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Preface 

Life is just a long random walk. Things are created because the circumstances 
happen to be right. More often than not, creations, such as this book, are acci­
dental. Nonparametric estimation came to life in the fifties and sixties and started 
developing at a frenzied pace in the late sixties, engulfing pattern recognition in 
its growth. In the mid-sixties, two young men, Tom Cover and Peter Hart, showed 
the world that the nearest neighbor rule in all its simplicity was guaranteed to err at 
most twice as often as the best possible discrimination method. Tom's results had 
a profound influence on Terry Wagner, who became a Professor at the University 
of Texas at Austin and brought probabilistic rigor to the young field of nonpara­
metric estimation. Around 1971, Vapnik and Chervonenkis started publishing a 
revolutionary series of papers with deep implications in pattern recognition, but 
their work was not well known at the time. However, Tom and Terry had noticed 
the potential of the work, and Terry asked Luc Devroye to read that work in prepa­
ration for his Ph.D. dissertation at the University of Texas. The year was 1974. Luc 
ended up in Texas quite by accident thanks to a tip by his friend and fellow Belgian 
Willy Wouters, who matched him up with Terry. By the time Luc's dissertation 
was published in 1976, pattern recognition had taken off in earnest. On the theoret­
ical side, important properties were still being discovered. In 1977, Stone stunned 
the nonparametric community by showing that there are Iionparametric rules that 
are convergent for all distributions of the data. This is called distribution-free or 
universal consistency, and it is what makes nonparametric methods so attractive. 
Yet, very few researchers were concerned with universal consistency-one notable 
exception was Laci Gyorfi, who at that time worked in Budapest amid an energetic 
group of nonparametric specialists that included Sandor Csibi, J6zsef Fritz, and 
Pal Revesz. 



VI Preface 

So, linked by a common vision, Luc and Laci decided to join forces in the early 
eighties. In 1982, they wrote six chapters of a book on nonparametric regression 
function estimation, but these were never published. In fact, the notes are still in 
drawers in their offices today. They felt that the subject had not matured yet. A 
book on nonparametric density estimation saw the light in 1985. Unfortunately, 
as true baby-boomers, neither Luc nor Laci had the time after 1985 to write a 
text on nonpararnetric pattern recognition. Enter Gabor Lugosi, who obtained his 
doctoral degree under Laci's supervision in 1991. Gabor had prepared a set of 
rough course notes on the subject around 1992 and proposed to coordinate the 
project-this book-in 1993. With renewed energy, we set out to write the book 
that we should have written at least ten years ago. Discussions and work sessions 
were held in Budapest, Montreal, Leuven, and Louvain-La-Neuve. In Leuven, 
our gracious hosts were Ed van der Meulen and Jan Beirlant, and in Louvain­
La-Neuve, we were gastronomically and spiritually supported by Leopold Simar 
and Irene Gijbels. We thank all of them. New results accumulated, and we had 
to resist the temptation to publish these in journals. Finally, in May 1995, the 
manuscript had bloated to such extent that it had to be sent to the publisher, for 
otherwise it would have become an encyclopedia. Some important unanswered 
questions were quickly turned into masochistic exercises or wild conjectures. We 
will explain subject selection, classroom use, chapter dependence, and personal 
viewpoints in the Introduction. We do apologize, of course, for all remaining 
errors. 

We were touched, influenced, guided, and taught by many people. Terry Wag­
ner's rigor and taste for beautiful nonparametric problems have infected us for 
life. We thank our past and present coauthors on nonpararnetric papers, Alain 
Berlinet, Michel Broniatowski, Ricardo Cao, Paul Deheuvels, Andras Farago, 
Adam Krzyzak, Tamas Linder, Andrew Nobel, Mirek Pawlak, Igor Vajda, Harro 
Walk, and Ken Zeger. Tamas Linder read most of the book and provided invalu­
able feedback. His help is especially appreciated. Several chapters were critically 
read by students in Budapest. We thank all of them, especially Andras Antos, 
Miklos Csuros, Balazs Kegl, Istvan Pali, and Marti Pinter. Finally, here is an al­
phabetically ordered list of friends who directly or indirectly contributed to our 
knowledge and love of nonparametrics: Andrew and Roger Barron, Denis Bosq, 
Prabhir Burman, Tom Cover, Antonio Cuevas, Pierre Devijver, Ricardo Fraiman, 
Ned Glick, Wenceslao Gonzalez-Manteiga, Peter Hall, Eiichi Isogai, Ed Mack, 
Arthur Nadas, Georg Pflug, George Roussas, Winfried Stute, Tamas Szabados, 
Godfried Toussaint, Sid Yakowitz, and Yannis Yatracos. 

Gabor diligently typed the entire manuscript and coordinated all contributions. 
He became quite a TEXpert in the process. Several figures were made by idraw 
and xi ig by Gabor and Luc. Most of the drawings were directly programmed 
in PostScript by Luc and an undergraduate student at McGill University, Hisham 
Petry, to whom we are grateful. For Gabor, this book comes at the beginning of his 
career. Unfortunately, the other two authors are not so lucky. As both Luc and Laci 
felt that they would probably not write another book on nonparametric pattern 
recognition-the random walk must go on-they decided to put their general 
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view of the subject area on paper while trying to separate the important from the 
irrelevant. Surely, this has contributed to the length of the text. 

So far, our random excursions have been happy ones. Coincidentally, Luc is 
married to Bea, the most understanding woman in the world, and happens to have 
two great daughters, Natasha and Birgit, who do not stray off their random courses. 
Similarly, Laci has an equally wonderful wife, Kati, and two children with steady 
compasses, Kati and Janos. During the preparations of this book, Gabor met a 
wonderful girl, Arrate. They have recently decided to tie their lives together. 

On the less amorous and glamorous side, we gratefully acknowledge the research 
support of NSERC CANADA, FCAR QUEBEC, OTKA HUNGARY, and the exchange program 
between the Hungarian Academy of Sciences and the Royal Belgian Academy of 
Sciences. Early versions of this text were tried out in some classes at the Technical 
University of Budapest, Katholieke Universiteit Leuven, Universitat Stuttgart, and 
Universite Montpellier II. We would like to thank those students for their help in 
making this a better book. 

Montreal, Quebec, Canada 
Budapest, Hungary 
Budapest, Hungary 

Luc Devroye 
Laci Gyorfi 

Gabor Lugosi 
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1 
Introduction 

Pattern recognition or discrimination is about guessing or predicting the unknown 
nature of an observation, a discrete quantity such as black or white, one or zero, sick 
or healthy, real or fake. An observation is a collection of numerical measurements 
such as an image (which is a sequence of bits, one per pixel), a vector of weather 
data, an electrocardiogram, or a signature on a check suitably digitized. More 
formally, an observation is a d-dimensional vector x. The unknown nature of 
the observation is called a class. It is denoted by y and takes values in a finite 
set {I, 2, ... , M}. In pattern recognition, one creates a function g(x) : nd -* 

{I, ... , M} which represents one's guess of y given x. The mapping g is called a 
classifier. Our classifier errs on x if g(x) i y. 

How one creates a rule g depends upon the problem at hand. Experts can be 
called for medical diagnoses or earthquake predictions-they try to mold g to their 
own knowledge and experience, often by trial and error. Theoretically, each expert 
operates with a built-in classifier g, but describing this g explicitly in mathematical 
form is not a sinecure. The sheer magnitude and richness of the space of x may 
defeat even the best expert-it is simply impossible to specify g for all possible 
x's one is likely to see in the future. We have to be prepared to live with imperfect 
classifiers. In fact, how should we measure the quality of a classifier? We can't 
just dismiss a classifier just because it misclassifies a particular x. For one thing, 
if the observation does not fully describe the underlying process (that is, if y is not 
a deterministic function of x), it is possible that the same x may give rise to two 
different y's on different occasions. For example, if we just measure water content 
of a person's body, and we find that the person is dehydrated, then the cause (the 
class) may range from a low water intake in hot weather to severe diarrhea. Thus, 
we introduce a probabilistic setting, and let (X, Y) be an n d x {I, ... , M}-valued 
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random pair. The distribution of (X, Y) describes the frequency of encountering 
particular pairs in practice. An error occurs if g(X) i Y, and the probability of 
error for a classifier g is 

L(g) = P{g(X) i Y} . 

There is a best possible classifier, g*, which is defined by 

g* = arg min P{g(X) i Y} . 
g:Rd-+{I, ... ,M} 

Note that g* depends upon the distribution of (X, Y). If this distribution is known, 
g* may be computed. The problem of finding g* is Bayes J problem, and the clas­
sifier g* is called the Bayes classifier (or the Bayes rule). The minimal probability 
of error is called the Bayes error and is denoted by L * = L(g*). Mostly, the 
distribution of (X, Y) is unknown, so that g* is unknown too. 

We do not consult an expert to try to reconstruct g*, but have access to a good 
database of pairs (Xi, Yi ), 1 :::: i :::; n, observed in the past. This database may be 
the result of experimental observation (as for meteorological data, fingerprint data, 
ECG data, or handwritten characters). It could also be obtained through an expert 
or a teacher who filled in the Yi's after having seen the X/so To find a classifier 
g with a small probability of error is hopeless unless there is some assurance that 
the (Xi, Yi)'sjointly are somehow representative of the unknown distribution. We 
shall assume in this book that (Xl, Y1), .•. , (Xn, Yn), the data, is a sequence of 
independent identically distributed (i.i.d.) random pairs with the same distribution 
as that of (X, Y). This is a very strong assumption indeed. However, some theo­
retical results are emerging that show that classifiers based on slightly dependent 
data pairs and on i.i.d. data pairs behave roughly the same. Also, simple models 
are easier to understand are more amenable to interpretation. 

A classifier is constructed on the basis of Xl, Y1, ••• , Xn , Yn and is denoted by 
gn~ Y is guessed by gn(X~ Xl, Y I , ., ., Xn, Yn). The process of constructing gn is 
called learning, supervised learning, or learning with a teacher. The performance 
of gn is measured by the conditional probability of error 

This is a random variable because it depends upon the data. So, Ln averages over 
the distribution of (X, Y), but the data is held fixed. Averaging over the data as well 
would be unnatural, because in a given application, one has to live with the data 
at hand. It would be marginally useful to know the number ELn as this number 
would indicate the quality of an average data sequence, not your data sequence. 
This text is thus about L n , the conditional probability of error. 

An individual mapping gn : nd x {nd x {l, ... , M}}n ---+ {I, ... , M} is still 
called a classifier. A sequence {gn, n :::: I} is called a (discrimination) rule. Thus, 
classifiers are functions, and rules are sequences of functions. 

A novice might ask simple questions like this: How does one construct a good 
classifier? How good can a classifier be? Is classifier A better than classifier B? Can 
we estimate how good a classifier is? What is the best classifier? This book partially 
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answers such simple questions. A good deal of energy is spent on the mathematical 
formulations of the novice's questions. For us, a rule-not a classifier-is good if 
it is consistent, that is, if 

lim ELn = L* 
n-+oo 

or equivalently, if Ln -7 L * in probability as n -7 00. We assume that the 
reader has a good grasp of the basic elements of probability, including notions 
such as convergence in probability, strong laws of large numbers for averages, and 
conditional probability. A selection of results and definitions that may be useful 
for this text is given in the Appendix. A consistent rule guarantees us that taking 
more samples essentially suffices to roughly reconstruct the unknown distribution 
of (X, Y) because Ln can be pushed as close as desired to L *. In other words, 
infinite amounts of information can be gleaned from finite samples. Without this 
guarantee, we would not be motivated to take more samples. We should be careful 
and not impose conditions on (X, Y) for the consistency of a rule, because such 
conditions may not be verifiable. If a rule is consistent for all distributions of 
(X, Y), itis said to be universally consistent. 

Interestingly, until 1977 , it was not known if a universally consistent rule existed. 
All pre-1977 consistency results came with restrictions on (X, Y). In 1977, Stone 
showed that one could just take any k-nearest neighbor rule with k = k(n) -7 00 

and kin -7 0. The k-nearest neighbor classifier gn(x) takes a majority vote over 
the Y/s in the subset of k pairs (Xi, Yi ) from (Xl, Y I ), ... , (Xn, Yn) that have the 
smallest values for II Xi - X II (i.e., for which Xi is closest to x). Since Stone's proof 
of the universal consistency of the k-nearest neighbor rule, several other rules have 
been shown to be universally consistent as well. This book stresses universality 
and hopefully gives a reasonable account of the developments in this direction. 

Probabilists may wonder why we did not use convergence with probability one 
in our definition of consistency. Indeed, strong consistency-convergence of Ln to 
L * with probability one-implies convergence for almost every sample as it grows. 
Fortunately, for most well-behaved rules, consistency and strong consistency are 
equivalent. For example, for the k-nearest neighbor rule, k -7 00 and kin -7 ° 
together imply Ln -7 L * with probability one. The equivalence will be dealt with, 
but it will not be a major focus of attention. Most, if not all, equivalence results are 
based upon some powerful concentration inequalities such as McDiarmid's. For 
example, we will be able to show that for the k-nearest neighbor rule, there exists 
a number c > 0, such that for all E > 0, there exists N (E) > ° depending upon 
the distribution of (X, Y), such that 

P{Ln - L * > E} ::::: e-CnE2 
, n ~ N(E) . 

This illustrates yet another focus of the book-inequalities. Whenever possible, we 
make a case or conclude a proof via explicit inequalities. Various parameters can 
be substituted in these inequalities to allow the user to draw conclusions regarding 
sample size or to permit identification of the most important parameters. 

The material in the book is often technical and dry. So, to stay focused on the 
main issues, we keep the problem simple: 
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A. We only deal with binary classification (M == 2). The class Y takes values 
in {a, I}, and a classifier gn is a mapping: Rd x {Rd X {a, l}}n ~ {a, I}. 

B. We only consider i.i.d. data sequences. We also disallow active learning, 
a set-up in which the user can select the Xi'S deterministically. 

C. We do not consider infinite spaces. For example, X cannot be a random 
function such as a cardiogram. X must be a Rd-valued random vector. 
The reader should be aware that many results given here may be painlessly 
extended to certain metric spaces of infinite dimension. 

Let us return to our novice's questions. We know that there are good rules, but 
just how good can a classifier be? Obviously, Ln :::: L * in all cases. It is thus 
important to know L * or to estimate it, for if L * is large, any classifier, including 
yours, will perform poorly. But even if L * were zero, Ln could still be large. Thus, 
it would be nice to have explicit inequalities for probabilities such as 

P{Ln:::: L* +E}. 

However, such inequalities must necessarily depend upon the distribution of 
(X, Y). That is, for any rule, 

lim inf sup P{Ln :::: L * + E} > ° . 
n-+oo all distributions of (X,y) with L*+E<1/2 

Universal rate of convergence guarantees do not exist. Rate of convergence studies 
must involve certain subclasses of distributions of (X, Y). For this reason, with few 
exceptions, we will steer clear of the rate of convergence quicksand. 

Even if there are no universal performance guarantees, we might still be able to 
satisfy our novice's curiosity if we could satisfactorily estimate Ln for the rule at 
hand by a function Ln of the data. Such functions are called error estimates. For 
example, for the k-nearest neighbor classifier, we could use the deleted estimate 

where gni(Xi) classifies Xi by the k-nearest neighbor method based upon the data 
(X 1, Yd, ... , (Xn, Yn) with (Xi, Yi ) deleted. If this is done, we have a distribution­
free inequality 

--- 6k + I 
P{ILn - Ln I > E} :S --2-

nf 

(the Rogers-Wagner inequality), provided that distance ties are broken in an ap­
propriate manner. In other words, without knowing the distribution of (X, Y), we 
can state with a certain confidence that Ln is contained in [Ln - f, ~1 + f]. Thus, 
for many classifiers, it is indeed possible to estimate Ln from the data at hand. 
However, it is impossible to estimate L * universally well: for any n, and any es­
timate of L * based upon the data sequence, there always exists a distribution of 
(X, Y) for which the estimate is arbitrarily poor. 
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Can we compare rules {gn} and {g~}? Again, the answer is negative: there exists 
no "best" classifier (or superclassifier), as for any rule {gn}, there exists a distri­
bution of (X, Y) and another rule {g~} such that for all n, E{L(g~)} < E{L(gn)}. 
If there had been a universally best classifier, this book would have been unnec­
essary: we would all have to use it all the time. This nonexistence implies that the 
debate between practicing pattern recognizers will never end and that simulations 
on particular examples should never be used to compare classifiers. As an exam­
ple, consider the I-nearest neighbor rule, a simple but not universally consistent 
rule. Yet, among all k-nearest neighbor classifiers, the I-nearest neighbor classifier 
is admissible-there are distributions for which its expected probability of error 
is better than for any k-nearest neighbor classifier with k > 1. So, it can never 
be totally dismissed. Thus, we must study all simple rules, and we will reserve 
many pages for the nearest neighbor rule and its derivatives. We will for example 
prove the Cover-Hart inequality (Cover and Hart, 1967) which states that for all 
distributions of (X, Y), 

lim sup ELn :s 2L * 
n-+oo 

where Ln is the probability of error with the I-nearest neighbor rule. As L * is 
usually small (for otherwise, you would not want to do discrimination), 2L * is 
small too, and the I-nearest neighbor rule will do just fine. 

The nonexistence of a best classifier may disappoint our novice. However, we 
may change the setting somewhat and limit the classifiers to a certain class C, such 
as all k-nearest neighbor classifiers with all possible values for k. Is it possible to 
select the best classifier from this class? Phrased in this manner, we cannot possibly 
do better than 

def . ..../ } L = mf P{gn(X) -r Y . 
gn EC 

Typically, L > L * . Interestingly, there is a general paradigm for picking classifiers 
from C and to obtain universal performance guarantees. It uses empirical risk min­
imization, a method studied in great detail in the work of Vapnik and Chervonenkis 
(1971). For example, if we select gn from C by minimizing 

then the corresponding probability of error Ln satisfies the following inequality 
for all E > 0: 

P{Ln > L+E}::S 8(nV +I)e-nE
2
/128. 

Here V > 0 is an integer depending upon the massiveness of C only. V is called the 
vc dimension of C and may be infinite for large classes C. For sufficiently restricted 
classes C, V is finite and the explicit universal bound given above can be used to 
obtain performance guarantees for the selected g n (relative to L, not L *). The bound 
above is only valid if C is independent of the data pairs (Xl, YI ), ... , (Xn, Yn). 
Fixed classes such as all classifiers that decide 1 on a halfspace and 0 on its 
complement are fine. We may also sample m more pairs (in addition to the n pairs 
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already present), and use the n pairs as above to select the best k for use in the 
k-nearest neighbor classifier based on the m pairs. As we will see, the selected 
rule is universally consistent if both m and n diverge and n flog m --+ 00. And we 
have automatically solved the problem of picking k. Recall that Stone's universal 
consistency theorem only told us to pick k = o(m) and to let k --+ 00, but it 
does not tell us whether k ~ m 0.01 is preferable over k ~ m 0.99. Empirical risk 
minimization produces a random data-dependent k that is not even guaranteed to 
tend to infinity or to be oem), yet the selected rule is universally consistent. 

We offer virtually no help with algorithms as in standard texts, with two notable 
exceptions. Ease of computation, storage, and interpretation has spurred the de­
velopment of certain rules. For example, tree classifiers construct a tree for storing 
the data, and partition R/ by certain cuts that are typically perpendicular to a co­
ordinate axis. We say that a coordinate axis is "cut." Such classifiers have obvious 
computational advantages, and are amenable to interpretation-the components of 
the vector X that are cut at the early stages of the tree are most crucial in reaching a 
decision. Expert systems, automated medical diagnosis, and a host of other recog­
nition rules use tree classification. For example, in automated medical diagnosis, 
one may first check a patient's pulse (component #1). If this is zero, the patient 
is dead. If it is below 40, the patient is weak. The first component is cut twice. In 
each case, we may then consider another component, and continue the breakdown 
into more and more specific cases. Several interesting new universally consistent 
tree classifiers are described in Chapter 20. 

The second group of classifiers whose development was partially based upon 
easy implementations is the class of neural network classifiers, descendants of 
Rosenblatt's perceptron (Rosenblatt, 1956). These classifiers have unknown pa­
rameters that must be trained or selected by the data, in the way we let the data pick 
k in the k-nearest neighbor classifier. Most research papers on neural networks deal 
with the training aspect, but we will not. When we say "pick the parameters by 
empirical risk minimization," we will leave the important algorithmic complexity 
questions unanswered. Perceptrons divide the space by one hyperplane and attach 
decisions 1 and 0 to the two halfspaces. Such simple classifiers are not consistent 
except for a few distributions. This is the case, for example, when X takes val­
ues on {O, 1}d (the hypercube) and the components of X are independent. Neural 
networks with one hidden layer are universally consistent if the parameters are 
well-chosen. We will see that there is also some gain in considering two hidden 
layers, but that it is not really necessary to go beyond two. 

Complexity of the training algorithm-the phase in which a classifier gn is 
selected from C-is of course important. Sometimes, one would like to obtain 
classifiers that are invariant under certain transformations. For example, the k­
nearest neighbor classifier is not invariant under nonlinear transformations of the 
coordinate axes. This is a drawback as components are often measurements in 
an arbitrary scale. Switching to a logarithmic scale or stretching a scale out by 
using Fahrenheit instead of Celsius should not affect good discrimination rules. 
There exist variants of the k-nearest neighbor rule that have the given invariance. 
In character recognition, sometimes all components of a vector X that represents 
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a character are true measurements involving only vector differences between se­
lected points such as the leftmost and rightmost points, the geometric center, the 
weighted center of all black pixels, the topmost and bottommost points. In this case, 
the scale has essential information, and invariance with respect to changes of scale 
would be detrimental. Here however, some invariance with respect to orthonormal 
rotations is healthy. 

We follow the standard notation from textbooks on probability. Thus, random 
variables are uppercase characters such as X, Y, and Z. Probability measures are 
denoted by greek letters such as JL and 1). Numbers and vectors are denoted by 
lowercase letters such as a, b, c, x, and y. Sets are also denoted by roman capitals, 
but there are obvious mnemonics: S denotes a sphere, B denotes a Borel set, and 
so forth. If we need many kinds of sets, we will typically use the beginning of the 
alphabet (A, B, C). Most functions are denoted by j, g, ¢, and 0/. Calligraphic 
letters such as A, C, and:F are used to denote classes of functions or sets. A short 
list of frequently used symbols is found at the end of the book. 

At the end of this chapter, you will find a directed acyclic graph that describes 
the dependence between chapters. Clearly, prospective teachers will have to select 
small subsets of chapters. All chapters, without exception, are unashamedly theo­
retical. We did not scar the pages with backbreaking simulations or quick -and-dirty 
engineering solutions. The methods gleaned from this text must be supplemented 
with a healthy dose of engineering savvy. Ideally, students should have a com­
panion text filled with beautiful applications such as automated virus recognition, 
telephone eavesdropping language recognition, voice recognition in security sys­
tems, fingerprint recognition, or handwritten character recognition. To run a real 
pattern recognition project from scratch, several classical texts on statistical pat­
tern recognition could and should be consulted, as our work is limited to general 
probability-theoretical aspects of pattern recognition. We have over 430 exercises 
to help the scholars. These include skill honing exercises, brainteasers, cute puz­
zles, open problems, and serious mathematical challenges. There is no solution 
manual. This book is only a start. Use it as a toy-read some proofs, enjoy some 
inequalities, learn new tricks, and study the art of camouflaging one problem to 
look like another. Learn for the sake of learning. 
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2 
The Bayes Error 

2.1 The Bayes Problem 

In this section, we define the mathematical model and introduce the notation we 
will use for the entire book. Let (X, Y) be a pair of random variables taking their 
respective values from Rd and {O, I}. The random pair (X, Y) may be described 
in a variety of ways: for example, it is defined by the pair (IL, 1]), where IL is the 
probability measure for X and 1] is the regression of Y on X. More precisely, for 
a Borel-measurable set A S; R d , 

IL(A) = P{X E A}, 

and for any x E R d
, 

1](x) = PlY = llX = x} = E{YIX = x}. 

Thus, 1] (x ) is the conditional probability that Y is 1 given X = x. To see that this 
suffices to describe the distribution of (X, Y), observe that for any C S; Rd X {O, I}, 
we have 

and 

C = (C n (Rd x {OJ)) U (C n (Rd x {IJ)) d;t Co x {OJ U C1 x {I}, 

P{(X, Y) E C} P{X E Co, Y = O} + P{X E C1, Y = I} 

[ (1 - 1](x))JL(dx) + [ 1](x)JL(dx). 
lco lC I 
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As this is valid for any Borel-measurable set C, the distribution of (X, Y) is deter­
mined by (Il, ry). The function ry is sometimes called the a posteriori probability. 

Any function g : nd -+ {a, 1} defines a classifier or a decision function. The 
error probability of g is L(g) = P{g(X) =I Y}. Of particular interest is the Bayes 
decision function 

*(x) = { 1 if ry(x) :- 1/2 
g ° otherwIse. 

This decision function minimizes the error probability. 

Theorem 2.1. For any decision function g : nd -+ {a, 1}, 

P{g*(X) =I Y} ::: P{g(X) =I Y}, 

that is, g* is the optimal decision. 

PROOF. Given X = x, the conditional error probability of any decision g may be 
expressed as 

P{g(X) =I YIX = x} 

= 1 - P{Y = g(X)IX = x} 

= 1 - (P{Y = 1, g(X) = 11X = x} +P{Y = 0, g(X) = 0IX = xD 
= 1 - (!{g(x)=l}P{Y = IIX = x} + I{g(x)=O}P{Y = OIX = x}) 

= 1 - (!{g(x)=l}ry(X) + f{g(x)=O} (1 - ry(x») , 

where fA denotes the indicator of the set A. Thus, for every x E n d , 

P{g(X) =I YIX = x} - P{g*(X) =I YIX = x} 

= ry(x) (!{g*(x)=l) - f{gex)=l}) + (l - ry(x)) (I{g*ex)=o) - I{g(x)=O}) 

= (2ry(x) - 1) (I{g*ex)=l) - f{g(x)=1l) 

> ° 
by the definition of g*. The statement now follows by integrating both sides with 
respect to Il-(dx). 0 

decide class 0 
112 ________________ _ 

FIGURE 2.1. The Bayes decision in the 

example on the left is 1 if x > a, and 

° otherwise. 
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REMARK. g* is called the Bayes decision and L * = P{g*(X) =I Y} is referred to as 
the Bayes probability of error, Bayes error, or Bayes risk. The proof given above 
reveals that 

L(g) = 1 - E {I{g(X)=I}ry(X) + I{g(x)=O}(l - ry(X»} , 

and in particular, 

L * = 1 - E {I{1J(X»1/2}ry(X) + I{1J(X):S1/2}(l - ry(X»}. 0 

We observe that the a posteriori probability 

ry(x) = P{Y = l/X = x} = E{Y/X = x} 

minimizes the squared error when Y is to be predicted by f(X) for some function 
f : Rd --+ R: 

E {(ry(X) - y)2} ::: E {(f(X) _ y)2}. 

To see why the above inequality is true, observe that for each x E R d , 

E {(f(X) - y)21X = x} 

= E {(f(x) - ry(x) + ry(x) - y)21X = x} 

= (f(x) - ry(x»2 + 2(f(x) - ry(x»E{ry(x) - YIX = x} 

+E {(ry(X) - y)21X = x} 

= (f(x) - ry(x»2 + E {(ry(X) - y)21X = x} . 

The conditional median, i.e., the function minimizing the absolute error E{ I f (X) -
Y I} is even more closely related to the Bayes rule (see Problem 2.12). 

2.2 A Simple Example 

Let us consider the prediction of a student's performance in a course (pass/fail) 
when given a number of important factors. First, let Y = 1 denote a pass and let 
Y = ° stand for failure. The sole observation X is the number of hours of study 
per week. This, in itself, is not a foolproof predictor of a student's performance, 
because for that we would need more information about the student's quickness of 
mind, health, and social habits. The regression function ry(x) = P{Y = 11X = x} is 
probably monotonically increasing in x. If it were known to be ry(x) = x / (c + x), 
c > 0, say, our problem would be solved because the Bayes decision is 

g*(x) = {01 if ry(x) > 1/2 (i.e., x > c) 
otherwise. 
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The corresponding Bayes error is 

L * = L(g*) = E{min(71(X), 1 - 71(X»} = E {min(e, X)} . 
e+X 

While we could deduce the Bayes decision from 71 alone, the same cannot be said 
for the Bayes error L * -it requires knowledge of the distribution of X. If X = e 
with probability one (as in an army school, where all students are forced to study 
e hours per week), then L * = 1/2. If we have a population that is nicely spread 
out, say, X is uniform on [0, 4e], then the situation improves: 

1 14c minCe, x) 1 5e 
L* = - dx = -log - ~ 0.305785. 

4e 0 e + x 4 4 

Far away from x = e, discrimination is really simple. In general, discrimination is 
much easier than estimation because of this phenomenon. 

2.3 Another Simple Example 

Let us work out a second simple example in which Y = ° or Y = 1 according to 
whether a student fails or passes a course. X represents one or more observations 
regarding the student. The components of X in our example will be denoted by 
T, B, and E respectively, where T is the average number of hours the students 
watches TV, B is the average number of beers downed each day, and E is an 
intangible quantity measuring extra negative factors such as laziness and learning 
difficulties. In our cooked-up example, we have 

y={l ifT+B+E<7 ° otherwise. 
Thus, if T, B, and E are known, Y is known as well. The Bayes classifier decides 
1 if T + B + E < 7 and ° otherwise. The corresponding Bayes probability of 
error is zero. Unfortunately, E is intangible, and not available to the observer. We 
only have access to T and B. Given T and B, when should we guess that Y = I? 
To answer this question, one must know the joint distribution of (T, B, E), or, 
equivalently, the joint distribution of (T, B, Y). So, let us assume that T, B, and E 
are i.i.d. exponential random variables (thus, they have density e-u on [0,(0». The 
Bayes rule compares P{Y = liT, B} with P{Y = 0IT, B} and makes a decision 
consistent with the maximum of these two values. A simple calculation shows that 

P{Y = liT, B} = P{T + B + E < 71T, B} 

= prE < 7 - T - BIT, B} 

max (0, 1 - e-(7-T-B)) . 

The crossover between two decisions occurs when this value equals 1 /2. Thus, the 
Bayes classifier is as follows: 

g*(T, B) = {I if T + ~ < 7 -log2 = 6.306852819 ... 
o otherWIse. 
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Of course, this classifier is not perfect. The probability of error is 

P{g*(T, B) =I Y} 

= P{T +B < 7 -log2,T +B + E 2: 7} 

+P{T + B 2: 7 -log2, T + B + E < 7} 

= E {e-(7-T-B) I{T+B<7-10g2)} 

P {(I -(7-T-B)) I } + - e {7>T+Bo::7-log2) 

1
7-10g2 /,7 

= xe-x e-(7-x) dx + xe-x (1 - e-(7-x)) dx 
o 7-log2 

(since the density of T + B is ue-u on [0, (0» 
-7 ((7 -log2)2 72 (7 -lOg2)2) 

= e 2 + 2(8 - log 2) - 8 - 2 + 2 

(as Jxoo ue-udu = (1 + x)e-X
) 

= 0.0199611 e _ •• 

If we have only access to T, then the Bayes classifier is allowed to use T only. 
First, we find 

P{Y=IIT} = P{E+B<7-TIT} 

max (0, 1 - (1 + 7 - T)e-(7-T)) 

def 
The crossover at 1/2 occurs at T = c = 5.321653009 ... , so that the Bayes 
classifier is given by 

The probability of error is 

P{g*(T) =I Y} 

g*(T) = {I if T < .c ° otherwIse. 

P{T < c, T + B + E :::: 7} + P{T :::: c, T + B + E < 7} 

= E {(l + 7 - T)e-(7-T) I{T<cd 

+ P {(1 - (1 + 7 - T)e-(7-T)) I{7>To::cd 

1c 
e-x(l + 7 - x)e-(7-x) dx + 17 e-X (1 - (1 + 7 - x)e-(7-x») dx 

= e -- +e 1- +--7 (82 (8 - c)2 -(c-7) (8 - C)2 1) 
2 2 2 2 

= 0.02235309002 .... 

The Bayes error has increased slightly, but not by much. Finally, if we do not have 
access to any of the three variables, T, B, and E, the best we can do is see which 
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class is most likely. To this end, we compute 

pry = O} = P{T + B + E ~ 7} = (1 + 7 + 72/2)e-7 = .02963616388 ... 

If we set g == 1 all the time, we make an error with probability 0.02963616388 .... 
In practice, Bayes classifiers are unknown simply because the distribution of 

(X, Y) is unknown. Consider a classifier based upon (T, B). Rosenblatt's percep­
tron (see Chapter 4) looks for the best linear classifier based upon the data. That 
is, the decision is of the form 

{
I if aT + bB < c 

geT, B) = 0 
otherwise 

for some data-based choices for a, band c. If we have lots of data at our disposal, 
then it is possible to pick out a linear classifier that is nearly optimal. As we have 
seen above, the Bayes classifier happens to be linear. That is a sheer coincidence, 
of course. If the Bayes classifier had not been linear-for example, if we had 
Y = I{T+B2+E<7}-then even the best perceptron would be suboptimal, regardless 
of how many data pairs one would have. If we use the 3-nearest neighbor rule 
(Chapter 5), the asymptotic probability of error is not more than 1.3155 times the 
Bayes error, which in our example is about 0.02625882705. The example above 
also shows the need to look at individual components, and to evaluate how many 
and which components would be most useful for discrimination. This subject is 
covered in the chapter on feature extraction (Chapter 32). 

2.4 Other Formulas for the Bayes Risk 

The following forms of the Bayes error are often convenient: 

pi, 

Class I 

L * = inf P{g(X) =I Y} 
g:RC~{O,l} 

Class 0 

= E {min{1](X), 1 - 1](X)}} 

1 1 
= 2: - 2: E {121](X) - II}· 

Class 1 

FIGURE 2.2. The Bayes decision when class­

conditional densities exist. In the figure on 

the left, the decision is 0 on [a, b] and 1 

elsewhere. 



2.5 Plug-In Decisions 15 

In special cases, we may obtain other helpful forms. For example, if X has a 
density f, then 

L * f min(1](x), 1 - 1](x))f(x)dx 

f min((l - p)fo(x), plI(x))dx, 

where p = P{Y = I}, and fi(X) is the density of X given that Y = i. p and 1 - p 
are called the class probabilities, and fa, fl are the class-conditional densities. If 
fa and II are nonoverlapping, that is, f fofl = 0, then obviously L * = 0. Assume 
moreover that p = 1/2. Then 

L* = ~ f min (fo(x), fl(X))dx 

~ f II (x) - (II (x) - fo(x))+ dx 

= ~ - ~ f Ifl(X) - fo(x)ldx. 

Here g+ denotes the positive part of a function g. Thus, the Bayes error is directly 
related to the L 1 distance between the class densities. 

2.5 Plug-In Decisions 

FIGURE 2.3. The shaded area is 

the L 1 distance between the 

class-conditional densities. 

The best guess of Y from the observation X is the Bayes decision 

*(x) = {o if 1](x) ::::; 1/2 = {o if 1](x) ::::; 1 - 1](x) 
g 1 otherwise 1 otherwise. 

The function 1] is typically unknown. Assume that we have access to nonnegative 
functions i](x), 1 - i](x) that approximate 1] (x ) and 1 - 1] (x ) respectively. In this 
case it seems natural to use the plug-in decision function 

g(x) = {01 if i](x) ::::; 1/2 
otherwise, 
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to approximate the Bayes decision. The next well-known theorem (see, e.g., Van 
Ryzin (1966), Wolverton and Wagner (1969a), Glick (1973), Csibi (1971), Gyorfi 
(1975), (1978), Devroye and Wagner (1976b), Devroye (1982b), and Devroye and 
Gyorfi (1985)) states that if i1(x) is close to the real a posteriori probability in 
L1-sense, then the error probability of decision g is near the optimal decision g*. 

Theorem 2.2. For the error probability of the plug-in decision g defined above, 
we have 

and 

P{g(X) =I Y} - L * = 2 [ 11J(x) - 1/2II {g(x):fg*(x)}{L(dx), lRd 

P{g(X) =I Y} - L* S 2 r 11J(x) - i1(x)IJL(dx) = 2EI1J(X) - i1(X)I. lRd 

PROOF. If for some x E nd , g(x) = g*(x), then clearly the difference between the 
conditional error probabilities of g and g* is zero: 

P{g(X) =I YIX = x} - P{g*(X) =I YIX = x} = O. 

Otherwise, if g(x) =I g*(x), then as seen in the proof of Theorem 2.1, the difference 
may be written as 

Thus, 

P{g(X) =I YIX = x} P{g*(X) =I YIX = x} 

= (21J(x) - 1) (I{g*(x)::::l} - I{g(x)=l}) 

= 12 17(X) - lII{g(x)¥g*(x)}. 

P{g(X) =I Y} - L * = [211J(x) - 1/2II{g(x):fg*(x)}{L(dx) JRd 
< [211J(x) -17(x)IJL(dx), 

JRf 
since g(x) =I g*(x) implies 11J(x) - i1(x)1 :::: 11J(x) - 1/21. 0 

When the classifier g(x) can be put in the form 

(x) = {O ifi11(X~ S i1o(x) 
g 1 otherWIse, 

where i11(X), i1o(x) are some approximations of 1J(x) and 1 - 7J(X), respectively, 
the situation differs from that discussed in Theorem 2.2 if i1o(x) + 171 (x) does not 
necessarily equal to one. However, an inequality analogous to that of Theorem 2.2 
remains true: 
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Theorem 2.3. The error probability of the decision defined above is bounded from 

above by 

P{g(X) =I Y} - L *:s [ 10 - lJ(x» - ilo(x)ll-L(dx) + [ IlJ(x) - ill (x)II-L(dx). JRd .. JRd 
The proof is left to the reader (Problem 2.9). 

REMARK. Assume that the class-conditional densities fo, II exist and are approxi­
mated by the densities 10 (x ), ir (x). Assume furthermore that the class probabilities 
p == pry == 1} and 1 - P == P{Y = O} are approximated by PI and Po, respectively. 
Then for the error probability of the plug-in decision function 

g(x) = {o if PIJI(X) :s poJo(x) 
1 otherwise, 

P{g(X) =I Y} - L * 

:s [10 - p)foex) - poJoex)ldx + [ IpfIex) - PIirex)ldx. JRd JRd 
See Problem 2.10.0 

2.6 Bayes Error Versus Dimension 

The components of X that matter in the Bayes classifier are those that explicitly 
appear in lJ(X). In fact, then, all discrimination problems are one-dimensional, as 
we could equally well replace X by lJeX) or by any strictly monotone function of 
1](X), such as lJ 7 eX) + 5lJ3(X) + lJ(X). Unfortunately, lJ is unknown in general. In 
the example in Section 2.3, we had in one case 

lJ(T, B) = max (0, 1 - e-C7 - T- B») 

and in another case 

lJeT) = max (0, 1 - 0 + 7 - T)e-(7-T») . 

The former format suggests that we could base all decisions on T + B. This means 
that if we had no access to T and B individually, but to T + B jointly, we would be 
able to achieve the same results! Since lJ is unknown, all of this is really irrelevant. 

In general, the Bayes risk increases if we replace X by TeX) for any trans­
formation T (see Problem 2.1), as this destroys information. On the other hand, 
there exist transformations (such as lJ(X» that leave the Bayes error untouched. 
For more on the relationship between the Bayes error and the dimension, refer to 
Chapter 32. 
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Problems and Exercises 

PROBLEM 2.1. Let T : X -+ X' be an arbitrary measurable function. If L ~ and L~(X) 
denote the Bayes error probabilities for (X, Y) and (T(X), y), respectively, then prove that 

(This shows that transformations of X destroy information, because the Bayes risk in­
creases.) 

PROBLEM 2.2. Let X' be independent of (X, Y). Prove that 

Lex,Xf) = L~. 

PROBLEM 2.3. Show that L* :::: min(p, 1 - p), where p, 1 - P are the class probabilities. 
Show that equality holds if X and Y are independent. Exhibit a distribution where X is not 
independent of Y, but L * = rnin(p, 1 - p). 

PROBLEM 2.4. NEYMAN-PEARSON LEMMA. Consider again the decision problem, but with 
a decision g, we now assign two error probabilities, 

L(O)(g) = P{g(X) = 11Y = O} and L(1)(g) = P{g(X) = OIY = I}. 

Assume that the class-conditional densities fo, fl exist. For c > 0, define the decision 

if cfl(x) > !o(x) 
otherwise. 

Prove that for any decision g, if L(O)(g) ::::: L(O)(gc), then L(1\g) :::: L(l)(gc)' In other words, 
if L (0) is required to be kept under a certain level, then the decision minimizing L (1) has the 
form of gc for some c. Note that g* is like that. 

PROBLEM 2.5. DECISIONS WITH REJECTION. Sometimes in decision problems, one is allowed 
to say "I don't know," if this does not happen frequently. These decisions are called decisions 
with a reject option (see, e.g., Forney (1968), Chow (1970». Formally, a decision g(x) can 
have three values: 0, 1, and "reject." There are two performance measures: the probability 
of rejection P{g(X) = "reject"}, and the error probability P{g(X) i Ylg(X) i "reject"}. 
For a ° < c < 1/2, define the decision 

gc(x) = { ~ 
"reject" 

if ry(x) > 1/2 + c 

ifry(x):::: 1/2 - c 
otherwise. 

Show that for any decision g, if 

P{g(X) = "reject"} :::: P{gc(X) = "reject"}, 

then 
P{g(X) i Y!g(X) i "reject"} :::: P{gc(X) i Ylgc(X) i "reject"}. 

Thus, to keep the probability of rejection under a certain level, decisions of the form of gc 
are optimal (Gyorfi, Gyorfi, and Vajda (1978». 
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PROBLEM 2.6. Consider the prediction of a student's failure based upon variables T and B, 
where Y = I{T+B+E<7} and E is an inaccessible variable (see Section 2.3). 

(1) Let T, B, and E be independent. Merely by changing the distribution of E, show 
that the Bayes error for classification based upon (T, B) can be made as close as 
desired to 1/2. 

(2) Let T and B be independent and exponentially distributed. Find ajoint distribution 
of (T, B, E) such that the Bayes classifier is not a linear classifier. 

(3) Let T and B be independent and exponentially distributed. Find a joint distribution 
of (T, B, E) such that the Bayes classifier is given by 

g*(T, B) = {I if T2 +.B2 < 10, ° otherwIse. 

(4) Find the Bayes classifier and Bayes error for classification based on (T, B) (with 
Y as above) if (T, B, E) is uniformly distributed on [0, 4J3. 

PROBLEM 2.7. Assume that T, B, and E are independent uniform [0,4] random variables 
with interpretations as in Section 2.3. Let Y = 1 (0) denote whether a student passes (fails) 
a course. Assume that Y = 1 if and only if T B E :s 8. 

(1) Find the Bayes decision if no variable is available, if only T is available, and if 
only T and B are available. 

(2) Determine in all three cases the Bayes error. 
(3) Determine the best linear classifier based upon T and B only. 

PROBLEM 2.8. Let 1]', 1]" : nd -+ [0, 1] be arbitrary measurable functions, and define the 
corresponding decisions by g'(x) = I{T/'(x»1/2j and g"(x) = I(T/I/(x»1/2j. Prove that 

/L(g') - L(gff)/ :s P{g'(X) i gff(X)} 

and 
/L(g') - L(gff)1 :s E {121](X) - 1II{gl(X)igl/(x)d . 

PROBLEM 2.9. Prove Theorem 2.3. 

PROBLEM 2.10. Assume that the class-conditional densities fo and fi exist and are ap­
proximated by the densities fo and A, respectively. Assume furthermore that the class 
probabilities P = pry = I} and 1 - P = pry = o} are approximated by PI and Po. Prove 
that for the error probability of the plug-in decision function 

g(x) = { ~ 

we have 

if PI A (x) :s Po 10 ex ) 
otherwise, 

P{g(X) i Y} - L * :s llPfl (x) - PIA ex)ldx + 1 10 - p)fo(X) - polo(x)ldx. 
nd nd 

PROBLEM 2.11. Using the notation of Problem 2.10, show that if for a sequence of fm,n (x) 

and Pm,n (m = 0, 1), 
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then for the corresponding sequence of plug-in decisions limn---+oo P{gn(X) =I YJ = L * 
(Wolverton and Wagner (l969a». HINT: According to Problem 2.10, it suffices to show that 
if we are given a deterministic sequence of density functions f, !I, 12, h, ... , then 

lim f (fn(x) - f(X»2 dx = 0 
n---+oo 

implies 

lim f Ifn(x) - f(x)ldx = O. 
11---+00 

(A function f is called a density function if it is nonnegative and f f(x)dx = 1.) To see 
this, observe that 

where AI, A2 , •.. is a partition of nd into unit cubes, and f+ denotes the positive part of a 
function f. The key observation is that convergence to zero of each term of the infinite sum 
implies convergence of the whole integral by the dominated convergence theorem, since 
f (fn(x) - f(x»+ dx :s f fn(x)dx = 1. Handle the right-hand side by the Cauchy-Schwarz 
inequality. 

PROBLEM 2.12. Define the Ll error of a function f : nd 
--'J> n by J(f) = E{lf(X) - YI}. 

Show that a function minimizing J (f) is the Bayes rule g*, that is, J* = inf f J (f) = J (g*). 
Thus, J* = L * . Define a decision by 

{ 
0 if f(x):s 1/2 

g(x) = 1 otherwise, 

Prove that its error probability L(g) = P{g(X) =I Y} satisfies the inequality 

L(g) - L* :s J(f) - J*. 



3 
Inequalities and Alternate 
Distance Measures 

3.1 Measuring Discriminatory Information 

In our two-class discrimination problem, the best rule has (Bayes) probability of 
error 

L * = E {min(1J(X), 1 - 1J(X))} . 

This quantity measures how difficult the discrimination problem is. It also serves 
as a gauge of the quality of the distribution of (X, Y) for pattern recognition. Put 
differently, if 1/11 and 1/12 are certain many-to-one mappings, L * may be used to 
compare discrimination based on (1/11 (X), Y) with that based on (1/12 (X), Y). When 
1/11 projects nd to nd

] by taking the first d1 coordinates, and 1/12 takes the last d2 

coordinates, the corresponding Bayes errors will help us decide which projection 
is better. In this sense, L * is the fundamental quantity in feature extraction. 

Other quantities have been suggested over the years that measure the discrimi­
natory power hidden in the distribution of (X, Y). These may be helpful in some 
settings. For example, in theoretical studies or in certain proofs, the relationship be­
tween L * and the distribution of (X, Y) may become clearer via certain inequalities 
that link L * with other functionals of the distribution. We all understand moments 
and variances, but how do these simple functionals relate to L *? Perhaps we may 
even learn a thing or two about what it is that makes L * small. In feature selection, 
some explicit inequalities involving L * may provide just the kind of numerical in­
formation that will allow one to make certain judgements on what kind of feature 
is preferable in practice. In short, we will obtain more information about L * with 
a variety of uses in pattern recognition. 
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In the next few sections, we avoid putting any conditions on the distribution of 
(X, Y). 

3.2 The Kolmogorov Variational Distance 

Inspired by the total variation distance between distributions, the Kolmogorov 
variational distance 

bKO = ~E {IP{Y = IIX} - pry = DIX}I} 
2 
1 = "2 E{ /21](X) - 11} 

captures the distance between the two classes. We will not need anything special 
to deal with bKO as 

L* = E g -~12~(X) - II} 
I 1 

= "2 - "2E {12ry(X) - 11} 

I 
= "2 - OKQ' 

3.3 The Nearest Neighbor Error 

The asymptotic error of the nearest neighbor rule is 

LNN = E{2ry(X)(1 - ry(X))} 

(see Chapter 5). Clearly, 2ryO -ry) 2: min(1], 1 -ry) as 2 max(1] , 1 -ry) 2: 1. Also, 
using the notation A = min(1](X), 1 - ry(X)), we have 

L * ::: LNN = 2E{AO - A)} 

< 2E{A}· E{1 - A} 

(by the second association inequality of Theorem A.19) 

= 2L*(1-L*):::;2L*, (3.1) 

which are well-known inequalities of Cover and Hart (1967). LNN provides us with 
quite a bit of information about L * . 

The measure LNN has been rediscovered under other guises: Devijver and Kittler 
(1982, p.263) and Vajda (1968) call it the quadratic entropy, and Mathai and Rathie 
(975) refer to it as the harmonic mean coefficient. 
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FIGURE 3.1. Relationship between the 

Bayes error and the asymptotic near­

est neighbor error. Every point in the 

unshaded region is possible. 

~N~2L*(1-L*) 

3.4 The Bhattacharyya Affinity 

The Bhattacharyya measure of affinity (Bhattacharyya, (1946)) is - log p, where 

p = E {)7J(X)(1 - 7J(X))} 

will be referred to as the Matushita error. It does not occur naturally as the limit of 
any standard discrimination rule (see, however, Problem 6.11). p was suggested as 
a distance measure for pattern recognition by Matushita (1956). It also occurs under 
other guises in mathematical statistics-see, for example, the Hellinger distance 
literature (Le Cam (1970), Beran (1977)). 

Clearly, p = 0 if and only if 7J(X) E {O, I} with probability one, that is, if 
L * = O. Furthermore, p takes its maximal value 1/2 if and only if 7J(X) = 1/2 with 
probability one. The relationship between p and L * is not linear though. We will 
show that for all distributions, LNN is more useful than p if it is to be used as an 
approximation of L * . 

Theorem 3.1. For all distributions, we have 

PROOF. First of all, 

1 1 - - -J1- 4p2 < 
2 2 

1 1 - - -)1- 2L T 2 2 NN 

< L* 

< p. 

p2 E2 {J 7J(X)(1 - 7J(X))} 

< E {7J(X)(l - 7J(X))} (by Jensen's inequality) 
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= 

< L *(1 - L *) (by the Cover-Hart inequality (3.1». 

Second, as J11(I - 11) ~ 211(1 -17) for all 11 E [0,1], we see that p ~ LNN ~ L*. 
Finally, by the Cover-Hart inequality, 

)1- 2LNN ~ )1- 4L*(1- L*) = 1 - 2L*. 

Putting all these things together establishes the chain of inequalities. 0 

112 

112 

4p2~1-(1-2L*)2 

p 

FIGURE 3.2. The inequalities linking p 

to L * are illustrated. Note that the re­

gion is larger than that cut out in the 

(L *, LNN) plane in Figure 3.1. 

The inequality LNN :s p is due to Ito (1972). The inequality LNN ~ 2p2 is 
due to Horibe (1970). The inequality 1/2 - )1 - 4p2/2 :s L * :s p can be 
found in Kailath (1967). The left-hand side of the last inequality was shown by 
Hudimoto (1957). All these inequalities are tight (see Problem 3.2). The appeal 
of quantities like LNN and p is that they involve polynomials of 11, whereas L * = 
E{min(11(X), 1 - 11(X»} is nonpolynomial. For certain discrimination problems 
in which X has a distribution that is known up to certain parameters, one may 
be able to compute LNN and p explicitly as a function of these parameters. Via 
inequalities, this may then be used to obtain performance guarantees for parametric 
discrimination rules of the plug-in type (see Chapter 16). 

For completeness, we mention a generalization of Bhattacharyya's measure of 
affinity, first suggested by Chernoff (1952): 

where ex E (0, 1) is fixed. For ex = 1/2, be = -log p. The asymmetry introduced 
by taking ex =/1/2 has no practical interpretation, however. 
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3.5 Entropy 

The entropy of a discrete probability distribution (PI, P2, ... ) is defined by 

00 

1{ = 1{(PI, P2, ... ) = - LPi log Pi, 
i=1 

where, by definition, 0 log 0 = 0 (Shannon (1948)). The key quantity in information 
theory (see Cover and Thomas (1991)), it has countless applications in many 
branches of computer science, mathematical statistics, and physics. The entropy's 
main properties may be summarized as follows. 

A. 1{ :::: 0 with equality if and only if Pi = 1 for some i. Proof: log Pi :::: 0 for 
all i with equality if and only if Pi = 1 for some i. Thus, entropy is minimal 
for a degenerate distribution, i.e., a distribution with the least amount of 
"spread." 

B. 1{(PI, ... , Pk) :::: log k with equality if and only if PI = P2 = ... = Pk = 
1/ k. In other words, the entropy is maximal when the distribution is maxi­
mally smeared out. Proof: 

by the inequality logx :::: x 1, x > o. 

C. For a Bernoulli distribution (p, 1 - p), the binary entropy 1{(p, 1 - p) = 
- P log P - (1 - p) log(1 - p) is concave in p. 

Assume that X is a discrete random variable that must be guessed by asking 
questions of the type "is X E A?," for some sets A. Let N be the minimum expected 
number of questions required to determine X with certainty. It is well known that 

1{ 1{ 
--<N<--+1 
log2 - log 2 

(e.g., Cover and Thomas (1991)). Thus, 1{ not only measures how spread out the 
mass of X is, but also provides us with concrete computational bounds for certain 
algorithms. In the simple example above, 1{ is in fact proportional to the expected 
computational time of the best algorithm. 

We are not interested in information theory per se, but rather in its usefulness 
in pattern recognition. For our discussion, if we fix X = x, then Y is Bernoulli 
(rJ(x)). Hence, the conditional entropy of Y given X = x is 

1{(r](X), 1- r](x)) = -rJ(x)logrJ(x) - (1- rJ(x))log(1- r](x)). 

It measures the amount of uncertainty or chaos in Y given X = x. As we know, it 
takes values between 0 (when rJ(x) E {O, I}) and log 2 (when r](x) = 1/2), and is 
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concave in 1J(x). We define the expected conditional entropy by 

E = E {11(1J(X), 1 - 1J(X))} 

= -E {1J(X) log 1J(X) + (1 - 1l(X) log(1 - 1J(X»} . 

For brevity, we will refer to E as the entropy. As pointed out above, E = 0 if and 
only if 1J(X) E {O, l} with probability one. Thus, E and L * are related to each 
other. 

Theorem 3.2. 

1/2 

o 

A. E:::: 11(L*, 1 - L*) = -L*logL* - (1 - L*)log(1 - L*) (Fano's in­
equality; Fano (1952), see Cover and Thomas (1991, p. 39)). 

B. E::: -log(1 - LNN ) ::: -log(1 - L *). 
C. E:::: log 2 - ~(l - 2LNN ) :::: log 2 - ~(l- 2L*)2. 

L* 

o log 2 

£"? -log(I-L*) 

£ ~ 11(L*,I-L*) 

FIGURE 3.3. Inequalities (A) and 

(B) of Theorem 3.2 are illus­

trated here. 

PROOF. 

PART A. Define A = min(1J(X), 1 - 1J(X». Then 

PARTB. 

E = E{11(A, 1 - A)} 

:::: 11(EA, 1 - EA) 

(because 11 is concave, by Jensen's inequality) 

= 11(L *, 1 - L *). 

E = -E{A log A + (l - A) log(l - A)} 

::: -E {log (A2 + (l - A)2)} (by Jensen's inequality) 

-E{log(l - 2A(l - A»)} 

> -log(1 - E{2A(1 - A)}) (by Jensen's inequality) 
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= -log(1 - L NN ) 

> -log(1 - L *). 

PART C. By the concavity of H(A, 1 - A) as a function of A, and Taylor series 
expansion, 

Therefore, by Part A, 

1 
H(A,1 A):::; log 2 - 2(2A - 1)2. 

= log2 
1 
-(1 
2 

1 * * < log 2 - 2 + 2L (1 - L ) 

(by the Cover-Hart inequality (3.1)) 

1 , 2 
= log 2 - 2(1 - 2L'1') . 0 

REMARK. The nearly monotone relationship between £ and L * will see lots of 
uses. We warn the reader that near the origin, L * may decrease linearly in £, but 
it may also decrease much faster than £209. Such wide variation was not observed 
in the relationship between L * and LNN (where it is linear) or L * and p (where it 
is between linear and quadratic). 0 

3.6 Jeffreys' Divergence 

Jeffreys' divergence (1948) is a symmetric form of the Kullback-Leibler (1951) 
divergence 

{ 
rJ(X) } OKL = E rJ(X) log . 

1 - rJ(X) 

It will be denoted by 

{ 
rJ(X) } J = E (2rJ(X) - 1) log . 

1 - rJ(X) 

To understand J, note that the function (2rJ - 1) log 1~T/ is symmetric about 1/2, 
convex, and has minimum (0) at rJ = 1/2. As rJ + 0, rJ t 1, the function becomes 
unbounded. Therefore, J = 00 if P{rJ(X) E {O, I}} > 0. For this reason, its 
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use in discrimination is necessarily limited. For generalizations of J, see Renyi 
(1961), Burbea and Rao (1982), Taneja (1983; 1987), and Burbea (1984). It is thus 
impossible to bound J from above by a function of LNN and/or L * . However, lower 
bounds are easy to obtain. As x log((1 + x)/(1 - x)) is convex in x and 

1] ( 1 + 121] - 11 ) (21] - 1) log -- = 121] - 11 log , 
1-1] 1-121]-11 

we note that by Jensen's inequality, 

( 
1 + E{121](X) - II} ) 

J 2: E{121](X) - 11} log 1 _ E{121](X) _ 11} 

= * ( 1 + (1 - 2L *)) 
(1 - 2L )log 1 _ (1 2L*) 

(
1 - L*) (1- 2L*) log ~ 

> 2(1 - 2L *)2. 

The first bound cannot be universally bettered (it is achieved when 1] (x ) is constant 
over the space). Also, for fixed L *, any value of J above the lower bound is 
possible for some distribution of (X, Y). From the definition of J, we see that 
J = ° if and only if 1] == 1/2 with probability one, or L * = 1/2. 

FIGURE 3.4. This figure illustrates 

the above lower bound on Jeffreys' 

divergence in terms of the Bayes er­

ror. 

~-- J?:. (l-2L*) log((l-C)/L*) 

L* 

112 

Related bounds were obtained by Toussaint (1974b): 

/ ( 1 + Jl - 2LNN ) 
J 2: v 1 - 2LNN log 1 _ Jl _ 2LNN 2: 2(1 - 2LNN). 

The last bound is strictly better than our L * bound given above. See Problem 3.7. 

3.7 F-Errors 

The error measures discussed so far are all related to expected values of concave 
functions of 1](X) = P{Y = lIX}. In general, if F is a concave function on [0, 1], 
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we define the F -error corresponding to (X, Y) by 

dF(X, Y) = E {F(1](X»}. 

Examples of F -errors are 

(a) the Bayes error L *: F(x) = min(x, 1 - x), 

(b) the asymptotic nearest neighbor error LNN: F(x) = 2x(1 - x), 

(c) the Matushita error p: F(x) = y'x(1 - x), 

(d) the expected conditional entropy [: F (x) = -x log x - (1 - x) log(1 - x), 

(e) the negated Jeffreys' divergence -J: F(x) = -(2x - 1) log l~x' 

Hashlamoun, Varshney, and Samarasooriya (1994) point out that if F(x) > 
min(x,l - x) for each x E [0,1], then the corresponding F-error is an upper 
bound on the Bayes error. The closer F (x) is to min(x, 1 - x), the tighter the upper 
bound is. For example, F(x) = (1/2) sin(JTx) ::: 2x(1 x) yields an upper bound 
tighter than L NN • All these errors share the property that the error increases if X is 
transformed by an arbitrary function. 

Theorem 3.3. Let t : nd -+ nk be an arbitrary measurable function. Thenfor 
any distribution of (X, Y), 

PROOF. Define 1][ : nk -+ [0, 1] by 1]t(x) = P{Y = 1It(X) = x}, and observe that 

Thus, 

1]t(t(X» = E {1](X)lt(X)} . 

E {F(1]t(t(X»)} 

E {F(E {1](X)lt(X)})} 

> E {E {F(1](X»lt(X)}} (by Jensen's inequality) 

E{F(1](X»} = dF(X, Y). 0 

REMARK. We also see from the proof that the F -error remains unchanged if the 
transformation t is invertible. Theorem 3.3 states that F -errors are a bit like Bayes 
errors-when information is lost (by replacing X by t(X», F -errors increase. 0 
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3.8 The Mahalanobis Distance 

Two conditional distributions with about the same covariance matrices and means 
that are far away from each other are probably so well separated that L * is small. 
An interesting measure of the visual distance between two random variables Xo 
and Xl is the so-called Mahalanobis distance (Mahalanobis, (1936)) given by 

whereml = EX1, mo = EXo, are the means, ~l = E {(Xl - md(Xl - mIl} and 
~o = E {(Xo - mo)(Xo - mol} are the covariance matrices, ~ = P ~l + (1 -
P ) ~o, (·l is the transpose of a vector, and p = 1 - p is a mixture parameter. If 
~l = ~o = (J2 I, where I is the identity matrix, then 

~ = _II m_l _-_m_o_11 

is a scaled version of the distance between the means. If ~l = (Jf I, ~o = (J5 I, 
then 

IIml - moll 
~ = ---;====== J P(Jf + (1 - P)(J5 

varies between Ilml -moll/(Jl and Ilml -moll/(Jo as P changes from 1 toO. Assume 
that we have a discrimination problem in which given Y = 1, X is distributed as 
Xl, given Y = 0, X is distributed as Xo, and p = P{Y = 1}, 1 - p are the class 
probabilities. Then, interestingly, ~ is related to the Bayes error in a general sense. 
If the Mahalanobis distance between the class-conditional distributions is large, 
then L * is small. 

Theorem 3.4. (DEVIJVER AND KITTLER (1982, p. 166)). For all distributions of 
(X, Y)for which E {IIXI12} < 00, we have 

L*<L < 2p(1 p) 
- NN - 1 + p(1 _ p)~2 

REMARK. For a distribution with mean m and covariance matrix ~, the Mahalanobis 
distance from a point x E nd to m is 

In one dimension, this is simply interpreted as distance from the mean as measured 
in units of standard deviation. The use of Mahalanobis distance in discrimination 
is based upon the intuitive notion that we should classify according to the class for 
which we are within the least units of standard deviations. At least, for distributions 
that look like nice globular clouds, such a recommendation may make sense. 0 
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PROOF. First assume that d = 1, that is, X is real valued. Let u and c be real numbers, 
and consider the quantity E {(u(X - c) - (217(X) - 1))2}. We will show that if u 
and c are chosen to minimize this number, then it satisfies 

( 
2p(1-p) ) o :s E {(u(X - c) - (217(X) - 1))2} = 2 2 - LNN , 

1 + p(1 - p).6. 
(3.2) 

which proves the theorem for d = 1. To see this, note that the expression 
E {(u(X - c) (217(X) - 1))2} is minimized for c = EX - E{217(X) - 1}/u. 

Then 

E {(u(X - c) - (217(X) - 1))2} 

= Var{217(X) - I} + u2 Var{X} - 2u Cov{X, 217(X) - I}, 

-where Cov{X, Z} = E{(X - EX)(Z - EZ)}-which is, in turn, minimized for 
u = Cov{X, 217(X) - 1}/Var{X}. Straightforward calculation shows that (3.2) 
indeed holds. 

To extend the inequality (3.2) to multidimensional problems, apply it to the 
one-dimensional decision problem (Z, Y), where Z = XTb-l(ml mo). Then 
the theorem follows by noting that by Theorem 3.3, 

where LNN(X, Y) denotes the nearest-neighbor error corresponding to (X, Y). 0 

In case X I and Xo are both normal with the same covariance matrices, we have 

Theorem 3.5. (MATusHITA (1973); SEE PROBLEM 3.11). When Xl and Xo are 
multivariate normal random variables with bl = bO = b, then 

If the class-conditional densities !l and 10 may be written as functions of 
(x - ml)Tb11(x - md and (x molbol(X - mo) respectively, then.6. remains 
relatively tightly linked with L * (Mitchell and Krzanowski (1985)), but such dis­
tributions are the exception rather than the rule. In general, when .6. is small, it is 
impossible to deduce whether L * is small or not (see Problem 3.12). 

3.9 f-Divergences 

We have defined error measures as the expected value of a concave function of 17(X). 
This makes it easier to relate these measures to the Bayes error L * and other error 
probabilities. In this section we briefly make the connection to the more classical 
statistical theory of distances between probability measures. A general concept of 
these distance measures, called I-divergences, was introduced by Csiszar (1967). 
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The corresponding theory is summarized in Vajda (1989). F -errors defined earlier 
may be calculated if one knows the class probabilities p, 1 - p, and the conditional 
distributions fLo, fL 1 of X, given {Y ::: o} and {Y ::: I}, that is, 

fLi(A) ::: P{X E AIY ::: i} i::: 0, 1. 

For fixed class probabilities, an F -error is small if the two conditional distributions 
are "far away" from each other. A metric quantifying this distance may be defined 
as follows. Let f : [0, (0) ~ R U {-oo, oo} be a convex function with f(l) ::: 0. 
The f -divergence between two probability measures fL and v on Rd is defined by 

Di(fL, v)::: sup L v(Aj)f (fL(A
j
)) , 

A={A j } j v(Aj) 

where the supremum is taken over all finite measurable partitions A of Rd. If A is a 
measure dominating fL and v-that is, both fL and v are absolutely continuous with 
respect to A-and p ::: dfL/dA and q ::: dv/dA are the corresponding densities, 
then the f -divergence may be put in the form 

Di(fL, v)::: f q(x)f (P(X)) A(dx). 
q(x) 

Clearly, this quantity is independent of the choice of A. For example, we may 
take A ::: fL + v. If fL and v are absolutely continuous with respect to the Lebesgue 
measure, then A may be chosen to be the Lebesgue measure. By Jensen's inequality, 
Di(fL, v) ?: 0, and Di(fL, fL)::: 0. 

An important example of f -divergences is the total variation, or variational 
distance obtained by choosing f (x) ::: Ix - 11, yielding 

V(fL, v)::: sup L IfL(A j ) - v(Aj)l· 
A={A j } j 

For this divergence, the equivalence of the two definitions is stated by Scheffe's 
theorem (see Problem 12.13). 

Theorem 3.6. (SCHEFFE (1947)). 

V(fL, v) ::: 2 s~p IfL(A) - v(A)I::: f Ip(x) - q(x)IA(dx), 

where the supremum is taken over all Borel subsets of Rd. 

Another important example is the Hellinger distance, given by f(x) ::: (1 -
,JX)2: 

H 2(fL, v) ::: sup 2 (1 - L J fL(A j )v(A j )) 
A={A j } j 

= 2 (1 -f v' P(X)q(X)A(dX») 
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The quantity 12(J.L, v) = f ,Jp(x)q(x)J...(dx) is often called the Hellinger integral. 
We mention two useful inequalities in this respect. For the sake of simplicity, we 
state their discrete form. (The integral forms are analogous, see Problem 3.21.) 

Lemma 3.1. (LECAM (1973». For positive sequences ai and bi, both summing to 

one, 

PROOF. By the Cauchy-Schwarz inequality, 

" r;;E; < L..t YUiUi_ 
i:ai<bi 

This, together with the inequality (x + y)2 ::: 2X2 + 2 y2, and symmetry, implies 

(~Ja;b)2 C~b,Jaibi+;~,Jaibi)2 

< 2C~/a;by +2C~/aibir 

< 2 C~b' ai + ;~, bi) 
2 Lmin(ai' bi). 0 

Lemma 3.2. (DEVROYE AND GYORFI (1985, p. 225»). Let al, ... , ak> bt, ... bk 

be nonnegative numbers such that L:=I ai = L:=I bi = 1. Then 

PROOF. 

(by the Cauchy-Schwarz inequality) 
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k 2 

< 4 L ( y'ai - ~) 
i=l 

= S(l-tJa'h} 
which proves the lemma. 0 

Information divergence is obtained by taking f (x) = x log x: 

I (IL, v) is also called the Kullback-Leibler number. 
Our last example is the x2-divergence, defined by f(x) = (x - 1)2: 

'" (IL(A·) - v(A .))2 
sup ~ } } 

A={A j } j v(Aj) 

f p2(X) A(dx) - 1. 
q(x) 

Next, we highlight the connection between F -errors and f -divergences. Let 
ILo and ILl denote the conditional distributions of X given {Y = O} and {Y = I}. 
Assume that the class probabilities are equal: p = 1/2. If F is a concave function, 
then the F -error dF(X, Y) may be written as 

where 

f(x) = -~F (_X_) (1 +x) + F (~), 
2 l+x 2 

and D f is the corresponding f -divergence. It is easy to see that f is convex, 
whenever F is concave. A special case of this correspondence is 

* 1 (1 ) L ="2 1 - 2 V (ILo, IL 1) , 

if p = 1/2. Also, it is easy to verify, that 

where p is the Matushita error. For further connections, we refer the reader to the 
exercises. 
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Problems and Exercises 

PROBLEM3.1. Showthatforevery(I1,I*)withO:s I*:s I1 :s 21*(1-1*):s 1/2, there exists 
a distribution of (X, Y) with LNN = II andL * = [*. Therefore, the Cover-Hart inequalities 
are not universally improvable. 

PROBLEM 3.2. TIGHTNESS OF THE BOUNDS. Theorem 3.1 cannot be improved. 
(1) Show that for all a E [0, 1/2], there exists a distribution of (X, Y) such that 

LNN = L * = a. 
(2) Show that for all a E [0, 1/2], there exists a distribution of (X, Y) such that 

LNN = a, L* = ~ - ~,JI - 2a. 
(3) Show that for all a E [0, 1/2], there exists a distribution of (X, Y) such that 

L*=p=a. 
(4) Show that for all a E [0, 1/2], there exists a distribution of (X, Y) such that 

L - L*- 1 1 ~4 2 NN-a, -2"-2"Y.L-'TP-· 

PROBLEM 3.3. Show that E ::: L *. 

PROBLEM 3.4. For any a :s 1, find a sequence of distributions of (Xn' Yn) having expected 
conditional entropies En and Bayes errors L~ such that L~ ~ ° as n ~ 00, and En decreases 
to zero at the same rate as (L ~) a . 

PROBLEM 3.5 . CONCAVITY OF ERROR MEASURES. Let Y denote the mixture random variable 
taking the value Y1 with probability p and the value Y2 with probability 1-p. Let X be a fixed 
Rd-valuedrandom variable, and define 1]1(X) = P{Y1 = llX = x}, 1]2(X) = P{Y2 = 11X = x}, 
where Y1, Y2 are Bernoulli random variables. Clearly, 1] (x ) = PrJl (x) + (1- P )rJ2(X). Which 
of the error measures L *, p, LNN , E are concave in P for fixed joint distribution of X, Y1, Y2? 
Can every discrimination problem (X, Y) be decomposed this way for some Y1, p, Y2, where 
171 (x), rJ2(X) E {O, I} for all x? If not, will the condition 1]1 (x), rJ2(X) E {O, 1/2, I} for all x 

do? 

PROBLEM 3.6. Show that for every 1* E [0, 1/2], there exists a distribution of (X, Y) with 
L * = l* and E = H(L *, 1 - L *). Thus, Fano's inequality is tight. 

PROBLEM 3.7. TOUSSAINT'S INEQUALITIES (1974B). Mimic a proof in the text to show that 

J ( 1 + ,Jl - 2LNN ) J> 1 - 2LNN log > 2(1 - 2LNN). 
- I - ,J 1 - 2LNN -

PROBLEM 3.8. Show that L * :s e-oc , where DC is Chernoff's measure of affinity with 
parameter a E (0, 1). 

PROBLEM 3.9. Prove that L* = p - E{(2rJ(X) - 1)+}, where p = pry = I}, and (x)+ = 
max(x, 0). 

PROBLEM 3.10. Show that J ::: -210gp - 2H(p, 1 - p), where p = pry = I} (Toussaint 
(1974b». 

PROBLEM 3 .11. Let fl and fo be two multivariate normal densities with means rno, rn 1 and 
common covariance matrix L IfP{Y = I} = p, and iI, fo are the conditional densities of 
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X given Y = 1 and Y = ° respectively, then show that 

p = Jp(1- p)e-6.
2
/8, 

where p is the Matushita error and ~ is the Mahalanobis distance. 

PROBLEM 3.12. For every 0 E [0,(0) and [* E [0, 1/2] with [* :::: 2/(4 + 02
), find distribu­

tions ILo and ILl for X given Y = 1, Y = 0, such that the Maha1anobis distance tl = 0, yet 
L * = [*. Therefore, the Maha1anobis distance is not universally related to the Bayes risk. 

PROBLEM 3.13. Show that the Mahalanobis distance ~ is invariant under linear invertible 
transformations of X. 

PROBLEM 3.14. Lissack and Fu (1976) have suggested the measures 

For ex = 1, this is twice the Ko1mogorov distance 0KO. Show the following: 
(1) IfO < ex :::: 1, then ~(1 - OLF) :::: L* :::: (1 - o~~a). 
(2) If 1 :::: ex < 00, then ~(1 - J~~a) :::: L * :::: (1 - OLF)' 

PROBLEM 3.15. Hashlamoun, Varshney, and Samarasooriya (1994) suggest using the F­
error with the function 

F() 1. ( ) -1.8063(x-i)2 
X = 2" SIll TrX e 

to obtain tight upper bounds on L *. Show that F (x) 2: min(x, 1 - x), so that the corre­
sponding F -error is indeed an upper bound on the Bayes risk. 

PROBLEM 3.16. Prove that L* :::: max(p(1- p» (1 - ~ V(ILo, ILd). 

PROBLEM 3.17. Prove that L* :::: Jp(1- P)h(ILolLl). HINT: min(a, b)::::.JQb. 

PROBLEM 3.18. Assume that the components of X = (X(1), ... , Xed)~ are conditionally 
independent (given y), and identically distributed, that is, P{XU) E AIY = j} = vj(A) for 
i = 1, ... , d and j = 0, 1. Use the previous exercise to show that 

PROBLEM 3.19. Show that X2(ILI' IL2) 2: f(ILI, IL2)' HINT: x-I 2: 10gx. 

PROBLEM 3.20. Show the following analog of Theorem 3.3. Let t : nd --+ nk be a mea­
surable function, and IL, v probability measures on nd. Define the measures ILt and Vt on 
n k by ILt(A) = IL(t-\A» and vt(A) = vet-leA»~. Show that for any convex function j, 
Dj(IL, v) 2: Dj(ILt, vt ). 

PROBLEM 3.21. Prove the following connections between the Hellinger integral and the 
total variation: 

and 
(V(IL, V»2 :::: 8(1 - h(IL, v». 

HINT: Proceed analogously to Lemmas 3.1 and 3.2. 
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PROBLEM 3.22. PINSKER'S INEQUALITY. Show that 

(V (/1, V))2 .:::: 21 (/1, v) 

(csiszar (1967), Kullback (1967), and Kemperman (1969)). HINT: First prove the inequality 
if J1 and v are concentrated on the same two atoms. Then define A = {x : p(x) 2:: q (x)}, and 
the measures /1*, v* on the set {O, I} by /1*(0) = 1 - /1*(1) = /1(A) and v*(O) = 1 v*(1) = 
v(A), and apply the previous result. Conclude by pointing out that Scheffe's theorem states 
V(J1*, v*) = V(/1, v), and that 1(J1*, v*) .:::: 1(/1, v). 





4 
Linear Discrimination 

In this chapter, we split the space by a hyperplane and assign a different class to each 
halfspace. Such rules offer tremendous advantages-they are easy to interpret as 
each decision is based upon the sign of L~=l aix(i) + ao, where x = (x(1), ... , xed)) 
and the ai's are weights. The weight vector determines the relative importance of 
the components. The decision is also easily implemented-in a standard software 
solution, the time of a decision is proportional to d-and the prospect that a small 
chip can be built to make a virtually instantaneous decision is particularly exciting. 

Rosenblatt (1962) realized the tremendous potential of such linear rules and 
called themperceptrons. Changing one or more weights as new data arrive allows 
us to quickly and easily adapt the weights to new situations. Training or learn­
ing patterned after the human brain thus became a reality. This chapter merely 
looks at some theoretical properties of perceptrons. We begin with the simple one­
dimensional situation, and deal with the choice of weights in nd further on. Unless 
one is terribly lucky, linear discrimination rules cannot provide error probabilities 
close to the Bayes risk, but that should not diminish the value of this chapter. 
Linear discrimination is at the heart of nearly every successful pattern recognition 
method, including tree classifiers (Chapters 20 and 21), generalized linear classi­
fiers (Chapter 17), and neural networks (Chapter 30). We also encounter for the 
first time rules in which the parameters (weights) are dependent upon the data. 
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Oarl 
input • 

weights 

FIGURE 4.1. Rosenblatt's perceptron. The decision is based upon 

a linear combination of the components of the input vector. 

4.1 Univariate Discrimination and Stoller Splits 

As an introductory example, let X be univariate. The crudest and simplest possible 
rule is the linear discrimination rule 

{ 
y' if x ~ x' 

g(x) = 1 - y' otherwise, 

where x' is a split point and y' E {O, 1} is aclass. Ingeneral,x' and y' are measurable 
functions of the data Dn. Within this class of simple rules, there is of course a best 
possible rule that can be determined if we know the distribution. Assume for 
example that (X, Y) is described in the standard manner: let P{Y = 1} = p. Given 
Y = 1, X has a distribution function Fl(X) = P{X ~ xlY = 1}, and given Y = 0, 
X has a distribution function Fo(x) = P{X ~ xlY = O}, where Fo and Fl are 
the class-conditional distribution functions. Then a theoretically optimal rule is 
determined by the split point x* and class y* given by 

(x* , y*) = arg min P{g(X) =I Y} 
(x',y') 

(the minimum is always reached if we allow the values x' = 00 and x' = -(0). 
We call the corresponding minimal probability of error L and note that 

L = inf {I{y'=o} (p Fl (x') + (1 - p)(1 Fo(x'))) 
(x',y') 

+ IV=l} (p(1 - Fl (x')) + (1 - p )Fo(x')) } . 

A split defined by (x*, y*) will be called a theoretical Stoller split (Stoller (1954)). 
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Lemma 4.1. L ::::; 1/2 with equality if and only if L * = 1/2. 

PROOF. Take (x', y') = (-00,0). Then the probability of erroris 1-p = P{Y = OJ. 
Take (x', y') = (-00, 1). Then the probability of error is p. Clearly, 

L * ::::; L ::::; min(p, 1 - p). 

This proves the first part of the lemma. For the second part, if L = 1/2, then 
p = 1/2, and for every x, pFl(X) + (1- p)(1 - Fo(x)) :::: 1/2 and p(1 FI(X)) + 
(1- P )Fo(x) :::: 1/2. The first inequality implies p FI (x) - (1- p )Fo(x) :::: p 1/2, 
while the second implies p FI (x) - (1 - p) Fo(x) ::::; p - 1/2. Therefore, L = 1/2 
means that for every x, pFI(x) - (1 - p)Fo(x) = p - 1/2. Thus, for all x, 
FI (x) = Fo(x), and therefore L * = 1/2. D 

Lemma 4.2. 

L = ~ - sup IPFI(X) - (1 - p)Fo(x) - p + ~I. 
2 x 2 

In particular, if p = 1/2, then 

1 1 
L = - - - sup IFI(X) - Fo(x)l. 

2 2 x 

PROOF. Set p(x) = P FI (x) - (l - p )Fo(x). Then, by definition, 

L = inf min {p(x) + 1 - p, p - p(x)} 
x 

~ - sup I p(x) - p + ~ I 
2 x 2 

(since min{a, b} = (a + b - la - bl)/2). D 

The last property relates the quality of theoretical Stoller splits to the Kol­
mogorov-Smirnov distance sUPx I FI (x) - Fo(x) I between the class-conditional 
distribution functions. As a fun exercise, consider two classes with means mo = 
E{XIY = OJ, ml = E{XIY = l}, and variances a5 = Var{XIY = O} and af = 
Var{ X I Y = I}. Then the following inequality holds. 

Theorem 4.1. 

REMARK. When p = 1/2, Chernoff (1971) proved 

1 
L< . 

- 2 + 2 (mO-ml)2 
(aO+al)2 
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Moreover, Becker (1968) pointed out that this is the best possible bound (see 
Problem 4.2). 0 

PROOF. Assume without loss of generality that mo < mI. Clearly, L is smaller 
than the probability of error for the rule that decides 0 when x ::: mo + .6.0, and 1 
otherwise, where ml - mo = .6.0 + .6. 1, .6.0, .6. 1 > o. 

decide class 0 decide class 1 

FIGURE 4.2. The split providing the bound 

of Theorem 4.1. 

6.
1 

The probability of error of the latter rule is 

= 

< 

pP{X ::: ml - .6. 11Y = I} + (1 - p)P{X > mo + .6.olY = o} 

0- 2 (J2 

P 21.6.2 +(1-p) 20.6.2 
0'1 + 1 0'0 + 0 

(by the Chebyshev-Cantelli inequality; see Appendix, Theorem A.17) 

p 1- P 
--+--
1 + Lli 1 + Ll5 

a} (JJ 

(take .6.1 = (ar/o-o).6.o, and .6.0 = Im1 - molao/(ao + 0-1) ) 

1 

We have yet another example of the principle that well-separated classes yield 
small values for L and thus L *. Separation is now measured in terms of the largeness 
of 1m 1 - mo I with respect to 0-0 + 0-1. Another inequality in the same spirit is given 
in Problem 4.1. 

The limitations of theoretical Stoller splits are best shown in a simple example. 
Consider a uniform [0, 1] random variable X, and define 

{ 

1 if 0 ::: X ::: ~ + E 

Y= 0 ifi+E<X:::~-E 
1 if 3 -E:::X:::l 

for some small E > O. As Y is a function of X, we have L * = O. If we are forced to 
make a trivial X -independent decision, then the best we can do is to set g(x) == 1. 
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The probability of error is P{ 1 /3 + E < X < 2/3 - E} = 1/3 - 2E. Consider next 
a theoretical Stoller split. One sees quickly that the best split occurs at x' = ° or 
x' = 1, and thus that L = 1/3 - 2E. In other words, even the best theoretical split 
is superfluous. Note also that in the above example, mo = ml = 1/2 so that the 
inequality of Theorem 4.1 says L ::::: I-it degenerates. 

We now consider what to do when a split must be data-based. Stoller (l954) 
suggests taking· (x', y') such that the empirical error is minimal. He finds (x', y') 
such that 

, , . 1 ~( ) 
(x ,y) = argrrun - L... I{x;SX,YdY} + I{x;>x,Ydl-y} . 

(x,Y)ERx{O,I} n i=l 

(x' and y' are now random variables, but in spite of our convention, we keep the 
lowercase notation for now.) We will call this Stoller's rule. The split is referred to 
as an empirical Stoller split. Denote the set {( -00, x] x {y}} U {(x, (0) x {I - y}} 
by C(x, y). Then 

(x', y') = argmin vn(C(x, y), 
(x,y) 

where Vn is the empirical measure for the data Dn = (Xl, YI ), ... , (Xn, Yn), that 
is, for every measurable set A E R x {O, I}, vn(A) = (l/n) 'L7=1 I{(xi,Yi)EA}. 

Denoting the measure of (X, Y) in R x {O, I} by v, it is clear that E{vn(C)} = 
v(C) = P{X ::::: x, Y =I y} + P{X > x, Y =11 - y}. Let Ln = P{gn(X) =I YIDn} be 
the error probability of the splitting rule gn with the data-dependent choice (x', y') 
given above, conditioned on the data. Then 

Ln v(C(x', y') 

= v(C(x', y'») - vn(C(x', y') + vn(C(x', y') 

< sup (v(C(x, y» - vn(C(x, y») + vn(C(x*, y*» 
(x,y) 

(where (x*, y*) minimizes v(C(x, y)) over all (x, y) 

< 2 sup Iv(C(x, y») - vn(C(x, y))1 + v(C(x*, y*) 
(x,y) 

2 sup Iv(C(x, y») - vn(C(x, y»)1 + L. 
(x,y) 

From the next theorem we see that the supremum above is small even for moder­
ately large n, and therefore, Stoller's rule performs closely to the best split regard­
less of the distribution of (X, Y). 

Theorem 4.2. For Stoller's rule, and E > 0, 

P{Ln - L ::: E} ::::: 4e-nE2 /2 , 

and 

E{Ln - L} ::::: 
2Iog(4e) 

n 
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PROOF. By the inequality given just above the theorem, 

< P {sup Iv(C(x, y» - Vn(C(x, y»1 ::: ~} 
(x.y) 2 

< p {S~p [v(C(x, 0)) - vn(C(x, 0»[ '" ~ I 
+ p {S~p [v(C(x, 1» - vn(C(x, 1»[ '" H 

< 4e-2n(E/2)2 

by a double application of Massart's (1990) tightened version of the Dvoretzky­
Kiefer-Wolfowitz inequality (1956) (Theorem 12.9). See Problem 4.5. We do not 
prove this inequality here, but we will thoroughly discuss several such inequalities 
in Chapter 12 in a greater generality. The second inequality follows from the first 
via Problem 12.1. 0 

The probability of error of Stoller's rule is uniformly close to L over all possible 
distributions. This is just a preview of things to come, as we may be able to obtain 
good performance guarantees within a limited class of rules. 

4.2 Linear Discriminants 

Rosenblatt's perceptron (Rosenblatt (1962); see Nilsson (1965) for a good discus­
sion) is based upon a dichotomy of Rd into two parts by a hyperplane. The linear 
discrimination rule with weights ao, aI, ... , ad is given by 

g(x) = L d 

if Laix(i) +ao > 0 
i=l 

otherwise, 

where x = (x O), ... , xed)~. 

• • • • • 
.e 
• • 0 

0 

... 0 

• 

0 

FIGURE 4.3. A linear discriminant in R2 that cor­

rectly classifies all but four data points . 
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Its probability of error is for now denoted by L(a, ao), where a = (aI, ... , ad). 
Again, we set 

L = inf L(a, ao) 
aERd,aoER 

for the best possible probability of error within this class. Let the class-conditional 
distribution functions of a I x(l) + .. '+ad Xed) be denoted by Fo,a and FI,a, depending 
upon whether Y = 0 or Y = 1. For L(a, ao), we may use the bounds of Lemma 
4.2, and apply them to Fo,a and FI,a. Thus, 

L = ~ - s~ps~p IPFI,a(X) - (l - p)Fo,a(x) - P + ~I, 
which, for p = 1/2, reduces to 

1 1 
L = - - - sup sup I F1,a(x) Fo,a(X)I. 

2 2 a x 

Therefore, L = 1/2 if and only if p = 1/2 and for all a, FI,a == Fo,a. Then apply 
the following simple lemma. 

Lemma 4.3. (CRAMER AND WOLD (1936)). Xl and X2, random variables taking 
values in R d, are identically distributed if and only if aT Xl and aT X2 have the 
same distribution for all vectors a E Rd. 

PROOF. Two random variables have identical distributions if and only if they have 
the same characteristic function-see, for example, Lukacs and Laha (1964) . Now, 
the characteristic function of X I = (X~l), ... , xid

») is 

= E {ei(aIX\l)+ .. +adX\d)} 

= E { ei(aIX~I)+ .. +adX~d) } (by assumption) 

the characteristic function of X 2• 0 

Thus, we have proved the following: 

Theorem 4.3. L :::; 1/2 with equality if and only if L * = 1/2. 

Thus, as in the one-dimensional case, whenever L * < 1/2, a meaningful (L < 
1/2) cut by a hyperplane is possible. There are also examples in which no cut 
improves over a rule in which g(x) == y for some y and all x, yet L * = 0 and 
L > 1/4 (say). To generalize Theorem 4.1, we offer the following result. A related 
inequality is shown in Problem 4.7. The idea of using Chebyshev's inequality to 
obtain such bounds is due to Yau and Lin (1968) (see also Devijver and Kittler 
(1982, p.162)). 
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Theorem 4.4. Let Xo and X I be random variables distributed as X given Y = 0, 
and Y = 1 respectively. Set mo = E{Xo}, ml = E{Xd. Define also the covariance 
matrices ~l = E {(Xl - ml)(X I - mIl} and ~o = E {(Xo - mo)(Xo - mol}. 
Then 

L*<L< inf 
- - aE'Rd 1 (aT(ml-mo)i 

+ 2 
(aT :Eoa)1/2+(aT :Ela)I/2) 

1 

PROOF. For any a End we may apply Theorem 4.1 to aT Xo and aT Xl. Theorem 
4.4 follows by noting that 

and that 

E {aT Xo} = aTE{Xo} = aT mo, 

E{aTXI} =aTml, 

Var {aT Xo} = E {aT (Xo - mo)(Xo - mo)T a} = aT~oa, 

Var{aTXI} =aT~la. 0 

We may obtain explicit inequalities by different choices of a. a = ml - mo 
yields a convenient formula. We see from the next section that a = ~(ml - mo) 
with :E = P:E1 + (1 - p )~o is also a meaningful choice (see also Problem 4.7). 

4.3 The Fisher Linear Discriminant 

Data-based values for a may be found by various criteria. One of the first methods 
was suggested by Fisher (1936). Let ml and mo be the sample means for the two 
classes (e.g., ml = Li:Yi=1 Xdl{i : Yi = 1}1-) Picture projecting Xl, ... , Xn to a 
line in the direction of a. Note that this is perpendicular to the hyperplane given 
by a T x + ao = O. The projected values are a T Xl, ... , a T X n. These are all equal to 
o for those Xi on the hyperplane aT x = 0 through the origin, and grow in absolute 
value as we flee that hyperplane. Let ~2 and 85 be the sample scatters for classes 
1 and 0, respectively, that is, 

---2 "( TX T--- )2 T 0'1 = ~ a i-a ml = aSIa 
i:Yi=l 

and similarly for ag, where 

Sl = L (Xi - md(Xi - mdT 

i:Yi=1 

is the scatter matrix for class 1. 
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The Fisher linear discriminant is that linear function a T x for which the criterion 

( T -- T -- )2 a ml - a mo 
J(a) = --2 --2 

()l + (70 

( T(-- __)2 a ml - mo) 

. aT(Sl + So)a 

is maximum. This corresponds to finding a direction a that best separates aT rn 1 

from aT rno relative to the sample scatter. Luckily, to find that a, we need not resort 
to numerical iteration-the solution is given by 

Fisher's suggestion is to replace (Xl, Y1), .•• , (Xn, Yn) by (aT Xl, Y1), .•• , 

(aT Xn , Yn ) and to perform one-dimensional discrimination. Usually, the rule uses 
a simple split 

{
I if aT x + ao > 0 

gao (x) = 0 otherwise (4.1) 

for some constant ao. Unfortunately, Fisher discriminants can be arbitrarily bad: 
there are distributions such that even though the two classes are linearly separable 
(i.e., L = 0), the Fisher linear discriminant has an error probability close to 1 (see 
Problem 4.9). 

4.4 The Normal Distribution 

There are a few situations in which, by sheer accident, the Bayes rule is a lin­
ear discriminant. While this is not a major issue, it is interesting to identify the 
most important case, i.e., that of the multivariate normal distribution. The general 
multivariate normal density is written as 

where m is the mean (both x and m are d-component column vectors), L; is the 
d x d covariance matrix, L;-l is the inverse of L;, and det(L;) is its determinant. 
We write j '" N(m, L;). Clearly, if X has density j, then m = EX and L; = 
E{(X - m)(X - ml}. 

The multivariate normal density is completely specified by d + e) formal pa­
rameters (m and L;). A sample from the density is clustered in an elliptical cloud. 
The loci of points of constant density are ellipsoids described by 

for some constant r ~ O. The number" r is the Mahalanobis distance from x to m, 
and is in fact useful even when the underlying distribution is not normal. It takes 
into account the directional stretch of the space determined by L;. 
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FIGURE 4.4. Points at equal Mahalanobis 

distance from m. 

Given a two-class problem in which X has a density (1 - p) !o(x) + p!I (x) and 
!o and !I are both multivariate normal with parameters mi, l:i, i = 0, 1, the Bayes 
rule is easily described by 

g*(x) = {01 if P!l(X) > (1 - p)!o(x) 
otherwise. 

Take logarithms and note that g*(x) = 1 if and only if 

(x - mdTl:1
1(x - ml) - 2logp +log(det(l:l» 

< (x - mo)Tl:ol(x - mo) - 2log(1 - p) + log(det(l:o». 

In practice, one might wish to estimate m 1, mo, l: 1, l:o and P from the data and 
use these estimates in the formula for g*. Interestingly, as (x mi f l:i 1 (x - mi) 
is the squared Mahalanobis distance from x to mi in class i (called rl), the Bayes 
rule is simply 

*(x) = { 1 ifrl <.r5 - 2log((1- p)/p)+log(det(l:o)/det(l:d) 
g 0 otherwIse. 

In particular, when p = 1/2, l:o = l:l = l:, we have 

* X = 1 r 1 < ro 
{ 

1 ·f 2 2 

g ( ) 0 otherwise; 

just classify according to the class whose mean is at the nearest Mahalanobis 
distance from x. When l:o = l: 1 = l:, the Bayes rule becomes linear: 

* (x) = {I if a T x :- ao > 0 
g 0 otherwIse, 

where a = (ml - mo)l:-l, and ao = 2log(p /(1 - p» + mT; l:-lmo mfl:-lml. 
Thus, linear discrimination rules occur as special cases of Bayes rules for multi­
variate normal distributions. 

Our intuition that a should be in the direction m 1 - mo to best separate the 
classes is almost right. Note nevertheless that a is not perpendicular in general to 
the hyperplane of loci at equal distance from mo and mI. When l: is replaced by 
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the standard data-based estimate, we obtain in fact the Fisher linear discriminant. 
Furthermore, when ~l i ~o, the decision boundary is usually not linear, and 
Fisher's linear discriminant must therefore be suboptimal. 

HISTORICAL REMARKS. In early. statistical work on discrimination, the normal 
distribution plays a central role (Anderson (1958». For a simple introduction, we 
refer to Duda and Hart (1973). McLachlan (1992) has more details, and Raudys 
(1972; 1976) relates the error, dimensionality, and sample size for normal and 
nearly normal models. See also Raudys and Pikelis (1980; 1982). 0 

4.5 Empirical Risk Minimization 

In this section we present an algorithm that yields a classifier whose error probabil­
ity is very close to the minimal error probability L achievable by linear classifiers, 
provided that X has a density. The algorithm selects a classifier by minimizing the 
empirical error over finitely many-2C)-linear classifiers. For a rule 

</>(x) = { ~ 
the probability of error is 

if aT x + ao > 0 
otherwise, 

L(¢) = P{¢(X) i Y}. 

L( ¢) may be estimated by the empirical risk 

that is, the number of errors made by the classifier ¢ is counted and normalized. 
Assume that X has a density, and consider d arbitrary data points XiI' X i2 , ... , 

Xid among {Xl,"" Xn}, and let aT x + ao = 0 be a hyperplane containing these 
points. Because of the density assumption, the d points are in general position with 
probability one, and this hyperplane is unique. This hyperplane determines two 
classifiers: 

</>1 (x) = { 1 if aT x + ao > 0 
0 otherwise, 

and 

</>,(x) = I 1 if aT x + ao < 0 
0 otherwise, 

whose empirical errors Ln(¢l) and L n(¢2) may be calculated. To each d-tuple 
XiI' Xi2 , ... , Xid of data points, we may assign two classifiers in this manner, 
yielding altogether 2C) classifiers. Denote these classifiers by ¢l, ... , ¢2(1l). Let 
~ ~ d 

¢ be a linear classifier that minimizes Ln(¢i) over all i = 1, ... , 2(~). 
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We denote the best possible error probability by 

L = inf L(fjJ) 
¢ 

over the class of all linear rules, and define fjJ* = arg min¢ L( fjJ) as the best linear 
rule. If there are several classifiers with L(fjJ) = L, then we choose fjJ* among these 
in an arbitrary fixed manner. Next we show that the classifier corresponding to 1> 
is really very good. 

• 
0 

0 

• 
• 0 • 

0 

• 

• 
• 

• 

• 
• 

FIGURE 4.5. If the data points are in general 

position, thenfor each linear rule there exists 

a linear split defined by a hyperplane crossing 

d points such that the difference between the 

empirical errors is at most din . 

First note that there is no linear classifier fjJ whose empirical error [;n (fjJ) is 
smaller than [;(1)) - din. This follows from the fact that since the data points are 
in general position (recall the density assumption), then for each linear classifier 
we may find one whose defining hyperplane contains exactly d data points such 
that the two decisions agree on all data points except possibly for these d points­
see Figure 4.5. Thus, we may view minimization of the empirical error over the 
finite set {fjJl, ... , fjJ2C)} as approximate minimization over the infinite set of linear 
classifiers. In Chapters 12 and 13 we will develop the full theory for rules that are 
found by empirical risk minimization. Theorem 4.5 just gives you a taste of things 
to come. Other-more involved, but also more general-proofs go back to Vapnik 
and Chervonenkis (1971; 197 4c). 

Theorem 4.5. Assume that X has a density. Ij1> isfound by empirical error mini­
mization as described above, then,jor all possible distributions oj(X, Y), ifn ~ d 
and 2dln ~ E ~ 1, we have 

Moreover, ifn ~ d, then 

E {L(¢) - L} ::: 2 
-(Cd + 1) log n + (2d + 2». 
n 

REMARK. With some care Theorem 4.5 and Theorem 4.6 below can be extended so 
that the density assumption may be dropped. One needs to ensure that the selected 
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linear rule has empirical error close to that of the best possible linear rule. With 
the classifier suggested above this property may fail to hold if the data points are 
not necessarily of general position. The ideas presented here are generalized in 
Chapter 12 (see Theorem 12.2). D 

PROOF. We begin with the following simple inequality: 

L(J;) - L = L(J;) Ln(¢) + Ln($) - L(¢*) 

(since Ln(¢) ::: Ln(¢) + din for any ¢) 

--- --- d < max (L(¢i) Ln(¢J) + Ln(¢*) - L(¢*) + -. 
i=1, ... ,2G) n 

Therefore, by the union-of-events bound, we have 

P { L(¢) - L > E} 

2G) { E} { dE} ::: LP L(¢i)-Ln(¢J>- +P Ln(¢*)-L(¢*)+->- . 
i=l 2 n 2 

To bound the second term on the right-hand side, observe that nLn(¢*) is bi­
nomially distributed with parameters nand L( ¢*). By an inequality due to Chernoff 
(1952) and Okamoto (1958) for the tail of the binomial distribution, 

{
--- E P Ln(¢*) - L(¢*) > 2: 

We prove this inequality later (see Theorem 8.1). Next we bound one term of 
the sum on the right-hand side. Note that by symmetry all 2(~) terms are equal. 
Assume that the classifier ¢1 is determined by the d-tuple of the first d data points 
Xl,.'" Xd. We write 

P {L(¢l) L n(¢l) > ~} = E {p {L(¢l) Ln(¢d > ~ I Xl, ... , Xd} } , 

and bound the conditional probability inside. Let (X~, Y{'), ... , (XJ, YJ) be inde-
pendent of the data and be distributed as the data (Xl, Yd, ... , (Xd, Yd). Define 

(X~ Y!) = { (X;', Y/,) if i ::: d 
l' I (Xi, Yi ) ifi > d. 

Then 

P { L(¢l) - L n(¢l) > ~ I Xl, ... , Xd} 

::: P {L(¢d - ~ t I{¢l(Xi)=/yd > :.1 Xl, ... , Xd} 
n i=d+l 2 
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< P L(¢l) - - L I{(/JI(x')=jYI} + - > - Xl,· .. , Xd 
{ 

1 n d EI } 
n i=l I I n 2 

= { 
1. E dj } P L(¢l) - ;:; Binomlal(n, L(¢l)) > '2 -;:; X I, ... , Xd 

(as L(¢l) depends upon Xl, ... , Xd only and 

(X~, Y{) . .. , (X~, Y~) are independent of Xl, ... , Xd) 

< 
_2n("-_!l)2 e 2 II 

(by Theorem 8.1; use the fact that E 2: 2d/n) 

The inequality for the expected value follows from the probability inequality by 
the following simple argument: by the Cauchy-Schwarz inequality, 

(E {L(¢) - L})2 ::: E { (L(¢) _ L)2} . 

Denoting Z = (L(¢) - L)2, for any u > 0, 

E{Z} E{ZIZ> u}P{Z > u} +E{ZIZ::: u}P{Z::: u} 

< P{Z > u} + u 

(
2d)2 < e2d (2nd + 1) e-nu

/
2 + u if u 2: -;; 

by the probability inequality, and since G) ::: nd
. Choosing u to minimize the 

obtained expression yields the desired inequality: first verify that the minimum 
occurs for 

2 ne 
u = -log-

n 2 ' 

where e = e2d (2nd + 1). Check that if n 2: d, then u ?: (2d / n )2. Then note that the 
bound ee-nu / 2 + u equals 

2 nee 2 2 
-log - ::: -log (e2d+2nd+l) = -(Cd + 1) log n + (2d + 2)). 0 
n 2 n n 

Observe for now that the bound on P {L(¢) > L + E} decreases rapidly with n. 
To have an impact, it must become less than 0 for smallo. This happens, roughly 
speaking, when 

n ?: e . ~ (lOg ~ + log ~) 
E2 E2 0 

for some constant e. Doubling d, the dimension, causes this minimal sample size 
to roughly double as well. 
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An important special case is when the distribution is linearly separable, that is, 
L = O. In such cases the empirical risk minimization above performs even better 

as the size of the error improves to 0 (d log n In) from 0 ( J d log n In). Clearly, 

the data points are linearly separable as well, that is, L17(¢*) = 0 with probability 
one, and therefore L17 (;;;) ::: din with probability one. 

Theorem 4.6. Assume that X has a density, and that the best linear classifier 
has zero probability of error (L = 0). Then for the empirical risk minimization 
algorithm of Theorem 4.5, for all n > d and E ::: 1, 

P (L(~) > < J ::0 2(: )e-I'-d)', 

and 

{ 
.-...} dlogn + 2 

E L(¢) ::: . 
n-d 

PROOF. By the union bound, 

P{L(¢) > <} ::0 P t=1'2".,mff"(¢;)~~ L(</>i) > <} 
2G).-... d 

< ~? {Ln(</>i) ::0 ;;' L(</>i) > <} , 
By symmetry, this sum equals 

2(:)P {£n(</>I) ::0 ~, L(</>I) > <} 

= 2(:)E {p { £n(</>') ::0 ~,L(</>I) > <I XI"" Xd}} , 

where, as in Theorem 4.5, ¢l is determined by the data points Xl, ... , Xd . How­
ever, 

P {£n(</>,)::o ~,L(</>I) > <I XI,"" Xd} 

< P {¢I(Xd+l ) = Yd+l , ... , ¢1(X17 ) = Y17 , L(¢l) > EI Xl, ... , Xd} 

(since all of the (at most d) errors committed by ¢l 

occur for (Xl, YI ), ... , (Xd, Yd» 
< (1 - E)17-d, 

since the probability that no (Xi, Yi ), pair i = d + 1, ... , n falls in the set {(x, y) : 
<PI (x) =I y} is less than (1 - E )17-d if the probability of the set is larger than E. The 
proof of the probability inequality may be completed by noting that 1 x::: e-x . 
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For the expected error probability, note that for any u > 0, 

E{L(¢)} 100 

P{L(¢) > t}dt 

< u + rx
, P{L(¢) > t}dt 

< u + 2n d 100 

e-(n-d)t dt 

(by the probability inequality and G) :::::: nd
) 

2nd 
u + _e-(n-d)u 

n 

We choose u to minimize the obtained bound, which yields the desired inequality. 
o 

4.6 Minimizing Other Criteria 

Empirical risk minimization uses extensive computations, because Ln (4)) is not 
a unimodal function in general (see Problems 4.10 and 4.11). Also, gradient op­
timization is difficult because the gradients are zero almost everywhere. In fact, 
given n labeled points in nd , finding the best linear dichotomy is NP hard (see 
Johnson and Preparata (1978)). To aid in the optimization, some have suggested 
minimizing a modified empirical error, such as 

or 

-- 1~ ( T) Ln (4)) = - ~ \II (2Yi - 1) - a Xi - ao , 
n i=l 

where \II is a positive convex function. Of particular importance here is the mean 
square error criterion \II(u) = u2 (see, e.g., Widrow and Hoff (1960)). One can 
easily verify that Ln (4)) has a gradient (with respect to (a, ao)) that may aid in 

locating a local minimum. Let -;;; denote the linear discrimination rule minimizing 

over all a and ao. A description of the solution is given in Problem 4.14. 
Even in a one-dimensional situation, the mean square error criterion muddles 

the issue and does not give any performance guarantees: 
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Theorem 4.7. If sup(X,y) denotes the supremum with respect to all distributions 
on R x {O, I}, then 

sup (L(¢) - L) = 1, 
(X,Y) 

where 1) is a linear discriminant obtained by minimizing 

over all al and ao. 

REMARK. This theorem establishes the existence of distributions of (X, Y) for which 
L(1) > 1 - E and L < E simultaneously for arbitrarily small E > 0. Therefore, 
minimizing the mean square error criterion is not recommended unless one has 
additional information regarding the distribution of (X, Y). 0 

PROOF. Let E > ° and 8 > 0. Consider a triatomic distribution of (X, Y): 

P{(X, Y) = (-8, I)} = P{(X, Y) = (1, I)} = E/2, 

P{(X, Y) = (0, O)} = 1 - E. 

-8 0 1 FIGURE 4.6. A distribution for which 

squared error minimization fails. 
~.~--------------40 • 

probability £/2 probability 1-£ probability £/2 

For E < 1/2, the best linear rule decides class ° on [-8/2, (0) and 1 elsewhere, 
for a probability of error L = E /2. The mean square error criterion asks that we 
mInImIZe 

---- { 2 E2 E 2} L(¢)= (l-E)(-l-v) +"2(1-u-v) +"2(1+u8-v) 

with respect to ao = v and a 1 = u. Setting the derivatives with respect to u and v 
equal to zero yields 

(v - 1)8 - v 
U= and 

E 
V = 2E - 1 + "2 u (8 - 1), 

for 
~8(8 - 1) 

v = ---------=------
1 +82 - ~(1 8)2 

If we let E -!- ° and let 8 t 00, then v '"" 3E /2. Thus, for E small enough and 8 
large enough, considering the decision at ° only, L(1) 2::: 1 - E, because at x = 0, 
ux + v = v > 0. Thus, L(1) - L 2::: 1 - 3E /2 for E small enough and 8 large 
enough. 0 



56 4. Linear Discrimination 

Others have suggested minimizing 

n 

L (a(aT Xi + aO) - Yi)2, 
i==l 

where a(u) is a sigmoid, that is, an increasing function from 0 to 1 such as 1/(1 + 
e-U

), see, for example, Wassel and Sklansky (1972), Do Tu and Installe (1975), 
Fritz and Gyorfi (1976), and Sklansky and Wassel (1979). Clearly, a(u) = I{uc::o} 
provides the empirical en-or probability. However, the point here is to use smooth 
sigmoids so that gradient algorithms may be used to find the optimum. This may 
be viewed as a compromise between the mean squared en-or criteria and empirical 
en-or minimization. Here, too, anomalies can occur, and the en-or space is not well 
behaved, displaying many local minima (Hertz, Krogh, and Palmer (1991, p.1 08». 
See, however, Problems 4.16 and 4.17. 

Problems and Exercises 

PROBLEM 4.1. With the notation of Theorem 4.1, show that the error probability L of a 
one-dimensional theoretical Stoller split satisfies 

4p(1 - p) 
L~ -----------

1 + (1 ) (mo-mj)2 
p - p (l-p)(J6+p°-f 

(Gyorfi and Vajda (1980». Is this bound better than that of Theorem 4.1? HINT: For any 
threshold rule gc(x) = I{x::.c} and u > 0, write 

L(gJ PIX - c ::: 0, 2Y - 1 = -I} + PIX - c < 0, 2Y - 1 = I} 

< P{lu(X - c) - (2Y - 1)1 ::: 1} 

< E {(u(X - c) - (2Y - I»2} 

by Chebyshev's inequality. Choose u and c to minimize the upper bound. 

PROBLEM 4.2. Let p = 1/2. If L is the error probability of the one-dimensional theoretical 
Stoller split, show that 

1 
L < -----;:­

- 2 + 2 (mo-mj)2 
((Jo+(Jj}2 

Show that the bound is achieved for some distribution when the class-conditional distribu­
tions of X (that is, given Y = ° and Y = 1) are concentrated on two points each, one of 
which is shared by both classes (Chernoff (1971), Becker (1968». 

PROBLEM 4.3. Let X be a univariate random variable. The distribution functions for X given 
Y = 1 and Y = ° are F1 and Fo respectively. Assume that the moment generating functions 
for X exist, that is, E {etXIY = 1} = o/l(t), E {etXIY = o} = %(t), tEn, where 0/1, 0/0 
are finite for all t. In the spirit of Theorem 4.1, derive an upper bound for L in function of 
0/1, 0/0' Apply your bound to the case that F1 and Fo are both normal with possibly different 
means and variances. 
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PROBLEM 4.4. SIGNALS IN ADDITNE GAUSSIAN NOISE. Let So, sl E Rd be fixed, and let N 
be a multivariate gaussian random variable with zero mean and covariance matrix 2:. Let 
pry = O} = pry = I} = 1/2, and define 

x = { .. So +N 
SI +N 

if Y = 0 
if Y = 1. 

Construct the Bayes decision and calculate L *. Prove that if 2: is the identity matrix, and 
So and SI have constant components, then L * -+ 0 exponentially rapidly as d -+ 00. 

PROBLEM 4.5. In the last step of the proof of Theorem 4.2, we used the Dvoretzky-Kiefer­
Wolfowitz-Massart inequality (Theorem 12.9). This result states that if ZI, ... , Zn are i.i.d. 
random variables on the real line with distribution function F(z) = P{ ZI ::: z} and empirical 
distribution function Fn(z) = (l/n) L:;z=1 I{zi::ozj, then 

Use this inequality to conclude that 

P {s~p Iv(C(x, 1» - vn(C(x, 1)1 2: i} ::: 2e-2n
(E/2)2. 

HINT: Map (X, Y) on the real line by a one-to-one function 1jf : (R x {O, I}) -+ R such 
that Z = 1jf((X, Y» < 0 if and only if Y = O. Use the Dvoretzky-Kiefer-Wolfowitz-Massart 
inequality for Z. 

PROBLEM 4.6. Let L be the probability of error for the best sphere rule, that is, for the rule 
that associates a class with the inside of a sphere Sx,n and the other class with the outside. 
Here the center x, and radius r are both variable. Show that L = 1/2 if and only if L * = 1/2, 
and that L ::: 1/2. 

PROBLEM 4.7. With the notation of Theorem 4.4, show that the probability of error L of the 
best linear discriminant satisfies 

where 

4p(l - p) 
L ::: ---=------=~­

l+p(1-p)fl2 ' 

fl = J(rnl - rno)T2:-I(rnl - rno), 

is the Mahalanobis distance (Chapter 3) with 2: = P2:1 +(l- p)2:o (Gyorfi and Vajda (1980». 
Interestingly, the upper bound is just twice the bound of Theorem 3.4 for the asymptotic 
nearest neighbor error. Thus, a large Mahalanobis distance does not only imply that the 
Bayes error is small, but also, small error probabilities may be achieved by simple linear 
classifiers. HINT: Apply the inequality of Problem 4.1 for the univariate random variable 
X' = aT X a = 2:-I(rnl - rno). 

PROBLEM 4.8. If rni and a? are the mean and variance of aT X, given that Y = i, i = 0, 1, 
where a is a column vector of weights, then show that the criterion 
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is minimized for a = (~j + ~o)-l(Mj - Mo), where Mi and ~i are the mean vector and 
covariance matrix of X, given Y = i. Also, show that 

is minimized for a = (p~j + (1 - p)~o)-j(Mj - Mo), where p, 1 - p are the class 
probabilities. This exercise shows that if discrimination is attempted in one dimension, we 
might consider projections a T X where a maximizes the weighted distance between the 
projected means. 

PROBLEM 4.9. In the Fisher linear discriminant rule (4.1) with free parameter ao, show that 
for any E > 0, there exists a distribution for (X, y), X E n2

, with L = ° and E{IIXII 2 } < 00 

such that infao E{L(gao)} > 1/2 - E. Moreover, if ao is chosen to minimize the squared 
error 

then E{L(gao)} > 1 - E. 

PROBLEM 4.10. Find a distribution of (X, Y) with X E n2 such that with probability at 
least one half, Ln (</» is not unimodal with respect to the weight vector (a, ao). 

PROBLEM 4.11. The following observation may help in developing a fast algorithm to find 
the best linear classifier in certain cases. Assume that the Bayes rule is a linear split cutting 
through the origin, that is, L * = L(a*) for some coefficient vector a* E n d, where L(a) 

denotes the error probability of the classifier 

if 2:.1=j aix(i) 2: ° 
otherwise, 

and a = (aj, ... , ad)' Show that L(a) is unimodal as a function of a End, and L(a) is 
monotone increasing along rays pointing from a*, that is, for any 'A E (0, 1) and a E n d, 

L(a) - L('Aa + (1 - 'A)a*) 2: ° (Fritz and Gyorfi (1976». HINT: Use the expression 

L(a) = 1/2 - J (~(x) - 1/2) sign (t aixU)) I"(dx) 

to show that L(a) - LC'Aa + (1 - 'A)a*) = fA 11](x) - 1j21,u(dx) for some set A end. 

PROBLEM 4.12. Let a = (ao, aj) and 

a= arg min E {C(2Y - 1) - ajX - ao)2 I(Ydga(Xi)d, 
a 

and ga(x) = I(alx+ao>O}' Show that for every E > 0, there exists a distribution of (X, y) on 
n x {O, I} such that Leii') - L 2: 1 - E, where L(a) is the error probability for gao HINT: 

Argue as in the proof of Theorem 4.7. A distribution with four atoms suffices. 

PROBLEM 4.13. Repeat the previous exercise for 

a = argminE {I(2Y - 1) - ajX - aol}. 
a 
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PROBLEM 4.14. Let ¢* denote the linear discrimination rule that minimizes the mean square 
error E {(2Y - I - aT X - ao)2} over all a and ao. As this criterion is quadratic in (a, ao), 
it is unimodal. One usually approximates ¢* by ¢ by minimizing Li (2Yi - I - aT Xi - ao)2 
over all a and ao. Show that the minimal column vector (a, ao) is given by 

(~X;X;T) -1 (~(2Yi ~ l)X;), 

where X; = (Xi, 1) is a (d + I)-dimensional column vector. 

PROBLEM 4.15. The perceptron criterion is 

J = L laTXi +aol· 
i:2Yi-1isign(aT Xi+aO) 

Find a distribution for which L* = 0, L ::: 1/4, yet liminfn---,>ooE{Ln(¢)} ~ 1/2, where ¢ 
is the linear discrimination rule obtained by using the a and ao that minimize J. 

PROBLEM 4.16. Let 0' be a monotone nondecreasing function on n satisfying limu---,>_oo 0' (u) 
= 0 and limu---,>oo O'(u) = 1. For h > 0, define O'h(U) = O'(hu). Consider the linear discrimi­
nation rule ¢ with a and ao chosen to minimize 

t (O'h(a T 
Xi + ao) - Yi)2 . 

i=l 

For every fixed h > 0 and 0 < E < 1, exhibit a distribution with L < E and 

liminfE{Ln(¢)} > 1 - E. 
n-+oo 

On the other hand, show that if h depends on the sample size n such that h -+ 00 as n -+ 00, 

then for all distributions, E{Ln(¢)} -+ L. 

PROBLEM 4.17. Given Y = i, let X be normal with mean mi and covariance matrix Li, 
i = 0, 1. Consider discrimination based upon the minimization of the criterion 

with respect to A, w, and c, a d x d matrix, d x 1 vector and constant respectively, where 
O'(u) = 1/(1 + e-U

) is the standard sigmoid function. Show that this is minimized for the 
same A, w, and c that minimize the probability of error 

and conclude that in this particular case, the squared error criterion may be used to obtain 
a Bayes-optimal classifier (Horne and Hush (1990)). 





5 
Nearest Neighbor Rules 

5.1 Introduction 

Simple rules survive. The k-nearest neighbor rule, since its conception in 1951 
and 1952 (Fix and Hodges (1951; 1952; 1991a; 1991b», has thus attracted many 
followers and continues to be studied by many researchers. Formally, we define 
the k -NN rule by 

gn(X) = { ~ if L7=1 Wni I{Yi=ll > L7=1 Wni I{Yi=Ol 
otherwise, 

where Wni = 1/ k if Xi is among the k nearest neighbors of x, and Wni = 0 
elsewhere. Xi is said to be the k-th nearest neighbor of x if the distance IIx - Xi II 
is the k-th smallest among Ilx - XIII, ... , Ilx - Xn II. In case of a distance tie, the 
candidate with the smaller index is said to be closer to x. The decision is based 
upon a majority vote. It is convenient to let k be odd, to avoid voting ties. Several 
issues are worth considering: 

(A) Universal consistency. Establish convergence to the Bayes rule if k -+ 00 

and k / n -+ 0 as n -+ 00. This is dealt with in Chapter 11. 

(B) Finite k performance. What happens if we hold k fixed and let n tend to 
infinity? 

(C) The choice of the weight vector (Wnl, ... , wnn ). Are equal weights for the 
k nearest neighbors better than unequal weights in some sense? 
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(D) The choice of a distance metric. Achieve invariance with respect to a certain 
family of transformations. 

(E) The reduction of the data size. Can we obtain good performance when the 
data set is edited and/or reduced in size to lessen the storage load? 

FIGURE 5.1. At every point the decision 

is the label of the closest data point. The 

set of points whose nearest neighbor is 

Xi is called the Voronoi cell of Xi. The 

partition induced by the Voronoi cells is 

a Varona! partition. A Voronoi partition 

of 15 random points is shown here. 

In the first couple of sections, we will be concerned with convergence issues 
for k nearest neighbor rules when k does not change with n. In particular, we 
will see that for all distributions, the expected error probability E{Ln } tends to 
a limit LkNN that is in general close to but larger than L *. The methodology for 
obtaining this result is interesting in its own right. The expression for LkNN is then 
studied, and several key inequalities such as LNN ::::: 2L * (Cover and Hart (1967» 
and LkNN ::::: L * (1 + .J2J k) are proved and applied. The other issues mentioned 
above are dealt with in the remaining sections. For surveys of various aspects of 
the nearest neighbor or related methods, see Dasarathy (1991), Devijver (1980), 
or Devroye and Wagner (1982). 

REMARK. COMPUTATIONAL CONCERNS. Storing the n data pairs in an array and 
searching for the k nearest neighbors may take time proportional to nkd if done 
in a naive manner-the "d" accounts for the cost of one distance computation. 
This complexity may be reduced in terms of one or more of the three factors 
involved. Typically, with k and d fixed, O(n lid) worst-case time (Papadimitriou 
and Bentley (1980» and 0 (log n) expected time (Friedman, Bentley, and Finkel 
(1977» may be achieved. Multidimensional search trees that partition the space 
and guide the search are invaluable-for this approach, see Fukunaga and N arendra 
(1975), Friedman, Bentley, and Finkel (1977), Niemann and Goppert (1988), Kim 
and Park (1986), and Broder (1990). We refer to a survey in Dasarathy (1991) 
for more references. Other approaches are described by Yunck (1976), Friedman, 
Baskett, and Shustek (1975), Vidal (1986), Sethi (1981), and Farag6, Linder, and 
Lugosi (1993). Generally, with preprocessing, one may considerably reduce the 
overall complexity in terms of nand d. 0 
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5.2 Notation and Simple Asymptotics 

We fix x E Rd,andreorderthedata(X1, Yd, ... , (Xn , Yn)accordingtoincreasing 
values of II Xi - X II. The reordered data sequence is denoted by 

if no confusion is possible. X(k)(X) is the k-th nearest neighbor of x. 

REMARK. We note here that, rather arbitrarily, we defined neighbors in terms of 
the Euclidean distance Ilx y II. Surprisingly, the asymptotic properties derived in 
this chapter remain valid to a wide variety of metrics-the asymptotic probability 
of error is independent of the distance measure (see Problem 5.1). 0 

Denote the probability measure for X by fJ." and let SX,E be the closed ball 
centered at x of radius E > O. The collection of all x with fJ.,( Sx ,E) > 0 for all E > 0 
is called the support of X or fJ.,. This set plays a key role because of the following 
property. 

Lemma 5.1. If x E support(fJ.,) and limn-+oo kin = 0, then IIX(k)(x) - x II ~ 0 
with probability one. If X is independent of the data and has probability measure 
/-L, then IIX(k)(X) - XII ~ 0 with probability one whenever kin ~ O. 

PROOF. Take E > O. By definition, x E support(fJ.,) implies that fJ.,(SX,E) > O. 
Observe that IIX(k)(x) - x II > E if and only if 

1 n k 
- LI{xES } < -. 
n i=l I X,E n 

By the strong law of large numbers, the left-hand side converges to fJ.,(SX,E) > 0 
with probability one, while, by assumption, the right-hand side tends to zero. 
Therefore, IIX(k)(x) - xii ~ 0 with probability one. 

The second statement follows from the previous argument as well. First note 
that by Lemma A.1 in the Appendix, P{X E support(fJ.,)} = 1, therefore for every 
E > 0, 

P {IIX(k)(X) - XII > E} 

= E {I{XESUPport(iL)}P {IIX(k)(X) - XII> EIX E support(fJ.,)}}, 

which converges to zero by the dominated convergence theorem, proving conver­
gence in probability. If k does not change with n, then II X(k)(X) - X II is monotone 
decreasing for n ~ k; therefore, it converges with probability one as well. If 
k = kn is allowed to grow with n such that kin ~ 0, then using the notation 
X(kn,n)(X) = X(klX), we see by a similar argument that the sequence of monotone 
decreasing random variables 

sup IIX(km,m)(X) - XII ~ IIX(kn,n)(X) - XII 
m~n 
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converges to zero in probability, and therefore, with probability one as well. This 
completes the proof. 0 

Because 1] is measurable (and thus well-behaved in a general sense) and 
IIX(k)(X) - xII is small, the values 1](X(i)(x» should be close to 1](x) for all i 
small enough. We now introduce a proof method that exploits this fact, and will 
make subsequent analyses very simple-it suffices to look at data samples in a new 
way via embedding. The basic idea is to define an auxiliary rule g:l (x) in which 
the Y(i)(x)'s are replaced by k i.i.d. Bernoulli random variables with parameter 
1](x)-locaUy, the Y(i)(x)'s behave in such a way. It is easy to show that the error 
probabilities of the two rules are close, and analyzing the behavior of the auxiliary 
rule is much more convenient. 

To make things more precise, we assume that we are given i.i.d. data pairs 
(Xl, Ud, ... , (XII' Un), all distributed as (X, U), where X is as before (and has 
probability measure f.L on the Borel sets of R d

), and U is uniformly distributed on 
[0,1] and independent of X. If we set Y i = l{Ui~TJ(xi)}' then (Xl, Y I ), ••. , (Xn , Y n ) 

are i.i.d. and distributed as the prototype pair (X, Y). So why bother with the Ui's? 

In embedding arguments, we will use the same Ui's to construct a second data 
sequence that is heavily correlated (coupled) with the original data sequence, and 
is more convenient to analyze. For example, for fixed x E R d

, we may define 

Y/(x) = l{ui~ry(x)l' 

We now have an i.i.d. sequence with i-th vector given by Xi, Yi , Y:(x), Ui. Re­
ordering the data sequence according to increasing values of IIXi - x II yields a 
new sequence with the i-th vector denoted by X(i)(x), Y(i)(x), Y(i)(x), U(i)(x). If 
no confusion is possible, the argument x will be dropped. A rule is called k-local 
if for n :::: k, gn is of the form 

(
x) = {I if ljr(x, Y(l)(x), ... , Y(k)(X» > 0, 

gil ° otherwise, 
(5.1) 

for some function 1/1. For the k-NN rule, we have, for example, 

In other words, gn takes a majority vote over the k nearest neighbors of x and 
breaks ties in favor of class 0. 

To study gn turns out to be almost equivalent to studying the approximate rule 
g" n' 

'(x) = { I ifljr(x, Y(l)(x), ... , Y(k)(X» > ° 
gil ° otherwise. 

The latter rule is of no practical value because it requires the knowledge of 1] (x ). 
Interestingly however, it is easier to study, as Y(l)(x), ... , Y(k)(x) are i.i.d., whereas 
Y(l)(x), ... , Y(k) (x ) are not. Note, in particular, the following: 
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Lemma 5.2. For all x, n ~ k, 

P {ljJ(x, Y(l)(x), ... , Y(k) (x )) =/ljJ(x, YCl)(x), ... , YCk) (x ))} 

k 

:s; LE {11J(x) - 1J(X(i)(x))I} 
i=l 

and 
k 

P{gn(x) =/ g~(x)} :s; LE {11J(x) -1J(X(i)(x))I}. 
i=l 

PROOF. Both statements follow directly from the observation that 

{ljJ(X, YCl)(x)"", Y(k)(X)) =/ljJ(x, YCl)(x)"", YCk)(x))} 

c {(Y(1)(x)" .. , Y(k) (x )) =/ (YCl) (x ), ... , YCk) (x ))} 

k k 

C U {1J(X(i)(x)):s; U(i)(x):s; 1J(x)} U U h(x):s; UCi)(x):s; 1J(X(i)(x))}, 
i=l i=l 

and using the union bound and the fact that the U(i)(x)'s are uniform [0, 1]. 0 

We need the following result, in which X is distributed as Xl, but independent 
of the data sequence: 

Lemma 5.3. (STONE (1977)). For any integrable function f, any n, and any 
k :s; n, 

k 

LE {If(X(i)(X))I} :s; kYdE{lf(X)I}' 
i=l 

where Yd :s; (1 + 2//2 - ,J3)d - 1 depends upon the dimension only. 

The proof of this lemma is beautiful but a bit technical-it is given in a separate 
section. Here is how it is applied, and why, for fixed k, we may think of f(X(k)(X)) 
as f(X) for all practical purposes. 

Lemma 5.4. For any integrable function f, 

1 k -LE {If(X) - f(X(i)(X))I} -+ 0 
k i=l 

as n -+ 00 whenever kin -+ O. 

PROOF. Given E > 0, find a uniformly continuous function g vanishing off a 
boundedsetA,suchthatE{lg(X)- f(X)I} < E (see Theorem A.8 in the Appendix). 
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ThenforeachE > O,thereisao > ° such that Ilx-zll < o implies Ig(x)-g(z)1 < 
E. Thus, 

1 k -LE {If(X) - f(X(i)(X»I} 
k i=l 

1 k 
::: E {If(X) - g(X)1} + k L E {lg(X) - g(X(i)(X»I } 

i=l 

1 k 

+ - L E {lg(X(i)(X» - f(X(i)(X»I} 
k i=l 

::: (1 + Yd)E {If(X) g(X)1} + E + IIgiiooP {IIX - X(k)(X) II > o} 
(by Lemma 5.3, where 0 depends on E only) 

::: (2 + Yd)E + 0(1) (by Lemma 5.1). 0 

5.3 Proof of Stone's Lemma 

In this section we prove Lemma 5.3. For e E (0, nI2), a cone C(x, e) is the col­
lection of all y E nd for which angle(x, y) ::: e. Equivalently, in vector notation, 
x T yi/ix/illyi/ 2: cose. The set z + C(x, e) is the translation of C(x, e) by z. 

FIGURE 5.2. A cone of angle e. 

c(x.e) 

Ify,z E C(x,nI6),andllyll < IIzll,thenIlY-zll < Ilzll,aswewillnowshow. 
Indeed, 

::: II y 112 + liz 112 - 211 y IlIlz II cos(n /3) 

= II 112 (1 + IIyll2 -~) 
Z IIzl12 Ilzll 

(see Figure 5.3). 
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FIGURE 5.3. The key geometrical prop­

erty of cones of angle < n /2. 

The following covering lemma is needed in what follows: 

Lemma 5.5. Lete E (O,n/2)bejixed. Then there exists a set {Xl, ... ,xyJ end 
such that 

Yd 

nd = U C(Xi, e). 
i=l 

Furthermore, it is always possible to take 

( l)d 
Yd:::: 1 + sinCe /2) - 1. 

For e = n /6, we have 

Yd :::: (1 + 2 )d _ 1. 
)2 - v'3 

PROOF. We assume without loss of generality that IIxi II = 1 for all i. Each Xi is the 
center of a sphere Si of radius r = 2 sinCe /2). Si has the property that 

{x: IIxll = l}nSi = {x: IIxll = l}nC(xi,e). 

Let us only look at Xi 's such that IIxi -x j" ::: r for all j i i. In that case, U C(Xi' e) 
covers nd if and only if U Si covers {x : IIx II = I}. Then the spheres S; of radius 
r/2 centered at the xi's are disjoint and U S; S; SO,1+rj2 - SO,rj2 (see Figure 5.4). 
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FIGURE 5.4. Bounding Yd. 

Thus, if Vd = volume(SO,l), 

YdVd(~)d ~ Vd(l+~)d _Vd(~)d 
or 

Yd ~ (1 + ~)d _ 1 = (1 + . 1 )d _ l. 
r sm(e /2) 

The last inequality follows from the fact that 

sin ~ = /1- cos(,,/6) =)2 - v'3. D 
12 V 2 4 

FIGURE 5.5. Covering the 

space by cones. 

With the preliminary results out of the way, we cover nd by Yd cones X + 
C(xj,1[/6), 1 ~ j ~ Yd, and mark in each cone the Xi that is nearest to 
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X, if such an Xi exists. If Xi belongs to X + C(Xj, 7Tj6) and is not marked, 
then X cannot be the nearest neighbor of Xi in {Xl, ... , Xi-I, X, Xi+l, ... , X n }. 

Similarly, we might mark all k nearest neighbors of X in each cone (if there 
are less than k points in a cone, mark all of them). By a similar argument, if 
Xi E X + C (x j, 7T j 6) is not marked, then X cannot be among the k nearest neigh­
bors of Xi in {X 1, ... , Xi -1, X, Xi + 1, ... , X n}. (The order of this set of points is 
important if distance ties occur with positive probability, and they are broken by 
comparing indices.) Therefore, if ! is a nonnegative function, 

k 

LE {!(X(i)(X))} 
i=l 

E {t I{xi is among the k nearest neighbors of Xin {Xj, ... ,Xn}}!(Xi)} 

1=1 

E {f(X) t 
I{x is among the knearest neighbors of Xi in {Xj"",Xi-j,X,Xi+j, ... ,Xn}}} 

(by exchanging X and Xi) 

< E { f(X) t I{K, i, "",ked} } 

< kYdE{!(X)}, 

as we can mark at most k nodes in each cone, and the number of cones is at most 
Yd-see Lemma 5.5. This concludes the proof of Stone's lemma. 0 

5.4 The Asymptotic Probability of Error 

We return to k-Iocal rules (and in particular, to k-nearest neighbor rules). Let 
D~ = ((X I, YI , VI), ... , (Xn, Yn, Vn)) be the i.i.d. data augmented by the uniform 
random variables VI, ... , Vn as described earlier. For a decision gn based on Dn, 
we have the probability of error 

Ln = P{gn(X) i YID~} 
= P {sign (1/I(X, Y(l)(X), ... , Y(k)(X))) i sign(2Y - 1)ID;I} ' 

where 1/1 is the function whose sign determines gn~ see (5.1). Define the random 
variables YCl)(X), ... , YCk)(X) as we did earlier, and set 

L~ = P {sign (1/I(X, YCl)(X)"", YCk)(X))) isign(2Y -1)ID~}. 
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By Lemmas 5.2 and 5.4, 

E{ILn - L;zl} 

< P {1jJ(X, Y(l)(X), ... , Y(k)(X)) f 1jJ(X, YCl)(X), ... , YCk ) (X)) } 

k 

< L E {11](X) - 1](X(i)(X))I} 
i=l 

0(1). 

Because limn---+oo(EL;z - ELn) = 0, we need only study the rule g:z 

'(X)={ 1 if1jJ(x,Zl, ... ,Zk»O 
gn 0 otherwise 

(Z}, ... , Zk are i.i.d. Bernoulli (1](x))) unless we are concerned with the closeness 
of Ln to ELn as well. 

We now illustrate this important time-saving device on the I-nearest neighbor 
rule. Clearly, 1jJ(x, ZI) = 2Z1 - 1, and therefore 

E{L~} = P{ZJ f Y} = E {21](X)(1 - 1](X))} . 

We have, without further work: 

Theorem 5.1. For the nearest neighbor rule,jor any distribution oj(X, Y), 

lim E{Ln} = E {21](X)(1 - 1](X))} = L NN . 
n---+oo 

Under various continuity conditions (X has a density j and both j and 1] are 
almost everywhere continuous); this result is due to Cover and Hart (1967). In 
the present generality, it essentially appears in Stone (1977). See also Devroye 
(198Ic). Elsewhere (Chapter 3), we show that 

L* :5 LNN :::: 2L*(1- L*):::: 2L*. 

Hence, the previous result says that the nearest neighbor rule is asymptotically at 
most twice as bad as the Bayes rule-especially for small L *, this property should 
be useful. 

We formally define the quantity, when k is odd, 

LkNN 

We have the following result: 

Theorem 5.2. Let k be odd andfixed. Then,jor the k-NN rule, 

lim E{Ln} = L kNN . 
n---+oo 
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PROOF. We note that it suffices to show that limn~oo E{L~} = LkNN (in the previ­
ously introduced notation). But for every n, 

E{L~} 

~ P {Z1 + ... + Zk > ~, y ~ o} + P {Z1 + ... + Zk < ~, y ~ I} 
~ P {Z1 + ... + Zk > ~, Zo ~ o} + P {Z1 + ... + Zk < ~, Zo = I} 

(where Zo, ... , Zk are i.i.d. Bernoulli (1J(X» random variables), 

which leads directly to the sought result. 0 

Several representations of LkNN will be useful for later analysis. For example, 
we have 

LkNN 

= E { ry(X)P { Binomial(k, ~(X» < ~ I X}} 

+ E {(l - ry(X))P { Binomial(k, ry(X» > ~ I X} } 

E {min(1J(X), 1 - 1J(X»} 

+ E { (1 - 2rnin(~(X), 1 - ry(X»)p { Binomial(k, ry(X» > ~ I X} } . 

It should be stressed that the limit result in Theorem 5.2 is distribution-free. The 
limit LkNN depends upon 1J(X) (or min(1J(X), 1 - 1J(X») only. The continuity or 
lack of smoothness of 1J is immaterial-it only matters for the speed with which 
E{Ln } approaches the limit L kNN . 

5.5 The Asymptotic Error Probability of 
Weighted Nearest Neighbor Rules 

Following Royall (1966), a weighted nearest neighbor rule with weights WI, ... , 

Wk makes a decision according to 

gn(x) = L...-l:~Ci)(x)=I l L...-l:YCi)(X)=o l 
{ 

1 if ~~ w· > ~~ W· 

o otherWIse. 

In case of a voting tie, this rule is not symnletric. We may modify it so that gn (x) d;t 
-1 if we have a voting tie. The "-1" should be considered as an indecision. By 
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previous arguments the asymptotic probability of error is a function of WI, ... , Wk 

given by L(Wl, .. " Wk) = E{a(1J(X»}, where 

a(p) = P {t WiY/> t w;(l - Y;)} (1- p) 

+P {t Wi Y/ ::: t w;(l- Y/)} p, 

where now Y{, ... , Y~ are i.i.d. Bernoulli (p). Equivalently, with Zi = 2Y! - 1 E 

{-1,1}, 

a(p) = (1 - p)P {t WiZi > o} + pP {t WiZi ::: o} . 
Assume that P {L~=l Wi Zi = o} = 0 for now. Then, if p < 1/2, 

a(p) = p + (l - 2p)P {t WiZi > o}. 
and an antisymmetric expression is valid when p > 1/2. Note next the following. 
IfweletNz be the number of vectors Z = (Zl,"" Zk) E {-I, l}k with L I{zi=l} = I 
and L WiZi > 0, then Nz + Nk-z = e). Thus, 

k 

= L Nz/(1 - p)k-Z 
z=o 

= L (k)pk-Z(1_ pi + L Nz (/(1 - pl-l - pk-I(1_ pi) 
l<kj2 I l<kj2 

1 ( k) kj2 kj2 + 2 k/2 P (1 - p) I{k even} 

= I + I I + I I I. 

Note that I + I I I does not depend on the vector of weights, and represents 

P{Binomial(k,l - p) :'S k/2} = P{Binomial(k, p) ~ k/2}. 

Finally, since p :'S 1/2, 

I I = L Nz (/(1 - pl-z - pk-l(1 pi) 
l<kj2 

L Nzpl(1 - pi ((1- pl-21 - pk-21) 
l<kj2 

~ o. 
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This term is zero if and only if Nz = 0 for alII < k12. In other words, it vanishes 
if and only if no numerical minority of Wi'S can sum to a majority (as in the case 
(0.7,0.2,0.1), where 0.7 alone, a numerical minority, outweighs the others). But 
such cases are equivalent to ordinaryk-nearest neighbor rules if k is odd. When k 
is even, and we add a tiny weight to one Wi, as in 

( 
1 + E, 1 - E/(k - 1), ... , 1 - E/(k - 1») , 

k k k 

for small E > 0, then no numerical minority can win either, and we have an optimal 
rule (l I = 0). We have thus shown the following: 

Theorem 5.3. (BAILEY AND JAIN (1978». Let L(WI, ... , Wk) be the asymptotic 
probability of error of the weighted k-NN rule with weights WI, ... , Wk. Let the 
k-NN rule be defined by (11 k, II k, ... , II k) if k is odd, and by 

(11 k, II k, ... , II k) + E(1, -1/(k - 1), -1/(k - 1), ... , -1/(k - 1» 

for 0 < E < 1 I k when k is even. Denoting the asymptotic probability of error by 
LkNN for the latter rule, we have 

if P{17(X) = 1/2} < 1, then equality occurs ifand only if every numerical minority 
of the Wi'S carries less than half of the total weight. 

The result states that standard k-nearest neighbor rules are to be preferred in an 
asymptotic sense. This does not mean that for a particular sample size, one should 
steer clear of nonuniform weights. In fact, if k is allowed to vary with n, then 
nonuniform weights are advantageous (Royall (1966». 

Consider the space Wofall weight vectors (WI, ... , Wk) with Wi ~ 0, L~=l Wi = 
1. Is it totally ordered with respect to L(WI, ... , Wk) or not? To answer this ques­
tion, we must return to a(p) once again. The weight vector only influences the 
term I I given there. Consider, for example, the weight vectors 

(0.3,0.22,0.13,0.12,0.071,0.071,0.071,0.017) 

and (0.26,0.26,0.13,0.12,0.071,0.071,0.071,0.017). 

Numerical minorities are made up of one, two, or three components. For both 
weight vectors, NI = 0, N2 = 1. However, N3 = 6 + 4 in the former case, and 
N3 = 6 + 2 in the latter. Thus, the "I I" term is uniformly smaller over all p < 1/2 
in the latter case, and we see that for all distributions, the second weight vector is 
better. When the Nt's are not strictly nested, such a universal comparison becomes 
impossible, as in the example of Problem 5.8. Hence, W is only partially ordered. 

Unwittingly, we have also shown the following theorem: 

Theorem 5.4. For all distributions, 

L * ::::; ... ::::; L C2k+I)NN ::::; LC2k-l)NN ::::; ... ::::; L3NN ::::; LNN ::::; 2L *. 
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PROOF. It suffices once again to look at a(p). Consider the weight vector WI == 

... = W2k+l = 1 (ignoring normalization) as for the (2k + I)-NN rule. The term 
I I is zero, as No = Nl = .. , = Nk == 0. However, the (2k - l)-NN rule with 
vector WI = ... = W2k-l = 1, W2k = W2k+l = 0, has a nonzero term I I, because 
No = ... = Nk- 1 = 0, yet Nk = ek;l) > 0. Hence, L C2k+1)NN ~ L C2k-I)NN' 0 

REMARK. We have strict inequality L(2k+l)NN < L(2k-l)NN whenever P{1J(X) rj. 
{a, 1, 1/2}} > 0. When L * = 0, we have LNN = L3NN = LSNN = ... = ° as well. 0 

5.6 k-Nearest Neighbor Rules: Even k 

Until now we assumed throughout that k was odd, so that voting ties were avoided. 
The tie-breaking procedure we follow forthe 2k-nearest neighbor rule is as follows: 

{

I if :L;:l YCi)(x) > k 
gn(x) = ° if :L;:1 Y(i)(x) < k 

YCl)(x) if :L;:1 YCi)(x) = k. 

Formally, this is equivalent to a weighted 2k-nearest neighbor rule with weight 
vector (3, 2, 2, 2, ... , 2, 2). It is easy to check from Theorem 5.3 that this is the 
asymptotically best weight vector. Even values do not decrease the probability of 
error. In particular, we have the following: 

Theorem 5.5. (DEVIJVER (1978)). For all distributions, and all integers k, 

L(2k-l)NN = L C2k)NN' 

PROOF. Recall that LkNN may be written in the form LkNN = E{a(1J(X))}, where 

a(1J(x)) = lim P {g~k)(X) =I YIX = x} 
n---+oo 

is the pointwise asymptotic error probability of the k-NN rule g~k) . It is convenient to 
consider Zl, ... , Z2k i.i.d. {-I, l}-valuedrandom variables withP{Zi = I} = p = 
1J(x), and to base the decision upon the sign of :L;:1 Zi. From the general formula 
for weighted nearest neighbor rules, the pointwise asymptotic error probability of 
the (2k )-NN rule is 

lim P {gC2k)(X) =I YIX = x} 
n---+oo n 

~ PP{tZi<O}+PP{tZi=O,ZI<O} 

{
2k } {2k } 

+(1- p)P ~Zi > ° +(1- p)P ~Zi =0, ZI > ° 
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= pP {t,Zi <O} +(1- p)P {t,Zi > o} 
lim P {g(2k-l)(X) =i YjX= x} . 

n----+oo n ~ 

Therefore, L(2k)NN = L(2k-l)NN' 0 

5.7 Inequalities for the Probability of Error 

We return to the case when k is odd. Recall that 

where 

"'k(P) = rnin(p, 1 - p) + 12p - lIP {BinOrnia1(k, rnin(p, 1 - p)) > ~} , 

Since L * = E {min(1J(X), 1 - 1J(X))}, we may exploit this representation to obtain 
a variety of inequalities on LkNN - L *. We begin with one that is very easy to prove 
but perhaps not the strongest. 

Theorem 5.6. For all odd k and all distributions, 

* 1 
LkNN :s L + ~. 

'\Ike 

PROOF. By the above representation, 

< sup (l - 2 p)P {B > ~} 
05p51P 2 

(B is Binomial (k, p)) 

sup (l _ 2p)P {B - kp > ~ _ p} 
05p51/2 k 2 

:s sup (l - 2p)e-2k(l/2- p )2 

= 

= 

05P5 1/2 

(by the Okamoto-Hoeffding inequality-Theorem 8.1) 

sup ue-ku2
/ 2 

05u51 

1 
~. 

o 
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Theorem 5.7. (GYORFI AND GYORFI (1978)). For all distributions and all odd k, 

PROOF. We note that for p ::::; 1/2, with B binomial (k, p), 

Hence, 

< 

= 

E {IB - kpl} 

k(1/2 - p) 

JVar{B} 

k(1/2 - p) 

2Jp(1- p) 

Jk(1 - 2p)' 

(Markov's inequality) 

(Cauchy-Schwarz inequality) 

LkNN - L' ::: E {~v'ry(X)(l - ry(X))} 

2 
< JkJE{17(X)(1 - 17(X))} (Jensen's inequality) 

= ~JL; 
= J2LNN 0 k . 

REMARK. For large k, B is approximately normal (k, p(1 - p)), and thus E{IB -
kpl} ~ Jkp(1 - p)J2/n, as the first absolute moment of a normal random 
variable is ,J2Tii (see Problem 5.11). Working this through yields an approximate 
bound of J LNN / (n k). The bound is proportional to -JL;;. This can be improved 
to L * if, instead of bounding it from above by Markov's inequality, we directly 
approximate P {B - kp > k (1/2 - p)} as shown below. 0 

Theorem 5.8. (DEVROYE (l981B)). For all distributions and k :::: 3 odd, 

where y = sUPr>O 2rP{N > r} = 0.33994241 ... , N is normal (0, 1), and 0(-) 
refers to k .....-+ 00. (Explicit constants are given in the proof.) 



5.7 Inequalities for the Probability of Error 77 

The constant y in the proof cannot be improved. A slightly weaker bound was 
obtained by Devijver (1979): 

1 (2k') 
LkNN :::s L * + 22k' k' LNN (where e = rk/2l) 

.j!;, L'" + LNN -(1 + 0(1)) (as k --+ 00, see Lemma A.3). 
nk' 

See also Devijver and Kittler (1982, p.l02). 

Lemma 5.6. (DEVROYE (1981B)). For p :::s 1/2 and with k > 3 odd, 

P {Binomial(k, p) > ~} k! {P (k-l)/2 

(k;l)!(k;l)!Jo (x(1-x)) dx 

< A (~ e-z2 / 2dz 
J(l-2p)~ , 

PROOF. Consider k i.i.d. uniform random variables on [0, 1]. The number of values 
in [0, p] is binomial (k, p). The number exceeds k/2 if and only ifthe (k + l)/2-th 
order statistic of the uniformc1oudis at most p. The latter is beta ((k+ 1)/2, (k+ 1)/2) 
distributed, explaining the first equality (Problem 5.32). Note that we have written a 
discrete sum as an integral-in some cases, such tricks payoff handsome rewards. 

To show the inequality, replace x by ~ (1 - A=r) and use the inequality 1 u:::s 

e-u to obtain a bound as shown with 

Finally, 

A 

< 

< 

P {B 
__ k+l} k+l 

2 2~ (B is binomial (k, 1/2)) 

k k+ 1 
2n k+l k-l 2 'k=l 2 2 yl(,-1 

(Problem 5.17) 

(Problem 5.18). 0 
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PROOF OF THEOREM 5.8. From earlier remarks, 

LkNN - L * = E {ak(17(X)) - min(17(X), 1 - 17(X))} 

= E { Cnin(ry~;~~\X~ ry(X)) - 1) min(ry(X), 1 - ry(X))} 

sup --P B > - L * (B is binomial (k, p)). 
( 

1-2p { k}) 
O<p<l/2 P 2 

We merely bound the factor in brackets. Clearly, by Lemma 5.6, 

LkNN - L * :::; L * ( sup 1 - 2p A I-Jk-l e-Z2
/
2dZ) . 

O<p<1/2 P (1-2p)-Jk-l 

Take a < 1 as the solution of (3j(ea2))3/2 ~ = y, which is possible if 

k - 1 > 2~? n) 6 
= 2.4886858 .... Setting v = (l - 2 p )vT=1, we have 

1 - 2p I-Jk-l e-z2
/
2 

sup -- --dz 
O<p<l/2 P (l-2p)v'k=T .J2ii 

( 
2vjvT=1 100 e-

z2
/
2 

:::; max sup --dz , 
O<vsa-Jk-l 1 - v j vT=1 v .J2ii 

2pvT=1 e-
v2

/
2) 

sup --
a-Jk-l Sv <v'k=T 1 - v j vT=1 .J2ii 

( 
y vT=1 -a2(k-l)/2) :::; max ,---e 

(1 - a)vT=1 .J2ii 

( 
y ( 3 )3/2 1 ) 

:::; max (1 - a)vT=1' ea2 (k - l).J2ii 

(use u3/2e-cu :::; (3j(2ce))3/2 for all u > 0) 

y 
= 

(1- a)vT=1' 

Collect all bounds and note that a = 0 (k-l/6). 0 

5.8 Behavior When L * Is Small 

In this section, we look more closely at LkNN when L * is small. Recalling that 
LkNN = E{ak(17(X))} with 

",,(p) = min(p, 1-p)+11-2min(p, 1-p)IP {Binomial(k, min(p, 1- p)) > ~} 
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for odd k, it is easily seen that LkNN = E{~k(min(17(X), 1 17(X)))} for some 
function ~k. Because 

. 1 - ,Jl - 4p(l - p) 
mlll(p, 1 - p) = .... 2 ' 

we also have LkNN = E{ lJ!k(17(X)(l - 17(X)))} for some other function ljfk. Worked­
out forms of L kNN include 

+ L e)~(X)j(l- ~(X»k-j+l} 
j>kj2 ] 

L e)E {(17(X)(l - 17(X)))j+1 ((1 - 17(X))k-2j -1 + 17(X/-2j-1)} . 
j<kj2 ] 

As pa + (1 - p)a is a function of p( 1 - p) for integer a, this may be further reduced 
to simplified forms such as 

LNN E{217(X)(l - 17(X))}, 

L3NN = E{17(X)(1 - 17(X))} + 4E {(17(X)(1 - 17(X)))2} , 

LSNN = E{17(X)(l - 17(X))} + E {(17(X)(1 - 17(X)))2} 

+ 12E {(17(X)(l - 17(X)))3} . 

The behavior of ak near zero is very informative. As p + 0, we have 

a1(p) = 2p(l - p) '"'-' 2p, 

a3(p) p(l - p)(1 + 4p) '"'-' p + 3p2, 

as(p) p+l0p3, 

while for the Bayes error, L * = E{rnin(17(X), 1 - 17(X))} = E{aoo (17(X))}, where 
a oo = rnin(p, 1 - p) AJ pas p + O. Assume that 17(X) = P at all x. Then, as p + 0, 

LNN AJ 2L * and L3NN AJ L * . 

Moreover, LNN - L * AJ L *, L3NN - L * AJ 3L *2. Assume that L * = p = 0.01. Then 
L1 ~ 0.02, whereas L3NN - L * ~ 0.0003. For all practical purposes, the 3-NN rule 
is virtually perfect. For this reason, the 3-NN rule is highly recommended. Little is 
gained by considering the 5-NN rule when p is small, as LSNN - L * ~ 0.00001. 

Let ak be the smallest number such that ak(p) ::s ak min(p, 1 p) for all p (the 
tangents in Figure 5.6). Then 
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This is precisely at the basis of the inequalities of Theorems 5.6 through 5.8, where 
it was shown that ak = I + 0(1/ -Jk). 

1/2 

1/2 

FIGURE 5.6. ak(p) as a function 

ofp· 

5.9 Nearest Neighbor Rules When L * = 0 

From Theorem 5.4 we retain that if L * = 0, then LkNN = ° for all k. In fact, then, 
for every fixed k, the k-nearest neighbor rule is consistent. Cover has a beautiful 
example to illustrate this remarkable fact. L * = ° implies that 1J(x) E {O, I} for all x, 
and thus, the classes are separated. This does not imply that the support of X given 
Y = ° is different from the support of X given Y = 1. Take for example a random 
rational number from [0, 1] (e.g., generate I, J independently and at random from 
the geometric distribution on {I, 2, 3, ... }, and set X = min (I , J)/ max(I, J)). 
Every rational number on [0, 1] has positive probability. Given Y = 1, X is as 
above, and given Y = 0, X is uniform on [0, 1]. Let P{Y = I} = P{Y = O} = 1/2. 
The support of X is identical in both cases. As 

{
I if x is rational 

1J(x) = ° if x is irrational, 

we see that L * = ° and that the nearest neighbor rule is consistent. If someone 
shows us a number X drawn from the same distribution as the data, then we may 
decide the rationality of X merely by looking at the rationality of the nearest 
neighbor of X. Although we did not show this, the same is true if we are given any 
x E [0, 1]: 

lim P{x is rational Y(l)(x) = ° (X(l)(x) is not rational)} 
n---+oo 

= lim P{x is not rational Y(l)(x) = 1 (X(l)(x) is rational)} 
n---+oo 

° (see Problem 5.38). 
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5.10 Admissibility of the Nearest Neighbor Rule 

The consistency theorems of Chapter 11 show us that we should take k = k n ~ 00 

in the k-NN rule. The decreasing nature ofLkNN corroborates this. Yet, there exist 
distributions for which for all n, the I-NN rule is better than the k-NN rule for any 
k 2: 3. This observation, due to Cover and Hart (1967), rests on the following class 
of examples. Let So and Sl be two spheres of radius 1 centered at a and b, where 
Iia - bll > 2. Given Y = 1, X is uniform on Sl, while given Y = 0, X is uniform 
on So, whereas P{Y = I} = P{Y = o} = 1/2. We note that given n observations, 
with the I-NN rule, 

1 
E{Ln} = P{Y = 0, Y1 = ... = Yn = I} + P{Y = 1, Y1 = ... = Yn = o} = -. 

2n 

For the k-NN rule, k being odd, we have 

E(Ln } = P { Y = 0, t '[y,=Il} :'0 Lk/2J} 

+ P {Y = 1, t '[y,=I} :'0 Lk/2J} 

P {Binomial(n, 1/2) S Lk/2J} 

1 Lk/2J () 1 
= - ~ n > _ when k > 3. 

2n ~. 2n -
j=O ] 

Hence, the k-NN rule is worse than the I-NN rule for every n when the distribution 
is given above. We refer to the exercises regarding some interesting admissibility 
questions for k-NN rules. 

5.11 The (k, I)-Nearest Neighbor Rule 

In 1970, Hellman (1970) proposed the (k, I)-nearest neighbor rule, which is iden­
tical to the k-nearest neighbor rule, but refuses to make a decision unless at least 
I > k /2 observations are from the same class. Formally, we set 

{

I if L~=l Y(i)(x) 2: I 
gn(x) = ° if L~=l Y(i)(x) skI 

-1 otherwise (no decision). 

Define the pseudoprobability of error by 

Ln = P{gn(X) ~ {-I, Y}ID,J, 

that is, the probability that we reach a decision and correctly classify X. Clearly, 
Ln S P{gn(X) =I YIDn}, our standard probability of error. The latter inequality 
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is only superficially interesting, as the probability of not reaching a decision is 
not taken into account in Ln. We may extend Theorem 5.2 to show the following 
(Problem 5.35): 

Theorem 5.9. For the (k, I)-nearest neighbor rule, the pseudoprobability of error 
Ln satisfies 

lim E{L n } = E{17(X)P{Binomial(k, 17(X» :s k -IIX} 
n-+oo 

+ (1 - 17(X»P{Binomial(k, 17(X» ?: IIX}} 

def 
Lk,l' 

The above result is distribution-free. Note that the k-nearest neighbor rule for 
odd k corresponds to Lk,(k+l)/2. The limit Lk,l by itself is not interesting, but it was 
shown by Devijver (1979) that Lk,l holds information regarding the Bayes error 
L*. 

Theorem 5.10. (DEVIJVER (1979». For all distributions and with k odd, 

Also, 
LkNN + L k , fk/21+1 < L * < L 

2 - - kNN' 

This theorem (for which we refer to Problem 5.34) shows that L * is tightly 
sandwiched between LkNN, the asymptotic probability of error of the k-nearest 
neighbor rule, and the "tennis" rule which requires that the difference of votes 
between the two classes among the k nearest neighbors be at least two. If Ln is 
close to its limit, and if we can estimate Ln (see the chapters on error estimation), 
then we may be able to use Devijver's inequalities to obtain estimates of the Bayes 
error L *. For additional results, see Loizou and Maybank (1987). 

As a corollary of Devijver's inequalities, we note that 

L _ L * < LkNN - Lk,rk/21+1 
kNN - 2 

We have 

Lk,l = L* +E{l1- 2min(17(X), 1-17(X»1 

x P{Binomial(k, min(17(X), 1 - 17(X») ?: IlX}}, 

and therefore 

E{/1-2min(17(X),1-17(X»I 

x P{Binomial(k, min(17(X), 1 - 17(X») = l IX}} 
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E{ 11 - 2 min(1](X), 1 - 1](X))1 

x G) min(ry(X), 1 - ry(X)J'(l min(ry(X), 1 - ry(X)))k-l} 

< (k) ll(k - l)k-l 
l kk 

(because ul (1 - u)k-l reaches its maximum on [0,1] at u = lj k) 

k 
< 

12nl(k -I) 

(use (~) ::::; ll(k'!.z)k-l kJ l(k~l)' by Stirling's formula). 

With I = rkj2l, we thus obtain 

LkNN - L* < 
1 

2V2JT 
k 

rkj2l Lkj2J 

~ ~0.398942 
V~ v'k' 

improving on Theorem 5.6. Various other inequalities may be derived in this man­
ner as well. 

Problems and Exercises 

PROBLEM 5.1. Let II . II be an arbitrary norm on nd
, and define the k-nearest neighbor rule 

in terms of the distance p(x, z) = IIx - z II. Show that Theorems 5.1 and 5.2 remain valid. 
HINT: Only Stone's lemma needs adjusting. The role of cones C(x, JT /6) used in the proof 
are now played by sets with the following property: x and z belong to the same set if and 
only if 

PROBLEM 5.2. Does there exist a distribution for which sUPn::: I E{ Ln} > 1/2 for the nearest 
neighbor rule? 

PROBLEM 5.3. Show that L3NN :s 1.32L * and that LSNN :s 1.22L *. 

PROBLEM 5.4. Show that if C* is a compact subset of n d and C is the support set for the 
probability measure fL, 

sup IIX(l) - xii -+ 0 
XEcnc* 

with probability one, where X(l) is the nearest neighbor of x among XI, ... , Xn (Wagner 
(1971)). 
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PROBLEM 5.5. Let fL be the probability measure of X given Y = 0, and let v be the probability 
measure of X given Y = 1. Assume that X is real-valued and that P{Y = O} = P{Y = I} = 
1/2. Find a pair (v, fL) such that 

(1) suPport(fL) = support( v); 
(2) L* = 0. 

Conclude that L * = ° does not tell us a lot about the support sets of fL and v. 

PROBLEM 5.6. Consider the (2k + I)-nearest neighbor rule for distributions (X, Y) with 
1(X) == P constant, and Y independent of X. This exercise explores the behavior of L(2k+l)NN 
as p to. 

(1) For fixed integer 1 > 0, as p to, show that 

(2) Use a convenient representation of L(2k+l)NN to conclude that as p t 0, 

((
2k) (2k)) k+l k+l L(2k+l)NN = P + k + k + 1 p + o(p ). 

PROBLEM 5.7. Das Gupta and Lin (1980) proposed the following rule for data with X E R. 
Assume X is nonatomic. First, reorder XI, ... , X n , X according to increasing values, and 
denote the ordered set by X (1) < X(2) < ... < XCi) < X < X(i+l) < '" < X(n).TheYi'sare 
permuted so that Y(j) is the label of X(j). Take votes among {Y(i), Y(i+l)}, {Y(i-l), Y(i+2)}, ... 
until for the first time there is agreement (Yu-j) = Y(i+j+l»), at which time we decide that 
class, that is, gn (X) = Y(i _ j) = Y(i+ j+ 1). This rule is invariant under monotone transformations 
of the x-axis. 

(1) If L denotes the asymptotic expected probability of error, show that for all non­
atomic X, 

L = E { 1(X)(1 - 1(X) I 
1 - 21(X)(1 - 1(X) . 

(2) Show that L is the same as for the rule in which X E Rd and we consider 2-NN, 
4-NN, 6-NN, etc. rules in turn, stopping at the first 2k-NN rule for which there is no 
voting tie. Assume for simplicity that X has a density (with a good distance-tie 
breaking rule, this may be dropped). 

(3) Show that L - LNN ~ (l/2)(L3NN - L NN ), and thus that L ~ (LNN + L 3NN)/2. 
(4) Show that L ::::: L NN . Hence, the rule performs somewhere in between the I-NN 

and 3-NN rules. 

PROBLEM 5.8. Let Y be independent of X, and 1(X) == P constant. Consider a weighted 
(2k + I)-nearest neighbor rule with weights (2m + 1, 1, 1, ... ,1) (there are 2k "ones"), 
where k - 1 ~ m ~ 0. For m = 0, we obtain the (2k + 1)-NN rule. Let L(k, m) be the 
asymptotic probability of error. 

(1) Using results from Problem 5.6, show that 

L(k, m) = p + ( 2k )pk-m+l + ( 2k )pk+m+l + o(pk-m+l) 
k-m k+m+l 

as p t 0. Conclude that within this class of rules, for small p, the goodness of a 
rule is measured by k - m. 
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(2) Let 0 > ° be small, and set p = 1/2 - o. Show that if X is binomial (2k, 1/2 - 0) 
and Z is binomial (2k, 1/2), then for fixed I, as 8 + 0, 

PIX 2: l} = P{Z 2: l} - 2koP{Z = l} + 0(02), 

and 
PIX ::s I} = P{Z ::s l} + 2k8P{Z = 1 + I} + 0(82). 

(3) Conclude that for fixed k, m as 8 .} 0, 

L(k, m) 
1 
"2 - 282(kP{Z = k + m} + kP{Z = k + m + I} 

+ P {Z ::s k + m} - P {Z 2: k + m + I}) + 0(02
). 

(4) Take weight vector w with k fixed and m = L 1 0,Jk J , and compare it with weight 
vector w' with k/2 components and m = L.Jkl2J as p .} ° and p t 1/2. Assume 
that k is very large but fixed. In particular, show that w is better as p + 0, and w' 
is better as p t 1/2. For the last example, note that for fixed c > 0, 

kP{Z=k+m}+kP{Z=k+m+l}"-'8-Jk ~e-2c2 as k......,..oo 
y2JT 

by the central limit theorem. 
(5) Conclude that there exist different weight vectors w, Wi for which there exists a 

pair of distributions of (X, Y) such that their asymptotic error probabilities are 
differently ordered. Thus, W is not totally ordered with respect to the probability 
of error. 

PROBLEM 5.9. Patrick and Fisher (1970) find the k-th nearest neighbor in each of the two 
classes and classify according to which is nearest. Show that their rule is equivalent to a 
(2k - I)-nearest neighbor rule. 

PROBLEM 5.10. Rabiner et aL (1979) generalize the rule of Problem 5.9 so as to classify 
according to the average distance to the k-th nearest neighbor within each class. Assume 
that X has a density. For fixed k, find the asymptotic probability of error. 

PROBLEM 5.11. If N is normal (0, 1), then E{INI} = ,J2!ii. Prove this. 

PROBLEM 5.12. Show that if L9NN = L(11)NN, then L(99)NN = L(lll)NN' 

PROBLEM 5.13. Show that 

(
7V7 + 17 ) * 

L3NN ::s 27v'3 + 1 L ~ 1.3155 ... L * 

for all distributions (Devroye (1981b». HINT: Find the smallest constanta such that L3NN ::s 
L * (1 + a) using the representation of L3NN in terms of the binomial taiL 

PROBLEM 5.14. Show that if X has a density j, then for all u > 0, 

lim P {nl/dIlX(l)(X) - XII > u\X} = e-f(X)vu
d 

n--+oo 

with probability one, where v = Is dx is the volume ofthe unit ball in n d (Gyorfi (1978». 
0,1 
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PROBLEM 5.15. Consider a rule that takes a majority vote over all Yi 's for which IIXi -xII ::s 
(c / v n ) 1 j d, where v = Is dx is the volume of the unit ball, and c > 0 is fixed. In case of a 

0,1 

tie decide gn(x) = O. 
(1) If X has a density j, show thatliminfn--+ooE{Ln}:::: E {1J(X)e-cf(X)}. HINT: Use 

the obvious inequality E{Ln } :::: P{Y = 1, fJ--n(SX,cjvn) = OJ. 
(2) If Y is independent of X and 1J == P > 1/2, then 

E { (X)e-Cf(X)} 
1J = E {e-cf(X)} _P- too 

L* 1- P 

as P t 1. Show this. 
(3) Conclude that 

sup 
(X,Y):L*>O 

lim infn--+oo E{Ln } 

L* 
= 00, 

and thus that distribution-free bounds of the form limn --+ oo E{ Ln} :::: c' L * obtained 
for k-nearest neighbor estimates do not exist for these simple rules (Devroye 
(198Ia». 

PROBLEM 5.16. Take an example with 1J(X) == 1/2 - I/(2./k), and show that the bound 
LkNN - L * :::: I/"Jke cannot be essentially bettered for large values of k, that is, there exists 
a sequence of distributions (indexed by k) for which 

as k -+ 00, where N is a normal (0, 1) random variable. 

PROBLEM 5.17. If B is binomial (n, p), then 

sup P{B = i}:::: I . n ., 0 < i < n. 
p V 27il(n - 1) 

PROBLEM 5.18. Show that for k :::: 3, 

,Jk(k+l) < (1 + ~) (1 + ~) = 1 + ~ + ~. 
k - 1 - 2k 2k k 4k2 

PROBLEM 5.19. Show that there exists a sequence of distributions of (X, Y) (indexed by k) 

in which Y is independent of X and 1J(x) == p (with p depending on k only) such that 

( 
LkNN - L * ) " lim inf v k :::: y = 0.339942 ... , 

n--+oo L* 

where y is the constant of Theorem 5.8 (Devroye (1981b». HINT: Verify the proof of The­
orem 5.8 but bound things from below. Slud's inequality (see Lemma A.6 in the Appendix) 
may be of use here. 

PROBLEM 5.20. Consider a weighted nearest neighbor rule with weights 1, p, p2, p3, '" for 
p < 1. Show that the expected probability of error tends for all distributions to a limit L(p). 
HINT: Truncate at k fixed but large, and argue that the tail has asymptotically negligible 
weight. 
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PROBLEM 5.21. CONTINUED. With L(p) as in the previous exercise, show that L(p) = LNN 
whenever p < 1/2. 

PROBLEM 5.22. CONTINUED. Prove or disprove: as p increases from 1/2 to 1, L(p) decreases 
monotonically from LNN to L *. (This question is difficult.) 

PROBLEM 5.23. Show that in the weighted NN rule with weights (1, p, p2), 0 < P < 1, the 
asymptotic probability of error is LNN if P < (.J5 - 1)/2 and is L3NN if P > (.J5 - 1)/2. 

PROBLEM 5.24. Is there any k, other than one, for which the k-NN rule is admissible, that is, 
for which there exists a distribution of (X, Y) such that E{Ln } for the k-NN rule is smaller 
than E{Ln } for any k'-NN rule with k' =I k, for all n? HINT: This is difficult. Note that if this 
is to hold for all n, then it must hold for the limits. From this, deduce that with probability 
one, 7J(x) E {O, 1/2, I} for any such distribution. 

PROBLEM 5.25. For every fixed n and odd k with n > lOOOk, find a distribution of (X, Y) 
such that E{Ln} for the k-NN rule is smaller than E{Ln} for any k'-NN rule with k' =I k, k' 
odd. Thus, for a given n, no k can be a priori discarded from consideration. 

PROBLEM 5.26. Let X be uniform on [0, 1], 7J(x) == x, and pry = O} = pry = I} = 1/2. 
Show that for the nearest neighbor rule, 

1 3n + 5 
E{Ln} = - + ------

3 2(n + 1)(n + 2)(n + 3) 

(Cover and Hart (1967); Peterson (1970)). 

PROBLEM 5.27. For the nearest neighbor rule, if X has a density, then 

1 
IE{Ln} - E{Ln+dl ::s -

n+l 

(Cover (1968a)). 

PROBLEM 5.28. Let X have a density f ~ c > 0 on [0, 1], and assume that f~" and f{" exist 
and are uniformly bounded. Show that for the nearest neighbor rule, E{ Ln} = LNN + 0 (1/ n2

) 

(Cover (1968a»). For d-dimensional problems this result was generalized by Psaltis, Snapp, 
and Venkatesh (1994). 

PROBLEM 5.29. Show that LkNN ::s (1 + ,J2Jk)L * is the best possible bound of the form 
LkNN ::s (1 + a/ "jk)L * valid simultaneously for all k ~ 1 (Devroye (1981b)). 

PROBLEM 5.30. Show that LkNN ::s (1 + -Jllk)L* for all k ~ 3 (Devroye (1981b)). 

PROBLEM 5.31. Let x = (x(1), x(2)) E n2. Consider the nearest neighbor rule based upon 
vectors with components (x 3( 1), x 7 (2), x( 1 )x(2)). Show that this is asymptotically not better 
than if we had used (x(1), x(2»). Show by example that (X2(1), x 3(2), x 6(1)x(2)) may yield 
a worse asymptotic error probability than (x(1), x(2)). 

PROBLEM 5.32. UNIFORM ORDER STATISTICS. Let U(1) < ... < U(n) be order statistics of n 
i.i.d. uniform [0, 1] random variables. Show the following: 

(1) U(k) is beta (k, n + 1 - k), that is, U(k) has density 

n! 
f(x) - X k- 1(1 - x)n-k 0 _< x _< 1. 

- (k - 1)!(n - k)! ' 
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(2) 

a r(k + a)r(n + 1) 
E {U(k)} = , for any a > 0. 

r(k)r(n + 1 + a) 

(3) 

a E{U&)} l/!(a) 
1--<---<1+--

n - (kln)a - k 

for a :::: 1, where l/!(a) is a function of a only (Royall (1966)). 

PROBLEM 5.33. DUDANI'S RULE. Dudani (1976) proposes a weighted k-NN rule where Y(i)(x) 

receives weight 

IIX(k)(X) - xII - IIX(i)(x) - xii, 1:::; i :::; k. 

Why is this roughly speaking equivalent to attaching weight 1 - (i I k)l/d to the i-th nearest 
neighbor if X has a density? HINT: If ~ is the probability measure of X, then 

are distributed like U(1), ... , U(k) where U(l) < ... < U(n) are the order statistics of n i.i.d. 
uniform [0, 1] random variables. Replace ~ by a good local approximation, and use results 
from the previous exercise. 

PROBLEM 5.34. Show Devijver's theorem (Theorem 5.10) in two parts: first establish the 
inequality L * :::: Lk,lk/21-1 for the tennis rule, and then establish the monotonicity. 

PROBLEM 5.35. Show Theorem 5.9 for the (k, I) nearest neighbor rule. 

PROBLEM 5.36. Let R be the asymptotic error probability of the (2, 2)-nearest neighbor 
rule. Prove that R = E{21J(X)(1 - 1J(X»)} = L NN • 

PROBLEM 5.37. For the nearest neighbor rule, show that for all distributions, 

lim P{gn(X) = 0, Y = I} lim P{gn(X) = 1, Y = O} 
n-+oo n-+oo 

E{1J(X)(1 - 1J(X»)} 

(Devijver and Kittler (1982»). Thus, errors of both kinds are equally likely. 

PROBLEM 5.38. Let P{Y = I} = P{Y = O} = 1/2 and let X be a random rational if Y = 1 (as 
defined in Section 5.9) such that every rational number has positive probability, and let X 
be uniform [0, 1] if Y = 0. Show that for every x E [0, 1] not rational, P{Y(l)(x) = I} ---+ ° 
as n ---+ 00, while for every x E [0,1] rational, P{Y(l)(x) = o} ---+ ° as n ---+ 00. 

PROBLEM 5.39. Let Xl, ... , Xn be i.i.d. and have a common density. Show that for fixed 
k > 0, 

nP {X3 is among the k nearest neighbors of Xl and X2 in {X3, ... , Xn}} ---+ 0. 

Show that the same result remains valid whenever k varies with n such that kl In ---+ 0. 
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PROBLEM 5.40. IMPERFECT TRAINING. Let (X, Y, Z), (Xl, YI , Zd, .. ·, (Xn' ~1' Zn)bease­
quence of i.i.d. triples in Rd x {a, I} x {a, I} with pry = llX = x} = 17(x) and P{Z = 
llX = x} = 17' (x). Let Z(l)(X) be Z j if X j is the nearest neighbor of X among X I, ... , X n • 

Show that 
lim P{Z(l)(X) =I y} = E {17(X) + 17'(X) - 217(X)17'(X)} 

n-+oo 

(Lugosi (1992». 

PROBLEM 5.41. Improve the bound in Lemma 5.3 to Yd :s 3d - 1. 

PROBLEM 5.42. Show that if {C(XI' ][/6), ... , C(xyd , ][ /6)} is a collection of cones cover­
ing R d

, then Yd 2: 2d. 

PROBLEM 5.43. Recalling that LkNN = E {ak(17(X»)}, where 

ak(p) = min(p, 1 - p) + 11 - 2min(p, 1 - p)IP {Binomial(k, min(p, 1 - p» > ~} , 

show that for every fixed p, P {Binomial(k, min(p, 1 - p» > ~} ,} ° as k ~ 00 (it is the 
mono tonicity that is harder to show). How would you then prove that limk---+oo LkNN = L *? 

PROBLEM 5.44. Show that the asymptotic error probability of the rule that decides gn(x) = 
Y(8)(X) is identical to that of the rule in which gn(x) = Y(3)(X). 

PROBLEM 5.45. Show that for all distributions LSNN = E{ Vrs(17(X)(I-17(X»}, where Vrs(u) = 
u + u2 + 12u3

. 

PROBLEM 5.46. Show that for all distributions, 

and that 

PROBLEM 5.47. Let X(l) be the nearest neighbor of x among Xl, ... , X n . Construct an 
example for which E{ II X(l) - x II} = 00 for all x E Rd. (Therefore, we have to steer clear 
of convergence in the mean in Lemma 5.1.) Let X (1) be the nearest neighbor of X I among 
X2 , •.. , X n • Construct a distribution such that E{IIX(l) - XIII} = 00 for all n. 

PROBLEM 5.48. Consider the weighted nearest neighbor rule with weights (WI, ... , Wk). 

Define a new weight vector (WI, W2, ... , Wk-l, VI, ... , vz), where 2:::;=1 Vi = Wk. Thus, the 
weight vectors are partially ordered by the operation "partition." Assume that all weights 
are nonnegative. Let the asymptotic expected probability of errors be Land L', respectively. 
True or false: for all distributions of (X, Y), L' :s L. 

PROBLEM 5.49. GABRIEL NEIGHBORS. Given Xl,'." Xn E R d , we say that Xi and Xj are 
Gabriel neighbors if the ball centered at (Xi + X j )/2 of radius IIXi - Xj 11/2 contains no X k , 

k =I i, j (Gabriel and Sokal (1969); Matula and Sokal (1980». Clearly, if Xj is the nearest 
neighbor of Xi, then Xi and Xj are Gabriel neighbors. Show that if X has a density and 
X I, ... , Xn are i.i.d. and drawn from the distribution of X, then the expected number of 
Gabriel neighbors of Xl tends to 2d as n ~ 00 (Devroye (1988c». 
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FIGURE 5.7. The Gabriel graph of 

20 points on the plane is shown: 

Gabriel neighbors are connected by 

an edge. Note that all circles strad­

dling these edges have no data point 

in their interior. 

PROBLEM 5.50. GABRIEL NEIGHBOR RULE. Define the Gabriel neighbor rule simply as the 
rule that takes a majority vote over all Yi 's for the Gabriel neighbors of X among Xl, ... , X n • 

Ties are broken by flipping a coin. Let Ln be the conditional probability of error for the 
Gabriel rule. Using the result of the previous exercise, show that if L * is the Bayes error, 
then 

(1) lim E{Ln } = 0 if L* = 0; 
n---+oo 

(2) limsupE{Ln } < LNN if L* > 0, d > 1; 
n--+oo 

(3) lim sup E{Ln } .:::: cL * for some c < 2, if d > 1. 
n--+oo 

For (3), determine the best possible value of c. HINT: Use Theorem 5.8 and try obtaining, 
for d = 2, a lower bound for P {N x 2: 3}, where N x is the number of Gabriel neighbors of 
X among Xl, ... , Xn • 



6 
Consistency 

6.1 Universal Consistency 

If we are given a sequence Dn = ((Xl, YI ), ... , (Xn, Yn)) of training data, the best 
we can expect from a classification function is to achieve the Bayes error probability 
L * . Generally, we cannot hope to obtain a function that exactly achieves the Bayes 
error probability, but it is possible to construct a sequence of classification functions 
{gn}, that is, a classification rule, such that the error probability 

gets arbitrarily close to L * with large probability (that is, for "most" Dn). This idea 
is formulated in the definitions of consistency: 

DEFINITION 6.1. (WEAK AND STRONG CONSISTENCY). A classification rule is con­
sistent (or asymptotically Bayes-risk efficient) for a certain distribution of (X, Y) 

if 

and strongly consistent if 

lim Ln = L * with probability 1. 
n-+oo 

REMARK. Consistency is defined as the convergence of the expected value of Ln to 
L *. Since Ln is a random variable bounded between L * and 1, this convergence 
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is equivalent to the convergence of Ln to L * in probability, which means that for 

every E > ° 
lim P {Ln - L * > E} = 0. 

n---+oo 

Obviously, since almost sure convergence always implies convergence in proba­
bility, strong consistency implies consistency. D 

A consistent rule guarantees that by increasing the amount of data the probability 
that the error probability is within a very small distance of the optimal achievable 
gets arbitrarily close to one. Intuitively, the rule can eventually learn the optimal 
decision from a large amount of training data with high probability. Strong con­
sistency means that by using more data the error probability gets arbitrarily close 
to the optimum for every training sequence except for a set of sequences that has 
zero probability altogether. 

A decision rule can be consistent for a certain class of distributions of (X, Y), 
but may not be consistent for others. It is clearly desirable to have a rule that is 
consistent for a large class of distributions. Since in many situations we do not have 
any prior information about the distribution, it is essential to have a rule that gives 
good performance for all distributions. This very strong requirement of universal 
goodness is formulated as follows: 

DEFINITION 6.2. (UNIVERSAL CONSISTENCY). A sequence of decision rules is called 
universally (strongly) consistent if it is (strongly) consistent for any distribution of 
the pair (X, Y). 

In this chapter we show that such universally consistent classification rules exist. 
At first, this may seem very surprising, for some distributions are very "strange," 
and seem hard to learn. For example, let X be uniformly distributed on [0, 1] with 
probability 1/2, and let X be atomic on the rationals with probability 1/2. For 
example, if the rationals are enumerated rl, r2, r3, ... , then P{X = rd = 1/2i+l. 
Let Y = 1 if X is rational and Y = ° if X is irrational. Obviously, L * = 0. If 
a classification rule gn is consistent, then the probability of incorrectly guessing 
the rationality of X tends to zero. Note here that we cannot "check" whether X 
is rational or not, but we should base our decision solely on the data Dn given to 
us. One consistent rule is the following: gn(x, Dn) = Yk if X k is the closest point 
to x among Xl,"" Xn • The fact that the rationals are dense in [0, 1] makes the 
statement even more surprising. See Problem 6.3. 

6.2 Classification and Regression Estimation 

In this section we show how consistency of classification rules can be deduced 
from consistent regression estimation. In many cases the a posteriori probability 
rJ(x) is estimated from the training data Dn by some function rJn(x) = rJn(x, Dn). 
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In this case, the error probability L(gn) = P{gn(X) =I YIDn} of the plug-in rule 

{ 
0 if rJn(x) :s 1/2 

gn(x) = 1 otherwise 

is a random variable. Then a simple corollary of Theorem 2.2 is as follows: 

COROLLARY 6.1. The error probability of the classifier gn (x) defined above satis­
fies the inequality 

The next corollary follows from the Cauchy-Schwarz inequality. 

COROLLARY 6.2. If 

{ ° if rJn(x) :s 1/2 
gn(x) = h ot erwise, 

then its error probability satisfies 

Clearly, rJ(x) = P{Y = IIX = x} = E{YIX = x} is just the regression function of 
Y on X. Therefore, the most interesting consequence of Theorem 2.2 is that the 
mere existence of a regression function estimate rJn (x) for which 

in probability or with probability one implies that the plug-in decision rule gn is 
consistent or strongly consistent, respectively. 

Clearly, from Theorem 2.3, one can arrive at a conclusion analogous to Corollary 
6.1 when the probabilities rJo(x) = P{Y = 0IX = x} and rJl(X) = P{Y = IIX = x} 
are estimated from data separately by some rJO,n and rJl,n, respectively. Usually, a 
key part of proving consistency of classification rules is writing the rules in one 
of the plug-in forms, and showing L1-convergence of the approximating functions 
to the a posteriori probabilities. Here we have some freedom, as for any positive 
function in (x), we have, for example, 

g (x) _ {O if rJl,n(X) :s rJO,n(x) = { 0 
n - 1 otherwise, 

if l)l,n(X) < r]O,n(X) 
Tn(X) - Tn(X) 

otherwise. 
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6.3 Partitioning Rules 

Many important classification rules partition nd into disjoint cells AI, A 2 , ... and 
classify in each cell according to the majority vote among the labels of the Xi'S 
falling in the same cell. More precisely, 

(x) = {O if :L7=1 I{Y;=l}I{x;EA(x)} ~ :L7=1 I{y;=o}I{x;EA(x)} 

gn 1 otherwise, 

where A(x) denotes the cell containing x. The decision is zero if the number of 
ones does not exceed the number of zeros in the cell where X falls, and vice versa. 
The partitions we consider in this section may change with n, and they may also 
depend on the points XI, ... , X n, but we assume that the labels do not playa role 
in constructing the partition. The next theorem is a general consistency result for 
such partitioning rules. It requires two properties of the partition: first, cells should 
be small enough so that local changes of the distribution can be detected. On the 
other hand, cells should be large enough to contain a large number of points so 
that averaging among the labels is effective. diam(A) denotes the diameter of a set 
A, that is, 

Let 

diam(A) = sup IIx - YII. 
x,yEA 

n 

N(x) = n/Ln(A(x» = L I{x;EA(x)} 

i=1 
denote the number of Xi'S falling in the same cell as x. The conditions of the 
theorem below require that a random cell-selected according to the distribution 
of X -has a small diameter, and contains many points with large probability. 

Theorem 6.1. Consider a partitioning classification rule as defined above. Then 
E{Ln } -+ L * if 

(1) diam(A(X» -+ 0 in probability, 
(2) N (X) -+ 00 in probability. 

PROOF. Define 1J(x) = P{Y = llX = x}. From Corollary 6.1 we recall that we need 
only show EH1Jn(X) - 1J(X)1} -+ 0, where 

__ 1 '" 1Jn(x) = - L- Yi • 
N(x) . 

eX;EA(x) 

Introduce ij(x) = E{1J(X)IX E A(x)}. By the triangle inequality, 

E{lryn(X) - 1J(X)1} ~ E{lryn(X) - ij(X)1} + E{lij(X) - 1J(X)I}· 

By conditioning on the random variable N(x), it is easy to see that N(x)ryn(x) is 
distributed as B(N(x), ij(x», a binomial random variable with parameters N(x) 
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and ij(x). Thus, 

E{I71n(X) - ij(X)IIX, I{xl EA(X)}, ••• , I{XIlEA(X)}} 

{ I 
B(N(X), ij(X» - I I } 

:::: E N(X) - 11(X) I{N(x»O} X, I{x 1EA(X)}, ••• , I{XIlEA(X)} 

+ I{N(x)=O} 

{ 
ij(X)(l - ij(X» I } 

:::: E N(X) I{N(x»O} X, I{x]EA(X)} • .•• , I{XIlEA(X)} 

+ I{N(x)=o} 

by the Cauchy-Schwarz inequality. Taking expectations, we see that 

E{I71n(X) - ij(X)1} :::: E { ~IIN(X»OI} + P{N(X) = O} 
2 N(X) 

1 1 
:::: iP{N(X):::: k} + 2.jk + P{N(X) = O} 

for any k, and this can be made small, first by choosing k large enough and then 
by using condition (2). 

For E > 0, find a uniformly continuous [0, I]-valued function 11E on a bounded 
set C and vanishing off C so that E {111E(X) - 11(X)1} < E. Next, we employ the 
triangle inequality: 

E {lij(X) - 11(X)l} :::: E {lij(X) - ijE(X)1} 

+E {lijE(X) -11E(X)1} 

+ E {111E(X) - 11(X)\} 

I + I I + I I I, 

where ijE(X) = E{11AX)IX E A(x)}. Clearly, I I I < E by choice of 11E' Since 11E is 
uniformly continuous, we can find a 8 = 8(E) > ° such that 

I I :::: E + P{diam(A(X» > 8}. 

Therefore, I I < 2E for n large enough, by condition (l). Finally, I :::: I I I < E. 

Taken together these steps prove the theorem. 0 

6.4 The Histogram Rule 

In this section we describe the cubic histogram rule and show its universal con­
sistency by checking the conditions of Theorem 6.1. The rule partitions Rd into 
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cubes of the same size, and makes a decision according to the majority vote among 
the Y/s such that the corresponding Xi falls in the same cube as X. Formally, let 
Pn = {AnI, A n2 , ... } beapartitionofRd into cubes ofsizehn > 0, that is, into sets 
of the type nf=1 [kihn , (ki + 1)hn ), where the k/s are integers. For every x E Rd 
let An (x) = Ani if X E Ani. The histogram rule is defined by 

() { 
0 if I:7=1 I{Yi=l}I{XiEAn(X)} ::::; I:7=1 I{yi=o}I{XiEAn(x)} 

gn x = 1 otherwise. 

FIGURE 6.1. A cubic histogram rule: 

The decision is 1 in the shaded area. 

o 

oe 0 
e 

Consistency of the histogram rule was established under some additional con­
ditions by Glick (1973). Universal consistency follows from the results of Gordon 
and Olshen (1978), (1980). A direct proof of strong universal consistency is given 
in Chapter 9. 

The next theorem establishes universal consistency of certain cubic histogram 
rules. 

Theorem 6.2. If hn ---7>- 0 and nh~ ---7>- 00 as n ---7>- 00, then the cubic histogram 
rule is universally consistent. 

PROOF. We check the two simple conditions of Theorem 6.1. Clearly, the diameter 
of each cell is -Y'dhd. Therefore condition (1) follows trivially. To show condition 
(2), we need to prove that for any M < 00, P{N(X) ::: M} ---7>- O. Let S be an 
arbitrary ball centered at the origin. Then the number of cells intersecting S is not 
more than CI + c21 hd for some positive constants CI, C2. Then 

P{N(X)::::; M} 

< L P{X E Anj , N(X) ::::; M} + P{X ESC} 

< 

j:Anj nS=j0 

j:Anj nS10 

fJ.,(A nj ):s2Mjn 
j:Anj nS10 

fJ.,(A nj »2Mjn 



< 

< 

j:A,,/lSi 0 

fl,(Anj »2M/n 

(by Chebyshev's inequality) 

j:Anj nSi 0 

fl,(A nj »2M/n 

2M + 4 ( C2) C 
--n- Cl + hd + !L(S ) 

!L(SC), 
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because nhd --+ 00. Since S is arbitrary, the proof of the theorem is complete. 0 

6.5 Stone's Theorem 

A general theorem by Stone (1977) allows us to deduce universal consistency of 
several classification rules. Consider a rule based on an estimate of the a posteriori 
probability 1] of the form 

n n 

1]n(x) = L I{Yi=l} Wni(x) = LYi Wni(x), 
i=l i=l 

where the weights Wni(x) = Wni(x, Xl, ... , Xn) are nonnegative and sum to one: 

i=l 

The classification rule is defined as 

( ) { 
0 if L7::::1 I{Yi=l} Wni(x) ::: L7=1 I{yi=o} Wni(x) gn X = otherwise, 

= {O if L7=1 Yi Wni(x) ::: 1/2 
otherwise. 
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17n is a weighted average estimator of 17. It is intuitively clear that pairs (Xi, Yi ) 

such that Xi is close to x should provide more information about 17 (x ) than those far 
from x. Thus, the weights are typically much larger in the neighborhood of X, so 
17n is roughly a (weighted) relative frequency of the Xi'S that have label 1 among 
points in the neighborhood of X. Thus, 17n might be viewed as a local average 
estimator, and gn a local (weighted) majority vote. Examples of such rules include 
the histogram, kernel, and nearest neighbor rules. These rules will be studied in 
depth later. 

Theorem 6.3. (STONE (1977». Assume that for any distribution of X, the weights 
satisfy the following three conditions: 

(i) There is a constant c such that,for every nonnegative measurable function 
f satisfying Ef(X) < 00, 

E {t Wni(X)f(X,)} S cEf(X). 

(ii) For all a > 0, 

(iii) 

lim E I m~x Wni(X)} = 0. 
n---+oo 1:9:::n 

Then gn is universally consistent. 

REMARK. Condition (ii) requires that the overall weight of X/s outside of any 
ball of a fixed radius centered at X must go to zero. In other words, only points 
in a shrinking neighborhood of X should be taken into account in the averaging. 
Condition (iii) requires that no single Xi has too large a contribution to the estimate. 
Hence, the number of points encountered in the averaging must tend to infinity. 
Condition (i) is technical. 0 

PROOF. By Corollary 6.2 it suffices to show that for every distribution of (X, Y) 

lim E {(17(X) - 17n(X»2} = 0. 
n---+oo 

Introduce the notation 
n 

r]n(x) = L 17(Xi )Wni (X). 
i=l 
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Then by the simple inequality (a + b)2 ::: 2(a2 + b2) we have 

E {(ry(X) - ryn(X»2} 

= E {((ry(X) - iln(X» + (li'n(X) - ryn(X»)2} 

::: 2 (E {(ry(X) - Tfn(X»2} + E {(Tfn(X) - ryn(X»2}) . (6.1) 

Therefore, it is enough to show that both terms on the right-hand side tend to zero. 
Since the Wni'S are nonnegative and sum to one, by Jensen's inequality, the first 
term is 

E { (t Wni(X)(~(X) - ~(Xi)) r } 
:s: E { t Wni(X)(~(X) - ~(Xi)l" } . 

If the function 0 ::: ry* ::: 1 is continuous with bounded support, then it is uniformly 
continuous as well: for every E > 0, there is an a > 0 such that for IlxI - x II < a, 
Iry*(xd _ry*(x)1 2 < E. Recall here that Ilxli denotes the Euc1idean norm ofa vector 
x E Rd. Thus, since Iry*(xd - ry*(x)/ ::: 1, 

E { t Wni(X)(~'(X) - ry'(Xi»' } 

:s: E {t Wn;(X)J(IIX-X;lI~a) } + E {t Wni(X)E} --+ E, 

by (ii). Since the set of continuous functions with bounded support is dense in 
L2(/L), for every E > 0 we can choose ry* such that 

E {(ry(X) - ry*(X»2} < E. 

By this choice, using the inequality (a + b + c? ::: 3(a2 + b2 + c2) (which follows 
from the Cauchy-Schwarz inequality), 

E {(ry(X) - Tfn(X)/} 

:s: E { t Wni(X)(ry(X) - ry(Xi ))2 } 

:s: 3E {t Wni(X) (~(X) - ~'(X»2 + (ry'(X) - ~'(Xi»2 
+ (ry*(Xi) - ry(Xd)2)} 

::: 3E {(ry(X) - ry*(X»2} 

+3E {t Wni(X)(~'(X) - ry'(Xi»2} + 3cE {(~(X) - ~*(X»2}. 
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where we used (i). Therefore, 

lim sup E {(1J(X) -1h7(X))2} :::: 3E(1 + 1 + c). 
n-+oo 

To handle the second term of the right -hand side of (6.1), observe that 

by independence. Therefore, 

E {(1h7(X) - 1Jn(X))2} 

= E { (t Wn;(X)(ry(Xi) - Yi)r} 

n n 

L LE {Wni (X)(1J(Xi ) - Yi )Wnj (X)(1J(X j ) - Yj )} 
i=l j=l 

n 

= LE {W;i(X)(1J(Xi ) - Yi)2} 
i=l 

< E {t w.;,eX)} ::0 E {1~i':;, Wni(X) ~ Wnj(X)} 

E {1~~;" Wn,(X)} -+ 0 

by (iii), and the theorem is proved. 0 

6.6 The k-Nearest Neighbor Rule 

In Chapter 5 we discussed asymptotic properties of the k-nearest neighbor rule 
when k remains fixed as the sample size n grows. In such cases the expected 
probability of error converges to a number between L * and 2L *. In this section 
we show that if k is allowed to grow with n such that kin --+ 0, the rule is weakly 
universally consistent. The proof is a very simple application of Stone's theorem. 
This result, appearing in Stone's paper (1977), was the first universal consistency 
result for any rule. Strong consistency, and many other different aspects of the 
k-NN rule are studied in Chapters 11 and 26. 

Recall the definition of the k-nearest neighbor rule: first the data are ordered 
according to increasing Euclidean distances of the X j , s to x: 
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that is, X(i)(x) is the i-th nearest neighbor of x among the points Xl, ... , X n . 

Distance ties are broken by comparing indices, that is, in case of II Xi - x II 
"X j - x II, Xi is considered to be "closer" to x if i < j. 

The k-NN classification rule is defined as 

gn (x) = {O if L~=l. I{Y(i)(x)=l} :::; L~=l I{Y(i)(x)=O} 
1 otherwIse. 

In other words, gn (x) is a majority vote among the labels of the k nearest neighbors 
of x. 

Theorem 6.4. (STONE (1977». Ifk -+ 00 and k/n -+ 0, thenforall distributions 
ELn-+ L*. 

PROOF. We proceed by checking the conditions of Stone's weak convergence theo­
rem (Theorem 6.3). The weight Wni(X) in Theorem 6.3 equals 1/ k iff Xi is among 
the k nearest neighbors of X, and equals ° otherwise. 

Condition (iii) is obvious since k -+ 00. For condition (ii) observe that 

holds whenever 
p {IIX(k)(X) - XII > E} -+ 0, 

where X(k)(X) denotes the k-th nearest neighbor of x among Xl, ... , X n • But we 
know from Lemma 5.1 that this is true for all E > ° whenever k/n -+ 0. 

Finally, we consider condition (i). We have to show that for any nonnegative 
measurable function f with E{f(X)} < 00, 

E {t ~I(Xi is among the k nearest neighbors of X}f(Xd} :::; E {cf(X)} 
1=1 

for some constant c. But we have shown in Lemma 5.3 that this inequality always 
holds with c = Yd. Thus, condition (i) is verified. 0 

6.7 Classification Is Easier Than Regression 
Function Estimation 

Once again assume that our decision is based on some estimate 17n of the a posteriori 
probability function 17, that is, 

(X)={ ° if17n(x):::;1/2 
gn 1 otherwise. 
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The bounds of Theorems 2.2, 2.3, and Corollary 6.2 point out that if 1}n is a 
consistent estimate of 1}, then the resulting rule is also consistent. For example, 
writing Ln = P{gn(X) i YIDn}, we have 

that is, L2-consistent estimation of the regression function 1} leads to consistent 
classification, and in fact, this is the main tool used in the proof of Theorem 6.3. 
While the said bounds are useful for proving consistency, they are almost useless 
when it comes to studying rates of convergence. As Theorem 6.5 below shows, for 
consistent rules rates of convergence of P{gn (X) i Y} to L * are always orders of 

magnitude better than rates of convergence of JE {(1}(X) - 1}n(X»2} to zero. 

112 ___________________ ... 

x 
o========~ __________________________________________ _ 

FIGURE 6.2. The difference between the error probabilities grows roughly 

in proportion to the shaded area. Elsewhere 1}n(x) does not need to be 

close 1}(x). 

Pattern recognition is thus easier than regression function estimation. This will 
be a recurring theme-to achieve acceptable results in pattern recognition, we can 
do more with smaller sample sizes than in regression function estimation. This is 
really just a consequence of the fact that less is required in pattern recognition. 
It also corroborates our belief that pattern recognition is dramatically different 
from regression function estimation, and that it deserves separate treatment in the 
statistical community. 

Theorem 6.5. Let 1}n be a weakly consistent regression estimate, that is, 

lim E {(1Jn(X) 1}(X»2} = O. 
n-+oo 

Define 

{ 
0 if1}n(x)::::1/2 

gn(x) = otherwise. 
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Then 
EL -L* 

lim n = 0, 
n-+oo )E {(fln(X) - fl(X)?} 

that is, ELn - L * converges to zero faster than the L 2-error of the regression 
estimate. 

PROOF. We start with the equality of Theorem 2.2: 

ELn - L * = 2E {lfl(X) - 1/2II{gn(X)¥g*(X)}} . 

Fix E > O. We may bound the last factor by 

E {lfl(X) - 1/2I I {gn(X)¥g*(x)d 

::: E {I{1J(X)i1/2}lfl(X) - fln(X)II{g,,(x)¥g*(X)}} 

E {lfl(X) - fln(X)1 I{gn(X)¥g*(X)} I{I1J(X)-1/21::::E}I{1J(X)il/2} } 

+ E {lfl(X) - fln(X)II{g,,(x)¥g*(x)}I{I1J(X)-1/21>Ed 

< )E {(rJn(X) - fl(X)?} 

x ( Jp{lfl(X) - 1/21 ::: E, fleX) =jl/2} 

+ Jp{gn(X) =j g*(X), Ifl(X) -1/21> E}) 
(by the Cauchy-Schwarz inequality). 

Since gn(X) =j g*(X) and Ifl(X) - 1/21 > E imply that IrJn(X) - fl(X)1 > E, 

consistency of the regression estimate implies that for any fixed E > 0, 

lim P{gn(X) =j g*(X), Ifl(X) - 1/21 > E} = O. 
n-+oo 

On the other hand, 

P{lfl(X) - 1/21 ::: E, fleX) =j1/2} ---+ 0 as E ---+ 0, 

which completes the proof. 0 

The actual value of the ratio 

ELn - L* 
Pn = --,======== 

)E {(rJn(X) - fl(X)?} 

cannot be universally bounded. In fact, Pn may tend to zero arbitrarily slowly 
(see Problem 6.5). On the other hand, Pn may tend to zero extremely quickly. In 
Problems 6.6 and 6.7 and in the theorem below, upper bounds on Pn are given that 
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may be used in deducing rate-of-convergence results. Theorem 6.6, in particular, 
states that ELn - L * tends to zero as fast as the square of the L2 error of the 
regression estimate, i.e., E {(1]n(X) - 1](X))2}, whenever L* = O. Just how slowly 
Pn tends to zero depends upon two things, basically: (1) the rate of convergence 
of 1]n to 1], and (2) the behavior of P{I1](X) - 1/21 :::: E, 1](X) ::jl/2} as a function 
of E when E {- 0 (i.e., the behavior of 1](x) at those x's where 1](x) ~ 1/2). 

Theorem 6.6. Assume that L * = 0, and consider the decision 

(x) = {O if1]n(x):::: 1/2 
gn 1 otherwise. 

Then 
P{gn(X) ::j Y} :::: 4 E {(1]n(X) - 1](X))2} . 

PROOF. By Theorem 2.2, 

P{gn(X)::j Y} = 2E {11](X) 1/2II{gn(X)=tg*(x)d 

= 2E {11](X) - 1/2/I{gn(X)=tY}} 

(since g*(X) = Y by the assumption L * = 0) 

< 2JE {(1]n(X) - 1](X))2 h/P{gn(X) ::j Y} 

(by the Cauchy-Schwarz inequality). 

Dividing both sides by ,jP{gn(X) ::j Y} yields the result. 0 

The results above show that the bounds of Theorems 2.2, 2.3, and Corollary 6.2 
may be arbitrarily loose, and the error probability converges to L * faster than the 
L2-error of the regression estimate converges to zero. In some cases, consistency 
may even occur without convergence of EI1]n(X) - 1](X)1 to zero. Consider for 
example a strictly separable distribution, that is, a distribution such that there exist 
two sets A, Bend with 

inf /Ix y II ~ 8 > 0 
xEA,yEB 

for some 8 > 0, and having the property that 

P{X E AIY = I} =P{X E BIY =O} = 1. 

In such cases, there is a version of 1] that has 1] (x ) = 1 on A and 1] (x ) = 0 on B. 
We say version because 1] is not defined on sets of measure zero. For such strictly 
separable distributions, L * = O. Let ij be 1/2 - E on Band 1/2 + E on A. Then, 
with 

{ 
0 if ij(x) :::: 1/2 {O if x E B 

g(x) = 1 otherwise, = 1 if x E A, 
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we have P{g(X) -=I Y} = L * = O. Yet, 

2Elry(X) -ry(X)1 = 1 - 2E 

is arbitrarily close to one. 
In a more realistic example, we consider the kernel rule (see Chapter 10), 

in which 

{ 
0 ifryn(x):::: 1/2 

gn (x) = 1 otherwise, 

where K is the standard normal density in nd
: 

K(u) = __ I_e- IIU \\2/2. 
(2n)d/2 

Assume that A and B consist of one point each, at distance 0 from each other-that 
is, the distribution of X is concentrated on two points. If P{Y = O} = P{Y = I} = 
1/2, we see that 

1 n K(O) + K(o) 
lim - L K(x - Xi) = with probability one 

11--+00 n i:::1 2 

at x E A U B, by the law of large numbers. Also, 

Thus, 

K(0)/2 
K(o)/2 

if x E A 
if x E B 

with probability one. 

lim ryn(x) = K(<jt(8~(8) 
{ 

K(O) if x E A 

if x E B 
with probability one. 

n--+oo K(O)+K(8) 

Hence, as ry(x) = Ion A and ry(x) = 0 on B, 

lim 2Elry(X) - ryn(X)1 
n--+oo 

= 
K(O) + K(8) 

Yet, L * = 0 and P{gn(X) -=I Y} ~ O. In fact, if Dn denotes the training data, 

lim P{gn(X) -=I YIDn} = L * with probability one, 
n--+oo 
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and 

{ I} 2K(8) 
}l~ 2E IlJn(X) - lJ(X)1 Dn = K(O) + K(8) with probability one. 

This shows very strongly that for any 8 > 0, for many practical classification rules, 
we do not need convergence of lJn to lJ at all! 

As all the consistency proofs in Chapters 6 through 11 rely on the convergence 
of lJn to lJ, we will create unnecessary conditions for some distributions, although it 
will always be possible to find distributions of (X, Y) for which the conditions are 
needed-in the latter sense, the conditions of these universal consistency results 
are not improvable. 

6.8 Smart Rules 

A rule is a sequence of mappings gn : Rd x (Rd X to, l}f -+ to, I}. Most rules 
are expected to perform better when n increases. So, we say that a rule is smart if 
for all distributions of (X, Y), E{L(gn)} is nonincreasing, where 

Some dumb rules are smart, such as the (useless) rule that, for each n, takes a 
majority over all Yi 's, ignoring the Xi'S. This follows from the fact that 

p { t(2Yi - 1) > 0, Y = 0 or t(2Yi - 1) :'0 0, Y = 1 } 

is monotone in n. This is a property of the binomial distribution (see Problem 
6.12). A histogram rule with a fixed partition is smart (Problem 6.13). The 1-
nearest neighbor rule is not smart. To see this, let (X, Y) be (0, 1) and (Z, 0) with 
probabilities p and 1 - p, respectively, where Z is uniform on [-1000, 1000]. 
Verify that for n = 1, ELn = 2p(1 - p), while for n = 2, 

2p(1- p)2 (~+ EIZI) + p2(1- p)+(1- p)2p 
2 4000 

(
5(1 - p) 1) 

= 2p(1 - p) 8 +"2' 

which is larger than 2p(l - p) whenever p E (0, 1/5). This shows that in all 
these cases it is better to have n = 1 than n = 2. Similarly, the standard kernel 
rule-discussed in Chapter 10-with fixed h is not smart (see Problems 6.14, 
6.15). 

The error probabilities of the above examples of smart rules do not change 
dramatically with n. However, change is necessary to guarantee Bayes risk consis­
tency. At the places of change-for example when hn jumps to a new value in the 
histogram rule-the monotonicity may be lost. This leads to the conjecture that 
no universally consistent rule can be smart. 
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Problems and Exercises 

PROBLEM 6.1. Let the i.i.d. random variables Xl, ... , Xn be distributed on Rd according 
to the density f. Estimate f by fn' a· function of x and Xl, ... , Xn, and assume that 
f I fn (x) - f (x) Idx -+ 0 in probability (or with probability one). Then show that there exists 
a consistent (or strongly consistent) classification rule whenever the conditional densities 
fa and fl exist. 

PROBLEM 6.2. HISTOGRAM DENSITY ESTIMATION. Let Xl, ... , Xn be i.i.d. random variables 
in Rd with density f. Let Pn be a partition of Rd into cubes of size hn' and define the 
histogram density estimate by 

where An (x) is the set in P n that contains x. Prove that the estimate is universally consistent 
in Ll if hn -+ 0 and nh~ -+ 00 as n -+ 00, that is, for any f the Ll error of the estimate 
f Ifn(x) - f(x)ldx converges to zero in probability, or equivalently, 

!l~ E {f Ifn(x) - f(X)ldX} = O. 

HINT: The following suggestions may be helpful 
(1) E {f Ifn - fl} :s E {f Ifn - Efnl} + f IEfn - fl. 
(2) E {f Itl - Efn I} = Lj 1f-i(Anj ) - f-in(Anj)l. 
(3) First show f IEfn - fl -+ 0 for uniformly continuous f, and then extend it to 

arbitrary densities. 

PROBLEM 6.3. Let X be uniformly distributed on [0, 1] with probability 1/2, and let X 
be atomic on the rationals with probability 1/2 (e.g., if the rationals are enumerated 
rl, r2, r3,"" then P{X = rd = I/2i +1

). Let Y = 1 if X is rational and Y = 0 if X is 
irrational. Give a direct proof of consistency of the I-nearest neighbor rule. HINT: Given 
Y = 1, the conditional distribution of X is discrete. Thus, for every E > 0, there is an 
integer k such that given Y = 1, X equals one of k rationals with probability at least I-E. 
Now, if n is large enough, every point in this set captures data points with label I with 
large probability. Also, for large n, the space between these points is filled with data points 
labeled with zeros. 

PROBLEM 6.4. Prove the consistency of the cubic histogram rule by checking the conditions 
of Stone's theorem. HINT: To check (i), first bound Wni(x) by 

Since 

n 

I{XiEAn(X)}/ L I{xjEAn(x)} + lin. 
j=l 

E {t ~f(Xi)} ~ Ef(X), 

it suffices to show that there is a constant c' > 0 such that for any nonnegative function f 
with Ef(X) < 00, 
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In doing so, you may need to use Lemma A.2 (i). To prove that condition (iii) holds, write 

and use Lemma A.2 (ii). 

PROBLEM 6.S. Let {an} be a sequence of positive numbers converging to zero. Give an exam­
ple of an a posteriori probability function 1], and a sequence of functions {1]n} approximating 
1] such that 

1
· . f P{gn(X) =I y} - L* 0 
1m In > , 
11-+00 anJE {(1]n(X) - 1] (X))2 } 

where 

gn(X) = { ~ if 1]n(X) :::: 1/2 
otherwise. 

Thus, the rate of convergence in Theorem 6.S may be arbitrarily slow. HINT: Define 1] = 
1/2 + hex), where hex) is a very slowly increasing nonnegative function. 

PROBLEM 6.6. Let 0 > 0, and assume that 11](x) - 1/21 ::: 0 for all x. Consider the decision 

Prove that 

if 1]n(x) :::: 1/2 
otherwise. 

P{gn(X) =I y} _ L * :::: 2E {(1]n(X~ - 1](X))2} . 

This shows that the rate of convergence implied by the inequality of Theorem 6.6 may be 
preserved for very general classes of distributions. 

PROBLEM 6.7. Assume that L * = 0, and consider the decision 

Show that for all 1 :::: p < 00, 

if 11n(X) :::: 1/2 
otherwise. 

HINT: Proceed as in the proof of Theorem 6.6, but use Holder's inequality. 

PROBLEM 6.8. Theorem 6.S cannot be generalized to the Ll error. In particular, show by 
example that it is not always true that 

EL -L* 
lim n = 0 

n---+oo E {111n(X) - 11(X)I} 

when E {/1]n(X) - 1](X)j} -+ 0 as 11 -+ 00 for some regression function estimate 11n. Thus, 
the inequality (Corollary 6.2) 

ELn - L * :::: 2E {11]n(X) - 11(X)I} 

cannot be universally improved. 
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PROBLEM 6.9. Let 1]' : Rd -+ [0, 1], and define g(x) = I{rl'(x»1/2j. Assume that the random 
variable X satisfies that P{1]'(X) = 1/2} = 0. Let 1]1, 1]2, ... be a sequence of functions such 
that E{j1l(X) - 1]n(X)I} -+ ° as n -+ 00. Prove that L(gn) -+ L(g) for all distributions of 
(X, y) satisfying the condition on X above,where gn(x) = I{lln(X»lj2} (Lugosi (1992)). 

PROBLEM 6.10. A LYING TEACHER. Sometimes the training labels Yj, ... , Yn are not avail­
able, but can only be observed through a noisy binary channel. Still, we want to decide on 
Y. Consider the following model. Assume that the Yi ' s in the training data are replaced by 
the i.i.d. binary-valued random variables Zi, whose distribution is given by 

P{Zi = llYi = 0, Xi = x} 

P{Zi = OIYi = 1, Xi = x} 

Consider the decision 

g(x) = { ~ 
where 1]'(x) = P{ZI = I\XI = x}. Show that 

P{Zi = llYi = O} = p < 1/2, 

P{Zi = 0IYi = I} = q < 1/2. 

if 1]'(x) :s 1/2 
otherwise, 

P{g(X) =I Y} :s L * (1 + 21p - q I ) . 
1 - 2max(p, q) 

Use Problem 6.9 to conclude that if the binary channel is symmetric (i.e., p = q < 1/2), 
and P {1]' (X) = 1/2} = 0, then L I-consistent estimation leads to a consistent rule, in spite 
of the fact that the labels Yi were not available in the training sequence (Lugosi (1992)). 

PROBLEM 6.11. Develop a discrimination rule which has the property 

lim ELn = p = E {J1](X)(1 - 1](X))} , 
n-+oo 

for all distributions such that X has a density. Note: clearly, since p ::::: L *, this rule is not 
universally consistent, but it will aid you in "visualizing" the Matushita error! 

PROBLEM 6.12. If Zn is binomial (n, p) and Z is Bernoulli (p), independent of Zn, then 
show that P{Zn > n12, Z = O} + P{Zn :s n12, Z = 1} is nonincreasing in n. 

PROBLEM 6.13. Let gn be the histogram rule based on a fixed partition P. Show that gn is 
smart. 

PROBLEM 6.14. Show that the kernel rule with gaussian kernel and h = 1, d = 1, is not 
smart (kernel rules are discussed in Chapter 10). HINT: Consider n = 1 and n = 2 only. 

PROBLEM 6.15. Show that the kernel rule on R, with K(x) = I[-l,lj(X), and h t 0, such 
that nh -+ 00, is not smart. 

PROBLEM 6.16. Conjecture: no universally consistent rule is smart. 

PROBLEM 6.17. A rule gn : Rd x (Rd X {O, l} r is called symmetric if gn (x, Dn) 
gn (x, D~) for every x, and every training sequence Dn , where D~ is an arbitrary permutation 
of the pairs (Xi, Yi ) in Dn. Any nonsymmetric rule gn may be symmetrized by taking a ma­
jority vote at every x E Rd over all gn(x, D~), obtained by then! permutations of Dn. It may 
intuitively be expected that symmetrized rules perform better. Prove that this is false, that is, 
exhibit a distribution and a nonsymmetric classifier gn such that its expected probability of 
error is smaller than that of the symmetrized version of gn' HINT: Take g3(X, D3) = 1 - Y1. 





7 

Slow Rates of Convergence 

In this chapter we consider the general pattern recognition problem: Given the 
observation X and the training data Dn = ((Xl, YI ), ... , (Xn, Yn» of indepen­
dent identically distributed random variable pairs, we estimate the label Y by the 
decision 

The error probability is 

Obviously, the average error probability ELn = P{Y =I gn(X)} is completely 
determined by the distribution of the pair (X, Y), and the classifier gn' We have 
seen in Chapter 6 that there exist classification rules such as the cubic histogram 
rule with properly chosen cube sizes such that limn---+ oo ELn = L * for all possible 
distributions. The next question is whether there are classification rules with ELn 
tending to the Bayes risk at a specified rate for all distributions. Disappointingly, 
such rules do not exist. 

7.1 Finite Training Sequence 

The first negative result shows that for any classification rule and for any fixed n, 
there exists a distribution such that the difference between the error probability of 
the rule and L * is larger than 1/4. To explain this, note that for fixed n, we can 
find a sufficiently complex distribution for which the sample size n is hopelessly 
small. 
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Theorem 7.1. (DEVROYE (1982B)). Let E > ° be an arbitrarily small number. 
For any integer n and classification rule gn, there exists a distribution of (X, Y) 
with Bayes risk L * = ° such that 

ELn:::: 1/2 - E. 

PROOF. First we construct a family of distributions of (X, Y). Then we show that 
the error probability of any classifier is large for at least one member of the family. 
For every member of the family, X is uniformly distributed on the set {I, 2, ... , K} 
of positive integers 

. = P{X = i} = { 1/ K if i E {.1, ... , K} 
PI ° otherwIse, 

where K is a large integer specified later. Now, the family of distributions of (X, Y) 
is parameterized by a number b E [0, 1), that is, every b determines a distribution 
as follows. Let b E [0, 1) have binary expansion b = 0.bob1b2 ... , and define 
Y = bx . As the label Y is a function of X, there exists a perfect decision, and thus 
L * = 0. We show that for any decision rule gn there is a b such that if Y = bx , then 
gn has very poor performance. Denote the average error probability corresponding 
to the distribution determined by b, by Rn(b) = ELn. 

The proof of the existence of a bad distribution is based on the so-called prob­
abilistic method. Here the key trick is the randomization of b. Define a random 
variable B which is uniformly distributed in [0, 1) and independent of X and 
Xl, ... , X n . Then we may compute the expected value of the random variable 
Rn(B). Since for any decision rule gn, 

sup Rn(b):::: E{Rn(B)}, 
bE[O,I) 

a lower bound for E{Rn(B)} proves the existence of abE [0, 1) whose corre­
sponding error probability exceeds the lower bound. 

Since B is uniformly distributed in [0, 1), its binary extension B = 0.BIB2'" 
is a sequence of independent binary random variables with P{Bi = O} = P{Bi = 
I} = 1/2. But 

E{Rn(B)} 

= P {gn(X, Dn) =I Bx} 

P {gn(X, Xl, BXl , .. , , Xn, Bx,J =I Bx} 

= E {p {gn(X, Xl, Bx !' •.. , X n , Bx,J =I Bx \ X, Xl,"" Xn}} 

1 
> 2P {X =I Xl, X =I X 2,.·., X =I Xn}, 

since if X =I Xi for all i = 1,2, ... , n, then given X, Xl, "" Xn , Y = Bx is 
conditionally independent of gn(X, Dn) and Y takes values ° and 1 with probability 
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1/2. But clearly, 

P{X i Xl, X i X 2 , .. ·, X i Xnl X} = P{X i XIIX}n = (1- I/Kt. 

In summary, 
1 

sup Rn(b):::: -(1 - 1/ Kt. 
hE[O,l) 2 

The lower bound tends to 1/2 as K -+ 00. D 

Theorem 7.1 states that even though we have rules that are universally consistent, 
that is, they asymptotically provide the optimal performance for any distribution, 
their finite sample performance is always extremely bad for some distributions. 
This means that no classifier guarantees that with a sample size of (say) n = 108 

we get within 1/4 of the Bayes error probability for all distributions. However, as 
the bad distribution depends upon n, Theorem 7.1 does not allow us to conclude 
that there is one distribution for which the error probability is more than L * + 1/4 
for all n. Indeed, that would contradict the very existence of universally consistent 
rules. 

7.2 Slow Rates 

The next question is whether a certain universal rate of convergence to L * is 
achievable for some classifier. For example, Theorem 7.1 does not exclude the 
existence of a classifier such that for every n, ELn - L * :::: c / n for all distributions, 
for some constant c depending upon the actual distribution. The next negative result 
is that this cannot be the case. Theorem 7.2 below states that the error probability 
ELn of any classifier is larger than (say) L * + c/(log log log n) for every n for 
some distribution, even if c depends on the distribution. (This can be seen by 
considering that by Theorem 7.2, there exists a distribution of (X, Y) such that 
ELn :::: L * + 1/ -/log log log n for every n.) Moreover, there is no sequence of 
numbers an converging to zero such that there is a classification rule with error 
probability below L * plus an for all distributions. 

Thus, in practice, no classifier assures us that its error probability is close to 
L *, unless the actual distribution is known to be a member of a restricted class of 
distributions. Now, it is easily seen that in the proof of both theorems we could take 
X to have uniform distribution on [0, 1], or any other density (see Problem 7.2). 
Therefore, putting restrictions on the distribution of X alone does not suffice to 
obtain rate-of-convergence results. For such results, one needs conditions on the a 
posteriori probability 17 (x ) as well. However, if only training data give information 
about the joint distribution, then theorems with extra conditions on the distribution 
have little practical value, as it is impossible to detect whether, for example, the 
a posteriori probability 1J(x) is twice differentiable or not. 

Now, the situation may look hopeless, but this is not so. Simply put, the Bayes 
error is too difficult a target to shoot at. 
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Weaker versions of Theorem 7.2 appeared earlier in the literature. First Cover 
(1968b) showed that for any sequence of classification rules, for sequences {an} 
converging to zero at arbitrarily slow algebraic rates (i.e., as 11no for arbitrarily 
small 8 > 0), there exists a distribution such that ELn ::: L * + an infinitely often. 
Devroye (1982b) strengthened Cover's result allowing sequences tending to zero 
arbitrarily slowly. The next result asserts that ELn > L * + an for every n. 

Theorem 7.2. Let {an} be a sequence of positive numbers converging to zero with 
1 116 ::: a I ::: a2 ::: .... For every sequence of classification rules, there exists a 
distribution of (X, Y) with L * = 0, such that 

for all n. 

This result shows that universally good classification rules do not exist. Rate 
of convergence studies for particular rules must necessarily be accompanied by 
conditions on (X, Y). That these conditions too are necessarily restrictive follows 
from examples suggested in Problem 7.2. Under certain regularity conditions it is 
possible to obtain upper bounds for the rates of convergence for the probability of 
error of certain rules to L *. Then it is natural to ask what the fastest achievable rate 
is for the given class of distributions. A theory for regression function estimation 
was worked out by Stone (1982). Related results for classification were obtained 
by Marron (1983). In the proof of Theorem 7.2 we will need the following simple 
lemma: 

Lemma 7.1. For any monotone decreasing sequence {an} of positive numbers 
converging to zero with al ~ 1/16, a probability distribution (PI, P2, ... ) may be 
found such that PI ::: P2 ::: ... , and for all n 

00 

L Pi ::: max (San, 32npn+I). 
i=n+1 

PROOF. It suffices to look for Pi's such that 

00 

L Pi ::: max (8an, 32npn) . 
i=n+1 

These conditions are easily satisfied. For positive integers u < v, define the func­
tion H ( v, u) = L~:l 1 Ii. First we find a sequence 1 = n 1 < n2 < ... of integers 
with the following properties: 

(a) H(nk+l, nk) is monotonically increasing, 

(b) H(n2, nr) ::: 32, 

(c) 8ank ~ 1/2k for all k ::: 1. 
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Note that (c) may only be satisfied if anl = al ::s 1/16. To this end, define constants 
Cl, C2, ... by 

so that the Ck' S are decreasing in k, and 

For n E [nk, nk+l), we define Pn = ck/(32n). We claim that these numbers have 
the required properties. Indeed, {Pn} is decreasing, and 

Finally, if n E [nk, nk+l), then 

00 00 c. 00 1 1 
~ p' > ~ ~H(n' 1 n·) = ~ - = -
~ I - ~ 32 J+' J ~ 2j 2k . 

i=n+l j=k+l j=k+l 

Clearly, on the one hand, by the monotonicity of H(nk+l, nk), 1/2k :::: Ck = 32npn. 
On the other hand, 1/2k :::: 8ank :::: 8an. This concludes the proof. 0 

PROOF OF THEOREM 7.2. We introduce some notation. Let b = O.b l b2b3 ..• be 
a real number on [0, 1] with the shown binary expansion, and let B be a random 
variable uniformly distributed on [0, 1] with expansion B = O.BI B2B3 .... Let us 
restrict ourselves to a random variable X with 

P{X = i} = Pi, i:::: 1, 

where PI :::: P2 :::: ... > 0, and L~n+l Pi :::: max (8an, 32npn+l) for every n. That 
such Pi'S exist follows from Lemma 7.1. Set Y = bx . As Y is a function of X, 
we see that L * = 0. Each b E [0, 1) however describes a different distribution. 
With b replaced by B we have a random distribution. Introduce the short notation 
~n = ((Xl, BxJ, ... , (Xn , BxJ), and define G ni = gn(i, ~n).IfLn(B)denotesthe 

probabilityoferrorP{gn(X, ~n) =I YIB, Xl, ... , Xn} for the random distribution, 
then we note that we may write 

00 

Ln(B) = L pJ{Gni¥Bd' 
i=l 
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If Ln(b) is the probability of error for a distribution parametrized by b, then 

. Ln(b) 
supmfE--

b n 2an 

We consider only the conditional expectation for now. We have 

E {inf Ln(B) I Xl, X 2 , •.• } 
n 2an 

> P {o {Ln(B) ::: 2anll Xl, X2, ... } 

00 

> 1- LP{Ln(B) < 2an l Xl, X 2 , •.. } 

n=1 

00 

= 1 - LP {Ln(B) < 2an l Xl, X 2 , •.• , Xn} 
n=1 

00 

1 - L E {P { Ln (B) < 2an I ~n} I X I, X 2, ... , X n} . 
n:::1 

We bound the conditional probabilities inside the sum: 

P {Ln(B) < 2an l ~n} 

< P { L pJ{Glti=jB;) < 2an I ~n } 
i¢{Xl"",Xn) 

(and, noting that Gni , Xl, ... , Xn 

are all functions of ~n, we have:) 

= P { L PiI{Bi=l} < 2anl ~n} 
i¢{Xl, ... ,Xn} 

< P {.f Pi I{Bi=l) < 2an} 
l=n+1 

(since the Pi's are decreasing, by stochastic dominance) 

= P {.f PiBi < 2an}. 
l=n+1 
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Now everything boils down to bounding these probabilities from above. We pro­
ceed by Chernoff's bounding technique. The idea is the following: For any random 
variable X, and s > 0, by Markov's inequality, 

By cleverly choosing s one can often obtain very sharp bounds. For more discussion 
and examples of Chernoff's method, refer to Chapter 8. In our case, 

< 

< 

= 

< 

(since e-x :s 1 - x + x 2/2 for x 2: 0) 

(since 1 - x :s e-X
) 

( 
Sb S2 pn+1b ) 

exp 2san - 2 + 4 

(where b = L~n+l pJ 

( 
1_(4_an_-_b_)2) exp --
4 bPn+l 

(by taking s = L: -4~ , and the fact that b > 4an) 
Pn+lL... 

exp (-~~) (since b 2: 8an ) 
16 Pn+l 

< e-2n (since b 2: 32pn+ln). 

Thus, we conclude that 

LnCb) 00 e2 - 2 1 
supinfE-- > 1 - Le-2n = -- > -

b n 2an - n=l e2 - 1 2' 

so that there exists a b for which ELn(b) ;::: an for all n. 0 
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Problems and Exercises 

PROBLEM 7.1. Extend Theorem 7.2 for distributions with ° < L * < 1/2: show that if an is 
a sequence of positive numbers as in Theorem 7.2, then for any classification rule there is 
a distribution such that ELn - L * :::: an for every n for which L * + an < 1/2. 

PROBLEM 7.2. Prove Theorems 7.1 and 7.2, under one of the following additional assump­
tions, which make the case that one will need very restrictive conditions indeed to study 
rates of convergence. 

(1) X has a uniform density on (0, 1). 
(2) X has a uniform density on [0, 1) and 7J is infinitely many times continuously 

differentiable on [0, 1). 
(3) 7J is unimodal in x E n 2 , that is, 7J(AX) decreases as A > ° increases for any 

x E n2. 
(4) 7J is {O, l}-valued, X is n 2-valued, and the set {x : 7J(x) = I} is a compact convex 

set containing the origin. 

PROBLEM 7.3. THERE IS NO SUPER-CLASSIFIER. Show that for every sequence of classifica­
tion rules {gn} there is a universally consistent sequence of rules {g;l}' such that for some 
distribution of (X, Y), 

P{gn(X) =I Y} > P{g~(X) =I Y} 

for all n. 

PROBLEM 7.4. The next two exercises are intended to demonstrate that the weaponry of 
pattern recognition can often be successfully used for attacking other statistical problems. 
For example, a consequence of Theorem 7.2 is that estimating infinite discrete distributions is 
hard. Consider the problem of estimating a distribution (PI, P2, ... ) on the positive integers 
{l, 2, 3, ... } from a sample Xl, ... , Xn of i.i.d. random variables with P{X1 = i} = Pi, 
i :::: 1. Show that for any decreasing sequence {an} of positive numbers converging to zero 
with al :s 1/16, and any estimate {Pi,n}, there exists a distribution such that 

E {f IPi - pi,nl} :::: an' 
1=1 

HINT: Consider a classification problem with L * = 0, pry = O} = 1/2, and X concentrated 
on {I, 2, ... }. Assume that the class-conditional probabilities pia) = P{X = ilY = O} 
and pil) = P{X = ilY = I} are estimated from two i.i.d. samples xiOl, ... , X~O) and 
xill, ... , X~l), distributed according to {piOl} and {pil)}, respectively. Use Theorem 2.3 to 
show that for the classification rule obtained from these estimates in a natural way, 

therefore the lower bound of Theorem 7.2 can be applied. 

PROBLEM 7.5. A similar slow-rate result appears in density estimation. Consider the prob­
lem of estimating a density 1 on n, from an i.i.d. sample X I, ... , Xn having density 1. 
Show that for any decreasing sequence {an} of positive numbers converging to zero with 
a I :s 1/16, and any density estimate In, there exists a distribution such that 



Problems and Exercises 119 

E {f If(x) - fn(X)ldX} :::: an· 

This result was proved by Birge (1986) using a different-and in our view much more 
1· d ri+l f r i+1 

comp lcate -argument. HINT: Put Pi =Ji (x)dx and Pi,n = Ji fn(x)dx and apply 
Problem 7.4. 





8 
Error Estimation 

8.1 Error Counting 

Estimating the error probability Ln = P{gn (X) =I Y I Dn} of a classification function 
gn is of essential importance. The designer always wants to know what performance 
can be expected from a classifier. As the designer does not know the distribution 
of the data-otherwise there would not be any need to design a classifier-it is 
important to find error estimation methods that work well without any condition 
on the distribution of (X, Y). This motivates us to search for distribution-free 
performance bounds for error estimation methods. 

Suppose that we want to estimate the error probability of a classifier gn designed 
from the training sequence Dn = ((Xl, Yl ), ... , (Xn, Yn»). Assume first that a 
testing sequence 

Tm = ((Xn+l, Yn+l), ... , (Xn+m, Yn+m) 

is available, which is a sequence of i.i.d. pairs that are independent of (X, Y) and 
Dn, and that are distributed as (X, Y). An obvious way to estimate Ln is to count 
the number of errors that gn commits on Tm. The error-counting estimator Ln,m is 
defined by the relative frequency 

The estimator is clearly unbiased in the sense that 
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and the conditional distribution of mLn,m, given the training data Dn, is binomial 
with parameters m and Ln. This makes analysis easy, for properties of the binomial 
distribution are well known. One main tool in the analysis is Hoeffding's inequality, 
which we will use many many times throughout this book. 

8.2 Hoeffding's Inequality 

The following inequality was proved for binomial random variables by Chernoff 
(1952) and Okamoto (1958). The general format is due to Hoeffding (1963): 

Theorem 8.1. (HOEFFDING (1963)). Let Xl, ... , Xn be independent bounded 
random variables such that Xi falls in the interval [ai, bd with probability one. 
Denote their sum by Sn = L7=1 Xi. Thenfor any E > ° we have 

P{Sn - ESn :::: E} :s e-2E2/L7=1(bi-ad 

and 

The proof uses a simple auxiliary inequality: 

Lemma 8.1. Let X be a random variable with EX = 0, a :s X :s b. Then for 
s > 0, 

PROOF. Note that by convexity of the exponential function 

x-a b-x 
eSX < __ esb + __ esa for a :s x :s b. 

- b-a b-a 

Exploiting EX = 0, and introducing the notation p = -a/(b - a) we get 

b a __ esa _ __ esb 
b-a b-a 

= (1 - p + pes(b-a») e-ps(b-a) 

def e¢(u), 

where u = s(b - a), and ¢(u) = - pu + 10g(1 - p + peU
). But by straightforward 

calculation it is easy to see that the derivative of ¢ is 

,!.'(u) - - + P 
'P - P (1 ) u' p + - p e-

therefore ¢(o) = ¢' (0) = 0. Moreover, 

(1 ) -u 1 
¢//(u) = P - P e < _ 

(p + (1 - p)e-u )2 - 4 
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Thus, by Taylor series expansion with remainder, for some e E [0, u], 

PROOF OF THEOREM 8.1. The proof is based on Chernoff's bounding method 
(Chernoff (1952)): by Markov's inequality, for any nonnegative random variable 
X, and any E > 0, 

EX 
P{X::::E}:S-. 

E 

Therefore, if s is an arbitrary positive number, then for any random variable X, 

In Chernoff's method, we find an s > ° that minimizes the upper bound or makes 
the upper bound small. In our case, we have 

n 

= e-SE n E {es(Xi-EXi)} (by independence) 
i=l 

n 

< e-SE n es2
(b i -ai )2j8 (by Lemma 8.1) 

i=l 

= 
= 

The second inequality is proved analogouslo/. 0 

The two inequalities in Theorem 8.1 may be combined to get 

Now, we can apply this inequality to get a distribution-free performance bound for 
the counting error estimate: 

COROLLARY 8.1. For every E > 0, 
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The variance of the estimate can easily be computed using the fact that, condi­
tioned on the data Dn, mLn,m is binomially distributed: 

These are just the types of inequalities we want, for these are valid for any distri­
bution and data size, and the bounds do not even depend on gn' 

Consider a special case in which all the X/s take values on [-c, c] and have 
zero mean. Then Hoeffding's inequality states that 

P {Snl n > E} S e-nr:
2 

jC2c
2
). 

This bound, while useful for E larger than c 1 -Vii, ignores variance information. 
When Var{Xi } « c2 , it is indeed possible to outperform Hoeffding's inequality. 
In particular, we have: 

Theorem 8.2. (BENNETT (1962) AND BERNSTEIN (1946)). Let Xl, ... , Xn be 
independent real-valued random variables with zero mean, and assume that Xi ::; C 

with probability one. Let 
1 n 

(}2 = - LVar{Xd. 
n i=l 

Then, for any E > 0, 

(Bennett (1962)), and 

P {~ t Xi > E} ::; exp ( __ 2_nE_2 -) 
n i:::l 2(} + 2CE 13 

(Bernstein (1946)). 

The proofs are left as exercises (Problem 8.2). We note that Bernstein's inequality 
kicks in when E is larger than about max (() 1 -Vii, cl -Vii). It is typically better than 
Hoeffding's inequality when () « c. 

8.3 Error Estimation Without Testing Data 

A serious problem concerning the practical applicability of the estimate introduced 
above is that it requires a large, independent testing sequence. In practice, how­
ever, an additional sample is rarely available. One usually wants to incorporate 
all available (Xi, Yi) pairs in the decision function. In such cases, to estimate L n , 

we have to rely on the training data only_ There are well-known methods that we 
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will discuss later that are based on cross-validation (or leave-one-out) (Lunts and 
Brailovsky (1967); Stone (1974)); and holdout, resubstitution, rotation, smoothing, 
and bootstrapping (Efron (1979), (1983)), which may be employed to construct 
an empirical risk from the training sequence, thus obviating the need for a testing 
sequence. (See Kanal (1974), Cover and Wagner (1975), Toussaint (1974a), Glick 
(1978), Hand (1986), Jain, Dubes, and Chen (1987), and McLachlan (1992) for 
surveys, discussion, and empirical comparison.) 

Analysis of these methods, in general, is clearly a much harder problem, as ~n 
can depend on Dn in a rather complicated way. If we construct some estimator Ln 
from Dn , then it would be desirable to obtain distribution-free bounds on 

or on 
E {ILn - Lnl q

} 

for some q :::: 1. Conditional probabilities and expectations given Dn are mean­
ingless, since everything is a funS,Eion of Dn. Here, however, we have to be much 
more careful as we do not want Ln to be optimistically biased because the same 
data are used both for training and testing. 

Distribution-free bounds for the above quantities would be extremely helpful, 
as we usually do not know the distribution of (X, Y). While for some rules such 
estimates exist-we will exhibit several avenues in Chapters 22, 23, 24, 25, 26, 
and 3 I-it is disappointing that a single error estimation method cannot possibly 
work for all discrimination rules. It is therefore important to point out that we 
have to consider (gn, Ln) pairs-for every rule one or more error estimates must 
be found if possible, and vice versa, for every error estimate, its limitations have 
to be stated. Secondly, rules for which no good error estimates are known should 
be avoided. Luckily, most popular rules do not fall into this category. On the other 
hand, proven distribution-free performance guarantees are rarely available-see 
Chapters 23 and 24 for examples. 

8.4 Selecting Classifiers 

Probably the most important application of error estimation is in the selection of a 
classification function from a class C of functions. If a class C of classifiers is given, 
then it is tempting to pick the one that minimizes an estimate of the error probability 
over the class. A good method should pick a classifier with an error probability 
that is close to the minimal error probability in the class. Here we require much 
more than distribution-free performance bounds of the error estimator for each of 
the classifiers in the class. Problem 8.8 demonstrates that it is not sufficient to be 
able to estimate the error probability of all classifiers in the class. Intuitively, if 
we can estimate the error probability for the classifiers in C uniformly well, then 
the classification function that minimizes the estimated error probability is likely 
to have an error probability that is close to the best in the class. To certify this 
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intuition, consider the following situation: Let C be a class of classifiers, that is, a 
class of mappings of the form ¢ : n d -+ {O, I}. Assume that the error count 

/'<0- 1 n 

Ln(¢) = - " I{<p(x)¥y} n~ J J 

j=l 

is used to estimate the error probability L(¢) = P{¢(X) i Y} of each classifier 
¢ E C. Denote by ¢: the classifier that minimizes the estimated error probability 
over the class: 

Ln(¢~) ::; Ln(¢) for all ¢ E C. 

Then for the error probability 

of the selected rule we have: 

Lemma 8.2. (VAPNIK AND CHERVONENKIS (1974c); SEE ALSO DEVROYE (1988B). 

PROOF. 

L(¢~) - inf L(¢) ::; 2 sup ILn(¢) - L(¢)I, 
<pEC <pEC 

ILn(¢~) - L(¢:)I ::; sup ILn(¢) - L(¢)I· 
<pEC 

L(¢~) - L n(¢,:) + Ln(¢~) - inf L(¢) 
<p EC 

< L(¢~) - Ln(¢~) + sup ILn(¢) - L(¢)I 
<pEC 

< 2 sup ILn(¢) - L(¢)I. 
<pEC 

The second inequality is trivially true. 0 

We see that upper bounds for SUP<pEC ILn(¢) - L(¢)I provide us with upper bounds 
for two things simultaneously: 

(1) An upper bound for the suboptimality of ¢: within C, that is, a bound for 
L(¢,~) - inf<pEc L(¢). 

(2) An upper bound for the error ILn(¢:) - L(¢:)I committed when L n(¢:) is 
used to estimate the probability of error L(¢:) of the selected rule. 

In other words, by bounding SUP<pEC ILn(¢) - L(¢)I, we kill two flies at once. 

It is particularly useful to know that even though Ln (¢:) is usually optimistically 
biased, it is within given bounds of the unknown probability of error with ¢:' and 
that no other test sample is needed to estimate this probability of error. Whenever 
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our bounds indicate that we are close to the optimum in C, we must at the same 
time have a good estimate of the probability of error, and vice versa. 

As a simple, but interesting application of Lemma 8.2 we consider the case 
when the class C contains finitely many classifiers. 

Theorem 8.3. Assume that the cardinality oj C is bounded by N. Then we have 
for all E > 0, 

PROOF. 

P {sup ILn(¢) - L(¢)I > E} 
<pEC 

< LP{ILn(¢) - L(¢)I > E} 
<pEC 

< 2Ne-2nE2
, 

where we used Hoeffding' s inequality, and the fact that the random variable nLn (¢) 
is binomially distributed with parameters nand L( ¢). 0 

REMARK. DISTRIBUTION-FREE PROPERTIES. Theorem 8.3 shows that the problem 
studied here is purely combinatorial. The actual distribution of the data does not 
playa role at all in the upper bounds. 0 

REMARK. WITHOUT TESTING DATA. Very often, a class of rules C of the form ¢n (x) = 
¢n(x, Dn) is given, and the same data Dn are used to select a rule by minimizing 
some estimates Ln(¢n) of the error probabilities L(¢n) = P{¢n(X) =I YIDn}. A 
similar analysis can be carried out in this case. In particular, if ¢~ denotes the 
selected rule, then we have similar to Lemma 8.2: 

Theorem 8.4. 

and 

ILn(¢~) - L(¢~)I ~ sup ILn(¢n) - L(¢n)l. 
<Pn EC 

If C is finite, then again, similar to Theorem 8.3, we have for example 
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8.5 Estimating the Bayes Error 

It is also important to have a good estimate of the optimal error probability L * . First 
of all, if L * is large, we would know beforehand that any rule is going to perform 
poorly. Then perhaps the information might be used to return to the feature selection 
stage. Also, a comparison of estimates of Ln and L * gives us an idea how much 
room is left for improvement. Typically, L * is estimated by an estimate of the error 
probability of some consistent classification rule (see Fukunaga and Kessel (1971), 
Chen and Fu (1973), Fukunaga and Hummels (1987), and Garnett and Yau (1977». 
Clearly, if the estimate t1 we use is consistent in the sense that in - Ln -+ ° with 
probability one as n -+ 00, and the rule is strongly consistent, then 

in -+ L* 

with probability one. In other words, we have a consistent estimate of the Bayes 
error probability. There are two problems with this approach. The first problem is 
that if our purpose is comparing L * with L n , then using the same estimate for both 
of them does not ~ive any information. The other problem is that even though for 
many classifiers, Ln - Ln can be guaranteed to converge to zero rapidly, regardless 
what the distribution of (X, Y) is (see Ch~ters 23 and 24), in view of the results 
of Chapter 7, the rate of convergence of Ln to L * using such a method may be 
arbitrarily slow. Thus, we cannot expect good performance for all distributions 
from such a method. The question is whether it is possible to come up with a 
method of estimating L * such that the difference in - L * converges to zero rapidly 
for all distributions. Unfortunately, there is no method that guarantees a certain 
finite sample performance for all distributions. This disappointing fact is reflected 
in the following negative result: 

Theorem 8.5. For every n, for any estimate in of the Bayes error probability L *, 

and for every E > 0, there exists a distribution of ( X, Y), such that 

---- 1 
E {ILn - L*I} ::: 4 - E. 

PROOF. For a fixed n, we construct a family F of distributions, and show that for at 
least one member of the family, E { I in - L * I} ::: ~ - E. The family contains 2m + 1 
distributions, where m is a large integer specified later. In all cases, Xl, ... , Xn 
are drawn independently by a uniform distribution from the set {I, ... , m}. Let 
Bo, BI, B2, ... , Bn be i.i.d. Bernoulli random variables, independent of the Xi'S, 

with P{Bi = o} = P{Bi = I} = 1/2. For the first member of the family F, let 
Yi = Bi for i = 1, ... , n. Thus, for this distribution, L * = 1/2. The Bayes error for 
the other 2m members of the family is zero. These distributions are determined by 
m binary parameters aI, a2, '" ,am E {O, I} as follows: 

r;(i) = P{Y = 11X = i} = ai. 

In other words, Yi = a Xi for every i = 1, ... , n. Clearly, L * = ° for these distribu­
tions. Note also that all distributions with X distributed uniformly on {I, ... , m} 
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and L * = 0 are members of the family. Just as in the proofs of Theorems 7.1 and 
7.2, we randomize over the family F of distributions. However, the way of random­
ization is different here. The trick is to use Bo, B I , B2 , ... , Bn in randomly picking 
a distribution. (Recall that these random variables are just the labels Y I , ... , Yn in 
the training sequence for the first distribution in the family.) We choose a distribu­
tion randomly, as follows: If Bo = 0, then we choose the first member of F (the 
one with L * = 1/2). If Bo = 1, then the labels of the training sequence are given 
by 

if Xi =I Xl, Xi =I X 2 , ... , Xi =I X i - l 
if j < i is the smallest index such that Xi = X j . 

Note that in case of Bo = 1, for any fixed realization hI, ... , hn E {O, I} of 
B I, ... , Bn , the Bayes risk is zero. Therefore, the distribution is in the family F. 

Now, let A be the event that all the Xi'S are different. Observe that under A, Ln 
is a function of Xl, ... , Xn, B I , ... , Bn only, but not Bo. Therefore, 

sUPE{ILn - L*I} > E{ILn - L*I} 
:F 

(with Bo, B I , ... , Bn random) 

> E { I A I Ln - L * I } 

= E {fA (f[M) Ii. -~ 1+ I[B,"!) Ii. - 01) } 

E {lAHlin ~I + lin -Ol)} 
> E {fA ~} 

~P{A}. 
Now, if we pick m large enough, P{A} can be as close to 1 as desired. Hence, 

-- 1 
sup E { I Ln - L * I} :::: 4' 

where the supremum is taken over all distributions of (X, Y). 0 

Problems and Exercises 

..PROBLEM 8.1. Let B be a binomial random variable with parameters nand p. Show that 

P{B > E} :s eE-np-Elog(Ejnp) (E > np) 

and 
P{B < E} :s eE-np-Elog(Ejnp) (E < np) . 

(Chernoff (1952).) HINT: Proceed by Chernoff's bounding method. 
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PROBLEM 8.2. Prove the inequalities of Bennett and Bernstein given in Theorem 8.2. To 
help you, we will guide you through different stages: 

(1) Show that for any s > 0, and any random variable X with EX = 0, EX2 = (52, 
X ::Sc, 

where 

feu) = log (_l_ e - csu + _u_ ecs ) . 
l+u l+u 

(2) Show that ffl(u) ::s ° for u ~ 0. 
(3) By Chernoff's bounding method, show that 

(4) Show that feu) ::s f(O) + uf'(O) = (eCS 
- 1 - cs) u. 

(5) Using the bound of (4), find the optimal value of s and derive Bennett's inequality. 

PROBLEM 8.3. Use Bernstein's inequality to show that if B is a binomial (n, p) random 
variable, then for E > 0, 

and 

PROBLEM 8.4. LetX1, ••• , Xn be independent binary-valued random variables withP{Xi = 
I} = 1 - P{Xi = O} = Pi. Set P = (1ln) L~=l Pi and Sn = L~=l Xi' Prove that 

(Angluin and Valiant (1979), see also Hagerup and RUb (1990». Compare the results with 
Bernstein's inequality for this case. HINT: Put s = log(1 + E) and s = -log(1 - E) in the 
Chernoff bounding argument. Prove and exploit the elementary inequalities 

and 
E2 

-2 ~E-(1+E)log(1+E), E E(-l,O]. 

PROBLEM 8.5. Let B be a Binomial (n, p) random variable. Show that for P ::s a < 1, 

Show that for ° < a < P the same upper bounds hold for P{B ::s an} (Karp (1988), see 
also Hagerup and RUb (1990»). HINT: Use Chernoff's method with parameter s and set 
s = log(a(1 p)/(p(1 - a»). 
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PROBLEM 8.6. Let B be a Binomial (n, p) random variable. Show that if p 2: 1/2, 

and if p :s 1/2, 
n<2 

P{B - np :s -nE} < e- 2p(l-p) 

(Okamoto (1958)). HINT: Use Chernoff's method, and the inequality 

x 1 - x (x _ p)2 
X log - + (1 - x)log -- > ----

P 1 - p - 2p(1 - p) 

for 1/2 :s p :s x :s 1, and for 0 :s x :s p :s 1/2. 

PROBLEM 8.7. Let B be a Binomial (n, p) random variable. Prove that 

P{-JB - FP 2: Ey'n} < e-2nE2 , 

and 
P{-JB - FP :s -Ey'n} < e-nE2 

(Okamoto (1958)). HINT: Use Chernoff's method, and the inequalities 

x 1 -x 2 
X log - + (1 - x) log -- 2: 2 (v'x - y'p) x E [p, 1], 

p 1- p 

and 
x 1- x 2 

X log - + (1 - x) log -- 2: (v'x - y'p) x E [0, p], 
p 1- p 

PROBLEM 8.8. Give a class C of decision functions of the form ¢ : n d --+ {O, I} (i.e., the 
training data do not play any role in the decision) such that for every E > 0 

supP (l"Ln(¢) - L(¢)I > E} :s 2e-
2nE2 

<pEC 

for every distribution, where Ln (¢) is the error-counting estimate of the error probability 
L(¢) = P{¢(X) =I Y} of decision ¢, and at the same time, if Fn is the class of mappings ¢~ 
minimizing the error count Ln(¢) over the class C, then there exists one distribution such 
that 

P { sup L(¢) - inf L(¢) = 1} = 1 
<PEFn <pEC 

for all n. 

PROBLEM 8.9. Let C be a class of classifiers, that is, a class of mappings of the form 
¢n(x, Dn) = ¢n(x). Assume that an independent testing sequence Tm is given, and that 
the error count 

____ 1 m 

Ln,m(¢n) = - L I(¢n(Xn+j)=!YI1+j} 

m j=! 

is used to estimate the error probability L(¢n) = P{¢n(X) =I YIDn} of each classifier ¢n E C. 
Denote by ¢~,m the classifier that minimizes the estimated error probability over the class. 
Prove that for the error probability 
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of the selected rule we have 

Also, if C is of finite cardinality with lei = N, then 

PROBLEM 8.10. Show that if a rule gn is consistent, then we can always find an estimate of 
the error such that E{lin - Ln Iq} -+ 0 for all q > 0. HINT: Split the data sequence Dn and 
use the second half to estimate the error probability of grn/21' 

PROBLEM 8.11. OPEN-ENDED PROBLEM. Is there a rule for which no error estimate works for 
all distributions? More specifically, is there a sequence of classification rules gn such that 
for all n large enough, 

infsupE{(in - Lni}:::: c 
in X,Y 

for some constant c > 0, where the infimum is taken over all possible error estimates? Are 
such rules necessarily inconsistent? 

PROBLEM 8.12. Consider the problem of estimating the asymptotic probability of error of 
the nearest neighbor rule LNN = 2E{ 1]( X)( 1 - 1]( X»}. Show that for every n, for any estimate 
Ln of L NN , and for every E > 0, there exists a distribution of eX, y), such that 



9 
The Regular Histogram Rule 

In this chapter we study the cubic histogram rule. Recall that this rule partitions 
Rd into cubes of the same size, and gives the decision according to the number of 
zeros and ones among the Yi's such that the corresponding Xi falls in the same cube 
as X. Pn = {AnI, A n2 , ... } denotes a partition of Rd into cubes of size hn > 0, 
that is, into sets of the type n1=1 [kihn, (ki + l)hn), where the ki's are integers, and 
the histogram rule is defined by 

where for every x E Rd, An(x) = Ani if X E Ani. That is, the decision is zero if 
the number of ones does not exceed the number of zeros in the cell in which x 
falls. Weak universal consistency of this rule was shown in Chapter 6 under the 
conditions hn --+ 0 and nh~ --+ 00 as n --+ 00. The purpose of this chapter is to 
introduce some techniques by proving strong universal consistency of this rule. 
These techniques will prove very useful in handling other problems as well. First 
we introduce the method of bounded differences. 

9.1 The Method of Bounded Differences 

In this section we present a generalization of Hoeffding's inequality, due to 
McDiarmid (1989). The result will equip us with a powerful tool to handle com­
plicated functions of independent random variables. This inequality follows by 
results of Hoeffding (1963) and Azuma (1967) who observed that Theorem 8.1 
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can be generalized to bounded martingale difference sequences. The inequality has 
found many applications in combinatorics, as well as in nonparametric statistics 
(see McDiarmid (1989) and Devroye (1991a) for surveys). 

Let us first recall the notion of martingales. Consider a probability space (Q, F, P). 

DEFINITION 9.1. A sequence of random variables Z 1, Z2, ... is called a martingale 
if 

E {Zi+I1ZI, ... , Zd = Zi with probability one 

for each i > 0. 
Let Xl, X2, ... be an arbitrary sequence of random variables. Zl, Z2, ... is 

called a martingale with respect to the sequence Xl, X2 , ... iffor every i > 0, Zi 
is afunction of Xl, ... , Xi, and 

E{Zi+IIXI,"" Xd = Zi with probability one. 

Obviously, if Zl, Z2, ... is a martingale with respect to Xl, X2, ... , then Zl, 
Z2, ... is a martingale, since 

E {Zi+lIZ1, ... , Zd = E {E {Zi+lIXl' ... , Xd ZI,"" Zd 

= E{ZiIZl, ... ,Zi} 

The most important examples of martingales are sums of independent zero­
mean random variables. Let U1, U2, ... be independent random variables with 
zero mean. Then the random variables 

i 

Si = L Uj , i > 0, 
j=l 

form a martingale (see Problem 9.1). Martingales share many properties of sums 
of independent variables. Our purpose here is to extend Hoeffding's inequality 
to martingales. The role of the independent random variables is played here by a 
so-called martingale difference sequence. 

DEFINITION 9.2. A sequence of random variables VI, V2 , .•. is a martingale dif­
ference sequence if 

E {Vi+II VI, ... , Vi} = ° with probability one 

for every i > 0. 
A sequence of random variables VI, V2 , . • . is called a martingale difference 

sequence with respect to a sequence of random variables Xl, X 2 , ... iffor every 
i > ° Vi is a function of Xl, ... , Xi, and 

E {Vi+I IX1, ••• , Xd = ° with probability one. 
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Again, it is easily seen that if VI, V2 , ... is a martingale difference sequence with 
respect to a sequence Xl, X 2 , ••. of random variables, then it is a martingale dif­
ference sequence. Also, any martingale Zl, Z2, ... leads naturally to a martingale 
difference sequence by defining 

for i > O. 
The key result in the method of bounded differences is the following inequality 

that relaxes the independence assumption in Theorem 8.1, allowing martingale 
difference sequences: 

Theorem 9.1. (HOEFFDING (1963), AZUMA (1967». Let Xl, X 2 , .•• be a sequence 
of random variables, and assume that VI, V2 , . • . is a martingale difference se­
quence with respect to X I, X 2 , .... Assume furthermore that there exist random 
variables Z 1, Z2, ... and nonnegative constants C1, C2, ... such that for every i > 0 
Zi is afunction of Xl, ... , Xi-I, and 

Then for any E > 0 and n 

and 

The proof is a rather straightforward extension of that of Hoeffding' s inequality. 
First we need an analog of Lemma 8.1: 

Lemma 9.1. Assume that the random variables V and Z satisfy with probability 
one that E{ V I Z} = 0, and for some function f and constant c :::: 0 

feZ) ::s V ::s feZ) + c. 

Then for every s > 0 

The proof of the lemma is left as an exercise (Problem 9.2). 

PROOF OF THEOREM 9.1. As in the proof of Hoeffding' s inequality, we proceed by 
Chernoff's bounding method. Set Sk = I::=1 ~. Then for any s > 0 

P{S > } < e-sEE {eSSn } n_E 
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< 

= 

e-SE es2 L:7=1 ct /8 (iterate previous argument) 

-2 2/ "n 2 n 2 e E L-i=l Ci (choose s = 4E/ '\'. c.) Lz=l z' 

The second inequality is proved analogously. 0 

Now, we are ready to state the main inequality of this section. It is a large 
deviation-type inequality for functions of independent random variables such that 
the function is relatively robust to individual changes in the values of the random 
variables. The condition of the function requires that by changing the value of its 
i -th variable, the value of the function cannot change by more than a constant Ci. 

Theorem 9.2. (McDIARMID (1989». Let Xl,"" Xn be independent random va­
riables taking values in a set A, and assume that f : An -+ R satisfies 

sup If(Xl, ... , xn) - f(XI, ., ., Xi-I, X;, Xi+1, ... , xn)1 :s Ci , 1 :s i :s n . 
Xl,· .. ,Xn, 

x;EA 

Then for all E > 0 

P{f(X1 , .•. , Xn) - Ef(X1, .•. , Xn):::: E} :s e-2E2 /L:7=lCr , 

and 

P {Ef(X X) f(X X ) > } < -2E
2

/ L:7=1 cf 1, ... , n - 1, ... , n _ E _ e . 

PROOF. Define V = f(X 1, ... , Xn)-Ef(XI, ... , Xn). Introduce VI = E{VIXd­
EV, and for k > 1, 

so that V = L~=l Vk. Clearly, VI, ... , Vn form a martingale difference sequence 
with respect to Xl, ... , X n • Define the random variables 

and 

Vk = Hk(X I, ... , X k ) - f Hk(X 1,.·., X k- I , x)Fk(dx), 

where the integration is with respect to Fk , the probability measure of X k. Introduce 
the random variables 

Wk ~ s~p ( Hk(X I, •.. , Xk-I, u) - f Hk(X1 , ... , Xk-J, X)Fk(dX») , 

and 
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Clearly, Zk ::s Vk ::s Wk with probability one. Since for every k Zk is a function 
of Xl, ... , Xk-l, we can apply Theorem 9.1 directly to V = L:~=1 Vk, if we can 
show that Wk - Zk ::s Ck. But this follows from 

Wk - Zk = sup sup (Hk(XI , ... , Xk-I,U) - Hk(X I ,.··, Xk-l, v)) 
u 

by the condition of the theorem. 0 

Clearly, if the Xi'S are bounded, then the choice I(xl, ... , xn) = L:7=1 Xi yields 
Hoeffding's inequality. Many times the inequality can be used to handle very 
complicated functions of independent random variables with great elegance. For 
examples in nonparametric statistics, see Problems 9.3, 9.6, 10.3. 

Similar methods to those used in the proof of Theorem 9.2 may be used to bound 
the variance Var{f(X1, ... , Xn)}. Other inequalities for the variance of general 
functions of independent random variables were derived by Efron and Stein (1981) 
and Steele (1986). 

Theorem 9.3. (DEVROYE (1991A)). Assume that the conditions of Theorem 9.2 
hold. Then 

PROOF. Using the notations of the proof of Theorem 9.2, we have to show that 

1 n 

Var{V} ::s - z= cf-
4 i=l 

Observe that 

Var{V} = EV2 

= E {tV?}' 
1=1 

where in the last step we used the martingale property in the following way: for 
i < j we have 

= 0 with probability one. 
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Thus, the theorem follows if we can show that 

Introducing Wi and Zi as in the proof of Theorem 9.2, we see that with proba­
bility one Zi S Vi S Zi + Ci. Since Zi is a function of Xl, ... , Xi -1, therefore, 
conditioned on Xl, ... , Xi-I, ~ is a zero mean random variable taking values in 
the interval [Zi, Zi + cd. But an arbitrary random variable U taking values in an 
interval [a, b] has variance not exceeding 

so that 
2 cf 

E{Vi IXI ,· .. , Xi-d S 4' 
which concludes the proof. 0 

9.2 Strong Universal Consistency 

The purpose of this section is to prove strong universal consistency of the histogram 
rule. This is the first such result that we mention. Later we will prove the same 
property for other rules, too. The theorem, stated here for cubic partitions, is 
essentially due to Devroye and Gyorfi (1983). For more general sequences of 
partitions, see Problem 9.7. An alternative proof of the theorem based on the 
Vapnik-Chervonenkis inequality will be given later-see the remark following 
Theorem 17.2. 

Theorem 9.4. Assume that the sequence of partitions {Pn } satisfies the following 
two conditions as n ---+ 00: 

and 
nh~ ---+ 00. 

For any distribution of (X, Y), andfor every E > 0 there is an integer no such that 
for n > no, for the error probability Ln of the histogram rule 

P{Ln - L * > E} S 2e-nE2 
/32. 

Thus, the cubic histogram rule is strongly universally consistent. 

PROOF. Define 
,,~ y.] 

*() Lc=l c {XiEAn(X)} ry X = . 
n nfL(An(x» 
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Clearly, the decision based on 1J~, 

is just the histogram rule. Therefore, by Theorem 2.3, it suffices to prove that for 
n large enough, 

p {f Iry(x) - ry:(x)IJL(dx) > ~} :s e-n"132 , 

Decompose the difference as 

11J(x) -1J~(x)1 = EI1J(x) - 1J~(x)1 + (11J(X) - 1J~(x)1 - EI1J(x) - 1J~(x)I). (9.1) 

The convergence of the first term on the right-hand side implies weak consistency 
of the histogram rule. The technique we use to bound this term is similar to that 
which we already saw in the proof of Theorem 6.3. For completeness, we give 
the details here. However, new ideas have to appear in our handling of the second 
term. 

We begin with the first term. Since the set of continuous functions with bounded 
support is dense in L 1 (f.L), it is possible to find a continuous function of bounded 
support r(x) such that 

f 11J(x) - r(x)If.L(dx) < E/16. 

Note that r(x) is uniformly continuous. Introduce the function 

r*(x) = E {r(X)I{xEAn(X)}} . 
n f.L(An(x» 

Then we can further decompose the first term on the right-hand side of (9.1) as 

EI1J(x) - 1J~(x)1 

< 11J(x) - r(x)1 + Ir(x) - r,;(x) I 

+ Ir;(x) - E1J~(x)1 + EIE1J~(x) - 1J~(x)l. (9.2) 

We proceed term by term: 

FIRST TERM: The integral of 11J(x) - r(x)1 (with respect to f.L) is smaller than E/16 
by the definition of r(x). 

SECOND TERM: Using Fubini's theorem we have 

f Ir(x) - r;(x)If.L(dx) 

= L [Ir(x) - E {r(X)~{XEAjd I f.L(dx) 
AHi(Aj)¥O J Aj f.L( J) 
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As rex) is uniformly continuous, if hn is small enough, then !r(x) - r(y)! < E/16 
for every x, YEA for any cell A E Pn . Then the double integral in the above 
expression can be bounded from above as follows: 

L. L Ir(x) - r(y)llL(dx)lL(dy) ::: EIL
2
(A j )/16. 

} } 

Note that we used the condition hn -----+ 0 here. Summing over the cells we get 

f Ir(x) - rZ(x)llL(dx) ::: E/16. 

THIRD TERM: We have 

f !rZ(x) - E1]~(x)llL(dx) = L IE {r(X)I{xEA j } - Y I{xEA j }} I 
AjEPn 

A~" ILi r(x)J1Jdx) - Li 1)(x)/L(dx)I 
::: f Ir(x) - 1](x)llL(dx) < E/16. 

FOURTH TERM: Our aim is to show that for n large enough, 

E f IE1]~(x) - 1]~(x)llL(dx) < E/16. 

To this end, let S be an arbitrary large ball centered at the origin. Denote by mn 

the number of cells of the partition Pn that intersect S. Clearly, mn is proportional 
to 1/ h~ as hn -----+ O. Using the notation vn(A) = ~ L7==1 I{Yi=l,X;EA}, it is clear that 
vn(A) = fA 1]~(x)lL(dx). Now, we can write 

E f IE1]~(x) - 1]~(x)llL(dx) 

E ~ L, IE1)Z(x) - 1);(x)I/L(dx) 

= E L IEVn(An,j) - vn(An,j)1 
j 
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< E L IEvn(An,j) - vn(An,j)1 + 2tl(SC) 
j:An ,jnS-:j0 

(where SC denotes the complement of S) 

< L JE IEvn(An,j) - Vn(An,j)1
2 

+ 2tl(SC) 
j:An ,jns-:j0 

(by the Cauchy-Schwarz inequality) 

< mn _1 L J /L(An,j) + 2/L(S') 

mn j:An ,jns-:j0 n 

..1.. L" tl(An .) 
< mn mn J.An ,jns-:j0 ,J + 2tl(SC) 

n 

(by Jensen's inequality) 

< /'!f- + 2/L(S') 

< E/l6 

if n and the radius of S are large enough, since mn/n converges to zero by the 
condition nh~ -+ 00, and tl(SC) can be made arbitrarily small by choice of S. 

We have proved for the first term on the right-hand side of (9.1) that for n large 
enough, 

E f 11](x) - 1]~(x)ltl(dx) < E/4. 

Finally, we handle the second term on the right-hand side of (9.1) by obtaining 
an exponential bound for 

f 11](x) - 1]~(x)ltl(dx) - E f 11](x) - 1]~(x)ltl(dx) 

using Theorem 9.2. Fix the training data (Xl, Yl), ... , (Xn, Yn) E Rd X {a, 1}, and 
replace (Xi, Yi) by (X;, Yi) changing the value of 1]~(x) to 1]~i(X), Then 1J~(X)-1J~i(X) 
differs from zero only on An(Xi) and An(X;), and thus 

f 11](x) - 1]~(x)ltl(dx) - f 11](x) - 1]~i(x)ltl(dx) 

< f 11]~(x) - l]~/x)ltl(dx) 

< 
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So by Theorem 9.2, for sufficiently large n, 

p {f Iry(x) - ry~(x)IJL(dx) > ~ } 

< P {f Iry(x) - ry:(x)IJL(dx) - E f Iry(x) - ry:(x)IJL(dx) > ~ } 

< e-n£2 /32. 0 

REMARK. Strong universal consistency follows from the exponential bound on 
the probability P{Ln - L * > E} via the Borel-Cantelli lemma. The inequality in 
Theorem 9.4 may seem universal in nature. However, it is distribution-dependent 
in a surreptitious way because its range of validity, n ::::: no, depends heavily on 
E, hn , and the distribution. We know that distribution-free upper bounds could not 
exist anyway, in view of Theorem 7.2. 0 

Problems and Exercises 

PROBLEM 9.1. Let VI, V2 , ••• be independent random variables with zero mean. Show that 
the random variables Si = 2::~=1 Vj i > 0 form a martingale. 

PROBLEM 9.2. Prove Lemma 9.1. 

PROBLEM 9.3. Let Xl, ... , X n be real valued i.i.d. random variables with distribution func­
tion F (x), and corresponding empirical distribution function Fn (x) = ~ 2:::1 f{X;:9)' Denote 
the Kolmogorov-Smirnov statistic by 

Vn = sup IFn(x) - F(x)l· 
xER 

Use Theorem 9.2 to show that 

Compare this result with Theorem 12.9. (None of them implies the other.) 
Also, consider a class A of subsets of nd. Let Zl, ... , Zn be i.i.d. random variables in 

nd with common distribution P{Zl E A} = v(A), and consider the random variable 

Wn = sup IVn(A) - v(A)I, 
AEA 

where vnCA) = ~ 2::7=1 f{2;EA) denotes the standard empirical measure of A. Prove that 

Compare this result with Theorem 12.5, and note that this result is true even if seA, n) = 211 
for all n. 
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PROBLEM 9.4. THE LAZY HISTOGRAM RULE. Let Pn = {AnI, An2' ... } be a sequence of parti­
tions satisfying the conditions of the convergence Theorem 9.4. Define the lazy histogram 
rule as follows: 

gn(x) = Yj , X E Ani, 

where Xj is the minimum-index point among Xl, ... , Xn for which Xj E Ani. In other 
words, we ignore all but one point in each set of the partition. If Ln is the conditional 
probability of error for the lazy histogram rule, then show that for any distribution of 
(X, Y), 

lim sup ELn :s 2L *. 
n-+oo 

PROBLEM 9.5. Assume that Pn = P = {AI, ... , A k } is a fixed partition into k sets. Consider 
the lazy histogram rule defined in Problem 9.4 based on P. Show that for all distributions 
of (X, Y), limn-+ oo ELn exists and satisfies 

k 

lim ELn = ~ 2Pi(1 - Pi)p,(AJ, 
n-+oo L.... 

i=I 

where fL is the probability measure for X, and Pi = fA; 'f/(X)fL(dx)/fL(Ai). Show that the 
limit of the probability of error EL~ for the ordinary histogram rule is 

k 

lim EL~ = ~ min(pi, I - Pi )fL(Ai), 
n-+oo L.... 

i=I 

and show that 
lim ELn :s 2 lim EL~. 

n-+oo n-+oo 

PROBLEM 9.6. HISTOGRAM DENSITY ESTIMATION. Let Xl, ... , Xn be i.i.d. random variables 
in nd with density f. Let P be a partition of nd

, and define the histogram density estimate 
by 

1 n 

fn(x) = nA(A(x» ~ I{X;EA(x») , 

where A(x) is the set in P that contains x and A is the Lebesgue measure. Prove for the 
L 1 -error of the estimate that 

p {If If,l(X) - f(x)ldx - E f Ifn(x) - f(X)'dXI > E} :s 2e-
nE2

/2. 

(Devroye (1991a).) Conclude that weak L1-consistency of the estimate implies strong con­
sistency (Abou-Jaoude (1976a; 1976c), see also Problem 6.2). 

PROBLEM 9.7. GENERAL PARTITIONS. Extend the consistency result of Theorem 9.4 for se­
quences of general, not necessarily cubic partitions. Actually, cells of the partitions need not 
even be hyperrectangles. Assume that the sequence of partitions {Pn } satisfies the following 
two conditions. For every ball S centered at the origin 

lim. max (sup Ilx - YII) = 0 
n-+oo I:An;nSi0 x,yEAn; 

and 

lim ~I{i : Ani n S =/0}1 = O. 
n-+oo n 

Prove that the corresponding histogram classification rule is strongly universally consistent. 
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PROBLEM 9.8. Show that for cubic histograms the conditions of Problem 9.7 on the partition 
are equivalent to the conditions hn ---+ ° and nh~ ---+ 00, respectively. 

PROBLEM 9.9. LINEAR SCALING. Partition nd into congruent rectangles of the form 

where kl' ... ,kd are integers, and hI, ... ,hd > ° denote the size of the edges of the 
rectangles. Prove that the corresponding histogram rule is strongly universally consistent 
if hi ---+ ° for every i = 1, ... , d, and nh1h2 ••• hd ---+ 00 as n ---+ 00. HINT: This is a 
Corollary of Problem 9.7. 

PROBLEM 9.10. NONLINEAR SCALING. Let FI , ... , Fd : n ---+ n be invertible, strictly mono­
tone increasing functions. Consider the partition of nd , whose cells are rectangles of the 
form 

[FI-I(klhd, FI-I((kl + 1)h l ) x ... x [Fd-l(kdhd), F;;\(kd + l)hd». 
(See Problem 9.9.) Prove that the histogram rule corresponding to this partition is strongly 
universally consistent under the conditions of Problem 9.9. HINT: Use Problem 9.7. 

PROBLEM 9.11. NECESSARY AND SUFFICIENT CONDITIONS FOR THE BIAS. A sequence of par­
titions {Pn } is called {-[-approximating if for every measurable set A, for every E > 0, 
and for all sufficiently large n there is a set An E a(Pn), (a(P) denotes the a-algebra 
generated by cells of the partition P) such that {-[(AnL:.A) < E. Prove that the bias term 
f 17J(x) - E7J~(x)I{-[(dx) converges to zero for all distributions of (X, Y) if and only if the 
sequence of partitions {Pn } is {-[-approximating for every probability measure {-[ on nd 

(Abou-Jaoude (l976a». Conclude that the first condition of Problem 9.7 implies that {Pn } 

is {-[-approximating for every probability measure {-[ (Csiszar (1973». 

PROBLEM 9.12. NECESSARY AND SUFFICIENT CONDITIONS FOR THE VARIATION. Assume that 
for every probability measure fJ- on n d

, every measurable set A, every c > 0, and every 
E > 0, there is an N(E, c, A, {-[), such that for all n > N(E, c, A, {-[), 

L {-[(An,} n A) < E. 

} :p.,(An,j nA):Sc / n 

Prove that the variation term f IE7J~(x) -7J~(x)I{-[(dx) converges to zero for all distributions 
of eX, Y) if and only if the sequence of partitions {Pn } satisfies the condition above (Abou­
Jaoude (l976a». 

PROBLEM 9.13. The E-effective cardinality m(P, Ilv, A, E) of a partition with respect to the 
probability measure {-[, restricted to a set A is the minimum number of sets in P such that 
the union of the remaining sets intersected with A has {-[-measure less than E. Prove that the 
sequence of partitions {Pn } satisfies the condition of Problem 9.12 if and only if for every 
E > 0, 

1· m(Pn, {-[, A, E) ° 
1m = 

}1--HXJ n 
(Barron, Gyorfi, and van der Meulen (1992». 

PROBLEM 9.14. In n2 , partition the plane by taking three fixed points not on a line, x, Y 
and z. At each of these points, partition n 2 by considering k equal sectors of angle 2]'[/ k 
each. Sets in the histogram partition are obtained as intersections of cones. Is the induced 
histogram rule strongly universally consistent? If yes, state the conditions on k, and if no, 
provide a counterexample. 
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PROBLEM 9.15. Partition n2 into shells of size h each. The i-th shell contains all points at 
distance d E [(i - l)h, ih) from the origin. Let h -+ 0 and nh -+ 00 as n -+ 00. Consider 
the histogram rule. As n -+ 00, to what does ELn converge? 





10 
Kernel Rules 

Histogram rules have the somewhat undesirable property that the rule is less ac­
curate at borders of cells of the partition than in the middle of cells. Looked at 
intuitively, this is because points near the border of a cell should have less weight 
in a decision regarding the cell's center. To remedy this problem, one might in­
troduce the moving window rule, which is smoother than the histogram rule. This 
classifier simply takes the data points within a certain distance of the point to be 
classified, and decides according to majority vote. Working formally, let h be a 
positive number. Then the moving window rule is defined as 

gn(X) = { 0 if 2:7=1 I{yi=o,xiESx,h} ~ 2:7=1 I{Yi =l,Xi ESx,h} 

otherwise, 

where Sx,h denotes the closed ball of radius h centered at x. 
It is possible to make the decision even smoother by giving more weight to 

closer points than to more distant ones. Let K : Rd ~ R be a kernel junction, 
which is usually nonnegative and monotone decreasing along rays starting from 
the origin. The kernel classification rule is given by 

gn(X) = { 0 
'f~n I K (X-Xi) ~n I K (X-Xi) 1 L..,i=l {Yi=O} -h- ~ L..,i=l {Yi=l} -h-

otherwise. 



148 10. Kernel Rules 

G 
o Class 0 
• Class 1 

FIGURE 10.1. The moving win­

dow rule in n2. The decision is 

1 in the shaded area. 

The number h is called the smoothing factor, or bandwidth. It provides some form 
of distance weighting. 

FIGURE 10.2. Kernel rule on 

the real line. The figure shows 

:L7=1(2Yi -l)K((x - Xi)! h)for 

n = 20, K(u) = (1 - u2 )I{lul::::l} 

(the Epanechnikov kernel), and 

three smoothing factors h. One 

definitely undersmooths and one 

oversmooths. We took p = 1/2, 

and the class-cconditional densi­

ties are fo(x) = 2(1 - x) and 

flex) = 2x on [0,1]. 

Clearly, the kernel rule is a generalization of the moving window rule, since taking 
the special kernel K (x) = I{xESo,d yields the moving window rule. This kernel 
is sometimes called the naive kernel. Other popular kernels include the Gaus­
sian kernel, K(x) = e- lIxIl2 ; the Cauchy kernel, K(x) = 1/(1 + IIxll d+l ); and the 
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Epanechnikov kernel K(x) = (1 - IlxI12)I{lIxll:::1}. where II . II denotes Euclidean 
distance. 

gaussian kernel Cauchy kernel Epanechnikov kernel uniform kernel 

/\0' /\,xLD 
o 0 -1 0 1 -1 0 1 

FIGURE 10.3. Various kernels on R. 

Kernel-based rules are derived from the kernel estimate in density estimation 
originally studied by Parzen (1962), Rosenblatt (1956), Akaike (1954), and Ca­
coullos (1965) (see Problems 10.2 and 10.3); and in regression estimation, in­
troduced by Nadaraya (1964; 1970), and Watson (1964). For particular choices 
of K, rules of this sort have been proposed by Fix and Hodges (1951; 1952), 
Sebestyen (1962), Van Ryzin (1966), and Meisel (1969). Statistical analysis of 
these rules and/or the corresponding regression function estimate can be found in 
Nadaraya (1964; 1970), Rejto and Revesz (1973), Devroye and Wagner (1976b; 
1980a; 1980b), Greblicki (1974; 1978b; 1978a), Krzyzak and Pawlak (1984b), 
and Devroye and Krzyzak (1989). Usage of Cauchy kernels in discrimination is 
investigated by Arkadjew and Braverman (1966), Hand (1981), and Coomans and 
Broeckaert (1986). 

10.1 Consistency 

In this section we demonstrate strong universal consistency of kernel-based rules 
under general conditions on hand K. Let h > 0 be a smoothing factor depending 
only on n, and let K be a kernel function. If the conditional densities fo, !I exist, 
then weak and strong consistency follow from Problems 10.2 and 10.3, respec­
tively, via Problem 2.11. We state the universal consistency theorem for a large 
class of kernel functions, namely, for all regular kernels. 

DEFINITION 10.1. The kernel K is called regular if it is nonnegative, and there is 
a ball SO,r of radius r > 0 centered at the origin, and constant b > 0 such that 

K(x) ~ bIsO,r and f SUPyEX+SO,r K(y)dx < 00. 

We provide three informative exercises on regular kernels (Problems 10.18, 
10.19, 10.20). In all cases, regular kernels are bounded and integrable. The last 
condition holds whenever K is integrable and uniformly continuous. Introduce 
the short notation Kh(X) = kK(v. The next theorem states strong universal con­
sistency of kernel rules. The theorem is essentially due to Devroye and Krzyzak 
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(1989). Under the assumption that X has a density, it was proven by Devroye and 
Gyorfi (1985) and Zhao (1989). 

Theorem 10.1. (DEVROYE AND KRzYZAK (1989)). Assume that K is a regular 
kernel.lf 

h ~ 0 and nhd ~ 00 as n ~ 00, 

thenfor any distribution of (X, Y), andfor every E > 0 there is an integer no such 
that for n > no for the error probability Ln of the kernel rule 

P{Ln - L * > E} .::s 2e-nE2/(32p2), 

where the constant p depends on the kernel K and the dimension only. Thus, the 
kernel rule is strongly universally consistent. 

Clearly, naive kernels are regular, and moving window rules are thus strongly 
universally consistent. For the sake of readability, we give the proof for this special 
case only, and leave the extension to regular kernels to the reader-see Problems 
10.14, 10.15, and 10.16. Before we embark on the proof in the next section, we 
should warn the reader that Theorem 10.1 is of no help whatsoever regarding the 
choice of K or h. One possible solution is to derive explicit upper bounds for the 
probability of error as a function of descriptors of the distribution of (X, Y), and 
of K, nand h. Minimizing such bounds with respect to K and h will lead to some 
expedient choices. Typically, such bounds would be based upon the inequality 

ELn - L* 

:" E {f 1(1 - p)!o(x) - PnO!no(x)ldx + f Ip!l(x) - PnJinl(x)ldx } 

(see Chapter 6), where fo, f1 are the class densities, fno, fn1 are their kernel esti­
mates (see Problem 10.2) (1 - p) and p are the class probabilities, and PnO, Pnl 

are their relative-frequency estimates. Bounds for the expected L1-error in den­
sity estimation may be found in Devroye (1987) for d = 1 and Holmstrom and 
KlemeHi (1992) for d > 1. Under regularity conditions on the distribution, the 
choice h = cn-d /(d+4) for some constant is asymptotically optimal in density es­
timation. However, c depends upon unknown distributional parameters. Rather 
than following this roundabout process, we ask the reader to be patient and to 
wait until Chapter 25, where we study automatic kernel rules, i.e., rules in which 
h, and sometimes K as well, is picked by the data without intervention from the 
statistician. 

It is still too early to say meaningful things about the choice of a kernel. The 
kernel density estimate 

fn(x) = n~d ~? C ~ Xi) 
based upon an i.i.d. sample Xl, ... ,Xn drawn from an unknown density f is 
clearly a density in its own right if K :::: 0 and J K = 1. Also, there are certain 
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popular choices of K that are based upon various optimality criteria. In pattern 
recognition, the story is much more confused, as there is no compelling a priori 
reason to pick a function K that is nonnegative or integrable. Let us make a few 
points with the trivial case n = 1. T$ing h = 1, the kernel rule is given by 

(X)={ 0 ifYI =O,K(x-XI )::::OorifYI =I,K(x-Xd::::;O 
gi 1 otherwise. 

If K :::: 0, then gn(x) = 0 if YI = 0, or if YI = 1 and K(x - Xd = O. As we would 
obviously like gn(x) = 0 if and only if Y1 = 0, it seems necessary to insist on 
K > 0 everywhere. However, this restriction makes the kernel estimate nonlocal 
in nature. 

For n = 1 and d = 1, consider next a negative-valued kernel such as the Hermite 
kernel 

FIGURE 10.4. Hermite kernel. 

It is easy to verify that K (x) :::: 0 if and only if I x I ::::; 1. Also, J K = O. Nevertheless, 
we note that it yields a simple rule: 

(x) = {O if Y I = 0, Ix - XII ::::; 1 or if YI = I, Ix - XII :::: 1 
gl 1 otherwise. 

If we have a biatomic distribution for X, with equally likely atoms at 0 and 2, and 
1](0) = 0 and 1](2) = 1 (i.e., Y = 0 if X = 0 and Y = 1 if X = 2), then L * = 0 
and the probability of error for this kernel rule (L I ) is 0 as well. Note also that 
for all n, gn = gi if we keep the same K. Consider now any positive kernel in the 
same example. If Xl, ... , Xn are all zero, then the decision is gn(X) = 0 for all x. 
Hence Ln :::: ip{Xl = ... = Xn} = Ij2n+l > O. Our negative zero-integral kernel 
is strictly better for all n than any positive kernel! Such kernels should not be 
discarded without further thought. In density estimation, negative-valued kernels 
are used to reduce the bias under some smoothness conditions. Here, as shown 
above, there is an additional reason-negative weights given to points far away 
from the Xi'S may actually be beneficial. 

Staying with the same example, if K > 0 everywhere, then 

ELI = P{Y1 = 0, Y = I} + P{Y1 = 1, Y = O} = 2E1](X)E{1 - 1](X)}, 

which maybe Ij2(ifE1](X) = Ij2)evenifL* = o (which happens when 1] E {O, I} 
everywhere). For this particular example, we would have obtained the same result 
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even if K == 1 everywhere. With K == 1, we simply ignore the Xi'S and take a 
majority vote among the Yi'S (with K == -1, it would be a minority vote!): 

(x) = {o if L:7==1 I{yi==o} ~ L:7==1 I{Yi==l} 
gn 1 otherwise. 

Let Nn be the number of Yi'S equal to zero. As Nn is binomial (n, 1 - p) with 
p = E17(X) = P{Y = I}, we see that 

ELn = pP {Nn ~ ~} + (1 - p)P {Nn < ~} -+ min(p, 1 - p), 

simply by invoking the law of large numbers. Thus, ELn -+ min(p, 1 - p). As 
in the case with n = 1, the limit is 1/2 when p = 1/2, even though L * = ° when 
1] E {a, I} everywhere. It is interesting to note the following though: 

ELI = 2p(1 - p) 

= 2 min(p, 1 - p) (1 - min(p, 1 - p» 

< 2min(p, 1 - p) 

= 2 lim ELno 
n-+oo 

The expected error with one observation is at most twice as bad as the expected 
error with an infinite sequence. We have seen various versions of this inequality 
at work in many instances such as the nearest neighbor rule. 

Let us apply the inequality for EL 1 to each part in a fixed partition P of Rd. On 
each of the k sets AI, ... , Ak ofP, we apply a simple majority vote among the Yi's, 

as in the histogram rule. If we define the lazy histogram rule as the one in which 
in each set Ai, we assign the class according to the Yj for which X j E Ai and j is 
the lowest such index ("the first point to fall in A/'). It is clear (see Problems 9.4 
and 9.5) that 

lim ELLAZy,n < 2 lim ELn 
n-+oo n-+oo 

= 2 t /L(~i) L ry(x)/L(dx) 1,0 -ry(x))/L(dx), 

where Ln is the probability of error for the ordinary histogram rule. Again, the 
vast majority of observations is barely needed to reach a good decision. 

Just for fun, let us return to a majority vote rule, now applied to the first three 
observations only. With p = P {Y = I}, we see that 

EL3 = p ((1- p)3 + 3(1- pfp) + (1- p) (3(1- p)p2 + p3) 

by just writing down binomial probabilities. Observe that 

EL3 = p(1 - p) (1 + 4p(1 - p» 

< min(p, 1- p)(l +4min(p, 1 p» 

= lim ELn (1 + 4 lim 4ELn) . 
n-+oo n-+oo 
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If limn--+ oo ELn is small to start with, e.g., limn--+oo ELn = 0.01, then EL3 :::: 
0.01 x 1.04 = 0.0104. In such cases, it just does not pay to take more than three 
observations. 

Kernels with fixed smoothing factors have no local sensitivity and, except in 
some circumstances, have probabilities of error that do not converge to L *. The uni­
versal consistency theorem makes a strong case for decreasing smoothing factors­
there is no hope in general of approaching L * unless decisions are asymptotically 
local. 

The consistency theorem describes kernel rules with h -+ 0: these rules become 
more and more local in nature as n -+ 00. The necessity oflocal rules is not appar­
ent from the previous biatomic example. However, it is clear that if we consider a 
distribution in which given Y = 0, X is uniform on {8, 38, ... , (2k + 1)8}, and given 
Y = 1, X is uniform on {28, 48, ... , 2k8}, that is, with the two classes intimately 
interwoven, a kernel rule with K ::: 0 of compact support [ -1, 1], and h < 8 < 1 
will have 

Ln :::: I {U~!dNi=O} } , 

where Ni is the number of X/s at the i-th atom. Hence ELn goes to zero expo­
nentially fast. If in the above example we assign X by a geometric distribution on 
8,83 ,85 , ... when Y = 0, and by a geometric distribution on 82 ,84 ,86 , ... when 
Y = 1, then to obtain ELn -+ 0, it is necessary that h -+ 0 (see Problem 10.1). 

REMARK. It is worthwhile to investigate what happens for negative-valued kernels 
K when h -+ 0, nhd -+ 00 and K has compact support. Every decision becomes 
an average over many local decisions. If fJ has a density f, then at almost all points 
x, f may be approximated very nicely by fSx8 f/'A(Sx,o) for small 8 > 0, where 
S x,o is the closed ball of radius 8 about x. This implies, roughly speaking, that the 
number of weighted votes from class 0 observations in a neighborhood of x is about 
(1 1](x»f(x)nhd f K, while for class 1 the weight is about 1](x)f(x)nhd f K. 
The correct decision is nearly always made for nhd large enough provided that 
J K > O. See Problem 10.4 on why kernels with J K < 0 should be avoided. 0 

10.2 Proof of the Consistency Theorem 

In the proof we can proceed as for the histogram. The crucial difference is captured 
in the following covering lemmas. Let f3d denote the minimum number of balls of 
radius 1/2 that cover the ball So, 1. If K is the naIve kernel, then p = f3d in Theorem 
10.1. 

Lemma 10.1. (COVERING LEMMA)./f K(x) = I{xESo,Il, thenforany y End, h > 0, 
and probability measure fJ, 

f Kh(X - y) 
f Kh(x - z)fJ(dz) fJ(dx) :::: f3d. 
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PROOF. Cover the ball Sy,h by fJd balls of radius h12. Denote their centers by 
Xl, ... , Xf3d' Then X E SXi,h/2 implies SXi,h/2 C Sx,h and thus 

We may write 

f I{xEsy,h} JL(dx) 
JL(Sx,h) 

< t f I{xE;xi,hI2} JL(dx) 
i==l JL( x,h) 

< t f I{xEsxi ,hf2} JL(dx) 
i==l JL(Sxi,hj2) 

= f3d. 0 

Lemma 10.2. Let 0 < h :::: R < 00, and let S C Rd be a ball of radius R. Then 
for every probability measure JL, 

where Cd depends upon the dimension d only. 

PROOF. Cover S with balls of radius h 12, centered at center points of a regular 
grid of dimension hl(2-J(i) x ... x hl(2-J(i). Denote these centers by Xl, ..• ,Xm , 

where m is the number of balls that cover S. Clearly, 

m < 

= 

volume(So,R+h) 

volume(grid cell) 

Vd(R + h)d 
(Vd is the volume of the unit ball in R d) 

(hl(2-J(i)) d 

< (l+~r c~, 
where the constant c~ depends upon the dimension only. Every X gets covered at 
most kl times where kl depends upon d only. Then we have 
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m f I < L {XESxi ,hj2} tt(dx) 

i:::l J tt(Sxi,h/2) 

(by the same argument as in Lemma 10.1) 
m 

< L J tt(Sxi,h/2) 
i:::l 

m 

< m L tt(Sxi,h/2) 
i:::l 

(by the Cauchy-Schwarz inequality) 

< Jklm 

< Hed ' 

where Cd depends upon the dimension only. 0 

PROOF OF THEOREM 10.1. Define 

2:}:::1 YjKh(x - X j ) 
l1n(X) = nEKh(X - X) . 

Since the decision rule can be written as 

{ 

0 if 2:}:::1 YjKh(x - X j ) < 2:}:::1(1- Yj)Kh(x - X j ) 

gn(x) = nEKh(X - X) - nEKh(X - X) 
1 otherwise, 

by Theorem 2.3, what we have to prove is that for n large enough 

p {f Iry(x) - ryn(X)IIL(dx) > ~} :" e-ne'/(32p') 

We use a decomposition as in the proof of strong consistency of the histogram 
rule: 

111(X) - l1n(x)1 

= Ell1(X) - l1n(x)1 + (ll1(X) - l1n(x)1 - Ell1(X) - l1n(x)I). (10.1) 

To handle the first term on the right-hand side, fix E/ > 0, and let r : Rd -+ R be 
a continuous function of bounded support satisfying 

f 111(X) - r(x)ltt(dx) < E/. 
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Obviously, we can choose the function r such that 0 S r(x) S 1 for all x E Rd. 
Then we have the following simple upper bound: 

EI1](x) - 1]n(x)! 

I
E {r(X)Kh(X - X)} I 

< 11](x) - r(x)1 + rex) - -----­
EKh(x - X) 

I
E {r(X)Kh(X - X)} I 

+ - E1]n(x) + EIE1]n(x) - 1]n(x)l· 
EKh(x - X) 

(10.2) 

Next we bound the integral of each term on the right-hand side of the inequality 
above. 

FIRST TERM: By the definition of r, 

f 11](x) - r(x)ltL(dx) < fl. 

SECOND TERM: Since r(x) is continuous and zero outside of a bounded set, it is 
also uniformly continuous, that is, there exists a 8 > 0 such that Ilx - y \I < 8 
implies Ir(x) - r(y)1 < ft. Also, rex) is bounded. Thus, 

f I 
E {r(X)Kh(x - X)} I 

rex) - EKh(x _ X) tL(dx) 

= f Ir(x) - f r(y)Kh(X - y)tL(dy) I JL(dx) 
EKh(X - X) 

s f ( Kh(X - Y) !r(x) - r(y)!tL(dy)tL(dx) 
]sx,s EKh(x - X) 

In the last step we used the fact that SUPx,y !r(x) - r(y)1 s 1. Clearly, we have 

fsx,Ii E~h~:?l)tL(dy) s 1, and by the uniform continuity of rex), SUPZESx,o Ir(x) -

r(z)1 < ft. Thus, the first term at the end of the chain of inequalities above is 
bounded by ft. The second term converges to zero since h < 8 for all n large 
enough, which in tum implies fs~ /j E~,(Z¥?l) tL(dy) = O. (This is obvious for the 

naIve kernel. For regular kernels, convergence to zero follows from Problem 10.15.) 
The convergence of the integral (with respect to tL(dx» follows from the dominated 
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convergence theorem. In summary, we have shown that 

I I E {r(X)Kh(x - X)} I 
lim sup r(x) - .. p,(dx) :s E'. 

n--+oo EKh(x - X) 

THIRD TERM: 

I IE {r(X)Kh(x - X)} I 
EKh(x _ X) - El]n(x) p,(dx) 

I I !(r(y) - l](y))Kh(x - y)p,(dy) I 
EKh(x - X) p,(dx) 

I I Kh(X - y) 
:s Ir(y) - l](Y)I! Kh(x _ z)p,(dz)p,(dy)p,(dx) 

= I (f f K~:(~ ~)~(dz/"(dX)) Ir(y) - ry(y)ll"(dy) 

(by Fubini's theorem) 

:s I plr(y) - l](y)Ip,(dy) :s PE', 

where in the last two steps we used the covering lemma (see Lemma 10.1 for the 
naIve kernel, and Problem 10.14 for general kernels), and the definition of rex). P 
is the constant appearing in the covering lemma: 

FOURTH TERM: We show that 

E {I IEryn(x) - ryn (x) I I"(dx) } -+ O. 

For the naIve kernel, we have 

E {IEl]n(x) - l]n(x)1} 

:s JE {IEl]n(x) - l]n(x)12} 

E { (L:j., (YjKh(X - X j ) - ElY Kh(x _ Xl})) 
2

} 

n2(EKh(X - X))2 

E{(YKh(x - X) - E{YKh(x - X)})2} 

n(EKh(x - X))2 
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where we used the Cauchy-Schwarz inequality, and properties of the naIve kernel. 
Extension to regular kernels is straightforward. 

Next we use the inequality above to show that the integral converges to zero. 
Divide the integral over nd into two terms, namely an integral over a large ball S 
centered at the origin, of radius R > 0, and an integral over SC. For the integral 
outside of the ball we have 

1 E {IE1]n(X) - 1]n(x)1} fL(dx) :::; 21 E1]n(X)fL(dx) --+ 211](X)fL(dX) 
~ ~ ~ 

with probability one as n --+ 00, which can be shown in the same way we proved 

[ E1]n(X)fL(dx) --+ [ 1](X)fL(dx) 
JRd JRd 

(see the first, second, and third terms of (10.2)). Clearly, the radius R of the ball S 
can be chosen such that 2Isc 1](x)fL(dx) < E/4. To bound the integral over S we 
employ Lemma 10.2: 

f. E {IE1]n(x) - 1]n(x)1} fL(dx) < -1-1 1 fL(dx) ..;n s J fL(Sx,h) 

(by the inequality obtained above) 

1 ( R)d/2 
- 1+ - Cd ..;n h 

--+ 0 (since by assumption nhd --+ (0). 

Therefore, if n is sufficiently large, then for the first term on the right-hand side of 
(10.1) we have 

E {I Iry(x) - ryn (x) II-'(dx) } < E'(p + 3) = E/4 

if we take E! = E/(4p + 12). 
It remains to show that the second term on the right-hand side of (10.1) is small 

with large probability. To do this, we use McDiarmid's inequality (Theorem 9.2) 
for I Iry(x) - ryn(x)ll-'(dx) E {I Iry(x) - ryn(X)II-'(dX)} . 

Fix the training data at ((Xl, YI), ... , (Xn, Yn)) and replace the i-th pair (Xi, Yi) by 
(Xi, )it), changing the value of 1]n(x) to 1]~i(x), Clearly, by the covering lemma 
(Lemma 10.1), 

I i1](x) -1]n(x)ifL(dx) - I i1](x) - 1]~i(x)lfL(dx) 

< I i1]n(x) - 1]~Jx)ifL(dx) ::: sup I 2Kh(X - Y) fL(dx) 
YERd nEKh(X - X) 

< 
2p 

n 
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So by Theorem 9.2, 

p {f I~(x) - ~n(x)I",(dx) > i} 
< P {f I~(x) - ryn(x)I",(dx) - E {f Iry(x) - ~n(X)I"'(dX)} > :} 

The proof is now completed. 0 

10.3 Potential Function Rules 

Kernel classification rules may be formulated in terms of the so-called potential 
function rules. These rules were originally introduced and studied by Bashkirov, 
Braverman and Muchnik (1964), Aizerman, Braverman and Rozonoer (1964c; 
1964b; 1964a; 1970), Braverman (1965), and Braverman and Pyatniskii (1966). 
The original idea was the following: put a unit of positive electrical charge at 
every data point Xi, where Yi = 1, and a unit of negative charge, at data points Xi 

where Yi = O. The resulting potential field defines an intuitively appealing rule: 
the decision at a point x is one if the potential at that point is positive, and zero if 
it is negative. This idea leads to a rule that can be generalized to obtain rules of 
the form 

where 

{ 
0 if !n(x) :::; 0 

gn(x) = I otherwise, 

n 

fn(x) = L rn,i(Dn)Kn,i(X, Xi), 
i=l 

where the Kn/s describe the potential field around Xi, and the rn/s are their 
weights. Rules that can be put into this form are often called potential function 
rules. Here we give a brief survey of these rules. 

KERNEL RULES. Clearly, kernel rules studied in the previous section are potential 
function rules with 

(
X - Y) 

Kn,i(X, y) = K T ' 

Here K is a fixed kernel function, and hI, h2, ... is a sequence of positive numbers. 

HISTOGRAM RULES. Similarly, histogram rules (see Chapters 6 and 9) can be put 
in this form, by choosing 
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Kn,Jx, y) = I{YEAn(x)}, and rn,i(Dn) = 2Yi - 1. 

Recall that An (x) denotes the cell of the partition in which x falls. 

POLYNOMIAL DISCRIMINANT FUNCTIONS. Specht (1967) suggested applying a poly­
nomial expansion to the kernel K C~Y). This led to the choice 

k 

Kn,i(x, y) = L V-r/X)'ljfj(Y), and rn,i(Dn) = 2Yi - 1, 
j=l 

where V-r1, ... , V-rk are fixed real-valued functions on nd. When these functions are 
polynomials, the corresponding classifier gn is called a polynomial discriminant 
function. The potential function rule obtained this way is a generalized linear rule 
(see Chapter 17) with 

k 

fn(x) = L an,j'ljlj(X), 
j=l 

where the coefficients an,} depend on the data Dn only, through 

n 

an,j = I)2Yi - l)V-rj(Xi). 
i=l 

This choice of the coefficients does not necessarily lead to a consistent rule, unless 
the functions V-r1, ... , V-rk are allowed to change with n, or k is allowed to vary with 
n. Nevertheless, the rule has some computational advantages over kernel rules. 
In many practical situations there is enough time to preprocess the data Dn , but 
once the observation X becomes known, the decision has to be made very quickly. 
Clearly, the coefficients an, 1, ... , an,n can be computed by knowing the training 
data Dn only, and if the values V-r1 (X), ... , V-rk(X) are easily computable, then 
fn(X) can be computed much more quickly than in a kernel-based decision, where 
all n terms of the sum have to be computed in real time, if no preprocessing is done. 
However, using preprocessing of the data may also help with kernel rules, espe­
cially when d = 1. For a survey of computational speed-up with kernel methods, 
see Devroye and Machell (1985). 

RECURSIVE KERNEL RULES. Consider the choice 

(
X - Y) 

Kn,i(x,y)=K ~ , (10.3) 

Observe that the only difference between this and the ordinary kernel rule is that 
in the expression of Kn,i, the smoothing parameter hn is replaced with hi. With 
this change, we can compute the rule recursively by observing that 

(
X - Xn+l) 

fn+l(X) = fn(x) + (2Yn+1 - l)K . 
hn+l 
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The computational advantage of this rule is that if one collects additional data, 
then the rule does not have to be entirely recomputed. It can be adjusted using the 
formula above. Consistency properties of this rule were studied by Devroye and 
Wagner (1980b), Krzyzak and Pawlak (1984a), Krzyzak (1986), and Greblicki 
and Pawlak (1987). Several similar recursive kernel rules have been studied in 
the literature. Wolverton and Wagner (1969b), Greblicki (1974), and Krzyzak and 
Pawlak (1983), studied the situation when 

1 (X - Y) 
Kn,i(x, y) = h1 K T (10.4) 

The corresponding rule can be computed recursively by 

1 (X - Xn+l) fn+l(X) = fn(x) + (2Yn+l - 1)-d- K . 
hn+l hn+l 

Motivated by stochastic approximation methods (see Chapter 17), Revesz (1973) 
suggested and studied the rule obtained from 

1 1 (X - Xn+l) fn+l(X) = fn(x) + --(2Yn+l - 1 - fn(x))-d-K . 
n + 1 hn+l hn+l 

A similar rule was studied by Gyorfi (1981): 

1 (X - Xn+l) fn+l(X) = fn(x) + --(2Yn+l - 1 - fn(x))K . 
n + 1 hn+l 

Problems and Exercises 

PROBLEM 10.1. Let K be a nonnegative kernel with compact support on [-1, 1]. Show 
that for some distribution, h -+ ° is necessary for consistency of the kernel rule. To this 
end, consider the following example. Given Y = 0, X has a geometric distribution on 
8,83 ,85 , ... , and given Y = 1, X has a geometric distribution on 82 ,84, 86 , .... Then show 
that to obtain ELn -+ L * = 0, it is necessary that h -+ 0. 

PROBLEM 10.2. KERNEL DENSITY ESTIMATION. Let Xl, ... , Xn be i.i.d. random variables in 
nd with density f. Let K be a kernel function integrating to one, and let hn > ° be a 
smoothing factor. The kernel density estimate is defined by 

1 ~ (x-X.) 
fn(x) = nh~ f:t K T 

(Rosenblatt (1956), Parzen (1962)). Prove that the estimate is weakly universally consistent 
in Ll if hn -+ ° and nh~ -+ 00 as n -+ 00. HINT: Proceed as in Problem 6.2. 
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PROBLEM 10.3. STRONG CONSISTENCY OF KERNEL DENSITY ESTIMATION. Let Xl, ... , Xn be 
i.i.d. random variables in nd with density f. Let K be a nonnegative function integrating to 
one (a kernel) and h > 0 a smoothing factor. As in the previous exercise, the kernel density 
estimate is defined by 

1 ~ x-X­
fn(x) = /;d ~ K(-h _I ). 

n i=! 

Prove for the Ll-error of the estimate that 

p {If l.hl(X) - f(x)ldx - E f Ifn(x) - f(X)'dXI > E} S 2e-nE2j2 

(Devroye (1991a)). Conclude that weak Ll-consistency of the estimate implies strong con­
sistency (see Problem 10.2). This is a way to show that weak and strong Ll-consistencies 
of the kernel density estimate are equivalent (Devroye (1983).) Also, for d = 1, since if K 
is nonnegative, then E f Ifn(x) - f(x)ldx cannot converge to zero faster than n-2(5 for any 
density (see Devroye and Gyorfi (1985)), therefore, the inequality above implies that for 
any density 

lim f ifn(x) - f(x)ldx = 0 
n-+co E f Ifn(x) - f(x)ldx 

with probability one (Devroye (1988d)). This property is called the relative stability of the 
L I error. It means that the asymptotic behavior of the L I -error is the same as that of its 
expected value. HINT: Use McDiarmid's inequality. 

PROBLEM 10.4. If f K < 0, show that under the assumption that fJ., has a density f, and 
that h ---:>- 0, nhd ~ 00, the kernel rule has 

lim ELn = E {max(1J(X), I -1J(X))} = 1 - L *. 
n-+co 

Thus, the rule makes the wrong decisions, and such kernels should be avoided. HINT: You 
may use the fact that for the kernel density estimate with kernel L satisfying f L = 1, 

f Ifn(x) - f(x)ldx ---:>- 0 

with probability one, if h ~ 0 and nhd ~ 00 (see Problems 10.2 and 10.3). 

PROBLEM 10.5. Consider a devilish kernel that attaches counterproductive weight to the 
origin: 

{

-I 

K(x) = ~ 
if IIxll S 1/3 
if 1/3 < Ilxll s 1 
if Ilxll > 1. 

Assume that h ---:>- 0, yet nhd ---:>- 00. Assume that L * = O. Show that Ln ---:>- 0 with 
probability one. CONCESSION: if you find that you can't handle the universality, try first 
proving the statement for strictly separable distributions. 

PROBLEM 10.6. Show that for the distribution depicted in Figure 10.2, the kernel rule with 
kernel K(u) = (1- u2)I{lul~l) is consistent whenever h, the smoothing factor, remains fixed 
and 0 < h S 1/2. 
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PROBLEM 10.7. THE LIMIT FOR FIXED h. Consider a kernel rule with fixed h == 1, and fixed 
kernel K. Find a simple argument that proves 

lim ELn = Looi 
n-'>oo 

where Loo is the probability of error for the decision goo defined by 

if E{K(x - X)(21](X) - l)} :s ° 
if E{K(x - X)(21](X) - I)} > 0. 

Find a distribution such that for the window kernel, Loo = 1/2, yet L * = 0. Is there such a 
distribution for any kernel? HINT: Try proving a convergence result at each x by invoking 
the law of large numbers, and then replace x by X. 

PROBLEM 10.8. Show that the conditions hn -+ ° and nhd -+ 00 of Theorem 10.1 are not 
necessary for consistency, that is, exhibit a distribution such that the kernel rule is consistent 
with hn = 1, and exhibit another distribution for which the kernel rule is consistent with 
hn rv l/nlJd. 

PROBLEM 10.9. Prove that the conditions hn -+ 0 and nhd -+ 00 of Theorem 10.1 are 
necessary for universal consistency, that is, show that if one of these conditions are violated 
then there is a distribution for which the kernel rule is not consistent (Krzyzak (1991). 

PROBLEM 10.10. This exercise provides an argument in favor of monotonicity of the kernel 
K. In 'R..2, find a nonatornic distribution for (X, y), and a positive kernel with f K > 0, 
K vanishing off So.o for some 8 > 0, such that for all h > 0, and all n, the kernel rule 
has ELn = 1/2, while L* = O. This result says that the condition K(x) ~ bI{so,ol for some 
b > ° in the universal consistency theorem cannot be abolished altogether. 

PROBLEM 10.11. With K as in the previous problem, and taking h = 1, show that 

lim ELn = L * 
n-'>oo 

under the following conditions: 
(1) K has compact support vanishing off SO,o, K ~ 0, and K ~ bI{so"l for some 

E > O. 
(2) We say that we have agreement on Sx,o when for all Z E Sx,o, either 1J(z) :s 1/2, 

or 1](z) ~ 1/2. We ask that P{Agreement on Sx,o} = 1. 

PROBLEM 10.12. The previous exercise shows that at points where there is agreement, we 
make asymptotically the correct decision with kernels with fixed smoothing factor. Let D 
be the set {x : 1J(x) = 1/2}, and let the 8-neighborhood of D be defined by Do = {y : 
II y - x II :s 8 for some xED}. Let fL be the probability measure for X. Take K, h as in the 
previous exercise. Noting that x f{, Do means that we have agreement on Sx,o, show that for 
all distributions of (X, Y), 

lim sup ELn :s L * + fL(Do). 
n-+oo 
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FIGURE 10.5. 8-neighborhood of a 

set D. 

PROBLEM 10.13. CONTINUATION. Clearly, fJ.,(D8) ~ 0 as 8 ~ 0 when fJ.,(D) = O. Convince 
yourself that fJ.,(D) = 0 for most problems. If you knew how fast fJ.,(D8) tended to zero, 
then the previous exercise would enable you to pick h as a function of n such that h ~ 0 
and such that the upper bound for ELn obtained by analogy from the previous exercise 
is approximately minimal. If in nd , D is the surface of the unit ball, X has a bounded 
density f, and 'f} is Lipschitz, determine a bound for fJ.,(D8). By considering the proof ofthe 
universal consistency theorem, show how to choose h such that 

PROBLEM 10.14. EXTENSION OF THE COVERING LEMMA (LEMMA 10.1) TO REGULAR KERNELS. 
Let K be a regular kernel, and let fJ., be an arbitrary probability measure. Prove that there 
exists a finite constant p = p(K) only depending upon K such that for any y and h 

(Devroye and Krzyzak (1989)). HINT: Prove this by checking the following: 
(1) First take a bounded overlap cover of nd with translates of SO,rI2, where r > 0 

is the constant appearing in the definition of a regular kernel. This cover has an 
infinite number of member balls, but every x gets covered at most k 1 times where 
k[ depends upon d only. 

(2) The centers of the balls are called Xi, i = 1, 2, .... The integral condition on K 
implies that 

00 k J L sup K(x):s 1 sup K(y)dx:s k2 
i=l XEXi+SO,rj2 Iso,r/2 dx YEX+SO,r/2 

for another finite constant k2 • 

(3) Show that 

00 

Kh(x - y) :s L sup Kh(x - y)I[xEy+hXi+So,rh/2] , 

i=l xEy+hxi+SO,rh/2 

and 
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From (c) conclude 

~ 1 SUPZEhxi+SO rh/2 Kh(z) 
< L. 'fL(dx) 

i=l XEy+hxi+SO,rh/2 bfL(y + hXi + SO,rh/2) 

f fL(Y + hXi + SO,rh/2) SUPZEhXi+SO,rh/2 Kh(z) 

i=l bfL(y + hXi + SO,rhj2) 

1 00 ~ -L sup Kh(z) :::: -, 
b i=l zEhxi+SO,rh/2 b 

where k2 depends on K and d only. 

PROBLEM 10.15. Let K be a regular kernel, and let fL be an arbitrary probability measure. 
Prove that for any 8 > 0 

r f Kh(x - y)I{llx-yll>o) (d) 0 
h~ s~p f Kh(x _ Z)fL(d;) fL x = . 

HINT: Substitute Kh(z) in the proof of Problem 10.15 by Kh(z)I(llzil 2: 8) and notice that 

f Kh(X - y)I{llx-yll>o) ~ 
sup f - fL(dx):::: L. sup Kh(z)I(lIzll 2: 8) -+ 0 

y Kh(x - z)fL(dz) i=l zEhxi+SO,rh/2 

as h -+ O. 

PROBLEM 10.16. Use Problems 10.14 and 10.15 to extend the proof of Theorem 10.1 for 
arbitrary regular kernels. 

PROBLEM 10.17. Show that the constant f3d in Lemma 10.1 is never more than 4d • 

PROBLEM 10.18. Show that if L 2: 0 is a bounded function that is monotonically decreasing 
on [0, (0) with the property that f U

d
-

1 L(u)du < 00, and if K : nd -+ [0, (0) is a function 
with K(x) :::: L(lIx II), then K is regular. 

PROBLEM 10.19. Find a kernel K 2: 0 that is monotonically decreasing along rays (i.e., 
K(rx) :::: K(x) for all x E n d and all r 2: 1) such that K is not regular. (This exercise is 
intended to convince you that it is very difficult to find well-behaved kernels that are not 
regular.) 

PROBLEM 10.20. Let K(x) = L(llxll) for some bounded function L 2: O. Show that K is 
regular if L is decreasing on [0, (0) and f K(x)dx < 00. Conclude that the Gaussian and 
Cauchy kernels are regular. 

PROBLEM 10.21. Regularity of the kernel is not necessary for universal consistency. Investi­
gate universal consistency with a nonintegrable kernel-that is, for which f K (x )dx = 00-

such as K(x) = 1/(1 + Ixl). Greblicki, Krzyzak, and Pawlak (1984) proved consistency of 
the kernel rule with smoothing factor hn satisfying hn -+ 0 and nh~ -+ 00 if the ker­
nel K satisfies the following conditions: K(x) 2: cI{lIxlI::olJ for some C > 0 and for some 
Cl, C2 > 0, c1H(llx II) :::: K(x) :::: c2H(llxll), where H is a nonincreasing function on [0, (0) 
with ud H(u) -+ 0 as u -+ 00. 
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PROBLEM 10.22. Consider the kernel rule with kernel K(x) = l/llx Ilr, r > 0. Such kernels 
are useless for atomic distributions unless we take limits and define gn as usual when x tj. S, 
the collection of points z with Xi = X) = z for some pair (i =I j). For XES, we take 
a majority vote over the Yi's for which Xi = x. Discuss the weak universal consistency 
of this rule, which has the curious property that gn is invariant to the smoothing factor 
h-so, we might as well set h = 1 without loss of generality. Note also that for r :::: d, 
Is K(x)dx = 00, and for r :::; d, Isc K(x)dx = 00, where SO,I is the unit ball of nd 

0,1 O,! 

centered at the origin. In particular, if r :::; d, by considering X uniform on So, I if Y = 1 and 
X uniform on the surface of So, I if Y = 0, show that even though L * = 0, the probability of 
error of the rule may tend to a nonzero limit for certain values of P {Y = I}. Hence, the rule 
is not universally consistent. For r :::: d, prove or disprove the weak universal consistency, 
noting that the rules' decisions are by-and-Iarge based on the few nearest neighbors. Prove 
the rule is weakly consistent for all r :::; d whenever X has a density. 

PROBLEM 10.23. Assume that the class densities coincide, that is, 1o (x ) = II (x) for every 
x E n, and assume p = p {Y = 1} > 1/2. Show that the expected probability of error of the 
kernel rule with K == 1 is smaller than that with any unimodal regular kernel for every n 
and h small enough. Exhibit a distribution such that the kernel rule with a symmetric kernel 
such that K (Ix I) is monotone increasing has smaller expected error probability than that 
with any unimodal regular kernel. 

PROBLEM 10.24. SCALING. Assume that the kernel K can be written into the following 
product form of one-dimensional kernels: 

d 

K(x) = K(x(J), ... , xed») = n Ki(x(i»). 
i-I 

Assume also that K is regular. One can use different smoothing factors along the different 
coordinate axes to define a kernel rule by 

n d (X(j) - X(j)) 
if L (2 Yi - 1) T1 K) ,I:::; ° 

i-I )-1 h In 

otherwise, 

where X~j) denotes the j -th component of Xi' Prove that gn is strongly universally consistent 
if hin -+ ° for all i = 1, ... , d, and nhlnh2n'" hdn -+ 00. 

PROBLEM 10.25. Let K : (0, (0) ---+ [0, (0) be a function, and L a symmetric positive 
definite d x d matrix. For x E nd define K'(x) = K (XTLX). Find conditions on K such 
that the kernel rule with kernel K' is universally consistent. 

PROBLEM 10.26. Prove that the recursive kernel rule defined by (10.4) is strongly universally 
consistent if K is a regular kernel, hn ---+ 0, and nh~ ---+ 00 as n ---+ 00 (Krzyzak and Pawlak 
(1983». 

PROBLEM 10.27. Show that the recursive kernel rule of (10.3) is strongly universally con­
sistent whenever K is a regular kernel. limn - HXl hn = 0, and L::l h~ = 00 (Greblicki and 
Pawlak (1987». Note: Greblicki and Pawlak (1987) showed convergence under significantly 
weaker assumptions on the kernel. They assume that K(x) ::: c!lllxll::::lj for some C > ° and 
that for some CI, C2 > 0, CI H(lIxll) :::; K(x) :::; C2H(llxll), where H is a nonincreasing func­
tion on [0, (0) with ud H(u) ---+ ° as u ---+ 00. They also showed that under the additional 
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assumption f K (x )dx < 00 the following conditions on hn are necessary and sufficient for 
universal consistency: 

PROBLEM 10.28. OPEN-ENDED PROBLEM. Let P{Y = I} = 1/2. Given Y = 1, let X be uni­
formly distributed on [0, 1]. Given Y = 0, let X be atomic on the rationals with the following 
distribution: let X = V / W, where V and Ware independent identically distributed, and 
P{V = i} = 1/2i, i :::: 1. Consider the kernel rule with the window kernel. What is the 
behavior of the smoothing factor h~ that minimizes the expected probability of error ELn? 
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Consistency of the k-Nearest 
Neighbor Rule 

In Chapter 5 we discuss results about the asymptotic behavior of k-nearest neighbor 
classification rules, where the value of k-the number of neighbors taken into 
account at the decision-is kept at a fixed number as the size of the training data n 
increases. This choice leads to asymptotic error probabilities smaller than 2L * , but 
no universal consistency. In Chapter 6 we showed that if we let k grow to infinity 
as n --+ 00 such that k / n --+ 0, then the resulting rule is weakly consistent. The 
main purpose of this chapter is to demonstrate strong consistency, and to discuss 
various versions of the rule. 

We are not concerned here with the data-based choice of k-that subject deserves 
a chapter of its own (Chapter 26). We are also not tackling the problem of the 
selection of a suitable-even data-based-metric. At the end of this chapter and 
in the exercises, we draw the attention to I-nearest neighbor relabeling rules, 
which combine the computational comfort of the I-nearest neighbor rule with the 
asymptotic performance of variable-k nearest neighbor rules. 

Consistency of k-nearest neighbor classification, and corresponding regression 
and density estimation has been studied by many researchers. See Fix and Hodges 
(1951; 1952), Cover (1968a), Stone (1977), Beck (1979), Gyorfi and Gyorfi (1975), 
Devroye (1981a; 1982b), Collomb (1979; 1980; 1981), Bickel and Breiman (1983), 
Mack (1981), Stute (1984), Devroye and Gyorfi (1985), Bhattacharya and Mack 
(1987), Zhao (1987), and Devroye, Gyorfi, Krzyzak, and Lugosi (1994). 

Recall the definition of the k-nearest neighbor rule: first reorder the data 

(X(l)(X), Y(l)(x», ... , (X(n)(x), Y('!)(x») 

according to increasing Euclidean distances of the X j' s to x. In other words, X CO (x) 
is the i -th nearest neighbor of x among the points Xl, ... , X n' If distance ties occur, 
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a tie-breaking strategy must be defined. If fJv is absolutely continuous with respect 
to the Lebesgue measure, that is, it has a density, then no ties occur with probability 
one, so formally we break ties by comparing indices. However, for general fJv, the 
problem of distance ties turns out to be important, and its solution is messy. The 
issue of tie breaking becomes important when one is concerned with convergence 
of Ln with probability one. For weak universal consistency, it suffices to break ties 
by comparing indices. 

The k-NN classification rule is defined as 

gn(x) = {O if 2:7=1. I{YU)(x)=l} :::.: 2:7=1 I{YCi)(x)=O} 

1 otherWIse. 

In other words, gn (x) is a majority vote among the labels of the k nearest neighbors 
ofx. 

11.1 Strong Consistency 

In this section we prove Theorem 11.1. We assume the existence of a density for 
fJv, so that we can avoid messy technicalities necessary to handle distance ties. We 
discuss this issue briefly in the next section. 

The following result implies strong consistency whenever X has an absolutely 
continuous distribution. The result was proved by Devroye and Gyorfi (1985), 
and Zhao (1987). The proof presented here basically appears in Devroye, Gyorfi, 
Krzyzak, and Lugosi (1994), where strong universal consistency is proved under 
an appropriate tie-breaking strategy (see discussion later). Some of the main ideas 
appeared in the proof of the strong universal consistency of the regular histogram 
rule (Theorem 9.4). 

Theorem 11.1. (DEVROYE AND GYORFI (1985), ZHAO (1987)). Assume that fJv has 
a density. If k --+ 00 and k / n --+ 0 then for every E > 0 there is an no such that 
forn > no 

P{Ln - L* > E}:::.: 2e-m:
2
/(72yl), 

where Yd is the minimal number of cones centered at the origin of angle Jr /6 that 
cover Rd. (For the definition of a cone, see Chapter 5.) Thus, the k-NN rule is 
strongly consistent. 

REMARK. At first glance the upper bound in the theorem does not seem to depend 
on k. It is no that depends on the sequence of k's. What we really prove is the 
following: for every E > 0 there exists a /30 E (0, 1) such that for any /3 < /30 there 
is an no such that if n > no, k > 1//3, and kin < /3, the exponential inequality 
holds. 0 

For the proof we need a generalization of Lemma 5.3. The role of this covering 
lemma is analogous to that of Lemma 10.1 in the proof of consistency of kernel 
rules. 
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Lemma 11.1. (DEVROYE AND GYORFI (1985)). Let 

Ba(x') = {x : tl(Sx,l!x-x'll) :::; a} . 

Then for all x' E Rd 

PROOF. For x E Rd let C(x, s) C Rd be a cone of angle Jr /6 centered at x. The 
cone consists of all y with the property that either y = x or angle(y - x, s) :::; Jr / 6, 
where s is a fixed direction. If y, y' E C(x, s), and IIx - yll < IIx - y'lI, then 
\I y - y' \I < \Ix - y' II· This follows from a simple geometric argument in the vector 
space spanned by x, y and y' (see the proof of Lemma 5.3). 

Now, let C I, ... , CYd be a collection of cones centered at x with different central 
direction covering Rd. Then 

Yd 

tl(Ba(x') :::; L tl(Ci n Ba(x')). 
i=l 

Let x* E C i n Ba (x'). Then by the property of the cones mentioned above we have 

fJ..,(Ci n Sx l ,IIx'-x* II n Ba(x'» :::; /-t(Sx*,lIx ' -x*lI) :::; a, 

where we use the fact that x* E Ba(x'). Since x* is arbitrary, 

tl(Ci n Ba(x') :s a, 

which completes the proof of the lemma. 0 

An immediate consequence of the lemma is that the number of points among 
X I, ... , Xn such that X is one of their k nearest neighbors is not more than a 
constant times k. 
COROLLARY 11.1. 

n 

L1{XisamongthekNN'sof Xi in {X1, ... ,Xn,X}-{Xd}:::; kYd. 
i=l 

PROOF. Apply Lemma 11.1 with a = k / n and let tl be the empirical measure tln of 
Xl, ... , Xn, that is, for each Borel set A ~ R d

, tln(A) = (l/n) L7=1 I{xi EA }. 0 

PROOF OF THEOREM 11.1. Since the decision rule gn may be rewritten as 

(x) = {O if1Jn(x):::; 1/2 
gn 1 otherwise, 

where 1Jn is the corresponding regression function estimate 

1 k 

1]n(x) = k LY(i)(x), 
i=l 
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the statement follows from Theorem 2.2 if we show that for sufficiently large n 

p {f I~(x) - ~n(x)lfL(dx) > ~} S 2e-n
"/(72yJ) 

Define Pn (x) as the solution of the equation 

Note that the absolute continuity of J-L implies that the solution always exists. (This 
is the only point in the proof where we use this assumption.) Also define 

The basis of the proof is the following decomposition: 

11J(x) - 1Jn(x)1 :::; IrJn(x) - 1J~(x)1 + IrJ~(x) - rJ(x)l· 

For the first term on the right-hand side, observe that denoting Rn (x) = II X(k) (x ) 

xII, 

where fi;; is defined as 1J~ with Y replaced by the constant random variable Y = 1, 
and 17 == 1 is the corresponding regression function. Thus, 

11J(x) - 1Jn(x)1 :::; r~(x) -17(x)1 + 11J~(x) - 1J(x)l· (11.1) 

First we show that the expected values of the integrals of both terms on the right­
hand side converge to zero. Then we use McDiarmid's inequality to prove that 
both terms are very close to their expected values with large probability. 

For the expected value of the first term on the right -hand side of (11.1), using 
the Cauchy-Schwarz inequality, we have 

E f 11J~(x) - 1Jn(x)IJ-L(dx) < E f Iry;:(x) -17(x)IJ-L(dx) 

< f JE {117~(X) -17(x)1 2 }J-L(dx) 
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I 1 
= "2 n Var{l{XES ()}}fl(dx) k X,Pn x 

S I 1 
k2 n/-i(SX,Pn(x)/-i(dx) 

= I / n ~fL(dx) 
k2 n 

1 
= ~' 

which converges to zero. 
For the expected value of the second term on the right-hand side of (11.1), note 

that in the proof of Theorems 6.3 and 6.4 we already showed that 

lim EI 17J(x) - 7Jn(X)lfl(dx) = O. 
n-+oo 

Therefore, 

E I 17J~(x) - 7J(x)I/-i(dx) 

S E I 17J~(x) - 7Jn(x)lfl(dx) + E I 17J(x) - 77n(x)I/-i(dx) -+ O. 

Assume now that n is so large that 

E I I~(x) -17(x)I/-i(dx) + E I 17J~(x) - 7J(X)lfl(dx) < ~. 

Then, by (11.1), we have 

(11.2) 

::s p {I Iry;(x) - ry(X)lfL(dx) - E I I~~(x) - ry(X)lfL(dx) > ~ } 

+P U I~(x) - i)(X)lfL(dx) - E I 1Ti;:(x) - i)(X)lfL(dx) > ~} . 

Next we get an exponential bound for the first probability on the right-hand side 
of (11.2) by McDiarmid's inequality (Theorem 9.2). Fix an arbitrary realization of 
the data Dn = (Xl, YI), ... , (xn, Yn), and replace (Xi, yJ by (Xi, Yi), changing the 
value of 7J~(x) to 7J~i(x), Then 
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But 11J~(x) - 1J~/x)1 is bounded by 2/ k and can differ from zero only if IIx -
Xi II < Pn(x) or IIx - Xi II < Pn(x). Observe that IIx - xiii < Pn(x) if and only 
if f.L(Sx,lIx-x;lj) < kin. But the measure of such x's is bounded by Ydkln by 
Lemma 11.1. Therefore 

and by Theorem 9.2 

Finally, we need a bound for the second term on the right-hand side of (11.2). This 
probability may be bounded by McDiarmid's inequality exactly the same way as 
for the first term, obtaining 

and the proof is completed. 0 

REMARK. The conditions k -+ 00 and kin -+ 0 are optimal in the sense that they 
are also necessary for consistency for some distributions with a density. However, 
for some distributions they are not necessary for consistency, and in fact, keeping 
k = 1 for all n may be a better choice. This latter property, dealt with in Problem 
11.1, shows that the I-nearest neighbor rule is admissible. 0 

11.2 Breaking Distance Ties 

Theorem 11.1 provides strong consistency under the assumption that X has a 
density. This assumption was needed to avoid problems caused by equal distances. 
Turning to the general case, we see that if f.L does not have a density then distance ties 
can occur with nonzero probability, so we have to deal with the problem of breaking 
them. To see that the density assumption cannot be relaxed to the condition that f.L 
is merely nonatomic without facing frequent distance ties, consider the following 
distribution on nd x nd

' with d, d' :::: 2: 

1 1 
f.L = - (Td X ad') + - (ad x Td') , 

2 2 

where Td denotes the uniform distribution on the surface of the unit sphere of 
n d and ad denotes the unit point mass at the origin of nd. Observe that if X 
has distribution Td x ad' and X' has distribution ad x Td', then IlX X'II = Ji. 
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Hence, if Xl, X 2 , X 3 , X4 are independent with distribution J-l, thenP{IIXI - X2 11 = 
IIX3 - X311} = 1/4. 

Next we list some methods of breaking distance ties. 

• nE-BREAKING BY INDICES: If Xi and Xj are equidistant from x, then Xi is 
declared closer if i < j. This method has some undesirable properties. For 
example, if X is monoatomic, with 'f} < 1/2, then X 1 is the nearest neighbor 
of all X j 's, j > 1, but X j is only the j - I-st nearest neighbor of X 1. 

The influence of X 1 in such a situation is too large, making the estimate 
very unstable and thus undesirable. In fact, in this monoatomic case, if 
L* + E < 1/2, 

P {Ln - L * > E} ~ e -ck 

for some c > 0 (see Problem 11.2). Thus, we cannot expect a distribution­
free version of Theorem 11.1 with this tie-breaking method. 

• STONE'S TIE-BREAKING: Stone (1977) introduced a version of the nearest 
neighbor rule, where the labels of the points having the same distance from 
x as the k-th nearest neighbor are averaged. If we denote the distance of the 
k-th nearest neighbor to x by Rn (x), then Stone's rule is the following: 

O l
'f '" k - I{i : lix - Xi II < Rn(x)}1 

~ I{yi=o} + --. ---------
"11 - ·11 R ( ) I{l : Ilx - Xi II = Rn(x)}1 1. x Xl < n X 

gn(x) = '" I k x ~ {Yi=O} ~ 2 
i:llx-xdl=R,,(x) 

1 otherwise. 

This is not a k-nearest neighbor rule in a strict sense, since this estimate, in 
general, uses more than k neighbors. Stone (1977) proved weak universal 
consistency of this rule. 

• ADDING A RANDOM COMPONENT: To circumvent the aforementioned difficul­
ties, we may artificially increase the dimension of the feature vector by one. 
Define the the d + I-dimensional random vectors 

where the randomizing variables V, VI, ... , Vn are real-valued i.i.d. ran­
dom variables independent of X, Y, and Dn, and their common distribution 
has a density. Clearly, because of the independence of V, the Bayes error 
corresponding to the pair (X', Y) is the same as that of (X, Y). The algorithm 
performs the k-nearest neighbor rule on the modified data set 

D~ = «X~, Yd, ... , (X~, Yn)). 

It finds the k nearest neighbors of X', and uses a majority vote among these 
labels to guess Y. Since V has a density and is independent of X, distance 
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ties occur with zero probability. Strong universal consistency of this rule can 
be seen by observing that the proof of Theorem 11.1 used the existence of 
the density in the definition of Pn(x) only. With our randomization, Pn(x) is 
well-defined, and the same proof yields strong universal consistency. Inter­
estingly, this rule is consistent whenever U has a density and is independent 
of (X, Y). If, for example, the magnitude of U is much larger than that 
of II X II, then the rule defined this way will significantly differ from the k­
nearest neighbor rule, though it still preserves universal consistency. One 
should expect however a dramatic decrease in the performance. Of course, 
if U is very small, then the rule remains intuitively appealing . 

• TIE-BREAKING BY RANDOMIZATION: There is another, perhaps more natural 
way of breaking ties via randomization. We assume that (X, U) is a random 
vector independent of the data, where U is independent of X and uniformly 
distributed on [0, 1]. We also artificially enlarge the data by introducing 
U1 , U2,.'" Un, where the U/s are i.i.d. uniform [0,1] as well. Thus, each 
(Xi, Ui ) is distributed as (X, U). Let 

(X(1)(X, u), YCl)(x, u)), " ., (XCn)(x, u), YCn)(x, u)) 

be a reordering of the data according to increasing values of Ilx - Xi II. In case 
of distance ties, we declare (Xi, Ui ) closer to (x, u) than (X j , Uj ) provided 
that 

lUi - ul ::: JUj - uJ. 
Define the k-NN classification rule as 

gn(x) = {O if L~=l. I{YCi)Cx,u)=l} :::; L~=l I{Y(i)Cx,u)=O} 

1 otherwIse, 

and denote the error probability of gn by 

(11.3) 

Devroye, Gyorfi, Krzyzak, and Lugosi (1994) proved that Ln ---+ L * with 
probability one for all distributions if k ---+ 00 and k / n ---+ 0. The basic 
argument in (1994) is the same as that of Theorem 11.1, except that the 
covering lemma (Lemma 11.1) has to be appropriately modified. 

It should be stressed again that if fL has a density, or just has an absolutely con­
tinuous component, then tie-breaking is needed with zero probability, and becomes 
therefore irrelevant. 

11.3 Recursive Methods 

To find the nearest neighbor of a point x among Xl, ... , X n , we may preprocess 
the data in 0 (n log n) time, such that each query may be answered in 0 (log n) 
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worst-case time-see, for example, Preparata and Shamos (1985). Other recent 
developments in computational geometry have made the nearest neighbor rules 
computationally feasible even when n is formidable. Without preprocessing how­
ever, one must resort to slow methods. If we need to find a decision at x and want 
to process the data file once when doing so, a simple rule was proposed by De­
vroye and Wise (1980). It is a fully recursive rule that may be updated as more 
observations become available. 

Split the data sequence Dn into disjoint blocks of length II, ... , IN, where 
II, ... , IN are positive integers satisfying L~1 Ii = n. In each block find the nearest 
neighbor of x, and denote the nearest neighbor of x from the i-th block by X7(x). 
Let yt(x) be the corresponding label. Ties are broken by comparing indices. The 
classification rule is defined as a majority vote among the nearest neighbors from 
each block: 

Note that we have only defined the rule gn for n satisfying L~l Ii = n for some 
N. A possible extension for all n's is given by gn(x) = gm(x), where m is the 
largest integer not exceeding n that can be written as L~l Ii for some N. The rule 
is weakly universally consistent if 

lim IN = 00 
N---+oo 

(Devroye and Wise (1980), see Problem 11.3). 

11.4 Scale-Invariant Rules 

A scale-invariant rule is a rule that is invariant under rescalings of the components. 
It is motivated by the lack of a universal yardstick when components of a vec­
tor represent physically different quantities, such as temperature, blood pressure, 
alcohol, and the number of lost teeth. More formally, let x(I), ... , xed) be the d 
components of a vector x. If 1/1 1, ... , 1/1 d are strictly monotone mappings: n -+ n, 
and if we define 

1/1 (x ) = (1/11 (x(l), ... , 1/1 d(x(d)) , 

then gn is scale-invariant if 

gn(x, Dn) = gn(1/I(x), D;l)' 

where D:
1 

= ((1/I(X1), Y1), ... , (1J;'(Xn), Yn». In other words, if all the Xi'S and x 
are transformed in the same manner, the decision does not change. 

Some rules based on statistically equivalent blocks (discussed in Chapters 21 
and 22) are scale-invariant, while the k-nearest neighbor rule clearly is not. Here we 
describe a scale-invariant modification of the k-nearest neighbor rule, suggested 
by Olshen (1977) and Devroye (1978). 
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The scale-invariant k-nearest neighbor rule is based upon empirical distances 
that are defined in terms of the order statistics along the d coordinate axes. First 
order the points x, Xl, ... , Xn according to increasing values of their first com­
ponents X(I), xiI), ... , X~l), breaking ties via randomization. Denote the rank of 

xiI) by r?), and the rank of x(l) by r(l). Repeating the same procedure for the other 
coordinates, we obtain the ranks 

(j) (j) . - 1 d' - 1 ri ,r , ] - , ... , ,l - , ... , n. 

Define the empirical distance between x and Xi by 

p(x, Xi) = max Ir~j) - /j)I. 
I~j~d I 

A k-NN rule can be defined based on these distances, by a majority vote among the 
Yi's with the corresponding Xi'S whose empirical distance from x are among the 
k smallest. Since these distances are integer-valued, ties frequently occur. These 
ties should be broken by randomization. Devroye (1978) proved that this rule 
(with randomized tie-breaking) is weakly universally consistent when k ---+ (Xl 

and kj n ---+ 0 (see Problem 11.5). For another consistent scale-invariant nearest 
neighbor rule we refer to Problem 11.6. 
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FIGURE 11.1. Scale-invariant distances of 15 points from a fixed 

point are shown here. 

11.5 Weighted Nearest Neighbor Rules 

In the k-NN rule, each of the k nearest neighbors of a point x plays an equally impor­
tant role in the decision. However, intuitively speaking, nearer neighbors should 
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provide more information than more distant ones. Royall (1966) first suggested 
using rules in which the labels Yi are given unequal voting powers in the decision 
according to the distances of the Xi'S from x: the i -th nearest neighbor receives 
weight Wni, where usually Wnl ::::: W n2 ::::: ... ::::: Whn ::::: ° and 'L7:::1 Wni = 1. The 
rule is defined as 

(x) =- {o if'L7=l wnJ{Y(i)(x)=l} .::::: 'L7=1 Wni I{Y(i)(x)=Ol 
gn 1 otherwise. 

We get the ordinary k-nearest neighbor rule back by the choice 

{ 
1/ k if i .::::: k 

Wni = ° otherwise. 

The following conditions for consistency were established by Stone (1977): 

and 

lim max Wni = 0, 
n--HX) l:::i:::n 

lim '""" Wni = ° n-+oo 6 
k:::i:::n 

for some k with kin -+ ° (see Problem 11.7). Weighted versions of the recursive 
and scale-invariant methods described above can also be defined similarly. 

11.6 Rotation-Invariant Rules 

Assume that an affine transformation T is applied to x and Xl, ... , Xn (i.e., any 
number of combinations of rotations, translations, and linear rescalings), and that 
for any such linear transformation T, 

gn(X, Dn) = gn(T(x), D~), 

where D~ = «T(Xr), Yr), ... , (T(Xn ), ~1))' Then we call gn rotation-invariant. 
Rotation-invariance is indeed a very strong property. In R d , in the context of k-NN 
estimates, it suffices to be able to define a rotation-invariant distance measure. 
These are necessarily data-dependent. An example of this goes as follows. Any 
collection of d points in general position defines a polyhedron in a hyperplane of 
Rd. For points (Xii' ... , XiJ, we denote this polyhedron by PUl, ... , id). Then 
we define the distance 

p(Xi , x) = L I{segment(Xi.x)intersectsP(il •... ,id)}· 

il, ... ,id, 
i~Hil ..... idl 

Near points have few intersections. Using p(., .) in a k-NN rule with k -+ 00 and 
k / n -+ 0, we expect weak universal consistency under an appropriate scheme of 
tie-breaking. The answer to this is left as an open problem for the scholars. 
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3 

2 

11.7 Relabeling Rules 

FIGURE 11.2. Rotation-invariant dis-

4 tancesfrom x. 

The I-NN rule appeals to the masses who crave simplicity and attracts the pro­
grammers who want to write short understandable code. Nearest neighbors may 
be found efficiently if the data are preprocessed (see Chapter 5 for references). Can 
we make the I-NN rule universally consistent as well? In this section we introduce 
a tool called relabeling, which works as follows. Assume that we have a classifica­
tion rule {gn(x, Dn), x E nd

, n ~ I}, where Dn is the data (Xl, Yl ), ... , (Xn, Yn). 
This rule will be called the ancestral rule. Define the labels 

These are the decisions for the Xi'S themselves obtained by mere resubstitution. 
In the relabeling method, we apply the I-NN rule to the new data (Xl, Zl), ... , 
(Xn, Zn). If all goes well, when the ancestral rule gn is universally consistent, so 
should the relabeling rule. We will show this by example, starting from a consistent 
k-NN rule as ancestral rule (with k --+ 00, kin --+ 0). 

Unfortunately, relabeling rules do not always inherit consistency from their 
ancestral rules, so that a more general theorem is more difficult to obtain, unless 
one adds in a lot of regularity conditions-this does not seem to be the right time 
for that sort of effort. To see that universal consistency of the ancestral rule does 
not imply consistency of the relabeling rule, consider the following rule hn : 

if x = Xi and x =I X j, all j =I i 
otherwise, 

where gn is a weakly universally consistent rule. It is easy to show (see Problem 
11.15) that hn is universally consistent as well. Changing a rule on a set of measure 
zero indeed does not affect Ln. Also, if x = Xi is at an atom of the distribution of 
X, we only change gn to 1 - Yi if Xi is the sole occurrence of that atom in the data. 
This has asymptotically no impact on Ln. However, if hn is used as an ancestral 
rule, and X is nonatomic, then hn(Xi , Dn) = 1 Yi for all i, and therefore, the 
relabeling rule is a I-NN rule based on the data (X 1, 1 - Yl ), ••• , (Xn, 1 - Yn). If 
L * = 0 for the distribution of (X, Y), then the relabeling rule has probability of 
error converging to one! 
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For most nonpathological ancestral rules, relabeling does indeed preserve uni­
versal consistency. We offer a prototype proof for the k-NN rule. 

Theorem 11.2. Let gn be the k-NN rule in which tie-breaking is done by random­
ization as in (11.3). Assume that k -+ 00 and k / n -+ ° (so that gn is weakly 
universally consistent). Then the relabeling rule based upon gn is weakly univer­
sally consistent as well. 

PROOF. We verify the conditions of Stone's weak convergence theorem (see Theo­
rem 6.3). To keep things simple, we assume that the distribution of X has a density 
so that distance ties happen with probability zero. 

In our case, the weight Wni(X) of Theorem 6.3 equals 1/ k iff Xi is among the 
k nearest neighbors of X(l)(X), where X(l)(X) is the nearest neighbor of X. It is 
zero otherwise. 

Condition 6.3 (iii) is trivially satisfied since k -+ 00. For condition 6.3 (ii), we 
note that if X(i)(x) denotes the i-th nearest neighbor of X among Xl, ... , X n , then 

Just note that SX(1)(x).2I1x-X(k)1I ;2 Sx.llx-Xck)11 and that the latter sphere contains k 
data points. But we already know from the proof of weak consistency of the k-NN 
rule that if k / n -+ 0, then for all E > 0, 

p {IIX(k)(X) - XII > E} -+ 0. 

Finally, we consider condition 6.3 (i). Here we have, arguing partially as in 
Stone (1977), 

= E {~t I{XisamongthekNN'sofXcJ)(Xi)in (Xl, ... ,Xn.X}-IXd}!(X)} 
1=1 

(reverse the roles of Xi and X) 

1 n n 

= E{k LLI{Xj is the NN of Xi in {Xl ..... Xn.X}-{Xd} 
i=l j=l 

X I{X is among the k NN's of Xj in {Xl, ... ,Xn,X}-{Xd}!(X)}, 

However, by Lemma 11.1, 

n 

L I{Xj is theNN of Xi in {Xl .... ,X".X}-{XdJ ::: Yd· 
i=l 
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Also, 
n 

L I{x is among thek NN's of Xj in {Xl"",Xn,X}-{Xd} :::s kYd' 
j=l 

Therefore, by a double application of Lemma 11.1, 

E { t ~ Irx, j,,""ong thok NN', of XO)(XJJ!(X,)} :'0 yJ Ef(X), 

and condition 6.3 (i) is verified. 0 

Problems and Exercises 

PROBLEM 11.1. Show that the conditions k -+ 00 and k / n -+ ° are necessary for universal 
consistency of the k-nearest neighbor rule. That is, exhibit a distribution such that if k remains 
bounded, lim inf n-HX) ELn > L *. Exhibit a second distribution such that if k / n :::: E > ° 
for all n, and some E, then lim infn- Hx) ELn > L *. 

PROBLEM 11.2. Let X be monoatomic, with 1] < 1/2. Show that for E < 1/2 -1], 

for some c > 0, where Ln is the error probability of the k-NN rule with tie-breaking by 
indices. 

PROBLEM 11.3. Prove that the recursive nearest neighbor rule is universally consistent pro­
vided that limN-+oo IN = 00 (Devroye and Wise (1980)). HINT: Check the conditions of 
Theorem 6.3. 

PROBLEM 11.4. Prove that the nearest neighbor rule defined by any L p-distance measure ° < p ::::: 00 is universally consistent under the usual conditions on k. The L p -distance 

between x, y End is defined by (E1=1Ix(i) - y(i)IP riP forO < p < oo,andbysuPi Ix(i)­
y(i) I for p = 00, where x = (x(1), ... , xed»). HINT: Check the conditions of Theorem 6.3. 

PROBLEM 11.5. Let o-(x, z, Xi, Zd = p(x, Xi)+ IZi - zl be a generalized distance between 
(x, z) and (Xi, Zi), where x, Xl, ... , Xn are as in the description of the scale-invariantk-NN 
rule, p(x, Xi) is the empirical distance defined there, and z, Zi E [0,1] are real numbers 
added to break ties at random. The sequence Zl, ... , Zn is i.i.d. uniform [0, 1] and is 
independent of the data Dn. With the k-NN rule based on the artificial distances 0-, show 
that the rule is universally consistent by verifying the conditions of Theorem 6.3, when 
k -+ 00 and kin -+ 0. In particular, show first that if Z is uniform [0, 1] and independent 
of X, Y, Dn and ZI, ... , Zn, and if Wni(X, Z) is the weight of (Xi, Zi) in this k-NN rule 
(i.e., it is 1/ k iff (Xi, Zi) is among the k nearest neighbors of (X, Z) according to 0-), then 

(1) E {I:7=1 Wni(X, Z)f(Xd} ::::: 2d Ef(X) 
for all nonnegative measurable f with Ef(X) < 00. 
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(2) If kin -+ 0, then 

for all a > O. 

HINT: Check the conditions of Theorem 6.3 (Devroye (1978)). 

PROBLEM 11.6. The layered nearest neighbor rule partitions the space at x into 2d quad­
rants. In each quadrant, the outer-layer points are marked, that is, those Xi for which the 
hyperrectangle defined by x and Xi contains no other data point. Then it takes a majority 
vote over the Yi 's for the marked points. Observe that this rule is scale-invariant. Show that 
whenever X has nonatornic marginals (to avoid ties), E{Ln } -+ L * in probability. 

• 
• • @ i@ ~ • 

FIGURE 11.3. The layered nearest neighbor rule 

takes a majority vote over the marked points. 

@ xl @ 
-----------_.---------.----------.--------------------------

@ i empty i 
• ® '---:@xi 

• 

HINT: It suffices to show that the number of marked points increases unboundedly in prob­
ability, and that its proportion to unmarked points tends to zero in probability. 

PROBLEM 11.7. Prove weak universal consistency of the weighted nearest neighbor rule if 
the weights satisfy 

and 

lim max Wni = 0, 
n--')-oo lsiSn 

lim " Wni = 0 n--')-oo ~ 
ksisn 

for some k with kin -+ 0 (Stone (1977). HINT: Check the conditions of Theorem 6.3. 

PROBLEM 11.8. If (Wnl' ... , wnn ) is a probability vector, then limn--,)-oo Li>no Wni = 0 for 
all 8 > 0 if and only if there exists a sequence of integers k = kn such that k = o(n), 
k -+ 00, and Li>k Wni = 0(1). Show this. Conclude that the conditions of Problem 11.7 
are equivalent to 

(i) lim max Wni = 0, 
n--')-oo lSisn 

(ii) lim ~ Wni = 0 for all 8 > O. 
n--')-oo~ 

i>no 

PROBLEM 11.9. Verify the conditions of Problems 11.7 and 11.8 for weight vectors of the 
form Wni = Cn I iCi

, where a > 0 is a constant and Cn is a normalizing constant. In particular, 
check that they do not hold for a > 1 but that they do hold for 0 < a :s 1. 

PROBLEM l1.lO. Consider 

Pn 1 
w·- x-----

III - (1 + PnY 1 - (1 + Pn)-n ' 
1 :s i :s n, 

as weight vector. Show that the conditions of Problem 11.8 hold if Pn -+ ° and npn -+ 00. 
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PROBLEM 11.11. Let Wni = P{Z = i}/P{Z :s n}, 1 :s i :s n, where Z is a Poisson ()"n) 

random variable. Show that there is no choice of An such that {Wni, 1 :s i :s n} is a 
consistent weight sequence following the conditions of Problem 11.8. 

PROBLEM 11.12. Let Wni = P{Binomial(n, Pn) = i} = G)P;7(1- Pn)n-i. Derive conditions 
on Pn for this choice of weight sequence to be consistent in the sense of Problem 11.8. 

PROBLEM 11.13. k-NN DENSITY ESTIMATION. We recall from Problem 2.11 that if the con­
ditional densities /0, /1 exist, then L 1-consistent density estimation leads to a consistent 
classification rule. Consider now the k-nearest neighbor density estimate introduced by 
Lofts gaarden and Quesenberry C 1965). Let XI, ... , X n be independent, identically dis­
tributed random variables in R d

, with common density /. The k-NN estimate of / is defined 
by 

k 
fnCx) = ( )' 

A Sx,lIx- XCk)(xlll 

where X(klCx) is the k-th nearest neighbor of x among Xl, ... , X n . Show that for every 
n, f If(x) - fn(x)ldx = 00, so that the density estimate is never consistent in L 1• On the 
other hand, according to Problem 11.14, the corresponding classification rule is consistent, 
so read on. 

PROBLEM 11.14. Assume that the conditional densities fo and f1 exist. Then we can use a 
rule suggested by Patrick and Fischer (1970): let No = L7=1 I{Yi=o} and N1 = n - No be the 
number of zeros and ones in the training data. Denote by X6k\x) the k-th nearest neighbor 
of x among the X/s with Yi = 0. Define XiklCx) similarly. If ACA) denotes the volume of a 
set A C Rd, then the rule is defined as 

if NO/A (Sx,IIx-X6k)(Xlll) 2: NdA (Sx,llx-xik)(XllI) 

otherwise. 

This estimate is based on the k-nearest neighbor density estimate introduced by Loftsgaarden 
and Quesenberry (1965). Their estimate of fo is 

Then the rule gn can be re-written as 

if po,nlo,n 2: Pl,nlr,n 
otherwise, 

where PO,n = No/ nand Pl,n = Nd n are the obvious estimates of the class probabilities. 
Show that gn is weakly consistent if k --+ 00 and kin --+ 0, whenever the conditional 
densities exist. 

PROBLEM 11.15. Consider a weakly universally consistent rule gn, and define the rule 

if x = Xi and x =I X j, all j =I i 
otherwise. 

Show that hn too is weakly universally consistent. Note: it is the atomic Cor partially atomic) 
distributions of X that make this exercise interesting. HINT: The next exercise may help. 
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PROBLEM 11.16. Let X have an atomic distribution which puts probability Pi at atom i. Let 
Xl, ... , Xn be an U.d. sample drawn from this distribution. Then show the following. 

(1) P{\N - EN\ > E} S 2e-2E2In, where E > 0, and N is the number of "occupied" 
atoms (the number of different values in the data sequence). 

(2) EN In -+ O. 
(3) N I n -+ 0 almost surely. 

(4) Li:X rli for all j Sn Pi -+ 0 almost surely. 

PROBLEM 11.17. ROYALL'S RULE. Royall (1966) proposes the regression function estimate 

1 LnhnJ (i ) 
l]n(X) = -,- L 1 -h Y(i)(X), 

n 111 i=I n n 

where leu) is a smooth kernel-like function on [0, 1] with f~ l(u)du = 1 and hn > 0 is a 
smoothing factor. Suggestions included 

(i) 

(ii) 

Define 

leu) == 1; 

(d + 2? ( d + 4 21d) 
l(u)=-4- 1- d+2u 

(note that this function becomes negative). 

if l]11(X) > 1/2 
otherwise. 

Assume that hn -+ 0, nhn -+ 00. Derive sufficient conditions on 1 that guarantee the 
weak universal consistency of Royall's rule. In particular, insure that choice (ii) is weakly 
universally consistent. HINT: Try adding an appropriate smoothness condition to l. 

PROBLEM 11.18. Let K be a kernel and let Rn(x) denote the distance between x and its k-th 
nearest neighbor, X (k) (x), among X I, ... , X n . The discrimination rule that corresponds to 
a kernel-type nearest neighbor regression function estimate of Mack (1981) is 

if "'~l (2Y. - I)K (X-Xi) < 0 
L.a=1 I Rn(x) -

otherwise. 

(The idea of replacing the smoothing factor in the kernel estimate by a local rank-based 
value such as Rn(x) is due to Breiman, Meisel, and Purcell (1977).) For the kernel K = Iso.!, 
this rule coincides with the k-NN rule. For regular kernels (see Chapter 10), show that the 
rule remains weakly universally consistent whenever k -+ 00 and kin -+ 0 by verifying 
Stone's conditions of Theorem 6.3. 

PROBLEM 11.19. Let {gn} be a weakly universally consistent sequence of classifiers. Split 
the data sequence Dn into two parts: Dm = «X1' Y I ), ... , (Xnn Ym» and Tn- m = «Xm+I , 

Ym+1), ••• , (Xn' Yn». Use gn-m and the second part Tn- m to relabel the first part, i.e., define 
Y: = gn-m(Xi , Tn- m) for i = 1, ... , m. Prove that the I-NN rule based on the data (Xl, Y{), 
... , (Xm, Y~) is weakly universally consistent whenever m -+ 00 and n - m -+ 00. HINT: 

Use Problem 5.40. 

PROBLEM 11.20. Consider the k-NN rule with a fixed k as the ancestral rule, and apply the 
1-NN rule using the relabeled data. Investigate the convergence of ELn. Is the limit LkNN or 
something else? 





12 
Vapnik-Chervonenkis Theory 

12.1 Empirical Error Minimization 

In this chapter we select a decision rule from a class of rules with the help of training 
data. Working formally, let C be a class of functions ¢ : nd -+ {a, 1}. One wishes 
to select a function from C with small error probability. Assume that the training 
data Dn = ((Xl, Y1), ... , (X n, Yn)) are given to pick one of the functions from C 
to be used as a classifier. Perhaps the most natural way of selecting a function is 
to minimize the empirical error probability 

..-... 1 n 

Ln(¢) = - L I{</l(xi)=!Yd 
n i=l 

over the class C. Denote the empirically optimal rule by ¢~: 

¢~ = argmin Ln(¢). 
</lEC 

Thus, ¢~ is the classifier that, according to the data D n , "looks best" among the 
classifiers in C. This idea of minimizing the empirical risk in the construction of 
a rule was developed to great extent by Vapnik and Chervonenkis (1971; 1974c; 
1974a; 1974b). 

Intuitively, the selected classifier ¢~ should be good in the sense that its true 
error probability L(¢~) = P{¢~(X) =I YIDn} is expected to be close to the optimal 
error probability within the class. Their difference is the quantity that primarily 
interests us in this chapter: 

L(¢~) - inf L(¢). 
</lEC 
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The latter difference may be bounded in a distribution-free manner, and a rate of 
convergence results that only depends on the structure of C. While this is very 
exciting, we must add that L(¢~) may be far away from the Bayes error L *. Note 
that 

L(¢~) - L * = (L(¢~) - inf L(¢») + (inf L(¢) - L *) . 
¢EC ¢EC 

The size of C is a compromise: when C is large, inf¢Ec L(¢) may be close to 
L *, but the former error, the estimation error, is probably large as well. If C is 
too small, there is no hope to make the approximation error inf¢Ec L(¢) - L * 
small. For example, if C is the class of all (measurable) decision functions, then 
we can always find a classifier in C with zero empirical error, but it may have 
arbitrary values outside of the points Xl, ... , X n' For example, an empirically 
optimal classifier is 

if x = Xi, i = 1, ... ,n 
otherwise. 

This is clearly not what we are looking for. This phenomenon is called overjitting, 
as the overly large class C overfits the data. We will give precise conditions on C 
that allow us to avoid this anomaly. The choice of C such that inf¢Ec L(¢) is close 
to L * has been the subject of various chapters on consistency-just assume that 
C is allowed to grow with n in some manner. Here we take the point of view that 
C is fixed, and that we have to live with the functions in C. The best we may then 
hope for is to minimize L(¢~) inf¢Ec L(¢). A typical situation is shown in Figure 
12.1. 

picked rule 

best rule 
in class 

inf 
<pEe 

stimation error 
(can be controlled) 
(small) 

Approximation error 
(not controllable) 
(usually larger than estimation error) 

FIGURE 12.1. Various errors in empirical classifier selection. 
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Consider first a finite collection C, and assume that one of the classifiers in C 
has zero error probability, that is, min¢Ec L( ¢) = O. Then clearly, Ln (¢~) = 0 with 
probability one. We then have the following performance bound: 

Theorem 12.1. (VAPNIK AND CHERVONENKIS (l974c». Assume ICI < 00 and 
min¢Ec L( ¢) = O. Then for every nand E > 0, 

and 

PROOF. Clearly, 

E{L(¢~)} :::; 1 + log ICI. 
n 

P{L(¢~) > E} < P { Illax L(¢) > E I 
¢EC:L,,(¢)=O 

E { I{max1>Ec:Ln(4));{) L(¢»E} } 

~ E {<g:t 1{i;"(¢)=fJ)I{l>(¢»,) I 
< L P{Ln(¢)=O} 

¢EC:L(¢»E 

since the probability that no (Xi, Yi ) pair falls in the set {(x, y) : ¢(x) =I y} is less 
than (1 - E)n if the probability of the set is larger than E. The probability inequality 
of the theorem follows from the simple inequality 1 - x :::; e-x . 

To bound the expected error probability, note that for any u > 0, 

E{L(¢I~)} = f" P{L(</>~) > t}dt 

< u + 1"0 P{L(</>~) > t}dt 

< u + ICI/.
oo 

e-nt dt 

= 
ICI -nu u+-e . 
n 

Since u was arbitrary, we may choose it to minimize the obtained upper bound. 
The optimal choice is u = log ICI/n, which yields the desired inequality. 0 

Theorem 12.1 shows that empirical selection works very well if the sample size 
n is much larger than the logarithm of the size of the family C. Unfortunately, the 
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assumption on the distribution of (X, Y), that is, that min¢Ec L( ¢) = 0, is very 
restrictive. In the sequel we drop this assumption, and deal with the distribution­
free problem. 

One of our main tools is taken from Lemma 8.2: 

This leads to the study of uniform deviations of relative frequencies from their 
probabilities by the following simple observation: let v be a probability measure 
of (X, Y) on nd x {O, I}, and let Vn be the empirical measure based upon Dn. That 
is, for any fixed measurable set A C nd x {O, I}, v(A) = P{(X, Y) E A}, and 
vn(A) = ~ L7=1 I{(xi,Yi)EAj. Then 

L(¢) = v({(x, y) : ¢(x) i y}) 

is just the v-measure of the set of pairs (x, y) E n d x {O, I}, where ¢(x) i y. 
Formally, L(¢) is the v-measure of the set 

{{x: ¢(x) = I} x {O}} U {{x: ¢(x) = O} x {I}}. 

Similarly, Ln(¢) = vn({(x, y) : ¢(x) i y}). Thus, 

sup ILn(¢) - L(¢)I = sup Ivn(A) - v(A)I, 
¢EC AEA 

where A is the collection of all sets 

{{x: ¢(x) = I} x {O}} U {{x: ¢(x) = O} x {I}}, ¢ E C. 

For a fixed set A, for any probability measure v, by the law of large numbers 
vn(A) - v(A) ---+ ° almost surely as n ---+ 00. Moreover, by Hoeffding's inequality 
(Theorem 8.1), 

P{lvn(A) - v(A)1 > E} ::::: 2e-2nE2
. 

However, it is a much harder problem to obtain such results for SUPAEA Ivn(A) -

v(A)I. If the class of sets A (or, analogously, in the pattern recognition context, C) 
is of finite cardinality, then the union bound trivially gives 

However, if A contains infinitely many sets (as in many of the interesting cases) 
then the problem becomes nontrivial, spawning a vast literature. The most pow­
erful weapons to attack these problems are distribution-free large deviation-type 
inequalities first proved by Vapnik and Chervonenkis (1971) in their piGneering 
work. However, in some situations, we can handle the problem in a much simpler 
way. We have already seen such an example in Section 4.5. 
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12.2 Fingering 

Recall that in Section 4.5 we studied a specific rule that selects a linear classifier by 
minimizing the empirical error. The performance bounds provided by Theorems 
4.5 and 4.6 show that the selected rule performs very closely to the best possible 
linear rule. These bounds apply only to the specific algorithm used to find the em­
pirical minima-we have not showed that any classifier minimizing the empirical 
error performs well. This matter will be dealt with in later sections. In this section 
we extend Theorems 4.5 and 4.6 to classes other than linear classifiers. 

Let C be the class of classifiers assigning 1 to those x contained in a closed hy­
perrectangle, and 0 to all other points. Then a classifier minimizing the empirical 
error Ln (¢) over all ¢ E C may be obtained by the following algorithm: to each 
2d-tuple (Xii' ... , X i2d ) of points from Xl, ... , Xn , assign the smallest hyperrect­
angle containing these points. If we assume that X has a density, then the points 
X 1, ... , Xn are in general position with probability one. This way we obtain at 
most (;d) sets. Let ¢i be the classifier corresponding to the i-th such hyperrectan­
gle, that is, the one assigning 1 to those x contained in the hyperrectangle, and 0 
to other points. Clearly, for each ¢ E C, there exists a ¢i, i = 1, ... , (2~)' such that 

for all X j, except possibly for those on the boundary of the hyperrectangle. Since 
the points are in general position, there are at most 2d such exceptional points. 
Therefore, if we select a classifier;;; among ¢1, ... , ¢G~) to minimize the empirical 
error, then it approximately minimizes the empirical error over the whole class C 
as well. A quick scan through the proof of Theorem 4.5 reveals that by similar 
arguments we may obtain the performance bound 

for n ::: 2d and E ::: 4d/n. 
The idea may be generalized. It always works, if for some k, k-tuples of points 

determine classifiers from C such that no matter where the other data points fall, 
the minimal empirical error over these sets coincides with the overall minimum. 
Then we may fix these sets-"put our finger on them"-and look for the empirical 
minima over this finite collection. The next theorems, whose proofs are left as an 
exercise (Problem 12.2), show that if C has this property, then "fingering" works 
extremely well whenever n » k. 

Theorem 12.2. Assume that the class C of classifiers has the following property: 

for some integer k there exists a function \11 : {Rd)k ~ C such that for all 
Xl, ••• , xn E Rd and all ¢ E C, there exists a k-tuple iI, ... , ik E {I, ... ,n} of 
different indices such that 

W(Xi" ... , Xh)(X) = ¢(Xj) for all j = 1, ... , n with j =! ii, 1= 1, ... , k 
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with probability one. Let ¢ be found by fingering, that is, by empirical error mini­
mization over the collection of n! / (n - k)! classifiers of the form 

iI, ... , ik E {1, ... , n}, different. 

Then for n 2: k and 2k / n .:s E .:s 1, 

P {L(4J) - inf L(¢) > E} .:s e2kE (n k + 1) e-
nE2

/2. 
epEC 

Moreover, if n 2: k, then 

E {L(¢) - inf L(¢)} .:s 
epEC 

2(k + 1) log n + (2k + 2) 

n 

The smallest k for which C has the property described in the theorem may be 
called the fingering dimension of C. In most interesting cases, it is independent of 
n. Problem 12.3 offers a few such classes. We will see later in this chapter that the 
fingering dimension is closely related the so-called vc dimension of C (see also 
Problem 12.4). 

Again, we get much smaller errors if infepEc L(¢) = O. The next inequality 
generalizes Theorem 4.6. 

Theorem 12.3. Assume that C has the property described in Theorem 12.2 with 
fingering dimension k. Assume, in addition, that infepEc L(¢) = O. Then for all n 
and E, 

and 

{ 
----} k logn + 2 

E L(¢) .:s . 
n-k 

REMARK. Even though the results in the next few sections based on the Vapnik­
Chervonenkis theory supersede those of this section (by requiring less from the 
class C and being able to bound the error of any classifier minimizing the empirical 
risk), we must remark that the exponents in the above probability inequalities are 
the best possible, and bounds of the same type for the general case can only be 
obtained with significantly more effort. D 

12.3 The Glivenko-Cantelli Theorem 

In the next two sections, we prove the Vapnik-Chervonenkis inequality, a powerful 
generalization of the classical Glivenko-Cantelli theorem. It provides upper bounds 
on random variables of the type 

sup Ivn(A) - v(A)I. 
AEA 
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As we noted in Section 12.1, such bounds yield performance bounds for any 
classifier selected by minimizing the empirical error. To make the material more 
digestible, we first present the main ideas in a simple one-dimensional setting, and 
then prove the general theorem in the next section. 

We drop the pattern recognition setting momentarily, and return to probability 
theory. The following theorem is sometimes referred to as the fundamental theorem 
of mathematical statistics, stating uniform almost sure convergence of the empirical 
distribution function to the true one: 

Theorem 12.4. (GLIVENKO-CANTELLI THEOREM). Let Zl, ... , Zn be i.i.d. real­
valued random variables with distribution function F(z) = P{Zl :::::: z}. Denote 
the standard empirical distribution function by 

Then 

P {sup IF(z) - FnCz)1 > E) :::::: 8Cn + 1)e-nE2/32, 
ZER 

and, in particular, by the Borel-Cantelli lemma, 

lim sup IF(z) - Fn(z)1 = 0 with probability one. 
n-fOO ZER 

PROOF. The proof presented here is not the simplest possible, but it contains the 
main ideas leading to a powerful generalization. Introduce the notation v(A) = 
P{Zl E A} and vnCA) = (lIn) 2:;:::1 I{ZjEA} for all measurable sets A c R. Let A 
denote the class of sets of form (-00, z] for z E R. With these notations, 

sup IF(z) - Fn(z)1 = sup Ivn(A) - v(A)I. 
ZER AEA 

We prove the theorem in several steps, following symmetrization ideas of Dudley 
(1978), and Pollard (l984). We assume that nE 2 ::: 2, since otherwise the bound 
is trivial. In the first step we introduce a symmetrization. 

STEP 1. FIRST SYMMETRIZATION BY A GHOST SAMPLE. Define the random variables 
Zi, ... , Z~ E R such that Zl,"" Zn' Zi, ... , Z:1 are all independent and iden­
tically distributed. Denote by v~ the empirical measure corresponding to the new 
sample: 

Then for nE2 ::: 2 we have 

P {sup Ivn(A) - v(A)1 > E) :::::: 2P {sup Ivn(A) - v;/A) I > ~) . 
AEA AEA 2 
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To see this, let A * E A be a set for which IVn (A *) - v (A *) 1 > E if such a set exists, 
and let A * be a fixed set in A otherwise. Then 

P {sup Ivn(A) - v~(A)1 > E 12} 
AEA 

> P {lvn(A *) - v~(A *)1 > E 12} 

> P {lvn(A *) - v(A *)1 > E, Iv~(A *) - v(A *)1 < ~} 

= E { I{lvn(A*)-v(A*)I>E}P { Iv~ (A *) v(A *)1 < ~ J Zl, ... , Zn} } . 

The conditional probability inside may be bounded by Chebyshev's inequality as 
follows: 

{ 
f * * EJ } P IVn(A) - v(A )1 < 2 Zl, ... , Zn 

> 1 _ v(A *)(1 - v(A *)) 

nE2/4 
1 1 

> 1-->-
nE2 - 2 

whenever nE2 :::: 2. In summary, 

P {sup Ivn(A) - v~(A)1 > E 12} 
AEA 

1 :::: 2 P{lvn(A *) - v(A *)1 > E} 

~ P {sup IVn(A) - v(A)1 > E} . 
2 AEA 

> 

STEP 2. SECOND SYMMETRIZATION BY RANDOM SIGNS. Let ()1, ... , ()n be i.i.d. sign 
variables, independent of Zl, ... , Zn and Z~, ... , Z~, with P{()i = -I} = P{()i = 
I} = 1/2. Clearly, because Zl, Zi, ... , Zn, Z~ are all independent and identically 
distributed, the distribution of 

!~~ ItUA(Zi) - iA(Z;)) I 

is the same as the distribution of 

sup It ()iUA(Zi) - IA(Z;))I· 
AEA i=l 

Thus, by Step 1, 

P {sup Ivn(A) - v(A)1 > E} 
AEA 

:s 2P {sup 1 ItUA(Zi) - IA(Z)) I > :.} 
AEA n i=l 2 
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Simply applying the union bound, we can remove the auxiliary random variables 
Zi, ... , Z~: 

STEP 3. CONDITIONING. To bound the probability 

we condition on Z 1, ... , Zn. Fix Z 1, ... ,Zn E nd, and note that as Z ranges 
over n, the number of different vectors (I{zl :::z}, ... , I{zn :::Z}) is at most n + 1. 
Thus, conditional on Zl, ... , Zn, the supremum in the probability above is just a 
maximum taken over at most n + 1 random variables. Thus, applying the union 
bound gives 

With the supremum now outside the probability, it suffices to find an exponential 
bound on the conditional probability 

STEP 4. HOEFFDINO'S INEQUALITY. With Zl, ... , Zn fixed, L7=1 aJA(Zi) is the 
sum of n independent zero mean random variables bounded between -1 and 1. 
Therefore, Theorem 8.1 applies in a straightforward manner: 

Thus, 

{ 
1 I ~ I E I } -nE

2

/32 P sup - ~aJA(Zi) > - Zl, ... , Zn :s 2(n + l)e . 
AEA n i=l 4 
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Taking the expected value on both sides we have 

In summary, 

P {sup Ivn(A) - v(A)1 > E} ::::: 8(n + l)e-nE2/32. D 
AEA 

12.4 Uniform Deviations of Relative Frequencies 
from Probabilities 

In this section we prove the Vapnik-Chervonenkis inequality, a mighty general­
ization of Theorem 12.4. In the proof we need only a slight adjustment of the 
proof above. In the general setting, let the independent identically distributed 
random variables Zl, ... , Zn take their values from Rd. Again, we use the no­
tation v(A) = P{ZI E A} and vn(A) = (lIn) L~=l I{zjEA} for all measurable sets 
A C Rd. The Vapnik-Chervonenkis theory begins with the concepts of shatter 
coefficient and Vapnik-Chervonenkis (or vc) dimension: 

DEFINITION 12.1. Let A be a collection of measurable sets. For (Zl, ... ,Zn) E 

{Rd}n, let N A(Zl, ... , Zn) be the number of different sets in 

{ {Z 1, ... , Zn} n A; A E A}. 

The n-th shatter coefficient of A is 

That is, the shatter coefficient is the maximal number of different subsets of n points 
that can be picked out by the class of sets A. 

The shatter coefficients measure the richness of the class A. Clearly, seA, n) ::::: 
2n, as there are 2n subsets of a set with n elements. If N A(Zl, ... , Zn) = 2n for some 
(Zl, ... , Zn), then we say that A shatters {Zl, ... , Zn}. If seA, n) < 2n, then any set 
of n points has a subset such that there is no set in A that contains exactly that subset 
of the n points. Clearly, if seA, k) < 2k for some integer k, then seA, n) < 2n for 
all n > k. The first time when this happens is important: 

DEFINITION 12.2. Let A be a collection of sets with IAI ::::: 2. The largest integer 
k ::::: 1 for which seA, k) = 2k is denoted by VA, and it is called the Vapnik­
Chervonenkis dimension (or vc dimension) of the class A. If seA, n) = 2n for all 
n, then by definition, VA = 00. 
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For example, if A contains allhalfiines of form (-00, x], x E R, thens(A, 2) = 
3 < 22 , and VA = 1. This is easily seen by observing that for any two different 
points Zl < Z2 there is no set of the form (-00, x] that contains Z2, but not Zl. A 
class of sets A for which VA < 00 is called a Vapnik-Chervonenkis (orve) class. In 
a sense, V A may be considered as the complexity, or size, of A. Several properties 
of the shatter coefficients and the ve dimension will be shown in Chapter 13. The 
main purpose of this section is to prove the following important result by Vapnik 
and Chervonenkis (1971): 

Theorem 12.5. (VAPNIK AND CHERVONENKIS (1971)). For any probability measure 
v and class of sets A, and for any nand E > 0, 

P {sup Ivn(A) - v(A)1 > E} ::::: 8s(A, n)e-
nE2

/
32

. 
AEA 

PROOF. The proof parallels that of Theorem 12.4. We may again assume that 
nE2 :::: 2. In the first two steps we prove that 

This may be done exactly the same way as in Theorem 12.4; we do not repeat the 
argument. The only difference appears in Step 3: 

STEP 3. CONDITIONING. To bound the probability 

again we condition on Z 1, ... , Zn. Fix Z 1, ... ,Zn E R d, and observe that as A 
ranges over A, the number of different vectors (lA(Zl), ... , IA(zn)) is just the 
number of different subsets of {Z 1, ... , Zn} produced by intersecting it with sets in 
A, which, by definition, cannot exceed seA, n). Therefore, with Zl, ... , Zn fixed, 
the supremum in the above probability is a maximum of at most N A (Z 1, ... , Zn) 
random variables. This number, by definition, is bounded from above by seA, n). 

I 

By the union bound we get 

Therefore, as before, it suffices to bound the conditional probability 
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This may be done by Hoeffding's inequality exactly as in Step 4 of the proof of 
Theorem 12.4. Finally, we obtain 

p {sup Ivn(A) - v(A)1 > E} S 8s(A, n)e-nE2/32. 0 
AEA 

The bound of Theorem 12.5 is useful when the shatter coefficients do not increase 
too quickly with n. For example, if A contains all Borel sets of nd , then we can 
shatter any collection of n different points at will, and obtain seA, n) = 2n. This 
would be useless, of course. The smaller A, the smaller the shatter coefficient 
is. To apply the vc bound, it suffices to compute shatter coefficients for certain 
families of sets. Examples may be found in Cover (1965), Vapnik and Chervonenkis 
(1971), Devroye and Wagner (1979a), Feinholz (1979), Devroye (1982a), Massart 
(1983), Dudley (1984), Simon (1991), and Stengle and Yukich (1989). This list of 
references is far from exhaustive. More information about shatter coefficients is 
given in Chapter 13. 

REMARK. MEASURABILITY. The supremum in Theorem 12.5 is not always mea­
surable. Measurability must be verified for every family A. For all our examples, 
the quantities are indeed measurable. For more on the measurability question, see 
Dudley (1978; 1984), Massart (1983), and Gaenssler (1983). Gine andZinn (1984) 
and Yukich (1985) provide further work on suprema of the type shown in Theorem 
12.5.0 

REMARK. OPTIMAL EXPONENT. For the sake of readability we followed the line 
of Pollard's proof (1984) instead of the original by Vapnik and Chervonenkis. 
In particular, the exponent -nE2/32 in Theorem 12.5 is worse than the -nE2/8 
established in the original paper. The best known exponents together with some 
other related results are mentioned in Section 12.8. The basic ideas of the original 
proof by Vapnik and Chervonenkis appear in the proof of Theorem 12.7 below. 0 

REMARK. NECESSARY AND SUFFICIENT CONDITIONS. It is clear from the proof of 
the theorem that it can be strengthened to 

p {sup IVn(A) - v(A)1 > E} S 8E {N A(Zl, ... , Zn)} e-
nE2 /32, 

AEA 

where Z 1, ... , Zn are i.i.d. random variables with probability measure v. Although 
this upper bound is tighter than that in the stated inequality, it is usually more 
difficult to handle, since the coefficient in front of the exponential term depends on 
the distribution of Zl, while seA, n) is purely combinatorial in nature. However, 
this form is important in a different setting: we say that the uniform law of large 
numbers holds if 

sup Ivn(A) v(A)1 -+ 0 in probability. 
AEA 
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It follows from this form of Theorem 12.5 that the uniform law of large numbers 
holds if 

E {log (NA(Zl, ... , Zn))} 
--------- -+ O. 

n 
Vapnik and Chervonenkis showed (1971; 1981) that this condition is also necessary 
for the uniform law of large numbers. Another characterization of the uniform law 
of large numbers is given by Talagrand (1987), who showed that the uniform law 
of large numbers holds if and only if there does not exist a set A C Rd with 
v(A) > 0 such that, with probability one, the set {Zl, ... , Zn} n A is shattered by 
A.D 

12.5 Classifier Selection 

The following theorem relates the results of the previous sections to empirical 
classifier selection, that is, when the empirical error probability Ln (cj> ) is minimized 
over a class of classifiers C. We emphasize that unlike in Section 12.2, here we 
allow any classifier with the property that has minimal empirical error L n (cj> ) in C. 
First introduce the shatter coefficients and vc dimension of C: 

DEFINITION 12.3. Let C be a class of decision functions of the form cj> : Rd -+ 
{O, I}. Define A as the collection of all sets 

{{x: cj>(x) = I} x {On U {{x: cj>(x) = O} x {In, cj> E C. 

Define the n-th shatter coefficient S(C, n) of the class of classifiers Cas 

S(C, n) = seA, n). 

Furthermore, define the vc dimension Vc of C as 

For the performance of the empirically selected decision cj>,~, we have the fol­
lowing: 

Theorem 12.6. LetC be a class of decision functions oftheformcj> : Rd -+ {O, I}. 
Then using the notation Ln(cj» = ~ 'L7=1I{¢(x i )=/yd and L(cj» = P{cj>(X) =I Y}, we 
have 

and therefore 

P {L(cj>~) - inf L(cj» > E} ::::; 8S(C, n)e-nE2/128, 
¢EC 

where cj>~ denotes the classifier minimizing Ln (cj» over the class C. 



200 12. Vapnik-Chervonenkis Theory 

PROOF. The statements are immediate consequences of Theorem 12.5 and Lemma 
8.2.0 

The next corollary, an easy application of Theorem 12.6 (see Problem 12.1), 
makes things a little more transparent. 

COROLLARY 12.1. In the notation of Theorem 12.6, 

E {L(¢*)} - inf L(¢) :s 16 log(8eS(C, n)) . 
n epEC 2n 

If S (C, n) increases polynomially with n, then the average error probability of the 

selected classifier is within 0 ( Jlog n / n ) of the error of the best rule in the class. 

We point out that this result is completely distribution-free. Furthermore, note the 
nonasymptotic nature of these inequalities: they hold for every n. From here on 
the problem is purely combinatorial-one has to estimate the shatter coefficients. 
Many properties are given in Chapter 13. In particular, if Vc > 2, then S(C, n) :s 
n vc, that is, if the class C has finite vc dimension, then S(C, n) increases at a 
polynomial rate, and 

E {L(¢~)} - inf L(¢) :s 16 
epEC 

Vc logn + 4 

2n 

REMARK. Theorem 12.6 provides a bound for the behavior of the empirically opti­
mal classifier. In practice, finding an empirically optimal classifier is often compu­
tationally very expensive. In such cases, the designer is often forced to put up with 
algorithms yielding suboptimal classifiers. Assume for example, that we have an 
algorithm which selects a classifier gn such that its empirical error is not too far 
from the optimum with large probability: 

where {En} and {6n } are sequences of positive numbers converging to zero. Then 
it is easy to see (see Problem 12.6) that 

P {L(gn) - inf L(¢) > E} :s 6n +P {2SUP ILn(¢) - L(¢)I > E - En}' 
epEC epEC 

and Theorem 12.6 may be used to obtain bounds for the error probability of gn. 0 

Interestingly, the empirical error probability of the empirically optimal classifier 
is always close to its expected value, as may be seen from the following example: 

COROLLARY 12.2. Let C be an arbitrary class of classification rules (that is, func­
tions of the form ¢ : nd -+ {a, I}). Let ¢: E C be the rule that minimizes the 
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number of errors committed on the training sequence Dn , among the classifiers in 
C. In other words, 

-- 1 n where Ln(¢) = n Li=:l I{¢(xi)=/Yd' Thenfor every nand E > 0, 

The corollary follows immediately from Theorem 9.1 by observing that chang­
ing the value of one (Xi, Yi ) pair in the training sequence results in a change of at 
most lin in the value of Ln(¢~)' The corollary is true even if the vc dimension of 
C is infinite (I). The result shows that Ln(¢~) is always very close to its expected 
value with large probability, even if E {Ln(¢~)} is far from inf¢Ec L(¢) (see also 
Problem 12.12). 

12.6 Sample Complexity 

In his theory of learning, Valiant (1984) rephrases the empirical classifier selection 
problem as follows. For E, 8 > 0, define an (E, 8) learning algorithm as a method 
that selects a classifier gn from C using the data Dn such that for the selected rule 

sup P {L(gn) - inf L(¢) > E} ~ 8, 
(X,Y) ¢EC 

whenever n ~ N(E, 8). Here N(E, 8) is the sample complexity of the algorithm, 
defined as the smallest integer with the above property. Since the supremum is 
taken over all possible distributions of (X, Y), the integer N(E, 8) is the number of 
data pairs that guarantees E accuracy with 8 confidence for any distribution. Note 
that we use the notation gn and not ¢I~ in the definition above, as the definition 
does not force us to take the empirical risk minimizer ¢I~ . 

We may use Theorem 12.6 to get an upper bound on the sample complexity of 
the selection algorithm based on empirical error minimization (i.e., the classifier 
¢~). 

COROLLARY 12.3. The sample complexity of the method based on empirical error 
minimization is bounded from above by 

(
512VC 256Vc 256 8) 

N(E, 8) ~ max --2 -log --2-' -2 log - . 
E E E 8 

The corollary is a direct consequence of Theorem 12.6. The details are left as an 
exercise (Problem 12.5). The constants may be improved by using refined versions 
of Theorem 12.5 (see, e.g., Theorem 12.8). The sample size that guarantees the 
prescribed accuracy and confidence is proportional to the maximum of 

Vc Vc 1 1 
- log - and - log -. 
E2 E2 E2 8 
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Here we have our first practical interpretation of the vc dimension. Doubling the 
vc dimension requires that we basically double the sample size to obtain the same 
accuracy and confidence. Doubling the accuracy however, forces us to quadruple 
the sample size. On the other hand, the confidence level has little influence on the 
sample size, as it is hidden behind a logarithmic term, thanks to the exponential 
nature of the Vapnik-Chervonenkis inequality. 

The Vapnik-Chervonenkis bound and the sample complexity N(E, 8) also allow 
us to compare different classes in a unified manner. For example, if we pick ¢,~ 
by minimizing the empirical error over all hyperrectangles of n 18, will we need a 
sample size that exceeds that of the rule that minimizes the empirical error over all 
linear halfspaces of n29 ? With the sample complexity in hand, it is just a matter 
of comparing vc dimensions. 

As a function of E, the above bound grows as 0 ((1/E2) log(1/E2»). Itis possible, 
interestingly, to get rid of the "log" term, at the expense of increasing the linearity 
in the vc dimension (see Problem 12.11). 

12.7 The Zero-Error Case 

Theorem 12.5 is completely general, as it applies to any class of classifiers and all 
distributions. In some cases, however, when we have some additional information 
about the distribution, it is possible to obtain even better bounds. For example, in 
the theory of concept learning one commonly assumes that L * = 0, and that the 
Bayes decision is contained in C (see, e.g., Valiant (1984), Blumer, Ehrenfeucht, 
Haussler, and Warmuth (1989), Natarajan (1991». The following theorem provides 
significant improvement. Its various forms have been proved by Devroye and 
Wagner (1976b), Vapnik (1982), and Blumer, Ehrenfeucht, Haussler, and Warmuth 
(1989). For a sharper result, see Problem 12.9. 

Theorem 12.7. Let C be a class of decision functions mapping n d to {O, I}, and 
let ¢I~ be a function in C that minimizes the empirical error based on the training 
sample Dn. Suppose that inf<jJEc L(¢) = 0, i.e., the Bayes decision is contained in 
C, and L* = 0. Then 

To contrast this with Theorem 12.6, observe that the exponent in the upper bound 
for the empirically optimal rule is proportional to -nE instead of -nE2. To see the 
significance of this difference, note that Theorem 12.7 implies that the error proba­
bility of the selected classifier is within 0 (log n / n) of the optimal rule in the class 

(which equals zero in this case, see Problem 12.8), as opposed to o( y'logn/n) 

from Theorem 12.6. We show in Chapter 14 that this is not a technical coincidence, 
but since both bounds are essentially tight, it is a mathematical witness to the fact 
that it is remarkably easier to select a good classifier when L * = 0. The proof is 
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based on the random permutation argument developed in the original proof of the 
Vapnik -Chervonenkis inequality (1971). 

PROOF. For nE :s 2, the inequality is clearly true. So, we assume that nE > 2. First 
observe that since infq'>Ec L(¢) = O,Ln(¢~) = o with probability one. It is easily 
seen that 

L(¢I:):S sup IL(¢) - Ln(¢ )1. 
q'>:Ln(q'»=O 

Now, we return to the notation of the previous sections, that is, Zi denotes the 
pair (Xi, Yi ), v denotes its measure, and Vn is the empirical measure based on 
Zl, ... , Zn. Also, A consists of all sets of the form A = {(x, y) : ¢(x) =I y} for 
¢ E C. With these notations, 

sup IL(¢) - Ln(¢)1 = sup IVn(A) - v(A)I. 
q'>:Ln(q'»=O A:vn(A)=O 

STEP 1. SYMMETRIZATION BY A GHOST SAMPLE. The first step ofthe proof is similar 
to that of Theorem 12.5. Introduce the auxiliary sample Z~, ... , Z~ such that the 
random variables Z 1, ... , Zn, Zi, ... , Z~ are i.i.d., and let v~ be the empirical 
measure for Zi, ... , Z~. Then for nE > 2 

P {A:'~£)dllvn(Al v(All > E} :s 2P { A:'~£)dllvn(Al - v~(All > ~ } . 

The proof of this inequality parallels that of the corresponding one in the proof 
of Theorem 12.5. However, an important difference is that the condition nE2 > 2 
there is more restrictive than the condition nE > 2 here. The details of the proof 
are left to the reader (see Problem 12.7). 

STEP 2. SYMMETRIZATION BY PERMUTING. Note that the distribution of 

1

1 n 1 n I 

. sup _ Ivn(A) - v~(A)1 = . n sup _ ;;:?= IA(Zi) - ;; L IA(Z;) 
A.vn(A)-O A·Li=IIA(Zi)-O 1=1 1=1 

is the same as the distribution of 

,B(I1) d;f . 11 sup _I ~ t I A(I1(Zi)) - ~ t IA(I1(Z;))1 ' 
A·Li=IIA(I1(Zi»-O 1=1 1=1 

where I1(Zd, ... , I1(Zn), I1(ZD, ... , I1(Z~) is an arbitrary permutation of the 
random variables Zl, ... , Zn, Zi, ... , Z~. The (2n)! possible permutations are 
denoted by 

Therefore, 

p { sup Ivn(A) - v~(A)1 > ~} 
A:vll(A)=O 2 

{

I (2n)! } 

= E (2n)! ~ I{,B(I1 j »H 
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= E-L {

I (2n)! 

(2n)! j=l 

sup I{11 "" I ([1 (Z·»_l "" I ([1 (ZI»I>S}} . "L..,=l A ) , "L..,=1 A J, 2 
A:2::;~1 IA([1j(Zd)=O 

STEP 3. CONDITIONING . Next we fix Z 1, ... , Zn, z~, ... , z~ and bound the value 
of the random variable above. Let A c A be a collection of sets such that any 
two sets in A pick different subsets of {z 1, ... , Zn, z~, ... , z~}, and its cardinality 
is N A(ZI, ... , Zn, z~, ... , z~), that is, all possible subsets are represented exactly 
once. Then it suffices to take the supremum over A instead of A: 

1 (2n)! 

(2n)! ~ . "sup _ I{I~ 2::;~1 IA(TIj(zd)-~ 2::7=JA(I1j(z;»I> 0 

= 

< 

= 

]=1 A·2::i=IIA(I1/zJ)-O 

1 (2n)! 

(2n)! ~ -." sup _ Iu 2::;'=1 IA(I1j(Z;»> 0 
J=1 AEA2::i=lIA (TI j (Zi))-O 

1 (2n)! 

(2n)! ~ 2:. I{2::;'=1 IA(I1j(zi))=o}IU 2::;'=J IA(TIj(z;»> 0 
]=1 AEA 

1 (2n)! 

2:. (2n)! ~ I{2::;'=J IA([1j(zi))=o}IU 2::;~1 IA(I1j(z;))>O' 
AEA ]=1 

STEP 4. COUNTING. Clearly, the expression behind the first summation sign is just 
the number of permutations of the 2n points Z 1 , z~, ... , zn, z~ with the property 

divided by (2n)!, the total number of permutations. Observe that if l = L:7=1 (l A (Zi)+ 
IA(zD) is the total number of points in A among ZI, z~, ... , Zn, z~ for a fixed set 
A, then the number of permutations such that 

is zero if l .:s nE /2. If l > nE /2, then the fraction of the number of permutations 
with the above property and the number of all permutations can not exceed 
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To see this, note that for the above product of indicators to be 1, all the points 
falling in A have to be in the second half of the permuted sample. Now clearly, 

_n_(_n_-_1_) _ . . ...=.<'-(n--'--_l_+_l_)_. < 2- l < 2-nE /2. 
2n(2n - 1) ... (2n - l + 1) - -

Summarizing, we have 

p {A.:'~~=oI~n(A) - v~(A)1 > ~ } 

< E{~~)! ~ 
• n sup _ I{I~ 2:;'=lIA(ITj(Zi»-~ 2:7=1 IA(ITj(Zml> 0 } 

A·2:i=lIA(IT/Zi»-O 

< E{2:2-nE
/
2

} 

AEA 

= E {NA(Zl, ... , Zn, Z~, ... , Z~)2-nE/2} 

< seA, 2n )2-nE/2
, 

and the theorem is proved. 0 

Again, we can bound the sample complexity N (E, 8) restricted to the class of 
distributions with inf¢Ec L(¢) = O. Just as Theorem 12.6 implies Corollary 12.3, 
Theorem 12.7 yields 

COROLLARY 12.4. The sample complexity N(E, 8) that guarantees 

sup P {L(gn) - inf L(¢) > E} :s 8 
(X,y):inf</JEc L(¢)=O ¢EC 

for n 2: N(E, 8), is bounded by 

(
8Vc 13 4 2) 

N(E, 8) :s max -log2 -, -log2 - . 
E E E 8 

A quick comparison with Corollary 12.3 shows that the E2 factors in the denom­
inators there are now replaced by E. For the same accuracy, much smaller samples 
suffice if we know that inf¢Ec L(¢) = O. Interestingly, the sample complexity is 
still roughly linear in the vc dimension. 

REMARK. We also note that under the condition of Theorem 12.7, 

P {L(¢~) > E} < 2E {NA(Zl, ... , Zn, Z~, ... , Z~)} 2-nE
/
2 
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where the class A of sets is defined in the proof of Theorem 12.7. 0 

REMARK. As Theorem 12.7 shows, the difference between the error probability 
of an empirically optimal classifier and that of the optimal in the class is much 
smaller if the latter quantity is known to be zero than if no restriction is imposed 
on the distribution. To bridge the gap between the two bounds, one may put the 
restriction inicPEc L(t/» ~ L on the distribution, where L E (0, 1/2) is a fixed 
number. Devroye and Wagner (1976b) and Vapnik (1982) obtained such bounds. 
For example, it follows from a result by Vapnik (1982) that 

As expected, the bound becomes smaller as L decreases. We face the same phe­
nomenon in Chapter 14, where lower bounds are obtained for the probability above. 
o 

12.8 Extensions 

We mentioned earlier that the constant in the exponent in Theorem 12.5 can be 
improved at the expense of a more complicated argument. The best possible ex­
ponent appears in the following result, whose proof is left as an exercise (Problem 
12.15): 

Theorem 12.8. (DEVROYE (1982A). 

P {sup IVn(A) - v(A)1 > E} ~ cs(A, n2)e-2nE2, 
AEA 

where the constant c does not exceed 4e4E+
4E2 :5 4e8 , E ~ 1. 

Even though the coefficient in front is larger than in Theorem 12.5, it becomes 
very quickly absorbed by the exponential term. We will see in Chapter 13 that 
for VA > 2, seA, n) ~ n VA, so seA, n2) ~ n2VA. This difference is negligible 
compared to the difference between the exponential terms, even for moderately 
large values of nE2. 

Both Theorem 12.5 and Theorem 12.8 imply that 

E {sup Ivn(A) - V(A)I} = o( y'logn/n) 
AEA 
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(see Problem 12.1). However, it is possible to get rid of the logarithmic term to 
obtain 0(1/ Fn). For example, for the Kolmogorov-Srnirnov statistic we have the 
following result by Dvoretzky, Kiefer and Wolfowitz (1956), sharpened by Massart 
(1990): 

Theorem 12.9. (DVORETZKY, KIEFER, AND WOLFOWITZ (1956); MASSART (1990)). 
Using the notation of Theorem 12.4, we have for every nand E > 0, 

P {sup IF(z) - Fn(z)1 > E} ::s 2e-2nE2
. 

ZER 

For the general case, we also have Alexander's bound: 

Theorem 12.10. (ALEXANDER (1984)). For nE2 :::: 64, 

{ } ( 
r:: )4096VA 2 2 P sup Ivn(A) - v(A)1 > E ::s 16 v nE e- nE • 

AEA 

The theorem implies the following (Problem 12.10): 

COROLLARY 12.5. 

{ } 
8+J2048VAlog(4096VA) 

E sup Ivn(A) - v(A)1 ::s Fn . 
AEA n 

The bound in Theorem 12.10 is theoretically interesting, since it implies (see 
Problem 12.10) that for fixed V A the expected value of the supremum decreases as 
a / Fn instead of Jlog n / n. However, a quick comparison reveals that Alexander's 
bound is larger than that of Theorem 12.8, unless n > 26144

, an astronomically 
large value. Recently, Talagrand (1994) obtained a very strong result. He proved 
that there exists a universal constant c such that 

For more information about these inequalities, see also Vapnik (1982), Gaenssler 
(1983), Gaenssler and Stute (1979), and Massart (1983). 

It is only natural to ask whether the uniform law of large numbers 

sup Ivn(A) - v(A)1 -+ 0 
AEA 

holds if we allow A to be the class of all measurable subsets of nd. In this case 
the supremum above is called the total variation between the measures Vn and v. 
The convergence clearly can not hold if Vn is the standard empirical measure 
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But is there another empirical measure such that the convergence holds? The 
somewhat amusing answer is no. As Devroye and Gyorfi (1992) proved, for any 
empirical measure vn-that is, a function depending on Zl, ... , Zn assigning a 
nonnegative number to any measurable set-there exists a distribution of Z such 
that for all n 

sup Ivn(A) - v(A)1 > 1/4 
AEA 

almost surely. Thus, in this generality, the problem is hopeless. For meaningful 
results, either A or v must be restricted. For example, if we assume that v is 
absolutely continuous with density f, and that vn is absolutely continuous too 
(with density fn), then by Scheffe's theorem (1947), 

- 11 sup Ivn(A) - v(A)1 = - I fn(x) - f(x )Idx 
AEA 2 Rd 

(see Problem 12.13). But as we see from Problems 6.2, 10.2,9.6, and 10.3, there 
exist density estimators (such as histogram and kernel estimates) such that the L 1-

error converges to zero almost surely for all possible densities. Therefore, the total 
variation between the empirical measures derived from these density estimates 
and the true measure converges to zero almost surely for all distributions with a 
density. For other large classes of distributions that can be estimated consistently 
in total variation, we refer to Barron, Gyorfi, and van der Meulen (1992). 

Problems and Exercises 

PROBLEM 12.1. Prove that if a nonnegative random variable Z satisfies P{Z > t} :s ce-2nt2 

for all t > ° and some c > 0, then, 

Furthermore, 

EZ :s JE{Z2} :s jlo~~e). 
HINT: Use the identity E{Z2} = 1000 

P{Z2 > t}dt, and set 1000 = IoU + luoo . Bound the 
first integral by u, and the second by the exponential inequality. Find the value of u that 
minimizes the obtained upper bound. 

PROBLEM 12.2. Generalize the arguments of Theorems 4.5 and 4.6 to prove Theorems 12.2 
and 12.3. 

PROBLEM 12.3. Determine the fingering dimension of classes of classifiers C = {¢ : ¢(x) = 
I{xEA);A E A} if the class Ais 

(1) the class of all closed intervals in n, 
(2) the class of all sets obtained as the union of m closed intervals in n, 
(3) the class of balls in n d centered at the origin, 
( 4) the class of all balls in n d , 
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(5) the class of sets of the form (-00, xd x ... x (-00, Xd] in nd , and 
(6) the class of all convex polygons in n2. 

PROBLEM 12.4. Let C be a class of classifiers with fingering dimension k > 4 (independently 
of n). Show that Vc .:; k log~ k. 

PROBLEM 12.5. Prove that Theorem 12.6 implies Corollary 12.3. HINT: Find N(E, 0) such 
that 8n Vc e-nE2 /128.:; 0 whenever n > N (E, 0). To see this, first show that n Vc .:; enE2/256 is 
satisfied for n :::: 51:2Vc log 25:2Vc , which follows from the fact that 2 log x .:; x if x :::: e2. But 

in this case 8n Vc e-nE2 /128 < 8e-nE2 /256. The upper bound does not exceed 0 if n > 256 log £. 
- - E2 8 

PROBLEM 12.6. Let C be a class of classifiers ¢ : nd ---+ {O, 1}, and let ¢,: be a classi­
fier minimizing the empirical error probability measured on Dn. Assume that we have an 
algorithm which selects a classifier gn such that 

where {En} and {On} are sequences of positive numbers converging to zero. Show that 

P {L(gn) - inf L(¢) > E} .:; On +P !2SUP ILn(¢) - L(¢)I > E - En}. 
¢EC ¢EC 

Find conditions on {En} and {On} so that 

(fi¥ogn) 
EL(gn) - inf L(¢) = 0 -, 

¢EC n 

that is, EL(gn) converges to the optimum at the same order as the error probability of ¢,: . 

PROBLEM 12.7. Prove that 

P { sup Ivn(A) - v(A)1 > E} .:; 2P { sup IVn(A) - v~(A)1 > ~} 
A:vn(A)=O A:vn(A)=O 2 

holds if nE > 2. This inequality is needed to complete the proof of Theorem 12.7. HINT: 

Proceed as in the proof of Theorem 12.5. Introduce A * with V/1 (A *) = ° and justify the 
validity of the steps of the following chain of inequalities: 

P L::',~f)=o Ivn(A) - v~(A)1 > E/2} 

> E {I{v(A*»EjP { v~(A*) :::: ~ I ZI, ... , Zn}} 

> P {B(n, E) > n2E} P {lvn(A*) - v(A*)1 > E}, 

where B(n, E) is a binomial random variable with parameters nand E. Finish the proof by 
showing that the probability on the right-hand side is greater than or equal to 1/2 if nE > 2. 
(Under the slightly more restrictive condition nE > 8, this follows from Chebyshev's 
inequality.) 
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PROBLEM 12.8. Prove that Theorem 12.7 implies that if inf</.>Ec L(4)) = 0, then 

* 2Vc 10g(2n) + 4 
EL(4)n) :s: I 2 . n og 

We note here that Haussler, Littlestone, and Warmuth (1988) demonstrated the existence 
of a classifier 4>; with EL(4);) :s: 2Vcln when inf</.>Ec L(4)) = O. HINT: Use the identity 
EX = fooo P{X > t}dt for nonnegative random variables X, and employ the fact that 
S(C, n) :s: nVc (see Theorem 13.3). 

PROBLEM 12.9. Prove the following version of Theorem 12.7. Let 4>; be a function that 
minimizes the empirical error over a class in C. Assume that inf¢Ec L(4)) = O. Then 

P {L(4)J~) > E} :s: 2S(C, n2)e-nE 

(Shawe-Taylor, Anthony, and Biggs (1993». HINT: Modify the proof of Theorem 12.7 by 
introducing a ghost sample Z;, ... , Z:J1 with size m (to be specified after optimization). Only 
the first symmetrization step (Problem 12.7) needs adjusting: show that for any a E (0, 1), 

P { sup v(A) > E}:S: _ I_metE P { SUp v:n(A) > (1 - a)E} , 
A:I'I/(A)-O 1 e A:vl/(A)-O 

where V~I is the empirical measure based on the ghost sample (use Bernstein's inequality­
Theorem 8.2). The rest of the proof is similar to that of Theorem 12.7. Choose m = n2 - n 
and a = n/(n + m). 

PROBLEM 12.10. Prove that Alexander's bound (Theorem 12.10) implies that if A is a 
Vapnik-Chervonenkis class with vc dimension V = VA, then 

{ } 
8 + )2048 V loge 4096 V) 

E sup IVn(A) - v(A)1 :s: r.; . 
AEA v n 

HINT: Justify the following steps: 
(1) If 1/1 is a negative decreasing concave function, then 

f
oo e"'(II) 

e"'(t)dt :s: --,­
II -1/1 (u) 

HINT: Bound l/I by using its Taylor series expansion. 
(2) Let b > 0 be fixed. Then for u 2: .Jb72, 

HINT: Use the previous step. 
(3) Let X be a positive random variable for which 

P{X > u} :s: auh e-2112
, u 2: ..jC, 

where a, b, c are positive constants. Then, if b 2: 2c 2: e, 

a JblOgb EX < -+ --. 
- 2 2 

HINT: Use EX = fo
oo 

P{X > u }du, and bound the probability either by one, or by 
the bound of the previous step. 
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PROBLEM 12.11. Use Alexander's inequality to obtain the following sample size bound for 
empirical error minimization: 

(
214VCIOg (214VC) 4 16) 

N(E, 8) S max . 2 ' zlog - . 
E E 8 

For what values of E does this bound beat Corollary 12.3? 

PROBLEM 12.12. Let ZI, ... , Zn be i.i.d. random variables in Rd, with measure v, and 
standard empirical measure vn • Let A be an arbitrary class of subsets of Rd. Show that as 
n ~ 00, 

if and only if 

sup IVn(A) - v(A)1 ~ 0 in probability 
AEA 

sup Ivn(A) - v(A)1 ~ 0 with probability one. 
AEA 

HINT: Use McDiarmid's inequality. 

PROBLEM 12.13. Prove Scheffe's theorem (1947): let p, and v be absolute continuous prob­
ability measures on nd with densities I and g, respectively. Prove that 

sup 1p,(A) - v(A)1 = ~ f I/(x) - g(x)ldx, 
AEA 2 

where A is the class of all Borel-measurable sets. HINT: Show that the supremum is achieved 
for the set {x : I(x) > g(x)}. 

PROBLEM 12.14. LEARNING BASED ON EMPIRICAL COVERING. This problem demonstrates an 
alternative method of picking a classifier which works as well as empirical error minimiza­
tion. The method, based on empirical covering of the class of classifiers, was introduced by 
Buescher and Kumar (1996a). The idea of covering the class goes back to Vapnik (1982). 
See also Benedek and Itai (1988), Kulkarni (1991), and Dudley, Kulkarni, Richardson, and 
Zeitouni (1994). LetC be a class ofclassifierscp : Rd ~ {O, I}. ThedatasetDn is split into 
two parts, Dm = «XI, YI), ... , (Xm' Ym», and Tt = «Xm+I' Ym+I), ... , (Xn' Yn», where 
n = m + I. We use the first part Dm to cover C as follows. Define the random variable N as 
the number of different values the binary vector bm(cp) = (cp(X I), ... , cp(Xm» takes as cp is 
varied over C. Clearly, N S S(C, m). Take N classifiers from C, such that all N possible 
values of the binary vector bm (cp) are represented exactly once. Denote these classifiers 
by 4>1, ... , 4> N. Among these functions, pick one that minimizes the empirical error on the 
second part of the data set Tt: 

Denote the selected classifier by ;p,l' Show that for every n, m and E > 0, the difference 
between the error probability L(;p,l) = P{¢,;(X) "I YIDn } and the minimal error probability 
in the class satisfies 
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(Buescher and Kumar (1996a». For example, by taking m '" ,Jii., we get 

{ ...... } F¥ClOgn 
E L(</Jn) - inf L(</J) ~ c --, 

~EC n 

where c is a universal constant. The fact that the number of samples m used for covering C 
is very small compared to n, may make the algorithm computationally more attractive than 
the method of empirical error minimization. HINT: Use the decomposition 

P {L(¢n) - inf L(</J) > E} 
~EC 

Bound the first term on the right-hand side by using Lemma 8.2 and Hoeffding's inequality: 

To bound the second term of the decomposition, observe that 

inf L(¢i) - inf L(</J) < sup IL(</J) - L(¢')I 
i-I, ... ,N ~EC ~,¢>/EC:bm(~)-bmW) 

< sup p{</J(X)i¢'(X)} 
~,~/EC:bm(~)-bm(~/) 

sup v(A), 
AEA:vm(A)=O 

where 
A = {{x : </J(x) = I} : ¢(x) = 1¢I(x) - ¢2(x)l, ¢I, ¢2 E C}, 

and vm(A) = ~ .E:I l{x;EA). Bound the latter quantity by applying Theorem 12.7. To do 
this, you will need to bound the shatter coefficients seA, 2m). In Chapter 13 we introduce 
simple tools for this. For example, it is easy to deduce from parts (ii), (iii), and (iv) of 
Theorem 13.5, that seA, 2m) ~ S4(C, 2m). 

PROBLEM 12.15. Prove that for all E E (0, 1), 

P {sup /vn(A) - v(A)/ > E} ~ cs(A, n2)e-2nE2 , 
AEA 

where c ~ 4e4€+4€2 (Devroye (1982a». HINT: Proceed as indicated by the following steps: 
(1) Introduce an i.i.d. ghost sample Zi, ... , Z~ of size m = n2 

- n, where Zi is 
distributed as Z 1. Denote the corresponding empirical measure by v~. As in the 
proof of the first step of Theorem 12.4, prove that for a, E E (0, 1), 

P {sup IVn(A) - v~(A)1 > (1 - a)E} 
AEA 

( 1 - +,) P {sup IVn(A) - v(A)/ > E}. 
4a E m AEA 
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(2) Introduce n2 ! permutations IT r , ... , ITn+m of the n + m random variables as in 
Step 2 of the proof of Theorem 12.5. Show that 

1 /1
2

! 

n2 ! ~ ~~~ I{I* L::'=l IA(TIjCZi))-;), L:r=l JACTIjCZ;))I>CI-a)E} 

(3) Show that for each A E A, 

by using Hoeffding's inequality for sampling without replacement from n2 binary­
valued elements (see Theorem A.25). Choose a = I/(nE). 





13 
Combinatorial Aspects of 
Vapnik -Chervonenkis Theory 

13.1 Shatter Coefficients and VC Dimension 

In this section we list a few interesting properties of shatter coefficients seA, n) 

and of the vc dimension V A of a class of sets A. We begin with a property that 
makes things easier. In Chapter 12 we noted the importance of classes of the form 

A = {A x {OJ U A C x {l}; A E A} . 

(The sets A are of the form {x : ¢(x) = I}, and the sets in A are sets of pairs (x, y) 
for which ¢(x) =I y.) Recall that if C is a class of classifiers ¢ : Rd ---+ {O, I}, 
then by definition, S(C, n) = seA, n) and Vc = VA. The first result states that 
S(C, n) = seA, n), so it suffices to investigate properties of A, a class of subsets 
of Rd. 

Theorem 13.1. For every n we have seA, n) = seA, n), and therefore VA = VA. 

PROOF. Let N be a positive integer. We show that for any n pairs from Rd x 
{O, I}, if N sets from A pick N different subsets of the n pairs, then there are 
N corresponding sets in A that pick N different subsets of n points in R d , and 
vice versa. Fix n pairs (Xl, 0), ... , (xm, 0), (Xm+l, 1), ... , (xn, 1). Note that since 
ordering does not matter, we may arrange any n pairs in this manner. Assume that 
for a certain set A E A, the corresponding set A = A x {OJ U AC x {I} E A picks 
out the pairs (Xl, 0), ... , (Xk, 0), (Xm+l, 1), ... , (xm+Z, 1), that is, the set of these 
pairs is the intersection of A and the n pairs. Again, we can assume without loss of 
generality that the pairs are ordered in this way. This means that A picks from the set 
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{Xl, ... ,xn } the subset {Xl, ... ,Xb Xm+l+l, ... ,X,,}, and the two subsets uniquely 
determine each other. This proves seA, n) :::: seA, n). To prove the other direction, 
notice that if A picks a subset of k points Xl, ... , Xb then the corresponding set 
A E A picks the pairs with the same indices from {(Xl, 0), "" (Xb O)}. Equality 
of the vc dimensions follows from the equality of the shatter coefficients. 0 

The following theorem, attributed to Vapnik and Chervonenkis (1971) and Sauer 
(1972), describes the relationship between the vc dimension and shatter coeffi­
cients of a class of sets. This is the most important tool for obtaining useful upper 
bounds on the shatter coefficients in terms of the vc dimension. 

Theorem 13.2. If A is a class of sets with vc dimension V A, then for every n 

seA, n) :::: t (~). 
i=O 1 

PROOF. Recall the definition of the shatter coefficients 

where 

seA, n) = max NA(Xl,"" Xn ), 
(Xj, ... ,xn ) 

NA(XI, ... ,Xn) = I{{XI, ... ,xn}nA;A E All· 
Clearly, it suffices to prove that for every Xl, ... , X n , 

But since N A(XI, ... , xn) is just the shatter coefficient of the class of finite sets 

we need only to prove the theorem for finite sets. We assume without loss of 
generality that A is a class of subsets of {Xl, ... , xn} with vc dimension VA. Note 
that in this case seA, n) = IAI. 

We prove the theorem by induction with respect to n and VA. The statement is 
obviously true for n = 1 for any class with V A ~ 1. It is also true for any n ~ 1 if 
VA = 0, since seA, n) = 1 for all n in this case. Thus, we assume VA 2:: 1. Assume 
that the statement is true for all k < n for all classes of subsets of {Xl, ... , xd 
with vc dimension not exceeding VA, and for n for all classes with vc dimension 
smaller than VA. Define the following two classes of subsets of {Xl, ... , xn}: 

A' = {A - {xn }; A E A}, 

and 
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Note that both A' and A contain subsets of {Xl, ... , xn-d. A contains all sets A 
that are members of A such that AU {xn} is also in A, but Xn tJ. A. 

Then IAI = IA'I + IAI. To see this, write 

A' = {A - {xn} : Xn E A, A E ArU {A - {xn} : Xn tJ. A, A E A} = 8 1 U 8 2. 

Thus, 

IA'I 1811 + 182 1 - 181 n 8 2 1 

I{A - {xn} : Xn E A, A E A}I + I{A - {xn} : Xn tJ. A, A E A}I - IAI 

= I{A: Xn E A, A E A}I + I{A : Xn tJ. A, A E A}I - IAI 

IAI-IAI. 

Since IA'I :s IAI, and A' is a class of subsets of {Xl, ... ,xn-d, the induction 
hypothesis implies that 

~ (n -1) IA'I = seA', n 1) .:s ~ . . 
i=O 1 

Next we show that VA.:s VA - 1, which will imply 

by the induction hypothesis. To see this, consider a set S C {Xl, ... , xn-d that is 
shattered by A. Then S U {xn} is shattered by A. To prove this we have to show 
that any set S' C Sand S' U {xn} is the intersection of S U {xn} and a set from 
A. Since S is shattered by A, if S' C S, then there exists a set A E A such that 
S' = S n A. But since by definition Xn tJ. A, we must have 

S' = (S U {xnD n A 
and 

Sf U {xn} = (S U {xnD n (AU {xn}) . 

Since by the definition of A both A and AU {Xn} are in A, we see that S U {xn} 
is indeed shattered by A. But any set that is shattered by A must have cardinality 
not exceeding VA, therefore lSI .:s VA - l. But S was an arbitrary set shattered by 
A, which means VA .:s VA - 1. Thus, we have shown that 

seA, n) = IAI = IA'I + IAI :s L n ~ + L n ~ . 
VA ( 1) VA-l ( 1) 
i=O 1 i=O 1 

Straightforward application of the identity (7) = C~l) + (7=:) shows that 
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Theorem 13.2 has some very surprising implications. For example, it follows 
immediately from the binomial theorem that seA, n) ::: (n + 1) VA. This means that 
a shatter coefficient falls in one of two categories: either seA, n) = 2n for all n, or 
seA, n) ::: (n + l)VA, which happens if the vc dimension of A is finite. We cannot 
have seA, n) ~ 2Jn, for example. If VA < 00, the upper bound in Theorem 12.5 
decreases exponentially quickly with n. Other sharper bounds are given below. 

Theorem 13.3. For all n > 2 V, 

VA (n) ( en ) VA seA, n) ::: L . ::: -
i=O l VA 

Theorem 13.3 follows from Theorem 13.4 below. We leave the details as an 
exercise (see Problem 13.2). 

Theorem 13.4. For all n 2: 1 and VA < n /2, 

H(~) seA, n) ::: en n, 

where H(x) = -x logx - 0 - x) logO - x)for x E (0, 1), and H(O) = HO) = 0 
is the binary entropy function. 

Theorem 13.4 is a consequence of Theorem 13.2, and the inequality below. A 
different, probabilistic proof is sketched in Problem 13.3 (see also Problem 13.4). 

Lemma 13.1. For k < n /2, 

PROOF. Introduce). = kin ::: 1/2. By the binomial theorem, 

(since )./0 - ).) ::: 1) 

= e -nH("A) t (~), 
i==O l 

the desired inequality. 0 
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REMARK. The binary entropy function H(x) plays a central role in information 
theory (see, e.g., Csiszar and Korner (1981), Cover and Thomas (1991». Its main 
properties are the following: H(x) is symmetric around 1/2, where it takes its 
maximum. It is continuous, concave, strictly monotone increasing in [0, 1/2], 
decreasing in [1/2, 1], and equals zero for x = 0, and x = 1. 0 

Next we present some simple results about shatter coefficients of classes that 
are obtained by combinations of classes of sets. 

Theorem 13.5. 

(i) If A = Al U A 2, then seA, n) ::s s(A I , n) + s(A2 , n). 
(ii) Given a class A define Ac = {A C

; A E A}. Then s(Ac, n) = seA, n). 

(iii) For A = {A n A; A E A, A E A} seA, n) ::s seA, n)s(A, n). 

(iv) For A = {AU A; A E A, A E A}, seA, n) ::s seA, n)s(A, n). 

(v) For A = {A x A; A E A, A E A}, seA, n) ::s seA, n)s(A, n). 

PROOF. (i), (ii), and (v) are trivial. To prove (iii), fix n points Xl, ... , xn , and 
assume that A picks N ::s seA, n) subsets C I , ... , CN. Then A picks from C at 
most seA, ICil) subsets. Therefore, sets of the form AnA pick at most 

N 

L seA, I Ci I) ::s seA, n )s(A, n) 
i=l 

subsets. Here we used the obvious monotonicity property seA, n) ::s seA, n + m). 
To prove (iv), observe that 

{ A U A; A E A, A E A} = { (AC n A c ) c ; A E A, A E A} . 
The statement now follows from (ii) and (iii). 0 

13.2 Shatter Coefficients of Some Classes 

Here we calculate shatter coefficients of some simple but important examples of 
classes of subsets of nd. We begin with a simple observation. 

Theorem 13.6. If A contains finitely many sets, then VA < log2 lAI, and 
seA, n) ::s IAI for every n. 

PROOF. The first inequality follows from the fact that at least 2n sets are necessary 
to shatter n points. The second inequality is trivial. 0 
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In the next example, it is interesting to observe that the bound of Theorem 13.2 
is tight. 

Theorem 13.7. 

(i) If A is the class of all half lines: A == {( -00, x]; x E R}, then VA == 1, 
and 

s(A, n) = n + 1 = (~) + (:), 

(ii) If A is the class of all intervals in R, then VA == 2, and 

n(n + 1) (n) (n) (n) seA, n) == 2 + 1 == ° + 1 + 2 . 

PROOF. (i) is easy. To see that VA == 2 in (ii), observe that if we fix three different 
points in R, then there is no interval that does not contain the middle point, but 
does contain the other two. The shatter coefficient can be calculated by counting 
that there are at most n - k + 1 sets in {A n {Xl, ... , xn }; A E A} such that 
IA n {Xl, ... , xn}1 == k for k == 1, ... , n, and one set (namely 0) such that IA n 
{x 1, ... , Xn} I == 0. This gives altogether 

o n(n + 1) 
1 + L..-(n - k + 1) = + 1. 0 

k=l 2 

Now we can generalize the result above for classes of intervals and rectangles 
in Rd: 

Theorem 13.8. 

(i) If A = {( -00, xd x ... x (-00, Xd]}, then VA = d. 
(ii) If A is the class of all rectangles in R d

, then VA = 2d. 

PROOF. We prove (ii). The first part is left as an exercise (Problem 13.5). We have 
to show that there are 2d points that can be shattered by A, but for any set of 2d + 1 
points there is a subset of it that can not be picked by sets in A. To see the first part 
just consider the following 2d points: 

(1,0,0, ... ,0), (0, 1,0,0, ... ,0), ... , (0,0, ... ,0, 1), 

(-1,0,0, ... ,0), (0, -1,0,0, ... ,0), ... , (0,0, ... ,0, -1), 

(see Figure 13.1). 
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FIGURE 13.1. 24 = 16 rectangles 

shatter 4 points in n2. 

On the other hand, for any given set of 2d + 1 points we can choose a subset of at 
most 2d points with the property that it contains a point with largest first coordinate, 
a point with smallest first coordinate, a point with largest second coordinate, and 
so forth. Clearly, there is no set in A that contains these points, but does not contain 
the others (Figure 13.2). D 

max Y 

minX 

o 
Z 

max X 

minY 

FIGURE 13.2. No 5 points can be 

shattered by rectangles in n2. 

Theorem 13.9. (STEELE (1975), DUDLEY (1978)). Let 9 be afinite-dimensional 
vector space of real functions on nd. The class of sets 

A = {{x : g(x) :::: O} : g E g} 

has vc dimension VA ::: r, where r = dimension(g). 

PROOF. It suffices to show that no set of size m = 1 + r can be shattered by sets of 
the form {x : g(x) :::: O}. Fix m arbitrary points Xl, ... , xm , and define the linear 
mapping L : 9 -+ nm as 
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Then the image of Q, L(Q), is a linear subspace of nm of dimension not ex­
ceeding the dimension of Q, that is, m - 1. Then there exists a nonzero vector 
Y = (Yl, ... , Ym) E nm, that is orthogonal to L(Q), that is, for every g E Q 

We can assume that at least one of the Yi 's is negative. Rearrange this equality so 
that terms with nonnegative Yi stay on the left-hand side: 

L Yig(Xi) = L -Yig(Xi)' 
i:Yi:::O i:Yi<O 

Now, suppose that there exists agE Q such that the set {x : g(x) ~ O} picks 
exactly the xi's on the left-hand side. Then all terms on the left-hand side are 
nonnegative, while the terms on the right-hand side must be negative, which is a 
contradiction, so Xl, ... , Xm cannot be shattered, and the proof is completed. 0 

REMARK. Theorem 13.2 implies that the shatter coefficients of the class of sets in 
Theorem 13.9 are bounded as follows: 

seA, n) :s t (~). 
i=O 1 

In many cases it is possible to get sharper estimates. Let 

be the linear space of functions spanned by some fixed functions 1/fI, ... , 1jf r 

n d -+ n, and define \lI(x) = (o/l(X), ... , o/r(x». Cover (1965) showed that 
if for some Xl, ... ,Xn E nd , every r-element subset of \lI(Xl), ... , \lI(xn) is 
linearly independent, then the n-th shatter coefficient of the class of sets A = 
{{x : g(x) ~ O} : g E Q} actually equals 

seA, n) = 2 L n ~ 1'-1 ( 1) 
i=O 1 

(see Problem 13.6). By using the last identity in the proof of Theorem 13.2, it is 
easily seen that the difference between the bound obtained from Theorem 13.9 
and the true value is (n~l). Using Cover's result for the shatter coefficients we can 
actually improve Theorem 13.9, in that the vc dimension of the class A equals r. 
To see this, note that 
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while 

seA, r + 1) = 2 ~ (~) = 2 t (~) -2(r) = 2· 2r - 2 < 2r+l. 
i=O li=O l . r 

Therefore no r + 1 points are shattered. It is interesting that Theorem 13.9 above 
combined with Theorem 13.2 and Theorem 13.3 gives the bound 

s(A,n) s nr + 1 

when r > 2. Cover's result, however, improves it to 

seA, n) S 2(n - 1y-1 + 2. 0 

Perhaps the most important class of sets is the class of halfspaces in Rd, that is, 
sets containing points falling on one side of a hyperplane. The shatter coefficients 
of this class can be obtained from the results above: 

COROLLARY 13.1. Let A be the class of half spaces, that is, subsets ofRd of the 
form {x : ax :::: b}, where a E Rd, bE Rtakeallpossiblevalues. Then VA = d+1, 
and 

PROOF. This is an immediate consequence of the remark above if we take 9 to be 
the linear space spanned by the functions 

(h(x) = x(l), (h(x) = X(2), ... , <Pd(X) = xed), and <Pd+I(X) = 1, 

where x(l), ... , xed) denote the d components of the vector x. 0 

It is equally simple now to obtain an upper bound on the vc dimension of the 
class of all closed balls in Rd (see Cover (1965), Devroye (1978), or Dudley (1979) 
for more information). 

COROLLARY 13.2. Let A be the class of all closed balls in R d, that is, subsets of 
Rd of the form 

where aI, ... , ad, b E R take all possible values. Then VA S d + 2. 

PROOF. If we write 

d d d d 
L Ix(i) - ail 2 

- b = L IX(i)1 2 
- 2 LX(i)ai + Lal- b, 

i=l i=l i=1 i=l 
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then it is clear that Theorem 13.9 yields the result by setting 9 to be the linear 
space spanned by 

d 

(h(x) = L IxU)IZ, (h(x) = x(l), ... , ¢d+l(X) = xed), and ¢d+Z(X) = 1. 0 

i=l 

It follows from Theorems 13.9 and 13.5 (iii) that the class of all polytopes with 
a bounded number of faces has finite vc dimension. The next negative example 
demonstrates that this boundedness is necessary. 

Theorem 13.10. If A is the class of all convex polygons in R Z
, then VA = 00. 

FIGURE 13.3. Any subset of n points 

on the unit circle can be picked by a 

convex polygon. 

PROOF. Let Xl, ... ,Xn E R2 lie on the unit circle. Then it is easy to see that for 
any subset of these (different) points there is a polygon that picks that subset. 0 

13.3 Linear and Generalized Linear Discrimination 
Rules 

Recall from Chapter 4 that a linear classification rule classifies X into one of the 
two classes according to whether 

d 

ao + Laix(i) 
i=l 

is positive or negative, where xCI), ... ,x(d) denote the components of x E Rd. 

The coefficients ai are determined by the training sequence. These decisions di­
chotomize the space R d by virtue of a halfspace, and assign class 1 to one halfspace, 
and class 0 to the other. Points on the border are treated as belonging to class O. 
Consider a classifier that adjusts the coefficients by minimizing the number of 
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errors committed on Dn. In the terminology of Chapter 12, C is the collection of 
all linear classifiers. 

o 
x, 

. 
Xs 

o 
X

7 

. 
XII 

o 

X6 decide class 0 
o 
X8 

decide class 1 

FIGURE 13.4. An empirically opti­

mal linear classifier. 

Glick (1976) pointed out that for the error probability L(¢l~) of this classifier, 
L(¢l~) - inf¢Ec L(¢) -+ ° almost surely. However, from Theorems 12.6, 13.1 and 
Corollary 13.1, we can now provide more details: 

Theorem 13.11. For all nand E > 0, the error probability L( ¢~) of the empirically 
optimal linear classifier satisfies 

P {L(¢*) - inf L(¢) > E} :s 8nd+le-nE2/128. 
n ¢EC 

Comparing the above inequality with Theorem 4.5, note that there we selected 
¢~ by a specific algorithm, while this result holds for any linear classifier whose 
empirical error is minimal. 

Generalized linear classification rules (see Duda and Hart (1973» are defined 
by 

where d* is a positive integer, the functions 1/II, ... , 0/ d* are fixed, and the coef­
ficients ao, ... ,ad* are functions of the data Dn. These include for example all 
quadratic discrimination rules in n d when we choose all functions that are either 
components of x, or squares of components of x, or products of two components 
of x. That is, the functions o/i (x) are of the form either x(j), or x(j) x(k). In all, 
d* = 2d + d(d - 1)/2. The argument used for linear discriminants remain valid, 
and we obtain 

Theorem 13.12. Let C be the class of generalized linear discriminants (i.e., the 
coefficients vary, the basis functions o/i are fixed). For the error probability L( ¢l~) 
of the empirically optimal classifier, for all d* > 1,n and E > 0, we have 



226 13. Combinatorial Aspects of Vapnik -Chervonenkis Theory 

Also, for n > 2d* + 1, 

The second inequality is obtained by using the bound of Theorem 13.4 for the 
shatter coefficients. Note nevertheless that unless d* (and therefore C) is allowed to 
increase with n, there is no hope of obtaining universal consistency. The question 
of universal consistency will be addressed in Chapters 17 and 18. 

13.4 Convex Sets and Monotone Layers 

Classes of infinite vc dimension are not hopeless by any means. In this section, 
we offer examples that will show how they may be useful in pattern recognition. 
The classes of interest to us for now are 

C = { all convex sets of n 2 
} 

C = { all monotone layers of n 2
, i.e., all sets of the form 

{(Xl, X2) : X2 ~ 1jf(Xl)} for some nonincreasing function 1jf }. 

In discrimination, this corresponds to making decisions of the form ¢(x) = I{xEC}, 

C E C, or ¢(x) = I{x1-c}, C E C, and similarly for C. Decisions of these forms 
are important in many situations. For example, if 1J(x) is monotone decreasing in 
both components of X E n2

, then the Bayes rule is of the form g*(x) = hX:EL} for 
some L E C. We have pointed out elsewhere (Theorem 13.10, and Problem 13.19) 
that Vc = V.c = ex). To see this, note that any set of n points on the unit circle is 
shattered by C, while any set of n points on the antidiagonal X2 = -Xl is shattered 
by C. Nevertheless, shattering becomes unlikely if X has a density. Our starting 
point here is the bound obtained while proving Theorem 12.5: 

where NA(X 1, ••• , Xn)is the number of sets in {A n {Xl, ... , Xn} : A E A}. The 
following theorem is essential: 

Theorem 13.13. If X has a density f on n2, then 

when A is either C or £. 

This theorem, a proof of which is a must for the reader, implies the following: 
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COROLLARY 13.3. Let X have a density f on n2. Let ¢~ be picked by minimizing 
the empirical error over all classifiers of the form 

¢(x) ={ 01 if x E A 
if x tf: A, 

where A or A C is in C (or £). Then 

L(¢~) ---+ inf L(¢) 
¢=Ic for C or CC in C 

with probability one (and similarly for £). 

PROOF. This follows from the inequality of Lemma 8.2, Theorem 13.13, and the 
Borel-Cantelli lemma. D 

REMARK. Theorem 13 .13 and the corollary may be extended to n d, but this gen­
eralization holds nothing new and will only result in tedious notations. D 

PROOF OF THEOREM 13.13. We show the theorem for £, and indicate the proof 
for C. Take two sequences of integers, m and r, where m "" ..jii and r "" m 1/3, so 
that m ---+ 00, yet r21m ---+ 0, as n ---+ 00. Consider the set [-r, r]2 and partition 
each side into m equal intervals, thus obtaining an m x m grid of square cells 
Cl, ... , Cm2. Denote Co = n2 - [-r, r]2. Let No, Nl, ... ,Nm2 be the number of 
points among Xl, ... , Xn that belong to these cells. The vector (No, N l , ... , N m2) 
is clearly multinomially distributed. 

Let 1/1 be a nonincreasing function n ---+ n defining a set in £ by L = {(Xl, X2) : 
X2 :::; 1/I(Xl)}. Let C(1/I) be the collection of all cell sets cut by 1/1, that is, all cells 
with a nonempty intersection with both Land L c. The collection C ( 1/1) is shaded 
in Figure 13.5. 

FIGURE 13.5. A monotone layer and 

bordering cells. 
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We bound N dX 1, ... , Xn) from above, conservatively, as follows: 

(13.1) 

The number of different collections C ( 1/1) cannot exceed 22m because each cell 
in C ( 1/1) may be obtained from its predecessor cell by either moving right on the 
same row or moving down one cell in the same column. For a particular collection, 
denoting Pi = P{X E C}, we have 

= (~ 2 Pi + 2 Po + 1 - ~ Pi _ po) n 

Ci EC(1/!) Ci EC(1/!) 

(by applying Lemma A.7) 

< exp (n C~o/) p; + po)) 

< exp C en sets A wit~Uf(A) :s: 8r'Im 1 f + L f) ) 

= 

(since A (,' U Ci) S 2m(2rlm)2 = 8r21m) 
t.Ci EC(1/!) 

because r2 I m -+ 0 and r -+ 00 and by the absolute continuity of X. As this 
estimate is uniform over all collections C (1/1), we see that the expected value of 
(13.1) is not more than 22m eo(n) = eo(n). The argument for the collection C of 
convex sets is analogous. 0 

REMARK. The theorem implies that if A is the class of all convex sets, then 
SUPAEA IfLn(A) - fL(A)1 -+ 0 with probability one whenever fL has a density. This 
is a special case of a result of Ranga Rao (1962). Assume now that the density f 
of X is bounded and of bounded support. Then in the proof above we may take 
r fixed so that [ -r, r]2 contains the support of I. Then the estimate of Theorem 
13.13 is 

E {N (X X )} < 22m. e8nllfllex,r2/m AI, .. ·, n 

(where 11/1100 denotes the bound on I) 
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= 24r .Jn II flloo e4r.Jnllflloo 

(if we take m = 2rJnllflloo) 

for a constant a. This implies by Corollary 12.1 that 

E {L(¢~) - inf L(¢)} = 0 (n-I/4) . 
r/J=lc for Coree in C 

This latter inequality was proved by Steele (1975). To see that it cannot be extended 
to arbitrary densities, observe that the data points falling on the convex hull (or 
upper layer) of the points X I, ... , X n can always be shattered by convex sets (or 
monotone layers, respectively). Thus, NA(X I , ... , Xn) is at least 2M", where Mn 
is the number of points among Xl, ... , X n , falling on the convex hull (or upper 
layer) of X I, ... , X n . Thus, 

But it follows from results of Carnal (1970) and Devroye (1991b) that for each 
a < 1, there exists a density such that 

. E{Mn } 
hmsup --- > 1. 0 

n-+oo na 

The important point of this interlude is that with infinite vc dimension, we 
may under some circumstances get expected error rates that are 0(1) but larger 
than 1/,Jri. However, the bounds are sometimes rather loose. The reason is the 
looseness of the Vapnik -Chervonenkis inequality when the collections A become 
very big. To get such results for classes with infinite vc dimension it is necessary 
to impose some conditions on the distribution. We will prove this in Chapter 14. 

Problems and Exercises 

PROBLEM 13.1. Show that the inequality of Theorem 13.2 is tight, that is, exhibit a class A 
of sets such that for each n, seA, n) = 'L:1 G). 

PROBLEM 13.2. Show that for all n > 2VA 

and that 
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if VA > 2. HINT: There are several ways to prove the statements. One can proceed di­
rectly by using the recurrence L~ (;) = L~fo e~l) + L~fo-l e~} A simpler way to 

prove L~1 G) :::: ( ~:) VA is by using Theorem 13.4. The third inequality is an immediate 

consequence of the first two. 

PROBLEM 13.3. Give an alternative proof of Lemma 13.1 by completing the following 
probabilistic argument. Observe that for k' = n - k, 

where Bn is a binomial random variable with parameters nand 1/2. Then Chernoff's 
bounding technique (see the proof of Theorem 8.1) may be used to bound this probability: 
for all s > 0, 

P{Bn :::: k'} :::: e-sk'E {eSEll
} = exp ( -n (Sk'in -log (e

S

; 1))) . 
Take the derivative of the exponent with respect to s to minimize the upper bound. Substitute 
the obtained value into the bound to get the desired inequality. 

PROBLEM 13.4. Let B be a binomial random variable with parameters nand p. Prove that 
for k > np 

P{B:::: k}:::: exp (-n (H(kln) + ~logp+ n :k 10g(1- P))). 

HINT: Use Chernoff's bounding technique as in the previous problem. 

PROBLEM 13.5. Prove part (i) of Theorem 13.8. 

PROBLEM 13.6. Prove that for the class of sets defined in the remark following Theorem 
13.9, 

seA, n) = 2 L n ~ r-1 ( 1) 
i=O l 

(Cover (1965». HINT: Proceed by induction with respect to nand r. In particular, show that 
the recurrence sCAr, n) = sCAn n - 1) + s(Ar- 1, n - 1) holds, where Ar denotes the class 
of sets defined as {x : g(x) :::: O} where g runs through a vector space spanned by the first 
r of the sequence of functions 1h, 7f2, .... 

PROBLEM 13.7. Let A and B be two families of subsets of nd 
• Assume that for some r :::: 2, 

seA, n) :::: nrs(B, n) 

for all n :::: 1. Show that if VB > 2, then VA :::: 2 (VB + r - 1) log (VB + r - 1). HINT: 

By Theorem 13.3, seA, n) :::: n Vs+r-l. Clearly, VA is not larger than any k for which 
kVs+r-l < 2k. 

PROBLEM 13.8. Determine the vc dimension of the class of subsets of the real line such that 
each set in the class can be written as a union of k intervals. 
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PROBLEM 13.9. Determine the vc dimension of the collection of all polygons with k vertices 
in the plane. 

PROBLEM 13.10. What is the vc dimension of the collection of all ellipsoids ofnd ? 

PROBLEM 13 .11. Determine the vc dimension of the collection of all subsets of {1, ... , k}d , 
where k and d are fixed. How does the answer change if we restrict the subsets to those of 
cardinality l :'S kd? 

PROBLEM 13.12. Let A consist of all simplices ofnd , that is, all sets of the form 

where Xl, ... ,Xd+l are fixed points of nd. Determine the vc dimension of A. 

PROBLEM 13.13. Let A(XI' ... ,Xk) be the set of all X En that are of the form 

where Xl, ... , Xk are fixed numbers and 'tfI, ... , 'tfk are fixed functions on the integers. Let 
A = {A(XI, ... ,xd : Xl, ... , Xk En}. Determine the vc dimension of A. 

PROBLEM 13.14. In some sense, vc dimension measures the "size" of a class of sets. How­
ever it has little to do with cardinalities, as this exercise demonstrates. Exhibit a class of 
subsets of the integers with uncountably many sets, yet vc dimension 1. (This property was 
pointed out to us by Andras Farago.) Note: On the other hand, the class of all subsets of 
integers cannot be written as a countable union of classes with finite vc dimension (Theo­
rem 18.6). HINT: Find a class of subsets of the reals with the desired properties, and make 
a proper correspondence between sets of integers and sets in the class. 

PROBLEM 13.15. Show that if a class of sets A is linearly ordered by inclusion, that is, for 
any pair of sets A, B E A either A c B or B c A and IAI 2:: 2, then VA = 1. Conversely, 
assume that VA = 1 and for every set B with I B I = 2, 

0, B E {A n B : A E A}. 

Prove that then A is linearly ordered by inclusion (Dudley (1984)). 

PROBLEM 13.16. We say that four sets A, B, C, D form a diamond if A c B C C, A C 

DeC, but B ct D and D ct C. Let A be a class of sets. Show that VA 2:: 2 if and only if 
for some set R, the class {A n R : A E A} includes a diamond (Dudley (1984)). 

PROBLEM 13 .17. Let A be a class of sets, and define its density by 

DA = inf {r > 0: sup seA, n) < oo} . 
n:::::l nr 

Verify the following properties: 
(1) DA:'S VA; 
(2) For each positive integer k, there exists a class A of sets such that VA = k, yet 

DA = 0; and 
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(3) DA < 00 if and only if VA < 00 

(Assouad (1983a)). 

PROBLEM 13.18. CONTINUED. Let A and AI be classes of sets, and define B = A u A'. Show 
that 

(1) DB = max (DA' DA'); 
(2) VB::S VA + VA' + 1; and 
(3) For every pair of positive integers k, m there exist classes A and AI such that 

VA =k, VA' =m, and VB =k+m+ 1 
(Assouad (l983a)). 

PROBLEM 13.19. A set A C n d is called a monotone layer if x E A implies that yEA for 
all y ::s x (i.e., each component of x is not larger than the corresponding component of y). 

Show that the class of all monotone layers has infinite vc dimension. 

PROBLEM 13.20. Let(X, Y)beapairofrandomvariablesinn2 x{0, l}suchthatY = I{xEA}, 

where A is a convex set. Let Dn = «Xl, Yd, ... , (Xn' Yn)) be an i.i.d. training sequence, 
and consider the classifier 

if x is in the convex hull of the Xi'S with Y = 1 
otherwise. 

Find a distribution for which gil is not consistent, and find conditions for consistency. HINT: 
Recall Theorem 13.10 and its proof. 



14 
Lower Bounds for Empirical 
Classifier Selection 

In Chapter 12 a classifier was selected by minimizing the empirical error over a 
class of classifiers C. With the help of the Vapnik -Chervonenkis theory we have 
been able to obtain distribution-free performance guarantees for the selected rule. 
For example, it was shown that the difference between the expected error proba­
bility of the selected rule and the best error probability in the class behaves at least 
as well as o (.jVc logn/n), where Vc is the Vapnik-Chervonenkis dimension of 
C, and n is the size of the training data Dn. (This upper bound is obtained from 
Theorem 12.5. Corollary 12.5 may be used to replace the log n term with log Vc.) 
Two questions arise immediately: Are these upper bounds (at least up to the order 
of magnitude) tight? Is there a much better way of selecting a classifier than mini­
mizing the empirical error? This chapter attempts to answer these questions. As it 
turns out, the answer is essentially affirmative for the first question, and negative 
for the second. 

These questions were also asked in the learning theory setup, where it is usually 
assumed that the error probability of the best classifier in the class is zero (see 
Blumer, Ehrenfeucht, Haussler, and Warmuth (1989), Haussler, Littlestone, and 
Warmuth (1988), and Ehrenfeucht, Haussler, Kearns, and Valiant (1989)). In this 
case, as the bound of Theorem 12.7 implies, the error of the rule selected by 
minimizing the empirical error is within 0 (Vc log n / n) of that of the best in the 
class (which equals zero, by assumption). We will see that essentially there is no 
way to beat this upper bound either. 
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14.1 Minimax Lower Bounds 

Let us formulate exactly what we are interested in. Let C be a class of decision 
functions ¢ : nd ---+ {O, I}. The training sequence Dn = ((Xl, YI ), ... , (Xn, Yn)) 
is used to select the classifier gn(X) = gn(X, Dn) from C, where the selection is 
based on the data Dn. We emphasize here that gn can be an arbitrary function of 
the data, we do not restrict our attention to empirical error minimization, where 
gn is a classifier in C that minimizes the number errors committed on the data Dn. 

As before, we measure the performance of the selected classifier by the dif­
ference between the error probability L(gn) = P{gn(X) i YIDn} of the selected 
classifier and that of the best in the class. To save space further on, denote this 
optimum by 

Lc d;f inf P{¢(X) i Y}. 
Ij>EC 

In particular, we seek lower bounds for 

supP{L(gn) - Lc > E}, 

and 
supEL(gn) - Lc, 

where the supremum is taken over all possible distributions of the pair (X, Y). A 
lower bound for one of these quantities means that no matter what our method of 
picking a rule from C is, we may face a distribution such that our method performs 
worse than the bound. This view may be criticized as too pessimistic. However, 
it is clearly a perfectly meaningful question to pursue, as typically we have no 
other information available than the training data, so we have to be prepared for 
the worst situation. 

Actually, we investigate a stronger problem, in that the supremum is taken over 
all distributions with Lc kept at a fixed value between zero and 1/2. We will see 
that the bounds depend on n, Vc, and Lc jointly. As it turns out, the situations 
for Lc > 0 and Lc = 0 are quite different. Because of its relative simplicity, 
we first treat the case Lc = O. All the proofs are based on a technique called 
"the probabilistic method." The basic idea here is that the existence of a "bad" 
distribution is proved by considering a large class of distributions, and bounding 
the average behavior over the class. 

Lower bounds on the probabilities P{L(gn) - Lc > E} may be translated into 
lower bounds on the sample complexity N(E, 8). We obtain lower bounds for the 
size ofthe training sequence such that for any classifier, P{L(gn) - Lc > E} cannot 
be smaller than 8 for all distributions if n is smaller than this bound. 

14.2 The Case Lc = 0 

In this section we obtain lower bounds under the assumption that the best classifier 
in the class has zero error probability. In view of Theorem 12.7 we see that the 
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situation here is different from when Lc > 0; there exist methods of picking a 
classifier from C (e.g., minimization of the empirical error) such that the error 
probability decreases to zero at a rate of 0 (Vc log n In). We obtain minimax lower 
bounds close to the upper bounds obtained for empirical error minimization. For 
example, Theorem 14.1 shows that if Lc = 0, then the expected error probability 
cannot decrease faster than a sequence proportional to Vc I n for some distributions. 

Theorem 14.1. (VAPNIK AND CHERVONENKIS (1974c); HAUSSLER, LITTLESTONE, 
AND WARMUTH (1988». Let C be a class of discrimination functions with vc di­
mension V. Let X be the set of all random variables (X, Y) for which Lc = 0. Then, 
for every discrimination rule gn based upon Xl, YI , ... , Xn, Yn, and n :::: V - 1, 

sup ELn::: V - 1 (1 _~) . 
(X,y)EX 2en n 

PROOF. The idea is to construct a family F of 2 V-I distributions within the distri­
butions with Lc = ° as follows: first find points x I, ... , Xv that are shattered by C. 
Each distribution in F is concentrated on the set of these points. A member in F 
is described by V - 1 bits, bI , ... , bv -1. For convenience, this is represented as a 
bit vector b. Assume V - 1 ~ n. For a particular bit vector, we let X = Xi (i < V) 
with probability lin each, while X = Xv with probability 1 - (V - l)/n. Then 
set Y = fb(X), where fb is defined as follows: 

-r {bi if X = Xi, i < V 
J h(X) = ° if X = Xv. 

Note that since Y is a function of X, we must have L * = 0. Also, Lc = 0, as the 
set {Xl, ... , xv} is shattered by C, i.e., there is agE C with g(Xi) = fb(Xi) for 
1 ~ i ~ V. Clearly, 

sup E{Ln - Lc} 
(X,Y):Lc=O 

> sup E{Ln - Lc} 
(X,Y)EF 

supE{Ln - Lc} 
b 

> E{Ln - Lc} 

(where b is replaced by B, uniformly distributed over {a, 1} V-I) 

E{Ln } , 

P{gn(X, Xl, YI , ... , Xn, Yn) =I fB(X)} . 

The last probability may be viewed as the error probability of the decision function 
gn : nd x (nd x {a, l})n ---+ {a, 1} in predicting the value of the random variable 
fB(X) based on the observation Zn = (X, Xl, YI , ... , Xn, Yn). Naturally, this 
probability is bounded from below by the Bayes probability of error 

L *(Zn, fB(X» = inf P{gn(Zn) =I fB(X)} 
gil 



236 14. Lm.yer Bounds for Empirical Classifier Selection 

corresponding to the decision problem (Zn, fB(X», By the results of Chapter 2, 

where 17*(Zn) = P{fB(X) = lIZn}. Observe that 

* Z ) _1112 if X =I Xl, ... , X =I Xn , X =I Xv 
17 ( n - 0 or 1 otherwise. 

Thus, we see that 

sup E{Ln - Lc} > L *(Z11 , fB(X» 
(X,y):Lc=O 

1 2: P{X =I Xl .... , X =I Xn , X =I Xv} 

1 V-I -I: PIX = xd(1 - PIX = Xd)11 
2 i=l 

V-I 
--(1-1Int 

2n 

> V-I (1 __ 1) 
2en n 

(since (1 - 1In)n-l -l- lie). 

This concludes the proof. 0 

Minimax lower bounds on the probability P{Ln :::: E} can also be obtained. These 
bounds have evolved through several papers: see Ehrenfeucht, Haussler, Kearns 
and Valiant (1989); and Blumer, Ehrenfeucht, Haussler and Warmuth (1989). The 
tightest bounds we are aware of thus far are given by the next theorem. 

Theorem 14.2. (DEVROYE AND LUGOSI (1995». Let C be a class of discrimination 
functions with vc dimension V :::: 2. Let X be the set of all random variables 
(X, Y)for which Lc = O. Assume E :::: 1/4. Assume n :::: V-I. Then for every 
discrimination rule gn based upon Xl, YI , ••• , X n' Yn , 

1 ( 2neE )(V-I)!2 
sup P{Ln:::: E} :::: -- -- e-4nE!(l-4E) • 

(X,y)EX e-JrrV V-I 

If on the other hand n :::: 15 and n :::: (V - 1)/(12E), then 

1 
sup P{Ln:::: E} :::: - . 

(X,Y)EX 10 

PROOF. We randomize as in the proof of Theorem 14.1. The difference now is that 
we pick XI , ""XV-l with probability peach. Thus,P{X =xv} = 1- p(V -1). 
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We inherit the notation from the proof of Theorem 14.1. For a fixed b, denote the 
error probability by 

We now randomize and replace b by B. Clearly, 

sup P{Ln:::: E} :::: sup P{Ln(b) :::: E} 
(X,Y):Lc=O b 

:::: E {P{Ln(B) :::: EIB)} 

P{Ln(B) :::: E}. 

As in the proof of Theorem 14.1, observe that Ln(B) cannot be smaller than the 
Bayes risk corresponding to the decision problem (Zn, iBeX)), where 

Thus, 
Ln(B):::: E {min(1]*(Zn), 1 -1]*(Zn))IX I , ... , Xn}. 

As in the proof of Theorem 14.1, we see that 

E {min(1]*(Zn), 1 - 1]*(Zn))IX I, ... , Xn} 

1 
2P{X f XI. ···, X f Xn, X f xvIX I ,···, Xn} 

1 V-I 

::::: 2 p L I{x;=jx1, ... ,xifXIl }, 

i=I 

For fixed Xl, ... , Xn, we denote by 1 the collection {j : 1 S j S V-I, n7=1 {Xi =I 
X j }}. This is the collection of empty cells Xi. We summarize: 

We consider two choices for p: 

CHOICE A. Take p = lin, and assume 12nE S V-I, E < 1/2. Note that for 
n ::::: 15, Eill = (V - 1)(1 - p)n :::: (V - 1)/3. Also, since 0 Sill s V-I, 
we have Var III S (V - 1)2/4. By the Chebyshev-Cantelli inequality (Theorem 
A.l7), 

P{lll ::::: 2nE} 1 - P{lll < 2nE} 

:::: 1 - P{lll < (V - 1)/6} 

1 - P{lll - Eill s -(V - 1)/6} 
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> 
1 ____ V:_a_r_l_l_1 __ 

Var III + (V - 1)2/36 

1 _ (V - 1)2/4 

(V - 1)2/4 + (V - 1)2/36 

1 

10 

This proves the second inequality for supP{LIl 2: E}. 

CHOICE B. Assume that E :5 1/4. By the pigeonhole principle, III ~ 2E / P if 
the number of points Xi, 1 :5 i :5 n, that are not equal to Xv does not exceed 
V-I - 2E / p. Therefore, we have a further lower bound: 

P{lll ~ 2E/p} ~ P{Binomial(n, (V -1)p) :5 V-I - 2E/p}. 

Define v = r(V - 1)/21. Take p = 2E/V. By assumption, n ~ 2v - 1. Then the 
lower bound is 

P{Binomial(n, 4E) :5 v} 

> (:)<4<)"(1 _ 4<YH 

> _1_ (4eE(n - v + 1»)V ('I _ 4E)1l 
e-J2n v v(1 - 4E) 

(since (:) 2: (n-~+l)e) v ek by Stirling's formula) 

1 (4eE(n - v + 1»)V 11 > -- (1-4E) 
e-J2nv v 

> _1_ (4enE)V (1- 4E)1l (1- v - l)V 
e-J2nv v n 

> __ 1_ (2enE) v e-4m=/(l-4€) (since n 2: 2(v _ 1» 
e-J2nv v 

(use 1 - X 2: exp(-x/(1- x»). 

This concludes the proof. 0 

14.3 Classes with Infinite VC Dimension 

The results presented in the previous section may also be applied to classes with 
infinite vc dimension. For example, it is not hard to derive the following result 
from Theorem 14.1: 
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Theorem 14.3. Assume that Vc = 00. For every n, 8 > 0 and classification rule 
gn, there is a distribution with Lc = 0 such that 

1 
EL(gn) > - J. 

2e 

For the proof, see Problem 14.2. Thus, when Vc = 00, distribution-free nontrivial 
performance guarantees for L(g n) - Lc do not exist. This generalizes Theorem 7.1, 
where a similar result is shown if C is the class of all measurable discrimination 
functions. We have also seen in Theorem 7.2, that if C is the class of all measurable 
classifiers, then no universal rate of convergence exists. However, we will see in 
Chapter 18 that for some classes with infinite vc dimension, it is possible to find 
a classification rule such that L(gn) - L * ::: cJlog n/n for any distribution such 
that the Bayes classifier is in C. The constant c, however, necessarily depends on 
the distribution, as is apparent from Theorem 14.3. 

Infinite vc dimension means that the class C shatters finite sets of any size. 
On the other hand, if C shatters infinitely many points, then no universal rate of 
convergence exists. This may be seen by an appropriate modification of Theorem 
7.2, as follows. See Problem 14.3 for the proof. 

Theorem 14.4. Let {an} be a sequence of positive numbers converging to zero 
with 1/16 ~ al ~ a2 ~ .... Let C be a class of classifiers with the property that 
there exists a set A c nd of infinite cardinality such that for any subset B of A, 
there exists ¢ E C such that ¢(x) = 1 if x E Band ¢(x) = 0 if x E A-B. Then 
for every sequence of classification rules, there exists a distribution of (X, Y) with 
Le = 0, such that 

for all n. 

Note that the basic difference between this result and all others in this chapter 
is that in Theorem 14.4 the "bad" distribution does not vary with n. This theorem 
shows that selecting a classifier from a class shattering infinitely many points is 
essentially as hard as selecting one from the class of all classifiers. 

14.4 The Case Lc > 0 

In the more general case, when the best decision in the class C has positive error 
probability, the upper bounds derived in Chapter 12 for the expected error proba­
bility of the classifier obtained by minimizing the empirical risk are much larger 
than when Le = O. In this section we show that these upper bounds are necessarily 
large, and they may be tight for some distributions. Moreover, there is no other 
classifier that performs significantly better than empirical error minimization. 

Theorem 14.5 below gives a lower bound for sUPeX,Y):Lc fixed EL(gn) - Le. As 
a function of nand Vc, the bound decreases basically as in the upper bound ob­
tained from Theorem 12.6. Interestingly, the lower bound becomes smaller as Le 
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decreases, as should be expected. The bound is largest when Lc is close to 1/2. 
The constants in the bound may be tightened at the expense of more complicated 
expressions. The theorem is essentially due to Devroye and Lugosi (1995), though 
the proof given here is different. Similar bounds-without making the dependence 
on Lc explicit-have been proved by Vapnik and Chervonenkis (197 4c ) and Simon 
(1993). 

Theorem 14.5. Let C be a class of discrimination functions with vc dimension 
V :::: 2. Let X be the set of all random variables (X, Y) for which for fixed 
L E (0, 1/2), 

L = inf P{g(X) i Y} . 
gEe 

Then, for every discrimination rule gn based upon Xl, Y1, .•. , X n, Yn, 

/L(V -1) sup E(L n - L) :::: e-8 

(X,Y)EA' 24n 
ifn :::: i~l max(9, 1/(1 - 2L)2). 

PROOF. Again we consider the finite family F from the previous section. The 
notation band B is also as above. X now puts mass p at Xi, i < V, and mass 
1 - (V - l)p at Xv. This imposes the condition (V - l)p :s 1, which will be 
satisfied. Next introduce the constant c E (0, 1/2). We no longer have Y as a 
function of X. Instead, we have a uniform [0, 1] random variable U independent 
of X and define 

Y = {I if U :s 4 - c + 2cbi , X = Xi, i < V ° otherwise. 

Thus, when X = Xi, i < V, Y is 1 with probability 1/2 - cor 1/2 + c. A simple 
argument shows that the best rule for b is the one which sets 

f, (x) = {I if x = ~i , i < V, bi = 1 
b ° otherwIse. 

Also, observe that 

L = (V - l)p(1j2 - c) . 

Noting that 127J(xJ - 11 = c for i < V, for fixed b, by the equality in Theorem 
2.2, we may write 

V-I 

Ln - L :::: L 2pc!(gll(Xi,X1,Y1, ••• ,XIl ,l';,)=1- fb(xdl . 

i=l 

It is sometimes convenient to make the dependence of gn upon b explicit by con­
sidering gn(Xi) as a function of Xi, Xl, ... , X n, U1, ... , Un (an i.i.d. sequence 
of uniform [0, 1] random variables), and bi • The proof given here is based on 
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the ideas used in the proofs of Theorems 14.1 and 14.2. We replace b by a uni­
formly distributed random B over {O, I} V-I. After this randomization, denote 
Zn = (X, Xl, YI ,· .. , X n, Yn). Thus, 

sup E{Ln - L} 
(X,Y)EF 

supE{Ln - L} 
b 

> E{Ln - L} (with random B) 

V-I 

> L 2pcEI{gn(x;,X J , ••• ,Yn)=I- IBeX;)} 

i=I 

= 2cP{gn(Zn) =I IBeX)} 

> 2cL *(Zn, IBeX)), 

where, as before, L *(Zn, IBeX)) denotes the Bayes probability of error of pre­
dicting the value of IBeX) based on observing Zn' All we have to do is to find a 
suitable lower bound for 

where 1]*(Zn) = P{iB(X) = lIZn}. Observe that 

Next we compute P{Bi = llYiJ = YI, ... , Yik = Yk} for YI, ... , Yk E {O, I}. 
Denoting the numbers of zeros and ones by ko = I {j s k : Y j = O} I and k 1 = I {j s 
k : Yj = 1}1, we see that 

P{Bi = llYiJ = YI, ... , Yik = yd 
(1 - 2c )kJ (1 + 2c )ko 

= 
(1 - 2c )kl (1 + 2c )ko + (1 + 2c )kl (1 - 2c )ko . 

Therefore, if X = XiJ = ... = X ik = Xi, i < V, then 

min(17*(Zn), 1 - 1]*(Z/I)) 

min ((1 - 2c )kJ (1 + 2c )ko , (1 + 2c )kJ (1 - 2c )ko ) 

(1 - 2c )kJ (1 + 2c )ko + (1 + 2c )kJ (1 - 2c )ko 

min ( 1, (f*) kJ -ko ) 

1 + ( I+2c )k1-kO 

I-2c 

1 + (I+2c)lkJ-kOI ' 
I-2c 
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In summary, denoting a = (1 + 2c)/(l - 2c), we have 

L *(Zn' IBeX)) E { 1 } 
1 + a/Lj:Xj=x(2Yj-1)/ 

> E { 2alL:jXj~x(2Yj-I)1 } 

> 

> 

1 I: P{X = xdE {a -ILj:Xj=Xi(2Yj-l)I} 
2 i=l 

~(V - l)pa -E{]Lj:xrXi(2Yj -l)1} 
2 
(by Jensen's inequality). 

Next we bound E {I Lj:Xj=Xi (2Yj - 1)\}. Clearly, if B(k, q) denotes a binomial 

random variable with parameters k and q, 

E {Ij~; (2Yj -lJl} = ~ G)pk(l- p)n-kE {I2B(k, 1/2 - c) - klj· 

However, by straightforward calculation we see that 

E{12B(k, 1/2 - c) - kl} < JE {(2B(k, 1/2 - c) - k)2} 

Jk(l - 4c2 ) + 4k2c2 

< 2kc +,Jk. 

Therefore, applying Jensen's inequality once again, we get 

t (n)pk(1 - pt-kE {12B(k, 1/2 - c) - kl} ::: 2npc +-JrlP. 
k=O k 

Summarizing what we have obtained so far, we have 

supE{Ln - L} > 2cL *(Zn, IBeX)) 
b 

1 
> 2c-(V - l)pa-2npc-y?£P 

2 
> c(V - l)pe-2npc(a-l)-(a-1)y?£P 

(by the inequality 1 + x ::: eX) 

c(V - l)pe-8npc2/(l-2c)-4cy?£P/(l-2c). 

A rough asymptotic analysis shows that the best asymptotic choice for c is given 
by 

1 
C=--

,J4np' 
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Then the constraint L = (V - 1) p( 1 /2 - c) leaves us with a quadratic equation in c. 
Instead of solving this equation, it is more convenient to take c = J (V - 1)/ (8nL). 
If2nL/(V-1)::::: 9,thenc:::: 1/6. With this choiceforc, using L = (V-1)p(1/2-
c), straightforward calculation provides 

J(V - l)L 
sup E(L n - L) ::::: e-8• 

(X,y)EF 24n 

The condition p( V-I) :::: 1 implies that we need to ask that n ::::: (V - 1)/ (2L( 1 
2L)2). This concludes the proof of Theorem 14.5. D 

Next we obtain a probabilistic bound. Its proof below is based upon Hellinger 
distances, and its methodology is essentially due to Assouad (1983b). For refine­
ments and applications, we refer to Birge (1983; 1986) and Devroye (1987). 

Theorem 14.6. (DEVROYE AND LUGOSI (1995)). Let C be a class of discrimination 
functions with vc dimension V ::::: 2. Let X be the set of all random variables (X, Y) 
for which for fixed L E (0, 1/4], 

L = inf P{g(X) =I Y} . 
gEe 

Then, for every discrimination rule gn based upon Xl, Y1, ••• , X n, Yn, and any 
E ~ L, 

sup P{Ln 
(X,Y)EX 

PROOF. The method of randomization here is similar to that in the proof of Theorem 
14.5. Using the same notation as there, it is clear that 

sup P{Ln L::::: E} 
(X,y)EX 

> EI "V-l 
{L.,i=l 2pcI{gn(xi,X I , .. "Yn)=l- fB(Xi)}:::E} 

= 2-(V-l) 

(xi , .. "xi"Yl " .. ,yn) 

E({Xl"",XV}x{O,I})" 

First observe that if 
E/(2pc) ~ (V - 1)/2, 

then 

(14.1) 



244 14. Lower Bounds for Empirical Classifier Selection 

where be denotes the binary vector (1 - h, ... , 1 - bv -1), that is, the complement 
of b. Therefore, for E ::s pc(V - 1), the last expression in the lower bound above 
is bounded from below by 

(by LeCam's inequality, Lemma 3.1) 

( )

2n 

2;+1 L L J Pb(X, Y)Pbc(X, y) 
b (x,y) 

It is easy to see that for x = xv, 

1 - (V - 1)p 
Pb(X,Y)=Pbc(X,y)= 2 ' 

and for x = Xi, i < V, 

2 (1 2) Pb(X, Y)Pbc(X, y) = P 4 - c 

Thus, we have the equality 

Summarizing, since L = p(V - 1)(1/2 - c), we have 

sup P{Ln - L :::: E} > 
(X,y)EX 

> 

> 

~ (1 _ ~4c2)2n 
4 "2- c 

~ exp (_ 16nLc
2 

/ (1 _ 8Lc
2 

).) , 
4 1 - 2c 1 - 2c 

where we used the inequality 1 - x :::: e-x/(l-x) again. We may choose c as 2L:2E' 

It is easy to verify that condition (14.1) holds. Also, p(V - 1) ::s 1. From the 
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condition L 2: E we deduce that c :'S 1/4. The exponent in the expression above 
may be bounded as 

Thus, 

16nLc2 

1"=2C 
1 _ 8Lc2 

1-2c 

= 
1 - 2c - 8Lc2 

= (by substituting c = E / (2L + 2E» 

< 

1 
sup P{Ln - L 2: E} 2: - exp (-4nE2 / L) , 

(X,Y)EX 4 

as desired. 0 

14.5 Sample Complexity 

We may rephrase the probability bounds above in terms of the sample complexity 
of algorithms for selecting a classifier from a class. Recall that for given E, 8 > 0, 
the sample complexity of a selection rule gn is the smallest integer N(E, 8) such 
that 

sup P{L(gn) - Lc 2: E} :'S 8 

for all n 2: N(E, 8). The supremum is taken over a class of distributions of (X, Y). 
Here we are interested in distributions such that Lc is fixed. 

We start with the case Lc = 0, by checking the implications of Theorem 14.2 for 
the sample complexity N (E, 8). First Blumer, Ehrenfeucht, Haussler, and Warmuth 
(1989) showed that for any algorithm, 

N(E,o),,=CGIOgG)+Vc) , 

where C is a universal constant. In Ehrenfeucht, Haussler, Kearns, and Valiant 
(1989), the lower bound was partially improved to 

Vc -1 
N(E,8) 2: ~ 

when E :'S 1/8 and 8 :'S 1/100. It may be combined with the previous bound. 
Theorem 14.2 provides the following bounds: 

COROLLARY 14.1. Let C be a class of discrimination functions with vc dimension 
V 2: 2. Let X be the set of all random variables (X, Y)for which Lc = 0. Assume 
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E :'S 1/4, and denote v = rev -l)/2l Thenfor every discrimination rule gn based 
upon Xl, f l , ... , X n , fn, when E ::: 1/8 and 

then 

N(., 8) ~ 8
1
• log G) 

Finally,jor 8 :'S 1/10, and E < 1/2, 

V-I 
N(E, 8) ::: --u;- . 

PROOF. The second bound follows trivially from the second inequality of Theorem 
14.2. By the first inequality there, 

sup P{Ln::: E} > 1 ( 2neE )(V-I)/2 e-4nE/(l-4E) 
(X,y)EX ev'2nv V-I 

__ 1_ (2enE)V e-81lE (sinceE::: l/S) 
ev'2nv v 

> 

(SE)V v -8nE 
---ne 
logv(1/8) 

> 

(since we assume log G) ::: (~) (ev'27r v y/v ). 
The function nV e-SIlE varies unimodally in n, and achieves a peak at n = v I(SE). 

For n below this threshold, by monotonicity, we apply the bound at n = VI(SE). It 
is easy to verify that the value of the bound at v / (SE) is always at least 8. If on the 
other hand, (1 /SE) 10g(1 /8) ::: n :::: v / (SE), the lower bound achieves its minimal 
value at (1 ISE) 10g(1 18), and the value there is 8. This proves the first bound. 0 

Corollary 14.1 shows that for any classifier, at least 

( 1 (1) Vc - 1) 
max SE log "8 '~ 

training samples are necessary to achieve E accuracy with 8 confidence for all 
distributions. Apart from a log (~ ) factor, the order of magnitude of this expression 
is the same as that of the upper bound for empirical error minimization, obtained in 
Corollary 12.4. That the upper and lower bounds are very close, has two important 
messages. On the one hand it gives a very good estimate for the number of training 
samples needed to achieve a certain performance. On the other hand it shows 
that there is essentially no better method than minimizing the empirical error 
probability. 

In the case Lc > 0, we may derive lower bounds for N(E, 8) from Theorems 
14.5 and 14.6: 
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COROLLARY 14.2. Let 9 be a class of discrimination functions with vc dimension 
V 2: 2. Let X be the set of all random variables (X, Y) for which for fixed 
L E (0, 1/2), 

L = infP{g(X);lY} . 
gEe;; 

Then, for every discrimination rule gn based upon Xl, Y1, ••. , Xn, Yn, 

L(V - l)e- lO (1 1) 
N(E,8) 2: 32 xmin 82 'E2 . 

Also, and in particular, for E ::::; L ::::; 1 14, 

L 1 
N(E, 8) 2: 4E2 log 48 . 

PROOF. The first bound may be obtained easily from the expectation-bound of 
Theorem 14.5 (see Problem 14.1). Setting the bound of Theorem 14.6 equal to 8 
provides the second bound on N (E, 8). 0 

These bounds may of course be combined. They show that N (E, 8) is bounded 
from below by terms like (l/E2)log(1/8) (independent of Vc) and (Ve - l)/E2, 

as I) is typically much smaller than E. By comparing these bounds with the upper 
bounds of Corollary 12.3, we see that the only difference between the orders of 
magnitude is a log (1 IE )-factor, so all remarks made for the case Le = ° remain 
valid. 

Interestingly, all bounds depend on the class C only through its vc dimension. 
This fact suggests that when studying distribution-free properties of L(gn) - Le, 
the vc dimension is the most important characteristic of the class. Also, all bounds 
are linear in the vc dimension, which links it conveniently to sample size. 

REMARK. It is easy to see from the proofs that all results remain valid if we allow 
randomization in the rules gn. 0 

Problems and Exercises 

PROBLEM 14.1. Show that Theorem 14.5 implies that for every discrimination rule gn based 
upon D", 

L(V - l)e- IO 
• (1 1) 

N(E, 8) :::: 32 x mIll 82' E2 . 

HINT: Assume that P{Ln - L > E} < 8. Then clearly, E{Ln - L} :::: E + 8. 

PROBLEM 14.2. Prove Theorem 14.3: First apply the proof method of Theorem 14.1 to show 
that for every n, andg", there is a distribution with Lc = 0 such thatEL(gn) :::: (1-11 n)/(2e). 
Use a monotonicity argument to finish the proof. 

PROBLEM 14.3. Prove Theorem 14.4 by modifying the proof of Theorem 7.2. 





15 
The Maximum Likelihood Principle 

In this chapter we explore the various uses of the maximum likelihood principle 
in discrimination. In general, the principle is only applicable if we have some a 
priori knowledge of the problem at hand. We offer definitions, consistency results, 
and examples that highlight the advantages and shortcomings. 

15.1 Maximum Likelihood: The Formats 

Sometimes, advance information takes a very specific form (e.g., "if Y = 1, X is 
normal (fL, a 2 )"). Often, it is rather vague (e.g., "we believe that X has a density," 
or "17 (x ) is thought to be a monotone function of x E R"). 

If we have information in set format, the maximum likelihood principle is less 
appropriate. Here we know that the Bayes rule g*(x) is of the form g(x) = I{xEA} ' 

where A E A and A is a class of sets of Rd. We refer to the chapters on empirical 
risk minimization (see Chapter 12 and also Chapter 18) for this situation. 

If we know that the true (unknown) 17 belongs to a class :.F of functions that map 
nd to [0, 1], then we say that we are given information in regressionformat. With 
each 17' E :.F we associate a set A = {x : 17' (x) > 1/2} and a discrimination rule 
g(x) = I{xEA}. The class of these rules is denoted by C. Assume that we somehow 
could estimate 17 by 17n. Then it makes sense to use the associated rule gn(x) = 
I{1)Il(x» I/2}. The maximum likelihood method suggests a way of picking the 17n from 
:.F that in some sense is most likely given the data. It is fully automatic-the user 
does not have to pick any parameters-but it does require a serious implementation 
effort in many cases. In a sense, the regression format is more powerful than the 
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set format, as there is more information in knowing a function 1] than in knowing 
the indicator function I{7]>1/2}. Still, no structure is assumed on the part of X, and 
none is needed to obtain consistency results. 

A third format, even more detailed, is that in which we know that the distribution 
of (X, Y) belongs to a class V of distributions on nd x {O, I}. For a given distribu­
tion, we know 1], so we may once again deduce a rule g by setting g(x) = I{17(X»1/2}. 

This distributionformat is even more powerful, as the positions X I, ... , Xn alone 
in some cases may determine the unknown parameters in the model. This situa­
tion fits in squarely with classical parameter estimation in mathematical statistics. 
Once again, we may apply the maximum likelihood principle to select a distribu­
tion from V. Unfortunately, as we move to more restrictive and stronger formats, 
the number of conditions under which the maximum likelihood principle is consis­
tent increases as well. We will only superficially deal with the distribution format 
(see Chapter 16 for more detail). 

15.2 The Maximum Likelihood Method: 
Regression Format 

Given Xl, ... , X n, the probability of observing Y1 = YI, ... , Yn = Yn is 

n 

Il1](Xi )Yi (l - 1](Xi »l-yi . 
i=l 

If 1] is unknown but belongs to a family F of functions, we may wish to select 
that 1]' from F (if it exists) for which that likelihood product is maximal. More 
formally, we select 1]' so that the logarithm 

is maximal. If the family F is too rich, this will overfit, and consequently, the 
selected function 1]n has a probability of error 

that does not tend to L *. For convenience, we assume here that there exists an 
element of F maximizing .en. 

We do not assume here that the class F is very small. Classes in which each 1]' in 
F is known up to one or a few parameters are loosely called parametric. Sometimes 
F is defined via a generic description such as: F is the class of all 1]' : nd -+ [0, 1] 
that are Lipschitz with constant c. Such classes are called nonparametric. In certain 
cases, the boundary between parametric and nonparametric is unclear. We will 
be occupied with the consistency question: does L(1]n) -+ inf17'EF L(1]') with 
probability one for all distribution of (X, Y)? (Here L(1]') = P {I{17'(X»1/2} i Y} is 
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the probability of error of the natural rule that corresponds to rJ'.) If, additionally, F 
is rich enough or our prior information is good enough, we may have inf 11' EF L (rJ') = 
L *, but that is not our concern here, as F is given to us. 

We will not be concerned with the computational problems related to the maxi­
mization of Ln(rJ') over F. Gradient methods or variations of them are sometimes 
used-refer to McLachlan (1992) for a bibliography. It suffices to say that in simple 
cases, an explicit form for rJn may be available. An example follows. 

Our first lemma illustrates that the maximum likelihood method should only be 
used when the true (but unknown) rJ indeed belongs to F. Recall that the same 
was not true for empirical risk minimization over vc classes (see Chapter 12). 

Lemma 15.1. Consider the class F with two functions rJA == 0.45, rJB == 0.95. 
Let rJn be the function picked by the maximum likelihood method. There exists a 
distribution for (X, Y) with rJ tJ. F such that with probability one, as n ---+ 00, 

L(rJn) ---+ max L(rJ') > min L(rJ'). 
l1'EF l1'EF 

Thus, maximum likelihood picks the wrong classifier. 

PROOF. Define the distribution of (X, Y) on {O, 1} x {O, 1} by P{X = 0, Y = O} = 
p {X = 1, Y = O} = 2/9, P {X = 0, Y = 1} = 1/9, and P {X = 1, Y = 1} = 4/9. 
Then one may quickly verify that 

(Note that L * = 1/3, but this is irrelevant here.) Within F, rJB is the better for our 
distribution. By the strong law of large numbers, we have 

with probability one (and similarly for rJB). If one works out the values, it is 
seen that with probability one, rJn == rJA for all n large enough. Hence, L(rJn) ---+ 
max l1'EF L(rJ') with probability one. 0 

REMARK. Besides the clear theoretical hazard of not capturing rJ in F, the maximum 
likelihood method runs into a practical problem with "infinity." For example, take 
:F = {rJA == 0, rJB == 1}, and assume rJ == 1/3. For all n large enough, both 
classes are represented in the data sample with probability one. This implies that 
Ln(rJA) = Ln(rJB) = -00. The maximum likelihood estimate rJn is ill-defined, 
while any reasonable rule should quickly be able to pick rJA over rJB. 0 

The lemma shows that when rJ tJ. F, the maximum likelihood method is not 
even capable of selecting one of two choices. The situation changes dramatically 
when rJ E F. For finite classes F, nothing can go wrong. Noting that whenever 
rJ E F, we have L * = inf l1'EF L(rJ'), we may now expect that L(rJn) ---+ L * in 
probability, or with probability one. 
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Theorem 15.1. lflFI = k < 00, and 1] E F, then the maximum likelihood method 
is consistent, that is, 

L(1]n) -+ L * in probability. 

PROOF. For a fixed distribution of (X, Y), we rank the members 1](1), ... , 1](k) of F 
by increasing values of L(1](i»). Put 1](1) == 1]. Let io be the largest index for which 
L(1](i») = L *. Let 1]n be the maximum likelihood choice from F. For any a, we 
have 

P{L(1]n) =I L *} 

< P {Ln(1](l») ::: rp.~x Ln(1J(i»)} 
1>10 

< P{Ln(1](l»)::: a} + LP{Ln(1](i») ~ a}. 
i>io 

Define the entropy of (X, Y) by 

£ = £(1]) = -E {1](X) log 1](X) + (1 - 1](X)) log(1 - 1](X))} 

(see Chapter 3). Recall that ° ::: £ ::: log 2. We also need the negative divergences 

{ 
1](i)(X) 1 - 1](i)(X) I 

Di = E 'fj(X) log -- + (1 - 'fj(X)) log , 
1](X) 1 - 1](X) 

which are easily seen to be nonpositive for all i (by Jensen's inequality). Further­
more, Di = ° if and only if 1](i)(X) = 1](X) with probability one. Observe that for 
i > io, we cannot have this. Let e = maxi>io Di . (If io = k, this set is empty, but 
then the theorem is trivially true.) 

It is advantageous to take a = -£ + e /2. Observe that 

{
(i) } _ { = -£ if i = 1 E Ln(1] ) - -£ + Di c e ·f· . 

::: -0 + 1 1 > lO. 

Thus, 

P{L(ryn) i L *) :'0 P {Ln(ry(I)) :'0 -E + ~} + L P {Ln(ry(i)) ::: -E + n . 
1>10 

By the law of large numbers, we see that both terms converge to zero. Note, in 
particular, that it is true even if for some i > io, Di = -00. D 

For infinite classes, many things can go wrong. Assume that F is the class of 
all 1]' : R2 -+ [0, 1] with 11' = fA and A is a convex set containing the origin. Pick 
X uniformly on the perimeter of the unit circle. Then the maximum likelihood 
estimate 'fjn matches the data, as we may always find a closed polygon Pn with 
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vertices at the Xi'S with Yi = 1. For r;n = lPn' we have Ln(r;n) = ° (its maximal 
value), yet L(r;n) = P{Y = I} = p and L* = 0. The class F is plainly too rich. 

For distributions of X on the positive integers, maximum likelihood does not 
behave as poorly, even though it must pick among infinitely many possibilities. 
Assume F is the class of all r;', but we know that X puts all its mass on the positive 
integers. Then maximum likelihood tries to maximize 

(X) n (r;' (i))Nl,i (1 - r;' (i))NO,i 
i=l 

over r;' E F, where Nl,i = L~=l I{Xj=i,Yj=l) and No,i = L~=l I{xj=i'yj=O}. The 
maximization is to be done over all (r;'(I), r;'(2), ... ) from ®~l [0, 1]. Fortunately, 
this is turned into a maximization for each individual i -usually we are not so lucky. 
Thus, if NO,i + N1,i = 0, we set r;n(i) = ° (arbitrarily), while if No,i + Nl,i > 0, we 
pick r;n(i) as the value u that maximizes 

Nl,i log u + NO,i 10g(1 - u). 

Setting the derivative with respect to u equal to zero shows that 

( .) Nl,i r;n l = ----
Nl,i + NO,i 

In other words, r;n is the familiar histogram estimate with bin width less than one 
half. It is known to be universally consistent (see Theorem 6.2). Thus, maximum 
likelihood may work for large F if we restrict the distribution of (X, Y) a bit. 

15.3 Consistency 

Finally, we are ready for the main consistency result for r;n when F may have 
infinitely many elements. The conditions of the theorem involve the bracketing 
metric entropy of F, defined as follows: for every distribution of X, and E > 0, 
let FX,E be a set of functions such that for each r;' E F, there exist functions 
r;~, r;~ E FX,E such that for all x End 

r;~(x) :::: ,l(x) :::: r;~(x), 

and 
E{r;~(X) - r;~(X)} ::: E. 

That is, every r;' E F is "bracketed" between two members of FX,E whose L1 (IL) 

distance is not larger than E. Let N (X, E) denote the cardinality of the smallest 
such FX,E' If N(X, E) < 00, 

log N(X, E) 

is called the bracketing E -entropy of F, corresponding to X. 
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Theorem 15.2. Let F be a class of regression functions n d ~ [0, 1]. Assume 
that for every distribution of X and E > 0, N(X, E) < 00. Then the maximum 
likelihood choice rJn satisfies 

lim L(1]n) = L * in probability 
n--+oo 

for all distributions of (X, Y) with rJ E F. 

Thus, consistency is guaranteed if F has a finite bracketing E -entropy for every 
X and E. We provide examples in the next section. For the proof, first we need a 
simple corollary of Lemma 3.2: 

COROLLARY 15.1. LetrJ, rJ': nd ~ [0, 1], and let (X, Y)beanndx{O, 1}-valued 
random variable pair with P{Y = llX = x} = rJ(x). Define 

L * = E{min(rJ(X), 1 - 1](X))}, L(rJ') = P {I{ryl(X»1/2l =I Y} . 

Then 

E {)rJ'(X)rJ(X) + )(1 - rJ'(X))(1 - rJ(X))} < 
(2ElrJ(X) - rJ'(X)I)2 

1 - --'----------'---
8 

1 - ~(L(rJ') - L *)2 8 . < 

PROOF. The first inequality follows by Lemma 3.2, and the second by Theorem 
2.2.0 

Now, we are ready to prove the theorem. Some of the ideas used here appear in 
Wong and Shen (1992). 

PROOF OF THEOREM 15.2. Look again at the proof for the case I FI < 00 (Theorem 
15.1). Define E as there. Let F(E) be the collection of those rJ' E F with L(rJ') > 
L * + E, recalling that L(rJ') = P {I{ryl(X»1/2l =I Y}. For every a, 

For reasons that will be obvious later, we take a = -E - E2/ 16. Thus, 
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Noting that E {Ln(ry)} = -£, the law of large numbers implies that the first term 
on the right-hand side converges to zero for every E. (See Problem 15.4 for more 
information. ) 

Next we bound the second term. For a fixed distribution, let FX,8 be the smallest 
set of functions such that for each ry' E F, there exist ry~, ry~ E FX,8 with 

ry~(x) :::: ry'(x) :::: ry~(x), x End 

and 

E{ry~(X) - ry~(X)} :::: 8, 

where 8 > 0 will be specified later. By assumption, N(X, 8) = IFx,81 < 00. We 
have, 

P 
{ nn ry~(XJY; (1 ry~ (Xi))l-Y; -nE2/8} 

:::: sup Y l-Y ~ e 
ry'EF(E) i=l ry(Xi ) , (1 - ry(Xi)) , 

(where ry~, ry~ E FX ,8, ry~ :::: ry' :::: ry~ and E{ry~(X) - ry~ (X)} < 8) 

:::: N 2(X,8) sup P n ryu i Y' - ryL i l-Y , ~ e-nE2 /8 

{ 

n '(X )Y(1 ' (X ))l-Y } 

ry'EF(E) i=l ry(Xi)I(1-ry(Xi)) I 

(by the union bound) 

N'(X, 8) "~u:') P {O 
:::: N2(X, 8) 

x sup (E {Jry~(X)ry(X) + J(1 - ry~(X))(1 _ ry(X))})n enE2/16, 
ry'EF(E) 
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where in the last step we used Markov's inequality and independence. We now 
find a good bound for 

E {J ry~(X)ry(X) + J(l - ry~(X»(1 - ry(X»} 

for each 1]' E FeE) as follows: 

E {J ry;/X)ry(X) + J(l - ry~ (X»(l - ry(X»} 

:s E {J1]'(X)1](X) + .j(l- 1]'(X»(l - 1](X» 

+ J ry(X) (ry~(X) - ry'(X») + J(1 - ry(X» (ry'(X) - ry~ (X») } 

(here we used ra+b :s Fa + Jb) 

:s E {J 1]'(X)1](X) + .j (l - 1]'(X»(l - 1](X»} 

+ .jE{1](X)}JE {1]~(X) - 1]'(X)} 

+.jE{1 -1](X)}JE {1]'(X) -1]~(X)} 
(by the Cauchy-Schwarz inequality) 

:s E {J1]'(X)1](X) + .j(l - 1]'(X»(l - 1](X»} + 2.Ji 

E2 
:s 1 - - + 2.Ji (by Corollary 15.1). 

8 

Summarizing, we obtain 

p { sup Ln(1]') - Ln(1]) :::: _ E2 } 
ry'EF(E) 8 

:s: N'(X, 0) (1 - ~ + 2J8 r e""/16 

By taking 8 < (~)2, we see that the probability converges to zero exponentially 

rapidly, which concludes the proof. 0 

15.4 Examples 

In this section we show by example how to apply the previous consistency results. 
In all cases, we assume that 1] E F and we are concerned with the weak convergence 
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of LCr},J to L * for all such distributions of (X, Y). The classes are as follows: 

Fl = {ry = /[a,b], -00:::: a:::: b:::: oo} 
F{ {ry = C/[a,b]' C E [0, 1], -00 ~ a :::: b :::: oo} 
F2 {ry = /[aj,bIlx",x[ad,bd], -00 :::: ai :::: bi :::: 00, 1 :::: i :::: d} 

F3 = {ry: ry(x) = cx/(l +cx): x :::: 0, c:::: O} 

F5 = 

{ry is monotone decreasing on [0, I]} 

{ ry: ry(x) = 1 ,m E R d
} 

1 + Ilx - m 

{ry : ry(x) = sin2(ex), e E R} 

ry : ry(x) = T ,ao E R, x, a E Rd . 
{ 

eao+o? x } 

1 + eao+a x 

These are all rather simple, yet they will illustrate various points. Of these classes, 
F4 is nonparametric; yet, it behaves "better" than the one-parameter class F6 , 

for example. We emphasize again that we are interested in consistency for all 
distributions of X. 

For F 1, ryn will agree with the samples, that is, ryn(X i ) = Yi for all i, and therefore, 
ryn E Fl is any function of the form /[a,b] with 

X(l-I) < a:::: X(l), X(r):::: b < X(r+l), 

where X(1) :::: ... :::: x(n) are the order statistics for XI, ... ,Xn (with x(O) = 
-00, x(n+l) = (0), x(l) is the smallest data point with y(l) = 1, and x(r) is the 
largest data point with y(r) = 1. As L * = 0, we claim that 

E{L(ryn)} < p{X(l-l) < X < X(l)} +p{x(r) < X < x(r+l)} 

4 
< 

n+1 

The rule is simply excellent, and has universal performance guarantees. 

REMARK. Note that in this case, maximum likelihood minimizes the empirical risk 
over the class of classifiers C = {¢ = /[a,b] , a :::: b}. As C has vc dimension Vc = 2 
(Theorem 13.7), and inf¢Ec L(¢) = 0, Theorem 12.7 implies that for all E > 0, 

and that 

P{L(ryn) > E} :::: 8n22-nE /2
, 

4logn +4 
E{L(ryn)} :::: --­

nlog2 

(see Problem 12.8). With the analysis given here, we have gotten rid of the log n 
factor. 0 
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The class F{ is much more interesting. Here you will observe a dramatic dif­
ference with empirical risk minimization, as the parameter c plays a key role that 
will aid a lot in the selection. Note that the likelihood product is zero if NI = 0 or 
if Yi = 1 for some i with Xi tj [a, b], and it is 

cN1(1 - c)NO otherwise, 

where No is the number of (Xi, Yi ) pairs with a :::: Xi :::: b, Yi = 0, and NI is 
the number of (Xi, Yi ) pairs with a :::: Xi ~ b, Yi = 1. For fixed No, N I, this is 
maximal when 

c=---No+NI 
Resubstitution yields that the likelihood product is zero if NI = 0 or if Yi = 1 for 
some i with Xi tj [a, b], and equals 

exp {NIIOg NI + No log No } if otherwise. 
No + Nl No + NI 

Thus, we should pick 'fln = cI[a,b] such thatc = NI/(No+NI)' and [a, b] maximizes 
the divergence 

NI No 
Nilog + No log ---

No+NI No+NI 
See Problem 15.5. 

For .1'2, by a similar argument as for .1'1, let [AI, Bd x " . X [Ad, Bd] be the 
smallest rectangle of R d that encloses all Xi'S for which Yi = 1. Then, we know 
that 'fln = I[Al,BI1x ... x[Ad,Bd] agrees with the data. Furthermore, L * = 0, and 

(see Problem 15.6). 

4d 
E{L(7]n)} ~ -

n+1 

The logarithm of the likelihood product for .1'3 is 

n 

L log(cXi) - Llog(1 + cXi )· 

i:Yi=l i=l 

Setting the derivative with respect to c equal to zero in the hope of obtaining an 
equation that must be satisfied by the maximum, we see that c must satisfy 

NI=t~=t Xi 
i=l 1 + cXi i=1 1/c + Xi 

unless Xl = ... = Xn = 0, where Nl = L7=1 I{Yi=I}' This equation has a unique 
solution for c. The rule corresponding to 'fln is of the form g(x) = I{cx>I} = I{x>l/c}' 

Equivalently, 

(x) = { 1 if Nl > L7=1 x:xi 

g 0 otherwise. 
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This surprising example shows that we do not even have to know the parameter c in 
order to describe the maximum likelihood rule. In quite a few cases, this shortcut 
makes such rules very appealing indeed. Furthermore, as the condition of Theorem 
15.2 is fulfilled, 1] E :F3 implies that the rule is consistent as well. 

For :F4, it is convenient to order the Xi'S from small to large and to identify 
k consecutive groups, each group consisting of any number of Xi'S with Yi = 0, 
and one Xi with Yi = 1. Thus, k = L:7=1 I{Yi=I}' Then, a moment's thought shows 
that l]n must be piecewise constant, taking values 1 :::: al :::: ... :::: ak :::: ° on the 
consecutive groups, and the value zero past the k-th group (which can only consist 
of Xi'S with Yi = 0. The likelihood product thus is of the form 

al(1 - adn1a2(1 - a2)n2 ••• ak(1 ak)nk , 

where n I, ... , n k are the cardinalities of the groups minus one (i.e., the number of 
Yj = O-elements in the i -th group). Finally, we have 

k 

(aI, ... , ak) = argmax IT aj(1 - aj)n j
• 

l::::al::::···::::ak::::O j=l 

To check consistency, we see that for every X and E > 0, 

N(X, E) :::: 41~1 

(see Problem 15.7). Thus, the condition of Theorem 15.2 is satisfied, and L(l]n) ---+ 

L * in probability, whenever 1] E :F4 . 

In :Fs, the maximum likelihood method will attempt to place m at the center of 
the highest concentration in n d of Xi'S with Yi = 1, while staying away from Xi'S 

with Yi = 0. Certainly, there are computational problems, but it takes little thought 
to verify that the conditions of Theorem 15.2 are satisfied. Explicit description of 
the rule is not necessary for some theoretical analysis! 

Class :F6 is a simple one-parameter class that does not satisfy the condition of 
Theorem 15.2. In fact, maximum likelihood fails here for the following reason: 
Let X be uniform on [0, 1]. Then the likelihood product is 

IT sin2
(8Xi) x IT cos2(8X i ). 

i:Yi=O 

This product reaches a degenerate global maximum (1) as 8 ---+ 00, regardless of 
the true (unknown) value of 8 that gave rise to the data. See Problem 15.9. 

Class :F7 is used in the popular logistic discrimination problem, reviewed and 
studied by Anderson (1982), see also McLachlan (1992, Chapter 8). It is particu­
larly important to observe that with this model, 



260 15. The Maximum Likelihood Principle 

where f3 = -Cio - log 2. Thus, :F7 subsumes linear discriminants. It does also 
force a bit more structure on the problem, making rJ approach zero or one as we 
move away from the separating hyperplane. Day and Kerridge (1967) point out 
that model :F7 is appropriate if the class-conditional densities take the form 

cf(x) exp {-~(x - m)TE-'(x - m)} , 

where c is a normalizing constant, f is a density, m is a vector, and b is a positive 
definite matrix; f and :E must be the same for the two densities, but c and m may 
be different. Unfortunately, obtaining the best values for Cio and Ci by maximum 
likelihood takes a serious computational effort. Had we tried to estimate f, m, and 
:E in the last example, we would have done more than what is needed, as both 
f and b drop out of the picture. In this respect, the regression format is both 
parsimonious and lightweight. 

15.5 Classical Maximum Likelihood: Distribution 
Format 

In a more classical approach, we assume that given Y = 1, X has a density iI, and 
given Y = 0, X has a density fo, where both fo and iI belong to a given family :F 
of densities. A similar setup may be used for atomic distributions, but this will not 
add anything new here, and is rather routine. The likelihood product for the data 
(Xl, Yd, ... , (Xn, Yn) is 

n n (pfl(Xi))Y; ((1 - p)fO(Xi))l-Yi , 

i=l 

where p = P {Y = I} is assumed to be unknown as well. The maximum likelihood 
choices for p, fo, fl are given by 

(p*, f;, ft) = arg max Ln(p, fo, iI), 
pE[O, 1], fo, II EF 

where 

Having determined p*, fo*' ft (recall that the solution is not necessarily unique), 
the maximum likelihood rule is 

(x) = I ° if (1 - p*)fo*(x) 2: p* ft(x) 
gn 1 otherwise. 

Generally speaking, the distribution format is more sensitive than the regression 
format. It may work better under the correct circumstances. However, we give 
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up our universality, as the nature of the distribution of X must be known. For 
example, if X is distributed on a lower dimensional nonlinear manifold of n d , the 
distribution format is particularly inconvenient. Consistency results and examples 
are provided in a few exercises. 

Problems and Exercises 

PROBLEM 15.1. Show that if IFI = k < 00 and 1] E F, then L(1]n) -+ L * with probability 
one, where 1]n is obtained by the maximum likelihood method. Also, prove that convergence 
with probability one holds in Theorem 15.2. 

PROBLEM 15.2. Prove that if 1], 1]' are [0, 1]-valued regression functions, then the divergence 

'{ 1]'(X) 1 - 1]'(X)} D(1] ) = E 1](X) log -- + (1 - 1](X) log ---
1](X) 1 - 1](X) 

is nonpositive, and that D = 0 if and only if 1](X) = 1]'(X) with probability one. In this 
sense, D measures the distance between 1] and 1]'. 

PROBLEM 15.3. Let 

L * = E{min(1](X), 1 - 1](X»}, L(1]') = P {I{i)'(X»lj2j =I Y} , 

and 

D(1]') = E {1](X) log 1]'(X) + (1-1](X))log 1 -1]'(X)} , 
1](X) 1 - 1](X) 

where 1](x) = P{Y = llX = x}, and 1]': nd -+ [0,1] is arbitrary. Prove that 

(see also Problem 3.22). HINT: First prove that for p, q E [0, 1], 

q 1 - (p _ q)2 
plog- +(1- p)log :::: ----

p 1- p 2 

(use Taylor's series with remainder term for h(·)). 

PROBLEM 15.4. Show that for each 1] there exists an Eo > 0 such that for all E E (0, EO), 

HINT: Proceed by Chernoff's bounding technique. 

PROBLEM 15.5. Consider 1] E F{ and let 1]n be a maximum likelihood estimate over F{. Let 
p = P{Y = I}. Show that 

( 
1 - c) L* = pmin 1, -c- . 

Derive an upper bound for 
E {L(17n) - L *} , 
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where in case of multiple choices for 1]n, you take the smallest 1]n in the equivalence class. 
This is an important problem, as F{ picks a histogram cell in a data-based manner. F{ may 
be generalized to the automatic selection of the best k-cell histogram: let F be the collection 
of all1]'s that are constant on the k intervals determined by breakpoints -00 < al < ... < 

ak-l < 00. 

PROBLEM 15.6. Show that for the class F2 , 

4d 
E{L(1],J} s­

n+l 

when Yj E F2 and Yjn is the maximum likelihood estimate. 

PROBLEM 15.7. Show that for the class F4 , 

holds for all X and E > 0, that is, the bracketing E-entropy of F4 is bounded by f3/El. 
HINT: Cover the class F4 by a class of monotone decreasing, piecewise constant functions, 
whose values are multiples of E /3, and whose breakpoints are at the kE /3-quantiles of the 
distribution of X (k = 1, 2, ... , f3 / E l). 

PROBLEM 15.8. Discuss the maximum likelihood method for the class 

if aT x > f3 
otherwise; 

e,e' E [0, 1], a E Rd ,j3 E R}. 
What do the discrimination rules look like? If Yj E F, is the rule consistent? Can you 
guarantee a certain rate of convergence for E{L(Yjn)}? If Yj ¢. F, can you prove that L(1]n) 

does not converge in probability to inf1J'EF L(Yj') for some distribution of (X, Y) with 1](x) = 
P {Y = 11 X = x}? How would you obtain the values of e, e', a, j3 for the maximum likelihood 
choice 1]/1? 

PROBLEM 15.9. Let Xl, ... , X/1 be i.i.d. uniform [0, 1] random variables. Let YI, ... , Yn be 
arbitrary {O, 1}-valued numbers. Show that with probability one, 

lim sup n sin2
(eXi) x n cOS

2(eXi) = 1, 
e-+oo i:Yi=l i:Yi=O 

while for any t < 00, with probability one, 

sup n sin\eXi ) x n cOS
2(eXi) < l. 

o:ses:t i:Yi=] i:Yi=O 



16 
Parametric Classification 

What do you do if you believe (or someone tells you) that the conditional distribu­
tions of X given Y = 0 and Y = 1 are members of a given family of distributions, 
described by finitely many real-valued parameters? Of course, it does not make 
sense to say that there are, say, six parameters. By interleaving the bits of binary 
expansions, we can always make one parameter out of six, and by splitting binary 
expressions, we may make a countable number of parameters out of one parameter 
(by writing the bits down in triangular fashion as shown below). 

bI b2 b4 b7 

b3 bs bs 
b6 b9 

ho 

Thus, we must proceed with care. The number of parameters of a family really 
is measured more by the sheer size or vastness of the family than by mere repre­
sentation of numbers. If the family is relatively small, we will call it parametric 
but we will not give you a formal definition of "parametric." For now, we let 8, 
the set of all possible values of the parameter e, be a subset of a finite-dimensional 
Euclidean space. Formally, let 

Pe = {Pe : e E 8}, 

be a class of probability distributions on the Borel sets of Rd. Typically, the family 
Pe is parametrized in a smooth way. That is, two distributions, corresponding to 
two parameter vectors close to each other are in some sense close to each other, 
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as well. Assume that the class-conditional densities fo and fi exist, and that both 
belong to the class of densities 

Fe = {fe : e E e}. 

Discrete examples may be handled similarly. Take for example all gaussian distri­
butions on n d

, in which 

where mEnd is the vector of means, and L: is the covariance matrix. Recall that 
x T denotes the transposition ofthe column vector x, and det(L:) is the determinant 
of L:. This class is conveniently parametrized bye = (m, L:), that is, a vector of 
d + d(d + 1)/2 real numbers. 

Knowing that the class-conditional distributions are in Pe makes discrimination 
so much easier-rates of convergence to L * are excellent. Take Fe as the class of 
uniform densities on hyperrectangles of n d

: this has 2d natural parameters, the 
coordinates of the lower left and upper right vertices. 

class 0 

FIGURE 16.1. The class-conditional densities are uni­

form on hyperrectangles. 

Given (Xl, Yd, ... , (Xn, Yn), a child could not do things wrong-for class 1, 
estimate the upper right vertex by 

and similarly for the upper right vertex of the class 0 density. Lower left vertices are 
estimated by considering minima. If AD, A 1 are the two unknown hyperrectangles 
and p = P{Y = 1}, the Bayes rule is simply 

g*(x) = 

1 if x E Al - AD 

o if x E AD - Al 
P 1- p 

1 if x E Al n AD, -- > --
A(AI) A(Ao) 

p 1- p o if x E Al nAo -- < --. 
, A(Ad - A(Ao) 
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In reality, replace Ao, AI, and p by the sample estimates Ao, Al (described above) 
and p = (1/ n) 2:7=1 f{Yi=lJ. This way of doing things works very well, and we will 
pick up the example a bit further on. However, it is a bit ad hoc. There are indeed a 
few main principles that may be used in the design of classifiers under the additional 
information given here. In no particular order, here are a few methodologies: 

(A) As the Bayes classifiers belong to the class 

C = {¢ = f{p!el >(l-p)!eo) : P E [0, 1],80,81 E e} , 
it suffices to consider classifiers in C. For example, if Fe is the normal 
family, then C coincides with indicators of functions in the set 

{{x: x T Ax + bT 
X + c > 0: A is a d x d matrix, b E R d

, C E R}} , 

that is, the family of quadratic decisions. In the hyperrectangular example 
above, every ¢ is of the form f Al - A2 where Al and A2 are hyperrectangles of 
Rd. Finding the best classifier ofthe form ¢ = fA where A E A is something 
we can do in a variety of ways: one such way, empirical risk minimization, 
is dealt with in Chapter 12 for example. 

(B) Plug-in rules estimate (80, 8d by (80, Ih) and p = pry = I} by pfrom the 
data, and form the rule 

{
I if PfeJx) > (1 - [i)f?o(x) 

gn (x) = ° otherwise. 

The rule here is within the class C described in the previous paragraph. We 
are hopeful that the performance with gn is close to the performance with 
the Bayes rule g* when (p, 8o,~) is close to (p, 80, 8d. For this strategy 
to work it is absolutely essential that L(p, 80, 81) (the probability of error 
when p, 80, 81 are the parameters) be continuous in (p, 80, 81). Robustness 
is a key ingredient. If the cOJ.?tinuity can be captured in an inequality, then 
we may get performance guarantees for E{ Ln} - L * in terms of the distance 
between (ii, 8o,~) and (p, 80, 81). Methods of estimating the parameters 
include maximum likelihood. This methodology is dealt with in Chapter 
15. This method is rather sensitive to incorrect hypotheses (what if we were 
wrong about our assumption that the class-conditional distributions were in 
Pe ?). Another strategy, minimum distance estimation, picks that member 
from P e that is closest in some sense to the raw empirical measure that 
puts mass 1/ n at each if the n data points. See Section 16.3 This approach 
does not care about continuity of L(p, 80, 81), as it judges members of Pe 
by closeness in some space under a metric that is directly related to the 
probability of error. Robustness will drop out naturally. 

A general approach should not have to know whether e can be described by a fi­
nite number of parameters. For example, it should equally well handle descriptions 
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as Pe is the class of all distributions of (X, Y) in which 1J(x) = P{Y = llX = x} 
is monotonically increasing in all the components of x. Universal paradigms such 
as maximum likelihood, minimum distance estimation, and empirical error min­
imization are all applicable here. This particular Pe is dealt with in Chapter 15, 
just to show you that the description of the class does invalidate the underlying 
principles. 

16.1 Example: Exponential Families 

A class Pe is exponential, if every class-conditional density fe can be written in 
the form 

where /3, 0/1, ... , o/k : Rd -+ R, /3 :::: 0, a, JT1, ... , JTk : e -+ R are fixed func­
tions, and c is a normalizing constant. Examples of exponential families include 
the gaussian, gamma, beta, Rayleigh, and Maxwell densities (see Problem 16.4). 
The Bayes-rule can be rewritten as 

g*(x) ~ { ~ ( 

P!e*(X) ) 
if log (l-p)l!eo(x) > 0 

otherwise. 

This is equivalent to 

g*(X) = {01 ifL7=10/i(X)(JTi(e;) - JTi(e:)) < log (l~~~~~~o)) 
otherwise. 

The Bayes-rule is a so-called generalized linear rule with 1, 0/1, ... , o/k as basis 
functions. Such rules are easily dealt with by empirical risk minimization and 
related methods such as complexity regularization (Chapters 12, 17, 18,22). 

Another important point is that g* does not involve the function /3. For all we 
know, f3 may be some esoteric ill-behaved function that would make estimating 
fe(x) all but impossible if /3 were unknown. Even if Pe is the huge family in 
which f3 :::: 0 is left undetermined, but it is known to be identical for the two class­
conditional densities (and aCe) is just a normalization factor), we would still only 
have to look at the same small class of generalized linear discrimination rules! So, 
densities do not matter-ratios of densities do. Pattern recognition should be, and 
is, easier than density estimation. Those who first estimate (fo, !I) by (10, it) and 
then construct rules based on the sign of fij-; (x) (1 - fj) 1o(x) do themselves a 
disservice. 
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16.2 Standard Plug-In Rules 

In standard plug-in methods, we construct estimates 80, Bt and pfrom the data and 
use them to form a classifier 

(x) = { 1 ifPf8t (x) > (1- fi)f80 (x) 
gn 0 otherwise. 

It is generally not true that if p -+ p, 80 -+ 80 , and Bt -+ 81 in probability, 
then L(gn) -+ L * in probability, where L(gn) is the probability of error with gn' 
Consider the following simple example: 

EXAMPLE. Let:Fe be the class of all uniform densities on [-8,0] if 8 =/1 and on 
[0,8] if 8 = 1. Let 80 = 1,81 = 2, P = 1/2. Then a reasonable estimate of 8i would 
be fh = maxi:Yi=l IXi I· Clearly, fh -+ 8i in probability. However, as fh =/1 with 
probability one, we note that gn (x) = 0 for x > 0 and thus, even though L * = 0 
(as the supports of feD and fel are not overlapping), L(gn) ~ P{Y = I} = p = 1/2. 
The problem with this is that there is no continuity with respect to 8 in :Fe. 0 

Basic consistency based upon continuity considerations is indeed easy to estab­
lish. As ratios of densities matter, it helps to introduce 

pfel (x) 
l7e(x) = = P{Y = llX = x}, 

(1 - p) feD (x) + p fel (x) 

where 8 = (p, 80, 8d or (80 , 8d as the case may be. We recall that if gn(x) = 
I(1)(f(x»1/2} where Ois an estimate of 8, then 

L(gn) - L * ::: 2E { 117e(X) - l7e(X)11 Dn} , 

where Dn is the data sequence. Thus, 

E {L(gn) - L*} ::: 2E {ll7e(X) -l7e(X)I}. 

By the Lebesgue dominated convergence theorem, we have, without further ado: 

Theorem 16.1. If l7e is continuous in 8 in the L 1 (M) sense, where M is the measure 
of X, and 0 -+ 8 in probability, then E{L(gn)} -+ L * for the standard plug-in 
rule. 

In some cases, we can do better and derive rates of convergence by examining 
the local behavior of l7e(x). For example, if l7e(x) = e-e/x/, x E R, then 

117e(x) l7B'(x) 1 ::: Ixl18 - 8'1, 

and 

E{L(gn)} - L* < 2E {IX118 - 8]} 

< 2/E {X 2 )JE {(8 -en 
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yielding an explicit bound. In general, 8 is multivariate, consisting at least of the 
triple (p, 80 ,81), but the above example shows the way to happy analysis. For the 

simple example given here, E{ L(gn)} -+ L * if E { (8 - e?} -+ O. In fact, this 

seems to suggest that for this family, e should be found to minimize E { (8 - 8) 2 
}. 

This is false. One is always best off minimizing the probability of error. Other 
criteria may be relevant via continuity, but should be considered with care. 

How certain parameters are estimated for given families of distributions is what 
mathematical statistics is all about. The maximum likelihood principle looms large: 
80 is estimated for densities Ie by 

80 = argmax n le(XJ 
e i:Yi=O 

for example. If you work out this (likelihood) product, you will often discover a 
simple form for the estimate of the data. In discrimination, only 1] matters, not 
the class-conditional densities. Maximum likelihood in function of the 1]'S was 
studied in Chapter 15. We saw there that this is often consistent, but that maximum 
likelihood behaves poorly when the true distribution is not in Pe. We will work 
out two simple examples: 

As an example of the maximum likelihood method in discrimination, we assume 
that 

Fe = {/e(x) = x
a

-

l
e-

x

/
f3 

I{x>o} : a, f3 > oJ 
f3af(a) 

is the class of all gamma densities with 8 = (a, f3). The likelihood product given 
(X 1, Yl ), ... , (Xn , Yn ), is, if 80 ,81 are the unknown parameters, 

n n (plej(Xi)(i ((1 - p)/eo(Xi))l-Yi 
• 

i=I 

This is the probability of observing the data sequence if the Ie's were in fact 
discrete probabilities. This product is simply 

where 80 = (ao, f30), 81 = (aI, f31)' The first thing we notice is that this expression 
depends only on certain functions of the data, notably L Yi Xi, L(l - Yi )Xi' 
L Yi log Xi, L(l - Yi ) log Xi, and L Yi· These are called the sufficient statistics 
for the problem at hand. We may in fact throwaway the data and just store the 
sufficient statistics. The likelihood product has to be maximized. Even in this rather 
simple univariate example, this is a nontrivial task. Luckily, we immediately note 
that p occurs in the factor pN (1 - p )n-N, where N = L Yi • This is maximal at 
p = N In, a well-known result. For fixed ao, aI, we can also get f30, f3l; but for 
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variable ao, aI, f30, f31, the optimization is difficult. In d-dimensional cases, one 
has nearly always to resort to specialized algorithms. 

As a last example, we return to Fe = {unifonn densities on rectangles of Rd}. 
Here the likelihood product once again has pN (l-=-- P )n-N as a factor, leading to p = 
N In. The other factor (if (aI, bl), (ao, bo) are the lower left, upper right vertices 
of the rectangles for 81,(0 ) is zero if for some i, Yi = 1, Xi tf:- rectangle(al, bd, or 
Yi = 0, Xi tf:- rectangle(ao, bo)· Otherwise, it is 

1 

where Ilbl - al II = TI~=l (bij) - aij)) denotes the volume of the rectangle (aI, h), 
and similarly for IIbo -ao II. This is maximal if IIbl -al II and IIbo -ao II are minimal. 
Thus, the maximum likelihood estimates are 

~k) = min X~k), 1 :::; k:::; d, i = 0,1, ai j:Yj=i 1 

j}k) 
1 

max X~k), 
j:YFi 1 

1 :::; k:::; d, i = 0,1, 

-- ~l) ~d) -- '2(1) '2(d) (1) (d) where ai = (ai , ... , ai ), bi = (bi , ... , bi ), and Xi = (Xi , ... , Xi ). 
Rates of convergence may be obtained via some of the (in)equalities of Chapter 

6, such as 

(1) E{L(gn)} - L * < 2E{I17n(X) - 17(X)I} 

(where 1717 = pf~1 (pf~ + (1 - P>feo )), 

(2) E{L(gn)} - L * < 2JE {(17n(X) - 17(X))2}, 

(3) E{L(gn)} - L * 2E { I ry(X) - ~ I l(g"(X)1g'(Xll } . 

The rate with which e approaches 8 in e (measured with some metric) may be 
very different from that with which L(gn) approaches L *. As shown in Theorem 
6.5, the inequality (2) is always loose, yet it is this inequality that is often used 
to derive rates of convergence by authors and researchers. Let us take a simple 
example to illustrate this point. Assume Fe is the family of nonnal densities on 
the real line. If 80 = (mo, ao), 81 = (ml' al) are the unknown means and standard 
deviations of the class-conditional densities, and p = P{Y = 1} is also unknown, 
then we may estimate p by P = L]=l Yj In, and mi and ai by 

i = 0,1, 

respectively, when denominators are positive. If a denominator is 0, set mi = 0, 
~2 = 1. From Chebyshev's inequality, we can verify that for fixed p E (0, 1), 
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E{lp - pH = 0 (l/-fo), E{lmi - mil} = 0 (l/-fo), E{lai - ~I} = 0 (l/-fo) 
(Problem 16.3). 

If we compute E {117n(X) - 17(X)I}' we will discover that E{L(gn)} - L * = 
o (l/-fo). However, if we compute E {\17(X) - ~I I(gn(X):;t'g*(x)d, we will find 
that E{L(gn)} - L * = 0 (lIn). Thus, while the parameters converge at a rate 
o ( 1 I -fo) dictated by the central limit theorem, and while 1711 converges to 17 in 
L 1 (fL) with the same rate, the error rate in discrimination is much smaller. See 
Problems 16.7 to 16.9 for some practice in this respect. 

BIBLIOGRAPHIC REMARKS. McLachlan (1992) has a comprehensive treatment on 
parametric classification. Duda and Hart (1973) have many good introductory 
examples and a nice discussion on sufficient statistics, a topic we do not deal with 
in this text. For maximum likelihood estimation, see Hjort (1986a; 1986b). 0 

16.3 Minimum Distance Estimates 

Here we describe a general parameter estimation principle that appears to be more 
suitable for plug-in classification rules than the maximum likelihood method. The 
estimated parameter is obtained by the projection of the empirical measure on the 
parametric family. 

The principle of minimum distance estimation may be described as follows. Let 
'Pe = {Pe : () E 8} be a parametric family of distributions, and assume that Pe* is 
the unknown distribution of the i.i.d. observations Zl, ... , Zn. Denote by Vn the 
empirical measure 

Let D(·, .) be a metric on the set of all probability distributions on nd . The minimum 
distance estimate of ()* is defined as 

()n = argmin D(vn , Pe), 
eEe 

if it exists and is unique. If it is not unique, select one candidate for which the 
minimum is attained. 

Consider for example the Kolmogorov-Smirnov distance 

DKs(P, Q) = sup IF(z) - G(z)!, 
ZEnd 
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FIGURE 16.2. The member oiPs closest 

Pen - - - - - - - - - - -"". Vn to the empirical measure Vn is chosen by 

the minimum distance estimate. 

where F and G are the distribution functions of the measures P and Q on nd , 

respectively. It is easy to see that D KS is a metric. Note that 

sup IF(z) - G(z)1 = sup lP(A) - Q(A)I, 
ZERd AEA 

where A is the class of sets of the form (-00, z(1» x ... x (-00, zed»~, for 
z = (zO), ... , zed»~ E nd. For the Kolmogorov-Smirnov distance between the 
estimated and the true distributions, by the triangle inequality, we have 

DKS(Pen , Pe*) < DKS(Pell , vn ) + DKs(vn , Pe*) 

< 2DKs (vn , Pe*), 

where in the second inequality we used the definition of en. Now notice that the 
upper bound is just twice the Kolmogorov-Smirnov distance between an empirical 
distribution and the true distribution. By a straightforward application of Theorem 
12.5, for every nand E > 0, 

since the n-th shatter coefficient seA, n) of the class of sets 

cannot exceed (ne / d)d. This can easily be seen by an argument similar to that in the 
proof of Theorem 13.8. From the inequalities above, we see that the Kolmogorov­
Smirnov distance between the estimated and the true distributions is always 

o ( Jlog n / n ). The only condition we require is that en be well defined. 
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Of course, rather than the Kolmogorov-Smirnov distance, it is the error prob­
ability of the plug-in classification rule in which we are primarily interested. In 
order to make the connection, we adapt the notions of minimum distance estima­
tion and Kolmogorov-Smirnov distance to better suit the classification problem 
we are after. Every parametric family of distributions defines a class of sets in nd 

as the collection A of sets of the form {x : ¢(x) = I}, where the classifiers ¢ are 
the possible plug-in rules defined by the parametric family. The idea here is to 
perform minimum distance estimation with the generalized Kolmogorov-Smirnov 
distance with respect to a class of sets closely related to A. 

Assume that both class-conditional distributions Pea' Pel belong to a parametric 
family Pe, and the class-conditional densities feo, fe] exist. Then the Bayes rule 
may be written as 

*(x) = {I ifae(x! > 0 
g 0 otherwIse, 

where ae(x) = pfel(x) - (1 - p)fea(x) and p = P{Y = I}. We use the short 
notation 8 = (p, 80, 8d. The function ae may be thought of as the Radon-Nikodym 
derivative of the signed measure Qe = PPe1 - (1 - p)Peo ' In other words, to each 
Borel set A C n d

, Qe assigns the real number Qe(A) = PPe1 (A) - (1- p)Peo(A). 
Given the data Dn = «Xl, Yd, ... , (Xn, Yn)), we define the empirical counterpart 
of Qe by 

The minimum distance classification rule we propose projects the empirical signed 
measure 1}n on the set of measures Qe. The metric we use is also specifically fitted 
to the given pattern recognition problem: define the class of sets 

A = {{x E nd : ae(x) > O} : p E [0, 1],80,81 E e} . 

A is just the class of sets A C nd such that i{XEA} is the Bayes rule for some 
8 = (p, 80,81). Also introduce 

13 = {A n Be : A, B E A} . 

Given two signed measures Q, Q', we define their generalized Kolmogorov­
Smirnov distance by 

DB(Q, Q') = sup IQ(A) - Q'(A)I, 
AEB 

that is, instead of the class of half-infinite intervals as in the definition of the 
ordinary Kolmogorov-Smirnov distance, here we take the supremum over 13, a 
class tailored to our discrimination problem. Now, we are ready to define our 
minimum distance estimate 

e = argmin DB(Qe, 1}n), 
e 
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where the minimum is taken over all triples e = (p, eo, (1) with p E [0, 1], 
()o, ()l E e. The corresponding classification rule is 

{
I if ae( x) > 0 

gg(x) =. ·0 otherwise. 

The next theorem shows that if the parametric assumption is valid, then ge performs 
extremely well. The theorem shows that if A has finite vc dimension V A, then with­
out any additional conditions imposed on the parametric class, the corresponding 

error probability L(ge) is not large: L(ge) - L * = 0 (IVA log n/n). 

Theorem 16.2. Assume that both conditional densities feo, fe l are in the para­
metric class Fe. Then for the classification rule defined above, we have for every 
nand E > 0 that 

P {L(ge) - L* > E} ::s 8s(8, n)e-nE2jS12, 

where s(8, n) is the n-th shatter coefficient of 8. Furthermore, 

E {L(ge) - L *} ::s 32 109(8e;~8, n)). 

REMARK. Recalling from Chapter 13 that s(8, n) ::::: s2(A, n) and that seA, n) ::s 
(n + l)vA, where VA is the vc dimension of A, we obtain the bound 

P {L(ge) - L* > E} ::::: 8(n + 1)2VAe-nE2jS12. 0 

The proof of the theorem is based upon two key observations. The first lemma 
provides a bound on L(ge) - L * in terms of the generalized Kolmogorov-Smirnov 
distance between the estimated and the true parameters. The second lemma is a 
straightforward extension of the Vapnik-Chervonenkis inequality to signed mea­
sures. 

Lemma 16.1. 

PROOF. Denote 

Ae = {x : ae(x) > O} and Ae = {x : ae(x) > A}, 

that is, gg(x) = I{ag(x»O}, g*(x) = I{ae(x»O}, and Ae, Ae E A. At the first crucial 
step, we use the equality of Theorem 2.2: 

L(ge) - L * f I{ge(x);,fge(x)} lae(x)ldx 

- r c ae(x)dx + [c ae(x)dx 
J AenAe J AenAe 
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< r ae(x)dx - r ae(x)dx 
J AenA~ J AenA~ 

+ r ae(x)dx - r ae(x)dx 
JA~nAe JA~nAe 

Qe(Ae n A~) - Qe(Ae n A~) + Qe(A~ n Ae) - Qe(A~ n Ae) 

< 2Ds (Qe, Qe), 

since both Ae n A~ and A~ n Ae are members of Be. 0 

The next lemma is an extension of the Vapnik -Chervonenkis inequality. The 
proof is left to the reader (Problem 16.11). 

Lemma 16.2. For every nand E > 0, 

P {Ds(Qe, 1)n) > E} ::s 8s(B, n)e-nE2/32. 

The rest of the proof of Theorem 16.2 shows that the generalized Kolmogorov­
Smimov distance with respect to B between the estimated and true distributions is 
small with large probability. This can be done as we proved for the Kolmogorov­
Smimov distance at the beginning of the section. 

PROOF OF THEOREM 16.2. By Lemma 16.1, 

L(ge) - L * < 2Ds(Qe, Qe) 

< 2Ds(Qe, 1)n) + 2Ds(Qe, 1)n) (by the triangle inequality) 

< 4Ds(Qe,1)n) (by the definition of e). 

The theorem now follows by Lemma 16.2. 0 

Finally, we examine robustness of the minimum distance rule against modeling 
errors, that is, what happens if the distributions are not in Pe. A good rule should 
still work reasonably well if the distributions are in some sense close to the modeled 
parametric class Pe. Observe that if for some e = (p, eo, (1) the Bayes rule can 
be written as 

* {1 if ae (x) > ° 
g (x) = ° otherwise, 

then Lemma 16.1 remains valid even when the class-conditional distributions are 
not in P e. Denote the true class-conditional distributions by P;, Pt, let p * = 
pry = 1}, and introduce Q* = p* Pt - (l - p)P;. Thus, 

L(ge) - L * 

< 2Ds(Q*, Qe) (by Lemma 16.1) 

< 2Ds(Q*, 1)n) + 2Ds(1)n, Qe) (by the triangle inequality) 

< 2Ds(Q*, 1)n) + 2Ds(1)n, Qe) (by the definition of Qe) 

< 4Ds(Q*, vn) + 2Ds(Q*, Qe) (again by the triangle inequality). 



16.4 Empirical Error Minimization 275 

Lemma 16.2 now applies to the first term on the right-hand side. Thus, we conclude 
that if the Bayes rule is in A, then for all E :::: 4 inf Qe Ds( Q*, Qe), 

P {L(ge) - L * > EJ::s 8(n +1)2VAe-nE2j211. 

The constant in the exponent may be improved significantly by more careful anal­
ysis. In other words, if the Bayes rule is in A and the true distribution is close to 
the parametric family in the generalized Kolmogorov-Smimov distance specified 
above, then the minimum distance rule still performs close to the Bayes error. 
Unfortunately, we cannot say the same if A does not contain the Bayes rule. Em­
pirical error minimization, discussed in the next section, is however very robust in 
all situations. 

16.4 Empirical Error Minimization 

In this section we explore the connection between parametric classification and 
rule selection by minimizing the empirical error, studied in Chapter 12. 

Consider the class C of classifiers of the form 

¢(x) = {O if (1 - .p)feo(x) :::: pfe/x ) 
1 otherwIse, 

where p E [0, 1], and eo, el E 8. The parametric assumption means that the Bayes 
rule is contained in C. Then it is a very natural approach to minimize the empirical 
error probability 

measured on the training data Dn over classifiers ¢ in the class C. Denote the 
empirically selected rule (i.e., the one minimizing Ln(¢)) by ¢~. For most typical 
parametric classes 8, the vc dimension Vc is finite. Therefore, as a straightforward 
consequence of Theorem 12.6, we have 

COROLLARY 16.1. If both conditional distributions are contained in the paramet­
ric family Pes, then for the error probability L(¢~) = P{¢~(X) =I YIDn} of the 
empirically optimal rule ¢~, we have for every nand E > ° 

P {L(¢~) - L* > E} ::s 8S(C, n)e-nE2j128. 

The result above means that 0 ( -/log n / n ) rate of convergence to the Bayes 

rule is guaranteed for the empirically optimal rule, whenever the vc dimension 
Vc is finite. This is the case, for example, for exponential families. If Pes is an 
exponential family, with densities of the form 

Je(x) ~ ca(e)j:J(x)exp {tJri(e)</!i(X)} , 
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then by results from Chapter 13, S(C, n) ::: (n+ 1t+l. Observe that in this approach, 

nothing but properties of the class C are used to derive the a ( Jlog n In) rate of 
convergence. 

REMARK. ROBUSTNESS. The method of empirical minimization is clearly extremely 
robust against errors in the parametric model. Obviously, (see Theorem 12.6) if 
the true conditional distributions are not contained in the class P e, then L * can 
be replaced in Corollary 16.1 by inf¢>Ec P{¢(X) ¥ Y}. If the model is fairly good, 
then this number should be very close to the Bayes risk L *. D 

REMARK. LOWER BOUNDS. The results of Chapter 14 imply that for some distri­
butions the error probability of the selected rule is about a (1 I vfn,) away from 
the Bayes risk. In the parametric case, however, since the class of distributions is 
restricted by the parametric model, this is not necessarily true. In some cases, a 
much faster rate of convergence is possible than the a ( Jlog n In) rate guaranteed 
by Corollary 16.1. See, for example, Problem 16.3, where an example is given in 
which the error rate is a(1In). D 

Problems and Exercises 

PROBLEM 16.1. Show that if both conditional distributions of X, given Y = 0 and Y = 1, 
are gaussian, then the Bayes decision is quadratic, that is, it can be written as 

g*(x) = { ~ if'L.~:(d+I)/2 a(t/Ji(x) + ao 2: 0 
otherwise, 

where the functions l/Ji(X) are either of the form x(i) (the i-th component of the vector x), 

or x (i)x(J) , and ao, ... , ad+d(d+J)/2 E R. 

PROBLEM 16.2. Let 1 be the normal density on the real line with mean m and standard 
deviation 0-

2
, and we draw an i.i.d. sample X I, ... , Xn from 1, and set 

---2 1 11 '" 2 
and 0- = - L(Xi - m) . 

n i=1 

Show that E {1m - mil = 0 (1/ In) and E {Io- - CTI} = 0 (1/ In) by using Chebyshev's 
inequality. Show that this rate is in fact tight. Prove also that the result remains true if n 
is replaced by N, a binomial (n, p) random variable independent of XI, ... , Xn , where 
p E (0, 1). That is, m becomes 0/ N) 2=::1 Xi if N > 0 and 0 otherwise, and similarly for 
CT. 

PROBLEM 16.3. Assume that p = 1/2, and that both class-conditional densities 10 and 11 
are gaussian on R with unit variance, but different means. We use the maximum likelihood 
estimates mo, iii] of the conditional means mo = E{XIY = O} and m] = E{XIY = I} to 
obtain the plug-in classifier ge. Show that E {(mo - mo)2} = 00/ n). Then go on to show 
thatE {L(ge)} - L* ::: OO/n). 
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PROBLEM 16.4. Show that the following classes of densities on R constitute exponential 

families: 
(1) gaussian family: 

(2) gamma family: 

(3) beta family: 

(4) Rayleigh family: 

{ 
rea + f3) 0'-1 tJ-I . } . 
r(a)r(f3) x (1 - x) I(xEO.I). a, f3 > 0 , 

E;Af3 1- Ae- tJ /(2e)x"e-ex /2,,"", -: e f3 > 0 ,A > 0 . 
{ 

2 2 00 1 (X)2J+A-I } 
1:tJ!r(j+,A) 2 " -

PROBLEM 16.5. This exercise shows that one-parameter classes may be incredibly rich. Let 
C be the class of rules of the form 

ge(x) = { ~ if x E A+e 
if x '/: A+e, 

where x E R, 8 E R is a parameter, and A is a union of intervals on the real line. 
Equivalently, ge = IA+e. Let 

A = U [i - ~, i + ~) , 
i:h;=1 2 2 

where b I , b2 , .•• are bits, obtained as follows: first list all sequences of length l, then those 
of length 2, et cetera, so that (b I , b2 , ..• ) is a concatenation of (1,0), (1, 1, 1,0,0, 1,0,0), 
et cetera. 

(1) Show that for all n, there exists a set {x 1, ... , X n } C R that can be shattered by a 
set from {A + e : e En}. Conclude that the vc dimension of C is infinite. 

(2) If we use C for empirical error minimization and L * = 0, what can you say about 
E{L n }, the probability of error of the selected rule? 

PROBLEM 16.6. CONTINUATION. Let X be uniform on 8 + [i - 1/2, i + 1/2) with probability 
1/2i, i 2: 1. Set Y = bi if X E 8 + [i -1/2, i + 1/2), so that L* = o. 

(1) Derive the class of Bayes rules. 
(2) Work out the details of the generalized Kolmogorov-Smirnov distance minimizer 

based on the class of (1). 
(3) Provide the best upper bound on E{L n } you can get with any method. 
(4) Regardless of discrimination, how would you estimate e? Derive the asymptotic 

behavior of E{ Ln} for the plug-in rule based on your estimate of e. 

PROBLEM 16.7. If Fe = {all uniform densities on rectangles of Rd} and if we use the 
maximum likelihood estimates of p, 80 , (h derived in the text, show that E{ Ln} - L * = 
O(1/n). 
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PROBLEM 16.8. CONTINUED. Assume that the true class-conditional densities are fa, f1, 
and fa, II ¢. :Fe· With the same maximum likelihood estimates given above, find fa, f1 for 
which E{Ln } ~ 1, yet L * = O. 

PROBLEM 16.9. CONTINUED. Show that the O(1/n) rate above can, in general, not be im­
proved. 

PROBLEM 16.10. Show that 

by noting that the supremum in the definition of D KS may be replaced by a maximum over 
nd carefully selected points of nd. HINT: Use the idea of fingering from Chapters 4 and 12. 

PROBLEM 16.11. Prove Lemma 16.2 by following the line of the proof of the Vapnik­
Chervonenkis inequality (Theorem 12.5). HINT: In the second symmetrization step observe 
that 

has the same distribution as that of 

sup 1 ~ t ai I{xi EA} I· 
AEB n i=l 

PROBLEM 16.12. MINIMUM DISTANCE DENSITY ESTIMATION. Let:Fe = {fe : e E 8} be a 
parametric class of densities on Rd, and assume that the i.i.d. sample Xl, ... , Xn is drawn 
from the density fe E :Fe. Define the class of sets 

and define the minimum distance estimate of e by 

(j = arg min D A(Pe" fin), 
e'Ee 

where Pe, is the distribution belonging to the density fe', fin is the empirical distribution 
defined by Xl, ... , Xn , and DAis the generalized Kolmogorov-Smimov distance defined 
by 

DA(P, Q) = sup IP(A) - Q(A)I. 
AEA 

Prove that if A has finite vc dimension, then 

E {! Ifg-(x) - fe(X)ldX} = 0 (l/Jn). 

For more information on minimum distance density estimation, see Yatracos (1985) and 
Devroye (1987). HINT: Follow the steps listed below: 

(1) f Ifg- - fe I :s 2DA(Pg-, Pe) (use Scheff6's theorem). 
(2) DA(Pg-, Pe) :s 2DA(Pe, fin) (proceed as in the text). 
(3) Finish the proof by applying Alexander's improvement of the Vapnik-Chervonen­

kis inequality (Theorem 12.10). 



17 
Generalized Linear Discrimination 

The classifiers we study here have their roots in the Fourier series estimate or other 
series estimates of an unknown density, potential function methods (see Chapter 
10), and generalized linear classifiers. All these estimators can be put into the 
following form: classify x as belonging to class 0 if 

k 

L an,jo/j(x ) :::: 0, 
j=l 

where the 0/ j'S are fixed functions, forming a base for the series estimate, an,j is a 
fixed function of the training data, and k controls the amount of smoothing. When 
the o//s are the usual trigonometric basis, then this leads to the Fourier series 
classifier studied by Greblicki and Pawlak (1981; 1982). When the o//s form 
an orthonormal system based upon Hermite polynomials, we obtain the classifiers 
studied by Greblicki (1981), and Greblicki and Pawlak (1983; 1985). When {o/ j (x)} 
is the collection of all products of components of x (such as 1, (x(i)k, (x(i)k(x(j)y, 

etcetera), we obtain the polynomial method of Specht (1971). 
We start with classification based on Fourier series expansion, which has its 

origins in Fourier series density estimation, which, in tum, was developed by 
Cencov (1962), Schwartz (1967), Kronmal and Tarter (1968), Tarter and Kronmal 
(1970), and Specht (1971). Its use in classification was considered by Greblicki 
(1981), Specht (1971), Greblicki and Pawlak (1981; 1982; 1983), and others. 
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17.1 Fourier Series Classification 

Let f be the density of X, and assume that f E L2(A), that is, f :::: 0, f f(x)dx = 1 
and f f2(x )dx < 00, and recall that A denotes the Lebesgue measure on nd. Let 
,,/II, 0/2, ... be a complete orthonormal set of bounded functions in L 2 (A) with 
sup j,x 100j(x)1 :::: B < 00. An orthonormal set of functions {o/j} in L 2(tL) is such 
that f l/Jjo/i = IU==j} for all i, j. It is complete if f al/Ji = 0 for all i for some 
function a E L 2(A) implies that a '= 0 almost everywhere (with respect to A). If 
f E L 2(A), then the class-conditional densities fo and fl exist, and are in L2(A). 
Then the function 

a(x) = p/1(x) - (1 - p)fo(x) = (217(X) - l)f(x) 

is in L 2(A) as well. Recall that the Bayes decision is given by 

* {O if a(x) :::: 0 
g (x) = 1 otherwise. 

Let the bounded functions l/Jl, l/J2, ... form a complete orthonormal basis, and let 
the Fourier representation of a be given by 

00 

a = Lajl/Jj. 
j=l 

The above convergence is understood in L 2(A), that is, the infinite sum means that 

The coefficients are given by 

We approximate a(x) by a truncation of its Fourier representation to finitely many 
terms, and use the data Dn to estimate the coefficients appearing in this sum. 
Formally, consider the classification rule 

(17.1) 

where the estimates an,j of a j are very easy to compute: 

Before discussing the properties of these rules, we list a few examples of complete 
orthonormal systems on the real line. Some of these systems contain functions 



17.1 Fourier Series Classification 281 

on a bounded interval. These, of course, can only be used if the distribution of X 
is concentrated on an interval. The completeness of these systems may typically 
be checked via the Stone-Weierstrass theorem (Theorem A.9). A general way 
of producing complete orthonormal systems on n d is taking products of one­
dimensional functions of the d components, as sketched in Problem 17.1. For 
more information on orthogonal series, we refer to Sansone (1969), Szeg6 (1959), 
and Zygmund (1959). 

(1) The standard trigonometric basis on the interval [-Jr, Jr] is formed by the 
functions 

1 cos(ix) sin(ix) 
%(x) = ~' o/2i-l(X) = r:;;' o/2i(X) = r:;;' i = 1,2, .... 

v~ vJr vJr 

This is a complete orthonormal system in L 2([ -Jr, n]). 

(2) The Legendre polynomials form a complete orthonormal basis over the in­
terval [-1, 1]: 

f!{Ii + 1 1 d
i (2 i) ·x = ---- x-I o/l( ) 2 2ii!dxi ( ), i =0, 1,2, .... 

(3) The set of Hermite functions is complete and orthonormal over the whole 
real line: 

(4) Functions of the Laguerre basis are defined on [0, (0) by 

( 
rei + 1) -ex x)1/2 1 d

i 
( i+ex -X) . 

o/i(X) = . x e -:---. x e , z=0,1,2, ... , 
r(z +a + 1) z! dx 1 

where a > -1 is a parameter of the system. A complete orthonormal system 
over the whole real line may be obtained by 

(5) The Haar basis contains functions on [0, 1] that take three different values. 
It is orthonormal and complete. Functions with finitely many values have 
computational advantages in pattern recognition. Write the integer i :::: 0 as 
i = 2k + j, where k = Llog2 i J (i.e., 0 :::: j < 2k). Then 

{ 

2k/2 if x E ((j - 1)j2k, (j - Ij2)j2k) 
o/i(X) = 2

0
- k/2 if x E ((j - Ij2)j2k, jj2k) 

otherwise. 
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(6) Functions on [0, 1] of the Rademacher basis take only two values, -1 and 
1. It is an orthonormal system, but it is not complete: 

1/Io(x) == 1, 1/Ii(X) = (_l) LixJ, i = 1,2, .... 

The basis may be completed as follows: write i = L~=1 2ij such that 0 :.s 
il < i2 < ... < ik. This form is unique. Define 

where the 1/1 j 's are the Rademacher functions. The resulting basis 1/1~, 1/1{, ... 
is orthonormal and complete, and is called the Walsh basis. 

There is no system of basis functions that is better than another for all distribu­
tions. In selecting the basis of a Fourier series rule, the designer must use a mixture 
of intuition, error estimation, and computational concerns. We have the following 
consistency theorem: 

Theorem 17.1. Let {1/Io, 1/11, ... } be a complete orthonormal basis on Rd such that 
for some B < 00, !1/Ii (x)! ::s B for each i and x. Assume that the class-conditional 
densities fo and fl exist and are in L2CA). If 

kn kn ~ 00 and - ~ 0 as n ~ 00, 
n 

then the Fourier series classification rule defined in (17.1) is consistent: 

If 

then 

lim EL(gn) = L *. 
n---+oo 

kn logn 
kn ~ 00 and --- ~ 0 as n ~ 00, 

n 

lim L(gn) = L * 
n---+oo 

with probability one, that is, the rule is strongly consistent. 

PROOF. First observe that the an,) 's are unbiased estimates of the a j 's: 

E{an,j} E {(2Y - 1)1/Ij(X)} = E {E {(2Y - 1)1/Ij(X)!X}} 

E {1/Ij(X)E {(2Y - l)IX}} = E {(217(X) - 1)1/Ij(X)} 

= j(217 (X) - 1)1/Ij(x)f(x)dx = j 1/I/x)a(x)dx 
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and that their variance can be bounded from above as follows: 

n 

!1/I](x)(2ry(x) - 1)2 f(x)dx - Ct; 
n 

B2 - Ct~ B2 
< J <_, 

n n 

where we used the boundedness of the l/J/s. By Parseval's identity, 

Therefore, exploiting orthonormality of the 1/1 j 's, we have 

J (a(x) - t an ,j1jfM) 2 dx 

= J a 2
(x)dx+ J (tanAMr dx 

Thus, the expected L2-error is bounded as follows: 

k" (X) 

LVar{Ctn,j} + L CtJ 
j=l j=kn+l 

< 
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Since L~l a; < 00, the second term tends to zero if kn ---+ 00. If at the same time 
kn / n ---+ 0, then the expected L2-error converges to zero, that is, the estimate is 
consistent in L 2• Now, convergence of the error probability follows from Problem 
2.11. 

To prove strong consistency (i.e., convergence with probability one), fix E > 0, 
and assume that n is so large that 

00 

L a; < E/2. 
j=kn+l 

Then 

kn 

< L P {(an,j - aj)2 > E/(2kn )} 

j=l 

(by the union bound) 

< 

where we used Hoeffding's inequality (Theorem 8.1). Because kn log n / n ---+ 0, 
the upper bound is eventually smaller than e-21ogn = n-2, which is summable. 
The Borel-Cantelli lemma yields strong L2 consistency. Strong consistency of the 
classifier then follows from Problem 2.11. 0 

REMARK. It is clear from the inequality 

that the rate of convergence is determined by the choice of kn . If kn is small, 
then the first term, which corresponds to the estimation error, is small, but the 
approximation error, expressed by the second term, is larger. For large kn' the 
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situation is reversed. The optimal choice of kn depends on how fast the second 
term goes to zero as kn grows. This depends on other properties of f, such as the 
size of its tail and its smoothness. 0 

REMARK. Consistency in Theorem 17.1 is not universal, since we needed to as­
sume the existence of square integrable conditional densities. This, however, is not 
a restrictive assumption in some practical situations. For example, if the observa­
tions are corrupted by additive gaussian noise, then the conditions of the theorem 
hold (Problem 17.2). However, if f1, does not have a density, the method may be 
inconsistent (see Problem 17.4). 0 

Fourier series classifiers have two rather unattractive features in general: 

(i) They are not invariant under translations of the coordinate space. 

(ii) Most series classifiers are not local in nature-points at arbitrary distances 
from x affect the decision at x. In kernel and nearest neighbor rules, the 
locality is easily controlled. 

17.2 Generalized Linear Classification 

When X is purely atomic or singular continuous, Theorem 17.1 is not applicable. 
A theme of this book is that pattern recognition can be developed in a distribution­
free manner since, after all, the distribution of (X, Y) is not known. Besides, even 
if we had an i.i.d. sample (X 1, Y1), .•• , (Xn , Yn ) at our disposal, we do not know of 
any test for verifying whether X has a square integrable density. So, we proceed a 
bit differently to develop universally consistent rules. To generalize Fourier series 
classifiers, let 1/11, 1/12, ... be bounded functions on nd. These functions do not 
necessarily form an orthonormal basis of L2. Consider the classifier 

where the coefficients an,) are some functions of the data Dn. This may be viewed 
as a generalization of Fourier series rules, where the coefficients were unbiased 
estimates ofthe Fourier coefficients of a(x) = (2rJ(x) -1)f(x). Here we will con­
sider some other choices of the coefficients. Observe that gn is a generalized linear 
classifier, as defined in Chapter 13. An intuitively appealing way to determine the 
coefficients is to pick them to minimize the empirical error committed on Dn, as 
in empirical risk minimization. The critical parameter here is kn , the number of 
basis functions used in the linear combination. If we keep kn fixed, then as we 
saw in Chapter 13, the error probability of the selected rule converges quickly to 
that of the best classifier of the above form. However, for some distributions, this 
infimum may be far from the Bayes risk, so it is useful to let kn grow as n becomes 
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larger. However, choosing kn too large may result in overfitting the data. Using 
the terminology introduced in Chapter 12, let C(kn ) be the class of classifiers of the 
form 

where the a j 's range through n. Choose the coefficients to minimize the empirical 
error 

Let gn = ¢: be the corresponding classifier. We recall from Chapter 13 that the 
vc dimension of C(kll

) is not more than kn . Therefore, by Theorem 13.12, for every 
n > 2kn + 1, 

where H is the binary entropy function. The right-hand side is e-nE2 
j128+o(n) if kn = 

o(n). However, to obtain consistency, we need to know how close inf</>Ec(knJ L(¢) 
is to L *. This obviously depends on the choice of the 1/1/ s, as well as on the 
distribution. If kn is not allowed to grow with n, and is bounded by a number K, then 
universal consistency eludes us, as for some distribution inf</>Ec(K) L(¢) - L * > 0. 
It follows from Theorem 2.2 that for every B > ° 

inf L(¢) - L * 
</>EC(kn ) 

< inf [ 1(2 1J(X) - 1) - taj1/lj(X)1 p.,(dx) + [ p.,(dx). 
al,···,akn 1I!x,,:SB j=l 1I!X">B 

The limit supremum of the right-hand side can be arbitrarily close to zero for all 
distributions if kn ~ 00 as n ~ 00 and the set of functions 

is dense in Ll (p.,) on balls of the form {x : Ilx II ::: B} for all p.,. This means that 
given any probability measure p." and function f with J Ifldp., < 00, for every 
E > 0, there exists an integer k and coefficients aI, ... , ak such that 

Thus, we have obtained the following consistency result: 
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Theorem 17.2. Let 0/1, 0/2, ... be a sequence of functions such that the set of 
all finite linear combinations of the 0/ j 's is dense in L 1 (jL) on balls of the form 
{x : Ilx II s B} for any probability measure jL. Then then gn is strongly universally 
consistent when 

kn 
kn ---+ 00 and - ---+ ° as n ---+ 00. 

n 

REMARK. To see that the statement of Theorem 17.2 is not vacuous, note that dense­
ness in L 1 (jL) on balls follows from denseness with respect to the supremum norm 
on balls. Denseness in the Loo sense may be checked by the Stone-Weierstrass the­
orem (Theorem A.9). For example, the class of all polynomial classifiers satisfies 
the conditions of the theorem. This class can be obtained by choosing the func­
tions 0/1, 0/2, ... as the simple polynomials x(l), ... , x Cd ), xCI) x(2), .... Similarly, 
the functions o/j can be chosen as bases of a trigonometric series. 0 

REMARK. THE HISTOGRAM RULE. It is clear that Theorem 17.2 can be modified in the 
following way: let 0/ j,b j = 1, ... , k; k = 1, 2, ... , be functions such that for every 
fELl (f-L) (with f-L concentrated on a bounded ball) and E > ° there is a ko such 
that for all k > ko there is a function of the form L~=l a j 0/ j,k whose distance from 

f in L 1 (f-L) is smaller than E. Let C(kl1
) be the class of generalized linear classifiers 

based on the functions o/l,kn , ••• , o/k",kn • If kn ---+ 00 and kn / n ---+ 0, then the 
classifier gn that minimizes the empirical error over C(kn ) is strongly universally 
consistent. This modification has an interesting implication. Consider for example 
functions o/l,kn , ••• , o/k" ,k" that are indicators of sets of a partition of nd. Then it is 
easy to see that the classifier that minimizes the empirical error is just the histogram 
classifier based on the same partition. The denseness assumption requires that the 
partition becomes infinitesimally fine as n ---+ 00. In fact, we have obtained an 
alternative proof for the strong universal consistency of the regular histogram rule 
(Theorem 9.4). The details are left as an exercise (Problem 17.3). 0 

Problems and Exercises 

PROBLEM 17.l. Let Yrl, Yr2, ... be a sequence of real-valued functions on a bounded in­
terval [a, b] such that f: Yri(x)Yr}(x)dx = I{i=}}, and the set of finite linear combinations 

2:=;=1 ai Yri (x) is dense in the class of continuous functions on [a, b] with respect to the 
supremum norm. Define the functions \{Iil, .. "id : [a, b]d -+ n by 

Show that these functions form a complete orthonormal set of functions on [a, b]d. 

PROBLEM 17.2. Let Z be an arbitrary random variable on n, and V be a real random 
variable, independent of Z, that has a density h E L2('A). Show that the density f of the 
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random variable X = Z + V exists, and f f2(X)dx < 00. HINT: Use Jensen's inequality to 
prove that f f2(X)dx :s f h2(x)dx. 

PROBLEM 17.3. Derive the strong universal consistency of the regular histogram rule from 
Theorem 17.2, as indicated in the remark following it. 

PROBLEM 17.4. Let {1fo, 1f1' 1f2' ... } be the standard trigonometric basis, and consider the 
classification rule defined in (17.1). Show that the rule is not consistent for the following 
distribution: given Y = l, let X be 0, and given Y = 0, let X be uniformly distributed on 
[-JT, JT]. Assume furthermore that pry = 1} = 1/2. 

PROBLEM 17.5. The Haar basis is not bounded. Determine whether or not the Laguerre, 
Hermite, and Legendre bases are bounded. 



18 
Complexity Regularization 

This chapter offers key theoretical results that confirm the existence of certain 
"good" rules. Although the proofs are constructive-we do tell you how you may 
design such rules-the computational requirements are often prohibitive. Many of 
these rules are thus not likely to filter down to the software packages and pattern 
recognition implementations. An attempt at reducing the computational complex­
ity somewhat is described in the section entitled "Simple empirical covering." 
Nevertheless, we feel that much more serious work on discovering practical algo­
rithms for empirical risk minimization is sorely needed. 

In Chapter 12, the empirical error probability was minimized over a class e 
of decision rules ¢ : n d ~ {O, I}. We saw that if the vc dimension Vc of the 
class is finite, then the error probability of the selected rule is within constant 
times -/Vc log n / n of that of the best rule in e. Unfortunately, classes with finite 
vc dimension are nearly always too small, and thus the error probability of the 
best rule in e is typically far from the Bayes risk L * for some distribution (see 
Theorem 18.4). In Chapter 17 we investigated the special classes of generalized 
linear rules. Theorem 17.2, for example, shows that if we increase the size of the 
class in a controlled fashion as the sample size n increases, the error probability 
of the selected rule approaches L * for any distribution. Thus, Vc increases with n! 

Theorem 17.2 may be generalized straightforwardly for other types of classifiers. 
Consider a sequence of classes e(l), e(2), ... , containing classifiers of the form 
¢ : n d ~ {O, I}. The training data Dn = ((Xl, Yd, ... ,(Xn, Yn)) are used to 
select a classifier ¢~ by minimizing the empirical error probability Ln (¢) over the 
class e(kn ), where the integer kn depends on n in a specified way. The following 
generalization is based on the proof of Theorem 17.2 (see Problem 18.1): 
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Theorem 18.1. Assume thate(l), e(2), ... is a sequence of classes of decision rules 
such that for any distribution of (X, Y), 

lim inf L(¢) = L *, 
i--+oo <jJECCi) 

and that the vc dimensions VCC]), VC(2) , ••• are all finite. If 

kn -+ 00 and 
VC(kn ) log n 
---- -+ 0 as n -+ 00, 

n 

then the classifier ¢~ that minimizes the empirical error over the class e Ckn ) is 
strongly universally consistent. 

Theorem 18.1 is the missing link-we are now ready to apply the rich theory of 
Vapnik -Chervonenkis classes in the construction of universally consistent rules. 
The theorem does not help us, however, with the choice of the classes eCO , or 
the choice of the sequence {kn }. Examples for sequences of classes satisfying 
the condition of Theorem 18.1 include generalized linear decisions with properly 
chosen basis functions (Chapter 17), or neural networks (Chapter 30). 

A word of warning here. The universally consistent rules obtained via Theorem 
18.1 may come at a tremendous computational price. As we will see further on, 
we will often have exponential complexities in n instead of polynomial time that 
would be obtained if we just minimized the empirical risk over a fixed vc class. 
The computational complexity of these rules are often incomparably larger than 
that of some simple universally consistent rules as k-nearest neighbor, kernel, or 
partitioning rules. 

18.1 Structural Risk Minimization 

Let eCl), e(2), •.. be a sequence of classes of classifiers, from which we wish to 
select a sequence of classifiers with the help of the training data Dn. Previously, we 
picked ¢l: from the kn -th class eCkn ), where the integer kn is some prespecified func­
tion of the sample size n only. The integer kn basically determines the complexity 
of the class from which the decision rule is selected. Theorem 18.1 shows that 
under mild conditions on the sequence of classes, it is possible to find sequences 
{kn } such that the rule is universally consistent. Typically, kn should grow with n in 
order to assure convergence of the approximation error inf<jJEc(knJ L(¢) - L *, but it 
cannot grow too rapidly, for otherwise the estimation error L (¢~) - inf <jJEC(kn J L (¢ ) 
might fail to converge to zero. Ideally, to get best performance, the two types of 
error should be about the same order of magnitude. Clearly, a pre specified choice 
of the complexity kn cannot balance the two sides of the trade-off for all distribu­
tions. Therefore, it is important to find methods such that the classifier is selected 
from a class whose index is automatically determined by the data Dn. This section 
deals with such methods. 
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The most obvious method would be based on selecting a candidate decision rule 
¢n,) from every class C(j) (for example, by minimizing the empirical error over 
C(j)), and then minimizing the empirical error over these rules. However, typically, 
the vc dimension of 

00 

C* = UC(J) 
)=1 

equals infinity, which, in view of results in Chapter 14, implies that this approach 
will not work. In fact, in order to guarantee 

it is necessary that 

inf inf L(¢) = L*, 
)~1 <jJEC(j) 

VC* = 00 

(see Theorems 18.4 and 18.5). 
A possible solution for the problem is a method proposed by Vapnik and Cher­

vonenkis (1974c) and Vapnik (1982), called structural risk minimization. First we 
select a classifier 1n,) from every class C(j) which minimizes the empirical error 
over the class. Then we know from Theorem 12.5 that for every j, with very large 
probability, 

vcU)~ogn) . 

Now, pick a classifier that minimizes the upper bound over j :::: 1. To make things 
more precise, for every nand j, we introduce the complexity penalty 

32 
r(j, n) = - VC(j) log(en). 

n 

Let ¢n,l, 1n,2, .,. be classifiers minimizing the empirical error Ln(¢) over the 
classes C(l), C(2), ... , respectively. For ¢ E C(j), define the complexity-penalized 
error estimate 

- ----
Ln(¢) = Ln(¢) + r(j, n). 

Finally, select the classifier ¢I~ minimizing the complexity penalized error estimate 

in(¢n,)) over j :::: 1. The nexttheorem states thatthis method avoids overfitting the 
data. The only condition is that each class in the sequence has finite vc dimension. 

Theorem 18.2. Let C(l), C(2), ... be a sequence of classes of classifiers such that 
for any distribution of (X, Y), 

lim inf L (¢) = L * . 
)---'?OO <jJEC(j) 

Assume also that the vc dimensions VC(!), VC(2) , ••• are finite and satisfy 

00 

.6. = L e-vc(j) < 00. 

)=1 
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Then the classification rule cp~ based on structural risk minimization, as defined 
above, is strongly universally consistent. 

REMARK. Note that the condition on the vc dimensions is satisfied if we insist that 
VC(j+I) > VC(j) for all j, a natural assumption. See also Problem 18.3. 0 

Instead of minimizing the empirical error Ln (cp) over the set of candidates C* , the 
method of structural risk minimization minimizes in (cp), the sum of the empirical 

error, and a term ~ VC(j) log(en), which increases as the vc dimension of the n 

class C(j) containing cp increases. Since classes with larger vc dimension can be 
considered as more complex than those with smaller vc dimension, the term added 
to the empirical error may be considered as a penalty for complexity. The idea of 
minimizing the sum of the empirical error and a term penalizing the complexity has 
been investigated in various statistical problems by, for example, Rissanen (1983), 
Akaike (1974), Barron (1985; 1991), Barron and Cover (1991), and Lugosi and 
Zeger (1996). Barron (1991) minimizes the penalized empirical risk over a suitably 
chosen countably infinite list of candidates. This approach is close in spirit to the 
skeleton estimates discussed in Chapter 28. He makes the connection between 
structural risk minimization and the minimum description length principle, and 
obtains results similar to those discussed in this section. The theorems presented 
here were essentially developed in Lugosi and Zeger (1996). 

PROOF OF THEOREM 18.2. We show that both terms on the right-hand side of the 
following decomposition converge to zero with probability one: 

For the first term we have 

P {L(¢Z) - %\ i.(<P",j) > E } 

P {L(CP~) - Ln(CP,~) > E} 

< P {~up (L(¢n,j) - in(¢ll.j») > E} 
}~l 

00 

< L P {IL(¢n,j) - Ln(¢n.j)1 > E + r(j, n)} 
j=l 

00 

< L 8n Vc(j) e-n(Hru.1l)f/32 (by Theorem 12.5) 
j=l 
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00 

< L 8n vc(j) e-nr2(j,n)/32e-nE2/32 

j=l 

00 

8e -nE
2 
/32 L e -Vc(j) = f::..e ~nE2 /32 

j=l 

using the defining expression for r(j, n), where f::.. = 8 L~l e- vC(j) < 00, by 
assumption. Thus, it follows from the Borel-Cantelli lemma that 

L(</>~) - ~nfl in(¢n,j) ~ ° 
J?:. 

with probability one as n ~ 00. Now, we can tum to investigating the second term 
infF:::l inC¢n,j) - L *. By our assumptions, for every E > 0, there exists an integer 
k such that 

inf LC </» - L * ::s E. 
<pEC(k) 

Fix such a k. Thus, it suffices to prove that 

lim sup inf inC¢n,j) - inf LC</»::s ° with probability one. 
n-+oo j?:.l <pEC(k) 

Clearly, for any fixed k, if n is large enough, then 

rCk, n) = 
32 E 
-;; VC(k) logC en) ::s 2' 

Thus, for such large n, 

P {i.nf inC¢n,j) - inf LC</» > E} 
J?:.I <pECW 

< P {inC¢n,k) - inf LC</» > E} 
<pEC(k) 

= P {L n C ¢n, k) + r C k, n) - inf L C</» > E} 
<pEC(k) 

< P {LnC¢n,k) - inf LC</» > ~} 
<pEC(k) 2 

< p{ sup ILn(¢)-LC¢)1 >~} 
<pEC(k) 2 

< 8n VC(k) e-nE2 /128 

by Theorem 12.5. Therefore, since VC(k) < 00, the proof is completed. 0 

Theorem 18.2 shows that the method of structural risk minimization is univer­
sally consistent under very mild conditions on the sequence of classes e(l), e(2), .... 
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This property, however, is shared with the minimizer of the empirical error over the 
class C(kn ), where kn is a properly chosen function of the sample size n (Theorem 
18.1). The real strength, then, of structural risk minimization is seen from the next 
result. 

Theorem 18.3. Let C(l), C(2), ... be a sequence of classes of classifiers such that 
the vc dimensions VC(l), V C(2) , ••• are all finite. Assume further that the Bayes rule 

00 

g* E C* = UC(j), 
j=l 

that is, a Bayes rule is contained in one of the classes. Let k be the smallest integer 
such that g* E C(k). Thenfor every nand E > ° satisfying 

the error probability of the classification rule based on structural risk minimization 
¢~ satisfies 

PROOF. Theorem 18.3 follows by examining the proof of Theorem 18.2. The only 
difference is that by assumption, there is an integer k such that inf rjJEC(k) L( ¢) = L *. 
Therefore, for this k, 

L(¢~) - L* = (L(¢~) - ~nf in(¢n,j)) + (~nf in(¢n,j) - inf L(¢)) , 
12.1 12.1 rjJEC(k) 

and the two terms on the right-hand side may be bounded as in the proof of Theorem 
18.2.0 

Theorem 18.3 implies that if g* E C*, there is a universal constant Co and a finite 
k such that 

VC(k) logn 

n 

that is, the rate of convergence is always of the order of Jlog n / n, and the constant 
factor VC(k) depends on the distribution. The number VC(k) may be viewed as the 
inherent complexity of the Bayes rule for the distribution. The intuition is that the 
simplest rules are contained in C(l), and more and more complex rules are added to 
the class as the index of the class increases. The size of the error is about the same 
as if we had known k beforehand, and minimized the empirical error over C(k). In 
view of the results of Chapter 14 it is clear that the classifier described in Theorem 
18.1 does not share this property, since if L * > 0, then the error probability of the 
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rule selected from C(kn ) is larger than a constant times JVC(kn ) log n/ n for some 
distribution-even if g* E C(k) for some fixed k. Just as in designs based upon 
minimum description length, automatic model selection, and other complexity 
regularization methods (Rissanen (1983), Akaike (1974), Barron (1985; 1991), 
and Barron and Cover (1991)), structural risk minimization automatically finds 
where to look for the optimal classifier. The constants appearing in Theorem 18.3 
may be improved by using refined versions of the Vapnik -Chervonenkis inequality. 

The condition g* E C* in Theorem 18.3 is not very severe, as C* can be a large 
class with infinite vc dimension. The only requirement is that it should be written 
as a countable union of classes of finite vc dimension. Note however that the class 
of all decision rules can not be decomposed as such (see Theorem 18.6). We also 

emphasize that in order to achieve the 0 ( Jlog n / n ) rate of convergence, we do 

not have to assume that the distribution is a member of a known finite-dimensional 
parametric family (see Chapter 16). The condition is imposed solely on the form 
of the Bayes classifier g*. 

By inspecting the proof of Theorem 18.2 we see that for every k, 

EL(¢~) - L* ::; Co VC(k) log n + ( inf L( ¢) _ L *) . 
n ¢EC(k) 

In fact, Theorem 18.3 is the consequence of this inequality. The first term on 
the right-hand side, which may be called estimation error, usually increases with 
growing k, while the second, the approximation error, usually decreases with it. 
Importantly, the above inequality is true for every k, so that 

VC(k) logn + ( inf L(¢) - L *)) . 
n ¢EC(k) 

Thus structural risk minimization finds a nearly optimal balance between the two 
terms. See also Problem 18.6. 

REMARK. It is worthwhile mentioning that under the conditions of Theorem 18.3, 
an even faster, 0 ( -JI711), rate of convergence is achievable at the expense of mag­
nifying the constant factor. More precisely, it is possible to define the complexity 
penalties r(j, n) such that the resulting classifier satisfies 

EL(A.*) - L* < ~ 
'f'n -.jn' 

where the constant Cl depends on the distribution. These penalties may be defined 
by exploiting Alexander's inequality (Theorem 12.10), and the inequality above 
can be proved by using the bound in Problem 12.10, see Problem 18.6. 0 

REMARK. We see from the proof of Theorem 18.2 that 

p {L(¢~) > in(¢~) + E} :::: 6.e-nE2 
/32. 
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This means that in(¢~) does not underestimate the true error probability of ¢~ by 
much. This is a very attractive feature of in as an error estimate, as the designer 
can be confident about the performance of the rule ¢~. 0 

The initial excitement over a consistent rule with a guaranteed 0 (.jlog n / n) 
rate of convergence to the Bayes error is tempered by a few sobering facts: 

(1) The user needs to choose the sequence Cm and has to know Vcw (see, 
however, Problems 18.3, 18.4, and the method of simple empirical covering 
below). 

(2) It is difficult to find the structural risk minimizer ¢/: efficiently. After all, the 
minimization is done over an infinite sequence of infinite sets. 

The second concern above deserves more attention. Consider the following 
simple example: let d = 1, and let C(j) be the class of classifiers ¢ for which 

j 

{x: ¢(x) = 1} = UAi , 

i=l 

where each Ai is an interval oCR. Then, from Theorem l3.7, Vcw = 2j, and we 
may take 

r(j, n) = 
64j 
-log(en) . 

n 

In structural risk minimization, we find those j (possibly empty) intervals that 
minimize 

Ln(¢) + r(j, n), 

and call the corresponding classifier ¢n,j' For j = 1 we have r(j, n) = ~ loge en). 

As r(n, n) > 1 + r(l, n), and r(j, n) is monotone in j, it is easily seen that to pick 
the best j as well, we need only consider 1 :::: j :::: n. Still, this is a formidable 
exercise. For fixed j, the best j intervals may be found by considering all possible 
insertions of 2j interval boundaries among the n X/so This brute force method 
takes computation time bounded from below by (n;~j). If we let j run up to n, then 
we have as a lower bound 

t (n +~j). 
j=l 2] 

Just the last term alone, G~), grows as a Ul r, and is prohibitively large for 

n :::: 20. Fortunately, in this particular case, there is an algorithm which finds a 
classifier minimizing Ln (¢) + r(j, n) over C* = U~l C(j) in computational time 
polynomial in n, see Problem 18.5. Another example when the structural risk 
minimizer ¢~ is easy to find is described in Problem 18.6. However, such fast 
algorithms are not always available, and exponential running time prohibits the 
use of structural risk minimization even for relatively small values of n. 
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18.2 Poor Approximation Properties of VC Classes 

We pause here for a moment to summarize some interesting by-products that 
readily follow from Theorem 18.3 and the slow convergence results of Chapter 7. 

Theorem 18.3 states that for a large class of distributions an 0 (/log n / n ) rate of 

convergence to the Bayes error L * is achievable. On the other hand, Theorem 7.2 
asserts that no universal rates of convergence to L * exist. Therefore, the class of 
distributions for which Theorem 18.3 is valid cannot be that large, after all. The 
combination of these facts results in the following three theorems, which say that vc 
classes-classes of subsets of n d with finite vc dimension-have necessarily very 
poor approximation properties. The proofs are left to the reader as easy exercises 
(see Problems 18.7 to 18.9). For direct proofs, see, for example, Benedek and Itai 
(1994). 

Theorem 18.4. LetC be any class of classifiers of the fo rm ¢ : nd --+ {a, I}, with 
vc dimension Vc < 00. Then for every E > ° there exists a distribution such that 

. * 1 mf L( ¢) - L > - - E. 
¢EC 2 

Theorem 18.5. Let C(1), C(2), ... be a sequence of classifiers such that the vc 
dimensions VC(l) , VC(2) , ... are all finite. Then for any sequence {ak} of positive 
numbers converging to zero arbitrarily slowly, there exists a distribution such that 
for every k large enough, 

inf L (¢) - L * > ak. 
¢EC(k) 

Theorem 18.6. The class C* of all (Borel measurable) decision rules of form 
¢ : Rd --+ {a, I} cannot be written as 

00 

C* = U cen, 
j=l 

where the vc dimension of each class C(j) is finite. In other words, the class B of 
all Borel subsets ofnd cannot be written as a union of countably many vc classes. 
In fact, the same is true for the class of all subsets of the set of positive integers. 

18.3 Simple Empirical Covering 

As Theorem 18.2 shows, the method of structural risk minimization provides au­
tomatic protection against the danger of overfitting the data, by penalizing com­
plex candidate classifiers. One of the disadvantages of the method is that the 
penalty terms r(j, n) require knowledge of the vc dimensions of the classes C(j) 
or upper bounds of these dimensions. Next we discuss a method proposed by 



298 18. Complexity Regularization 

Buescher and Kumar (1996b) which is applicable even if the vc dimensions of 
the classes are completely unknown. The method, called simple empirical cov~ 
ering, is closely related to the method based on empirical covering studied in 
Problem 12.14. In simple empirical covering, we first split the data sequence Dn 
into two parts. The first part is Dm = ((Xl, Yd, ... , (Xm, Ym» and the second part 
is 'It = (Xm+l' Ym+1), ••• , (Xn, Yn». The positive integers m and I = n - m will 
be specified later. The first part Dm is used to cover C* = U7=1 Cen as follows. For 
every ¢ E C*, define the binary m-vector bm (¢) by 

There are N :::: 2m different values of bm (¢ ). Usually, as Ve* = 00, N = 2m
, that is, 

all possible values of bm (¢) occur as ¢ is varied over C*, but of course, N depends 
on the values of X I, ... , X m. We call a classifier ¢ simpler than another classifier 
¢/, if the smallest index i such that ¢ E C(i) is smaller than or equal to the -smallest 
index j such that ¢' E C(j). For every binary m-vector b E {O, l}m that can be 
written as b = bm(¢) for some ¢ E C*, we pick a candidate classifier ;Pm.k with 
k E {l, ... , N} such that bm(;Pm,k) = b, and it is the simplest such classifier, that 
is, there is no ¢ E C* such that simultaneously bm(;Pm,k) = b(¢) and ¢ is simpler 
than ¢m.k. This yields N :::: 2m candidates ;Pm,l, ... , ;Pm.N' Among these, we select 
one that minimizes the empirical error 

measured on the independent testing sequence 'It. Denote the selected classifier by 
¢:. The next theorem asserts that the method works under circumstances similar 
to structural risk minimization. 

Theorem 18.7. (BUESCHER AND KUMAR (l996B». Let C(l) ~ C(2) ~ '" be a 
nested sequence of classes of classifiers such that for any distribution of (X , Y), 

lim inf L (¢) = L * . 
j~OO¢Ee(j) 

Assume also that the vc dimensions Ve(l) , Ve(2), ... are all finite. If m I log n -+ 00 

and min -+ 0, then the classification rule ¢: based on simple empirical covering 
as defined above is strongly universally consistent. 

PROOF. We decompose the difference between the error probability of the selected 
rule ¢,~ and the Bayes risk as follows: 
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The first term can be handled by Lemma 8.2 and Hoeffding's inequality: 

P {L(ep:) - inf L(¢m,k) > E} 
l-Sk-SN 

< P {2 sup IL(¢m,k) LZ(¢m,k)1 > E} 
l-Sk-SN 

E {p {2 1~~;JL(1m'k) - [,(1m,k)i > ,I Dm}} 

< E { 2N e -ZE2 /2 } 

< 2m+le-ZE2 / 2 = 2m+1e-(n-m)E2
/2. 

Because m = o(n), the latter expression converges to zero exponentially rapidly. 
Thus, it remains to show that 

inf L(¢m,k) - L * -+ ° 
l-Sk-sN 

with probability one. By our assumptions, for every E > 0, there is an integer k 
such that 

inf L(ep) - L* < E. 
¢EC(k) 

Then there exists a classifier epeE) E e(k) with L(ep(E)) - L * :::s E. Therefore, we are 
done if we prove that 

lim sup inf L(¢m,k) - L(ep(E)) :::: ° with probability one. 
n-HX! l-Sk-SN 

Clearly, there is a classifier ¢m,j among the candidates ¢m,l, ... , ¢m,N, such that 

Since by definition, ¢m,j is simpler than ep(E), and the classes e(l), e(2), ... are 
nested, it follows that ¢m,j E e(k). Therefore, 

< sup IL(ep) L(ep') I, 
¢,¢'EC(k):bm(¢)=bm(¢') 

where the last supremum is taken over all pairs of classifiers such that their corre­
sponding binary vectors bm (ep ) and bm (ep') are equal. But from Problem 12.14, 
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which is summable if m/ log n -+ 00.0 

REMARK. As in Theorem 18.3, we may assume again that there is an integer k such 
that inf</>Eok) L(¢) = L *. Then from the proof of the theorem above we see that the 
error probability of the classifier ¢~, obtained by the method of simple empirical 
covering, satisfies 

P {L(¢/:) - L * > E} ::s 2m+1 e-(n-m)E
2
/8 + 2S4 (C(k) , 2m)e-mdog2/8. 

Unfortunately, for any choice of m, this bound is much larger than the analogous 
bound obtained for structural risk minimization. In particular, it does not yield 
an OCjlogn/n) rate of convergence. Thus, it appears that the price paid for the 
advantages of simple empirical covering-no knowledge of the vc dimensions 
is required, and the implementation may require significantly less computational 
time in general-is a slower rate of convergence. See Problem 18.10. 0 

Problems and Exercises 

PROBLEM 18.1. Prove Theorem 18.1. 

PROBLEM 18.2. Define the complexity penalties r(j, n) so that under the conditions of 
Theorem 18.3, the classification rule ¢1~ based upon structural risk minimization satisfies 

where the constant Cl depends on the distribution. HINT: Use Alexander's bound (Theorem 
12.10), and the inequality of Problem 12.10. 

PROBLEM 18.3. Let C(l), C(2), ... be a sequence of classes of decision rules with finite vc 
dimensions. Assume that only upper bounds a j ::: VeUJ on the vc dimensions are known. 
Define the complexity penalties by 

r(j, n) = 32 
-(Xj log(en). 
n 

Show that if L~I e-CXj < 00, then Theorems 18.2 and 18.3 carryover to the classifier based 
on structural risk minimization defined by these penalties. This points out that knowledge 
of relatively rough estimates of the vc dimensions suffice. 

PROBLEM 18.4. Let CCI), C(2), ... be a sequence of classes of classifiers such that the vc 
dimensions Ve(l), Ve(2), ••• are all finite. Assume furthermore that the Bayes rule is con­
tained in one of the classes and that L * = O. Let ¢1: be the rule obtained by structural risk 
minimization using the positive penalties r(j, n), satisfying 
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(l) For each n, r(j, n) is strictly monotone increasing in j. 
(2) For each j, limn-+oo r(j, n) = 0. 

Show that E{L(¢:)} = O(logn/n) (Lugosi and Zeger (1996». For related work, see 

Benedek and Itai (1994). 

PROBLEM 18.5. Let C(j) be the class of classifiers ¢ : nd ~ to, I} satisfying 

j 

{x : ¢(x) = I} = U Ai, 
i=l 

where the Ai'S are bounded intervals in n. The purpose of this exercise is to point out that 
there is a fast algorithm to find the structural risk minimizer ¢: over C* = U~l Cen, that is, 

which minimizes in = Ln + r(j, n) over C*, where the penalties r(j, n) are defined as in 
Theorems 18.2 and 18.3. The property below was pointed out to us by Miklos Csuros and 

R6ka Szabo. 
(1) Let AL, ... , Aj,} be the j intervals defining the classifier (fin,) minimizing Ln 

over C(J). Show that the optimal intervals for C(J+l), Ar,}+l' ... , A j+l,}+l satisfy 
the following property: either j of the intervals coincide with A L, ... , A j,}, or 
j 1 of them are among A r,}, ... , A j,}, and the remaining two intervals are 
subsets of the j -th interval. 

(2) Use property (1) to define an algorithm that finds ¢: in running time polynomial 
in the sample size n. 

PROBLEM 18.6. Assume that the distribution of X is concentrated on the unit cube, that 
IS, P{X E [0, l]d} = 1. Let p} be a partition of [0, l]d into cubes of size 1/ j, that is, p} 
contains / cubic cells. Let C(j) be the class of all histogram classifiers ¢ : [0, l]d ~ to, I} 
based on p}. In other words, p} contains all 2}d classifiers which assign the same label to 
points falling in the same cell of p}. What is the vc dimension Ve(j) of Cen? Point out that 
the classifier minimizing Ln over C(j) is just the regular histogram rule based on p}. (See 
Chapter 9.) Thus, we have another example in which the empirically optimal classifier is 
computationally inexpensive. The structural risk minimizer ¢; based on C* = U~l C(j) is 
also easy to find. Assume that the a posteriori probability 'fl(x) is uniformly Lipschitz, that 
is, for any x, y E [0, l]d, 

!'fl(x) - 'fl(y)! :::: cllx - y!1, 

where c is some constant. Find upper bounds for the rate of convergence of EL(¢;) to L *. 

PROBLEM 18.7. Prove Theorem 18.4. HINT: Use Theorem 7.1. 

PROBLEM 18.8. Prove Theorem 18.5. HINT: Use Theorem 7.2. 

PROBLEM 18.9. Prove Theorem 18.6. HINT: Use Theorems 7.2 and 18.3. 

PROBLEM 18.10. Assume that the Bayes rule g* is contained in C* = U~l C(J). Let ¢; 
be the classifier obtained by simple empirical covering. Determine the value of the design 
parameter m that minimizes the bounds obtained in the proof of Theorem 18.7. Obtain a 
tight upper bound for EL(¢:) - L *. Compare your results with Theorem 18.3. 





19 
Condensed and Edited 
Nearest Neighbor Rules 

19.1 Condensed Nearest Neighbor Rules 

Condensing is the process by which we eliminate data points, yet keep the same 
behavior. For example, in the nearest neighbor rule, by condensing we might 
mean the reduction of (X 1, Y1), ••• , (Xn, Yn) to (X~, Y{), ... , (X~, Y~l) such that 
for all x E nd , the l-NN rule is identical based on the two samples. This will 
be called pure condensing. This operation has no effect on L n , and therefore 
is recommended whenever space is at a premium. The space savings should be 
substantial whenever the classes are separated. Unfortunately, pure condensing is 
computationally expensive, and offers no hope of improving upon the performance 
of the ordinary l-NN rule. 

o 

o 

• 
• 

class 1 
under I-NN rule 

• 
o 

• 

class 0 
under 1-NN rule 

FIGURE 19.1. Pure condensing: 

Eliminating the marked points 

does not change the decision . 
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Hart (1968) has the first simple algorithm for condensing. He picks a subset that 
correctly classifies the remaining data by the I-NN rule. Finding a minimal such 
subset is computationally difficult, but heuristics may do the job. Hart's heuristic is 
also discussed in Devijver and Kittler (1982, p.120). For probabilistic analysis, we 
take a more abstract setting. Let (X~, Y{), ... , (X:n , Y~1) be a sequence that depends 
in an arbitrary fashion on the data Dn, and let gn be the I-nearest neighbor rule 
with (X~, Y{), ... , (X;n' Y';I)' where for simplicity, m is fixed beforehand. The data 
might, for example, be obtained by finding the subset of the data of size m for which 
the error with the I-NN rule committed on the remaining n - m data is minimal 
(this will be called Hart's rule). Regardless, if in = (1/ n) L~1=1 I{gn(X,)/Y;} and 
Ln = P{gn(X) =I YIDnL then we have the following: 

Theorem 19.1. (DEVROYE AND WAGNER (I979c». For all E > 0 and all distri­
butions, 

____ ( ne )(d+l)m<m-l) 0 

P{ILn - Lnl:::: E}:S 8 d+ 1 e-ncj32. 

REMARK. The estimate in is called the resubstitution estimate of the error prob­
ability. It is thoroughly studied in Chapter 23, where several results of the afore­
mentioned kind are stated. 0 

PROOF. Observe that 

where Bi is the Voronoi cell of X; in the Voronoi partition corresponding to 
Xi, ... , X~l' that is, Bi is the set of points of nd closer to X; than to any other X~ 
(with appropriate distance-tie breaking). Similarly, 

We use the simple upper bound 

ILn - inl :s sup IVn(A) - v(A)I, 
AEAm 

where v denotes the measure of (X, Y), Vn is the corresponding empirical measure, 
and Am is the family of all subsets ofnd x {O, I} of the form U;:l Bi x {yd, where 
B l , .•• , Bm are Voronoi cells corresponding to Xl, ... , X m, Xi End, Yi -'E {O, I}. 
We use the Vapnik-Chervonenkis inequality to bound the above supremum. By 
Theorem 13.5 (iv), 
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where A is the class of sets B1 x {yd. But each set in A is an intersection of at 
most m - 1 hyperplanes. Therefore, by Theorems 13.5 (iii), 13.9, and 13.3, 

(01 
.. ( n).e )(d+1)(k-1)) (ne )(d+1)(k-1) seA, n) :::; sup -- :::; -- , 

110.111:110+111=11 )=0 d + 1 d + 1 

where n) denotes the number of points in R d X {j}. The result now follows from 
Theorem 12.5.0 

REMARK. With Hart's rule, at least m data points are correctly classified by the 
1-NN rule (if we handle distance ties satisfactorily). Therefore, Ln :::; 1 - min. 0 

The following is a special case: Let m < n be fixed and let Dm be an arbitrary 
(possibly random) subsetofm pairs from (Xl, Y1), ... , (Xn , Yn ), usedingn • Let the 
remaining n - m points be denoted by Tn- m . We write Ln(Dm) for the probability 
of error with the 1-NN based upon Dm, and we define 

In Hart's rule, Ln .m would be zero, for example. Then we have: 

Theorem 19.2. For all E > 0, 

where Ln is the probability of error with gn (note that Dm depends in an arbitrary 
fashion upon Dn), and L n.m is Ln.m(Dm, Tn- m) with the data set Dm. 

PROOF. List the m-element subsets {i 1, ... , im } of {I, 2, ... , n}, and define D~~) 
as the sequence of m pairs from Dn indexed by i = Ii 1, ... , i In}, 1 ::s i ::s (,~). 
A d· 1 d T(i) - D D(i) Th ccor mg y, enote n-m - n - In' en 
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(by Hoeffding's inequality, because given D~), 

(n - m)Ln,m(D~i), T~~m) is binomial ((n - m), Ln(D~)))) 

~ 2(:)e~2(n~m)c'. 0 

By checking the proof, we also see that if Dm is selected to minimize the error 
estimate Ln,m (Dm, T,~-m), then the error probability Ln of the obtained rule satisfies 

p {ILn - inf Ln(Dm)1 > E} 
D111 

< P {2 sup ILn(DnJ - Ln,m(Dm, T,1-m)1 > E} (by Theorem 8.4) 
D", 

< 2(: )e~("~m)"/2 (as in the proof of Theorem 19.2). (19.1) 

Thus, for the particular rule that mimics Hart's rule (with the exception that m is 
fixed), if m is not too large-it must be much smaller than n / log n-Ln is likely 
to be close to the best possible we can hope for with a 1-NN rule based upon a 
subsample of size m. With some work (see Problem 12.1), we see that 

By Theorem 5.1, 

where Lm is the probability of error with the 1-NN rule based upon a sample of m 
data pairs. Hence, if m = o(n/ log n), m -+ 00, 

lim sup E{L n } :::: LNN 
n--7OO 

for the I-NN rule based on m data pairs Dm selected to minimize the error estimate 
Ln,m(Dm, Tn-m). However, this is very pessimistic indeed. It reassures us that with 
only a small fraction of the original data, we obtain at least as good a performance 
as with the full data set-so, this method of condensing is worthwhile. This is not 
very surprising. Interestingly, however, the following much stronger result is true. 
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Theorem 19.3. If m = o(n / log n) and m -+ 00, and if Ln}s the probability 
of error for the condensed nearest neighbor rule in which Ln,m(Dm, Tn- m) is 
minimized over all data sets Dm, then 

lim E{Ln} = L*. 
n--*oo 

PROOF. By (19.1), it suffices to establish that 

as m -+ 00 such that m = o(n), where Ln(Dm) is the probability of error of the 
I-NN rule with Dm. As this is one of the fundamental properties of nearest neighbor 
rules not previously found in texts, we offer a thorough analysis and proof of this 
result in the remainder of this section, culminating in Theorem 19.4. 0 

The distribution-free result of Theorem 19.3 sets the stage for many consistency 
proofs for rules that use condensing (or editing, or proto typing, as defined in the 
next two sections). It states that inherently, partitions of the space by I-NN rules 
are rich. 

HISTORICAL REMARK. Other condensed nearest neighbor rules are presented by 
Gates (1972), Ullmann (1974), Ritter, Woodruff, Lowry, and Isenhour (1975), 
Tomek (1976b), Swonger (1972), Gowda and Krishna (1979), and Fukunaga and 
Mantock (1984). 0 

Define Z = I{1)(X»1/2)' Let (X;, Yi , Zi), i = 1,2, ... , n, be i.i.d. tuples, inde­
pendent of (X, Y, Z), where X; may have a distribution different from X, but the 
support set of the distribution J-[' of X; is identical to that of J-[, the distribution 
of X. Furthermore, P{Yi = l1X; = x} = 1J(x), and Zi = I{1)(XD>1/2) is the Bayes 
decision at X;. 

Lemma 19.1. Let Ln = P { Z(l)(X) =I ZIXi, ZI, ... , X~, Zn} be the probability 

of error for the J-NN rule based on (X;, Zi), 1 ::: i ::: n, that is, Z(l)(X) = Zi if X; 
is the nearest neighbor of X among Xi, ... , X~. Then 

lim E{Ln } = O. 
n--*oo 

PROOF. Denote by X(l)(X) the nearest neighbor of X among Xi, ... , X~. Notice 
that the proof of Lemma 5.1 may be extended in a straightforward way to show 
that IIX(l)(X) - XII -+ 0 with probability one. Since this is the only property of 
the nearest neighbor of X that we used in deriving the asymptotic formula for the 
ordinary I-NN error, limn--*oo E{Ln} equals LNN corresponding to the pair (X, Z). 
But we have P {Z = 11 X = x} = I{1)(X» 1/2). Thus, the Bayes probability of error L * 



308 19. Condensed and Edited Nearest Neighbor Rules 

for the pattern recognition problem with (X, Z) is zero. Hence, for this distribution, 
the I-NN rule is consistent as LNN = L * = O. 0 

Lemma 19.2. Let Z(I)(X) be as in the previous lemma. Let 

Ln = P {Z(l)(X) i YIX~, Y1, ••• , X~, Yn} 

be the probability of error for the discrimination problem for (X, Y) (not (X, Z)). 
Then 

lim E{ Ln} = L * , 
11-+00 

where L * is the Bayes error corresponding to (X, Y). 

PROOF. 

by Lemma 19.1. 0 

P {Z(l)(X) i Y} 

< P {Z(l)(X) i Z} +P{Y i Z} 

0(1) + L * 

Theorem 19.4. Let Dm be a subset of size m drawn from Dn. If m -+ 00 and 
min -+ 0 as n -+ 00, then 

lim p{infLn(Dm) > L*+E} =0 
n-+oo DI11 

for all E > 0, where Ln (Dm) denotes the conditional probability of error of the 
nearest neighbor rule with Dnu and the infimum ranges over all (;J subsets. 

PROOF. Let D be the subset of Dn consisting of those pairs (Xi, Yi ) for which 
Yi = I{rJ(Xi »lj2} = Zi. If jDj ~ m, let D* be the first m pairs of D, and if JDI < m, 
let D* = {(Xl, YI ), ... , (Xm , Ym)}. Then 

If N = JDI ~ m, then we know that the pairs in D* are i.i.d. and drawn from the 
distribution of (X', Z), where X' has the same support set as X; see Problem 19.2 
for properties of X'. In particular, 

S P{N < m} +P {N ~ m, Ln(D*) > L* +E} 
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< P{N<m}+P{Ln(D*»L*+E} 

E{L (D*)} - L * 
< P{Binomial(n, p) < m} + __ n ___ _ 

E 

(where p = P{Y = Z} = 1 - L * ~ 1/2, and by Markov's inequality) 

= 0(1), 

by the law of large numbers (here we use m/n ~ 0), and by Lemma 19.2 (here 
we use m ~ (0). 0 

19.2 Edited Nearest Neighbor Rules 

Edited nearest neighbor rules are I-NN rules that are based upon carefully selected 
subsets (X~, Y{), ... , (X~, YI~)' This situation is partially dealt with in the previous 
section, as the frontier between condensed and edited nearest neighbor rules is ill­
defined. The idea of editing based upon the k-NN rule was first suggested by Wilson 
(1972) and later studied by Wagner (1973) and Penrod and Wagner (1977). Wilson 
suggests the following scheme: compute (Xi, Yi , Zi), where Zi is the k-NN decision 
at Xi based on the full data set with (Xi, Yi ) deleted. Then eliminate all data pairs for 
which Yi =I Zi. The remaining data pairs are used with the I-NN rule (not the k-NN 

rule). Another rule, based upon data splitting is dealt with by Devijver and Kittler 
(1982). A survey is given by Dasarathy (1991), Devijver (1980), and Devijver and 
Kittler (1980). Repeated editing was investigated by Tomek (1976a). Devijver and 
Kittler (1982) propose a modification of Wilson's leave-one-out method of editing 
based upon data splitting. 

19.3 Sieves and Prototypes 

Let gn be a rule that uses the I-NN classification based upon prototype data pairs 
(X~, Y{), ... , (X~, Y~)thatdependinsomefashionontheoriginaldata.Ifthepairs 
form a subset of the data pairs (and thus, m ::::; n), we have edited or condensed 
nearest neighbor rules. However, the (X;, Yf) pairs may be strategically picked 
outside the original data set. For example, in relabeling (see Section 11.7), m = n, 
X; = Xi and Y/ = g~(Xi)' where g~(Xi) is the k-NN decision at Xi. Under some 
conditions, the relabeling rule is consistent (see Theorem 11.2). The true objective 
of proto typing is to extract information from the data by insisting that m be much 
smaller than n. 
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• 

FIGURE 19.2. A 1-NN rule based 

upon 4 prototypes. In this example, 

all the data points are correctly 

classified based upon the prototype 

1-NN rule . 

Chang (1974) describes a rule in which we iterate the following step until a 
given stopping rule is satisfied: merge the two closest nearest neighbors of the same 
class and replace both pairs by a new average prototype pair. Kohonen (1988; 1990) 
recognizes the advantages of such prototyping in general as a device for partitioning 
Rd-he calls this learning vector quantization. This theme was picked up again 
by Geva and Sitte (1991), who pick X~, ... , X~ as a random subset of X I, ... , Xn 
and allow Y( to be different from Yi . Diverging a bit from Geva and Sitte, we might 
minimize the empirical error with the prototyped 1-NN rule over all Y{, ... , Y~, 
where the empirical error is that committed on the remaining data. We show that 
this simple strategy leads to a Bayes-risk consistent rule whenever m ---+ 00 and 
min ---+ O. Note, in particular, that we may take (X~, ... , X~) = (Xl, ... , Xm), 
and that we "throwaway" YI , ... , Y m, as these are not used. We may, in fact, use 
additional data with missing Yi-values for this purpose-the unclassified data are 
thus efficiently used to partition the space. 

Let 

be the empirical risk on the remaining data, where gn is the 1-NN rule based upon 
(X 1, YD, ... , (Xm, Y~). Let g~ be the I-NN rule with the choice of Y{, ... , Y~ that 
minimizes Ln(gn). Let L(g~) denote its probability of error. 

Theorem 19.5. L(g,:) ---+ L * in probability for all distributions whenever m ---+ 
00 and min ---+ O. 

PROOF. There are 2m different possible functions gn' Thus, 

p { s~"p ILn(gn) - L(gn)1 > € I Xl, ... , Xn} 

< 2m supP {ILn(gn) - L(gn)1 > EI Xl, ... , Xm} 
gn 



by Hoeffding's inequality. Also, 

P {L(g]:) > L * + 3E } 

< p {L(g~) - Ln (g~) > E} 
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+ P {Ln(gn) - L(gn) > E} (gn minimizes L(gn» 

+ P {L(gn) > L * + E} (here we used Ln(gn) ~ Ln(g]~» 

< 2E {p { s~"p ILn(gn) - L(gn)1 > ,I Xl, ... , Xn}} 

+ P {L(g;) > L * + E} 
(where g; is the 1-NN rule based on (Xl, Zl), ... , (Xm, Zm) 

with Zi = I(Y/(X;»lj2} as in Lemma 19.1) 

< 2m+2e-(n-m)E
2 + 0(1) 

(if m -+ 00, by Lemma 19.1) 

= 0(1) 

if m -+ 00 and m / n -+ 0. 0 

If we let Xi, ... , X;n have arbitrary values-not only among those taken by 
Xl, ... , Xn-then we get a much larger, more flexible class of classifiers. For ex­
ample, every linear discriminant is nothing but a prototype I-NN rule with m = 2-
just take (X~, 1), (X;, 0) and place X~ and X; in the right places. In this sense, 
prototype 1-NN rules generalize a vast class of rules. The most promising strategy 
of choosing prototypes is to minimize the empirical error committed on the train­
ing sequence Dn. Finding this optimum may be computationally very expensive. 
Nevertheless, the theoretical properties provided in the next result may provide 
useful guidance. 

Theorem 19.6. Let C be the class of nearest neighbor rules based on prototype 

pairs (Xl, yd, ... , (Xm, Ym), m ~ 3, where the (Xi, Yi) 's range through nd x {O, I}. 
Given the training data Dn = (X I, Yd, ... , (Xn, Yn), let gn be the nearest neighbor 
rule from C minimizing the error estimate 

Then for each E > 0, 

The rule is consistent if m -+ 00 such that m 2 log m = o(n). For d = 1 and d = 2 



312 19. Condensed and Edited Nearest Neighbor Rules 

the probability bound may be improved significantly. For d = 1, 

andford = 2, 

In both cases, the rule is consistent if m ---+ 00 and m log m = o(n). 

PROOF. It follows from Theorem 12.6 that 

where S(C, n) is the n-th shatter coefficient of the class of sets {x : ¢(x) = I}, 
¢ E C. All we need is to find suitable upper bounds for S (C, n). Each classifier ¢ is 
a partitioning rule based on the m Voronoi cells defined by Xl, ... , X m . Therefore, 
S(C, n) is not more than 2m times the number of different ways n points in nd 

can be partitioned by Voronoi partitions defined by m points. In each partition, 
there are at most m(m - 1)/2 cell boundaries that are subsets of d - I-dimensional 
hyperplanes. Thus, the sought number is not greater than the number of different 
ways m(m - 1)/2 hyperplanes can partition n points. By results of Chapter 13, 
this is at most n(d+l)m(m-l)/2, proving the first inequality. 

The other two inequalities follow by sharper bounds on the number of cell 
boundaries. For d = 1, this is clearly at most m. To prove the third inequality, for 
each Voronoi partition construct a graph whose vertices are Xl, .•. , X m , and two 
vertices are connected with an edge if and only if their corresponding Voronoi cells 
are connected. It is easy to see that this graph is planar. But the number of edges 
of a planar graph with m vertices cannot exceed 3m - 6 (see Nishizeki and Chiba 
(1988, p.10)) which proves the inequality. 

The consistency results follow from the stated inequalities and from the fact that 
inf¢Ec L(¢) tends to L * as m ---+ 00 (check the proof of Theorem 5.15 again). 0 

Problems and Exercises 

PROBLEM 19.1. Let N :S n be the size of the data set after pure condensing. Show that 
lim infn-+CXJ E{N}/n > ° whenever L * > 0. True or false: if L * = 0, then E{N} = o(n). 
HINT: Consider the real line, and note that all points whose right and left neighbors are of 
the same class are eliminated. 

PROBLEM 19.2. Let (Xl, Yd, (X2' Y2), ... be an i.i.d. sequence of pairs of random variables 
in n d x {a, l} with pry] = llX] = x} = ry(x). Let (X', Z) be the first pair (Xi, Yi ) in 



Problems and Exercises 313 

the sequence such that Yi = I{I)(x;»Jj2}. Show that the distribution ~' of X' is absolutely 
continuous with respect to the common distribution ~ of the Xi'S, with density (i.e., Radon­
Nikodym derivative) 

d~' 1 - min(1J(x), 1 - 17(X)) 
d ~ (x) = 1 - L * ' 

where L* is the Bayes error corresponding to (Xl, Yl). Let Y be a {a, l}-valued random 
variable with P{Y = 11X' = x} = 1J(x). If L' denotes the Bayes error corresponding to 
(X', y), then show that L' :::: L * . 

PROBLEM 19.3. Consider the following edited NN rule. The pair (Xi, Yz) is eliminated from 
the training sequence if the k-NN rule (based on the remaining n - 1 pairs) incorrectly 
classifies Xi' The I-NN rule is used with the edited data. Show that this rule is consistent 
whenever X has a density if k ---+ 00 and k / n ---+ O. Related papers: Wilson (1972), Wagner 
(1973), Penrod and Wagner (1977), and Devijver and Kittler (1980). 





20 
Tree Classifiers 

Classification trees partition nd into regions, often hyperrectangles parallel to the 
axes. Among these, the most important are the binary classification trees, since 
they have just two children per node and are thus easiest to manipulate and update. 
We recall the simple terminology of books on data structures. The top of a binary 
tree is called the root. Each node has either no child (in that case it is called a 
terminal node or leaf), a left child, a right child, or a left child and a right child. 
Each node is the root of a tree itself. The trees rooted at the children of a node are 
called the left and right subtrees of that node. The depth of a node is the length of 
the path from the node to the root. The height of a tree is the maximal depth of 
any node. 

Trees with more than two children per node can be reduced to binary trees by 

root FIGURE 20.1. A binary tree. 

right child ....... . 

leaf 

~ .......... ,,, 
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a simple device-just associate a left child with each node by selecting the oldest 
child in the list of children. Call the right child of a node its next sibling (see Figures 
20.2 and 20.3). The new binary tree is called the oldest-childlnext-sibling binary 
tree (see, e.g., Cormen, Leiserson, and Rivest (1990) for a general introduction). 
We only mention this particular mapping because it enables us to only consider 
binary trees for simplicity. 

A 

B 

F G H 

FIGURE 20.2. Ordered tree: The chil­

dren are ordered from oldest to 

youngest. 

A 

H 

FIGURE 20.3. The corresponding bi­

nary tree. 

In a classification tree, each node represents a set in the space nd. Also, each 
node has exactly two or zero children. If a node u represents the set A and its 
children u', u" represent A' and A", then we require that A = A' U A" and A' n A" = 
0. The root represents n d, and the leaves, taken together, form a partition of nd. 

Assume that we know x E A. Then the question "is x E A?" should be answered 
in a computationally simple manner so as to conserve time. Therefore, if x = 
(x(l), ... , xed»~, we may just limit ourselves to questions of the following forms: 

(i) Is xU) ::: ex? This leads to ordinary binary classification trees with partitions 
into hyperrectangles. 

(ii) Is alx(l) + ... + adx(d) ::: ex? This leads to BSP trees (binary space partition 
trees). Each decision is more time consuming, but the space is more flexibly 
cut up into convex polyhedral cells. 

(iii) Is Ilx - z \I ::: ex? (Here z is a point of n d , to be picked for each node.) This 
induces a partition into pieces of spheres. Such trees are called sphere trees. 

(iv) Is ljJ(x) 2: O? Here, ljJ is a nonlinear function, different for each node. Every 
classifier can be thought of as being described in this format-decide class 
one if ljJ(x) 2: O. However, this misses the point, as tree classifiers should 
really be built up from fundamental atomic operations and queries such as 
those listed in (i)-(iii). We will not consider such trees any further. 



-

I---

I---

FIGURE 20.4. Partition induced by 

an ordinary binary tree. 

FIGURE 20.6. Partition induced by a 

BSP tree. 
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FIGURE 20.5. Corresponding tree. 

FIGURE 20.7. Partition induced by a 

sphere tree. 

We associate a class in some manner with each leaf in a classification tree. The 
tree structure is usually data dependent, as well, and indeed, it is in the construction 
itself where methods differ. If a leaf represents region A, then we say that the 
classifier gn is natural if 

if L Yi > L (1 - Yi ), x E A 
i:XiEA i:XiEA 

otherwise. 

That is, in every leaf region, we take a majority vote over all (Xi, Yi)'s with Xi 
in the same region. Ties are broken, as usual, in favor of class O. In this set-up, 
natural tree classifiers are but special cases of data-dependent partitioning rules. 
The latter are further described in detail in Chapter 21. 
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FIGURE 20.8. A natural classifier based 

on an ordinary binary tree. The deci­

sion is 1 in regions where points with 

label 1 form a majority. These areas 

are shaded. 

Regular histograms can also be thought of as natural binary tree classifiers-the 
construction and relationship is obvious. However, as n ---+ 00, histograms change 
size, and usually, histogram partitions are not nested as n grows. Trees offer the 
exciting perspective of fully dynamic classification-as data are added, we may 
update the tree slightly, say, by splitting a leaf or so, to obtain an updated classifier. 

The most compelling reason for using binary tree classifiers is to explain com­
plicated data and to have a classifier that is easy to analyze and understand. In 
fact, expert system design is based nearly exclusively upon decisions obtained by 
going down a binary classification tree. Some argue that binary classification trees 
are preferable over BSP trees for this simple reason. As argued in Breiman, Fried­
man, Olshen, and Stone (1984), trees allow mixing component variables that are 
heterogeneous-some components may be of a nonnumerical nature, others may 
represent integers, and still others may be real numbers. 

20.1 Invariance 

Nearly all rules in this chapter and in Chapters 21 and 30 show some sort of 
invariance with respect to certain transformations of the input. This is often a 
major asset in pattern recognition methods. We say a rule gn is invariant under 
transformation T if 

for all values of the arguments. In this sense, we may require translation invariance, 
rotation invariance, linear translation invariance, and monotone transformation 
invariance (T(·) maps each coordinate separately by a strictly increasing but pos­
sibly nonlinear function). 

Monotone transformation invariance frees us from worries about the kind of 
measuring unit. For example, it would not matter whether earthquakes were mea­
sured on a logarithmic (Richter) scale or a linear scale. Rotation invariance matters 
of course in situations in which input data have no natural coordinate axis system. 
In many cases, data are of the ordinal form-colors and names spring to mind-and 
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ordinal values may be translated into numeric values by creating bit vectors. Here, 
distance loses its physical meaning, and any rule that uses ordinal data perhaps 
mixed in with numerical data should be monotone transformation invariant. 

Tree methods that are based upon perpendicular splits are usually (but not al­
ways) monotone transformation invariant and translation invariant. Tree methods 
based upon linear hyperplane splits are sometimes linear transformation invariant. 

The partitions of space cause some problems if the data points can line up 
along hyperplanes. This is just a matter of housekeeping, of course, but the fact 
that some projections of X to a line have atoms or some components of X have 
atoms will make the proofs heavier to digest. For this reason only, we assume 
throughout this chapter that X has a density f. As typically no conditions are put 
on f in our consistency theorems, it will be relatively easy to generalize them to 
all distributions. The density assumption affords us the luxury of being able to say 
that, with probability one, no d + 1 points fall in a hyperplane, no d points fall 
III a hyperplane perpendicular to one axis, no d - 1 points fall in a hyperplane 
perpendicular to two axes, etcetera. If a rule is monotone transformation invariant, 
we can without harm transform all the data as follows for the purpose of analysis 
only. Let iI, ... , fd be the marginal densities of X (see Problem 20.1), with 
corresponding distribution functions FI , ... , Fd. Then replace in the data each 
Xi by T(Xi ), where 

Each component of T(X i ) is now uniformly distributed on [0, 1]. Of course, as 
we do not know T beforehand, this device could only be used in the analysis. The 
transformation T will be called the uniform marginal transformation. Observe that 
the original density is now transformed into another density. 

20.2 Trees with the X -Property 

It is possible to prove the convergence of many tree classifiers all at once. What is 
needed, clearly, is a partition into small regions, yet, most majority votes should 
be over sufficiently large sample. In many of the cases considered, the form of 
the tree is determined by the X/s only, that is, the labels Yi do not playa role 
in constructing the partition, but they are used in voting. This is of course rather 
simplistic, but as a start, it is very convenient. We will say that the classification 
tree has the X -property, for lack of a better mnemonic. Let the leaf regions be 
{AI, ... , AN} (with N possibly random). Define N j as the number of Xi'S falling 

in A j. As the leaf regions form a partition, we have L~=I N j = n. By diam(A j) we 
mean the diameter of the cell A j, that is, the maximal distance between two points 
of A j. Finally, decisions are taken by majority vote, so for x E A j, 1 S j S N, 
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the rule is 

{

I if L Yi > L (1 - Yi ), x E A j 
gn(x) = 0 i:X;EAj i:X;EAj 

otherwise. 

A(x) denotes the set ofthe partition {AI, ... , AN} into which x falls, and N(x) is the 
number of data points falling in this set. Recall that the general consistency result 
given in Theorem 6.1 is applicable in such cases. Consider a natural classification 
tree as defined above and assume the X -property. Theorem 6.1 states that then 
E{L n } ~ L* if 

(1) diam(A(X» ~ 0 in probability, 
(2) N(X) ~ 00 in probability. 

A more general, but also more complicated consistency theorem is proved in Chap­
ter 21. Let us start with the simplest possible example. We verify the conditions of 
Theorem 6.1 for the k-spacing rule in one dimension. This rule partitions the real 
line by using the k-th, 2k-th (and so on) order statistics (Mahalanobis, (1961); see 
also Parthasarathy and Bhattacharya (1961». 

FIGURE 20.9. A 3-spacing classifier. 
o 0 

Formally, let k < n be a positive integer, and let X(l), X(2), .•. , X(n) be the 
order statistics of the data points. Recall that X(l), X(2), ... , X(n) are obtained by 
permuting Xl, ... , Xn in such a way that X(l) :s X(2) :s ... :s X(n). Note that this 
ordering is unique with probability one as X has a density. We partition R into 
N intervals AI, ... , AN, where N = r n I k l, such that for j = 1, ... , N - 1, A j 
satisfies 

X(kU-l)+I),.'.' X(kj) E A j , 

and the rightmost cell AN satisfies 

We have not specified the endpoints of each cell of the partition. For simplicity, 
let the borders between A j and A j+I be put halfway between the rightmost data 
point in A j and leftmost data point in A j+I, j = 1, ... , N - 1. 

The classification rule gn is defined in the usual way: 

Theorem 20.1. Let gn be the k-spacing classifier given above. Assume that the 
distribution of X has a density f on R. Then the classification rule gn is consistent, 
that is, limn-,>-oo E{Ln } = L *, if k ~ 00 and kin ~ 0 as n tends to infinity. 
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REMARK. ¥le discuss various generalizations of this rule in Chapter 21. 0 

PROOF. We check the conditions of Theorem 6.1, as the partition has the X -property. 
Condition (2) is obvious from k -+ 00. 

To establish condition (1), fix E > O. Note that by the invariance of the rule 
under monotone transformations, we may assume without loss of generality that 
f is the uniform density on [0,1]. Among the intervals Ai, ... , AN, there are at 
most liE disjoint intervals of length greater than E in [0, 1]. Thus, 

P{diam(A(X)) > E} 

< ~E { max fL(A j )} 
E l',,::j~N 

< ~E {( m~x fLn(A j) + m.ax IfL(A j) - fLn(A j)I)} 
E l~J~N l~J~N 

< H~ + E hp IfL(A) - fLn(A)I}) , 

where the supremum is taken over all intervals in R. The first term within the 
parentheses converges to zero by the second condition of the theorem, while the 
second term goes to zero by an obvious extension of the classical Glivenko-Cantelli 
theorem (Theorem 12.4). This completes the proof. 0 

We will encounter several trees in which the partition is determined by a small 
fraction of the data, such as binary k -d trees and quadtrees. In these cases, condition 
(2) of Theorem 6.1 may be verified with the help of the following lemma: 

Lemma 20.1. Let Pi, ... , Pk be a probability vector. Let N l , ... , Nk be multino­
mially distributed random variables with parameters n and Pi, ... , Pk· Then if 
the random variable X is independent oJ N l , ... , Nb andP{X = i} = Pi, we have 
for any M, 

(2M + 4)k 
P{Nx :s M} :s . 

n 

(Note: this probability goes to 0 if kin -+ 0 uniformly over all probability vectors 
with k components!) 

PROOF. Let Zi be binomial with parameters n and Pi. Then 

P{Nx :s M} < 

< 

< 

i:npi~2M 

2Mk 
--+ 

n 

i:npi>2M 

L PiP{Zi - EZi :s M - npi} 
i:npi>2M 

2Mk { E~} -- + " p.p z· -EZ· <--n . ~ C I l_ 2 
l:npi>2M 
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< _2M_k + '" 4 p- Var{ Zd 
n i:n~M I (E{Zd)2 

(by Chebyshev's inequality) 

< 
2Mk 1 
-+ L 4Pi-

n i:npi >2M npi 

< 
(2M +4)k 

o 
n 

The previous lemma implies that for any binary tree classifier constructed on 
the basis of Xl, ... , X k with k + 1 regions, N(X) -+ 00 in probability whenever 
kl(n - k) -+ 0 (i.e., kin -+ 0). It suffices to note that we may take M arbitrarily 
large but fixed in Lemma 20.1. This remark saves us the trouble of having to 
verify just how large or small the probability mass of the region is. In fact, it also 
implies that we should not worry so much about regions with few data points. 
What matters more than anything else is the number of regions. Stopping rules 
based upon cardinalities of regions can effectively be dropped in many cases! 

20.3 Balanced Search Trees 

Balanced multidimensional search trees are computationally attractive. Binary 
trees with n leaves have 0 (log n) height, for example, when at each node, the size 
of every subtree is at least ex times the size of the other subtree rooted at the parent, 
for some constant ex > O. It is thus important to verify the consistency of balanced 
search trees used in classification. We again consider binary classification trees 
with the X -property and majority votes over the leaf regions. Take for example a 
tree in which we split every node perfectly, that is, if there are n points, we find the 
median according to one coordinate, and create two subtrees of sizes L(n - 1)/2J 
and r(n -1)/2l. The median itself stays behind and is not sent down to the subtrees. 
Repeat this for k levels of nodes, at each level cutting along the next coordinate axe 
in a rotational manner. This leads to 2k leaf regions, each having at least n 12k - k 
points and at most nl2k points. Such a tree will be called a median tree. 

25% FIGURE 20.10. Median tree withfour leaf regions in 1?}. 

25% 

25% 

25% 

Setting up such a tree is very easy, and hence such trees may appeal to certain pro­
grammers. In hypothesis testing, median trees were studied by Anderson (1966). 
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Theorem 20.2. Natural classifiers based upon median trees with k levels (2k leaf 
regions) are consistent (E{ Ln} -+ L * ) whenever X has a density, if 

n 
-k -+ 00 and k-+oo. k2 .... . 

(Note: the conditions of k are fulfilled if k :::s log2 n - 2log2log2 n, k -+ 00.) 

We may prove the theorem by checking the conditions of Theorem 6.1. Condition 
(2) follows trivially by the fact that each leaf region contains at least n 12k - k points 
and the condition nl(k2k) -+ 00. Thus, we need only verify the first condition of 
Theorem 6.1. To make the proof more transparent, we first analyze a closely related 
hypothetical tree, the theoretical median tree. Also, we restrict the analysis to 
d == 2. The multidimensional extension is straightforward. The theoretical median 
tree rotates through the coordinates and cuts each hyperrectangle precisely so that 
the two new hyperrectangles have equal jL-measure. 

118 

1/8 

~ 118 

118 I 118 

118 

!---
118 

FIGURE 20.11. Theoretical median tree with three 

levels of cuts. 

Observe that the rule is invariant under monotone transformations of the coordinate 
axes. Recall that in such cases there is no harm in assuming that the marginal 
dIstributions are all uniform on [0, 1]. We let {Hi, Vd denote the horizontal and 
vertical sizes of the rectangles after k levels of cuts. Of course, we begin with 
HI = VI = 1 when k = O. We now show that, for the theoretical median tree, 
diam(A(X)) -+ 0 in probability, as k -+ 00. Note that diam(A(X)) :::s H(X) + 
VeX), where H(X) and VeX) are the horizontal and vertical sizes of the rectangle 
A(X). We show that if k is even, 

2 
E{H(X) + VeX)} = 2k / 2 ' 

from which the claim follows. After the k-th round of splits, since a1l2k rectangles 
have equal probability measure, we have 

Apply another round of splits, all vertical. Then each term -1F(Hi + VJ spawns, 
so to speak, two new rectangles with horizontal and vertical sizes (H(, Vi) and 
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(H(", Vi) with Hi = H( + H(" that contribute 

The next round yields horizontal splits, with total contribution now (see Figure 
20.12) 

_1_(H: + V.' + H: + V." + H'" + v.'" + H:" + V."") 2k+2 I I I I I I I I 

1 
2k+2 (2Hi + 2 Vi) 

1 
2k+1 (Hi + ~). 

Thus, over two iterations of splits, we see that E{ H (X) + V (X)} is halved, and the 
claim follows by simple induction. 

We show now what happens in the real median tree when cuts are based upon 
a random sample. We deviate of course from the theoretical median tree, but 
consistency is preserved. The reason, seen intuitively, is that if the number of 
points in a cell is large, then the sample median will be close to the theoretical 
median, so that the shrinking-diameter property is preserved. The methodology 
followed here shows how one may approach the analysis in general by separating 
the theoretical model from the sample-based model. 

PROOF OF THEOREM 20.2. As we noted before, all we have to show is that 
diam(A(X» --+ 0 in probability. Again, we assume without loss of generality 
that the marginals of X are uniform [0, 1], and that d = 2. Again, we show that 
E{H(X) + VeX)} --+ O. 

P:/ tvy I 

v· I 
H(' + I 

p~ V'· 
I I 

H( 
I 

H· I 

p/!/ 
I 

p"" 
i 

v/!/ 
I 

H!" 
I 

tvt/ 
Hi'" , 

FIGURE 20.12. A rectangle after two rounds 

a/splits. 

If a rectangle of probability mass Pi and sizes Hi, Vi is split into four rectangles 
as in Figure 20.12, with probability masses p;, p;', p;", pt', then the contribution 
PiCHi + Vi) to E{H(X) + VeX)} becomes 

after two levels of cuts. This does not exceed 
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if 
( I II III 1111) 1;-:;-:-1 

max Pi + Pi ,Pi + Pi ::::"2 v 1 + E Pi, 

( I /1) < ~;-:;-:-1 (I ") max Pi' Pi - 2 v 1 + E Pi + Pi ' 

and 
1 

max(p:" p:llI) < _~( :" + :111) 
z' z - 2 Pz Pz ' 

that is, when all three cuts are within (lj2)~ of the true median. We call such 
"(lj2)~" cuts good. If all cuts are good, we thus note that in two levels of 
cuts, E{H(X)+ VeX)} is reduced by (1 +E)j2. Also, all Pi'S decrease at a controlled 
rate. Let G be the event that all 1 + 2 + ... + 2k- 1 cuts in a median tree with k levels 

are good. Then, at level k, all p/s are at most (~j2 )k. Thus, 

2k 

LPi(Hi + Vi) < 
i=l 

since L~~l (Hi + VJ :::: 4 + 2 + 4 + 8 + ... + 2k/2 :::: 2k/2+1 + 3 if k is even. Hence, 
after k levels of cuts, 

The last term tends to zero if E is small enough. We bound P{ Ge } by 2k times 
the probability that one cut is bad. Let us cut a cell with N points and probability 
content P in a given direction. A quick check of the median tree shows that given 
the position and size of the cell, the N points inside the cell are distributed in an 
i.i.d. manner according to the restriction of fL to the cell. After the cut, we have 
L(N - l)j2J and r(N - 1)j2l points in the new cells, and probability contents 
pi and p". It is clear that we may assume without loss of generality that P = 1. 
Thus, if all points are projected down in the direction of the cut, and F and F N 

denote the distribution function and empirical distribution function of the obtained 
one-dimensional data, then 

P {cut is not goodl N} 

{
I ~ II ~I} < P P > --2-orP > --2- N 
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< php(F(X)-FN(X))>~(~-l)IN} 

< 2eXp(-~N(~-ln 
(by Theorem 12.9) 

< 2eXp(-(2:+1 -D(~-ln 
(as N :::: nj(2k) - k). 

Hence, for n large enough, 

20.4 Binary Search Trees 

The simplest trees to analyze are those whose structure depends in a straightforward 
way on the data. To make this point, we begin with the binary search tree and its 
multivariate extension, the k-d tree (see Cormen, Leiserson, and Rivest (1990) for 
the binary search tree; for multivariate binary trees, we refer to Samet (1990b)). 
A full-fledged k-d tree is defined as follows: we promote the first data point Xl 
to the root and partition {X2, ... , Xn} into two sets: those whose first coordinate 
exceeds that of Xl, and the remaining points. Within each set, points are ordered 
by original index. The former set is used to build the right subtree of Xl and the 
latter to construct the left subtree of Xl' For each subtree, the same construction is 
applied recursively with only one variant: at depth l in the tree, the (l mod d + l)-st 
coordinate is used to split the data. In this manner, we rotate through the coordinate 
axes periodically. 

Attach to each leaf two new nodes, and to each node with one child a sec­
ond child. Call these new nodes external nodes. Each of the n + 1 external nodes 
correspond to a region of R d , and collectively the external nodes define a parti­
tion ofRd (if we define exactly what happens on the boundaries between regions). 
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FIGURE 20.13. A k-d tree oi15 random points on the plane and the induced 

partition. 

Put differently, we may look at the external nodes as the leaves of a new tree 
with 2n + 1 nodes and declare this new tree to be our new binary classification 
tree. As there are n + 1 leaf regions and n data points, the natural binary tree 
classifier it induces is degenerate-indeed, all external regions contain very few 
points. Clearly, we must have a mechanism for trimming the tree to insure better 
populated leaves. Let us look at just three naive strategies. For convenience, we 
assume that the data points determining the tree are not counted when taking 
a majority vote over the cells. As the number of these points is typically much 
smaller than n, this restriction does not make a significant difference. 

(1) Fix k < n, and construct a k -d tree with k internal nodes and k + 1 external 
nodes, based on the first k data points Xl, ... , Xk. Classify by majority 
vote over all k + 1 regions as in natural classification tees (taking the data 
pairs (Xk+l, Yk+d, ... , (Xn, Yn) into account). Call this the chronological 
k-d tree. 

(2) Fix k and truncate the k-d tree to k levels. All nodes at level k are declared 
leaves and classification is again by majority vote over the leaf regions. Call 
this the deep k-d tree. 

(3) Fix k and trim the tree so that each node represents at least k points in 
the original construction. Consider the maximal such tree. The number of 
regions here is random, with between 1 and nj k regions. Call this the well­
populated k-d tree. 
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Let the leaf regions be {AI, ... , AN} (with N possibly random), and denote the 
leaf nodes by UI, ... , UN. The strict descendants of Ui in the full k-d tree have 
indices that we will collect in an index set Ii. Define I Ii I = Ni. As the leaf regions 
form a partition, we have 

N 

LNi=n-N, 
i=l 

because the leaf nodes themselves are not counted in Ii. Voting is by majority vote, 
so the rule is 

20.5 The Chronological k-d Tree 

Here we have N = k + 1. Also, (/L(A l ), ... , /L(Ak+I )) are distributed as uniform 
spacings. That is, if U I , ... , Uk are i.i.d. uniform [0, 1] random variables defin­
ing k + 1 spacings U(l), U(2) - U(l), ... , U(k) - U(k-I), 1 - U(k) by their order 
statistics U(l) .::: U(2) .::: ... .::: U(k), then these spacings are jointly distributed as 
({L(Ad, ... , /L(Ak+d). This can be shown by induction. When Uk+1 is added, Uk+1 

first picks a spacing with probability equal to the size of the spacing. Then it cuts 
that spacing in a uniform manner. As the same is true when the chronological k-d 
tree grows by one leaf, the property follows by induction on k. 

Theorem 20.3. We have E{ Ln} ---+ L * for all distributions of X with a density for 
the chronological k-d tree classifier whenever 

k ---+ 00, and kin ---+ O. 

PROOF. We verify the conditions of Theorem 6.1. As the number of regions is k+ 1, 
and the partition is determined by the first k data points, condition (2) immediately 
follows from Lemma 20.1 and the remark following it. 

Condition (1) of Theorem 6.1 requires significantly more work. We verify con­
dition (1) for d = 2, leaving the straightforward extension to R d, d > 2, to the 
reader. Throughout, we assume without loss of generality that the marginal distri­
butions are uniform [0, 1]. We may do so by the invariance properties discussed 
earlier. Fix a point x E Rd. We insert points Xl, ... , Xk into an initially empty 
k -d tree and let R 1, ... , Rk be the rectangles containing x just after these points 
were inserted. Note that Rl ;2 R2 ;2 ... ;2 Rk . Assume for simplicity that the 
integer k is a perfect cube and set l = k 1

/
3

, m = k 2
/ 3 . Define the distances from x 

to the sides of Ri by Hi, H:, Vi, V/ (see Figure 20.14). 
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V.' 
I 

FIGURE 20.14. A rectangle Ri containing x 

with its distances to the sides. 
Hi H; 

x 

Vi 

We construct a sequence of events that forces the diameter of Rk to be small 
with high probability. Let E be a small positive number to be specified later. 

Denote the four squares with opposite vertices x, x + (±E, ±E) by C1, C2 , C3, 

C4' Then define the following events: 

4 

El n {Ci n {Xl, ... , Xd 7'0}, 
i=l 

E2 {max(~, ~', H/, H() :s E} , 
E3 {min (max(V/, V/), max(H/, H(») :s E < max(V/, V/' H/, H()} , 

E4 {at least three of Vm , V~, Hm , H~l are :s E} , 
E5 {max(Vm , V~, Hm , H~):s E}, 
E6 {max(Vk, V;, Hk, HD ~ E} . 

If E2, E5, or E6 hold, then diam(Rk ) :s E.J8. Assume that we find a set Bend 
such that P{X E B} = 1, and for all x E B, and sufficiently small E > 0, 
P{E2 U E5 U E6} -+ 1 as k -+ 00. Then, by the Lebesgue dominated convergence 
theorem, diam(A(X» -+ 0 in probability, and condition (1) of Theorem 6.1 would 
follow. In the remaining part of the proof we define such a set B, and show that 
P{E2 U E5 U E6} -+ 1. This will require some work. 

We define the set B in terms of the density f of X. x E B if and only if 

(1) minl~i:~4 fe
i 

f(z)dz > 0 for all E > 0 small enough; 

(2) inf 
rectangles R containing x, 

of diameter ~ E.j8 

(3) f(x) :::: O. 

f f(z)dz f(x) 
R > __ for all E > 0 small enough; 

A(R) - 2 

That P{X E B} = 1 follows from a property of the support (Problem 20.6), 
a corollary of the lessen-Marcinkiewicz-Zygmund theorem (Corollary A.2; this 
implies (2) for almost all x), and the fact that for j.i-almost all x, f (x) > O. 

It is easy to verify the following: 

P{E~} = P{ED 

+P{E1 n E~ n E~} 
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+P{E1 n E~ n E3 n E~} 

+P{E1 n E~ n E3 n E4 n E~ n E6}. 

We show that each term tends to 0 at x E B. 

TERM 1. By the union bound, 

4 

P{Ef} < ~P{XI tI: Ci , ... ,XI tI: Cd 
i=l 

4 

< ~ (1 - /L(Ci)i 
i=l 

< exp ( -l min /l(ei ») 
l::si:::A 

-+ 0, 

by part (1) of the definition of B. 

TERM 2. E1 ~ E3 by a simple geometric argument. Hence P{EI n En = o. 

TERM 3. To show that P{E1 n E~ n E3 n E~} -+ 0, we assume without loss 
of generality that max(Vz, V/) :::: E while max(Hz, HI) = a > E. Let {XD be a 
subset of {Xi, I < i :::: m} consisting of those Xi'S that fall in RE• We introduce 
three notions in this sequence: first, Zi is the absolute value of the difference of 
the x(2) -coordinates of x and X;. Let Wi be the absolute value of the difference of 
the x(l)-coordinates of x and X;. We re-index the sequence X; (and Wi and Zi) so 
that i runs from 1 to N, where 

m 

N = ~ I{x;ERtl. 
i=Z+l 

To avoid trivialities, assume that N ~ 1 (this will be shown to happen with prob­
ability tending to one). Call X; a record if Zi = min(Zl, ... , Zi). Call X; a good 
point if Wi :::: E. An X; causes min(Hm, H'~l) :::: E if that X; is a good point and a 
record, and if it defines a vertical cut. The alternating nature of the cuts makes our 
analysis a bit heavier than needed. We show here what happens when all directions 
are picked independently of each other, leaving the rotating-cuts case to the reader 
(Problem 20.8). Thus, if we set 

Si = I {x; is a record, X; defines a vertical cut} , 

we have, 
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Re-index again and let X~, X~, ... all be records. Note that given X;, X;+l is 
distributed according to f restricted to the rectangle R' of 

height min(V[, Zi)above x, 

height min ("l', Z i) below x, 

width Hz to the left of x, 

width H! to the right of x. 

Call these four quantities v, v', h, h', respectively. Then 

P{W. < EIX~} > (v + v')Ef(x)/2 = Ef(x) 
1+1 - 1 - V + v' 2 

because the marginal distribution of an independent X 1 is uniform and thus, P {X 1 E 

R'IR'} ::: v + v', while, by property (2) of B, P{X1 E R', WI ::: EIR'} 2:: (v + 
v')Ef(x)/2. 

Recall the re-indexing. Let M be the number of records (thus, M is the length 
of our sequence X). Then 

E! n E2 n E3 n E~ n (N > OJ ~ {t I{w,s,)I{x; ""erticrumt) = o} . 
But as cuts have independently picked directions, and since P{Wi+1 ::: EIX;J 2:: 
Ef(x)/2, we see that 

c c Ef(x) 
{( )

M } P{E1 n E2 n E3 n E4 , N > O} ::: E 1 - -4- f{N>o}, 

We rewrite M = L~1 fiX; is a record} and recall that the indicator variables in this 
sum are independent and are of mean 1 I i (Problem 20.9). Hence, for c > 0, 

< E {e-(l-C) L~l Iii} (use 1 - x ::s e-X) 

< E { 1 } (use "1:1 II i 2:: log(N + 1)). 
(N + 1)I-c L 

The latter formula remains valid even if N = O. Thus, with c = 1 - Ef(x)/4, 

PIE! n E2 n E3 n E~J < E {(I - Ef~X)r} 

< E{(N+1l)!_e}. 
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N is binomial with parameters (m - l, fl(Rz)). We know from the introduction 
of this section that fl(Rt) is distributed as the minimum of l i.i.d. uniform [0, 1] 
random variables. Thus, for 8 > 0, E{fl(Rz)} = 1/(l + 1), and P{fL(Rz) < 81 l} :::: 8. 
Hence, 

E {(N +\)1-' } 

< P{fl(Rz) < 81 I} + E { 1 } 
(Binomial(m -1,81 I) + l)l-c 

( 
l ) l-c { (m -1)8} 

< 8 + + P Binomial(m - l, 8 I l) < . 
2(m -1)8 2l 

The first term is small by choice of 8. The second one is 0 (k-(l-c)/3). The third 
one is bounded from above, by Chebyshev's inequality, by 

(m -l)(81 l)(1 - 81 I) 41 
-------- < -'7 0. 

((m -l)812l)2 - (m -1)8 

TERM 4. This term is handled exactly as Term 3. Note, however, that I and m now 
become m and k respectively. The convergence to ° requires now m I (k - m) -'7 0, 
which is still the case. 

This concludes the proof of Theorem 20.3. 0 

20.6 The Deep k-d Tree 

Theorem 20.4. The deep k-d tree classifier is consistent (i.e., E{Ln } -'7 L *) for 
all distributions such that X has a density, whenever 

lim k = 00 and 
n----+oo 

. k 
hmsup-- < 2. 

n----+oo log n 

PROOF. In Problem 20.10, you are asked to show that k -'7 00 implies diam(A(X)) 
-'7 ° in probability. Theorem 20.3 may be invoked here. We now show that the 
assumption lim sUPn----+oo kl log n < 2 implies that N(X) -'7 00 in probability. Let 
D be the depth (distance from the root) of X when X is inserted into a k-d tree 
having n elements. Clearly, N(X) ~ D - k, so it suffices to show that D - k -'7 00 

in probability. We know that D 1(2 log n) -'7 1 in probability (see, e.g., Devroye 
(1988a) and Problem 20.10). This concludes the proof of the theorem. 0 
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20.7 Quadtrees 

Quadtrees or hyperquadtrees are unquestionably the most prominent trees in com­
puter graphics. Easy to manipulate and compact to store, they have found their 
way into mainstream computer science. Discovered by Finkel and Bentley (1974) 
and surveyed by Samet (1984), (1990a), they take several forms. We are given d­
dimensional data X I, ... , Xn . The tree is constructed as the k -d tree. In particular, 
Xl becomes the root of the tree. It partitions X 2 , ..• , Xn into 2d (possibly empty) 
sets according to membership in one of the 2d (hyper-) quadrants centered at Xl 
(see Figure 20.15). 

r--- 1 1 .---
I 

:---11---

~ ~ 

f-------1 

[ 1 
T 1 

FIGURE 20.15. Quadtree and the induced partition of R2, The 

points on the right are shown in the position in space. The root is 

specially marked. 

The partitioning process is repeated at the 2d child nodes until a certain stopping 
rule is satisfied. In analogy with the k-d tree, we may define the chronological 
quadtree (only k splits are allowed, defined by the first k points X I, ... , X k ), and 
the deep quadtree (k levels of splits are allowed). Other, more balanced versions 
may also be introduced. Classification is by majority vote over all (Xi, Yi ),s-with 
k < i ::: n in the chronological quadtree-that fall in the same region as x. Ties 
are broken in favor of class O. We will refer to this as the (chronological, deep) 
quadtree classifier. 

Theorem 20.5. Whenever X has a density, the chronological quadtree classifier 
is consistent (E{ Ln} ---+ L * ) provided that k ---+ 00 and kin ---+ O. 

PROOF. Assume without loss of generality that all marginal distributions are uni­
form [0,1]. As the X-property holds, Theorem 6.1 applies. By Lemma 20.1, since 
we have k(2d - 1) + 1 external regions, 

(2M + 4)(k(2d - 1) + 1) 
P{N(X) ::: M} :s n _ k ---+ 0 

for all M > 0, provided that kin ---+ O. Hence, we need only verify the condition 
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diam(A(X) ~ 0 in probability. This is a bit easier than in the proof of Theorem 
20.3 for the k-d tree and is thus left to the reader (Problem 20.18). 0 

REMARK. Full-fledged random quadtrees with n nodes have expected height 
o (log n) whenever X has a density (see, e.g., Devroye and Laforest (1990)). With 
k nodes, every region is thus reached in only o (log k) steps on the average. Fur­
thermore, quadtrees enjoy the same monotone transformation invariance that we 
observed for k-d trees and median trees. 0 

20.8 Best Possible Perpendicular Splits 

For computational reasons, classification trees are most often produced by deter­
mining the splits recursively. At a given stage of the tree-growing algorithm, some 
criterion is used to determine which node of the tree should be split next, and where 
the split should be made. As these criteria typically use all the data, the resulting 
trees no longer have the X -property. In this section we examine perhaps the most 
natural criterion. In the following sections we introduce some alternative splitting 
criteria. 

A binary classification tree can be obtained by associating with each node a 
splitting function ¢(x) obtained in a top-down fashion from the data. For example, 
at the root, we may select the function 

¢(x) = sx(i) - ex, 

where i, the component cut, ex E n, the threshold, and s E {-I, + I}, a po­
larization, are all dependent upon the data. The root then splits the data Dn = 
{(Xl, Yd, ... , (Xn, Yn)} into two sets, D~, D~, withD;1UD~ = Dn, ID~I+ID~I = n, 
such that 

D~ = {(x, Y) E Dn: ¢(x) ~ OJ, 

D;: {(x, y) E Dn : ¢(x) < O}. 

A decision is made whether to split a node or not, and the procedure is applied 
recursively to the subtrees. Natural majority vote decisions are taken at the leaf 
level. All such trees will be called perpendicular splitting trees. 

In Chapter 4, we introduced univariate Stoller splits, that is, splits that minimize 
the empirical error. This could be at the basis of a perpendicular splitting tree. One 
realizes immediately that the number of possibilities for stopping is endless. To 
name two, we could stop after k splitting nodes have been defined, or we could 
make a tree with k full levels of splits (so that all leaves are at distance k from the 
root). We first show that for d > 1, any such strategy is virtually doomed to fail. 
To make this case, we will argue on the basis of distribution functions only. For 
convenience, we consider a two-dimensional problem. Given a rectangle R noW 
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assigned to one class y E {O, I}, we see that the current probability of error in R, 

before splitting is P {X E R, Y =I y}. Let R' range over all rectangles of the form 
R n((-oo, a] x R), R n ([a, (0) x R), R n (R x (-00, aD, or R n (R x [a, (0)), 
and let R" = R - R'. Then after asplit based upon (R', R"), the probability of 
error over the rectangle R is 

P{X E R', Y = I} + P{X E R", Y = O} 

as we assign class ° to R' and class 1 to R". Call1::J.(R) the decrease in probability 
of error if we minimize over all R'. Computel::J.(R) for all leaf rectangles and then 
proceed to split that rectangle (or leaf) for which I::J.(R) is maximal. The data-based 
rule based upon this would proceed similarly, if P{A} is replaced everywhere by 
the empirical estimate (l/n) L.:7=1 I{(xi'yi)EAj, where A is of the form R' x {I}, 
R" x {O}, or R x {I - y}, as the case may be. 

Let us denote by L o, L 1, L 2 , •.. the sequence of the overall probabilities of error 
for the theoretically optimal sequence of cuts described above. Here we start with 
R = R2 and y = 0, for example. For fixed E > 0, we now construct a simple 
example in which 

L* = 0, 

and 
l-E 

Lk ,J..- -- as k ---+ 00. 
2 

Thus, applying the best split incrementally, even if we use the true probability of 
error as our criterion for splitting, is not advisable. 

The example is very simple: X has uniform distribution on [0, 1]2 with proba­
bility E and on [1,2]2 with probability 1 - E. Also, Y is a deterministic function 
of X, so that L * = 0. 

probability 
E 

o 

FIGURE 20.16. Repeated Stoller splits are not 

consistent in this two-dimensional example. 

Cuts will always be made in the leftmost square. 

The way Y depends on X is shown in Figure 20.16: Y = 1 if 

X E [1,3/2]2 U [3/2,2]2 U (A2 U A4 U A6 " .) x [0, 1], 
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where 

Al = [0, 1/4), 

A2 = [1/4, 1/4 + 3/8), 

A3 = [1/4 + 3/8, 1/4 + 3/8 + 3/16), 

Ak [1/4 + 3/8 + ... + 3/2k
, 1/4 + 3/8 + ... + 3/2k+I

), 

and so forth. We verify easily that P{Y = I} = 1/2. Also, the error probability 
before any cut is made is Lo = 1/2. The best split has R' = (-00, 1/4) x R so 
that Al is cut off. Therefore, LI = E/4 + (l - E)/2. We continue and split off A2 
and so forth, leading to the tree of Figure 20.17. 

yes 

o 

FIGURE 20.17. The tree obtained by 

repeated Stoller splits. 

Verify that L2 = E/8 + (l - E)/2 and in general that 

E 1-E 1-E 
Lk--+-- 1_-

- 2k+1 2"0/ 2 ' 

as claimed. 

20.9 Splitting Criteria Based on Impurity Functions 

In 1984, Breiman, Friedman, Olshen, and Stone presented their CART program for 
constructing classification trees with perpendicular splits. One of the key ideas in 
their approach is the notion that trees should be constructed from the bottom up, 
by combining small subtrees. The starting point is a tree with n + 1 leaf regionsc 

defined by a partition of the space based on the n data points. Such a tree is much' 
too large and is pruned by some methods that will not be explored here. When 
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constructing a starting tree, a certain splitting criterion is applied recursively. The 
criterion determines which rectangle should be split, and where the cut should 
be made. To keep the classifier invariant under monotone transformation of the 
coordinate axes, the criterion should only depend on the coordinatewise ranks of 
the points, and their labels. Typically the criterion is a function of the numbers of 
points labeled by ° and 1 in the rectangles after the cut is made. One such class of 
criteria is described here. 

Let a E n, and let i be a given coordinate (1 ::S i ::S d). Let R be a hyperrectangle 
to be cut. Define the following quantities for a split at a, perpendicular to the i -th 
coordinate: 

Xt(R, a) = {(X j , Yj ) : Xj E R, XJi) > a} 

are the sets of pairs falling to the left and to the right of the cut, respectively. 

are the numbers of such pairs. Finally, the numbers of points with label ° and label 
1 in these sets are denoted, respectively, by 

Ni,oCR, a) = IXi(R, a) n {CX j , Yj ): Yj = O}I, 
Ni,lCR, a) IXiCR, a) n {CX j , Yj ): Yj = 1}1, 
N:'oCR,a) = !XicCR,a)n{CXj,Yj):Yj=O}!, 

N(,l(R,a) = I Xt(R,a)n{(xj ,Yj ):Yj =l}l· 

Following Breiman, Friedman, Olshen, and Stone (1984), we define an impurity 
junction for a possible split (i, a) by 

( 
NiO Nil) (N!o N:l) I Ii (R, a) = ljJ , Ni + ljJ I I' I I Ni ' 

NiO + Nil NiO + Nil NiO + Nil NiO + Nil 

where we dropped the argument (R, a) throughout. Here ljJ is a nonnegative func­
tion with the following properties: 

(1) ljJ G, D 2': ljJ(p, 1 - p) for any p E [0, 1]; 

(2) ljJ(O, 1) = ljJ(1, 0) = 0; 

(3) 1f;'(p, 1 - p) increases in p on [0, 1/2] and decreases in p on [1/2,1]. 

A rectangle R is split at a along the i-th coordinate if Ii(R, a) is minimal. Ii 
penalizes splits in which the subregions have about equal proportions from both 
classes. Examples of such functions ljJ include 

(1) The entropy junction 1f;'(p, 1- p) = - p log p - (1- p) 10g(1- p) (Breiman 
et al. (1984, pp.25,103)). 
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(2) The Gini function ljf(p, 1 - p) = 2p(1 - p), leading to the Gini index of 
diversity f i • (Breiman et al. (1984, pp.38,l03». 

(3) The probability ofmisclassification t(p, 1 - p) = min(p, 1 - p). In this 
case the splitting criterion leads to the empirical Stoller splits studied in the 
previous section. 

We have two kinds of splits: 

(A) Theforced split: force a split along the i-th coordinate, but minimize fiCa, R) 
over all a and rectangles R. 

(B) The free split: choose the most advantageous coordinate for splitting, that 
is, minimize fiCa, R) over all a, i, and R. 

Unfortunately, regardless of which kind of policy we choose, there are distributions 
for which no splitting based on an impurity function leads to a consistent classifier. 
To see this, note that the two-dimensional example of the previous section applies 
to all impurity functions. Assume that we had infinite sample size. Then fiCa, R) 
would approach aljf(p, 1- p)+ bt(q, 1- q), where p is the probability content of 
R' (one of the rectangles obtained after the cut is made), b is that of R" (the other 
rectangle), p = P{Y = 11X E R'} and q = P{Y = llX E R"}. If X is uniformly 
distributed on the checkerboard shown in Figure 20.18, regardless where we try 
to cut, p = q = 1/2, and every cut seems to be undesirable. 

FIGURE 20.18. No cut decreases the value of the impurity 

function. 

This simple example may be made more interesting by mixing it with a distribu­
tion with much less weight in which x(l)- and x (2)-direction splits are alternatingly 
encouraged all the time. Therefore, impurity functions should be avoided in their 
raw form for splitting. This may explain partially why in CART, the original tree is 
undesirable and must be pruned from the bottom up. See Problems 20.22 to 20.24 
for more information. In the next section and in the last section of this chapter we 
propose other ways of growing trees with much more desirable properties. 

The derivation shown above does not indicate that the empirical version will not 
work properly, but simple versions of it will certainly not. See Problem 20.22. 

REMARK. MALICIOUS SPLITTING. The impurity functions suggested above all avoid 
leaving the proportions of zeros and ones intact through splitting. They push to­
wards more homogeneous regions. Assume now that we do the opposite. Through 
such splits, we can in fact create hyperplane classification trees that are globally 
poor, that is, that are such that every trimmed version of the tree is also a poor 
classifier. Such splitting methods must of course use the Yi 'so Our example shows 
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that any general consistency theorem for hyperplane classification trees must come 
with certain restrictions on the splitting process-the X property is good; some­
times it is necessary to force cells to shrink; sometimes the position of the split is 
restricted by empirical error minimization or some other criterion. 

The ham-sandwich theorem (see Edelsbrunner (1987» states that given 2n class-
o points and 2m class-l points in nd , d > 1, there exists a hyperplane cut that 
leaves n class-O points and m class-l points in each halfspace. So, assume that X 
has a density and that p = P{Y = I} = 1/2. In a sample of size n, let y be the 
majority class (ties are broken in favor of class 0). 

• 
o 

• 
o 

FIGURE 20.19. Ham-sandwich cut: Each halfspace 

contains exactly half the points from each class . 

Regardless of the sample make-up, if y = 0, we may construct a hyperplane-tree 
classifier in which, during the construction, every node represents a region in which 
the majority vote would be O. This property has nothing to do with the distribution 
of (X, Y), and therefore, for any trimmed version of the tree classifier, 

and P{Ln :::: p} :::: P{y = O} :::: 1/2 if p = 1/2. Obviously, as we may take L * = 0, 
these classifiers are hopeless. 0 

BIBLIOGRAPHIC REMARKS. Empirical Stoller splits without forced rotation were rec­
ommended by Payne and Meisel (1977) and Rounds (1980), but their failure to 
be universally good was noted by Gordon and Olshen (1978). The last two au­
thors recommended a splitting scheme that combined several ideas, but roughly 
speaking, they perform empirical Stoller splits with forced rotation through the co­
ordinate axes (Gordon and Olshen (1978), (1980». Other splitting criteria include 
the AID criterion of Morgan and Sonquist (1963), which is a predecessor of the Gini 
index of diversity used in CART (Breiman, Friedman, Olshen, and Stone (1984), see 
also Gelfand and Delp (1991), Guo and Gelfand (1992) Gelfand, Ravishankar, and 
Delp (1989), (1991), and Ciampi (1991». Michel-Briand and Milhaud (1994) also 
observed the failure of multivariate classification trees based on the AID criterion. 

The Shannon entropy or modifications of it are recommended by Talmon (1986), 
Sethi and Sarvarayudu (1982), Wang and Suen (1984), Goodman and Smyth 
(1988), and Chou (1991). Permutation statistics are used in Li and Dubes (1986), 
still without forced rotations through the coordinate axes. Quinlan (1993) has a 
more involved splitting criterion. A general discussion on tree splitting may be 
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found in the paper by Sethi (1991). A class of impurity functions is studied in 
Burshtein, Della Pietra, Kanevsky, and Nadas (1992). Among the pioneers of tree 
splitting (with perpendicular cuts) are Sebestyen (1962), and Henrichon and Fu 
(1969). For related work, we refer to Stoffel (1974), Sethi and Chatterjee (1977), 
Argentiero, Chin and Beaudet (1982), You andFu (1976), Anderson andFu (1979), 
Qing-Yun and Fu (1983), Hartmann, Varshney, Mehrotra, and Gerberich (1982), 
and Casey and Nagy (1984). References on nonperpendicular splitting methods 
are given below in the section on ESP trees. 

20.10 A Consistent Splitting Criterion 

There is no reason for pessimism after the previous sections. Rest assured, there 
are several consistent splitting strategies that are fully automatic and depend only 
upon the populations of the regions. In this section we provide a solution for the 
simple case when X is univariate and nonatomic. It is possible to generalize the 
method for d > 1 if we force cuts to alternate directions. We omit here the detailed 
analysis for multidimensional cases for two reasons. First, it is significantly heavier 
than for d = 1. Secondly, in the last section of this chapter we introduce a fully 
automatic way of building up consistent trees, that is, without forcing the directions 
of the splits. 

To a partition AI, ... , AN of R, we assign the quantity 

where 

N 

Q = L No(Ai )NI (Ai), 
i=1 

n 

No(A) = L I{XjEA,Yj=Oj, 

j=l 

n 

NI (A) = L I{XjEA,Yj=l} 

j=l 

are the respective numbers of points labeled with 0 and 1 falling in the region A. 
The tree-growing algorithm starts with the trivial partition {R}, and at each step it 
makes a cut that yields the minimal value of Q. It proceeds recursively until the 
improvement in the value of Q falls below a threshold ~n. 

REMARK. Notice that this criterion always splits a cell that has many points from 
both classes (see the proof of the theorem below). Thus, it avoids the anomalies 
of impurity-function criteria described in the previous section. On the other hand, 
it does not necessarily split large cells, if they are almost homogeneous. For a 
comparison, recall that the Gini criterion minimizes the quantity 

, ~ No(Ai )Nl (Ai) 
o =~ 
- i=1 No(Ai) + NI (Ai)' 

thus favoring cutting cells with very few points. We realize that the criterion Q 
introduced here is just one of many with similarly good properties, and albeit 
probably imperfect, it is certainly one of the simplest. 0 
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Theorem 20.6. Let X have a nonatomic distribution on the real line, and consider 
the tree classifier obtained by the algorithm described above. If the threshold 

satisfies 
~n ~n 
- -+ (Xl and 2 -+ 0, 
n n 

then the classification rule is strongly consistent. 

PROOF. There are two key properties of the algorithm that we exploit: 

PROPERTY 1. If min(No(A), NI (A)) > V2~n for a cell A, then A gets cut by the 
algorithm. To see this, observe that (dropping the argument A from the notation) 
if No ::: N1, and we cut A so that the number of O-labeled points in the two child 
regions differ by at most one, then the contribution of these two new regions to Q 

is 
r No/2l N{ + LNo/2J N~' :s r NoNd2l, 

where N{ and N{' are the numbers of class-1 points in the two child regions. Thus, 
the decrease of Q if A is split is at least LNoNI/2J. If min(No, Nd > J2~n' then 
D.n :s LNoNI/2J, and a cut is made. 

PROPERTY 2. No leaf node has less than ~nl n points. Assume that after a region 
is cut, in one of the child regions, the total number of points is N~ + N{ :s k. Then 
the improvement in Q caused by the split is bounded by 

NoNl - (NbN~ + N~ N~') S NoNl - (No - k)(Nl - k) S (No + N1)k S nk. 

Therefore, if k < ~n In, then the improvement is smaller than ~n' Thus, no cut is 
made that leaves behind a child region with fewer than ~n I n points. 

It follows from Property 1 that if a leaf region has more than 4V2~n points, 
then since the class in minority has less than J2~n points in it, it may be cut 
into intervals containing between 2J2~n and 4J2~n points without altering the 
decision, since the majority vote within each region remains the same. 

Summarizing, we see that the tree classifier is equivalent to a classifier that 
partitions the real line into intervals, each containing at least ~nln, and at most 
4J2~n data points. Thus, in this partition, each interval has a number of points 
growing to infinity as o(n). We emphasize that the number of points in a region of 
the studied tree classifier may be large, but such regions are almost homogeneous, 
and therefore the classifier is equivalent to another classifier which has o(n) points 
in each region. Consistency of such partitioning classifiers is proved in the next 
chapter-see Theorem 21.3. D 

20.11 BSP Trees 

Binary space partition trees (or BSP trees) partition Rd by hyperplanes. Trees of 
this nature have evolved in the computer graphics literature via the work of Fuchs, 



342 20. Tree Classifiers 

Kedem, and Naylor (1980) and Fuchs, Abram, and Grant (1983) (see also Samet 
(1990b), Kaplan (1985), and Sung and Shirley (1992». In discrimination they are 
at the same time generalizations of linear discriminants, of histograms, and of 
binary tree classifiers. BSP trees were recommended for use in discrimination by 
Henrichon and Fu (1969), Mizoguchi, Kizawa, and Shimura (1977) and Friedman 
(1977). Further studies include Sklansky and Michelotti (1980), Argentiero, Chin, 
and Beaudet (1982), Qing-Yun and Fu (1983), Breiman, Friedman, Olshen, and 
Stone (1984), Loh and Vanichsetakul (1988), and Park and Sklansky (1990). 

There are numerous ways of constructing BSP trees. Most methods of course 
use the Y -values to determine good splits. Nevertheless, we should mention first 
simple splits with the X -property, if only to better understand the BSP trees. 

1,2 

FIGURE 20.20. A raw BSP tree and its induced partition in the plane. Every 

region is split by a line determined by the two data points with smallest index 

in the region. 

We call the raw BSP tree the tree obtained by letting Xl, ... , Xd determine the 
first hyperplane. The d data points remain associated with the root, and the others 
(Xd+l, ... , X k) are sent down to the subtrees, where the process is repeated as far 
as possible. The remaining points Xk+l, ... , Xn are used in a majority vote in the 
external regions. Note that the number of regions is not more than kid. Thus, by 
Lemma 20.1, if kin -+ 0, we have N(X) -+ 00 in probability. Combining this 
with Problem 20.25, we have our first result: 

Theorem 20.7. The natural binary tree classifier based upon a raw BSP tree with 
k -+ 00 and kin -+ 0 is consistent whenever X has a density. 

Hyperplanes may also be selected by optimization of a criterion. Typically, this 
would involve separating the classes in some way. All that was said for perpen~ 
dicular splitting remains valid here. It is worthwhile recalling therefore that there 



20.12 Primitive Selection 343 

are distributions for which the best empirical Stoller split does not improve the 
probabilit~ of error. Take for example the uniform distribution in the unit ball of 
nd in whIch 

y = { 1 if IIXII 2: 1/2 
o if IIXII < 1/2. 

FIGURE 20.21. No single split improves on the error prob­

ability for this distribution. 

Here, no linear split would be helpful as the l' s would always hold a strong 
majority. Minimizing other impurity functions such as the Gini criterion may be 
helpful, however (Problem 20.27). 

BIBLIOGRAPHIC REMARKS. Hyperplane splits may be generalized to include quadratic 
splIts (Henrichon and Fu (1969)). For example, Mui and Fu (1980) suggest taking 
d' < d and forming quadratic classifiers as in normal discrimination (see Chapter 
4) based upon vectors in R d'. The cuts are thus perpendicular to d - d' axes but 
quadratic in the subspace R d

'. Lin and Fu (1983) employ the Bhattacharyya dis­
tance or 2-means clustering for determining splits. As a novelty, within each leaf 
region, the decision is not by majority vote, but rather by a slightly more sophisti­
cated rule such as the k-NN rule or linear discrimination. Here, no optimization is 
required along the way. Loh and Vanichsetakul (1988) allow linear splits but use 
F ratios to select desirable hyperplanes. 

20.12 Primitive Selection 

There are two reasons for optimizing a tree configuration. First of all, it just does 
not make sense to ignore the class labels when constructing a tree classifier, so 
the Yi'S must be used to help in the selection of a best tree. Secondly, some trees 
may not be consistent (or provably consistent), yet when optimized over a family 
of trees, consistency drops out. We take the following example: let (;h be a class 
of binary tree classifiers with the X -property, with the space partitioned into k + 1 
regions determined by Xl, ... , Xk only. Examples include the chronological k-d 
tree and some kinds of BSP trees. We estimate the error for g E 9k by 

realizing the danger of using the same data that were used to obtain majority votes 
to estimate the error. An optimistic bias will be introduced. (For more on such 
error estimates, see Chapter 23.) Let g~ be the classifier (or one of the classifiers) 
in (h for which Ln is minimum. Assume that 19k1 < oo-for example, 9k could 
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be all k! chronological k-d trees obtained by permuting Xl, ... , Xk. We call g~ 
then the permutation-optimized chronological k-d classifier. When k = L jIOgnJ, 
one can verify that k! = o(nE) for any E > 0, so that the computational burden-at 
least on paper-is not out of sight. We assume that 9k has a consistent classifier 
sequence, that is, as n -+ 00, k usually grows unbounded, and E{Ln(gk)} -+ L* 
for a sequence gk E 9k. 

EXAMPLE. Among the chronological k-d trees modulo permutations, the first one 
(i.e., the one corresponding to the identity permutation) was shown to be consistent 
in Theorem 20.3, if X has a density, k -+ 00, and kin -+ o. 0 

EXAMPLE. Let 9k be the class of BSP trees in which we take as possible hyperplanes 
for splitting the root: 

(1) the hyperplane through X I, ... , X d; 
(2) the d hyperplanes through X I, ... , X d - l that are parallel to one axis; 
(3) the (~) hyperplanes through X I, ... , Xd-2 that are parallel to two axes; 

(d) the C~l) = d hyperplanes through Xl that are parallel to d - 1 axes. 

Thus, conservatively estimated, 19k I ::: k !2d because there are at most 2d possible 
choices at each node and there are k! permutations of X I, ... , X k. Granted, the 
number of external regions is very variable, but it remains bounded by k + 1 in 
any case. As 9k contains the chronological k-d tree, it has a consistent sequence 
of classifiers when k -+ 00 and nl(k log k) -+ 00. 0 

Theorem 20.8. Let gl~ = argmingE9k Ln(g). Then, if9k has a consistent sequence 
of classifiers, if the number of regions in the partitions for all g E 9k are at most 
k + 1, andifk -+ 00 and nl log 19k1-+ 00, then E{Ln(g~)} -+ L*, where Ln(g~) 
is the conditional probability of error of g~. 

In the examples cited above, we must take k -+ 00, n I k -+ 00. Furthermore, 
log 19k I = o (log kl) = O(k log k) in both cases. Thus, gl~ is consistent whenever 
X has a density, k -+ 00 and k = o(nl log n). This is a simple way of constructing 
a basically universally consistent BSP tree. 

PROOF. Let g+ = arg mingE9k Ln (g). 

Ln(g/:) - L * = Ln(g~) - Ln(g~) 

Clearly, 

def 
I + I I. 

+ Ln(g~) - ~l(g+) 

+ Ln(g+) - Ln(g+) 

+Ln(g+) - L*. 
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Obviously, I -+ 0 in the mean by our assumption, and for E > 0, 

Next we bound the probabilities on the right-hand side. Let Pw, Pil denote P{X E 

region i, Y = O} and P{X E region i, Y = 1} respectively, with regions determined 
by g, 1 :::: i :::: k + 1. Let 

Then 

and 

Thus, 

n n 

Nw = L I{XjEfegion i,Yj=O} 

j=k+l 
and Nil = L I{XjEregion i,Yj=I}' 

j=k+l 

k+1 k+l 

Ln(g) = L PilI{Nio~Nid + L PWI{Nio<Nid, 
i=1 i=1 

k+1 I N I k+1 I N I ILn(g) - Ln(g)1 :::: L Pil - _i_l + L PiG __ iO_ . 

i=l n - k i=l n - k 

Introduce the notation Z for the random variable on the right-hand side of the 
above inequality. By the Cauchy-Schwarz inequality, 

k+l 

< L 
i=1 

k+1 

+L 
i=l 

E {(PiO - n~Okr IXI ,., xc} 
(as given Xl,"" Xb Nil is binomial (n - k, Pil)) 

< ~ (J nP~\ + J nP~Ok) 
< 

2k+2 

rn=k 
(by another use of the Cauchy-Schwarz inequality) 

J2k+2 
n-k 
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Thus, E{ZIXl, ... , X k } -+ 0 as kin -+ O. Note that 

P{Z > EIX1, ... , Xd 

< P { Z - E{ZIXI, ... ,Xk} > ~ I Xl, ... , Xk} 

J2k+2 E (if E{ZIXI' ... , Xk } < E/2, which happens when --::: -) 
n -k 2 

< exp (- (~)2 /2(n _ k) 4 2) 
2 (n -k) 

(by McDiarmid's inequality, as changing the value of an X j, j ::::: k, 

changes Z by at most 2/(n - k); see Theorem 9.2) 

= ( 
(n - k)E2) 

exp 32 . 

Thus, taking expected values, we see that 

if J(2k + 2)/(n - k) < E/2. This tends to 0 for all E > 0 if kin -+ 0 and 
nllog 19k1 -+ 00.0 

20.13 Constructing Consistent Tree Classifiers 

Thus far, we have taken you through a forest of beautiful trees and we have shown 
you a few tricks of the trade. When you read (or write) a research paper on tree 
classifiers, and try to directly apply a consistency theorem, you will get frustrated 
however-most real-life tree classifiers use the data in intricate ways to suit a 
certain application. It really helps to have a few truly general results that have 
universal impact. In this section we will point you to three different places in 
the book where you may find useful results in this respect. First of all, there is a 
consistency theorem-Theorem 21.2-that applies to rules that partition the space 
and decide by majority vote. The partition is arbitrary and may thus be generated by 
using some or all of Xl, Y1, ••• , X n , Yn . If a rule satisfies the two (weak) conditions 
of Theorem 21.2, it must be universally consistent. To put it differently, even the 
worst rule within the boundaries of the theorem's conditions must perform well 
asymptotically. 

Second, we will briefly discuss the design of tree classifiers obtained by mini­
mizing the empirical error estimate (in) over possibly infinite classes of classifiers. 
Such classifiers, however hard to find by an algorithm, have asymptotic properties 
that are related to the vc dimension of the class of rules. Consistency follows al­
most without work if one can calculate or bound the vc dimension appropriately. 
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While Chapters 13 and 21 deal in more detail with the vc dimension, it is necessary 
to give a few examples here. 

Third, we point the reader to Chapter 22 on data splitting, where the previous 
approach is applied to the minimization. of the holdout estimate, obtained by trees 
based upon part of the sample, and using another part to select the best tree in the 
bunch. Here too the vc dimension plays a crucial role. 

Theorem 21.2 allows space partitions that depend quite arbitrarily on all the data 
and extends earlier universally applicable results of Gordon and Olshen (1978), 
(1980), (1984), and Breiman, Friedman, Olshen, and Stone (1984). A particularly 
useful format is given in Theorem 21.8. If the partition is by recursive hyperplane 
splits as in BSP trees and the number of splits is at most m n, if mn log n I n -+ 0, 

and if 
diam(A(X) n SB) -+ 0 

with probability one for all SB (where SB is the ball of radius B centered at the 
origin), then the classification rule is strongly consistent. The last condition forces 
a randomly picked region in the partition to be small. However, mn log n I n -+ 0 
guarantees that no devilish partition can be inconsistent. The latter condition is 
certainly satisfied if each region contains at least kn points, where knl log n -+ 00. 

Next we take a look at full-fledged minimization of Ln , the empirical error, 
over certain classes of tree classifiers. Here we are not concerned with the (often 
unacceptable) computational effort. For example, let Qk be the class of all binary 
tree classifiers based upon a tree consisting of k internal nodes, each representing 
a hyperplane cut (as in the BSP tree), and all possible 2k+l labelings of the k + 1 
leaf regions. Pick such a classifier for which 

is minimal. Observe that the chosen tree is always natural; that is, it takes majority 
votes over the leaf regions. Thus, the minimization is equivalent to the minimization 
of the resubstitution error estimate (defined in Chapter 23) over the corresponding 
class of natural tree classifiers. We say that a sequence {Qk} of classes is rich if 
we can find a sequence gk E Qk such that L(gk) -+ L *. For hyperplanes, this 
is the case if k -+ 00 as n -+ oo-just make the hyperplane cuts form a regular 
histogram grid and recall Theorem 9.4. Let S(Qb n) be the shatter coefficient of Qk 
(for a definition, see Chapter 12, Definition 12.3). For example, for the hyperplane 
family, 

S(Qk, n) .:s nk(d+l). 

Then by Corollary 12.1 we have E{Ln(g~)} -+ L * for the selected classifier g~ 
When Qk is rich (k -+ 00 here) and log S(Qk, n) = o(n), that is, 

k=o --
( 

n ) 
logn . 
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Observe that no conditions are placed on the distribution of (X, Y) here! Consis­
tency follows from basic notions-one combinatorial to keep us from overfitting, 
and one approximation-theoretical (the richness). 

The above result remains valid under the same conditions on k in the following 
classes: 

(1) All trees based upon k internal nodes each representing a perpendicular split. 
(Note: S(~h, n) :::: ((n + l)d)k.) 

(2) All trees based upon k internal nodes, each representing a quadtree split. 
(Note: S((;h, n) :::: (nd + ll.) 

20.14 A Greedy Classifier 

In this section, we define simply a binary tree classifier that is grown via optimiza­
tion of a simple criterion. It has the remarkable property that it does not require 
a forced rotation through the coordinate axes or special safeguards against small 
or large regions or the like. It remains entirely parameter-free (nothing is picked 
by the user), is monotone transformation invariant, and fully automatic. We show 
that in nd it is always consistent. It serves as a prototype for teaching about such 
rules and should not be considered as more than that. For fully practical methods, 
we believe, one will have to tinker with the approach. 

The space is partitioned into rectangles as shown below: 

CJ -
3 

6rn 5 

FIGURE 20.22. A tree based on partitioning the plane into rectangles. The 

right subtree of each internal node belongs to the inside of a rectangle, and 

the left subtree belongs to the complement of the same rectangle (ic denotes 

the complement of i). Rectangles are not allowed to overlap. 

A hyperrectangle defines a split in a natural way. The theory presented here 
applies for many other types of cuts. These will be discussed after the main con­
sistency theorem is stated. 
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A partition is denoted by p, and a decision on a set A E P is by majority vote. 
We write gp for such a rule: 

{ 

1 if L Yi >L (1 - Yi ), x E A 
gp(x) = 0 i:X;EA i:X;EA 

otherwise. 

Given a partition p, a legal rectangle A is one for which A n B = 0 or A S; B for 
all sets B E P. If we refine P by adding a legal rectangle T somewhere, then we 
obtain the partition T. The decision gy agrees with gp except on the set B E P 
that contains T. 

We introduce the convenient notation 

= P{X E A, Y = }}, j E {a, I}, 

An estimate of the quality of gp is 

where 

1 n -L I{X;ER,gp(XJ=!Y;} 
n i=I 

= min(vo,n(R), vI,n(R». 

Here we use two different arguments for Ln (R and P), but the distinction should 
be clear. We may similarly define Ln(T). Given a partition p, the greedy classifier 
selects that legal rectangle T for which Ln(T) is minimal (with any appropriate 
policy for breaking ties). Let R be the set of P containing T. Then the greedy 
classifier picks that T for which 

is minimal. Starting with the trivial partition Po = {nd
}, we repeat the previous 

step k times, leading thus to k + 1 regions. The sequence of partitions is denoted 
by Po, PI, ... , Pk. 

We put no safeguards in place-the rectangles are not forced to shrink. And in 
fact, it is easy to construct examples in which most rectangles do not shrink. The 
main result of the section, and indeed of this chapter, is that the obtained classifier 
is consistent: 

Theorem 20.9. For the greedy classifier with k -+ 00 and k = 0 ( J n / log n ), 

assuming that X has nonatomic marginals, we have Ln -+ L * with probability 
one. 
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REMARK. We note that with techniques presented in the next chapter, it is possible 

to improve the second condition on k to k == 0 ( vi n / log n ) (see Problem 20.31). 
o 

Before proving the theorem, we mention that the same argument may be used 
to establish consistency of greedily grown trees with many other types of cuts. We 
have seen in Section 20.8 that repeated Stoller splits do not result in good classifiers. 
The reason is that optimization is over a collection of sets (halfspaces) that is 
not guaranteed to improve matters-witness the examples provided in previous 
sections. A good cutting method is one that includes somehow many (but not too 
many) small sets. For example, let us split at the root making d + 1 hyperplane cuts 
at once, that is, by finding the d + 1 cuts that together produce the largest decrease 
in the empirical error probability. Then repeat this step recursively in each region 
k times. The procedure is consistent under the same conditions on k as in Theorem 
6.1, whenever X has a density (see Problem 20.30). The d + 1 hyperplane cuts 
may be considered as an elementary cut which is repeated in a greedy manner. 
In Figures 20.23 to 20.25 we show a few elementary cuts that may be repeated 
greedily for a consistent classifier. The straightforward proofs of consistency are 
left to the reader in Problem 20.30. 

PROOF OF THEOREM 20.9. We restrict ourselves to n 2
, but the proof remains 

similar in nd (Problem 20.29). The notation Ln (·) was introduced above, where 
the argument is allowed to be a partition or a set in a partition. We similarly define 

L(R) 

L(P) 

min P{X E R, Y iy} 
YE{O.I} 

= min(vo(R), vI(R)), 

L L(R). 
REP 

FIGURE 20.23. An elementary cut here FIGURE 20.24. 2d rectangular cuts de-

is composed of d + 1 hyperplane cuts. termine an elementary cut. All 2d cuts, 

They are jointly optimized. have arbitrary directions; there are no 

forced directions. 
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2 

1 

FIGURE 20.25. Simplex cuts. A cut is FIGURE 20.26. At every iteration we re­

determined by a polyhedron with d + 1 fine the partition by selecting that rect­

vertices. The simplices are not allowed angle R in the partition and that 3 x 

to overlap, just as for rectangular cuts 3 x ... x 3 rectangular grid cut of R 

in the greedy classifier. Three consecu- for which the empirical error is mini­

tive simplex cuts in R2 are shown here. mal. Two consecutive rectangular grid 

cuts are shown. 

For example, let (;h denote a partition of R 2 into a rectangular l x I grid. 

FIGURE 20.27. 91: An I x I grid (with I = 7 here). 

It is clear that for all E > 0, there exists an I = I (E) and an I x I grid 91 such that 

If Q is another finer partition into rectangles (i.e., each set of Q is a rectangle and 
intersects at most one rectangle of 91), then necessarily 

L(Q):::: L(91):::: L* +E. 

We will call Q a refinement of 91. The next lemma is a key property of partitioning 
classifiers. In our eyes, it is the main technical property of this entire chapter. We 
say that the partition T is an extension of P by a set Q-where Q ~ REP-if 
T contains all cells of P other than R, plus Q and R - Q. 
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Lemma 20.2. Let Oz be a finite partition with L (Oz) :::: L * + E. Let P be a finite 
partition oiRd , and let Q be a refinement oiboth P and Oz. Then there exists a 
set Q E Q (note: Q is contained in one set oiP only) and an extension oiP by Q 
to TQ such that, if L(P) ::: L * + E, 

PROOF. First fix REP and let Q 1, ... , Q N be the sets of Q contained in R. Define 

L(R) = min(p, q), 
i=l 

First we show that there exists an integer i such that 

L(R) - L(Q,) - L(R - Q,) ": L(R) -"7;':[ L(Q,), 

or equivalently, 

where Il i = min(p, q) - min(pi, qi) - min(p - Pi, q - qi). To see this, assume 
without loss of generality that P :::: q. If Pi :::: qi for all i, then 

N N 

min(p, q) - I: min(Pi , qi) = P - I: Pi = 0, 
l=l i=l 

so we are done. Assume therefore that Pi > qi for i E A, where A is a set of 
indices with I A I ::: 1. For such i, 

and thus, 

N 

I: Ili = I:(pi - qJ = P - I: Pi - I:qi = P - Lmin(pi' qJ. 
iEA lEA i¢.A iEA i=l 

But then, 

AIL A P - L~l min(pi, qi) P - L~l min(pi' qi) max u' > - u' > > ----'-...:...-----
lSiSN I - IAI iEA I - IAI - N ' 
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and the claim follows. To prove the lemma, notice that since L(Q) ::: L * + E, it 
suffices to show that 

L(P) - L(Q) 
max(L(P) - L(TQ» ::: Q ' 
QEQ I I 

or equivalently, that 

L(P) - L(Q) 
max(L(RQ) - L(Q) - L(RQ - Q» ::: Q ' 
QEQ I I 

where RQ is the unique cell of P containing Q. However, 

max(L(R Q ) - L(Q) - L(RQ - Q» 
QEQ 

> max (L(R) - L(Q) - L(R - Q» 

> 

> 

= 

REP,Q<:;R 

L(R) - LQCR L(Q) 
max -
REP IRI 
(by the inequality shown above, where I R I denotes 

the number of sets of Q contained in R) 

LREP (L(R) - LQ<:;R L(Q») 

LREP IRI 
LREP L(R) - LQEQ L(Q) 

IQI 
L(P) - L(Q) 

IQI 

and the lemma is proved. 0 

Let us return to the proof of Theorem 20.9. The previous lemma applied to our 
situation (P = Pi) shows that we may extend Pi by a rectangle Q E Q (as Q will 
be a collection of rectangles refining both Qz and Pi) such that L(TQ) - (L * + E) is 
smaller by a guaranteed amount than L(Pi ) - (L * + E). (TQ is the partition obtained 
by extending Pi.) To describe Q, we do the following (note that Q must consist 
entirely of rectangles for otherwise the lemma is useless): take the rectangles of 
Pi and extend all four sides (in the order of birth of the rectangles) until they hit a 
side of another rectangle or an extended border of a previous rectangle if they hit 
anything at all. Figure 20.28 illustrates the partition into rectangles. Note that this 
partition consists of 4i line segments, and at most 9i rectangles (this can be seen 
by noting that we can write in each non original rectangle of Pi the number of an 
original neighboring rectangle, each number appearing at most 8 times). 
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FIGURE 20.28. Extensions of rectangles 

to get a rectangular grid. 

The rectangular grid partition thus obtained is intersected with 91 to yield Q. To 
apply Lemma 20.2, we only need a bound on I QI. To the rectangular partition just 
created, we add each of the 2l - 2 lines of the grid 91 one by one. Start with the 
horizontal lines. Each time one is added, it creates at most 9i new rectangles. Then, 
each vertical line adds at most 9i + 1 new rectangles for a total of not more than 
9i + 9i(l- 1) + (l - 1)(9i + l) :s l2 + 18li (assuming 1 :::: 1). Hence, 

I QI :s l2 + 18li. 

Apply the lemma, and observe that there is a rectangle Q E Q such that the 
extension of Pi by Q to P; would yield 

At this point in the proof, the reader can safely forget Q. It has done what it was 
supposed to do. 

Of course, we cannot hope to find P[ because we do not know the distribution. 
Let us denote the actual new partition by Pi+1 and let Ri+l be the selected rectangle 
by the empirical minimization. Observe that 

L(Pi+d - L(P;) 

(L(Pi+d - Ln(Pi+d) + (Ln(Pi+1) - Ln(P;)) + (Ln(P;) - L(P;)) 

< (L(Pi+l) - Ln(Pi+1)) + (Ln(P[) - L(P;)) . 

As Pi +1 and n; have most sets in comm~, many terms cancel in the last dou­
ble sum. We are left with just L(·) and Ln (.) terms for sets of the form R -
Ri+1, Ri+l, R - Q, Q with R E Pi. Thus, 

L(Pi+1) - L(P;) :s 2 sup ILn(R') - L(R')I, 
R' 

where the supremum is taken over all rectangles of the above described form. 
These are sets of the form obtainable in Pi +1• Every such set can be written as 
the difference of a (possibly infinite) rectangle and at most i + 1 nonoverlapping 
contained rectangles. As i + 1 :s k in our analysis, we call Zk the class of all sets 
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that may be described in this form: Zo - Zl - ... - Zk, where Zo, Zl, ... , Zk 
are rectangles, each Zi ~ Zo, Zl, ... , Zk are mutually disjoint. Rectangles may 
be infinite or half infinite. Hence, for i < k, 

L(Pi+1) - L(F) :::; 2 sup ILn(Z) - L(Z)I. 
ZEZk 

FOf a fixed Z E Zk, 

l£n(Z) - L(Z)I 1 min(vo,n(Z), V1,n(Z» min(vo(Z), v1(Z»1 

< IVo,n(Z) - vo(Z)1 + IV1,n(Z) - v1(Z)I· 

Thus, 

P' def ( ) L(Pi+1) - L( J:::; Vn = 2 sup IVo,n(Z) - vo(Z)1 + IV1,n(Z) - v1(Z)1 . 
ZEZk 

Define the (good) event 
G = {Vn < 8}, 

where 8 > 0 will be picked later. On G, we see that for all i < k, 

L(Pi+1) - (L * + E) 

< L(P;) - (L * + E) + 8 

< (L(Pi) - (L * + E») (1 2 1 ) + 8 (Lemma 20.2). 
l + 18h 

We now introduce a convenient lemma. 

Lemma 20.3. Let an, bn be sequences of positive numbers with bn t 0, bo < 1, 
and let 8 > 0 be fixed. If an+1 :::; an (1 - bn) + 8, then 

an+1 :::; aoe-EJ=obj +8(n + 1). 

PROOF. We have 

an+! :'0 ao 0(1- bj ) + 8 (~D(l -bj )) + 8 

I + I I + I I I. 

Clearly, I :::; ao exp ( - L~=o b j ). A trivial bound for I I + I I I is 8(n + 1). 0 

Conclude that on G, 

< e 1/(l2+1Slu)du + 8k 

< e- fs71og(l2+1Sl(k-1»/(l2» + 8k 

1 
------:-:-:-:-::-:-:- + 8k. 

( 
lS(k-1») l/(lSl) 

1+-l-
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Thus, 
P{L(Pk) > L * + 2E} :::s P{ Ge

} == P{V,1 ::: o} 

when ok < E/2 and 
1 E 

-------:-:-::-:-:::-::-<-. 

( 
l8(k_l))1/(l8/) 2 

1+-/-

Finally, introduce the notation 

Ln(R) == P{X E R, Y i gp(X)}, 

Ln(P) L Ln(R). 
REP 

As L(Pk) takes the partition into account, but not the majority vote, and Ln(Pk) 
does, we need a small additional argument: 

Ln(Pk) (Ln(Pk) - Ln(Pk») + (Ln(Pk) - L(Pk») + L(Pk) 

< 2 L (Ivo(R) vO,n(R)1 + IVI (R) - Vl,n(R)I) + L(Pk) 
REPk 

Putting things together, 

P {Ln(Pk) > L * + 4E} 
< P {Wn > E} + P {L(Pk) > L * + 2E} 

< P {Wn > E} + P {Vn ::: o} 

under the given conditions on 0 and k. Observe that if for a set Z, 

def 
Un(Z) == Ivo(Z) - vO,n(Z)1 + IVl(Z) - vl,n(Z)I, 

then 

k 
Vn < sup Un(Z) + sup LUn(Zi) 

rectangles Z disjoint sets of k i=l 
rectangles ZI, ... ,Zk 

< (k + 1) sup U/1(Z), 
rectangles Z 

Wn < (k + 1) sup Un(Z). 
rectangles Z 

We may now use the Vapnik-Chervonenkis inequality (Theorems 12.5 and 13.8) 
to conclude that for all E > 0, 

P { sup Un(Z) > E} :::s 16n2de-nE2/32. 
rectangles Z 
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P{Wn > E} < 

P{Vn :::: o} < 
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16n2de -n(2(k~1)//32, 

16n2d e --n(2(LI) / /32. 

Both terms tend to 0 with n if nl(k2log n) ~ 00 and no2 l(k2 log n) ~ 00. 

Take 0 = E I (3k) to satisfy our earlier side condition, and note that we need 
n/(k3 log n) ~ 00. We, in fact, have strong convergence to 0 for Ln(Pk) L * by 
the Borel-Cantelli lemma. 0 

The crucial element in the proof of Theorem 20.9 is the fact that the number 
of sets in the partition Q grows at most linearly in i, the iteration number. Had it 
grown quadratically, say, it would not have been good enough-we would not have 
had guaranteed improvements of large enough sizes to push the error probability 
towards L * . In the multidimensional version and in extension to other types of cuts 
(Problems 20.29, 20.30) this is virtually the only thing that must be verified. For 
hyperplane cuts, an additional inequality of the vc type is needed, extending that 
for classes of hyperplanes. 

Our proof is entirely combinatorial and geometric and comes with explicit 
bounds. The only reference to the Bayes error we need is the quantity I(E), which 
is the smallest value l for which 

inf L(Yl) ::::; L * + E. 
alllxl grids 9z 

It depends heavily on the distribution of course. CallI (E) the grid complexity of the 
distribution, for lack of a better term. For example, if X is discrete and takes values 
on the hypercube {O, l}d, then I(E) ::::; 2d. If X takes values on {aI, ... , aM}d, then 
I(E) ::::; (M + l)d. If X has an arbitrary distribution on the real line and 1](x) is 
monotone, then l ( E) ::::; 2. However, if 1] is unimodal, l ( E) ::::; 3. In one dimension, 
I(E) is sensitive to the number of places where the Bayes decision changes. In two 
dimensions, however, l (E) measures the complexity of the distribution, especially 
near regions with 1](x) ~ 1/2. When X is uniform on [0, 1]2 and Y = 1 if and 
only if the components of X sum to less than one, then I (E) = 8( 1 I -JE) as E {- 0 
(Problem 20.32), for example. The grid complexity is eminently suited to study 
rates of convergence, as it is explicitly featured in the inequalities of our proof. 
There is no room in this book for following this thread, however. 

Problems and Exercises 

PROBLEM 20.1. Let X be a random vector with density f on nd. Show that each component 
has a density as well. 

PROBLEM 20.2. Show that both condition (1) and condition (2) of Theorem 6.1 are necessary 
for consistency of trees with the X -property. 
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PROBLEM 20.3. For a theoretical median tree in nd with uniform marginals and k levels of 
splitting, show that E{H(X) + VeX)} = 1/(2k

/
d

) when k is a multiple of d. 

PROBLEM 20.4. a-BALANCED TREES. Consider the following generalization of the median 
tree: at a node in the tree that represents n points, if a split occurs, both subtrees must be of 
size at least a(n - 1) for some fixed a > O. Repeat the splits for k levels, resulting in 2k 
leaf regions. The tree has the X -property and the classifier is natural. However, the points 
at which cuts are made are picked among the data points in an arbitrary fashion. The splits 
rotate through the coordinate axes. Generalize the consistency theorem for median trees. 

PROBLEM 20.5. Consider the following tree classifier. First we find the median according 
to one coordinate, and create two subtrees of sizes Len - 1)/2J and r(n - 1)/21- Repeat 
this at each level, cutting the next coordinate axis in a rotational manner. Do not cut a node 
any further if either all data points in the corresponding region have identical Yi values or 
the region contains less than k points. Prove that the obtained natural classifier is consistent 
whenever X has a density if k -+ 00 and log n/ k -+ O. 

PROBLEM 20.6. Let M be a probability measure with a density f on n d
, and define 

C = {x = (xCI), ... , x Cd»: M ([xCI), xCI) + E] x ... x [X(d) , xed) + En > 0 all E > O}. 

Show that M( C) = 1. HINT: Proceed as in the proof of Lemma A.l in the Appendix. 

PROBLEM 20.7. Let U(l), ... , U Cn ) be uniform order statistics defining spacings Sl, ... , Sn+l 

with Si = U(i) - UU-l), if U(n+l) = 1 and U(O) = O. Show that 
(1) Sl, ... , Sn+l are identically distributed; 
(2) P{Sl > x} = (1 - xY\ x E [0, 1]; 
(3) E{SIl = l/(n + 1). 

PROBLEM 20.8. In the proof of Theorem 20.3, we assumed in the second part that horizontal 
and vertical cuts were meted out independently. Return to the proof and see how you can 
modify it to take care of the forced alternating cuts. 

PROBLEM 20.9. Let Xl, X 2 , •.. , Xn be i.i.d. with common density f on the real line. Call 
Xi a record if Xi = min(X I , ... , XJ. Let K = f{x; is a record)· Show that Rl , ..• , Rn are 
independent and that P {Ri = I} = 11 i. Conclude that the expected number of records IS 
"-' logn. 

PROBLEM 20.10. THE DEEP K-D TREE. Assume that X has a density f and that all marginal 
densities are uniform. 

(1) Show that k -+ 00 implies that diam(A(X» -+ 0 in probability. Do this by 
arguing that diam(A(X» -+ 0 in probability for the chronological k-d tree WIth 
the same parameter k. 

(2) In a random k -d tree with n elements, show that the depth D of the last inserted node 
satisfies D I (2 log n) -+ I in probability. Argue first that you may restrict yourself 
to d = 1. Then write D as a sum of indicators of records. Conclude by computing 
E{D} and Var{D} or at least bounding these quantities in an appropriate manner. 

(3) Improve the second condition of Theorem 20.4 to (k - 2 log n)IJlog n -+ -00. 

(Note that it is possible that lim sUPn-Hxl k I log n = 2.) HINT: Show that I D -

2 log n I = 0 ( Jlog n) in probability by referring to the previous part of this 

exercise. 
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PROBLEM 20.11. Consider a full-fledged k-d tree with n+ 1 external node regions. Let Ln be 
the probability of error if classification is based upon this tree and if external node regions 
are assigned the labels (classes) of their immediate parents (see Figure 20.29). 

FIGURE 20.29. The external nodes are as­

signed the classes of their parents. 

leaf region 

Show that whenever X has a density, E{ Ln} ~ LNN ::: 2L * just as for the I-nearest neighbor 

rule. 

PROBLEM 20.12. CONTINUATION. Show that Ln ~ LNN in probability. 

PROBLEM 20.13. Meisel and Micha1opoulos (1973) propose a binary tree classifier with 
perpendicular cuts in which all leaf regions are homogeneous, that is, all Yi's for the Xi'S 

in the same region are identical. 

• • • • 
FIGURE 20.30. Example of a tree partition into homogeneous 

regions . • 
0 • • 0 

0 0 
0 -.- 0 

0 0 0 

(1) If L * = 0, give a stopping rule for constructing a consistent rule whenever X has 
a density. 

(2) If L * = 0, show that there exists a consistent homogeneous partition classifier 
with o(n) expected number of cells. 

(3) If L * > 0, show a (more complicated) way of constructing a homogeneous par­
tition that yields a tree classifier with E{ Ln} ~ L * whenever X has a density. 
HINT: First make a consistent nonhomogeneous binary tree classifier, and refine 
it to make it homogeneous. 

(4) If L * > 0, then show that the expected number of homogeneous regions is at 
least en for some e > 0. Such rules are therefore not practical, unless L * = 0. 
Overfitting will occur. 

PROBLEM 20.14. Let X be uniform on [0, 1] and let Y be independent of X with P{Y = 
I} = p. Find a tree classifier based upon simple interval splitting for which each region has 
one data point, and 

. . lim infn-+oo ELn 
hmmf 2: 3. 

p-+O p 
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We know that for the nearest neighbor rule, 

. lim sUPn-+CXl ELn 
hm =2, 
p-+O p 

so that the given interval splitting method is worse than the nearest neighbor method. (This 
provides a counterexample to a conjecture of Breiman, Friedman, Olshen, and Stone (1984, 
pp.89-90).) HINT: Sort the points, and adjust the sizes of the intervals given to the class 0 
and class 1 points in favor of the 1 'so By doing so, the asymptotic probability of error can 
be made as close as desired to (p2 + 3 p(1 - p))(1 - p). 

PROBLEM 20.15. CONTINUATION. Let X be uniform on [0, 1)2 and let Y be independent of 
X with P {Y = I} = p. Find a data-based tree classifier based upon perpendicular cuts for 
which each region has one data point, diam(A(X)) -+ 0 in probability (recall Theorems 
6.1 and 21.2), and 

. . lim infn-+ CXl ELn 
hmmf = 00. 

p-+O p 

Conclude that in nd
, we can construct tree classifiers with one point per cell that are much 

worse than the nearest neighbor rule. HINT: The next two problems may help you with the 
construction and analysis. 

PROBLEM 20.16. CONTINUATION. Draw ani.i.d. sample Xl, ... , Xn from the uniformdistn­
butionon [0,1)2, and let YI , ••• , Yn bei.i.d. and independent of the Xi'S withP{Y = I} = p. 
Construct a binary tree partition with perpendicular cuts for {Xi: Yi = I} such that every 
leaf region has one and only one point and diam(A(X)) -+ 0 in probability. 

(1) How would you proceed, avoiding putting Xi'S on borders of regions? 
(2) Prove diam(A(X)) -+ 0 in probability. 
(3) Add the (Xi, Yi ) pairs with Yi = 0 to the leaf regions, so that every region has 

one class-1 observation and zero or more class-O observations. Give the class-1 
observation the largest area containing no class-O points, as shown in Figure 20.31. 
Show that this can always be done by adding perpendicular cuts and keeping at 
least one observation per region. 

... 0 

• 1 

0 

.0 

0 
·0 

·0 

FIGURE 20.31. Cutting a rectangle by giving 

a large area to the single class-1 point. 

(4) Partition all rectangles with more than one point further to finally obtain a one­
point-per-leaf-region partition. If there are N points in a region of the tree before 
the class-l and class-O points are separated (thus, N - 1 class-O points and one 
class-1 point), then show that the expected proportion of the region's area given to 
class 1, given N, times N tends to 00. (An explicit lower bound will be helpful.) 
HINT: Use the next problem. 

(5) Write the probability of error for the rule in terms of areas of rectangles, and use 
part (4) to get an asymptotic lower bound. 
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(6) Now let p tend to zero and get an asymptotic expression for your lower bound in 
terms of p. Compare this with 2 p(1 - p), the asymptotic error probability of the 
I-nearest neighbor rule. 

PROBLEM 20.17. CONTINUATION. Draw a sample Xl, ... , Xn of n i.i.d. observations uni­
formly distributed on [0, I]d. The rectangles defined by the origin and X I, ... , Xn as op­
posite vertices are denoted by R I, ... , Rn , respectively. The probability content of Ri is 
clearly fL(Ri ) = n:=l xij)· Study 

Mn = max{fL(Ri) : 1 :s i :s n, Ri does not contain R j for any j =I i}, 

the probability content of the largest empty rectangle with a vertex at the origin. For d = 1, 

Mil is just the minimum of the X/s, and thus nMn ~ E, where E is the exponential 
distribution. Also E{Mn} = l/(n + 1). For d > 1, Mn is larger. Show that nMn -+ 00 in 
probability and try obtaining the first term in the rate of increase. 

PROBLEM 20.18. Show that diam(A(X» -+ 0 in probability for the chronological quadtree 
whenever k -+ 0 and X has a density. HINT: Mimic the proof for the chronological quadtree. 

PROBLEM 20.19. Show that the deep quadtree is consistent if X has a density and k levels 
of splits are applied, where k -+ 00 and kl log n -+ O. 

PROBLEM 20.20. Consider a full-fledged quadtree with n nodes (and thus n(2d 
- 1) + 1 leaf 

regions). Assign to each region the Y-Iabel (class) of its parent in the quadtree. With this 
simple classifier, show that whenever X has a density, E{Ln} -+ 2E{1](X)(1-1](X»} = LNN • 

In particular, lim supn-;. DO E{ Ln} :s 2L * and the classifier is consistent when L * = O. 

PROBLEM 20.21. In R}, partition the space as follows: Xl, X2 define nine regions by vertical 
and horizontal lines through them. X 3 , •.. , X k are sent down to the appropriate subtrees 
in the 9-ary tree, and within each subtree with at least two points, the process is repeated 
recursively. A decision at x is by a majority vote (among (Xk+l , Yk+I ), .•• , (Xn' Yn» among 
those Xi'S in the same rectangle of the partition as x Show that if k -+ 00, kin -+ 0, the 
rule is consistent whenever X has a density. 

PROBLEM 20.22. On the two-dimensional counterexample shown in the text for multivariate 
Stoller splits, prove that if splits are performed based upon a sample drawn from the distri­
bution, and if we stop after k splits with k depending on n in such a way that k I log n -+ 0, 
then L n , the conditional probability of error, satisfies lim inf'HDO E{L,J 2: (1- E)/2. HINT: 
Bound the probability of ever splitting [1, 2f anywhere by noting that the maximal differ­
ence between the empirical distribution functions for the first coordinate of X given Y = 0 
and Y = 1 is 0 (1 I In) when restricted to [1, 2f. 

PROBLEM 20.23. Let X have the uniform distribution on [0,5] and let Y = I{2<xdj, so 
that L * = O. Construct a binary classification tree by selecting at each iteration the split 
that minimizes the impurity function I, where 1jJ is the Gini criterion. Consider just the 
first three splits made in this manner. Let Ln be the probability of error with the given rule 
(use a majority vote over the leaf regions). Show that Ln -+ 0 in probability. Analyze the 
algorithm when the Gini criterion is replaced by the probability-of-error criterion. 

PROBLEM 20.24. Let X be uniform on [0, 1] and let Y be independent of X, with PlY = 
I} = 2/3. Draw a sample of size n from this distribution. Investigate where the first cut 
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might take place, based upon minimizing the impurity function with 'I/f(p, 1- p) (the Gini 
criterion). (Once this is established, you will have discovered the nature of the classification 
tree, roughly speaking.) 

PROBLEM 20.25. Complete the consistency proof of Theorem 20.7 for the raw BSP tree for 
n2 by showing that diam(A(X)) ~ 0 in probability. 

PROBLEM 20.26. BALANCED BSP TREES. We generalize median trees to allow splitting the 
space along hyperplanes. 

50%/ 
/50% 

FIGURE 20.32. A balanced BSP tree: Each hyperplane 

cut splits a region into two cells of the same cardinality. 

Assume that X has a density and that the tree possesses the X -property. Keep splitting until 
there are 2k leaf regions, as with median trees. Call the trees balanced BSP trees. 

(1) Show that there are ways of splitting in n 2 that lead to nonconsistent rules, re­
gardless how k varies with n. 

(2) If every splitting hyperplane is forced to contain d data points (in nd
) and these 

data points stay with the splitting node (they are not sent down to subtrees), then 
show that once again, there exists a splitting method that leads to nonconsistent 
rules, regardless of how k varies with n. 

PROBLEM 20.27. LetX have a uniform distribution on the unit ball of Rd. Let Y = I{IlXIl~1/2)' 
so that L * = O. Assume that we split the space by a hyperplane by minimizing an impurity 
function based upon the Gini criterion. If 11 is very large, where approximately would the 
cut take place (modulo a rotation, of course)? 

PROBLEM 20.28. There exist singular continuous distributions that admit uniform [0, 1] 
marginals in n d. Show, for example, that if X is uniformly distributed on the surface of the 
unit sphere of n3 , then its three components are all uniformly distributed on [ - 1, 1]. 

PROBLEM 20.29. Verify that Theorem 20.9 remains valid in Rd. 

PROBLEM 20.30. Prove that Theorem 20.9 remains valid if rectangular cuts are replaced by 
any of the elementary cuts shown on Figures 20.23 to 20.25, and such cuts are performed 
recursively k times, always by maximizing the decrease of the empirical error. 

PROBLEM 20.31. Show that Theorem 20.11 remains valid if k -+ ex) and k = 0 ( J n / log n). 
HINT: In the proof of the theorem, the bound on '01 and W" is loose. You may get more 
efficient bounds by applying Theorem 21.1 from the next chapter. 

PROBLEM 20.32. Study the behavior of the grid complexity as E t 0 for the following 
cases: 

(1) X is uniform on the perimeter of the unit circle of R 2 with probability 1/2 and X 
is uniform on [0, 1]2 otherwise. Let Y = 1 if and only if X is on the perimeter of 
that circle (so that L * = 0). 

(2) X = (X(l), X (2) ) is uniform on (0, 1 f and Y = 1 if and only if X(l) + X(2) :::: 1. 



21 
Data-Dependent Partitioning 

21.1 Introduction 

In Chapter 9 we investigated properties of the regular histogram rule. Histogram 
classifiers partition the observation space nd and classify the input vector X ac­
cording to a majority vote among the Y/s whose corresponding X/s fall in the 
same cell of the partition as X. Partitions discussed in Chapter 9 could depend 
on the sample size n, but were not allowed to depend on the data Dn itself. We 
dealt mostly with grid partitions, but will now allow other partitions as well. Just 
consider clustered training observations Xl, ... , X n . Near the cluster's center finer 
partitions are called for. Similarly, when the components have different physical 
dimensions, the scale of one coordinate axis is not related at all to the other scales, 
and some data-adaptive stretching is necessary. Sometimes the data are concen­
trated on or around a hyperplane. In all these cases, although consistent, the regular 
histogram method behaves rather poorly, especially if the dimension of the space 
is large. Therefore, it is useful to allow data-dependent partitions, while keeping a 
majority voting scheme within each cell. 

The simplest data-dependent partitioning methods are based on statistically 
equivalent blocks in which each cell contains the same number of points. In one­
dimensional problems statistically equivalent blocks reduce to k-spacing estimates 
where the k-th, 2k-th, etc. order statistics determine the partition of the real line. 

Sometimes, it makes sense to cluster the data points into groups such that points 
in a group are close to each other, and define the partition so that each group is in 
a different cell. 

Many other data-dependent partitioning schemes have been introduced in the lit-
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erature. In most of these algorithms the cells of the partition correspond to the leaves 
of a binary tree, which makes computation of the corresponding classification rule 
fast and convenient. Tree classifiers were dealt with in Chapter 20. Analysis of uni­
versal consistency for these algorithms and corresponding density estimates was 
begun by Abou-Jaoude (1976b) and Gordon and Olshen (1984), (1978), (1980) 
in a general framework, and was extended, for example, by Breiman, Friedman, 
Olshen, and Stone (1984), Chen and Zhao (1987), Zhao, Krishnaiah, and Chen 
(1990), Lugosi and Nobel (1996), and Nobel (1994). 

This chapter is more general than the chapter on tree classifiers, as every partition 
induced by a tree classifier is a valid partition of space, but not vice versa. The 
example below shows a rectangular partition of the plane that cannot be obtained 
by consecutive perpendicular cuts in a binary classification tree. 

FIGURE 21.1. A rectangular partition of [0, 1 J2 
that cannot be achieved by a tree of consecutive 

cuts. 

In this chapter we first establish general sufficient conditions for the consistency 
of data-dependent histogram classifiers. Because of the complicated dependence 
of the partition on the data, methods useful for handling regular histograms have to 
be significantly refined. The main tool is a large deviation inequality for families 
of partitions that is related to the Vapnik -Chervonenkis inequality for families of 
sets. The reader is asked for forgiveness-we want to present a very generally 
applicable theorem and have to sacrifice (temporarily) by increasing the density 
of the text. However, as you will discover, the rewards will be sweet. 

21.2 A Vapnik -Chervonenkis Inequality for Partitions 

This is a technical section. We will use its results in the next section to establish 
a general consistency theorem for histogram rules with data-dependent partitions. 
The main goal of this section is to extend the basic Vapnik-Chervonenkis inequality 
(Theorem 12.5) to families of partitions from families of sets. The line of thought 
followed here essentially appears in Zhao, Krishnaiah, and Chen (1990) for rect­
angular partitions, and more generally in Lugosi and Nobel (1996). A substantial 
simplification in the proof was pointed out to us by Andrew Barron. 

By a partition of Rd we mean a countable collection P = {AI, A2, .. '} of 
subsets of Rd such that Uj:l A j = Rd and Ai n A j = 0 if i =I j. Each set A j is 
called a cell of the partition P. 
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Let M be a positive number. For each partition p, we define p(M) as the restric­
tion ofP to the ball SM (recall that SM C Rd denotes the closed ball of radius M 
centered at the origin). In other words, p(M) is a partition of SM, whose cells are 
obtained by intersecting the cells oiP with SM. We assume throughout that Pis 
such that IP(M) I < 00 for each M < 00. We denote by B(p(M) the collection of 
all 2IP(M)1 sets obtained by unions of cells of p(M). 

Just as we dealt with classes of sets in Chapter 12, here we introduce fami­
lies of partitions. Let F be a (possibly infinite) collection of partitions of Rd. 
F(M) = {p(M) : P E F} denotes the family of partitions of SM obtained by re­
stricting members of F to SM. For each M. we will measure the complexity of a 
family of partitions F(M) by the shatter coefficients of the class of sets obtained as 
unions of cells of partitions taken from the family pM). Formally, we define the 
combinatorial quantity fl.n (F(M) as follows: introduce the class A (M) of subsets 
ofRd by 

A(M) = {A E B(p(M) for some p(M) E pM)} , 

and define 
fl.n(pM) = s(A(M) , n), 

the shatter coefficient of A (M) • A (M) is thus the class of all sets that can be obtained 
as unions of cells of some partition of S M in the collection pM). For example, if 
all members of F(M) partition SM into two sets, then fl.n(PM) is just the shatter 
coefficient of all sets in these partitions (with 0 and SM included in the collection 
of sets). 

Let JL be a probability measure on Rd and let Xl, X 2, ... be i.i.d. random vectors 
in Rd with distribution JL. For n = 1, 2, ... let JLn denote the empirical distribution 
of Xl,"" Xn , which places mass lin at each of Xl,"" X n • To establish the 
consistency of data-driven histogram methods, we require information about the 
large deviations of random variables of the form 

sup L \JLn(A) - /LCA)\, 
P(M)E:F(M) AEP(M) 

where F is an appropriate family of partitions. 

REMARK. Just as in Chapter 12, the supremum above is not guaranteed to be 
measurable. In order to insure measurability, it is necessary to impose regularity 
conditions on uncountable collections of partitions. It suffices to mention that in all 
our applications, the measurability can be verified by checking conditions given, 
e.g., in Dudley (1978), or Pollard (1984). 0 

The following theorem is a consequence of the Vapnik -Chervonenkis inequality: 

Theorem 21.1. (LUGOSI AND NOBEL (1996». Let Xl,"" Xn be i.i.d. random 
vectors in Rd with measure JL and empirical measure JLn. Let F be a collection 0/ 
partitions a/Rd. Then/or each M < 00 and E > 0, 

p { sup L IJLn(A) - JL(A)I > E} :::: 8fl.nCPM)e-nE2/512 + e-nE
2
/2. 

P(M)E:PM ) AEP(M) 
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PROOF. For a fixed partition P, define A' as the set 

A'= u A. 

Then 

L IfLn(A) - fL(A)1 
AEP(M) 

= (fLn(A) - fL(A)) 

+ 

= 2 (fLn(A') - fL(A')) + fL(SM) fLn(SM) 

< 2 sup IfLn(A) - fL(A)1 + fL(SM) - fLn(SM)· 
AEB(P(M) 

Recall that the class of sets B(p(M») contains all2 IP(M)1 sets obtained by unions of 
cells of p(M). Therefore, 

< 2 sup sup IfLn(A) - fL(A)1 + fL(SM) - fLn(SM)· 
p(M) E:fW) AEB(P(M)U{SM} 

Observe that the first term on the right-hand side of the inequality is a uniform 
deviation of the empirical measure fLn from fL over a specific class of sets. The 
class contains all sets that can be written as unions of cells of a partition p(M) 
in the class of partitions :F(M). This class of sets is just A (M), defined above. The 
theorem now follows from the Vapnik-Chervonenkis inequality (Theorem 12.5), 
the definition of /:}.n(:F(M»), and Hoeffding's inequality (Theorem 8.1). 0 

We will use a special application of Theorem 21.1, summarized in the following 
corollary: 

COROLLARY 21.1. Let (Xl, Yl ), (X2 , Y2 ) ... be a sequence ofi.i.d. random pairs 
in Rd x {O, I} and let :Fl , :F2 , .•• be a sequence offamilies of partitions of Rd. If 
forM < 00 

lim log (/:}.n(:F~M»)) = 0, 
n-i>OO n 

then 

sup L l~tYJ{XiEA}-E{YI{XEA}}I~O 
P(M)EF,;M) AEP(M) n i=l 

with probability one as n tends to infinity. 
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PROOF. Let v be the measure of (X, Y) on Rd x {O, I}, and let Vn be the empirical 
measure corresponding to the sequence (Xl, Yd, ... , (Xn, Yn). Using F~M) we 
define a family g~M) of partitions ofRd x {O, I} by 

g~M) = {p(M) x {OJ : p(M)E F~M)} U {p(M) x {I} : p(M) E F~M)}, 

def 
where P x {O}= {AI, A2, ... } x {OJ = {AI X {O}, A2 X {O}, ... }. We apply 
Theorem 21.1 for these families of partitions. 

sup L I~ tYJ{Xi EA } -E{YI{XEAdl 
PCM)E:FJ,M) AEPCM) n i=l 

sup L Ivn(A x {I}) - v(A x {I})I 
PCM)E:FJ,M) AEPCM) 

< sup L IVn(A) - v(A)I· 
PCM)Ey,;M) AEPCM) 

It is easy to see that ~n(g~M») = ~n(F~M»). Therefore the stated convergence 
follows from Theorem 21.1 and the Borel-Cantelli lemma.D 

Lemma 21.1. Assume that the family F(M) is such that the number of cells of the 
partitions in the family are uniformly bounded, that is, there is a constant N such 
that IP(M)I :::; N for each p(M) E F(M). Then 

~n(F(M») :::; 2N ~~(F(M»), 

where ~~(F(M») is maximal number of different ways n points can be partitioned 
by members of F(M). 

EXAMPLE. FLEXIBLE GRIDS. As a first simple example, let us take in Fn all partitions 
into d-dimensional grids (called flexible grids as they may be visualized as chicken­
wire fences with unequally spaced vertical and horizontal wires) in which cells are 
made up as Cartesian products of d intervals, and each coordinate axis contributes 
one of mn intervals to these products. Clearly, if P is a member partition of Fn , then 
IPI = m~. Nevertheless, there are uncountably many P's, as there are uncountably 
many intervals of the real line. This is why the finite quantity ~n comes in so 
handy. We will verify later that for each M, 

!>'n(pN») S 2m~ (n +nmn) d, 

so that the condition of Corollary 21.1 is fulfilled when 

md 

lim --...!!:. = O. 0 
n-+oo n 
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FIGURE 21.2. Afiexible grid partition. 

21.3 Consistency 

In this section we establish a general consistency theorem for a large class of 
data-based partitioning rules. Using the training data Dn we produce a partition 
Pn = Jrn(X r , Yr, ... , X n, Yn) according to a prescribed rule Jrn. We then use the 
partition Pn in conjunction with Dn to produce a classification rule based on 
a majority vote within the cells of the (random) partition. That is, the training 
set is used twice and it is this feature of data-dependent histogram methods that 
distinguishes them from regular histogram methods. 

Formally, an n-sample partitioning rule for nd is a function Jrn that associates 
every n-tuple of pairs (Xl, YI), ... , (Xn, Yn) E n d x {a, I} with a measurable 
partition of nd. Associated with every partitioning rule Jrn there is a fixed, non­
random family of partitions 

;::;1 = {Jrn(XI, YI,···, Xn , Yn) : (Xl, YI) ... , (xn, Yn) E nd x {a, I}}. 

;::;1 is the family of partitions produced by the partitioning rule Jrn for all possible 
realizations of the training sequence Dn. When a partitioning rule Jrn is applied 
to the sequence Dn = (Xl, Yr), ••• , (Xn, Yn ), it produces a random partition Pn = 
JrnCDn) E ;::;1' In what follows we suppress the dependence of Pn on Dn for 
notational simplicity. For every X E nd let An(x) be the unique cell of Pn that 
contains the point x. 

Now let {JrI, Jr2, ... } be a fixed sequence of partitioning rules. The classification 
rule gn(') = gnc, Dn) is defined by taking a majority vote among the classes 
appearing in a given cell of Pn , that is, 

We emphasize here that the partition Pn can depend on the vectors Xi and the 
labels Yi • First we establish the strong consistency of the rules {gn} for a wide 
class of partitioning rules. As always, diam(A) denotes the diameter of a set A, 
that is, the maximum Euclidean distance between any two points of A: 

diam(A) = sup /Ix - y/I. 
x,yEA 
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Theorem 21.2. (LUGOSI AND NOBEL (1996». Let {7rl' 7r2, ••• } be afixed sequence 
of partitioning rules, and for each n let Fn be the collection of partitions associated 
with the n-sample partitioning rule 7rn· If 

(i) for each M < 00 

. log (~n (~M)) 
hm =0, 

n--+oo n 

and 
(ii) for all balls SB and all y > 0, 

lim JJ.- ({x: diam(An(x) n SM) > y}) = ° 
n--+oo 

with probability one, 
then the classification rule {gn} corresponding to 7r1l satisfies 

with probability one. In other words, the rule {gil} is strongly consistent. 

REMARK. In some applications we need a weaker condition to replace (ii) in the 
theorem. The following condition will do: for every y > ° and 8 E (0, 1) 

lim inf JJ.-({x : diam(AIl(x) n T) > y}) = ° with probability one. 
n-+OO TCR,d:JL(T)~l-o 

The verification of this is left to the reader (Problem 21.2). 0 

The proof, given below, requires quite some effort. The utility of the theorem is 
not immediately apparent. The length of the proof is indicative of the generality 
of the conditions in the theorem. Given a data-dependent partitioning rule, we 
must verify two things: condition (i) merely relates to the richness of the class 
of partitions of Rd that may possibly occur, such as flexible grids. Condition (ii) 
tells us that the rule should eventually make local decisions. From examples in 
earlier chapters, it should be obvious that (ii) is not necessary. Finite partitions 
of Rd necessarily have component sets with infinite diameter, hence we need a 
condition that states that such sets have small JJ.--measure. Condition (ii) requires 
that a randomly chosen cell have a small diameter. Thus, it may be viewed as 
the "with-probability-one" version of condition (1) of Theorem 6.1. However, the 
weaker version of condition (ii) stated in the above remark is more subtle. By 
considering examples in which JJ.- has bounded support, more than just balls S M 

are needed, as the sets of the partition near the boundary of the support may all 
have infinite diameter as well. Hence we introduced an infimum with respect to 
sets T over all T with JJ.-(T) ::: 1 - O. 

It suffices to mention that (ii) is satisfied for all distributions in some of the 
examples that follow. Theorem 21.2 then allows us to conclude that such rules 
are strongly universally consistent. The theorem has done most of the digestion of 
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such proofs, so we are left with virtually no work at all. Consistency results win 
follow like dominos falling. 

PROOF OF THEOREM 21.2. Observe that the partitioning classifier gn can be rewritten 
in the form 

if L:'~l I{Yi~l)I{X;EAn(x)} < L:'~l I{y;~o}I{xiEA!l(x)} 
fL(An(x» - fL(An(x» 

otherwise. 

Introduce the notation 

,,~ YI 
() 

L....-l=l I {X;EAn(X») 
17n x = . 

nM(An(x)) 

For any E > 0, there is an M E (0, (0) such that P{X tf:. SM} < E. Thus, by an 
application of Theorem 2.3 we see that 

L(gn) - L* 

< P{gn(X) =I Y, X E SMIDn} - P{g*(X) =I Y, X E SM} + E 

< [117(x) - 17n(x)IM(dx) + [ \(1 - 17(X)) - 17~O\x)IM(dx) + E, 
JSM JSM 

where 
17(O)(X) = L7=1(l - YdI{x;EAn(x)} • 

n nM(An(x)) 

By symmetry, since E > ° is arbitrary, it suffices to show that for each M < 00, 

[ 117(X) - 17n(x)IM(dx) -+ ° with probability one. 
JSM 

Fix E > ° and let r : Rd -+ R be a continuous function with bounded support 
such that iSM 117(X) - r(x)IM(dx) < E. Such r exists by Theorem A.8. Now define 
the auxiliary functions 

and 

Note that both ryn and fn are piecewise constant on the cells of the random partition 
Pn . We may decompose the error as follows: 

I 17(X) - 17n(x)1 (21.1) 
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The integral of the first term on the right -hand side is smaller than E by the definition 
of r. For the third term we have 

r IFn(x) - 17n(x)IP,(dx) 1sM 

L IE { Y I{xEA} I Dn} - E { r(X)I{xEA} I Dn} I 
A EP,;M) 

:::: r 11](x) - r(x)Ip,(dx) < E. 1sM 

Consider the fourth term on the right-hand side of (21.1). Clearly, 

It follows from the first condition of the theorem and Corollary 21.1 of Theorem 
21.1 that 

r l17n(x) - 17n(x)IP,(dx) ---?> 0 with probability one. 1sM 

Finally, we consider the second term on the right-hand side of (21.1). Using 
Fubini's theorem we have 



372 21. Data-Dependent Partitioning 

Fix 6 E (0, 1). As r is uniformly continuous, there exists a number y > Osuch 
that if diam(A) < y, then Ir(x) - r(y)1 < 6 for every x, yEA. In addition, there 
is a constant M < 00 such that I r(x) I ~ M for every x E Rd. Fix n now and 
consider the integrals 

_1_ ( [Ir(x) - r(y)IM(dx)M(dy) 
fL(A) JA JA 

appearing in the sum above. We always have the upper bound 

_1_ [ [Ir(x) - r(y)IM(dx)M(dy) ~ 2MfL(A). 
M(A)JAJA 

Assume now that A E p~M) has diam(A) < y. Then we can write 

Summing over the cells A E PI~M) with M(A) > 0, these bounds give 

( Ir(x) - rn(x)IM(dx) 
JSM 

< L 2MM(A) + 

< 2MM({X: diam(An(x)}) 2: y) + 6. 

Letting n tend to infinity gives 

lim sup [ !r(x) - rn(x)IM(dx) ~ 6 with probability one 
n--+oo 1sM 

by the second condition of the theorem. Summarizing, 

lim sup [ 11](x) - 17n(x)IM(dx) ~ 2E + 6 with probability one. 
11--+00 J SM 

Since E and 6 are arbitrary, the theorem is proved. 0 

21.4 Statistically Equivalent Blocks 

In this section we apply Theorem 21.2 both to classifiers based on uniform spacings 
in one dimension, and to their extension to multidimensional problems. We refer 
to these as rules based on statistically equivalent blocks. The order statistics of the 
components of the training data are used to construct a partition into rectangles. All 
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such classifiers are invariant with respect to all strictly monotone transformations of 
the coordinate axes. The simplest such rule is the k-spacing rule studied in Chapter 
20 (see Theorem 20.1). Generalizations are possible in several ways. Theorem 21.2 
allows us to handle partitions depending on the whole data sequence-and not only 
on the Xi'S. The next simple result is sometimes useful. 

Theorem 21.3. Consider a data-dependent partitioning classifier on the real line 
that partitions R into intervals in such a way that each interval contains at least 
an and at most bn points. Assume that X has a nonatomic distribution. Then the 
classifier is strongly consistent whenever an -+ 00 and bnln -+ 0 as n -+ 00. 

PROOF. We check the conditions of Theorem 21.2. Let :01 contain all partitions of 
n into m = r n I an l intervals. Since for each M, all partitions in F~M) have at most 
m cells, we can bound .6.n(F~M)) according to the Lemma 21.1. By the lemma, 
D.n(:F~M)) does not exceed 2m times the number of different ways n points can be 
partitioned into m intervals. A little thought confirms that this number is 

and therefore, 

Let'H denote the binary entropy function, H(x) = -x log(x) - (1 - x) loge 1 - x) 

for x E (0, 1). Note that H is symmetric about 1/2 and that H is increasing for 
0< x :::: 1/2. By the inequality of Theorem 13.4, log G) :::: sH(tls). Therefore, 
it is easy to see that 

< m+(n+m)H(~) 
n+m 

< nlan + 2nH(1lan ) + 1. 

As 'H(x) ---+ 0 when x ---+ 0, the condition an -+ 00 implies that 

which establishes condition (i). 
To establish condition (ii) of Theorem 21.2, we proceed similarly to the proof 

of Theorem 20.1. Fix y, E > O. There exists an interval [-M, M] such that 
JL([ - M, MY) < E, and consequently 

JL({x : diam(An(x)) > y}):::: E + fl,({x: diam(An(x)) > y} n [-M, MD, 

where An(x) denotes the cell of the partition P n containing x. Among the intervals 
of Pn , there can be at most 2 + 2M I y disjoint intervals of length greater than y in 
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[-M, MJ. Thus we may bound the second term on the right-hand side above by 

fL({X : diam(An(x)) > y} n [-M, M]) 

< (2 + 2M) max fL(A) 
y AEPn 

< (2 + 2M) (max fLn(A) + max IfL(A) - fLn(A)I) 
y AEPI1 AEPI1 

< (2 + 2M) (bn + sup IfL(A) - fLn(A)I) , 
y n AEA 

where A is the set of all intervals in R. The first term in the parenthesis converges 
to zero by the second condition of the theorem, while the second term goes to zero 
with probability one by an obvious extension of the classical Glivenko-Cantelli 
theorem (Theorem 12.4). Summarizing, we have shown that for any y, E > 0 

lim sup fL( {x : diam( An (X)) > y}) :::; E with probability one. 
n---+CXJ 

This completes the proof. 0 

The d-dimensional generalizations of k-spacing rules include rules based upon 
statistically equivalent blocks, that is, partitions with sets that contain k points 
each. It is obvious that one can proceed in many ways, see, for example, Anderson 
(1966), Patrick (1966), Patrick and Fisher (1967), Quesenberry and Gessaman 
(1968) and Gessaman and Gessaman (1972). 

As a first example, consider the following algorithm: the k-th smallest x(lt 
coordinate among the training data defines the first cut. The (infinite) rectangle 
with n - k points is cut according to the x(2)-axis, isolating another k points. This 
can be repeated on a rotational basis for all coordinate axes. Unfortunately, the 
classifier obtained this way is not consistent. To see this, observe that if k is much 
smaller than n-a clearly necessary requirement for consistency-then almost all 
cells produced by the cuts are long and thin. We sketched a distribution in Figure 
21.3 for which the error probability of this classifier fails to converge to L *. The 
details are left to the reader (Problem 21.3). This example highlights the importance 
of condition (ii) of Theorem 21.2, that is, that the diameters of the cells should 
shrink in some sense as n ---+ 00. 
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FIGURE 21.3. A nonconsistent k-block algo­

rithm (with k = 2 in the picture). 1J(x) = 1 

in the shaded area and 1J(x) = 0 in the white 

area. 

Rules have been developed in which the rectangular partition depends not only 
upon the Xi'S in the training sequence, but also upon the Yi's (see, e.g., Henrichon 
and Fu (1969), Meisel and Michalopoulos (1973) and Friedman (1977». For ex­
ample, Friedman cuts the axes at the places where the absolute differences between 
the marginal empirical distribution functions are largest, to insure minimal empir­
ical error after the cut. His procedure is based upon Stoller splits (see Chapters 4 
and 20). 

Rules depending on the coordinatewise ranks of data points are interesting be­
cause they are invariant under monotone transformations of the coordinate axes. 
This is particularly important in practice when the components are not physically 
comparable. "Distribution-free" is an adjective often used to point out a property 
that is universally valid. For such methods in statistics, see the survey of Das 
Gupta (1964). Statistically equivalent sets in partitions are called "distribution­
free" because the measure M(A) of a set in the partition does not depend upon the 
distribution of X. We already noted a similar distribution-free behavior for k -d trees 
and median trees (Chapter 20). There is no reason to stay with rectangular-shaped 
sets (Anderson and Benning (1970), Beakley and Tuteur (1972» but doing so 
greatly simplifies the interpretation of a classifier. In this book, to avoid confusion, 
we reserve the term "distribution-free" for consistency results or other theoretical 
properties that hold for all distributions of (X, Y). 

It is possible to define consistent partitions that have statistically equivalent sets. 
To fix the ideas, we take Gessaman's rule (1970) as our prototype rule for further 
study (note: for hypothesis testing, this partition was already noted by Anderson 
(1966». For each n, let m = I(njkn)l/dl Project the vectors Xl, ... , Xn onto 
the first coordinate axis, and then partition the data into m sets using hyperplanes 
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FIGURE 21.4. Gessaman's partition 

with m = 3. 

perpendicular to that axis, in such a way that each set contains an equal number of 
points (except, possibly, the rightmost set, where fewer points may fall if n is not a 
mUltiple of m). We obtain m cylindrical sets. In the same fashion, cut each of these 
cylindrical sets, along the second axis, into m boxes such that each box contains 
the same number of data points. Continuing in the same way along the remaining 
coordinate axes, we obtain md rectangular cells, each of which (with the exception 
ofthose on the boundary) contains about kn points. The classification rule gn uses 
a majority vote among those Yi 's for which Xi lies within a given cell. Consistency 
of this classification rule can be established by an argument similar to that used 
for the kn -spacing rule above. One needs to check that the conditions of Theorem 
21.2 are satisfied. The only minor difference appears in the computation of Lln, 

which in this case is bounded from above by 2md (n:m/. The following theorem 
summarizes the result: 

Theorem 21.4. Assume that the marginal distributions of X in nd are nonatomic. 
Then the partitioning classification rule based on Gessaman's rule is strongly 
consistent if kn -»- (X) and kn / n -»- 0 as n tends to infinity. 

To consider distributions with possibly atomic marginals, the partitioning algo­
rithm must be modified, since every atom has more than kn points falling on it for· 
large n. With a proper modification, a strongly universally consistent rule can be 
obtained. We leave the details to the reader (Problem 21.4). 

REMARK. Consistency of Gessaman's classification scheme can also be derived 
from the results of Gordon and Olshen (1978) under the additional condition 
kn / fo -»- 00. Results of Breiman, Friedman, Olshen, and Stone (1984) can be 
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used to improve this condition to kn / log n -+ 00. Theorem 21.4 guarantees con­
sistency under the weakest possible condition kn -+ 00. 0 

21.5 Partitioning Rules Based on Clustering 

Clustering is one of the most widely used methods in statistical data analysis. 
Typical clustering schemes divide the data into a finite number of disjoint groups 
by minimizing some empirical error measure, such as the average squared distance 
from cluster centers (see Hartigan (1975». In this section we outline the application 
of our results to classification rules based on k-means clustering of unlabeled 
observations. 

As a first step, we divide Xl, ... , Xn into kn disjoint groups having cluster 
centers aI, ... , akn E Rd. The vectors aI, ... , akn are chosen to minimize the 
empirical squared Euclidean distance error, 

over all the nearest-neighbor clustering rules having kn representatives bI , ... , 

bk
n 

E Rd, where II . II denotes the usual Euclidean norm. Note that the choice of 
cluster centers depends only on the vectors Xi, not on their labels. For the behavior 
of en(aI, ... , akJ, see Problem 29.4. 

The vectors aI, ... , ak
ll 

give rise to a Voronoi partition P n = {A 1, ... , Akn } in a 
natural way: for each j E {I, ... , kn }, let 

Ties are broken by assigning points on the boundaries to the vector that has the 
smallest index. 

The classification rule gn is defined in the usual way: gl1 (x) is a majority vote 
among those Yj's such that X j falls in An (x). If the measure fL of X has a bounded 
support, Theorem 21.2 shows that the classification rule {gl1} is strongly consistent 
if kn grows with n at an appropriate rate. Note that this rule is just another of the 
prototype nearest neighbor rules that we discussed in Chapter 19. 
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FIGURE 21.5. Example of partition_ 

ing based on clustering with kn == 3. 

The criterion we minimize is the sum 

of the squares of the distances of the 

X/s to the a/so 

Theorem 21.5. (LUGOSI AND NOBEL (1996)). Assume that there is a bounded set 
A C Rd such that PIX E A} = 1. Let {kn } be a sequence of integers for which 

k~ logn 
kn -+ 00 and --- -+ 0 as n -+ 00. 

n 

Let gn(', Dn) be the histogram classification rule based on the Voronoi partition 
of kn cluster centers minimizing the empirical squared Euclidean distance error. 
Then 

with probability one as n tends to infinity. If d = 1 or 2, then the second condition 
on kn can be relaxed to 

kn logn 
--- -+0. 

n 

PROOF. Again, we check the conditions of Theorem 21.2. Let Fn consist of aU 
Voronoi partitions of kn points in Rd. As each partition consists of kn cells, we 
may use Lemma 21.1 to bound /)..n(:P:zM »). Clearly, boundaries between cells are 
subsets of hyperplanes. Since there are at most knCkn - 1)/2 boundaries between 
the kn Voronoi cells, each cell of a partition in Fn is a polytope with at most 
knCkn - 1)/2 < k~ faces. By Theorem 13.9, n fixed points in R d , d :::: 2, can 
be split by hyperplanes in at most nd+1 different ways. It follows that for each 
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M < 00, f::j.n(F~M) ::::: 2klln(d+l)k~, and consequently 

1 (M) kn (d + l)k~ log n 
-log f::j.n(Fn )::::: - + ~ 0 
n n n 

by the second condition on the sequence {kn }. Thus condition (i) of Theorem 21.2 
is satisfied. 

It remains to establish condition (ii) of Theorem 21.2. This time we need the 
weaker condition mentioned in the remark after the theorem, that is, that for every 
y > 0 and £5 E (0, 1) 

inf p,( {x : diam( An (x) n T) > y}) ~ 0 with probability one. 
T:M(T):::.1-8 

Clearly, we are done if we can prove that there is a sequence of subsets Tn of nd 
(possibly depending on the data Dn) such that fL(Tn) ~ 1 with probability one, 

and 
fL({X: diam(An(x) n Tn) > y}) = O. 

To this end, let a I, ... , akn denote the optimal cluster centers corresponding to Dn , 

and define 
kn 

'Lz = U Saj,y/2 n A j , 

j=l 

where Sx,r is the ball of radius r around the vector x. Clearly, x E 'Lz implies 
that Ilx - a(x) II < y /2, where a(x) denotes the closest cluster center to x among 
al,"" akn • But since 

it follows that 

and 
fL ({x: diam(An(x) n Tn) > y}) = O. 

It remains to show that fL(Tn) ~ 1 with probability one as n ~ 00. Using 
Markov's inequality, we may write 

< 
E {minl::J::kn IIX - ajl121 Dn} 

(y /2)2 

Using a large-deviation inequality for the empirical squared error of nearest­
neighbor clustering schemes, it can be shown (see Problem 29.4) that if X has 
bounded support, then 

E { ~in IIX - ajfl Dn} - min E { ~in IIX - bj 112 } ~ 0 
I::;:J::;:kn b1, ... ,bkn ERd l::;:J::;:kn 
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with probability one if kl1 log n/ n -+ 0 as n -+ 00. Moreover, it is easy to see that 

b"~~~ER' E {I~~~" IIX - bj 112} -> 0 

as kn -+ 00. It follows that fL(Tn) -+ 1, as desired. 
If d = 1, then the cells of the Voronoi partition are intervals on the real line, and 

therefore, ~n (~~M») :::: 2kl1 nkn . Similarly, if d = 2, then the number of hyperplanes 
defining the Voronoi partition increases linearly with kn . To see this, observe that 
if we connect centers of neighboring clusters by edges, then we obtain a planar 
graph. From Euler's theorem (see, e.g., Edelsbrunner (1987, p.242)), the number 
of edges in a planar graph is bounded by 3N - 6, N :::: 3, where N is the number 
of vertices. Thus, in order to satisfy condition (i), it suffices that kn log n / n --+ 0 
in both cases. 0 

REMARK. In the theorem above we assume that the cluster centers a], ... ,ak are 
empirically optimal in the sense that they are chosen to minimize the empirical 
squared Euclidean distance error 

Practically speaking, it is hard to determine minimum. To get around this difficulty, 
several fast algorithms have been proposed that approximate the optimum (see 
Hartigan (1975) for a survey). Perhaps the most popular algorithm is the so-called 
k-means clustering method, also known in the theory of quantization as the Lloyd­
Max algorithm (Lloyd (1982), Max (1960), Linde, Buzo, and Gray (1980)). The 
iterative method works as follows: 

T k k · .. 1 (0) (0) -nd d . 0 STEP 1. a e llutla centers a 1 , ... , ak E 1'-' , an set l = . 
S Cl h d . X X d h (i) (i) TEP 2. uster t e ata pomts 1,' .. , n aroun t e centers a 1 , ... , ak 

into k sets such that the m-th set CI~) contains the X j'S that are closer 
to a~) than to any other center. Ties are broken in favor of smaller 
indices. 

. h (i+l) (i+l) h f h STEP 3. Determme t e new centers a1 ' ... , ak as t e averages 0 t e 
data points within the clusters: 

L" (i)X, 
a(i+l) = J.XjEC,n J 

m ICI~)I 

STEP 4. Increase i by one, and repeat Steps 1 and 2 until there are no changes 
in the cluster centers. 

It is easy to see that each step of the algorithm decreases the empirical squared 
Euclidean distance error. On the other hand, the empirical squared error can take 
finitely many different values during the execution of the algorithm. Therefore 
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the algorithm halts in finite time. By inspecting the proof of Theorem 21.5, it is 
not hard to see that consistency can also be proved for partitions given by the 
suboptimal cluster centers obtained by the k-means method, provided that it is 
initialized appropriately (see Problem 21.6). 0 

21.6 Data-Based Scaling 

We now choose the grid size h in a cubic histogram rule in a data-dependent manner 
and denote its value by Hn. Theorem 21.2 implies the following general result: 

Theorem 21.6. Let gn be the cubic histogram classifier based on a partition into 
cubes of size Hn. If 

(a) 

(b) 

lim Hn = 0 and 
/1--fCXJ 

lim nH~ = 00 with probability one, 
/1--fCXJ 

then the partitioning rule is strongly universally consistent. 

To prove the theorem, we need the following auxiliary result: 

Lemma 21.2. Let Z 1, Z2, ... be a sequence of nonnegative random variables. 
If limn--fCXJ Zn = 0 with probability one, then there exists a sequence an .} 0 of 
positive numbers such that limn--fCXJ I{Zn?:.an} = 0 with probability one. 

PROOF. Define Vn = sUPm?:.n Zm. Then clearly, Vn .} 0 with probability one. We 
can find a subsequence nl, n2, ... of positive integers such that for each k, 

Then the Borel-Cantelli lemma implies that 

k
lim I{Vllk ?:.lj k} = 0 with probability one. 
--f CXJ 

(21.2) 

The fact that Vn 2: Zn and (21.2) imply the statement. 0 

PROOF OF THEOREM 21.6. Let {an} and {bn} be sequences of positive numbers 
with an < bn . Then 
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It follows from Lemma 21.2 that there exist sequences of positive numbers {an} 
and {bn} satisfying an < bn, bn ~ 0, and na~ ~ 00 as n ~ 00 such that 

lim I{HIl~[an,b,zl} = 0 with probability one. 
n-+oo 

Therefore we may assume that for each n, P{Hn E [an, bn]} = 1. Since bn ~ 0, 
condition (ii) of Theorem 21.2 holds trivially, as all diameters of all cells are 
inferior to bn,J(i. It remains to check condition (i). Clearly, for each M < 00 

each partition in :F~M) contains less than co(1/an )d cells, where the constant c~ 
depends on M and d only. On the other hand, it is easy to see that n points can not 
be partitioned more than c1n(1/an)d different ways by cubic-grid partitions with 
cube size h 2: an for some other constant C1. Therefore, for each M < 00, 

.6. (:F(M)) < 2co(l/an)d C1
n 

n - a~ , 

and condition (i) is satisfied. 0 

In many applications, different components of the feature vector X correspond 
to different physical measurements. For example, in a medical application, the 
first coordinate could represent blood pressure, the second cholesterol level, and 
the third the weight of the patient. In such cases there is no reason to use cubic 
histograms, because the resolution of the partition hn along the coordinate axes de­
pends on the apparent scaling of the measurements, which is rather arbitrary. Then 
one can use scale-independent partitions such as methods based on order statistics 
described earlier. Alternatively, one might use rectangular partitions instead of 
cubic ones, and let the data decide the scaling along the different coordinate axes. 
Again, Theorem 21.2 can be used to establish conditions of universal consistency 
of the classification rule corresponding to data-based rectangular partitions: 

Theorem 21.7. Consider a data-dependent histogram rule when the cells of the 
partition are all rectangles of the form 

[k 1Hn1 , (k1 + 1)Hn1) x .. , x [kdHnd, (kd + l)Hnd ), 

where k 1, ... , kd run through the set of integers, and the edge sizes of the rectangles 
Hn1, ... , Hnd are determinedfrom the data Dn.1fas n ~ 00 

Hni ~ 0 for each 1 ::; i ::; d, and nHnl ... Hnd ~ 00 with probability one, 

then the data-dependent rectangular partitioning rule is strongly universally con­
sistent. 

To prove this, just check the conditions of Theorem 21.2 (Problem 21.7). We 
may pick, for example, Hn1 , ... , Hnd to minimize the resubstitution estimate 

n 

L I{gn(X i )::jYi ) 

i==l 

subject of course to certain conditions, so that 'L.1=1 Hni ~ 0 with probability one, 
yet n [11=:1 Hni ~ 00 with probability one. See Problem 21.8. 
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21.7 Classification Trees 

consider a partition of the space obtained by a binary classification tree in which 
each node dichotomizes its set by ahyperplane (see Chapter 20 for more on classifi­
cation trees). The construction of the tree is stopped according to some unspecified 
rule, and classification is by majority vote over the convex polytopes of the parti-

tion. 
The following corollary of Theorem 21.2 generalizes (somewhat) the consis-

tency results in the book by Breiman, Friedman, Olshen, and Stone (1984): 

Theorem 21.8. (LUGOSI AND NOBEL (1996». Let gn be a binary tree classifier 
based upon at most mn - 1 hyperplane splits, where mn = o(n/logn). If, in 
addition, condition (ii) of Theorem 21.2 is satisfied, then gn is strongly consistent. 
In particular, the rule is strongly consistent if condition (ii) o/Theorem 21.2 holds 
and every cell of the partition contains at least kn points, where kn / log n -+ 00. 

PROOF. To check condition (i) of Theorem 21.2, recall Theorem 13.9 which implies 
that n :::: 2 points in a d-dimensional Euclidean space can be dichotomized by 
hyperplanes in at most nd+1 different ways. From this, we see that the number of 
different ways n points of R,d can be partitioned by the rule gil can be bounded by 

as there are not more than mn cells in the partition. Thus, 

By the assumption that mn log n / n -+ ° we have 

11 'L mn mn(d + 1)logn 
- og~n(Jn) ~ - + -+ 0, 
n n n 

so that condition (i) of Theorem 21.2 is satisfied. 
For the second part of the statement, observe that there are no more than n / kn 

cells in any partition, and that the tree-structured nature of the partitions assures 
that gn is based on at most n / kn hyperplane splits. This completes the proof. D 

Problems and Exercises 

PROBLEM 21.1. Let P be a partition of n d. Prove that 

L IILn(A) - IL(A)I = 2 sup IILn(B) - IL(B)I , 
AEP BES(P) 

where the class of sets B(P) contains all sets obtained by unions of cells of P. This is 
Scheffe's (1947) theorem for partitions. See also Problem 12.13. 
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PROBLEM 21.2. Show that condition (ii) of Theorem 21.2 may be replaced by the following: 
for every y > ° and 8 E (0, 1) 

lim inf (t({x : diam(A I1 (x) n T) > y}) = ° with probability one. 
/1-HX) TcRd :/1-(T)?:: 1-0 

PROBLEM 21.3. Let X be uniformly distributed on the unit square [0, 1]2. Let 77(X) = 1 if 
x(l) :s 2/3, and 77(X) = ° otherwise (see Figure 21.3). Consider the algorithm when first 
the x(l)-coordinate is cut at the k-th smallest x(l)-value among the training data. Next the 
rectangle with n - k points is cut according to the x(2l-axis, isolating another k points. This 
is repeated on a rotational basis for the two coordinate axes. Show that the error probability 
of the obtained partitioning classifier does not tend to L * = 0. Can you determine the 
asymptotic error probability? 

PROBLEM 21.4. Modify Gessaman's rule based on statistically equivalent blocks so that the 
rule is strongly universally consistent. 

PROBLEM 21.5. Cut each axis independently into intervals containing exactly k of the (pro­
jected) data points. The i -th axis has intervals A l,i, A2,i, .... Form a histogram rule that 
takes a majority vote over the product sets A il ,1 x ... X Aid,d. 

• 

• 
0 \I \I \I 

\I 

0 
0 

0 

0 

\I 

CII 

\I 

\I 

• 

0 

0 

FIGURE 21.6. A partition based upon the 

method obtained above with k = 6. 

This rule does not guarantee a minimal number of points in every cell. Nevertheless, if 
kd = o(n), k -+ 00, show that this decision rule is consistent, i.e., that E{ La} -+ L * in 
probability. 

PROBLEM 2l.6. Show that each step of the k-means clustering algorithm decreases the 
empirical squared error. Conclude that Theorem 21.5 is also true if the clusters are given 
by the k-means algorithm. HINT: Observe that the only property of the clusters used in the 
proof of Theorem 21.5 is that 

E {1;n~~11 IIX - aJI121 Dn} -+ ° 
with probability one. This can be proven for clusters given by the k-means algorithm if it 
is appropriately initialized. To this end, use the techniques of Problem 29.4. 

PROBLEM 21.7. Prove Theorem 21.7. 

PROBLEM 21.8. Consider the Hni 's in Theorem 21.7, the interval sizes for cubic histograms. 
Let the Hni 's be found by minimizing 

n 

L I{gn(X;ljYil 

i=] 
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subject to the condition that each marginal interval contain at least k data points (that is, at 
least k data points have that one coordinate in the interval). Under which condition on k is 
the rule consistent? 

PROBLEM 21.9. Take a histogram rule with data-dependent sizes Hnl , ..• , Hnd as in Theo­
rem 21.7, defined as follows: 

H - ( XU) . X(i)) / r:: 1 . d (h X - (X(1) X(d)). (1) ni - max j - mm j y n, :s l:S were j - j' ... , j , 
l~J~n l~J~n 

(2) Hni = (Wni - ~li)/nl/(2d), 1 :s i :s d, where ~li and Wni are 25 and 75 percentiles 
of xii), ... , X~i). 

Assume for convenience that X has nonatomic marginals. Show that (1) leads sometimes to 
an inconsistent rule, even if d = 1. Show that (2) always yields a scale-invariant consistent 

rule. 





22 
Splitting the Data 

22.1 The Holdout Estimate 

Universal consistency gives us a partial satisfaction-without knowing the under­
lying distribution, taking more samples is guaranteed to push us close to the Bayes 
rule in the long run. Unfortunately, we will never know just how close we are to the 
Bayes rule unless we are given more information about the unknown distribution 
(see Chapter 7). A more modest goal is to do as well as possible within a given class 
of rules. To fix the ideas, consider all nearest neighbor rules based upon metrics 
of the form 

d 

IIxl12 = Laix(i)2, 
i=l 

where ai :::: 0 for all i and x = (x(l), ... , x(d»). Here the ai's are variable scale fac­
tors. Let <Pn be a particular nearest neighbor rule for a given choice of (al, ... , ad), 
and let gn be a data-based rule chosen from this class. The best we can hope for 
now is something like 

L(gn) ----+ 1 
inf<pn L(<Pn) 

in probability 

for all distributions, where L(gn) = P{gn(X) =I YIDn} is the conditional probabil­
ity of error for gn. This sort of optimality-within-a-class is definitely achievable. 
However, proving such optimality is generally not easy as gn depends on the data. 
In this chapter we present one possible methodology for selecting provably good 
rules from restricted classes. This is achieved by splitting the data into a training 
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sequence and a testing sequence. This idea was explored and analyzed in depth in 
Devroye (1988b) and is now formalized. 

The data sequence Dn is split into a training sequence Dm = (Xl, Yd, ... 
(Xm, Ym) and a testing sequence Tt = (XnHl, Ym+r), ... , (Xm+l, Ym+l), where l ~ 
m = n. The sequence Dm defines a class of classifiers en whose members are 
denoted by ¢m(') = ¢m(', Dm). The testing sequence is used to select a classifier 
from Cm that minimizes the error count 

This error estimate is called the holdout estimate, as the testing sequence is "held 
out" of the design of ¢m. Thus, the selected classifier gn E Cm satisfies 

Lm,l(gn) :::; Lm,l(¢m) 

for all ¢m E Cm . The subscript n in gn may be a little confusing, since gn is in Cm,· 

a class of classifiers depending on the first m pairs Dm only. However, gil depends 
on the entire data Dn , as the rest of the data is used for testing the classifiers in 
Cm . We are interested in the difference between the error probability 

and that of the best classifier in Cm , inf <Pill ECn L (¢m). Note that L (¢m) = P { ¢m (X) =J 
Y I Dm} denotes the error probability conditioned on Dm. The conditional proba­
bility 

is small when most testing sequences Tt pick a rule gn whose error probability is 
within E of the best classifier in Cm . We have already addressed similar questions 
in Chapters 8 and 12. There we have seen (Lemma 8.2), that 

L(gn) - inf L(¢m):::; 2 sup ILm,l(¢m) - L(¢m)I. 
<PmECm <PmECm 

If Cm contains finitely many rules, then the bound of Theorem 8.3 may be useful: 

If we take m = 1 = n12, then Theorem 8.3 shows (see Problem 12.1) that on the 
average we are within -/log(2e ICm I) I n of the best possible error rate, whatever it 
is. 

If Cm is of infinite cardinality, then we can use the Vapnik-Chervonenkis theory 
to get similar inequalities. For example, from Theorem 12.8 we get 
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and consequently, 

P {L(gn) - inf L(¢m) > EI Dm} S 4e8S(Cm, l2)e-lE2j2, 
<PmECm _ 

(22.2) 

where S(Cm, I) is the l-th shatter coefficient corresponding to the class of classifiers 
em (see Theorem 12.6 for the definition). Since Cm depends on the training data 
Dm, the shatter coefficients S(Cm, l) may depend on D m , too. However, usually itis 
possible to find upper bounds on the random variable S(Cm, I) that depend on m and 
I only, but not on the actual values of the random variables Xl, Y1, ..• , X m, Y m' 

Both upper bounds above are distribution-free, and the problem now is purely 
combinatorial: count ICm I (this is usually trivial), or compute S(Cm , l). 

REMARK. With much more effort it is possible to obtain performance bounds of 
the holdout estimate in the form of bounds for 

for some special rules where ¢m and ¢n are carefully defined. For example, Devroye 
and Wagner (1979a) give upper bounds when both ¢m and ¢n are k-nearest neighbor 
classifiers with the same k (but working with different sample size). D 

REMARK. Minimizing the holdout estimate is not the only possibility. Other error 
estimates that do not split the data may be used in classifier selection as well. Such 
estimates are discussed in Chapters 23, 24, and 31. However, these estimates are 
usually tailored to work well for specific discrimination rules. The most general 
and robust method is certainly the data splitting described here. D 

22.2 Consistency and Asymptotic Optimality 

Typically, Cm becomes richer as m grows, and it is natural to ask whether the 
empirically best classifier in Cm is consistent. 

Theorem 22.1. Assume that from each Cm we can pick one ¢m such that the 
sequence of ¢m 's is consistent for a certain class of distributions. Then the auto­
matic rule gn defined above is consistent for the same class of distributions (i.e., 
EL(gn) -+ L * as n -+ (0) if 

. 10g(E{S(Cm , l)}) 
!~~ l = O. 

PROOF. Decompose the difference between the actual error probability and the 
Bayes error as 
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The convergence of the first term on the right-hand side is a direct corollary of 
(22.2). The second term converges to zero by assumption. 0 

Theorem 22.1 shows that a consistent rule is picked if the sequence of Cm'S 
contains a consistent rule, even if we do not know which functions from em lead to 
consistency. If we are just worried about consistency, Theorem 22.1 reassures Us 

that nothing is lost as long as we take l much larger than log(E{S(Cm , l)}). Often 
this reduces to a very weak condition on the size l of the testing set. ' 

Let us now introduce the notion of asymptotic optimality. A sequence of rules 
gn is said to be asymptotically optimal for a given distribution of (X, Y) when 

. E{L(gn)} - L * 
hm = l. 

17-+00 E {inf¢mEcm L(¢m)} - L* 

Our definition is not entirely fair, because gn uses n observations, whereas the 
family of rules in the denominator is restricted to using m observations. If gn is 
not taken from the same em, then it is possible to have a ratio which is smaller than 
one. But if gn E Cm, then the ratio always is at least one. That is why the definition 
makes sense in our setup. 

When our selected rule is asymptotically optimal, we have achieved something 
very strong: we have in effect picked a rule (or better, a sequence of rules) which has 
a probability of error converging at the optimal rate attainable within the sequence 
of em's. And we do not even have to know what the optimal rate of convergence 
is. This is especially important in nonparametric rules, where some researchers 
choose smoothing factors based on theoretical results about the optimal attainable 
rate of convergence for certain classes of distributions. 

We are constantly faced with the problem of choosing between parametric and~ 
nonparametric discriminators. Parametric discriminators are based upon an under­
lying model in which a finite number of unknown parameters is estimated from 
the data. A case in point is the multivariate normal distribution, which leads to 
linear or quadratic discriminators. If the model is wrong, parametric methods can 
perform very poorly; when the model is right, their performance is difficult to 
beat. The method based on splitting the data chooses among the best discriminator 
depending upon which happens to be best for the given data. We can throw in em 
a variety of rules, including nearest neighbor rules, a few linear discriminators, a 
couple of tree classifiers and perhaps a kernel rule. The probability bounds above 
can be used when the complexity of em (measured by its shatter coefficients) does 
not get out of hand. 

The notion of asymptotic optimality can be too strong in many cases. The reason 
for this is that in some rare lucky situations E {inf¢mEcm L(¢m)} - L * may be very 
small. In these cases it is impossible to achieve asymptotic optimality. We can fix 
this problem by introducing the notion of Em -optimality, where Em is a positive 
sequence decreasing to 0 with m. A rule is said to be Em-optimal when 

. E{L(gn)} - L * 
hm = l. 

n-+oo E {inf¢mEcm L(¢m)} - L* 
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for all distributions of (X, Y) for which 

lim E {infrPmEcm L(¢m)} - L * = 00. 

m--7CXJ 

In what follows we apply the idea of data splitting to scaled nearest neighbor 
rules and to rules closely related to the data-dependent partitioning classifiers 
studied in Chapter 21. Many more examples are presented in Chapters 25 and 26. 

22.3 Nearest Neighbor Rules with Automatic Scaling 

Let us work out the simple example introduced above. The (aI, ... ,ad)-NN rule is 
the nearest neighbor rule for the metric 

Ilxll = 

where x = (x(l), ... , xed»). The class em is the class of all (al, ... , ad)-NN rules 
for Dm = ((Xl, YI ), ... ,(Xm, Ym)). The testing sequence Tz is used to choose 
(aI, ... , ad) so as to minimize the holdout error estimate. In order to have 

it suffices that 
. log E {S(em , l)} 
}~~ l =0. 

This puts a lower bound on l. To get this lower bound, one must compute S (em, 1). 
Clearly, seem, l) is bounded by the number of ways of classifying Xm+l, ... , Xm+Z 
using rules picked from em, that is, the total number of different values for 

We now show that regardless of Dm and Xm+l, ... , Xm+z, for n :::: 4 we have 

This sort of result is typical-the bound does not depend upon Dm or Tz. When 
plugged back into the condition of convergence, it yields the simple condition 

logm 
-- -+ o. 

l 

In fact, we may thus take 1 slightly larger than log m. It would plainly be silly.to 
take 1 = n12, as we would thereby in fact throwaway most of the data. 
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Set 
Am = {(¢m(Xm+d, " . ,¢m(Xm+Z», ¢m E Cm}. 

To count the number of values in Am, note that all squared distances can be written 
as 

d 

"Xi - X j /l
2 = LaiPk,i,j, 

k=l 

where Pk,i,j is a nonnegative number only depending upon Xi and X j. Note 
that each squared distance is linear in (ar, ... , aJ). Now consider the space of 
(ar, ... , a;). Observe that, in this space, ¢m(Xm+d is constant within each cell of 
the partition determined by the (;) hyperplanes 

d d 

LaiPkJ,m+l = LaiPk,il,m+l, 1 S i < if Sm. 
k=l k=l 

To see this, note that within each set in the partition, ¢m(Xm+1) keeps the same 
nearest neighbor among Xl, ... , X m' It is known that k > 2 hyperplanes in Rd 
create partitions of cardinality not exceeding k d (see Problem 22.1). Now, overlay 
the I partitions obtained for ¢m(Xm+d, ... , ¢m(XnHz) respectively. This yields at 
most 

sets, as the overlays are determined by I G) hyperplanes. But clearly, on each of 
these sets, (¢m(Xm+1), ... , ¢m(Xm+Z» is constant. Therefore, 

S(Cm , /) ::0 IAml ::0 «;)) d 

22.4 Classification Based on Clustering 

Recall the classification rule based on clustering that was introduced in Chapter 21. 
The data points Xl, ... , Xn are grouped into k clusters, where k is a predetermined 
integer, and a majority vote decides within the k clusters. If k is chosen such 
that k --+ 00 and k 2 log n / n --+ 0, then the rule is consistent. For a given finite 
n, however, these conditions give little guidance. Also, the choice of k could 
dramatically affect the performance of the rule, as there may be a mismatch between 
k and some unknown natural number of clusters. For example, one may construct 
distributions in which the optimal number of clusters does not increase with n. 

Let us split the data and let the testing sequence decide the value of k. In the 
framework of this chapter, em contains the classifiers based on the first m pairs 
Dm of the data with all possible values of k. Clearly, en is a finite family with 
ICml = m. In this case, by Problem 12.1, we have 

2Iog(2m) 

I 
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The consistency result Theorem 21.5 implies that 

for all distributions, ifthe Xi'S have bounded support. Thus, we see that our strategy 
leads to a universally consistent rule whenever (log m)j 1 ~ O. This is a very mild 
condition, since we can take l equal to a small fraction of n, without sacrificing 
consistency. If l is small compared to n, then m is close to n, so inf¢mEcm L(4)m) 
is likely to be close to inf¢II Ec

lI 
L(4)n). Thus, we do not lose much by sacrificing 

a part of the data for testing purposes, but the gain can be tremendous, as we are 
guaranteed to be within -! (log m ) j 1 of the optimum in the class em. 

That we cannot take I = 1 and hope to obtain consistency should be obvious. It 
should also be noted that for I = m, we are roughly within -!log(m)jm of the best 
possible probability of error within the family. Also the empirical selection rule is 
jfog(m) j I-optimal. 

22.5 Statistically Equivalent Blocks 

Recall from Chapter 21 that classifiers based on statistically equivalent blocks 
typically partition the feature space R,d into rectangles such that each rectangle 
contains k points, where k is a certain positive integer, the parameter of the rule. 
This may be done in several different ways. One of many such rules-the rule 
introduced by Gessaman (1970)- is consistent if k ~ 00 and k j n ~ 0 (Theorem 
21.4). Again, we can let the data pick the value of k by minimizing the holdout 
estimate. Just as in the previous section, lem I = m, and every remark mentioned 
there about consistency and asymptotic optimality remains true for this case as 
well. 

We can enlarge the family em by allowing partitions without restrictions on 
cardinalities of cells. This leads very quickly to oversized families of rules, and 
we have to impose reasonable restrictions. Consider cuts into at most k rectangles, 
where k is a number picked beforehand. Recall that for a fixed partition, the class 
assigned to every rectangle is decided upon by a majority vote among the training 
points. On the real line, choosing a partition into at most k sets is equivalent to 
choosing k - 1 cut positions from m + I + 1 = n + 1 spacings between all test and 
training points. Hence, 

(
n + 1) S(em,l):::; k-1 :s(n+1)k-l. 

For consistency, k has to grow as n grows. It is easily seen that 
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if k -+ 00 and m -+ 00. To achieve consistency of the selected rule, however, We 
also need 

log S(Cm , l) (k - l)log(n + 1) 
----< -+0. 

l - 1 

Now consider d-dimensional partitions defined by at most k - 1 consecutive 
orthogonal cuts, that is, the first cut divides Rd into two halfspaces along a hyper~ 
plane perpendicular to one of the coordinate axes. The second cut splits one of the 
halfspaces into two parts along another orthogonal hyperplane, and so forth. This 
procedure yields a partition of the space into k rectangles. We see that for the first 
cut, there are at most 1 + dn possible combinations to choose from. This yields the 
loose upper bound 

This bound is also valid for all grids defined by at most k - 1 cuts. The main 
difference here is that every cut defines two halfspaces of R d , and not two hyper­
rectangles of a cells, so that we usually end up with 2k rectangles in the partition. 

Assume that Cm contains all histograms with partitions into at most k (possibly 
infinite) rectangles. Then, considering that a rectangle in Rd requires choosing 2d. 
spacings between all test and training points, two per coordinate axis, 

See Feinholz (1979) for more work on such partitions. 

22.6 Binary Tree Classifiers 

We can analyze binary tree classifiers from the same viewpoint. Recall that such 
classifiers are represented by binary trees, where each internal node corresponds 
to a split of a cell by a hyperplane, and the terminal nodes represent the cells of 
the partition. 

Assume that there are k cells (and therefore k - 1 splits leading to the partition). 
If every split is perpendicular to one of the axes, then, the situation is the same as 
in the previous section, 

For smaller families of rules whose cuts depend upon the training sequence only" 
the bound is pessimistic. Others have proposed generalizing orthogonal cuts by 
using general hyperplane cuts. Recall that there are at most 
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ways of dichotomizing n points in nd by hyperplanes (see Theorem 13.9). Thus, 
if we allow up to k - 1 internal nodes (or hyperplane cuts), 

S(em , l) ::::; (1 + nd+1 )k-l . 

The number of internal nodes has to be restricted in order to obtain consistency 
from this bound: Refer to Chapter 20 for more details. 

Problems and Exercises 

PROBLEM 22.1. Prove that n hyperplanes partition nd into at most 2..:.1=0 (7) contiguous 
regions when d ::: n (Schlaffii (1950), Cover (1965)). HINT: Proceed by induction. 

PROBLEM 22.2. Assume that gn is selected so as to minimize the holdout error estimate 
Lt,m(¢m) over Cm, the class of rules based upon the first m data points. Assume furthermore 
that we vary lover [10g2 n, nI2], and that we pick the best I (and m = n -I) by minimizing 
the holdout error estimate again. Show that if S(Cm, I) = O(nY) for some y > 0, then the 
obtained rule is strongly universally consistent. 

PROBLEM 22.3. Let Cm be the class of (aI, ... , ad)-NN rules based upon Dm. Show that if 

min --+ 1, then 
inf L(¢m) - inf L(¢n) --+ 0 in probability 

<PmECm <PnECn 

for all distributions of (X, Y) for which X has a density. Conclude that if ljlogn --+ 00, 

m = n -I, 1 = o(n), then 

L(gn) - inf L(¢n) --+ 0 in probability. 
<PnECn 

PROBLEM 22.4. FINDING THE BEST SPLIT. This exercise is concerned with the automatic 
selection of m and I = n - m. If gn is the selected rule minimizing the holdout estimate, 
then 

2log(4S(Cm ,[2))+16 (. *) --'------'--- + mf L(¢m) - L . 
I <PmECm 

(22.3) 

Since in most interesting cases S(Cm, I) is bounded from above as a polynomial ofm and I, 
the estimation error typically decreases as I increases. On the other hand, the approximation 
error inf<pmEcm L(¢m) - L * typically decreases as m increases, as the class Cm gets richer. 
Some kind of balance between the two terms is required to get optimum performance. We 
may use the empirical estimates Lm,l (¢m) again to decide which value of m we wish to choose 
(Problem 22.2). However, as m gets large-and therefore I small-the class Cm will tend to 
overfit the data Tz, providing strongly optimistically biased estimates for inf<pmEcm L(¢m). 
To prevent overfitting, we may apply the method of complexity regularization (Chapter 18). 
By (22.1), we may define the penalty term by 

rem, I) = 
2log (4e8E{S(Cm, [2)l) + logn 

I 
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and minimize the penalized error estimate Lm,l(¢) = Lm,l(¢) + rem, l) over all ¢ E U~l=lCm. 
Denote the selected rule by ¢:. Prove that for every n and all distributions of (X, y), 

. ( 21og(4E{S(CI111 F)})+logn+16 
mm 3 
m,! l 

+ (E { inf L( ¢m) - L * })) + ~ . 
<PmECm y n 

HINT: Proceed similarly to the proof of Theorem 18.2. 



23 
The Resubstitution Estimate 

Estimating the error probability is of primordial importance for classifier selection. 
The method explored in the previous chapter attempts to solve this problem by 
using a testing sequence to obtain a reliable holdout estimate. The independence 
of testing and training sequences leads to a rather straightforward analysis. For 
a good performance, the testing sequence has to be sufficiently large (although 
we often get away with testing sequences as small as about log n). When data are 
expensive, this constitutes a waste. Assume that we do not split the data and use the 
same sequence for testing and training. Often dangerous, this strategy nevertheless 
works if the class of rules from which we select is sufficiently restricted. The error 
estimate in this case is appropriately called the resubstitution estimate and it will 
be denoted by L~R). This chapter explores its virtues and pitfalls. A third error 
estimate, the deleted estimate, is discussed in the next chapter. Estimates based 
upon other paradigms are treated briefly in Chapter 31. 

23.1 The Resubstitution Estimate 

The resubstitution estimate L~R) counts the number of errors committed on the 
training sequence by the classification rule. Expressed formally, 

Sometimes L~R) is called the apparent error rate. It is usually strongly optimisti-
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cally biased. Since the classifier gn is tuned by Dn, it is intuitively clear that gn 
may behave better on Dn than on independent data. 

The best way to demonstrate this biasedness is to consider the I-nearest neigh_ 
bor rule. If X has a density, then the nearest neighbor of Xi among Xl, ... , Xn 
is Xi itself with probability one. Therefore, L~R) == 0, regardless of the value of 
Ln = L(gn). In this case the resubstitution estimate is useless. For k-nearest neigh_ 
bor rules with large k, L~R) is close to Ln. This was demonstrated by Devroye and 
Wagner (1979a), who obtained upper bounds on the performance of the resubsti_ 
tution estimate for the k-nearest neighbor rule without posing any assumption on 
the distribution. 

Also, if the classifier whose error probability is to be estimated is a member of a 
class of classifiers with finite Vapnik-Chervonenkis dimension (see the definitions 
in Chapter 12), then we can get good performance bounds for the resubstitution 
estimate. To see this, consider any generalized linear classification rule, that is, 
any rule that can be put into the following form: 

n(X) = {O if aO.n -: L1~1 ai,n1/!i(X) ~ ° 
g 1 otherwIse, 

where the 1/!i'S are fixed functions, and the coefficients ai,n depend on the data 
Dn in an arbitrary but measurable way. We have the following estimate for the 
performance of the resubstitution estimate L~). 

Theorem 23.1. (DEVROYE AND WAGNER (1976A)). For all nand E > 0, the re­
substitution estimate L~) of the error probability Ln of a generalized linear rule 
satisfies 

PROOF. Define the set An C Rd X {O, I} as the set of all pairs (X, y) E Rd X {O, 1}, 
on which gn errs: 

An = {(x, y) : gn(x) =I y}. 

Observe that 

and 

or denoting the measure of (X, Y) by 1), and the corresponding empirical measure 
by l)n, 

and 
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The set An depends on the data Dn, so that, for example, E{ vn(An)} =t E{ v(An)}. 
Fortunately, the powerful Vapnik-Chervonenkis theory comes to the rescue via the 

inequality 
ILn - L~R)I:::Ssup Ivn(C) v(C)I, 

CEC 

where C is the family of all sets of the form {(x, y) : ¢(x) =t y}, where ¢ : Rd ---+ 
{a, 1} is a generalized linear classifier based on the functions 0/1, ... , 0/ d*. By 
Theorems 12.6, 13.1, and 13.7 we have 

P {sup IVn(C) - v(C)1 ~ E} :s; 8nd * e-nE2j3Z. 0 
CEC 

Similar inequalities can be obtained for other classifiers. For example, for par­
titioning rules with fixed partitions we have the following: 

Theorem 23.2. Let gn be a classifier whose value is constant over cells of a fixed 
partition ofRd into k cells. Then 

P {IL~R) - Lnl ~ E} :s; 8. 2ke-nt2j3Z. 

The proof is left as an exercise (Problem 23.1). From Theorems 23.1 and 23.2 
we get bounds for the expected difference between the resubstitution estimate and 
the actual error probability Ln. For example, Theorem 23.1 implies (via Problem 
12.1) that 

( ~) E {IL~R) - Lnl} = 0 V -;;- . 

In some special cases the expected behavior of the resubstitution estimate can 
be analyzed in more detail. For example, McLachlan (1976) proved that if the 
conditional distributions of X given Y = 0 and Y = 1 are both normal with 
the same covariance matrices, and the rule is linear and based on the estimated 
parameters, then the bias of the estimate is of the order 1/ n: 

McLachlan also showed for this case that for large n the expected value of the re­
substitution estimate is smaller than that of L n , that is, the estimate is optimistically 
biased, as expected. 

23.2 Histogram Rules 

In this section, we explore the properties of the resubstitution estimate for his­
togram rules. Let P = {AI, Az, ... } be a fixed partition of Rd, and let gn be the 
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corresponding histogram classifier (see Chapters 6 and 9). Introduce the notation 

The analysis is simplified if we rewrite the estimate L~R) in the following form 
(see Problem 23.2): 

(23.1) 

It is also interesting to observe that L~R) can be put in the following form: 

L~R) = f (I{1Jl,n(X)::::1Jo.n(X)} 171,11 (X) + I{1Jl,n(X»1JO,n(x)} 170,11 (X») f.1.,(dx), 

where 

.1 "'1: I _ .1 "'~ I _ 11 LJ=l {Yj-O,XjEA(x)} 
170,I1(X) = ----.::.------­

f.1.,(A(x » 
and 

11 Lj=l {Yj-l,XjEA(x)} 
71I,n(X) = -------­

f.1.,(A(x» 

We can compare this form with the following expression of Ln: 

Ln = f (I{1J l,n (X)::::1JO.n (x)} 11(X) + I{1Jl,n(X»1JO,n(X)}(l - 71(X») f.1.,(dx) 

(see Problem 23.3). We begin the analysis of performance of the estimate by 
showing that its mean squared error is not larger than a constant times the number. 
of cells in the partition over n. 

Theorem 23.3. For any distribution of (X, Y) andfor all n, the estimate L~R) of 
the error probability of any histogram rule satisfies 

Also, the estimate is optimistically biased, that is, 

If, in addition, the histogram rule is based on a partition P ofRd into at most k 
cells, then 

PROOF. The first inequality is an immediate consequence of Theorem 9.3 and 
(23.1). Introduce the auxiliary quantity 

R* = Lmin{vo(AJ, VI (Ai)}, 
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where vo(A) = P{Y = 0, X E A}, and VI (A) = P{Y = 1, X E A}. We use the 

decomposition 

(23.2) 

First we bound the second term on the right-hand side of (23.2). Observe that R* 
is just the Bayes error corresponding to the pair of random variables (T(X), Y), 

where the function T transforms X according to T (x) = i if x E Ai. Since the 
histogram classification rule gn(x) can be written as a function of T(x), its error 
probability Ln cannot be smaller than R*. Furthermore, by the first identity of 
Theorem 2.2, we have 

0::::; Ln - R* 

= L I{sign(vl,n(Ai)-vo,n(Ai»¥sign(vl(Ai)-vo(Ai»}lvl(Ai) - VO(Ai)1 

If the partition has at most k cells, then by the Cauchy-Schwarz inequality, 

E {cLn - R*)2} 

< E { (~ IV1 (A;) - vo(A;) _ (vI,n(A,) _ vo,n(A,)) I) 2} 

< k LVar {Vl,n(Ai ) -vo,n(Ai )} 

We bound the first term on the right-hand side of (23.2): 

As we have seen earlier, Var{L~)} ::::; lin, so it suffices to bound IR* - E{L~R)}I. 
By Jensen's inequality, 

< I: min (E{vo,n(A i )}, E{Vl.n(Ai )}) 
i 

= R*. 



402 23. The Resubstitution Estimate 

So we bound R* - E{L~R)} from above. By the inequality 

Imin(a, b) - minCe, d)1 ::: la - el + Ib - dl, 

we have 

R* - E{L~)} < LE {lvo(Ad - vO,n(Ai)1 + IVl(A i ) - vI,n(Adl} 

< L ()Var{vo,n(A i )} + JVar{v1,n(AJ}) 
i 

(by the Cauchy-Schwarz inequality) 

= ~ ( Vo(Ai)(I: VO(Ai)) + VI(A,)(I: VI (A,)) ) 

< ~ ( 2(vo(A,)(I- vo(Ai))n+ vI(A,)(I- VI(A,)))) 

< I:.tIL:A,) 
I 

where we used the elementary inequality fa + -Jb ::: J2(a + b). Therefore, 

(R' _ E{L~R»))2 :" (~tIL:Ai)) 2 

To complete the proof of the third inequality, observe that if there are at most k 
cells, then 

< k ~ '" 2fh(Ai) 
~ (by Jensen's inequality) 

k. n 
l 

Therefore, (R* - E{L;:)})2 ::: 2k/n. Finally, 

E{Ln } - E{L~R)} = (E{Ln } - R*) + (R* - E {L~R)}) :::: O. 0 

We see that if the partition contains a small number of cells, then the resubsti­
tution estimate performs very nicely. However, if the partition has a large number 
of cells, then the resubstitution estimate of Ln can be very misleading, as the next 
result indicates: 
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Theorem 23.4. (DEVROYE AND WAGNER (1976B)). For every n there exists a par­
titioning rule and a distribution such that 

PROOF. Let AI, ... , A2n be 2n cells of the partition such that fl,(AJ = 1/(2n), 
i == 1, ... , 2n. Assume further that 1J(x) = 1 for every x E n d

, that is, Y = 1 
with probability one. Then clearly L~R) = O. On the other hand, if a cell does not 
contain any of the data points Xl, ... , X n, then gn(x) = 0 in that cell. But since 
the number of points is only half of the number of cells, at least half of the cells 
are empty. Therefore Ln :::: 1/2, and IL~R) - Ln I :::: 1/2. This concludes the proof. 
o 

23.3 Data-Based Histograms and Rule Selection 

Theorem 23.3 demonstrates the usefulness of L~R) for histogram rules with a fixed 
partition, provided that the number of cells in the partition is not too large. If we 
want to use L~R) to select a good classifier, the estimate should work uniformly 
well over the class from which we select a rule. In this section we explore such 
data-based histogram rules. 

Let F be a class of partitions of nd. We will assume that each member of F par­
titions nd into at most k cells. For each partition P E F, define the corresponding 
histogram rule by 

if 2::7=1 I{Y;=l,X;EA(x)} :::; 2::7=1 I{y;=o,x;EA(x)} 

otherwise, 

where A(x) is the cell of P that contains x. Denote the error probability of g~P)(x) 
by 

The corresponding error estimate is denoted by 

L?\P) = L min{vo,n(A), vl,n(A)}. 
AEP 

By analogy with Theorems 23.1 and 23.2, we can derive the following result, 
which gives a useful bound for the largest difference between the estimate and 
the error probability within the class of histogram classifiers defined by F. The 
combinatorial coefficient /)'~(F) defined in Chapter 21 appears as a coefficient 
in the upper bound. The computation of /)'~(F) for several different classes of 
partitions is illustrated in Chapter 21. 
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Theorem 23.5. (FEINHOLZ (1979)). Assume that each member of F partitions 
nd into at most k cells. For every nand E > 0, 

p{sup IL~R)(p) - Ln(P)1 > E} ::: 8. 2k~~(F)e-nE2/32. 
PEF 

PROOF. We can proceed as in the proof of Theorem 23.1. The shatter coefficient 
S(C, n) corresponding to the class of histogram classifiers defined by partitions in 
F can clearly be bounded from above by the number of different ways in which 
n points can be partitioned by members of F, times 2k, as there are at most 2k 
different ways to assign labels to cells of a partition of at most k cells. 0 

The theorem has two interesting implications. The error estimate L~R) can also 
be used to estimate the perfOlmance of histogram rules based on data-dependent 
partitions (see Chapter 21). The argument ofthe proof of Theorem 23.3 is not valid 
for these rules. However, Theorem 23.5 provides performance guarantees for these 
rules in the following corollaries: 

COROLLARY 23.1. Let gn(x) be a histogram classifier based on a random partition 
Pn into at most k cells, which is determined by the data Dn. Assume that for any 
possible realization ot the training data Dn, the partition Pn is a member of a class 
of partitions F. If Ln is the error probability of gn, then 

p { I L (R) - L I > E} < 8 . 2k tJ,,* (F)e -nE
2
/32 

n n - n ' 

and 

{( 
(R) _ )2} < 32k + 3210g(~~(F)) + 128 

E Ln Ln _ . 
n 

PROOF. The first inequality follows from Theorem 23.5 by the obvious inequality 

p {IL~R) - Ln I > E} ::: P 1 sup IL~R)(p) - Ln(P)1 > E} . 
PEF 

The second inequality follows from the first one via Problem 12.1. 0 

Perhaps the most important application of Theorem 23.5 is in classifier selection. 
Let Cn be a class of (possibly data-dependent) histogram rules. We may use the error 
estimate L~R) to select a classifier that minimizes the estimated error probability. 
Denote the selected histogram rule by ¢/:' that is, 

L~R)(¢,:) ::: L~R)(¢n) for all ¢n E Cn. 

Here L~R)(¢n) denotes the estimated error probability of the classification rule ¢In. 
The question is how well the selection method works, in other words, how close 
the error probability of the selected classifier L(¢,:) is to the error probability of 
the best rule in the class, infcPnEcn L(¢n). It turns out that if the possible partitions 
are not too complex, then the method works very well: 
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COROLLARY 23.2. Assume that jor any realization oj the data Dn , the possible 
partitions that define the histogram classifiers in en belong to a class ojpartitions 
F, whose members partition nd into at most k cells. Then 

P { L(¢Z) - ¢:~t L(¢n) > E} ::s 8 . 2' /',,~(:F)e-n"/128 

PROOF. By Lemma 8.2, 

L(¢,:) - inf L(¢n) ~ 2 sup IL~R)(¢n) - L(¢n)1 ~ 2 sup IL~R)(p) - L(P)I. 
~~ ~~ P6 

Therefore, the statement follows from Theorem 23.5. 0 

Problems and Exercises 

PROBLEM 23.1. Prove Theorem 23.2. HINT: Proceed as in the proof of Theorem 23.1. 

PROBLEM 23.2. Show that for histogram rules, the resubstitution estimate may be written 
as 

PROBLEM 23.3. Consider the resubstitution estimate L~R) of the error probability Ln of a 
histogram rule based on a fixed sequence of partitions Pn . Show that if the regression 
function estimate 

7Jn(x) = ~ L;=~~~j(:);jEA(X)} 
is consistent, that is, it satisfies E {J 17J(x) - 7Jn(X)lfL(dx)} ~ ° as n ~ 00, then 

lim E {IL;:) - Lnll = 0, 
n-+oo 

andalsoE{L~R)} ~ L*. 

PROBLEM 23.4. Let (X~, Y{), ... , (X~, Y~l) be a sequence that depends in an arbitrary fash­
ion on the data Din and let gn be the nearest neighbor rule with (X~ , Y{), ... , (X~l' Y/;) , 
where m is fixed. Let L~R) denote the resubstitution estimate of Ln = L(gn). Show that for 
all E > ° and all distributions, 

p {ILn - L;:)I :::: E} :::: 8ndm(m-l)e-nE2/32. 

PROBLEM 23.5. Find a rule for (X, Y) E R x {O, I} such that for all nonatomic distributions 
with L * = ° we have E{Ln} ~ 0, yetE {L~R)} :::: E{Ln}. (Thus, L~R) maybe pessimistically 
biased even for a consistent rule.) 

PROBLEM 23.6. For histogram rules on fixed partitions (pattitions that do not change with 
n and are independent of the data), show that E {L~R)} is monotonically nonincreasing. 

PROBLEM 23.7. Assume that X has a density, and investigate the resubstitution estimate of 
the 3-NN rule. What is the limit of E {L~R)} as n ~ oo? 





24 
Deleted Estimates of 
the Error Probability 

The deleted estimate (also called cross-validation, leave-one-out, or U-method) 
attempts to avoid the bias present in the resubstitution estimate. Proposed and 
developed by Lunts and Brailovsky (1967), Lachenbruch (1967), Cover (1969), 
and Stone (1974), the method deletes the first pair (Xl, Yl) from the training data 
and makes a decision gn-l using the remaining n - 1 pairs. It tests for an an error 
on (Xl, Yl), and repeats this procedure for all n pairs of the training data Dn. The 
estimate L~D) is the average the number of errors. 

We formally denote the training set with (Xi, YJ deleted by 

Then we define 

Clearly, the deleted estimate is almost unbiased in the sense that 

Thus, L~D) should be viewed as an estimator of Ln- l , rather than of Ln. In most 
of the interesting cases Ln converges with probability one so that the difference 
between Ln- l and Ln becomes negligible for large n. 

The designer has the lUXury of being able to pick the most convenient gn-l. 

In some cases the choice is very natural, in other cases it is not. For example, 
if gn is the I-nearest neighbor rule, then letting gn-l be the I-nearest neighbor 
rule based on n - 1 data pairs seems to be an obvious choice. We will see later 
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that this indeed yields an extremely good estimator. But what should gn-l be if 
gn is, for example, a k-NN rule? Should it be the k-nearest neighbor classifier, the 
k - I-nearest neighbor classifier, or maybe something else? Well, the choice is 
typically nontrivial and needs careful attention if the designer wants a distribution_ 
free performance guarantee for the resulting estimate. Because of the variety of 
choices for gn-l, we should not speak of the deleted estimate, but rather of a 
deleted estimate. 

In this chapter we analyze the performance of deleted estimates for a few proto­
type classifiers, such as the kernel, nearest neighbor, and histogram rules. In most 
cases studied here, deleted estimates have good distribution-free properties. 

24.1 A General Lower Bound 

We begin by exploring general limitations of error estimates for some important 
nonparametric rules. An error estimate Ln is merely a function (Rd x {O, l}r -+ 
[0, 1], which is applied to the data Dn = ((X I, YI), ... , (Xn, Yn». 

Theorem 24.1. Let gn be one of the following classifiers: 

(a) The kernel rule 

gn(X) = { ~ if"n I K (X-Xi) ~n I K (X-Xi) I L.d=l {Yi=O} -h-:::: L....i=l {Yi=l} -h-

otherwise 

with a nonnegative kernel K of compact support and smoothing factor 
h > 0. 

(b) The histogram rule 

(x) = {O if"L7=1 I{Yi=l}I{xiEA(x)} :s L:7=1 I{yi=o}I{xiEA(x)} 

gil 1 otherwise 

based on a fixed partition P = {AI, A 2 , ... } containing at least n cells. 
(c) The lazy histogram rule 

where Xj is the minimum-index point among Xl, ... , Xnforwhich Xj E 

Ai, whereP = {AI, A 2 , ... } isajixedpartition containing atleastn cells. 

Denote the probability of error for gil by Ln = P{gn(X, Dn) =I Y/Dn}. Then/or 
every n :::: 10, and/or every error estimatorLn, there exists a distribution o/(X, y) 
with L * = ° such that 

The theorem says that for any estimate Ln, there exists a distribution with the 
property thatE {ILn(Dn) - Ln I} :::: 1/ ,J32n. For the rules gn given in the theorem, 
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no error estimate can possibly give better distribution-free performance guarantees. 
Error estimates are necessarily going to perform at least this poorly for some 
distributions. 

PROOF OF THEOREM 24.1. Let Ln be an arbitrary fixed error estimate. The proof 
relies on randomization ideas similar to those of the proofs of Theorems 7.1 and 7.2. 
We construct a family of distributions forCX, Y).Forb E [0, 1)letb = 0.b1b2b3 •.. 

be its binary expansion. In all cases the distribution of X is uniform on n points 
{Xl, ... , xn }. For the histogram and lazy histogram rules choose Xl, ... , Xn such 
that they fall into different cells. For the kernel rule choose Xl, ... , Xn so that they 
are isolated from each other, that is, K CXi~Xj) = ° for all i, j E {1, ... , n}, i =I j. 
To simplify the notation we will refer to these points by their indices, that is, we 
will write X = i instead of X = Xi. For a fixed b define 

Y =bx . 

We may create infinitely many samples Cone for each b E [0, 1» drawn from the 
distribution of CX, Y) as follows. Let X I, ... , Xn be i.i.d. and uniformly distributed 
on {1, ... , n}. All the samples share the same Xl, ... , Xn , but differ in their Y/s. 

For given Xi, define Yi = bXi • Write Zn = CX 1, ... , Xn) and Ni = :L):=l I{xj:=i}' 
Observe that Dn is a function of Zn and b. It is clear that for all classifiers covered 
by our assumptions, for a fixed b, 

where S = {i : 1 :::; i :::; n, Ni = O} is the set of empty bins. We randomize the 
distribution as follows. Let B = 0.BIB2 ... be a uniform [0, 1] random variable 
independent of CX, Y). Then clearly B I , B2 , •.. are independent uniform binary 
random variables. Note that 

sUPE{ILnCDn)-Lnl} > E{ILnCDn)-Lnl} 
b 

Cwhere b is replaced by B) 

E {E { ILnCDn) - Ln II Zn} } . 

In what follows we bound the conditional expectation within the brackets. To make 
the dependence upon B explicit we write LnCZn, B) = LnCDn) and LnCB) = Ln. 
Thus, 

E { ILn(Zn, B) - Ln(B)11 Zn} 

1 -- --2E {ILn(Zn, B) - LnCB)1 + ILnCZn, B*) - LnCB*)11 Zn} = 

(where B; = Bi for i with Ni > ° and B; = 1 - Bi for i with Ni = 0) 

::: ~E {lLnCB) - Ln(B*)11 Zn} 

(since Ln(Zn, B*) = LnCZn, B» 
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(recall the expression for Ln given above) 

= ~E{12B(ISI, 1/2) -111 lSI} 
2n 
(where B(ISI, 1/2) is a binomial (lSI, 1/2) random variable) 

:::: ~ fIST (by Khintchine's inequality, see Lemma A.S). 
2nVT 

In summary, we have 

We have only to bound the right-hand side. We apply Lemma AA to the random 

variable JIST = JJ:.7==11{Ni=Oj. Clearly, EISI = nO - l/n)n, and 

so that 

E {ISI
2

} = E {t l{Ni==oJ + L l{Ni==O,Ni==OJ} 
. i==l i=/j 

( 
2)11 

= EISI + n(n - 1) 1 - -;; 

In (1- ~r + n(n - 1) (1- ~r 

(1- ~r :::: v'n----;::===== 
I + (1-2/n)" 
11 (1-l/n)" 

( 1)11 1 (use 1 -"ii ::::;) 

The proof is now complete. 0 
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24.2 A General Upper Bound for Deleted Estimates 

The following inequality is a general tool for obtaining distribution-free upper 
bounds for the difference between the deleted estimate and the true error probability 

Ln: 

Theorem 24.2. (ROGERS AND WAGNER (1978); DEVROYE AND WAGNER (1976B)). 
Assume that gn is a symmetric classifier, that is, gn(x, Dn) == gn(x, D~), where D~ 
is obtained by permuting the pairs of Dn arbitrarily. Then 

PROOF. First we express the three terms on the right-hand side of 

The first term can be bounded, by using symmetry of gn, by 

E {L~D)2} 

= E { (~ ~ J{g" ,(X,D",)¥y;) r } 
E {-;. t I{gn_l(Xi,Dn,i)¥Yd} 

n i=l 

The second term is written as 

E {L~D) Ln} 

E {Ln~ t I{gn-l(Xi,DIl,i)¥Yd} 
n i=l 
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1 n 

- LE {P{gn(X, Dn) ¥ Y, gn-l(Xi , Dn,J ¥ YiIDn}} 
n i=l 

P{gn(X, Dn) ¥ Y, gn-I(Xl, Dn,l) ¥ Yd. 

For the third term, we introduce the pair (XI, yl), independent of X, Y, and D n, 
having the same distribution as (X, Y). Then 

E{L~} = E{P{gn(X,Dn)¥YIDnf} 

= E {P{gn(X, Dn) ¥ YIDn}P{gn(XI, Dn) ¥ yIIDn}} 

= E {P{gn(X, Dn) ¥ Y, gn(XI, Dn) ¥ yIIDn }} 

where we used independence of (XI, yl). 
We introduce the notation 

D~ = (X3, Y3), ... , (Xn, Yn), 

Ak,i,j {gn(Xk; (Xi, Yi ), (Xj , Yj ), D~) ¥ Yd ' 

Bk,i = {gn-l(Xk;(Xi'Yi),D~)¥Yd, 

and we formally replace (X, Y) and (XI, yl) by (Xa, Ya) and (Xf3 , Y(3) so that we 
may work with the indices a and f3. With this notation, we have shown thus far 
the following: 

E {(L(D) - L )2} < 2. + P{Aa,1,2, Af3,1,2} - P{Aa,1,2, BI,2} n n - n 

Note that 

Also, 

P{Aa,1,2, A,B,1,2} - P{Aa,1,2, B1,2} 

= P{Aa ,1,2, Af3 ,1,2} - P{Aa ,t3,2, B{3,2} 

(by symmetry) 

P{Aa,l,2, A,B,1,2} - P{Aa,,B,2, A,B,1,2} 

+ P{Aa,,B,2, Af3,1,2} - P{Aa,,B,2, B,B,2} 

= I + II. 

P{B1,2, B2,d - P{Aa,1,2, Bl,2} 

= P{Ba ,{3, B{3,a} - P{Aa,,B,2, B{3,2} 

(by symmetry) 
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P{Ba,tl, Btl .a} - P{Aa,tl,2, Btl,a} 

+ P{Aa,tl,2, Btl,a} - P{Aa,tl,2, Btl ,2} 

III+IV. 

Using the fact that for events {C}' IP{Ci , C j } - P{Ci , Ck}1 :::: P{Cj 6Ck}, we 
bound 

I < P{Aa,I,26Aa,tl,2}' 

def 
II < P{Atl,I,26Btl,2} = V, 

III < P{Ba,tl6Aa,tl,2} = V, 

IV < P{Btl ,a6Btl,2}' 

The upper bounds for II and III are identical by symmetry. Also, 

and 
IV :::: P{Btl,a6Atl,a,2} + P{Atl,a,26Btl,2} = 2V, 

for a grand total of 6 V. This concludes the proof. D 

24.3 Nearest Neighbor Rules 

Theorem 24.2 can be used to obtain distribution-free upper bounds for specific 
rules. Here is the most important example. 

Theorem 24.3. (ROGERS AND WAGNER (1978». Let gn be the k-nearest neighbor 
rule with randomized tie-breaking. If L~D) is the deleted estimate with gn-l chosen 
as the k-NN rule (with the same k and with the same randomizing random variables), 
then 

{( 
(D) )2} 6k+l E Ln -Ln :::: --. 

n 

PROOF. Because of the randomized tie-breaking, the k-NN rule is symmetric, and 
Theorem 24.2 is applicable. We only have to show that 

Clearly, gn(X, Dn) =I gn-l (X, Dn- l ) can happen only if Xn is among the k nearest 
neighbors of X. But the probability of this event is just kin, since by symmetry, 
all points are equally likely to be among the k nearest neighbors. D 
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REMARK. If gn is the k-NN rule such that distance ties are broken by compaling 
indices, then gn is not symmetric, and Theorem 24.2 is no longer applicable (unless 
e.g., X has a density). Another non symmetric classifier is the lazy histogram rule: 
o 

REMARK. Applying Theorem 24.3 to the I-NN rule, the Cauchy-Schwarz inequality 
implies E I L~D) - Ln I ::; ,J7/ n for all distributions. 0 

REMARK. Clearly, the inequality of Theorem 24.3 holds for any rule that is some 
function of the k nearest points. For the k-nearest neighbor rule, with a more careful 
analysis, Devroye and Wagner (1979a) improved Theorem 24.3 to 

{( 
(D) )2} 1 24,J1( E L -L <-+--
n n - n nhii 

(see Problem 24.8). 0 

Probability inequalities for IL~D) - Ln I can also be obtained with further work. 
By Chebyshev's inequality we immediately get 

so that the above bounds on the expected squared error can be used. Sharper 
distribution-free inequalities were obtained by Devroye and Wagner (1979a; 1979b) 
for several nonparametric rules. Here we present a result that follows immediately 
from what we have already seen: 

Theorem 24.4. Consider the k-nearest neighbor rule with randomized tie-break­
ing. If L~D) is the deleted estimate with gn-l chosen as the k-NN rule with the same 
tie-breaking, then 

PROOF. The result follows immediately from McDiarmid's inequality by the fol­
lowing argument: from Lemma 11.1, given n points in nd , a particular point can 
be among the k nearest neighbors of at most kYd points. To see this, just set fJv equal 
to the empirical measure of the n points in Lemma 11.1. Therefore, changing the 
value of one pair from the training data can change the value of the estimate by at 
most 2kYd. Now, since EL~D) = ELn-l, Theorem 9.1 yields the result. 0 

Exponential upper bounds for the probability P{IL~D) - Ln I > E} are typically 
much harder to obtain. We mention one result without proof. 
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Theorem 24.5. (DEVROYE AND WAGNER (1979A». For the k-nearest neighbor 

rule, 
P{IL~D) - Lnl > E} :s 2e-nE2

/ 18 + 6e-nE3
/(108k(Yd+2». 

One of the drawbacks of the deleted estimate is that it requires much more 
computation than the resubstitution estimate. If conditional on Y = 0 and Y = 1, 
X is gaussian, and the classification rule is the appropriate parametric rule, then the 
estimate can be computed quickly. See Lachenbruch and Mickey (1968), Fukunaga 
and Kessel (1971), and McLachlan (1992) for further references. 

Another, and probably more serious, disadvantage of the deleted estimate is its 
large variance. This fact can be illustrated by the following example from Devroye 
and Wagner (1979b): let n be even, and let the distribution of (X, Y) be such that 
Y is independent of X with P{Y = O} = P{Y = I} = 1/2. Consider the k-nearest 
neighbor rule with k = n 1. Then obviously, Ln = 1/2. Clearly, if the number 
of zeros and ones among the labels Y1, ••• , Yn are equal, then L~D) = 1. Thus, for 
0< E < 1/2, 

P{IL~{)) - Lnl > E} 2: P {t I{Y;=ll} = ~} = ;n C~2). 
By Stirling's formula (Lemma A.3), we have 

(D) 1 1 
P{ILn - Lnl > E} ~ ~ 1/12. 

V 2nn e 

Therefore, for this simple rule and certain distributions, the probability above can 
not decrease to zero faster than 1/ -JIi. Note that in the example above, EL~D) = 
ELn-1 = 1/2, so the lower bound holds for P{IL~D) EL~D)I > E} as well. Also, 
in this example, we have 

E {(L~D) - EL~»)2} ~ ~p {t l(y;=o} = !2.} 2: ~ 1:12. 
4 i=l 2 4 2nn e 

In Chapter 31 we describe other estimates with much smaller variances. 

24.4 Kernel Rules 

Theorem 24.2 may also be used to obtain tight distribution-free upper bounds for 
the performance of the deleted estimate of the error probability of kernel rules. We 
have the following bound: 

Theorem 24.6. Assume that K ~ 0 is a regular kernel of bounded support, that 
is, it is a function satisfying 

(i) K(x) ~ [3, IIxll:s p, 

(ii) K(x) :s B, 

(iii) K(x) = 0, Ilxll > R, 
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for some positive finite constants f3, p, Band R. Let the kernel rule be defined by 

(x) = {O ifL~1=1 I{Yi=o}K (x - Xi) :: L~1=1 I{Yi=l}K (x - Xi) 
gn 1 otherwise, 

and define gn-1 similarly. Then there exist constants C1 (d) depending upon d only 
and C2(K) depending upon K only such that for all n, 

One may take C2 (K) = 6(1 + Rlp)d /2 min(2, B I f3). 

REMARK. Since C2(K) is a scale-invariant factor, the theorem applies to the rule 
with K(u) replaced by Kh(U) = tK (*) for any smoothing factor. As itis, C2(K) 
is minimal and equal to 12 if we let K be the uniform kernel on the unit ball 
(R = p, B = f3). The assumptions of the theorem require that gn-l is defined with 
the same kernel and smoothing factor as gn' 0 

REMARK. The theorem applies to virtually any kernel of compact support that is of 
interest to the practitioners. Note, however, that the gaussian kernel is not covered 
by the result. The theorem generalizes an earlier result of Devroye and Wagner 
(1979b), in which a more restricted class of kernels was considered. They showed 
that if K is the uniform kernel then 

{ (
CD) )2} 1 24 

E Ln - Ln ::: 2n + Jfi' 

See Problem 24.4. 0 

We need the following auxiliary inequality, which we quote without proof: 

Lemma 24.1. (PETROV (1975), p.44). Let Zl, ... , Zn be real-valuedi.i.d. random 
variables. For E > 0, 

where C is a universal constant. 

COROLLARY 24.1. Let Zl, ... , Zn be real-valued i.i.d. random variables. ForE 2: 
A> 0, 

P Z· < - <--{I n I E} CE 1 
~ I 2 - Jfi A -JP{I Z 11 :: A/2}' 

where C is a universal constant. 
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PROOF OF THEOREM 24.6. We apply Theorem 24.2, by finding an upper bound for 

For the kernel rule with kernel K :::0, in whichh is absorbed, 

P {gn(X, Dn) =I gn-l (X, Dn- l )} 

:S p {I ~(2Yi - l)K(X - Xill :S K(X - Xn), K(X - Xn) > o} . 
Define B' = max(2fJ, B). We have 

p {1~(2Yi - l)K(X - X;) I :S K(X - Xn), K(X - Xn) > o} 

< p {1~(2Yi - I)K(X - Xi)1 :S B', Xn E SX.R} 

(where SX,R is the ball of radius R centered at X) 

{ 
2CB' } 

= E I{xnESx,R} 2fJ.Jn",JP{I(2YI - l)K(X - Xdl ~ fJIX} 

(by Corollary 24.1, since 2fJ :::: B') 

{ 
CB' J 

< E I{xnESx,R} fJJnfL(Sx,p) 

(recall that K(u) ~ fJ for lIull :::: p, 

so that P{I(2YI - I)K(x - XI)I ~ fJ} ~ P{X I ~ Sx,p}) 

CB' f Is fL(dy) - fL(dx) 
fJ.Jn" Sx,R J fL(Sx,p) 

= 

CCd B ' ( R)d/2 -- 1+-
fJ.Jn" p 

where we used Lemma 10.2. The constant Cd depends upon the dimension only. 
o 

24.5 Histogram Rules 

In this section we discuss properties of the deleted estimate of the error probability 
of histogram rules. Let P = {AI, A 2 , ... } be a partition of R d

, and let gn be the 
corresponding histogram classifier (see Chapters 6 and 9). To get a performance 
bound for the deleted estimate, we can simply apply Theorem 24.2. 
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Theorem 24.7. For the histogram rule gn corresponding to any partition p, and 
for all n, 

1 (A )3/2 
E {(L(D) _ L )2} < _ + 6" f-L i + 6" 1/2(A.)e-n/L(A i ) 

n n - L J ( _ 1) Lr I , n i 7T n i 

and in particular, 

{ (
D) )2} 1 + 6/ e 6 E Ln - Ln < -- + . 

- n J7T(n - 1) 

PROOF. The first inequality follows from Theorem 24.2 if we can find an upper 
bound for P{gn(X) =I gn-l (X)}. We introduce the notation 

Clearly, gn-l (X) can differ from gn(X) only if both Xn and X fall in the same cell 
of the partition, and if the number of zeros in the cell is either equal, or less by one 
than the number of ones. Therefore, by independence, we have 

P{gn(X) =I gn-l(X)} 

L P {gn(X) =I gn-l(X)1 X E Ai, Xn E Ad f-L(Ai)2 

" { If-Ln-I(AJJI } 2 < 7 P vO,n-l(A i )= 2 XEAi,XnEAi f-L(AJ. 

The terms in the sum above may be bounded as follows: 

{ I
f-Ln-1(A)JI } P vO,n-1(A)= 2 XEA,XnEA 

{ If-Ln-1(A)J} P VO,n-1 (A) = 2 (by independence) 

< P{f-Ln-1 (A) = O} 

+ E {p { VO,"-I (Al = If.'n-~ (A) J I XI, ", , Xn } J[~"_,(A»O) } 

:0: (l - f.'( A l)" + E { J2rr (n _ l1)f.'n_1 (A 1 I{~" ,(A»O) } 

(by Lemma A.3) 

::: (1 - f-L(A)r + E { I{/Ln_l(A»O} } (by Jensen's inequality) 
27T(n - 1)Mn-1 (A) 

< e-n/L(A) + 
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where in the last step we use Lemma A.2. This concludes the proof of the first 
inequality. The second one follows trivially by noting that xe-x ::::; I/e for all x. 

o 

REMARK. It is easy to see that the inequalities of Theorem 24.7 are tight, up to a 
constant factor, in the sense that for any partition p, there exists a distribution such 

that 

{ (
D) )2} 1 1 

E Ln - Ln ~ ~ 1/12 4 2nn e 

(see Problem 24.5). 0 

REMARK. The second inequality in Theorem 23.3 points out an important difference 
between the behavior of the resubstitution and the deleted estimates for histogram 
rules. As mentioned above, for some distributions the variance of L~) can be of 
the order I/.Jli. This should be contrasted with the much smaller variance of the 
resubstitution estimate. The small variance of L~R) comes often with a larger bias. 
Other types of error estimates with small variance are discussed in Chapter 31. 0 

REMARK. Theorem 24.3 shows that for any partition, 

sup E {(L~D) - Ln)2} = 0 ( ~). 
(X,Y) ~n 

On the other hand, if k = o( .Jli), where k is the number of cells in the partition, 
then for the resubstitution estimate we have a better guaranteed distribution-free 
performance: 

sup E {(L~R) - Ln)2} = 0 ( ~). 
(X,Y) ~n 

At first sight, the resubstitution estimate seems preferable to the deleted estimate. 
However, if the partition has a large number of cells, L~R) may be off the mark; 
see Theorem 23.4. 0 

Problems and Exercises 

PROBLEM 24.1. Show the following variant of Theorem 24.2: For all symmetric classifiers 

E { (L:fl - Ln)2} :S ~ + 2P{gn(X, Dn) =I gn-l (X, Dn- 1)} 

+ P{gn(X, Dn) =I gn(X, D~)} 

+ P{gn-l(X, Dn- 1) =I gn-l(X, D~_J}, 
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where D,: and DZ- I are just Dn and Dn- l with (Xl, Yj ) replaced by an independent copy 
(Xo, Yo). 

PROBLEM 24.2. Let gn be the relabeling NN rule with the k-NN classifier as ancestral rule 

as defined in Chapter 11. Provide an upper bound for the squared error E { (L~D) - Ln)2} 
of the deleted estimate. 

PROBLEM 24.3. Let gil be the rule obtained by choosing the best k :::: ko in the k-NN rule (ko 
is a constant) by minimizing the standard deleted estimate L ~D) with respect to k. How would 
you estimate the probability of error for this rule? Give the best possible distribution-free 
performance guarantees you can find. 

PROBLEM 24.4. Consider the kernel rule with the window kernel K = SO, I. Show that 

1 + 6je 6 E{(L(D)-L )2} < __ + . 
n n - n In(n - 1) 

HINT: Follow the line of the proof of Theorem 24.7. 

PROBLEM 24.5. Show that for any partition P, there exists a distribution such that for the 
deleted estimate of the error probability of the corresponding histogram rule, 

{ (
(D) )2} 1 1 

E Ln - Ln 2: 4J2nn e l / 12 . 

HINT: Proceed as in the proof of the similar inequality for k-nearest neighbor rules. 

PROBLEM 24.6. Consider the k-spacings method (see Chapter 21). We estimate the proba~ 
bility of error (Ln) by a modified deleted estimate Ln as follows: 

where gn,i is a histogram rule based upon the same k-spacings partition used for gn-that 
is, the partition determined by k-spacings of the data points X I, ... , Xn-but in which a 
majority vote is based upon the Yj's in the same cell of the partition with Yi deleted. Show 
that 

E{(Ln -Ln)}:::: 6k+l. 
n 

HINT: Condition on the Xi'S, and verify that the inequality of Theorem 24.2 remains valid. 

PROBLEM 24.7. Consider a rule in which we rank the real-valued observations XI, ... , Xn 
from small to large, to obtain XC!), ... , X(n)' Assume that XI has a density. Derive an 
inequality for the error IL~D) - LIlI for some deleted estimate L~D) (of your choice), when 
the rule is defined by a majority vote over the data-dependent partition 

defined by 1,2,3,4, ... points, respectively. 
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PROBLEM 24.8. Prove that for the k-nearest neighbor rule, 

E {(L~D) - Ln)2} :s .!. + 24-Jk 
n. n-Jiii 

(Devroye and Wagner (1979a)). HINT: Obtain a refined upper bound for 

using techniques not unlike those of the proof of Theorem 24.7. 

PROBLEM 24.9. OPEN-ENDED PROBLEM. Investigate if Theorem 24.6 can be extended to ker­
nels with unbounded support such as the gaussian kernel. 





25 
Automatic Kernel Rules 

We saw in Chapter 10 that for a large class of kernels, if the smoothing parameter h 
converges to zero such that nhd goes to infinity as n -+ 00, then the kernel classifi­
cation rule is universally consistent. For a particular n, asymptotic results provide 
little guidance in the selection of h. On the other hand, selecting the wrong value 
of h may lead to catastrophic error rates-in fact, the crux of every nonparametric 
estimation problem is the choice of an appropriate smoothing factor. It tells us 
how far we generalize each data point Xi in the space. Purely atomic distributions 
require little smoothing (h = 0 will generally be fine), while distributions with 
densities require a lot of smoothing. As there are no simple tests for verifying 
whether the data are drawn from an absolutely continuous distribution-let alone 
a distribution with a Lipschitz density-it is important to let the data Dn deter­
mine h. A data-dependent smoothing factor is merely a mathematical function 
Hn: (Rd x {O, l}f -+ [0, 00). For brevity, we will simply write Hn to denote the 
random variable Hn(Dn). This chapter develops results regarding such functions 
Hn. 

This chapter is not a lUXury but a necessity. Anybody developing software for 
pattern recognition must necessarily let the data do the talking-in fact, good 
universally applicable programs can have only data-dependent parameters. 

Consider the family of kernel decision rules gn and let the smoothing factor h 
play the role of parameter. The best parameter (HoPT ) is the one that minimizes Ln. 
Unfortunately, it is unknown, as is L OPT , the corresponding minimal probability 
of error. The first goal of any data-dependent smoothing factor Hn should be to 
approach the performance of HoPT ' We are careful here to avoid saying that Hn 
should be close to HOPT> as closeness of smoothing factors does not necessarily 
imply closeness of error probabilities and vice versa. Guarantees one might want 
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in this respect are 
E{Ln - L oPT } ~ an 

for some suitable sequence an ~ 0, or better still, 

E{Ln - L *} ~ (1 + .Bn)E{LoPT - L *}, 

for another sequence.Bn ~ O. But before one even attempts to develop such data­
dependent smoothing factors, one's first concern should be with consistency: is it 
true that with the given Hn, Ln ~ L * in probability or with probability one? This 
question is dealt with in the next section. In subsequent sections, we give various 
examples of data-dependent smoothing factors. 

25.1 Consistency 

We start with consistency results that generalize Theorem 10.1. The first result 
assumes that the value of the smoothing parameter is picked from a discrete set. 

Theorem 25.1. Assume that the random variable Hn takes its values from the set 
of real numbers of the form (1+Lk' where k is a nonnegative integer and 8n > O. 
Let K be a regular kernel function. (Recall Definition 10.1.) Define the kernel 
classification rule corresponding to the random smoothing parameter Hn by 

gn(X) = 1 Li=l {Yi=O} ~:::: Li=l {Yi=l} ~ { ° if",n I K (X-Xi) ",n I K (X-Xi) 
1 otherwise. 

If 

and 
Hn ~ ° and nHI~ ~ 00 with probability one as n ~ 00, 

then L(gn) ~ L * with probability one, that is, gn is strongly universally consistent. 

PROOF. The theorem is a straightforward extension of Theorem 10.1. Clearly, 
L(gn) ~ L* with probability one if and only if for every E > 0, I{L(gn)-L*>E} -+ 0 
with probability one. Now, for any .B > 0, 

I{L(gn)-L*>E} ~ I{l/Hn>f3,nH,~>f3,L(gn)-L*>E} + I{l/Hnsf3} + I{nH,~Sf3}' 

We have to show that the random variables on the right-hand side converge to zero 
with probability one. The convergence of the second and third terms follows from 
the conditions on Hn. The convergence of the first term follows from Theorem 
10.1, since it states that for any E > 0, there exist.B > ° and no such that for the 
error probability Ln,k of the kernel rule with smoothing parameter h = (l +t )k , 

P{L - L * > E} < 4e-CnE2 
n,k _ 
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for some constant c depending on the dimension only, provided that n > no, 
h < 1/ fJ and nhd > fJ· Now clearly, 

P {Ln - L* > E,l/Hn > fJ, nH: > fJ} 

< P { sup Ln,k - L * > E} 
k:(l +8n)k > jJ,n/(l +8,z)kd > jJ 

< Cn sup P{Ln,k - L* > E}, 
k:(l +8)k > {J,n/(l +8)kd > {J 

by the union bound, where Cn is the number of possible values of Hn in the given 
range. As 

we note that 

~ log (~) - log fJ 
Cn < 2 + = 0 (logn/8 2) = eo(n) 

- log(l + on) n 

by the condition on the sequence {on}. Combining this with Theorem 10.1, for 
n > no, we get 

P {Ln - L * > E, 1/ Hn > fJ, n H~ > fJ} :::; 4Cn e -cnE
2 

, 

which is summable in n. The Borel-Cantelli lemma implies that 

with probability one, and the theorem is proved. 0 

For weak consistency, it suffices to require convergence of HI1 and nH: in 
probability (Problem 25.1): 

Theorem 25.2. Assume that the random variable Hn takes its values from the set 
of real numbers of the form (l+~n)k' where k is a nonnegative integer and On > O. 
Let K be a regular kernel. If 

and 
HI1 ----+ 0 and nHl~ ----+ 00 in probability as n ----+ 00, 

then the kernel classification rule corresponding to the random smoothing param­
eter Hn is universally consistent, that is, L(gn) ----+ L * in probability. 

We are now prepared to prove a result similar to Theorem 25.1 without restricting 
the possible values of the random smoothing parameter Hn. For technical reasons, 
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we need to assume some additional regularity conditions on the kernel function: K 
must be decreasing along rays starting from the origin,. but it should not decrease 
too rapidly. Rapidly decreasing functions such as the Gaussian kernel, or functions 
of bounded support, such as the window kernel are excluded. 

Theorem 25.3. Let K be a regular kernel that is monotone decreasing along rays, 
that is, for any x E nd and a > 1, K(ax) :::: K(x). Assume in addition that there 
exists a constant c > 0 such that for every sufficiently small 0 > 0, and x E Rd, 
K((l +o)x) 2: (l-co)K(x). Let {Hn} be a sequence of random variables satisfying 

Hn -7 0 and nH: -7 00 with probability one, as n -7 00. 

Then the error probability L(gn) of the kernel classification rule with kernel K and 
smoothing parameter Hn converges to L * with probability one, that is, the rule is 
strongly universally consistent. 

REMARK. The technical condition on K is needed to ensure that small changes in 
h do not cause dramatic changes in L(gn). We expect some smooth behavior of 
L(gn) as a function of h. The conditions are rather restrictive, as the kernels must 
have infinite support and decrease slower than at a polynomial rate. An example 
satisfying the conditions is 

K(x) = { ;/IIXII' 
if IIxll :::; 1 
otherwise, 

where r > 0 (see Problem 25.2). The conditions on Hn are by no means necessary. 
We have already seen that consistency occurs for atomic distributions if K (0) > 0 
and Hn == 0, or for distributions with L * = 1/2 when Hn takes any value. However, 
Theorem 25.3 provides us with a simple collection of sufficient conditions. 0 

PROOF OF THEOREM 25.3. First we discretize Hn. Define a sequence On -+ 0 
satisfying the condition in Theorem 25.1, and introduce the random variables H n 

and Hn as follows: H n = (l+8~,)Kll' where Kn is the smallest integer such that 
1 - -

Hn > (l+Ol1)KI1 ' and let H n = (l + on)H n' Thus, H n < Hn :::; H n. Note that bothH.n 

and H n satisfy the conditions of Theorem 25.1. As usual, the consistency proof is 
based on Theorem 2.3. Here, however, we need a somewhat tricky choice of the 
denominator of the functions that approximate 1J(x). Introduce 

1,,17 I K (X-Xi) 
~ L..,i=l (Yi=l} ~ 

1717,Hll (X) = () 
J K H,~ ~(dz) 

Clearly, the value of the classification rule gn(x) equals one if and only if17n,Hl1(XJ 
is greater than the function defined similarly, with the I{Yi=ll 's replaced with I{Yi=OI> 

Then by Theorem 2.3 it suffices to show that 

f rJ7;t,H,JX) - 1J(x )I~(dx) -7 0 
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with probability one. We use the following decomposition: 

f l17n,Hn (X) - 1](x)IJL(dx) 

::: f l1];l,H" (x) -ifn,8
1l 
(x)lfL(dx) + f l17n,8

n 
(x) - 1](X)lfL(dx). (25.1) 

The second term on the right-hand side converges to zero with probability one, 
which can be seen by repeating the argument of the proof of Theorem 25.1, using 
the observation that in the proof of Theorem 10.1 we proved consistency via an 
exponential probability inequality for 

f l1]n,hll (X) -1](X)lfL(dx). 

The first term may be bounded as the following simple chain of inequalities indi­
cates: 

(from H n = (1 + 8n )H n' and the condition on K, if n is large enough) 

~ L:7=1 K (Xj/i) 
= c8n f () " J1(dx), J K ~z fL(dz) 

H" 

Since H n satisfies the conditions of Theorem 25.1, the integral on the right-hand 
side converges to one with probability one, just as we argued for the second term 
on the right-hand side of (25.1). But 8n converges to zero. Therefore, the first term 
on the right-hand side of (25.1) tends to zero with probability one. 0 

REMARK. A quick inspection of the proof above shows that if {an} and {bn } are 
deterministic sequences with the property that an < bn, bn -+ 0, and na~ -+ 00, 
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then for the kernel estimate with kernel as in Theorem 25.3, we have 

sup Ln(h) ~ L * with probability one 
allshsbll 

for all distributions. One would never use the worst smoothing factor over the 
range [an, bn], but this corollary points out just how powerful Theorem 25.3 is. 0 

25.2 Data Splitting 

Our first example of a data-dependent Hn is based upon the minimization of a 
suitable error estimate. You should have read Chapter 22 on data splitting if you 
want to understand the remainder of this section. 

The data sequence Dn = (Xl, Y1), ••• , (Xn' Yn) is divided into two parts. The 
first part Dm = (Xl, Yl), ... , (X m, YnJ is used for training, while the remaining 
l = n - m pairs constitute the testing sequence: 

Tz = (Xm+l, ~n+d, ... , (Xm+Z, Ym+Z). 

The training sequence Dm is used to design a class of classifiers em, which, in our 
case is the class of kernel rules based on Dm , with all possible values of h > 0, 
for fixed kernel K. Note that the value of the kernel rule gm(x) with smoothing 
parameter h is zero if and only if 

m (x - X.) Jmex) = L(Yi - 1/2)K __ I SO. 
i=l h 

Classifiers in em are denoted by 1m. A classifier is selected from em that minimizes 
the holdout estimate of the error probability: 

____ 1 l 

Lm,l(¢m) = 7 L I{rpm(Xm+I)=!Ym+d' 
i=l 

The particular rule selected in this manner is called gil' The question is how far the 
error probability L(gn) of the obtained rule is from that of the optimal rule in Cm. 

FINITE COLLECTIONS. It is computationally attractive to restrict the possible values 
of h to a finite set of real numbers. For example, em could consist of all kernel rules 
with h E {2-km , 2-km +l , ... , 1/2, 1,2, ... , 2km}, for some positive integer km' The 
advantage of this choice of Cm is that the best h in this class is within a factor of 
two of the best h among all possible real smoothing factors, unless the best h is 
smaller than 2-kl11 - 1 or larger than 2km+l. Clearly, lem I = 2km + 1, and as pointed 
out in Chapter 22, for the selected rule gn Hoeffding's inequality and the union 
bound imply that 

P {L(gn) - inf L(¢m) > Ej Dm} :s (4km + 2)e-ZE2
/
2

. 
rpmECm 
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If km = eo(l), then the upper bound decreases exponentially in I, and, in fact, 

{ } (fiflOg(I») E L(gn) - inf L(CPm) = 0 --. 
¢mECm I 

By Theorem 10.1, em contains a subsequence of consistent rules if m ----+ 00, and 
km ----+ 00 as n ----+ 00. To make sure that gn is strongly universally consistent as 
well, we only need that limn--+oo I = 00, and km = eo(l) (see Theorem 22.1). Under 
these conditions, the rule is -/log(km )/ I-optimal (see Chapter 22). 

The discussion above does little to help us with the selection of m, I, and km . 

Safe, but possibly suboptimal, choices might be I = n /10, m = n -I, km = 210g2 n. 
Note that the argument above is valid for any regular kernel K. 

INFINITE COLLECTIONS. If we do not want to exclude any value of the smoothing 
parameter, and pick h from [0, 00), then em is of infinite cardinality. Here, we 
need something stronger, like the Vapnik -Chervonenkis theory. For example, from 
Chapter 22, we have 

where S(em , I) is the l-th shatter coefficient corresponding to the class of classifiers 
em. We now obtain upper bounds for seem, I) for different choices of K. 

Define the function 

Recall that for the kernel rule based on D m , 

(x) = {o if fm(x, Dm) :::: ° 
gm 1 otherwise. 

We introduce the kernel complexity Km: 

Km sup {Number of sign changes of 

j;n(X, (Xl, YI), ... , (Xm' Ym» as h varies from ° to infinity}. 

Suppose we have a kernel with kernel complexity Km. Then, as h varies from ° to 
infinity, the binary I-vector 

changes at most IKm times. It can thus take at most IKm + 1 different values. There­
fore, 
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We postpone the issue of computing kernel complexities until the next section. 
It suffices to note that if gn is obtained by minimizing the holdout error estimate 
Lm,l(¢m) by varying h, then 

< 

< 

16 log(8eS(Cm, I)) 

2l 

16 log(8e(IKm + 1)) 

21 

(25.2) 

(Corollary 12.1) 

(25.3) 

Various probability bounds may also be derived from the results of Chapter 12. 
For example, we have 

< 4e8
(12Km + l)e-

lE2
/
2

. (25.4) 

Theorem 25.4. Assume that gn minimizes the holdout estimate Lm,l(¢m) over all 
kernel rules withfixed kernel K of kernel complexity Km, and overall (unrestricted) 
smoothing factors h > O. Then gn is strongly universally consistent if 

(0 
(U) 

(iii) 

(iv) 

limn-+oo m = 00; 

lim log Km = 0; 
n-+oo 1 

. I 
hm -- =00; 

n-+oo log n 
K is a regular kernel. 

For weak universal consistency, (iii) may be replaced by (v): limn-+oo I = 00. 

PROOF. Note that Cm contains a strongly universally consistent subsequence­
take h = m-1/(2d) for example, and apply Theorem 10.1, noting that h ---+ 0, yet 
mhd ---+ 00. Thus, 

lim inf L(¢m) = L * with probability one. 
n-+oo ¢mECm 

It suffices to apply Theorem 22.1 and to note that the bound in (25.4) is summable 
in n when lilog n ---+ 00 and log Km = o(l). For weak universal consistency, a 
simple application of (25.2) suffices to note that we only need 1 ---+ 00 instead of 
lilogn ---+ 00.0 

Approximation errors decrease with m. For example, if class densities exist, we 
may combine the inequality of Problem 2.10 with bounds from Devroye and Gyorfi 
(1985) and Holmstrom and KlemeHi (1992) to conclude thatE {inf¢mEcm L(¢m)}­
L * is of the order of m-2a/(4+d), with ex E [1,2], under suitable conditions on K 
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and the densities. By (25.2), the estimation error is 0 ( Jlog(IKm )/ I), requiring 

instead large values for I. Clearly, some sort of balance is called for. Ignoring the 
logarithmic term for now, we see that I should be roughly m4a/(4+d) if we are to 
balance errors of both kinds. Unfortunately, all of this is ad hoc and based upon 
unverifiable distributional conditions. Ideally, one should let the data select I and 
m. See Problem 25.3, and Problem 22.4 on optimal data splitting. 

For some distributions, the estimation error is just too large to obtain asymp­
totic optimality as defined in Chapter 22. For example, the best bound on the 

estimation error is 0 ( Jlog n / n ), attained when Km = I, I = n. If the distribu­

tion of X is atomic with finitely many atoms, then the expected approximation 
error is 0(1/ JIii). Hence the error introduced by the selection process smothers 
the approximation error when m is linear in n. Similar conclusions may even be 
drawn when X has a density: consider the uniform distribution on [0, 1] U [3,4] 
with 1J(x) = 1 if x E [0,1] and 1J(x) = ° if x E [3,4]. For the kernel rule with 
h = 1, K = 1[-1,1], the expected approximation error tends to L * = ° exponentially 
quickly in m, and this is always far better than the estimation error which at best 

is 0 ( Jlog n / n) . 

25.3 Kernel Complexity 

We now tum to the kernel complexity Km. The following lemmas are useful in our 
computations. If l/ log n ---+ 00, we note that for strong consistency it suffices that 
Km = 0 (mY) for some finite y Gust verify the proof again). This, as it turns out, 
is satisfied for nearly all practical kernels. 

Lemma 25.1. Let ° :s b1 < ... < bm be fixed numbers, and let ai E R, 1 :s i :s 
m, befixed, with the restriction that am i 0. Then the function f(x) = L~:1 aixh; 
has at most m - 1 nonzero positive roots. 

PROOF. Note first that f cannot be identically zero on any interval of nonzero 
length. Let Z (g) denote the number of nonzero positive roots of a function g. We 
have 

Z (taixhi) 
1=1 

Z (t aixCi) (where Ci = bi - bI , all i; thus, Cl = 0) 
1=1 
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(for a continuously differentiable g, we have Z(g) :::; 1 + Z(gl)) 

= Z (ta;xb;) + 1 
l=2 

Note that the b; are increasing, b~ = 0, and a; =I 0. As Z (amx bm
) = ° for am -:j 0, 

we derive our claim by simple induction on m. 0 

Lemma 25.2. Let a I, ... , am be fixed real numbers, and let bI , ... , bm be different 
nonnegative reals. Then if ex =I 0, the function 

m 

f(x) = L ai e- biX
", x?: 0, 

i=1 

is either identically zero, or takes the value 0 at most m times. 

PROOF. Define y = e-xCt . If ex =I 0, y ranges from 0 to 1. By Lemma 25.1, g(y) = 
L;:1 ai yb i takes the value 0 at at most m -1 positive y-values, unless it is identically 
zero everywhere. This concludes the proof of the lemma. 0 

A star-shaped kernel is one of the form K(x) = l{xEA} , where A is a star-shaped 
set of unit Lebesgue measure, that is, x f: A implies cx f: A for all c ?: 1. It is 
clear that Km = m - 1 by a simple thresholding argument. On the real line, the 
kernel K(x) = L~-oo aJ{xE[2i,2i+lJ} for ai > 0 oscillates infinitely often, and has 
Km = 00 for all values of m ?: 2. We must therefore disallow such kernels. For the 
same reason, kernels such as K (x) = (sin x/x Y on the real line are not good (see 
Problem 25.4). 

If K = L~=l ai hi for some finite k, some numbers ai and some star-shaped sets 
Ai, then Km :::; k(m - 1). 

Consider next kernels of the form 

where A is star-shaped, and r ?: 0 is a constant (see Sebestyen (1962)). We se~ 
that 

m 1 (x - x.) = L(Yi - -)K __ I 

i=1 2 h 

m 1 
= hr I)Yi - 2)!!x - Xill- r 

1{(x-Xi)/hEA} , 

i=1 
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which changes sign at most as often as f m (x) / hr. From our earlier remarks, it is 
easy to see that Km = m - 1, as Km is the same as for the kernel K = I A. If A is 
replaced by nd

, then the kernel is not integrable, but clearly, Km = O. Assume next 
that we have 

K(x) = { ;/IIXII' 
if Ilx II ::: 1 
otherwise, 

where r > O. For r > d, these kernels are integrable and thus regular. Note that 

(
X) hr 

K h = I{llxIISh} + I{llxll>h} IIxll r ' 

As h increases, f m (x), which is of the form 

" (y. _~) +hf " (y. _~) _1_ 
~ I 2 ~ I 2 Ilx - Xl·llr ' 

i:llx-Xilish i:llx-Xill>h 

transfers an Xi from one sum to the other at most m times. On an interval on which 
no such transfer occurs, fm varies as a + j3h r and has at most one sign change. 
Therefore, Km cannot be more than m + 1 (one for each h-interval) plus m (one for 
each transfer), so that Km ::: 2m + l. For more practice with such computations, we 
refer to the exercises. We now continue with a few important classes of kernels. 

Consider next exponential kernels such as 

for some a > 0, where II . II is any norm on nd. These kernels include the popular 
gaussian kernels. As the decision rule based on Dm is of the form 

a simple application of Lemma 25.2 shows that Km ::: m. The entire class of kernels 
behaves nicely. 

Among compact support kernels, kernels of the form 

K(x) = (t ai IIXll
b
,) I{ljxjjSlI 

for real numbers ai, and hi ::::: 1, are important. A particularly popular kernel in 
d-dimensional density estimation is Deheuvels' (1977) kernel 

If the kernel was K(x) = (I:7=1 ai Ilx Ilhi), without the indicator function, then 

Lemma 25.1 would immediately yield the estimate Km ::: k, uniformly over all 
m. Such kernels would be particularly interesting. With the indicator function 
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multiplied in, we have Km ::::; km, simply because fm(x) at each h is based upon a 
subset of the Xj'S, 1 ::::; j ::::; m, with the subset growing monotonically with h. For 
each subset, the function fm (x) is a polynomial in IIx II with powers bI , ... , bk, and 
changes sign at most k times. Therefore, polynomial kernels of compact suPpOrt 
also have small complexities. Observe that the "k" in the bound Km ::::; km refers 
to the number of terms in the polynomial and not the maximal power. 

A large class of kernels of finite complexity may be obtained by applying the 
rich theory of total positivity. See Karlin (1968) for a thorough treatment. A real­
valued function L of two real variables is said to be totally positive on A x B c 'R} 
if for all n, and all S1 < ... < Sn, Si E A, tl < ... < tn, ti E B, the determinant of 
the matrix with elements L(Si, tj) is nonnegative. A key property of such functions 
is the following result, which we cite without proof: 

Theorem 25.5. (SCHOENBERG (1950». Let L be a totally positive function on 
A x B E R 2, and let a : B --+ R be a bounded function. Define the function 

f3(s) = 1. L(s, t)a(t)a(dt), 

on A, where a is a finite measure on B. Then f3(s) changes sign at most as many 
times as a(s) does. (The number of sign changes of a function f3 is defined as the 
supremum of sign changes of sequences of the form f3(Sl), ... , f3(sn), where n is 
arbitrary, and S1 < ... < sn.) 

COROLLARY 25.1. Assume that the kernel K is such that the function L(s, t) = 
K(st) is totally positive for s > ° and t E Rd. Then the kernel complexity of K 
satisfies Km ::::; m - 1. 

PROOF. We apply Theorem 25.5. We are interested in the number of sign changes 
of the function 

m 

f3(s) = L(2Yi - I)K((Xi - x)s) 
i=l 

on s E (0, (0) (s plays the role of 1/ h). But f3(s) may be written as 

f3(s) = 1. L(s, t)a(t)a(dt), 

where L(s, t) = K(st), the measure a puts mass Ion each t = Xi -x, i = 1, ... ,m, 
and aCt) is defined at these points as 

a (t) = 2 Yi - 1 if t = Xi - x. 

Other values of aCt) are irrelevant for the integral above. Clearly, aCt) can be 
defined such that it changes sign at most m - 1 times. Then Theorem 25.5 implies 
that f3(s) changes sign at most m - 1 times, as desired. 0 

This corollary equips us with a whole army of kernels with small complexity. 
For examples, refer to the monograph of Karlin (1968). 
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25.4 Multiparameter Kernel Rules 

Assume that in the kernel rules considered in em, we perform an optimization with 
respect to more than one parameter. Collect these parameters in e, and write the 
discrimination function as 

fm(x) = t (Yi - ~) Ke(x Xi)' 
i=l 2 

EXAMPLES: 

(i) Product kernels. Take 

d 

Ke(x)=TIK( ~j))' 
j=l h 

where e = (h(l), ... , h(d)) is a vector of smoothing factors-one per dimen­
sion-and K is a fixed one-dimensional kernel. 

(ii) Kernels of variable form. Define 

Ke(x) = e-Uxll"lh", 

where a > 0 is a shape parameter, and h > 0 is the standard smoothing 
parameter. Here e = (a, h) is two-dimensional. 

(iii) Define 
I 1 

Ke(x) = 1 +xT RRTx 1 + IIRxII 2 ' 

where x T is the transpose of x, and R is an orthogonal transformation matrix, 
all of whose free components taken together are collected in e. Kernels of 
this kind may be used to adjust automatically to a certain variance-covariance 
structure in the data. 

We will not spend a lot of time on these cases. Clearly, one route is to properly 
generalize the definition of kernel complexity. In some cases, it is more convenient 
to directly find upper bounds for Seem, l). In the product kernel case, with one­
dimensional kernel 1[-1,1], we claim for example that 

Seem, I) :s (lm)d + 1. 

The corresponding rule takes a majority vote over centered rectangles with sides 
equal to 2h(l), 2h(2), ... , 2h(d). To see why the inequality is true, consider the d­
dimensional quadrant of 1m points obtained by taking the absolute values of the 
vectors Xj - Xi, m < j :s m + I = n, 1 :s i :s m, where the absolute value of 
a vector is a vector whose components are the absolute values of the components 
ofthe vector. To compute Seem, l), it suffices to count how many different subsets 
can be obtained from these lm points by considering all possible rectangles with 
one vertex at the origin, and the diagonally opposite vertex in the quadrant. This is 
1 + (lm)d. The strong universal consistency of the latter family em is insured when 
m -+ 00 and I! log n ~ 00. 
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25.5 Kernels of Infinite Complexity 

In this section we demonstrate that not every kernel function supports smoothing 
factor selection based on data splitting. These kernels have infinite kernel com­
plexity, or even worse, infinite vc dimension. Some of the examples may appear 
rather artificial, but some "nice" kernels will surprise us by misbehaving. 

We begin with a kernel K having the property that the class of sets 

has vc dimension VA:::: 00 for any fixed value of Xl (Le., using the notation of the 
previous sections, Vel :::: (0). Hence, with one sample point, all hope is lost to use 
the Vapnik-Chervonenkis inequality in any meaningful way. Unfortunately, the 
kernel K takes alternately positive and negative values. In the second part of this 
section, a kernel is constructed that is unimodal and symmetric and has Vem :::: 00 

for m :::: 4 when D4 :::: «Xl, Y1), (X2, Y2), (X3, Y3), (X4, Y4» takes certain values. 
Finally, in the last part, we construct a positive kernel with the property that for 
any m and any nondegenerate non atomic distribution, limm~oo P {Vem :::: oo} :::: 1. 

We return to A. Our function is picked as follows: 

K(x):::: a(x)g(i), 2i S x < i+l, i::: 1, 

where g(i) E {-I, I} for all i, a(x) > ° for all x, a(x) ,} ° as x t 00, 

x > 0, and a(x) ,} ° as x ,} -00, x < ° (the monotonicity is not essential 
and may be dropped but the resulting class of kernels will be even less inter­
esting). We enumerate all binary strings in lexicographical order, replace all O's 
by -1 's, and map the bit sequence to g(l), g(2), .... Hence, the bit sequence 
0,1,00,01,10,11,000,001,010, ... becomes 

-1,1, -1, -1, -1,1,1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1,1, -1, .... 

Call this sequence S. For every n, we can find a set {x I, ... , xn } that can be shattered 
by sets from A. Take {Xl, .. , ,xn } :::: Xl + {2I, ... , 2n}. A subset of this may be 
characterized by a string Sn from {-I, 1}n, 1 's denoting membership, and -l's 
denoting absence. We find the first occurrence of Sn in S and let the starting point 
be g(k). Take h :::: 21-k. Observe that 

( K (Xl ~ X I ) , ... , K ( Xn ~ X I ) ) 

:::: (K(2k), ... ,K(2k+n-l)) 

:::: (a(2k)g(k), a(2k+I)g(k + 1), ... , a(2k+n-l)g(k + n - 1)) , 

which agrees in sign with Sn as desired. Hence, the vc dimension is infinite. 
The next kernel is symmetric, unimodal, and piecewise quadratic. The intervals 

into which [0,(0) is divided are denoted by Ao, AI, A2, ... , from left to right~ 
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i :::: 1 
i = O. 

On each Ai, K is of the form ax2 + bx + c. Observe that Kf! = 2a takes the sign 
of a. Also, any finite symmetric difference of order 2 has the sign of a, as 

K (x + 8) + K (x - 8) - 2K (x) = 2a82
, x - 8, x, x + 8 E Ai. 

We take four points and construct the class 

A. = { {x : t K ( x ~ X, ) (2Y, - 1) > o} : h > o} , 
where Xl = -8, X2 = 8, X3 = X4 = 0, YI = Y2 = 0, Y3 = Y4 = 1 are fixed for 
now. On Ai, we let the "a" coefficient have the same sign as g(i), known from the 
previous example. All three quadratic coefficients are picked so that K :::: 0 and 
K is unimodal. For each n, we show that the set {21, ... , 2n} can be shattered by 
intersecting with sets from ~. A subset is again identified by a {-I, l}n-valued 
string Sn, and its first match in Sis g(k), ... , g(k + n - 1). We take h = 21-k. Note 
that for 1 .::: i .::: n, 

sign ( K (2' ~ 8) + K (2' : 8) _ 2K (~) ) 
sign (K (2k+i - 1 

- 82k
- 1) + K (2k+i - 1 + 82k- l ) 2K (2k+i - 1)) 

sign (Kf! (2k+i-l)) 

(if 8 .::: 1/4, by the finite-difference property of quadratics) 

g(k+i -1), 

as desired. Hence, any subset of {21 , ... , 2n} can be picked out. 
The previous example works whenever 8 .::: 1/4. It takes just a little thought 

to see that if (X 1, Yr), ... , (X4, Y4) are i.i.d. and drawn from the distribution of 
(X, Y), then 

P IVAi = oo} :::: P{XI = -x2 , X3 = X4 = 0, Yl = Yz = 0, Y3 = Y4 = I}, 

and this is positive if given Y = 0, X has atoms at 8 and -8 for some 8 > 0; and 
given Y = 1, X has an atom at O. However, with some work, we may even remove 
these restrictions (see Problem 25.12). 

We also draw the reader's attention to an 8-point example in which K is sym­
metric, unimodal, and convex on [0, (0), yet Ves = 00. (See Problem 25.11.) 

Next we turn to our general m-point example. Let the class of rules be given by 

g (x) - .L....l-l I h 
{

I if "~1~ (2Y. - l)K (X-Xi) > 0 
m,h - 0 otherwise, 
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h > 0, where the data (Xl, YI), ... , (Xm, Ym) are fixed for now. We exhibit a 
nonnegative kernel such that if the Xi'S are different and not all the Yi's are the 
same, VCm = 00. This situation occurs with probability tending to one whenever 
X is nonatomic and P{Y = I} E (0, 1). It is stressed here that the same kernel K 
is used regardless of the data. 

The kernel is of the form K(x) = Ko(x)IA(x), where Ko(x) = e-x2
, and A C R 

will be specially picked. Order X I, ... , Xm into X(1) < '" < X Cm) and find 
the first pair X(i), XU+I) with opposite values for Y(i). Without loss of generality, 
assume that XCi) = -1, XU+1) = 1, 2Y(i) - 1 = -1, and 2YU+I) - 1 = 1 (YCi) is the 
Y-value that corresponds to XCi)' Let the smallest value of IX(j)1, j =I i, j =I i + 1 
be denoted by 8 > 1. The contribution of all such X(j)'s for x E [-8/3,8/3] is 
not more than (m - 2)Ko((l + 28/3)/ h) ~ mKo((l + 28/3)/ h). The contribution 
of either XCi) or X(i+l) is at least Ko((1 +8/3)/ h). For fixed 8 and m (after all, they 
are given), we first find h* such that h ~ h* implies 

(
1 + 8/3) ( 1 + 28/3) Ko --- >mKo . 

h h 

For h ~ h*, the rule, for x E [-8/3,8/3], is equivalent to a 2-point rule based on 

{
if - K eZI) + K e-;;I) > 0 

gm,h (x) = 0 otherwise. 

We define the set A by 
00 2k-1 

A=U U 32k
+

1
A k,l, 

k==l 1==0 

where the sets Ak,l are specified later. (For c =I 0 and B C R, c B = {x E R : 
x / C E B}.) Here k represents the length of a bit string, and I cycles through all 2k 
bit strings of length k. For a particular such bit string, bI, ... , bk, represented by 
l, we define Ak,l as follows. First of all, Ak,l ~ [1/2, 3/2], so that all sets 32k

+1 Ak,l 

are nonoverlapping. Ak,l consists of the sets 

(~ [ 1 - (i + l1)2k' 1 - (i + ~)2k ) ) 

U (~1 (1 + (i + ~)2k' 1 + (i + 11)2k J) 
Ak,l is completed by symmetry. 

We now exhibit for each integer k a set of that size that can be shattered. These 
sets will be positioned in [-8/3,0] at coordinate values -1/(2· 2P), -1/(3· 
2P), ••• , -1/((k + 1) . 2P), where p is a suitable large integer such that 1/(2p+l ) < 
8/3. Assume that we wish to extract the set indexed by the bit vector (b l , ... , bk) 
(b i = 1 means that -1/(i + 1)2P must be extracted). To do so, we are only allowed 
to vary h. First, we find a pair (k', I), where k' is at least k and 1/(2k'+I) < 8/3. 
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3 _2k' S h * is needed too. Also, 1 is such that it matches bI , ... , h in its first k S k' 
bits. Take h = 3-2k' -l and p = k' and observe that 

gn,h ( (i + 11 )2k' ) 

{ c-' -') C-' +1) 1 if K (i+l)~kl > K (i+l)~kl 
32k +1 32k +1 

0 otherwise 

{ 
1 if 1 + (i+i)2k' E Ak,l, 1 - (i+i)2k' ¢ Ak,l 

0 if 1 + (i+ i)2k' 1. Ak,l, 1 - (i+i)2k' E Ak,l 

unimportant otherwise 

{ 1 if bi = 1 
= 0 if bi = 0, 

1 .:::; i S k. Thus, we pick the desired set. This construction may be repeated for 
all values of 1 of course. We have shown the following: 

Theorem 25.6. If X is nonatomic, P{Y = I} E (0, 1), and if VCm denotes the 
vc dimension of the class of kernel rules based on m i.i.d. data drawn from the 
distribution of (X , Y), and with the kernel specified above, then 

lim P{Vcm = oo} = 1. 
m-+oo 

25.6 On Minimizing the Apparent Error Rate 

In this section, we look more closely at kernel rules that are picked by minimizing 
the resubstitution estimate L~R) over kernel rules with smoothing factor h > O. We 
make two remarks in this respect: 

(i) The procedure is generally inconsistent if X is nonatomic. 
(ii) The method is consistent if X is purely atomic. 

To see (i), take K = l{so,d' We note that L~R) = 0 if h < miniij IIXi - Xj II as 
gn(Xi ) = Yi for such h. In fact, if Hn is the minimizing h, it may take any value on 

If X is independent of Y, P{Y = I} = 2/3, and X has a density, then, 

lim lim inf P {. '. ~in _ II Xi - X j II d.:::; c2 } = 1 
c--+oo n--+oo l,j.Y;-l,Yj-O n 

(Problem 25.13). Thus, nHd -+ 0 in probability, and therefore, in this case, 
E{L(g,J} -+ 2/3 (since ties are broken by favoring the "0" class). Hence the 
Inconsistency. 
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Consider next X purely atomic. Fix (X 1, Yd, ... , (Xn, Yn), the data; and con­
sider the class en of kernel rules in which h > 0 is a free parameter. If a typical 
rule is gn,h, let An be the class of sets {x : gn,h(X) = I}, h > O. If gn is the rule 
that minimizes L~R)(gn,h)' we have 

< 2 sup 'L~R\gn,h) - L(gn,h)1 (Theorem 8.4) 
g",IzEC" 

< 2 sup !!tn(A) - !t(A)! + 2 sup !!tn(A) - !t(A)! 
AEAn AEA~ 

(A~ denotes the collection of sets {x : gn,h(X) = OD 
< 4 sup !!tn(B) - !t(B)!, 

BEB 

where B is the collection of all Borel sets. However, the latter quantity tends to 
zero with probability one-as denoting the set of the atoms of X by T, we have 

sup !fln(B) - /J,(B)! 
BEB 

1 
2 L l!tn({x D - !t({X D! 

xET 

1 
< 2 L !fln({xD - fl({xDI + !tn(A

C
) + fl(AC) 

XEA 

(where A is an arbitrary finite subset of T) 

1 
< 2!t(AC) + 2 L !!tn({xD - !t({xDI + !!tn(AC) - !t(AC)I. 

XEA 

The first term is small by choice of A and the last two terms are small by applying 
Hoeffding's inequality to each of the !AI + 1 terms. For yet a different proof, the 
reader is referred to Problems 25.16 and 25.17. 

Note next that 

But if K(O) > 0 and K(x) -+ 0 as IIxll -+ 00 along any ray, then we have 
infgn,hEcn L(gn,h) ::: L(g;l)' where g;z is the fundamental rule discussed in Chapter 
27 (in which h = 0). Theorem 27.1 shows that L(g:1) -+ L * with probability one, 
and therefore, L(gn) --+ 0 with probability one, proving 

Theorem 25.7. Take any kernel K with K(O) > 0 and K(x) -+ 0 as I!xll --+ 00 

along any ray, and let gn be selected by minimizing L~R) over all h :::: O. Then 
L(gn) --+ L * almost surely whenever the distribution of X is purely atomic. 
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REMARK. The above theorem is all the more surprising since we may take just about 
any kernel, such as K(x) = e- lIx1e , K(x) = sin(IIx 1I)/IIx II, or K(x) = (1 + IIxll)-1/3. 
Also, if X puts its mass on a dense subset of n d

, the data will look and feel like 
data from an absolutely continuous distribution (well, very roughly speaking); yet 
there is a dramatic difference with rules that minimize L~R) when the X/s are 
indeed drawn from a distribution with a density! 0 

25.7 Minimizing the Deleted Estimate 

We have seen in Chapter 24 that the deleted estimate of the error probability of a 
kernel rule is generally very reliable. This suggests using the estimate as a basis 
of selecting a smoothing factor for the kernel rule. Let L~D)(gn,h) be the deleted 
estimate of L(gn,h), obtained by using in gn-l,h the same kernel K and smoothing 
factor h. Define the set of h' s for which 

L (D)( ) - . f L(D)( ) n gn,h - In 11 gn,h' 
h'E[O,OO) 

by A. Set 
Hn = inf {h : h E A}. 

Two fundamental questions regarding Hn must be asked: 

(a) If we use Hn in the kernel estimate, is the rule universally consistent? Note 
in this respect that Theorem 25.3 cannot be used because it is not true that 
Hn ~ 0 in probability in all cases. 

(b) If Hn is used as smoothing factor, how does E{L(gn)} - L * compare to 
E {infh L(gn,lJ} - L *? 

To our knowledge, both questions have been unanswered so far. We believe that 
this way of selecting h is very effective. Below, generalizing a result by Tutz 
(1986) (Theorem 27.6), we show that the kernel rule obtained by minimizing the 
deleted estimate is consistent when the distribution of X is atomic with finitely 
many atoms. 

REMARK. If 1] == I everywhere, so that Yi == I for all i, and if K has support equal 
to the unit ball in n d , and K > 0 on this ball, then L~D)(gn,h) is minimal and zero 
if 

where X f N denotes the nearest neighbor of X j among the data points Xl, ... , 
Xj-l, Xj+l' ... , X n . But this shows that 

Hn = m~x IIXj - XfNII. 
l-:s;-:sn 
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We leave it as an exercise to show that for any nonatomic distribution of X, n Hl~ ~ 
00 with probability one. However, it is also true that for some distributions, Hn ~ 
00 with probability one (Problem 25.19). Nevertheless, for 1] == 1, the rule is 
consistent! 

If 1] == 0 everywhere, then Yi = 0 for all i. Under the same condition on K as 
above, with tie breaking in favor of class "0" (as in the entire book), it is clear that 
Hn == O. Interestingly, here too the rule is consistent despite the strange value of 
Hn. O 

We state the following theorem for window kernels, though it can be extended 
to include kernels taking finitely many different values (see Problem 25.18): 

Theorem 25.8. Let gn be the kernel rule with kernel K = IAfor some bounded set 
A C nd containing the origin, and with smoothing factor chosen by minimizing 
the deleted estimate as described above. Then E{ L(gn)} -+ L * whenever X has a 
discrete distribution with finitely many atoms. 

PROOF. Let UI, ... , Un be independent, uniform [0, 1] random variables, indepen­
dent of the data D n , and consider the augmented sample 

where X; = (Xi, Vi). For each h ~ 0, introduce the rule 

g~,h(X!) 

= { if L~I=l K (X~;i) (2Yi - 1) - L~I=l K(0)(2Yi - l)I{u=ui} > 0 
o otherwise, 

where Xl = (x, u) E nd x [0,1]. Observe that minimizing the resubstitution 
estimate L~R)(g~,h) over these rules yields the same h as minimizing L~D)(gn,h) 
over the original kernel rules. Furthermore, E{ L(gn)} = E{ L(g~)} if g~ is obtained 
by minimizing L~R)(g;l,h)' It follows from the universal consistency of kernel rules 
(Theorem 1 0.1) that 

lim inf L(g~ h) -+ L * with probability one. 
n--+oo h ' 

Thus, it suffices to investigate L(g~) - infh L(g~,h)' For a given D~, define the 
subsets A;l C nd x [0, 1] by 

A~ = {Xl : g~,h(XI) = I}, h E [0, (0). 

Arguing as in the previous section, we see that 
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where v is the measure of X' on nd x [0, 1], and Vn is the empirical measure 
determined by D~. Observe that each A~ can be written as 

where 

Ah = {x E Rd : t K e ~ Xi ) (2Yi - 1) > o} , 
and 

B;1 {(X, u) End x {UI , ... , Un}: 

t K e ~ Xi) (2Yi - 1) - K(O) t(2Yi - l)I{u~U;} > 0). 

Clearly, as 

it suffices to prove that sUPh Ivn(B!1) - M(Ah)1 --+ ° in probability, as n --+ 00. 

Then 

sup IVn(B~) - {l(Ah)1 
h 

< sup IVn(B~) - v(B~)1 + sup IvCB~) - M(Ah)1 
h h 

< sup IVnCB') - vCB')1 + sup Iv(B~) - M(Ah)l. 
B'cRdx{U1, ... ,Un } h 

The first term on the right-hand side tends to zero in probability, which may be 
seen by Problem 25.17 and the independence of the Ui ' s of Dn. To bound the 
second term, observe that for each h, 

Iv(B;) - fL(Ah)1 < fL ({x: It, K e ~ Xi) (2Y, - o!-<: K(O)}) 

N 

= t; P{X = Xj} I{!I:~=1 K( Xj~Xi )C2Yi-l)!:::K(O)} ' 

where x I, ... , X N are the atoms of X. Thus, the proof is finished if we show that 
for each Xj, 
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Now, we exploit the special form K = fA of the kernel. Observe that 

= 

< 

where 

su.p f{I",n I (Xj-Xi )C2Y-l)I<I} h L..l~l A Ii I -

N 

L f{IVI+,,+Vk I:SI}, 
k=l 

Vk = L (2Yi - 1) 
i:Xi=X(k) 

and X(l), X(2), ... ,XCN) is an ordering of the atoms of X such that x(1) = x j and 
(Xj - X(k))/ h E A implies (Xj - X(k-l))/ h E A for 1 < k ~ N. By properties of 
the binomial distribution, as n ~ 00, 

This completes the proof. 0 

HISTORICAL REMARK. In an early paper by Habbema, Hermans, and van den Broek 
(1974), the deleted estimate is used to select an appropriate subspace for the kernel 
rule. The kernel rules in tum have smoothing factors that are selected by maximum 
likelihood. 0 

25.8 Sieve Methods 

Sieve methods pick a best estimate or rule from a limited class of rules. For example, 
our sieve Ck might consist of rules of the form 

where the ai 's are real numbers, the Xi 's are points from n d , and the hi'S are positive 
numbers. There are formally (d + 2)k free scalar parameters. If we pick a rule ¢~ 
that minimizes the empirical error on (Xl, YI ), ... ,(Xn , Yn ), we are governed by 
the theorems of Chapters 12 and 18, and we will need to find the vc dimension 
of Ck . For this, conditions on K will be needed. We will return to this question in 
Chapter 30 on neural networks, as they are closely related to the sieves described 
here. 
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25.9 Squared Error Minimization 

Many researchers have considered the problem of selecting h in order to minimize 
the L2 error (integrated squared error) of the kernel estimate 

1. ~~l Y. K (Xi-X) 
--- n L..l=l 1 h 

1]11,h = 1. ~~ K (Xi-X) 
n L..l=l h 

of the regression function 1] (x ) = p {Y = 11 X = x}, 

For example, HardIe and Marron (1985) proposed and studied a cross-validation 
method for choosing the optimal h for the kernel regression estimate. They obtain 
asymptotic optimality for the integrated squared error. Although their method gives 
us a choice for h if we consider 1](x) = P{Y = llX = x} as the regression function, 
it is not clear that the h thus obtained is optimal for the probability of error. In fact, as 
the following theorem illustrates, for some distributions, the smoothing parameter 
that minimizes the L2 error yields a rather poor error probability compared to that 
corresponding to the optimal h. 

Theorem 25.9. Let d = l. Consider the kernel classification rule with the window 
kernel K = /[-1,1], and smoothing parameter h > O. Denote its error probability 
by Ln(h). Let h* be the smoothing parameter that minimizes the mean integrated 
squared error 

Then for some distributions 

. E{Ln(h*)} 
hm = 00, 

n-+oo infh E{Ln(h)} 

and the convergence is exponentially fast. 

We leave the details of the proof to the reader (Problem 25.20). Only a rough 
sketch is given here. Consider X uniform on [0, 1] U [3,4], and define 

{
I - x /2 if x E [0, 1] 

1] (x ) = 2 - x /2 otherwise. 

The optimal value of h (i.e., the value minimizing the error probability) is one. It 
is constant, independent of n. This shows that we should not a priori exclude any 
values of h, as is commonly done in studies on regression and density estimation. 
The minimal error probability can be bounded from above (using Hoeffding's 
inequality) by e-C1n for some constant Cl > 0. On the other hand, straightforward 
calculations show that the smoothing factor h* that minimizes the mean integrated 
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squared error goes to zero as n -+ (Xl as 0 (n- I
/ 4 ). The corresponding error 

probability is larger than e-c2h*n for some constant C2. The order-of-magnitude 
difference between the exponents explains the exponential' speed of convergence 
to infinity. 

Problems and Exercises 

PROBLEM 25.1. Prove Theorem 25.2. 

PROBLEM 25.2. Show that for any r > 0, the kernel 

K(x) = { ~/IIXI( if Ilxll s 1 
otherwise, 

satisfies the conditions of Theorem 25.3. 

PROBLEM 25.3. Assume that K is a regular kernel with kernel complexity Km S mY for some 
constant y > 0. Let gn be selected so as to minimize the holdout error estimate L1,m(¢>m) 

over Cm , the class of kernel rules based upon the first m data points, with smoothing factor 
h > 0. Assume furthermore that we vary lover [log2 n, n12], and that we pick the best l 
(and m = n - 1) by minimizing the holdout error estimate again. Show that the obtained 
rule is strongly universally consistent. 

PROBLEM 25.4. Prove that the kernel complexity Km of the de la Vallee-Poussin kernel 
K(x) = (sinxlxf, x E R, is infinite when m :::: 2. 

PROBLEM 25.5. Show that Km = 00 for m :::: 2 when K(x) = cos2(x), x E R. 

PROBLEM 25.6. Compute an upper bound for the kernel complexity Km for the following 
kernels, where x = (x(1), ... , xed)~ E Rd: 

A. 

B. 

c. 

D. 

d 

TI ( (i)2) K(x) = I-x IUx(i)I:::l}' 
i=l 

1 
K(x) = (1 + Il xl1 2t' ex > 0. 

d 1 
K(x) = TI -1 (i)2' 

i=l +x 

d 

K(x) = TI cos(x(i)IUx(i)I:::n/2j' 
i=l 

PROBLEM 25.7. Can you construct a kernel on R with the property that its complexity 
satisfies 2m S Km < 00 for all m? Prove your claim. 

PROBLEM 25.8. Show that for kernel classes Cm with kernel rules having a fixed training 
sequence Dm but variable h > 0, we have VCm S 10g2 Km· 
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PROBLEM 25.9. Calculate upper bounds for S(em, /) when em is the class of kernel rules 
based on fixed training data but with variable parameter e in the following cases (for 
definitions, see Section 25.4): 

(1) Kg is a product kernel of R d
, where the unidimensional kernel K has kernel 

complexity Km. 

(2) Kg = l+lIxl:a/ha , where e = (h, a), h > 0, a > ° are two parameters. 

(3) Kg(x) = l{xEA}, where A is any ellipsoid ofRd centered at the origin. 

PROBLEM 25.lO. Prove or disprove: if Dm is fixed and em is the class of all kernel rules 
based on Dm with K = lA, A being any convex set ofRd containing the origin, is it possible 
that VCm = 00, or is VCm < 00 for all possible configurations of Dm? 

PROBLEM 25.11. Let 

As ~ { {x . t K (x ~ X, ) (2Y, - I) > o} , h > o} 
with Xl = -38, X2 = X3 = X 4 = -8, Xs = X6 = X7 = 8, X8 = 38, YI = 1, Y2 = Y3 = Y4 = 
-1, Ys = Y6 = Y7 = 1, Y8 = -1, and let K be piecewise cubic. Extending the quadratic 
example in the text, show that the vc dimension of A8 is infinite for some K in this class 
that is symmetric, unimodal, positive, and convex on [0, (0). 

PROBLEM 25.12. Draw (Xl, Yd, ... , (X4' Y4)from the distribution of (X, Y) on Rd x{O, I}, 
where X has a density and 1J(x) E (0, 1) at all x. Find a symmetric unimodal K such that 

As ~ { { x • t K ( x ~ X, ) (2Y, - I) > 0 } , h > 0 } 

has vc dimension satisfying P{ V ~ = oo} > 0. Can you find such a kernel K with a bounded 
support? 

PROBLEM 25.13. Let X have a density f on Rd and let Xl, ... , Xn bei.i.d., drawn from f. 
Show that 

lim liminfP {min IIXi - Xjlld:s c
2

} = 1. 
C--700 n--7OO 11] n 

Apply this result in the following situation: define Hn = mini,j:Y;=l,Yj'=O IIXi - Xi II, where 
(Xl, Yd, ... , (Xn, Yn) are i.i.d. Rd x {O, 1}-valued random variables distributed as (X, Y), 
with X absolutely continuous, Y independent of X, and P{Y = I} E (0, 1). Show that 

lim lim inf P {H::S C
2

} = 1. 
C--700 n--7OO n 

Conclude that nHd ---+ ° in probability. If you have a kernel rule with kernel SO,1 on R d
, 

and if the smoothing factor Hn is random but satisfies nH~ ---+ ° in probability, then 

lim E{Ln } = pry = 1} 
n--7OO 

whenever X has a density. Show this. 

PROBLEM 25.14. Consider the variable kernel rule based upon the variable kernel density 
estimate of Breiman, Meisel, and Purcell (1977) and studied by Krzyzak (1983) 

gn(x) = {I if Li:Y;.=1 KH;(X - Xi) > Li:Y;=O KH;(x - Xi) ° otherwIse. 
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Here K is a positive-valued kernel, Ku = (l/ud)K(x/u) for u > 0, and Hi is the distance 
between Xi and the k-th nearest neighbor of Xi among Xj, j ii, 1 :::: j :::: n. Investigate 
the consistency of this rule when k / n --+ 0 and k --+ 00 and X 1 has a density. 

PROBLEM 25.15. CONTINUATION. Fix k = 1, and let K be the normal density in nd. If Xl has 
a density, what can you say about the asymptotic probability of error of the variable kernel 
rule? Is the inequality of Cover and Hart still valid? Repeat the exercise for the uniform 
kernel on the unit ball of nd. 

PROBLEM 25.16. If X 1, ... , Xl) are discrete i.i.d. random variables and N denotes the num­
ber of different values taken by X I, ... , Xn , then 

. E{N} 
hm -- =0, 

17--+00 n 

and N / n --+ 0 with probability one. HINT: For the weak convergence, assume without loss of 
generality that the probabilities are monotone. For the strong convergence, use McDiarmid's 
inequality. 

PROBLEM 25.17. Let B be the class of all Borel subsets of nd. Using the previous exercise, 
show that for any discrete distribution, 

sup IJLn(A) - JL(A)I --+ 0 with probability one. 
AEB 

HINT: Recall the necessary and sufficient condition E {log N A (X 1, ... , Xn)} / n --+ 0 from 
Chapter 12. 

PROBLEM 25.18. Prove Theorem 25.8 allowing kernel functions taking finitely many dif­
ferent values. 

PROBLEM 25.19. Let X I, ... , Xn be an Li.d. sample drawn from the distribution of X. Let 
XfN denote the nearest neighbor of Xj among Xl, ... , X j - 1, X j +1, ••• , Xn . Define 

Bn = max IIX} - XfNII· 
J . 

(1) Show that for all nonatomic distributions of X, nB~ --+ 00 with probability one. 
(2) Is it true that for every X with a density, there exists a constant c > 0 such that 

with probability one, nB,~ ::: clog n for all n large enough? 
(3) Exhibit distributions on the real line for which Bn --+ 00 with probability one. 

HINT: Look at the difference between the first and second order statistics. 

PROBLEM 25.20. Prove Theorem 25.9. HINT: Use the example given in the text. Get an 
upper bound for the error probability corresponding to h = 1 by Hoeffding's inequality. 
The mean integrated squared error can be computed for every h in a straightforward way 
by observing that 

Split the integral between 0 and 1 in three parts, 0 to h, h to 1 - h, and 1 - h to 1. Setting the 
derivative of the obtained expression with respect to h equal to zero leads to a third-order 
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equation in h, whose roots are O(n- I
/
4

). To get a lower bound for the corresponding error 
probability, use the crude bound 

III E{Ln(h)} 2: - P{g/1(X) i YIX = x }dx. 
2 I-h 

Now, estimate the tail of a binomial distribution from below; and use Stirling's formula to 
show that, modulo polynomial factors, the error probability is larger than 2-/13/4. 
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Automatic Nearest Neighbor Rules 

The error probability of the k-nearest neighbor rule converges to the Bayes risk 
for all distributions when k ----'7 00, and kin ---+ 0 as n ----'7 00. The convergence 
result is extended here to include data-dependent choices of k. We also look at the 
data-based selection of a metric and of weights in weighted nearest neighbor rules. 

To keep the notation consistent with that of earlier chapters, random (data-based) 
values of k are denoted by Kn. In most instances, Kn is merely a function of Dn, 
the data sequence (Xl, Yd, ... , (Xn, Yn). The reader should not confuse Kn with 
the kernel K in other chapters. 

26.1 Consistency 

We start with a general theorem assessing strong consistency of the k-nearest 
neighbor rule with data-dependent choices of k. For the sake of simplicity, we 
assume the existence of the density of X. The general case can be taken care of by 
introducing an appropriate tie-breaking method as in Chapter 11. 

Theorem 26.1. Let K 1, K 2, ... be integer valued random variables, and let gn be 
the Kn-nearest neighbor rule. If X has a density, and 

Kn ----'7 00 and Kn/n ----'7 0 with probability one as n ----'7 00, 

then L(gn) ----'7 L * with probability one. 
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PROOF. L(g,J ~ L * with probability one if and only if for every E > O,I{L(gn)-U>E) 
~ 0 with probability one. Clearly, for any f3 > 0, 

We are done if both random variables on the right-hand side converge to zero with 
probability one. The convergence of the second term for all f3 > 0 follows trivially 
from the conditions of the theorem. The convergence of the first term follows from 
the remark following Theorem 11.1, which states that for any E > 0, there exist 
f3 > 0 and no such that for the error probability Ln,k of the k-nearest neighbor 
rule, 

P{L - L * > E} < 4e-CnE2 
n,k _ 

for some constant c depending on the dimension only, provided that n > no, 
k > I/f3 and kin < f3. Now clearly, 

P{L(gn) - L * > E, II Kn + Knln < 2f3} < P{ sup Ln,k - L * > E} 
l/f3~k~nf3 

< n sup P{Ln,k - L* > E}, 
l/f3~k~nf3 

by the union bound. Combining this with Theorem 11.1, we get 

P{L(gn) - L * > E, II Kn + Knln < 2f3} :::: 4ne-CnE2 , n ~ no. 

The Borel-Cantelli lemma implies that 

with probability one, and the theorem is proved. 0 

Sometimes we only know that Kn ~ 00 and Knln ~ 0 in probability. In such 
cases weak consistency is guaranteed. The proof is left as an exercise (Problem 
26.1). 

Theorem 26.2. Let KI, K2, ... be integer valued random variables, and let gn be 
the Kn -nearest neighbor rule. If X has a density, and 

Kn ~ 00 and Knln ~ 0 in probability as n ~ 00, 

then limn--+ oo EL(gn) = L *, that is, gn is weakly consistent. 

26.2 Data Splitting 

Consistency by itself may be obtained by choosing k = L Fn J, but few-if any­
users will want to blindly use such recipes. Instead, a healthy dose of feed­
back from the data is preferable. If we proceed as in Chapter 22, we may split 
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the data sequence Dn = (Xl, YI ), ... , (Xn, Yn) into a training sequence Dm = 
(Xl, Yd, ... , (Xm, Ym), and a testing sequence Tz = (Xm+l , Ym+l ), ... , (Xn, Yn), 
where m + I = n. The training sequence Dm is used to design a class of classifiers 
em. The testing sequence is used to select a classifier from em that minimizes the 
holdout estimate of the error probability, 

If em contains all k-nearest neighbor rules with I ~ k ~ m, then ,em' = m. 
Therefore, we have 

where gn is the selected k-nearest neighbor rule. By combining Theorems 11.1 
and 22.1, we immediately deduce that gn is universally consistent if 

lim m = 00, 
n---+oo 

1
. I 
1m -- =00. 

n---+oo log m 

It is strongly universally consistent if limn---+oo 1/ log n = 00 also. Note too that 

E {IL(gn) - inf L(¢m)11 ~ 2 log(2m) + 1 
<p",ECm 21 

(by Problem 12.1), so that it is indeed important to pick I much larger than log m. 

26.3 Data Splitting for Weighted NN Rules 

Royall (1966) introduced the weighted NN rule in which the i-th nearest neighbor 
receives weight Wi, where WI ~ W2 ~ .•. ~ Wk ~ 0 and the Wi'S sum to one. We 
assume that Wk+l = ... = Wn = 0 if there are n data points. Besides the natural 
appeal of attaching more weight to nearer neighbors, there is also a practical by­
product: if the Wi'S are all of the form 1/ Zi, where Zi is a prime integer, then no 
two subsums of Wi'S are equal, and therefore voting ties are avoided altogether. 

Consider now data splitting in which em consists of all weighted k-NN rules 
as described above-clearly, k ~ m now. As lem I = 00, we compute the shatter 
coefficients seem, I). We claim that 

if I ::: k 
if I < k. 

This result is true even if we do not insist that WI ~ W2 ~ ... ~ Wk ~ o. 

(26.1) 

PROOF OF (26.1). Each Xj in the testing sequence is classified based upon the 

sign of L~=l aij Wi, where aij E {-I, I} depends upon the class of the i -th nearest 
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neighbor of Xj among Xl, ... , Xm (and does not depend upon the Wi'S). Consider 

the I-vector of signs of 2:=:=1 aijWi, m < j S n. In the computation of Seem, 1), 
we consider the aij'S as fixed numbers, and vary the Wi'S subject to the condition 
laid out above. Here is the crucial step in the argument: the collection of all vectors 
(WI, ... , Wk) for which Xj is assigned to class 1 is a linear halfspace of Rk. 

Therefore, Seem, l) is bounded from above by the number of cells in the partition 
of Rk defined by llinear halfspaces. This is bounded by 2:=:=1 G) (see Problem 
22.1) if k s l. 0 

Let gn be the rule in lem I that minimizes the empirical error committed on the 
test sequence (Xm+1, Ym+1), ... , (Xn, Yn). Then by (22.1), if [ = n - m 2: k, we 
have 

If k ---+ (X) (which implies m ---+ (0), we have universal consistency when 
k log(l)/ l ---+ O. The estimation error is of the order of Jk log 1/ [-in the termi­

nology of Chapter 22, the rule is J k log l/ I-optimal. This error must be weighed 
against the unknown approximation error. Let us present a quick heuristic argu­
ment. On the real line, there is compelling evidence to suggest that when X has a 
smooth density, k = cm4/ 5 is nearly optimal. With this choice, if both 1 and m grow 
linearly in n, the estimation error is of the order of Jlog n/ n 1/1O. This is painfully 
large-to reduce this error by a factor of two, sample sizes must rise by a factor of 
about 1000. The reason for this disappointing result is that em is just too rich for 
the values of k that interest us. Automatic selection may lead to rules that overfit 
the data. 

If we restrict em by making m very small, the following rough argument may 
be used to glean information about the size of m and I = n - m. We will take 
k = m « n. For smooth regression function 1], the estimation error may be 
anywhere between m -2/5 and m -4/5 on the real line. As the estimation error is 
of the order of Jmlogn/n, equating the errors leads to the rough recipe that 
m ~ (n/logn)5/9, and m ~ (n/logn)5/13, respectively. Both errors are then 
about (n/logn)-2/9 and (n/logn)-4/9, respectively. This is better than with the 
previous example with m linear in n. Unfortunately, it is difficult to test whether 
the conditions on 1] that guarantee certain errors are satisfied. The above procedure 
is thus doomed to remain heuristic. 

26.4 Reference Data and Data Splitting 

Split the data into Dm and Tz as is done in the previous section. Let em contain 
allI-NN rules that are based upon the data (Xl, YI), ... , (Xb Yk), where k S m is 
to be picked, {Xl, ... , Xk} C {Xl,'" Xm}, and {YI, ... , Yk} E {O, I}k. Note that 
because the y/s are free parameters, {(Xl, YI), ... , (Xb Yk)} is not necessarily a 
subset of {(X I, YI ), ... , (Xm, Ym)}-this allows us to flip certain y-values at some 
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data points. Trivially, lem I = G)2k. Hence, 

where I = n - m, and gn E em minimizes the empirical error on the test sequence 
Tz. The best rule in em is universally consistent when k -+ 00 (see Theorem 19.4). 
Therefore, gn is universally consistent when the above bound converges to zero. 
Sufficient conditions are 

(i) lim I = 00; 
11-+00 

klogm 
(ii) lim -- = O. 

n-+oo I 

As the estimation error is 0 ( J k log m / I), it is important to make I large, while 

keeping k small. 
The selected sequence (Xl, YI), ... , (Xb Yk) may be called reference data, as 

it captures the information in the larger data set. If k is sufficiently small, the 
computation of gn (x) is extremely fast. The idea of selecting reference data or 
throwing out useless or "bad" data points has been proposed and studied by many 
researchers under names such as condensed NN rules, edited NN rules, and selective 
NN rules. See Hart (1968), Gates (1972), Wilson (1972), Wagner (1973), Ullmann 
(1974), Ritter et al. (1975), Tomek (1976b), and Devijver and Kittler (1980). See 
also Section 19.1. 

26.5 Variable Metric NN Rules 

The data may also be used to select a suitable metric for use with the k-NN rule. 
The metric adapts itself for certain scale information gleaned from the data. For 
example, we may compute the distance between Xl and X2 by the formula 

"AT (Xl - x2)11 ((Xl - x2l AAT (Xl - X2) )1/2 

= ((Xl - X2)T L:(XI - X2») 1/2 , 

where (Xl - X2) is a column vector, (·l denotes its transpose, A is a d x d 
transformation matrix, and L: = AA T is a positive definite matrix. The elements 
of A or L: may be determined from the data according to some heuristic formulas. 
We refer to Fukunaga and Hostetler (1973), Short and Fukunaga (1981), Fukunaga 
and Flick (1984), and Myles and Hand (1990) for more information. 

For example, the object of principal component analysis is to find a transforma­
tion matrix A such that the components of the vector A T X have unit variance and 
are uncorrelated. These methods are typically based on estimating the eigenvalues 
of the covariance matrix of X. For such situations, we prove the following general 
consistency result: 
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Theorem 26.3. Let the random metric Pn be of the form 

Pn(X, y) = IIA~ (x - y)lI, 

where the matrix An is a function of Xl, ... , X n . Assume that distance ties occur 
with zero probability, and there are two sequences of nonnegative random variables 
{mn} and {Mn} such thatfor any n and x, y End, 

and 

P {liminf mn = o} = O. 
n-+oo Mn 

If 
lim kn = 00 and 

. kn 
hm - =0, 

n-+oo n-+oo n 

then the kn -nearest neighbor rule based on the metric Pn is consistent. 

PROOF. We verify the three conditions of Theorem 6.3. In this case, WnJX) = 1/ kn 
if Xi is one of the kn nearest neighbors of X (according to Pn), and zero otherwise. 
Condition (iii) holds trivially. Just as in the proof of consistency of the ordinary kn-

nearest neighbor rule, for condition (i) we need the property that the number of data 
points that can be among the kn nearest neighbors of a particular point is at most 
kn Yd, where the constant Yd depends on the dimension only. This is a deterministic 
property, and it can be proven exactly the same way as for the standard nearest 
neighbor rule. The only condition of Theorem 6.3 whose justification needs extra 
work is condition (ii): we need to show that for any a > 0, 

lim E {~Wni(X)!{IIX-Xill>a}} = o. 
n-+oo ~ 

i=l 

Denote the k-th nearest neighbor of X according to Pn by X(k), and the k-th nearest 
neighbor of X according to the Euclidean metric by X(k). Then 

E {t Wni(X)I{IIX-Xdl>aJ } 

(since mn IIx - yll ::: Pn(x, y)) 
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< P {mna :::; Pn(X, X(kn )} 

P {t I{Pn(X,X;):::'mna} < kn} 
l=1 

(since Mnllx - Y II :::: Pn(x, y» 

P{IIX-X(dl >a::}. 
But we know from the consistency proof of the ordinary kl1 -nearest neighbor rule 
in Chapter 11 that for each a > 0, 

lim P {IIX - X(kn ) II > a} = O. 
l1--HX) 

It follows from the condition on mn/ Mn that the probability above converges to 
zero as well. 0 

The conditions of the theorem hold if, for example, the elements of the matrix 
An converge to the elements of an invertible matrix A in probability. In that case, 
we may take mn as the smallest, and Ml1 as the largest eigenvalues of A~ An. Then 
mn/ Ml1 converges to the ratio of the smallest and largest eigenvalues of AT A, a 
positive number. 

If we pick the elements of A by minimizing the empirical error of a test sequence 
Tz over c'n, where Cm contains all k-NN rules based upon a training sequence 
Dm (thus, the elements of A are the free parameters), the value of S(Cm, l) is 
too large to be useful-see Problem 26.3. Furthermore, such minimization is not 
computationally feasible. 

26.6 Selection of k Based on the Deleted Estimate 

If you wish to use all the available data in the training sequence, without splitting, 
then empirical selection based on minimization of other estimates of the error 
probability may be your solution. Unfortunately, performance guarantees for the 
selected rule are rarely available. If the class of rules is finite, as when k is selected 
from {I, ... , n}, there are useful inequalities. We will show you how this works. 
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Let en be the class of all k-nearest neighbor rules based on a fixed training 
sequence Dn, but with k variable. Clearly, I en I = n. Assume that the deleted 
estimate is used to pick a classifier gn from en: 

We can derive performance bounds for gn from Theorem 24.5. Since the result 
gives poor bounds for large values of k, the range of k's has to be restricted-see 
the discussion following Theorem 24.5. Let ko denote the value of the largest k 
allowed, that is, en now contains all k-nearest neighbor rules with k ranging from 
1 to ko. 

Theorem 26.4. Let gn be the classijierminimizing the deleted estimate of the error 
probability over en, the class of k-nearest neighbor rules with 1 :::: k :::: ko. Then 

where c is a constant depending on the dimension only. If ko ---7>- 00 and 
ko log nj n ---7>- 0, then gn is strongly universally consistent. 

PROOF. From Theorem 8.4 we recall 

The inequality now follows from Theorem 24.5 via the union bound. Universal 
consistency follows from the previous inequality, and the fact that the kO-NN rule 
is strongly universally consistent (see Theorem 11.1). 0 

Problems and Exercises 

PROBLEM 26.1. Let K I, K 2, ... be integer valued random variables, and let gn be the Kn­
nearest neighbor rule. Show that if X has a density, and Kn -+ 00 and Kill n -+ 0 in 
probability as n -+ 00, then E{L(gn)} -+ L*. 

PROBLEM 26.2. Let C be the class of all l-NN rules based upon pairs (XI, YI), ... , (Xb Yk), 
where k is a fixed parameter (possibly varying with n), and the (Xi, Yi)'S are variable pairs 
from R d X {O, l}. Let gn be the rule that minimizes the empirical error over C, or, equivalently, 
let gn be the rule that minimizes the resubstitution estimate L~R) over C. 

(1) Compute a suitable upper bound for S(C, n). 
(2) Compute a good upper bound for Vc as a function of k and d. 
(3) If k -+ 00 with n, show that the sequence of classes C contains a strongly um., 

versally consistent subsequence of rules (you may assume for convenience that X: 
has a density to avoid distance ties). 

(4) Under what condition on k can you guarantee strong universal consistency of gn! 
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(5) Give an upper bound for 

PROBLEM 26.3. Let Cm contain all k-NN rules based upon data pairs (Xl, Y l ), ..• , (Xm' Ym). 
The metric used in computing the neighbors is derived from the norm 

d d 

/Ix II ~ = L L (Jij X (i) xU), x = (xO), ... , xed»), 
i=l j=l 

where {(Jij} forms a positive definite matrix 2:. The elements of 2: are the free parameters 
in Cm. Compute upper and lower bounds for Seem, I) as a function of m, I, k, and d. 

PROBLEM 26.4. Let gn be the rule obtained by minimizing L~D) over all k-NN rules with 
1 :::: k :::: n. Prove or disprove: gn is strongly universally consistent. Note that in view of 
Theorem 26.4, it suffices to consider En/ log n :::: k :::: n - 1 for all E > O. 





27 
Hypercubes and Discrete Spaces 

In many situations, the pair (X, Y) is purely binary, taking values in {a, I}d x {a, I}. 
Examples include boolean settings (each component of X represents "on" or "off"), 
representations of continuous variables through quantization (continuous variables 
are always represented by bit strings in computers), and ordinal data (a component 
of X is I if and only if a certain item is present). The components of X are denoted 
by X (1) , .•. , X(d). In this chapter, we review pattern recognition briefly in this 
setup. 

Without any particular structure in the distribution of (X, Y) or the function 
1J(x) = P{Y = IIX = x}, x E {a, I}d, the pattern recognition problem might as well 
be cast in the space of the first 2d positive integers: (X, Y) E {I, ... , 2d} x {a, I}. 
This is dealt with in the first section. However, things become more interesting 
under certain structural assumptions, such as the assumption that the components 
of X be independent. This is dealt with in the third section. General discrimination 
rules on hypercubes are treated in the rest of the chapter. 

27.1 Multinomial Discrimination 

At first sight, discrimination on a finite set {I, ... ,k}-called multinomial discri­
mination-may seem utterly trivial. Let us call the following rule the fundamental 
rule, as it captures what most of us would do in the absence of any additional 
information. 
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The fundamental rule coincides with the standard kernel and histogram rules if the 
smoothing factor or bin width are taken small enough. If Pi = P{X = i} and YJ is 
as usual, then it takes just a second to see that 

YJ(x)px 

and 

ELn ;::: L YJ(x)pxCl - px)n, 
x 

where Ln = L(g~). Assume YJ(x) = 1 at all x. Then L * = 0 and 

ELn ;::: L Px(l - px)n. 
x 

If Px = II k for all x, we have ELn ;::: (l - II k)n ;::: 1/2 if k ;::: 2n. This 
simple calculation shows that we cannot say anything useful about fundamental 
rules unless k ::s 2n at the very least. On the positive side, the following universal 
bound is useful. 

Theorem 27.1. For the fundamental rule, we have Ln ---+ L * with probability one 
as n ---+ 00, and, in fact, for all distributions, 

~ k 
ELn < L* + +-

- 2(n + 1) en 

and 

ELn :0: L * + 1.07S!';;. 

PROOF. The first statement follows trivially from the strong universal consistency 
of histogram rules (see Theorem 9.4). It is the universal inequality that is of interest 
here. If B(n, p) denotes a binomial random variable with parameters nand p, then 
we have 

k 

ELn = LPx( YJ(x) + (l - 2YJ(x»P{B(N(x), YJ(x» > N(X)/2}) 
x=l 

(here N(x) is a binomial (n, p(x» random variable) 

k 

= LPx(I-YJ(x)+(2YJ(x)-I)P{B(N(x),YJ(x»::s N(x)/2}). 
x::: 1 
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From this, if sex) = min(17(x), 1 - 17(X)), 

k 

< L Px (s(X) + (1 - 2s(x))P{B(N(x), sex)) ~ N(x)/2}) 
x=l 

< L * + t Px(1 - 2s(x))E { N(x)s(x)(1 - sex)) 2 } 

x=l N(x)s(x)(l - 2s(x)) + G - sex)) N(x)2 

(by the Chebyshev-Cantelli inequality-Theorem A.17) 

:0: L' + t pAl - 2~(x))E L + (1 - 2~(X))2 N(x) } 
(since s(x)(1 - sex)) :s 1/4) 

:s L * + t PxE { ~I{N(x»O) + (1 - ~(X))I{N(x)",,)} 
x=l 2 N(x) 

(since the function u / (1 + N u2
) :s 1/ (2.jN) for 0 :s u :s 1) 

:0: L' + t Px(1 - px)n + ~ t Px E {N;x/{N(X)=O)} 

(by Jensen's inequality) 

:s L * + (1 - ~)n + ~ t P {2 
k 2x=1 xV~ 

(by Lemma A.2 and the fact that the worst distribution 

has Px = 1/ k for all x) 

1 k 

:s L* +e-n1k + LJP; 
.j2(n + 1) x=l 

:s L * + ~ + fk (since e-u :s 1/(eu) for u ~ 0, 
en V 2(;+1) 

and by the Cauchy-Schwarz inequality). 

This concludes the proof, as .jIJ2 + 1/ e :s 1.075. 0 

For several key properties of the fundamental rule, the reader is referred to Glick 
(1973) and to Problem 27.1. Other references include Krzanowski (1987), Gold­
stein (1977), and Goldstein and Dillon (1978). Note also the following extension 
of Theorem 27.1, which shows that the fundamental rule can handle all discrete 
distributions. 
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Theorem 27.2. If X is purely atomic (with possibly infinitely many atoms), then 
Ln ~ L * with probability one for the fundamental rule. 

PROOF. Number the atoms 1,2, .... Define XI = min(X, k) and replace (Xi, yt) by 
(X;, Yi ), where X; = min(Xi, k). Apply the fundamental rule to the new problem 
and note that by Theorem 27.1, if k is fixed, Ln ~ L * with probability one for 
the new rule (and new distribution). However, the difference in Ln's and in L *'s 
between the truncated and nontruncated versions cannot be more than P {X ~ k}, 
which may be made as small as desired by choice of k. 0 

27.2 Quantization 

Consider a fixed partition of space nd into k sets {AI, ... , Ad, and let gn be the 
standard partitioning rule based upon majority votes in the Ai'S (ties are broken 
by favoring the response "0," as elsewhere in the book). We consider two rules: 

(1) The rule gn considered above; the data are (Xl, YI), ... , (Xn, Yn), with 
(X, Y) E nd x to, I}. The probability of error is denoted by L n , and the 
Bayes probability of error is L* = E{min(1J(X), 1 - 1J(X))} with 1J(x) = 
P{Y = llX =x},x End. 

(2) The fundamental rule g:1 operating on the quantized data (X~, Y1), ••• , 

(X;!' Yn ), with (XI, Y) E {l, ... , k} x to, I}, X; = j if X E A j . The Bayes 
probability of error is L'* = E{min(1J'(X'), 1 -1J'(X'))} with 1J'(x') = P{Y = 
11 XI = Xl}, Xl E {I, ... , k}. The probability of error is denoted by L;1' 

Clearly, g~ is nothing but the fundamental rule for the quantized data. As gn(x) = 
g:1 (Xl), where Xl = j if x E A j' we see that 

However, the Bayes error probabilities are different in the two situations. We claim, 
however, the following: 

Theorem 27.3. For the standard partitioning rule, 

E{Ln } :s L* + l.075~ + 8, 

where 0 = E {11J(X) - 1J'(X')I}. Furthermore, 

L * :.::: L'* :.::: L * + O. 
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PROOF. Clearly, L * ::s L'* (see Problem 2.1). Also, 

L'* = E{min(n'(X'), 1 - n'(X'))} 

< E{min(1](X) + 11](X) - 1]' (X')I ' 1 - 1](X) + 11](X) - 1]' (X')I)} 

< 8 + E{min(n(X), 1 - n(X))} 

= 8+L*. 

Furthermore, 

E(Ln) S L" + 1.075/f; s L* + S + 1.075/f; 

by Theorem 27.1.0 

As an immediate corollary, we show how to use the last bound to get useful 
distribution-free performance bounds. 

Theorem 27.4. Let F be a class of distributions of (X, Y)for which X E [0, l]d 
with probability one, and for some constants c > 0, 1 :::: Ci > 0, 

11](x) - 1](z) I ::s cllx - zW\ x, z E Rd. 

Then, ifwe consider all cubic histogram rules gn (see Chapter 6 for a definition), 
we have 

* a b inf E{L(gn) - L }:s - + -01 , 

cubic histogram rule gn Fn n d+201 

where a and b are constants depending upon c, Ci, and d only (see the prooffor 
explicit expressions). 

Theorem 27.4 establishes the existence of rules that perform uniformly at rate 
o (n-a /(d+2a)) over F. Results like this have an impact on the number of data 
points required to guarantee a given performance for any (X, Y) E F. 

PROOF. Consider a cubic grid with cells of volume hd
• As the number of cells 

covering [0, l]d does not exceed (1/ h + 2)d, we apply Theorem 27.3 to obtain 

E(L(gn)) S L * + 1.075 (2 + * )"/2 + S, 

where 

8 ::s sup 11](x) -1]'(x')1 ::s c sup sup liz - xlla ::s c (hFd)a 
x Ai x,ZEAi 

The right-hand side is approximately maximal when 

( 

1.075d ) 

h = 2" (c.Jd)" In 

Resubstitution yields the result. 0 

def C' 
-1-' 

n d+201 
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27.3 Independent Components 

Let X = (x(l), ... , XCd)) have components that are conditionally independent, 
given {Y = 1}, and also, given {Y = OJ. Introduce the notation 

p(i) P{XCi ) = 11Y = 1}, 

q(i) = P{X(i) = 11Y = O}, 

p = P{Y = 1}. 

With x = (x(l), ... , xed)) E {O, l}d, we see that 

P{Y=1,X=x} pP{X=xIY=1} 
1J(x) = = --------------

P{X = x} pP{X = xlY = 1} + (1 - p)P{X = xlY = O}' 

and 

d 

P{X = xlY = 1} = IT p(it(i) (1 - p(i))l-x(i) , 

i=l 

d 

P{X = xlY = O} = IT q(it(i) (1 - q(i))l-x
U

). 

i=l 

Simple consideration shows that the Bayes rule is given by 

{ 

1 if P n~=l p(i)X(i) (1 - p(i))l-x(i) 

g*(x) = > (1 - p) n~=l q(iy(i)(1 - q(i))l-x(i) 

o otherwise. 

Taking logarithms, it is easy to see that this is equivalent to the following rule: 

*(x) = 1 (Yo + L....,i=l (Yi X > 
{ 

1 'f ,\,d Ci) 0 

g 0 otherwise, 

where 

(Yo = log (_P_) + ~ log (1 - P(i)) , 
1 - p f:t 1 - q(i) 

(
P(i) 1 - q(i)) . 

log -. l = 1, ... , d. 
q(i) 1 - p(i) 

In other words, the Bayes classifier is linear! This beautiful fact was noted by 
Minsky (1961), Winder (1963), and Chow (1965). 

Having identified the Bayes rule as a linear discrimination rule, we may apply 
the full force of the Vapnik-Chervonenkis theory. Let gn be the rule that minimizes 
the empirical error over the class of all linear discrimination rules. As the class 
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of linear halfspaces of Rd has vc dimension d + 1 (see Corollary 13.1), we recall 
from Theorem 13.11 that for gn, 

P{L(gn) - L* > E} < 8nd+1 e-nE2 /128, 

E{L(gn) - L *} < 16 
(d+1)logn+4 

(by Corollary 12.1), 
2n 

P{L(gn) - L * > E} < 16 (JilE )4096(d+1) e-nE2 /2, nE2 
:::: 64, 

and c 
E{L(gn) - L*}:s yfi' 

where 
c = 16 + -/I013(d + 1) log(l012(d + 1)) (Problem 12.10). 

These bounds are useful (i.e., they tend to zero with n) if d = o(n/logn). In 
contrast, without the independence assumption, we have pointed out that no non­
trivial guarantee can be given about E{L(gn)} unless 2d < n. The independence 
assumption has led us out of the high-dimensional quagmire. 

One may wish to attempt to estimate the p(i)'s and q(i)'s by p(i) and q(i) and 
to use these in the plug-in rule gn (x) that decides 1 if 

d d 

P n putU) (l - p(i))l-x(i) > (l - fi) n q(i)x(i) (l - qU))l-x(i), 
i=l i=l 

where p is the standard sample-based estimate of p. The maximum-likelihood 
estimate of p(i) is given by 

while 
L~=l I{X(i)=l Y=O} 

q-(i) = n } 'J , 

Lj=l l {YFO} 

with % equal to 0 (see Problem 27.6). Note that the plug-in rule too is linear, 
with 

n(X) = 1 ao +. L...i=l ai X > 
{ 

l 'f ,\:,d (i) 0 

g 0 otherWIse, 

where 

( 
p ) ~ ( NO! (i) Noo(i) + NlO(i)) ao = log -- + ~ log . -----

1 - P i=l NO! (i) + Nll (i) Noo(i) , 

( 
Nll (i) . NOO(i)) ._ 

ai = log l - 1, ... , d, 
NOl (i) NlO(i) 
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and 
n 

Noo(i) = L I{xj)=o,yj=o}' 
j=l 

n 

N lO(i) = L I{Xj)=l,Yj=O}' 
j=l 

d 

n 

NOl(i) = L I{xj)=O,Yj=l} , 
j=l 

n 

Nll(i) = L I{Xji)=l,Yj=l} , 
j=l 

P = L (NOl (i) + Nll (i)) . 
i=l 

For all this, we refer to Warner, Toronto, Veasey, and Stephenson (1961) (see also 
McLachlan (1992)). 

Use the inequality 

E{L(gn) - L *} ::s 2E {117n(X) - 17(X))} , 

where 17 is as given in the text, and 17n is as 17 but with p, p(i), q(i) replaced by 
p, p(i), q(i), to establish consistency: 

Theorem 27.5. For the plug-in rule, L(gn) -+ L * with probability one and 
E{L(gn)} - L * -+ 0, whenever the components are independent. 

We refer to the Problem section for an evaluation of an upper bound for E{ L(gn)­
L *} (see Problem 27.7). 

Linear discrimination on the hypercube has of course limited value. The world 
is full of examples that are not linearly separable. For example, on {O, 1}2, if 
Y = XCl)(1 - X(2)) + X(2)(1 - XO)) (so that Y implements the boolean "xor" or 
"exclusive or" function), the problem is not linearly separable if all four possible 
values of X have positive probability. However, the exclusive or function may be 
dealt with very nicely if one considers quadratic discriminants dealt with in a later 
section (27.5) on series methods. 

27.4 Boolean Classifiers 

By a boolean classification problem, we mean a pattern recognition problem on 
the hypercube for which L * = 0. This setup relates to the fact that if we consider 
Y = I as a circuit failure and Y = ° as an operable circuit, then Y is a deterministic 
function of the X(i)'s, which may be considered as gates or switches. In that case, 
Y may be written as a boolean function of X (1) , .•. , XCd). We may limit boolean 
classifiers in various ways by partially specifying this function. For example, fol­
lowing Natarajan (1991), we first consider all monomials, that is, all functions 
g : {O, l}d -+ {O, I} of the form 
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for some k .:s d and some indices 1 .:s il < ... < ik .:s d (note that algebraic mul­
tiplication corresponds to a boolean "and"). In such situations, one might attempt 
to minimize the empirical error. As we know that g* is also a monomial, it is clear 
that the minimal empirical error is zero. One such minimizing monomial is given 
by 

where 

d . XU) 0 . d {' . } an mm i = , ] 'F ll,···, lk . 
l::J::;on 

Thus, gn picks those components for which every data point has a "1". Clearly, 
the empirical error is zero. The number of possible functions is 2d. Therefore, by 
Theorem 12.1, 

and 
d+1 

E{L(gn)} .:s -. 
n 

Here again, we have avoided the curse of dimensionality. For good performance, 
it suffices that n be a bit larger than d, regardless of the distribution of the data! 

Assume that we limit the complexity of a boolean classifier g by requiring that g 
must be written as an expression having at most k operations "not," "and," or "or," 
with the X(i),S as inputs. To avoid problems with precedence rules, we assume that 
any number of parentheses is allowed in the expression. One may visualize each 
expression as an expression tree, that is, a tree in which internal nodes represent 
operations and leaves represent operands (inputs). The number of such binary trees 
with k internal nodes (and thus k + 1 leaves) is given by the Catalan number 

1 (2k) 
k + 1 k 

(see, e.g., Kemp (1984)). Furthermore, we may associate any of the X(i),S with the 
leaves (possibly preceded by "not") and "and" or "or" with each binary internal 
node, thus obtaining a total of not more than 

2k (2d)k+ 1 _1_ (2k) 
k+1 k 

possible boolean functions of this kind. As k -? 00, this bound is not more than 

for k large enough. Again, for k large enough, 
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and 
E{L(gn)} :::: k 10g(16d) + 1 . 

n 
Note that k is much more important than d in determining the sample size. For 
historic reasons, we mention that if g is any boolean expression consisting of at 
most k "not," "and," or "or" operations, then the number of such functions was 
shown by Pippenger (1977) not to exceed 

C6
(d

k
+kf Y 

Pearl (1979) used Pippenger's estimate to obtain performance bounds such as the 
ones given above. 

27.5 Series Methods for the Hypercube 

It is interesting to note that we may write any function rt on the hypercube as a 
linear combination of Rademacher-Walsh polynomials 

We verify easily that 

2x(l) - 1 

2X(d) - 1 
(2x(l) - 1)(2x(2) - 1) 

i=O 
i = 1 

i=d 
i=d+1 

(2X(d-l) - 1)(2x(d) - 1) i = d + 1 + (~) 

(2x(l) - 1)(2x(2) - 1)(2x(3) - 1) i = d + 2 + (~) 

(2x(l) - 1) ... (2x(d) - 1) i = 2d - 1. 

so that the 1/Ji 's form an orthogonal system. Therefore, we may write 

2d -l 

fl-({x})rt(x) = L ai 1/Ji(x), 
i=O 

where 
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and f1({x}) = P{X = x}. Also, 

2d -1 

f1({x})(l - 17(X)) = L bil/Ji(X), 
i=O 

with 

bi = ;d ~ l/rt(x)(l - ry(X»Jl({X)) = E {1/f~SX) lIY~OI}' 

Sample-based estimates of ai and b i are 

= 

= 

The Bayes rule is given by 

Replacing ai - b i formally by ~ - b; yields the plug-in rule. Observe that this 
is just a discrete version of the Fourier series rules discussed in Chapter 17. This 
rule requires the estimation of 2d differences ai - b i . Therefore, we might as well 
have used the fundamental rule. 

When our hand is forced by the dimension, we may wish to consider only rules 
in the class C given by 

{
I if "~~)+(~)+"+(:)(a~ - b(»lr·(x) > 0 

g(x) = 0 .L...t1=O I I 'f'l 

otherwise, 

where k ::: d is a positive integer, and ab, bb, ai ' b~, ... are arbitrary constants. 
We have seen that the vc dimension of this class is not more than (~) + (~) + 
... + (~) ::: d k + 1 (Theorem 13.9). Within this class, estimation errors of the 

order of 0 ( .J dk log n / n) are thus possible if we minimize the empirical error 

(Theorem 13.12). This, in effect, forces us to take k « logd n. For larger k, pattern 
recognition is all but impossible. 

As an interesting side note, observe that for a given parameter k, each member 
of C is a k-th degree polynomial in x. 

REMARK. PERFORMANCE OF THE PLUG-IN RULE. Define the plug-in rule by 

{
I if ,,~~)+(~)+···+(t)(a. - T;.»lr·(x) > 0 

gn(x) = .L...t1=O I I 'f'l 

o otherwise. 
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As n ----+ 00, by the law oflarge numbers, gn approaches goo: 

goo(x) = 1 Li==,O ai - i 'Pi X > 
{ 

1 'f ~(~)+(~)+ ... +(~)( b ),/r () 0 

o otherWIse, 

where ai, bi are as defined above. Interestingly, goo may be much worse than the 
best rule in C! Consider the simple example for d = 2, k = 1: 

II x(l) = 0 x(l) = 1 

Table of 17 (x ): X(2; = 1 

II 
118 6/8 

X(2 = 0 5/8 1/8 

II x(l) = 0 X(I) = 1 

x(2) = 1 

II 
P 

s-lOp 
~ 

x(2) = 0 4 8p 
P -9-

Table of I'l({x}) = P{X = x}: 

A simple calculation shows that for any choice p E [0, 1/2], either goo == 1 or 
goo == O. We have goo == 1 if p < 10/47, and goo == 0 otherwise. However, 
in obvious notation, L(g == 1) = (41p + 11)/36, L(g == 0) = (50 - 82p)/72. 
The best constant rule is g == 1 when p < 7/41 and g == 0 otherwise. For 
7/41 < p < 10/47, the plug-in rule does not even pick the best constant rule, let 
alone the best rule in C with k = 1, which it was intended to pick. 

This example highlights the danger of parametric rules or plug-in rules when 
applied to incorrect or incomplete models. 0 

REMARK. HISTORICAL NOTES. The Rademacher-Walsh expansion occurs frequently 
in switching theory, and was given in Duda and Hart (1973). The Bahadur-Lazars­
feid expansion (Bahadur (1961» is similar in nature. Ito (1969) presents error 
bounds for discrimination based upon a k-term truncation of the series. Ott and 
Kronmal (1976) provide further statistical properties. The rules described here with 
k defining the number of interactions are also obtained if we model P {X = x I Y = I} 
and P {X = x I Y = 1} by functions of the form 

(
(~)+(~)+ ... +(~) ) 

and exp ~ bi o/i (x) . 

The latter model is called the log-linear model (see McLachlan (1992, section 
7.3».0 

27.6 Maximum Likelihood 

The maximum likelihood method (see Chapter 15) should not be used for picking 
the best rule from a class C that is not guaranteed to include the Bayes rule. Perhaps 
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a simple example will suffice to make the point. Consider the following hypercube 
setting with d = 2: 

II x(l)= 0 I x(l) = 1 

1] (x ) : 

II x(l) = 0 

p,({x}) : p q 
r s 

In this example, L * = o. Apply maximum likelihood to a class F with two members 
{1]A, 1]B}, where 

1]A(X) { 4/5 if x(l) = 0 

liS if x(l) = 1, 

1] B(X) { 0 if x(l) = 0 
= 1 if x(l) = 1. 

Then maximum likelihood won't even pick the best member from F! To verify 
this, with gA(X) = 1{1JA(x»lj2j, gB(X) = 1{1JB(x»lj2j. we see that L(gA) = P + q, 
L(g B) = r + s. However, if 1]ML is given by 

and if we write Nij for the number of data pairs (X k, Yk) having X k = i, Yk = j, 
then 1]ML = 1] A if 

o if NOl + NlO > 0 
1 if N 01 + N 10 = 0 

and 1]ML = 1]B otherwise. Equivalently, 1]ML = 1]A if and only if N01 + NlO > O. 
Apply the strong law of large numbers to note that NOlin --+ r, NlOln --+ s, 
Nooln --+ p, and Nll/n --+ q with probability one, as n --+ 00. Thus, 

lim P{ = } = {I if r + s > 0 
n-+oo 1]ML 1]A 0 otherwise. 

Take r + s = E very small, p + q = 1 - E. Then, for the maximum likelihood rule, 

However, when F contains the Bayes rule, maximum likelihood is consistent (see 
Theorem 15.1). 
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27.7 Kernel Methods 

Sometimes, d is so large with respect to n that the atoms in the hypercube are 
sparsely populated. Some amount of smoothing may help under some circum­
stances. Consider a kernel K, and define the kernel rule 

gn(x) = n L....-I-l h 
{

I if 1 "'~1_ (2Yi -l)K (lIx - Xill) > 0 

o otherwise, 

where Ilx - z II is just the Hamming distance (i.e., the number of disagreements 
between components of x and z). With K (u) = e _u

2 
, the rule above reduces to a rule 

given in Aitchison and Aitken (1976). In their paper, different h ' s are considered for 
the two classes, but we won't consider that distinction here. Observe that at h = 0, 
we obtain the fundamental rule. As h ~ 00, we obtain a (degenerate) majority 
rule over the entire sample. The weight given to an observation Xi decreases 
exponentially in Ilx - Xi 112. For consistency, we merely need h ~ 0 (the condition 
nhd ~ 00 of Theorem 10.1 is no longer needed). And in fact, we even have 
consistency with h == 0 as this yields the fundamental rule. 

The data-based choice of h has been the object of several papers, including 
Hall (1981) and Hall and Wand (1988). In the latter paper, a mean squared error 
criterion is minimized. We only mention the work of Tutz (1986; 1988; 1989), 
who picks h so as to minimize the deleted estimate L~D). 

Theorem 27.6. (TuTZ (1986». Let Hn be the smoothing factor in the Aitchison­
Aitken rule that minimizes L~). Then the rule is weakly consistent for all distri­
butions of (X, Y) on the hypercube. 

PROOF. See Theorem 25.8. 0 

Problems and Exercises 

PROBLEM 27.1. THE FUNDAMENTAL RULE. Let g,: be the fundamental rule on a finite set 
{I, ... , k}, and define L/1 = L(g,:). Let g* be the Bayes rule (with error probability L *), and 
let 

~ = inf (~- min(r](x), 1 - r](X») . 
X:1)(x}fIJ2 2 

Let L~R) be the resubstitution error estimate (or apparent error rate). Show the following: 
(1) E {L~R)! ::: ELn (the apparent error rate is always optimistic; Hills (1966». 
(2) E {L~R) ::: L * (the apparent error rate is in fact very optimistic; Glick (1973». 

(3) ELn::: L * + e-2n
/::,2 (for a similar inequality related to Hellinger distances, see 

Glick (1973». This is an exponential but distribution-dependent error rate. 

PROBLEM 27.2. DISCRETE LIPSCHITZ CLASSES. Consider the class of regression functions 
r] E [0, 1] with I r](x) - r](z) I ::: cp(x, zt, where x, z E {O, l}d, p(., .) denotes the Hamming 
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distance, and c > ° and a > ° are constants (note that a is not bounded from above). The 
purpose is to design a discrimination rule for which uniformly over all distributions of 
(X, y) on {O, 1}d x {O, I} with such 1](x) = pry = 11X = x}, we have 

E{L _ L *} < \II(e, a, d) 
n - In ' 

where the function \II(e, a, d) is as small as possible. Note: for e = 1, the class contains all 
regression functions on the hypercube, and thus \11(1, a, d) = 1.075 . 2d/2 (Theorem 27.1). 
How small should e be to make \II polynomial in d? 

PROBLEM 27.3. With a cubic histogram partition of [0, 1Jd into kd cells (of volume 1/ kd 

each), we have, for the Lipschitz (e, a) class:F of Theorem 27.4, 

( ~)a sup 8 = e -
CX,y)EF k 

This grows as da
/
2

. Can you define a partition into kd cells for which sUPcx, y)EF 8 is smaller? 
HINT: Consult Conway and Sloane (1993). 

PROBLEM 27.4. Consider the following randomized histogram rule: Xl, ... , X k partition 
[0, 1]d into polyhedra based on the nearest neighbor rule. Within each cell, we employ a 
majority rule based upon X k+l , •.• , Xn . If X is uniform on [0, 1]d and 1] is Lipschitz (e, a) 
(as in Theorem 27.4), then can you derive an upper bound for E{Ln - L *} as a function of 
k, n, e, a, and d? How does your bound compare with the cubic histogram rule that uses 
the same number (k) of cells? 

PROBLEM 27.5. Let:F be the class of all Lipschitz (e, a) functions 1]' E nd -+ [0, 1J. Let 
(X, Y) E :F denote the fact that (X, Y) has regression function 1](x) = P{Y = 11X = x} in 
F. Then, for any cubic histogram rule, show that 

E{ * 1 * sup Ln - L } 2: - - L . 
CX,Y)EF 2 

Thus, the compactness condition on the space is essential for the distribution-free error 
bound given in Theorem 27.4. 

PROBLEM 27.6. INDEPENDENT MODEL. Show that in the independent model, the maximum 
likelihood estimate p(i) of p(i) is given by 

r:~=l I{xjil=I,Yj=l} 

r:~=l I{Yj=l} 

PROBLEM 27.7. INDEPENDENT MODEL. For the plug-in rule in the independent model, is it 
true that E{Ln - L *} = 0(1/ In) uniformly over all pairs (X, Y) on {O, I}d x {O, I}? If so, 
find a constant e depending upon d only, such that E{Ln - L *} :s e/ -Jri. If not, provide a 
counterexample. 

PROBLEM 27.8. Consider a hypercube problem in which X = (X(1), ... , XCd) and each 
XCi) E {-1, 0, 1} (a ternary generalization). Assume that the XU)'s are independent but not 
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necessarily identically distributed. Show that there exists a quadratic Bayes rule, i.e., g*(x) 
is 1 on the set 

d d 

ao + L aix(i) + L aijx(i) x(j) > 0, 
i=] i,j=l 

where ao, {ai}, and {aij} are some weights (Kazmierczak and Steinbuch (1963». 

PROBLEM 27.9. Let A be the class of all sets on the hypercube {a, 1}d of the form xCi!) ... 

X(ik) = 1, where (x(l), ... , xed»~ E {a, l}d, 1 ::: i1 < '" < ik ::: d. (Thus, A is the class 

of all sets carved out by the monomials.) Show that the vc dimension of Cis d. HINT: The 
set {CO, 1, 1, ... ,1), (1, 0,1, ... ,1), ... , (1,1,1, ... , a)} is shattered by A. No set of size 
d + 1 can be shattered by A by the pigeonhole principle. 

PROBLEM 27.10. Show that the Catalan number 

1 (2n) 4n 

-- "'-'--

n+ I n ~. 

(See, e.g., Kemp (1984).) 

PROBLEM 27.11. Provide an argument to show that the number of boolean functions with 
at most k operations "and" or "or" and d operands of the form xU) or I - x(i), xCi) E {a, I}, 
is not more than 

2(2di+1 _1_ (2k) 
k+ 1 k 

(this is 2k times less than the bound given in the text). 

PROBLEM 27.12. Provide upper and lower bounds on the vc dimension of the class of sets 
A on the hypercube {a, l}d that can be described by a boolean expression with the x(i)'s or 
1 - x(i)'s as operands and with at most k operations "and" or "or." 

PROBLEM 27.13. LINEAR DISCRIMINATION ON THE HYPERCUBE. Let gn be the rule that mini­
mizes the empirical error Ln(¢) over all linear rules ¢, when the data are drawn from any 
distribution on {a, l}d x {a, I}. Let Ln be its probability of error, and let L be the minimum 
error probability over all linear rules. Show that for E > 0, 

Deduce that 

J 1 + log4(~) d + 1 
E{L n - L} ::: 2 ::: 2--. 

ffn ffn 
Compare this result with the general Vapnik-Chervonenkis bound for linear rules (Theorem 
13.11) and deduce when the bound given above is better. HINT: Count the number of possible 
linear rules. 

PROBLEM 27.14. On the hypercube to, l}d, show that the kernel rule of Aitchison and Aitken 
(1976) is strongly consistent when limn-+oo h = 0. 

PROBLEM 27 .15. Pick h in the kernel estimate by minimizing the resubstitution estimate 
L~R), and call it HY). For L~D), we call it H~D). Assume that the kernel function is of the 

form K(II . III h) with K ~ 0, K(u) -t ° as u t 00. Let Ln be the error estimate for the 
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kernel rule with one of these two choices. Is it possible to find a constant c, depending upon 
d and K only, such that 

E {Ln - inf Ln(h)}:S ~? 
h:::.O yn 

If so, give a proof. If not, provide a counterexample. Note: if the answer is positive, a 
minor corollary of this result is Tutz's theorem. However, an explicit constant c may aid in 
determining appropriate sample sizes. It may also be minimized with respect to K. 

PROBLEM 27.16. (Simon (1991).) Construct a partition of the hypercube {a, l}d in the fol­
lowing manner, based upon a binary classification tree with perpendicular splits: Every 
node at level i splits the subset according to x(i) = ° or x(i) = 1, so that there are at most d 
levels of nodes. (In practice, the most important component should be x(l).) For example, 
all possible partitions of {a, 1}2 obtainable with 2 cuts are 

• • 
.. . .. . :~ ~: • I • 

~ 

Assign to each internal node (each region) a class. Define the Horton-Strahler number ~ of 
a tree as follows: if a tree has one node, then ~ = 0. If the root of the tree has left and right 
subtrees with Horton-Strahler numbers ~1 and ~2' then set 

Let C be the class of classifiers g described above with Horton-Strahler number :s ~. 
(1) Let S = {x E {a, 1}d : Ilx II :s n, where II . II denotes Hamming distance from the 

all-zero vector. Show that S is shattered by the class of sets {g = 1 : g E C}. 

(2) Show that lSI = Ito e)· 
(3) Conclude that the vc dimension of C is at least 2:;==0 (~). (Simon has shown that 

the vc dimension of C is exactly this, but that proof is more involved.) 
(4) Assuming L * = 0, obtain an upper bound for E{Ln } as afunctionof~ andd, where 

Ln is the probability of elTor for the rule picked by minimizing the empirical elTor 
over C. 

(5) Interpret ~ as the height of the largest complete binary tree that can be embedded 
in the classification tree. 





28 
Epsilon Entropy and Totally 
Bounded Sets 

28.1 Definitions 

This chapter deals with discrimination rules that are picked from a certain class 
of classifiers by minimizing the empirical probability of error over a finite set of 
carefully selected rules. We begin with a class F of regression functions (i.e., a 
posteriori probability functions) TJ : nd -+ [0, 1] from which TJn will be picked 
by the data. The massiveness of F can be measured in many ways-the route 
followed here is suggested in the work of Kolmogorov and Tikhomirov (1961). 
We will depart from their work only in details. We suggest comparing the results 
here with those from Chapters 12 and 15. 

Let FE = {TJ(l), ... , TJ(N)} be a finite collection of functions nd -+ [0,1] such 
that 

where ST)I,E is the ball of all functions ~ : nd -+ [0, 1] with 

II~ - TJ'IIoo = sup I~(x) - TJ'(x)1 < E. 
x 

In other words, for each TJ' E F, there exists an TJU) E FE with sUPx ITJ'(x) -
TJ(i)(x) I < E. The fewer TJ(i),S needed to cover F, the smaller F is, in a certain 
sense. FE is called an E -cove r of F. The minimal value of I FE lover all E -covers 
is called the E-covering number (NE ). Following Kolmogorov and Tikhomirov 
(1961), 
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is called the E -entropy of F. We will also call it the metric entropy. A collection 
F is totally bounded if NE < 00 for all E > O. It is with such classes that we are 
concerned in this chapter. The next section gives a few examples. In the following 
section, we define the skeleton estimate based upon picking the empirically best 
member from FE' 

FIGURE 28.1. An E -cover of the 

unit square. 

28.2 Examples: Totally Bounded Classes 

The simple scalar parametric class F = {e-e1x 1, x E R; 8 > O} is not totally 
bounded (Problem 28.1). This is due simply to the presence of an unrestricted 
scale factor. It would still fail to be totally bounded if we restricted 8 to [1, (0) or 
[0, 1]. However, if we force 8 E [0, 1] and change the class F to have functions 

, {e-B1X1 if Ixl :::: 1 
1] (x) = 0 otherwise, 

then the class is totally bounded. While it is usually difficult to compute N: exactly, 
it is often simple to obtain matching upper and lower bounds. Here is a simple 
argument. Take 8i = 2E i, 0 :::: i :::: L I j (2E) J and define 8 * = 1. Each of these 
8-values defines a function 1]'. Collect these in FE' Note that with 1]' E F, with 
parameter 8, if e is the nearest value among {8i , 0 :::: i :::: L 1 j (2E) J} U {8 *}, then 
Ie - 81 :::: E. But then 

sup je-e1xl - e-e1xlj :::: 18 - el :::: E. 
Ixisl 

Hence FE is an E-cover of F of cardinality L1j(2E)J + 2. We conclude that F is 
totally bounded, and that 

NE :::: 2 + L1j(2E)J. 

(See Problem 28.2 for a d-dimensional generalization.) 
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For a lower bound, we use once again an idea from Kolmogorov and Tikhomirov 
(1961). Let OE = {1}(l), ... , 1}(M)} c F be a subset with the property that for every 
i -::j j, supx 11}(i)(x) - 1}(j)(x)I ::::: E. The set OE is thus E-separated. The maximal 
cardinality E -separated set is called the E -packing number (or E -separation number) 
ME. It is easy to see that 

M2E :::::NE::::: ME 

(Problem 28.3). With this in hand, we see that OE may be constructed as follows 
for our example: Begin with 80 = 0. Then define 81 by e-B1 = 1 - E, e-B2 = 1 - 2E, 
etcetera, until 8i > 1. It is clear that this wayan E -separated set OE may be 
constructed with IOE I = L (1 - 1/ e) / E J + 1. Thus, 

l1-1/eJ Ne ::::: M2E ::::: 2E + 1. 

The E-entropy of F grows as 10g2(1/E) as E t 0. 
Consider next a larger class, not of a parametric nature: let F be a class of 

functions 1} on [0, Ll] satisfying the Lipschitz condition 

11}(x) - 1}(XI) I ::::: clx - xII 

and taking values on [0, 1]. Kolmogorov and Tikhomirov (1961) showed that if 

E < min (~ _1_) 
- 4' 16Llc ' 

then 

< 10g2 NE 

Llc I 
< - +log2 - +3 

E E 

(see Problem 28.5). Observe that the metric entropy is exponentially larger than 
for the parametric class considered above. This has a major impact on sample sizes 
needed for similar performances (see the next sections). 

Another class of functions of interest is that containing functions 1} : [0, 1] -+ 
[0, 1] that are s-times differentiable and for which the s-th derivative 1}(s) satisfies 
a Holder condition of order ex , 

11}(S)(x) -n(s)(xl)1 ::::: clx - xll a , x, Xl E [0, 1], 

where c is a constant. In that case, 10g2 ME and log2Ne are both 8 (E-1/(s+a») as 
E t 0, where an = 8(bn) means that an = O(bn) and bn = O(an). This result, 
also due to Kolmogorov and Tikhomirov (1961), establishes a continuum of rates 
of increase of the E-entropy. In nd, with functions n : [0, l]d -+ [0, 1], if the 
Holder condition holds for all derivatives of order s, then log2 NE = 8 (E-d/(s+a»). 
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Here we have an interesting interpretation of dimension: doubling the dimension 
roughly offsets the effect of doubling the number of derivatives (or the degree 
of smoothness) of the 1]'s. Working with Lipschitz functions on Rl is roughly 
equivalent to working with functions on R 25 for which all 24-th order derivatives 
are Lipschitz! As there are 2524 such derivatives, we note immediately how much 
we must pay for certain performances in high dimensions. 

Let :F be the class of all entire analytic functions 1] : [0, 2;r] ----+ [0, 1] whose 
periodic continuation satisfies 

for some constants c, a (z is a complex variable, ~(z) is its imaginary part). For 
this class, we know that 

1 
10g2)\('"'-'(4LaJ+2)log- as E+O 

E 

(Kolmogorov and Tikhomirov (1961)). The class appears to be as small as our 
parametric class. See also Vitushkin (1961). 

28.3 Skeleton Estimates 

The members of :FE form a representative skeleton of F. We assume that FE c F 
(this condition was not imposed in the definition of an E-cover). For each 1]' E F, 
we define its discrimination rule as 

(x) = { 1 if 1]'(x). > 1/2 
g 0 otherwIse. 

Thus, we will take the liberty of referring to 1]' as a rule. For each such 1]', we 
define the probability of error as usual: 

L(1]') = P{g(X) =I Y}. 

The empirical probability of error of 1]' is denoted by 

We define the skeleton estimate 1]n by 

1]n = argminLn (l'7'). 
r/'EFE 

One of the best rules in :F is denoted by 1]*: 

L(1]*) 2: L(1]'), 1]' E F. 
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The first objective, as in standard empirical risk minimization, is to ensure that 
L(1]n) is close to L(rJ*). If the true a posteriori probability function rJ is in F (recall 
that 1] (x ) = P{Y = 11X = x n, then it is clear that L * = L(rJ*). It will be seen 
from the theorem below that under this condition, the skeleton estimate has nice 
consistency and rate-of-convergence properties. The result is distribution-free in 
the sense that no structure on the distribution of X is assumed. Problems 6.9 and 
28.9 show that convergence of L(rJn) to L(rJ*) for all rJ's-that is, not only for 
those in F-holds if X has a density. In any case, because the skeleton estimate 
is selected from a finite deterministic set (that may be constructed before data are 
collected!), probability bounding is trivial: for all E > 0,8 > 0, we have 

P {L(rJn) - inf L(rJ!) > <5} 
r/,EFE 

< IFE I sup P {ILn(rJ') - L(rJ')1 > 8/2} (by Lemma 8.2) 
TJ'EFE 

< 21FE le-no2 
/2 (Hoeffding's inequality). 

Theorem 28.1. Let F be a totally bounded class offunctions rJ' : nd -+ [0, 1]. 
There is a sequence {En> O} and a sequence of skeletons FEn C F such that if rJn 
is the skeleton estimate drawn from FEn' then 

L(rJn) -+ L * with probability one, 

whenever the true regression function 1] (x ) = P{Y = 11X = x} is in F. 
It suffices to take FE as an E -cover of F (note that IFE I need not equal the 

E -covering number NE ), and to define En as the smallest positive number for which 

Finally, with En picked in this manner, 

E {L(ryn) - L '} :s (2 + v's)€n + tf;. 
PROOF. We note that infTJ'EFE L(rJ') S L * + 2E, because if rJ' E STJ,E' then 

E{lrJ'(X) - 1](X)I} s sup Ir/(x) - 1](x)1 S E 
x 

and thus, by Theorem 2.2, L( 1]') - L * S 2E. Then for any <5 ::: 2En , 

P{L(1]n) - L * > 8} < P{L(rJn)- inf L(1]!»8-2En} 
1]'EFEn 

< 21FEn le-n(o-2Eni /2 (see above) 
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which is summable in n, as En = 00). This shows the first part of the theorem. For 
the second part, we have 

E{L(1'}n)} - L * 

< 2En + E{L(1'}n)} - inf L(1'}') 
r( EFEn 

< 2En + 100 

min (2e2",;-",'/2, I) dt 

< (2 + v's)En + 2100 

e2nE~-nt2!2dt 
,J8"En 

< (2 + Js)En + 100 

e-",' /4dt 

(since E~ - t 2/4 ::: -t2/8 for t :::: ~En) 

= (2+ Js)En + t. 
The proof is completed. 0 

Observe that the estimate 1'}n is picked from a deterministic class. This, of course, 
requires quite a bit of preparation and knowledge on behalf of the user. Knowledge 
of the E-entropy (or at least an upper bound) is absolutely essential. Furthermore, 
one must be able to construct FE' This is certainly not computationally simple. 
Skeleton estimates should therefore be mainly of theoretical importance. They 
may be used, for example, to establish the existence of estimates with a guaranteed 
error bound as given in Theorem 28.1. A similar idea in nonparametric density 
estimation was proposed and worked out in Devroye (987). 

REMARK. In the first step of the proof, we used the inequality 

E{I1'}'(X) - 17(X)I} :::; sup I 77'(X) - 1'}(X) I < E. 
x 

It is clear from this that what we really need is not an E -cover of F with respect to 
the supremum norm, but rather, with respect to the L 1 (/-l) norm. In other words, 
the skeleton estimate works equally well if the skeleton is an E -cover of F with 
respect to the Ll (M) norm, that is, it is a list of finitely many candidates with the 
property that for each 1'}' E F there exists an lJ(i) in the list such that E{l1'}' (X) -
77(i) (X) I} < E. It follows from the inequality above that the smallest such covering 
has fewer elements than that of any E -cover of F with respect to the supremum 
norm. Therefore, estimates based on such skeletons perform better. In fact, the 
difference may be essential. As an example, consider the class F of all regression 
functions on [0, 1] that are monotone increasing. For E < 1/2, this class does 
not have a finite E -cover with respect to the supremum norm. However, for any 
M it is possible to find an E-cover of F, with respect to L1(/-l), with not more 
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than 4fl/El elements (Problem 28.6). Unfortunately, an E-cover with respect to 
Ll(lL) depends on IL, the distribution of X. Since IL is not known in advance, 
we cannot construct this better skeleton. However, in some cases, we may have 
some a priori information about J.L.Forexample, if we know that J.L is a member 
of a known class of distributions, then we may be able to construct a skeleton 
that is an E -cover for all measures in the class. In the above example, if we know 
that IL has a density bounded by a known number, then there is a finite skeleton 
with this property (see Problem 28.7). We note here that the basic idea behind the 
empirical covering method of Buescher and Kumar (l996a), described in Problem 
12.14, is to find a good skeleton based on a fraction of the data. Investigating 
this question further, we notice that even covering in L I (J.L) is more than what we 
really need. From the proof of Theorem 28.1, we see that all we need is a skeleton 
FE such that infrylEFE L(1]') ::: L * + E for all 1] E F. Staying with the example 
of the class of monotonically increasing 1] 's, we see that we may take in FE the 
functions 1](i)(x) = I{x?:.q;}' where qi is the i-th E-quantile of J.L, that is, qi is the 
smallest number z such that P {X ::: z} 2: i / E. This collection of functions forms 
a skeleton in the required sense with about (l/E) elements, instead of the 4fl/El 
obtained by covering in L I (J.L), a significant improvement. Problem 28.8 illustrates 
another application of this idea. For more work on this we refer to Vapnik (1982), 
Benedek and Itai (1988), Kulkarni (1991), Dudley, Kulkarni, Richardson, and 
Zeitouni (1994), and Buescher and Kumar (1996a). 0 

28.4 Rate of Convergence 

In this section, we take a closer look at the distribution-free upper bound 

E IL(~n) - L *} :s (2 + vIs)cn + tf· 
For typical parametric classes (such as the one discussed in a Section 28.2), we 
have 

;v,-e(D 
If we take IFE I close enough to Ne, then Ell is the solution of 

10gNe "-
--2- = n, 

E 

or En = G(log n / ~), and we achieve a guaranteed rate of 0 (log n / ~). The same 
is true for the example of the class of analytic functions discussed earlier. 

The situation is different for massive classes such as the Lipschitz functions on 
[0, l]d. Recalling that 10gNe = e(1/Ed ) as E ~ 0, we note that Ell = G(n- 1/(2+d). 

For this class, we have 
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Here, once again, we encounter the phenomenon called the "curse of dimension­
ality." In order to achieve the performance E {L(1']n) - L *} S E, we need a sample 
of size n 2: (l/E?+d, exponentially large in d. Note that the class of classifiers 
defined by this class of functions has infinite vc dimension. The skeleton estimates 
thus provide a vehicle for dealing with very large classes. 

Finally, if we take all 1'] on [0, 1] forwhichs derivatives exist, and 1'](s) is Lipschitz 
with a given constant c, similar considerations show that the rate of convergence 
is 0 (n-(s+1)/(2s+3»), which ranges from 0 (n-l/3) (at s = 0) to 0 (n-l/2) (as s ---'» 

(0). As the class becomes smaller, we can guarantee better rates of convergence. 
Of course, this requires more a priori knowledge about the true 1']. 

We also note that if log ~ / E2 = 2n in Theorem 28.1, then the bound is 

~ + (2 + v's)En = ~ + (2 + v's) log~ll. V -;; V -;; 2n 

The error grows only sub-logarithmically in the size of the skeleton set. It grows as 
the square root of the E -entropy. Roughly speaking (and ignoring the dependence 
of En upon n), we may say that for the same performance guarantees, doubling 
the E -entropy implies that we should double the sample size (to keep log ~ / n 
constant). When referring to E-entropy, it is important to keep this sample size 
interpretation in mind. 

Problems and Exercises 

PROBLEM 28.1. Show that the class of functions e-8lxl on the real line, with parameter 
() > 0, is not totally bounded. 

PROBLEM 28.2. Compute a good upper bound for N" as a function of d and E for the class 
F of all functions on n d given by 

{ 

e-8l1xll 

1]'(x) = ° if Ilxll :s 1 
otherwise, 

where () E [0, 1] is a parameter. Repeat this question if ()j, ... , ()d are in [0, 1] and 

HINT: Both answers are polynomial in liE as E ,J, 0. 

PROBLEM 28.3. Show that M2E :s ~ :s ME for any totally bounded set F (Kolmogorov 
and Tikhomirov (1961». 

PROBLEM 28.4. Find a class F of functions 1]' : Rd ~ [0, 1] such that 
(a) for every E > 0, it has a finite E-cover; 
(b) the vc dimension of A = {{x : 7J'(x) > I/2}; 1]' E F} is infinite. 
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PROBLEM 28.5. Show that if F = {lJl : [0,6.] ---+ [0, 1], lJl is Lipschitz with constant c}, 
then for E small enough, 10g2 Ne S AlE, where A is a constant depending upon 6. and c. 
(This is not as precise as the statement in the text obtained by Kolmogorov and Tikhomirov, 
but it will give you excellent practice.) 

PROBLEM 28.6. Obtain an estimate for the cardinality of the smallest E-cover with respect 
to the L 1(/.1) norm for the class of l}'S on (0,1] that are increasing. In particular, show that 
for any f.l it is possible to find an E-cover with 4fl/El elements. Can you do something similar 
for lJ'S on [0, 1]d that are increasing in each coordinate? 

PROBLEM 28.7. Consider the class of l}'S on [0, 1] that are increasing. Show that for every 
E > 0, there is a finite list l}(l), ... lJ(N) such that for all lJ in the class, 

whenever X has a density bounded by B < 00. Estimate the smallest such N. 

PROBLEM 28.8. Assume that X has a bounded density on [0, 1]2, and that lJ is monotonically 
increasing in both coordinates. (This is a reasonable assumption in many applications.) Then 
the set {x : g*(x) = O} is a monotone layer. Consider the following classification rule: take 
a k x k grid in (0, 1]2, and minimize the empirical error over all classifiers ¢ such that 
{x : ¢(x) = O} is a monotone layer, and it is a union of cells in the k x k grid. What 
is the optimal choice of k? Obtain an upper bound for L(gn) - L *. Compare your result 
with that obtained for empirical error minimization over the class of all monotone layers in 
Section 13.4. HINT: Count the number of different classifiers in the class. Use Hoeffding's 
inequality and the union-of-events bound for the estimation error. Bound the approximation 
error using the bounded density assumption. 

PROBLEM 28.9. Apply Problem 6.9 to extend the consistency result in Theorem 28.1 as 
follows. Let F be a totally bounded class of functions l}' : R/ ---+ [0, 1] such that J..({x : 
lJl(X) = 1/2}) = ° for each lJl E F (J.. is the Lebesgue measure on R d). Show that there 
is a sequence {En > o} and a sequence of skeletons FEn such that if l}n is the skeleton 
estimate drawn from FEll' then L(lJ,J ---+ inf1JIEF L(l}') with probability one, whenever X 
has a density. In particular, L(lJn) ---+ L * with probability one if the Bayes rule takes the 
form g*(x) = I{1)I(x» I/2} for some l}' E F. Note: the true regression function l} is not required 
to be in F. 





29 
Uniform Laws of Large Numbers 

29.1 Minimizing the Empirical Squared Error 

In Chapter 28 the data Dn were used to select a function 1]n from a class F of 
candidate regression functions 1]' : nd -7 [0, 1]. The corresponding classification 
rule gn is I{1Jn>1/2}' Selecting 1]n was done in two steps: a skeleton-an E-covering­
of F was formed, and the empirical error count was minimized over the skeleton. 
This method is computationally cumbersome. It is tempting to use some other 
empirical quantity to select a classifier. Perhaps the most popular among these 
measures is the empirical squared error: 

Assume now that the function 1]n is selected by minimizing the empirical squared 
error over F, that is, 

As always, we are interested in the error probability, 

of the resulting classifier. If the true regression function 1] (x ) = P{ Y = 11 X = x} is 
not in the class F, then it is easy to see that empirical squared error minimization 
may fail miserably (see Problem 29.1). However, if 1] E F, then for every 1]' E F 
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we have 

L(r!') - L * ::: 2JE {(l}/(X) - l}(X»2} (by Corollary 6.2) 

= 2JE {(l}/(X) - y)2} - E {(l}(X) - y)2} 

= 2 E {(l}/(X) - Y)2} - !nf E {O](X) - y)2}, 
I)EF 

where the two equalities follow from the fact that l}(X) = E{YIX}. Thus, we have 

L(l}n) - L * 

< 2 E {(l}n(X) - Y)2IDn} - inf E {(l}/(X) - Y)2} 
I)'EF 

by an argument as in the proof of Lemma 8.2. Thus, the method is consistent if 
the supremum above converges to zero. If we define Zi = (Xi, Yd and I(Zd = 
(l}/(Xi) - Yd2, then we see that we need only to bound 

where F is a class of bounded functions. In the next four sections we develop upper 
bounds for such uniform deviations of averages from their expectations. Then we 
apply these techniques to establish consistency of generalized linear classifiers 
obtained by minimization of the empirical squared error. 

29.2 Uniform Deviations of Averages from 
Expectations 

Let F be a class of real-valued functions defined on n d , and let Z 1, ... , Zn be i.i.d. 
nd-valued random variables. We assume that for each I E F, 0 ::: I(x) ::: M for 
all x E nd and some M < 00. By Hoeffding's inequality, 

for any I E F. However, it is much less trivial to obtain information about the 
probabilities 

p {sup I~ t I(ZJ - E{/(Zl)}1 > E} . 
IEF n i=l 
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Vapnik and Chervonenkis (1981) were the first to obtain bounds for the probability 
above. For example, the following simple observation makes Theorems 12.5, 12.8, 
and 12.10 easy to apply in the new situation: 

Lemma 29.1. 

1
1 n I 11 n I sup - L f(Zi) - E{f(Z)} .-::: M sup - L IU(z;»t} - P{f(Z) > t} . 

fE:F n i=l fE:F,t>O n i==l 

PROOF. Exploiting the identity fooo 
P{X > t }dt = EX for nonnegative random 

variables, we have 

sup I ~ t f(Zi) - E{f(Z)}1 
fE:F n i==l 

= sup I [00 (~ t IU(z;»t} - P{f(Z) > t}) dtl 
fE:F 10 n i==l 

< M sup I~ t IU(Z;»t} - P{f(Z) > tll· 0 
fE:F,t>O n i=l 

For example, from Theorem 12.5 and Lemma 29.1 we get 

COROLLARY 29.1. Define the collection of sets 

F = {A f,t: f E F, t E [0, M]} , 

where for every f E F and t E [0, M] the set A f,t E nd is defined as 

A f,t = {z : fez) > t}. 

Then 

EXAMPLE. Consider the empirical squared error minimization problem sketched 
in the previous section. Let F be the class of monotone increasing functions 1]' : 

R -+ [0, 1], and let 1]n be the function selected by minimizing the empirical 
squared error. By (29.1), if 1](x) = pry = llX = x} is also monotone increasing, 
then 
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If T contains all subsets of R x {O, I} of the form 

A 1)',t = {(x, y) : (ry'(x) - y)2 > t} , ry' E F, t E [0, 1], 

then it is easy to see that its n-th shatter coefficient satisfies seT, n) ::; (n12 + 1)2. 

Thus, Corollary 29.1 can be applied, and the empirical squared error minimization 
is consistent. 0 

In many cases, Corollary 29.1 does not provide the best possible bound. To state 
a similar, but sometimes more useful result, we introduce II-covering numbers. 
The notion is very similar to that of covering numbers discussed in Chapter 28. 
The main difference is that here the balls are defined in terms of an II -distance, 
rather than the supremum norm. 

DEFINITION 29.1. Let A be a bounded subset of Rd. For every E > 0, the h­
covering number, denoted by N(E, A), is defined as the cardinality of the smallest 
finite set in Rd such that for every Z E A there is a point t E Rd in the finite 
set such that (lld)llz - till < E. (lIxllI = L~=l IxU)1 denotes the II-norm of the 
vector x = (x(l), ... , xed)) in Rd.) In other words, N(E, A) is the smallest number 
of II-balls of radius Ed, whose union contains A. logN(E, A) is often called the 
metric entropy of A. 

We will mainly be interested in covering numbers of special sets. Let zl = 
(Zl, ... , Zn) be n fixed points in R d , and define the following set: 

The h -covering number of F(zl) is N(E, F(zl))' 
If Z? = (Zl, ... , Zn) is a sequence ofi.i.d. random variables, thenN(E, FCZ!)) 

is a random variable, whose expected value plays a central role in our problem: 

Theorem 29.1. (POLLARD (1984)). For any nand E > 0, 

The proof of the theorem is given in Section 29.4. 

REMARK. Theorem 29.1 is a generalization of the basic Vapnik -Chervonenkis in­
equality. To see this, define loo-covering numbers based on the maximum norm 
(Vapnik and Chervonenkis (1981)): Noo(E, A) is the cardinality of the smallest 
finite set in Rd such that for every Z E A there is a point t E Rd in the set such 
that maXI<i<d IZ(i) t(i)1 < E. If the functions in F are indicators of sets from a 
class A of s~bsets of R d, then it is easy to see that for every E E (0, 1/2), 
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where N A(Zl, ... , Zn) is the combinatorial quantity that was used in Definition 
12.1 of shatter coefficients. Since 

Theorem 29.1 remains true with loo-covering numbers, therefore, it is a general­
ization of Theorem 12.5. To see this, notice that if F contains indicators of sets of 
the class A, then 

sup I~ t f(Zi) - E{f(Zl)}1 = sup I~ t I{ZiEA} - P{ZI E A}I· 0 
IEF n i=l AEA n i=l 

For inequalities sharper and more general than Theorem 29.1 we refer to Vapnik 
(1982), Pollard (1984; 1986), Haussler (1992), and Anthony and Shawe-Taylor 
(1990). 

29.3 Empirical Squared Error Minimization 

We return to the minimization of the empirical squared error. Let F be a class 
of functions r!, : nd -+ [0, 1], containing the true a posteriori function 'Y}. The 
empirical squared error 

is minimized over 'Y}' E F, to obtain the estimate 'Y}n. The next result shows that 
empirical squared error minimization is consistent under general conditions. Ob­
serve that these are the same conditions that we assumed in Theorem 28.1 to prove 
consistency of skeleton estimates. 

Theorem 29.2. Assume that F is a totally bounded class of functions. (For the 
definition see Chapter 28.) If 'Y} E F, then the classification rule obtained by 
minimizing the empirical squared error over F is strongly consistent, that is, 

lim L(17I1) = L * with probability one. 
n--+oo 

PROOF. Recall that by (29.1), 

We apply Theorem 29.1 to show that for every E > 0, the probability on the right­
hand side converges to zero exponentially as n -+ 00. To this end, we need to 
find a suitable upper bound on E{N(E, J(Z7))}, where J is the class of functions 
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I'(x, Y) = (7J'(x)- y? froEU nd x {O, I} to [0,1], where 7J' E F, and Zi = (Xi, Yi). 
Observe that for any I', I E .:J, 

< 2 sup 17J'(x) - ~(x)l. 
x 

This inequality implies that for every f > 0, 

E{N(f, .:J(Z~»} ::s ~/2' 
where ~ is the covering number of F defined in Chapter 28. By the assumption 
of total boundedness, for every E > 0, NE/2 < 00. Since ~/2 does not depend on 
n, the theorem is proved. 0 

REMARK. The nonasymptotic exponential nature of the inequality in Theorem 29.1 
makes it possible to obtain upper bounds for the rate of convergence of L(7Jn) to 
L * in terms of the covering numbers ~ of the class F. However, since we started 

our analysis by the loose inequality L(7J') - L * ::s 2)E {(7J'(X) - 7J(X))2}, the 

resulting rates are likely to be suboptimal (see Theorem 6.5). Also, the inequality 
of Theorem 29.1 may be loose in this case. In a somewhat different setup, Barron 
(1991) developed a proof method based on Bernstein's inequality that is useful for 
obtaining tighter upper bounds for L(7Jn) - L * in certain cases. 0 

29.4 Proof of Theorem 29.1 

The main tricks in the proof resemble those of Theorem 12.5. We can show that 
for nf

2 ~ 2M2
, 

P {sup j~ t I(ZJ - E{I(ZI)}j > f} ::s 4P {sup j~ taiI(Zi)j > :.}, 
fEY:: n i=l fEY:: n i=l 4 

where 0'1, ... , an are i.i.d. {-I, l}-valued random variables, independent of the 
Zi'S, with P{ai = I} = P{ai = -I} = 1/2. The only minor difference with 
Theorem 12.5 appears when Chebyshev's inequality is applied. We use the fact 
that by boundedness, Var(I(ZI» ::s M2/4 for every I E F. 

Now, take a minimal f/8-covering of F(Z~), that is, M = N(f/8, F(Z'!») 
functions gl, ... , gM such that for every I E F there is a g* E {gl, ... , gM} with 

1 n f 

;; ~ II(Zi) - g*(Zi)1 ::s "8. 
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For any function f, we have 

and thus 

I~ ta;JCZi)1 ~ I~ taig'CZi)H~ t<Y;(fCZi) ~ g'CZi»1 

1

1 nil n 
S - L O'ig*(Zi) + - L If(Zi) - g*(Zi)l· 

n i=l n i=l 

As (lIn) L7=1 Ig*(Zi) - !(Zi)1 S E/8, 

P {sup I~ t O'i!CZi)1 > :.1 Zl, ... , Zn} 
fEF n i=l 4 

S P { sup I ~ t O'ig*(Zi)1 + ~ t IfCZJ - g*(Zi)1 > :.1 Zl, ... , Zn} 
fEF n i=l n i=l 4 

S P {max I~ to'igj(ZJI > :.1 Zl, ... , Zn}. 
g; n i=l 8 

Now that we have been able to convert the "sup" into a "max," we can use the 
union bound: 

We need only find a uniform bound for the probability following the "max." This, 
however, is easy, since after conditioning on Zl, ... , Zn, L~1=1 O'ig/Zi) is the sum 
of independent bounded random variables whose expected value is zero. Therefore, 
Hoeffding's inequality gives 

{ 

1

1 ~ I E I } -nE
2
/(128M

2
) P ;; f:: O'igj(Zi) > '8 Zl, ... , Zn S 2e . 

In summary, 
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~ 2E {N (i, F(Zn) } e-nE2
/(l28M

2
). 

The theorem is proved. 0 

Properties of N(E, F(Z7)) will be studied in the next section. 

29.5 Covering Numbers and Shatter Coefficients 

In this section we study covering numbers, and relate them to shatter coefficients 
of certain classes of sets. As in Chapter 28, we introduce II-packing numbers. Let 
Fbe a class of functions on nd

, taking their values in [0, MJ. Let /.1 be an arbitrary 
probability measure on nd. Let gl, ... , gm be a finite collection of functions from 
F with the property that for any two of them 

The largest m for which such a collection exists is called the packing number of 
F (relative to /.1), and is denoted by M(E, F). If t1 places probability lin on each 
of Zl, ... , Zn, then by definition M(E, F) = M(E, F(ZI{)), and it is easy to see 
(Problem 28.3) that 

M(2E, F(zID) ~ N(E, F(z~)) ~ M(E, F(z7)). 

An important feature of a class of functions F is the vc dimension V.r+ of 

F+ = {{ (x, t) : t ~ f (x )} ; f E F} . 

This is clarified by the following theorem, which is a slight refinement of a result by 
Pollard (1984), which is based on Dudley's (1978) work. It connects the packing 
number of F with the shatter coefficients of F+. See also Haussler (1992) for a 
somewhat different argument. 

Theorem 29.3. Let F be a class of [0, M]-valued functions on nd. For every 

E > ° and probability measure j.L, 

M(E, F) ~ s (F+, k), 

f
M eEM2(E, F)l 

where k = -log . 
E 2M 

PROOF. Let {gl, g2, ... ,gm} be an arbitrary E-packing of F of size m ~ M(E, F). 
The proof is in the spirit of the probabilistic method of combinatorics (see, e.g., 
Spencer (1987)). To prove the inequality, we create k random points on nd x [0, M] 
in the following way, where k is a positive integer specified later. We gener­
ate k independent random variables Sl, ... , Sk on nd with common distribution 
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jk, and independently of this, we generate another k independent random vari­
ables Tl, .. " Tb uniformly distributed on [0, M]. This yields k random pairs 
(S1, Tl), ... , (Sk, Tk). For any two functions gi and gj in an E-packing, the proba­
bility that the sets Gi = {(x, t) : t :::gi(X)} and G j = {(x, t) : t :::: gj(x)} pick the 
same points from our random set of k points is bounded as follows: 

P { G i and G j pick the same points} 

k 

= rI (I - P { (Sf, Tr) E GiL. G j }) 
1=1 

= (1 - E { P { (S 1, T1) E GiL. G j } I S d / 

(1 - ~E{lg;(SJ) - gj(SJlIl)' 

< (1 - E/Mi 
< e-kE /M , 

where we used the definition of the functions gl, , .. , gm' Observe that the expected 
number of pairs (gi, gj) of these functions, such that the corresponding sets G i = 
{(x,t): t:::: gi(x)}andGj = {(x,t): t:::: gj(x)} pick the same points, is bounded 
by 

E {I {(gi' gj); G i and G j pick the same points} I} 

~ (~)P{ G; and G j pick the same point') <S (~)e-k,/M 

Since for k randomly chosen points the average number of pairs that pick the 
same points is bounded by G)e-kE/ M, there exist k points in Rd x [0, M], such 
that the number of pairs (gi, gj) that pick the same points is actually bounded by 
C;)e-kE/M . For each such pair we can add one more point in Rd x [0, M] such 
that the point is contained in GiL. G j. Thus, we have obtained a set of no more 
than k + (~)e-kE/M points such that the sets G I , ... , Gm pick different subsets of 
it. Since k was arbitrary, we can choose it to minimize this expression. This yields 
l ~ log (eE G) / M) J points, so the shatter coefficient of F+ corresponding to this 
number must be greater than m, which proves the statement. 0 

The meaning of Theorem 29.3 is best seen from the following simple corollary: 

COROLLARY 29.2. Let F be a class 0/[0, M]-valued/unctions on Rd. For every 

E > 0 and probability measure jk, 

(
4eM 2eM)VF+ 

M(E, F):::: -E- 1og -E-
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PROOF. Recall that Theorem 13.2 implies 

The inequality follows from Theorem 29.3 by straightforward calculation. The 
details are left as an exercise (Problem 29.2). D 

Recently Haussler (1991) was able to get rid of the "log" factor in the above 
upper bound. He proved that if E = kin for an integer k, then 

(
2 ) V.F+ 

M(E, F) :s e(d + 1) E
e 

The quantity V.:F+ is sometimes called the pseudo dimension of F (see Problem 
29.3). It follows immediately from Theorem 13.9 that if F is a linear space of 
functions of dimension r, then its pseudo dimension is at most r + 1. A few more 
properties are worth mentioning: 

Theorem 29.4. (WENOCUR AND DUDLEY, (1981)). Let g : R d ~ R be an arbitrary 
junction, and consider the class ojjunctions 9 = {g + j; j E F}. Then 

Vg+ = VF+. 

PROOF. If the points (Sl' tl), ... , (Sk, tk) E Rd x R are shattered by F+, then the 
points (Sl' tl + g(Sl)), ... , (Sk, tk + g(Sk)) are shattered by g+. This proves 

The proof of the other inequality is similar. D 

Theorem 29.5. (NOLAN AND POLLARD (1987); DUDLEY, (1987)). Let g: [0, M] ~ 
R be a fixed nondecreasing junction, and define the class 9 = {g 0 j; j E F}. 
Then 

Vg+ :s Vp. 

PROOF. Assume that n :s Vg+, and let the functions fr, ... ,12" E F be such that 
the binary vector 

(I{g(/j(sl»c::td' ... , I{g(/j(sn»?:.tn }) 

takes all 2n values if j = 1, ... , 2n. For all 1 ::; i ::; n define the numbers 

and 
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By the monotonicity of g, Ui > li. Then the binary vector 

takes the same value as 

for every j :::: 2n. Therefore, the pairs 

( ~) (un +In) Sl, 2 ' ... , Sn, 2 

are shattered by f+, which proves the theorem. 0 

Next we present a few results about covering numbers of classes of functions 
whose members are sums or products of functions from other classes. Similar 
results can be found in Nobel (1992), Nolan and Pollard (1987), and Pollard (1990). 

Theorem 29.6. Let fl, ... , fk be classes of real functions on Rd. For n arbitrary, 
fixed points z'{ = (Zl, ... , Zn) in R d, define the sets fl (z7), ... , fk(z7) in Rn by 

j = 1, ... , k. Also, introduce 

f(Z7) = {(f(zl), ... , f(zn»; f E f} 

for the class offunctions 

Thenfor every E > 0 and z7 

k 

N(E, f(z7)) :::: IT N(E/ k, fj(z7))· 
j=l 

PROOF. Let Sl, ... , Sk C Rn be minimal E / k-coverings of fl (z'j), ... , fk(Z'j), re­

spectively. This implies that for any /j E fj there is a vector s j = (sY), ... , sjn) E 

Sj such that 

for every j = 1, ... , k. Moreover, ISj I = N(E / k, fj(Z'j). We show that 

S={Sl+ ... +Sk;Sj ESj,j=I, ... ,k} 
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is an E-covering of :F(z7). This follows immediately from the triangle inequality, 
since for any fl, ... , !k there is SI, ... , Sk such that 

1 ~ I Ci) I 1 ~ I Ci) I E < - L....- h(zl) - sl + ... + - L....- !k(Zi) - Sk < k-. 0 
n i=1 n i=1 k 

Theorem 29.7. (POLLARD (1990)). Let:F and 9 be classes of real functions on 
R d , bounded by Ml and M 2, respectively. (That is, e.g., If(x)1 S Ml for every 
x E Rd and f E :F.) Forarbitraryjixedpoints z7 = (ZI, ... , Zn) in Rd dejine the 
sets :F(z7) and g(z~) in RH as in Theorem 29.6. Introduce 

for the class of functions 

.:J = {fg; f E :F, g E g}. 

Then for every E > 0 and z~ 

PROOF. Let S C [-MI, Mdn be an E/(2M2)-covering of :F(z7), that is, for any 
f E :F there is a vector s = (s(1), ... , sen») E S such that 

I n 

"\:' I Ci) I E - L....- f(Zt) - s < - . 
n i=I 2M2 

It is easy to see that S can be chosen such that lSI = N(E/(2M2), :F(z'D). Similarly, 
let T C [-M2, M2] be an E/(2Md-covering of g(z7) with ITI = N(E/(2Ml ), 

g(z'D) such that for any g E 9 there is at = (t(1), ... , ten»~ E T with 

We show that the set 
U = {st; s E S, t E T} 

is an E-covering of .:J(zV. Let f E :F and g E 9 be arbitrary and s E Sand t E T 
the corresponding vectors such that 
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Then 

29.6 Generalized Linear Classification 

In this section we use the uniform laws of large numbers discussed in this chapter 
to prove that squared error minimization over an appropriately chosen class of 
generalized linear classifiers yields a universally consistent rule. Consider the class 
C(kn ) of generalized linear classifiers, whose members are functions ¢ : nd ---7>­

{O, 1} of the form 

where 0/1, ... , 1fkn are fixed basis functions, and the coefficients aI, ... ,akn are 
arbitrary real numbers. The training sequence Dn is used to determine the coeffi­
cients ai . In Chapter 17 we studied the behavior of the classifier whose coefficients 
are picked to minimize the empirical error probability 

Instead of minimizing the empirical error probability Ln (¢), several authors sug­
gested minimizing the empirical squared error 

(see, e.g., Duda and Hart (1973), Vapnik (1982)). This is rather dangerous. For 
example, for k = 1 and d = 1 it is easy to find a distribution such that the error prob­
ability of the linear classifier that minimizes the empirical squared error converges 
to 1 - E, while the error probability of the best linear classifier is E, where E is 
an arbitrarily small positive number (Theorem 4.7). Clearly, similar examples can 
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be found for any fixed k. This demonstrates powerfully the danger of minimizing 
squared error instead of error count. Minimizing the latter yields a classifier whose 

average error probability is always within 0 ( Jlog n / n) of the optimum in the 

class, for fixed k. We note here that in some special cases minimization of the two 
types of error are equivalent (see Problem 29.5). Interestingly though, if kn -+ 00 

as n increases, we can obtain universal consistency by minimizing the empirical 
squared error. 

Theorem 29.8. Let Vrl , '1f2, .. , be a sequence of bounded functions with I Vrj(x)1 :s 
1 such that the set of all finite linear combinations of the Vr j 's 

Q {t, aj1fr/x);aj, a2,· .. E R} 
is dense in L 2(/.t) on all balls of the form {x : Ilx II :s M} for any probability 
measure /.t. Let the coefficients at, ... , at minimize the empirical squared error 

under the constraint L~'~l la j I :s bit> bn 2:: 1. Define the generalized linear clas­
sifier gn by 

If kn and bn satisfy 

then E{ L(gn)} -+ L * for all distributions of (X , Y), that is, the rule gn is universally 

consistent. If we assume additionally that b~ log n = o(n), then gn is strongly 
universally consistent. 

PROOF. Let 0 > 0 be arbitrary. Then there exists a constant M such that P{IIXII > 
M} < o. Thus, 

L(gn) - L * :s 0 + P{gn(X) i Y, IIXII :s MIDn} - P{g*(X) i Y, IIXII :s M}. 

It suffices to show that P{gn(X) i Y, IIXII :s MIDn} - P{g*(X) i Y, IIXII ::: 
M} -+ 0 in the required sense for every M > O. Introduce the notation fn*(x) = 
L~:l ajVrj(x). By Corollary 6.2, we see that 

P{gn(X) i Y, IIXII :s MIDn} - P{g*(X) i Y, IIXII :s M} 

< ( (f,:(x) - (21J(x) - 1))2/.t(dx). 
J11xll-::::M 
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We prove that the right-hand side converges to zero in probability. Observe that 
since E{2Y - llX = x} = 217(X) - 1, for any function hex), 

(h(x) - (217(x) - 1»2 

= E{(h(X) - (2Y - 1»21X = x} - E{(2Y - 1) - (217(X) - 1)2IX = x} 

(see Chapter 2), therefore, denoting the class of functions over which we minimize 
by 

we have 

[ (fn*(x) - (217(X) - 1»)2 fJ.,(dx) 
JIIXIIS:M 

= E { (fn*(X) - (2Y - 1»)2 1{IIXIIS:M} I Dn} 

- E {((2Y - 1) - (217(X) - 1»2 1{IIXIIS:M}} 

= (E { (t~(X) - (2Y - 1»)2 1{IIXIIS:M} I Dn} 

- inf E {(f(X) - (2Y - 1»2 1{IIXIIS:M}}) 
fE:!;, 

+ inf E {(f(X) - (2Y - 1»2 I{jlx II s:M} } 
fE:Fn 

- E {((2Y - 1) - (217(X) - 1»2 1{IIXIIS:M}} . 

The last two terms may be combined to yield 

inf [ (f(x) - (217(X) - 1)i fJ.,(dx), 
fE:Fn JIIXIIS:M 

which converges to zero by the denseness assumption. To prove that the first term 
converges to zero in probability, observe that we may assume without loss of 
generality that P{ II X II > M} = O. As in the proof of Lemma 8.2, it is easy to show 
that 

E { (t:(X) - (2Y - 1))2 1{lIXIIS:M) I Dn} 

- inf E {(f(X) - (2Y - 1)2 1{IIXIIS:M}} 
fE:!;, 

= E {(fn*(X) - (2Y _1))21 Dn} - inf E {(f(X) - (2Y _l)2} 
fE:!;, 

1

1 n I :s 2 ;~~, ;; ~ (f(X i ) - (2Yi - 1»)2 - E {(f(X) - (2Y - 1»2} 

2 sup I~ th(X i , Yi ) - E{h(X, y)}I, 
hEJ n i=l 
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where the class of functions J is defined by 

J = {hex, y) = (f(x) - (2y - 1))2; f E Fn} . 

Observe that since 12y - 11 = 1 and I 1/I;(x) I :::: 1, we have 

Therefore, Theorem 29.1 asserts that 

P {E { (f,;(X) - (2Y - 1))21 Dn} 

- inf E {(f(X) - (2Y - 1))2} > E} 
fE:Fn 

:::: p {sup I~ th(X i , Yi ) - E{h(X, y)}1 > E/2} 
hEJ n i==l 

where Z7 = (Xl, Y1),.·., (Xn, Yn). Next, for fixed z7, we estimate the cover­
ing number N (E 116, J (z7) ). For arbitrary fl' 12 E :01' consider the functions 
hI(x, y) = (fl(X) - (2y - 1)? and h 2(x, y) = (h(x) - (2y - 1))2. Then for any 
probability measure v on nd x {O, I}, 

f Ih 1(x, y) - h2(X, y)lv(d(x, y) 

= f I(fl(X) - (2y - 1))2 - (h(x) - (2y - 1))21 v(d(x, y)) 

:::: f 21!I(x) - h(x)l(bn + l)v(d(x, y)) 

:::: 4bn f I fi (x) - hex )1/J,(dx), 

where fJ., is the marginal measure for v on nd. Thus, for any z7 = (Xl, yd, ... , 
(xn, Yn) and E, 

N(E, J(Zl» :5: N (4:n ' F,,(X~») . 
Therefore, it suffices to estimate the covering number corresponding to Fn. Since 
Fn is a subset of a linear space of functions, we have V.1;;- :::: kn + 1 (Theorem 13.9). 
By Corollary 29.2, 

N E :F, ( ll) e n 1 e n e 11 
( ) ( 

8 b 4 b )kn+l (32 b2 )2(kll +l) 

4b
n

' n xl :::: E/(4b
n

) og E/(4b
n

) :::: -E-
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Summarizing, we have 

P {E { (fn*(X) - (2Y - 1»)21 Dn} 

- inf E {(f(X) - (2Y - 1»2} > E} 
fEFI1 

which goes to zero if knb~ log(bn)/n ~ 0. The proof of the theorem is completed. 
It is easy to see that if we assume additionally that b~ log n / n ~ 0, then strong 

universal consistency follows by applying the Borel-Cantelli lemma to the last 
probability. 0 

REMARK. Minimization of the squared error is attractive because there are efficient 
algorithms to find the minimizing coefficients, while minimizing the number of 
errors committed on the training sequence is computationally more difficult. If the 
dimension k of the generalized linear classifier is fixed, then stochastic approxi­
mation asymptotically provides the minimizing coefficients. For more information 
about this we refer to Robbins and Monro (1951), Kiefer and Wolfowitz (1952), 
Dvoretzky (1956), Fabian (1971), Tsypkin (1971), Nevelson and Khasminskii 
(1973), Kushner (1984), Ruppert (1991), and Ljung, Pflug, and Walk (1992). For 
example, Gyorfi (1984) proved that if (Ul , VI), (U2 , V2 ), ... form a stationary and 
ergodic sequence, in which each pair is distributed as the bounded random variable 
pair (U, V) E nk x n, and the vector of coefficients a = (aI, ... , ak) minimizes 

and a(O) E nk is arbitrary, then the sequence of coefficient vectors defined by 

a(n+1) - a(n) __ 1_ (a(n)T U - v. ) U 
- n + 1 n+1 n+1 n+1 

satisfies 
lim R(a(n» = R(a) a.s. 0 

n-+oo 

Problems and Exercises 

PROBLEM 29.1. Find a class :F containing two functions 1]1, 1]2 : n -+ [0, 1] and a distri­
bution of (X, Y) such that min(L(1]I), L(1]2)) = L *, but as n -+ 00, the probability 

converges to one, where 1]n is selected from :F by minimizing the empirical squared error. 
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PROBLEM 29.2. Prove Corollary 29.2. 

PROBLEM 29.3. Let Fbe a class of functions on nd
, taking their values in [0, M]. Haussler 

(1992) defines the pseudo dimension of F as the largest integer n for which there exist n 
points in n d, Zj, ... , Zn, and a vector v = (v(l), ... , v(n)) E nn such that the binary n-vector 

takes a1l2n possible values as f ranges through F. Prove that the pseudo dimension of F 
equals the quantity V F+ defined in the text. 

PROBLEM 29.4. CONSISTENCY OF CLUSTERING. Let X, XI, ... , Xn be i.i.d. random variables 
in nd, and assume that there is a number 0 < M < 00 such that P{X E [-M, M]d} = l. 
Take the empirically optimal clustering of Xl, ... , X n , that is, find the points aI, ... , ak 
that minimize the empirical squared error: 

The error of the clustering is defined by the mean squared error 

Prove that if aj, ... , ak denote the empirically optimal cluster centers, then 

and that for every E > 0 

P 
{ 

S P Ie (b b ) (b b )1 > E} <_ 4e8n2k(d+l)e-nE2/(32M4). u II 1,···, k -e I,··" k 
bJ , ... ,bk ERd 

Conclude that the error of the empirically optimal clustering converges to that of the truly 
optimal one as n -+ 00. (Pollard (1981; 1982), Linder, Lugosi, and Zeger (1994»). HINT: 
For the first part proceed as in the proof of Lemma 8.2. For the second part use the technique 
shown in Corollary 29.1. To compute the vc dimension, exploit Corollary 13.2. 

PROBLEM 29.5. Let V!'1, ... , V!'k be indicator functions of cells of a k-way partition of nd. 

Consider generalized linear classifiers based on these functions. Show that the classifier 
obtained by minimizing the number of errors made on the training sequence is the same as 
for the classifier obtained by minimizing the empirical squared error. Point out that this is 
just the histogram classifier based on the partition defined by the V!'i'S (Csibi (1975». 



30 
Neural Networks 

30.1 Multilayer Perceptrons 

The linear discriminant or perceptron (see Chapter 4) makes a decision 

</J(x) = {O if 1/r(x~ ::: 1/2 
1 otherwlse, 

based upon a linear combination 1/r(x) of the inputs, 

d 

1/r(x) = Co + L CiX(i) = Co + cT X, 
i=l 

(30.1) 

where the Ci'S are weights, x = (x(I), ... , x(d)l, and C = (Cl' ... , Cd)T. This is 
called a neural network without hidden layers (see Figure 4.1). 

In a (feed-forward) neural network with one hidden layer, one takes 

k 

1/r(x) = Co + L Ci cr (1/ri(X)), (30.2) 
i=l 

where the c/s are as before, and each 1/ri is of the form given in (30.1): 1/ri(X) = 
hi + L~=l aijx(j) for some constants hi and aij. The function cr is called a sigmoid. 
We define sigmoids to be nondecreasing functions with cr(x) -+ -1 as x {.. -00 

and cr(x) -+ 1 as x t 00. Examples include: 

(1) the threshold sigmoid 

{
-I 

cr(x) = 1 
if x ::: 0 
if x > 0; 
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(2) the standard, or logistic, sigmoid 

(3) the arctan sigmoid 

(4) the gaussian sigmoid 

o-(x) = ---
1+ e-X ' 

2 
o-(x) = - arctan(x); 

TC 

o-(x) = 2 __ e-u /2du - 1. j x 1 2 

-oo~ 

OOT 1 

FIGURE 30.1. A neural network with one hidden layer. The hidden 

neurons are those within the frame. 

~~~~ 
I-e-x 2 -I x 

a(x) = 1 +e-x a(x) = ~ arctan(x) a(x) = ~ f e-v212 dv - 1 

FIGURE 30.2. The threshold, standard, arctan, and gaussian sig­

moids. 
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For early discussion of multilayer perceptrons, see Rosenblatt (1962), Barron 
(1975), Nilsson (1965), and Minsky and Papert (1969). Surveys may be found in 
Barron and Barron (1988), Ripley (1993; 1994), Hertz, Krogh, and Palmer (1991), 
and Weiss and Kulikowski (1991). 

In the perceptron with one hidden layer, we say that there are k hidden neurons­
the output of the i-th hidden neuron is Ui = CJ( o/i(X)). Thus, (30.2) may be rewritten 
as 

k 

1jf(x) = Co + L CiUi, 

i=l 

which is similar in form to (30.1). We may continue this process and create multi­
layer feed-forward neural networks. For example, a two-hidden-Iayer perceptron 
uses 

I 

1jf(x) = Co + L CiZi, 

i=l 

where 

and 

u . = CJ (b. + ~ a .. X(i)) 1 < J' < k } } ~}l ,_ _ , 

i=l 

and the dij's, b/s, and aj/s are constants. The first hidden layer has k hidden 
neurons, while the second hidden layer has I hidden neurons. 

FIGURE 30.3. Afeed-forward neural network with two hidden lay-

ers. 
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The step from perceptron to a one-hidden-Iayer neural network is nontrivial. 
We know that linear discriminants cannot possibly lead to universally consistent 
rules. Fortunately, one-hidden-Iayer neural networks yield universally consistent 
discriminants provided that we allow k, the number of hidden neurons, to grow 
unboundedly with n. The interest in neural networks is undoubtedly due to the 
possibility of implementing them directly via processors and circuits. As the hard­
ware is fixed beforehand, one does not have the luxury to let k become a function 
of n, and thus, the claimed universal consistency is a moot point. We will deal 
with both fixed architectures and variable-sized neural networks. Because of the 
universal consistency of one-hidden-Iayer neural networks, there is little theoret­
ical gain in considering neural networks with more than one hidden layer. There 
may, however, be an information-theoretic gain as the number of hidden neurons 
needed to achieve the same performance may be substantially reduced. In fact, we 
will make a case for two hidden layers, and show that after two hidden layers, little 
is gained for classification. 

For theoretical analysis, the neural networks are rooted in a classical theorem 
by Kolmogorov (1957) and Lorentz (1976) which states that every continuous 
function f on [0, l]d can be written as 

where the G ij , s and the Fi ' s are continuous functions whose form depends on f. We 
will see that neural networks approximate any measurable function with arbitrary 
precision, despite the fact that the form of the sigmoids is fixed beforehand. 

As an example, consider d = 2. The function x(1) x(2) is rewritten as 

which is in the desired form. However, it is much less obvious how one would 
rewrite more general continuous functions. In fact, in neural networks, we approx­
imate the Gij's and Fi's by functions of the form a(b+aT x) and allow the number 
of tunable coefficients to be high enough such that any continuous function may 
be represented-though no longer rewritten exactly in the form of Kolmogorov 
and Lorentz. We discuss other examples of approximations based upon such rep­
resentations in a later section. 
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• 
input • 

• 

FIGURE 30.4. The general Kolmogorov-Lorentz representation of 

a continuous function. 

30.2 Arrangements 

A finite set A of hyperplanes in nd partitions the space into connected convex 
polyhedral pieces of various dimensions. Such a partition P = peA) is called an 
arrangement. An arrangement is called simple if any d hyperplanes of A have a 
unique point in common and if d + 1 hyperplanes have no point in common. 

FIGURE 30.5. An arrangement of five 

lines in the plane. 

FIGURE 30.6. An arrangement clas­

sifier. 

A simple arrangement creates polyhedral cells. Interestingly, the number of these 
cells is independent of the actual configuration of the hyperplanes. In particular, 
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the number of cells is exactly 2k if d :::: k, and 

where IAI = k. For a proof of this, see Problem 22.1, or Lemma 1.2 of Edelsbrunner 
(1987). For general arrangements, this is merely an upper bound. 

We may of course use arrangements for designing classifiers. We let gA be the 
natural classifier obtained by taking majority votes over all Yi's for which Xi is in 
the same cell of the arrangement P = peA) as x. 

All classifiers discussed in this section possess the property that they are invariant 
under linear transformations and universally consistent (in some cases, we assume 
that X has a density, but that is only done to avoid messy technicalities). 

If we fix k and find that A with IAI = k for which the empirical error 

is minimal, we obtain-perhaps at great computational expense-the empirical 
risk optimized classifier. There is a general theorem for such classifiers-see, for 
example, Corollary 23.2-the conditions of which are as follows: 

(1) It must be possible to select a given sequence of A's for which Ln(gA) 
(the conditional probability of error with gA) tends to L * in probability. 
But if k -+ 00, we may align the hyperplanes with the axes, and create a 
cubic histogram, for which, by Theorem 6.2, we have consistency if the grid 
expands to 00 and the cell sizes in the grid shrink to O. Thus, as k -+ 00, 

this condition holds trivially. 

(2) The collection 9 = {gAl is not too rich, in the sense that njlogS(9, n) 
-+ 00, where S(9, n) denotes the shatter coefficient of 9, that is, the maximal 
number of ways (Xl, YI), ... , (xn, Yn) can be split by sets of the form 

( U A x {O}) U ( U A x {I}) . 
A EP(A) AEP(A) 

If IAI = 1, we know that S(9, n) ::: 2(nd + 1) (see Chapter 13). For IAI = k, 
a trivial upper bound is 

(2(nd + 1))k . 

The consistency condition is fulfilled if k = o(nj log n). 

We have 

Theorem 30.1. The empirical-risk-optimized arrangement classifier based upon 
arrangements with IAI ::: k has E{Ln } -+ L * for all distributions if k -+ 00 and 
k = o(nj log n). 
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Arrangements can also be made from the data at hand in a simpler way. Fix 
k points Xl, ... , X k in general position and look at all possible e) hyperplanes 
you can form with these points. These form your collection A, which defines 
your arrangement. No optimization of any kind is performed. We take the nat­
ural classifier obtained by a majority vote within the cells of the partition over 
(Xk+l, Yk+d, ... , (Xn, Yn). 

FIGURE 30.7. Arrangement determined by 

k = 4 data points on the plane. 

Here we cannot apply the powerful consistency theorem mentioned above. Also, 
the arrangement is no longer simple. Nevertheless, the partition of space depends 
on the Xi'S only, and thus Theorem 6.1 (together with Lemma 20.1) is useful. The 
rule thus obtained is consistent if diam(A(X)) -+ 0 in probability and the number 
of cells is o(n), where A(X) is the cell to which X belongs in the arrangement. As 
the number of cells is certainly not more than 

d (k') L· , 
i=O l 

where k' = e), we see that the number of cells divided by n tends to zero if 

This puts a severe restriction on the growth of k. However, it is easy to prove the 
following: 

Lemma 30.1. If k -+ 00, then diam(A(X)) -+ 0 in probability whenever X has 
a density. 

PROOF. As noted in Chapter 20 (see Problem 20.6), the set of all x for which for 
all E > 0, we have JL(x + E Qi) > 0 for all quadrants Ql, ... , Q2d having one 
vertex at (0, 0, ... , 0) and sides of length one, has JL-measure one. For such x, if 
at least one of the X/s (i ~ k) falls in each of the 2d quadrants x + EQi, then 
diam(A(x)) ~ 2dE (see Figure 30.8). 
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Therefore, for arbitrary E > 0, 

FIGURE 30.8. The diameter of the cell con­

taining x is less than 4E if there is a data 

point in each of the four quadrants of size E 

around x. 

P{diam(A(x» > 2dE} :::; 2d (1 - min M(X + EQd)k -+ O. 
I~i~2d 

Thus, by the Lebesgue dominated convergence theorem, 

P{diam(A(X» > 2dE} -+ O. 0 

Theorem 30.2. The arrangement classifier defined above is consistent whenever 
X has a density and 

The theorem points out that empirical error minimization over a finite set of 
arrangements can also be consistent. Such a set may be formed as the collection 
of arrangements consisting of hyperplanes through d points of Xl, ... , X k. As 
nothing new is added here to the discussion, we refer the reader to Problem 30.1. 

So how do we deal with arrangements in a computer? Clearly, to reach a cell, we 
find for each hyperplane A E A the side to which x belongs. If f(x) = aT x + ao, 
then f(x) > 0 in one halfplane, f(x) = 0 on the hyperplane, and f(x) < 0 
in the other halfplane. If A = {AI, ... , Ad, the vector (/{Hl(X»O}, ••• , I{Hk(x»O}) 

describes the cell to which x belongs, where Hi (x) is a linear function that is 
positive if x is on one side of the hyperplane Ai, negative if x is on the other 
side of Ai, and 0 if x E Ai. A decision is thus reached in time O(kd). More 
importantly, the whole process is easily parallelizable and can be pictured as a 
battery of perceptrons. It is easy to see that the classifier depicted in Figure 30.9 
is identical to the arrangement classifier. In neural network terminology, the first 
hidden layer of neurons corresponds to just k perceptrons (and has k( d + 1) weights 
or parameters, if you wish). The first layer outputs a k-vector of bits that pinpoints 
the precise location of x in the cells of the arrangement. The second layer only 
assigns a class (decision) to each cell of the arrangement by firing up one neuron. 
It has 2k neurons (for class assignments), but of course, in natural classifiers, these 
neurons do not require training or learning-the majority vote takes care of that. 
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~ •• I-~O~orlJl~ ,-/ ± 

x o or 1 

Oor 1 ± 

FIGURE 30.9. Arrangement classifier realized by a two-hidden­

layer neural network. Each of the 2k cells in the second hidden 

layer peiforms an "and" operation: the output of node "101" is 1 

ifits three inputs are 1,0, and 1, respectively. Otherwise its output 

is O. Thus, one and only one of the 2k outputs is 1. 

If a more classical second layer is needed-without boolean operations-let 
b = (b I , ... , bk ) be the k-vector of bits seen at the output of the first layer. Assign 
a perceptron in the second layer to each region of the arrangement and define 

the output z E {-1, 1} to be (j (L~=l C j b j - k + 1/2 ), where c j E {-1, 1} are 

weights. For each region of the arrangement, we have a description in terms of 
C = (Cl' ... , Ck). The argument of the sigmoid function is 1/2 if 2b j - 1 = C j for 
all j and is negative otherwise. Hence z = 1 if and only if 2b - 1 = c. Assume we 
now take a decision based upon the sign of 

LWZZZ + Wo, 
z 

where the wz's are weights and the zz 's are the outputs of the second hidden layer. 
Assume that we wish to assign class 1 to s regions in the arrangement and class 0 
to t other regions. For a class 1 region l, set Wz = 1, and for a class 0 region, set 
Wz = -1. Define Wo = 1 + S - t. Then, if Zj = 1, Zi = -1, i =I j, 

L Wzzz + Wo = W j + Wo - L Wi = { ~ 1 
z i=/j 

if Wj = 1 
if Wj = -1. 
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... - ......... -_ ................... -_ ...... ... 

second hidden layer Oor 1 

l ....... ................. __ .......... .............. " 

FIGURE 30.10. The second hidden layer of a two-hidden-layer 

neural network with threshold sigmoids in the first layer. For each 

k-vector of bits b = (bt, ... , bk ) at the output of the first layer, 

we may find a decision g(b) E {O, I}. Now return to the two­

hidden-layer network of Figure 30.9 and assign the values g(b) 

to the neurons in the second hidden layer to obtain an equivalent 

network. 

Thus, every arrangement classifier corresponds to a neural network with two 
hidden layers, and threshold units. The correspondence is also reciprocal. Assume 
someone shows a two-hidden-Iayer neural network with the first hidden layer as 
above-thus, outputs consist of a vector of k bits-and with the second hidden 
layer consisting once again a battery of perceptrons (see Figure 30.10). Whatever 
happens in the second hidden layer, the decision is just a function of the config­
uration of k input bits. The output of the first hidden layer is constant over each 
region of the arrangement defined by the hyperplanes given by the input weights of 
the units of the first layer. Thus, the neural network classifier with threshold units 
in the first hidden layer is equivalent to an arrangement classifier with the same 
number of hyperplanes as units in the first hidden layer. The equivalence with tree 
classifiers is described in Problem 30.2. 

Of course, equivalence is only valid up to a certain point. If the number of neurons 
in the second layer is small, then neural networks are more restricted. This could be 
an advantage in training. However, the majority vote in an arrangement classifier 
avoids training of the second layer's neurons altogether, and offers at the same 
time an easier interpretation of the classifier. Conditions on consistency of general 
two-hidden-layer neural networks will be given in Section 30.4. 
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30.3 Approximation by Neural Networks 

Consider first the class C(k) of classifiers (30.2) that contains all neural network 
classifiers with the threshold sigmoid and k hidden nodes in two hidden layers. 
The training data Dn are used to select a classifier from C(k). For good performance 
of the selected rule, it is necessary that the best rule in C(k) has probability of error 
close to L *, that is, that 

inf L(¢) - L * 
¢EC(k) 

is small. We call this quantity the approximation error. Naturally, for fixed k, 
the approximation error is positive for most distributions. However, for large k, 
it is expected to be small. The question is whether the last statement is true for 
all distributions of (X, Y). We showed in the section on arrangements that the 
class of two-hid den-layer neural network classifiers with m nodes in the first layer 
and 2m nodes in the second layer contains all arrangement classifiers with m 
hyperplanes. Therefore, for k = m + 2m , the class of all arrangement classifiers 
with m hyperplanes is a subclass of C(k) . From this, we easily obtain the following 
approximation result: 

Theorem 30.3. IjC(k) is the class of all neural network classifiers with the thresh­
old sigmoid and k neurons in two hidden layers, then 

lim inf L( ¢) - L * = 0 
k-+oo ¢EC(k) 

for all distributions of (X, Y). 

It is more surprising that the same property holds if C(k) is the class of one­
hidden-layer neural networks with k hidden neurons, and an arbitrary sigmoid. 
More precisely, C(k) is the class of classifiers 

where 1/1 is as in (30.2). 

¢(x) = {O if 1/I(X! ::: 1/2 
1 otherwIse, 

By Theorem 2.2, we have 

L(¢) - L* ~ 2E{11/I(X) -1](X)I}' 

where YJ(x) = P{Y = IIX = x}. Thus, inf¢Ec(k) L(¢) - L* -+ 0 as k -+ 00 if 

for some sequence {1/Ik} with ¢k E C(k) for ¢k(X) = h!/Ik(x» I/2}' For universal 
consistency, we need only assure that the family of 1/1 's can approximate any 1] 
in the LI(M) sense. In other words, the approximation error infc/JEc(k) L(¢) - L* 
converges to zero if the class of functions 1/1 is dense in LI (M) for every M. Another 
sufficient condition for this-but of course much too severe-is that the class 
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:F of functions 1/r becomes dense in the Loo (supremum-) norm in the space of 
continuous functions C[a, b]d on [a, b]d, where [a, b]d denotes the hyperrectangle 
of Rd defined by its opposite vertices a and b, for any a and b. 

Lemma 30.2. Assume that a sequence of classes of functions :Fk becomes dense 
in the Loo norm in the space of continuous functions C[a, b]d (where [a, b]d is 
the hyperrectangle ofRd defined by a, b). In other words, assume that for every 
a, b E R d, and every bounded function g, 

lim inf sup If(x) - g(x)1 = 0. 
k-+oo JEFk xE[a,b]d 

Then for any distribution of (X , Y), 

lim inf L(¢) - L* = 0, 
k-+oo rjJEC(k) 

where C(k) is the class of classifiers ¢(x) = !r1/J(x» Ij2} for 1/r E :Fk. 

PROOF. For fixed E > 0, find a, b such that fL([a, b]d) ~ 1 - E/3, where fL is the 
probability measure of X. Choose a continuous function 1}vanishing off [a, b]d 
such that ____ E 

E{lry(X) - ry(X)1} ::: 6 . 

Find k and f E :Fk such that 

___ E 
sup I/(x) - 1](x) I ::: - . 

xE[a,bJd 6 

For ¢(x) = IU(x»lj2}, we have, by Theorem 2.2, 

L(¢)-L* 
E 

2E {If(X) - ry(X)II{XE[a,b]dd + 3" < 

< 2E {If(X) -1}(X)II{XE[a,b]dd +2E{I1}(X) - ry(X)I} + ~ 
___ ____ E 

< 2 sup If(x) - ry(x)1 + +2E {lry(X) - ry(X) I} + -
xE[a,b]d 3 

< E.O 

This text is basically about all such good families, such as families that are ob­
tainable by summing kernel functions, and histogram families. The first results for 
approximation with neural networks with one hidden layer appeared in 1989, when 
Cybenko (1989), Hornik, Stinchcombe, and White (1989), and Funahashi (1989) 
proved independently that feedforward neural networks with one hidden layer are 
dense with respect to the supremum norm on bounded sets in the set of continuous 
functions. In other words, by taking k large enough, every continuous function 
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on nd can be approximated arbitrarily closely, uniformly over any bounded set 
by functions realized by neural networks with one hidden layer. For a survey of 
various denseness results we refer to Barron (1989) and Hornik (1993). The proof 
given here uses ideas of Chen, Chen, and Liu (1990). It uses the denseness of the 
class of trigonometric polynomials in the Loo sense for C[O, l]d (thisds a special 
case of the Stone-Weierstrass theorem; see Theorem A.9 in the Appendix), that is, 
by functions of the form 

L (ai cos(2n aT x) + f3i sin(2n bT x)) , 
i 

where ai, bi are integer-valued vectors of Rd. 

Theorem 30.4. For every continuous function f : [a, b]d ~ nand for every 
E > 0, there exists a neural network with one hidden layer and function t(x) as 
in (30.2) such that 

sup If(x) -ljr(x)1 < E. 
xE[a,b]d 

PROOF. We prove the theorem for the threshold sigmoid 

{
-I 

a(x) = 1 
if x :::; 0 
if x > O. 

The extension to general non decreasing sigmoids is left as an exercise (Prob­
lem 30.3). Fix E > O. We take the Fourier series approximation of f(x). By 
the Stone-Weierstrass theorem (Theorem A.9), there exists a large positive inte­
ger M, nonzero real coefficients al,.'" aM, fh, ... , 13M, and integers mi,} for 
i = 1, ... , M, j = 1, ... , d, such that 

sup It (ai cos (~mT x) + f3i sin (~mT x)) - f(X)1 < ~, 
xE[a,b]d i=l a a 2 

where mi = (mi,l, ... ,mi,d), i = 1, ... , M. It is clear that every continuous func­
tion on the real line that is zero outside some bounded interval can be arbitrarily 
closely approximated uniformly on the interval by one-dimensional neural net­
works, that is, by functions of the form 

k 

L cia(aix + hi) + co· 
i==l 

Just observe that the indicator function of an interval [b, c] may be written as 
a(x - b) + a( -x + c). This implies that bounded functions such as sin and cos can 
be approximated arbitrarily closely by neural networks. In particular, there exist 
neural networks uiCx), Vi(X) with i = 1, ... , M, (i.e., mappings from nd to n) 
such that 

sup jUi(X) - cos (~mT x) j < __ E_ 
xE[a,b]d a 4Mla i I 
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and 
sup !Vi(X) - sin (~mT X)! < __ E_. 

xE[a,bJd a 4MI,Bi I 

Therefore, applying the triangle inequality we get 

Since the Ui'S and Vi'S are neural networks, their linear combination 

M 

1/I(x) = L (aiUi(X) + ,BiVi(X)) 
i=l 

is a neural network too and, in fact, 

sup If(x) -1/I(x)1 
xE[a,b]d 

< sup. If(X) - t (ai cos (~mT X) +,Bi sin (~mT x )) I 
xE[a,b]d i=l a a 

+ sup It (ai cos (~mT x) +,Bi sin (~mT X)) -1/I(X)1 
xE[a,b]d i==l a a 

2E 
< "2 =E. 0 

The convergence may be arbitrarily slow for some f. By restricting the class of 
functions, it is possible to obtain upper bounds for the rate of convergence. For an 
example, see Barron (1993). The following corollary of Theorem 30.4 is obtained 
via Lemma 30.2: 

COROLLARY 30.1. Let C(k) contain all neural network classifiers defined by net­
works of one hidden layer with k hidden nodes, and an arbitrary sigmoid (J. Then 
for any distribution of (X, Y), 

lim inf L(¢) - L * = O. 
k-+oo cpEC(k) 

The above convergence also holds if the range of the parameters aij, bi , Ci is 
restricted to an interval [-fh, ,Bk], where limk-+oo,Bk = 00. 

REMARK. It is also true that the class of one-hidden-Iayer neural networks with k 

hidden neurons becomes dense in L 1 (J-L) for every probability measure J-L on nd 

as k -?- 00 (see Problem 30.4). Then Theorem 2.2 may be used directly to prove 
Corollary 30.l. 0 
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In practice, the network architecture (i.e., k in our case) is given to the designer, 
who can only adjust the parameters aij, bi , and Ci, depending on the data Dn. In 
this respect, the above results are only of theoretical interest. It is more interesting 
to find out how far the error probability of the chosen rule is from inf c/>ECk L (<P ). 
We discuss this problem in the next few sections. 

30.4 VC Dimension 

Assume now that the data Dn = ((Xl, Yd, ... , (Xn, Yn» are used to tune the 
parameters of the network. To choose a classifier from C(k), we focus on the dif­
ference between the probability of error of the selected rule and that of the best 
classifier in C(k). Recall from Chapters 12 and 14 that the vc dimension VC(k) of the 
class C(k) determines the performance of some learning algorithms. Theorem 14.5 
tells us that no method of picking a classifier from C(k) can guarantee better than 
Q (,JVC(k) / n) performance uniformly for all distributions. Thus, for meaningful 
distribution-free performance guarantees, the sample size n has to be significantly 
larger than the vc dimension. On the other hand, by Corollary 12.1, there exists a 
way of choosing the parameters of the network-namely, by minimization of the 
empirical error probability-such that the obtained classifier <PI~ satisfies 

E {L(<P~)} - inf L(<P)::: 16 
c/>EC(k) 

VC(k) log n + 4 

2n 

for all distributions. On the other hand, if VC(k) = 00, then for any n and any rule, 
some bad distributions exist that induce very large error probabilities (see Theorem 
14.3). 

We start with a universal lower bound on the vc dimension of networks with 
one hidden layer. 

Theorem 30.5. (BAUM (1988». Let a be an arbitrary sigmoid and consider the 
class C(k) of neural net classifiers with k nodes in one hidden layer. Then 

PROOF. We prove the statement for the threshold sigmoid, and leave the extension 
as an exercise (Problem 30.7). We need to show that there is a set of n = 2 Lk/2Jd 
points in Rd that can be shattered by sets of the form {x : ljf(x) > 1/2}, where ljf 
is a one-layer neural network of k hidden nodes. Clearly, it suffices to prove this 
for even k. In fact, we prove more: if k is even, any set of n = kd points in general 
position can be shattered (points are in general position if no d + 1 points fall on 
the same d - I-dimensional hyperplane). Let {x 1, ... , xn } be a set of n = kd such 
points. For each subset of this set, we construct a neural network ljf with k hidden 
nodes such that 1jJ(Xi) > 1/2 if and only if Xi is a member of this subset. We may 
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assume without loss of generality that the cardinality of the subset to be picked 
out is at most n/2, since otherwise we can use 1/2 - Vr(x), where Vr picks out the 
complement of the subset. Partition the subset into at most n / (2d) = k /2 groups, 
each containing at most d points. For each such group, there exists a hyperplane 
a T x + b = 0 that contains these points, but no other point from {Xl, ... , xn}. 
Moreover, there exists a small positive number h such that aT Xi + b E [-h, h] 
if and only if Xi is among this group of at most d points. Therefore, the simple 
network 

a(aT 
X + b + h) + a(-aT 

X - b + h) 

is larger than 0 on Xi for exactly these Xi'S. Denote the vectors a, and parameters 
b, h obtained for the k/2 groups by aI, ... , ak/2, bt, ... , bk/2, and hI,.'" hk/2. 
Let h = min j -s.k/2 h j. It is easy to see that 

kj2 1 
Vr(x) = L (a(aJx +b j +h)+a(-aJx - b j +h)) +-

j==l 2 

is larger than 1/2 for exactly the desired Xi'S. This network has k hidden nodes. 0 

Theorem 30.5 implies that there is no hope for good performance guarantees 
unless the sample size is much larger than kd. Recall Chapter 14, where we showed 
that n » VC(k) is necessary for a guaranteed small elTor probability, regardless of 
the method of tuning the parameters. Bartlett (1993) improved Theorem 30.5 in 
several ways. For example, he proved that 

VC(k) > d min (k, 2 2d ) + 1. 
- d /2 + d + 1 

Bartlett also obtained similar lower bounds for not fully connected networks-see 
Problem 30.9-and for two-hidden-layer networks. 

Next we show that for the threshold sigmoid, the bound of Theorem 30.5 is 
tight up to a logarithmic factor, that is, the vc dimension is at most of the order of 
kdlogk. 

Theorem 30.6. (BAUM AND HAUSSLER (1989)). Let (5 be the threshold sigmoid 
and let C(k) be the class of neural net classifiers with k nodes in the hidden layer. 
Then the shatter coefficients satisfy 

< (~)k(d+l) (~)k+l < ne kd+2k+l 
d+l k+l -() , 

which implies that for all k, d :::: 1, 

VC(k) ::: (2kd + 4k + 2) 10g2(e(kd + 2k + 1)). 
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PROOF. Fix n points Xl, ... ,Xn E nd. We bound the number of different values 
of the vector (¢(XI), ... , ¢(xn» as ¢ ranges through C(k). A node j in the hidden 
layer realizes a dichotomy of the n points by a hyperplane split. By Theorems 13.9 
and 13.3, this can be done at mostEf:J (7) :::: (ne/(d + 1»d+1 different ways. The 
different splittings obtained at the k nodes determine the k-dimensional input of 
the output node. Different choices of the parameters Co, CI, ... , Ck of the output 
node determine different k-dimensionallinear splits of the n input vectors. This 
cannot be done in more than L~:J (7) :::: (ne/(k + 1»k+1 different ways for a fixed 
setting of the au and bi parameters. This altogether yields at most 

different dichotomies of the n points X I, ... , X n , as desired. The bound on the vc 
dimension follows from the fact that VC(k) :::: n if S(C(k), n) 2: 2n. 0 

For threshold sigmoids, the gap between the lower and upper bounds above is 
logarithmic in kd. Notice that the vc dimension is about the number of weights (or 
tunable parameters) w = kd + 2k + 1 of the network. Surprisingly, Maass (1994) 
proved that for networks with at least two hidden layers, the upper bound has 
the right order of magnitude, that is, the vc dimension is Q( w log w). A simple 
application of Theorems 30.4 and 30.6 provides the next consistency result that 
was pointed out in Farago and Lugosi (1993): 

Theorem 30.7. Let (J be the threshold sigmoid. Let gn be a classifier from C(k) 

that minimizes the empirical error 

over ¢ E C(k). If k ---+ 00 such that k log n/ n ---+ 0 as n ---+ 00, then gn is strongly 
universally consistent, that is, 

lim L(gn) = L * 
n-+oo 

with probability one for all distributions of (X, Y). 

PROOF. By the usual decomposition into approximation and estimation errors, 

L(gn) - L* = (L(gn) - inf L(¢)) + (inf L(¢) - L*). 
fjJEC(k) fjJEC(k) 

The second term on the right-hand side tends to zero by Corollary 30.1. For the 
estimation error, by Theorems 12.6 and 30.6, 

P {L(gn) - inf L(¢) > E} < 8S(C(k) , n)e-nE2/128 
fjJEC(k) 
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which is summable if k = o(nj log n). 0 

The theorem assures us that if a is the threshold sigmoid, then a sequence of 
properly sized networks may be trained to asymptotically achieve the optimum 
probability of error, regardless of what the distribution of (X, Y) is. For example, 
k ~ Fn will do the job. However, this is clearly not the optimal choice in the 
majority of cases. Since Theorem 30.6 provides suitable upper bounds on the vc 
dimension of each class C(k), one may use complexity regularization as described 
in Chapter 18 to find a near-optimum size network. 

Unfortunately, the situation is much less clear for more general, continuous 
sigmoids. The vc dimension then depends on the specific sigmoid. It is not hard 
to see that the vc dimension of C(k) with an arbitrary nondecreasing sigmoid is 
always larger than or equal to that with the threshold sigmoid (Problem 30.8). 
Typically, the vc dimension of a class of such networks is significantly larger 
than that for the threshold sigmoid. In fact, it can even be infinite! Macintyre and 
Sontag (1993) demonstrated the existence of continuous, infinitely many times 
differentiable monotone increasing sigmoids such that the vc dimension of C(k) is 
infinite if k :::: 2. Their sigmoids have little squiggles, creating the large variability. 
It is even more surprising that infinite vc dimension may occur for even smoother 
sigmoids, whose second derivative is negative for x > 0 and positive for x < O. 
In Chapter 25 (see Problem 25.11) we basically proved the following result. The 
details are left to the reader (Problem 30.13). 

Theorem 30.8. There exists a sigmoid a that is monotone increasing, continuous, 
concave on (0, (0), and convex on (-00,0), such that VC(k) = 00 for each k :::: 8. 

We recall once again that infinite vc dimension implies that there is no hope of 
obtaining nontrivial distribution-free upper bounds on 

no matter how the training sequence Dn is used to select the parameters of the 
neural network. However, as we will see later, it is still possible to obtain universal 
consistency. Finiteness of the vc dimension has been proved for many types of 
sigmoids. Maass (1993) and Goldberg and Jerrum (1993) obtain upper bounds 
for piecewise polynomial sigmoids. The results of Goldberg and Jerrum (1993) 
apply for general classes parametrized by real numbers, e.g., for classes of neural 
networks with the sigmoid 

a(x) = { 1 - Ij(2x + 2) 
Ij(2 - 2x) 

if x :::: 0 
if x < O. 

Macintyre and Sontag (1993) prove VC(k) < 00 for a large class of sigmoids, which 
includes the standard, arctan, and gaussian sigmoids. While finiteness is useful, the 
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lack of an explicit tight upper bound on VC(k) prevents us from getting meaningful 
upper bounds on the performance of gn, and also from applying the structural 
risk minimization of Chapter 18. For the standard sigmoid, and for networks with 
k hidden nodes and w tunable weights Karpinski and Macintyre (1994) recently 
reported the upper bound 

kw(kw - 1) 
V :::: 2 + w(1 + 2k) + w(l + 3k) 10g(3w + 6kw + 3). 

See also Shawe-Taylor (1994). 
Unfortunately, the consistency result of Theorem 30.7 is only of theoretical 

interest, as there is no efficient algorithm to find a classifier that minimizes the 
empirical error probability. Relatively little effort has been made to solve this 
important problem. Farago and Lugosi (1993) exhibit an algorithm that finds the 
empirically optimal network. However, their method takes time exponential in kd, 
which is intractable even for the smallest toy problems. Much more effort has been 
invested in the tuning of networks by minimizing the empirical squared error, or 
the empirical L 1 error. These problems are also computationally demanding, but 
numerous suboptimal hill-climbing algorithms have been used with some success. 
Most famous among these is the back propagation algorithm of Rumelhart, Hinton, 
and Williams (1986). Nearly all known algorithms that run in reasonable time may 
get stuck at local optima, which results in classifiers whose probability of error 
is hard to predict. In the next section we study the error probability of neural net 
classifiers obtained by minimizing empirical L p errors. 

We end this section with a very simple kind of one-layer network. The committee 
machine (see, e.g., Nilsson (1965) and Schmidt (1994)) is a special case of a one­
hidden-layer neural network of the form (30.2) with Co = 0, Cl = ... = Ck = 1, and 
the threshold sigmoid. 

o or 1 

FIGURE 30.11. The committee machine has fixed weights at the 

output of the hidden layer. 

Committee machines thus use a majority vote over the outcomes of the hidden 
neurons. It is interesting that the lower bound of Theorem 30.5 remains valid 
when C(k) is the class of all committee machines with k neurons in the hidden 
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layer. It is less obvious, however, that the class of committee machines is large 
enough for the asymptotic property 

lim inf L(rp) = L * 
k-Hx) </JEC(k) 

for all distributions of (X, Y) (see Problem 30.6). 

30.5 Ll Error Minimization 

FIGURE 30.12. A partition of the plane 

determined by a committee machine 

with 5 hidden neurons. The total vote 

is shown in each region. The region 

in which we decide "0" is shaded. 

In the previous section, we obtained consistency for the standard threshold sigmoid 
networks by empirical risk minimization. We could not apply the same methodol­
ogy for general sigmoids simply because the vc dimension for general sigmoidal 
networks is not bounded. It is bounded for certain classes of sigmoids, and for 
those, empirical risk minimization yields universally consistent classifiers. Even if 
the vc dimension is infinite, we may get consistency, but this must then be proved 
by other methods, such as methods based upon metric entropy and covering num­
bers (see Chapters 28 and 29, as well as the survey by Haussler (1992)). One could 
also train the classifier by minimizing another empirical criterion, which is exactly 
what we will do in this section. We will be rewarded with a general consistency 
theorem for all sigmoids. 

For 1 ::; p < 00, the empirical L p error of a neural network l/f is defined by 

The most interesting cases are p = 1 and p = 2. For P = 2 this is just the empirical 
squared error, while p = 1 yields the empirical absolute error. Often it makes 
sense to attempt to choose the parameters of the network l/f such that J~p\ l/f) is 
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minimized. In situations where one is not only interested in the number of errors, 
but also how robust the decision is, such error measures may be meaningful. In 
other words, these error measures penalize even good decisions if 'ljf is close to the 
threshold value O. Minimizing J}~P)is like finding a good regression function esti­
mate. Our concern is primarily with the error probability. In Chapter 4 we already 
highlighted the dangers of squared error minimization and L p errors in general. 
Here we will concentrate on the consistency properties. We minimize the empirical 
error over a class of functions, which should not be too large to avoid overfitting. 
However, the class should be large enough to contain a good approximation of the 
target function. Thus, we let the class of candidate functions grow with the sample 
size n, as in Grenander's "method of sieves" (Grenander (1981)). Its consistency 
and rates of convergence have been widely studied primarily for least squares 
regression function estimation and nonparametric maximum likelihood density 
estimation-see Geman and Hwang (1982), Gallant (1987), and Wong and Shen 
(1992). 

REMARK. REGRESSION FUNCTION ESTIMATION. In the regression function estima­
tion setup, White (1990) proved consistency of neural network estimates based on 
squared error minimization. Barron (1991; 1994) used a complexity-regularized 
modification of these error measures to obtain the fastest possible rate of con­
vergence for nonparametric neural network estimates. Haussler (1992) provides a 
general framework for empirical error minimization, and provides useful tools for 
handling neural networks. Various consistency properties of nonparametric neu­
ral network estimates have been proved by White (1991), Mielniczuk and Tyrcha 
(1993), and Lugosi and Zeger (1995). 0 

We only consider the p = 1 case, as the generalization to other values of p is 
straightforward. Define the Ll error of a function 'ljf : Rd -+ R by 

J('ljf) = E{I'ljf(X) - YI}. 

We pointed out in Problem 2.12 that one of the functions minimizing J ('ljf) is the 
Bayes rule g* whose error is denoted by 

J* = inf J('ljf) = J(g*). 
1jJ 

Then clearly, J* = L *. We have also seen that if we define a decision by 

{ 
0 if 'ljf(x) :::: 1/2 

g(x) = 1 otherwise, 

then its error probability L(g) = P{g(X) =I Y} satisfies the inequality 

L(g) - L* :::: J('ljf) - J*. 

Our approach is to select a neural network from a suitably chosen class of networks 
by minimizing the empirical error 
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Denoting this function by o/n, according to the inequality above, the classifier 

{ 
0 if o/n(x) ::: 1/2 

gn(x) = h· ot erWlse, 

is consistent if the LIenor 

converges to J* in probability. Convergence with probability one provides strong 
consistency. For universal convergence, the class over which the minimization is 
performed has to be defined carefully. The following theorem shows that this may 
be achieved by neural networks with k nodes, in which the range of the output 
weights Co, CI, ... , Ck is restricted. 

Theorem 30.9. (LUGOSI AND ZEGER (1995)). Let (j be an arbitrary sigmoid. 
Define the class :01 of neural networks by 

and let o/n be afunction that minimizes the empirical Ll error 

over 0/ E :01· If kn and f3n satisfy 

. knf3~ log(kn f3n) 
lim kn = 00, lim f3n = 00, and lUll = 0, 

n---+oo n---+oo n---+oo n 

then the classification rule 

is universally consistent. 

{ 
0 if o/n(x) ::: 1/2 

gn (x) = 1 otherwise 

REMARK. Strong universal consistency may also be shown by imposing slightly 
more restrictive conditions on kn and f3n (see Problem 30.16).0 

PROOF. By the argument preceding the theorem, it suffices to prove that J('t/ln ) -

J* -+ 0 in probability. Write 

J(ljIn) - J* = (J(ljIn) - inf J(ljI)) + (inf J(o/) - J*) . 
1jJE:F" 1jJE:F" 
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To handle the approximation error-the second term on the right-hand side-let 
t' E :01 be a function such that 

E{lt'(X) - g*(X)1} ::; E{lt(X) - g*(X)1} 

for each t E :07. The existence of such a function may be seen by noting that 
E{lt(X) - g*(X)1} is a continuous function of the parameters ai, hi, Ci of the 
neural network t. Clearly, 

inf J(t) - J* < J(t') - J* 
1jJEFI1 

= E{lt'(X) - YI} - E{lg*(X) - YI} 

< E{lt'(X) - g*(X)I}' 

which converges to zero as n -+ 00, by Problem 30.4. We start the analysis of the 
estimation error by noting that as in Lemma 8.2, we have 

J(tn) - inf J(t) ::; 2 sup IJ(t) - In(t)1 
1jJE:F;l 1jJEF" 

l
In I = 2 sup E{lt(X) - YI} - - L It(Xd - Yil . 

1jJEFI1 n i=l 

Define the class Mn of functions on nd x {O, I} by 

Mil 

={m(x, Y) = ItciG(arx +bi) +CO - yl : ai E Rd, hi E R, ~ [Cd:s: fJn}. 

Then the previous bound becomes 

2 sup E{m(X, Y)} - - Lm(Xi , Yi ) . 

l
In I 

mEM" n i=l 

Such quantities may be handled by the uniform law of large numbers of Theorem 
29.1, which applies to classes of uniformly bounded functions. Indeed, for each 
m EMn 

( 

kl1 ) 
< 2max ~ lcd, 1 

< 2{3n, 
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if n is so large that f3n 2: 1. For such n's, Theorem 29.1 states that 

p { sup iE{m(X, Y)} - ~ t111(Xi , Yi)i > E} 
mEMn 1=1 

::::: 8E {N(E/8, Mn(Dn»} e-ne2 /(512f3,7) , 

where N(E, Mn(Dn» denotes the h -covering number of the random set 

defined in Chapter 29. All we need now is to estimate these covering numbers. 
Observe that for 1111,1112 E Mn with 1111(X, y) = 11/fI(X) - yl and 1112(X, y) = 
11/f2(X) - yl, for any probability measure v on n d x {O, I}, 

f 1111I(X, y) - 1112 (X , y)lv(d(x, y») ::::: f 11/fI(X) -1/f2(x)lfL(dx), 

where fL is the marginal of von nd. Therefore, it follows thatN(E, Mn(Dn» ::::: 
N(E, :Fn(X7», where X7 = (Xl, ... , Xn). It means that an upper bound on the 
covering number of the class of neural networks :Fn is also an upper bound on the 
quantity that interests us. This bounding may be done by applying lemmas from 
Chapters 13 and 30. Define the following three collections of functions: 

QI {aT x + b; a End, bEn} , 

Q2 { 0- (a T x + b); a End, bEn} , 

Q3 {co-CaT x + b); a End, bEn, c E [-f3n, f3nJ}. 

By Theorem 13.9, the vc dimension of the class of sets 

Qt = {(x, t) : t ::::: 1/f(x), 1/f E Qd 

is Vgt ::::: d + 2. This implies by Lemma 29.5 that Vg; ::::: d + 2, so by Corollary 
29.2, for any xl1 = (Xl, ... , xn ), 

(
4 )2(d+2) 

N(E, Q2(X~» ::::: 2 E
e 

, 

where Q2(X?) = {z E nn : z = (g(xd, ... , g(xn», g E Q2}. Now, using similar 
notations, Theorem 29.7 allows us to estimate covering numbers of Q3(Xn: 

4 (8 f3 )2d+S 
N(E, Q3(X?) ::::: ;N(E/(2f3n), Q2(X?») ::::: : n 

if fin > 2/e. Finally, we can apply Lemma 29.6 to obtain 

< 
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Thus, substituting this bound into the probability inequality above, we get for n 
large enough, 

which tends to zero if 

concluding the proof. 0 

knf3~ 10g(knf3n) 
-....:.:....---- -+0, 

n 

There are yet other ways to obtain consistency for general sigmoidal networks. 
We may restrict the network by discretizing the values of the coefficients in some 
way-thus creating a sieve with a number of members that is easy to enumerate­
and applying complexity regularization (Chapter 18). This is the method followed 
by Barron (1988; 1991). 

30.6 The Adaline and Padaline 

Widrow (1959) and Widrow and Hoff (1960) introduced the Adaline, and Specht 
(1967; 1990) studied polynomial discriminant functions such as the Padaline. 
Looked at formally, the discriminant function 1/1 used in the decision g(x) = 
I{1/J(x»O} is of a polynomial nature, with 1/1 consisting of sums of monomials like 

( (l»)il (d»)id a x '" x , 

where iI, ... , id :::: 0 are integers, and a is a coefficient. The order of a monomial 
is i 1 + ... + id • Usually, all terms up to, and including those of order r are included. 
Widrow's Adaline (1959) has r = 1. The total number of monomials of order r or 
less does not exceed (r + 1)d. The motivation for developing these discriminants is 
that only up to (r + l)d coefficients need to be trained and stored. In applications 
in which data continuously arrive, the coefficients may be updated on-line and 
the data can be discarded. This property is, of course, shared with standard neu­
ral networks. In most cases, order r polynomial discriminants are not translation 
invariant. Minimizing a given criterion on-line is a phenomenal task, so Specht 
noted that training is not necessary if the a's are chosen so as to give decisions that 
are close to those of the kernel method with normal kernels. 

For example, if K(u) = e-u2
/
2 , the kernel method picks a smoothing factor h 
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(such that h -+ 0 and nhd -+ 00; see Chapter 10) and uses 

1/r(x) ~ t(2Yi -1)K (IIX - Xiii) 
n i=l h 

The same decision is obtained if we use 

Now, approximate this by using Taylor's series expansion and truncating to the 
order r terms. For example, the coefficient of (X(l))i! ... (x(d))id in the expansion 

of 1/r(x) would be, if L~=l i j = i, 

These sums are easy to update on-line, and decisions are based on the sign of the 
order r truncation 1/r r of 1/r. The classifier is called the Padaline. Specht notes that 
overfitting in 1/rr does not occur due to the fact that overfitting does not occur for 
the kemel method based on 1/r. His method interpolates between the latter method, 
generalized linear discrimination, and generalizations of the perceptron. 

For fixed r, the Pad aline defined above is not universally consistent (for the same 
reason linear discriminants are not universally consistent), but if r is allowed to 
grow with n, the decision based on the sign of 1/rr becomes universally consistent 
(Problem 30.14). Recall, however, that Padaline was not designed with a variable 
r in mind. 

30.7 Polynomial Networks 

Besides Adaline and Padaline, there are several ways of constructing polyno­
mial many-layered networks in which basic units are of the form (xCl)t ... 

(XCk))ik for inputs xCI), ... , x(k) to that level. Pioneers in this respect are Gabor 
(1961), Ivakhnenko (1968; 1971) who invented the GMDH method-the group 
method of data handling-and Barron (1975). See also Ivakhnenko, Konovalenko, 
Tulupchuk, and Tymchenko (1968) and Ivakhnenko, Petrache, and Krasyts'kyy 
(1968). These networks can be visualized in the following way: 
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FIGURE 30.13. Simple polynomial network: Each gi represents a 

simple polynomialfunction of its input. In Barron's work (Barron 

(1975), Barron and Barron (1988)), the gi 's are sometimes 2-input 

elements of the form gi(X, y) = ai + bix + CiY + dixy. 

If the gi 's are Barron's quadratic elements, then the network shown in Figure 30.13 
represents a particular polynomial of order 8 in which the largest degree of any xCi) 

is at most 4. The number of unknown coefficients is 36 in the example shown in 
the figure, while in a full-fledged order-8 polynomial network, it would be much 
larger. 

For training these networks, many strategies have been proposed by Barron and 
his associates. Ivakhnenko (1971), for example, trains one layer at a time and lets 
only the best neurons in each layer survive for use as input in the next layer. 

It is easy to see that polynomial networks, even with only two inputs per node, 
and with degree in each cell restricted to two, but with an unrestricted number 
of layers, can implement any polynomial in d variables. As the polynomials are 
dense in the Loo sense on C[a, b]d for all a, bEnd, we note by Lemma 30.2 that 
such networks include a sequence of classifiers approaching the Bayes error for 
any distribution. Consider several classes of polynomials: 

where 0/1, ... , o/k are fixed monomials, but the ai's are free coefficients. 

('h = {o/ E ('h : 0/1, ... , o/k are monomials of order .::; r}. 

(The order of a monomial (X(l»)i 1 
••• (X(d»)id is il + ... + id.) 

93 = {o/ E 91 : 0/1, ... , o/k are monomials of order ~ r, but k is not fixed}. 

As k ~ 00, 91 does not generally become dense in C[a, b]d in the Loo sense 
unless we add o/k+l, 0/k+2, ... in a special way. However, 93 becomes dense as 
r ~ 00 by Theorem A.9 and 92 becomes dense as both k ~ 00 and r ~ 00 

(as 92 contains a subclass of 93 for a smaller r depending upon k obtained by 
including in l/II, ... , o/k all monomials in increasing order). 

The vc dimension of the class of classifiers based on 91 is not more than k (see 
Theorem 13.9). The vc dimension of classifiers based upon 92 does not exceed 
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those of ~h, which in tum is nothing but the number of possible monomials of 
order:::; r. A simple counting argument shows that this is bounded by (r + 1)d . See 
also Anthony and Holden (1993). 

These simple bounds may be used to study the consistency of polynomial net­
works. 

Let us take a fixed structure network in which all nodes are fixed-they have 
at most k inputs with k :::: 2 fixed and represent polynomials of order :::; r with 
r :::: 2 fixed. For example, with r = 2, each cell with input Z I, ... , Zk computes 
Li ai o/i (Zl, ... , Zk), where the ai's are coefficients and the o/i 's are fixed monomi­
als of order r or less, and all such monomials are included. Assume that the layout 
is fixed and is such that it can realize all polynomials of order:::; s on the input 
X(l), ... , x(d). One way of doing this is to realize all polynomials of order:::; r by 
taking all (~) possible input combinations, and to repeat at the second level with 

(cp) cells of neurons, and so forth for a total of s / r layers of cells. This construc­
tion is obviously redundant but it will do for now. Then note that the vc dimension 
is not more than (s + 1)d, as noted above. If we choose the best coefficients in the 
cells by empirical risk minimization, then the method is consistent: 

Theorem 30.10. In the fixed-structure polynomial network described above, if Ln 
is the probability of error of the empirical risk minimizer, then E{ Ln} -+ L * if 
s -+ (X) and s = o(n lid). 

PROOF. Apply Lemma 30.2 and Theorem 12.6. 0 

Assume a fixed-structure network as above such that all polynomials of order 
:::; s are realized plus some other ones, while the number of layers of cells is not 
more than I. Then the vc dimension is not more than (r I + l)d because the maximal 
order is not more than Ir. Hence, we have consistency under the same conditions 
as above, that is, s -+ 00, and I = o(n lid). Similar considerations can now be used 
in a variety of situations. 

30.8 Kolmogorov-Lorentz Networks 
and Additive Models 

Answering one of Hilbert's famous questions, Kolmogorov (1957) and Lorentz 
(1976) (see also Sprecher (1965) and Hecht-Nielsen (1987)) obtained the following 
interesting representation of any continuous function on [0, 1]d. 

Theorem 30.11. (KOLMOGOROV (1957); LORENTZ (1976)). Let f be continuous 
on [0, 1]d. Then f can be rewritten asfollows: let <5 > 0 be an arbitrary constant, 
and choose 0 < E :::; <5 rational. Then 

2d+1 

f = L g(Zk), 
k=l 
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where g : R ----'»- R is a continuous function (depending upon f and E), and each 
Zk is rewritten as 

d 

Zk = LAk 1fr (xU) + Ek) + k. 
j=l 

Here A is real and 1jf is monotonic and increasing in its argument. Also, both A and 
1jf are universal (independent of f), and 1jf is Lipschitz: 11jf(x) -1jf(y)1 :s clx - y 1 

for some c > 0. 

The Kolmogorov-Lorentz theorem states that f may be represented by a very 
simple network that we will call the Kolmogorov-Lorentz network. What is amaz­
ing is that the first layer is fixed and known beforehand. Only the mapping g 

depends on f. This representation immediately opens up new revenues of pursuit­
we need not mix the input variables. Simple additive functions of the input variables 
suffice to represent all continuous functions. 

input 

FIGURE 30.14. The Kolmogorov-Lorentz network of Theorem 

30.11. 

To explain what is happening here, we look at the interleaving of bits to make 
one-dimensional numbers out of d-dimensional vectors. For the sake of simplicity, 
let f : [0, 1]2 ----'»- R. Let 

be the binary expansions of x and y, and consider a representation for the function 
f(x, y). The bit-interleaved number Z E [0, 1] has binary expansion 

and may thus be written as z = ¢(x) + (lj2)¢(y), where 
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and thus 
1 
2CP(Y) = O.Oy10Y20Y3 .... 

We can also retrieve x and y from z by noting that 

x = 0/1 (Z), 0/1 (Z) = O.Z1Z3ZSZ7 ... , 

and 
y = 0/2(Z), 0/2(Z) = O.Z2Z4Z6ZS .... 

Therefore, 

J(x, y) = J(0/1(Z),0/2(Z)) 

def 
g(z) (a one-dimensional function of z) 

= g (1)(X) + ~1>(Y») 
The function cP is strictly monotone increasing. Unfortunately, cP, 0/1, and 0/2 are 
not continuous. Kolmogorov's theorem for this special case is as follows: 

Theorem 30.12. (KOLMOGOROV (1957)). There exist jive monotone Junctions 

CPI, ... , CPs : [0, 1] -+ Rsatisfying Icpi(xI)-CPi(x2)1 ::; IXI -x21, withtheJollowing 
property: Jor every J E e[O, 1]2 (the continuous Junctions on [0, 1]2), there exists 
a continuous Junction g such thatJor all (Xl, X2) E [0,1]2, 

The difference with pure bit-interleaving is that now the CPi 's are continuous and 
g is continuous whenever J is. Also, just as in our simle example, Kolmogorov 
gives an explicit construction for CPl, ... , CPs. 

Kolmogorov's theorem may be used to show the denseness of certain classes 
of functions that may be described by networks. There is one pitfall however: any 
such result must involve at least one neuron or cell that has a general function in 
it, and we are back at square one, because a general function, even on only one 
input, may be arbitrarily complicated and wild. 

Additive models include, for example, models such as 

d 

ex + L o/i(x(i)), 
i=l 

where the o/i'S are unspecified univariate functions (Friedman and Silverman 
(1989), Hastie and Tibshirani (1990)). These are not powerful enough to approxi­
mate all functions. A generalized additive model is 
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(Hastie and Tibshirani (1990», where (5 is now a given or unspecified function. 
From Kolmogorov's theorem, we know that the model 

with l/fi,k, l/f unspecified functions, includes all continuous functions on compact 
sets and is thus ideally suited for constructing networks. In fact, we may take 
ctk = k and take alll/fi,k's as specified in Kolmogorov's theorem. This leaves only 
l/f as the unknown. 

Now, consider the following: any continuous univariate function f can be ap­
proximated on bounded sets to within E by simple combinations of threshold 
sigmoids (5 of the form 

k 

L ai(5(x - Ci), 
i=l 

where ai, Ci, k are variable. This leads to a two-hidden-layer neural network repre­
sentation related to that of Kurkova (1992), where only the last layer has unknown 
coefficients for a total of 2k. 

Theorem 30.13. Consider a network classifier of the form described above in 
which (5(.) is the threshold sigmoid, and the ai's and Ci 's are found by empirical 
error minimization. Then E{Ln } -7> L * for all distributions of (X, Y), if k -7> 00 

and klognjn -7> O. 

PROOF. We will only outline the proof. First observe that we may approximate 
all functions on C[a, b]d by selecting k large enough. By Lemma 30.2 and The­
orem 12.6, it suffices to show that the vc dimension of our class of classifiers 
is o(n j log n). Considering Cik + 2:.1=1 l/fi,k(XCi» as new input elements, called Yb 

1 S k s 2d + 1, we note that the vc dimension is not more than that of the 
classifiers based on 

2d+l k 

L L ai(5(Yj - Ci), 
k==l i=l 

which in turn is not more than that of the classifiers given by 

k(2d+1) 

L bz(5(zz - dz), 
i=l 

where {bt}, {dz} are parameters, and {zz} is an input sequence. By Theorem 13.9, 
the vc dimension is not more than k(2d + 1). This concludes the proof. 0 

For more results along these lines, we refer to Kurkova (1992). 
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30.9 Projection Pursuit 

In projection pursuit (Friedman and Tukey (1974), Friedman and Stuetzle (1981), 
Friedman, Stuetzle, and Schroeder (1984), Huber (1985), Hall (1989), Flick, Jones, 
Priest, and Herman (1990», one considers functions of the form 

k 

o/(x) = L o/j(bj + aJ x), 
j=l 

(30.3) 

where b j E R, a j E Rd are constants and 0/1, ... , o/k are fixed functions. This 
is related to, but not a special case of, one-hidden-Iayer neural networks. Based 
upon the Kolmogorov-Lorentz representation theorem, we may also consider 

d 

o/(x) = L o/j(x(j», 
j=l 

(30.4) 

for fixed functions o/j (Friedman and Silverman (1989), Hastie and Tibshirani 
(1990». In (30.4) and (30.3), the o/j'S may be approximated in tum by spline 
functions or other nonparametric constructs. This approach is covered in the liter­
ature on generalized additive models (Stone (1985), Hastie and Tibshirani (1990». 

The class of functions eaT x, a E R d , satisfies the conditions of the Stone­
Weierstrass theorem (Theorem A.9) and is therefore dense in the Loo norm on 
C[a, b]d for any a, b E Rd (see, e.g., Diaconis and Shahshahani (1984». 

As a corollary, we note that the same denseness result applies to the family 

k 

L o/i(aT x), (30.5) 
i=l 

where k 2: 1 is arbitrary and 0/1, 0/2, ... are general functions. The latter result is 
at the basis of projection pursuit methods for approximating functions, where one 
tries to find vectors ai and functions o/i that approximate a given function very 
well. 

REMARK. In some cases, approximations by functions as in (30.5) may be exact. 
For example, 

and 

Theorem 30.14. (DIACONIS AND SHAHSHAHANI (1984». Let m be a positive in­
teger. There are (m+~-l) distinct vectors a j E Rd such that any homogeneous 
polynomial f of order m can be written as 



for some real numbers C j. 

C+!-l) 
f(x) = L cj(aJ x)m 

j=l 
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Every polynomial of order mover n d is a homogeneous polynomial of order m 
over n d+ 1 by replacing the constant 1 by a component x (d+ 1) raised to an appropriate 
power. Thus, any polynomial of order mover nd may be decomposed exactly by 

(m+d) 

f (x) = t C j (a J x + b j ) m 

j=l 

for some real numbers b j, C j and vectors a j E nd. 
Polynomials may thus be represented exactly in the form ~~=l cfJi(aF x) with 

k = (m~d). As the polynomials are dense in C[a, b]d, we have yet another proof 

that {~~=l cfJi(aF x)} is dense in C[a, b]d. See Logan and Shepp (1975) or Logan 

(1975) for other proofs. 
The previous discussion suggests at least two families from which to select a 

discriminant function. As usual, we let g(x) = I{1/f(x»O} for a discriminant function 
1jJ. Here 1jJ could be picked from 

or 

where m is sufficiently large. If we draw 1jJ by minimizing the empirical error 
(admittedly at a tremendous computational cost), then convergence may result if 
m is not too large. We need to know the vc dimension of the classes of classifiers 
corresponding to:;::;n and F~. Note that Fm coincides with all polynomials of order 
m and each such polynomial is the sum of at most (m + l)d monomials. If we invoke 
Lemma 30.2 and Theorem 12.6, then we get 

Theorem 30.15. Empirical risk minimization to determine {a j , b j, C j } in Fm leads 
to a universally consistent classifier provided that m -+ 00 and m = o(n lid / log n). 

Projection pursuit is very powerful and not at all confined to our limited discus­
sion above. In particular, there are many other ways of constructing good consistent 
classifiers that do not require extensive computations such as empirical error min­
imization. 
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30.10 Radial Basis Function Networks 

We may perform discrimination based upon networks with functions of the form 

(and decision g(x) = I{1/f(x»O}), where k is an integer, aI, ... , ak hI, ... , hk are 
constants, xl, ... , Xk E Rd, and K is a kernel function (such as K(u) = e-lIul12 or 
K(u) = I/O + IluI1 2)). In this form, 1fJ covers several well-known methodologies: 

0) The kernel rule (Chapter 10): Take k = n, ai = 2Yi -1, hi = h, xi = Xi. With 
this choice, for a large class of kernels, we are guaranteed convergence if 
h ~ 0 and nhd ~ 00. This approach is attractive as no difficult optimization 
problem needs to be solved. 

(2) The potential function method. In Bashkirov, Braverman, and Muchnik 
(964), the parameters are k = n, hi = h, Xi = Xi. The weights ai are 
picked to minimize the empirical error on the data, and h is held fixed. The 
original kernel suggested there is K(u) = I/O + lIuI1 2). 

(3) Linear discrimination. For k = 2, K(u) = e- lIuIl2 , hi == h, al = 1, a2 = -1, 
the set {x : 1fJ(x) > O} is a linear halfspace. This, of course, is not uni­
versally consistent. Observe that the separating hyperplane is the collection 
of all points x at equal distance from Xl and X2. By varying Xl and X2, all 
hyperplanes may be obtained. 

(4) Radial basis function (RBF) neural networks (e.g., Powell (987), Broom­
head and Lowe (988), Moody and Darken (989), Poggio and Girosi 
(990), Xu, Krzyzak, and Oja (993), Xu, Krzyzak, and Yuille (994), and 
Krzyzak, Linder, and Lugosi (1993)). An even more general function 1fJ is 
usually employed here: 

k 

1fJ(x) = L Ci K ((x - xdT Ai(X - Xi)) + co, 
i=l 

where the A/s are tunable d x d matrices. 

(5) Sieve methods. Grenander (981) and Geman and Hwang (982) advocate 
the use of maximum likelihood methods to find suitable values for the tunable 
parameters in 1fJ (for k, K fixed beforehand) subject to certain compactness 
constraints on these parameters to control the abundance of choices one 
may have. If we were to use empirical error minimization, we would find, 
if k ::: n, that all data points can be correctly classified (take the hi'S small 
enough, setai = 2Yi -1, Xi = Xi, k = n), causing overfitting. Hence, k must 
be smaller than n if parameters are picked in this manner. Practical ways 
of choosing the parameters are discussed by Kraaijveld and Duin (1991), 
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and Chou and Chen (1992). In both (4) and (5), the Xi'S may be thought of 
as representative prototypes, the ai's as weights, and the hi's as the radii of 
influence. As a rule, k is much smaller than n as Xl, ... , Xk summarizes the 
information present at the data. 

To design a consistent RBF neural network classifier, we may proceed as in (1). 
We may also take k --+ 00 but k = o(n). Just let (Xl, ... , xd == (Xl, ... , Xk), 
(aI, ... , ak == 2Yl - 1, ... , 2Yk - 1), and choose Ai or hi to minimize a given 
error criterion based upon X k+ I, ... , X n, such as 

A 1 n 

Ln (g) = --k L I{g(x; )iY;} , 
n-

i=k+l 

where g(x) = I{1f;(x»O}, and 1/1 is as in (1). This is nothing but data splitting (Chapter 
22). Convergence conditions are described in Theorem 22.1. 

A more ambitious person might try empirical risk minimization to find the best 
Xl, ... , Xb aI,"" ab AI, ... , Ak (d x d matrices as in (4)) based upon 

1 n -L I{g(x;)=!Yd' 
n i=I 

If k --+ 00, the class of rules contains a consistent subsequence, and therefore, it 
suffices only to show that the vc dimension is o(n / log n). This is a difficult task 
and some kernels yield infinite vc dimension, even if d = I and k is very small 
(see Chapter 25). However, there is a simple argument if K = IR for a simple set 
R. Let 

A = {{x: X = a + Ay, y E R} : a End, A a d x d matrix} . 

If R is a sphere, then A is the class of all ellipsoids. The number of ways of 
shattering a set {x 1, ... , xn } by intersecting with members from A is not more 
than 

nd(d+ l)/2+ 1 

(see Theorem 13.9, Problem 13.10). The number of ways of shattering a set 
{Xl, ... , x l1 } by intersecting with sets of the form 

is not more than the product of all ways of shattering by intersections with RI, 
with R2, and so forth, that is, 

nk(d(d+1)/2+1) . 

The logarithm of the shatter coefficient is o(n) if k = o(n/ log n). Thus, by Corollary 
12.1, we have 

Theorem 30.16. (KRzYZAK, LINDER, AND LUGOSI (1993)). lfwe take k --+ 00, 

k = o(n/ log n) in the RBF classifier (4) in which K = IR , R being the unit ball of 
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R d , and in which all the parameters are chosen by empirical risk minimization, 
then E{Ln } -+ L * for all distributions of (X, Y). Furthermore, ijQk is the class of 
all RBF classifiers with k prototypes, 

k(d(d + 1)/2 + 1) log n + log(8e) 
E{Ln } - inf L(g) .:::; 16 . 

gEQk 2n 

The theorem remains valid (with modified constants in the error estimate) when 
R is a hyperrectangle or polytope with a bounded number of faces. However, for 
more general K, the vc dimension is more difficult to evaluate. 

For general kernels, consistent RBF classifiers can be obtained by empirical L I or 
L2 error minimization (Problem 30.32). However, no efficient practical algorithms 
are known to compute the minima. 

Finally, as suggested by Chou and Chen (1992) and Kraaijveld and Duin (1991), 
it is a good idea to place Xl, ... ,Xk by k-means clustering or another clustering 
method and to build an RBF classifier with those values or by optimization started 
at the given cluster centers. 

Problems and Exercises 

PROBLEM 30.1. Let k, I be integers, with d ::: k < n, and I ::: (~). Assume X has a density. 

Let A be a collection of hyperplanes drawn from the e) possible hyperplanes through d 
points of {XI, ... , Xk }, and let gA be the corresponding natural classifier based upon the 
arrangement peA). Take I such collections A at random and with replacement, and pick 
the best A by minimizing Ln(gA), where 

Show that the selected classifier is consistent if I --+ 00, ld = o(n), n / (llog k) --+ 00. (Note: 
this is applicable with k = L n /2 J, that is, half the sample is used to define A, and the other 
half is used to pick a classifier empilically.) 

PROBLEM 30.2. We are given a tree classifier with k internal linear splits and k + I leaf 
regions (a BSP tree). Show how to combine the neurons in a two-hidden-Iayer perceptron 
with k and k + I hidden neurons in the two hidden layers so as to obtain a decision that 
is identical to the tree-based classifier (Brent (1991), Sethi (1990; 1991)). For more on 
the equivalence of decision trees and neural networks, see Meisel (1990), Koutsougeras 
and Papachristou (1989), or Golea and Marchand (1990). HINT: Mimic the argument for 
arrangements in text. 

PROBLEM 30.3. Extend the proof of Theorem 30.4 so that it includes any nondecreasing 
sigmoid with limx~_oo o-(x) = -1 and limx~oo o-(x) = 1. HINT: If t is large, o-(tx) approx­
imates the threshold sigmoid. 

PROBLEM 30.4. This exercise states denseness in L I (fJ.,) for any probability measure fJ.,. 

Show that for every probability measure fJ., on R d, every measurable function f : Rd --+ R 
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with j 1!(x)I,u(dx) < 00, and every E > 0, there exists a neural network with one hidden 
layer and function 1/J(x) as in (30.2) such that 

f I!(x} -1/f(x)I,u(dx) < E 

(Hornik (1991). HINT: Proceed as in Theorem 30.4, considering the following: 
(1) Approximate! in L 1 (,u) by a continuous function g(x) that is zero outside some 

bounded set B C 1?f Since g(x) is bounded, its maximum f3 = maxxERd Ig(x)1 
is finite. 

(2) Now, choose a to be a positive number large enough so that both B C [-a, a]d 
and,u ([ -a, a]d) is large. 

(3) Extend the restriction of g(x) to [-a, a)d periodically by tiling over all of nd. 
The obtained function, i(x) is a good approximation of g(x) in L J (,u). 

(4) Take the Fourier series approximation of i(x), and use the Stone-Weierstrass 
theorem as in Theorem 30.4. 

(5) Observe that every continuous function on the real line that is zero outside some 
bounded interval can be arbitrarily closely approximated uniformly over the whole 
real line by one-dimensional neural networks. Thus, bounded functions such as 
the sine and cosine functions can be approximated arbitrarily closely by neural 
networks in L 1 (j)) for any probability measure j) on n. 

(6) Apply the triangle inequality to finish the proof. 

PROBLEM 30.5. Generalize the previous exercise for denseness in Lp(,u). More precisely, 
let 1 :::: p < 00. Show that for every probability measure ,u on nd

, every measurable 
function!: nd -+ nwithjl!(x)IP,u(dx) < oo,andeverYE > O,thereexistsaneural 
network with one hidden layer h(x) such that 

(1 I/(x) - hex)!, /L(dX») lip < E 

(Hornik (1991)). 

PROBLEM 30.6. COMMITTEE MACHINES. Let C(k) be the class of all committee machines. 
Prove that for all distributions of (X, Y), 

lim inf L(¢) = L *. 
k---'>oo <jJEC(k) 

HINT: For a one-hidden-layer neural network with coefficients Ci in (30.2), approximate the 
Ci'S by discretization (truncation to a grid of values), and note that Ci 1/Ji (x ) may thus be 
approximated in a committee machine by a sufficient number of identical copies of 1/Ji(X). 
This only forces the number of neurons to be a bit larger. 

PROBLEM 30.7. Prove Theorem 30.5 for arbitrary sigmoids. HINT: Approximate the thresh­
old sigmoid by a (t x) for a sufficiently large t. 

PROBLEM 30.8. Let a be a nondecreasing sigmoid with a(x) -+ -1 if x -+ -00 and 
a(x) -+ 1 if x -+ 00. Denote by C~k) the class of corresponding neural network classifiers 
with k hidden layers. Show that VC~k) ~ VC(k), where C(k) is the class corresponding to the 
threshold sigmoid. 
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PROBLEM 30.9. This exercise generalizes Theorem 30.5 for not fully connected neural net­
works with one hidden layer. Consider the class C(k) of one-hidden-Iayer neural networks 
with the threshold sigmoid such that each of the k nodes in the hidden layer are connected to 
d], d2 , ••• , dk inputs, where 1 :::: di :::: d. More precisely, C(k) contains all classifiers based 
on functions of the form 

k d; 

1jf(x) = Co + L Cio-(1jfi(X», where 1jfi(X) = L ajx(I1l;,j) , 
j=1 i=] 

where for each i, (mi,], ... , mi,d) is a vector of distinct positive integers not exceeding d. 
Show that 

i=] 

if the a/s, c/s and mi,/s are the tunable parameters (Bartlett (1993». 

PROBLEM 30.10. Let 0- be a sigmoid that takes m different values. Find upper bounds on 
the vc dimension of the class C~k). 

PROBLEM 30.11. Consider a one-hidden-Iayer neural network 1jf. If (X], Y]), ... , (Xn, Yn) 
are fixed and all Xi'S are different, show that with n hidden neurons, we are always able 
to tune the weights such that Yi = 1jf(Xi ) for all i. (This remains true if YEn instead of 
Y E {O, I}.) The property above describes a situation of overfitting that occurs when the 
neural network becomes too "rich"-recall also that the vc dimension, which is at least 
d times the number of hidden neurons, must remain smaller than n for any meaningful 
training. 

PROBLEM 30.12. THE BERNSTEIN PERCEPTRON. Consider the following perceptron for one­
dimensional data: 

¢(x) = { ~ if L7=] aixi(1 - X)k-i > 1/2 
otherwise. 

Let us call this the Bernstein perceptron since it involves Bernstein polynomials. If n data 
points are collected, how would you choose k (as a function of n) and how would you 
adjust the weights (the ai's) to make sure that the Bernstein perceptron is consistent for all 
distributions of (X, y) with PiX E [0, In = I? Can you make the Bernstein perceptron 
consistent for all distributions of (X, Y) on n x {O, I}? 

FIGURE 30.15. The Bernstein per­

ceptron. 

PROBLEM 30.13. Use the ideas of Section 25.5 and Problem 25.11 to prove Theorem 30.8. 
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PROBLEM 30.14. Consider Specht's Padaline with r = rn t 00. Let h = hll + 0, and 
nhd --+ 00. Show that for any distribution of (X, Y), E{L,J --+ L *. 

PROBLEM 30.15. BOUNDED FIRST LAYERS. Consider a feed-forward neural network with any 
number of layers, with only one restriction, that is, the first layer has at most k < d outputs 
Z1, ... , Zk, where 

x = (x(l), ... , X(d)) is the input, and (J' is an arbitrary function n --+ n (not just a sigmoid). 
The integer k remains fixed. Let A denote the k x (d + 1) matrix of weights aji, bj . 

(1) If L *(A) is the Bayes error for a recognition problem based upon (Z, Y), with 
Z = (Z1' ... , Zk) and 

then show that for some distribution of (X, y), inf A L * (A) > L *, where L * is the 
Bayes probability of error for (X, Y). 

(2) If k ~ d however, show that for any strictly monotonically increasing sigmoid (J', 

inf A L * (A) = L * . 
(3) Use (1) to conclude that any neural network based upon a first layer with k < d 

outputs is not consistent for some distribution, regardless of how many layers it 
has (note however, that the inputs of each layer are restricted to be the outputs of 
the previous layer). 

FIGURE 30.16. The first layer is re­

stricted to have k outputs. It has 

Zj ked + 1) tunable parameters. 

PROBLEM 30.16. Find conditions on kll and (311 that guarantee strong universal consistency 
in Theorem 30.9. 

PROBLEM 30.17. BARRON NETWORKS. Call a Barron network a network of any number of 
layers (as in Figure 30.13) with 2 inputs per cell and cells that perform the operation 
a + (3x + yy + 8xy on inputs x, yEn, with trainable weights a, (3, y, 8. If 1jJ is the output 
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of a network with d inputs and k cells (arranged in any way), compute an upper bound for 
the vc dimension of the classifier g(x) = I{1/f(x»O}, as a function of d and k. Note that the 
structure of the network (i.e., the positions of the cells and the connections) is variable. 

PROBLEM 30.18. CONTINUED. Restrict the BalTon network to llayers and k cells per layer 
(for kl cells total), and repeat the previous exercise. 

PROBLEM 30.19. CONTINUED. Find conditions on k and l in the previous exercises that 
would guarantee the universal consistency of the Barron network, if we train to minimize 
the empirical elTor. 

PROBLEM 30.20. Consider the family of functions :fit of the form 

k I 

L L Wij (1h(x))j , 
i=1 j=1 

d I ./ 

.1, ( ) _ "" I (il))] 
'f'i X - ~~Wii'J' X 

i '=1 J'=! 

1 :s i :s k, 

where all the wi} 's and W~il J' 's are tunable parameters. Show that for every I E C[O, l]d and 
E > 0, there exist k, llarge enough so that for some g E :Fk,/, sUPxE[O,ljd I/(x) - g(x)1 :s E. 

PROBLEM 30.21. CONTINUED. Obtain an upper bound on the vc dimension of the above 
two-hidden-Iayer network. HINT: The vc dimension is usually about equal to the number 
of degrees of freedom (which is (1 + d)lk here). 

PROBLEM 30.22. CONTINUED. If gn is the rule obtained by empirical error minimization over 
:Fk,z, then show that L(gn) -» L * in probability if k -» 00, l -» 00, and kl = o(nj log n). 

PROBLEM 30.23. How many different monomials of order r in x(l), ... , xed) are there? How 
does this grow with r when d is held fixed? 

PROBLEM 30.24. Show that 1/11,1/12, and ¢ in the bit-interleaving example in the section on 
Kolmogorov-Lorentz representations are not continuous. Which are the points of disconti­
nuity? 

PROBLEM 30.25. Let 

Pick {ai, C j} by empirical risk minimization for the classifier g(x) = I{1/f(x»O}, 1/1 E :F~l' 
ShowthatE{Ln} -» L* for all distributions of (X, Y)whenm -» ooandm = o(n 1

/d jlogn). 

PROBLEM 30.26. Write (X(l)X(2))2 as 2:,;=1 (ailx(l) + ai2x(2))2 and identify the coefficients 
{ail, ai2}. Show that there is an entire subspace of solutions (Diaconis and Shahshahani 
(1984)). 

PROBLEM 30.27. Show that ex (1)x(2) and sin(x(1)x(2) cannot be written in the form 2:,:=1 
1/Ii(a! x) for any finite k, where x = (x(l), X(2)) and ai E R2, 1 :s i :s k (Diaconis and 
Shahshahani (1984)). Thus, the projection pursuit representation of functions can only at 
best approximate all continuous functions on bounded sets. 

PROBLEM 30.28. Let:F be the class of classifiers of the form g = I{1/f>o}, where 1/I(x) = 
al II (x(l)) + a2 12 (X(2»), for arbitrary functions 11, 12, and coefficients a1, a2 E R. Show that 
for some distribution of (X, Y) on R2 x {O, 1}, infgE.F L(g) > L *, so that there is no hope 
of meaningful distribution-free classification based on additive functions only. 
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PROBLEM 30.29. CONTINUED. Repeat the previous exercise for functions of the form 1jr (x) = 
ai 11 (x (2) ,X(3») + a2fz(x(1) , X(3») +a3h(x(l), x(2») and distributions of (X, Y) on R3 x {O, l}. 
Thus, additive functions of pairs do not suffice either. 

PROBLEM 30.30. Let K : R --+ R be a nonnegative bounded kernel with f K (x )dx < 
00. Show that for any E > 0, any measurable function I : Rd --+ R and probability 
measure fJ- such that f II(x)IfJ-(dx) < 00, there exists a function 1jr of the form 1jr(x) = 
:L;=I Ci K (x - bi)T Ai(X - bi)) + Co such that f II(x) - 1jr(x)fJ-(dx) < E (see Poggio and 
Girosi (1990), Park and Sandberg (1991; 1993), Darken, Donahue, Gurvits, and Sontag 
(1993), Krzyzak, Linder, and Lugosi (1993) for such denseness results). HINT: Relate the 
problem to a similar result for kernel estimates. 

PROBLEM 30.31. Let C(k) be the class of classifiers defined by the functions 

k 

L Ci K (x - bil Ai(X - bi)) + Co· 

i=l 

Find upper bounds on its vc dimension when K is an indicator of an interval containing the 
origin. 

PROBLEM 30.32. Consider the class of radial basis function networks 

where K is nonnegative, unimodal, bounded, and continuous. Let Vr n be a function that 
minimizes In(1jr) = n- I :L7=1 11jr(Xi ) - Yi lover 1jr E F n, and define gn as the corresponding 
classifier. Prove that if kn --+ 00, fJn --+ 00, and knfJ;; 10g(knfJn) = o(n) as n --+ 00, then 
gn is universally consistent (Krzyzak, Linder, and Lugosi (1993)). HINT: Proceed as in the 
proof of Theorem 30.9. Use Problem 30.30 to handle the approximation error. Bounding 
the covering numbers needs a little additional work. 





31 
Other Error Estimates 

In this chapter we discuss some alternative error estimates that have been in­
troduced to improve on the performance of the standard estimates-holdout, re­
substitution, and deleted-we have encountered so far. The first group of these 
estimates-smoothed and posterior probability estimates-are used for their small 
variance. However, we will give examples that show that classifier selection based 
on the minimization of these estimates may fail even in the simplest situations. 
Among other alternatives, we deal briefly with the rich class of bootstrap estimates. 

31.1 Smoothing the Error Count 

The resubstitution, deleted, and holdout estimates of the error probability (see 
Chapters 22 and 23) are all based on counting the number of errors committed 
by the classifier to be tested. This is the reason for the relatively large variance 
inherently present in these estimates. This intuition is based on the following. Most 
classification rules can be written into the form 

(x) = {O if7Jn(x, Dn):::: 1/2 
gn 1 otherwise, 

where 7Jn (x, Dn) is either an estimate of the a posteriori probability 7J(x), as in 
the case of histogram, kernel, or nearest neighbor rules; or something else, as for 
generalized linear, or neural network classifiers. In any case, if 7Jn (x, Dn) is close 
to 1/2, then we feel that the decision is less robust compared to when the value 
of 7Jn(x, Dn) is far from 1/2. In other words, intuitively, inverting the value of the 
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decision gn (x) at a point x, where 17n (x, Dn) is close to 1/2 makes less difference 
in the elTor probability, than if l'7n(x, Dn) - 1/21 is large. The elTor estimators 
based on counting the number of elTors do not take the value of '7n (x) into account: 
they "penalize" elTOfS with the same amount, no matter what the value of '7n is. 
For example, in the case of the resubstitution estimate 

each elTor contributes with 1/ n to the overall count. Now, if '7n (Xi, Dn) is close to 
1/2, a small perturbation of Xi can flip the decision gn(X i ), and therefore change 
the value of the estimate by 1/ n, although the elTor probability of the rule gn 
probably does not change by this much. This phenomenon is what causes the 
relatively large variance of elTor counting estimators. 

Glick (978) proposed a modification of the counting elTor estimates. The gen­
eral form of his "smoothed" estimate is 

where r is a monotone increasing function satisfying r( 1 /2 - u) = 1 - r( 1 /2 + u). 
Possible choices of the smoothing function r(u) are r(u) = u, or r(u) = I/O + 
e1/ 2- cu ), where the parameter c > 0 may be adjusted to improve the behavior 
of the estimate (see also Glick (978), Knoke (1986), or Tutz (1985)). Both of 
these estimates give less penalty to elTOfS close to the decision boundary, that is, 
to elTors where '7n is close to 1/2. Note that taking r(u) = I{u2::1/2} cOlTesponds to 
the resubstitution estimate. We will see in Theorem 31.2 below that if r is smooth, 
then L~S) indeed has a very small variance in many situations. 

Just like the resubstitution estimate, the estimate L~S) may be strongly opti­
mistically biased. Just consider the I-nearest neighbor rule, when L~S) = 0 with 
probability one, whenever X has a density. To combat this defect, one may define 
the deleted version of the smoothed estimate, 

where Dn,i is the training sequence with the i-th pair (Xi, Yi ) deleted. The first 
thing we notice is that this estimate is still biased, even asymptotically. To illustrate 
this point, consider r(u) = u. In this case, 

E {L~SD)} 

E {I{Y=O}'7n-l (X, Dn-l) + I{Y=l}(1 - '7n-1 (X, Dn - 1))} 

= E {(I - 1J(X))17n-l(X, Dn- 1) + 1J(X)(I - 1}n-l(X, Dn- 1))}. 

If the estimate '7n-! (x, Dn-l) was perfect, that is, equal to '7 (x ) for every x, then 
the expected value above would be 2E{n(X)(l - n(X))}, which is the asymptotic 
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error probability LNN of the I-NN rule. In fact, 

IE {L~SD)} - LNNI 

IE {I{Y=O}1]n-1 (X, D n- 1) + I{Y=l}(1 - 1]n-1 (X, Dn- 1)) 

- (I{y=o}1](X) + I{Y=l}(1 - 1](X)))} \ 

< 21E {1]n-1 (X, Dn- 1) - 1](X)}I. 

This means that when the estimate 1]n (x) of the a posteriori probability of 1] (x ) is 
consistent in L1 (/-L), then L~SD) converges to L NN , and not to L *! 

Biasedness of an error estimate is not necessarily a bad property. In most ap­
plications, all we care about is how the classification rule selected by minimizing 
the error estimate works. Unfortunately, in this respect, smoothed estimates per­
form poorly, even compared to other strongly biased error estimates such as the 
empirical squared error (see Problem 31.4). The next example illustrates our point. 

Theorem 31.1. Let the distribution of X be concentrated on two values such that 
P{X = a} = P{X = b} = 1/2, and let 1](a) = 3/8 and 1](b) = 5/8. Assume that the 
smoothed error estimate 

is minimized over 1]' E F, to select a classifier from F, where the class F contains 
two functions, the true a posteriori probability function 1], and ij, where 

ij(a) =0, 
_ 3 
1](b) = 8' 

Then the probability that ij is selected converges to one as n ~ 00. 

PROOF. Straightforward calculation shows that 

The statement follows from the law of large numbers. 0 

REMARK. The theorem shows that even if the true a posteriori probability function 
is contained in a finite class of candidates, the smoothed estimate with r(u) = u 
is unable to select a good discrimination rule. The result may be extended to 
general smooth r's. As Theorems 15.1 and 29.2 show, empirical squared error 
minimization or maximum likelihood never fail in this situation. 0 

Finally we demonstrate that if r is smooth, then the variance of L~S) is indeed 
small. Our analysis is based on the work of Lugosi and Pawlak (1994). The bounds 
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for the variance of L~S) remain valid for L~SD). Consider classification rules of the 
form 

(x) = {O ifrJn(x, Dn):::: 1/2 
gn 1 otherwise, 

where 1711 (x, Dn) is an estimate of the a posteriori probability 17 (x ). Examples 
include the histogram rule, where 

(see Chapters 6 and 9), the k-nearest neighbor rule, where 

(Chapters 5 and 11), or the kernel rule, where 

(Chapter 10). In the sequel, we concentrate on the performance of the smoothed 
estimate of the error probability of these nonparametric rules. The next theorem 
shows that for these rules, the variance of the smoothed error estimate is 0 (1/ n), no 
matter what the distribution is. This is a significant improvement over the variance 
of the deleted estimate, which, as pointed out in Chapter 23, can be larger than 
1/J2nn. 

Theorem 31.2. Assume that the smoothing function r(u) satisfies ° :::: r(u) :::: 1 
for u E [0, 1], and is uniformly Lipschitz continuous, that is, 

Ir(u) - r(v)1 :::: clu - vi 

for all u, v, and for some constant c. Then the smoothed estimate L~S) of the 
histogram, k-nearest neighbor, and moving window rules (with kernel K = Iso,) 
satisfies 

and 
c 

Var{L(S)} < -
n - 4n' 

where C is a constant depending on the rule only. In the case of the histogram rule 
the value of C is C = (1 + 4c)2, for the k-nearest neighbor rule C = (1 + 2CYd)2, 
and for the moving window rule C = (1 + 2cf3d)2. Here c is the constant in the 
Lipschitz condition, Yd is the minimal number of cones centered at the origin of 
angle n /6 that coverRd, and f3d is the minimal number of balls of radius 1/2 that 
cover the unit ball in Rd. 
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REMARK. Notice that the inequalities of Theorem 31.2 are valid for all n, E, and 
h > 0 for the histogram and moving window rules, and k for the nearest neighbor 
rules. Interestingly, the constant C does not change with the dimension in the 
histogram case, but grows exponentially with d for the k-nearest neighbor and 
moving window rules. 0 

PROOF. The probability inequalities follow from appropriate applications of Mc­
Diarmid's inequality. The upper bound on the variance follows similarly from 
Theorem 9.3. We consider each of the three rules in tum. 

THE HISTOGRAM RULE. Let (Xl, yd, ... , (xn, Yn) be a fixed training sequence. If 
we can show that by replacing the value of a pair (Xi, Yi) in the training sequence 
by some (x;, Y;) the value of the estimate L~S) can change by at most (l + 2c)ln, 

then the inequality follows by applying Theorem 9.2 with Ci = Sin. 
The i -th term of the sum in L~S) can change by one, causing 1 In change in the 

average. Obviously, all the other terms in the sum that can change are the ones 
corresponding to the Xj'S that are in the same set of the partition as either Xi or 
x;. Denoting the number of points in the same set with Xi and xI by k and k' 
respectively, it is easy to see that the estimate of the a posteriori probabilities in 
these points can change by at most 21 k and 21 k', respectively. It means that the 
overall change in the value of the sum can not exceed (1 +k ¥- +k' f,) In = (1 +4c) In. 
THE K-NEAREST NEIGHBOR RULE. To avoid difficulties caused by breaking distance 
ties, assume that X has a density. Then recall that the application of Lemma 11.1 for 
the empirical distribution implies that no X j can be one of the k nearest neighbors 
of more than kYd points from Dn. Thus, changing the value of one pair in the 
training sequence can change at most 1 + 2kYd terms in the expression of L~D), 
one of them by at most 1, and all the others by at most c I k. Theorem 9.2 yields 
the result. 

THE MOVING WINDOW RULE. Again, we only have to check the condition of Theorem 
9.2 with Ci = (1 + 2c{3d)/n. Fix a training sequence (Xl, Yl), '" , (xn, Yn) and 
replace the pair (Xi, Yi) by (x;, Y;>' Then the i -th term in the sum of the expression 
of L~S) can change by at most one. Clearly, the j-th term, for which Xj fj SXi. h 

and Xj fj Sx;.h' keeps its value. It is easy to see that all the other terms can change 
by at most c . max {I I k j, 1 I kj}, where k j and kj are the numbers of points Xk, 

k =I i, j, from the training sequence that fall in SXi.h and Sx;.h' respectively. Thus, 
the overall change in the sum does not exceed 

1 + " ~ + " ~. L.. k· L k'. 
XjESXi.h ] XjESX;.h ] 

It suffices to show by symmetry that LXES llk j S (3d. Let nj = I{Xb k =I 
) Xi,h 

i, j : Xk E SXi,h n SXj,h}l. Then clearly, 

1 
Lk-SLn. 

XjESxi,h ] XjESxj.h ] 
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To bound the right-hand side from above, cover SXj,h by fJd balls Sl, ... , Sf3d of 
radius hj2. Denote the number of points falling in them by lm (m = 1, ... , fJd): 

lm = I{Xk, k i i : Xk E SXj,h n Sm}l· 

Then 

and the theorem is proved. 0 

31.2 Posterior Probability Estimates 

The error estimates discussed in this section improve on the biasedness of smoothed 
estimates, while preserving their small variance. Still, these estimates are of ques­
tionable utility in classifier selection. Considering the formula 

for the error probability of a classification rule gn(x) = 1{1Jn(x,Dn»1/2} , it is plausible 
to introduce the estimate 

L(P) = 
n 

1 n - L (I{1Jn(X; ,Dn)sl/2}17n (Xi , Dn) 
n i=l 

+ 1{1Jn(X;,Dn»1/2}(1 - 17n(Xi , Dn») , 

that is, the expected value is estimated by a sample average, and instead of the 
(unknown) a posteriori probability YJ(X), its estimate 17n (x, Dn) is plugged into the 
formula of Ln. The estimate L?) is usually called the posterior probability error 
estimate. In the case of nonparametric rules such as histogram, kernel, and k-NN 

rules it is natural to use the corresponding nonparametric estimates of the a poste­
riori probabilities for plugging in the expression of the error probability. This, and 
similar estimates of Ln have been introduced and studied by Fukunaga and Kessel 
(1973), Rora and Wilcox (1982), Fitzmaurice and Rand (1987), Ganesalingam and 
McLachlan (1980), Kittler and Devijver (1981), Matloff and Pruitt (1984), Moore, 
Whitsitt, and Landgrebe (1976), Pawlak (1988), Schwemer and Dunn (1980), and 
Lugosi and Pawlak (1994). It is interesting to notice the similarity between the 
estimates L~S) and L~P), although they were developed from different scenarios. 

To reduce the bias, we can use the leave-one-out, (or deleted) version of the 
estimate, 

L(PD) = 
n 

1 n -L (I{1Jn-l(X;,D/l,i)Sl/2}17n-1 (Xi, Dn,J) 
n i==l 

+ I{1Jn-l (Xi ,Dn,;»1/2}(1 - 17n-1(Xi , Dn,i»)' 
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The deleted version L~P D), has a much better bias than L~SD). We have the bound 

IE{L~PD)} -ELn-l! 

IE {I{gn(X)=O}1]n-l (X, Dn-1) + I{gn(X)=l}(1 - 1]n-1 (X, Dn- 1)) 

- (I{gll(X)=O}1](X) + I{g,,(x)=l}(1 - 17(X)))}! 

< 21E {1]n-l (X, Dn-d - 1](X)}I· 

This means that if the estimate 1]n (x) of the a posteriori probability of 1] (x ) is con­
sistent in L 1 (/1), then EL~P D) converges to L *. This is the case for all distributions 
for the histogram and moving window rules if h -+ 0 and nhd -+ 00, and the 
k-nearest neighbor rule if k -+ 00 and k / n -+ 0, as it is seen in Chapters 9, 10, and 
11. For specific cases it is possible to obtain sharper bounds on the bias of L~P D). 

For the histogram rule, Lugosi and Pawlak (1994) carried out such analysis. They 
showed for example that the estimate L~PD) is optimistically biased (see Problem 
31.2). 

Posterior probability estimates of Ln share the good stability properties of 
smoothed estimates (Problem 31.1). 

Finally, let us select a function 1]' : nd -+ [0, 1]-and a corresponding rule 
g(x) = Ih '(x»lj2}-from a class F based on the minimization of the posterior 
probability error estimate 

Observe that L~P)(1]') = 0 when 1]'(x) E {O, I} for all x, that is, rule selection based 
on this estimate just does not make sense. The reason is that L~P) ignores the Yi's 
of the data sequence! 

Fukunaga and Kessel (1973) argued that efficient posterior probability estima­
tors can be obtained if additional unclassified observations are available. Very 
often in practice, in addition to the training sequence Dn, further feature vectors 
Xn+1 , ... , Xn+Z are given without their labels Yn+1, ••• , Yn+Z, where the Xn+i are 
i.i.d., independent from X and Dn, and they have the same distribution as that of 
X. This situation is typical in medical applications, when large sets of medical 
records are available, but it is usually very expensive to get their correct diagnosis. 
These unclassified samples can be efficiently used for testing the performance of 
a classifier designed from Dn by using the estimate 

= 
1 Z 

I L (I{7Jn(Xn+i,Dn)~lj2}1]n(Xn+i' Dn) 
i=l 

+ I{7Jn(Xn+i,Dn»lj2}(1 - 1]n(Xn+i , Dn))) . 

Again, using L~~) for rule selection is meaningless. 
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31.3 Rotation Estimate 

This method, suggested by Toussaint and Donaldson (1970), is a combination of 
the holdout and deleted estimates. It is sometimes called the n -estimate. Let s < n 
be a positive integer (typically much smaller than n), and assume, for the sake of 
simplicity, that q = n / s is an integer. The rotation method forms the holdout 
estimate, by holding the first s pairs of the training data out, then the second s 
pairs, and so forth. The estimate is defined by averaging the q numbers obtained 
this way. To formalize, denote by D~~j the training data, with the J-th s-block held 
out (j = 1, ... , q): 

D,~~j = ((Xl, Yd, ... , (Xs(j-l), YS(j-l), (Xs)+l, Ys)+l), ... , (Xn, Yn». 

The estimate is defined by 

1 q 1 s) 

L (D) - L L I n s - - . (s) • , q S {gll-s(X"DIl )=tYi} 
)=1 i=s(j-l)+l ' 

s = 1 yields the deleted estimate. If s > 1, then the estimate is usually more biased 
than the deleted estimate, as 

EL~~J = ELn- s, 

but usually exhibits smaller variance. 

31.4 Bootstrap 

Bootstrap methods for estimating the misc1assification error became popular fol­
lowing the revolutionary work of Efron (1979; 1983). All bootstrap estimates 
introduce artificial randomization. The bootstrap sample 

D (b) = ((X(b) y(b) (X(b) yCb)) 
In 1 ' 1 , ... , In' In 

is a sequence of random variable pairs drawn randomly with replacement from the 
set {(Xl, Yd, ... , (Xn, Yn)}. In other words, conditionally on the training sample 
Dn = ((Xl, YI ), ... , (Xn, Yn», the pairs (xib

) , Y?) are drawn independently from 
Vn , the empirical distribution based on Dn in n d x {O, I}. 

One of the standard bootstrap estimates aims to compensate the (usually opti­
mistic) bias 

B(gn) = E{L(gn)} - L?)(gn) 

of the resubstitution estimate L~R). To estimate B(gn), a bootstrap sample of size 
m = n may be used: 
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Often, bootstrap sampling is repeated several times to average out effects of the 
additional randomization. In our case, 

yields the estimator 
L~B)(gn) = L~R)(gn) - Bn(gn). 

Another instance of a bootstrap sample of size n, the so-called EO estimator, uses 
resubstitution on the training pairs not appearing in the bootstrap sample. The 
estimator is defined by 

Here, too, averages may be taken after generating the bootstrap sample several 
times. 

Many other versions of bootstrap estimates have been reported, such as the 
"0.632 estimate," "double bootstrap," and "randomized bootstrap" (see Hand 
(1986), Jain, Dubes, and Chen (1987), and McLachlan (1992) for surveys and ad­
ditional references). Clearly, none of these estimates provides a universal remedy, 
but for several specific classification rules, bootstrap estimates have been experi­
mentally found to outperform the deleted and resubstitution estimates. However, 
one point has to be made clear: we always lose information with the additional 
randomization. We summarize this in the following simple general result: 

Theorem 31.3. Let X I, ... , Xn be drawn from an unknown distribution JL, and 
let a(fL) be afunctional to be estimated. Let r(·) be a convex risk function (such 
as r(u) = u2 or r(u) = luI}. Let Xib), ... XI~) be a bootstrap sample drawn from 
Xl, ... , X n . Then 

The theorem states that no matter how large m is, the class of estimators that 
are functions of the original sample is always at least as good as the class of 
all estimators that are based upon bootstrap samples. In our case, a(JL) plays the 
role of the expected error probability ELn = P{gn(X) =I Y}. If we take r(u) = 
u2 , then it follows from the theorem that there is no estimator Ln based on the 
bootstrap sample D,~) whose squared error E {(ELn - Lm)2} is smaller than that 
of some nonbootstrap estimate. In the proof of the theorem we construct such a 
non-bootstrap estimator. It is clear, however, that, in general, the latter estimator is 
too complex to have any practical value. The randomization of bootstrap methods 
may provide a useful tool to overcome the computational difficulties in finding 
good estimators. 
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PROOF. Let 1jr be any mapping taking m arguments. Then 

where 

E {r (1jr(xi
b

), ... X}~» - a(JL») lXI, ... , Xn} 

1 
= m I: r(1jr(XiJ , ... , Xi,,) - a(JL» 

n (iJ, .... im)c{I, ... ,n}m 

(by Jensen's inequality and the convexity of r) 

= r (~ I: 1jr(XiJ , ... , XiJ - a(JL») 
n (iJ, ... ,im)c{I, ... ,n}m 

r (1jr*(X1, ... , Xn) - a(JL») 

Now, after taking expectations with respect to Xl, ... , X n , we see that for every 
1jr we start out with, there is a 1jr* that is at least as good. 0 

If m = 0 (n), then the bootstrap has an additional problem related to the coupon 
collector problem. Let N be the number of different pairs in the bootstrap sample 
(X(b) y(b» (b) (b» Th'f ~ h / I ' 1 , ... , Xm ' Ym' en, 1 m "'-' en lor some constant c, t en N n --+ 
1 - e-c with probability one. To see this, note that 

( 
l)Cn 

E{n - N} = n 1 - ;; "" ne-c
, 

so E{ N / n} --+ 1 - e -c. Furthermore, if one of the m drawings is varied, N changes 
by at most one. Hence, by McDiarmid's inequality, for E > 0, 

from which we conclude that N / n --+ 1-e-c with probability one. As n (1 - e-c ) 

of the original data pairs do not appear in the bootstrap sample, a considerable 
loss of information takes place that will be reflected in the performance. This 
phenomenon is well-known, and motivated several modifications of the simplest 
bootstrap estimate. For more information, see the surveys by Hand (1986), Jain, 
Dubes, and Chen (1987), and McLachlan (1992). 
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Problems and Exercises 

PROBLEM 31.1. Show that the posterior probability estimate L~P) of the histogram, k-nearest 
neighbor, and moving window rules satisfies 

and 

Var{L (P)} < .£ 
n - 4n' 

where C is a constant, depending on the rule. In the case of the histogram rule the value of 
C is C = 25, for the k-nearest neighbor rule C = (1 + 2Yd)2, and for the moving window 
rule C = (1 + 2f3d)2. Also show that the deleted version L~P D) of the estimate satisfies the 
same inequalities (Lugosi and Pawlak (1994». HINT: Proceed as in the proof of Theorem 
31.2. 

PROBLEM 31.2. Show that the deleted posterior probability estimate of the error probability 
of a histogram rule is always optimistically biased, that is, for all n, and all distributions, 
E {L~PD)} :s ELn- l . 

PROBLEM 31.3. Show that for any classification rule and any estimate 0 :s TJn(x, Dn) :s 1 
of the a posteriori probabilities, for all distributions of (X, Y) for alli, n, and E > 0 

p { IL~~) - E {L~~)} I ::: E I Dn} :s 2e-
2lE2

, 

and Var {L~~)IDn} :::; 1/ I. Further, show that for alII, E {L~~)} = E {L~~~)}. 

PROBLEM 31.4. EMPIRICAL SQUARED ERROR. Consider the deleted empirical squared error 

Show that 
LNN { 2} E{en} = 2 + E (TJ(X) - 17n-l(X, Dn-d) , 

where LNN is the asymptotic error probability on the I-nearest neighbor rule. Show that 
if TJn-J is the histogram, kernel, or k-NN estimate, then Var{en} :s c/n for some constant 
depending on the dimension only. We see that en is an asymptotically optimistically biased 
estimate of L(gn) when TJn-J is an L 2(p,)-consistent estimate of TJ. Still, this estimate is 
useful in classifier selection (see Theorem 29.2). 





32 
Feature Extraction 

32.1 Dimensionality Reduction 

So far, we have not addressed the question of how the components of the feature 
vector X are obtained. In general, these components are based on d measurements 
of the object to be classified. How many measurements should be made? What 
should these measurements be? We study these questions in this chapter. General 
recipes are hard to give as the answers depend on the specific problem. However, 
there are some rules of thumb that should be followed. One such rule is that noisy 
measurements, that is, components that are independent of Y, should be avoided. 
Also, adding a component that is a function of other components is useless. A nec­
essary and sufficient condition for measurements providing additional information 
is given in Problem 32.1. 

Our goal, of course, is to make the error probability L(gn) as small as possible. 
This depends on many things, such as the joint distribution of the selected compo­
nents and the label Y, the sample size, and the classification rule gn' To make things 
a bit simpler, we first investigate the Bayes errors corresponding to the selected 
components. This approach makes sense, since the Bayes error is the theoretical 
limit of the performance of any classifier. As Problem 2.1 indicates, collecting 
more measurements cannot increase the Bayes error. On the other hand, having 
too many components is not desirable. Just recall the curse of dimensionality that 
we often faced: to get good error rates, the number of training samples should be 
exponentially large in the number of components. Also, computational and storage 
limitations may prohibit us from working with many components. 

We may formulate the feature selection problem as follows: Let X(l), ... , Xed) 
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be random variables representing d measurements. For a set A ~ {I, ... ,d} of 
indices, let X A denote the I A I-dimensional random vector, whose components are 
the X(i)'s with i E A (in the order of increasing indices). Define 

L *(A) = inf P{g(XA ) =I Y} 
g:RJAI--+{O, I} 

as the Bayes error corresponding to the pair (XA' Y). 

112 

L* ({I}) 

o 

L*(0) FIGURE 32.1. A possible ar­

L*({3}) rangement of L*(A)'s for 

d = 3. 

L*({1,3}) 

Obviously, L *(A) ::s L *(B) whenever B C A, and L *(0) = min(P{Y = 
OJ, P{Y = I}). The problem is to find an efficient way of selecting an index set 
A with IAI = k, whose corresponding Bayes error is the smallest. Here k < d 
is a fixed integer. Exhaustive search through the (~) possibilities is often unde­
sirable because of the imposed computational burden. Many attempts have been 
made to find fast algorithms to obtain the best subset of features. See Fu, Min, and 
Li (1970), Kanal (1974), Ben-Bassat (1982), and Devijver and Kittler (1982) for 
surveys. It is easy to see that the best k individual features-that is, components 
corresponding to the k smallest values of L * ({ i} )-do not necessarily constitute the 
best k-dimensional vector: just consider a case in which X(l) == X(2) == ... == X(k). 

Cover and Van Campenhout (1977) showed that any ordering of the 2d subsets of 
{l, ... , d} consistent with the obvious requirement L *(A) ::: L *(B) if B ~ A is 
possible. More precisely, they proved the following surprising result: 

Theorem 32.1. (COVER AND VAN CAMPENHOUT (1977)). Let AI, A 2, ... , A2d be 
an ordering of the 2d subsets of {I, ... ,d}, satisfying the consistency property 
i < j if Ai C A j • (Therefore, Al = 0 and A2d = {I, ... , d}.) Then there exists a 
distribution of the random variables (X, Y) = (X(!), ... , Xed), Y) such that 

The theorem shows that every feature selection algorithm that finds the best k­
element subset has to search exhaustively through all k-element subsets for some 
distributions. Any other method is doomed to failure for some distribution. Many 
suboptimal, heuristic algorithms have been introduced trying to avoid the compu­
tational demand of exhaustive search (see, e.g., Sebestyen (1962), Meisel (1972), 
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Chang (1973), Vilmansen (1973), and Devijver and Kittler (1982». Narendra and 
Fukunaga (1977) introduced an efficient branch-and-bound method that finds the 
optimal set of features. Their method avoids searching through all subsets in many 
cases by making use of the monotonicity of the Bayes error with respect to the 
partial ordering of the subsets. The key of our proof ofthe theorem is the following 
simple lemma: 

Lemma 32.1. Let AI,"" A2d be as in Theorem 32.1. Let 1 < i < 2d. Assume 
that the distribution of (X, Y) on nd x {O, I} is such that the distribution of X is 
concentrated on a finite set, L *(A2d) = L *({l, ... , 2d}) = 0, and L *(A j) < 1/2 
for each i < } ::: 2d. Then there exists another finite distribution such that L * (A j ) 

remains unchanged for each} > i, and 

* * 1 L(A j )<L(A i )<2 foreach}>i. 

PROOF. We denote the original distribution of X by {vi and the a posteriori probability 
function by fJ. We may assume without loss of generality that every atom of the 
distribution of X is in [0, M)d for some M > 0. Since L *({l, ... , d}) = 0, the 
value of fJ(x) is either zero or one at each atom. We construct the new distribution 
by duplicating each atom in a special way. We describe the new distribution by 
defining a measure {vi' on nd and an a posteriori function fJ' : nd ~ {O, I}. 

Define the vector VAi E nd such that its m-th component equals M if m 1:. Ai, 
and zero if m E Ai. The new measure {vi' has twice as many atoms as {vi. For 
each atom x E nd of {vi, the new measure {vi! has two atoms, namely, Xl = x and 
X2 = X + VA i • The new distribution is specified by 

{vi' (xd = q {vi (x ), {vi' (X2) = (1 - q ) {vi (x ), fJ' (xd = fJ(x), and fJ' (X2) = 1 - fJ(x), 

where q E (0, 1/2) is specified later. It remains for us to verify that this distribution 
satisfies the requirements of the lemma for some q. First observe that the values 
L *(A j) remain unchanged for all } > i. This follows from the fact that there 
is at least one component in A j along which the new set of atoms is strictly 
separated from the old one, leaving the corresponding contribution to the Bayes 
error unchanged. On the other hand, as we vary q from zero to 1/2, the new value 
of L *(Ai) grows continuously from the old value of L *(AJ to 1/2. Therefore, 
since by assumption max j>i L *(A j) < 1/2, there exists a value of q such that the 
new L *(Ai) satisfies maXj>i L *(A j) < L *(Ai) < 1/2 as desired. 0 

PROOF OF THEOREM 32.1. We construct the desired distribution in 2d - 2 steps, 
applying Lemma 32.1 in each step. The procedure for d = 3 is illustrated in Figure 
32.2. 
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CD Ag ={ 1,2,3} 

CD CD 
CD CD 

CD As={2} CD 
!---<;> 

I I 
I I 

FIGURE 32.2. Construction of a prespecijied ordering. In this three-dimensional 

example, the first four steps of the procedure are shown, when the desired ordering 

is L*({1, 2, 3}) ~ L*({2, 3}) ~ L*({1, 2}) ~ L*({2}) ~ L*({1, 3}) ~ .... Black 

circles represent atoms with 11 = 1 and white circles are those with 11 = O. 

We start with a monoatomic distribution concentrated at the origin, with 11(0) = 
1. Then clearly, L *(A2d) = O. By Lemma 32.1, we construct a distribution such that 
L*(A2d) =OandO= L*(A2d) < L*(A2d_d < 1/2. By applying the lemma again, 
we can construct a distribution with 0 = L *(A2d) < L *(A2d-l) < L *(A2d_2) < 
1/2. After i steps, we have a distribution satisfying the last i inequalities of the 
desired ordering. The construction is finished after 2d - 2 steps. 0 

REMARK. The original example of Cover and Van Campenhout (1977) uses the 
multidimensional gaussian distribution. Van Campenhout (1980) developed the 
idea further by showing that not only all possible orderings, but all possible values 
of the L *(Ai)'S can be achieved by some distributions. The distribution constructed 
in the above proof is discrete. It has 22d -2 atoms. 0 

One may suspect that feature extraction is much easier if given Y, the com­
ponents X(1), ... , X(d) are conditionally independent. However, three and four­
dimensional examples given by Elashoff, Elashoff, and Goldman (1967), Toussaint 
(1971), and Cover (1974) show that even the individually best two independent 
components are not the best pair of components. We do not know if Theorem 32.1 
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generalizes to the case when the components are conditionally independent. In the 
next example, the pair of components consisting of the two worst single features 
is the best pair, and vice versa. 

Theorem 32.2. (TOUSSAINT (1971)). There exist binary-valued random variables 

Xl, X 2 , X3, Y E {O, I} such that Xl, X 2, and X3 are conditionally independent 

(given Y), and 

L *({1}) < L *({2}) < L *({3}), 

but 

L *({1, 2}) > L *({1, 3}) > L *({2, 3}). 

PROOF. Let P{Y = I} = 1/2. Then the joint distribution of Xl, X2, X3, Y is spec­
ified by the conditional probabilities P{Xi = 11Y = O} and P{Xi = llY = 1}, 
i = 1, 2, 3. Straightforward calculation shows that the values 

P{XI = llY = O} = 0.1, P{XI = IIY = I} = 0.9, 

P{X2 = IIY = O} = 0.05, P{X2 = IIY = 1} = 0.8, 

P{X3 = IIY = O} = 0.01, P{X3 = IIY = I} = 0.71 

satisfy the stated inequalities. 0 

As our ultimate goal is to minimize the error probability, finding the feature set 
minimizing the Bayes error is not the best we can do. For example, ,if we know that 
we will use the 3-nearest neighbor rule, then it makes more sense to select the set 
of features that minimizes the asymptotic error probability L3NN of the 3-nearest 
neighbor rule. Recall from Chapter 5 that 

L3NN = E {17(X)(1 - 17(X))(1 + 417(X)(1 - 17(X))) } . 

The situation here is even messier than for the Bayes error. As the next example 
shows, it is not even true that A C B implies L3NN(A) :::: L3NN(B), where A, B ~ 

{I, ... ,d} are two subsets of components, and L3NN(A) denotes the asymptotic 
error probability of the 3-nearest neighbor rule for (XA' Y). In other words, adding 
components may increase L3NN! This can never happen to the Bayes error-and in 
fact, to any f -error (Theorem 3.3). The anomaly is due to the fact that the function 
x(1 - x)(1 + 4x(1 - x)) is convex near zero and one. 

EXAMPLE. Let the joint distribution of X = (Xl, X2) be uniform on [0,2]2. The 
joint distribution of (X, Y) is defined by the a posteriori probabilities given by 

[ 

0.1 

17(x) = ~ 
0.9 

if x E [0, 1/2) x [0, 1/2) 
if x E [1/2, 1] x [0, 1/2) 
if x E [0, 1/2) x [1/2, 1] 
if x E [1/2 x 1] x [1/2, 1] 
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(Figure 32.3). Straightforward calculations show that L3NN({I, 2}) = 0.0612, while 
L3NN({2}) = 0.056525, a smaller value! 0 

T\=0.9 

~~--------~------~ 

r1'=O.l 

FIGURE 32.3. Anexamplewhen 

an additionalfeature increases 

the error probability of the 3-
L3NN ({ 1,2))= 0.0612 NN rule. 
L'NN ((2}) = 0.056525 

Of course, the real measure of the goodness of the selected feature set is the 
error probability L(gn) of the classifier designed by using training data Dn. If the 
classification rule gn is not known at the stage of feature selection, then the best one 
can do is to estimate the Bayes errors L *(A) for each set A of features, and select a 
feature set by minimizing the estimate. Unfortunately, as Theorem 8.5 shows, no 
method of estimating the Bayes errors can guarantee good performance. If we know 
what classifier will be used after feature selection, then the best strategy is to select 
a set of measurements based on comparing estimates of the error probabilities. We 
do not pursue this question further. 

For special cases, we do not need to mount a big search for the best features. Here 
is a simple example: given Y = i, let X = (X(1), ... , Xed)) have d independent 

components, where given Y = i, X(J) is normal (m ji, a}). It is easy to verify 

(Problem 32.2) that if P {Y = I} = 1/2, then 

L*=P{N>~}, 

where N is a standard normal random variable, and 

~(m.l-m.o)2 r2 = L ] ] 
j=l CYj 

is the square of the Mahalanobis distance (see also Duda and Hart (1973, pp. 
66-67)). For this case, the quality of the j-th feature is measured by 

We may as well rank these values, and given that we need only d' < d features, 
we are best off taking the d' features with the highest quality index. 
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It is possible to come up with analytic solutions in other special cases as well. 
For example, Raudys (1976) and Raudys and Pikelis (1980) investigated the de­
pendence of E{ L(gn)} on the dimension of the feature space in the case of certain 
linear classifiers and normal distributions. They point out that for a fixed n, by 
increasing the number of features, the expected error probability E{L(gn)} first 
decreases, and then, after reaching an optimum, grows again. 

32.2 Transformations with Small Distortion 

One may view the problem of feature extraction in general as the problem of find­
ing a transformation (i.e., a function) T : nd -+ nd so that the Bayes error L~ 
corresponding to the pair (T(X), Y) is close to the Bayes error L * corresponding to 
the pair (X, Y). One typical example of such transformations is fine quantization 
(i.e., discretization) of X, when T maps the observed values into a set of finitely, 
or countably infinitely many values. Reduction of dimensionality of the observa­
tions can be put in this framework as well. In the following result we show that 
small distortion of the observation cannot cause large increase in the Bayes error 
probability. 

Theorem 32.3. (FARAG6 AND GYORFI (1975)). Assume that for a sequence of 
transformations Tn, n = 1,2, ... 

in probability, where II . II denotes the Euclidean norm in nd. Then, if L * is the 
Bayes error for (X, Y) and L~n is the Bayes error for (Tn (X), Y), 

L* -+ L*. T" 

PROOF. For arbitrarily small E > 0 we can choose a uniformly continuous function 
o :::; ij(x) :::; 1 such that 

2E {lry(X) - ij(X)I} < E. 

For any transformation T, consider now the decision problem of (T(X), Y), where 
the random variable Y satisfies P{Y = 11 X = x} = ij(x) for every x E nd. Denote 
the corresponding Bayes error by i~, and the Bayes error corresponding to the 
pair (X, Y) by i *. Obviously 

0:::;£* -£*:::;1£* -i*I+li* -i*I+li*-L*I. Tn T" Tn Tn (32.1) 

To bound the first and third terms on the right-hand side, observe that for any 
transformation T, 

P{Y = 11 T(X)} = E {P{Y = l1X}1 T(X)} = E {ry(X)1 T(X)} . 
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Therefore, the Bayes error corresponding to the pair (T(X), Y) equals 

Thus, 

L~ = E {min (E {ry(X)IT(X)}, 1 - E {ry(X)IT(X)})}. 

IL~ - i~1 IE {min (E {ry(X)1 T(X)} , 1 - E {ry(X)1 T(X)})} 

- E {min (E {ry(X)IT(X)}, 1 - E {ry(X)IT(X)})}1 

< E {IE {ry(X)IT(X)} - E {ry(X)IT(X)}1} 

< E {lry(X) - ry(X)I} 

(by Jensen's inequality) 

< E, 

so the first and third terms of (32.1) are less than E. For the second term, define 
the decision function 

{ 
0 if ry(x) :::; 1/2 

gn (x) = 1 otherwise, 

which has error probability i(gn) = P{gn(Tn(X)) =I Y}. Then i(gn) ~ ii" and 
we have 

by Theorem 2.2. All we have to show now is that the limit supremum of the above 
quantity does not exceed E. Let o( E) be the inverse modulus of continuity of the a 
posteriori probability ry, that is, 

O(E)= sup {llx yll :2Iry(x)-ry(y)1 <E}. 

For every E > 0, we have O(E) > 0 by the uniform continuity of ry. Now, we have 

2E {lry(7;1(X)) - ry(X)1} 

:::; 2E {I{IIX-I;,(X)II>8(E)}} + 2E {I{IIX-I;,(X)II:::8(E)} Iry(Tn(X)) - ry(X)I} . 

Clearly, the first term on the right-hand side converges to zero by assumption, 
while the second term does not exceed E by the definition of O(E). 0 

REMARK. It is clear from the proof of Theorem 32.3 that everything remains true 
if the observation X takes its values from a separable metric space with metric p, 
and the condition of the theorem is modified to p(T(X), X) --+ 0 in probability. 
This generalization has significance in curve recognition, when X is a stochastic 
process. Then Theorem 32.3 asserts that one does not lose much information by 
using usual discretization methods, such as, for example, Karhunen-Loeve series 
expansion (see Problems 32.3 to 32.5). 0 
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32.3 Admissible and Sufficient Transformations 

Sometimes the cost of guessing zero while the true value of Y is one is different 
from the cost of guessing one, while Y = O. These situations may be handled as 
follows. Define the costs 

C(rn, i), rn, l = 0, 1. 

Here C(Y, g(X» is the cost of deciding on g(X) when the true label is Y. The risk 
of a decision function g is defined as the expected value of the cost: 

Rg = E{C(Y, g(X»}. 

Note that if 
C( l) = {I if rn =Ii 

rn, 0 otherwise, 

then the risk is just the probability of error. Introduce the notation 

Qm(X) = 7](x)C(1, rn) + (1 - 7](x»C(O, rn), rn = 0, 1. 

Then we have the following extension of Theorem 2.1: 

Theorem 32.4. Define 

g(X) = {01 if Ql (x) > Qo(x) 
otherwise. 

Then for all decision functions g we have 

Rg:::: Rg . 

Rg is called the Bayes risk. The proof is left as an exercise (see Problem 32.7). 
Which transformations preserve all the necessary information in the sense that the 
Bayes error probability corresponding to the pair (T (X), Y) equals that of (X, Y)? 

Clearly, every invertible mapping T has this property. However, the practically 
interesting transformations are the ones that provide some compression of the 
data. The most efficient of such transformations is the Bayes decision g* itself: 
g* is specifically designed to minimize the error probability. If the goal is to 
minimize the Bayes risk with respect to some other cost function than the error 
probability, then g* generally fails to preserve the Bayes risk. It is natural to ask 
what transformations preserve the Bayes risk for all possible cost functions. This 
question has a practical significance, when collecting data and construction of 
the decision are separated in space or in time. In such cases the data should be 
transmitted via a communication channel (or should be stored). In both cases there 
is a need for an efficient data compression rule. In this problem formulation, when 
getting the data, one may not know the final cost function. Therefore a desirable 
data compression (transformation) does not increase the Bayes risk for any cost 
function C(-, .). Here T is a measurable function mapping from Rd to Rd' for 
some positive integer d'. 
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DEFINITION 32.1. Let R~ T denote the Bayes riskfor the costfunction C and trans­
formed observation T(X). A transformation T is called admissible iffor any cost 
function C, 

R~,T = R~, 
where R~ denotes the Bayes risk for the original observation. 

Obviously each invertible transformation T is admissible. A nontrivial example 
of an admissible transformation is 

T*(X) = 1](X), 

since according to Theorem 32.4, the Bayes decision for any cost function can be 
constructed by the a posteriori probability 17 (x ) and by the cost function. Surpris­
ingly, this is basically the only such transformation in the following sense: 

Theorem 32.5. A transformation T is admissible if and only if there is a mapping 
G such that 

G(T(X)) = 1](X) with probability one. 

PROOF. The converse is easy since for such G 

R~ ::: R~,T(x) ::: R~,G(T(X» = R~. 

Assume now that T is admissible but such function G does not exist. Then there 
is a set A C nd such that fL(A) > 0, T(x) is constant on A, while all values 
of 1] (x ) are different on A, that is, if x, yEA, then x =I y implies 1] (x ) =l1](Y). 
Then there are real numbers ° < c < 1 and E > 0, and sets B, DcA such that 
fL(B), fL(D) > 0, and 

1 - 1] (x ) > c + E if x E B, 

l-1](x) < C-E if xED. 

Now, choose a cost function with the following values: 

CO,O = CI,I = 0, CO,I = 1, and 
1 - C 

CI,O= --. 
C 

Then, 

Qo(x) = 1] (x ), 

QI(X) CI,O(1 - 1](x)), 

and the Bayes decision on BUD is given by 

* (x) = {o if C < ~ - 1] (x) 
g 1 otherwIse. 
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Now, let geT (x» be an arbitrary decision. Without loss of generality we can assume 
that g(T(x» = 0 if x E A. Then the difference between the risk of g(T(x» and 
the Bayes risk is 

= r (Qg(T(x»(x) - Qg*(x)(x»M(dx) JRd 

> i (Qo(x) - Ql(x»M(dx) 

= i (7J(x) - cl,O(1 - 7J(X»M(dx) 

= i (1 - 1 - c~(X)) JL(dx) 2: ~JL(D) > O. D 

We can give another characterization of admissible transformations by virtue of 
a well-known concept of mathematical statistics: 

DEFINITION 32.2. T(X) is called a sufficient statistic if the random variables X, 
T(X), and Y form a Markov chain in this order. That is, for any set A, P{Y E 

AIT(X), X} = pry E AIT(X)}. 

Theorem 32.6. A transformation T is admissible if and only ifT (X) is a sufficient 
statistic. 

PROOF. Assume that T is admissible. Then according to Theorem 32.5 there is a 
mapping G such that 

Then 

and 

G(T(X» = 7J(X) with probability one. 

P{Y = IIT(X), X} = P{Y = llX} = l1(X) = G(T(X», 

P{Y = IIT(X)} = E{P{Y = lIT(X), X}IT(X)} 

= E {G(T(X»IT(X)} 

= G(T(X», 

thus, P{Y = IIT(X), X} = P{Y = lIT(X)}, therefore T(X) is sufficient. On the 
other hand, if T(X) is sufficient, then 

P{Y = llX} = P{Y = IIT(X), X} = P{Y = IIT(X)}, 
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so for the choice 
G(T(X)) = P{Y = IIT(X)} 

we have the desired function G(·), and therefore T is admissible. 0 

Theorem 32.6 states that we may replace X by any sufficient statistic T(X) 
without altering the Bayes error. The problem with this, in practice, is that we do 
not know the sufficient statistics because we do not know the distribution. If the 
distribution of (X, Y) is known to some extent, then Theorem 32.6 may be useful. 

EXAMPLE. Assume that it is known that 1] (x ) = e-cllxll for some unknown c > o. 
Then II X II is a sufficient statistic. Thus, for discrimination, we may replace the 
d-dimensional vector X by the I-dimensional random variable IIXII without loss 
of discrimination power. 0 

EXAMPLE. If 1] (x(1) , X(2) , x(3») = 1]0 (x(1)x(2) , x(2)x(3») for some function 1]0, then 
(X (1) X(2), X(2) X(3») is a 2-dimensional sufficient statistic. For discrimination, there 
is no need to deal with X(l), X(2), X(3). It suffices to extract the features X (1) X (2) 

and X(2) X (3) • 0 

EXAMPLE. If given Y = i, X is normal with unknown mean mi and diagonal 
covariance matrix a 2 I (for unknown a), then 1](x) is a function of IIx - m111 2 

-

II x - mo 112 only for unknown mo, mI. Here we have no obvious sufficient statistic. 
However, if mo and m 1 are both known, then a quick inspection shows that x T (m 1 -

mo) is a I-dimensional sufficient statistic. Again, it suffices to look for the simplest 
possible argument for 1]. If mo = m 1 = 0 but the covariance matrices are ag I and 
al I given that Y = 0 or Y = 1, then IIXII 2 is a sufficient statistic. 0 

In summary, the results of this section are useful for picking out features when 
some theoretical information is available regarding the distribution of (X, Y). 

Problems and Exercises 

PROBLEM32.1. Consider the pair (X, y) E Rdx{O, l}ofrandomvariables,andletXCd+l) E 

R be an additional component. Define the augmented random vector X' = (X, X Cd+l). 

Denote the Bayes errors corresponding to the pairs (X, Y) and (X', Y) by L~ and L~, 
respectively. Clearly, L ~ ::: L ~/. Prove that equality holds if and only if 

P {I{ri'CX/»1/2} =I I{T/CX»1/2}} = 0, 

where the a posteriori probability functions r; : Rd -+ {O, I} and r;' : R d+1 -+ {O, I} are 
defined as r;(x) = P{Y = llX = x} and r;'(x') = P{Y = llX' = x'). HINT: Consult with the 
proof of Theorem 32.5. 

PROBLEM 32.2. LetP{Y = I} = 1/2,andgivenY = i,i = 0, 1,letX = (XCl), ... , XCd») have 

d independent components, where X(J) is normal (m ji, a}). Prove that L * = p{ N > r/2}, 

where N is a standard normal random variable, and r2 is the square of the Mahalanobis 

distance: r2 = L~=l ((m jl - m jo)/aj)2 (Dud a and Hart (1973, pp. 66-67». 
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PROBLEM 32.3. SAMPLING OF A STOCHASTIC PROCESS. Let X(t), t E [0, 1], be a stochas­
tic process (i.e., a collection of real-valued random variables indexed by t), and let Y 
be a binary random variable. For integer N > 0, define xW = X (i / N), i ::: 1, ... , N. 
Find sufficient conditions on the function met) =E{X(t)} and on the covariance function 
K(t, s)::: E{(X(t) - E{X(t)})(X(s) - E{X(s)})} such that 

lim L *(XCj) = L *(X(·», 
N--+oo 

where L*(X~) is the Bayes error corresponding to (X~), ... , xf/\ and L*(X(·) is the 
infimum of the error probabilities of decision functions that map measurable functions 
into {O, I}. HINT: Introduce the stochastic process XN(t) as the linear interpolation of 
X~l), ... , X(N). Find conditions under which 

lim E {ll (XN(t) - X(t))2dt} = 0, 
N--+oo 0 

and use Theorem 32.3, and the remark following it. 

PROBLEM 32.4. EXPANSION OF A STOCHASTIC PROCESS. Let X(t), met), and K(t, s) be as in 
the previous problem. Let 0/1, 0/2, ... be a complete orthonormal system of functions on 
[0, 1]. Define 

Find conditions under which 

lim L *(x(1), ... , X(N)) = L *(X(·). 
N--+oo 

PROBLEM 32.5. Extend Theorem 32.3 such that the transformations Tn(X, D,J are allowed 
to depend on the training data. This extension has significance, because feature extraction 
algorithms use the training data. 

PROBLEM 32.6. For discrete X prove that T(X) is sufficient iff Y, T(X), X form a Markov 
chain (in this order). 

PROBLEM 32.7. Prove Theorem 32.4. 

PROBLEM 32.8. Recall the definition of F -errors from Chapter 3. Let F be a strictly con­
cave function. Show that dF(X, Y) = dF(T(X), Y) if and only if the transformation T is 
admissible. Conclude that LNN(X, Y) = LNN(T(X), Y) Construct a T and a distribution of 
(X, Y) such that L *(X, Y) = L *(T(X), y), but T is not admissible. 

PROBLEM 32.9. Find sufficient statistics of minimal dimension for the following discrimi­
nation problems: 

(1) It is known that for two given sets A and B with A n B = 0, if Y = 1, we have 
X E A and if Y = 0, then X E B, or vice versa. 

(2) Given Y, X is a vector of independent gamma random variables with common 
unknown shape parameter a and common unknown scale parameter b (i.e., the 
marginal density of each component of X is of the form xa-Je-xjb /(r(a)ba ), 

x > 0). The parameters a and b depend upon Y. 

PROBLEM 32.10. Let X have support on the surface of a ball of n d centered at the origin of 
unknown radius. Find a sufficient statistic for discrimination of dimension smaller than d. 
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PROBLEM 32.11. Assume that the distribution of X = (X(l), X(2), X(3), X(4)) is such that 
X (2) X(4) = 1 and X(l) + X(2) + X(3) = 0 with probability one. Find a simple sufficient 
statistic. 



Appendix 

In this appendix we summarize some basic definitions and results from the theory 
of probability. Most proofs are omitted as they may be found in standard textbooks 
on probability, such as Ash (1972), Shiryayev (1984), Chow and Teicher (1978), 
Durrett (1991), Grimmett and Stirzaker (1992), and Zygmund (1959). We also 
give a list of useful inequalities that are used in the text. 

A.I Basics of Measure Theory 

DEFINITION A.l. Let S be a set, and let F be a family of subsets of S. F is called 
a a -algebra if 

(i) 0 E F, 
(iO A E F implies A C E F, 
(iii) AI, A2, ... E F implies U~l Ai E F. 

A a -algebra is closed under complement and union of countably infinitely many 
sets. Conditions (i) and (ii) imply that S E F. Moreover, (ii) and (iii) imply that a 
a-algebra is closed under countably infinite intersections. 

DEFINITION A.2. Let S be a set, and let F be a a -algebra of subsets of S. Then 
(S,:F) is called a measurable space. The elements of F are called measurable 
sets. 

DEFINITION A.3. If S = nd and!3 is the smallest a-algebra containing all rect­
angles, then!3 is called the Borel a-algebra. The elements of!3 are called Borel 
sets. 
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DEFINITION AA. Let (S, F) be a measurable space and let f S ~ n be a 
function. f is called measurable if for all B E B 

f-l(B) = {s : f(s) E B} E F, 

that is, the inverse image of any Borel set B is in F. 

Obviously, if A is a measurable set, then the indicator variable IA is a measur­
able function. Moreover, finite linear combinations of indicators of measurable sets 
(called simple functions) are also measurable functions. It can be shown that the 
set of measurable functions is closed under addition, subtraction, multiplication, 
and division. Moreover, the supremum and infimum of a sequence of measurable 
functions, as well as its pointwise limit supremum and limit infimum are measur­
able. 

DEFINITION A.5. Let (S, F) be a measurable space and let v : F ~ [0, (0) be a 
function. v is a measure on F if 

(i) v(0) = 0, 
(ii) v is (j-additive, that is, AI, A2, ... E F, and Ai n Aj = 0, i =I j imply 

that v(U~lAi) = 2:~1 v(Ai). 

In other words, a measure is a nonnegative, (j -additive set function. 

DEFINITION A.6. v is a finite measure if v(S) < 00. v is a (j -finite measure if 
there are countably many measurable sets AI, A2, ... such that U~l Ai = Sand 
V(Ai) < 00, i = 1,2, .... 

DEFINITION A.7. The triple (S, F, v) is a measure space if(S, F) is a measurable 
space and v is a measure on F. 

DEFINITION A.8. The Lebesgue measure A on nd is a measure on the Borel (j -algebra 
ofnd such that the A measure of each rectangle equals to its volume. 

A.2 The Lebesgue Integral 

DEFINITION A.9. Let (S, F, v) be a measure space and f = 2:7=1 XJAi a simple 
function such that the measurable sets AI, ... , An are disjoint. Then the (Lebesgue) 
integral of f with respect to v is defined by 

f fdv = is f(s)v(ds) = tXiV(Ai). 

If f is a nonnegative-valued measurable function, then introduce a sequence of 
simple functions as follows: 

Us) = { ~~ - l)/n if (k - 1)ln ::: f(s) < kin, k = 1,2, ... n2n 
if f(s) 2: 2n. 
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Then the fn's are simple functions, and fn(s) -+ f(s) in a monotone non­
decreasing fashion. Therefore, the sequence of integrals f fndv is monotone non­
decreasing, with a limit. The integral f is then defined by 

f fdv = [ f(s)v(ds) = lim f fn dv . J s n---+oo 

If f is an arbitrary measurable function, then decompose it as a difference of its 
positive and negative parts, 

f(s) = fest - f(s)- = fest - (- f(s)t, 

where f+ and f- are both nonnegative functions. Define the integral of f by 

if at least one term on the right-hand side is finite. Then we say that the integral 
exists. If the integral is finite then f is integrable. 

C"', .J"7 

DEFINITION A.IO. Iff Jdv exists and A is a measurablefun{Ji~'n,~then fA fdv is 
defined by 

i fdv = f fJAdv. 

DEFINITION A.II. We say that fn -+ f (mod v) if 

v ({s: 2i~fn(s) i f(s)}) = o. 

Theorem A.I. (BEPPo-LEVY THEOREM). If fn(s) -+ f(s) in a monotone increas­
ing way for some nonnegative integrable function f, then 

f lim fn dv = lim f fn dv . 
IZ---+OO 17---+00 

Theorem A.2. (LEBESGUE'S DOMINATED CONVERGENCE THEOREM). Assume that 
fn -+ f (mod v)andlh7(s)1 :::: g(s)fors E S, n = 1,2, ... , where f gdv < 00. 

Then 

f lim h 1dv = lim f h7dv . 
11---+00 17---+00 

Theorem A.3. (FATOU'S LEMMA). Let fl' 12, ... be measurable functions. 
(i) If there exists a measurable function g with f gdv > -00 such thatJor 

every n, hI (s) 2: g(s), then 

lim inf f hI d v 2: f lim inf h1 d v . 
n---+oo IZ---+OO 
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(ii) If there is a a measurable function g with J gdv < 00, such that fn(s) ::::: 
g(s) for every n, then 

lim sup f fn dv ::::: f lim sup fn dv . 
n---+oo n---+oo 

DEFINITION A.12. Let VI and V2 be measures on a measurable space (S, F). We 
say that VI is absolutely continuous with respect to V2 if and only if v2(A) = 0 
implies VI (A) = 0 (A E F). We denote this relation by VI « V2. 

Theorem A.4. (RADON-NIKODYM THEOREM). Let VI and V2 be measures on the 
measurable space (S, F) such that VI « V2 and V2 is a-finite. Then there exists a 
measurable function f such that for all A E F 

vI(A) = 1 f dv2. 

f is unique (mod V2). If VI is finite, then f has a finite integral. 

DEFINITION A.13. f is called the density, or Radon-Nikodym derivative of VI with 
respect to V2. We use the notation f = dvIidv2. 

DEFINITION A.14. Let VI and V2 be measures on a measurable space (S, F). If 
there exists a set A E F such that vI(AC

) = 0 and v2(A) = 0, then VI is singular 
with respect to V2 (and vice versa). 

Theorem A.S. (LEBESGUE DECOMPOSITION THEOREM). If fJ., is a a-finite measure 
on a measurable space (S, F), then there exist two unique measures VI, V2 such 
that fJv = VI + V2, where VI « fJ., and V2 is singular with respect to fJ.,. 

DEFINITION A.IS. Let (S, F, v) be a measure space and let f be a measurable 
function. Then f induces a measure fJ., on the Borel a -algebra as follows: 

fJ.,(B) = v(f-I(B)), B E B. 

Theorem A.6. Let V be a measure on the Borel a -algebra B ofR, and let f and 
g be measurable functions. Then for all B E B, 

r g(x)fJ.,(dx) = r g(f(s))v(ds), 
iB if-ICB) 

where fJv is induced by f. 

DEFINITION A.16. Let VI and V2 be measures on the measurable spaces (Sl, Fd 
and (S2, F 2), respectively. Let (S, F) be a measurable space such that S = Sl X S2, 
and FI x F2 E F whenever FI E FI and F2 E F 2. V is called the product measure 
of VI and V2 on F iffor FI E F1 and F2 E F2, V(F1 x F2) = VI (FI)V2(F2). The 
product of more than two measures can be defined similarly. 
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Theorem A. 7. (FUBINI'S THEOREM). Let h be a measurable function on the product 
space (S, F). Then 

is h(u, v)v(d(u, v)) = is, (is, h(u, V)V2(dV)) vl(du) 

is, (is, h(u, v )v.(dU)) V2 (d v), 

assuming that one of the three integrals is finite. 

A.3 Denseness Results 

Lemma A.t. (COVER AND HART (1967)). Let fL be a probability measure on nd
, 

and define its support set by 

A = support(fL) = {x : for all r > 0, fL(Sx,r) > o} . 

Then fL(A) = 1. 

PROOF. By the definition of A, 

AC = {x : fL(Sx,rJ = 0 for some rx > o}. 

Let Q denote the set of vectors in nd with rational components (or any countable 
dense set). Then for each x E AC, there is a Yx E Q with Ilx Yxll:::s rx/3. This 
implies SYx,rx/2 C Sx,rx' Therefore, fL(SYx,rx /2) = 0, and 

A
C 

C U SYx,rx/2. 
XEAC 

The right-hand side is a union of countably many sets of zero measure, and therefore 
fL(A·) = 1. 0 

DEFINITION A.17. Let (S, F, v) be a measure space. For a fixed number p ~ 1, 
L p (v) denotes the set of all measurable functions satisfying f I f I P d v < 00. 

Theorem A.S. For every probability measure v on nd , the set of continuousfunc­
tions with bounded support is dense in L p (v). In other words, for every E > 0 and 
f E L p there is a continuous function with bounded support gEL p such that 

The following theorem is a rich source of denseness results: 
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Theorem A.9. (STONE-WEIERSTRASS THEOREM). Let F be afamily of real-valued 
continuous functions on a closed bounded subset B of Rd. Assume that F is an 
algebra, that is, for any II, h E F and a, b E R, we have alI + bh E F, and 
fl h E F. Assume furthermore that if x =I y then there is an f E F such that 
f (x) =I f (y), and that for each x E B there exists an f E F with f (x) =I O. Then 
for every E > 0 and continuous function g : B -+ R, there exists an f E F such 
that 

sup Ig(x) - f(x)1 < E. 
xEB 

The following two theorems concern differentiation of integrals. Good general 
references are Whee den and Zygmund (1977) and de Guzman (1975): 

Theorem A.IO. (THE LEBESGUE DENSITY THEOREM). Let f be a density on Rd. 
Let {Qk(X)} be a sequence of closed cubes centered at x and contracting to x. 
Then 

. fQk(x) If(x) - f(y)ldy 
hm =0 

k--+oo A(Qk(X)) 

at almost all x, where A denotes the Lebesgue measure. Note that this implies 

at almost all x. 

COROLLARY A.I. Let A be a collection of subsets of So, 1 with the property that 
for all A E A, A(A) ::: CA(SO,l) for some fixed c > O. Then for almost all x, if 
x + r A = {y : (y - x) / rEA}, 

1· I fx+rA f(y)dy f()i 0 1m sup - x = . 
r-+O AEA A(X + r A) 

The Lebesgue density theorem also holds if {Qk(X)} is replaced by a sequence 
of contracting balls centered at x, or indeed by any sequence of sets that satisfy 

x + brkS S; Qk(X) S; x + arkS, 

where S is the unit ball of Rd, rk + 0, and 0 < b :::: a < 00 are fixed constants. 
This follows from the Lebesgue density theorem. It does not hold in general when 
{Qk(X)} is a sequence of hyperrectangles containing x and contracting to x. For 
that, an additional restriction is needed: 

Theorem A.I1. (THE JESSEN-MARCINKIEWICZ-ZYGMUND THEOREM). Let f be a 
density on Rd with f f logd-l (1 + f)dx < 00. Let {Qk(X)} be a sequence of 
hyperrectangles containing x andfor which diam(Qk(x)) -+ O. Then 

at almost all x. 
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COROLLARY A.2. Iff is a density and {Qk(X)} is as in TheoremA.ll, then 

lim inf I ~ 1 f(y)dy ~ f(x) 
k-+oo A(Qk(X»Qk(X) 

at almost all x. 

To see this, take g :::: min(f, M) for large fixed M. As f g logd-l(l + g) < 00, by 
the lessen-Marcinkiewicz-Zygmund theorem, 

lim inf I 1 g(y)dy ~ g(x) 
k-+oo A(Qk(X» Qk(X) 

at almost all x. Conclude by letting M ---?>- 00 along the integers. 

A.4 Probability 

DEFINITION A.I8. A measure space (Q, F, P) is called a probability space if 
P{Q} :::: 1. Q is the sample space or sure event, the measurable sets are called 
events, and the measurable functions are called random variables. If Xl, ... , Xn 
are random variables then X :::: (Xl, ... , Xn) is a vector-valued random variable. 

DEFINITION A.19. Let X be a random variable, then X induces the measure fL on 
the Borel 0' -algebra ofR by 

fL(B) :::: P {{w : X(w) E Bll :::: P{X E B}, B E B. 

The probability measure fL is called the distribution of the random variable X. 

DEFINITION A.20. Let X be a random variable. The expectation of X is the integral 
of x with respect to the distribution fL of X: 

E{X}:::: L XfL(dx) 

if it exists. 

DEFINITION A.21. Let X be a random variable. The variance of X is 

Var{X} :::: E {(X - E{X))2} 

ifE{X} isjinite, and 00 ifE{X} is notjinite or does not exist. 

DEFINITION A.22. Let Xl, ... , Xn be random variables. They induce the measure 
{L(n) on the Borel O'-algebra ofRn with the property 
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p}n) is called the joint distribution of the random variables X I, ... , X n. Let fJ,i 
be the distribution of Xi (i = 1, ... , n). The random variables Xl, ... , Xn are 
independent if their joint distribution fJ, (n) is the product measure of fJ,1, ... , fJ,n. 
The events AI, ... , An E :F are independent if the random variables IAJ , ... , IAn 
are independent. 

Fubini's theorem implies the following: 

Theorem A.12. If the random variables Xl, ... , Xn are independent and have 
finite expectations then 

A.S Inequalities 

Theorem A.13. (CAUCHy-SCHWARZ INEQUALITY). If the random variables X and 
Y have finite second moments (E{X2} < 00 andE{y2} < (0), then 

Theorem A.14. (HOLDER'S INEQUALITY). Let p, q E (1, (0) such that (lip) + 
(1lq) = 1. Let X and Y be random variables such that (E{IXPI})ljp < 00 and 
(E{lyql})ljq < 00. Then 

Theorem A.IS. (MARKOV'S INEQUALITY). Let X be a nonnegative-valued random 
variable. Then for each t > 0, 

P{X ::: t} s E{X} . 
t 

Theorem A.16. (CHEBYSHEV'S INEQUALITY). Let X be a random variable. Then 
for each t > 0, 

Var{X} 
P{IX - E{X}I ::: t} s t2 . 

Theorem A.17. (CHEBYSHEV-CANTELLI INEQUALITY). Let t ::: 0. Then 

Var{X} 
P{X - EX > t} < 2 

- Var{X} + t 

PROOF. We may assume without loss of generality that EX = 0. Then for all t 

t = E{t - X} s E{(t - X)I{x::st}}. 
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Thus for t ~ 0 from the Cauchy-Schwarz inequality, 

that is, 

t 2 ::::; E{(t - Xf}E{IlxSt}} 

E{(t - X)2}p{X ::::; t} 

(Var{X} + t 2 )P{X ::::; t}, 

. t 2 

P{X < t} > ------,,­
- - Var{X} + 

and the claim follows. 0 

Theorem A.lS. (JENSEN'S INEQUALITY). If f is a real-valued convex function on 
afinite or infinite interval ofR, and X is a random variable withfinite expectation, 
taking its values in this interval, then 

f(E{X}) :::; E{f(X)}. 

Theorem A.19. (ASSOCIATION INEQUALITIES). Let X be a real-valued random 
variable and let f(x) and g(x) be monotone nondecreasing real-valuedfunctions. 
Then 

E{f(X)g(X)} ~ E{f(X)}E{g(X)}, 

provided that all expectations exist and are finite. If f is monotone increasing and 
g is monotone decreasing, then 

E{f(X)g(X)} :::; E{f(X)}E{g(X)}. 

PROOF. We prove the first inequality. The second follows by symmetry. Let X have 
distribution fL. Then we write 

E{f(X)g(X)} - E{f(X)}E{g(X)} 

f f(x)g(x) fL(dx) - f fey) fL(dy) f g(x) fL(dx) 

= f (flf(X) - f(y)]g(x) {'(dX») {'(dy) 

f (f hex, y)g(x) {'(dX») {'(dy), 

where hex, y) = f(x) - fey). By Fubini's theorem the last integral equals 

r hex, y)g(x) fL2(dxdy) IR} 
= l>y hex, y)g(x) {'2(dxdy) + l<y hex, y)g(x) {'2(dxdy), 
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since h(x, x) = 0 for all x. Here J1- 2(dxdy) = J1-(dx) . I~(dy). The second integral 
on the right-hand side is just 

Thus, we have 

E{f(X)g(X)} - E{f(X)}E{g(X)} 

L2 hex, y)g(x) J1- 2(dxdy) 

= 1 (1 [hex, y)g(x) + hey, x)g(y)] J1-(dX») J1-(dy) 
y x>y 

1 (1 hex, y)[g(x) - g(y)] J1-(dX») J1-(dy) 
y x>y 

:::: 0, 

since hey, x) = -hex, y), and by the fact that hex, y) :::: 0 and g(x) - g(y) :::: 0 if 
x> y. 0 

A.6 Convergence of Random Variables 

DEFINITION A.23. Let {Xn}, n = 1,2, ... , be a sequence of random variables. We 
say that 

lim Xn = X in probability 
n-+oo 

iffor each E > 0 
lim P{IXn - XI :::: E} = O. 

n-+oo 

We say that 

lim Xn = X with probability one (or almost surely), 
n-+oo 

if Xn --+ X (mod P), that is, 

P {w: lim Xn(w) = X(w)} = 1. 
11-+00 

For a fixed number p :::: 1 we say that 

lim Xn = X in L p , 
n-+oo 

if 
lim E {IXn - XI P } = O. 

11-+00 
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Theorem A.20. Convergence in L p implies convergence in probability. 

Theorem A.21. limn~oo Xn = X with probability one if and only if 

lim sup IXm - XI = 0 
n~oo nS;m 

in probability. Thus, convergence with probability one implies convergence in 
probability. 

Theorem A.22. (BOREL-CANTELLI LEMMA). Let An, n = 1, 2, ... , be a sequence 
of events. Introduce the notation 

[An i.o.] = lim sup An = n~l U~=n Am. 
n~CX) 

("i.o." stands for "infinitely often.") If 

00 

LP{An} < 00 

n=l 

then 

P{[An i.o.]} = O. 

By Theorems A.21 and A.22, we have 

Theorem A.23. If for each E > 0 

CX) 

LP{IXn - XI:::: E} < 00, 

n=l 

then limn~CX) Xn = X with probability one. 

A.7 Conditional Expectation 

If Y is a random variable with finite expectation and A is an event with positive 
probability, then the conditional expectation of Y given A is defined by 

E{YIA} = E{Y IA} . 
P{A} 

The conditional probability of an event B given A is 

P{A n B} 
P{B IA} = E{lB IA} = P{A} . 
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DEFINITION A.24. Let Y be a random variable with finite expectation and X be a 
d -dimensional vector-valued random variable. Let F x be the a -algebra generated 
by X: 

Fx = {X-l(B); B E sn}. 

The conditional expectation E{ Y I X} of Y given X is a random variable with the 
property that for all A E Fx 

i Y dP = i E{YIX}dP. 

The existence and uniqueness (with probability one) of E{ Y I X} is a consequence 
of the Radon-Nikodym theorem if we apply it to the measures 

such that 

and 

DEFINITION A.2S. Let C be an event and X be a d-dimensional vector-valued 
random variable. Then the conditional probability of C given X is P{CIX} = 
E{1cIX }. 

Theorem A.24. Let Y be a random variable with finite expectation. Let C be an 
event, and let X and Z be vector-valued random variables. Then 

(i) There is a measurable function g on nd such that E{YIX} = g(X) with 
probability one. 

(ii) E{Y} = E{E{YIX}}, P{C} = E{P{CIX}}. 
(iii) E{YIX} = E{E{YIX, Z}IX}, P{CIX} = E{P{CIX, Y}IX}. 
(iv) IfY is a function of X thenE{YIX} = Y. 
(v) If(Y, X) and Z are independent, then E{YIX, Z} = E{YIX}. 

(vi) IfY = f(X, Z)forameasurablefunction f, and X and Z are independent, 
then E{YIX} = g(X), where g(x) = E{f(x, Z)}. 

A.8 The Binomial Distribution 

An integer-valued random variable X is said to be binomially distributed with 
parameters nand p if 

(n) k n-k P{X = k} = k P (1 - p) , k = 0,1, ... , n. 

If AI, ... , An are independent events with P{Ad = p, then X = 2::7=1IA; is 
binomial (n, p). IAi is called a Bernoulli random variable with parameter p. 
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Lemma A.2. Let the random variable B(n, p) be binomially distributed with pa­
rameters nand p. Then 

(i) 

and 
( ii) 

PROOF. (i) follows from the following simple calculation: 

t _1_ (n) pk (1 _ p )n-k 
k=ok+1 k 

--- L n pk+l(1_ pt-k 1 n ( + 1) 
(n + 1) p k=O k + 1 

< 1 ~ (n + l)pk(1 _ p)n-k+l = 1 . 
(n + 1) P k=O k (n + 1) P 

For (ii) we have 

E {B(:, p/(B(n,p»o}} S E L + B~n, p)} S (n :l)P 

by (i). 0 

Lemma A.3. Let B be a binomial random variable with parameters nand p. 
Then for every 0 ~ p ~ 1, 

andfor p = 1/2 

P!B: l~J) ~J2~rreJ~J2' 
PROOF. The lemma follows from Stirling's formula: 

(n)n (n)n J2nn ;; e1/(12n) ~ n! ~ -J2nn ;; e1/(l2n+l) 

(see, e.g., Feller (1968». 0 
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Lemma A.4. (DEVROYE AND GYORFI (1985), P. 194). For any random variable 
X with finite fourth moment, 

PROOF. Fix a > O. The function l/x +ax2 is minimal on (0, (0) whenx3 = 1/(2a). 
Thus, 

x + ax4 a 3 ___ > (2a)1/3 + __ = _(2a)1/3. 
x 2 - (2a )2/3 2 

Replace x by IXI and take expectations: 

The lower bound, considered as a function of a, is maximized if we take a = 
~ (E{X2}/E{X4})3/2. Resubstitution yields the given inequality. 0 

Lemma A.S. Let B be a binomial (n, 1/2) random variable. Then 

PROOF. This bound is a special case of Khintchine's inequality (see Szarek (1976), 
Haagerup (1978), and also Devroye and Gyorfi (1985), p. 139). Rather than proving 
the given inequality, we will show how to apply the previous lemma to get (without 
further work) the inequality 

Indeed, E {(B - n/2)2} = n/4 and E {(B - n/2)4} = 3n2/16 - n/8 :::; 3n2/16. 
Thus, 

{ 

I

n I} (n/4)3/2 In 
E B 2" ~ (3n2/16)1/2 = V 12· 0 

Lemma A.6. (SLUD (1977)). Let B be a binomial (n, p) random variable with 
p :::: 1/2. Thenfor n(1 - p) ~ k ~ np, 

P{B > k} > P {N > k - np } , 
- - - y'np(1-p) 

where N is normal (0, 1). 
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A.9 The Hypergeometric Distribution 

Let N, b, and n be positive integers with N > n and N > b. A random variable X 
taking values on the integers 0, 1, ... , b is hypergeometric with parameters N, b 
and n, if 

k = 1, ... , b. 

X models the number of blue balls in a sample of n balls drawn without replacement 
from an urn containing b blue and N - b red balls. 

Theorem A.2S. (HOEFFDING (1963». Let the set A consist of N numbers aj, ... , 
aN. Let ZI, ... , Zn denote a random sample taken without replacement from A, 
where n ::: N. Denote 

Then for any E > 0 we have 

Specifically, if X is hypergeometrically distributed with parameters N, b, and n, 
then 

For more inequalities of this type, see Hoeffding (1963) and Serfling (1974). 

A.I0 The Multinomial Distribution 

A vector (NI , ••• , Nk ) of integer-valued random variables is multinomially dis­
tributed with parameters (n, PI, ... , Pk) if 

if L~=l i j = k, i j :::: 0 
otherwise. 

Lemma A.7. The moment-generating function of a multinomial (k, PI, ... , Pk) 
vector is 
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A.II The Exponential and Gamma Distributions 

A nonnegative random variable has exponential distribution with parameter 'A > 0 
if it has a density 

f(x) = 'Ae-AX
, x::: o. 

A nonnegative-valued random variable has the gamma distribution with parameters 
a, b ::: 0 if it has density 

The sum of n i.i.d. exponential()') random variables has gamma distribution with 
parameters nand 1/).. 

A.I2 The Multivariate Normal Distribution 

A d-dimensional random variable X = (X(l), ... , Xed)) has the multivariate nor­
mal distribution if it has a density 

where mEnd, 'E is a positive definite symmetric d x d matrix with entries (5ij, and 
det('E) denotes the determinant of 'E. Then EX = m, and for all i, j = 1, ... , d, 

'E is called the covariance matrix of X. 



Notation 

• I A indicator of an event A. 
• I B (x) = I{xEB} indicator function of a set B. 
• IAI cardinality of a finite set A. 
• A C complement of a set A. 
• ALB symmetric difference of sets A, B. 
• jog composition of functions j, g. 
• log natural logarithm (base e). 
• Lx J integer part of the real number x. 
• I x l upper integer part of the real number x. 

• X ~ Z if X and Z have the same distribution. 
• x(I), ... ,x(d) components of the d-dimensional column vector x. 

• Ilx II = JLf=l (x(i))2 L 2-norm of x E nd. 

• X E Rd observation, vector-valued random variable. 
• Y E {a, I} label, binary random variable. 
• Dn = ((Xl, Yl), ... , (Xn' Yn» training data, sequence of i.i.d. pairs that are 

independent of (X, Y), and have the same distribution as that of (X, Y) . 

• 17(X) = P{Y = IIX = x}, 1 - 17(X) = P{Y = 0IX = x} a posteriori 
probabilities. 

• p = P{Y = I}, 1 - p = P{Y = O} class probabilities. 
• g* : Rd ---+ {a, I} Bayes decision function. 
• ¢ : Rd ---+ {a, I}, gn : Rd x {Rd X {a, l} r ---+ {a, l} classification 

functions. The short notation gn(x) = gn(x, Dn) is also used. 
• L * = P{g*(X) =I Y} Bayes risk, the error probability of the Bayes decision. 
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• Ln = L(gn) = P{g,JX, Dn) =I YIDn} error probability of a classification 
function gn' 

• in (¢) = * L~I=1 I{¢(xi )¥Yi } empirical error probability of a classifier ¢. 
• ~(A) = P{X E A} probability measure of X. 
• ~n(A) = * L~I=1 I{xiEA} empirical measure corresponding to Xl, ... , X n. 
• A Lebesgue measure on nd. 
• I (x) density of X, Radon-Nikodym derivative of ~ with respect to A (if it 

exists). 
• 10 (x ), 11 (x) conditional densities of X given Y = 0 and Y = 1, respectively 

(if they exist). 
• P partition of nd. 
• X(klx), X(k) k-th nearest neighbor of x among Xl, ... , X n • 

• K : nd -+ n kernel function. 
• h, hn > 0 smoothing factor for a kernel rule. 
• Kh(X) = (11 h)K(xl h) scaled kernel function. 
• Tm = ((Xn+l, Yn+l), ... , (Xn+m' Yn+m» testing data, sequence of i.i.d. pairs 

that are independent of (X, Y) and D n , and have the same distribution as that 
of (X, Y). 

• A class of sets. 
• C, Cn classes of classification functions. 
• seA, n) n-th shatter coefficient of the class of sets A. 
• VA Vapnik-Chervonenkis dimension of the class of sets A. 
• S(C, n) n-th shatter coefficient of the class of classifiers C. 
• Vc Vapnik-Chervonenkis dimension of the class of classifiers C. 
• Sx,r = {y E n d : II y - x II ::; r} closed Euclidean ball in nd centered at 

x E n d
, with radius r > O. 
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