapter.

Theorem 4.2*, For any 1 < p <2 the inequality

— A 2
P sup R(a) Remp(a) S>Sed < 4exp { (Hannszg) _ 1‘5” ) Bl—z/ﬂ}
wer R ZRTIN T

(4.35a)

holds true.

Consider two events constructed from a random and independent sample

of size 2¢:
o _ {z: sup F(Aa) = 1(Aa) 8},

acA P(Aa)

0=z VZ(A —1(Ay)
o {fv(da) +

where A, is the event
A ={z: Q(z,a)=1},

P(A,) is probability of event A,

P(Aq) =/Q<z,a>dF(z),

v1(A.) is the frequency of event A, computed from the first half-sample
2y, ..., 2¢ Of the sample z(, ..., Zp, Zp41y ey 22¢

I3
n(Aa) = 3 3 0 a)
=1

and v;(A,) is the frequency of event A, computed from the second half-
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sample z¢,1,..., 22

1 2¢
n(da) =3 Y Qi a).

i=f+1

Denote y 4
V(Aa) — Vl( a)+ V2( a).
2
Note that in case £ < £ /(=1 the assertion of the theorem is trivial (the
right-hand side of inequality exceeds one). Accordingly we shall prove the

theorem as follows: First we show that for £ > £77/?~1 the inequality

P(Q)) <4P(Q,)

is valid, and then we bound P(Q>).
Thus we shall prove the lemma.

Lemma 4.1. For ¢ > £77/®°~Y the inequality
P(Q) <4P(Q2)
is valid.

Proof. Assume that event Q; has occurred. This means that there exists event
A* such that for the first half-sample the equality

P(A") = n(A%) > £{/ P(A*)

is fulfilled. Since v,(A*) > 0, this implies that
P(A*) > &P/,

Assume that for the second half-sample the frequency of event A* exceeds
the probability P(A*):
n(A*) > P(A*).

Recall now that £ > £ P/¢°~1_Under these conditions, event Q, will definitely
occur.
To show this we bound the quantity

= n(A*) - nA°) (4.36)

{v(A*)+1/2¢

v (A*) < P(A") — s(/P(A*),

under the conditions
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v2(A") > P(AY),
P(A%) > gl/®~ D),
For this purpose we find the minimum of the function

y T A
X FyFc

in the domain0<a<x <1, 0<y<b, c>0. We have for p > 1

or 1 (@~-1lx+(@+1)y+pc
= - > 0,
ox p (x +y +c)prD)/p

é)_T____1_(p+1))c+(p——1)y+pc<O
dy p (x +y +c)p)/p )

Consequently 7 attains its minimum in the admissible domain at the bound-
ary points x =a and y = b.
Therefore the quantity u is bounded from below, if in (4.36) one replaces
v1(A*) by P(A*) — e{/P(A*) and v,(A*) by P(A*). Thus
S e{/2P(A*)
[T .
V2P(A%) - s ¢/PTAT) + 1/¢

Furthermore, since P(A*) > ¢/~ and ¢ > £~7/"=1 we have that

e{/2P(A*)

u > =¢
{/ZP(A*) — gp/p 4 glp+/p

Thus, if @; occurs and the conditions v,(A*) > P(A*) is satisfied, then Q,
occurs as well.

Observe that the second half-sample is chosen independently of the first
one and that the frequency v,(A*) exceeds P(A*) with probability at most
1/4 if £P(A*) > 1. Therefore, provided that Q, is fulfilled, the event

v2(AT) > P(AY)

occurs with probability exceeding 1/4. Since under condition of the lemma
£P(A*) > 1 is valid we have

P(Q) > P(Q).

The lemma is proved.
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Lemma 4.2. For any 1 < p <2 and any € > £ P/®~1 the bound

ann 2£ 82 —
P(Q;) < exp{( T ;(z/p) 2“2/[,) ¢’ 2/”}

is valid.
Proof. Denote by R4(Z*) the quantity

1 (A) — v (A)

V(A +1/22

then the estimated probability equals

R4(Z*) =

P(Q;) = /m) 9 [sup R4(Z%) — s} dF(Z*).

AcS

Here the integration is carried out over the space of all possible samples of
size 2¢.

Consider now all possible permutations 7;, i =1,2,...,(2¢)! of the se-
quence Zj, ..., Zy. For each such permutation the equality

/ 9 [supRA(Z”) —s] dF(Z”):/ 0 [supRA(T,-Z”)—s dF(Z*")
(2¢) A€S Z(2¢) AES

is valid. Therefore the equality

P(Q,) = /M) 6 {supR,,(zz") ~ g] dF(Z*)

AcCS
(26!

- /{zm <ze)!;0[i‘i‘3RA(T‘Z ) } dF(Z¥)  (437)

is valid.

Now consider the integrand. Since the sample 7, ..., 2, is fixed, instead of
the system of events § one can consider a finite system of events §* which
contains one representative for each one of the equivalence classes. Thus the
equality

(260! (2¢)!

; 72y — 2f
<2f)!;"[i‘i§R’*‘T'Z) |- i [ a2 -
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is valid. Furthermore,

@

e
a0 (s R =] < g 3257 0 [Rucri) ]

i=1 AeS~*
CD 5
-y er [RA(T,Z“ )—s]
AeS* i=1

The expression in the braces is the probability of greater than £ deviation of
the frequencies in two half-samples for a fixed event A and a given compo-
sition of a complete sample. This probability equals

CrCoi

r=3y —m2tm
2.~

where m is number of occurrences of event A in a complete sample, and & is
number of occurrences of the event in the first half sample; k runs over the

values

max(0,m — ¢) < k < min(m, ¢)
k _m-k
£ 4 S g
ofm+1
2¢

Denote by £* the quantity

pfm+1 .
27 E=8& .

Using this notation the constraints become

max(0,m — £) < k < min(m, ¢)

k m-k .
7" 7 ~F- (4.38)
In Section 4.13 the following bound on the quantity I under constraints (4.38)
is obtained: s s
(e D)(er)e
F<exp{ M@l —m+ D[ (4.39)

Expressing (4.39) in terms of £ we obtain

r (¢ + 1) m+1\"P
< exp _(m+1)(2£—m+1)( 20 ) '
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The right-hand side of this inequality reaches its maximum at m = 0. Thus

2
I' <exp {— 21f2/p 52—2/9} . (4.40)

Substituting (4.40) into the right-hand side of (4.37) and integrating we have

g
P(Qy) = o NS(ZH)GXP{—WKZ 2/p} dF(ZN)

Hzfnn(zg) 82 2-2
< CXP{( 2-2/p  2l+2/p ¢ /p}'

The lemma is thus proved.

The assertion of the Theorem 4.2* follows from the inequalities obtained
in the Lemma 4.1 and Lemma 4.2.

4.8 MAIN NONCONSTRUCTIVE BOUNDS

Thus, in the previous sections we obtained the basic bounds describing the
generalization ability of learning machines that minimize the empirical risk
functional:

1. With probability 1 — n any of the bounds

R(a) < Remp(a) +/E0) + 3.

(4.41)
R(a) < Remp(ar) + E(ZQ (1 + \/il + flf%’l‘(%@))
hold true.
2. With probability 1 — 27 any of the bounds
Alae) < \/%+ \/ _;;’7 + %7
(4.42)
s <2 (/{1 ) ) 5
hold true.
In these bounds we denote
£(0) = 4Mi(20) ~I00/4 )

¢
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These bounds, however, are valid for a specific problem that is defined by
probability measure F(z) since the term £(£) that comes in the inequalities
depends on the annealed entropy HJ () constructed on the basis of the
unknown probability measure F(z).

To make the bounds valid for any probability measure it is sufficient to
use instead of the quantity £(¢) the quantity

G\(2¢) —Inn/4
e ’

E' () =4
where the annealed entropy
HM (€) = EInN*(zy, ..., 2¢)

is replaced by the growth function

GA(¢) = sup InN(zy, ..., z0).

[AETT 4]

Since the growth function does not depend on the probability measure and
1s not less than the annealed entropy

HJa(6) < GM8),

the bounds with £*(£) (instead of £(¢)) are valid for any probability measure.
These bounds are nontrivial if

lim - _

0.
[ ) £

Note that the bounds with £*(¢) are upper bounds of the bounds with £(¢).

Thus, we described the main bounds on the generalization ability of learn-
ing machines. These bounds, however, are nonconstructive since the theory
does not suggest how to evaluate the growth function for a given set of
functions.

Obtaining constructive bounds on the generalization ability of learning
machines is based on the following remarkable property of the growth func-
tion.

4.9 VC DIMENSION
4.9.1 The Structure of the Growth Function

Theorem 4.3. The growth function of a set of indicator functions Q(z,a),
a € A either (a) satisfies the equality

GM¢) =¢ In2 (4.44)
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[in2
GMD "
v

At Bn (k) + 1)
4
|
[
?
]

0 h {

FIGURE 4.1. The growth function is either linear or bounded by a logarithmic function.
It cannot, for example, behave like the dashed line.

or (b) is bounded by the inequality

= ¢ In2 if £ < h

A . h 4.45
o) gln(Zf‘;OC;)gln(:—g) :h(l+ln%> ite>h 44

where h is the largest integer for which
GA(h) = hin2.
In other words the function G*(¢) can be either linear or bounded by
a logarithmic function with coefficient h. (It cannot, for example, be of the
form G(¢) = V¥ (Fig 4.1).)
This theorem can be formulated in the following equivalent form, where

instead of growth function one considers maximal subsets of a set of some
elements.

Theorem 4.3a. Let Z be an (infinite) set of elements z and let S be some set of
subsets A of the set Z. Denote by N3(zy,...z;) the number of different subsets

(ZI,---,Z[’)OA, AES?

of the set 21, ...,2,. Then either
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or
= 2¢ if £ <h,

Ns(zl,..-,Z{){ < (Z?:OC;) < ("{.)h if £ >h,

where h is the last integer ¢ for which the equality is valid.

We will prove this theorem in the next section.

Theorem 4.3 asserts that sets of indicator functions can be split into two
different categories:

1. Sets of indicator functions with linear growth functions
2. Sets of indicator functions with logarithmic growth functions

Definition. The capacity of a set of functions with logarithmic bounded
growth function can be characterized by the coefficient h. The coefficient
h is called the VC dimension of a set of indicator functions.! It characterizes
the capacity of a set of functions. When the growth function is linear the VC
dimension is defined to be infinite.

Below we give an equivalent definition of the VC dimension of a set of
indicator functions that stress the constructive method of estimating the VC
dimension.

Definition. The VC dimension of a set of indicator functions Q(z, a), a € A,
is equal to the largest number h of vectors zy, ..., z, that can be separated into
two different classes in all the 2% possible ways using this set of functions (i.e.,
the VC dimension is the maximum number of vectors that can be shattered
by the set of functions).

If for any n there exists a set of n vectors that can be shattered by the
functions Q(z, a), a € A, then the VC dimension is equal to infinity.

Therefore to estimate VC dimension of the set of functions Q(z, a), a € A,
it is sufficient to point out the maximal number 4 of vectors zj, ..., z; that can
be shattered by this set of functions.

According to Theorem 4.3 if a set of functions Q(z,a), o € A, has finite
VC dimension the growth function can be bounded using inequality (4.45).

In Section 4.11 we shall calculate the VC dimension for some sets of func-
tions. In the remaining part of this section we show that VC dimension plays a
fundamental part in obtaining a constructive distribution-free bound for eval-
uating the risk functional from empirical data (bounds which do not depend
on the unknown probability measure F(z)) and in solving the generalized
Glivenko-Cantelli problem.

T Abbreviation for the Vapnik-Chervonenkis dimension.
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4.9.2 Constructive Distribution-Free Bounds on Generalization
Ability

First we obtain constructive distribution-free conditions for uniform conver-
gence.

Theorem 4.4. For a set of indicator functions Q(z,a), a € A, with finite VC
dimension h the following two inequalities hold true:

1. The inequality estimating the rate of two-sided uniform convergence:

1 14
p {i‘éﬁ /Q(z,a)dF(z) -3 ;Q(zi,a) > a}
< 4exp{(h(1 i 1“8(2‘)/”)) - sf) e}, (4.46)

where £* = (¢ — 1 /), and
2. The inequality estimating the rate of relative uniform convergence:

4

4
[ QG @) dF(E) - 33 Qi)
i=1

P < sup = >¢
wwh /[0l a)dF ()
< 4exp{ ("(1 b ln€(2€/h)) - %) e} : (4.47)

To prove this theorem it is sufficient to note that

HY(0) <GMe) <h (1 +In %)
and then to use this inequality in the bounds obtained in Theorem 4.1 and
Theorem 4.2.

The bounds (4.46), (4.47) provide constructive distribution-free bounds on
the generalization ability of a learning machine that minimizes the empirical
risk functional.

With probability 1 — 7 the risk for the function Q(z, as) which minimizes
the empirical risk functional satisfies the inequality

R{a¢) < Remp(ae) + é(;—) (1 +{/1+ 4—&2{“—(‘;})—&2) , (4.48)
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where
h(In2¢/h+1) — Inn/4

14
With probability 1 — 27 the difference between the attained risk and the
minimal one satisfies the inequality

—lnn &) /. 4Remp(oy)
Alay) < 3 +—2—(1+ 1+—‘?‘;)L).

4.9.3 Solution of Generalized Glivenko-Cantelli Problem

The result obtained in Theorem 4.4 (inequality (4.46)) can be also formulated
in the terms of the Generalized Glivenko-Cantelli problem: The finiteness
of the VC dimension of a set of functions Q(z, «), « € A (set of events A, =
{z : Q(z, a) = 1}), is sufficient for existence of distribution-free exponential
bounds on the rate of uniform convergence.

The next theorem reinforces this result: It shows that finiteness of the VC
dimension provides not only sufficient conditions for uniform convergence,
but necessary conditions as well. Therefore finiteness of VC dimension of a
set of functions gives the necessary and sufficient conditions for solution of
the Generalized Glivenko—Cantelli problem.

E(0) =4

Theorem 4.5. For existence of uniform convergence of frequencies to their
probabilities over a set of events Ay ={z : O(z,a) =1}, a € A, with respect
to any probability measure F(z) it is necessary and sufficient that the set of
functions Q(z,a),« € A, has a finite VC dimension.

If VC dimension of the set of functions Q(z,a),a € A, is finite, then the
inequality (4.46) holds true.

Proof. The proof of sufficiency of the conditions of this theorem follows from
Theorem 4.4.

To prove the necessity of this condition, we show that any single set of
points in a space Z(¢) is measurable and a given set of functions has infinite
VC dimension—that is, if for any ¢ the equality

sup NMzy, .o, 20) =2 (4.49)

Z(y-Zf

holds true—then for any ¢ and for any ¢ a probability measure F(z) can be
chosen such that with probability one the inequality

sup
a€A

4
[ @dr@ - Y o> 1
i=1

is valid.
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Indeed, let us choose an integer n > ¢/¢. Since for any ¢ the equality
(4.49) is valid, it is possible to choose n points

Z" = L1y oy Zns

which can be shattered by functions in the set Q(z, @), a € A.
Now let us specify the probability measure: The distribution is concen-
trated on these points, and all points have equal probability P(z;) = 1/n.
Let us consider the random sample Z¢ = z;, ..., z, of size £. Denote by Z*
the subset of Z" that contains the points of the set Z" not included in the set
Z'. It is clear that the number of these points is not less than n — £. Since

NMzpy oy zg) = 2"

there exists a function Q(z, a*) that takes the value one on the vectors from
the subset Z* and the value zero on the vectors from the subset Z‘. This
means that

¢
1 Z .
Z Q(Zh (24 ) =0
i=1
and at the same time

/Q(z,a‘)dF(z) > f%f >1-¢.

Therefore with probability one

sup >1-e.

acA

4
[ 0@adF@) - 3 0 a)
i=1

The theorem is thus proved.

4.10 PROOF OF THEOREM 4.3
The proof of Theorem 4.3 is based on the following three lemmas.

Lemma 43. [If for some sequence z1,...,2, and some n

n—1

NA(zlv '“»Z(’) > ZC;’»

=0

then there exists a subsequence z3,...,2; (of this sequence) of length n such
that
NMzy, .,z =20
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Proof. Denote
n—1
Z Ci = d(n, ¢)
i=0

(here and later we denote Cj = 0 for i > ¢). For this functions, as it is easy
to verify, the relations

&(1,60) =1,
d(n, ) =2¢  ifL<n+l,
d(n, ) =d(n,f-1)+P®n-1,£-1), ifn>2 (4.50)

are valid. These relations uniquely determine the function ®(n,¢) for n > 0
and ¢ > 0.
We shall prove the lemma by induction on ¢ and n.

1. For n =1 and any ¢ > 1 the assertion of the lemma is obvious. Indeed,

for this case
NA(Zl,...,Z[) > 1

implies that an element z* of the sequence exists such that for some
function Q(z, a;) we have

Q") =1,
while for some other function Q(z, a;) we have
Q" a) = 0.

Consequently,
NAzY) =2

2. For £ < n assertion of this lemma is valid because the premise is false.
Indeed, in this case the premise is

NA(zh '-'723) > 215
which is impossible because
NA(ZI9'°'9ZP) < 2["

3. Finally, assume that the lemma is valid for n < ny for all £. Consider
the case n = ng + 1. We show that the lemma is valid in this case also
for all ¢.

We fix n =np + 1 and carry out the induction on ¢. As was pointed out,
for ¢ < ny+1 the lemma is valid. We assume that it is valid for ¢ < ¢, and
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show that it is valid for ¢ = ¢, + 1. Indeed, let the condition of the lemma
NA(ZH coey Ly Z(’UH) > q)(n(] + 19&) + 1)

be satisfied for some sequence zy,..., 2y, Z¢,+1- The lemma will be proved if
we will find a subsequence of length ny + 1, say zi, ..., 21, Such that

NA(ZI» ceey znm—]) = 2"0”‘

Consider subsequence zy, ..., z,,. TWo cases are possible:
Case 1:
NA(ZI 3 eeey Zl’()) > (D(nO + 19 e())

Case 2:
NA(z1, oy 26) < Blng + 1, £p).

In case 1, in view of the induction assumption, there exists a subsequence
of length ny + 1 such that

N'\(Z1,..., Z,,U+|) = 2n*l

This proves the lemma in the case 1.

In case 2 we distinguish two types of subsequences of the sequence z,, ..., z,.
We assign subsequences z;,, ..., z;, to the first type if in the set of functions
Q(z,a), a € A, there exists both a function Q(z, a*), satisfying the conditions

Q(zggr1,@") =1,
Oz, a") =1, k=12 ..r,
Qzj,a) =0, ifz; & {z,, 2},
and a function Q(z, @**), satisfying the conditions
O(zg1,a™7) =0,
Oz, ™) =1, k=1,2,..,r,

Q(Z,-,a“ =0, if Z; Q{Z,‘l,...,z,‘,}.
We assign subsequence z;,...,z; to the second type, if either in the set of
functions Q(z, a), a € A, there exists a function Q(z, a*), satisfying the con-
ditions

Az, a’) =1,
Q(z;,,a") =1, k=1,2,..,r

Q(zj,a") =0 ifz; ¢{z;,....2;},

or there exists a function Q(z, a**), satisfying the conditions

O(zgpe1, ™) =0,
Ozy.a™) =1, k=12,..r,

Q(zj,a™) =0, if z; €{zi, ..., 2}
(but not both).
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Denote the number of subsequences of the first type by K; and number
of subsequences of the second type by Kj. It is easy to see that

NMzi, oy 2q) = Ky + K,

A
N2y e 2y pe1) = 2K + Ky,

and hence
NMzyy oy 20, 2601) = NN 21y oy 20) + KL (4.51)
Denote by Q(z, a), a € A*, the subset of set of functions Q(z, a), a € A, that
on zy,...,Zs4 induces the subsequences of the first type. If
Kl = NA'(Z], NN Zgo) > q)(l’lo,go),
then, in view of induction hypothesis, there exists a subsequence z;, ..., z;,
such that

NA (Zil e Zi,.o) = M,
However, in this case

A* 1
N (Z,‘l yorey Zi"o’ Zé’gﬂ) = Qo+

for sequence Ziyy =0 i s g1 since this subsequence belongs to the sub-
sequence of the first type.

If, however,
Ki = NN (21, ..., 24)) < P(no, &) (4.52)

we obtain in view of (4.51) and (4.52)
NNz, ey 2gn) < Py + 1, €g) + D(ng, &),
which, by virtue of the properties (4.50) of the function ®(n,¢), implies that
NMzyy e 2g1) < P+ 1,6 + 1),

This contradicts the condition of the lemma.
The lemma is proved.

Lemma 4.4. If for some n

sup NA(Zl ’ -~~Zn+l) ?é 2n+l ’

then for all £ > n the inequality

sup NMzy,..20) S P(n+1,¢)

L11enly

holds true.
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Proof. Letsup, . NA(zy,...z¢) not be identically equal to 2¢, and let n + 1
be the first value of ¢ such that

sup N2 (zy, o Znat) # 20N

ThrenZpsl

Then for any sample of size ¢, larger than n, the equality
NMzy, oy 2p) S P(n+1,4)

is valid. Indeed, otherwise, in view of Lemma 4.3, one could find the subse-
quence z;, ..., Z;,,, such that

NA (Zil y ety zirul) = 2’“’1 Y

which is impossible because by assumption, sup, . NAzi, oy zan) # 270
The lemma is proved.

Lemma 4.5. For ¢ > n the following bound is true:

gn—l n-1
P, 0) <15y < (ne_f?l) . (4.53)

Proof. Since the relation (4.50) is fulfilled for ®(n,¢), to prove (4.53) it is
sufficient to verify that for £ > n the inequality

¢! ¢ (£+1)y
—+ =<
(n-1)! n = n!

(4.54)

is valid and to verify (4.54) on the boundary (i.e., n=1, £ =n+1).
The inequality (4.54) is clearly equivalent to inequality

N en) - £+ 1) <0,
whose validity follows from Newton’s binomial expaﬁsion.

It thus remains to verify (4.54) on the boundary. For n = 1 the verification
is direct. Next we shall verify the bound for small values of n and ¢:

{=n+1 2 3 4 5 6
d(n, €) 1 4 11 26 57
gn«]
1.5("—*—T)-! 1.5 4.5 12 31.25 81
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To check (4.54) for n > 6 we utilize Stirling’s formula for an upper bound

on ¢!
2! < V2meet exp{l — (12¢)7'},

where for £ = n + 1 we obtain

AR e Vi S oS SO SN B
n-D! & =\ ome ? 120

and for £ > 6 we have

PICED) 1
— > 08—e
(n—1)t— 27l

On the other hand, ®(n,¢) < 2! always. Therefore it is sufficient to verify

that for ¢ > 6
28 <1.2V2meel.

Actually it is sufficient to verify the inequality for £ = 6 (which is carried out
directly) since as ¢ increases the right-hand side of inequality grows faster

than the left-hand side.
The lemma is proved.

The assertions of Lemmas 4.4 and 4.5 imply the validity of Theorem 4.3.

4.11 EXAMPLE OF THE VC DIMENSION OF THE DIFFERENT SETS OF
FUNCTIONS

In this section we give several examples of estimating the VC dimension of
different sets of functions.
According to Theorem 4.3 if the VC dimension of a set of indicator func-

tions is finite, the inequality
h
max NMzy,yonze) < };5 C; (4.55)
holds true, where & is the maximal number ¢ = h such that

max N*(zy,...,z,) = 2".
21y 2dp

First of all we give a simple example for which (4.55) turns out an equality.
This implies that the general result (4.55) cannot be improved.
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Example 1 (The obtained bound of the growth function is tight). Let Z be an
arbitrary set and let S be a set of subsets of Z, such that every A € S contains
less than h elements. Consider a set of indicator functions Q(z, a), a € A,
determined on S such that for any subset A of Z the function Q(z, a(A)) is
one on the elements of A and is zero on the elements Z — A. For this set of
functions

Jmax NNz, ...,z))=2" ife<h

| REE) 14

and

h
Nz, ... = C! if ¢ > h.
max Nz, 2) = Y G if >

g ‘
i=0

Example 2 (The VC dimension of a set of functions linear in their parameters
is equal to the number of parameters). Consider a set of indicator functions
linear in their parameters:

Q(z,a)=e(2a"¢k(z)), a=(a',.a", & €(-00,0). (456)

k=1

We shall show that the VC dimension of this set of functions equals n, the
number of free parameters (we assume that ¢,(z), Kk =1,...,n, is a set of
linearly independent functions).

To prove this we denote u* = ¢(z), k =1,2,...,n, and consider the set
of linear indicator functions /(u, o) passing through the origin in the space

U=(@,..,u"
l(u,a) =0 (Zakuk) . (4.57)
k=1

It is clear that the maximal number of different separations of ¢ vectors from
Z using the set of functions (4.56) is equal to the maximal number of different
separations of ¢ vectors from U using the set of functions (4.57).

Thus let us estimate a number of different separations of ¢ vectors from U
using the hyperplanes passing through the origin in the n-dimensional space
U. It is easy to see that the following n vectors from R”

(1,0,...,0),(0,1,0,...,0)...,(0,...,0,1)
can be shattered by hyperplanes
(uxa) =0,
(here we denote by (u * a) the inner product of two vectors in R").

Let us show that there are no n + 1 vectors in R” that can be shattered by
hyperplanes passing through the origin. Suppose the contary: Let uy, .. ., ty.
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be vectors that can be shattered. This implics that there exist 2**! vectors
a; e R",i=1,...,2"! which form a (n x 1) x 2"*! matrix of inner products

zij=(wi*a)i=1,...,(n+1),j= 1,...,2m1

21,1 e 212m
FACTS SR IR 4PR Y L3

The elements z;; of this matrix are such that 2"*! columns of the matrix have
all 2"*! possible combination of signs

sign(A) =

+ 4+ + +

-+

Therefore, row-vectors Z; = (z;1,...,2;9m1,i = 1,...,(n+ 1), of A-matrix are
linearly independent since there are no constants cy,. .., ¢, such that

n+l

Y aZi=0
i=1

because for any constants cy, ..., ¢, there is a column with the same signs.
This implies that n + 1 vectors u,, ..., u,,; in R” are linearly independent and
this contradiction proves that there are no n+ 1 vectors in R” that can be
shattered by hyperplanes passing through the origin. Therefore the maximum
number of vactors that can be shattered by hyperplanes passing through the
origins is n and consequently the VC dimension of this set of functions is n.

Now we show that the bound on the growth function for a set of linear
hyperplanes that follows from Theorem 4.3 is rather accurate. To show this,
let us estimate the value of max,, _, N*u,. .., u).

To do this, note that to any vector u = (u!, ..., u?) of the space U there

corresponds a hyperplane
n
Y aui =0
i=1

in the space A= (a',...,a"). And vice versa to any vector a = (a!, ...,a") of
the space A corresponds hyperplane

n
E aut =0
i=1

in the space U.
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Thus to ¢ vectors u;,i =1, .., ¢ in the space U there correspond ¢ hyper-
planes passing through the origin in the space A.

Our assertion is the following: The maximal number of different separa-
tions of £ vectors by hyperplanes passing through origin in the space U is
equal to the number of different components into which the ¢ hyperplanes
separate the n-dimensional space A (see Fig. 4.2).

Indeed, let I' be a vector in A corresponding to some hyperplane in U.
If one continuously rotates this hyperplane in the space U such that separa-
tion of z,,..., z, remains in fact, the corresponding trajectory of the vector I’
belongs to the same component of the space A.

We shall estimate the number of different components into which ¢ hy-
perplanes can divide the n-dimensional space. Let us denote by ®(n,¢) the
maximal number of components into which ¢ hyperplanes can divide the »n-
dimensional space. Let us determine a recurrent procedure for estimating the
number of components.

[t is clear that in the one-dimensional case for a hyperplane passing through
the origin we have

O(1,¢) = 2.

One hyperplane divides any space into two components
®(n,1) =2.

Now, let ¢ — 1 hyperplanesI',...,I';,_| divide n-dimensional space into ®(n, ¢ —
1) components. Let us add one new hyperplane I',.

If this hyperplane passes through one of the “old” components, then it
divides this component into two parts. Otherwise, the old component is
preserved.

FIGURE 4.2. To any vector u;,j = 1,..,¢ in the space U there correspond hyperplanes
passing through the origin in the space A.
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Thus, if one added a new hyperplane I', the number of components can be
increased by the quantity equal to the number of components which are split
by this hyperplane. Conversely, any component K; makes a trace K; (I'; on
I',. The number of these traces is equal to the number of parts in which ¢ — 1
hyperplanes I'y, ..., I's_; divide the hyperplane I';.

Since the dimensionality of I, is equal to n — 1 the number of traces does
not exceed ®(n — 1,4 — 1). Thus we obtain the following recurrent equation:

O, 0) = d(n, € — 1)+ Dn—1,0 1), (4.58)
d(n, 1) =2,
d(1,¢) = 2.

The solution of Eq. (4.58) is

2f if n>¢,

bin, 6) = { 2ylei ifn<e. (4.59)

Note that according to the exact formula (4.59) the growth function for a
set of linear functions in the region ¢ > #n is equal to

n-1
; 14
A i —
G (E)_ln(ZE C[_1)<(n 1)<lnn_1+1)+ln2.

i=0

The bound for the growth function for region ¢ > n obtained in Theorem 4.3

is equal to
n ; g
GA(E)gln(E C,,)<n(ln;+1).

i=0
One can see how close the bound is to the exact result in this case.

The next two examples show that VC dimension of a set of indicator
functions that have nonlinear dependence on parameters can differ from the
number of parameters.

Example 3: The VC dimension of the set of indicator functions nonlinear in
parameters can be less than the number of parameters. Let us consider the
following set of one-dimensional functions

Qz,a) =6 (Z |aqz"|sign +a()) , ageR.

d=1

This set of functions is a set of monotonic nondecreasing indicator functions.
It is clear that using a set of monotonic nondecreasing indicator functions on



160 4 BOUNDS ON THE RISK FOR INDICATOR LOSS FUNCTIONS

the line one can shatter only one point. This means that VC dimension of the
set of functions considered here is independent of the number of parameters
n.

Example 4: The VC dimension of the set nonlinear in parameters indicator
functions can exceed the number of parameters. Lastly consider the following
set of one-dimensional indicator functions

O(z,a) = 6 (sinaz), 2 €(0,2m), a € (0,0)
defined on the interval (0, 2).
We show that the VC dimension of this set of functions equals to infinity

if we establish that for any ¢ and any binary sequence

b1, ..., O¢, é € {O,l}

there exist £ points z,, ..., z, such that the system of equation
G{Sin CYZ,'} :6,‘, i= 1,2,...,€ (460)
has a solution in «. Let us consider the points z; =2#7107", i =1,2,...,¢. It

is easy to check that for these points the value

¢
* 1 1)
a =3 (2(1 — §)10° + 1)
i=1
gives a solution of the system of equations (4.60).

Thus in general the number of parameters does not determine the VC
dimension of a set of functions. But it is the VC dimension rather than the
number of parameters of the set of functions that defines the generalization
ability of a learning machine. This fact will play an extremely important
role in constructing learning algorithms later. Chapter 10 introduces learning
machines that realize functions with low VC dimension and have billions of
parameters.

4.12 REMARKS ABOUT THE BOUNDS ON THE GENERALIZATION
ABILITY OF LEARNING MACHINES

Thus in this chapter we obtained the bounds on the generalization ability of
learning machines that minimize the empirical risk functional. These bounds
can be described as follows:
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With probability at least 1 — n the inequality
£(¢) Remp(@r)
R(ar) < Remp(ar) + == (1 +4/1+ —%— (4.61)
holds true.
With probability at least 1 — 27 the inequality

Alay) = -‘?% (1 1+ Ee_";"(ig‘)'i)f) + '1["'7 (4.62)
holds true.

Different expressions for £(¢) define different types of bounds. The ex-
pression

Hz;\nn(ze) —In 77/4

7 )
where HJ (¢) is the annealed entropy, defines tight distribution dependent
bounds that are valid for a specific learning machine (a specific set of func-
tions) and a specific problem (a specific probability measure).

One can cxclude information about the probability measure by using the

expression

£y =4

G*(2¢) —Inn/4

, ;
where GA(¢) is the growth function of a set of functions Q(z, @), a € A.
Bounds (4.61), (4.62) with this expression for £(¢) are valid for a given learn-
ing machine and any problem (any probability measure).

These bounds are to be thought conceptual rather than constructive since
the theory does not give a regular way for estimating the annealed entropy or
growth function. Therefore we use the upper bound of the growth function
that is based on the VC dimension of the set of functions. (Theorem 4.3
points out a constructive way for evaluating the VC dimension of a set of
functions.) The constructive bounds are based on the following expression
for £(¢):

£(6) =4

h(In(2¢/h) +1) — Inn/4

E@) =4 ;

Let us denote

>~

then the bound for the £(¢) is

£(0) S41n2:+1 3 lnn/4’
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This expression shows that the generalization ability of a learning machine
depends on the ratio of the number of observations to the VC dimension of
the set of functions (for reasonable 7 the second term in the expression is
negligibly small compared to the first one).

An important goal of the theory is to find a more accurate constructive
bound than the one described. According to the Key theorem proved in
Chapter 3, the uniform convergence forms the necessary and sufficient condi-
tions for consistency of the ERM method. Therefore to obtain more accurate
bounds on the rate of the learning processes based on the ERM method, one
has to obtain a more accurate bound on the rate of uniform convergence.

To construct any bound, one has to use some capacity concept. From the
conceptual point of view the accuracy of the obtained bound depends on
which type of capacity concept is used. We obtained the best bound using
the annealed entropy concept. However, the construction of this concept uses
the unknown distribution function F(z).

The bounds obtained on the basis of the growth function concept or the
VC dimension concept are another extreme case: They ignore any a priori
information about unknown distribution function F(z).

[t is very important to find the way how to obtain constructive bounds
using general information about the unknown distribution function F(z). The
nonconstructive bound can be obtained easily.

Indeed, suppose one has the information about the unknown probability
measure F(z) € P, where P is some set of densities. Then one can immedi-
ately suggest tight nonconstructive distribution-dependent bounds based on
the following generalized growth function concept:

MA(€) = sup EInN*(zi,...,2¢).

F(z)eP

Since
HM(0) < Mp(e) < GME)

the bounds (4.61), (4.62) with

_ 4 Mp@0) —Inm/4

£(0) ;

are valid. These bounds are not based on the knowledge of the specific dis-
tribution function F(z); however, they take into account a priori information
about the set that includes this function. Therefore these nonconstructive
bounds are tighter than nonconstructive bounds based on the growth func-
tion.

To develop constructive bounds, one has to find a constructive bound for
the generalized growth function that is better than the one based on the VC
dimension. The main problem here is to find some set of probability measures
P for which one can obtain a constructive bound on the Generalized Growth
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function just as constructive distribution-free bounds were obtained using the
VC dimension.

For the theory of distribution free bounds only one question remains:
How tight are the obtained bounds?

The Appendix to this chapter tries to answer this question. We give lower
bounds for the generalization ability of algorithms which minimize empirical
risk. These lower bounds are reasonably close to the upper bounds derived
in this chapter. This will ensure that the theory of bounds constructed in this
chapter is rather tight.

4.13 BOUND ON DEVIATION OF FREQUENCIES IN TWO
HALF-SAMPLES

In proving the basic inequalities (Theorem 4.1, and Theorem 4.2) we use the
bound for the deviation of frequencies in two half-samples. In this section
we show how this bound is obtained.

Our goal is to estimate the value

ChCoits
I= Z C! ’
k 2¢

where the summation is conducted over & so that

k m-—k

¢ ¢

> g, max(0,m — £) < k < min(m, ¢)

and where ¢ and m < 2¢ are arbitrary positive integers.
The last inequality is equivalent to inequality

m el

5 > 5 max(0,m — ¢) < k < min(m, ¢).

We decompose I' into two summands,

'="r,+ rz,
where we denote
chCi k. el m
rl:;C—gp’ where k>7+5.

Fzzzm, where k<%g—;.
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We introduce the following notations

(jk(j[—k

. Tm2U-—m
pk) = e, (4.63)
_plk+1) _ (m-k)( -k

q(k) (4.64)

pky  (k+D({l+k+1-m)

where
max(0,m — £) < k < min(m, ¢).

Furthermore, we denote

s = min(m, ¢), T = max(0,m — ),

d(ky = pli).
i=k

Clearly, the relation

s s—1 s—1
dk+1) =3 pi) = pi+1) =3 pli)q(i) (4.65)
i=k

i=k+1 i=k

is valid. Furthermore, it follows from (4.64) that for i < j we have q(i) > q(j);
that is, g(i) is monotonically decreasing. Therefore the inequality

s—1 s
dik+1) = pli)g) < qk) Y pQ)
i—=k i=k

follows from (4.65). By definition of d(k) we have
d(k+1) < q(k)d(k).

Applying this relation successively, we obtain the following for arbitrary k&
and jsuchthat T <j <k <s-1:

k-1
d(k) < d(j) H q(i).

i=j
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Since d{j) < 1 we have
k-1

d(k) <[] a0, (4.66)
i=j
where j is an arbitrary integer smaller than k.
We denote
m—1
t=k— —
Then
m+1 . (E_m_”_l) _¢
1 m+ 1 vr (1_m= 1 , ’
2 T2 )7

Moreover, as long as T < k < s, the inequality

27 2

is clearly valid.
To approximate g(k) we analyze the function

~
>

a— —t

F) = a+t b+t’

assuming that a and b are both positive.
For |t| < min(a, b) we obtain

InF(t)=In(a -t) —In(a+¢) +In(b — 1) — In(b + 7).

Furthermore, we have
In F(0) =0,

d 2a 2b
Z(nF() = - [a2 — zzJ :

This implies that for |¢| < min(a, b) the inequality

%(lnF(t)) ) E + ZI;J
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is valid. Consequently, for |¢| < min(a, b) and ¢ > 0 the inequality
InF()) < -2 [l + lJ t
a b

is valid.
Returning to g(t) we obtain fort > 0

2 2 J _ £ +1

< _
Ing(r) < 2[m+1+2€—m+1 8(m+1)(2€—m+1)t'

We now bound
k=1, ¢
In (1 q())

assuming that (m — 1)/2<j <k - 1.
k-1 k-1

In Hq(i) = Zlnq(i)
i=j i=j

—8¢+1) /. m-1
g(m+1)(2£—m+l)z(l_ 2 )

i=j

Returning to (4.66), we obtain
~8(f +1) - m—1
Ind(k) < G Rl —me D) ; (‘ - —2—) ’

where j is an arbitrary number smaller than k. Therefore for k > (m — 1)/2
one can set j = (m —1)/2 for m odd and j = m/2 for m even, obtaining a
stronger bound. Next, summing the arithmetic progression, we obtain the
inequality

—4(f + 1) my?
(m+1)(20 —m+1) (k’ ")

2
for even m and obtain the inequality

Ind(k) < —4¢ D) (k - '"—‘1) (k _m-1 1)

Ind(k) <

m+1)2¢0-m+1)

for odd m.
Finally I'y is d(k) for the first integer & such that
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from which we obtain

¢+1 2,2
. 67
(m+1)(2€~m+1)8£ (467)

InT'; < -

The right-hand side of (4.67) attains its maximum at m = ¢, and consequently

2@2

I' <exp {72%} ~ exp{—£%¢}. (4.68)

In the same manner one can bound I, since the distribution (4.63) is
symmetric with respect to the point k = m/2. Since I') = I'; we obtain

2p2

F<2exp{—%} ~ 2exp{—&*t}. (4.69)






APPENDIX TO CHAPTER 4:
LOWER BOUNDS ON THE
RISK OF THE ERM PRINCIPLE

Until now we have accepted the empirical risk minimization principle without
any discussion. We found the bounds describing the generalization ability of
this principle for sets of indicator functions.

Now we would like to discuss the following two questions:

1. Is the principle of empirical risk minimization a good one? Can it be
considered as optimal in some sense?

2. How tight are the bounds obtained for the class of learning machines
minimizing the empirical risk?

To answer these questions we have to determine:

1. What general strategy of statistical inference reflects the method of
empirical risk minimization?

2. How close are the upper hounds obtained for the ERM principle to the
lower bounds?

This appendix tries to answer these questions by showing that the ERM prin-
ciple reflects the philosophy of the so-called minimax loss strategy (not to be
confused with minimax strategy). Despite the fact that the ERM method
does not guarantee the minimum of the maximum possible losses, its upper
bounds are relatively close to the lower bound on the minimax loss. That is,
the losses for the ERM methods are close to the minimax losses.

A4.1 TWO STRATEGIES IN STATISTICAL INFERENCE

Consider the situation where we would like to choose an algorithm A € A
for solving a set of problems 7 € II.

169
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Suppose that for any algorithm A and for any problem 7 we can define the
value 7 (m, A) which characterizes the quality of the solution of the problem
7 by the algorithm A (let smaller values 7 (7, A) means better quality).

The question is how to choose one algorithm for solving sets of problems, if
for any problem = there exists its own optimal algorithm A, which minimizes
T(m, A).

For this situation the theory of statistical inference suggests two strategies,
namely, the Bayesian strategy and the Minimax loss strategy.

Let the smallest loss for the problem 7 be Ty(7). Consider the loss
functional!

L(WvA) = T(’TT,A) - T()(’TT),

which evaluates the loss in solving the problem 7 if instead of the best possi-
ble solution for this problem one obtains the solution provided by algorithm
A.

The Bayesian strategy suggests that we choose the algorithm Ag, which
minimizes the expectation of loss over all problems II. This means that one
should be given an a priori distribution P (1) on a set of problems II, which
allows one to construct the expectation

Ly(A) = /L(w,A)cIP(n). (Ad.1)

The minimum of functional (A4.1) determines the Bayesian algorithm Ap.

The minimax loss strategy suggests a more cautious approach. According
to the minimax loss strategy, choose the algorithm A,,, which minimizes the
losses for the worst (for this algorithm) problem in the set I1. In other words,
choose the algorithm A, which minimizes the functional!

Ly (A) = sup L(m, A). (A4.2)

well

Denote the algorithm that minimizes (A4.2) by Ay. It is easy to verify
that for any distribution function P () determining the Bayesian strategy the

fNote that in Chapter | we introduced the concept of loss functions Q(z.a), a € A, which we
used to construct risk functional R(a) = f QO(z,a)dF(z). Here we consider a new concept the
loss functional, which is used to analyze quality of various statistical strategies for solution of a
set of problems [defined by various F(z))].

' Note that the minimax loss strategy differs from the minimax straregy, which suggests that we
choose by algorithm A, minimizing the functional

Ly, = sup T(w. A).

mell
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inequality
inf Ly(A) < inf Ly (A A43
inf Lp(A) < inf m(A) (A4.3)

holds true.!
Let Ag be an algorithm that minimizes (A4.1). Then

Lp(Ap) = inf Lp(4) = inf / L(m,A)dP(m)

< / L(m, Ay)dP(m) < / sup L(m, Ay ) dP ()
nell

=sup L(7,Am) = Luy(Ay).

well

This Appendix shows that the empirical risk minimization principle re-
sults in algorithms Aemp, which are close to the optimal ones in the sense of
minimax loss strategy.

To prove this we note that

Ly(An) < Ly (Aemp)-

Below we first find upper bounds of the maximal loss for the empirical risk
minimization method. Then we derive lower bounds for the minimax loss.
These two bounds turn out be reasonably close.

A4.2 MINIMAX LOSS STRATEGY FOR LEARNING PROBLEMS

This book considers the learning problem as a problem of minimizing the
risk functional

R(ma) = [ 0(z,0) dFs(c)
on the basis of empirical data
LlyeeryZyge

In this setting the specific problem 4 is determined by an unknown distribu-
tion function F,(z) which defines the risk functional.

f1t is important to note that inequality (A4.3) does not mean that for solving specific problems
the Bayesian strategy is better than the minimax strategy. The quantity on the left-hand side of
inequality (A4.3) gives the best average loss, while the quantity on the right-hand side (A4.3)
gives the best guaranteed loss.
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Suppose that we are given an algorithm A that in order to minimize
risk R(m, @) using the data chooses the function described by the param-
eter a4(zy,...,2¢). This notation indicates that given the data algorithm A
selects function Q(z, as(zy, ..., 2¢))-

The value of risk for the chosen function is

R(m, ap(z1 o 20)) = / 0z, an(21, - 20)) dF(2).

Let the expectation
T(w,A) = / R(m, aa(21, s 20)) dF (21, o0 20)

define the quality of solution of the problem 7 by the algorithm A using data
of size ¢.
Consider the following loss functional:

L(m,A)=T(m A)— T(m). (Ad.4)
Our goal is:
1. First to obtain the upper bound for the functional

well

2. Then to obtain a lower bound on minimax losses for the set of problems
I1.
Ly(Ay) = ir/}f Ly(A) = igfsup L(m, A)

Since
Lm(Am) < Ly(Aemp)

if one finds that the lower bound for Ly (Aux) 1S close to the upper bound
for Ly (Aemp), then one can conclude that the ERM method provides losses
that are close to the minimax loss for a given set of problems. In any case,
the lower bounds are obtained for the guaranteed generalization ability of
the method of empirical risk minimization.

Below we derive both an upper bound for the loss (A4.3) and a lower
bound for the loss (A4.2) for two cases:

o Optimistic case (for set of problems II for which T(7) = 0)
¢ Pessimistic case (for set of problems Il where there are m such that

T(m) #0))

For the optimistic case we show that if a learning machine minimizes em-
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pirical risk in a set of functions with VC dimension h, then for £ > h the
following inequalities are valid:

2¢
hlln—+1]+4
L h+1 (h ) 16
1 < Ly(Ay) < Ly (Aemp) <4 +—

2el +1 ¢ e
For the pessimistic case we show that if a learning machine minimizes the
empirical risk in a set of functions with VC dimension 4, then for £ > 2h the
following inequalities are valid

(A4.5)

- h (ln zhé + 1) +24
\/;(1 —erf(1)) < Ly(Ay) < Ly (Aemp) < 4 ]

(A4.6)

In the next section we derive the upper bounds in inequalities (A4.5) and
(A4.6), and then in Sections A4.4 and A4.5 we derive the lower bounds.

A4.3 UPPER BOUNDS ON THE MAXIMAL LOSS FOR THE EMPIRICAL
RISK MINIMIZATION PRINCIPLE
A4.3.1 Optimistic Case

Let a set of indicator functions Q(z, a), a € A, have finite VC dimension A.
In Chapter 4 we showed that for any problem = the following bound on the
rate of uniform convergence is valid:

P { R(m, a) - Remp('”’a) > 8}

sup

a€A vV R(ﬂ-v a)
h (1 +1n —2;) .2
<min | 1, dexpq | —=——= -7 |£3 [ (Ad7)

When Remp(7, @(Aemp)) = 0 the bound (A4.7) implies
P {R(m, a(Aemp)) > &*}

2¢
h(l-ﬁ-ln;) o

< min | 1, 4exp —7 7 ¢ (A4.8)

where we denote &* = &°.
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Since in the optimistic case T (7) = 0 we have
Ly (Aemp) = sup T (7, Aemp)-
mell
Furthermore, we have

Tr(Acmp) = sup [ R(m, a(Aemp; 21, -, 26)) dF (21, ..., 20)

mell

o)
= sup/ P{R(m, acmp) > £"}de".
0

mell

To obtain an upper bound on this quantity we use inequality (A4.8). We
obtain the inequalities

. h (1 +In2h—e) )
Lat(Aemp) < / min | 1, dexp{ | > T2 _Z o | ae
0 ¢ 4 J
. . h (1 +In 2h_e> )
g/da*+/ dexpe | —m————F—— 1€, de

0 ¢ ¢ 4

\ )

16 [ 2e¢\" gl
which are valid for any positive €. Let us choose
h (ln Zh_é + 1)
5:4———7————, (A4.10)

which provides a small value to the right-hand side of Eq. (A4.9). Substituting
(A4.10) into (A4.9) we obtain the upper bound on the expected loss for the
algorithm minimizing the empirical risk in the optimistic case:

h (ln?hﬁ+l) 16
LM(Aemp) < 4—7*— + 7

A4.3.2 Pessimistic Case

To obtain an upper bound for the pessimistic case we consider the following
bound on the rate uniform convergence derived in Chapter 4:
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P {sup |R(7, @) — Remp(m, a)| > s}
a€A
2¢
hl1+In—
( +ln —
¢

)
< min [ 1, 4exp —(8—2)2 ¢y ]. (A4.11)

This bound implies the inequality

P {R(m, a(Aemp)) — R(m, a0) > 2&)

2¢
h (1 +ln—) 2
N h) _( 1) eS| (Aa412)

¢ *T T

<min | 1, 4exp 7

Indeed, from (A4.11) one obtains that with probability at least 1 — 5 where

h(1+ln—2£) 2
= (-0)
— "7 _(e--] |¢

n=min| 1, 4exp 7 7

simultaneously the following two inequalities are valid:

R(ﬂ-’ a(AemP)) - Remp(ﬂ" a(Aemp)) <e

Remp('na a()) - R(TT, a()) <e.
Taking into account that

Remp('n', a(Aemp)) - Remp(a()) <0

one can conclude that the inequality

P {R(7, a(Aemp)) — R(m, o) > 2¢}

M(l) ¢

<min | 1, 4
<min | 1, 4exp 7 7

holds true.
Now let us estimate the maximal loss of ERM principle in the pessimistic
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casc:

= Sug (R(’TT., a(ACmP) - R("Ta a())) dF‘n’(zla “evy Zf)
e

= sup P{(R(m, a(Aemp) — R(7, ap)) > £} de.
well JO
(A4.13)
To get a bound we use inequality (A4.12). We obtain the inequalities

1+ln%

> § ( h ) 1\?
L (Aemp) < 2/ min | 1, 4exp — - (;;A Z) ¢ de
0

(fraree 7 Y o= e}
2o () [Tom{-(e-0) o} o

{EVEINCHICHIT
2(§+4(2hﬁ)h§£%10xp{——(-—%>2€}). (Ad14)

This inequality is valid for any £. In particular, it is true for

h(ln%—l{+1)
€:_

ANV
- ¢ ¢

A

A

fl

(A4.15)

Substituting (A4.15) into the right-hand side of Eq. (A4.14), we obtain that
for £ > 2h the inequality is valid:

h (ln — + 1)
Ly (Aemp) <2 h + 4

£h(ln % +1)

h (ln % + 1) +24
4 ’ . (A4.16)

<
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Thus, we obtained upper bounds on the maximal loss for the method of
empirical risk minimization for both the optimistic and the pessimistic cases.

Now we would like to obtain the lower bounds on loss for the minimax
loss strategy.

A4.4 LOWER BOUND FOR THE MINIMAX LOSS STRATEGY IN THE
OPTIMISTIC CASE

To derive the lower bounds we use the fact that for any distribution function
P () the Bayesian loss does not exceed the minimax loss:

inf Lg(A) < inf Ly (A).
il Lo(4) < fnf Ly (4)

To estimate the lower bounds for the minimax loss we estimate the lower
bound on the Bayesian loss for a special distribution function P (7).

To construct such special distribution functions we need more detail in the
description of the learning problem.

In Chapter 1, which introduced the general learning scheme, we considered
three elements:

1. A generator of random vectors (it is determined by the distribution
function F(x))

2. A supervisor’s operator F(y|x) that transforms vectors x into values y

3. A set of functions of the learning machines f(x, a), a € A

In this setting, any specific learning problem 7 is determined by two elements,
namely, the distribution function of the generator F,, (x) and the supervisor’s
operator F,, (y|x). Therefore to construct the distribution function on the set
of problems 7, one needs to consider the joint distribution function P (), m).
To obtain the Bayesian loss we consider a special distribution on the set
of problems. We keep the distribution function F(x) fixed for all problems
and will use some distribution on the set of admissible supervisor operators.
Let a set of functions f(x,a), a € A implementing a learning machine
have the VC dimension k. This means that there exists /& vectors such that

X1y ey Xp (A417)
can be shattered by this set of functions. Let
f(x7al)7"7f(x7a2h) (A418)

be the functions that shatter (A4.17).

Suppose that the probability measure F(x) is concentrated on the vectors
(A4.17) such that the vector x; has probability 1 — p and any other vector
from (A4.17) has probability p/(h — 1).
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Now we define what our problems 7 are. In the optimistic case an admis-
sible set of problems = (target functions) belongs to the set of functions of
the learning machine. We consider 2* different problems: Problem number
, means to estimate the function f(x, a;). To do this we are given training
data

(xi|$f(xi1’ak))7“'1(xi,af(xinak)) (A419)

containing ¢ pairs: input vectors x drawn from (A4.17) randomly and inde-
pendently in accordance with the described probability measure F(z) and its
values f(x, ay).

Assume that the a priori distribution on the set of above-mentioned prob-

lems is uniform .
P(ﬂ'k) = ‘2—h'.

It is easy to see that in this situation the optimal Bayesian algorithm is the
following: to classify vector x as f(x, a) if this vector occurs in the training
set (A4.19). Classification of the vectors that do not occur in the training
set (A4.19) does not matter (it can be any); that is, the optimal Bayesian

algorithm for our problems is as follows: Take any function whose empirical
risk 1s zero. The Bayesian loss for this case can be evaluated as follows:

inf Lp(A) = Lp(Acmp)

l-p 1 p p Y
= 52 g0 (52) (- 79)

4
Py __P_
220 h_J. (A420)

Indeed in (A4.20) the value (1 - p)/2 is the random (over all problems )
loss in classifying vector x; under the condition that it does not occur in the
training set (A4.19); the value p’ is the probability that vector x; does not
occur in the training set (A4.19).

Analogously the value % (p/(h — 1)) is the random loss in classifying any of
the vectors x;, i # 1; the value (1 — p/(h — 1))F 1s the probability that vector
x; does not occur in the training set (A4.19).

Now let us find the expression for p that maximizes the right-hand of Eq.

(A4.20)
p(,__p Y
2 ho1)
We find that
1 ife<h-2
_da 21
P=0h=l o na (Ad21)
£+1

Substituting (A4.21) into (A4.20), one obtains the following lower bound for
the generalization ability of the empirical risk minimization principle in the
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optimistic case:
Ly (Aemp) > ir/}f Lg(A)

¢
.;_(1_’1_11) if0<h—2,

1h—1 t \' 1h-
2 _ ~ — if0>h—2.
2z+1(1 E+1) i+l T

A4.5 LOWER BOUND FOR MINIMAX LOSS STRATEGY IN THE
PESSIMISTIC CASE

Now we estimate the lower bound on the minimax loss for the pessimistic
case. In this case using the given set of functions f(x, @), a € A, the learning
machine tries to approximate any supervisor’s rule.

As in the optimistic case we will obtain the Bayesian solution for a specific
distribution functions P () and will define a lower bound on the correspond-
ing loss. This bound is a lower bound for the minimax loss.

As in the previous case we consider a learning machine that has a set of
functions with VC dimension A. As before, let

X1y ooy Xp (A423)

be a set of vectors which can be shattered by the set of functions of the
learning machine and let

f(X, al)a "',f(x7 a2")

be the functions that shatters the set of vectors (A4.23).
We will consider the following situation:

1. Probability P(x) is concentrated uniformly on the vectors (A4.23)
1
Plx)=—.
() =4

2. The machine solves 2" learning problems m,, k = 1,...,2% which are
determined by the following conditional probabilities

o [05-A if f(x,a) =0,
Pk(w—U‘x)—{o.5+A if f(x, o) = 1,

e [05+A if f(x,e) =0,
Pdw‘”n—{05~A if f(x, o) = 1.
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3. Probability measure on the given set of problems is uniform:

1
P(ﬂ’k) = Z—h

Under these conditions the learning machine has to select the decision rule
using the training data:

(wlvxl)a sy (wl’u Xg).
For any given problem , the best solution of the learning machine will be
the function f(x, a;), which provides the smallest risk:

R(m f(r, o)) = 5 ~ A,

Now our goal is to estimate Bayes’ rule, which minimizes the functional

2h

Lg(A) = Z;Z <R(1r,A) - % +A) .

i=1

The optimal algorithm for this case will be the following. Suppose that vector
z = (w, x) occurs in the training set. Let it occur n;(x) times as (0, x) (as a
representative of the first class) and n,(x) times as (1,x) (as representative
of the second class).

e If n((x) > ny(x), then this vector is classified as a representative of the
first class.

e If on the other hand n;(x) < n,(x), then vector x is classified as a rep-
resentative of the second class.

e In the case n;(x) = ny(x), the vector is classified as arbitrary.

If vector x does not occur in the training set, its classification does not matter
(e.g., it can be done by flipping a coin).
The loss from solving any problem ; by this algorithm is equal. Therefore

n;jn Lg(Ay=nh (zh—Apl + %pz) = 2Ap, + Ap,, (A4.24)

where:

24 . . - . .
* 5 is the loss for vector x;, belonging to the training set, in the situa-

tion when according to function f(x;, a;) it is classified in one way and
according to the described rule (using either inequality n;(x;)} > n;(x;)
or ny(x;) < ny(x;)) it should be classified in the other way.
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° —:— is the loss when n;(x;) = ny(x;).

e p, is the probability that either n;(x;) < n(x;) when P(w = 0|x;) >
P(w = 1|x;) or ni(x;) > ny(x;) when P(w =0|x;) < P(w = 1|x,).
e p> is the probability of event n(x;) = na(x;).

The exact values of p; and p; are defined by the following formulas:

1 1\™ /05+A\™ /0.5 A\"™
”‘zgm!nz!n}! (1‘5) ( h ) ( h ) (A4S

1

where T'y = {ny,n2,n3: ny+my+n3=1~£, n <ny, ng >0, n, >0, n3 >0}.

4 1\™ 70.5+A\™ /0.5—A\™
pz‘;m!nz!ng (1_5) ( h ) ( h ) ’ (A4.26)

2

where I, = {ny,my,n3: my+ny+n3=£, n =ny, ny 20, n, >0, n3 >0,}.
Now we estimate the lower bound for the loss (A4.24) for different cases.

Case I. Let £ < h. Consider A = 0.5. Then using the trivial lower bounds for
(A4.25) and (A4.26) (namely, p; =0 and p; > (1 — 1/h)[ and in accordance
with (A4.24) we obtain

: 1\* ‘
n};nLB(A) >0.5 (1 - —,;) ~ 0.5 exp{—z} .

Case 2. Leth < ¢ < 2h. Consider A = 0.25. In this case for the estimation of
p1 we take into account only the term with n, = 1, and for p, we take into
account only the term with n; = n; = 0. We obtain

. ¢ ¢
anLB(A) > (0.25+ gz) exp{—z} .

Case 3. Let ¢ > 2h. Consider
1 /h
A= ’2'\/;

Let us approximate the distribution of the random variable

n, —np

e

by the normal law (for definiteness sake we assume that P(w = O|x;) > 0.5).
This random variable has the expectation

2

E6 7
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and the variance

1 /1 4A2 1
Var(0) = 5 (z - 7) i

Thus we consider the following normal distribution of the random variable

a:
y 28 2
vhe T h
P()= —exp{ —————~*—
0) = 5 cxp 2( 1 )2
Vhe
Therefore

pr=P{6 <0} =1-erf (ZA\/%).

Taking into account that A = 0.5\/§ we obtain

p1 =1 —erf(1).

Thus for this case
n}‘inLB(A) > \/g(l —erf(1)).

Combining all three cases we obtain the low bounds of minimax strategy for
the pessimistic case:

O.Sexp{—é} if £ <h,
14 i
i > . — ——0 1 ¢ <2h
rr;mLB(A)_< (025+8h)exp{ h} if h <t <2h,

(1 - erf(1)) if £ > 2h.




BOUNDS ON THE RISK
FOR REAL-VALUED
LOSS FUNCTIONS

This chapter obtains bounds on the risk for functions from a given set of
real-valued functions.
We will distinguish between three cases:

1. The given set of functions is a set of totally bounded functions.

2. The given set of functions is a set of totally bounded nonnegative func-
tions.

3. The given set of functions is a set of arbitrary nonnegative functions (it
can contain unbounded functions').

In the first and the second cases we obtain the bounds as a direct gener-
alization of the bounds derived in Chapter 4 for sets of indicator functions.

In the third case we obtain bounds using some new concept that charac-
terizes the tails of the distributions of a set of random variables &, = Q(z, «),
a € A, induced by the unknown distribution function F(z) and the functions
in the set Q(z,a),a € A.

On the basis of these bounds, we will describe the generalization ability
of minimizing the empirical risk in the set of real-valued functions.

5.1 BOUNDS FOR THE SIMPLEST MODEL: PESSIMISTIC CASE
Consider again the problem of minimizing the risk

R(a) = /Q(z,a)dF(z) (5.1)

! This case is important for regression estimation problems.

183
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on the basis of empirical data
L0052y,

where now Q(z,a), a € A, is a set of real-valued functions.
As before, to minimize risk (5.1) we minimize the empirical risk functional

| -

Remp(a) =

£
306 @) (5.2)
i=1

over the set of functions Q(z,a), a € A.
Let the minimum of the risk (5.1) be achieved on the function Q(z, ayp)
and the minimum of the empirical functional (5.2) on the function Q(z, ay).
We are looking for the answers to two questions:

1. What value of risk is provided by the function Q(z, a,)? To answer this
question we have to estimate the value R(ay).

2. How close is the obtained risk to smallest possible for a given set of
functions? To answer this question means to estimate the difference

A(ag) = R(ay) = R(ag).

In Chapter 4 we answered these questions when Q(z,®), a € A, was a set
of indicator functions. The goal of this chapter is to get the answers to the
same questions for a set of real-valued functions.

As before, we start our study with the simplest model—that is, the case
where a set of real-valued functions contains a finite number N of elements
Q(Z,ak), k= 1,2,...,N.

Let us estimate the rate of uniform convergence of means to their expec-
tations over this set of functions

]
P{IS:EN (/Q(z o) dF(2) — ZgQ(zi’ak)) > e}
N ¢
< P{(/Q(z,ak)dF(Z)— ZQ(zi,au) >s}
i=1

k=1

4
<N sup P{(/Q(z,audff(z)—%ZQ(zi,ak>) >s}. (53)
i=1

L<k<N

o | =

In Chapter 4, we estimated the probability of large deviations using additive
Chernoff inequalities. (See Chapter 4, Egs. (4.4) and (4.5).)
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Here for the real-valued bounded function
A< Q(z,) < B,

we use Hoeffding’s inequalities:

1< 262
P {(/Q(z,ak)dF(z) - z;Q(Ziaak)) > 8} <CXP{—W}’

(5.4)
¢ £
P {(%gg(a,ak) - /Q(z,ak)dF(a) > 8} <exp{*(;_—fl)z}’
(5.5)

which are generalizations of the additive Chernoff inequalities. Using Hoeff-
ding’s inequality (5.4), we obtain from (5.3)

2&%
{érEN (/Q(z ak)dF(z)—-ZQ(z,,ak)) >€}<Nexp{ (B——A)z}

As in Chapter 4, one can rewrite this inequality in the equivalent form:
With probability 1 — 7 simultaneously for all N functions in the set Q(z, ay),
k=1,2,...,N, the inequality

£
InN -1
>0k ) < (B - 4) g

Nl»—k

/ 0z, o) dF(z) —

is valid.

Let Q(z, ak(p)) be a function from our finite set of function that minimizes
the risk (5.1), and let Q(z, ax(s)) be a function from this set that minimizes
the empirical risk (5.2). Since the obtained bound is valid simultaneously for
all functions in the set, it is true as well for the function Q(z, ay).

Thus with probability at least 1 — n the following inequality

‘ InN —1nn
Z Oz, ak(ﬂ)) +(B —A) 7 (5.6)
i=1

| =

/ 0(z, are)) dF (2) <

is valid.

This inequality estimates the value of the risk for the chosen function
Q(z, axy)- It answers the first question about estimating the risk for the
function which minimizes the empirical risk in the simplest model.

To answer the second question (how close is the risk for the chosen func-
tion to the minimal one), note that for the function Q(z, ay)) which mini-
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mizes the expected risk (5.1), Hoeffding’s inequality

1 ! e/
P {Z EQ(Ziaak(())) - /Q(Z,ak(o))dF(Z) > 8} < CXP{—zm}

(5.7)
holds true.
From this inequality we find that with probability 1 — 7 the inequality

—Inn

5 (5.8)

1 ¢
[ oG e dre > ; > Qe ax) = (B - 4)

holds true.
Taking into account that Q(z, ays)) minimizes the empirical risk functional
and therefore

oo | -

¢ /

1

J D 0, k) — 5 Y Qi awey) >0
i-1 i-1

from (5.6) and (5.8), we conclude that with probability at least 1 — 27 the
inequality

—Inn
27

InN —lnn

Alay)) = R(awr)) — Rlagy) < B T

+(B —A)

(5.9)

holds true.

Thus the inequalities (5.6) and (5.9) give complete information about the
generalization ability of the method of empirical risk minimization for the
case when the set of totally bounded functions contains a finite number of
elements: Inequality (5.6) estimates the upper bound on the risk for the
chosen function, and inequality (5.9) estimates how close this bound is to the
minimal possible risk for this set of functions.

These inequalities are generalizations of the analogue inequalities obtained
in Chapter 4 (inequalities (4.9) and (4.12)) for a set of indicator functions.

5.2 CONCEPTS OF CAPACITY FOR THE SETS OF REAL-VALUED
FUNCTIONS

5.2.1 Nonconstructive Bounds on Generalization for Sets of
Real-Valued Functions

Now our goal is to generalize the results obtained for the simplest model
to the general model, where the set of real-valued bounded functions A <
Q(z,a) < B, a € A, contains an infinite number of elements.
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In Chapter 15 we prove Theorem 15.2, which, for a given probability
measure, estimates the rate of uniform convergence on the set of functions

—0 <A< Q(z,a) < B < oo, a €A,
Theorem 15.2. The inequality

¢
{sup\) /Q(z ) dF(2) — ZQ(zi,a) >g}

ann(/6(B — A), 8) &’ c+Inft
Se"p{( ‘ T36(B-ay ' ¢ )e}

is valid.

In this bound we use the concept of annealed entropy defined in Section
38
HA . (e,8) =InEInN(&;21, ..., 20),

where NA(e;zl, ...y Z¢) is cardinality defined in Section 3.8.
This exponential bound is nontrivial if the equality

. (e,£)
l aﬂl’l
i—l»oo 4

=0, Ye >0

is valid. In Chapter 3 we called this equality the second milestone in learning

theory.
The inequality defined by Theorem 15.2 can be rewritten in the equivalent
form: With probability 1 — » simultaneously for all functions the inequality

R(@) < Remp(@) + /£(£)

holds true, where

HA (e/6(B — A), ) +Inl +¢
4

E(0) =36(B — A)*

Now one can derive the bounds on generalization ability of the machine that
minimizes empirical risk in a set of real-valued functions: With probability

1 — 7 the inequality
R(ar) < Remp(ay) + 4/ E(£)
holds true.

Using Hoeffding’s inequality, one can obtain (exact as it was done in the
last section) that with probability 1 — 27 the inequality

A = R(a,) - inf R(a) < VEWE) + (B — A) ";’7
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holds true. Therefore, using the concept of annealed entropy of sets of real-
valued functions, we can construct the theory of bounds.

We, however, choose another way for developing the theory of bounds of
machines minimizing the empirical risk in sets of real-valued functions. This
way allows us to obtain bounds for sets of unbounded functions. The last
case is important for regression estimation problem.

5.2.2 The Main Idea

In the previous chapter, construction of distribution independent bounds used
a special concept of capacity of the sets of indicator functions: annealed
entropy, growth function, VC dimension. Here to obtain bounds for sets of
real-valued functions we generalize the capacity concept described in Chapter
4.

The idea of these generalizations is inspired by the definition of Lebesgue—
Stieltjes integral. We have already used this idea, when in Chapter 2, Section
2.6 we showed that the problem of risk minimization on the basis of empirical
data can be considered from the point of weak convergence of probability
measures. Now we will repeat this reasoning and go a little further.

According to the definition, the Lebesgue-Stieltjes integral of a measur-
able nonnegative function 0 < ®(z) < B is

¥

¢ . B kB
| @@ dr@) = tim ;P{¢(z)>7},

where

is the probability of event

A(k—:i) ={z: ¢(z)>%}.

We can describe the empirical risk in a similar form:

n—:

1< =Y kB
Z;d)(zi) = llrr;jk 0;» {d)(z) > T}’

where

v{z: P(z) > %}

is the frequency of the event A(kB/n) evaluated from the data zy, ..., z,.
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Let us consider the difference
¢
Z d(z;)

. B . B kB
= nan;Z;P {Cb(z) > 7} — "ILHJOZ v {(b(z) > —}

k=1 k=1

. << B kB kB

_JLTOZ;(P {@(z)>—n—}— {@(z)>—})

gr'linoqCZ- sup (P {P(z) > B} — v {®(z) > B})

Nlr—n

B
/0 ®(z) dF () —

BeE(0,B)
=B sup (P{®(z) > B} - v {®(z) > B})
Be(0,B)
1 I3
= — - = (D -
BB:?(I)?B) (/0{(1)(2) B}dF(z) 7 ;9{ (2) B}) ,

where we consider 8 as a parameter from the interval (0, B). Let us denote
this interval by B.
Thus we derived

l
[e@dr@ - ;3" o)
=1

¢
< Bsup (/ 6{d(z) — B}dF(z) — %Z 0{d(z) — B}) . (5.10)
i=1

BeB

Below, to estimate the rate of uniform convergence for the set of bounded
functions A < Q(z,a) < B,a € A, we use the following inequality

{sup (/ Q(z,a)dF(z) — - ZQ(Z,,Q)) > e}

a€A

<P{ sup ( / H{Q(Zwa)—ﬁ}dF(Z)—liB{Q(zi,a)—B})
- a€EA,BEB ¢ i=1

> =~ A}. (5.11)

This inequality following from (5.10) is the basis for our generalizations. It
shows that for any £ > 0 the probability that the largest deviation of averages
from their expectations over a set of real-valued bounded functions A4 <
Q(z,a) < B, € A, exceeds ¢ is less than the probability that for the set
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of indicator functions 8 {Q(z;, a) — B}, a € A, B € B, the largest deviation of
frequencies from their probabilities exceeds ¢/(B — A).

In previous chapter we obtained for a set of indicator functions the bounds
on the probability of the last event (bounds on the rate of uniform conver-
gence). Using these bounds we can obtain the bounds on the rate of conver-
gence for a set of real-valued bounded functions.

The following shows how to obtain these bounds but not before we intro-
duce some definitions.

5.2.3 Concepfis of Capacity for the Set of Real-Valued Functions
Definition of the Set of Indicators

1. Let Q(z,a*) be a real-valued function. We call the set of indicator
functions

0 a) - B, pe (inf Ol a)sup0za)).

the set of indicators for function Q(z,a*) (see Fig. 5.1).
2. Let Q(z,a),a € A, be a set of real-valued functions. We call the set of
indicator functions

0@ -, achpeb=(inf0kaup0ia)

the complete set of indicators for a set of real-valued functions Q(z, a),
a €A

Below we assume that complete set of indicators satisfies conditions of
measurability for indicator functions used in Chapter 4.

Note that the set of indicators for an indicator function contains one ele-
ment, namely, the indicator function. The complete set of indicators for any
set of indicator functions coincides with this set of indicator functions.

According to inequality (5.11), one can obtain the bounds for the rate
of uniform convergence of averages to expectations over a given set of real-
valued functions by bounding the rate of uniform convergence of frequencies
to probabilities over the corresponding set of indicators. We develop this idea
in the following text.

We start with generalizations of the three main capacity concepts in-
troduced in previous chapters for sets of indicator functions: the annealed
entropy, the growth function, and the VC dimension.

Annealed Entropy of a Set of Iindicators of Real-Valued Functions.
Let Q(z,a), z € Z, a € A, be a set of real-valued (not necessary bounded)
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KQ (z, a) - B)

----- dt Qz, a), aeA

NV

FIGURE 5.1. The indicator of level g for the function Q(z,a) shows for which z the
function Q(z,«) exceeds g8 and for which z it does not. The function &z «) can be
described by the set of alt its indicators.

functions. Let NA8(zy,...,z,) be the number of different separations of ¢
vectors zy, ..., Z, by a complete set of indicators:

0Q@) - p), e peB=(inf0Gw<p<spOa).

Let the function
HM (21,2 = InN*P (2, ..., 7))

be measurable with respect to measure on z;,...2;.
We call the quantity

HMB(0)y = InENA(z4, ..., 2¢)

ann

the annealed entropy of the set indicators of real-valued functions.

Growih Function of a Set of Indicators of Real-Valued Function.
We call the quantity

GMB(¢) = In max N*B(zy,....2/)

2y enily

the growth function of a set of real-valued functions Q(z,a), z € Z, a € A.

VC Dimension of a Set of Real-Valued Functions. We call the maximal

number A of vectors zj,..., z, that can be shattered by the complete set of
indicators 0 {Q(z,a)— B}, a € A,B € B, the VC dimension of the set of
real-valued functions Q(z,a), a € A.
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Example. The VC dimension of a set of functions that are linear in their
parameters

n-1
fz,a) =Y a¢i(z) +
i=1
equals n, the numbers of parameters of a set of functions.

Indeed, as was shown in Chapter 4, Section 4.11 the VC dimension of a
set of linear indicator functions

n—1
f(e,a) =6 {Zaiqbi(Z) + a“}

i=1

is equal to #. The VC dimension of a set of linear functions is equal to » as
well because the complete set of indicators for this set coincides with the set
of linear indicator functions.

Note that all definitions are given for arbitrary sets of functions (they do
not require that inf; , Q(z,a) > —oo or sup, , Q(z,a) < o). Note also that
these definitions of the different concepts of capacity for sets of real-valued
functions are generalizations of definitions of analogous concepts given in
Chapters 3 and 4 for sets of indicator functions: For sets of indicator functions
they coincide with the old definittons, and for sets of real-valued functions
they define a new concept.

As in the case of indicator functions, these concepts are connected by the
inequalities

HE0 < G50 <hing 1), (.12

where h is the VC dimension of a set of real-valued functions Q(z,a),a €
A. Using these capacity concepts, one can obtain the bounds on uniform
convergence.

5.3 BOUNDS FOR THE GENERAL MODEL: PESSIMISTIC CASE

Theorem 5.1. Let A < Q(z,a) < B, a € A, be a measurable set of bounded
real-valued functions, which set of indicators satisfy conditions of measurability

for Theorem 4.1. Let H2%S(€) be the annealed entropy of the set of indicators.
Then the following inequality is valid:
i a)) }

¢
{sup (/Q(z a)dF(z) - %ZQ (z;
AB
S4exp{(l‘lann€(2€ (B EA ) (513)

acA
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where
1
8* =& — .

¢

The bound obtained in this theorem to within a constant (B — A) coinctdes
with the bound obtained in Theorem 4.1, this bound ts nontrivial if

lim HES o)

f—o00 ¢

=0.

The proof of this theorem is obvious: It follows from inequality (5.11) and
Theorem 4.1.

Inequality (5.13) can be rewritten in the equivalent form (in the same way
done several times before):
With probability 1 — n simultaneously for all functions in a set of real-valued

bounded functions Q(z, a),a € A, the inequality

R(a) < Remp(@) + (B — A)y/£(¢) (5.14)

is valid, where

Hit(26) —lnn/4 1
l T

This inequalities imply that with probability at least 1 — 7 the inequality

E) = (5.15)

R(ag) < Remp(ay) + (B — A)4/E(F) (5.16)

is valid. As before, a;, defines the function which yields the minimal empirical
risk.

Thus we have obtained the first inequality describing the generalization
ability of the learning machine minimizing the empirical risk. To derive the
second inequality we use Hoeffding’s inequality (5.5):

—Inn
2¢

R{ag) > Remp(ao) — (B ~ A) . (5.17)

Taking into account that for the function minimizing empirical risk with prob-
ability 1 — n inequality (5.16) holds, we conclude that with probability at least
1 — 27 the inequality

A(ar) = R(er) ~ R(ao) < (B — A) (\/e(a N ”) (5.18)

is valid.
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The inequalities (5.16) and (5.18) describe the generalization ability of the
learning machine mintmizing the empirical risk in a set of totally bounded
functions for a given probability measure F(z).

As in the case of indicator functions, from these inequalities and inequal-
ity (5.12) one can derive both distribution-free nonconstructive bounds and
distribution-free constructive bounds. To obtain these bounds, it is sufficient
in the inequalities (5.16) and (5.18) to use the expression

G)o@e) ~Inn/4

) = ¢ %

(this expression provides distribution-free nonconstructive bounds), or to use
the expression
h(ln2¢/h+1) —Inn/4

14

(this expresston provides distribution-free constructive bounds).
The derived bounds describe the pessimistic scenario.

E(C) =

5.4 THE BASIC INEQUALITY

The next sections continue to generalize the results obtained for the set of
indicator functions to the set of real-valued functions.
Our goals are:

1. To obtain the bounds on the generalization ability of the empirical risk
minimization induction principle for the set of real-valued bounded
functions which are better than the bounds obtained in the last section.

2. To obtain the bounds on the generalization ability of the principle of
empirical risk minimization for the set of real-valued unbounded func-
tions.

We will obtain these bounds using the basic tnequality to be derived in this
section, which uses the auxiliary function D,(a) defined as follows:

D,(a) = Ax (/P10 @) > ¢} de, (5.19)

where 1 < p < 2 is some fixed parameter and Q(z, a),a € A, is a set of non-
negative functions.

Theorem 52, Let Q(z,a), a € A be a set of the real-valued (not necessary

bounded) nonnegative functions. Let HME (¢) be the annealed entropy of in-
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dicators for this set of functions. Then for any 1 < p < 2 the inequality

y

4
[ 0z, @) dF (@) - }2; 0z, @)

P < sup > g
a€eA DP(a)
HMZ@) &\ ,
ann _ -2/p
< 4dexp { ( 7275 ST+37p 14 (5.20)

is valid.
The inequality (5.20) is nontrivial if

. Hain(0) _
e

Note that this theorem defines bounds for any sets of functions (not nec-
essarily bounded).

5.4.1 Proof of Theorem 5.2

Consider the expression

14
[ 0, dF @) - § 3 0z
i=1
i‘g D,,(a)
. =1 j > 1 i
nll»no]c [g ;P {Q(z,a) > ;;—} - Zl ¥ {Q(z,a) > ;}]
= sup = .

acA Dp(a)

(5.21)

We show that if inequality

_rfoewr 1) ofoca- ]

we (/P{Q(z,a)> ;ll—}

<e (5.22)
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1s fulfilled, then the inequality

sup = <e (5.23)

acA Dp(a

¢
[ 0z )F(@) - 53 0, @)
)

is fulfilled as well.
Indeed, (5.21) and (5.22) imply that

sup
acA p(a

. oc 1 ! i
elimy o ) 7 n ( {Q(Z @) ;}) £Dy(a)

< su = su =&
- aeg P(a) aeE\) DP(a)

{
J Q@ ) dF(z) - ; Z 0z a
)

Therefore probability of event (5.22) does not exceed the probability of event
(5.23). This means that the probability of the complementary events are con-
nected by the inequality

&!»—x

JO(z,a)dF(z) —

4
Z Q(zi, a

P ¢ sup

> & p
acl (CI)

\

SP{ sup P{Q(ZQ>B}_V{Q(ZG>B} }
acA,BeB /P {0(z,a) > B}

In Theorem 4.2* we bounded the right-hand side of this inequality (see Chap-
ter 4, Eq. (4.35a)). Using this bound we prove the theorem.

5.5 BOUNDS FOR THE GENERAL MODEL: UNIVERSAL CASE

Using the results of Theorem 5.2, this section derives the rate of uniform rel-
ative convergence for a bounded set of nonnegative functions 0 < Q(z, @) <
B, a € A; that is, we prove the following theorem.
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Theorem 5.3. The inequality

¢
[ 0,0 dF(2) ~ 3 Y 0(zir )
P = > ¢

VI 0z ) dF(2)

AB
<4exp{(m%(2€)—:—;) l} (5.24)

The bound (5.24) is nontrivial if

v

is valid.

AB
lim Harn () =0.
{—0 ¢
Note also that on the right-hand side the constant B comes in first degree
(rather than in squared as in Hoeffding’s inequality).
Theorem 5.3 is a generalization of Theorem 4.3 obtained for a set of

indicator functions.

Inequality (5.24) can be rewritten in the equivalent form:
With probability at least 1 — 7 simultaneously for all functions in a set of
real-valued bounded functions the following inequality is fulfilled:

R(@) < Remp(a) + 352“) (1 w1+ %;&L;)) ’

HXB 20y ~ 4
(2€)£ Inm/4. (5.25)

From this inequality we find the bounds describing the generalization abil-
ity of the learning machine which minimizes the empirical risk functional:

where

E(0)=4

With probability at least 1 — 7 the inequality

R(ay) < Remp(a) + BE(Y) (1 A1+ ﬁ?&%ﬂ)

is valid, where £(¢) is given by (5.25).
With probability at least 1 — 27 the inequality

A(ar) = R(ay) — R(ag) < B l % +E(0) (1 /14 4RBe;ré€)¥f))}

is valid, where £(¢) is given in (5.25).
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These bounds are dependent on the unknown probability measure F(z). As
before, one obtains distribution-free nonconstructive and distribution-free
constructive bounds by using the following expressions for £(¢):

GMB(2¢) — Inn/4
g bl

£(¢) =4

lnz—g + 1) ~Inn/4
h
g b
where GY8(¢) is the growth function and 4 is the VC dimension of a set of
real-valued functions Q(z,a),a € A.

Theorem 5.3 completes the generalization of the theory obtained for sets
of indicator functions to sets of real-valued bounded functions.

Note that when A =0 and B =1 the bounds on the risk for sets of
bounded real-valued functions coincide with the bounds on risk for sets of
indicator functions. From the conceptual point of view, the problem of min-
imizing the risk in sets of indicator functions (the pattern recognition prob-
lem) is equivalent to the problem of minimizing a risk in sets of real-valued
bounded functions.

A new development of the problem of minimizing the risk from the data
starts when one minimizes the risk in sets of nonbounded functions.

The next section analyzes this case. However, to complete this section,
Theorem 5.3 must be proved.

) :4h(

5.5.1 Proof of Theorem 5.3

This subsection proves a more general version of Theorem 5.3.

Theorem 5.3*. For any 1 < p < 2 the inequality

]
Z Q(Zia a)
P ¢ sup =

i=1
acA </f Q(z,a)dF(z)

\ /

Hao(2¢) &’ 2(1-1/p)
< 4exp{ ( I ¢ (5.26)

’

[ Q(z, @)dF(z) -

o =

> &

is valid.

The proof of inequality (5.26) is based on Holder’s inequality for two
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functions: function! f(z) € L,(a,b) and function g(z) € L,(a,b), where

1/p+1/g=1, p>0,g>0:

1/p b 1/q
/If(zg(ZIdz (/ If(z)l"dz) (/ Ig(z)l"dz) .

Consider the function

D,(a) = [C {/P{Q(z,a) > c} de.

For a bounded set of functions we can rewrite this expression in the form

D,(a) = /OB {/P1O(z,a) > c} de.

Now let us denote f(z) = {/P{Q(z, a) > c} and denote g(z) = 1. Using these
notations we utilize the Holder’s inequality. We obtain

B B I/p
D,(a) = A (/P{Q(z,a) > t}dt < (A P{Q(z,a) > ,}d,) gu-1/m

Taking into account this inequality, we obtain

£
J Q) dF (@) - 73" Qi)
P {sup =l > eBU-1/P)

ac {/J 0z @) dF(z)

J Oz, @) dF(z) - ZQ zi, @)
<P ach [{/P{O(z,a) > t}dt

Using the bound on the right-hand side of this inequality given by Theorem
5.2, we obtain inequality (5.26).

! Function f(z) belongs to space Lgy(a b)if

b
/ [f(z}|* dz < oc.

The values a and b are not necessarily finite.
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5.6 BOUNDS FOR UNIFORM RELATIVE CONVERGENCE

This section starts the analysis of the convergence rate for sets of unbounded
nonnegative functions and proves the following theorem.

Theorem 5.4. Let the nonnegative functions (not necessary bounded) of the
set Q(z,a),a € A be such that the random variables &, = Q(z, a) possess a
finite moment of order p > 1. Then:

1. If p > 2, the inequality

oy | -

[O(z,a)dF(z) -

¢
Z Q(Zis a)
P { sup =

i=]
wwr (/] Orz @) dF(2)

< 4exp { (—fi\—l}zﬁ -~ %2) é} (5.27)

1 p—1 P
“‘”)‘Vz(?——z) |

2. If 1 < p <2, the inequality

> ga(p)

'

is valid, where

¢
J 0z, 0)dF (2) - %-;Q(Z"a)

P ¢ sup > eVy(e)

wh (/] 0r(z,0)dF(2)

H‘\'B(Zf) & 2(1-1
- -1/p)
< 4dexp { ( e 21+2/p) ¢ } (5.28)

is valid, where

Vole) = ‘"/(1 - ﬁl—(pﬁ)

In contrast to the denominator in bound (5.26) from Theorem 5.3, here
the denominator has clear statistical meaning: It is the norm of the function
Q(z, a) in the metric L,(F) [normalized moment of the order p of the random

variable &, = Q(z, a)].
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Note that according to this theorem, using the normalized moment with
different p > 2 on the left-hand side of the inequality affects only the con-
stant in the exponent of the right-hand side of the inequality. However, the
right-hand side of the inequality significantly depends on the order of the
normalized moment p if 1 < p < 2. This fact indicates the importance of
existence of the second moment of the random variables &, = Q(z, a) for
the rate of uniform convergence.

5.6.1 Proof of Theorem 5.4 for the Case p> 2

We prove this theorem first for p > 2 and then for 1 < p < 2.
To prove the first part of the theorem we show that if p > 2 (p is not
necessarily an integer), then the following inequality holds true:

Dy(a) = ~ P{Q(z,a) > c}dc < a(p) 0r(z,a)dF(2), (5.29)
[V i/

- 31"

From this inequality we find that

where

¢
[ 0, @) dF (@)~ 73 0z a)
i=1

P { sup = >

A a(p){/f Oz, @) dF (D)

¢
[0 @) dF()~ 330G, )
i=1

< P <{su > &
neh Dy(a)

The right-hand side of this inequality is bounded by Theorem 5.3. The first
part of this theorem is the equivalent form of the inequality above. Therefore
to prove the theorem it is sufficient to derive the bound (5.29).

To obtain this bound we express the functional R(a) in terms of the
Lebesgue integral:

R(a) = /Q(z,oz)dF(z) = /(;OOP{Q(Z,a) > t}dt.
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Observe that for any fixed « and arbitrary ¢ the probability of the event

{Q(z,a) >t} can be rewritten in terms of the distribution function of the
nonnegative random variable &, = Q(z, ). Namely,

Fo(t) = F{& <t} =P{Q(z,a) <1}
is related to the probability of the event {z: Q(z,a) > t} as follows:
P{Q(z,a) >t} =1 F,(1).

Thus the functional R(a) can be rewritten in the form

R(a) = /tdF,,(t) = /Ox(l — Fy(t)) dt.

Moreover, the pth moment of the random variable £, and the function D, (a)
can be written as follows:

£ = [@@adr@) = [waro=p [ o0~ R a,

0

Da(a) = /Ox VP10(z,a) > 1} dr = /Om (U= Fa(0)) dt.

Now let the m,(a) be a moment of order p > 2

my(a) = /x tPdF, (1) = p/x P71 = F (1) dt. (5.30)

0 0

We obtain a distribution function F,(t) such that D,(«) is maximized for the
fixed mp(a).
For this purpose we construct the Lagrange function:!
L(a) = Da(a) - pmy(a)

:/Oo 1—F(,(t)dt—up/xt”“(1—Fa(t))dt. (5.31)
0 0

We determine a probability distribution function for which the maximum of
L(a) is obtained. Denote

D =1-F,(t), b=upup

and rewrite (5.31) using these notations:

L(a) = /Ox(q) — bt?"' % dt.

' For a review of optimization techniques using Lagrange functions see Section 9.5
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The function @ at which the maximum of the functional (5.31) is attained is

defined by
1 —2bptP~ld =0,

p--1
()"
t
where tyg = (1/2pb)P~ 1.
Since & varies between 1 and 0 as ¢ varies between 0 and oo, the optimal
function @ = ®(¢) is

which implies that

t

1 if t <ty,
(1) = Pl
2 (‘_ﬂ) it ¢ > 1.
We now compute max D,(«) (recalling that p > 2):

p-1 _
(’7‘)) dt = t(,z _;. (5.32)

max D;(a) = /Ox D(t)dt =1ty + /oo

)

On the other hand, expressing m,(a) in the terms of f, we have
my(a) = p/ P~ 2 (t) dt
0

[ oo _
= p/ ! dt+/ P 1D (1) dt = 21f (p—l) . (5.33)
0 P p—2

)

Substituting the value of ¢, obtained from (5.32) into (5.33), we arrive at

sup o2

o UYma(a) V2

which implies that for any a € A and p > 2 the inequality

Dy(e) _ ¢[1 (,;-1)"",

Dy(a) < a(p)y/mp(a)

ot fp -1\
CRE (=)
Therefore the probability of event

{Sup R(@) — Remp(a)

acA mp(a)

holds true, where

> a(p)s}
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does not exceed the probability of event

sup

{oup T fonl) o},

According to Theorem 5.3, this fact implies the inequality

. {Sup R(@) = Remp(@) _ a(p)g} - exp{(”_“g@f_) ~ ;) g}.

acA /mp(a)

The equivalent form of this bound is the assertion of the first part of the
theorem.

5.6.2 Proof of Theorem 5.4forthe Case 1 <p< 2

To prove the second part of the theorem, consider the difference

R(a) = Remp() = nliﬂ)g;% (P {Q(z,a) > %} -v {Q(Z,a) > %})
= /an (P{Q(z,a) >t} —v{Q(z,0) > t})dt.  (534)

Assume that for all &« € A the condition

R(a) ~ Remp(a) < eDpla) = & /000 (/P {Q(z, @) > t}dt (5.35)

is fulfilled. Moreover, the inequality
R(@) - Remg(e) SR@) = [ P{QG.)>1hde (530
0

is always valid. To compute the integral (5.34) do the following: For such ¢
that

P{Q(z,a) >t} > &/¥-D

apply the bound (5.35); otherwise, if
P{Q(z,a) >t} < /P70

apply the bound (5.36).
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We thus obtain
R(a) - emp(a)

gs/ )\W”{’/l— a(z)d:+/ ”M(l—F(t))dz (5.37)

We now find the maximal value (with respect to the distribution F,(t)) of the
right-hand side of inequality (5.37) under the condition that the pth moment
takes on some fixed value m,(a); that is,

/ t? dF, (1) = p/ P (1 = Fu(1)) dt = mp(a).

0 0

For this purpose we again use the method of Lagrange multipliers, denoting
O =Ph (1) =1 - Fo(r).

Thus we seek the maximum of the expression

L(a):/ E(Ddt+/ e(b”dt—;u/ PP dr.
G>elitp-h G<el/p-1 0

Represent L(«) in the form
L(a) = / (e®F — ut?™' ") dt + / (e® — utP~'®") dt,
b>elilp-D b<elip D

where the maximum of the first summand defines the function & in the
domain ® > £!/®-1 and the maximum of the second summand in the domain
& < ¢!/?-1 The first summand attains its absolute maximum at

l
B(r) =
pupt
However, taking into account that & is a monotonically decreasing function
from 1 to £'/?~Y we obtain
if 0<r< ryf =
Pr
Y R R AT
prt pu pu
The second summand attains its maximum in the domain ® < £!/®~Y at the

function
o o o) 1 s/ 1
Ve if Y — <1< V=
PHr M

0 if 1> l.
I

d(1) =

P(t) =
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4
1 d0<t<PM8
/1
,;—1_8_}_ fpl <
V put p

r/e if "y YL

t <
pu p

We thus finally obtain

IN

P(r) = <

IA

aﬁ

)

p-1

0 if t>

® |-

We now express the pth moment m,(«a) in terms of the Lagrange multiplier
w. For this purpose we compute the pth moment:

- x (e p/p-1) In s
mp(a) = p/(; t? D (tydt = (;> (1 - T\Vﬁ—(P——l)) . (5.38)

Analogously we compute the quality

p-l /4
/ AV

0

Lo ()7 ()

(5.39)

R(a) — Rcmp(a) <e¢ d(t) dt

[t follows from (5.38) and (5.39) that

R(t) = Remp(a)

\p/ mp(a)

< eVp(e), (5.40)

where we denote

v(w-d<y~——ﬁﬁ——>pl
A=V )

Thus we have shown that the condition (5.40) implies the condition (5.35).
Therefore the probability of the event

R(a) — Remp(a)
(o > e
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does not exceed the probability of event

R(a) - Rcmp(a)
{ou SO > e

Therefore Theorem 5.2 (Eq. (5.20)) implies the inequality

p {Su R(a) - Remp(a)
acA

> gV,
P/mp(a) & P(E)}
HA'B(%) & 201-1/p)

The equivalent form of this bound is the assertion of the second part of our
theorem.

5.7 PRIOR INFORMATION FOR THE RISK MINIMIZATION PROBLEM
IN SETS OF UNBOUNDED LOSS FUNCTIONS

According to the law of large numbers, if a random variable ¢ has an expec-
tation E'¢, then the mean
¢
- 1
&= Z} £

of ¢ independent identically distributed examples ¢, ..., & converges in prob-
ability to this expectation when £ increases.

However, the rate of convergence can be arbitrarily slow. In this case one
cannot estimate the expectation using the mean & even if ¢ is sufficiently
large.

Example. Let the random variable £ take on the two values: 0 and K. Sup-
pose that P{¢ =0} =1 — £ and P{£ = K} = £ and suppose that ¢ is so small
that with high probability 1 — 6 the random independent sample &, ..., § con-
sists solely of zeros and hence the mean of this sample is zero. Probability of
this event is (1 — &)’ =1 - 8.

On the other hand the expectation of the random variable ¢ equals E¢ =
€K and, depending on value K, admits arbitrary values including the large
ones (for example, when K = 1/¢%).

Thus in our example, despite the fact that almost any training set contains
only zeros, one can come to no reliable conclusions concerning the value of
expectation. This happened because the distribution of the random variable
was such that the “very large values” of this random variable have “suf-
ficiently large probability,” or, as some statisticians say, the distribution of
random the variable £ has a “heavy tail.”
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To get a bound we have to possess some prior information about the
“tails™ of the distribution of our random variable.

From the classical statistics it is known that in order to get a bound on
the means it is sufficient to know the absolute moment of any order p > 1 of
the random variable £. In particular, if one knows the moment E£? of order
p = 2 of the random variable ¢, then using the Chebyshev inequality one can
estimate the deviation of the sum of i.i.d. values as follows:

¢
1 E&
—-= . < 2
P{'Eg €;§‘ >a}_ P
In the case when one knows moment of order 1 < p < 2, the (Barh~Essen)
inequality
RN E|lP
P{ E¢ - Z;g > s} <Cpir

holds true, where 0 < C, < 2.

In the last section we showed that the existence of a moment of order p > 1
for all functions of the set Q(z, a), « € A, with finite VC dimension implies
uniform relative convergence of means to their expectations. Theorem 5.4
estimates the rate of this convergence.

However, to obtain from this rate of convergence a bound on the risk and a
bound for the rate of generalization ability, it is necessary to take into account
some general quantitative characteristics of admissible “tails” of distributions.
In the case of a set of bounded nonnegative functions, this characteristic was
B, the bound on the values of functions (the tails of the distributions of a set
of random variables &, = Q(z,a), a € A, is such that P{£, > B} = 0). The
bound B is the parameter in the corresponding inequality.

In this section we consider the characteristic of the tails of a set of distri-
butions of nonnegative random variables 7, that depends on the parameter

p, namely,
{EE
sup =T, (5.41)
acA Ega P

To show that the characteristic (5.41) describes properties of tails of distri-
bution, let us consider a couple of examples.

Chapter 1 considers the problem of regression estimation as a problem of
minimizing of the risk functional with the loss function

0@z, a) = (y - f(x,a))*.

Suppose that the distribution on the space z = y, x is such that for any fixed
a € A the quantity t, =y — f(x, a) has normal distribution N(u,,a?) (for
parameters of distribution depend on a).
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Let us estimate (5.41) for p = 2. The quantity 7, is bounded by v/3 (inde-
pendent of parameters of distribution)

VE

Etl
fe [oreal g

(ta)? exp (ta — 50)2 dta— 3.
S s

E(ty - #0)4
(E(ta — pa)?)?

the following assertion is true:

T =

Indeed since

=3

VEE  VE (ta - pa) + o)’

2 = 2

Ery E((ta = pa) + pa)
\/m4+6m§,u121+,u‘}1 \/§m§+6m§pi+ui <3
N mp + [.Li - mp + "L%x - ’

where we have denoted my = E(ty — po)* and my; = E(te — pa)®.
If the variable ¢, is uniformly distributed on (b — a,, b + a,), then taking
into account that
E(ta —ba)* 9
(E(ta - ba)2)2 ; 5

one can analogously show that 7, has a bound:
2a

9
1 b+a s B \/;
— t; diy
L[
Finally, if the distribution of 1, is Laplacian (double-exponential), then

1 [ la — 1
4 _
2A/ texp{ ‘ A ‘}dta
Ve

- < V6.
ZA/ texp{ ’—A—’}dta

1 b+a
td dt,

i)
{
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Therefore 7, describes general properties of distributions as a whole. So
a priori information that 7, < 3 means that any normal distributions, any uni-
form distributions, any Laplacian distribution, and many others (with “well
behaved tails”) are admissible.

Definition. We say that a set of nonnegative random variables &, € A has:

e Distributions with light tails if there exists a pair (p > 2, 7, < 00) such
that the inequality (5.41) holds true.

o Distributions with heavy tails if there exists a pair (p > 1, 7, < o0) and
there is no pair (p > 2, 7, < o0) such that the inequality (5.41) holds
true.

Observe that if p < g, then

{E& < E&
(Liapunov inequality) is valid and consequently

Tp < Tq-

5.8 BOUNDS ON THE RISK FOR SETS OF UNBOUNDED NONNEGATIVE
FUNCTIONS

Consider the set of nonnegative functions Q(z, a), « € A. Suppose that the
set of functions and the unknown distribution function F(z) arc such that
corresponding distributions of the random variables £, = Q(z, a) have light
tails. This means that we are given p > 2 and 7* such that

(/] 07z, )dF (2)
wch JQ@ a)dF ()

[n this case from Eq. (5.42) and the results of Theorem 5.4 for p > 2 one can
immediately conclude that

[0z, @)dF(z) - 3, O(zi, @)
i {i‘é‘i’ [0 @) dF ()

AB 2
cvo 8220 2

=, <1 (5.42)

> T"a(p)a}

4 4

e} , (5.43)

where
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Indeed, from the (5.42) we conclude that
4 1 ’
J QG @) dF(2) - 5 Z} 0(zi,a)

P < sup >‘rer

a [ O(z,a) dF (2)

£
J 0, @)dFE) - 3 3 Ot a)
<P J sup = > €
‘ J 0°(z, @) dF(2)

\ 7

The right-hand side of this inequality can be bounded using the results of the
Theorem 5.4.

Suppose now we face the case with heavy tails. This means that we are
given 1 < p <2 and 7" such that

fOr(z, a)
wer [0 @)

In this case from Eq. (5.44) and the results of the Theorem 5.4 for the case
1 < p €2, one can analogously derive that

= Tp < T*, (5.44)

(

¢
JO(z,a)dF(z) - Y Oz, @)

i=1
i et Oz, a)dF(z)

> 7" eVp(€)

1 ¢
[ Q@ @) dF(2) - 7 ) Oz a)
< P{sup =l > eV,y(e) ¢
: {107z, 0) dF (2)
Hayo (2 2 B
< 4exP{ l !32(1—(1/1))) - 21i2/p] 0 Up)} ' (5.45)

where

Vi) = "/(1 D)

Inequalities (5.43) and (5.45) can be rewritten in equivalent form:
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1. For any p > 2 with probability 1 — 5 simultaneously for all Q(z, a),
a € A, the inequality

4
230 )
=1
/Q(z,a)dF(z)< e 750 | (5.46)

holds, where
HEP(26) ~Inn/4
g b

(5).=1% itsz0

2. Forany 1 < p < 2 with probability 1 — n simultaneously for all Q(z, «),
a € A, the inequality

&) =14

1 ¢
EZQ(ZI‘,G)
i=1

1— 7 JE DV, (E,(8))

/ O(z, a)dF(2) < , (5.47)

o]

hold, where
Ha (20) —Ing

142
Ep(g) =2 e £2-2/p

From these inequalities we find that in the case of light tails (p > 2) with
probability 1 — 7 the risk for the function Q(z,a,), which minimizes the
empirical risk, is bounded as follows:

1 £
ZZQ(Ziiaf)

i=1
/Q(z,ap)dF(z) < (= rap) /50 . (5.48)

0

However, if the tails of distributions are heavy (1 < p <2), then with prob-
ability 1 — 7 the risk is bounded by inequality

1 I3
ng(Znaz)
1-7/E,(E)V,(Ep(E))

/ Q(z,ap)dF(z) < (5.49)

e ]
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To get a bound on deviation A(a;), note that for 1 < g < 2 the Bahr-Essen
inequality
P {

holds true (see Section 5.7). Taking into account (5.44) and Liapunov in-

equality
VEQI(z,0) _ (/EQP(z,a)

q
Yot
gaf9-1

I3
EQ( ) - 3 3 0t )
i=]

<
EQ(z,a) ~ EQGa) = 1P
one obtains for 1 <g <2and g <p
¢
1 (EQ(z, a9))"
P{EQ(Z’QO)—EZ;Q(ZhaO) >8}<27qw.

The equivalent form of this inequality is as follows: With probability at least
1 — 7 the inequality

B 2Y4rEQ(z, a)

OV (5:50)

4
EQ( ) > § 3 Qe

is valid.
For the case p > 2 we have that with probability at least 1 — n the
inequality

1 — ra(p)/&:(¢)

is valid. Taking into account (5.50) for ¢ = 2 and inequality

A(ar) = R(ag) — R(ag) < (Remp(aﬂ — R(a) + R(O‘O)T"(P)\/gz(e))

Remp(a¢) — Remp(ao) < 0

we obtain that with probability at least 1 — 27 the inequality

/ —1/2
A(ay) < TR(p) (a(pl)_ fz((i)’:/% ) (5.51)

is valid. For the case 1 < p < 2, choosing g = p one analogously obtains

VE @V, (E,(8)) +2!/Py=1/pg=(1-1/p) 55
1 - 1/E(0O)V,(E,(8)) N '

A(ay) < TR(ap) (
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Therefore inequalities (5.48), (5.49), (5.51), and (5.52) describe the gener-
alization ability of the learning machine minimizing empirical risk in a set of
real-valued unbounded functions.

These inequalities contain expression £(¢) that depends on the unknown
distribution function.

To obtain distribution-free bounds on the generalization ability, one has
to use instead of the annealed entropy HAB (€) its upper bound obtained on
the basis of the growth function GE (¢) or the VC dimension h of a set of
real-valued functions Q(z, a), @ € A; that is, in bounds (5.48). (5.49), (5.51),
and (5.52) one has to use instead of & (¢) the expressions

_ GMB(2¢) —Inn/4

82(8) =4 7 )
GM\B(2¢) — Inn/4
g[’(e) - gz_z/p
or the expressions
£:(0) = 4h(]n21,’/h +1)~1In 71/4’

4

h(In2¢/h +1) ~ Inn/4

E,(6) =4 "

5.9 SAMPLE SELECTION AND THE PROBLEM OF OUTLIERS

This section discusses the idea of sample selection, which is exclusion of
several elements from a given sample to determine using the remaining set,
the function that yields the smallest guaranteed risk.

Note that for the pattern recognition problem the selection of a training
set does not make a big difference: Minimization of the empirical risk over
the entire sample, as well as doing so over a subsample of it obtained by
excluding a minimal number of elements in order that the subsample could
be divided without error, leads to the very same decision rule. This is a
corollary of the fact that the loss function for pattern recognition takes on
only two values 0 and 1. In regression problems, however, the loss function
Q(z, «) takes an arbitrary positive values, and therefore an exclusion of some
element z may substantially change the solution as well as the estimate of
the quality of the obtained solution.

Let a sample

L1y -yl (553)
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be given. Consider the following

Hi, o)=Y Cp

m=0

different problems of estimating the functional dependences based on empir-
ical data
FA TR 2,’, ceey 2[, ey g

The notation Z; indicates that the element z; has been excluded from (5.53).
The problems differ from each other only in that for each of them the func-
tional dependence is estimated from its own sample obtained from (5.53) by
excluding at most ¢ elements. (One can construct from (5.53) C}" different
subsamples consisting of ¢ — m examples. Thus altogether there are H(r,?¢)
different problems.)

According to the bound (5.46) for each of the H(¢, £) problems with prob-
ability 1 — n simultaneously for all « € A the inequality

1 -t

{—1 ;Q(Zha)
1—ra(p)VEE — )

X

R(a) <

holds, where 1, is the number of vectors excluded from the training data for
the kth problem. Consequently, the inequalities

-1

/ _1 i ;Q(Z“a)
(1 —1a(p)\/E(€ — ;) +InH (1,€) /(¢ - ’k))+

R(a) <

are valid with probability 1 — 7 simultaneously for all functions Q(z, a),
a € A,in all H(z,¢) problems. Using this bound one can search for the min-
imum of the right-hand side over all H(t,¢) problems.

In the last formula one can use the bound on H(t,¢) derived in Chapter
4, Section 4.11:

InH(t,€) <t (ln§+1>.

Thus, in searching for the best guaranteed solutions using empirical risk min-
imization method, one can try to exclude some subset of training data to
obtain the best bound.

The excluded data (which cause a decrease in the guaranteed minimum
of risk) can be called outliers.
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5.10 THE MAIN RESULTS OF THE THEORY OF BOUNDS

In this chapter we obtained the main bounds describing the generalization
ability of the learning machines.

To obtain these bounds we introduced several general (which are valid for
any set of functions) concepts of capacity.

We showed that one has to distinguish between two different cases of the
problem of risk minimization from empirical data: the case where the admis-
sible set of functions is a set of totally bounded functions (we considered the
case 0 < Q(z,a) < B, a € A) and the case where the admissible set contains
unbounded functions.

In the first case one obtains the same type of bounds as in pattern recog-
nition: namely, with probability at least 1 — n the bound

R(ap) < Remp(ag) + Bi(e) (1 /14 %ﬁg@)

is valid and with probability at least 1 — 27 the bound

BE(¢ 4Rep ]
A(af’)SRemp(a)+—2(—)(l+ 1+#f€6)q))+ ;71

is valid, where £(¢) to within a small value is ratio of capacity function over
number of observations

capacity characteristic

E(l) = 7

(5.54)

In (5.54) one can use any capacity function determined in this chapter.

In the second case we obtained bounds for nonnegative loss functions
using a priori information about the tails of distributions that concentrate in
the pair! (p > 1, and 7,):

sup YEQP(z, a) <

oy EQ(z,a) — P

Knowing the value 7,, we derived that with probability at least 1 — 7n the
inequality

Remp(r) L=y
R(a')g(l—m(p)\/mL» a(p) = 2( —2)

p

tHere we consider the case p > 2 only to simplify formulas.
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is valid and with probability at least 1 — 27 the inequality

~1/2
s <o (4250

is valid, where £(¢) is determined by expression of type (5.54).

Expression (5.54) is one of the most important points of the theory. In the
extreme case when one knows the probability measure F(z) and can evaluate
the annealed entropy, one obtains the distribution-specific bounds using

HAB(26) —1Inn/4
- .

E@l)=4

In another extreme case when no a priori information is found about the
probability measure, the distribution-free bounds are determined on the basis
of the growth function GMB(¢) of a set of real-valued functions Q(z,a),
a € A:

GMB(2¢) — Inn/4
- .

To obtain constructive distribution-free bounds we found the upper bound
for the growth function using the VC dimension concept':

E() =4

In2¢/h+1 —Inn/4

£ 4=+ —

Moreover, the theory shows a clear way how to construct rigorous distribu-
tion-dependent bounds. To get nonconstructive rigorous bounds, one has to
use the expression

MABQ2eY — Inn/4
]

E()=4
with the generalized growth function

MA'B((Z) =supln EpNMB(zq, ..., 20).
PeP

To make the bounds constructive, one has to find a way to obtain the bound
for the generalized growth function that is better than one based on the VC
dimension.

1t is remarkable that to within a small value this functional form depends on the ratio ¢/h of
the number of observations over the VC dimension of the set of functions.






THE STRUCTURAL RISK
MINIMIZATION PRINCIPLE

This chapter addresses methods for controlling the generalization ability of
learning machines that use small size samples of training instances.

We consider the sample of size ¢ to be small if the ratio ¢ /A (ratio of the
number of the training patterns to the VC dimension of the set of functions
of the learning machines) is small, say £/h < 20.

The induction principle for learning from samples of small size, the so-
called Structural Risk Minimization (SRM) principle is introduced first. In
contrast to the Empirical Risk Minimization principle, which suggests that
we should minimize the empirical risk at any cost, this principle looks for
the optimal relationship between the amount of empirical data, the quality
of approximation of the data by the function chosen from a given set of
functions, and the value that characterizes capacity of a set of functions. The
SRM principle finds the function that for the fixed amount of data achieves
the minimum of the guaranteed risk.

In the case of the pattern recognition problem, we compare the SRM
principle to another small sample size induction principle, namely, the so-
called Minimum Description Length (MDL) principle.

Then we show that the SRM method is always consistent and we derive a
bound on the asymptotic rate of convergence.

At the end of the chapter we consider the problem of minimizing the
Local Risk Functional, whose solution is based on the SRM principle.

6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION
INDUCTION PRINCIPLE

In the last two chapters we obtained the bounds on the risk which are valid
simultaneously for all functions in a given set of functions.

219
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We proved that with probability at least 1 — n simultaneously for all func-
tions from the set of totally bounded functions 0 < Q(z, @) < B, a € A, with
finite VC dimension £ the (additive) inequality

R(a) < Remp(a) + %(” (1 41+ %&f)")) 6.1)
holds true,! where
h (Ingh{ + 1) —Inn/4
E(€) =4 7 : (6.2)

We proved also that if a pair (p, 7) exists such that for all functions from
the set of nonnegative (not necessarily bounded) functions Q(z, a), @ € A,
with the VC dimension /4 the inequality

n
VEORGa) _
EQ(z,a)
holds true (the corresponding set of random variables contains only light

tails), then with probability at least 1 — n simultaneously for all functions
Q(z,a), x € A, the (multiplicative) inequality

p>2 (6.3)

Remp(a)
fle = (1—acp)nfs‘(e))w’
p — p-1
a = 3 (2=) (64)

holds.}

Now using these inequalities we would like to control the process of min-
imizing the risk functional on the basis of fixed amount of empirical data.

The simplest way to control this process is to minimize the value of em-
pirical risk. According to inequalities (6.1) and (6.4) the upper bound on the
risk decreases with decreasing the value of empirical risk. This is the reason
why the principle of empirical risk minimization often gives good results for
large sample size. If it happens that £/h is large, then the value of actual risk
is determined by the value of empirical risk. Therefore to minimize actual
risk one minimizes the empirical risk.

However, if £/h is small, a small value of empirical risk Remp(a,) does not
guarantee a small value of the aclual risk. In this case, Lo minimize the aclual
risk R(«) one has to minimize the right-hand side of inequality (6.1) (or (6.4))

tTo control the generalization ability of learning machines we need constructive bounds on the
risk. Therefore in this chapter we will use distribution free constructive bounds.

'Here only for simplicity of notation we consider the case p > 2. The case 1 < p < 2 can be
considered as well.
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simultaneously over both terms. Note that the first term in inequality (6.1)
depends on a specific function of the set of functions, while for a fixed number
of observations the second term depends mainly on the VC dimension of the
whole set of functions.

Therefore to minimize the right-hand side of the bound of risk, (6.1) (or
(6.4)), simultaneously over both terms, one has to make the VC dimension
a controlling variable.

To do this we consider the following scheme.

6.1.1 Principle of Structural Risk Minimization

Let us impose the structure S on the set S of functions Q(z, a),a € A, with
a structure S. Consider the set of nested subsets of functions (Fig. 6.1)

S5cSc---CSa, .., (6.5)

where S; = {Q(z,a): a € A}, and
s =S
k

Consider admissible structures—the structures that satisfy the following
properties:

1. Any element S, of structure S has a finite VC dimension A,.
2. Any element S; of the structure (6.5) contains either

(i) a set of totally bounded functions
OSQ(Z’a)SBka aeAk

(ii) or a set of nonnegative functions Q(z, @), a € Ay, satisfying the

inequality
VEQr(z, @)

sup <7 < oo. (6.6)

acA, EQ(Zv a)

FIGURE 6.1. A structure on the set of functions is determined by the nested subsets of
functions.
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3. The set S* is everywhere dense in the set S in the L (F) metric! where
F = F(z) is the distribution function from which examples are drawn.

Note that in view of (6.5) the following assertions are true:

1. The sequence of values of VC dimensions h; for the elements §; of
the structure S is nondecreasing with increasing k

hy Shy <o <hy <o

2a. The sequence of values of the bounds B, for the elements S; of the
structure S 1s nondecreasing with increasing k:

Bi<By<---<B,<--. 6.7)

2b. The sequence of values of the bounds 7, for the elements S, of the
structure S is nondecreasing with increasing k

Tl§72<"'<7n§"'

Denote by Q(z, af) the function that minimizes the empirical risk in the
set of functions S;. Then with probability 1 — n one can assert that the actual
risk for this function is bounded as

ak
R@ﬂg&wﬁ%ﬁwﬂ)l+%wﬂ%%ﬁl, (6.8)
or as
Remp(ak)
R(a}) < PAT , 6.9
(a')*(l-a(p)rk\/m)x (69)
where
hk(m%£+l)—hnﬂ4
E(0)=4 kg . (6.10)

' We will need this property for asymptotic analysis of SRM principle, when structure contains
an infinite number of elements.

The set ™ is everywhere dense in the set S in L, (F) metric if for any § > 0 and any function
Q(z,a) € S there exists a function Q(z,a*) € §* such that

p(Q(z.a),Q(z.a%)) = /IQ(Zwa) - Q(z,a")|dF(z) < 8.



6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION INDUCTION PRINCIPLE 223

A

Bound on the risk

Confidence interval

Empirical risk
.

h

FIGURE 6.2. The bound on the risk is the sum of the empirical risk and of the confidence
interval. The empirical risk is decreased with the index of element of the structure, while
the confidence interval is increased. The smallest bound of the risk is achieved on some
appropriate element of the structure.

For a given set of observations zy, ..., z, the SRM method chooses the element
Sy of the structure for which the smallest bound on the risk (the smallest
guaranteed risk) is achieved.

Therefore the idea of the structural risk minimization induction principle
is the following:

To provide the given set of functions with an admissible structure and then
to find the function that minimizes guaranteed risk (6.8) (or (6.9)) over
given elements of the structure.

To stress the importance of choosing the element of the structure that pos-
sesses an appropriate capacity, we call this principle the principle of structural
risk minimization. It describes a general model of capacity control. To find
the guaranteed risk, one has to use bounds on the actual risk. As shown in
previous chapters, all of them have to contain information about the capacity
of the element of the structure to which the chosen function belongs. [n this
chapter, we will use the bounds (6.8) or (6.9).

Section 6.3 shows that the SRM principle is always consistent and defines
a bound on the rate of convergence. However, we must first describe the
Minimum Description Length principle and point out its connection to the
SRM principle for pattern recognition problem.
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6.2 MINIMUM DESCRIPTION LENGTH AND STRUCTURAL RISK
MINIMIZATION INDUCTIVE PRINCIPLES

6.2.1 The Ildea About the Nature of Random Phenomena

In the 1930s Kolmogorov introduced the axioms of probability theory. Sub-
sequently, probability theory became a purely mathematical (i.e., deductive)
science. This means that developing the theory became the result of formal
inference, based on some rules of inference. Axiomatization of the theory,
however, removed from consideration a very important question, namely, one
about the nature of randomness. The theory of probability does not answer
the question, What is randomness? It simply ignores it by using the axioms
about given probability measures (see Chapter 2). Nevertheless, the question
remains and needs to be answered.

Thirty years after axiomatization of the probability theory Solomonoff
(1960), Kolmogorov (1965) and Chaitin (1966) suggested the model of ran-
domness. This model was constructed on the basis of a new concept, the
so-called algorithmic (descriptive) complexity.

The algorithmic complexity on the object is defined to be the length of the
shortest binary computer program that describes this object. It was proved
that the value of algorithmic complexity up to an additive constant does not
depend on the type of computer. Therefore it is a universal characteristic of
the object.

Now one can compare the given length of object description with its algo-
rithmic complexity. The main idea is as follows:

To consider a relatively large string describing an object to be random if
algorithmic complexity of an object is high—that is, if the given descrip-
tion of an object cannot be compressed significantly.

Shortly after the concept of algorithmic complexity was introduced, first
Wallace and Boulton (1968) and then Rissanen (1978) suggested that we use
the concept of algorithmic complexity as a main tool of induction inference
of learning machines; they suggest an induction principle that was called the
Minimum Message Length (MML) principle by Wallace and Boulton, and
the Minimum Description Length (MDL) principle by Rissanen.

6.2.2 Minimum Description Length Principle for the Pattern
Recognition Problem

Suppose we are given training data. That is, we are given ¢ pairs containing
the vector x and the binary value w

(@1,Xx1), .., (g, Xp) (6.11)
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(pairs drawn randomly and independently according to some probability mea-
sure). Consider two strings: the binary string

Wy, ...,Wy (612)

and the string of vectors
X1y -y Xp. (613)

The question is, Given (6.13), is the string (6.12) a random object? To answer
this question let us analyze the complexity of the string (6.12) in the spirit of
Solomonoff-Kolmogorov-Chaitin ideas. Since w; i = 1,...,¢ are binary val-
ues, the string (6.12) is described by £ bits.

To determine the complexity of this string, let us try to compress its de-
scription. Since training pairs were drawn randomly and independently, the
value w; may depend only on the vector x; but not on the vector x;, i # j
(of course, only if the dependency exists).

Consider the following model: We are given a fixed code book C, with
N << 2! different tables T;, i = 1,...,N. Any table T; describes some func-
tion' from x to w.

Try to find in the code book C, the table T that describes the string (6.12)
in the best possible way; namely, the table on which the given string (6.13)
returns the binary string

W),y 0 (6.14)

such that the Hamming distance between strings (6.12) and (6.14) is minimal
(the number of errors in decoding (6.12) by this table T is minimal).

Suppose we have found a perfect table T, for which the Hamming distance
between (6.14) and (6.12) is zero.

This table decodes the string (6.12).

Since the code book Cj, is fixed, to describe the string (6.12) it is enough
to specify the number o of table 7, in the code book. If there is no a priori
information about the desired table, then the minimal number of bits needed
to decode the number of one of the N tables is [log, N, where [A] is the
minimal integer no less than A. Therefore in this case to describe (6.12) we
need [log, N| bits, rather than ¢. Thus, using a code book with a perfect
decoding table, we compress the description length of string (6.12)

K(T,) = ”o—ggﬂ (6.15)

times. Let us call K(T') the coefficient of compression in the description of
the string (6.12).

fFormally speaking, to have the finite tables in the code book, the input vector x has to be
discrete. However, as we will see, the number of levels of quantization will not affect the bounds
on risk. Therefore one can consider any degree of quantization, even the tables with infinite
number of entries.
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Now consider the general case: Code book C, does not contain the per-
fect table. Let the smallest Hamming distance between strings (obtained and
desired) be d > 0. Without loss of generality one can assume d < ¢/2. Other-
wise, instead of the smallest distance, one will look for the largest Hamming
distance and during decoding change 1 to 0 and vice versa. This will cost one
extra bit in the coding scheme.

For fixed d there are C;’ different possible corrections to the string of
length ¢. To specify one of them (i.e., to specify a number of one of the C¢
variants) one needs [log, C¢] bits.

Therefore to describe string (6.12) we need [log, N| bits to describe the
number of the table and we need [log, C#] bits to describe the number of
correction variant. All together we need [log, N + [log, C#] bits for describ-
ing (6.12). If d is unknown, we need additional A bits to define it. In this case
our description contains

[log, N + [log, C,f‘} +A

bits information. This number should be compared to ¢, the number of bits in

the description of the string (6.11). Therefore the coefficient of compression

is

[log, N1+ [log, C{1+ A
7 .

If the coefficient of compression K(T) (or K,(T)) is small, then according
to the Solomonoff-Kolmogorov—-Chaitin idea the string is not random and
somehow depends on the input vectors x. The decoding table 7 somehow
approximates the unknown functional relation between x and w.

K(T) =

(6.16)

6.2.3 Bounds for the Minimum Description Length Principle

The question is, Does the compression coefficient K(T) determine the prob-
ability of the test error in classification (decoding) vectors x by the table T?
The answer is yes.

To prove this, compare the result obtained for the MDL principle to the
result obtained for ERM principle in the simplest model.

In Chapter 4 Section 4.3 we obtained the bound that if a set of functions
contains N elements then with probability at least 1 — n the inequality

mmg&mm+yiﬂﬂ&+%+§ﬂgﬂ) (6.17)

¢ InN —1Inn

holds true simultaneously for all N functions in the given set of functions
(for all N tables in the given code book). Let us transform the right-hand
side of this inequality using concept of compression coefficient and the fact



6.2 MINIMUM DESCRIPTION LENGTH INDUCTIVE PRINCIPLE 227

that y
Remp(T)) = 7

Note that for d < /2, ¢ > 6, and A > 0 the inequality

d InN-1Inn \/ 2d
T e (“ 1+lnN—lnn)

2([lnN]+2nC;‘]+A_ln€n) (618)

is valid (one can easily check it). Now rewrite the right-hand side of (6.17)
in terms of the compression coefficient (6.16)

1 d
2In2 ([ngN“gOgZCH vA 1082") =2 (anK(T)— lm’).

? e

Since inequality (6.17) holds true with probability at least 1 — 7 and inequal-
ity (6.18) holds with probability 1, then the inequality

R(T,) <2 (anK(T,-) - 'nT") (6.19)

holds with probability at least 1 — 7.

6.2.4 Structural Risk Minimization for the Simplest Model and
Minimum Description Length Principle

Now suppose that we arc given M << 2¢ code books that make up a struc-
ture: code book 1 contains a small number of tables, code book 2 contains
these tables and some additional tables, and so on.

Now describe the string (6.12) using a more sophisticated decoding scheme:
First describe the number m of the code book and then using this code book
describe the string (as we showed above it takes [log, N, ] + [log, C¢] bits,
where N,, is the number of tables in the mth code book).

The total length of description in this case is no less than [log, N,,| +
[log, C#] and the compression coefficient is not less than

[log, Nim| + [log, C41 + A +1og, m
; :

K(T) <

For this case the inequality (6.18) holds. Therefore the probability of error
for the table which was used for compressing the description of string (6.12)
is bounded by (6.19).
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Thus we have proven the following theorem.

Theorem 6.1. If on the given structure of code books one compresses K(T)
times the description of string (6.12) using a table T, then for ¢ > 6 andd < ¢ /2
with probability at least 1 — 1) one can assert that the probability of committing
an error by the table T is bounded as follows:

R(T) <2 (IogZK(T) _n ’;/’") . (6.20)

Note how powerful the concept of compression coefficient is: To obtain
bound for the probability of error we actually need only information about
this coefficient.! We are not interested in such details as:

How many examples we used.

How the structure of code books was organized.

Which code book was used and how many tables were in this code book.
How many errors were made by the table from the code book we used.

Nevertheless, the value of bound (6.20) does not exceed very much the value
of the bound of the risk (6.17) obtained on the basis of the theory of uniform
convergence, which has a more sophisticated structure and which uses infor-
mation about the number of functions (tables) in the sets, number of errors
in the training set, and number of elements of the training set.

Note also that within a factor of 2 the bound (6.20) cannot be improved:
In the case when a perfect table exists in the code book, equality can be
achieved with the factor of 1.

This theorem justifies the MDL principle: To minimize the probability of
error one has to minimize the coefficient of compression.

6.2.5 The Shortcoming of the Minimum Description Length
Principle

There exists, however, a shortcoming of the MDL principle. Recall that the
MDL method uses code books with a finite number of tables. Therefore, in
order to deal with a set of functions that continuously depends on parameters,
one has to first quantize that set to make the tables.

Quantization can be done in many ways. The problem is, How do we make
the “smart” quantization for a given number of observations? For a given set
of functions, how can we construct a code book with a small number of tables
but with good approximation ability?

fFor not very large M (say M < ¢k, k << log, Npy) the second term (InM — In7)/¢ on the
right-hand side is actually foolproof: For reasonable 1 and ¢, it is small compared to the first
term, but it prevents us from considering too small 7 or/and too small €.
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A good quantization essentially can reduce the number of tables in the
code book, effecting the compression coefficient. Unfortunately, finding a
good quantization is extremely difficult and determines the main shortcoming
of MDL principle.

Chapter 10 constructs a set of linear functions in very high-dimensional
space (experiments described in Chapter 12, use linear functions in N ~ 10'3-
dimensional space) that has low VC dimension (in these experiments, h ~
102 — 10%). One can guarantee that if a function from this set separates a
training set of size ¢ without error, then the probability of test error is pro-
portional to Aln¢/¢.

The problem for the MDL approach to this set of indicator functions is,
How do we construct code books with ~ £" tables (but not with ~ ¢V tables)
that approximate this set of linear functions well?

The MDL principle works well when the problem of constructing reason-
able code books has a good solution.

6.3 CONSISTENCY OF THE STRUCTURAL RISK MINIMIZATION
PRINCIPLE AND ASYMPTOTIC BOUNDS ON THE RATE OF
CONVERGENCE

Let us continue the study of the SRM principle. In this section we analyze
asymptotic properties of the SRM principle. Here we answer two questions:

1. Is the Structural Risk Minimization principle consistent? (Do the risks
for the functions chosen according to this principle converge to the
smallest possible risk for the set S with increasing amount of observa-
tions?)

2. What is the bound on the (asymptotic) rate of convergence?

Let S be a set of functions and let S be an admissible structure. Consider
now the case where the structure contains an infinite number of elements.
Note that in this case in spite of the fact that any element S, of the structure
is characterized by a finite VC dimension A; and a finite value B; (finite
value 7;), the set of functions

0
S=Js
k=1

can possess infinite VC dimension and/or infinite B, (infinite 7).

We denote by Q(z, af), k = 1,...., the function which minimizes the empir-
ical risk over the functions in the set S; and denote by Q(z, a(’,‘) the function
which minimizes the expected risk over the functions in the set S ; we denote
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also by Q(z, ap) the function which minimizes the expected risk over the set
of functions §.

In the following text, we prove the consistency of the SRM principle.
However, first we show that there are rules for choosing the appropriate
element S, of the structure depending on the number of observations ¢

n = n(f)

that provide risk convergence for chosen decision rules to the smallest pos-
sible risk.

For asymptotic results the refined bounds (6.8) are not very important.
Therefore to simplify the exposition, consider instead of bound (6.8) the
bound

k(Inf +1)—Inn/4

R(a) < Remp(a) + Bk\[h 7

(6.21)

that was obtained in Chapter 5, Section 5.3 for the pessimistic case.
Consider the a priori rule

n=n(¢)

for choosing the number of element of the structure depending on the number
of given examples.

Theorem 6.2. The rule n —n(€) provides approximations Q(z, a"(’ for

which the sequence of risks R(a, g converges, as ¢ tends to infinity, to the
smallest risk:

R(a) = int / 0(z.@)dP(2)

with asymptotic rate of convergence

D2 h,int
V€)= ru+ ——“—’g(i— (6.22)
where
Yniey = /Q(Z, [)) dP(Z /Q(Z e ) dP( ) (623)

(that is, the equality

{llmsupv o) ‘/Q(z "NdP(z) - /Q(Z,a())dP(Z)

<oo}=1
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holds true), if

D2, By Iné
L{}")_—[_ﬂo, n(t) —> oo, (6.24)

where

e D, = B, if one considers a structure with totally bounded functions Q(z, a) <
B, in S, and

e D, = 7, if one considers a structure with elements satisfying inequality
(6.6).

The quantities
r,,(”:/Q(z,a(','(”)dP(z)—irelf\/Q(z,a)dP(z)

describe the difference in risks between the smallest risk for a function from
the element S, ;) of the structure S and the smallest risk over the entire set
of functions.

The next theorem is devoted to asymptotic properties of the structural risk
minimization principle. It shows that if the SRM method uses a structure of
elements that contains a totally bounded set of functions (see Section 1.1)
then it is strongly universally consistent (that is, for any distribution function
it provides convergence to the best possible solution with probability one).

To avoid choosing the minimum of functional (6.21) over the infinite num-
ber of elements of the structure, we introduce one additional constraint on
the SRM method: We will choose the minimum from the first ¢ elements.
of the structure where £ is equal to the number of observations. Therefore
we approximate the solution by function Q(z, «/), which among ¢ functions
Q(z,af),k = 1,...,¢, minimizing empirical risk on corresponding elements
Sik =1,..., £, of the structure provide the smallest guaranteed (with proba-
bility 1 — 1/#) risk:

f
N b | o \/hk(ln?l/k+1)+]n4f
Rimpley) = [min, [Z E_I Q(zi, o) + By 7 :

The following theorem is an adaptation of the Lugosi-Zeger theorem for the
set of not necessary indicator functions.

Theorem 6.3 (Lugosi, Zeger). If the structure is such that B; < n'~?_ then for
any distribution function the SRM method provides convergence to the best
possible solution with probability one (i.e., the SRM method is universally
strongly consistent).
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Moreover, if the optimal solution Q(z, ag) belongs to some element S., of the
structure (Q(z, ay) = Q(z, af)) and Biw < pu(f) <10, then using the SRM
method one achieves the following asymptotic rate of convergence:

V() =0 (\/————“w;l“) .

Remark. For the sets of indicator functions one chooses B,, = 1 for all #. In
this case

p(l) =1

6.3.1 Proof of the Theorems

Proof of Theorem 6.2. We prove the theorem for the case D, = B,. The
proof for the case D, = 7, is analogous.

Consider a structure with elements S, containing totally bounded functions
with the finite VC dimension. As shown in Section 5.3, for any element S,
with probability at least 1 — 2/¢? the additive bound

_— hy (lnlzz—g+l)+21n2€
A(al) = R(a¥) — R(a}) < B, n, k

2¢ 4
(6.25)
is valid. Then with probability 1 — 2/¢? the inequality
R(e)") - R(a)
¢
hn(f) (ln 2 + 1) +2In2¢
2In? h,,[p)
< Ynie) + Bn(f) 77 + 7 (626)

holds, where
ruey = R(e)") — R(ag).
Since §* = |J, Sk everywhere dense in S, we have

lim r, . =0.
P 1(£)



6.3 CONSISTENCY OF THE STRUCTURAL RISK MINIMIZATION PRINCIPLE 233

Therefore the condition

lim Bi([)hn([) lnn(E) _0
£—00 ¢ -

determines convergence to zero. Denote

4
h,,(g) (]n —2— + 1) +2In4¢
—Inn it
V(@) = r,,(g) + Bn(g) 2€ + e

Let us rewrite the assertion (6.26) in the form

PV UOR@™) - Rlag)) > 1} < e% £> 4.

Since
>0 _ . c 2
S PV ORE) - R@) > 1< lo+ Y - < oo
=1 E=€y+1

according to the corollary from the Borel-Cantelli lemma (see Chapter 1,
Section 1.11), one can assert that the inequality

Tm V() (R(e]?) - R(ap)) < 1

¢~

is valid with probability one.

Proof of Theorem 6.3. Denote by @, the parameter that minimizes guaran-
teed resk R;,,(@) using ¢ observations. Consider the decomposition

R(a) — R(ag) = (R(a;) = Rimp(a;) + (Rimp(ai) — R(0)) -

For the first term of this decomposition we have

P {R(a}) ~ Rimpla) > £} < 3P {R(a) = Rimplaf) > &}
k=1

P {R(a;) ~ Remp(af) > &+ Bk\/hk(]n 215/th+ 1) +In4¢ }

2
20e\ ™ & \/hk(ln?_e/hk +1)+1In4f
4(]1_1‘.) exXp{ — ('B:'F 7 14
1 Eze 823 2,8
] Zexp{—Fz—} < exp{—;i-} <exp{—s 14 }

k ¢

I
-
~ ) M'x
-

IN

x>

~ )
—_

IN

k=
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where we take into account that B2 < £'-%. Using the Borel-Cantelli lemma
we obtain that first summand of the decomposition converges almost surely
to the nonpositive value.

Now consider the second term of the decomposition. Since §* is dense
everywhere in S, for every ¢ there exists an element S of the structure such
that

R(ay) — R(a) < &.
Therefore we will prove that the second term in the decomposition does not
exceed zero if we show that with probability one

: : + A $Y
Jim Jmin, Remplay) — R(ej) <0

Note that for any & there exists ¢, such that for all £ > ¢,

g g In?¢
B&\/h« (In2¢/hy + 1) +41n < 627)
¢ 2
For ¢ > ¢, we have
. + k s + s 8
P {lrgnklgf Rimplay) — R(ap) > s} <P {Rimp(a;) — R(eg) > £}
. ! h,(In2¢/h, + 1) +n4/
; ¢ & £
<P {Remp(ag) ~ R(ag) > —} < P sup |R(@) — Remp(@)] > =
2 ac\, 2

< gef h‘ex —g—zé < 2et h‘ex ‘—8253
A, Py 282 =\, PU""3 |-

Again applying the Borel-Cantelli lemma one concludes that second term of
the decomposition converges almost surely to a nonpositive value. Since the
sum of two terms is nonnegative, we obtain almost sure convergence R(a*)
to R(ay). This proves the first part of the theorem.

To prove the second part, note that when the optimal solution belongs to
one of the elements of the structure S, the equality

R(ay) = R(ap)

holds true. Combining bounds for both terms, one obtains that for ¢ satisfying
(6.27) the following inequalities are valid:

P {R(e)) — R(a) > &}

<P {R(a,*] — Rimpay) > —;—} +P {R(af) ~ R(aq) > %}

cexo)_ 7 L (2t ks ool £2¢
= P 2 i, PU Ten®) S
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From this inequality we obtain the rate of convergence:

V() =0 (,/W ) .

6.3.2 Discussions and Example

Thus, generally to estimate the asymptotic rate of convergence (6.22), one
has to estimate two summands. The first summand

Foy = inf /Q(z,a)dP(z)~i2f\/Q(z,a)dP(z)

a€\

determines the rate of approximation—that is, the value of the deviation of
the risk for the best approximation in S, from the smallest possible risk (the
larger n = n(¢) the smaller is the deviation). The second summand

n(é)
14

B2 hn(l’) In¢

determines the stochastic deviation of the risk obtained from the smallest
risk in S,:

A,,(e):/Q(z,a;’(”)dP(z) — inf /Q(z,a)dP(z)

CI’GA"”')

(the larger n = n(#), the larger deviation A, (¢)). Therefore the rate of conver-
gence is determined by two contradictory requirements on the rule n = n(?).
For structures with a known bound on the rate of approximation, select the
rule that assures the largest rate of convergence.

Section 6.5 discusses classical problems of function approximation. And
shows that a good rate of approximation is possible only for special sets of
functions (say for smooth functions). This fact is the main reason why in the
general case the asymptotic rate of convergence for SRM can be slow.

However, in the particular case where the desired solution belongs to
the element of the structure, the asymptotic rate of approximation is almost

optimal
In¢
V) =0 ( "7 )

for the pattern recognition case, and it is arbitrarily close to this rate for
estimating real-valued functions if one uses a structure with slowly increasing
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bounds By, = pu(¢) (see Theorems 6.2 and 6.3):

| [u@)ne
V(£)~( —e—)

The following is an example of density estimation where the maximum
likelihood method is not consistent but at the same time the method based
on the SRM principle is consistent and has a high asymptotic rate of conver-
gence.

Example. Let us consider a mixture of two normal laws
p(zia,0) = %N(a, o)+ %N(O, 1), ac€ (~o00,00), o€ (0,00), (628)

where parameters @ and o of the first term of the law are unknown.
First we show that the maximum likelihood is not consistent for estimating
these parameters from the sample

Lyy ooy Lpyoor -

Indeed for any A and any #, one can choose parameters a* and o* such
that

‘
Zlnp(zi;a*, o) > A.
i=1

This can be done, for example, by choosing a = z; and o sufficiently small.
For these parameters we have

I3
Z lnp(zi;a*, U)
=1}

i

1 2} 1 (zi — 21)°

=/4In ——= E 1 -+ — =T
énz 27T+i:1 n(exp{ 2}+oexp{ P }
¢

1 1 z?

>{In +In|1+— —E - — 00.
2\/277‘ ( 0') (=2 2 o —0

Thus the maximum likelihood does not yield the estimate of the desired
parameters in the space (a, o).

Now let us use the structural risk minimization principle to modify the
maximum likelihood method. We introduce the structure on the set of func-
tions (6.28) and then minimize the guarantee risk over the elements of this
structure.
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To construct a structure, consider the sequence of positive values

by>b;,>--->b, >, (6.29)
where
b, = e V™,

We define the following element S; of the structure:
Sy ={Ilnp(z,a,0): a € (—oo0,), 0 > bi}.

These elements form sets of nested subsets. They satisfy all conditions to be
an admissible structure: The VC dimension of any element of the structure
does not exceed the finite VC dimension s of the set (6.28); all functions
from the element S, are bounded by the constant

B, < y\/u(n),

the solution belongs to one of the elements of the structure.
Therefore for n(¢) = ¢ we have the following rate:

-1/2 +
. u(e)me) 1 / pz,a;)
lim [ & — z,00) In = g7 < oo,
£ ( ¢ Pz, 20) P(z, ap)

which is the convergence (in the Kulbak-Leibler metric) of the SRM esti-
mates to the desired function with the asymptotic rate close to /In¢/¢ for
slowly increasing function u(¢).

6.4 BOUNDS FOR THE REGRESSION ESTIMATION PROBLEM

In the previous section, we obtained bounds on the rate of convergence for
the SRM principle. They have the order of magnitude

hyyInd
V() =0 | 1y + Dup \ 0 | | (6.30)

where D, = B, if the elements of the structure contain totally bounded func-
tions and D,, = 1, if the elements of structure contain unbounded functions.

This section considers an important special case; that is, we consider a
model of regression estimation by series expansion using observations with
additive noise. For this model we will obtain significantly better bounds.
Under certain conditions it has the order of magnitude

ViEg)y=0 (r,,(g) o
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6.4.1 The Model of Regression Estimation by Series Expansion

Let us specify the model. We consider a problem of estimating a regression
function f(x,ay) € Ly(F), x € R?, where for any random vector x, one has
the measurement of the regression function f(x, o) with additive noise §&:

v =flxi, ) + &,
(6.31)
E¢=0, E&€=0"  E&&=0 ifi#].

The problem is to estimate the regression function, using i.i.d. observations

U1, X1), - ey Xe)

(here the x; are random vectors, drawn according to the distribution function

F(x)).

We define the structure S using a set of complete orthonormal (with re-
spect to probability measure F(x)) functions ¢4 (x), kK =1,2,.... The element
S, of this structure contains the functions of the form

k
fule,a) = 3" et (x).
r=1
Let the regression be described by the expansion in the series
Fxia9) =Y ey (x),
k=1

with an infinite number of terms.
We assume that the regression function has no singularities on this struc-
ture. This means that for all p the inequalities

sup Z a,”tl/i(x) <c (6.32)
N 1=p+l
hold true.
Let us denote
‘ 2
D, = (sup sup Zaiz//,»(x)) . (6.33)
boal=li

As in Chapter 1 we determine the quality of approximation by the
functional

R(at) = / (v - f(x. ) dF (x.y).
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Let f(x, a}') be the function that minimizes the empirical risk

o |

¢
Rcmp(a) = Z (yi - f(xiu a))Z
i=|

on the set of functions .5,, and let

n=n({)

239

be a rule for choosing the element of the structure S, depending on the
number of examples. In this section we estimate the rate of convergence to
zero of the quantities R(«a}') — R(ap). Taking (6.31) into account we obtain

R(a}) - R(ap) = / (fx, af) — flx, a0)) dF (x).

The following theorem holds true.

Theorem 6.4. Let the model of regression estimation with additive noise satisfy
the conditions (6.32) and (6.33). Then for any ¢ and for any rule n = n(¢) the

SRM principle provides the bound

P{V"“)(R(a;')—R(ao)) < 1} > 1 - %
where
nin¢ 5 o
V() =r.+ (07 + ),
¢(1- vD.ED)
n(lng€+1) +1n¢
El) =4 n - ,
and

1o = Rlof) = Rloa) = [ (7(x.§) - f(x, a0))" dF ()
Corollary. If the rule n = n(¢) satisfies the condition

D, pn(f)In ¢

then the asymptotic rate of convergence has the order of magnitude

n(¢)Iné
).

V(@) =0 (r,,(() +

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)
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Note that the asymptotic bound (6.38) for this model is much better than
the bound (6.30) for the general case.

Example. Let us estimate the regression function f(x, ) which is a periodic
function and has p > 0 bounded derivatives, defined on the interval (0, 7).
Let F(x) be the uniform distribution on the interval (0, 7).

Consider the structure defined by the orthonormal series cos kx, k =1, ...,
where element S,, contains the functions

4
falx, @) = Z ay cos kx.
k=1
Since for a function that has p > 0 bounded derivatives the inequality

o0 20
sup _S_ a; cos kx < E la)| < oo
k=t k=1

holds, the nonsingularity condition (6.32) is satisfied.
For a given structure, one can easily find the bound

n 2 n 2
D, = (sup sup Z @y, cos kx) < (sup Zak) < n.

X lal=l el =14

Therefore according to Theorem 6.4 if a rule n = n(¢) for choosing the ele-
ments of the structure satisfies the condition

2
n(@ne o (condition (A)),
£ f—oc

then the following asymptotic rate of convergence for the obtained risk to
the best possible holds true:

n(€)In¢

V()=r,
£)=rp+ 7

In the next section we describe the classical function approximation
theorems according to which the rate of approximation by trigonometric
series of risk functions that possess p derivatives has a risk

rn=n"(0).

Therefore

n(¢)In¢

V(&) =n"?P(¢) + ;
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One can easily verify that the rule

¢\ /@)
= ()

provides the best rate of convergence (this rule satisfies the condition (A) if
p > 1). Using this rule, one obtains the asymptotic rate

*

2p/(2p+1)
V() = (#) ;

that is,

~2p/(2p+1)
(11;) /(f(x, al(£)) — f(x, @) dx < oco.

In the case where the regression function belongs to an element of the struc-
ture (in this case the regression function has an arbitrary number of bounded
derivatives), by using a slowly increasing function n = n(¢) one achieves a
rate of convergence that is close in order of magnitude to

V(e) = (%) .

6.4.2 Proof of Theorem 6.4

Denote by
nif)

fa(x, ap) = Z ap iy (x)
p=1

the function from the set of functions S, that minimizes the empirical risk
functional

2
1 4 n(e)

Remp(a) = 5 Z ()’i - Zap‘l’p(xi)) :
t p=1

Let -
fr ) =Y oy (x)
p=1

be the regression function. We estimate the rate of convergence in L,(F) of
f(x, ayg) to the desired regression function

% n(e) g
V(o) = / (Zagwp(x)—za;;wp(x)) dF (2).
p=1 p=1
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Since the set of functions y,(x), p = 1,2, ..., is orthonormal with respect to
the distribution F(x), we obtain the following rate of approximation:

n(f)

V) = B7 +rue), (6.39)
]

where we denote
n 0
Bp=ap —ap

and

Tn(e) = E (a,9)2-
p=n(f)+1
To bound the sum (6.39) we have to bound the first term:
n(f)

T\(¢) =) B2
p

To do so we define a vector 8 = (B, ..., B,) corresponding to a, which min-
imizes the empirical risk

1 ¢ n(f) 2
Remp(B) = ZZ Yi — apd’p(xi)

i=1 p=1
1 ¢ n(f) n(¢) 1 ¢
=7 yi-2 BpGp + Z BquZZWp(xi)wq(xi))
i=1 p=1 pg=1 i=1
where we denote
1 14
Gy = ZZ?illlp(xi), (6.40)
i=1
Vi = &+ Z a(l))-d’p(xi)-
p=n+l

Denote by K the covariance matrix with elements

1 14
Kp,q = Z Z‘/’p(xi)‘/’q(xi)
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and denote by G = (Gy,...,G,)7 the n-dimensional vector of coordinates
(6.40). In these notations the vector B(n(¢)) minimizing the empirical risk is

Bn([) = K—IG.
Therefore the bound
Ty(€) = |Bue)* = |K™'G]* < |[K'P|GJ? (6.41)

holds true. Let us bound the norm of the matrix K~! and the norm of vector
G from above. The norm of matrix K equals ul .., the largest eigenvalue of
K, and the norm of the matrix K~ !:

1

n b
min

K =

where p,:'ni? is the smallest eigenvalue of the n x n matrix K. Therefore to
bound K~ we have to bound w7, from below.
Consider the function

2
Pu(x,a) = | Y apphp(x) | , (6.42)
p=1
which we shall examine in the domain
> al=1. (6.43)
p=1

Recall that we have defined the bound D,, such that

sup @ (x, a) < D,

in the domain (6.43). Now consider the expression

Y

2
14 4 n
%’Z(Dn(xiaa) = (Zap‘/’p(xi)) ‘
i=1 i=1 \ p=1

4

Observe that

3

E®,(x,@)= ) af, (6.44)
p=1
1 ¢ n
; D Ouxia) =) apeyK,,, (6.45)



244 6 THE STRUCTURAL RISK MINIMIZATION PRINCIPLE

where K, ;, p,q =1, ..., n, are the elements of covariance matrix K described
above. Using a rotation transformation, we arrive at a new orthogonal system
of functions ¢ (x), ..., ¥, (x) such that

E®,(x,a") = (), (6.46)
p=I
1 14 n
7 2. Bnlxia’) = up(a), (647)
i=1 p4q
where uy, ..., un are eigenvalues of the matrix K.

To bound the eigenvalues use the results of the Theorem 5.3 according
to which with probability at least 1 — 4/¢ simultaneously for all functions
®,(x, a) in the domain (6.43) the following inequality holds true:

¢ ¢
" 1 * Dngn \/ 4 Zi:l (D,,(x,-, a*)
Erp"(x,a)gzzcl:v,,(x,«,a)+2(l+ 1+ ,

2 (D,E.(0)
(6.48)
where for our structure with h, = n we have

n (lnz—g +1) +In¢
Ea(f) = 4 " ; .

Taking into account (6.46) and (6.47) we can rewrite this inequality for
domain (6.43):

- 45" (a*)2

This inequality is true with probability 1 — 4/¢ simultaneously for all a; in
domain (6.43). Therefore with probability 1 — 4/¢ the bound is valid for the
specific vector a = (0,0,...,1,0,...,0) where the one corresponds to the
smallest eigenvalue. For this vector we obtain the following inequality:

D.En(8) [ apn
n.o>1-— 1 1 4 ——min_
Hmin = 2 ( N DE© )

where

n : n
= MiIn .
Hmin lﬁpSn#p
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Solving this inequality with respect to ulr; , one obtains that with probability
at least 1 — 1/¢ the inequality

Mmin > (1 — D,,é',,(é)) (6.49)

+

holds true, where we define (), = max(u,0).
Therefore with probability 1 — 1/¢ the bounds

1
K ' < 6.50
| | B (1 -V an:n(g))f ( )
hold true.
To bound |G|? note that
n n 4 2
1 -
p=1 p=1 i=1
Let us compute the expectation
E|G* = Y EG;
p=1
2
“ ]. ¢ > 0 0'2 + C2
= Zg_zE D () | &+ ) @w(x) Sn—
p=1 i=1 j=p+t
(6.51)

To derive the inequality (6.51) we use the condition (6.32) that the regres-
sion function has no singular structure.

To bound the random value |G| we utilize Chebyshev inequality for the
first moments

P{t>e€}< —Ee—g,
where we use
e="IE 2, 2

We obtain

21 )Ine 1
pliges nloo+c)ney 1
bG'> ; < Ine
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Thus with probability at least 1 —1/1In¢

nin/s

IGI? < (o?+ ) (6.52)

holds true. Substituting (6.50) and (6.52) in (6.41) we obtain that with proba-
bility at least 1 — 2/In ¢ the first term 1n the sum (6.31) is bounded as follows:

nin/t 5

NS DR

Therefore we proved that

T( +c?).

P{V @O (R@) - RE) <1} 21~ =5,

where

ninf(a? + %)

01 — /DnEa(0))2

Vity=r,+

The theorem has been proved.

6.5 THE PROBLEM OF APPROXIMATING FUNCTIONS

In the previous sections, we obtained the asymptotic rate of convergence for
the SRM principle. We showed that in the general case the asymptotic rate
of convergence has order of magnitude

h,,(p) In¢
e Y

V{(€) = ruey + Doy (6.53)

where D, = B, if the elements of the structure contain totally bounded func-
tions and D, = 7, if elements of the structure contain an unbounded set of
functions.

For the problem of regression estimation, with quadratic loss function we
obtained the bound which (under some conditions) has a better order of
magnitude:

h,,([) In¥

V() = ey + =0 (6.54)

To use these results, however, one needs to estimate the first term in (6.53)
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and (6.54) that describes the rate of convergence of the risks r, attained at
the best function of the elements of the structure to the smallest possible risk
for entire set of function. This section is devoted to estimating this rate of
convergence (rate of approximation).

Note that in the general case we have

o = /Q(z,a{,’)dF(z)—/Q(z,an]dF(z)

< inf [0z, @) - 0z, @)| dF (2).

(11, n

Let us denote the right-hand side of this inequality by r:

= inf [10G, @) - 0 @) dF ().

The quantities r;; describe a rate of approximation in the (weak) metric L, (F)
of the desired function Q(z, ag) by the best functions of the elements of the
structure S.

For the case of measurements with additive noise (6.31) and quadratic loss
functions

Q(Zaa):(y_f(xaa))zv acA

the rate of convergence of the risks

= / 0(z, af) dF(z) - / 0(z, a0) dF(2)
- / (F(x, a0) — F(x, @) dF (x) =1

coincides with the square of the rate of function approximation in L,(F)
metric. :

Therefore to estimate the rate of risk convergence in L,(F) metric it is suf-
ficient to estimate the rate of function approximation for the corresponding
structure.

Estimating the rate of function approximation (in different metrics, not
necessarily in weak ones') constitutes the problem of approximation theory.
This theory was started more than 100 years ago when Weierstrass had dis-
covered that on the finite interval every continuous function admits approx-
imation to any accuracy by algebraic polynomials. This posed the question:
How fast do polynomial approximations converge to the desired function with
increasing degree of polynomials?

' Note that the rate of function approximation in weak metrics is not worse than the rate of
approximation in the strong metric C.
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The approximation theory addresses the following problem. Let ® be a set
of functions belonging to a normed space of functions. Consider the structure

M CMyC- - CM,, .. (6.55)

imposed on this set with the following property: The elements of the structure
{M}2, are such that | J;” M, is dense in .

The problem is for a given set of functions ® and for a given structure to
find a bound

= inf -l <r
p(f)Mk) f‘lEan”f f ||—rna

which is valid for any function f of the set ®.

This, however, is a very general setting of the problem. Approximation
theory considers some special sets of functions & and some special structures
{M}32, for which it estimates the approximation rate.

In the following sections, we will state (without proofs) some classical
theorems of approximation theory, then we will formulate the theorems esti-
mating the rate of convergence for the structures used in the learning models,
and lastly we will demonstrate some connections between the rate of approx-
imation and the VC dimension of the set of approximated functions.

6.5.1 Three Theorems of Classical Approximation Theory

This section describes three theorems of constructive approximation theory—
that is, the theory that not only gives a bound of the approximation rate, but
also provides the methods that for any given function f how to find in the
subset M, the best approximation f;.

Let us consider the classical problem of approximation of the periodic
functions f(x), x € R', by the Fourier series. We will approximate the func-
tion f(x) by the trigonometric series

(ajcos jx +bjsinjx), (6.56)
1

D, (x) = “—29+

k
]:

where
ay = 1 /-7r flx)dx
0 — 7). )

a = %["f(x)cos jxdx, (6.57)

b, = % /_ i f(x)sin jx dx. (6.58)
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An important role in Fourier analysis is played by the Dirichlet formula

. {(N+1)x
1 & s <—2—)
Dy(x) =5+ > cos jx = — (6.59)
n(3)

The right-hand side of the expression (6.59) is called the Dirichlet kernel.
Using kernel D, (x) one can rewrite the approximation (6.56) in the form

(DN(X / f(x - T DN(T) dr. (6.60)

However, the approximation (6.60) does not guarantee convergence to any
point of continuous target function.

Therefore along with the Dirichlet kernel D;(x) one considers the so-
called Fejer kernel

N~ sin —2—
Fn(x) = Z Dy(x) = —=+. (6.61)
0 2N sin? =
2
This kernel defines Fejer approximations
Fy(x) = / fx =) Fy(1)dr (6.62)

in the Fourier expansion. Note that the Fejer approximation gives the ex-
pression

Fy(x) == +Za c051x+Zb*sm]x

where coefficients a; and b} are regularized Fourier coefficients ((6.57) and

(6.58)) . |
- (1—#)11,-, by = (1—%)1;,-.

In 1904, Fejer proved that any continuous function, periodic on finite interval,
can be approximated by the Fejer approximation (6.62) with any degree of
accuracy as N increases. However, on the basis of Fejer approximation one
cannot determine the rate of approximation.

In 1911, Jackson gave a construction that guarantees the best asymptotic
rate of approximation (in the metric C) of » > 0 times continuously differen-
tiable periodic functions.

To formulate Jackson’s theorem we need to define the following concept.
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Definition. We call the quantity

w(8, f(x)) = sup sup{|f(x + k) — f(h)|}

lhi<é x

the modulus of continuity of the function f(x).
Now let us define the Jackson kernel

I =, | —2— |, r=23., (6.63)
2

where coefficient Ay, is chosen to normalize the kernel

/ In, (x)dx =1.

It follows from (6.63) that the kernel Jy ,(x) is an even, nonnegative trigono-
metric polynomial of degree < N.

Now let us describe an approximating function fy (x) from My. We will
distinguish between two cases.

In the first case, we have no information about the smoothness properties
of the desired function. In this case, we construct the approximation

fu(x) =" / In2(Of (e + 1) dr

using the Jackson kernel Jy ,(x) with r = 2.
In the second case we have information that the desired function has no
less than r > 1 derivatives. In this case we will construct the approximation

futy =t [, e+ 7y e
using the Jackson kernel Jy ,(x) with parameter 7.

Theorem 6.5 (Jackson). Let f(x) be an r times continuously differentiable
periodic function. Then the inequality

pc(F(x), fn (%)) S AN w(N 7', fO(x)) (6.64)

holds true, where A < w\/3/2 is a universal constant.



6.5 THE PROBLEM OF APPROXIMATING FUNCTIONS 251

The converse theorem is valid as well.

Theorem 6.6 (Bernstein (1912) and Vallee-Poussin (1919)). Let a continuous
function f(x) satisfy the inequality

pc(f, My) < C(f)N-*%, (6.65)

where r is some integer, 0 < 8 < 1 and pc(f, My) is distance between the
function f and the closest function from the set of trigonometric polynomials
of degree N in C metric,

pe(f(x), My) = inf sup|f(x) ~ f*(x)]

Then f(x) is r times differentiable and its rth derivative satisfies a Lipschitz
condition of order 6:

If7(x) = fO )] < Alx - X,

These two theorems show that the rate of approximation by Fourier sums
depends solely on smoothness properties of the target function; the smoother
the target function, the higher the rate of approximation by trigonometric
sums.

The same result remains true if one considers a structure with elements
My containing algebraic polynomials of degree N.

Theorem 6.7. Let f(x) be an r > 0 times continuously differentiable function
on |a, b] and let function f(x) satisfy the Lipschitz condition of order §:

IF7x) — FO0) < Alx — x| for x,x' € [a, b].

Then the inequality
pc(f(x), My) < C(f)N-D (6.66)

holds true, where the constant C(f) depends on the function f(x).

6.5.2 Curse of Dimensionality in Approximation Theory

Now we have to generalize the results obtained for the one-dimensional case
to the multidimensional case.

Let ® be a set of functions defined on the d-dimensional cube [0, 1]¢
and let functions from this set have bounded (in the uniform norm) partial
derivatives of order s and satisfy the (d-dimensional) Lipschitz condition of
order 0 < 8 < 1. Consider the following structure: Element M, is the set of
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polynomials of degree n in each of the d variables that is linear in parameter
space of dimension N, = d" (here N, is the number of parameters).

Theorem 6.8. For any function f(x) of the set ®* the following inequality
holds:

pe(f, My) < C(f)N, 5D/ (6.67)

where constant C(f) depends on function f.

From (6.67) we find that the asymptotic rate of convergence drastically
decreases with increasing number of parameters when the characteristic of
smoothness (number of bounded derivatives) remains fixed.

Therefore according to approximation theory one can guarantee good
approximation of a high-dimensional function only if the desired function
is extremely smooth.

6.5.3 Problem of Approximation in Learning Theory

In the learning theory we have to estimate the rate of approximation even
for more difficult cases.
We have to estimate the rate of approximation for the cases when:

1. @ is a set of high-dimensional functions.

2. The elements M,, of the structure are not necessarily linear manifolds.
They can be any sets of [unctions with finite VC dimension.

Furthermore, we are interested in the cases where the rate of approxima-
tion is rather high (otherwise one cannot hope to find a good approximation
of the desired function using a restricted number of observations). We will
call the rate of approximation high if it has a bound O (1/y/n), where n is
an index of an element of the structure.

Therefore in the learning theory we face a problem: to describe cases for
which the high rate of approximation is possible. This means to describe
different sets of smooth functions and structures for these sets that provide
the bound O (1/v/n).

Below we consider a new concept of smoothness. Let {f(x)} be a set of
functions and let {f(w)} be a set of their Fourier transforms.

We will characterize the smoothness of the function f(x) by the value b
such that

/|w|bf(w) do = Cp(f) < 0, b >0. (6.68)

In terms of this concept the following theorems hold true
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Theorem 6.9 (Jones, 1992). Let the set of functions f(x) satisfy (6.68) with
b = 0. Consider the structure with elements M, containing the functions

f(x) = Zc, sin ((x, w;) +0;) (6.69)

i=1

where c; and v; are arbitrary values and w; are arbitrary vectors. Then the rate
of approximation of the desired function by the best function of the elements
(6.69) in L, metric is bounded by O (1//n).

Theorem 6.10 (Barron, 1993). Let the set of functions f(x) satisfy (6.68) with
b = 1. Consider the structure with elements M, containing the functions

f(x) =i¢i5(()ﬁ wi) + i), (6.70)
i=1

where c¢; and v; are arbitrary values and w; is an arbitrary vector, 8 = 8(u) is
a sigmoid function: (a monotonic increasing function such that

lim 8u)=-1,  lim 8(u)=1).

Then the rate of approximation of the desired function by the best functions
of the elements (6.70) in L, metric is bounded by O (1/+/n).

Theorem 6.11 (Breiman, 1993). Let the set of functions f(x) satisfy (6.68) with
b = 2. Consider the structure with elements M, containing the functions

fix)= ZC" sinjx-w; +vi|, +x-a+b, ||, = max(0, u), (6.71)
i=1

where ¢; and v; and b are arbitrary values and w; and a are arbitrary vectors.
Then the rate of approximation of the desired function by the best function of
the elements (6.71) in L, metric is bounded by O (1//n).

In spite of the fact that in these theorems the concept of smoothness
differs from the number of bounded derivatives, one can observe the similar
phenomenon as in the classical case: To keep a high rate of convergence in
a space with increasing dimensionality, one has to increase the smoothness
property of the function. Using concept (6.68), one attains it automatically.
Girosi and Anzellotti (1993) showed that a set of functions satisfying (6.68)
with b =1 and b = 2 can be rewritten, respectively, as

flx) = T ‘,, TxA(x),  f(x) = x ‘,, s X AX),
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where A is any function whose Fourier transform is integrable, and * stands
for the convolution operator. In this form it becomes more apparent that
functions satisfying (6.68) become more and more constrained as the di-
mensionality increases due to more rapid fall-off of the terms 1/|x|"~! and
1/lxln~2'

Therefore if the desired function is not very smooth, one cannot guarantee
high asymptotic rate of convergence of the constructed approximations to the
desired function.

6.5.4 The VC Dimension in Approximation Theory

In this section we will describe a special class of sets of functions for which the
rate of approximation is high and the bounds depend on the VC dimension
of some set of functions.

Consider set of functions which is defined by the functions A(t) belonging
to L, and some fixed kernel K(x,t):

flx) = /K(x,t))\(t)dt, (6.72)
where x,t € R", and the kernel K(x, ) satisfies the condition
|K(x,t)| < 7.

In this representation by using different kernel functions one transforms func-
tions from L, into different sets of (smooth) functions.
Let us rewrite (6.72) in the form

fx) = / K" (x, )p(2) dt,

where
K*(x,t) = |A|sign(A(1))K (x, ),
A= [
and
_ @)
p(t) = W

is some density function. Therefore (using the results obtained in Chapter 5,
Section 5.5) one can assert that if we sample ¢ points ¢, ..., t, from p(t), then
with probability 1 — 1 we have

¢
sup |f() ~ 7 3" K*(x,1)

i=1

< 20Alry/E(0),
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where

h(lnz—e+1) —Inn/4
&= h +l
14 A

and A is VC dimension of the set of functions K*(x,t) (here t describes the
vector of variables and x describes the vector of parameters).
Since for any positive n there exist ¢ points ¢/, ....t; that satisfy this

inequality, the inequality
su < 2|A|Ty/EX (€
XP < 2A| (€)

¢
) - 3 YK )
i=1

where

h(ln2h—€+1) +1n4 |
E'(¢) = 7 +I_?

holds true with probability one.
Thus we have proved the following theorem.

Theorem 6.12 (Girosi). Let f(x) be a set of functions, 