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Large-Scale Inference

We live in a new age for statistical inference, where modern scientific technology such
as microarrays and fMRI machines routinely produce thousands and sometimes
millions of parallel data sets, each with its own estimation or testing problem. Doing
thousands of problems at once involves more than repeated application of classical
methods.

Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap,
shows how information accrues across problems in a way that combines Bayesian and
frequentist ideas. Estimation, testing, and prediction blend in this framework,
producing opportunities for new methodologies of increased power. New difficulties
also arise, easily leading to flawed inferences. This book takes a careful look at both
the promise and pitfalls of large-scale statistical inference, with particular attention to
false discovery rates, the most successful of the new statistical techniques. Emphasis is
on the inferential ideas underlying technical developments, illustrated using a large
number of real examples.

bradley efron is Max H. Stein Professor of Statistics and Biostatistics at the
Stanford University School of Humanities and Sciences, and the Department of Health
Research and Policy at the School of Medicine.
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Prologue

At the risk of drastic oversimplification, the history of statistics as a recog-
nized discipline can be divided into three eras:

1 The age of Quetelet and his successors, in which huge census-level data
sets were brought to bear on simple but important questions: Are there
more male than female births? Is the rate of insanity rising?

2 The classical period of Pearson, Fisher, Neyman, Hotelling, and their
successors, intellectual giants who developed a theory of optimal infer-
ence capable of wringing every drop of information out of a scientific
experiment. The questions dealt with still tended to be simple — Is treat-
ment A better than treatment B? — but the new methods were suited to
the kinds of small data sets individual scientists might collect.

3 The era of scientific mass production, in which new technologies typi-
fied by the microarray allow a single team of scientists to produce data
sets of a size Quetelet would envy. But now the flood of data is ac-
companied by a deluge of questions, perhaps thousands of estimates or
hypothesis tests that the statistician is charged with answering together;
not at all what the classical masters had in mind.

The response to this onslaught of data has been a tremendous burst of
statistical methodology, impressively creative, showing an attractive ability
to come to grips with changed circumstances, and at the same time highly
speculative. There is plenty of methodology in what follows, but that is
not the main theme of the book. My primary goal has been to ground the
methodology in familiar principles of statistical inference.

This is where the “empirical Bayes” in my subtitle comes into consider-
ation. By their nature, empirical Bayes arguments combine frequentist and
Bayesian elements in analyzing problems of repeated structure. Repeated
structures are just what scientific mass production excels at, e.g., expres-
sion levels comparing sick and healthy subjects for thousands of genes at
the same time by means of microarrays. At their best, the new methodolo-

ix



x Prologue

gies are successful from both Bayes and frequentist viewpoints, which is
what my empirical Bayes arguments are intended to show.

False discovery rates, Benjamini and Hochberg’s seminal contribution,
is the great success story of the new methodology. Much of what follows is
an attempt to explain that success in empirical Bayes terms. FDR, indeed,
has strong credentials in both the Bayesian and frequentist camps, always
a good sign that we are on the right track, as well as a suggestion of fruitful
empirical Bayes explication.

The later chapters are at pains to show the limitations of current large-
scale statistical practice: Which cases should be combined in a single anal-
ysis? How do we account for notions of relevance between cases? What is
the correct null hypothesis? How do we handle correlations? Some helpful
theory is provided in answer, but much of the argumentation is by example,
with graphs and figures playing a major role. The examples are real ones,
collected in a sometimes humbling decade of large-scale data analysis at
the Stanford School of Medicine and Department of Statistics. (My exam-
ples here are mainly biomedical, but of course that has nothing to do with
the basic ideas, which are presented with no prior medical or biological
knowledge assumed.)

In moving beyond the confines of classical statistics, we are also moving
outside its wall of protection. Fisher, Neyman et al. fashioned an almost
perfect inferential machine for small-scale estimation and testing problems.
It is hard to go wrong using maximum likelihood estimation or a t-test on
a typical small data set. I have found it very easy to go wrong with huge
data sets and thousands of questions to answer at once. Without claiming a
cure, I hope the various examples at least help identify the symptoms.

The classical era of statistics can itself be divided into two periods: the
first half of the 20th century, during which basic theory was developed, and
then a great methodological expansion of that theory in the second half.
Empirical Bayes stands as a striking exception. Emerging in the 1950s in
two branches identified with Charles Stein and Herbert Robbins, it rep-
resented a genuinely new initiative in statistical theory. The Stein branch
concerned normal estimation theory, while the Robbins branch was more
general, being applicable to both estimation and hypothesis testing.

Typical large-scale applications have been more concerned with testing
than estimation. If judged by chapter titles, the book seems to share this
imbalance, but that is misleading. Empirical Bayes blurs the line between
testing and estimation as well as between frequentism and Bayesianism.
Much of what follows is an attempt to say how well we can estimate a test-
ing procedure, for example how accurately can a null distribution be esti-
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mated? The false discovery rate procedure itself strays far from the spirit
of classical hypothesis testing, as discussed in Chapter 4.

About this book: it is written for readers with at least a second course in
statistics as background. The mathematical level is not daunting — mainly
multidimensional calculus, probability theory, and linear algebra — though
certain parts are more intricate, particularly in Chapters 3 and 7 (which can
be scanned or skipped at first reading). There are almost no asymptotics.
Exercises are interspersed in the text as they arise (rather than being lumped
together at the end of chapters), where they mostly take the place of state-
ments like “It is easy to see . . . ” or “It can be shown . . . ”. Citations are
concentrated in the Notes section at the end of each chapter. There are two
brief appendices, one listing basic facts about exponential families, the sec-
ond concerning access to some of the programs and data sets featured in
the text.

I have perhaps abused the “mono” in monograph by featuring methods
from my own work of the past decade. This is not a survey or a textbook,
though I hope it can be used for a graduate-level lecture course. In fact, I
am not trying to sell any particular methodology, my main interest as stated
above being how the methods mesh with basic statistical theory.

There are at least three excellent books for readers who wish to see dif-
ferent points of view. Working backwards in time, Dudoit and van der
Laan’s 2009 Multiple Testing Procedures with Applications to Genomics
emphasizes the control of Type I error. It is a successor to Resampling-
based Multiple Testing: Examples and Methods for p-Value Adjustment
(Westfall and Young, 1993), which now looks far ahead of its time. Miller’s
classic text, Simultaneous Statistical Inference (1981), beautifully describes
the development of multiple testing before the era of large-scale data sets,
when “multiple” meant somewhere between two and ten problems, not
thousands.

I chose the adjective large-scale to describe massive data analysis prob-
lems rather than “multiple,” “high-dimensional,” or “simultaneous,” be-
cause of its bland neutrality with regard to estimation, testing, or prediction,
as well as its lack of identification with specific methodologies. My inten-
tion is not to have the last word here, and in fact I hope for and expect a
healthy development of new ideas in dealing with the burgeoning statistical
problems of the 21st century.
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1

Empirical Bayes and the James–Stein
Estimator

Charles Stein shocked the statistical world in 1955 with his proof that max-
imum likelihood estimation methods for Gaussian models, in common use
for more than a century, were inadmissible beyond simple one- or two-
dimensional situations. These methods are still in use, for good reasons,
but Stein-type estimators have pointed the way toward a radically differ-
ent empirical Bayes approach to high-dimensional statistical inference. We
will be using empirical Bayes ideas for estimation, testing, and prediction,
beginning here with their path-breaking appearance in the James–Stein for-
mulation.

Although the connection was not immediately recognized, Stein’s work
was half of an energetic post-war empirical Bayes initiative. The other
half, explicitly named “empirical Bayes” by its principal developer Her-
bert Robbins, was less shocking but more general in scope, aiming to show
how frequentists could achieve full Bayesian efficiency in large-scale par-
allel studies. Large-scale parallel studies were rare in the 1950s, however,
and Robbins’ theory did not have the applied impact of Stein’s shrinkage
estimators, which are useful in much smaller data sets.

All of this has changed in the 21st century. New scientific technolo-
gies, epitomized by the microarray, routinely produce studies of thousands
of parallel cases — we will see several such studies in what follows —
well-suited for the Robbins point of view. That view predominates in the
succeeding chapters, though not explicitly invoking Robbins’ methodology
until the very last section of the book.

Stein’s theory concerns estimation, whereas the Robbins branch of em-
pirical Bayes allows for hypothesis testing, that is, for situations where
many or most of the true effects pile up at a specific point, usually called
0. Chapter 2 takes up large-scale hypothesis testing, where we will see, in
Section 2.6, that the two branches are intertwined. Empirical Bayes theory
blurs the distinction between estimation and testing as well as between fre-
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2 Empirical Bayes and the James–Stein Estimator

quentist and Bayesian methods. This becomes clear in Chapter 2, where we
will undertake frequentist estimation of Bayesian hypothesis testing rules.

1.1 Bayes Rule and Multivariate Normal Estimation

This section provides a brief review of Bayes theorem as it applies to mul-
tivariate normal estimation. Bayes rule is one of those simple but profound
ideas that underlie statistical thinking. We can state it clearly in terms of
densities, though it applies just as well to discrete situations. An unknown
parameter vector μ with prior density g(μ) gives rise to an observable data
vector z according to density fμ(z),

μ ∼ g(·) and z|μ ∼ fμ(z). (1.1)

Bayes rule is a formula for the conditional density of μ having observed z
(its posterior distribution),

g(μ|z) = g(μ) fμ(z)/ f (z) (1.2)

where f (z) is the marginal distribution of z,

f (z) =
∫

g(μ) fμ(z) dμ, (1.3)

the integral being over all values of μ.
The hardest part of (1.2), calculating f (z), is usually the least neces-

sary. Most often it is sufficient to note that the posterior density g(μ|z) is
proportional to g(μ) fμ(z), the product of the prior density g(μ) and the
likelihood fμ(z) of μ given z. For any two possible parameter values μ1

and μ2, (1.2) gives
g(μ1|z)
g(μ2|z)

=
g(μ1)
g(μ2)

fμ1 (z)

fμ2 (z)
, (1.4)

that is, the posterior odds ratio is the prior odds ratio times the likelihood
ratio. Formula (1.2) is no more than a statement of the rule of conditional
probability but, as we will see, Bayes rule can have subtle and surprising
consequences.

Exercise 1.1 Suppose μ has a normal prior distribution with mean 0 and
variance A, while z given μ is normal with mean μ and variance 1,

μ ∼ N(0, A) and z|μ ∼ N(μ, 1). (1.5)

Show that

μ|z ∼ N(Bz, B) where B = A/(A + 1). (1.6)
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Starting down the road to large-scale inference, suppose now we are
dealing with many versions of (1.5),

μi ∼ N(0, A) and zi|μi ∼ N(μi, 1) [i = 1, 2, . . . ,N], (1.7)

the (μi, zi) pairs being independent of each other. Letting μ = (μ1, μ2, . . . ,

μN)′ and z = (z1, z2, . . . , zN)′, we can write this compactly using standard
notation for the N-dimensional normal distribution,

μ ∼ NN(0, AI) (1.8)

and

z|μ ∼ NN(μ, I) (1.9)

where I is the N × N identity matrix. Then Bayes rule gives posterior dis-
tribution

μ|z ∼ NN(Bz, BI) [B = A/(A + 1)], (1.10)

this being (1.6) applied component-wise.
Having observed z we wish to estimate μ with some estimator μ̂ = t(z),

μ̂ = (μ̂1, μ̂2, . . . , μ̂N)′ . (1.11)

We use total squared error loss to measure the error of estimating μ by μ̂,

L (μ, μ̂) = ‖μ̂ − μ‖2 =
N∑

i=1

(μ̂i − μi)
2 (1.12)

with the corresponding risk function being the expected value of L(μ, μ̂)
for a given μ,

R(μ) = Eμ {L (μ, μ̂)} = Eμ

{
‖t(z) − μ‖2

}
, (1.13)

Eμ indicating expectation with respect to z ∼ NN(μ, I), μ fixed.
The obvious estimator of μ, the one used implicitly in every regression

and ANOVA application, is z itself,

μ̂(MLE) = z, (1.14)

the maximum likelihood estimator (MLE) of μ in model (1.9). This has
risk

R(MLE)(μ) = N (1.15)

for every choice of μ; every point in the parameter space is treated equally
by μ̂(MLE), which seems reasonable for general estimation purposes.
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Suppose though we have prior belief (1.8) which says that μ lies more
or less near the origin 0. According to (1.10), the Bayes estimator is

μ̂(Bayes) = Bz =

(
1 − 1

A + 1

)
z, (1.16)

this being the choice that minimizes the expected squared error given z. If
A = 1, for instance, μ̂(Bayes) shrinks μ̂(MLE) halfway toward 0. It has risk

R(Bayes)(μ) = (1 − B)2‖μ‖2 + NB2, (1.17)

(1.13), and overall Bayes risk

R(Bayes)
A = EA

{
R(Bayes)(μ)

}
= N

A
A + 1

, (1.18)

EA indicating expectation with respect to μ ∼ NN(0, AI).

Exercise 1.2 Verify (1.17) and (1.18).

The corresponding Bayes risk for μ̂(MLE) is

R(MLE)
A = N

according to (1.15). If prior (1.8) is correct then μ̂(Bayes) offers substantial
savings,

R(MLE)
A − R(Bayes)

A = N/(A + 1); (1.19)

with A = 1, μ̂(Bayes) removes half the risk of μ̂(MLE).

1.2 Empirical Bayes Estimation

Suppose model (1.8) is correct but we don’t know the value of A so we
can’t use μ̂(Bayes). This is where empirical Bayes ideas make their appear-
ance. Assumptions (1.8), (1.9) imply that the marginal distribution of z
(integrating z ∼ NN(μ, I) over μ ∼ NN(0, A · I)) is

z ∼ NN (0, (A + 1)I) . (1.20)

The sum of squares S = ‖z‖2 has a scaled chi-square distribution with N
degrees of freedom,

S ∼ (A + 1)χ2
N , (1.21)

so that

E

{
N − 2

S

}
=

1
A + 1

. (1.22)
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Exercise 1.3 Verify (1.22).

The James–Stein estimator is defined to be

μ̂(JS) =

(
1 − N − 2

S

)
z. (1.23)

This is just μ̂(Bayes) with an unbiased estimator (N − 2)/S substituting for
the unknown term 1/(A + 1) in (1.16). The name “empirical Bayes” is sat-
isfyingly apt for μ̂(JS): the Bayes estimator (1.16) is itself being empirically
estimated from the data. This is only possible because we have N similar
problems, zi ∼ N(μi, 1) for i = 1, 2, . . . ,N, under simultaneous considera-
tion.

It is not difficult to show that the overall Bayes risk of the James–Stein
estimator is

R(JS)
A = N

A
A + 1

+
2

A + 1
. (1.24)

Of course this is bigger than the true Bayes risk (1.18), but the penalty is
surprisingly modest,

R(JS)
A

/
R(Bayes)

A = 1 +
2

N · A . (1.25)

For N = 10 and A = 1, R(JS)
A is only 20% greater than the true Bayes risk.

The shock the James–Stein estimator provided the statistical world didn’t
come from (1.24) or (1.25). These are based on the zero-centric Bayesian
model (1.8), where the maximum likelihood estimator μ̂(0) = z, which
doesn’t favor values of μ near 0, might be expected to be bested. The rude
surprise came from the theorem proved by James and Stein in 19611:

Theorem For N ≥ 3, the James–Stein estimator everywhere dominates
the MLE μ̂(0) in terms of expected total squared error; that is,

Eμ

{
‖μ̂(JS) − μ‖2

}
< Eμ

{
‖μ̂(MLE) − μ‖2

}
(1.26)

for every choice of μ.

Result (1.26) is frequentist rather that Bayesian — it implies the supe-
riority of μ̂(JS) no matter what one’s prior beliefs about μ may be. Since
versions of μ̂(MLE) dominate popular statistical techniques such as linear
regression, its apparent uniform inferiority was a cause for alarm. The fact
that linear regression applications continue unabated reflects some virtues
of μ̂(MLE) discussed later.

1 Stein demonstrated in 1956 that μ̂(0) could be everywhere improved. The specific form
(1.23) was developed with his student Willard James in 1961.
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A quick proof of the theorem begins with the identity

(μ̂i − μi)
2 = (zi − μ̂i)

2 − (zi − μi)
2 + 2 (μ̂i − μi) (zi − μi). (1.27)

Summing (1.27) over i = 1, 2, . . . ,N and taking expectations gives

Eμ

{
‖μ̂ − μ‖2

}
= Eμ

{
‖z − μ̂‖2

}
− N + 2

N∑
i=1

covμ (μ̂i, zi) , (1.28)

where covμ indicates covariance under z ∼ NN(μ, I). Integration by parts
involving the multivariate normal density function fμ(z) = (2π)−N/2 exp{− 1

2∑
(zi − μi)2} shows that

covμ (μ̂i, zi) = Eμ

{
∂μ̂i

∂zi

}
(1.29)

as long as μ̂i is continuously differentiable in z. This reduces (1.28) to

Eμ ‖μ̂ −μ‖2 = Eμ

{
‖z − μ̂‖2

}
− N + 2

N∑
i=1

Eμ

{
∂μ̂i

∂zi

}
. (1.30)

Applying (1.30) to μ̂(JS) (1.23) gives

Eμ

{∥∥∥μ̂(JS) − μ
∥∥∥2

}
= N − Eμ

{
(N − 2)2

S

}
(1.31)

with S =
∑

z2
i as before. The last term in (1.31) is positive if N exceeds 2,

proving the theorem.

Exercise 1.4 (a) Use (1.30) to verify (1.31). (b) Use (1.31) to verify
(1.24).

The James–Stein estimator (1.23) shrinks each observed value zi toward
0. We don’t have to take 0 as the preferred shrinking point. A more general
version of (1.8), (1.9) begins with

μi
ind∼ N(M, A) and zi|μi

ind∼ N(μi, σ
2
0) (1.32)

for i = 1, 2, . . . ,N, where M and A are the mean and variance of the prior
distribution. Then (1.10) and (1.20) become

zi
ind∼ N

(
M, A + σ2

0

)
and μi|zi

ind∼ N
(
M + B(zi − M), Bσ2

0

)
(1.33)

for i = 1, 2, . . . ,N, where

B =
A

A + σ2
0

. (1.34)
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Now Bayes rule μ̂(Bayes)
i = M + B(zi − M) has the James–Stein empirical

Bayes estimator

μ̂(JS)
i = z̄ +

(
1 − (N − 3)σ2

0

S

)
(zi − z̄), (1.35)

with z̄ =
∑

zi/N and S =
∑

(zi − z̄)2. The theorem remains true as stated,
except that we now require N ≥ 4.

If the difference in (1.26) were tiny then μ̂(JS) would be no more than an
interesting theoretical tidbit. In practice though, the gains from using μ̂(JS)

can be substantial, and even, in favorable circumstances, enormous.
Table 1.1 illustrates one such circumstance. The batting averages zi (num-

ber of successful hits divided by the number of tries) are shown for 18
major league baseball players early in the 1970 season. The true values μi

are taken to be their averages over the remainder of the season, comprising
about 370 more “at bats” each. We can imagine trying to predict the true
values from the early results, using either μ̂(MLE)

i = zi or the James–Stein es-
timates (1.35) (withσ2

0 equal to the binomial estimate z̄(1−z̄)/45, z̄ = 0.265
the grand average2). The ratio of prediction errors is

18∑
1

(
μ̂(JS)

i − μi

)2
/ 18∑

1

(
μ̂(MLE)

i − μi

)2
= 0.28, (1.36)

indicating a tremendous advantage for the empirical Bayes estimates.
The initial reaction to the Stein phenomena was a feeling of paradox:

Clemente, at the top of the table, is performing independently of Munson,
near the bottom. Why should Clemente’s good performance increase our
prediction for Munson? It does for μ̂(JS) (mainly by increasing z̄ in (1.35)),
but not for μ̂(MLE). There is an implication of indirect evidence lurking
among the players, supplementing the direct evidence of each player’s
own average. Formal Bayesian theory supplies the extra evidence through
a prior distribution. Things are more mysterious for empirical Bayes meth-
ods, where the prior may exist only as a motivational device.

1.3 Estimating the Individual Components

Why haven’t James–Stein estimators displaced MLEs in common statis-
tical practice? The simulation study of Table 1.2 offers one answer. Here
N = 10, with the ten μi values shown in the first column; μ10 = 4 is much

2 The zi are binomial here, not normal, violating the conditions of the theorem, but the
James–Stein effect is quite insensitive to the exact probabilistic model.
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Table 1.1 Batting averages zi = μ̂
(MLE)
i for 18 major league players early

in the 1970 season; μi values are averages over the remainder of the
season. The James–Stein estimates μ̂(JS)

i (1.35) based on the zi values
provide much more accurate overall predictions for the μi values. (By
coincidence, μ̂i and μi both average 0.265; the average of μ̂(JS)

i must equal
that of μ̂(MLE)

i .)

Name Hits/AB μ̂(MLE)
i μi μ̂(JS)

i

Clemente 18/45 .400 .346 .294
F. Robinson 17/45 .378 .298 .289
F. Howard 16/45 .356 .276 .285
Johnstone 15/45 .333 .222 .280
Berry 14/45 .311 .273 .275
Spencer 14/45 .311 .270 .275
Kessinger 13/45 .289 .263 .270
L. Alvarado 12/45 .267 .210 .266
Santo 11/45 .244 .269 .261
Swoboda 11/45 .244 .230 .261
Unser 10/45 .222 .264 .256
Williams 10/45 .222 .256 .256
Scott 10/45 .222 .303 .256
Petrocelli 10/45 .222 .264 .256
E. Rodriguez 10/45 .222 .226 .256
Campaneris 9/45 .200 .286 .252
Munson 8/45 .178 .316 .247
Alvis 7/45 .156 .200 .242

Grand Average .265 .265 .265

different than the others. One thousand simulations of z ∼ N10(μ, I) each
gave estimates μ̂(MLE) = z and μ̂(JS) (1.23). Average squared errors for
each μi are shown. For example, (μ̂(MLE)

1 −μ1)2 averaged 0.95 over the 1000
simulations, compared to 0.61 for (μ̂(JS)

1 − μ1)2.
We see that μ̂(JS)

i gave better estimates than μ̂(MLE)
i for the first nine cases,

but was much worse for estimating the outlying case μ10. Overall, the total
mean squared errors favored μ(JS), as they must.

Exercise 1.5 If we assume that the μi values in Table 1.2 were obtained

from μi
ind∼ N(0, A), is the total error 8.13 about right?

The James–Stein theorem concentrates attention on the total squared er-
ror loss function

∑
(μ̂i − μi)2, without concern for the effects on individual

cases. Most of those effects are good, as seen in Table 1.2, but genuinely
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Table 1.2 Simulation experiment: z ∼ N10(μ, I) with (μ1, μs, . . . , μ10) as
shown in first column. MSE(MLE)

i is the average squared error
(μ̂(MLE)

i − μi)2, likewise MSE(JS)
i . Nine of the cases are better estimated by

James–Stein, but for the outlying case 10, μ̂(JS)
10 has nearly twice the error

of μ̂(MLE)
10 .

μi MSE(MLE)
i MSE(JS)

i

1 −.81 .95 .61
2 −.39 1.04 .62
3 −.39 1.03 .62
4 −.08 .99 .58
5 .69 1.06 .67
6 .71 .98 .63
7 1.28 .95 .71
8 1.32 1.04 .77
9 1.89 1.00 .88

10 4.00 1.08 2.04!!

Total Sqerr 10.12 8.13

unusual cases, like μ10, can suffer. Baseball fans know that Clemente was
in fact an extraordinarily good hitter, and shouldn’t have been shrunk so
drastically toward the mean of his less-talented cohort. Current statistical
practice is quite conservative in protecting individual inferences from the
tyranny of the majority, accounting for the continued popularity of stand-
alone methods like μ̂(MLE). On the other hand, large-scale simultaneous
inference, our general theme here, focuses on favorable group inferences.

Compromise methods are available that capture most of the group sav-
ings while protecting unusual individual cases. In the baseball example,
for instance, we might decide to follow the James–Stein estimate (1.35)
subject to the restriction of not deviating more than D σ0 units away from
μ̂(MLE)

i = zi (the so-called “limited translation estimator” μ̂(D)
i ):

μ̂(D)
i =

⎧⎪⎪⎨⎪⎪⎩max
(
μ̂(JS)

i , μ̂(MLE)
i − Dσ0

)
for zi > z̄

min
(
μ̂(JS)

i , μ̂(MLE)
i + Dσ0

)
for zi ≤ z̄.

(1.37)

Exercise 1.6 Graph μ̂(D)
i as a function of zi for the baseball data.

Taking D = 1 says that μ̂(D)
i will never deviate more than σ0 = 0.066

from zi, so Clemente’s prediction would be μ̂(D)
1 = 0.334 rather than μ̂(JS)

1 =
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0.294. This sacrifices some of the μ̂(JS) savings relative to μ̂(MLE), but not
a great deal: it can be shown to lose only about 10% of the overall James–
Stein advantage in the baseball example.

1.4 Learning from the Experience of Others

Bayes and empirical Bayes techniques involve learning from the experi-
ence of others, e.g., each baseball player learning from the other 17. This
always raises the question, “Which others?” Chapter 10 returns to this
question in the context of hypothesis testing. There we will have thousands
of other cases, rather than 17, vastly increasing the amount of “other” ex-
perience.

Figure 1.1 diagrams James–Stein estimation, with case 1 learning from
the N−1 others. We imagine that the others have been observed first, giving
estimates (M̂, Â) for the unknown Bayes parameters in (1.32) (taking σ2

0 =

1). The estimated prior distribution N(M̂, Â) is then used to supplement
the direct evidence z1 ∼ N(μ1, 1) for the estimation of μ1. (Actually μ̂(JS)

i

includes zi as well as the others in estimating (M̂, Â) for use on μ1: it can
be shown that this improves the accuracy of μ̂(JS)

1 .) Versions of this same
diagram apply to the more intricate empirical Bayes procedures that follow.

Learning from the experience of others is not the sole property of the
Bayes world. Figure 1.2 illustrates a common statistical situation. A total
of N = 157 healthy volunteers have had their kidney function evaluated
by a somewhat arduous medical procedure. The scores are plotted versus
age, higher scores indicating better function, and it is obvious that function
tends to decrease with age. (At one time, kidney donation was forbidden
for donors exceeding 60, though increasing demand has relaxed this rule.)
The heavy line indicates the least squares fit of function to age.

A potential new donor, age 55, has appeared, but it is not practical
to evaluate his kidney function by the arduous medical procedure. Fig-
ure 1.2 shows two possible predictions: the starred point is the function
score (−0.01) for the only 55-year-old person among the 157 volunteers,
while the squared point reads off the value of the least square line (−1.46)
at age = 55. Most statisticians, frequentist or Bayesian, would prefer the
least squares prediction.

Tukey’s evocative term “borrowing strength” neatly captures the regres-
sion idea. This is certainly “learning from the experience of others,” but
in a more rigid framework than Figure 1.1. Here there is a simple covari-
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Figure 1.1 Schematic diagram of James–Stein estimation,
showing case 1 learning from the experience of the other N − 1
cases.

ate, age, convincingly linking the volunteers with the potential donor. The
linkage is more subtle in the baseball example.

Often the two methods can be combined. We might extend model (1.32)
to

μi
ind∼ N(M0 + M1 · agei, A) and zi ∼ N

(
μi, σ

2
0

)
. (1.38)

The James–Stein estimate (1.35) takes the form

μ̂(JS)
i = μ̂

(reg)
i +

(
1 − (N − 4)σ2

0

S

) (
zi − μ̂(reg)

i

)
, (1.39)

where μ̂
(reg)
i is the linear regression estimate (M̂0 + M̂1 · agei) and S =∑

(zi − μ̂(reg)
i )2. Now μ̂(JS)

i is shrunk toward the linear regression line instead
of toward z̄.

Exercise 1.7 For the kidney data, S = 503. Assuming σ2
0 = 1, what is

the James–Stein estimate for the starred point in Figure 1.2 (i.e., for the
healthy volunteer, age 55)?
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Figure 1.2 Kidney scores plotted versus age for 157 healthy
volunteers. The least squares line shows the decrease of function
with age. How should we predict the score of a potential donor,
age 55?

1.5 Empirical Bayes Confidence Intervals

Returning to the situation in Section 1.1, suppose we have N + 1 indepen-
dent normal observations zi, with

μi
ind∼ N(0, A) and zi|μi

ind∼ N(μi, 1) (1.40)

for i = 0, 1, 2, . . . ,N, and we want to assign a “confidence interval” to
the parameter μ0. The quotes are necessary here because we wish to take
advantage of empirical Bayes information as in Figure 1.1, now with the
“others” being z = (z1, z2, . . . , zN) and with (μ0, z0) playing the role of
(μ1, z1) — taking us beyond classical confidence interval methodology.

If A were known we could calculate the Bayes posterior distribution for
μ0 according to (1.10),

μ0|z0 ∼ N(Bz0, B)
[
B = A

/
(A + 1)

]
, (1.41)

yielding

μ0 ∈ Bz0 ± 1.96
√

B (1.42)

as the obvious 95% posterior interval. A reasonable first try in the empirical
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Bayes situation of Section 1.2 is to substitute the unbiased estimate

B̂ = 1 − N − 2
S

[
S = ‖z‖2

]
(1.43)

into (1.41), giving the approximation

μ0|z0,z ∼̇ N
(
B̂z0, B̂

)
(1.44)

and similarly B̂z0 ± 1.96
√

B̂ for (1.42). In doing so, however, we have ig-
nored the variability of B̂ as an estimate of B, which can be substantial
when N is small.

Here is a more accurate version of (1.44):

μ0|z0,z ∼̇ N
(
B̂z0, B̂ +

2
N − 2

[
z0

(
1 − B̂

)]2
)

(1.45)

and its corresponding posterior interval

μ0 ∈ B̂z0 ± 1.96

{
B̂ +

2
N − 2

[
z0

(
1 − B̂

)]2
} 1

2
. (1.46)

Exercise 1.8 (a) Show that the relative length of (1.46) compared to the
interval based on (1.44) is

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +
2

N − 2

z2
0

(
1 − B̂

)2

B̂

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
2

. (1.47)

(b) For N = 17 and B̂ = 0.21 (appropriate values for the baseball example),
graph (1.47) for z0 between 0 and 3.

Formula (1.45) can be justified by carefully following through a sim-
plified version of Figure 1.1 in which M = 0, using familiar maximum
likelihood calculations to assess the variability of Â and its effect on the
empirical Bayes estimation of μ0 (called μ1 in the figure).

Hierarchical Bayes methods offer another justification. Here the model
(1.40) would be preceded by some Bayesian prior assumption on the hy-
perparameter A, perhaps A uniformly distributed over (0, 106), chosen not
to add much information beyond that in z to A’s estimation. The term ob-
jective Bayes is used to describe such arguments, which are often insight-
ful and useful. Defining V = A + 1 in model (1.40) and formally applying
Bayes rule to the (impossible) prior that takes V to be uniformly distributed
over (0,∞) yields exactly the posterior mean and variance in (1.45).
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Notes

Herbert Robbins, paralleling early work by R. A. Fisher, I. J. Good, and
Alan Turing (of Turing machine fame) developed a powerful theory of em-
pirical Bayes statistical inference, some references being Robbins (1956)
and Efron (2003). Robbins reserved the name “empirical Bayes” for sit-
uations where a genuine prior distribution like (1.8) was being estimated,
using “compound Bayes” for more general parallel estimation and test-
ing situations, but Efron and Morris (1973) hijacked “empirical Bayes” for
James–Stein-type estimators.

Stein (1956) and James and Stein (1961) were written entirely from a
frequentist point of view, which has much to do with their bombshell effect
on the overwhelmingly frequentist statistical literature of that time. Stein
(1981) gives the neat identity (1.28) and the concise proof of the theorem.

Limited translation estimates (1.37) were developed in Efron and Mor-
ris (1972), amid a more general theory of relevance functions, modifica-
tions of the James–Stein estimator that allowed individual cases to par-
tially opt out of the overall shrinkage depending on how relevant the other
cases appeared to be. Relevance functions for hypothesis testing will be
taken up here in Chapter 10. Efron (1996) gives a more general version of
Figure 1.1.

The kidney data in Figure 1.2 is from the Stanford nephrology lab of Dr.
B. Myers; see Lemley et al. (2008). Morris (1983) gives a careful deriva-
tion of empirical Bayes confidence intervals such as (1.46), along with an
informative discussion of what one should expect from such intervals.
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Large-Scale Hypothesis Testing

Progress in statistics is usually at the mercy of our scientific colleagues,
whose data is the “nature” from which we work. Agricultural experimen-
tation in the early 20th century led Fisher to the development of analysis
of variance. Something similar is happening at the beginning of the 21st
century. A new class of “high throughput” biomedical devices, typified by
the microarray, routinely produce hypothesis-testing data for thousands of
cases at once. This is not at all the situation envisioned in the classical
frequentist testing theory of Neyman, Pearson, and Fisher. This chapter
begins the discussion of a theory of large-scale simultaneous hypothesis
testing now under development in the statistics literature.

2.1 A Microarray Example

Figure 2.1 concerns a microarray example, the prostate data. Genetic ex-
pression levels for N = 6033 genes were obtained for n = 102 men, n1 = 50
normal control subjects and n2 = 52 prostate cancer patients. Without go-
ing into biological details, the principal goal of the study was to discover a
small number of “interesting” genes, that is, genes whose expression levels
differ between the prostate and normal subjects. Such genes, once identi-
fied, might be further investigated for a causal link to prostate cancer de-
velopment.

The prostate data is a 6033 × 102 matrix X having entries1

xi j = expression level for gene i on patient j, (2.1)

i = 1, 2, . . . ,N and j = 1, 2, . . . , n; with j = 1, 2, . . . , 50 for the normal
controls and j = 51, 52, . . . , 102 for the cancer patients. Let x̄i(1) and x̄i(2)
be the averages of xi j for the normal controls and for the cancer patients.

1 Obtained from oligonucleotide arrays.

15
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The two-sample t-statistic for testing gene i is

ti =
x̄i(2) − x̄i(1)

si
, (2.2)

where si is an estimate of the standard error of the numerator,

s2
i =

∑50
1

(
xi j − x̄(1)

)2
+

∑102
51

(
xi j − x̄(2)

)2

100
·
(

1
50
+

1
52

)
. (2.3)

If we had only data from gene i to consider, we could use ti in the usual
way to test the null hypothesis

H0i : gene i is “null”, (2.4)

i.e., that xi j has the same distribution for the normal and cancer patients,
rejecting H0i if ti looked too big in absolute value. The usual 5% rejection
criterion, based on normal theory assumptions, would reject H0i if |ti| ex-
ceeded 1.98, the two-tailed 5% point for a Student-t random variable with
100 degrees of freedom.

It will be convenient for our discussions here to use “z-values” instead
of “t-values”; that is, we transform ti to

zi = Φ
−1 (F100(ti)) , (2.5)

where Φ and F100 are the cumulative distribution functions (abbreviated
“cdf”) for standard normal and t100 distributions. Under the usual assump-
tions of normal sampling, zi will have a standard normal distribution if H0i

is true,

H0i : zi ∼ N(0, 1) (2.6)

(called the theoretical null in what follows). The usual two-sided 5% test
rejects H0i for |zi| > 1.96, the two-tailed 5% point for aN(0, 1) distribution.

Exercise 2.1 Plot z = Φ−1(Fν(t)) versus t for −4 ≤ t ≤ 4, for degrees of
freedom ν = 25, 50, and 100.

But of course we don’t have just a single gene to test, we have N = 6033
of them. Figure 2.1 shows a histogram of the N zi values, comparing it to
a standard N(0, 1) density curve c · exp{−z2/2}/√2π, with the multiplier
c chosen to make the curve integrate to the same area as the histogram. If
H0i were true for every i, that is, if all of the genes were null, the histogram
would match the curve. Fortunately for the investigators, it doesn’t: it is
too low near the center and too high in the tails. This suggests the presence
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Figure 2.1 Prostate data; z-values testing 6033 genes for possible
involvement with prostate cancer; curve is N(0, 1) theoretical
null.

of some interesting non-null genes. How to identify the non-null cases de-
pendably, without being misled by the effects of multiple inference, is the
subject of intense current research.

A traditional approach to multiple inference uses the Bonferroni bound:
we change the rejection level for each test from 0.05 to 0.05/6033. This
amounts to rejecting H0i only if |zi| exceeds 4.31, rather than 1.96. Now the
total probability of mistakenly rejecting even one of the 6033 null hypothe-
ses is less than 5%, but looking at Figure 2.1, 4.31 seems overly cautious.
(Only six of the genes are declared non-null.) Empirical Bayes methods
offer a less conservative approach to multiple testing.

2.2 Bayesian Approach

The two-groups model provides a simple Bayesian framework for multiple
testing. We suppose that the N cases (the genes for the prostate study) are
each either null or non-null with prior probability π0 or π1 = 1 − π0, and
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with z-values having density either f0(z) or f1(z),

π0 = Pr{null} f0(z) = density if null

π1 = Pr{non-null} f1(z) = density if non-null.
(2.7)

Ordinarily π0 will be much bigger than π1, say

π0 ≥ 0.90, (2.8)

reflecting the usual purpose of large-scale testing: to reduce a vast col-
lection of possibilities to a much smaller set of scientifically interesting
prospects. If the assumptions underlying (2.6) are valid, then f0(z) is the
standard normal density,

f0(z) = ϕ(z) = e−
1
2 z2/√

2π (2.9)

while f1(z) might be some alternative density yielding z-values further
away from 0.

Let F0 and F1 denote the probability distributions corresponding to f0

and f1 so that, for any subsetZ of the real line,

F0(Z) =
∫
Z

f0(z) dz and F1(Z) =
∫
Z

f1(z) dz. (2.10)

The mixture density

f (z) = π0 f0(z) + π1 f1(z) (2.11)

has the mixture probability distribution

F(Z) = π0F0(Z) + π1F1(Z). (2.12)

(The usual cdf is F((−∞, z)) in this notation, but later we will return to
the less clumsy F(z).) Under model (2.7), z has marginal density f and
distribution F.

Suppose we observe z ∈ Z and wonder if it corresponds to the null or
non-null arm of (2.7). A direct application of Bayes rule yields

φ(Z) ≡ Pr{null|z ∈ Z} = π0F0(Z)/F(Z) (2.13)

as the posterior probability of nullity given z ∈ Z. Following Benjamini
and Hochberg’s evocative terminology,2 we call φ(Z) the Bayes false dis-
covery rate for Z: if we report z ∈ Z as non-null, φ(Z) is the chance that
we’ve made a false discovery. We will also3 write Fdr(Z) for φ(Z).

2 Section 4.2 presents Benjamini and Hochberg’s original frequentist development of false
discovery rates, a name hijacked here for our Bayes/empirical Bayes discussion.

3 A brief glossary of terms relating to false discovery rates appears at the end of the Notes
for this chapter.
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IfZ is a single point z0,

φ(z0) ≡ Pr{null|z = z0} = π0 f0(z0)/ f (z0) (2.14)

is the local Bayes false discovery rate, also written as fdr(z).

Figure 2.2 Relationship between Fdr(z) and fdr(z). Fdr(z) is the
slope of the secant line connecting the origin with the point
(F(z), p0 · F0(z0)), the denominator and numerator of (2.16);
fdr(z) is the slope of the tangent line to the curve at that point.

Exercise 2.2 Show that

E f {φ(z)|z ∈ Z} = φ(Z), (2.15)

where E f indicates conditional expectation with respect to the marginal
density f (z). In other words, Fdr(Z) is the conditional expectation of fdr(z)
given z ∈ Z.

In applications, Z is usually a tail interval (−∞, z) or (z,∞). Writing
F(z) in place of F((−∞, z)) for the usual cdf,

φ ((−∞, z)) ≡ Fdr(z) = π0F0(z)/F(z). (2.16)

Plotting the numerator π0F0(z) versus the denominator F(z) shows that
Fdr(z) and fdr(z) are, respectively, secant and tangent, as illustrated in Fig-
ure 2.2, usually implying fdr(z) > Fdr(z) when both are small.

Exercise 2.3 Suppose

F1(z) = F0(z)γ [γ < 1] (2.17)
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(often called Lehmann alternatives). Show that

log

{
fdr(z)

1 − fdr(z)

}
= log

{
Fdr(z)

1 − Fdr(z)

}
+ log

(
1
γ

)
, (2.18)

and that

fdr(z) � Fdr(z)/γ (2.19)

for small values of Fdr(z).

Exercise 2.4 We would usually expect f1(z), the non-null density in (2.7),
to have heavier tails than f0(z). Why does this suggest, at least qualitatively,
the shape of the curve shown in Figure 2.2?

2.3 Empirical Bayes Estimates

The Bayesian two-groups model (2.7) involves three quantities: the prior
null probability π0, the null density f0(z), and the non-null density f1(z).
Of these, f0 is known, at least if we believe in the theoretical null N(0, 1)
distribution (2.6), and π0 is “almost known,” usually being close enough to
1 as to have little effect on the false discovery rate (2.13). (In applications,
π0 is often taken equal to 1; Chapter 6 discusses the estimation of both
π0 and f0(z) in situations where the theoretical null is questionable.) This
leaves f1(z), which is unlikely to be known to the statistician a priori.

There is, however, an obvious empirical Bayes approach to false dis-
covery rate estimation. Let F̄(Z) denote the empirical distribution of the
N z-values,

F̄(Z) = # {zi ∈ Z} /N, (2.20)

i.e., the proportion of the zi values observed to be in the setZ. Substituting
into (2.13) gives an estimated false discovery rate,

Fdr(Z) ≡ φ̄(Z) = π0F0(Z)
/
F̄(Z). (2.21)

When N is large we expect F̄(Z) to be close to F(Z), and Fdr(Z) to be a
good approximation for Fdr(Z).

Just how good is the question considered next. Figure 2.3 illustrates
model (2.7): the N values z1, z2, . . . , zN are distributed to the null and non-
null areas of the study in proportions π0 and π1. Let N0(Z) be the number
of null zi falling into Z, and likewise N1(Z) for the non-null zi in Z. We
can’t observe N0(Z) or N1(Z), but we do get to see the total number N+(Z)
inZ,

N+(Z) = N0(Z) + N1(Z). (2.22)
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Figure 2.3 Diagram of two-groups model (2.7); N z-values are
distributed to the two arms in proportions π0 and π1; N0(Z) and
N1(Z) are numbers of nulls and non-nulls inZ; the statistician
observes z1, z2, . . . , zN from mixture density f (z) (2.11), and gets
to see N+(Z) = N0(Z) + N1(Z).

Although N0(Z) is unobservable, we know its expectation

e0(Z) ≡ Nπ0F0(Z). (2.23)

In this notation we can express Fdr(Z) as

Fdr(Z) = e0(Z)
/
N+(Z). (2.24)

As an example, the prostate data has N+(Z) = 49 zi values in Z = (3,∞),
that is, exceeding 3; e0(Z) equals

6033 · π0 · (1 − Φ(3)) (2.25)

under the theoretical null (2.6). The upper bound4 π0 = 1 gives e0(Z) =
8.14 and

Fdr(Z) = 8.14/49 = 0.166. (2.26)

The implication is that about 1/6 of the 49 are false discoveries: if we report
the list of 49 to the prostate study scientists as likely prospects, most of their
subsequent work will not be in vain. Chapter 4 examines the logic behind
this line of thought. Here we will only consider Fdr(Z) as an empirical
Bayes point estimator for Fdr(Z).

4 Bounding π0 by 1 in (2.25) does not imply that π1 = 0 in (2.12) since the denominator
F̄(Z) in (2.21) is estimated directly from the data regardless of π0.
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2.4 Fdr(Z) as a Point Estimate

We can express (2.13) as

φ(Z) = Fdr(Z) = e0(Z)
/
e+(Z), (2.27)

where e+(Z) = N · F(Z) is the expected total count of zi values inZ. The
quantity we would like to know, but can’t observe, is the false discovery
proportion

Fdp(Z) = N0(Z)
/
N+(Z), (2.28)

the actual proportion of false discoveries in Z. This gives us three quanti-
ties to consider:

Fdr(Z) =
e0(Z)
N+(Z)

, φ(Z) =
e0(Z)
e+(Z)

, and Fdp(Z) =
N0(Z)
N+(Z)

. (2.29)

The next four lemmas discuss their relationship.

Lemma 2.1 Suppose e0(Z) as defined in (2.23) is the same as the con-
ditional expectation of N0(Z) given N1(Z). Then the conditional expecta-
tions of Fdr(Z) and Fdp(Z) given N1(Z) satisfy

E
{
Fdr(Z)|N1(Z)

}
≥ φ1(Z) ≥ E

{
Fdp(Z)|N1(Z)

}
, (2.30)

where

φ1(Z) =
e0(Z)

e0(Z) + N1(Z)
. (2.31)

Proof Writing Fdr(Z) = e0(Z)/(N0(Z) + N1(Z)), Jensen’s inequality
gives E{Fdr(Z)|N1(Z)} ≥ φ1(Z). The condition on e0(Z) is satisfied if
the number and distribution of the null case z-values does not depend on
N1(Z). �

Exercise 2.5 Apply Jensen’s inequality again to complete the proof.

Note The relationship in (2.30) makes the conventional assumption that
Fdp(Z) = 0 if N+(Z) = 0.

Lemma 2.1 says that for every value of N1(Z), the conditional expecta-
tion of Fdr(Z) exceeds that of Fdp(Z), so that in this sense the empirical
Bayes false discovery rate is a conservatively biased estimate of the actual
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false discovery proportion. Taking expectations over N1(Z), and reapply-
ing Jensen’s inequality, shows that5

φ(Z) ≥ E
{
Fdp(Z)

}
, (2.32)

so that the Bayes Fdr φ(Z) is an upper bound on the expected Fdp. We also
obtain E{Fdr(Z)} ≥ E{Fdp(Z)}, but this is uninformative since E{Fdr(Z)} =
∞whenever Pr{N+(Z) = 0} is positive. In practice we would use Fdr

(min)
(Z)

= min(Fdr(Z), 1) to estimate Fdr(Z), but it is not true in general that

E{Fdr
(min)

(Z)} exceeds φ(Z) or E{Fdp(Z)}.
Exercise 2.6 Show that E{min(Fdr(Z), 2)} ≥ φ(Z). Hint: Draw the tan-
gent line to the curve (N+(Z), Fdr(Z)) passing through the point (e+(Z),
φ(Z)).

Standard delta-method calculations yield useful approximations for the
mean and variance of Fdr(Z), without requiring the condition on e0(Z) in
Lemma 2.1.

Lemma 2.2 Let γ(Z) indicate the squared coefficient of variation of
N+(Z),

γ(Z) = var {N+(Z)}
/
e+(Z)2. (2.33)

Then Fdr(Z)/φ(Z) has approximate mean and variance

Fdr(Z)
φ(Z)

∼̇ (1 + γ(Z), γ(Z)) . (2.34)

Proof SuppressingZ from the notation,

Fdr =
e0

N+
=

e0

e+

1
1 + (N+ − e+)/e+

� φ
⎡⎢⎢⎢⎢⎣1 − N+ − e+

e+
+

(
N+ − e+

e+

)2⎤⎥⎥⎥⎥⎦ , (2.35)

and (N+ − e+)/e+ has mean and variance (0, γ(Z)). �

Lemma 2.2 quantifies the obvious: the accuracy of Fdr(Z) as an estimate
of the Bayes false discovery rate φ(Z) depends on the variability of the

5 Benjamini and Hochberg originally used false discovery rate as the name of E{Fdp},
denoted by FDR; this runs the risk of confusing a rate with its expectation.
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denominator N+(Z) in (2.24).6 More specific results can be obtained if we
supplement the two-groups model of Figure 2.3 with the assumption of
independence,

Independence Assumption:

Each zi follows model (2.7) independently.
(2.36)

Then N+(Z) has binomial distribution

N+(Z) ∼ Bi (N, F(Z)) (2.37)

with squared coefficient of variation

γ(Z) =
1 − F(Z)
NF(Z)

=
1 − F(Z)

e+(Z)
. (2.38)

We will usually be interested in regions Z where F(Z) is small, giving
γ(Z) � 1/e+(Z) and, from Lemma 2.2,

Fdr(Z)
/
φ(Z) ∼̇ (1 + 1/e+(Z), 1/e+(Z)) , (2.39)

the crucial quantity for the accuracy of Fdr(Z) being e+(Z), the expected
number of the zi falling into Z. For the prostate data with Z = (3,∞)
we can estimate e+(Z) by N+(Z) = 49, giving Fdr(Z)/φ(Z) approximate
mean 1.02 and standard deviation 0.14. In this case, Fdr(Z) = 0.166 (2.26),
is nearly unbiased for the Bayes false discovery rate φ(Z), and has coeffi-
cient of variation about 0.14. A rough 95% confidence interval for φ(Z) is
0.166 · (1±2 ·0.14) = (0.12, 0.21). All of this depends on the independence
assumption (2.36), which we will see in Chapter 8 is only a moderately
risky assumption for the prostate data.

Neater versions of our previous results are possible if we add to the inde-
pendence requirement the relatively innocuous assumption that the number
of cases N is itself a Poisson variate, say

N ∼ Poi(η). (2.40)

Lemma 2.3 Under the Poisson-independence assumptions (2.36) and
(2.40),

E
{
Fdp(Z)

}
= φ(Z) · [1 − exp (−e+(Z))

]
, (2.41)

where now e+(Z) = E{N+(Z)} = η · F(Z).

6 Under mild conditions, both Fdr(Z) and Fdp(Z) converge to φ(Z) as N → ∞. However,
this is less helpful than it seems, as the correlation considerations of Chapter 7 show.
Asymptotics play only a minor role in what follows.
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Proof With N ∼ Poi(η) in Figure 2.3, well-known properties of the Pois-
son distribution show that

N0(Z) ∼ Poi (ηπ0F0(Z)) independently of

N1(Z) ∼ Poi (ηπ1F1(Z)) , (2.42)

and

N0(Z)
∣∣∣N+(Z) ∼ Bi

(
N+(Z), π0F0(Z)

/
F(Z)

)
(2.43)

if N+(Z) > 0. But π0F0(Z)/F(Z) = φ(Z), and

Pr {N+ (Z) = 0} = exp (−e+ (Z)) ,

giving

E
{
Fdp(Z)

∣∣∣N+(Z)
}
= E

{
N0(Z)
N+(Z)

∣∣∣∣∣N+(Z)

}
= φ(Z) (2.44)

with probability 1 − exp(−e+(Z)) and, by definition, E{Fdp(Z)|N+(Z) =
0} = 0 with probability exp(−e+(Z)). �

Applications of large-scale testing often have π1, the proportion of non-
null cases, very near 0, in which case a region of interest Z may have
e+(Z) quite small. As (2.39) indicates, Fdr(Z) is then badly biased upward.
A simple modification of Fdr(Z) = e0(Z)/N+(Z) cures the bias. Define
instead

F̃dr(Z) = e0(Z)
/

(N+(Z) + 1) . (2.45)

Lemma 2.4 Under the Poisson-independence assumptions (2.36) and
(2.40),

E
{
F̃dr(Z)

}
= E

{
Fdp(Z)

}
= φ(Z) · [1 − exp (−e+(Z))

]
. (2.46)

Exercise 2.7 Verify (2.46).

The Poisson assumption is more of a convenience than a necessity here.
Under independence, F̃dr(Z) is nearly unbiased for E{Fdp(Z)}, and both
approach the Bayes false discovery rate φ(Z) exponentially fast as e+(Z)
increases. In general, Fdr(Z) is a reasonably accurate estimator of φ(Z)
when e+(Z) is large, say e+(Z) ≥ 10, but can be both badly biased and
highly variable for smaller values of e+(Z).
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2.5 Independence versus Correlation

The independence assumption has played an important role in the litera-
ture of large-scale testing, particularly for false discovery rate theory, as
discussed in Chapter 4. It is a dangerous assumption in practice!

Figure 2.4 illustrates a portion of the DTI data, a diffusion tensor imag-
ing study comparing brain activity of six dyslexic children versus six nor-
mal controls. (DTI machines measure fluid flows in the brain and can be
thought of as generating versions of magnetic resonance images.) Two-
sample tests produced z-values at N = 15 443 voxels (three-dimensional
brain locations), with each zi ∼ N(0, 1) under the null hypothesis of no
difference between the dyslexic and normal children, as in (2.6).

Figure 2.4 Diffusion tensor imaging study comparing brain
activity in 6 normal and 6 dyslexic children; z-values for slice of
N = 15 443 voxels.

The figure shows only a single horizontal brain section containing 848
of the 15 443 voxels. Red indicates zi > 0, green zi < 0, with solid circles
zi > 2 and solid squares zi < −2. Spatial correlation among the z-values
is obvious: reds tend to be near other reds, and greens near greens. The
symmetric patch of solid red circles near x = 60 is particularly striking.

Independence is an obviously bad assumption for the DTI data. We will
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see in Chapter 8 that it is an even worse assumption for many microarray
studies, though not perhaps for the prostate data. There is no easy equiv-
alent of brain geometry for microarrays. We can’t draw evocative pictures
like Figure 2.4, but correlation may still be a real problem. Chapter 7 takes
up the question of how correlation affects accuracy calculations such as
(2.39).

2.6 Learning from the Experience of Others II

Consider the Bayesian hierarchical model

μ ∼ g(·) and z|μ ∼ N(μ, 1), (2.47)

g indicating some prior density for μ, where we will take “density” to in-
clude the possibility of g including discrete components. The James–Stein
estimator of Figure 1.1 assumes

g(μ) = N(M, A). (2.48)

Model (2.47) also applies to simultaneous hypothesis testing: now take

g(μ) = π0Δ0(μ) + (1 − π0)g1(μ) (2.49)

where Δ0 denotes a delta function at μ = 0, and g1 is a prior density for the
non-null μi values. (This leads to a version of the two-groups model having
f1(z) =

∫
ϕ(z − μ)g1(μ)dμ.) For gene1 of the prostate data, the “others” in

Figure 1.1 are all of the other genes, represented by z2, z3, . . . , z6033. These
must estimate π0 and g1 in prior distribution (2.49). Finally, the prior is
combined with z1 ∼ N(μ, 1) via Bayes theorem to estimate quantities such
as the probability that gene1 is null.

Clever constructions such as Fdr(Z) in (2.21) can finesse the actual es-
timation of g(μ), as further discussed in Chapter 11. The main point being
made here is that gene1 is learning from the other genes. “Which others?”
is a crucial question, taken up in Chapter 10.

The fact that g(μ) is much smoother in (2.48) than (2.49) hints at esti-
mation difficulties in the hypothesis testing context. The James–Stein esti-
mator can be quite efficient even for N as small as 10, as in (1.25). Results
like (2.39) suggest that we need N in the hundreds or thousands for accurate
empirical Bayes hypothesis testing. These kinds of efficiency calculations
are pursued in Chapter 7.



28 Large-Scale Hypothesis Testing

Notes

Benjamini and Hochberg’s landmark 1995 paper introduced false discov-
ery rates in the context of a now-dominant simultaneous hypothesis testing
algorithm that is the main subject of Chapter 4. Efron et al. (2001) recast
the fdr algorithm in an empirical Bayes framework, introducing the local
false discovery rate. Storey (2002, 2003) defined the “positive false discov-
ery rate,”

pFdr(Z) = E
{
N0(Z)

/
N+(Z)

∣∣∣N+(Z) > 0
}

(2.50)

in the notation of Figure 2.3, and showed that if the zi were i.i.d. (indepen-
dent and identically distributed),

pFdr(Z) = φ(Z),

(2.27). Various combinations of Bayesian and empirical Bayesian micro-
array techniques have been proposed, Newton et al. (2004) for example em-
ploying more formal Bayes hierarchical modeling. A version of the curve
in Figure 2.2 appears in Genovese and Wasserman (2004), where it is used
to develop asymptotic properties of the Benjamini–Hochberg procedure.
Johnstone and Silverman (2004) consider situations where π0, the propor-
tion of null cases, might be much smaller than 1, unlike our applications
here.

The two-groups model (2.7) is too basic to have an identifiable author,
but it was named and extensively explored in Efron (2008a). It will reap-
pear in several subsequent chapters. The more specialized structural model
(2.47) will also reappear, playing a major role in the prediction theory of
Chapter 11. It was the starting point for deep studies of multivariate normal
mean vector estimation in Brown (1971) and Stein (1981).

The prostate cancer study was carried out by Singh et al. (2002). Fig-
ure 2.4, the DTI data, is based on the work of Schwartzman et al. (2005).

The t-test (or its cousin, the Wilcoxon test) is a favorite candidate for
two-sample comparisons, but other test statistics have been proposed. Tom-
lins et al. (2005), Tibshirani and Hastie (2007), and Wu (2007) investigate
analysis methods that emphasize occasional very large responses, the idea
being to identify genes in which a subset of the subjects are prone to out-
lying effects.

The various names for false discovery-related concepts are more or less
standard, but can be easily confused. Here is a brief glossary of terms.
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Term(s) Definition

f0(z) and f1(z) the null and alternative densities for z-values in
the two-groups model (2.7)

F0(Z) and F1(Z) the corresponding probability distributions (2.10)

f (z) and F(Z) the mixture density and distribution (2.11)–(2.12)

Fdr(Z) and φ(Z) two names for the Bayesian false discovery rate
Pr{null|z ∈ Z} (2.13)

fdr(z) the local Bayesian false discovery rate (2.14),
also denoted φ(z)

Fdp(Z) the false discovery proportion (2.28), i.e., the
proportion of zi values inZ that are from the
null distribution

F̄(Z) the empirical probability distribution
#{zi ∈ Z}/N (2.20)

Fdr(Z) the empirical Bayes estimate of Fdr(Z) obtained
by substituting F̄(Z) for the unknown F(Z) (2.21)

FDR(Z) the expected value of the false discovery
proportion Fdp(Z)

N0(Z), N1(Z), and N+(Z) the number of null, non-null, and overall z-values
inZ, as in Figure 2.3

e0(Z), e1(Z), and e+(Z) their expectations, as in (2.23)
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Significance Testing Algorithms

Simultaneous hypothesis testing was a lively topic in the early 1960s, my
graduate student years, and had been so since the end of World War II.
Rupert Miller’s book Simultaneous Statistical Inference appeared in 1966,
providing a beautifully lucid summary of the contemporary methodology.
A second edition in 1981 recorded only modest gains during the interven-
ing years. This was a respite, not an end: a new burst of innovation in the
late 1980s generated important techniques that we will be revisiting in this
chapter.

Miller’s book, which gives a balanced picture of the theory of that time,
has three notable features:

1 It is overwhelmingly frequentist.
2 It is focused on control of α, the overall Type I error rate of a procedure.1

3 It is aimed at multiple testing situations with individual cases N between
2 and, say, 10.

We have now entered a scientific age in which N = 10 000 is no cause
for raised eyebrows. It is impressive (or worrisome) that the theory of the
1980s continues to play a central role in microarray-era statistical infer-
ence. Features 1 and 2 are still the norm in much of the multiple testing
literature, despite the obsolescence of Feature 3. This chapter reviews part
of that theory, particularly the ingenious algorithms that have been devised
to control the overall Type I error rate (also known as FWER, the family-
wise error rate). False discovery rate control, an approach which doesn’t
follow either Feature 1 or 2 and is better suited to the N = 10 000 era, is
taken up in Chapter 4. The material in this chapter is a digression from
our chosen theme of empirical Bayes methods, and may be read lightly by
those eager to get on with the main story.

1 And, by extension, the construction of simultaneous confidence regions that have a
guaranteed probability of containing all the relevant parameters.

30
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3.1 p-Values and z-Values

First consider the classical “single-test” situation: we wish to test a single
null hypothesis H0 on the basis of observed data x. For any value of α
between 0 and 1 we construct a rejection region Rα in the sample space of
x such that

Pr0{x ∈ Rα} = α [α ∈ (0, 1)] , (3.1)

where Pr0 refers to the probability distribution of x under H0. The regions
Rα decrease with α,

Rα ⊇ Rα′ for α > α′. (3.2)

The p-value p(x) corresponding to x is defined as the smallest value of
α such that x ∈ Rα,

p(x) = inf
α
{x ∈ Rα}. (3.3)

Intuitively, the smaller is p(x), the more decisively is H0 rejected. There is
a more-or-less agreed-upon scale for interpreting p-values, originally due
to Fisher, summarized in Table 3.1. Using p-values instead of a fixed rule
like “reject at the α = 0.05 level” is a more informative mode of data
summary.

Table 3.1 Fisher’s scale of evidence for interpreting p-values; for
instance, p(x) = 0.035 provides moderate to substantial grounds for
rejecting H0.

α .10 .05 .025 .01 .001

Evidence
against H0: borderline moderate substantial strong overwhelming

For any value of u in (0, 1), the event p(x) ≤ u is equivalent to x ∈ Ru,
implying

Pr0 {p(x) ≤ u} = Pr0{x ∈ Ru} = u. (3.4)

In other words, under H0 the random variable P = p(x) has a uniform
distribution2 over the interval (0, 1),

H0 : P = p(x) ∼ U(0, 1). (3.5)

2 Here we are ignoring discrete null distributions, like binomial (n, 1
2 ), where there are

minor difficulties with definition (3.3).
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P-values serve as a universal language for hypothesis testing. They al-
low for general rules of interpretation, such as Fisher’s scale, applying to
all hypothesis-testing situations. Fisher’s famous α = 0.05 dictum for “sig-
nificance” has been overused and abused, but has served a crucial purpose
nevertheless in bringing order to scientific reporting.

In subsequent chapters we will be working mainly with z-values rather
than p-values,

z(x) = Φ−1 (p(x)) , (3.6)

where Φ−1 is the inverse function of the standard normal cdf, as in (2.5).
Z-values also enjoy a universal null hypothesis distribution,

H0 : z(x) ∼ N(0, 1), (3.7)

called the theoretical null at (2.6).
Figure 3.1 shows p-values and z-values for the DTI data, as partially

reported in Figure 2.4. Here there are N = 15 443 p-values pi and likewise
15 443 z-values zi, obtained from voxel-wise two-sample t-tests. The t-tests
each have 10 degrees of freedom, so

pi = F10(ti) and zi = Φ
−1 (F10(ti)) (3.8)

in the notation of (2.4)–(2.5). There are some interesting comparisons be-
tween the two displays:

• Both histograms show sharp discrepancies from their theoretical null
distributions (3.5) or (3.7): the dramatic right spike of the pi’s, and the
corresponding heavy right tail of the zi’s.

• The spike is more striking to the eye, but pays the price of collapsing all
of the detail evident in the z-value tail.

• There are also central discrepancies between the theoretical null distri-
butions and the histograms: this is clearer in the bottom panel, where the
histogram center is shifted a little to the left of the N(0, 1) curve.

Exercise 3.1 How does the shift effect appear in the p-value histogram?

• The zi’s, as monotone functions of the ti’s in (3.8), automatically main-
tain the signs of the t-tests, with positive effects mapped to the right and
negative effects to the left; definition (3.8) does the same for the p-values
by mapping large positive effects toward p = 1 and negative effects to-
ward p = 0. (Of course we would transform pi = 0.98 to 0.02, etc., for
interpretation in Fisher’s scale.)
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Figure 3.1 N = 15 443 p-values (top) and z-values (bottom) for
the DTI study partially displayed in Figure 2.4. Horizontal line in
top panel indicatesU(0, 1) distribution; curve in bottom panel
indicates theoretical N(0, 1) null distribution. Small dashes at
bottom right show the 18 z-values exceeding 4.

The literature tends to favor two-sided p-values, in our case

p(two)
i = Pr {|T10| > |ti|} , (3.9)

where T10 indicates a standard Student-t variate with 10 degrees of free-
dom. Besides losing the sign information in ti, this is a potentially danger-
ous definition if the test statistic, unlike T10, has an asymmetric null distri-
bution. A better option, if two-sided p-values are essential, is to transform
our first definition to

p(two)
i = 2 ·min(pi, 1 − pi), (3.10)

agreeing with (3.9) in the symmetric but not the asymmetric case. Two-
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sided testing makes some sense, sometimes, in classical single-test appli-
cations. It is less defensible in large-scale testing where, as in Figure 3.1,
we can see the two sides behaving differently.

The author finds z-value histograms more informative than p-value his-
tograms, but that is not the reason for the predominance of z-values in suc-
ceeding chapters: z-values allow us to bring the full power of normal theory
to bear on large-scale inference problems. The locfdr algorithm of Chap-
ter 5, for example, uses normal theory to estimate that the best-fit curve to
the central peak in Figure 3.1 is N(−0.12, 1.062) rather than N(0, 1).

The original data matrix X for the DTI data is 15 443 × 12, from which
we hope to identify brain regions involved in dyslexia. In what follows we
will be using a two-step analysis strategy: first we reduce each row of X
to a single number pi (or zi); we then employ a testing algorithm to deter-
mine which of the N pi values indicates non-null activity. Other methods
that assume ANOVA-like structures for X are at least theoretically more
informative, but I prefer the two-step approach. In my experience these
huge data matrices show little respect for traditional analysis of variance
structures. Using two-sample t-statistics ti (or, if necessary, their Wilcoxon
counterparts) as a starting point puts less strain on the statistical modeling.
Nevertheless, modeling difficulties remain, as discussed in Chapter 10.

The use of p-values or z-values is not limited to two-sample situations.
Suppose for example that y j is some response variable, like a survival time,
measured on subject j, j = 1, 2, . . . , n. For each row i of X we can run a
linear regression of y j on xi j, calculate the slope coefficient β̂i, and take pi

to be its attained significance level, computed in the usual normal-theory
way. (This requires modeling across individual rows of X, but not over
the entire matrix.) Some of the examples to come involve more elaborate
versions of this tactic.

3.2 Adjusted p-Values and the FWER

The family-wise error rate FWER is defined as the probability of making
at least one false rejection in a family of hypothesis-testing problems. Let
p1, p2, . . . , pN be the p-values obtained in tests of the corresponding family
of null hypotheses H01,H02, . . . ,H0N . For the DTI data, N equals 15 443,
with H0i being the hypothesis of no response distribution difference be-
tween dyslexics and controls at voxel i, and pi the observed p-value for the
two-sample procedure testing for that difference. Some, perhaps most, of
the null hypotheses H0i will be true.
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The family-wise error rate is

FWER = Pr{Reject any true H0i}; (3.11)

a FWER control procedure is an algorithm that inputs a family of p-values
(p1, p2, . . . , pN) and outputs the list of accepted and rejected null hypothe-
ses, subject to the constraint

FWER ≤ α (3.12)

for any preselected value of α.
Bonferroni’s bound provides the classic FWER control method: we re-

ject those null hypotheses for which

pi ≤ α/N. (3.13)

Let I0 index the true null hypotheses, having N0 members. Then

FWER = Pr

⎧⎪⎪⎨⎪⎪⎩
⋃

I0

(
pi ≤ α

N

)⎫⎪⎪⎬⎪⎪⎭ ≤
∑

I0

Pr
{

pi ≤ α

N

}

= N0
α

N
≤ α,

(3.14)

verifying the FWER control property.3 The crucial step in the top line fol-
lows from Boole’s inequality Pr{⋃ Ai} ≤ ∑

Pr{Ai}.
One way to think about the Bonferroni bound is that the individual p-

value pi for testing H0i translates into the family-wise adjusted p-value

p̃i = {N pi}1 (3.15)

(where {x}1 is short for min(x, 1)); we reject H0i in the family-wise con-
text if p̃i, rather than pi, is less than α. Though not of much use here, the
language of adjusted p-values is handy for some of the more complicated
algorithms of the next section.

Let x indicate all the data available for testing the family of hypotheses
H01,H02, . . . ,H0N , and let FWERα(x) be a FWER level-α test procedure
based on x. The general definition of adjusted p-value for case i is an
analog of (3.3),

p̃i(x) = inf
α

{
H0i rejected by FWERα(x)

}
. (3.16)

3 Formula (3.14) demonstrates “strong control”: FWER is bounded by α no matter what
the pattern of true and false null hypotheses might be; “weak control” refers to methods
that control FWER only if all the null hypotheses are true.
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As an example, the Šidák procedure improves on the Bonferroni bound
(3.13) by rejecting those hypotheses H0i for which

pi ≤ 1 − (1 − α)1/N . (3.17)

The corresponding adjusted p-value is

p̃i = 1 − (1 − pi)
N . (3.18)

Exercise 3.2 (a) Verify (3.18). (b) Show that (3.17) improves on (3.13)
in the sense of making it easier to reject every H0i at any given level α. (c)
Show that the Šidák procedure is FWERα if the p-values p1, p2, . . . , pN are
statistically independent.

Bonferroni’s bound does not depend on independence, so Šidák’s pro-
cedure cannot be considered a general improvement.4 Holm’s procedure
is an example of a more elaborate testing strategy that is in fact a general
improvement: let the ordered p-values be denoted by

p(1) ≤ p(2) ≤ p(3) ≤ · · · ≤ p(N), (3.19)

and reject H0(i), the hypothesis corresponding to p(i), if

p( j) ≤ α

N − j + 1
for j = 1, 2, . . . , i. (3.20)

The next section shows that (3.19)–(3.20) is FWERα. It is more powerful
than Bonferroni’s procedure since the rejection regions (3.20) are larger
than the Bonferroni regions (3.13).

Exercise 3.3 Show that the adjusted p-value for Holm’s procedure is

p̃(i) = max
j≤i

{
(N − j + 1)p( j)

}
1

(3.21)

where {x}1 ≡ min(x, 1) as before.

Adjusted p-values share the p-value virtue of not requiring a rigid pre-
definition of the rejection level α. We can compute the p̃i values directly, as
in (3.18) or (3.21), and see how “significant” each case is. The quotes are
necessary here because p̃i usually does not follow a U(0, 1) distribution,
or any other fixed distribution, when H0i is true, so there is no universal
interpretive scale such as Fisher’s scale in Table 3.1.

4 The validity of Šidák’s procedure can be extended beyond independence, including to
multivariate normal testing situations.
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Exercise 3.4 Suppose that all N hypotheses H0i are true and that the
N p-values are mutually independent. Calculate the distribution of p̃(1) =

{N p(1)}1. What is the limiting distribution as N goes to infinity?

3.3 Stepwise Algorithms

FWER control is a hard-line frequentist concept, far removed from the
more relaxed empirical Bayes methods that are our main interest here. Nev-
ertheless, it continues to play an important role in the literature of large-
scale significance testing. Stepwise algorithms, developed mainly in the
late 1980s, represent the most successful, and ingenious, attack on FWER
control. This section and the next review some of the methodology, with
no attempt at completeness and only hints of the theoretical ideas involved.
We return to the empirical Bayes world in Chapter 4, where the results here
will be viewed in contrast to false discovery rate control methods.

A step-down procedure begins with the ordered p-values p(1) ≤ p(2) ≤
· · · ≤ p(N) as in (3.19), and from them defines a testing algorithm such that
H0(i) can be rejected only if first H0( j) is rejected for j = 1, 2, . . . , i − 1.
In other words, if p(i) is small enough to cause rejection, then so must be
p(1), p(2), . . . , p(i−1). Another way to say this is that the adjusted p-values
are non-decreasing,

p̃(1) ≤ p̃(2) ≤ · · · ≤ p̃(N), (3.22)

so that p̃(i) ≤ α implies p̃( j) ≤ α for j = 1, 2, . . . , i − 1. Step-down meth-
ods allow improvements on single-step procedures like (3.17). It can be
shown, for example, that the step-down version of Šidák’s procedure re-
places (3.18) with

p̃(i) = max
j≤i

{
1 −

(
1 − p( j)

)N− j+1
}
. (3.23)

Holm’s method (3.20)–(3.21) was one of the first examples of a step-
down procedure. Here is the proof that it satisfies the FWER control prop-
erty.

Proof Let I0 be the set of indices corresponding to true null hypotheses
H0i, N0 = #I0 the number of members of I0, and i0 = N − N0 + 1. Also
let î be the stopping index for Holm’s procedure, i.e., the maximum index
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satisfying (3.20). The event

A =

{
p(i) >

α

N0
for all i ∈ I0

}
=⇒

{
p(i0) >

α

N0
=

α

N + 1 − i0

}

=⇒
{
î < i0

}
=⇒

{
p(î) <

α

N0

}
≡ B. (3.24)

However, the Bonferroni bound shows that Pr{A} ≥ 1 − α, and B implies
that none of the true null hypotheses have been rejected. �

Exercise 3.5 Explicate in detail the three steps in (3.24) and the conclu-
sion that follows.

Holm’s procedure illustrates a closure principle which is worth stating
separately. Let I be a subset of the indices {1, 2, . . . ,N}, and I the statement
that all of the null hypotheses in I are true,

I =
⋂

I

H0(i). (3.25)

If I′ is a larger subset, I′ ⊇ I, then logically I′ ⇒ I. Suppose that for every
subset I we have a level-α non-randomized test function φI(x) : φI(x)
equals 1 or 0, with 1 indicating rejection of I, satisfying

Pr
I
{φI(x) = 1} ≤ α.

Now consider the simultaneous test function

ΦI(x) = min
I′⊇I
{φI(x)} ; (3.26)

ΦI(x) defines a rule that rejects I if and only if I′ is rejected at level α for
every I′ containing I. But if I is true then I ⊆ I0, the set of all true H0(i),
and

Pr
I0

{
φI0 (x) = 1

} ≤ α implies Pr
I
{ΦI(x) = 1} ≤ α. (3.27)

In other words, the test ΦI simultaneously controls the probability of re-
jecting any true subset I at level α.

The closure principle can be used to extend Bonferroni’s bound to Holm’s
procedure. Let Ii = {i, i+1, . . . ,N}. In terms of the ordered p-values (3.19),
Bonferroni’s rule rejects Ii at level α if p(i) ≤ α/(N+1−i). Note that I j ⊇ Ii

for j ≤ i.

Exercise 3.6 Complete the proof that Holm’s procedure is FWERα.
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All of our calculations have so far begun with the simple Bonferroni
bound (3.13). If we are willing to assume independence among the original
p-values p1, p2, . . . , pN , then a better bound, known as Simes’ inequality,
is available: when all the null hypotheses are true, then

Pr
{

p(i) ≥ αi
N

for i = 1, 2, . . . ,N
}
≥ 1 − α, (3.28)

with equality if the test statistics are continuous.
The proof of (3.28) begins by noting that in the independent continuous

case, with all H0(i) true, p(1), p(2), . . . , p(N) are the order statistics of N inde-
pendent U(0, 1) variates, as in (3.5). A standard order statistic result then
shows that given p(N), the largest p-value, the ratios(

p(1)/p(N), p(2)/p(N), . . . , p(N−1)/p(N)
)

(3.29)

are distributed as the order statistics from (N − 1) independent U(0, 1)
variates, while p(N) has cdf pN

(N).

Exercise 3.7 Use induction to verify Simes’ inequality.

Starting from Simes’ inequality, Hochberg used the closure principle to
improve (i.e., raise) Holm’s adjusted p-values (3.21) to

p̃(i) = min
j≥i

{
(N − j + 1)p( j)

}
1
, (3.30)

with {x}1 ≡ min(x, 1). This is not a general improvement though, since
Simes’ inequality depends on independence of the test statistics. (Some
progress has been made in broadening its validity.) Algorithms such as
(3.30), whose definitions depend on the upper tail of the sequence p(1) ≤
p(2) ≤ · · · ≤ p(N), are called “step-up procedures.”

Exercise 3.8 Holm’s step-down procedure (3.20) starts with i = 1 and
keeps rejecting H0(i) until the first time p(i) > α/(N − i + 1). Show that
Hochberg’s step-up procedure starts with i = N and keeps accepting H0(i)

until the first time p(i) ≤ α/(N−i+1). This shows that Hochberg’s procedure
is more powerful than Holm’s, i.e., rejects more often at the same α level.
The step-up/step-down nomenclature is unfortunate here.

3.4 Permutation Algorithms

The prize property of the Bonferroni bound, that it holds true regardless of
the dependence structure of the data, puts it at a disadvantage if we happen
to know the structure. Westfall and Young proposed step-down procedures
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that use permutation calculations to estimate dependence relationships, and
then employ the estimated structure to improve on Holm’s procedure.

Starting with the ordered p-values p(1) ≤ p(2) ≤ · · · ≤ p(N), as in (3.19),
let r1, r2, . . . , rN indicate the corresponding original indices,

p( j) = pr j , j = 1, 2, . . . ,N. (3.31)

Define

R j = {r j, r j+1, . . . , rN} (3.32)

and

π( j) = Pr0

{
min
k∈Rj

(Pk) ≤ p( j)

}
. (3.33)

Here (P1, P2, . . . , PN) indicates a hypothetical realization of the unordered
p-values (p1, p2, . . . , pN) obtained under the complete null hypothesis 5 H0

that all of the H0i are true; (3.33) is computed with p( j) fixed at its observed
value. The Westfall–Young step-down min-p adjusted p-values are then de-
fined by

p̃(i) = max
j≤i
{π( j)} . (3.34)

To see the connection with Holm’s procedure, notice that Boole’s in-
equality implies

π( j) ≤
∑
k∈R j

Pr0

{
Pk ≤ p( j)

}
= (N − j + 1)p( j). (3.35)

Comparing (3.34) with (3.21) shows that the Westfall–Young adjusted p-
values are smaller than Holm’s values. The proof that (3.34) satisfies the
FWER control property, that is, that

Pr {p̃i > α for all i ∈ I0} ≥ 1 − α, (3.36)

for I0 indexing the set of true hypotheses, is similar to the closure argument
for Holm’s procedure preceding Exercise 3.6. It does, however, involve
an extra assumption, called “subset pivotality”: that the vector (Pi, i ∈ I0)
always follows the distribution it has under the complete null H0. In other
words, the fact that some of the cases are non-null does not affect the joint
distribution of the null p-values.

The min-p procedure can be difficult to implement. Westfall and Young
also proposed a simpler variant, called “max-T .” Let

t(1) ≥ t(2) ≥ · · · ≥ t(N) (3.37)

5 Pr0 now indicates probabilities computed under H0.
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indicate ordered values of the original test statistics that gave the p-values
(the two-sample t-statistics (2.2) for the prostate and DTI studies), with
ordered values t( j) = tr j . Also let (T1, T2, . . . ,TN) represent a hypotheti-
cal unordered realization obtained under the complete null hypothesis H0.
Now define6

π( j) = Pr

{
max
k∈R j

(Tk) ≥ t( j)

}
, (3.38)

yielding adjusted p-values p̃(i) as in (3.34). If all Ti have the same cdf F(T )
then pi = 1 − F(ti) and (3.38) is the same as (3.33), but otherwise the two
procedures differ.

How can we evaluate π( j) in (3.33) or (3.38)? In some situations, per-
mutation methods provide straightforward and plausible answers. Consider
the prostate data (2.1): the data matrix X is 6033 × 102, with its first 50
columns representing the healthy controls and the last 52 columns the can-
cer patients. X gave the 6033-vector t of two-sample t-statistics via row-
wise application of (2.2)–(2.3).

Now let X∗ be a version of X in which the columns have been randomly
permuted: formally, if J ∗ = ( j∗1, j∗2, . . . , j∗n) is a randomly selected permu-
tation of (1, 2, . . . , n) then X∗ has entries

x∗i j = xiJ∗( j) for j = 1, 2, . . . , n and i = 1, 2, . . . ,N. (3.39)

Applying calculations (2.2)–(2.3) to X∗ (and still considering the first 50
columns as controls and the last 52 as cancer patients) yields a 6033-vector
of “permutation t-values”

T ∗ =
(
T ∗1 , T

∗
2 , . . . ,T

∗
N

)′ . (3.40)

Independently repeating the permutation process some large number B
times allows us to estimate (3.38) by simply counting the proportion of
times max(T ∗k , k ∈ Rj) exceeds t( j),

π̂( j) = #

{
max
k∈R j

(
T ∗k

)
> t( j)

} /
B. (3.41)

Here R j and t( j) retain their original values, only the T ∗k vary. Finally, the
adjusted p-values p̃(i) are estimated from the π̂( j) as in (3.34). (The min-p
calculation is more difficult to implement, explaining the greater popularity
of max-T .)

The key idea is that the permutation distribution of T ∗ is a reasonable

6 We could just as well define π( j) with respect to two-sided or left-sided versions of
(3.37)–(3.38).
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stand-in for the hypothetical distribution of T we would obtain under the
complete null hypothesis H0. This is plausible since

• permuting the columns of X destroys any true differences between con-
trols and cancer patients, thereby enforcing H0;

• and since columns are permuted intact, the correlation structure between
the rows (i.e., the genes) is maintained.

Permutation methods have played a major role in the large-scale test-
ing literature. We will be discussing their virtues and limitations in several
upcoming chapters.

Figure 3.2 Adjusted p-values p̃(i) for the prostate data
(right-sided), N = 6033; circles are Hochberg step-up procedure
(3.30), triangles are max-T procedure (3.34)–(3.38). Also shown
are estimated false discovery rates (3.42).

Figure 3.2 shows the max-T adjusted p-values p̃(i) for the prostate data.
Here they are seen to be a substantial improvement over the Hochberg step-
up values (3.30) (which are the same as Holm’s values (3.21) in this case).
For instance, the first nine of the max-T p̃(i) values are less than 0.1, versus
only six for Hochberg.
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Also shown in Figure 3.2 are the estimated false discovery rates Fdr(i),

Fdr(i) = N · [1 − Φ (
z(i)

)] /
#
{
z j ≥ z(i)

}
(3.42)

where z(1) ≥ z(2) ≥ · · · ≥ z(N) are the ordered z-values and Φ the stan-
dard normal cdf. These follow definitions (2.23)–(2.24) withZ = [z(i),∞),
and π0 taken to equal its upper bound 1. The striking fact is how much
smaller Fdr(i) is than either version of p̃(i). For i = 20, Fdr(20) = 0.056,
while p̃(20) = 0.62 for max-T . These results are not contradictory: there is
a good chance that at least one of the 20 genes is null, but the expected
number of nulls (0.056 × 20) is not much bigger than 1. The Fdr criterion
has become popular because its more liberal conclusions are a good fit to
modern applications having N in the thousands.

With N = 6033 and i = 20, as in Figure 3.2, Holm’s method (3.20) and
Hochberg’s procedure are almost the same as the Bonferroni bound (3.13).
Of course there are still plenty of small-N multiple testing problems, where
these more sophisticated procedures come into their own.

3.5 Other Control Criteria

FWER control dominates the traditional multiple comparison literature,
but other criteria have been proposed. Two other examples of quantities to
control are the per comparison error rate

PCER = E{Number true null hypotheses rejected}/N (3.43)

and the expected error rate

EER = E{Number wrong decisions}/N, (3.44)

a wrong decision being rejection of H0i when it should be accepted or vice
versa. Neither PCER nor EER have attracted the attention accorded FWER.

The microarray era, with case sizes zooming up from N = 10 to N =
10 000, has brought dissatisfaction with FWER control. Less conservative
methods that still command scientific respectability are being developed,
an interesting example being Lehmann and Romano’s k-FWER criteria,
which aims to control the probability of rejecting k or more true null hy-
potheses; k = 1 is the usual FWER, but choosing a larger value of k gives
more generous results.

A simple extension of the Bonferroni bound (3.13) provides k-FWER
control.
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Theorem 3.1 The procedure that rejects only those null hypotheses H0i

for which

pi ≤ kα/N (3.45)

controls k-FWER at level α,

Pr{k or more true H0i rejected} ≤ α. (3.46)

Proof Let I0 index the true null hypotheses H0i as in (3.14), with N0 = #I0,
and let N0(rej) be the number of falsely rejected H0i. Then

Pr
{
N0(reg) ≥ k

} ≤ E
{
N0(reg)

}
/k =

∑
i∈I0

Pr{pi ≤ kα/N}/k

=
∑
i∈I0

kα/N
k

(3.47)

=
N0

N
α ≤ α. �

Exercise 3.9 Verify the first inequality above (Markov’s inequality).

Figure 3.3 Number of rejections by k-FWER control criterion
(3.45), α = 0.05, for k = 1, 2, . . . , 20; prostate data (right side).

Figure 3.3 applies k-FWER control, α = 0.05, to the right side (that is,
the positive z-values) of the prostate data. The graph traces the number of
genes satisfying rejection criterion (3.45) for different choices of k, ranging
from k = 1 to k = 20. At k = 1, the usual FWER criterion, four genes are
rejected, climbing to 18 rejections at k = 20.
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Once again the comparison with estimated false discovery rates (3.42) is
startling: Fdr(18) = 0.052, so the estimated number of true null hypotheses
among the first 18 rejected is less than one, implying k-FWER hasn’t taken
much advantage of its allowance of k = 20 errors; probably it has made
only one or two. One of the main goals of Chapter 4 is to understand why
FDR control permits such liberal conclusions.

Notes

Westfall and Young’s (1993) book was a notable successor to Miller (1981),
showing how modern computation could be used to good effect on multi-
ple testing problems. Dudoit and van der Laan’s (2008) book takes another
large step in the direction of computation-intensive testing algorithms.

A series of ingenious papers produced the step-down and step-up algo-
rithms of Section 3.3 and Section 3.4: Holm (1979), Simes (1986), Hom-
mel (1988), and Hochberg (1988). The closure principle is nicely stated in
Marcus et al. (1976), though its origins go back further. Dudoit et al. (2003)
provide an excellent review of the whole theory.

An influential example of applying ANOVA methods to microarray data
matrices appears in Kerr et al. (2000). Storey’s optimal discovery proce-
dure (2007) can be considered as an implementation of EER control (3.44).
Efron and Gous (2001) provide a discussion of Fisher’s interpretive scale
for p-values, Table 3.1, and its Bayes-factor competitor, Jeffrey’s scale.
Lehmann and Romano (2005a) and Romano et al. (2008) discuss other
control criteria besides k-FWER.



4

False Discovery Rate Control

Applied statistics is an inherently conservative enterprise, and appropri-
ately so since the scientific world depends heavily on the consistent evalu-
ation of evidence. Conservative consistency is raised to its highest level in
classical significance testing, where the control of Type I error is enforced
with an almost religious intensity. A p-value of 0.06 rather than 0.04 has
decided the fate of entire pharmaceutical companies. Fisher’s scale of ev-
idence, Table 3.1, particularly the α = 0.05 threshold, has been used in
literally millions of serious scientific studies, and stakes a good claim to
being the 20th century’s most influential piece of applied mathematics.

All of this makes it more than a little surprising that a powerful rival to
Type I error control has emerged in the large-scale testing literature. Since
its debut in Benjamini and Hochberg’s seminal 1995 paper, false discovery
rate control has claimed an increasing portion of statistical research, both
applied and theoretical, and seems to have achieved “accepted methodol-
ogy” status in scientific subject-matter journals.

False discovery rate control moves us away from the significance-testing
algorithms of Chapter 3, back toward the empirical Bayes context of Chap-
ter 2. The language of classical testing is often used to describe FDR meth-
ods (perhaps in this way assisting their stealthy infiltration of multiple test-
ing practice), but, as the discussion here is intended to show, both their
rationale and results are quite different.

4.1 True and False Discoveries

We wish to test N null hypotheses

H01,H02, . . . ,H0N (4.1)

on the basis of a data set X, and have in mind some decision rule D that
will produce a decision of “null” or “non-null” for each of the N cases.

46
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Equivalently,1 D accepts or rejects each H0i, i = 1, 2, . . . ,N, on the basis
of X. X is the 6033 × 102 matrix of expression values in the prostate data
example of Section 2.1, giving the N z-values (2.5), while D might be the
rule that rejects H0i if |zi| ≥ 3 and accepts H0i otherwise.

Figure 4.1 A decision ruleD has rejected R out of N null
hypotheses (4.1); a of these decisions were incorrect, i.e., they
were “false discoveries,” while b of them were “true discoveries.”
The false discovery proportion Fdp equals a/R.

Figure 4.1 presents a hypothetical tabulation of D’s performance from
the point of view of an omniscient oracle: N0 of the N cases were actually
null, of whichD called a non-null (incorrectly) and N0 −a null (correctly);
likewise, N1 were actually non-null, with D deciding b of them correctly
and N1−b incorrectly. Of the R = a+b total rejections, a were “false discov-
eries” and b “true discoveries,” in the current terminology. The family-wise
error rate of Section 2.2, FWER, equals Pr{a > 0} in terms of the figure.

N equals 1 in the classical single-case testing situation, so either N0 or
N1 equals 1, with the other 0. Then

Pr{a = 1|N0 = 1} = α, (4.2)

the Type I error rate, or size, of the decision rule, and

Pr{b = 1|N1 = 1} = β, (4.3)

1 I am trying to avoid the term “significant” for the rejected cases as dubious terminology
even in single-case testing, and worse in the false discovery rate context, preferring
instead “interesting.”
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the rule’s power.

Exercise 4.1 In a multiple testing situation with both N0 and N1 positive,
show that

E

{
a

N0

}
= ᾱ and E

{
b

N1

}
= β̄, (4.4)

ᾱ and β̄ being the average size and power of the null and non-null cases,
respectively.

Classical Fisherian significance testing is immensely popular because it
requires so little from the scientist: only the choice of a test statistic and
specification of its probability distribution when the null hypothesis is true.
Neyman–Pearson theory adds the specification of a non-null distribution,
the reward being the calculation of power as well as size. Both of these are
calculated horizontally in the figure, that is restricting attention to either the
null or non-null row, which is to say that they are frequentist calculations.

Large-scale testing, with N perhaps in the hundreds or thousands, opens
the possibility of calculating vertically in the figure, in the Bayesian direc-
tion, without requiring Bayesian priors. The ratio a/R is what we called the
false discovery proportion (2.28), the proportion of rejected cases that are
actually null. Benjamini and Hochberg’s testing algorithm, the subject of
the next section, aims to control the expected value of a/R rather than that
of a/N0.

Exercise 4.2 Suppose that z1, z2, . . . , zN are independent and identically
distributed observations from the two-groups model (2.7) and that the de-
cision rule rejects H0i for zi ∈ Z, as illustrated in Figure 2.3. Show that a/R
has a scaled binomial distribution given R (with R > 0),

a/R ∼ Bi (R, φ(Z)) /R, (4.5)

with φ(Z) = Fdr(Z) as in (2.13).

4.2 Benjamini and Hochberg’s FDR Control Algorithm

We assume that our decision rule D produces a p-value pi for each case i,
so that pi has a uniform distribution if H0i is correct,

H0i : pi ∼ U(0, 1). (4.6)

Denote the ordered p-values by

p(1) ≤ p(2) ≤ · · · ≤ p(i) ≤ · · · ≤ p(N) (4.7)
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as in (3.19). Following the notation in Figure 4.1, let RD be the number of
cases rejected, aD the number of those that are actually null, and FdpD the
false discovery proportion

FdpD = aD/RD [= 0 if RD = 0]. (4.8)

The Benjamini–Hochberg (BH) algorithm uses this rule: for a fixed value
of q in (0, 1), let imax be the largest index for which

p(i) ≤ i
N

q, (4.9)

and reject H0(i), the null hypothesis corresponding to p(i), if

i ≤ imax, (4.10)

accepting H0(i) otherwise.

Theorem 4.1 If the p-values corresponding to the correct null hypothe-
ses are independent of each other, then the rule BH(q) based on the BH
algorithm controls the expected false discovery proportion at q,

E
{
FdpBH(q)

}
= π0q ≤ q where π0 = N0/N. (4.11)

A proof of Theorem 4.1 appears at the end of this section. The proportion
of null cases π0 = N0/N is unknown in practice though we will see that it
can be estimated, so q is usually quoted as the control rate of BH(q).

There is a practical reason for the impressive popularity of BH(q): it is
much more liberal in identifying non-null cases than the FWER algorithms
of Chapter 3. Figure 4.2 illustrates the point by comparison with Hoch-
berg’s step-up procedure (3.30). BH(q) can also be described in step-up
form: decrease i starting from i = N and keep accepting H0(i) until the first
time p(i) ≤ q i/N, after which all H0(i) are rejected. Hochberg’s procedure
instead uses p(i) ≤ α/(N − i + 1); see Exercise 3.8.

If we set q = α, the ratio of the two thresholds is( i
N

) / (
1

N − i + 1

)
= i ·

(
1 − i − 1

N

)
. (4.12)

Usually only small values of i/N will be interesting, in which case BH(q)
is approximately i times as liberal as Hochberg’s rule.

The left panel of Figure 4.2 makes the comparison for α = q = 0.1 and
N = 100. The two threshold curves are equal at i = 1 where both take the
Bonferroni value α/N, and at i = N where both equal α. In between, BH(q)
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Figure 4.2 Left panel: Solid line is rejection boundary (4.9) for
FDR control rule BH(q); dashed curve for Hochberg step-up
FWER procedure, Exercise 3.8; α = q = 0.1, N = 100. Right
panel: Stars indicate p-values for the 50 largest zi, prostate data
(2.6); solid and dashed lines are rejection boundaries, BH(q) and
Hochberg, α = q = 0.1, N = 6033.

allows rejection at much larger values of p(i). The right panel shows the 50
smallest p(i) values for the prostate data, p(i) = F100(−t(i)) in (2.5), and also
the two rejection boundaries, again with α = q = 0.1. Here imax = 28 genes
are declared non-null by BH(q)(0.1) compared to 9 for the Hochberg 0.1
test.

Of course, rejecting more cases is only a good thing if they should be
rejected. False discovery rate control is a more liberal rejecter than FWER:
can we still trust its decisions? This is the question we will be trying to
answer as we consider, in what follows, the pros and cons of the BH(q)
rule and its underlying rationale. Here are a few preliminary comments:

• Theorem 4.1 depends on independence among the p-values of the null
cases (the top row in Figure 4.1), usually an unrealistic assumption. This
limitation can be removed if the rejection boundary (4.9) is lowered to

p(i) ≤ i
N

q
li

where li =

i∑
j=1

1
j
. (4.13)

However, (4.13) represents a severe penalty (l28 = 3.93 for instance) and
is not really necessary. The independence condition in Theorem 4.1 can
be weakened to positive regression dependence (PRD): roughly speak-
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ing, the assumption that the null-case z-values have non-negative cor-
relations, though even PRD is unlikely to hold in practice. Fortunately,
the empirical Bayes interpretation of BH(q) is not directly affected by
dependence, as discussed in the next section.

• Theorem 4.1 depends on taking a/R = 0 when R = 0, that is, defining
0/0 = 0 in Figure 4.1. Storey’s “positive false discovery rate” crite-
rion avoids this by only considering situations with R > 0, but doing so
makes strict FDR control impossible: if N0 = N, that is, if there are no
non-null cases, then all rejections are false discoveries and E{Fdp |R >

0} = 1 for any ruleD that rejects anything.

• Is it really satisfactory to control an error rate expectation rather than an
error rate probability as in classical significance testing? The next two
sections attempt to answer this question in empirical Bayes terms.

• How should q be chosen? The literature hasn’t agreed upon a conven-
tional choice, such as α = 0.05 for single-case testing, though q = 0.1
seems to be popular. The empirical Bayes context of the next section
helps clarify the meaning of q.

• The p-values in (4.9) are computed on the basis of an assumed null hy-
pothesis distribution, for example p(i) = F100(−t(i)) in the right panel of
Figure 4.2, with F100 a Student-t cdf having 100 degrees of freedom.
This is by necessity in classical single-case testing, where theory is the
only possible source for a null distribution. Things are different in large-
scale testing: empirical evidence may make it clear that the theoretical
null is unrealistic. Chapter 6 discusses the proper choice of null hypothe-
ses in multiple testing.

This last objection applies to all testing algorithms, not just to the Benja-
mini–Hochberg rule. The reason for raising it here relates to Theorem 4.1:
its statement is so striking and appealing that it is easy to forget its limita-
tions. Most of these turn out to be not too important in practice, except for
the proper choice of a null hypothesis, which is crucial.

Proof of Theorem 4.1 For t in (0, 1] define

R(t) = #{pi ≤ t}, (4.14)

a(t) the number of null cases with pi ≤ t, false discovery proportion

Fdp(t) = a(t)/max {R(t), 1} , (4.15)
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and

Q(t) = Nt/max {R(t), 1} . (4.16)

Also let

tq = sup
t
{Q(t) ≤ q} . (4.17)

Since R(p(i)) = i we have Q(p(i)) = N p(i)/i. This implies that the BH rule
(4.9) can be re-expressed as

Reject H0(i) for p(i) ≤ tq. (4.18)

Let A(t) = a(t)/t. It is easy to see that

E {A(s)|A(t)} = A(t) for s ≤ t, (4.19)

and in fact E{A(s)|A(t′) for t′ ≥ t} = A(t). In other words, A(t) is a martin-
gale as t decreases from 1 to 0. Then by the optional stopping theorem,

E
{
A(tq)

}
= E {A(1)} = E {a(1)/1} = N0, (4.20)

the actual number of null cases.
Finally, note that (4.16) implies

max
{
R(tq), 1

}
= Ntq/Q(tq) = Ntq/q, (4.21)

so

Fdp(tq) =
q
N

a(tq)

tq
. (4.22)

Then (4.20) gives

E
{
Fdp(tq)

}
= π0q [π0 = N0/N] (4.23)

which, together with (4.18), verifies Theorem 4.1. �

Exercise 4.3 Verify (4.19).

4.3 Empirical Bayes Interpretation

Benjamini and Hochberg’s BH(q) procedure has an appealing empirical
Bayes interpretation. Suppose that the p-values pi correspond to real-valued
test statistics zi,

pi = F0(zi) i = 1, 2, . . . ,N, (4.24)
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where F0(z) is the cdf of a common null distribution applying to all N null
hypotheses H0i, for example, F0 the standard normal cdf in (2.6). We can
always take zi to be pi itself, in which case F0 is theU(0, 1) distribution.

Let z(i) denote the ith ordered value,

z(1) ≤ z(2) ≤ · · · ≤ z(i) ≤ · · · ≤ z(N). (4.25)

Then p(i) = F0(z(i)) in (4.7), if we are interested in left-tailed p-values, or
p(i) = 1 − F0(z(i)) for right-tailed p-values.

Note that the empirical cdf of the zi values,

F̄(z) = #{zi ≤ z}/N (4.26)

satisfies

F̄(z(i)) = i/N. (4.27)

This means we can write the threshold condition for the BH rule (4.9) as

F0(z(i))
/
F̄(z(i)) ≤ q (4.28)

or

π0F0(z(i))
/
F̄(z(i)) ≤ π0q. (4.29)

However, π0F0(z)/F̄(z) is the empirical Bayes false discovery rate estimate
Fdr(z) (from (2.21) withZ = (−∞, z)).

We can now re-express Theorem 4.1 in empirical Bayes terms.

Corollary 4.2 Let imax be the largest index for which

Fdr(z(i)) ≤ q (4.30)

and reject H0(i) for all i ≤ imax, accepting H0(i) otherwise. Then, assuming
that the zi values are independent, the expected false discovery proportion
of the rule equals q.

Exercise 4.4 Use Theorem 4.1 to verify Corollary 4.2.

Note With π0 unknown it is usual to set it to its upper bound 1, giv-
ing Fdr(z(i)) = F0(z(i))/F̄(z(i)). This makes rule (4.30) conservative, with
E{Fdp} ≤ q. But see Section 4.5.

Returning to the two-groups model (2.7), Bayes rule gives

Fdr(z) = π0F0(z)/F(z) (4.31)

as the posterior probability that case i is null given zi ≤ z (2.13). Section 2.4
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shows Fdr(zi) to be a good estimate of Fdr(zi) under reasonable conditions.
A greedy empirical Bayesian might select

zmax = sup
z

{
Fdr(z) ≤ q

}
(4.32)

and report those cases having zi ≤ zmax as “having estimated probability
q of being null.” Corollary 4.2 justifies the greedy algorithm in frequentist
terms: if the zi values are independent, then the expected null proportion
of the reported cases will equal q. It is always a good sign when a statis-
tical procedure enjoys both frequentist and Bayesian support, and the BH
algorithm passes the test.

Figure 4.3 Left-sided and right-sided values of Fdr(z) for the
DTI data of Section 2.5; triangles indicate values of z having

Fdr
(c)

(z) (4.33) equal 0.5, 0.25 and 0.1; 192 voxels have z(i)
exceeding 3.02, the q = 0.1 threshold.

Figure 4.3 graphs Fdr(z) and the analogous right-sided quantity

Fdr
(c)

(z) = π0F(c)
0 (z)

/
F̄(c)(z) (4.33)

for the DTI data of Section 2.5 (setting π0 to 1 in (4.29) and (4.33)), where
F(c)(z) indicates the complementary cdf 1 − F(z). There is just the barest
hint of anything interesting on the left, but on the right, Fdr(c)(z) gets quite
small. For example, 192 of the voxels reject their null hypotheses, those
having zi ≥ 3.02 at the q = 0.1 threshold.

Exercise 4.5 I set π0 = 1 in (4.33). How does that show up in Figure 4.3?
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The empirical Bayes viewpoint clarifies some of the questions raised in
the previous section.

• Choice of q Now q is an estimate of the Bayes probability that a
rejected null hypothesis H0i is actually correct. It is easy to explain to a
research colleague that q = 0.1 means an estimated 90% of the rejected
cases are true discoveries. The uncomfortable moment in single-case test-
ing, where it has to be confessed that α = 0.05 rejection does not imply a
95% chance that the effect is genuine, is happily avoided.

• Independence assumption Fdr(z) = π0F0(z)/F̄(z) is an accurate esti-
mate of the Bayes false discovery rate Fdr(z) = π0F0(z)/F(z) (2.13) when-
ever F̄(z), the empirical cdf, is close to F(z). This does not require indepen-
dence of the z-values, as shown in Section 2.4. Fdr(z) is upwardly biased
for estimating Fdr(z), and also for estimating the expected false discovery
proportion, and in this sense it is always conservative. Lemma 2.2 shows
that the upward bias is small under reasonable conditions. Roughly speak-
ing, Fdr(z) serves as an unbiased estimate of Fdr(z), and of FDR= E{Fdp},
even if the zi are correlated.

Figure 4.4 Left panel: Solid histogram Fdp for BH rule, q = 0.1,
1000 simulations of model (4.34) with zi values independent; line
histogram for zi values correlated, root mean square correlation
= 0.1. Right panel: Fdp values for correlated simulations plotted
against σ̂0, the empirical standard deviation of the null zi values;
smooth curve is quadratic regression.

The price for correlation is paid in the variability of Fdr(z) as an estimate
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of Fdr(z), as illustrated in Figure 4.4. Our simulation model involved N =
3000 z-values, with

zi ∼ N(0, 1), i = 1, 2, . . . , 2850

and zi ∼ N(2.5, 1), i = 2851, . . . , 3000
(4.34)

so π0 = 0.95. Two runs of 1000 simulations each were made, the first with
the zi values independent and the second with substantial correlation: the
root mean square value of all 3000 · 2999/2 pairs of correlations equaled
0.1.2 For each simulation, the rule BH(q), q = 0.1, was applied (right-
sided) and the actual false discovery proportion Fdp observed.

The left panel of Figure 4.4 compares a histogram of the 1000 Fdp values
under independence with that for the correlated simulations. The expected
Fdp is controlled below q = 0.1 in both cases, averaging 0.095 under inde-
pendence and 0.075 under correlation (see Table 4.1). Control is achieved
in quite different ways, though: correlation produces a strongly asymmetric
Fdp distribution, with more very small or very large values. The BH algo-
rithm continues to control the expectation of Fdp under correlation, but Fdr
becomes a less accurate estimator of the true Fdr.

Table 4.1 Means and standard deviations (in parentheses) for the
simulation experiments of Figure 4.4.

Fdp σ̂0 # Rejected

Uncorrelated .095 (.038) 1.00 (.014) 64.7 (3.7)
Correlated .075 (.064) .97 (.068) 63.1 (7.5)

In Figure 4.4’s right panel, the Fdp values for the 1000 correlated simu-
lations are plotted versus σ̂0, the empirical standard deviation of the 2850
null z-values. Correlation greatly increases the variability of σ̂0, as dis-
cussed in Chapter 7. Fdp tends to be greater or less than the nominal value
0.1 as σ̂0 is greater or less than 1.0, varying by a factor of 10.

In practice, σ̂0 isn’t observable. However, it is “almost observable” in
some situations, in which case the overall control level q can be misleading:
if we know that σ̂0 is much greater than 1, then there is good reason to
believe that Fdp is greater than q. This point is investigated in Chapter 6 in
terms of the empirical null distribution.

2 The correlation structure is described in Section 8.2.
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• FDR control as a decision criterion The BH algorithm only controls
the expectation of Fdp. Is this really sufficient for making trustworthy de-
cisions? Part of the answer must depend upon the accuracy of Fdr as an
estimate of Fdr (4.31) or of FDR = E{Fdp}. This same question arises in
single-case testing where the concept of power is used to complement Type
I error control. Chapters 5 and 7 discuss accuracy and power considerations
for false discovery rate control methods.

• Left-sided, right-sided, and two-sided inferences For the DTI data
of Figure 4.3, BH(q)(0.1) rejects zero voxels on the left and 192 voxels on
the right. However, if we use two-sided p-values, pi = 2 · Φ(−|zi|), only
110 voxels are rejected by BH(q)(0.1), all from among the 192. From a
Bayesian point of view, two-sided testing only blurs the issue by making
posterior inferences over larger, less precise rejection regions Z. The lo-
cal false discovery rate (2.14) provides the preferred Bayesian inference.
Chapter 5 concerns estimation of the local fdr.

Exercise 4.6 For the prostate data, the left-tailed, right-tailed, and two-
tailed BH(q) rules reject 32, 28, and 60 genes at the q = 0.1 level. The
rejection regions are zi ≤ −3.26 on the left, zi ≥ 3.36 on the right, and
|zi| ≥ 3.29 two-sided. Why is two-sided testing less wasteful here than in
the DTI example?

• False negative rates Looking at Figure 4.1, it seems important to
consider the false negative proportion

Fnp = (N1 − b)/(N − R) (4.35)

as well as Fdp. The expectation of Fnp is a measure of Type II error for
D, indicating the rule’s power. It turns out that the Bayes/empirical Bayes
interpretation of the false discovery rate applies to both Fdp and Fnp.

Suppose that rule D rejects H0i for zi ∈ R, and accepts H0i for zi in the
complementary regionA. Following notation (2.13),

1 − φ(A) = Pr{non-null|z ∈ A} (4.36)

is the Bayes posterior probability of a Type II error. The calculations in
Section 2.3 and Section 2.4 apply just as well to Fdr(A) as Fdr(R): under
the conditions stated there, for instance in Lemma 2.2, 1 − Fdr(A) will
accurately estimate 1 − φ(A), the Bayesian false negative rate. Chapter 5
uses this approach to estimate power in multiple testing situations.
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4.4 Is FDR Control “Hypothesis Testing”?

The Benjamini–Hochberg BH(q) rule is usually presented as a multiple
hypothesis testing procedure. This was our point of view in Section 4.2,
but not in Section 4.3, where the estimation properties of Fdr were empha-
sized. It pays to ask in what sense false discovery rate control is actually
hypothesis testing.

Here we will fix attention on a given subset R of the real line, e.g., R =
[3,∞). We compute

Fdr(R) = e0(R)/R, (4.37)

where e0(R) is the expected number of null cases falling in R and R is the
observed number of zi in R. We might then follow the rule of rejecting
all the null hypotheses H0i corresponding to zi in R if Fdr(R) ≤ q, and
accepting all of them otherwise. Equivalently, we reject all the H0i for zi in
R if

R ≥ e0(R)/q. (4.38)

It is clear that (4.38) cannot be a test of the FWER-type null hypothesis
that at least one of the R hypotheses is true,

H0(union) =
⋃

i:zi∈R
H0i. (4.39)

Rejecting H0(union) implies we believe all the H0i for zi inR to be incorrect
(that is, all should be rejected). But if, say, R = 50 then Fdr(R) = 0.1
suggests that about five of the R H0i are correct.

Exercise 4.7 Calculate the probability that H0(union) is correct if R = 50
and φ(R) = 0.1, under the assumptions of Lemma 2.2.

In other words, the Fdr rule (4.38) is too liberal to serve as a test of
H0(union). Conversely, it is too conservative as a test of

H0(intersection) =
⋂

i:zi∈R
H0i (4.40)

which is the hypothesis that all of the R null hypotheses are correct. Reject-
ing H0(intersection) says we believe at least one of the R cases is non-null.

Under the Poisson-independence assumptions of Lemma 2.2, H0(inter-
section) implies

R ∼ Poi (e0(R)) . (4.41)
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The obvious level-α test3 rejects H0(intersection) for

R ≥ Qα, (4.42)

the upper 1−α quantile of a Poi(e0(R)) variate. A two-term Cornish–Fisher
expansion gives the approximation

Qα = e0(R) +
√

e0(R)zα +
(
z2
α − 1

) /
6 (4.43)

with zα the standard normal quantile Φ−1(1 − α). (Increasing (4.43) to the
nearest integer makes test (4.42) conservative.) Table 4.2 compares the
minimum rejection values of R from (4.38) and (4.42) for q = α = 0.1.
It is clear that (4.38) is far more conservative.

The inference of Fdr outcome (4.32) lies somewhere between “all R
cases are true discoveries” and “at least one of the R is a true discovery.” I
prefer to think of Fdr as an estimate rather than a test statistic: a quantitative
assessment of the proportion of false discoveries among the R candidates.

Table 4.2 Rejection thresholds for R, Fdr test (4.38), and H0(intersection)
test (4.42); q = α = 0.1. As a function of e0(R), the expected number of
null cases in R. (Rounding H0(intersection) upward gives conservative
level-α tests.)

e0(R) 1 2 3 4 6 8

H0(intersection) 2.39 3.92 5.33 6.67 9.25 11.73
Fdr 10 20 30 40 60 80

Exercise 4.8 For the DTI data of Figure 4.3, 26 of the 15 443 z-values
are less than −3.0. How strong is the evidence that at least one of the 26 is
non-null? (Assume independence and set π0 to its upper bound 1.)

4.5 Variations on the Benjamini–Hochberg Algorithm

The BH algorithm has inspired a great deal of research and development
in the statistics literature, including some useful variations on its original
form. Here we will review just two of these.

3 This test is a form of Tukey’s “higher criticism.”
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• Estimation of π0 The estimated false discovery rate Fdr(z) = π0F0(z)
/F̄(z) appearing in Corollary 4.2 requires knowing π0, the actual proportion
of null cases. Rather than setting π0 equal to its upper bound 1 as in the
original BH procedure, we can attempt to estimate it from the collection of
observed z-values.

Returning to the two-groups model (2.7), suppose we believe that f1(z)
is zero for a certain subset A0 of the sample space, perhaps those points
near zero,

f1(z) = 0 for z ∈ A0; (4.44)

that is, all the non-null cases must give z-values outside ofA0 (sometimes
called the zero assumption). Then the expected value of N+(A0), the ob-
served number of zi values inA0, is

E {N+(A0)} = π0N · F0(A0), (4.45)

suggesting the estimators

π̂0 = N+(A0)/ (N · F0(A0)) (4.46)

and

F̂dr(z) = π̂0F0(z)
/
F̄(z). (4.47)

Using F̂dr(z) in place of Fdr(z) = F0(z)/F̄(z) in Corollary 4.2 increases the
number of discoveries (i.e., rejections). It can be shown that the resulting
rule still satisfies E{Fdp} ≤ q under the independence assumption even if
(4.44) isn’t valid.

We might take A0 to be the central α0 proportion of the f0 distribution
on the grounds that all the “interesting” non-null cases should produce z-
values far from the central region of f0. If f0 is N(0, 1) in (2.7) then A0 is
the interval

A0 =
[
Φ−1 (0.5 − α0/2) ,Φ−1 (0.5 + α0/2)

]
(4.48)

with Φ the standard normal cdf. Figure 4.5 graphs π̂0 as a function of α0

for the prostate and DTI data.
Nothing in Figure 4.5 suggests an easy way to select the appropriateA0

region, particularly not for the prostate data. Part of the problem is the as-
sumption that f0(z) is the theoretical null N(0, 1) density. The central peak
of the prostate data seen in Figure 2.1 is slightly wider, about N(0, 1.062),
which affects calculation (4.46). Chapter 6 discusses methods that estimate
π0 in conjunction with estimation of the mean and variance of f0.
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Figure 4.5 Estimated values of π0 (4.46) for the prostate and DTI
data sets;A0 as in (4.48); α0 ranging from 0.1 to 0.9.

Exercise 4.9 How would the prostate data π̂0 values in Figure 4.5 change
if we took f0 to be N(0, 1.062)?

The exact choice of π̂0 in (4.47) is not crucial: if we are interested in
values of Fdr near q = 0.1 then the difference between π̂0 = 0.9 and π̂0 = 1
is quite small. A much more crucial and difficult issue is the appropriate
choice of the null density f0, the subject of Chapter 6.

• Significance analysis of microarrays SAM, the significance analysis
of microarrays, is a popular Fdr-like program originally intended to iden-
tify interesting genes in microarray experiments. Microarray studies have
nothing in particular to do with SAM’s workings, but we will use them
for illustration here. Suppose that X is an N × n matrix of expression lev-
els as in Section 2.1 that we have used to produce an N-vector of z-values
z = (z1, z2, . . . , zN)′. For the sake of definiteness, assume that X represents
a two-sample study, say healthy versus sick subjects, and that the zi are
normalized t-values as in (2.2)–(2.5). (SAM actually handles more general
experimental layouts and summary statistics: in particular, there need be
no theoretical null assumption (2.6).)

1 The algorithm begins by constructing some number B of N × n matrices
X∗, each of which is a version of X in which the columns have been
randomly permuted as in (3.40). Each X∗ yields an N-vector z∗ of z-
values calculated in the same way as z.
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2 Let Z be the ordered version of z, and likewise Z∗b the ordered version
of z∗b, the bth z∗ vector, b = 1, 2, . . . , B. Define

Z̄i =

B∑
b=1

Z∗bi

/
B (4.49)

so Z̄i is the average of the ith largest values of z∗b.
3 Plot Zi versus Z̄i for i = 1, 2, . . . ,N. The upper panel of Figure 4.6 shows

the (Z̄i, Zi) plot for the prostate data of Figure 2.1. (This amounts to a
QQ-plot of the actual z-values versus the permutation distribution.)

4 For a given choice of a positive constant Δ, define

cup(Δ) = min{Zi : Zi − Z̄i ≥ Δ}
and clo(Δ) = max{Zi : Z̄i − Zi ≥ Δ}. (4.50)

In words, cup(Δ) is the first Zi value at which the (Z̄i, Zi) curve exits the
band Z̄i + Δ, and similarly for clo(Δ). In the top panel of Figure 4.6,
Δ = 0.7, cup(Δ) = 3.29, and clo(Δ) = −3.34.

5 Let R(Δ) be the number of zi values outside of [clo(Δ), cup(Δ)],

R(Δ) = #
{
zi ≥ cup(Δ)

}
+ # {zi ≤ clo(Δ)} , (4.51)

and likewise

R∗(Δ) = #
{
z∗bi ≥ cup(Δ)

}
+ #

{
z∗bi ≤ clo(Δ)

}
, (4.52)

the sums in (4.52) being over all N · B permutation z-values.
6 Finally, define the false discovery rate corresponding to Δ as

Fdr(Δ) =
R∗(Δ)/NB
R(Δ)/N

=
1
B

R∗(Δ)
R(Δ)

. (4.53)

The SAM program calculates Fdr(Δ) for a range of Δ values in a search
for the Δ that produces a pre-chosen value Fdr(Δ) = q. For the prostate
data, Δ = 0.7 gave Fdr(Δ) = 0.1; R(Δ) = 60 genes were identified as
significant, 28 on the right and 32 on the left.

Definition (4.53) of Fdr(Δ) is equivalent to our previous usage at (4.28)
or (2.21): the rejection region

R(Δ) =
{
z �

[
clo(Δ), cup(Δ)

]}
(4.54)

has empirical probability F̄(Δ) = R(Δ)/N; similarly, R∗(Δ)/NB is the null
estimate F̄0(Δ), the proportion of the N · B z∗bi values in R(Δ), so

Fdr(Δ) = F̄0(Δ)
/
F̄(Δ), (4.55)
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Figure 4.6 SAM plots for the prostate data (top) and the
leukemia data (bottom). Starred points indicate “significant”
genes at the q = 0.1 level: 60 in the top panel, 1660 in the bottom.

which is (4.28), setting π0 = 1 and using the permutation z∗bi values instead
of a theoretical distribution to define the nulls.

Despite the disparaged “significance” terminology, the output of SAM
is closer to empirical Bayes estimation than hypothesis testing; that is, the
statistician gets more than a simple yes/no decision for each gene. The two-
sided nature of the procedure is unfortunate from a Bayesian perspective,
but this can be remedied by choosing Δ separately for positive and negative
z-values.



64 False Discovery Rate Control

The bottom panel of Figure 4.6 concerns the leukemia data, another mi-
croarray study featured in Chapter 6. Here there are N = 7128 genes whose
expression levels are measured on n = 72 patients, 47 with a less severe
and 25 with a more severe form of leukemia. Two-sample t-tests have led
to z-values as in (2.1)–(2.5) (now with 70 degrees of freedom rather than
100). The SAM plot reveals a serious problem: unlike the prostate panel,
the leukemia plot doesn’t match the solid 45◦ line near z = 0, crossing it
instead at a sharp angle.

We will see in Chapter 6 that the histogram of the 7128 leukemia z-
values, unlike Figure 2.1, is much wider at the center than a N(0, 1) dis-
tribution. However, the permutation null distributions are almost perfectly
N(0, 1) in both cases, a dependable phenomenon it turns out. This casts
doubt on the appropriateness of F̄0(Δ) in the numerator of Fdr(Δ) (4.55)
and the identification of 1660 “significant” leukemia genes. The appro-
priate choice of a null distribution is the crucial question investigated in
Chapter 6.

Exercise 4.10 Suppose the z-value histogram is approximately N(0, σ2
0)

near z = 0 while the permutation distribution is N(0, 1). What will be the
angle of crossing of the SAM plot?

4.6 Fdr and Simultaneous Tests of Correlation

When dealing with t-statistics, as in the prostate study (2.2), the false dis-
covery rate estimator Fdr (2.21) has a nice geometrical interpretation in
terms of clustering on the hypersphere. This interpretation allows us to use
the BH algorithm to answer a different kind of question: Given a case of
interest, say gene 610 in the prostate study, which of the other N − 1 cases
is unusually highly correlated with it? “Unusual” has the meaning here of
being in the rejection set of a simultaneous testing procedure.

It is easier to describe the main idea in terms of one-sample rather than
two-sample t-tests. Suppose that X is an N × n matrix with entries xi j. For
each row xi of X we compute ti, the one-sample t-statistic,

ti =
x̄i

σ̂i/
√

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣x̄i =

∑n
1 xi j

n
, σ̂2

i =

∑n
1

(
xi j − x̄i

)2

n − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.56)

We wish to test which if any of the N ti values are unusually large. (X might
arise in a paired comparison microarray study where xi j is the difference
in expression levels, Treatment minus Placebo, for gene i in the jth pair of
subjects.)
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Let

u = (1, 1, . . . , 1)′
/√

n (4.57)

be the unit vector lying along the direction of the main diagonal in n-
dimensional space. The angle θi between u and

xi = (xi1, xi2, . . . , xin)′ (4.58)

has cosine

cos(θi) = x̃′iu (4.59)

where

x̃i = xi/‖xi‖ = xi

/ (∑n
j=1 x2

i j

)1/2
(4.60)

is the scale multiple of xi having unit length. A little bit of algebra shows
that ti is a monotonically decreasing function of θi,

ti =
√

n − 1 cos(θi)
/ [

1 − cos(θi)2
]1/2

. (4.61)

Exercise 4.11 Verify (4.61).

The unit sphere in n dimensions,

Sn =

⎧⎪⎪⎨⎪⎪⎩v :
n∑

i=1

v2
i = 1

⎫⎪⎪⎬⎪⎪⎭ (4.62)

can be shown to have area (i.e., (n − 1)-dimensional Lebesgue measure)

An = 2πn/2/Γ(n/2). (4.63)

With n = 3 this gives the familiar result A3 = 4π. Under the null hypothesis,

H0i : xi j
ind∼ N(0, σ2

0) j = 1, 2, . . . , n, (4.64)

the vector xi is known to have spherical symmetry around the origin 0;
that is, x̃i is randomly distributed over Sn, with its probability of falling
into any subset R on Sn being proportional to the (n − 1)-dimensional area
A(R) of R.

Putting this together, we can calculate4 pi, the one-sided p-value of the
one-sample t-test for H0i, in terms of θi:

pi = A(Rθi )/AN ≡ Ã(θi). (4.65)

Here Rθ indicates a spherical cap of angle θ on Sn centered at u, while
Ã(θi) is the cap’s area relative to the whole sphere. (Taking u as the north

4 We are following Fisher’s original derivation of the Student t-distribution.
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pole on a globe of the Earth, Rθ with θ = 23.5◦ is the region north of the
Arctic circle.)

Small values of θi correspond to small p-values pi. If θ(n, α) defines a
cap having relative area α, perhaps α = 0.05, then the usual α-level t-test
rejects H0i for θi ≤ θ(n, α). Intuitively, under the alternative hypothesis

xi j
ind∼ N(μi, σ

2
0) for j = 1, 2, . . . , n, x̃i will tend to fall nearer u if μi > 0,

rejecting H0i with probability greater than α.

Exercise 4.12 Calculate θ(n, 0.05) for n = 5, 10, 20, and 40. Hint: Work
backwards from (4.61), using a table of critical values for the t-test.

Getting back to the simultaneous inference problem, we observe N points
x̃1, x̃2, . . . , x̃N on Sn and wonder which of them, if any, lie unusually close
to u. We can rephrase the Benjamini–Hochberg procedure BH(q) to pro-
vide an answer. Define Fdr(θ) to be Fdr(Z) in (2.21) with Z = Rθ and let
N+(θ) denote the number of points x̃i in Rθ. Then

Fdr(θ) = Nπ0Ã(θ)
/
N+(θ) (4.66)

as in (2.24).
Corollary 4.2 now takes this form: ordering the θi values from smallest

to largest,

θ(1) ≤ θ(2) ≤ · · · ≤ θ(i) ≤ · · · ≤ θ(N), (4.67)

let imax be the largest index for which

Ã
(
θ(i)

)
N+

(
θ(i)

) /
N
≤ q (4.68)

and reject H0(i) for i ≤ imax. Assuming independence of the points, the ex-
pected proportion of null cases among the imax rejectees will be less than q
(actually equaling π0q). The empirical Bayes considerations of Section 4.3
suggest the same bound, even under dependence.

Let

θ̂(q) = θ(imax), R(q) = N+
(
θ̂(q)

)
, and R(q) = R

(
θ̂(q)

)
. (4.69)

The BH algorithm BH(q) rejects the R(q) cases having θi ≤ θ̂(q), that is,
those having x̃i within the spherical cap R(q), as illustrated in Figure 4.7.

Exercise 4.13 Show that R(q)/N, the observed proportion of points in
R(q), is at least 1/q times the relative area Ã(θ̂(q)). (So if q = 0.1 there are
at least ten times as many points in R(q) as there would be if all the null
hypotheses were correct.)
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Figure 4.7 Spherical cap rejection region R(q) for BH procedure
BH(q); H0i is rejected since θi ≤ θ̂(q). Dots indicate the other
rejected cases. The number of points in R(q) is at least 1/q times
larger than the expected number if all N null hypotheses were
correct.

The same procedure can be used for the simultaneous testing of correla-
tions. Suppose we are interested in a particular case i0 and wonder which
if any of the other N − 1 cases are unusually highly correlated with case i0.
Define x†i j to be the centered version of xi,

x†i j = xi j − x̄i j = 1, 2, . . . , n, (4.70)

and let x†i0 play the role of 1 in Figure 4.7. Then

cos(θi) = x†
′

i x†i0
/ [
‖x†i ‖ · ‖x†i0‖

]
= ĉor(i, i0),

(4.71)

the Pearson sample correlation coefficient between xi and xi0 .
Following through definitions (4.67)–(4.68) gives a BH(q) simultaneous

test for the N − 1 null hypotheses

H0i : cor(i, i0) = 0, i � i0. (4.72)
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Thinking of the vectors x†i /‖x†i ‖ as points on the (n−1)-dimensional sphere

S†n−1 =

⎧⎪⎪⎨⎪⎪⎩v :
n∑
1

vi = 0,
n∑
1

v2
i = 1

⎫⎪⎪⎬⎪⎪⎭ , (4.73)

the test amounts to checking for high-density clusters near x†i0
/‖x†i0

‖. Dif-

ferent choices of i0 let us check for clusters all over S†n−1, i.e., for groups
of correlated cases. (Note: The test can be carried out conveniently by first
computing

ti =
√
ν ĉor(i, i0)

/ [
1 − ĉor(i, i0)2

]1/2
and pi = 1 − Fν(ti) (4.74)

with ν = n − 2, the degrees of freedom, and Fν the Student-t cdf, and then
applying BH(q) to the pi values. Using pi = Fν(ti) checks for large negative
correlations.)

Correlation testing was applied to the prostate data of Section 2.1. Def-
inition (4.70) was now modified to subtract either the control or cancer
patient mean for gene i, as appropriate, with ν = n−3 = 99 in (4.74). Gene
610 had the largest z-value (2.5) among the N = 6033 genes, z610 = 5.29,

with estimated Fdr
(c)

(z610) = 0.0007 (using (4.33) with π0 = 1). Taking
i0 = 610 in tests (4.72) produced only gene 583 as highly correlated at
level q = 0.10; taking i0 = 583 gave genes 637 and 610, in that or-
der, as highly correlated neighbors; i0 = 637 gave 14 near neighbors,
etc. Among the cases listed in Table 4.3 only genes 610 and 637 had

Fdr
(c)

(zi) ≤ 0.50. One might speculate that gene 637, which has low Fdr
(c)

and a large number of highly correlated neighbors, is of special interest
for prostate cancer involvement, even though its z-value 3.29 is not over-

whelming, Fdr
(c)

(z637) = 0.105.

Table 4.3 Correlation clusters for prostate data using BH(q) with q =
0.10. Taking i0 = 610 gave only gene 583 as highly correlated; i0 = 583
gave genes 637 and 610, etc. Genes are listed in order of ĉor(i, i0), largest

values first. Gene 637 with zi = 3.29 and Fdr
(c)

(zi) = 0.105 is the only

listed gene besides 610 with Fdr
(c) ≤ 0.50.

610 −→ 583 −→ (637∗, 610∗)
↓

(583, 837, 878, 5674, 1048, 1618, 1066, 610∗, and 5 others)
↓

(878, 637∗, 1963, 376, 5674)
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The two-sample t-test has almost the same “points on a sphere” descrip-
tion as the one-sample test: xi is replaced by x†i = (xi j − x̄i) (4.70), Sn is
replaced by S†n−1 (4.73), and 1n, the vector of n 1’s, is replaced by

1† ≡ (−1n1/n1,1n2/n2). (4.75)

Everything then proceeds as in (4.65) forward, as illustrated in Figure 4.7
(remembering that Ã(θ) now refers to the relative areas on an (n − 1)-
dimensional sphere). The same picture applies to more general regression
z-values, as mentioned at the end of Section 3.1.

Notes

The true and false discovery terminology comes from Soric (1989) along
with a suggestion of the evocative table in Figure 4.1. Benjamini and Hoch-
berg credit Simes (1986) with an early version of the BH algorithm (4.9)
and (3.29), but the landmark FDR control theorem (Theorem 4.1) is origi-
nal to Benjamini and Hochberg (1995). The neat martingale proof of The-
orem 4.1 comes from Storey et al. (2004), as does the result that F̂dr(z)
(4.47) can be used to control FDR. Efron et al. (2001) presented an em-
pirical Bayes interpretation of false discovery rates (emphasizing local fdr)
while Storey (2002) developed a more explicitly Bayes approach. The posi-
tive regression dependence justification for the BH(q) algorithm appears in
Benjamini and Yekutieli (2001). Lehmann and Romano (2005a) develop an
algorithm that controls the probability that Fdp exceeds a certain threshold,
rather than E{Fdp}. False negative rates are extensively investigated in Gen-
ovese and Wasserman (2002). Section 1 of Efron (1969) discusses the geo-
metric interpretation of the one-sample t-test. Donoho and Jin (2009) apply
Tukey’s higher criticism to large-scale selection problems where genuine
effects are expected to be very rare.
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Local False Discovery Rates

Classic single-case hypothesis testing theory depended on the interpreta-
tion of tail-area statistics, that is, on p-values. The post-World War II boom
in multiple testing continued to feature p-values, with their dominance ex-
tending into the large-scale testing era, as witnessed in Chapters 3 and 4.
Even false discovery rate control, which strays far from significance testing
and Type I error, is phrased in terms of p-values in its Benjamini–Hochberg
formulation.

It is by necessity that tail areas are featured in single-case testing: one
can sensibly interpret the probability that test statistic z exceeds 1.96, but
Prob{z = 1.96} = 0 is uninformative. Large-scale testing, however, allows
the possibility of local inference in which outcomes such as z = 1.96 are
judged on their own terms and not with respect to the hypothetical possibil-
ity of more extreme results. This is the intent of local false discovery rates,
a Bayesian idea implemented by empirical Bayes methods in large-scale
testing situations.

5.1 Estimating the Local False Discovery Rate

As in Section 2.2, we begin with the Bayesian two-groups model, in which
each of the N cases is either null or non-null, with prior probability π0 or
π1,

π0 = Pr{null} f0(z) = null density

π1 = Pr{non-null} f1(z) = non-null density,
(5.1)

as diagrammed in Figure 2.3. Assumption (2.9), that π0 is near 1, is not
necessary as long as f0(z) is known; (2.9) won’t be our assumption here,
but in Chapter 6, where f0 must be estimated, we will need π0 near 1.

The local false discovery rate (2.14) is

fdr(z) = Pr{null|z} = π0 f0(z)/ f (z) (5.2)

70
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where f (z) is the mixture density

f (z) = π0 f0(z) + π1 f1(z). (5.3)

Of the three quantities in (5.2), f0(z) is assumed known in this chapter
while π0 can be estimated as in Section 4.5 (or set equal to 1 with little
harm if π0 ≥ 0.90). That leaves f (z) to be estimated from the z-values
z = (z1, z2, . . . , zN), all of which, by definition of the mixture density, come
from f (z).

Figure 5.1a z-value histogram for the prostate data, N = 6033,
Section 2.1. Heavy curve is estimate f̂ (z) for mixture density f (z),
scaled to match histogram area. Dashed curve is scaled estimate
π̂0 f0(z), where f0 is the standard normal density (2.9).

Density estimation has a bad reputation in applied work, deservedly so
given its pathological difficulties in discontinuous situations. Z-value den-
sities, however, tend to be quite smooth, as discussed in Chapter 7. This
can be seen in Figures 5.1a and 5.1b, which show z-value histograms for
the prostate and DTI data sets. The heavy curves are estimates f̂ (z) of f (z)
obtained as smooth fits to the heights of the histogram bars by a Poisson
regression method described in Section 5.2.

The null probability π0 in the numerator of (5.2) was estimated taking
α0 = 0.50 in (4.48), that is, using the central 50% of the F0-distribution;

π̂0 = 0.932 (prostate data), π̂0 = 0.935 (DTI). (5.4)
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Figure 5.1b z-value histogram for the DTI data, N = 15 443,
Section 2.4; curves as in Figure 5.1a.

We can then estimate fdr(z) by

f̂dr(z) = π̂0 f0(z)
/

f̂ (z) (5.5)

with f0(z) the N(0, 1) density ϕ(z) (2.9). The heavy curves in Figure 5.2
show f̂dr(z). More precisely, they show min{f̂dr(z), 1}. Equation (5.5) can
exceed 1 because π̂0 isn’t a perfect estimate of π0 and, more seriously,
because ϕ(z) isn’t a perfect estimate of f0. The latter can be seen in Fig-
ure 5.1b where f0(z) is shifted noticeably to the right of the histogram high
point. Chapter 6 deals with much worse mismatches.

The estimate f̂ (z) can be integrated to give a smoothed cdf estimate F̂(z),
and then a smoothed version of the tail area false discovery rate,

F̂dr(z) = π̂0F0(z)
/
F̂(z), (5.6)

here with F0(z) = Φ(z), the standard normal cdf, or likewise a right-sided
estimate as in (4.33). These are also shown in Figure 5.2. F̂dr(z) tends to be
a little less variable than the non-parametric version Fdr(z) = π̂0F0(z)/F̄(z)
(4.26), especially in the extreme tails.

A conventional threshold for reporting “interesting” cases is

f̂dr(zi) ≤ 0.20. (5.7)

This was achieved for z ≤ −3.37 and z ≥ 3.34 for the prostate data and
z ≥ 3.05 for the DTI data. F̂dr(z) was about half of f̂dr(z) at these points,
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Figure 5.2 Heavy curves are estimated local false discovery rates
f̂dr(z) (5.5); dashed and dotted curves show estimated tail-area
false discovery rates F̂dr(z) (5.6). The small triangles indicate
values at which f̂dr(z) = 0.20; 27 genes in each tail had f̂dr(zi) ≤
0.20 for the prostate data; 184 voxels, all in the right tail, had
f̂dr(zi) ≤ 0.20 for the DTI data.

roughly following (2.17)–(2.19) with γ = 2. Criterion (5.7) was effectively
about the same as the q = 0.1 Fdr threshold.

Exercise 5.1 Show that the criterion fdr(z) ≤ 0.2 is equivalent to

f1(z)
f0(z)

≥ 4
π0

π1
. (5.8)
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Criterion (5.7) is based on the admittedly subjective grounds that report-
ing fdr values greater than 0.2 is dangerously prone to wasting investiga-
tors’ resources. Like α = 0.05 or q = 0.1, overuse of (5.7) is subject to
Emerson’s “foolish consistency” hobgoblin criticism, and perhaps no such
criterion is necessary for interpreting a Bayesian posterior probability. My
own experience nevertheless is that investigators often expect a definitive
list of likely prospects, and (5.7) provides a reasonable way for the statisti-
cian to oblige.

If we assume π0 ≥ 0.90 as in (2.8), then (5.8) implies

f1(z)
f0(z)

≥ 36. (5.9)

The ratio f1(z)/ f0(z) is called the Bayes factor against the null hypothesis.
Equation (5.9) requires a much stronger level of evidence against the null
than in classical single-test practice: suppose we observe z ∼ N(μ, 1) and
wish to test H0 : μ = 0 versus μ = 2.80, a familiar scenario for power calcu-
lations since rejecting H0 for z ≥ 1.96 yields two-sided size 0.05 and power
0.80. Here the critical Bayes factor is only f2.80(1.96)/ f0(1.96) = 4.80.
We might rationalize (5.9) as necessary conservatism in guarding against
multiple-testing fallacies. All of this relates to the question of power versus
size, as discussed in Section 5.4.

5.2 Poisson Regression Estimates for f (z)

The smooth estimates f̂ (z) for the mixture density f (z), seen in Figure 5.1a,
were obtained using maximum likelihood estimation (MLE) in flexible ex-
ponential family models.1 As a first example, suppose f belongs to the
J-parameter family

f (z) = exp

{ J∑
j=0

β jz
j

}
. (5.10)

The constant β0 in (5.10) is determined from β = (β1, β2, . . . , βJ) by the
requirement that f (z) integrate to 1 over the range of z. The choice J = 2
makes (5.10) into the normal family N(μ, σ2).

Exercise 5.2 Write the N(μ, σ2) family in the form (5.10) showing the
expressions for β0, β1, and β2.

1 Appendix A gives a brief review of exponential family theory, including Lindsey’s
method as used in what follows.
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If we wish to detect differences between f (z) and the theoretical null
density f0(z) = ϕ(z), we will certainly need J bigger than 2. As J goes to
infinity, family (5.10) grows to approximate all densities on the line. This
is the non-parametric ideal, but not an efficient choice when we expect
f (z) to be quite smooth. The program locfdr discussed below defaults to
J = 7. Relying on family (5.10) with J = 7 puts us, very roughly, midway
between traditional parametric and non-parametric estimation.

Maximum likelihood estimation in family (5.10) seems like it would re-
quire special software. This isn’t the case. Lindsey’s method, an algorithm
based on discretizing the zi values, obtains maximum likelihood estimates
β̂ using standard Poisson regression techniques. We partition the range Z
of the zi values into K bins of equal width d,

Z =
K⋃

k=1

Zk. (5.11)

The histograms in Figure 5.1a used K = 90 bins of width d = 0.1 over
rangeZ = [−4.5, 4.5]. Define yk as the count in the kth bin,

yk = #{zi ∈ Zk} (5.12)

and let

xk = centerpoint ofZk (5.13)

so x1 = −4.45, x2 = −4.35, . . . , x90 = 4.45 in Figure 5.1a. The expected
value of yk is approximately

νk = Nd f (xk) (5.14)

where N is the total number of cases, respectively 6033 and 15443 in Fig-
ures 5.1a and 5.1b. Lindsey’s method assumes that the yk are independent
Poisson counts

yk
ind∼ Poi(νk) k = 1, 2, . . . ,K, (5.15)

and then fits f̂ via a regression model for νk as a function of xk. In model
(5.10),

log(νk) =
J∑

j=0

β j x
j
k; (5.16)

(5.15)–(5.16) is a standard Poisson generalized linear model (GLM). Pro-
gram locfdr2 is written in the language R which permits a one-line call

2 Appendix B describes locfdr.
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for the MLE β̂ = (β̂1, β̂2, . . . , β̂J). Except for the effects of discretization,
which are usually negligible, β̂ is identical to the MLE we would obtain
by direct maximization of

∏N
1 f (zi) in (5.10), assuming independence.

Lindsey’s method has the nice effect of moving density estimation into
the more familiar realm of regression: we are fitting a smooth function
fβ(xk) to the counts yk. (Technically, this is done by minimizing the sum of
Poisson deviances,

K∑
k=1

D
(
yk,Nd fβ(xk)

)
, D(y, ν) = 2y

[
log

(y
ν

)
−

(
1 − y

ν

)]
, (5.17)

over the choice of β.) Independence of the zi or of the yk in (5.15) is not
required; f̂ tends to be consistent and close to unbiased for f even under
dependence, the penalty for dependence being increased variability, as de-
scribed in Chapter 7. The fit can be examined by eye or more formally,
and adjusted as necessary. Form (5.10) for f (x) isn’t required. By default,
locfdr replaces the polynomial exponent with a natural spline basis. Do-
ing so had very little effect on Figure 5.1a and Figure 5.2, nor did reducing
J from 7 to 5.

Our interest in f̂ (z) arises from its use in the denominator of f̂dr(z) =
π̂0 f0(z)/ f̂ (z). The examples in Figure 5.2 are typical: f̂dr(z) is about 1 near
z = 0 and either does or does not decline toward zero in the tails. The
transition points from high to low f̂dr, denoted (following criterion (5.7))
by the small triangles in Figure 5.2, claim our attention. It is near such
points where the accuracy of f̂ (z) is most important.

It seems, intuitively, that fdr should be harder to estimate than Fdr, but
that is not the case, at least not within the purview of models like (5.10).
Figure 5.3 compares the standard deviation of log(f̂dr(z)) with those of
log(F̂dr(z)) and log(Fdr(z)). The situation involves N = 6000 independent
observations from the two-groups model (2.7),

π0 = 0.95 z ∼ N(0, 1)

π1 = 0.05 z ∼ N(2.5, 1);
(5.18)

f̂dr(z), F̂dr(z), and Fdr(z) were estimated as in (5.5), (5.6), and Section 4.3,
except that π0 = 0.95 was assumed known in all three cases. Both f̂dr and
F̂dr used a natural spline basis with J = 5 degrees of freedom. Their stan-
dard deviations were computed from the theoretical formulas in Chapter 7,
and checked with simulations.

In this situation, f̂dr(z) is seen to be a little less variable than F̂dr(z),
which in turn is less variable than the non-parametric version Fdr(z). All
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Figure 5.3 Comparison of standard deviations for log(f̂dr(z)),
log(F̂dr(z)), and log(Fdr(z)) for N = 6000 independent
observations from model (5.18). Small numbers show true values
of fdr(z) at the indicated right percentiles of the mixture
distribution. Standard deviations are based on the results in
Chapter 7.

three estimates are satisfyingly accurate: at the 0.01 right percentile of the
mixture distribution, sd{log f̂dr(z)} = 0.068, implying that f̂dr(z) has coef-
ficient of variation only about 7%. Correlation among the zi values makes
the standard deviations worse, as demonstrated in Chapter 7, but the overall
comparison still shows the three estimates to be of roughly equal variabil-
ity, with an edge to f̂dr(z) in the extreme tails.

Exercise 5.3 If X is a positive random variable with mean μ and variance
σ2, show that CV ≡ σ/μ, the coefficient of variation of X, approximately
equals sd{log(X)} when both are small.

5.3 Inference and Local False Discovery Rates

Switching attention from Fdr to fdr moves us still closer to Bayesian esti-
mation theory: it is more appropriate from the Bayesian point of view to
estimate fdr(z) = Pr{null|z} than the tail-area version Pr{null|Z ≥ z}.
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Figure 5.4 Right tail of the prostate data histogram, Figure 5.1a.
Heavy curve is estimated f̂dr numerator N · 0.932 · f0(z) (5.5).
Hash marks indicate observed values zi. Bin 78 contains 8 zi
values and has null expectation (area under the curve) of 1.14,
giving raw estimate fdr78 = 1.14/8 = 0.143. Smoothing the
counts using f̂ (z) gave f̂dr78 = 0.254.

Figure 5.4 uses the prostate data to illustrate the simple idea behind the
estimate f̂dr(z). Histogram bin k = 78, z ∈ [3.2, 3.3), is observed to contain
yk = 8 z-values; the expected null count is 1.14, leading to the raw estimate

fdr78 = 1.14/8 = 0.143. (5.19)

However, the counts yk are highly variable. Replacing them with smooth
values ŷk = N · d · f̂ (xk), equaling 4.49 for k = 78, gave

f̂dr78 = 1.14/4.49 = 0.254. (5.20)

Table 5.1 provides data for bins 76 through 83, emphasizing the importance
of smoothing.

The use of local false discovery rates raises several issues concerning
both technique and inference.

• More general structure The two-groups model (5.1) can be general-
ized to allow the cases i = 1, 2, . . . ,N to behave differently:

πi0 = Pr{case i null} fi0(z) = case i null density

πi1 = Pr{case i non-null} fi1(z) = case i non-null density.
(5.21)
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Table 5.1 Data for bins k = 76 through 83, prostate data, Figure 5.4; e0k

is null expected count (area under the curve); yk is observed count, ŷk

smoothed version N · d · f̂ (xk); fdrk = e0k/yk, f̂drk = e0k/ŷk.

k xk e0k yk fdrk ŷk f̂drk

76 3.05 2.14 4 .536 5.96 .359
77 3.15 1.57 9 .175 5.14 .306
78 3.25 1.14 8 .143 4.49 .254
79 3.35 .82 2 .410 3.97 .207
80 3.45 .58 4 .146 3.55 .165
81 3.55 .41 4 .103 3.20 .128
82 3.65 .29 4 .072 2.92 .098
83 3.75 .20 1 .198 2.69 .074

Define

π0 =
1
N

N∑
i=1

πi0 f0(z) =
1
N

N∑
i=1

πi0

π0
fi0(z)

π1 =
1
N

N∑
i=1

πi1 f1(z) =
1
N

N∑
i=1

πi1

π1
fi1(z).

(5.22)

Marginally (that is, averaging over i = 1, 2, . . . ,N) we are back in the
two-groups situation, with π0, π1, f0(z), f1(z), and f (z) = π0 f0(z) + π1 f1(z)
having the same meanings as in (5.1) and Figure 2.3, and with fdr(z) =
π0 f0(z)/ f (z) = Pr{null|z} (5.2).

Exercise 5.4 (i) Verify the statements above. (ii) Why is f̂ (z), obtained as
in Section 5.2, a valid estimate for f (z) under model (5.21)? Hint: (5.14).

These results can be visualized in terms of Figure 5.4. Under model
(5.21) the expected number of null cases falling into bin k is

e0(k) � d
N∑

i=1

πi0 fi0(xk) = Nd π0 f0(xk), (5.23)

d = bin width, the same approximation we would use for model (5.1). The
estimate f̂dr(z) = π̂0 f0(z)/ f̂ (z) is obtained entirely from the empirical dis-
tribution of the N zi values so model (5.21) gives the same results as (5.1),
at least as long as we ignore distinctions among the cases. An assumption
such as f0(z) ∼ N(0, 1) is still valid if it applies to the average null case,
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not necessarily to each of them. These same comments hold true for Fdr(z)
and F̂dr(z).

• Using prior knowledge All of this assumes that model (5.21) is in-
visible to us and that we can only work marginally with the zi values. If
(5.21) were known, then

fdri(zi) = πi0 fi0(zi)/ fi(zi) = Pr{case i null|zi} (5.24)

would be more relevant than fdr(zi) = π0 f0(zi)/ f (zi).

Exercise 5.5 Suppose that in model (5.21) fi0(z) and fi1(z) do not depend
on i. Show that

fdri(zi) = fdr(zi)
ri

1 − (1 − ri) fdr(zi)
when ri =

πi0/(1 − πi0)
π0/(1 − π0)

. (5.25)

Gene 637 of the prostate data, Table 4.3, had f̂dr(z637) = 0.105. If gene
637 was on a short list of “hot prospects” provided a priori by the in-
vestigator, we could assume r637 < 1 (i.e., that π637,0 is less than the av-
erage πi0), perhaps taking r637 = 0.5, in which case (5.25) would yield
f̂dr637(z637) = 0.055. Chapter 10 concerns working with models like (5.21)
in situations where covariate information is available to assist with the es-
timation of fdri(zi).

• Exchangeability The right-sided tail area Fdr for the prostate data
has F̂dr(3.2) = 0.108. We might report the 36 genes having zi ≥ 3.2 as
interesting prospects for further prostate cancer investigation, since fewer
than four of them are expected to be null. A tacit exchangeability assump-
tion is at work here: each of the 36 is implied to have probability about 1/9
of being null. This ignores the fact that some of the 36 zi’s are much greater
than others, ranging from 3.20 to 5.29.

The local fdr puts less strain on exchangeability. We can interpret f̂drk

in Table 5.1 as saying that the eight cases with zi in [3.2, 3.3) each have
probability 0.25 of being null, the two cases in [3.3, 3.4) each have proba-
bility 0.21, etc. Of course, exchangeability is lost if we have different prior
knowledge about the cases, say, different values of ri in (5.25). There we
used Bayes theorem to appropriately adjust fdr(zi).

• Scaling properties Fdr and fdr methods scale in a nice way as the
number N of cases changes. Suppose case 1 of the prostate data had z1 =

3.25, giving f̂dr(z1) = 0.25. What would f̂dr(3.25) be if the investigator had
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measured twice as many genes? The answer is probably about the same,
at least if we believe model (5.1): doubling N will give more accurate esti-
mates of f (z) and π0 but major changes in π̂0 f0(z)/ f̂ (z) are unlikely. Even
letting N go to infinity shouldn’t greatly change f̂dr(z), as it converges to
fdr(z) = π0 f0(z)/ f (z) in the usual asymptotic manner.

In contrast, inferences from the FWER methods of Chapter 3 depend
crucially on the number of cases N. The right-sided p-value for z1 = 3.25
is

p1 = 1 − Φ(3.25) = 0.00058 (5.26)

under the theoretical null N(0, 1) distribution. Bonferroni’s method (3.13)
would declare case 1 non-null at significance level α if

p1 ≤ α/N, (5.27)

so doubling N lowers by half the threshold for rejection; p1 would be sig-
nificant if N were < α/p1 but not otherwise, the significance condition in
(5.26) being N ≤ 86 for α = 0.05.

Exercise 5.6 Using the two-groups model, show that as n → ∞, Holm’s
procedure (3.20) requires, asymptotically,

p1 ≤ α

N(1 − P1)
with P1 = 1 − F(z1) (5.28)

as a necessary but not sufficient condition for rejection. (For Hochberg’s
step-up procedure, Exercise 3.8, condition (5.28) is sufficient but not nec-
essary.)

Let z(1) be the smallest (most negative) of the zi values, with corre-
sponding p-value p(1) = F0(z(1)). Then Fdr(z(1)) = π0F0(z(1))/F̄(z(1)) equals
Nπ0 p(1). This will be less than the control level q if

p(1) ≤ 1
N

q
π0
, (5.29)

which is the same as the Bonferroni bound with α = q/π0. In other words,
the nice scaling properties of false discovery rate methods break down for
extreme inferences. We will see this happening in the “snp” example of
Chapter 11.

Another limitation concerns relevance. Model (5.1) taken literally im-
plies an infinite reservoir of relevant cases. In practice though, if we dou-
bled the number of genes in the prostate study, the new ones — not pre-
viously included on the microarray roster — might be less relevant to in-
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ferences about gene 1. Chapter 10 concerns the relevance question, which
applies to all multiple inference procedures, not just false discovery rates.

• Models with more structure Exponential family models like (5.10)
can be elaborated to handle situations with more structure than the two-
groups model (5.11). Suppose the N cases are naturally partitioned into
M classes, perhaps representing different regions of the brain in the DTI
example. We could apply locfdr separately to each class, but this invites
estimation problems in the smaller classes. A more efficient approach ex-
pands (5.10) to

log{ f (z)} =
J∑

j=0

β jz
j + γ1mz + γ2mz2, (5.30)

m indicating the class, with
∑

m γ1m =
∑

m γ2m = 0, effectively allowing
different means and variances for f̂ in each group while retaining common
tail behavior. Similar methods are discussed in Chapter 10.

• Combining Fdr and fdr It is not necessary to choose between F̂dr
and f̂dr; they can be used in tandem. For example, F̂dr(3.20) = 0.108 for
the prostate data, right-sided, applies to all 36 zi’s exceeding 3.20 while
f̂dr(3.25) = 0.254 applies to those in [3.2, 3.3), etc., as suggested earlier,
giving the investigator both a list of likely prospects and quantitative differ-
entiation within the list. Program locfdr automatically puts F̂dr and f̂dr in
relationship (2.15),

F̂dr(z) =
∫ z

−∞
f̂dr(x) f̂ (x) dx

/ ∫ z

−∞
f̂ (x) dx, (5.31)

and similarly for the right-sided F̂dr.

• Bayes limitation The empirical Bayes inference that f̂dr(zi) estimates
Pr{case i null|zi} (5.2) comes with a caveat: it is not necessarily an estimate
of

Pr{case i null|z1, z2, . . . , zN}; (5.32)

(5.32) can be different than (5.2) if the z-values are correlated. Chapter 9
on enrichment concerns methods for making inferences on groups of cases,
rather than one at a time.

• Expected false and true positives Local false discovery rates are di-
rectly related to “EFP” and “ETP”, the expected number of false positives
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and true positives of a decision procedure. Suppose that zi follows model
(5.21) for i = 1, 2, . . . ,N and that we intend to reject the ith null hypothesis
for zi ≥ ci. The size and power of the ith test are

αi =

∫ ∞

ci

fi0(zi) dzi and βi =

∫ ∞

ci

fi1(zi) dzi (5.33)

giving

EFP =
N∑

i=1

wiπi0αi and ETP =
N∑

i=1

wiπi1βi (5.34)

where wi is the prior probability of case i (which we can take to be 1/N
without affecting the following calculations).

We wish to maximize ETP for a given value of EFP, by an optimum
choice of the cutoff values c = (c1, c2, . . . , cN). Since

∂EFP
∂ci

=

N∑
i=1

wiπi0
∂αi

∂ci
= −

N∑
i=1

wiπi0 fi0(ci) (5.35)

and similarly ∂ETP/∂ci = −∑
wiπi1 fi1(ci), a standard Lagrange multiplier

argument shows that at the optimal value of c,

πi1 fi1(ci) = λπi0 fi0(ci) for i = 1, 2, . . . ,N (5.36)

for some constant λ. In terms of (5.24) this is equivalent to

fdri(ci) = 1/(1 + λ). (5.37)

That is, the decision rule that maximizes ETP for a given value of EFP
rejects each null hypothesis at the same threshold value of its local false
discovery rate. If all the cases follow the same two-groups model (5.1),
then the optimum rule rejects for large values of fdr(zi) (5.2).

5.4 Power Diagnostics

The FWER techniques of Chapter 3 are aimed at the control of Type I
errors, the rejection of null hypotheses that are actually correct. Discussion
of false discovery rates, as the name suggests, similarly tends to focus on
a form of Type I error control. However, Fdr theory also has something
useful to say about power, the probability of rejecting null hypotheses that
should be rejected. This section discusses some simple power diagnostics
based on local false discovery rates.
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Starting from the two-groups model (5.1), define the local true discovery
rate tdr(z) to be

tdr(z) = Pr{non-null|z} = 1 − fdr(z) = π1 f1(z)/ f (z), (5.38)

the last equality following from (5.2)–(5.3). An fdr estimate f̂dr(z) = π̂0 f0(z)
/ f̂ (z) also gives a tdr estimate

t̂dr(z) = 1 − f̂dr(z) = π̂1 f̂1(z)/ f̂ (z) (5.39)

where

π̂1 = 1 − π̂0 and f̂1(z) =
f̂ (z) − π̂0 f0(z)

1 − π̂0
. (5.40)

Exercise 5.7 Verify (5.38) and (5.40).

Count yk (5.12) includes all cases in bin k, null or non-null. We cannot,
of course, separate yk into nulls and non-nulls, but we can compute an
approximation for the expected non-null count,

y1k = t̂drk · yk

[
t̂drk = t̂dr(xk)

]
. (5.41)

The rationale for (5.41) is based on the fact that tdrk is the proportion of
non-null cases in bin k.

Exercise 5.8 Assuming the two-groups model (5.1) and independence
among the zi, what is the distribution of the number of nulls in bin k, given
yk? How does this support definition (5.41)?

The non-null counts y1k can suffer from excess variability due to “his-
togram noise” in the observed counts yk. An improved version is

ŷ1k = Nd t̂drk · f̂k

[
f̂k = f̂ (xk)

]
(5.42)

as in (5.14), called the smoothed non-null counts in what follows.
The vertical bars in Figure 5.5 are non-null counts y1k for the prostate

data using the histogram bins pictured in Figure 5.1a. The solid curve traces
the smoothed non-null counts y1k. There is one important difference here
from the previous discussion. Rather than taking f0(z) to be the N(0, 1)
theoretical null (2.9), the estimate of fdr(z) = π0 f0(z)/ f (z) used

f̂0(z) ∼ N(0, 1.062); (5.43)

(5.43) is the empirical null discussed in Chapter 6, the normal distribution
that best fits the z-value histogram near its center. This change increased π̂0

from 0.932 in (5.4) to

π̂0 = 0.984. (5.44)
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Figure 5.5 Vertical bars indicate non-null counts y1k for the
prostate data, taking π̂0 = 0.984 and f̂0 ∼ N(0, 1.062); histogram
bins as in (5.12)–(5.13). Heavy curve follows smoothed non-null
counts (5.42); dashed curve is f̂dr(z). Twenty-three of the zi have
f̂dr(zi) ≤ 0.20, indicated by small hash marks. Most of the
non-null counts occur when f̂dr(z) is high, indicating low power.

The difference between (5.43) and f0 ∼ N(0, 1) becomes crucial in power
calculations, which in general are more delicate than questions relating to
Type I error.

The estimate f̂dr(z) (broken curve) is less optimistic than its counterpart
in Figure 5.2. Now only 23 genes, those with zi less than −3.73 or greater
than 3.67, have f̂dr(zi) ≤ 0.20. The total smoothed non-null count

∑
ŷ1k

equals 105, which is a little greater than (1 − π̂0) · N = 97 because some
small negative values near z = 0 have been suppressed.

Exercise 5.9 Show that
∫ ∞
−∞ tdr(z) f (z) dz = π1. Why does this suggest∑

k y1k � (1 − π̂0) · N?

Of the 105 total smoothed non-null counts, only 26.8 occur in the regions
where f̂dr(z) ≤ 0.20, about 26%. The bulk occur where f̂dr(z) is high, more
than half with f̂dr(z) > 0.50. So if we try to report more than the list of
23 genes as interesting prospects, we soon expose the investigators to high
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probabilities of disappointment. In other words, the prostate study has low
power.

Figure 5.6 Heavy curve is smoothed non-null cdf Ĝ(q) for the
estimated local false discovery rate; for example, Ĝ(0.2) = 0.26
indicates that only 26% of the ŷ1k values occurred where f̂drk ≤
0.20. Dashed curve is Ĝ(q) for a simulated sample of N = 6000
independent zi values, 95% from N(0, 1) and 5% from N(3, 1).
Here 64% of the ŷ1k values had f̂drk ≤ 0.20.

Figure 5.6 shows the entire non-null cdf of f̂dr(z),

Pr1

{
f̂dr ≤ q

}
=

∑
k:f̂drk≤q

ŷ1k

/∑
k

ŷ1k [q ∈ (0, 1)]. (5.45)

For example, G(0.2) = 0.26 and G(0.5) = 0.49. A simulated high-powered
situation is shown for comparison, in which there are N = 6000 indepen-
dent zi’s, π0 = 95% having zi ∼ N(0, 1) and π1 = 5% with zi ∼ N(3, 1). It
had Ĝ(0.2) = 0.64. In a typical realization of this situation, a majority of
the non-null cases would be reported on the list of those with f̂dr(zi) ≤ 0.20,
compared with about one-quarter for the prostate study.

A simple but useful diagnostic summary statistic3 for power is ̂E fdr1,

3 Program locfdr returns ̂E fdr1 and also separate versions of (5.46) applying to the left
and right tails.
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the expectation of f̂drk under the ŷ1k distribution,

̂E fdr1 =
∑

k

f̂drkŷ1k

/∑
k

ŷ1k. (5.46)

Low values of ̂E fdr1 indicate high power — that a typical non-null case
will occur where the local false discovery rate is low — and high values
indicate low power. For the prostate study, ̂E fdr1 = 0.51, indicating that a
typical non-null case could expect to have f̂dr about 0.5. For the simulated
sample, ̂E fdr1 = 0.28.

Table 5.2 Simulation study of ̂E fdr1, power diagnostic (5.46). Model
(5.1), π0 = 0.95, f0 ∼ N(0, 1), and π1 = 0.05, f1 ∼ N(3, 1); number of
cases N = 1500, 3000, or 6000. Boldface shows mean over 100
simulations, with standard deviations in parentheses. True E fdr1 = 0.329.

N ̂E fdr1 π̂0

1500 .266 (.046) .965 (.008)
3000 .272 (.038) .963 (.007)
6000 .281 (.028) .962 (.005)

Table 5.2 reports on a small simulation study of ̂E fdr1. As in Figure 5.6,
each simulation had N independent zi values, π0 = 0.95 of them N(0, 1)
and π1 = 0.05 from N(3, 1), N = 1500, 3000, or 6000. The true value is
E fdr1 = 0.329. We see that ̂E fdr1 is quite stable but biased downward.
Most of the bias can be traced to the upward bias of π̂0, which reduces
t̂dr(z) (5.39). Since

̂E fdr1 =
∑

k

t̂drk · f̂drk · f̂k

/∑
k

f̂drk · f̂k, (5.47)

this leads to underestimates of ̂E fdr1. Tracing things back further, the up-
ward bias of π̂0 arises from taking literally the zero assumption (4.44).

Exercise 5.10 Numerically verify the “true value” E fdr1 = 0.329.

Investigators often object that their pre-experimental favorites have not
appeared on the reported f̂dr ≤ 0.20 (or Fdr ≤ 0.10) list. Low power is a
likely culprit. If the prostate study were rerun from scratch, another list of
23 or so genes might be reported, barely overlapping with the original list.
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Z-values, even ones from genuinely non-null cases, are quite variable (see
Section 7.4), and in low-power situations a case has to be lucky as well as
good to be reported. The Bayesian formula (5.25) may help salvage some
of the investigators’ hot prospects.

Finally, it should be noted that all of these power diagnostics are com-
puted from the data at hand, the original set of z-values, and do not require
prior knowledge of the situation. This is one of the advantages of large-
scale studies.

Notes

Local false discovery rates were introduced as a natural extension of tail
area Fdrs in Efron et al. (2001). Techniques both more and less parametric
than Lindsey’s method have been proposed for estimating f (z) and fdr(z),
all of which seem to perform reasonably well: Allison et al. (2002), Pan
et al. (2003), Pounds and Morris (2003), Heller and Qing (2003), Broberg
(2004), Aubert et al. (2004) and Liao et al. (2004). Recent methods, which
also encompass Chapter 6’s problem of estimating the null density, include
Jin and Cai (2007) and Muralidharan (2010), the former using Fourier se-
ries and the latter based on normal mixture models.

Estimation of the mixture density f (z) was a problem of considerable
interest in the period following Robbins’ path-breaking empirical Bayes
papers. That literature was more mathematics-oriented than our current
computation-intensive efforts. A nice summary and example is found in
Singh (1979), where the asymptotics of kernel estimates for f (z) are care-
fully elaborated.

Power diagnostics are discussed in Section 3 of Efron (2007b). A famil-
iar power-related question is also considered there: how much increased
power could we obtain by increasing the number n of subjects? Answers
to such a question are necessarily speculative, but simple techniques pro-
vide at least a rough guide. For the prostate data they suggest that tripling
n would halve E fdr1.

It isn’t necessary that the individual summary statistics zi be scalars.
Tibshirani and Efron (2002) analyze an example in which each zi is two-
dimensional. The null density f0 is more difficult to define and estimate in
this case, but the fdr definition (5.2) still makes sense.

Storey (2007) suggests maximizing ETP as a function of EFP. His “opti-
mum discovery procedure” proposes a different rule than (5.37), applicable
to a restricted class of testing procedures.
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Theoretical, Permutation, and Empirical Null
Distributions

In classical significance testing, the null distribution plays the role of devil’s
advocate: a standard that the observed data must exceed in order to con-
vince the scientific world that something interesting has occurred. We ob-
serve, say, z = 2, and note that in a hypothetical “long run” of observations
from a N(0, 1) distribution less than 2.5% of the draws would exceed 2,
thereby discrediting the uninteresting null distribution as an explanation.

Considerable effort has been expended trying to maintain the classical
model in large-scale testing situations, as seen in Chapter 3, but there are
important differences that affect the role of the null distribution when the
number of cases N is large:

• With N = 10 000 for example, the statistician has his or her own “long
run” in hand. This diminishes the importance of theoretical null calcula-
tions based on mathematical models. In particular, it may become clear
that the classical null distribution appropriate for a single-test applica-
tion is in fact wrong for the current situation.

• Scientific applications of single-test theory most often suppose, or hope
for, rejection of the null hypothesis, perhaps with power = 0.80. Large-
scale studies are usually carried out with the expectation that most of the
N cases will accept the null hypothesis, leaving only a small number of
interesting prospects for more intensive investigation.

• Sharp null hypotheses, such as H0 : μ = 0 for z ∼ N(μ, 1), are less
important in large-scale studies. It may become clear that most of the
N cases have small, uninteresting but non-zero values of μ, leaving just
a few genuinely interesting cases to identify. As we will discuss, this
results in a broadening of classical null hypotheses.

• Large-scale studies allow empirical Bayes analyses, where the null dis-
tribution is put into a probabilistic context with its non-null competitors
(as seen in Chapters 4 and 5).

• The line between estimation and testing is blurred in large-scale studies.

89
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Large N isn’t infinity and empirical Bayes isn’t Bayes, so estimation
efficiency of the sort illustrated in Figure 5.3 plays a major role in large-
scale testing.

The theoretical null distribution provides a reasonably good fit for the
prostate and DTI examples of Figure 5.1a and Figure 5.1b. This is a less-
than-usual occurrence in my experience. A set of four large-scale studies
are presented next in which the theoretical null has obvious troubles.1 We
will use them as trial cases for the more flexible methodology discussed in
this chapter.

6.1 Four Examples

Figure 6.1 displays z-values for four large-scale testing studies, in each of
which the theoretical null distribution is incompatible with the observed
data. (A fifth, artificial, example ends the section.) Each panel displays the
following information:

• the number of cases N and the histogram of the N z-values;
• the estimate π̂00 of the null proportion π0 (2.7) obtained as in (4.46),

(4.48) with α0 = 0.5, using the theoretical null density f0(z) ∼ N(0, 1);
• estimates (δ̂0, σ̂0, π̂0) for π0 and the empirical null density f̂0(z) ∼ N(δ̂0,

π̂0) obtained by the MLE method of Section 6.3, providing a normal
curve fit to the central histogram;

• a heavy solid curve showing the empirical null density, scaled to have
area π̂0 times that of the histogram (i.e., Ndπ̂0 · f̂0(z), where d is the bin
width);

• a light dotted curve proportional to π̂00 · ϕ(z) (ϕ(z) = exp{− 1
2 z2}/√2π);

• small triangles on the x-axis indicating values at which the local false
discovery rate f̂dr(z) = π̂0 f̂0(z)/ f̂ (z) based on the empirical null equals
0.2 (with f̂ (z) as described in Section 5.2 using a natural spline basis
with J = 7 degrees of freedom);

• small hash marks below the x-axis indicating z-values with f̂dr(zi) ≤ 0.2;
• the number of cases for which f̂dr(zi) ≤ 0.2.

What follows are descriptions of the four studies.

1 Questions about the proper choice of a null distribution are not restricted to large-scale
studies. They arise prominently in analysis of variance applications, for instance in
whether to use the interaction or residual sums of squares for testing main effects in a
two-way replicated layout.
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Figure 6.1a z-value histogram for leukemia study. Solid curve is
empirical null, dotted curve theoretical N(0, 1) null. Hash marks
indicate z-values having f̂dr ≤ 0.2. The theoretical null greatly
underestimates the width of the central histogram.

A. Leukemia study

High-density oligonucleotide microarrays provided expression levels on
N = 7128 genes for n = 72 patients, n1 = 45 with ALL (acute lymphoblas-
tic leukemia) and n2 = 27 with AML (acute myeloid leukemia); the latter
has the worse prognosis. The raw expression levels on each microarray, Xi j

for gene i on array j, were transformed to a normal scores value

xi j = Φ
−1

(
rank(Xi j) − 0.5

N

)
, (6.1)

rank(Xi j) being the rank of Xi j among the N raw scores on array j, andΦ the
standard normal cdf. This was necessary to eliminate response disparities
among the n microarrays as well as some wild outlying values.2 Z-values
zi were then obtained from two-sample t-tests comparing AML with ALL
patients as in (2.1)–(2.5), now with 70 degrees of freedom.

We see that the z-value histogram is highly overdispersed compared to
a N(0, 1) theoretical null. The empirical null is N(0.09, 1.682) with π̂0 =

0.937; 173 of the 7128 genes had f̂dr(z) ≤ 0.20. If we insist on using the

2 Some form of standardization is almost always necessary in microarray studies.
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Figure 6.1b z-value histogram for chi-square study as in
Figure 6.1a. Here the theoretical null is mis-centered as well as
too narrow.

theoretical null, π̂00 is estimated to be only 0.654, while 1548 of the genes
now have f̂dr(zi) ≤ 0.20. Perhaps it is possible that 2464 (= (1− π̂00) ·N) of
the genes display AML/ALL genetic differences, but it seems more likely
that there is something inappropriate about the theoretical null. Just what
might go wrong is the subject of Section 6.4.

B. Chi-square data

This experiment studied the binding of certain chemical tags at sites within
N = 16 882 genes. The number K of sites per gene ranged from three up to
several hundred, median K = 12. At each site within each gene the number
of bound tags was counted. The count was performed under two different
experimental conditions, with the goal of the study being to identify genes
where the proportion of tags differed between the two conditions. Table 6.1
shows the K × 2 table of counts for the first of the genes, in which K = 8.

A z-value zi was calculated for tablei as follows:

(i) One count was added to each entry of tablei.

(ii) S i, the usual chi-square test statistic for independence, was computed
for the augmented table.
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Figure 6.1c z-value histogram for police data as in Figure 6.1a.
The theoretical null is about 40% too narrow.

Table 6.1 First of N = 16 882 K × 2 tables for the chi-square data; shown
are the number of tags counted at each site under two different
experimental conditions.

Site 1 2 3 4 5 6 7 8

# condition 1 8 8 4 2 1 5 27 9
# condition 2 5 7 1 0 11 4 4 10

(iii) An approximate p-value was calculated,

pi = 1 − FK−1(S i) (6.2)

where FK−1 was the cdf of a standard chi-square distribution having K−1
degrees of freedom.

(iv) The assigned z-value for tablei was

zi = Φ
−1(1 − pi) (6.3)

with small values of pi corresponding to large zi. For table1 in Table 6.1,
p1 = 0.00132 and z1 = 3.01.

Exercise 6.1 Verify this calculation.
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Figure 6.1d z-value histogram for HIV data as in Figure 6.1a.
Note reduced scale on x-axis. In this case the theoretical null is
too wide.

The ad hoc addition of one count in step (i) greatly stabilized the his-
togram of z-values.3 Our methods do not require classical forms for the
test statistics such as the standard chi-square definition, but they do depend
on being able to approximate the center of the z-value histogram with a
normal curve. This leads to questions of comparability and relevance in
simultaneous inference, discussed further in Chapter 10.

The empirical null is N(0.32, 1.252) so that, besides being underdis-
persed, the theoretical null is mis-centered, as apparent in Figure 6.1b.
Only ten of the tables had f̂dr(zi) ≤ 0.2, seven on the right and three on
the left. If anything, we would expect the chi-square statistic S i to be too
big instead of too small, but that is not the case here. The three tables on the
left with f̂dr ≤ 0.2 all had K = 3, the smallest value, raising further doubts
about their selection. Chapter 10 returns to this example in its discussion
of comparability.

3 The SAM program of Section 4.5 employs a similar tactic in two-sample comparisons: a
small constant is added to the denominator of the usual two-sample t-statistic in order to
prevent low-variance cases from dominating the tails of the z-value distribution.
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Figure 6.1e Left panel: Histogram shows N = 3000 draws from
prior density g(μ) (6.6); curve f (z) is corresponding density of
observations z ∼ N(μ, 1). Right panel: Heavy curve is Bayes
posterior probability Pr{μ ≤ 1.5|z}; it is well approximated by the
empirical null estimate f̂dr(z) (6.9), light curve; fdr(z) based on the
theoretical null f0 ∼ N(0, 1) is a poor match to the Bayes curve.

C. Police data

A study of possible racial bias in police pedestrian stops was conducted in
New York City in 2006. Each of N = 2749 officers was assigned a score
zi on the basis of their stop data, with large positive values of zi being
possible evidence of bias. In computing zi, an ingenious two-stage logistic
regression analysis was used to compensate for differences in the time,
place, and context of the individual stops.

Let xi j represent the vector of covariates for officer i, stop j. A greatly
oversimplified version of the logistic regression model actually used is

logit
{
Pr(yi j = 1)

}
= βi + γ′xi j (6.4)

where yi j indicates whether or not the stopped person was a member of
a defined minority group, βi is the “officer effect,” and γ is the vector of
logistic regression coefficient for the covariates. The z-score for officer i
was

zi = β̂i

/
se

(
β̂i

)
(6.5)
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where β̂i and se(β̂i) are the usual estimate and approximate standard error
for βi.

A standard analysis would rely on the theoretical null hypothesis zi ∼̇
N(0, 1). However, the histogram of all N = 2749 zi values is much wider,
the empirical null being f̂0 ∼ N(0.10, 1.402). This resulted in nine officers
having f̂dr(zi) ≤ 0.20, only four of whom were on the right (i.e., “racially
biased”) side. The estimated non-null proportion was π̂1 = 0.011, only
about 1/5 of which applied to the right side according to the smoothed
non-null counts (5.41).

There is a lot at stake here. Relying on the theoretical N(0, 1) null gives
π̂1 = 0.24, more than 20 times greater and yielding 122 officers having
positive z-scores with f̂dr(zi) ≤ 0.20. The argument for empirical null anal-
ysis says we should judge the extreme z-scores by comparison with central
variability of the histogram and not according to a theoretical standard.
Section 6.4 provides practical arguments for doubting the theoretical stan-
dard.

D. HIV data

This was a small study in which n2 = 4 HIV-positive subjects were com-
pared with n1 = 4 healthy controls using cDNA microarrays that measured
expression levels for N = 7680 genes. Two-sample t-tests (on the logged
expressions) yielded z-values zi as in (2.2)–(2.5) except now with 6 rather
than 100 degrees of freedom.

Unlike all of our previous examples (including the prostate and DTI
studies), here the central histogram is less dispersed than a theoretical
N(0, 1) null, with f̂0(z) ∼ N(0.12, 0.772) and π̂0 = 0.949. (Underdispersion
makes the theoretical null estimate equal the impossible value π̂00 = 1.20.)
Using the theoretical null rather than the empirical null reduces the number
of genes having f̂dr ≤ 0.2 from 128 to 20.

Figure 6.1e concerns an artificial example involving an overdispersed
null distribution, similar to the leukemia, chi-square, and police situations.
Pairs (μi, zi) have been independently generated according to the Bayesian
hierarchical model (2.47), μ ∼ g(·) and z|μ ∼ N(μ, 1); the prior density
g(μ), represented as a histogram in the left panel, is bimodal,

g(μ) = 0.9 · ϕ0,0.5(μ) + 0.1 · ϕ2.5,0.5(μ) (6.6)

where ϕa,b represents the density of a N(a, b2) distribution. However, the
mixture density f (z) =

∫
g(μ)ϕ(z − μ)dμ is unimodal, reflecting the sec-

ondary mode of g(μ) only by a heavy right tail.
A large majority of the true effects μ generated from (6.6) will have
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small uninteresting values centered at, but not exactly equaling, zero. The
interesting cases, those with large μ, will be centered around 2.5. Having
observed z, we would like to predict whether the unobserved μ is interesting
or uninteresting. There is no sharp null hypothesis here, but the shape of
g(μ) suggests defining

Uninteresting: μ ≤ 1.5 and Interesting: μ > 1.5. (6.7)

The heavy curve in the right panel is the Bayes prediction rule for “un-
interesting,”

Pr{μ ≤ 1.5|z}. (6.8)

This assumes that prior density g(μ) is known to the statistician. But what if
it isn’t? The curve marked “Emp null” is the estimated local false discovery
rate

f̂dr(z) = π̂0 f̂0(z)
/

f̂ (z) (6.9)

obtained using the central matching method of Section 6.2 which gave em-
pirical null estimates

π̂0 = 0.93 and f̂0(z) ∼ N(0.02, 1.142) (6.10)

based on N = 3000 observations zi. We see that it nicely matches the Bayes
prediction rule, even though it did not require knowledge of g(μ) or of the
cutoff point 1.5 in (6.7).

The point here is that empirical null false discovery rate methods can
deal with “blurry” null hypotheses, in which the uninteresting cases are
allowed to deviate somewhat from a sharp theoretical null formulation.
(Section 6.4 lists several reasons this can happen.) The empirical null cal-
culation absorbs the blur into the definition of “null”. Theoretical or per-
mutation nulls fail in such situations, as shown by the beaded curve in the
right panel.

6.2 Empirical Null Estimation

A null distribution is not something one estimates in classic hypothesis test-
ing theory:4 theoretical calculations provide the null, which the statistician
must use for better or worse. Large-scale studies such as the four examples
in Section 6.1 can cast severe doubt on the adequacy of the theoretical null.
Empirical nulls, illustrated in the figures, use each study’s own data to es-
timate an appropriate null distribution. This sounds circular, but isn’t. We

4 An exception arising in permutation test calculations is discussed in Section 6.5.
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will see that a key assumption for empirically estimating the null is that π0,
the proportion of null cases in (2.7), is large, say

π0 ≥ 0.90 (6.11)

as in (2.8), allowing the null distribution opportunity to show itself.
The appropriate choice of null distribution is not a matter of local fdr

versus tail area Fdr: both are equally affected by an incorrect choice. Nor
is it a matter of parametric versus non-parametric procedures. Replacing
t-statistics with Wilcoxon test statistics (each scaled to have mean 0 and
variance 1 under the usual null assumptions) gives empirical null f̂0(z) ∼̇
N(0.12, 1.722) for the leukemia data, almost the same as in Figure 6.1a.

The two-groups model (2.7) is unidentifiable: a portion of f1(z) can be
redefined as belonging to f0(z) with a corresponding increase in π0. The
zero assumption (4.44), that the non-null density f1(z) is zero near z =
0, restores identifiability and allows estimation of f0(z) and π0 from the
central histogram counts.

Exercise 6.2 Suppose π0 = 0.95, f0 ∼ N(0, 1), and f1 is an equal mixture
ofN(2.5, 1) andN(−2.5, 1). If we redefine the situation to make (4.44) true
inA0 = [−1, 1], what are the new values of π0 and f0(z)?

Define

fπ0(z) = π0 f0(z) (6.12)

so that

fdr(z) = fπ0(z)/ f (z), (6.13)

(5.2). We assume that f0(z) is normal but not necessarily N(0, 1), say

f0(z) ∼ N
(
δ0, σ

2
0

)
. (6.14)

This yields

log ( fπ0(z)) =

[
log(π0) − 1

2

{
δ2

0

σ2
0

+ log
(
2πσ2

0

)}]
+
δ0

σ2
0

z − 1

2σ2
0

z2, (6.15)

a quadratic function of z.
Central matching estimates f0(z) and π0 by assuming that log( f (z)) is

quadratic near z = 0 (and equal to fπ0(z)),

log ( f (z)) � β0 + β1z + β2z2, (6.16)

estimating (β0, β1, β2) from the histogram counts yk (5.12) around z = 0 and
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matching coefficients between (6.15) and (6.16): yielding σ2
0 = −1/(2β2)

for instance. Note that a different picture of matching appears in Chap-
ter 11.

Exercise 6.3 What are the expressions for δ0 and π0?

Figure 6.2 Central matching estimation of f0(z) and π0 for the
HIV data of Section 6.1, (6.15)–(6.16): (δ̂0, σ̂0, π̂0) = (0.12, 0.75,
0.93). Chapter 11 gives a different geometrical picture of the
matching process.

Figure 6.2 shows central matching applied to the HIV data of Section 6.1.
The quadratic approximation log f̂π0(z) = β̂0 + β̂1z + β̂2z2 was computed as
the least square fit to log f̂ (z) over the central 50% of the z-values (with the
calculation discretized as in Section 5.2), yielding(

δ̂0, σ̂0, π̂0

)
= (0.12, 0.75, 0.93). (6.17)

These differ slightly from the values reported in Section 6.1 because those
were calculated using the MLE method of Section 6.3.

The zero assumption (4.44) is unlikely to be literally true in actual ap-
plications. Nevertheless, central matching tends to produce nearly unbiased
estimates of f0(z), at least under conditions (2.47), (2.49):

μ ∼ g(·) and z|μ ∼ N(μ, 1),

g(μ) = π0I0(μ) + π1g1(μ).
(6.18)

Here f0(z) = ϕ(z), the N(0, 1) density, but we are not assuming that the
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non-null density

f1(z) =
∫ ∞

−∞
g1(μ)ϕ(z − μ) dμ (6.19)

satisfies the zero assumption. This introduces some bias into the central
matching assessment of δ0 and σ0 but, as it turns out, not very much as
long as π1 = 1 − π0 is small.

With π0 fixed, let (δg, σg) indicate the value of (δ0, σ0) obtained under
model (6.18) by an idealized version of central matching based on f (z) =∫ ∞
−∞ g(μ)ϕ(z − μ)dμ,

δg = arg max { f (z)} and σg =

[
− d2

dz2
log f (z)

]− 1
2

δg

. (6.20)

Exercise 6.4 What values of β0, β1, β2 are implied by (6.20)? In what
sense is (6.20) an idealized version of central matching?

We can ask how far (δg, σg) deviates from the actual parameters (δ0, σ0) =
(0, 1) for g(μ) in (6.18). For a given choice of π0, let

δmax = max{|δg|} and σmax = max{σg}, (6.21)

the maxima being over the choice of g1 in (6.18). Table 6.2 shows the
answers. In particular, for π0 ≥ 0.90 we always have

|δg| ≤ 0.07 and σg ≤ 1.04 (6.22)

so, no matter how the non-null cases are distributed, the idealized central
matching estimates won’t be badly biased.

Exercise 6.5 Show that σg ≥ 1 under model (6.18).

Table 6.2 Worst case values δmax and σmax (6.21) as a function of
π1 = 1 − π0.

π1 = 1 − π0 .05 .10 .20 .30

σmax 1.02 1.04 1.11 1.22
δmax .03 .07 .15 .27

Figure 6.3 graphs δmax and σmax as a function of π1 = 1− π0. In addition
to the general model (6.18), which provided the numbers in Table 6.2, σmax

is also graphed for the restricted version of (6.18) in which g1(μ) is required
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Figure 6.3 δmax and σmax (6.21) as a function of π1 = 1 − π0;
Symmetric restricts g1(μ) in (6.18) to be symmetric around μ = 0
and similarly Symm Normal.

to be symmetric about μ = 0, and also the more restrictive version in which
g1 is both symmetric and normal. The worst case values in Table 6.2 have
g1(μ) supported on a single point. For example, σmax = 1.04 is achieved
with g1(μ) supported at μ1 = 1.47.

The default option in locfdr is the MLE method, discussed in the next
section, not central matching. Slight irregularities in the central histogram,
as seen in Figure 6.1a, can derail central matching. The MLE method is
more stable, but pays the price of possibly increased bias.

Here is a derivation of σmax for the symmetric case in Figure 6.3, the
derivations for the other cases being similar. For convenience we consider
discrete distributions g(μ) in (6.18), putting probability π0 on μ = 0 and π j

on pairs (−μ j, μ j), j = 1, 2, . . . , J, so the mixture density equals

f (z) = π0ϕ(z) +
J∑

j=1

π j

[
ϕ(z − μ j) + ϕ(z + μ j)

] /
2. (6.23)

Then we can take δ j = 0 in (6.20) by symmetry (0 being the actual maxi-
mum if π0 exceeds 0.50). We consider π0 fixed in what follows.
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Defining c0 = π0/(1 − π0), r j = π j/π0, and r+ =
∑J

1 r j, we can express
σg in (6.20) as

σg = (1 − Q)−
1
2 where Q =

∑J
1 r jμ

2
j e
−μ2

j/2

c0r+ +
∑J

1 r je
−μ2

j/2
. (6.24)

Actually, r+ = 1/c0 and c0r+ = 1, but the form in (6.24) allows uncon-
strained maximization of Q (and of σg) as a function of r = (r1, r2, . . . , rJ),
subject only to r j ≥ 0 for j = 1, 2, . . . , J.

Exercise 6.6 Verify (6.24).

Differentiation gives

∂Q
∂r j
=

1
den

[
μ2

j e
−μ2

j/2 − Q ·
(
c0 + e−μ

2
j/2

)]
(6.25)

with den the denominator of Q in (6.24). At a maximizing point r we must
have

∂Q(r)
∂r j

≤ 0 with equality if r j > 0. (6.26)

Defining R j = μ
2
j/(1 + c0e μ

2
j/2), (6.25)–(6.26) give

Q(r) ≥ Rj with equality if r j > 0. (6.27)

At the point where Q(r) is maximized, r j and π j can only be non-zero if j
maximizes Rj.

All of this shows that we need only consider J = 1 in (6.23). (In case
of ties in (6.27) we can arbitrarily choose one of the maximizing j values.)
The maximized value of σg is then σmax = (1 − Rmax)−1/2 from (6.24) and
(6.27), where

Rmax = max
μ1

{
μ2

1

/ (
1 + c0e μ

2
1/2

)}
. (6.28)

The maximizing argument μ1 ranges from 1.43 for π0 = 0.95 to 1.51 for
π0 = 0.70. This is considerably less than choices such as μ1 = 2.5, neces-
sary to give small false discovery rates, at which the values in Figure 6.3
will be conservative upper bounds.

6.3 The MLE Method for Empirical Null Estimation

The MLE method takes a more straightforward approach to empirical null
estimation: starting with the zero assumption (4.44), we obtain normal the-
ory maximum likelihood estimators (δ̂0, σ̂0, π̂0) based on the zi values in
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A0. These tend to be less variable than central matching estimates, though
more prone to bias.

Given the full set of z-values z = (z1, z2, . . . , zN), let N0 be the number
of zi inA0 and I0 their indices,

I0 = {i : zi ∈ A0} and N0 = #I0 (6.29)

and define z0 as the corresponding collection of z-values,

z0 = {zi, i ∈ I0} . (6.30)

Also, let ϕδ0,σ0 (z) be the N(δ0, σ
2
0) density function

ϕδ0,σ0 (z) =
1√

2πσ2
0

exp

⎧⎪⎪⎨⎪⎪⎩−1
2

(
z − δ0

σ0

)2
⎫⎪⎪⎬⎪⎪⎭ (6.31)

and

H0(δ0, σ0) ≡
∫
A0

ϕδ0,σ0 (z) dz, (6.32)

this being the probability that a N(δ0, σ
2
0) variate falls inA0.

We suppose that the N zi values independently follow the two-groups
model (2.7) with f0 ∼ N(δ0, σ

2
0) and f1(z) = 0 for z ∈ A0. (In terms of

Figure 2.3,A0 = Z, N0 = N0(A0), and N1(A0) = 0.) Then z0 has density
and likelihood function

fδ0,σ0,π0 (z0) =

[(
N
N0

)
θN0 (1 − θ)N−N0

] ⎡⎢⎢⎢⎢⎢⎢⎣∏
I0

ϕδ0,σ0 (zi)

H0(δ0, σ0)

⎤⎥⎥⎥⎥⎥⎥⎦ (6.33)

when

θ = π0H0(δ0, σ0) = Pr {zi ∈ A0} . (6.34)

Notice that z0 provides N0 = #z0, distributed as Bi(N, θ), while N is a
known constant.

Exercise 6.7 Verify (6.33).

Exponential family calculations, described at the end of the section, pro-
vide the MLE estimates (δ̂0, σ̂0, π̂0). These are usually not overly sensitive
to the choice ofA0, which can be made large in order to minimize estima-
tion error. Program locfdr centersA0 at the median of z1, z2, . . . , zN , with
half-width about twice the preliminary estimate of σ0 based on interquar-
tile range. (The multiple is less than 2 if N is very large.)

Table 6.3 reports on the results of a small Monte Carlo experiment:
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measurements zi were obtained from model (2.7) with π0 = 0.95, f0 ∼
N(0, 1), f1 ∼ N(2.5, 1), and N = 3000. The zi values were not indepen-
dent, having root mean square correlation α = 0.10; see Chapter 8. One
hundred simulations gave means and standard deviations for (δ̂0, σ̂0, π̂0)
obtained by central matching and by the MLE method.

Table 6.3 MLE and central matching estimates (δ̂0, σ̂0, π̂0) from 100
simulations with π0 = 0.95, f0 ∼ N(0, 1), f1 ∼ N(2.5, 1), N = 3000, and
root mean square correlation 0.10 between the z-values. Also shown is
correlation between MLE and CM estimates.

δ̂0 σ̂0 π̂0

MLE CM MLE CM MLE CM

mean −.093 −.129 1.004 .984 .975 .963
stdev .016 .051 .067 .098 .008 .039
corr .76 .89 .68

The MLE method yielded smaller standard deviations for all three es-
timates. It was somewhat more biased, especially for π0. Note that each
3000-vector z had its mean subtracted before the application of locfdr so
the true null mean δ0 was −0.125 not 0.

Besides being computationally more stable than central matching of Fig-
ure 6.2, the MLE method benefits from using more of the data for estima-
tion, about 94% of the central z-values in our simulation, compared to 50%
for central matching. The latter cannot be much increased without some
danger of eccentric results. The upward bias of the MLE π̂0 estimate has
little effect on f̂dr(z) or F̂dr(z), but it can produce overly conservative esti-
mates of power (Section 5.4). Taking a chance on more parametric methods
(see Notes) may be necessary here.

Straightforward computations produce maximum likelihood estimates
(δ̂0, σ̂0, π̂0) in (6.33); fδ0,σ0,π0 (z0) is the product of two exponential families5

which can be solved separately (the two bracketed terms). The binomial
term gives

θ̂ = N0/N (6.35)

while δ̂0 and σ̂0 are the MLEs from a truncated normal family, obtained by

5 Appendix A gives a brief review of exponential families.
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familiar iterative calculations, finally yielding

π̂0 = θ̂
/
H0

(
δ̂0, σ̂0

)
(6.36)

from (6.34). The log of (6.33) is concave in (δ0, σ0, π0), guaranteeing that
the MLE solutions are unique.

Exercise 6.8 Show that (6.33) represents a three-parameter exponential
family. That is,

log fδ0,σ0,π0 (z0) = η1Y1 + η2Y2 + η3Y3 − ψ(η1, η2, η3) + c(z0) (6.37)

where (η1, η2, η3) are functions of (δ0, σ0, π0) and (Y1, Y2, Y3) are functions
of z0. What are (η1, η2, η3) and (Y1, Y2, Y3)?

6.4 Why the Theoretical Null May Fail

The four examples in Figure 6.1 strongly suggest failure of the theoretical
null distribution f0(z) ∼ N(0, 1). This is somewhat shocking! Theoretical
null derivations like that for Student’s t-distribution are gems of the statisti-
cal literature, as well as pillars of applied practice. Once alerted, however,
it isn’t difficult to imagine causes of failure for the theoretical null. The
difference in large-scale testing is only that we can detect and correct such
failures.

Making use of either central matching or the MLE method, false discov-
ery rate estimates (5.5) and (5.6) now become

f̂dr(z) = π̂0 f̂0(z)
/

f̂ (z) and F̂dr(z) = π̂0F̂0(z)
/
F̂(z) (6.38)

with F̂0(z) the left or right cdf of f̂0(z) as desired. Statement (6.38) is not
a universal improvement over (5.5)–(5.6); estimating the null distribution
f0(z) substantially adds to the variability of false discovery rate estimates,
as documented in Chapter 7. But using the theoretical null when it is wrong
is a recipe for false inference. What follows is a list of practical reasons why
the theoretical null might go astray.

(I) Failed mathematical assumptions Textbook null hypothesis deriva-
tions usually begin from an idealized mathematical framework, e.g., inde-
pendent and identically distributed (i.i.d.) normal components for a two-
sample t-statistic. Deviations from the ideal can be easy to spot in large-
scale data sets. For example, the logged expression levels xi j for the HIV
data have longer-than-normal tails. (Although, by itself, that is not enough
to induce the underdispersion seen in the z-value histogram of Figure 6.1d:
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repeating the HIV computation for a 7680 × 8 matrix whose components
were randomly selected from the actual matrix gave an almost perfectly
N(0, 1) z-value histogram.)

(II) Correlation across sampling units Student’s theoretical null distri-
bution for a two-sample t-statistic (2.2) assumes independence across the n
sampling units: for instance, across the 72 patient scores for any one gene in
the leukemia study. Chapter 8 shows how such independence assumptions
can fail in practice. In large-scale studies, even minor experimental defects
can manifest themselves as correlation across sampling units. The expres-
sion levels xi j for the prostate study of Section 2.1 will be seen to have
drifted slightly as the experiment went on (i.e., as j increased), some genes
drifting up and others down, inducing minor correlations across microar-
rays. Other data sets will show more significant correlations, big enough to
seriously distort the z-value histogram.

(III) Correlation across cases It was argued in Section 4.4 that inde-
pendence among the z-values is not required for valid false discovery rate
inference. The hitch is that this is only true if we are using the correct null
distribution f0(z). Section 8.3 discusses the following disconcerting fact:
even if the theoretical null distribution zi ∼ N(0, 1) is valid for all null
cases, correlation among the zi can make N(0, 1) a misleading choice in
likely realizations of z = (z1, z2, . . . , zN).

Figure 6.4 provides an example. A simulation study was run with N =
6000 z-values; 5700 were null cases having zi ∼ N(0, 1), with root mean
square correlation 0.1 among the 5700 · 5699/2 pairs. The 300 non-null
cases followed an exact N(2.5, 1) distribution, that is,

zi = 2.5 + Φ−1

(
i − 0.5

300

)
for i = 1, 2, . . . , 300. (6.39)

Three quantities were calculated for each of 100 simulations,

Fdp(2.5) =
#{null zi ≥ 2.5}

#{zi ≥ 2.5} , (6.40)

the actual false discovery proportion (2.28) for Z = [2.5,∞), and both
F̂drtheo(2.5) and F̂dremp(2.5), the theoretical and empirical null Fdr esti-
mates (5.6) and (6.38).

The two Fdr estimates are plotted versus Fdp in Figure 6.4. Correla-
tion between the null cases makes Fdp(2.5) highly variable. F̂dremp(2.5)
follows Fdp(2.5), somewhat noisily, but F̂drtheo(2.5) moves in the wrong
direction, slowly decreasing as Fdp increases. F̂dremp is much more vari-
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Figure 6.4 Simulation experiment comparing empirical null and
theoretical null estimates of Fdr(2.5), plotted against actual false
discovery proportion Fdp(2.5), as described in the text. The
theoretical null estimates (open circles) decrease as Fdp increases.

able than F̂drtheo but nevertheless more accurate as an estimate of Fdp, with
mean |F̂dremp(2.5) − Fdp(2.5)| = 0.065 compared to mean |F̂drtheo(2.5) −
Fdp(2.5)| = 0.098. Even though the theoreticalN(0, 1) null is uncondition-
ally correct here, it is unsatisfactory conditionally.

Exercise 6.9 Explain why F̂drtheo(2.5) is a decreasing function of Fdp(2.5).

(IV) Unobserved covariates Except for the chi-square data, all of our ex-
amples are observational studies. The 72 leukemia patients were observed,
not assigned, to be in the AML or ALL class. Unobserved covariates such
as age, gender, concomitant health conditions, processing variables,6 etc.,
may affect the AML/ALL comparison. If the covariates were available we
could use linear model techniques to account for them, but if not they tend
to broaden the effective null distribution f0, as discussed next.

Suppose we have a microarray experiment comparing n/2 Class A sub-

6 For example, different areas on a microarray chip are read separately, by devices that
may be calibrated differently.
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jects with n/2 Class B subjects, for N genes. The null genes are assumed
to have expression levels

xi j = ui j +
I j

2
βi

⎧⎪⎪⎨⎪⎪⎩ui j ∼ N(0, 1)

βi ∼ N(0, σ2
β)

(6.41)

with ui1, ui2, . . . , uin, βi mutually independent, and

I j =

⎧⎪⎪⎨⎪⎪⎩−1 j = 1, 2, . . . , n/2

1 j = n/2 + 1, . . . , n.
(6.42)

Here the βi values are small disturbances caused by unequal effects of un-
observed covariates on the two classes. (The βi may be correlated across
genes.)

It is easy to show that the two-sample t-statistic ti (2.2) comparing Class
A with Class B follows a dilated t-distribution with n − 2 degrees of free-
dom,

ti ∼
(
1 +

n
4
σ2
β

) 1
2 · tn−2 (6.43)

for the null cases. In other words, the null density is (1 + nσ2
β/4)1/2 times

more dispersed than the usual theoretical null.

Exercise 6.10 (a) Verify (6.43). (b) Suppose that all the genes are null
and that σβ = 2/

√
n. Show that, for large N, the local fdr, with π0 = 1, will

be about

fdr(ti) �
√

2 fn−2(ti)
/

fn−2

(
ti

/√
2
)

(6.44)

when f0 is taken to be the usual theoretical null fn−2(t), a Student t-density
with n − 2 degrees of freedom. (c) For n = 20, what is the probability that
fdr(ti) ≤ 0.20 under (6.44)?

The empirical null fdr estimate π̂0 f̂0(z)/ f̂ (z) scales “correctly” using ei-
ther central matching or the MLE method: if each zi is multiplied by the
same positive constant c, the value of f̂dr stays the same for all cases. An-
other way to say this is that our interest in an outlying zi is judged relative
to the width of the histogram’s center, rather than relative to the theoretical
N(0, 1) width.

Unobserved covariates are ubiquitous in large-scale studies and are per-
haps the most common source of trouble for the theoretical null, a likely
culprit for the kind of gross overdispersion seen in Figure 6.1a. Reason (III)
above, correlation across cases, produces smaller effects, but is capable of



6.5 Permutation Null Distributions 109

causing the underdispersion seen in Figure 6.1d as well as overdispersion
(Chapter 7). Microarray studies are particularly prone to correlation effects,
as the examples of Chapter 8 will show. Reason (II), correlation across the
supposedly independent sampling units, is surprisingly prevalent as a pos-
sible source of overdispersion (Chapter 8). Failed mathematical assump-
tions, Reason (I), is the only one of the four failure causes that is easily
cured by permutation calculations, as discussed in the next section.

Our list of causes is by no means complete. Filtration, the data-based
preselection of a subset of promising-looking cases for final analysis, can
distort both the null and non-null distributions. In a microarray context
the investigator might first select only those genes having above-average
standard deviations, on the grounds that this hints at differential response
across the various experimental conditions. Filtration is a dangerous tactic.
Among other dangers, it reduces, in a biased manner, information available
for evaluating the appropriate null distribution.

6.5 Permutation Null Distributions

Permutation techniques for assessing a null distribution lie somewhere be-
tween the theoretical and empirical methods, but closer to the former than
the latter. They are easiest to describe in two-sample situations like the
prostate, leukemia, and HIV studies. We have an N × n data matrix X
with the first n1 columns representing Treatment 1 and the last n2 columns
Treatment 2. These have produced an N-vector z of z-values, perhaps as in
(2.2)–(2.5).

In order to compute the permutation null distribution, we randomly per-
mute the columns of X as in (3.39) and recalculate the vector of z-values.
Repeating the process B times gives vectors z∗1,z∗2, . . . ,z∗B, with

Z∗ =
(
z∗1,z∗2, . . . ,z∗B

)
(6.45)

representing the full N × B matrix of permuted values. The usual permuta-
tion null is then

f̂ perm
0 = the empirical distribution of all N · B values z∗bi . (6.46)

(Less commonly, we might calculate a separate permutation null for each
case i from the B values in the ith row of Z∗. This requires B to be very
large in order to assess the extreme tail probabilities necessary in large-
scale testing, whereas B = 10 or 20 is often sufficient for (6.46).)

Figure 6.5 shows QQ plots7 of f̂ perm
0 for the leukemia and HIV studies

7 A QQ plot of observations x1, x2, . . . , xm plots the ith ordered value x(i) versus the
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Figure 6.5 QQ plots of permutation null distributions for the
leukemia and HIV studies, B = 20 permutations each. Dotted
lines are least squares fits to central 80% of the plot, with
intercepts and slopes as indicated; f̂ perm

0 ∼̇ N(0, 1) for leukemia
study but has heavier tails for HIV study.

(z-values as in (2.2)–(2.5)), in both cases based on B = 20 permutations.
The leukemia plot shows f̂ perm

0 nearly N(0, 1) while f̂ perm
0 (z) for the HIV

data is roughly N(0, 0.962) near z = 0, but with heavier-than-normal tails.
Permutation methods offer a simple and attractive way to deal with math-

ematically complicated hypothesis testing situations. They are not however
a remedy for the theoretical null failures seen in Figure 6.1. There are sev-
eral points to consider:

• Of the four potential causes of failure raised in Section 6.4, permutation
methods deal most effectively with Reason (I), failed mathematical as-
sumptions. The permutation process enforces an i.i.d. structure, so that
f̂ perm
0 is relevant only in that context. (The second i, “identical,” may

not be realistic, but this usually doesn’t seem to cause major problems.)
Non-standard statistical definitions — for example, adding a constant to
the usual t-statistic denominator, as in SAM — are automatically incor-
porated into the permutation calculations.

• Permutation methods are no help with Reason (II), correlation across

corresponding normal quantile Φ−1[(i − 0.5)/m]. If the x values come from a N(a, b2)
distribution, the plot will approximate a straight line with intercept a and slope b.
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sampling units, since the sampling process effectively enforces indepen-
dence.8

• They are also of no help with Reason (IV), unobserved covariates. The
data vector (xi1, xi2, . . . , xin) in (6.41) has βi/2 subtracted from the first
n/2 observations and added to the last n/2. But as far as permutation
samples are concerned, the ±βi/2 disturbances are randomly distributed
across the n observations. The permutation distribution of the two-sample
t-statistic is nearly tn−2 under model (6.41), no matter how large βi may
be, rather than equaling the dilated distribution (6.43).

• A virtue of permutation methods is that they preserve correlation be-
tween cases, e.g., between genes (since the columns of X are permuted
intact). We can estimate the correlation between any pair of z-values
from the correlation between the rows of Z∗ (6.45), as was done in Sec-
tion 3.4 and will be seen again in Chapter 8.

Nevertheless, permutation methods are of no direct assistance with
Reason (III), the effects of between-case correlations on the proper choice
of f0. For any given row i of Z∗, the values z∗bi do not depend on between-
case correlations, and neither does f̂ perm

0 . Both the leukemia and HIV
examples display considerable case-wise correlation (see Chapter 8) but
still have f̂ perm

0 close to the theoretical null and far from the empirical
null.

• In fact, f̂ perm
0 will usually approximate a N(0, 1) distribution for (2.5),

the z-score version of the t-statistic. Fisher’s introduction of permutation
arguments was intended to justify Student’s distribution in just this way.
A considerable body of theory in the 1950s showed f̂ perm

0 converging
quickly to N(0, 1) as n grew large. The results in Figure 6.5 are typical,
showing almost perfect convergence in the leukemia example, n = 72.

• Permutation and empirical methods can be combined by letting the per-
mutation null replace N(0, 1) in the empirical algorithm. That is, we
perform the empirical null calculations on Φ−1(Fperm(zi)) rather than on
the original z-values, with Fperm the permutation cdf. Doing so made no
difference to the leukemia data but considerably increased f̂dr for the
HIV data, reducing the number of cases with f̂dr ≤ 0.20 from 128 to 42,
now all on the left side.

• Permutation methods are not restricted to two-sample problems. They
depend on symmetries of the null hypothesis situation, which may or

8 It actually enforces a small negative correlation: if x∗1 and x∗2 are any two draws in a
permutation sample, then their correlation is −1/(n − 1) with respect to the permutation
process, regardless of the correlations in the original sample x1, x2, . . . , xn.
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may not exist. They would be difficult to find, perhaps impossible, for
the chi-square and police examples of Figure 6.1. Bootstrap methods are
more flexible but have their own problems in large-scale situations; see
Section 7.5.

Notes

The leukemia data was the motivating example in Golub et al. (1999), an
early exploration of advanced statistical approaches to microarray experi-
ments. Ridgeway and MacDonald (2009) discuss the police data, providing
a much more extensive analysis than the one here. Van’t Wout et al. (2003)
originated the HIV data, which was used as a main example in Gottardo
et al. (2006) as well as Efron (2007b). The chi-square data is part of an
ongoing unpublished experiment.

Empirical null methods were introduced in Efron (2004), along with the
central matching algorithm. Efron (2007b) suggested the MLE method.
Why the theoretical null might fail is discussed in Efron (2008a). Jin and
Cai (2007, 2010) present a characteristic function approach to estimating
the empirical null, while a more parametric normal mixture method is an-
alyzed in Muralidharan (2010).

The 1935 edition of Fisher’s The Design of Experiments introduced per-
mutation methods as a justification of Student’s t-test. A great deal of sub-
sequent analysis by many authors, including Pitman (1937) and Hoeffd-
ing (1952), supported Fisher’s contention that permutation methods usually
agree closely with Student’s distribution.
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Estimation Accuracy

Empirical Bayes methods blur the line between estimation and hypothe-
sis testing: f̂dr(zi) (5.5) estimates the probability that a null hypothesis is
correct, and likewise F̂dr(zi) (5.6). How accurate are such estimates, like
the ones shown in Figure 5.2? In general we would like to assess the
accuracy of summary statistics s(z) that depend on a vector of z-values
z = (z1, z2, . . . , zN). This would be straightforward if the zi were indepen-
dent, using classical methods or perhaps the bootstrap.

Independence is only a dream, though, for most large-scale data sets.
Microarray studies are particularly prone to correlation across cases, as
will be seen in Chapter 8. Now it seems we are in real trouble, where we
must estimate an N × N matrix of correlations in order to assess a standard
deviation for s(z). Fortunately, the main result of this chapter shows that
this isn’t necessary: under reasonable assumptions, good accuracy approx-
imations are available that depend only upon the root mean square of the
N · (N − 1)/2 correlations, a quantity that often can be easily estimated.

As an example of these results, suppose s(z) is the right-sided cdf for
the leukemia data of Figure 6.1a,

F̄(x) = #{zi ≥ x}/N [N = 7128]. (7.1)

Section 7.1 and Section 7.2 show that a good approximation for the vari-
ance1 of F̄(x) is

var
{
F̄(x)

}
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F̄(x) ·

(
1 − F̄(x)

)
N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
⎧⎪⎪⎨⎪⎪⎩ α̂σ̂

2
0 f̂ (1)(x)√

2

⎫⎪⎪⎬⎪⎪⎭
2

(7.2)

where

• α̂ is the estimated root mean square correlation (0.11 for the leukemia
data, Chapter 8);

1 Equation (7.50) gives the full covariance matrix for F̄(xk), k = 1, 2, . . . ,K.
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• σ̂0 is the estimated central histogram spread (1.68 for the leukemia data,
Figure 6.1a);

• f̂ (1)(x) is the first derivative of the Poisson regression estimate of the
mixture density f (z), as derived in Section 5.2.

The first term in (7.2) is the usual binomial variance, while the second term
is a correlation penalty accounting for dependence between the zi values.

Figure 7.1 Solid curve is estimated standard deviation of
right-sided cdf (7.1) for leukemia z-values, from formula (7.2).
Dashed curve shows binomial standard deviation from first term
of (7.2), ignoring the correlation penalty. Correlation greatly
increases the variability of F̄(x) in this case. Hash marks indicate
right percentiles used in Table 7.1.

The heavy curve in Figure 7.1 graphs estimated standard deviations
sd{F̄(x)} for the leukemia data, the square root of formula (7.2). For com-
parison, the dashed curve shows the usual binomial standard deviation es-
timates that would apply if the zi were independent, the square root of the
first term in (7.2). The correlation penalty can be enormous here, multiply-
ing standard deviations by large factors, as shown numerically in Table 7.1.

This chapter derives accuracy formulas like (7.2) for a class of summary
statistics s(z) pertaining to empirical Bayes calculations, including those
seen in Figure 5.3. Our main assumption is that the zi are individually nor-
mal with possibly different means and variances,

zi ∼ N
(
μi, σ

2
i

)
for i = 1, 2, . . . ,N. (7.3)
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Table 7.1 Bold figures are estimated standard deviations for right-sided
cdf (7.1), leukemia z-values, formula (7.2); sdind are binomial standard
deviations, ignoring z-value correlations. Standard deviations evaluated
at indicated right percentiles of the N = 7128 zi’s.

Percentile .25 .20 .15 .10 .05 .01

sd .021 .023 .021 .016 .0082 .0017
sdind .005 .005 .004 .004 .0026 .0012
ratio 4.1 4.8 5.0 4.6 3.2 1.4

There is no requirement that they be “z-values” in the hypothesis-testing
sense (2.6), though that is our main class of applications.

It will take us some time to justify formula (7.2) and its extensions. The
argument proceeds as follows:

• Exact cdf covariance formulas are derived in Section 7.1.
• Simplified approximations are developed in Section 7.2, along with prac-

tical data-based estimates.
• Delta-method arguments are used to extend the cdf results to more gen-

eral summary statistics in Section 7.3.
• Section 7.4 concerns the non-null distribution of z-values, showing model

(7.3) to be a good approximation and justifying application of the theory.

The calculations and derivations, some of which are quite involved, em-
phasize the frequentist side of empirical Bayes theory. Technical details,
particularly in Section 7.1 and Section 7.4, can be bypassed for quick read-
ing once the definitions and results are understood, the figures being helpful
in this regard.

A natural question is why not use the bootstrap to get accuracy estimates
directly? Section 7.5 provides a brief answer: with N much greater than n,
the non-parametric bootstrap can behave eccentrically. Figure 7.8 shows
this happening in the context of Figure 7.1.

7.1 Exact Covariance Formulas

Given correlated normal observations z1, z2, . . . , zN (7.3), this section de-
rives exact formulas for the mean and covariance of the empirical process
{F̄(x),−∞ < x < ∞}, that is, for the right-sided cdf (7.1) evaluated for all
choices of x. Rather than work directly with the cdf, it will be easier to de-
rive first our results for a discretized version of the empirical density of the
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zi values; more precisely, we will compute the mean vector and covariance
matrix for the histogram counts yk (5.12). Most statistics s(z) of interest to
us depend on z only through the vector of counts.

The notation here will be that of (5.11)–(5.14): yk is the number of zi

values in bin k, k = 1, 2, . . . ,K, giving count vector

y = (y1, y2, . . . , yk)
′; (7.4)

xk is the centerpoint of bin k, x = (x1, x2, . . . , xK)′; and all bins are of width
d.

Exercise 7.1 Let zord be the order statistic of z, that is, the ordered values
z(1) < z(2) < · · · < z(N) (assuming no ties). Show that, for sufficiently small
choice of the bin width d, we can recover zord from y.

Note All of our previous estimators, such as f̂dr(z) and F̂dr(z), depend on
z only through zord and therefore, effectively, on y.

Instead of (7.3), we first make the more restrictive assumption that the
zi are divided into a finite number of classes, with members of the cth class
Cc having mean μc and standard deviation σc,

zi ∼ N
(
μc, σ

2
c

)
for zi ∈ Cc. (7.5)

Let Nc be the number of members of Cc, with πc the proportion,

Nc = #Cc and πc = Nc/N (7.6)

so
∑

c Nc = N and
∑

c πc = 1.
It will be convenient to define adjusted bin centers xkc = (xk − μc)/σc

for k = 1, 2, . . . ,K, denoting the whole K-vector by

xc = (x1c, x2c, . . . , xKc)
′. (7.7)

Similarly, if h(x) is any function of x, we will write

hc = h(xc) = (h(x1c), h(x2c), . . . , h(xKc))
′ (7.8)

for h evaluated at the adjusted bin centers; so, for example, ϕc is the stan-
dard normal density (2.9) evaluated over xc.

It is easy to calculate the expectation of the count vector y under model
(7.5)–(7.6). Let Pkc be the probability that zi from class Cc falls into the kth
binZk,

Pkc = Pr
c
{zi ∈ Zk} � d · ϕ(xkc)/σc. (7.9)
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This last approximation becomes arbitrarily accurate for d sufficiently small,
and we will take it to be exact in what follows. Then

E{y} = N
∑

c

πcPc = Nd
∑

c

πcϕc, (7.10)

Pc = (P1c, P2c, . . . , PKc)′ as in (7.8).

Exercise 7.2 Verify (7.10).

The K×K covariance matrix of the count vector y depends on the N×N
correlation matrix of z, but in a reasonably simple way discussed next.
Two important definitions are needed to state the first result: there are M =
N(N − 1)/2 correlations ρii′ between pairs (zi, zi′) of members of z, and
we denote by g(ρ) the distribution2 putting weight 1/M on each ρii′ . Also,
for ϕρ(u, v), the bivariate normal density having zero means, unit standard
deviations, and correlation ρ, we define

λρ(u, v) =
ϕρ(u, v)

ϕ(u)ϕ(v)
− 1

= (1 − ρ2)−
1
2 exp

{
2ρuv − ρ2(u2 + v2)

2(1 − ρ2)

}
− 1 (7.11)

and

λ(u, v) =
∫ 1

−1
λρ(u, v)g(ρ) dρ. (7.12)

Lemma 7.1 Under the multi-class model (7.5)–(7.6), the covariance of
the count vector y (7.4) has two components,

cov(y) = cov0 + cov1 (7.13)

where

cov0 = N
∑

c

πc
{
diag(Pc) −PcP

′
c

}
(7.14)

and

cov1 = N2
∑

c

∑
d

πcπd diag(Pc)λcd diag(Pd)

− N
∑

c

diag(Pc)λcc diag(Pc). (7.15)

2 g(ρ) is a discrete distribution but we will treat it notationally as a density function.
Formula (7.17), for example, indicates the average of ρ j over the M values ρii′ .
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Here diag(Pc) is the K × K diagonal matrix having diagonal elements
Pkc, similarly diag(Pd), while λcd is the K × K matrix with klth element
λ(xkc, xld) (7.12). Summations are over all classes.3 The proof of Lemma
7.1 appears at the end of this section.

Note Equation (7.15) assumes that the correlation distribution g(ρ) is the
same across all classes Cc.

The cov0 term in (7.13)–(7.14) is the sum of the multinomial covariance
matrices that would apply if the zi were mutually independent with fixed
numbers drawn from each class; cov1 is the correlation penalty, almost
always increasing cov(y). The N2 factor in (7.15) makes the correlation
penalty more severe as N increases, assuming g(ρ) stays the same.

Expression (7.15) for the correlation penalty can be considerably sim-
plified. Mehler’s identity4 for λρ(u, v) (7.11) is

λρ(u, v) =
∑
j≥1

ρ j

j!
hj(u)hj(v) (7.16)

where hj is the jth Hermite polynomial. Denoting the jth moment of the
correlation distribution g(ρ) by α j,

α j =

∫ 1

−1
ρ jg(ρ) dρ, (7.17)

(7.12) becomes

λ(u, v) =
∑
j≥1

α j

j!
hj(u)hj(v) (7.18)

so λcd in (7.15) can be expressed in outer product notation as

λcd =
∑
j≥1

α j

j!
hj(xc)h j(xd)′. (7.19)

(The outer product of vectors u and v is the matrix having i jth element
uiv j.) Making use of (7.9), taken as exact,

diag(Pc)h j(xc) = Nd diag (ϕ(xc)) hj(xc)/σc

= (−1) jNd ϕ( j)
c

/
σc

(7.20)

where ϕ( j)
c indicates the jth derivative of ϕ(u) evaluated at each component

3 Note that subscript d is distinct from bin width d, which is a constant.
4 Equation (7.16) is also known as the tetrachoric series and has interesting connections

to canonical correlation, the singular value decomposition, Pearson’s coefficient of
contingency, and correspondence analysis.
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of xc. The last line of (7.20) uses the Hermite polynomial relationship
ϕ( j)(u) = (−1) jϕ(u)hj(u).

Rearranging (7.15) then gives a simplified formula for cov1.

Lemma 7.2 Defining

φ̄( j) =
∑

c

πcϕ
( j)
c

/
σc, (7.21)

formula (7.15) for the correlation penalty becomes

cov1 = N2d2

⎧⎪⎪⎨⎪⎪⎩
∑
j≥1

α j

j!
φ̄( j)φ̄( j)′ − 1

N

∑
j≥1

α j

j!

⎛⎜⎜⎜⎜⎜⎝∑
c

πcϕ
( j)
c ϕ( j)′

c

/
σ2

c

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ . (7.22)

Returning to right-sided cdfs (7.1), let B be the K × K matrix

Bkk′ =

⎧⎪⎪⎨⎪⎪⎩1 if k ≤ k′

0 if k > k′
(7.23)

so

F̄ =
1
N

By (7.24)

is a K-vector with kth component the proportion of zi values in bins indexed
≥ k,

F̄k = #{zi ≥ xk − d/2}/N (k = 1, 2, . . . ,K). (7.25)

(B would be transposed if we were dealing with left-sided cdfs.)
The expectation of F̄ is easy to obtain from (7.10),

E
{
F̄k

}
=

∑
c

πc

⎡⎢⎢⎢⎢⎢⎣∑
k′≥k

dϕ

(
xk′ − μc

σc

) /
σc

⎤⎥⎥⎥⎥⎥⎦ �∑
c

πc

∫ ∞

xkc

ϕ(u) du

=
∑

c

πcΦ
+(xkc)

(7.26)

where Φ+(u) ≡ 1 − Φ(u). Now that we are working with tail areas rather
than densities, we can let the bin width d → 0, making (7.26) exact.

F̄ has covariance matrix Bcov(y)B′/N2. Applying integration calcu-
lations like that in (7.26) to Lemma 7.1 gives a covariance decomposition
for F̄ .

Theorem 7.3 Under the multi-class model (7.5)–(7.6),

Cov
(
F̄

)
= Cov0 + Cov1 (7.27)
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where Cov0 has klth entry

1
N

∑
c

πc
{
Φ+ (max(xkc, xlc)) − Φ+(xkc)Φ

+(xlc)
}

(7.28)

and

Cov1 =
∑

j

α j

j!
ϕ̄( j−1)ϕ̄( j−1)′ − 1

N

∑
j

α j

j!

⎧⎪⎪⎨⎪⎪⎩
∑

c

πcϕ̄
( j−1)
c ϕ̄( j−1)′

c

⎫⎪⎪⎬⎪⎪⎭ . (7.29)

Here πc is from (7.6), xkc and xlc are from (7.7), α j is as in (7.17), and

ϕ̄( j−1) =
∑

c

πcϕ
( j−1)
c . (7.30)

(Note the distinction between ϕ̄ and φ̄ (7.21).)

Proof of Lemma 7.1 Let Ik(i) denote the indicator function of the event
zi ∈ Zk (5.11) so that the number of zi values from class Cc inZk is

ykc =
∑

c

Ik(i), (7.31)

the boldface subscript indicating summation over the members of Cc. We
first compute E{ykcyld} for bins k and l, k � l, and classes c and d,

E{ykcyld} = E

⎧⎪⎪⎨⎪⎪⎩
∑

c

∑
d

Ik(i)Il( j)

⎫⎪⎪⎬⎪⎪⎭
= d2

∑
c

∑
d

ϕρi j (xkc, xld)(1 − χi j)

σcσd

(7.32)

following notation (7.6)–(7.10), with χi j the indicator function of event
i = j (which can only occur if c = d). This reduces to

E{ykcyld} = N2d2πc(πd − χcd/N)

∫ 1

−1
ϕρ(xkc, xld)g(ρ) dρ

σcσd
(7.33)

under the assumption that the same correlation distribution g(ρ) applies
across all class combinations. Since yk =

∑
c ykc, we obtain

E{ykyl} = N2d2
∑

c

∑
d

πc(πd − χcd/N)

∫ 1

−1
ϕρ(xkc, xld)g(ρ) dρ

σcσd
, (7.34)

the non-bold subscripts indicating summation over classes. Subtracting

E{yk}E{yl} = N2d2
∑

c

∑
d

ϕ(xkc)ϕ(xld)
σcσd

(7.35)
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from (7.34) results, after some rearrangement, in

cov(yk, yl) = N2d2
∑

c

∑
d

ϕ(xkc)ϕ(xld)
σcσd

×
{
πc

(
πd − χcd

N

) ∫ 1

−1

(
ϕρ(xkc, xld)

ϕ(xkc)ϕ(xld)
− 1

)
g(ρ) dρ

}

− Nd2
∑

c

πc
ϕ(xkc)ϕ(xld)

σcσd
. (7.36)

Using Pkc = d · ϕ(xkc)/σc as in (7.9), expression (7.36) is seen to equal the
klth element of cov(y) in Lemma 7.1, when k � l. The case k = l proceeds
in the same way, the only difference being that Ndπcχcdϕ(xkc)/σc must be
added to formula (7.32), again in agreement with cov(y) in Lemma 7.1. �

7.2 Rms Approximations

The exact covariance expressions of Section 7.1 are useful for theoretical
and simulation calculations, but less so for actual applications. This section
develops simplified versions called rms approximations (for “root mean
square”) that facilitate the kind of data-based estimates seen in (7.2).

Convenient approximations to Cov1 and cov1 are based on three simpli-
fications:

1 The second terms in (7.28) and in (7.22) are of order 1/N compared to
the first terms, and can be ignored for N large.

2 Common standardization methods for data matrix X , such as subtract-
ing off the mean of each column as we did in our microarray examples,
make α1, the first coefficient in Mehler’s identity (7.18), exactly or nearly
zero; this leaves α2 as the lead.

3 With ρ confined to [−1, 1], the higher-order moments α j of g(ρ), j ≥ 3,
decrease quickly to zero if α2 is not too large.

Making all three simplifications reduces (7.28) and (7.22) to the rms
approximations

Cov1 � α2ϕ̄(1)ϕ̄(1)′
/
2 (7.37)

and

cov1 � (Ndα)2φ̄(2)φ̄(2)′
/
2 (7.38)
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where α is the root mean square correlation

α = α1/2
2 =

[∫ 1

−1
ρ2g(ρ) dρ

] 1
2

. (7.39)

Here ϕ̄(1) is the average first derivative in (7.30),

ϕ̄(1) =
∑

c

πcϕ
(1)
c (7.40)

and likewise

φ̄(2) =
∑

c

πcϕ̄
(2)

/
σc (7.41)

from (7.21).

Figure 7.2 Comparison of exact formula for sd{F̄(x)} from
Theorem 7.3 (solid curve) with the rms approximation (dashed)
for N = 6000, α = 0.10, in the two-class situation (7.42). Dots
indicate binomial standard deviation, ignoring correlation penalty.

Figure 7.2 compares exact and approximate standard deviations of F̄(x)
(7.1), for the situation where N = 6000, α = 0.10, and there are two classes
(7.5), (7.6) having

(μ0, σ0) = (−0.125, 1) π0 = 0.95

and (μ1, σ1) = (2.38, 1) π1 = 0.05.
(7.42)

(If we begin with μ0 = 0 and μ1 = 2.5 and recenter z by subtracting z̄,
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we get μ0 and μ1 as in (7.42).) The solid curve traces the exact standard
deviations, i.e., square roots of the diagonal elements of Cov(F̄) (7.27);
the dashed curve shows standard deviations when substituting the rms ap-
proximation (7.37) for Cov1 in (7.27). We see that the rms approximation
performs quite satisfactorily.

Practical application of the rms approximations requires us to estimate
the rms correlation α (7.39) and ϕ̄(1) (7.40) or φ̄(2) (7.41). Chapter 8 shows
that an estimate α̂ is easy to obtain from data matrices X such as that for
the leukemia study. Here we will describe the estimation of ϕ̄(1) or φ̄(2).
These look difficult since they depend on the class parameters (μc, σc, πc)
in (7.5)–(7.6) but, at least under some assumptions, a simple estimate is
available.

The marginal density f (z) under model (7.5)–(7.6) is

f (z) =
∑

c

πcϕ

(
z − μc

σc

) /
σc (7.43)

so the first and second derivatives of f (z) are

f (1)(z) =
∑

c

πcϕ
(1)

(
z − μc

σc

) /
σ2

c

and f (2)(z) =
∑

c

πcϕ
(2)

(
z − μc

σc

) /
σ3

c .

(7.44)

Suppose we make the homogeneity assumption that all σc values are the
same, say σc = σ0. Comparison with definitions (7.30) and (7.21) then
gives

ϕ̄(1) = σ2
0f

(1) and φ̄(2) = σ2
0f

(2) (7.45)

where f ( j) = f ( j)(x), the jth derivative evaluated at the bin centerpoints. It
is worth noting that the class structure (7.5)–(7.6) has disappeared entirely
in (7.45), leaving zi ∼ N(μi, σ

2
0) for i = 1, 2, . . . ,N as the basic assumption.

Exercise 7.3 Verify (7.45).

Substituting (7.45) into the rms approximations (7.37)–(7.38) yields con-
venient expressions for the correlation penalties,

Cov1 �
(σ2

0α)2

2
f (1)f (1)′ and cov1 �

(Ndσ2
0α)2

2
f (2)f (2)′ . (7.46)

This finally returns us to the correlation penalty used in equation (7.2),
(α̂σ̂2

0 f̂ (1)(x)/
√

2)2, where f (1)(z) has been estimated by differentiation of
the Poisson regression estimate f̂ (z) of Section 5.2.
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Table 7.2 Estimated 3-class model for the leukemia data.

Left Center Right

μc −4.2 .09 5.4
σc 1.16 1.68 1.05
πc .054 .930 .016

Figure 7.3 Leukemia data; comparison of standard deviation
estimates for empirical cdf (7.1), using formula (7.2) (solid curve)
or 3-class model based on Table 7.2 (dashed curve).

Suppose we distrust the homogeneity assumption. The smoothed non-
null counts ŷ1k (5.42) allow direct, though rather crude, estimates of the
class parameters (μc, σc, πc). The equivalent of Figure 5.5 for the leukemia
data, along with the MLE estimates (μ̂0, σ̂0, π̂0), suggests a 3-class model
with the parameter values given in Table 7.2. The dashed curve in Fig-
ure 7.3 shows standard deviations for F̄(x) if ϕ̄(1) in (7.29) is estimated
from (7.40) using the parameter values in Table 7.2. It differs only modestly
from the results based on the homogeneity assumption (7.45), as used in
formula (7.2).

Exercise 7.4 How were the left and right class parameters in Table 7.2
calculated from the smooth counts ŷ1k?

The independence terms as stated in Theorem 7.3 and Lemma 7.1, Cov0

and cov0, depend on the class structure (7.5)–(7.6). They assume that the
class sample sizes Nc are fixed constants so that cov0 is a mixture of multi-
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nomial covariance matrices. A more realistic assumption might be that
N1,N2, . . . ,NC are a multinomial sample of size N, sampled with proba-
bilities π1, π2, . . . , πC, in which case cov0 becomes the single multinomial
covariance

cov0 = N
{
diag(d · f ) − d2ff ′

}
, (7.47)

f = f (x) (7.43). Here d · f is the vector of bin probabilities

d · f =
∑

c

πcPc (7.48)

as in (7.9)–(7.10).

Exercise 7.5 (a) Verify (7.48). (b) Show that cov0 (7.47) is greater than
or equal to cov0 (7.14) in the sense that the difference is a positive semi-
definite matrix.

Formula (7.47) has the advantage of not depending explicitly on the class
structure. In the same way, we can replace Cov0 (7.28) with a single multi-
nomial expression.

To summarize, the rms approximations and the homogeneity assumption
together yield these convenient estimates for the covariance matrices of the
counts and their cdf values:

ĉov{y} = N
{
diag

(
d · f̂

)
− d2f̂ f̂ ′

}
+

(
α̂Ndσ̂2

0

)2

2
f̂ (2)f̂ (2)′ (7.49)

and

Ĉov
{
F̄

}
=

1
N

{(
F̄max(k,l) − F̄kF̄l

)}
+

(
α̂σ̂2

0

)2

2
f̂ (1)f̂ (1)′ . (7.50)

Here F̄ = (F̄(x1), F̄(x2), . . . , F̄(xK))′, the leading matrix having elements
as indicated in (7.50). Expression (7.2) is obtained from the diagonal ele-
ments of (7.50).

Exercise 7.6 Show that the “independence” matrices in (7.49)–(7.50) are
related by Ĉov0 = Bĉov0B′, with B as in (7.23).

Formula (7.2) for the standard deviation of F̄(x) was tested in a sim-
ulation experiment: for each of 100 replications, a 6000 × 80 matrix X
was constructed such that two-sample t-statistics comparing the first and
last 40 columns gave z-values satisfying model (7.42), with N = 6000 and
α = 0.10 (see Section 8.2). The solid curve in Figure 7.4 graphs the mean
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Figure 7.4 Simulation experiment testing formula (7.2), 100
replications of model (7.42), N = 6000, α = 0.10, generated as
described in Chapter 8. Solid curve is mean of 100 values ŝdk,
square root of (7.2) at x = xk; error bars indicate empirical
standard deviations of ŝdk at x = −4,−3, . . . , 4. Dotted curve: true
sdk from Theorem 7.3. Dashed curve is mean of ŝd0, square root
of first term in (7.2).

of the 100 values of ŝdk (square roots of (7.2) for x = xk) with error bars in-
dicating the empirical standard deviations. The dotted curve shows true sdk

values from Theorem 7.3. We see that formula (7.2) gave nearly unbiased
results except at the extreme right, with reasonably low variability.

7.3 Accuracy Calculations for General Statistics

We would like to assess the accuracy of estimates such as f̂dr(z) and F̂dr(z).
To this end, standard delta-method (i.e., Taylor series) techniques allow us
to extend the covariance estimates of Section 7.2 to statistics that can be
expressed as smoothly differentiable functions of the count vector y (7.4).

Suppose that Q(y) is a q-dimensional function of the K-vector y (con-
sidered as varying continuously) such that a small change dy produces
change dQ in Q according to the local linear approximation

dQ = D̂dy (7.51)
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where D̂ is the q × K matrix dQ/dy, with jkth element

D̂ jk =
∂Qj

∂yk

∣∣∣∣∣
y
. (7.52)

If ĉov(y) is a covariance estimate for y, perhaps (7.49), then the usual
delta-method estimate of cov(Q) is the q × q matrix

ĉov(Q) = D̂ ĉov(y)D̂′. (7.53)

In a theoretical context where cov(y) is known we could use instead

cov(Q) �D cov(y)D′, (7.54)

now with the derivative matrix D evaluated at the expectation of y. Some-
times D or D̂ is called the influence function of Q(y).

As a first example, consider assessing the accuracy of f̂dr(z) = π0 f0(z)/
f̂ (z) (5.5), except with π0 considered known. Notation (7.8) will be useful
here, where, if h(z) is any function of z, then h = h(x) = (h(x1), h(x2), . . . ,
h(xK))′ is h(z) evaluated at the bin centers x. Thus, for example, f̂dr =
π0f0/f̂ is the K-vector5 of values f̂dr(xk).

It is convenient to work first with the logarithm of f̂dr, say l̂fdr =
log(f̂dr),

l̂fdr = log(π0) + l0 − l̂. (7.55)

Since log(π0) and l0 = log(f0) are constants, the influence function dl̂fdr/
dy equals −dl/dy.

The influence function dl̂/dy is well known when f̂ is the Poisson
regression estimate of Section 5.2. Let M be the K × m structure ma-
trix for the regression. (In the implementation of (5.10), M has kth row
(1, xk, x2

k , . . . , xJ
k ), m = J + 1.) Also let ν = Ndf be the expectation of y

(5.14) with6 ν̂ = Ndf̂ and

Ĝm×m = M′ diag (ν̂) M, (7.56)

diag(ν̂) indicating a K × K diagonal matrix with diagonal elements ν̂k. A
standard generalized linear model (GLM) argument discussed at the end of
this section gives

dl̂
/
dy = MĜM′ = −dl̂fdr

/
dy. (7.57)

5 Following conventions of computer language R, the ratio of vectors is the vector of
ratios, etc., and log(π0) is added to each component at (7.55).

6 The estimates f̂ and f̂0 returned by locfdr sum to N rather than to 1/d for easy
graphical comparison with y.
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Applying (7.53) yields an estimated covariance matrix for l̂fdr,

ĉov
(
l̂fdr

)
=

(
MĜM′

)
ĉov(y)

(
MĜM′

)
(7.58)

where ĉov(y) can be taken from (7.49). If we are in the independence situ-
ation α̂ = 0, then we can write (7.49) as

ĉov(y) = diag(ν̂) − ν̂ν̂
/
N. (7.59)

Ignoring the last term, (7.58) gives a nice result,

ĉov
(
l̂fdr

)
� MĜM′ diag(ν̂)MĜM′ = MĜM′. (7.60)

In our examples, however, the correlation penalty was usually too big to
ignore.

Corresponding to l̂fdr (7.55) is the right-sided log tail area false discov-
ery rate ̂lFdr = log(π0) +L0 − L̂ (7.61)

where L̂ = log(F̂(x)) and L0 = log(F0(x)), as in (5.6), except with π0

known. The K × K derivative matrix dL̂/dl̂ has elements

∂L̂ j

∂l̂k

=

⎧⎪⎪⎨⎪⎪⎩ f̂k/F̂ j if k ≥ j

0 if k < j.
(7.62)

Calling this matrix B̂, the chain rule of differentiation gives

dL̂
/
dy = B̂MĜM′ (7.63)

and

Ĉov
( ̂lFdr

)
=

(
B̂MĜM′

)
Ĉov(y)

(
MĜM′B̂′

)
. (7.64)

Exercise 7.7 Verify (7.62) and (7.64).

Figure 7.5 compares the accuracy of f̂dr(z) with F̂dr(z) for the two-class
model (5.18) with N = 6000 and α = 0, 0.1, or 0.2. The solid curves
graph the standard deviation of log f̂dr(z) obtained from (7.58), (7.49), plot-
ted versus the right percentiles of the mixture distribution f (z). The corre-
sponding standard deviations for log F̂dr(z), obtained from (7.64), (7.50),
appear as the dashed curves. Remembering that standard deviation on the
log scale nearly equals the coefficient of variation, Exercise 5.3, we can
see the CVs increasing from around 5% to over 20% as the correlation
parameter α goes from 0 to 0.2.

The dotted curves in Figure 7.2 depict the accuracy of the non-parametric
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Figure 7.5 Solid curves show standard deviation of log f̂dr(z) as a
function of z at the upper percentiles of f (z) for two-class model
(5.18), N = 6000, α = 0, 0.1, and 0.2; dashed curves show same
for log F̂dr(z); dotted curves denote non-parametric version
log Fdr(z). Accuracy decreases sharply with increasing correlation
α. The local fdr estimate is more accurate at the extreme
percentiles.

tail-area Fdr estimate Fdr(z) = π0F0(z)/F̄(z) (7.1), obtained using (7.50)
and

d log F̄ j

dyk
=

⎧⎪⎪⎨⎪⎪⎩1
/
(NF̄ j) if k ≥ j

0 if k < j.
(7.65)

All three methods perform about equally well except at the extreme right,
where f̂dr(z) is noticeably more accurate.

Exercise 7.8 Verify (7.65).

All of our calculations have so far assumed that π0 and f0(z) are known.
Having π0 unknown barely degrades accuracy, but f0 is a different matter.
Next we will calculate the influence function of f̂dr(z) = π̂0 f̂0(z)/ f̂ (z) when
π̂0 and f̂0(z) are estimated by central matching, as in Figure 6.2.

Suppose that central matching is accomplished by a least squares quadra-
tic fit of the counts yk to the bin centers xk, over a central subset of K0 bins
having index set k0. Define M0 as the K × 3 matrix with kth row (1, xk, x2

k)
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and let M̃ and M̃0 be the submatrices whose columns are defined by k0,

M̃ = M[k0] and M̃0 = M0[k0] (7.66)

of dimensions K0 × m and K0 × 3.

Theorem 7.4 The influence function of log f̂dr with respect to y when
using central matching is

dl̂fdr
dy

= AĜM′ (7.67)

where

A = M0G̃−1
0 M̃′0M̃ − M

[
G̃0 = M̃′0M̃0

]
. (7.68)

Proof of Theorem 7.4 appears at the end of this section.

Note The theorem applies as stated to other models for the null: if f0(z) is
assumed known, with only π0 unknown, then M0 becomes the K×1 matrix
of 1’s; for a cubic null, the kth row of M0 is (1, xk, x2

k , x3
k).

Theorem 7.4 yields the delta-method estimate

ĉov
(
l̂fdr

)
=

(
AĜM

)
ĉov(y)

(
M′ĜA′

)
. (7.69)

As in (7.60), the independence estimate ĉov(y) � diag(ν̂) gives the com-
pact expression

ĉov
(
l̂fdr

)
� AĜA′. (7.70)

Comparing (7.67) with (7.57), the latter amounts to taking the first term
in A (7.68) to be zero, which would be appropriate if we had an infinite
amount of prior information on π0 and f0(z).

Table 7.3 compares sd{log f̂dr(z)} using the theoretical null (7.58) versus
the empirical null (7.70). The standard errors are much larger for the em-
pirical null. Partly, however, that reflects a limitation of our analysis, which
focuses on unconditional standard deviations. Some of the variability in the
empirical null case is “good variability,” in that f̂dr(z) is correctly adjust-
ing for the true false discovery proportion, as in Figure 6.4. The central
matching estimates (δ̂0, σ̂0) are acting as approximate ancillary statistics,
to use classical terminology, which adapt the estimate f̂dr(z) to differing
situations. At the present level of development, it is difficult to separate out
the good and bad variability components of the empirical null estimate.
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Table 7.3 Comparison of sd{log f̂dr(z)} for N = 6000, α = 0.1 (5.18), as
in middle panel of Figure 7.5. Top row uses central matching (7.70);
bottom row assumes π0, f0(z) known (7.58). Some of the extra variability
in the empirical case comes from correctly adjusting f̂dr(z) to differing
situations, as in Figure 6.4.

Percentile .05 .04 .03 .02 .01

sd empirical null .18 .26 .36 .54 .83
sd theoretical null .13 .13 .12 .11 .10

Proof of Theorem 7.4 In a Poisson GLM, the MLE of the expectation
vector ν = exp(Mβ) satisfies

M′
[
y − eMβ̂

]
= 0. (7.71)

A small change dy in y therefore produces change dβ̂ satisfying

M′ dy = M′ diag(ν̂)M dβ̂. (7.72)

Exercise 7.9 Verify (7.72) and use it to prove (7.57).

Let l̂00 = log(π̂0f̂0), the log numerator of f̂dr, which we are modeling in
central matching by

l̂00 = M0γ̂ (7.73)

where γ̂ is an m0-dimensional vector and m0 = 3 as before (7.66). We are
fitting l̂00 by least squares to the central portion l̃ = l̂[k0] of l̂ = log f̂ , so
ordinary least squares theory gives

dγ̂ = G̃−1
0 M′0 dl̃ and dl̂00 = M0G̃−1

0 M′0 dl̃. (7.74)

Then (7.57) yields

dl̃ = dl̂[k0] = M̃ĜM′ dy (7.75)

and

dl̂00 = M0G̃−1
0 M̃′0M̃ĜM′ dy (7.76)

from (7.74). Finally,

dl̂fdr = d
(
l̂00 − l̂

)
=

(
M0Ĝ0M̃′0M̃ − M

)
ĜM′ dy, (7.77)

verifying (7.67). �
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7.4 The Non-Null Distribution of z-Values

The main results of this chapter, summarized in (7.49)–(7.50), depend on
normality, zi ∼ N(μi, σ

2
i ) (7.3). In all of our examples, the zi were actually

z-values, i.e., standardized test statistics, obtained for instance as in (2.2)–
(2.6). By definition, a z-value is a statistic having a N(0, 1) distribution
under a null hypothesis H0 of interest. But will it still be normal under
non-null conditions? In other words, is it legitimate to apply results like
(7.2) to the leukemia data, as we did in Figure 7.1?

The results of this section are reassuring. They show that, under repeated
sampling, the non-null distribution of a typical z-value will have standard
deviation of order O(n−1/2) and non-normality Op(n−1) as we move away
from the null hypothesis: so zi ∼ N(μi, σ

2
i ) holds to a good approximation,

though we can expect σ2
i to differ noticeably from 1 when μi is far from 0.

Figure 7.6 illustrates the phenomenon for the Student-t situation (2.2)–
(2.6). Here we have

z = Φ−1 (Fν(t)) with t ∼ tν(δ), (7.78)

the notation tν(δ) indicating a non-central t variable with ν degrees of free-
dom and non-centrality parameter δ (not δ2),

t =
Z + δ

S

[
Z ∼ N(0, 1) independent of S 2 ∼ χ2

ν/ν
]
. (7.79)

Fν is the cdf of a central tν distribution as in (2.5), where ν = 100.

Table 7.4 Non-central t example t ∼ tν(δ) for ν = 20, δ = 0, 1, 2, 3, 4, 5;
moment parameters of z = Φ−1(Fν(t)) (7.78) indicate near-normality even
for δ far from 0.

δ 0 1 2 3 4 5

mean 0 .98 1.89 2.71 3.41 4.01
sd 1 .98 .92 .85 .77 .71

skew 0 −.07 −.11 −.11 −.10 −.07
kurt 0 .02 .06 .08 .09 .07

Figure 7.6 shows the density of z from (7.78) for ν = 20 and non-
centrality δ = 0, 1, 2, 3, 4, 5. By definition, the density is N(0, 1) for δ = 0.
At δ = 5, the density almost exactly matches that of aN(4.01, 0.712) distri-
bution. Mean, standard deviation, skewness, and kurtosis for each choice of
δ are given in Table 7.4, bolstering faith in the approximation z ∼ N(μ, σ2).
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Figure 7.6 z-value density for non-central t distribution
(7.78)–(7.79), for degrees of freedom ν = 20 and non-centrality
δ = 0, 1, 2, 3, 4, 5. Dashed curves are normal densities matched in
mean and standard deviation; see Table 7.4. Negative δ gives
mirror image results.

Exercise 7.10 A test statistic t has possible densities { fθ(t), θ ∈ Θ} with
corresponding cdfs Fθ(t) and we wish to test H0 : θ = θ0. Show that the
z-value statistic z = Φ−1{Fθ0 (t)} has densities

gθ(z) = ϕ(z) fθ(t)/ fθ0 (t) (7.80)

with ϕ(z) the standard normal density (2.9).

T -statistics are ubiquitous in statistical applications. Suppose that in ad-
dition to the N × n expression matrix X in a microarray experiment, we
observe a primary response variable uj (u j the treatment/control indicator
in a two-sample study) and covariates wj1,wj2, . . . ,wjp for the jth of n sub-
jects. Given the observed expression levels xi1, xi2, . . . , xin for gene i, we
could calculate ti, the usual t-value for uj as a function of xi j after adjusting
for the covariates in a linear model. Then, as in (7.78),

zi = Φ
−1

(
Fn−p−1(ti)

)
(7.81)

would be a z-value under the usual Gaussian assumption, with behavior
like that in Table 7.4.

As a second example where exact calculations are possible, suppose we
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observe an i.i.d. sample x1, x2, . . . , xn from an exponential distribution of
unknown scale θ,

fθ(x) =
1
θ

e−x/θ [x ≥ 0]. (7.82)

An exact z-value Z0 for testing H0 : θ = θ0 is based on the mean x̄,

Z0 = Φ
−1 (Gn (nx̄/θ0)) (7.83)

where Gn is the cdf of a gamma distribution with n degrees of freedom.

Exercise 7.11 Using the fact that x̄ is distributed as θ/n times a gamma
variable with n degrees of freedom, show that Z0 ∼ N(0, 1) if θ = θ0.

Figure 7.7 z-value density curves for gamma example, Z0 as in
(7.83) with n = 10, θ0 = 1. True value θ indicated above curves.
Normality for non-null cases is nearly perfect here; see Table 7.5.

Figure 7.7 displays the density of Z0 for different choices of θ when
n = 10 and θ0 = 1. Normality is excellent: there is no visible discrepancy
between the density curves and their matching normal equivalents (having
means and standard deviations as in Table 7.5).

What follows is a heuristic argument showing why we can expect non-
null normality for z-values obtained from an independent and identically
distributed (i.i.d.) sample.7 Suppose that x1, x2, . . . , xn is such a sample,

7 The argument is more technical than the previous material, but yields a simple and
useful result at (7.102).
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Table 7.5 Mean, standard deviation, skewness, and kurtosis for Z0 (7.83);
the gamma example with n = 10 and θ0 = 1. For true θ in (7.82) as
indicated.

θ .4 .5 .67 1 1.5 2.0 2.5

mean −2.49 −1.94 −1.19 0 1.36 2.45 3.38
stdev .76 .81 .88 1 1.15 1.27 1.38
skew −.05 −.04 −.02 0 .02 .04 .04
kurt .01 .01 .00 0 .00 −.01 −.04

obtained from cdf Fθ, a member of a one-parameter family

F = {Fθ, θ ∈ Θ} (7.84)

having its moment parameters {mean, standard deviation, skewness, kurto-
sis}, denoted by

{μθ, σθ, γθ, δθ}, (7.85)

defined differentiably in θ.
Under the null hypothesis H0 : θ = 0, which we can write as

H0 : x ∼ {μ0, σ0, γ0, δ0} (7.86)

the standardized variate

Y0 =
√

n

(
x̄ − μ0

σ0

) ⎡⎢⎢⎢⎢⎢⎣x̄ =
n∑

i=1

yi/n

⎤⎥⎥⎥⎥⎥⎦ (7.87)

satisfies

H0 : Y0 ∼
{

0, 1,
γ0√

n
,
δ0

n

}
. (7.88)

Normality can be improved to second order by means of a Cornish–Fisher
transformation,

Z0 = Y0 − γ0

6
√

n

(
Y2

0 − 1
)

(7.89)

which reduces the skewness in (7.88) from O(n−1/2) to O(n−1),

H0 : Z0 ∼ {0, 1, 0, 0} + O
(
n−1

)
. (7.90)

We can interpret (7.90) as saying that Z0 is a second-order z-value,

H0 : Z0 ∼ N(0, 1) + Op

(
n−1

)
(7.91)
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e.g., a test statistic giving standard normal p-values accurate to O(n−1).
Suppose now that H0 is false and instead H1 is true, with x1, x2, . . . , xn

i.i.d. according to

H1 : x ∼ {μ1, σ1, γ1, δ1} (7.92)

rather than (7.86). Setting

Y1 =
√

n

(
x̄ − μ1

σ1

)
and Z1 = Y1 − γ1

6
√

n

(
Y2

1 − 1
)

(7.93)

makes Z1 second-order normal under H1,

H1 : Z1 ∼ N(0, 1) + Op

(
n−1

)
. (7.94)

We wish to calculate the distribution of Z0 (7.89) under H1. Define

c = σ1/σ0, d =
√

n(μ1 − μ0)
/
σ0, and g0 = γ0

/ (
6
√

n
)
. (7.95)

Some simple algebra yields the following relationship between Z0 and Z1.

Lemma 7.5 Under definitions (7.89), (7.93), and (7.95),

Z0 = M + S Z1 + g0

{(
γ1

γ0
S − c2

) (
Y2

1 − 1
)
+

(
1 − c2

)}
(7.96)

where

M = d · (1 − dg0) and S = c · (1 − 2dg0) . (7.97)

The asymptotic relationships claimed at the start of this section are eas-
ily derived from Lemma 7.5. We consider a sequence of alternatives θn

approaching the null hypothesis value θ0 at rate n−1/2,

θn − θ0 = O
(
n−1/2

)
. (7.98)

The parameter d =
√

n(μθn −μ0)/σ0 defined in (7.95) is then of order O(1),
as is

M = d(1 − dg0) = d
(
1 − dγ0

/ (
6
√

n
))

(7.99)

while standard Taylor series calculations give

c = 1+
σ̇0

μ̇0

d√
n
+O

(
n−1

)
and S = 1+

(
σ̇0

μ̇0
− γ0

3

)
d√
n
+O

(
n−1

)
, (7.100)

the dot indicating differentiation with respect to θ.
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Theorem 7.6 Under model (7.84), (7.98), and the assumptions of Lemma
7.5,

Z0 ∼ N
(
M, S 2

)
+ Op

(
n−1

)
(7.101)

with M and S as given in (7.99)–(7.100). Moreover,

dS
dM

∣∣∣∣∣
θ0

=
1√
n

(
dσ
dμ

∣∣∣∣∣
θ0

− γ0

3

)
+ O

(
n−1

)
. (7.102)

Proof The proof of Theorem 7.6 uses Lemma 7.5, with θn determining H1

in (7.96). Both 1 − c2 and (γ1/γ0)S − c2 are of order O(n−1/2); the former
from (7.100) and the latter using γ1/γ0 = 1 + (γ̇0/γ0)(θn − θ0) + O(n−1).
Since Y2

1 − 1 is Op(1), this makes the bracketed term in (7.96) Op(n−1/2);
multiplying by g0 = γ0/(6

√
n) reduces it to Op(n−1), and (7.101) follows

from (7.94). Differentiating M and S in (7.99)–(7.100) with respect to d
verifies (7.102). �

Theorem 7.6 supports our claim that, under non-null alternatives, the
null hypothesis normality of Z0 degrades more slowly than its unit standard
deviation, the comparison being Op(n−1) versus O(n−1/2).

Result (7.102) simplifies further if F is a one-parameter exponential
family, i.e., a family with densities proportional to exp{θx} · f0(x). Then
dσ/dμ = γ/2, so that (M, S ) in (7.101) satisfy

dS
dM

∣∣∣∣∣
θ0

=
γ0

6
√

n
+ O

(
n−1

)
. (7.103)

For the gamma family, γ0 = 2, giving γ0/(6
√

n) = 0.1054 for n = 10.
This matches to better than three decimal places the observed change in
standard deviation with respect to mean, as illustrated in Figure 7.7.

Moving beyond one-parameter families, suppose F is a p-parameter ex-
ponential family, having densities proportional to exp{η1x1+η

′
2x2} f0(x1, x2),

where η1 and x1 are real-valued while η2 and x2 are (p−1)-dimensional vec-
tors, but where we are only interested in η1 and not the nuisance vector η2.
The conditional distribution of x1 given x2 is then a one-parameter expo-
nential family with natural parameter η1, which puts us back in the context
of Theorem 7.6.

The non-central t family does not meet the conditions of Lemma 7.5 or
Theorem 7.6: (7.78) is symmetric in δ around zero, causing γ0 in (7.98) to
equal 0 and likewise the derivative in (7.102). Nevertheless, as Figure 7.5
shows, it does exhibit impressive non-null normality. In fact, my experience
has been that z-values in general follow near-normal non-null distributions,
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making the crucial assumption (7.3) a reasonable starting point for their
analysis.

7.5 Bootstrap Methods

It would be very nice to avoid all the normal theory parametric intricacies
of the past sections, and obtain our accuracy estimates directly from a non-
parametric bootstrap. Figure 7.8 tries this for the situation illustrated in
Figure 7.1. Here the data matrix X has N = 7128 rows (genes) and n = 72
columns (patients), with n1 = 45 ALL and n2 = 25 AML patients as in
Figure 6.1a.

Bootstrap data sets X∗ were obtained by randomly selecting 45 of the
first 45 X columns with replacement, and likewise 27 of the last 27 columns
(under the assumption that the patients, though not the genes, were sam-
pled independently). X∗ gave N-vector z∗ as for the actual data, and then
F̄(x)∗ (7.1). B = 50 replications of this whole process yielded values
F̄(x)∗1, F̄(x)∗2, . . . , F̄(x)∗50, whose empirical standard deviation ŝd(x) was
the non-parametric bootstrap standard error estimate for F̄(x).

Figure 7.8 Standard deviation estimates for leukemia data cdf as
in Figure 7.1. Non-parametric bootstrap (dashed line) gives a
dilated version of sd(x) from parametric formula (7.2).
Permutation ŝd(x) curve (thin line) is too narrow.

The dashed curve in Figure 7.8 traces ŝd(x) for −8 < x < 8. It looks
like a dilated version of the curve from (7.2), with both peaks noticeably
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widened. This turns out to be an unfortunately dependable feature of non-
parametric bootstrapping in an N � n situation: for each i, the bootstrap
replications z∗1i , z

∗2
i , . . . , z

∗50
i roughly follow a normal distribution centered

at zi, say

z∗i ∼̇ N (zi, v̂i) i = 1, 2, . . . ,N. (7.104)

This widens the original z-value histogram of Figure 6.1a by adding the v̂i

component of variance, and subsequently widening the ŝd(x) curve.
Figure 7.8 also shows a permutation ŝd(x) curve, where now the z∗ vec-

tors are obtained by permuting all 72 columns of X. There are two rea-
sons that this curve is much narrower than that from formula (7.2). The
less important one here is that permutations nullify any true differences
between ALL and AML patients (in contrast to the two-sample bootstrap-
ping above). More crucially, permutations tend to enforce a N(0, 1) null
distribution, Figure 6.5, much narrower than the N(0.09, 1.682) null seen
in Figure 6.1a.

Column-wise bootstrapping and permuting both preserve within-column
correlations. (Their correctly bimodal ŝd(x) curves in Figure 7.8 reflect
this.) Trouble for the non-parametric bootstrap stems from a simpler cause:
the empirical distribution of n points in N dimensions is a poor estimator of
the true distribution when N is much larger than n. Parametric bootstrap-
ping is less prone to failure, but of course that assumes knowledge of a
reasonably accurate parametric model for X.

Notes

Most of this chapter’s material is taken from Efron (2007a) and Efron
(2010). Other good references for large-scale correlation effects include
Dudoit et al. (2004); Owen (2005); Qiu et al. (2005a,b); Clarke and Hall
(2009); and Desai et al. (2010). Schwartzman and Lin (2009) use Mehler’s
expansion to pursue higher-order accuracy formulas. The influence func-
tion calculations of Section 7.3 appear in Efron (2007b, Sect. 5) as part of
a more extensive array of accuracy formulas.

Lancaster (1958) provides an insightful discussion of Mehler’s formula,
published in 1866! There are a variety of sources for Cornish–Fisher ex-
pansions, including Chapter 2 of Johnson and Kotz (1970) and, for much
greater detail, Section 2.2 of Hall (1992).

The quantity γ0/6
√

n (7.103) is called the acceleration in Efron (1987),
interpreted as “the rate of change of standard deviation with respect to
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expectation on a normalized scale,” which agrees nicely with its use in
(7.103).

Efron and Tibshirani (1993) provide a full treatment of the bootstrap,
with emphasis on the importance of estimating the underlying probability
distribution of the sampling units, as in their Figure 8.3. Effective boot-
strapping usually requires n � N, just what we don’t have here.
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Correlation Questions

Correlation played a central role in the accuracy calculations of Chapter 7,
with the estimated root mean square correlation α̂ being the key quantity
in approximations (7.2), (7.49), and (7.50). This chapter takes up several
questions concerning correlation in large-scale studies, including the cal-
culation of α̂, which often turns out to be quite straightforward. The setting
will be like that for our microarray examples: we observe an N × n matrix
X as in (2.1); the columns of X correspond to individual subjects in Sec-
tion 2.1, hopefully sampled independently of each other, while we expect
the gene expressions within a column to be correlated.

Independence of the columns of X is a tacit assumption of all theoretical
and permutation null hypothesis testing methods (calculations like (2.2)–
(2.6) make no sense otherwise), though not of empirical null procedures.
Section 8.3 considers tests for column-wise independence. We begin in
Section 8.1 with a general result relating the row-wise and column-wise
correlations of X, leading directly to the estimator α̂.

8.1 Row and Column Correlations

We will be interested in both the row-wise and column-wise correlations
of the the N × n matrix1 X = (xi j). It simplifies notation to assume that X
has been “demeaned” by the subtraction of row and column means, so that

N∑
i=1

xi j =

n∑
j=1

xi j = 0 for i = 1, 2, . . . ,N and j = 1, 2, . . . , n. (8.1)

1 The number of rows of X is often denoted by p rather than N in the microarray
literature, following (in transposed fashion) an analogy with the familiar ANOVA n × p
structure matrix. This can cause confusion with p-values and probabilities. Our use of
“big N” suggests the usual microarray situation N � n.

141
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Sometimes we will go further and assume double standardization: that in
addition to (8.1) we have

N∑
i=1

x2
i j = N and

n∑
j=1

x2
i j = n

for i = 1, 2, . . . ,N and j = 1, 2, . . . , n.

(8.2)

Double standardization is convenient for our discussion because it makes
sample covariances into sample correlations. How to achieve (8.2) is dis-
cussed at the end of this section.

With means removed as in (8.1), the sample covariance between columns
j and j′ of X is

Δ̂ j j′ =
∑

i

xi jxi j′
/
N (8.3)

(not reducing the denominator by 1) and similarly

σ̂ii′ =
∑

j

xi j xi′ j
/
n (8.4)

for the sample covariance between rows i and i′. The n × n column sample
covariance matrix Δ̂ and the N × N row sample covariance matrix Σ̂ are

Δ̂ = X′X/N and Σ̂ = XX′/n. (8.5)

Double standardization makes the diagonal elements Δ̂ j j and σ̂ii equal 1.
Then the sample correlation ρ̂ii′ between rows i and i′ of X is

ρ̂ii′ = σ̂ii′
/

(σ̂iiσ̂i′i′)
1/2 = σ̂ii′ . (8.6)

Our main result is stated and proved in terms of the singular value de-
composition (svd) of X,

X
N×n
= U

N×K
d

K×K
V ′
K×n

(8.7)

where K is the rank of X, d is the diagonal matrix of ordered singular
values d1 ≥ d2 ≥ · · · ≥ dK > 0, and U and V are orthonormal matrices of
sizes N × K and n × K,

U′U = V ′V = IK , (8.8)

with IK the K × K identity. The squares of the singular values,

e1 ≥ e2 ≥ · · · ≥ eK > 0
[
ek = d2

k

]
(8.9)

are the eigenvalues of NΔ̂ = Vd2V′ and also of nΣ̂ = Ud2U′.
The singular value decomposition reveals an interesting correspondence

between the row and column correlations of X.
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Theorem 8.1 If X has row and column means equal to zero (8.1), then
the n2 elements of Δ̂ and the N2 elements of Σ̂ both have mean zero and
empirical variance

c2 =

K∑
k=1

e2
k

/
(Nn)2. (8.10)

Proof Letting 1n denote the vector of n 1’s, the sum of the entries of Δ̂ is

1′nX′X1n/N = 0 (8.11)

according to (8.1), while the mean of the squared entries is∑n
j=1

∑n
j′=1 Δ̂

2
j j′

n2
=

tr
(
(X′X)2

)
(Nn)2

=
tr

(
Vd4V ′

)
(Nn)2

= c2. (8.12)

Replacing X′X with XX′ yields the same result for Σ̂. �

Exercise 8.1 Here tr indicates the trace of a square matrix, the sum of its
diagonal elements. Verify (8.12). Hint: Use the trace commutative property
tr(AB) = tr(BA).

The covariances Δ̂ j j′ and σ̂ii′ become correlations under double stan-
dardization, as in (8.6). Then Theorem 8.1 says that the row and column
sample correlations have the same means and empirical standard devia-
tions. This sounds definitely counter-intuitive in a typical microarray set-
ting, where the genes (rows) are assumed correlated and arrays (columns)
independent.

Figure 8.1 shows an example. Here the data is from the Cardio Study, a
microarray experiment comparing n = 63 subjects, n1 = 44 healthy con-
trols and n2 = 19 cardiovascular patients, each measured on N = 20 426
genes. The matrix X used in Figure 8.1 is the doubly standardized expres-
sion data for the healthy controls, so X is 20 426 × 44 and satisfies (8.1)–
(8.2).

The solid histogram shows all 442 column sample correlations, while the
line histogram is a random sample of 10 000 row correlations (out of the
more than 400 million values ρ̂ii′!). In this case c2 (8.8) equals 0.2832, so
both histograms have mean zero and standard deviation 0.283.

Exercise 8.2 What is a computationally efficient way to calculate c2 (with-
out using the SVD)? Hint: The trace of a square symmetric matrix is the
sum of its eigenvalues.
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Figure 8.1 Solid histogram shows the 442 column sample
correlations of the doubly standardized expression matrix X for
the healthy cardio controls. Line histogram depicts the sample of
10 000 of the 20 4262 row correlations. Both histograms have
mean 0 and standard deviation 0.283.

The 44 diagonal elements of Δ̂, the column correlation matrix, pro-
trudes as a prominent spike at 1. (We cannot see the spike of 20 426 el-
ements of Σ̂, the row correlation matrix, because they form such a small
fraction of all 20 4262.) It is easy to remove the diagonal 1’s from consid-
eration.

Corollary 8.2 In the doubly standardized situation, the off-diagonal ele-
ments of the column correlation matrix Δ̂ have empirical mean and vari-
ance

μ̂ = − 1
n − 1

and α̂2 =
n

n − 1

(
c2 − 1

n − 1

)
(8.13)

with c2 as in (8.10).

Exercise 8.3 (a) Verify (8.13). (b) Show that c2 ≥ 1/K. Hint: Under dou-
ble standardization, ē, the average of the eigenvalues (8.9), equals Nn/K.

Standardization

A matrix X is column standardized by individually subtracting the mean
and dividing by the standard deviation of each column, and similarly for
row standardization. Table 8.1 shows the effect of successive row and col-
umn standardizations on the original 20 426 × 44 matrix of healthy cardio
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subjects. Here “Col” is the empirical standard deviation of the 946 column-
wise correlations Δ̂ j j′ j < j′; “Eig” is α̂ in (8.13); and “Row” is the empiri-
cal standard deviation of a 1% sample of the row correlations ρ̂ii′ , adjusted
for overdispersion as in (8.18) of the next section. The sampling error of
the Row entries is about ±0.0034.

Table 8.1 Estimates of the rms correlation α̂ after successive column and
row standardization of the 20 426 × 44 matrix of healthy cardio subjects,
as explained in the text. Sampling error of Row entries ±0.0034.

Col Row Eig

demeaned .252 .286 .000
col .252 .249 .251

row .242 .255 .246
col .242 .241 .242

row .241 .246 .235
col .241 .244 .241

row .241 .245 .234
col .241 .238 .241

Col Row Eig

demeaned .252 .286 .000
row .241 .283 .279
col .241 .251 .240

row .240 .247 .241
col .240 .247 .240

row .241 .240 .235
col .241 .237 .240

row .241 .233 .233

The doubly standardized matrix X used in Figure 8.1 was obtained after
five successive column/row standardizations of the original cardio matrix.
This was excessive: the figure looked almost the same after two iterations.
Other microarray examples converged equally rapidly, and it can be shown
that convergence is guaranteed except in some special small-size coun-
terexamples.

Microarray analyses usually begin with some form of column-wise stan-
dardization, designed to negate “brightness” differences among the n ar-
rays. In the same spirit, row standardization helps prevent incidental gene
differences (such as very large or very small expression level variabili-
ties) from obscuring the effects of interest. This isn’t necessary for z-values
based on t statistics, which are “self-standardizing,” but can be important
in other contexts, as demonstrated in Chapter 10.

8.2 Estimating the Root Mean Square Correlation

For n = 44 and c2 = 0.2832, formula (8.13) yields(
μ̂, α̂2

)
=

(
−0.023, 0.2412

)
, (8.14)
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reducing our estimated standard deviation for the column correlations from
0.283 to 0.241. The corresponding diagonal-removing correction for the
row correlations (replacing n by N in (8.13)) is negligible for N = 20 426.
However, c2 overestimates the variance of the row correlations for another
reason: with only n = 44 bivariate points available to estimate each cor-
relation, random error adds a considerable component of variance to the
ρ̂ii′ histogram in Figure 8.1. Once this overdispersion is corrected for, α̂ in
(8.13) turns out to be a reasonable estimator for α, the root mean square
correlation (7.39).

We assume that the columns x of X = (x1,x2, . . . ,xn) are independent
and identically distributed N-vectors, with correlation ρii′ between entries
xi and xi′ . The rms correlation is

α =

⎡⎢⎢⎢⎢⎢⎣∑
i<i′

ρ2
ii′

/(
N
2

)⎤⎥⎥⎥⎥⎥⎦
1
2

(8.15)

which is another notation for (7.39).
Define ᾱ to be the observed row-wise root mean square correlation,

ᾱ =

⎡⎢⎢⎢⎢⎢⎣∑
i<i′

ρ̂2
ii′

/(
N
2

)⎤⎥⎥⎥⎥⎥⎦
1
2

. (8.16)

In the doubly standardized case,

ᾱ2 =
Nc2 − 1
N − 1

� c2 (8.17)

but definition (8.16) can be evaluated directly, with or without standardiza-
tion. (Program alpha, Appendix B, approximates α by randomly selecting
a subset I of the rows of X, evaluating ρ̂ii′ for i and i′ in I, and calculating
the corresponding root mean square ρ̂ii′ value.) Our preferred estimator for
the rms correlation, the one used in Figure 7.1, is

α̂ =

[
n

n − 1

(
ᾱ2 − 1

n − 1

)] 1
2
. (8.18)

Under double standardization this is almost the same as α̂ in (8.13). Sec-
tion 8.4 justifies (8.18) squared as a nearly unbiased estimator of the true
α2 in multivariate normal models, a result supported more generally by
numerical simulations. It gave α̂ = 0.245 for the cardio example.

Table 8.2 shows α̂ estimates for the leukemia data of Figure 6.1a, ap-
plied separately to the two patient classes and also to the entire 7128 × 72
expression matrix. The original matrices were first standardized by having
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Table 8.2 α̂ (8.18) for the leukemia data of Figure 6.1a.

AML ALL Together

standardized .120 .104 .117
doubly standardized .110 .088 .103

each column linearly transformed to mean 0 and variance 1; α̂ values for
the doubly standardized versions, described below, are seen to be some-
what smaller. The “together” calculation is biased upward since genes that
actually express differently in the two patient classes will appear to be more
highly correlated, though that effect doesn’t seem crucial here. In general,
we should remove any suspected “signal” from the rows of X (such as a
regression on a known covariate) before estimating the row-wise correla-
tions.

Figure 8.2 Average serial correlations for the snp counts along
N = 26 874 sites on chromosome 9 for 313 healthy Caucasian
men; rms correlation α̂ = 0.043.

Figure 8.2 concerns a single nucleotide polymorphism (snp) study that
we shall see more of in Chapter 10: n = 313 healthy Caucasian men had
their genetic bases — A, G, T, or C — read at N = 26 874 sites on both
copies of chromosome number 9. The N ×n matrix X had entries xi j equal-
ing the number of bases disagreeing with the modal choice at that site,
xi j = 0, 1, or 2, i.e., the number of “snps.” Program alpha gave α̂ = 0.043,
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much smaller than in the cardio or leukemia studies. Figure 8.2 shows the
average lagged correlation ρ̂i,i+ j for lags j = 1, 2, . . . , 100, as we move
along chromosome 9. Nearby locations are seen to be more positively cor-
related. However, most of the rms value α̂ = 0.043 is not accounted for by
serial correlation.

Exercise 8.4 Why do we know this last statement is true?

Table 8.3 Rms correlation estimates α̂ for prostate data, Section 2.1, and
HIV data, Section 6.1.

Controls Patients Together

prostate data .014 .016 .033
HIV data .191 .209 .290

Program alpha was used to estimate α for the prostate and HIV mi-
croarray studies of Section 2.1 and Section 6.1. Table 8.3 shows α̂ to be
near zero for the prostate study, and quite large for the HIV data (about as
large as α̂ = 0.245 for the cardio study).

Chapter 7 showed how correlation can drastically degrade estimation ac-
curacy, a point reiterated in Section 8.4. Microarrays are still a relatively
new technology, and improved biomedical methods in exposure, registra-
tion, and background control may reduce correlation problems. Purely sta-
tistical improvements can also reduce correlations, perhaps by more exten-
sive standardization techniques. However, none of this will help if microar-
ray correlations are inherent in the way genes interact at the DNA level,
rather than a limitation of current methodology. My own experience has
shown microarray studies in general to be the worst correlation offenders;
imaging experiments often appear to be highly correlated, as in Figure 2.4,
but the correlation is local rather than long-range, yielding small values of
the rms correlation.

Simulating correlated z-values

A great advantage of the theory in Chapter 7 is that the rms accuracy for-
mulas depend only on the rms correlation α and not on the entire N × N
covariance matrix Σ for the N-vector of z-values z. However, simulations
like that for Figure 7.4 require us to generate vectors z whose Σmatrix has
the desired α. The program simz uses a simple construction to do so; the N
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cases are divided into J blocks of length H = N/J (with default J = 5); in-
dependentN(0, 1) variates U j and Vh j are generated for j = 1, 2, . . . , J and
h = 1, 2, . . . ,Hj, and the N z-values are set equal to (γU j +Vh j)/(1+γ2)1/2.
The constant γ is chosen to make the rms correlation of the demeaned vari-
ates zi − z̄ equal the desired value of α.

For the simulation of Figure 7.4, with N = 6000 and α = 0.10, the cor-
relation matrix of each column of X had five blocks of 1200 “genes” each,
correlation 0.20 within blocks and −0.05 across blocks. The 80 columns
were generated independently in this way. A constant δ was added to the
first 300 genes of the last 40 columns in order to simulate the two-class
model (7.42).

Exercise 8.5 X was demeaned for the simulation in Figure 7.4. What was
the value of the constant δ?

8.3 Are a Set of Microarrays Independent of Each Other?

Most of the statistical microarray literature assumes that the columns of X,
the individual arrays, are sampled independently of each other, even though
the gene expressions within each array may be highly correlated. This was
the assumption in Section 2.1, for example, justifying the t-test and the
theoretical null hypothesis (2.6). Simple permutation methods (not related
to permutation null hypotheses) offer a quick check on the assumption of
column-wise independence, sometimes with surprising results.

The scatterplot in Figure 8.3 shows the N = 20 426 points (xi,31, xi,32) for
the cardio data matrix. It seems to indicate a very strong positive correla-
tion between arrays 31 and 32, with Δ̂31,32 = 0.805 (8.3). (Since X is doubly
standardized, each row has mean 0, ruling out so-called “ecological corre-
lation,” due only to differing gene-wise response levels.) This seems like
a smoking gun argument against column-wise independence, but the gun-
smoke isn’t as convincing as it looks, for reasons discussed in Section 8.4.

A simple test for column-wise independence is based on the first eigen-
vector v1 of the n × n column sample covariance matrix Δ̂ (8.5), v1 also
being the first column of V in (8.7). The left panel of Figure 8.4 shows the
components of v1 for the cardio matrix, plotted versus the column number
1, 2, . . . , 44. Suppose that the columns of the original expression matrix be-
fore standardization were independent and identically distributed vectors.
This implies that the columns of X are exchangeable, and that all orderings
of the components of v1 are equally likely.
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Figure 8.3 Scatterplot of microarrays 31 and 32 of the cardio
data, (xi,31, xi,32) for i = 1, 2, . . . , N = 20 426. It seems to indicate
strong correlation: Δ̂31,32 = 0.805.

This is not what the figure shows: the components seem to increase from
left to right, with a noticeable block of large values at arrays 27–32. Time
trends and block effects are signs of experimental instabilities that cause
correlation across arrays. Uncontrolled changes in the development pro-
cess, for example, can raise or lower expression measurements for whole
sets of genes on different areas of the microarray chip, correlating the sub-
sequent block of arrays and raising the corresponding entries of v1.

Let S (v1) be a real-valued statistic that measures structure, for instance
the linear regression coefficient of the components of v1 versus the array
index. Comparing S (v1) with a set of permuted values{

S ∗b = S
(
v∗b

)
, b = 1, 2, . . . , B

}
(8.19)

where v∗b is a random permutation of the components of v1, provides a
quick test of the i.i.d. null hypothesis. Taking S (v1) to be the absolute value
of the above-mentioned linear regression statistic, B = 2000 permutations
yielded only eight values S ∗b exceeding S (v1). This gave p-value 8/2000 =
0.004, strongly significant evidence against the null hypothesis.

Permutation testing was also applied using the block statistic

S (v1) = v′1Bv1 (8.20)
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Figure 8.4 Left panel: Components of the first eigenvector
plotted versus array index 1, 2, . . . , 44, for the cardio data matrix;
dashes emphasize the block of large components for arrays
27–32. Right panel: First eigenvector for control subject (solid
line) and cancer patient (dashed line) matrices, prostate cancer
study of Section 2.1; there was a drift in expression levels as the
study progressed.

where B is the n × n matrix

B =
∑

h

βhβ
′
h. (8.21)

The sum in (8.21) is over all vectors βh of the form

βh = (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0)′ (8.22)

with the 1’s forming blocks of length between 2 and 10 inclusive. B = 5000
permutations of the cardio vector v1 gave only three v∗b values exceeding
S (v1), p-value 0.0006, still stronger evidence against the i.i.d. null hypoth-
esis.

The right panel of Figure 8.4 concerns the prostate data of Section 2.1.
The first eigenvectors v1 of Δ̂, computed separately for the 50 control sub-
jects and the 52 cancer patients (with the two matrices individually dou-
bly standardized), are plotted versus array number. Both vectors increase
nearly linearly from left to right, indicating a systematic drift in expression
levels as the study progressed. Some genes drifted up, others down, the av-
erage drift equaling zero because of standardization. The resulting correla-
tion effect is small (or else α̂ would be larger than Table 8.3 indicates) but
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genuine: both the slope and block tests decisively rejected independence
across the columns.

Exercise 8.6 Show that if X is doubly standardized, the average linear
regression coefficient β̂i of xi j on j = 1, 2, . . . , n equals 0.

Table 8.4 Correlation matrix and first eigenvector v1 for the eight BRCA2
cases, N = 3226 genes. The last four arrays are strongly positively
correlated.

1 2 3 4 5 6 7 8

1 1.00 .07 .09 .26 −.14 −.16 −.19 −.12
2 .07 1.00 .17 −.02 −.08 −.10 −.04 −.10
3 .09 .17 1.00 −.08 .01 −.06 −.10 −.03
4 .26 −.02 −.08 1.00 −.09 −.06 −.08 −.10

5 −.14 −.08 .01 −.09 1.00 .24 .34 .43
6 −.16 −.10 −.06 −.06 .24 1.00 .35 .35
7 −.19 −.04 −.10 −.08 .34 .35 1.00 .31
8 −.12 −.10 −.03 −.10 .43 .35 .31 1.00

v1 .30 .15 .10 .19 −.45 −.44 −.46 −.48

Sometimes a pattern of column-wise correlation is obvious to the eye.
Table 8.4 concerns the BRCA data, a microarray experiment concerning
BRCA mutations, two known genetic factors that increase the risk of breast
cancer. In this study, tumors from seven breast cancer patients having the
BRCA1 mutation were compared against eight with BRCA2, on microar-
rays measuring N = 3226 genes. The table shows the 8 × 8 correlation
matrix for the BRCA2 subjects, column standardized. We see strong posi-
tive correlations in the second group of four arrays, perhaps indicating an
uncontrolled change in the development process. The first-four/last-four
effect is particularly striking in the first eigenvector v1. A block test (now
using all blocks of length 2 through 4) rejected independence at p-value
0.025, which is close to the most extreme result possible with only eight
columns.

Two objections can be raised to our permutation tests: (1) they are really
testing i.i.d., not independence; (2) non-independence might not manifest
itself in the order of v1 (particularly if the order of the microarrays has been
shuffled in some unknown way).

Column-wise standardization makes the column distributions more sim-
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ilar, mitigating objection (1). Going further, “quantile standardization” —
say replacing each column’s entries by normal scores — makes the margi-
nals exactly the same. The cardio data was reanalyzed using normal scores,
with almost identical results.

Objection (2) is more worrisome from the point of view of statistical
power. The order in which the arrays were obtained should be available
to the statistician, and should be analyzed to expose possible trends like
those in Figure 8.4. It would be desirable, nevertheless, to have indepen-
dence tests that do not depend on order, that is, test statistics invariant under
column-wise permutations.

This turns out to be problematic, for reasons having to do with Theorem
8.1. An obvious test statistic for column-wise independence, and one that
doesn’t depend on the order of the columns, is

S =
∑
j< j′
Δ̂2

j j′

/(
n
2

)
(8.23)

the average squared off-diagonal column correlation. But if X is doubly
standardized then S is a monotone increasing function of α̂ (8.18), the es-
timated rms row correlation: so large values of S can always be blamed on
large row-wise correlations.

Exercise 8.7 Express S as a function of α̂.

In other words, the spread of the solid histogram in Figure 8.1 can always
be attributed to the spread of the line histogram. This doesn’t rule out all
histogram tests: the histogram of the 946 off-diagonal values Δ̂ j j′ appears to
be long-tailed to the right. Applying locfdr yielded five values Δ̂ j j′ having
f̂dr (6.38) less than 0.20, those exceeding 0.743. (Null density estimates
(δ̂0, σ̂0, π̂0) = (−0.04, 0.236, 998) from the MLE method.) All five were
from the block 27–32 emphasized in Figure 8.4.

The threshold 0.743 for significance seems remarkably high given that
each Δ̂ j j′ is based on N = 20 426 pairs (xi j, xi j′ ), as seen in Figure 8.3.
However, the pairs are not independent of each other because of gene-wise
correlations. We will see in Section 8.4 that the “effective sample size” for
estimating Δ j j′ is much smaller than N.

8.4 Multivariate Normal Calculations

Classic statistical theory depended heavily on normal distributions. Nor-
mality is a risky assumption in large-scale studies but, risky or not, it is a
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useful tool for analyzing our methodology. This section gives a brief review
of the ideas involved.

A random N × n matrix X is said to have matrix normal distribution

X
N×n
∼ NN×n

(
M

N×n
, Σ

N×N
⊗ Δ

n×n

)
(8.24)

if the Nn entries xi j are jointly normal, with means and covariances

E{xi j} = mi j and cov(xi j, xi′ j′) = σii′Δ j j′ . (8.25)

The notation ⊗ indicates a Kronecker product2 as defined by (8.25). If Δ =
In, the n × n identity matrix, then

cov(xi j, xi′ j) =

⎧⎪⎪⎨⎪⎪⎩σii′ if j = j′

0 if j � j′;
(8.26)

that is, the columns of X are independent of each other, each with covari-
ance matrix Σ, which was the assumption leading to our estimator α̂ in
Section 8.2. If Δ is not diagonal, X has both its rows and columns corre-
lated, a possibility we want to explore further.

Linear transformations are particularly convenient for matrix normal
distributions. If

Y
a×b
= A

a×N
X

N×n
B′
n×b

(8.27)

then

Y ∼ Na×b (AMB′, AΣA′ ⊗ BΔB′) . (8.28)

(The mean and covariance formulas in (8.28) depend only on (8.25) and do
not require normality.)

Demeaning is an example of (8.27). Let B = In − 1n1′n/n and A = IN −
1N1′N/N, where 1n is a column vector of n 1’s. Then Y is the demeaned
version of X, i.e., X with its row and column means subtracted off.

Exercise 8.8 (a) Verify this statement. (b) Show that Y has mean MY = 0
and covariance ΣY ⊗ ΔY , where

σY
ii′ = σii′ − σi· − σ·i′ + σ·· and ΔY

j j′ = Δ j j′ − Δ j· − Δ· j′ + Δ·· (8.29)

where the dots indicate averaging over the missing indices. (c) Show that
demeaning reduces the rms correlations of both rows and columns.

2 Many references reverse the notation to Δ ⊗ Σ, this being the convention for the R
function kronecker, but both notations agree on (8.25).
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In what follows we will assume that X has been both demeaned and
doubly standardized, in the population sense that M = 0 and Σ and Δ have
all diagonal elements 1,

mi j = 0, σii = 1, and Δ j j = 1. (8.30)

An unbiased estimator of α2

The matrix normal model leads directly to an unbiased estimator of the
squared rms correlation α2 (8.15), assuming that the columns of X are inde-
pendent, which, under (8.30), is equivalent to the column covariance matrix
equaling the identity

Δ = In. (8.31)

As in (8.16), let ᾱ be the observed rms row-wise correlation.

Theorem 8.3 Under the matrix normal model (8.24), (8.30), (8.31),

α̃2
n =

n
n + 1

(
ᾱ2 − 1

n

)
(8.32)

is an unbiased estimator of α2.

The proof appears at the end of this section. It depends on taking Σ̂ (8.5)
to have a Wishart distribution with n degrees of freedom. Under the usual
normal assumptions, demeaning reduces the degrees of freedom to n − 1,
suggesting the estimator

α̃2
n−1 =

n − 1
n

(
ᾱ2 − 1

n − 1

)
. (8.33)

A comparison with our preferred estimator α̂ in (8.18) shows that they are
proportional, with

α̂
/
α̃n−1 = n/(n − 1) � 1 + 1/n. (8.34)

Usually this small factor is neglible. Jensen’s inequality says that α̃n−1 will
be biased downward as an estimator of α, and simulations indicate that the
slight increase in α̂ helps mitigate this bias.

Effective sample size

The N = 20 426 points in Figure 8.3 appear strongly correlated, giving
Δ̂31,32 = 0.805. There would be no questioning correlation if the points
(xi32, xi33) were independent across cases i = 1, 2, . . . ,N. But they are not
independent, and their dependence dramatically lowers the effective sam-
ple size.
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Assume again the matrix normal model (8.24), (8.30): X ∼ NN×n(0,Σ ⊗
Δ) with the diagonal elements of both Σ and Δ equaling 1. Traditional mul-
tivariate analysis3 deals with the situation Σ = IN , i.e., with the rows of X
independent, say

xi
iid∼ Nn(0,Δ), i = 1, 2, . . . ,N. (8.35)

This gives Δ̂ a scaled Wishart distribution, unbiased for Δ, whose n2

means and n2 × n2 covariances we can denote as

Δ̂
n×n
∼

(
Δ
n×n
,Δ(2)

n2×n2

/
N

) [
Δ

(2)
jk,lh = Δ jlΔkh + Δ jhΔkl

]
. (8.36)

So, for example, cov(Δ̂11, Δ̂23) = 2Δ12Δ13/N.
Correlation between the rows of X doesn’t change the fact that Δ̂ is

unbiased for Δ, but it increases the variability of Δ̂.

Theorem 8.4 Under the matrix normal model (8.24), (8.30), the column
covariance estimator Δ̂ = X′X/N has mean and covariance

Δ̂ ∼
(
Δ,Δ(2)

/
Neff

)
(8.37)

where Neff is the “effective sample size”

Neff = N
/ [

1 + (N − 1)α2
]

(8.38)

where α is the rms correlation (8.15) and Δ(2) is as in (8.36).

In other words, Δ̂ has the accuracy obtained from Neff independent
draws (8.35). For N = 20 426 and α = α̂ = 0.245, the cardio estimate,
we get Neff = 16.7 (!). One has to imagine Figure 8.3 with only 17 points
instead of 20 426 for a realistic impression of its accuracy.

Exercise 8.9 Show that the estimated standard error of Δ̂31,32 = 0.805 is
at least 0.24, assuming α = 0.245.

There is a tricky point to consider here: α̂ (8.18) is not a dependable
estimate of α (8.15) if the columns of X are highly correlated. Theorem
8.1 works both ways: substantial column-wise correlations can induce an
unwarranted impression of row-wise correlation. For the cardio study, in
which column-wise correlation is strongly suspected, α may be consider-
ably smaller than α̂.

It should be noted that formula (8.38) applies specifically to the estima-
tion of Δ and that other estimation problems would have different effective

3 Most texts transpose the set-up so that the data matrix is n × N, usually denoted p × n,
with the columns i.i.d.
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sample sizes, perhaps not so conveniently depending on only the rms cor-
relation α. The proof of Theorem 8.4 appears at the end of this section.

Correlation of t-values

Theorem 8.3 showed that if the columns of X were i.i.d. normal vectors,
say

x j
iid∼ NN(μ,Σ) j = 1, 2, . . . , n, (8.39)

we could construct an unbiased estimator for Σ’s mean squared correlation
α2. Our real interest, however, lies not in the individual columns but with
summary statistics across the columns, like ti and zi in Section 2.1. Fortu-
nately, the covariance matrix of summary statistics is often itself nearly Σ,
so that α̃ or α̂ remain relevant to them. Here we will give a specific result
for ti, the one-sample t-statistic.

For row i of X in (8.39) define

Di =
√

nx̄i, δi =
√

nμi, and S i =

n∑
j=1

(
xi j − x̄i

)2 /
(n − 1), (8.40)

x̄i =
∑

j xi j/n, so that the t-statistic is

ti = Di
/
S 1/2

i . (8.41)

Theorem 8.5 The covariance between ti and ti′ under model (8.39) is

cov (ti, ti′ ) =
n + 1
n − 1

(
1 c0ρii′

c0ρii′ 1

)

+
1

2(n − 1)

(
δ2

i δiδi′ρ
2
ii′

δiδi′ρ
2
ii′ δ2

i′

)
+ O

(
1
n2

)
(8.42)

where

c0 = 1 −
(
1 − ρ2

ii′
) /

(2(n + 1)) . (8.43)

In the null case, δi = δi′ = 0,

cor (ti, ti′) = c0ρii′ + O
(
1/n2

)
. (8.44)

(The proof is sketched at the end of this section.)

The effect of Theorem 8.4 is to make the t-statistic correlations just
slightly smaller than those for the column entries. With n = 20 and ρii′ =

0.4, for example, we get cor(ti, ti′) � 0.392. Numerical experimentation
indicates the same kind of effect even in non-null cases, not surprisingly
since the second term in (8.42) is of order only O(1/n).
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Proof of Theorem 8.3 With σii′ ≡ 1, we have ρii′ = σii′ and ᾱ2 (8.16)
equaling

ᾱ2 =

∑
i
∑

i′ σ̂
2
ii′ − N

N(N − 1)
(8.45)

compared to

α2 =

∑
i
∑

i′ σ
2
ii′ − N

N(N − 1)
. (8.46)

A standard Wishart result, as in (8.36), says that σ̂2
ii′ has mean and variance

σ̂2
ii′ ∼

(
σ2

ii′ ,
1 + σ2

ii′

n

)
(8.47)

so that

E

⎧⎪⎪⎨⎪⎪⎩
∑

i

∑
i′
σ̂2

i

⎫⎪⎪⎬⎪⎪⎭ = n + 1
n

∑
i

∑
i′
σ2

ii′ +
N2

n
. (8.48)

�
Exercise 8.10 Complete the proof of Theorem 8.3.

Proof of Theorem 8.4 The covariance calculation for Δ̂ = X′X/N in-
volves the expansion

Δ̂ jkΔ̂lh =

(∑
i

Xi jXik/N

)(∑
i′

xi′lXi′h/N

)

=
1

N2

(∑
i

Xi jXikXilXih +
∑
i�i′

Xi jXikXi′lXi′h

)
.

(8.49)

Using the formula

E{Z1Z2Z3Z4} = γ12γ34 + γ13γ24 + γ14γ23 (8.50)

for a normal vector (Z1, Z2, Z3, Z4)′ with means zero and covariances γi j,
(8.25) gives

E

⎧⎪⎪⎨⎪⎪⎩
∑

i

Xi jXikXilXih

⎫⎪⎪⎬⎪⎪⎭ = N
[
Δ jkΔlh + Δ jlΔkh + Δ jhΔkl

]
(8.51)

(using σii′ = 1) and

E

⎧⎪⎪⎨⎪⎪⎩
∑
i�i′

Xi jXikXi′lXi′h

⎫⎪⎪⎬⎪⎪⎭ = N(N − 1)Δ jkΔkh

+ (Δ jlΔkh + Δ jhΔkl)
∑
i�i′

σ2
ii′ . (8.52)
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Then (8.49) yields

E
{
Δ̂ jkΔ̂lh

}
= Δ jkΔlh + (Δ jlΔkh + Δ jhΔkl)

(
1 + (N − 1)α2

N

)
(8.53)

giving

cov(Δ jk,Δlh) = (Δ jhΔkl + Δ jhΔkl)/Neff (8.54)

as in (8.37). �

Proof of Theorem 8.5 Letting D = (Di,Di′ )′, δ = (δi, δi′), and S = (S i, S i′ )′,
we have

D ∼ N2

(
δ,

(
1 ρii′

ρii′ 1

))
and S ∼

((
1
1

)
,

2
n − 1

(
1 ρ2

ii′

ρ2
ii′ 1

))
(8.55)

with D and S independent. The notation indicates the mean and covariance
of S , obtained from (8.36). Also defining t = (ti, ti′)′ and U = (S −1/2

i , S −1/2
i′ )′,

t = D · U, (8.56)

where the dot indicates component-wise multiplication. A standard two-
term Taylor expansion gives approximate mean and variance for U,

U ∼̇
((

1 +
3

4(n − 1)

) (
1
1

)
,

1
2(n − 1)

(
1 ρ2

ii′

ρ2
ii′ 1

))
. (8.57)

Because D and U are independent in (8.56), we can use the general identity

cov(t) = cov(D) · E {UU′} + (E{D}E{D}′) · cov(U) (8.58)

to finish the proof. �

Exercise 8.11 (a) Derive (8.57). (b) Verify (8.58). (c) Complete the proof.

8.5 Count Correlations

Correlations among the components of z, the vector of z-values, lead to
correlations in the count vector y (7.4). This is more than a theoretical
curiosity since it directly affects the interpretation of false discovery rates
(Reason (III), Section 6.4).

Here we will trace the effects of correlation on counts of the null cases,
those z-values having zi ∼ N(0, 1). Figure 8.5 used program simz, Sec-
tion 8.2, to generate 2000 simulated z vectors, each of length N = 4000
and rms correlation α = 0.20, all N cases null. The figure plots Y1 versus
Y0, where

Y0 = #{|zi| ≤ 1} and Y1 = #{z1 ≥ 2}. (8.59)
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Figure 8.5 Tail counts Y1 = #{zi ≥ 2} plotted versus central
counts Y0 = #{|zi| ≤ 1} for 2000 simulated z vectors with
N = 4000, α = 0.20. Large values of Y0 give small values of Y1,
while small Y0 gives large Y1.

Table 8.5 Standard deviations and correlation for Y0 and Y1 (8.59) for the
situation in Figure 8.5 (α = 0.20) and also for independent z-values
(α = 0).

α = .20 α = 0

Y0 Y1 Y0 Y1

standard deviation 272.0 57.3 30.1 8.89
correlation −.82 −.26

There is a very strong negative correlation: if the number of central counts
Y0 much exceeds its expectation 2731, then the number of tail counts Y1

is less than its expectation 91, and conversely. Table 8.5 shows that the
negative correlation is far stronger than in the situation where the z-values
are independent.

In an actual large-scale analysis, we might be interested in the false dis-
covery rate for region Z = [2,∞), for which Y1 would be the unobserved
numerator N0(Z) in the false discovery proportion (2.28). The fact that
central counts help predict tail counts motivates use of the empirical null
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distributions, Section 6.2. What goes wrong if we ignore this effect is illus-
trated in Figure 6.4.

The striking correlation seen in Figure 8.5 is predicted by the rms ap-
proximation (7.38). Combined with Lemma 7.1, this suggests that the null
count vector y is distributed approximately as

y = y0 + NdW A. (8.60)

Here y0 is a multinomial vector with expectation ν0 = Nd(. . . , ϕ(xk), . . . )′

and covariance diag (ν0) − ν0ν′0/N, this being cov0 in (7.14); W is the
“wing-shaped function”

Wk =
ϕ′′(xk)√

2
= ϕ(xk)

x2
k − 1√

2
for k = 1, 2, . . . ,K, (8.61)

illustrated in Figure 8.6; and A is a random variable, independent of y0,
with mean and variance

A ∼
(
0, α2

)
. (8.62)

Exercise 8.12 Show that y in (8.60) has the mean and covariance sug-
gested by Lemma 7.1 and (7.38).

Figure 8.6 Wing-shaped function ϕ(x)(x2 − 1)/
√

2.

A positive value of A in (8.60) is seen to depress the count vector y
for x in the interval [−1, 1] and to increase it outside that interval: in other
words, it decreases the central count Y0 and increases tail counts such as
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Y1. Negative A has the opposite effects. This accounts nicely for Figure 8.5.
The magnitude of the negative correlation effects depends on α in (8.62),
which controls the size of A’s excursions from 0.

Notes

Large-scale correlation problems have attracted considerable current inter-
est, as indicated in the notes for Chapter 7. Most of this chapter’s material
comes from Efron (2009a), where tests for column-wise independence are
investigated more thoroughly, and Efron (2007a). Muralidharan (2010) de-
vised the nice unbiasedness result of Theorem 8.3. Olshen and Rajaratnam
(2009) show, by advanced methods, that the double standardization argu-
ment converges, except for small, artificially contructed matrices X.

The BRCA data comes from Hedenfalk et al. (2001). Ashley et al. (2006),
working out of the laboratory of T. Quertermous, analyze the cardio data
(Agilent two-color hybridization arrays), while the snp data (unpublished)
is also from the Quertermous team. Program simz is referenced in Ap-
pendix B.
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Sets of Cases (Enrichment)

Microarray experiments, through a combination of insufficient data per
gene and the difficulties of large-scale simultaneous inference, often yield
disappointing results. In search of greater detection power, enrichment anal-
ysis considers the combined outcomes of biologically determined sets of
genes, for example the set of all the genes in a predefined genetic pathway.
If all 20 z-values in a hypothetical pathway were positive, we might assign
significance to the pathway’s effect, whether or not any of the individual zi

were deemed non-null. We will consider enrichment methods in this chap-
ter, and some of the theory, which of course applies just as well to similar
situations outside the microarray context.

Our main example concerns the p53 data, partially illustrated in Fig-
ure 9.1; p53 is a transcription factor, that is, a gene that controls the activity
of other genes. Mutations in p53 have been implicated in cancer develop-
ment. A National Cancer Institute microarray study compared 33 mutated
cell lines with 17 in which p53 was unmutated. There were N = 10 100
gene expressions measured for each cell line, yielding a 10 100 × 50 ma-
trix X of expression measurements. Z-values based on two-sample t-tests
were computed for each gene, as in (2.1)–(2.5), comparing mutated with
unmutated cell lines. Figure 9.1 displays the 10 100 zi values.

The results are disappointing. The histogram looks like a slightly short-
tailed normal density, with MLE empirical null estimate N(0.06, 1.112).
One gene, “BAX”, stands out at z = 4.83, but the other 10 099 genes have
uninteresting fdr and Fdr values, even using a N(0, 1) null.

This is where enrichment analysis comes to at least a partial rescue. A
collection of 522 potentially interesting gene sets were identified from pre-
existing1 catalogs relating to p53 function. The sets ranged in size from
two to 358 genes, median 17, with considerable overlap among the sets.

1 Here we are dealing only with pre-selected gene sets. “Unsupervised learning,” in which
the sets are chosen on the basis of the observed data — say by a clustering algorithm —
lies beyond the scope of the theory.

163
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Figure 9.1 Histogram of N = 10 100 z-values from the p53
study. Curve shows the empirical null density N(0.06, 1.112).
False discovery rate tests label all genes null, except for BAX
gene at z = 4.83. Enrichment analysis, however, will yield 8
non-null gene sets. Hash marks indicate the 22 z-values for gene
set ras pathway.

We will see that eight of the 522 sets indicate non-null enrichment, even
taking account of having 522 candidate sets to consider. One of the eight is
the ras pathway, whose 22 zi values, indicated by hash marks in Figure 9.1,
are mostly < 0.

9.1 Randomization and Permutation

We have an N × n data matrix X and a corresponding N-vector of scores z,
with zi determined from the ith row of X. The p53 study, with N = 10 100,
takes zi to be the two-sample statistic (2.1)–(2.5), but our calculations will
not require any specific form for the z-values. To begin with, we consider a
single gene set2 S comprising m z-values,

zS = {zi, i ∈ S} [#S = m]; (9.1)

m = 22 for the ras pathway in Figure 9.1. Our goal is to assign a p-value
pS to the null hypothesis H0 of “no enrichment” for S. Later we will use
false discovery rate methods to take into account simultaneous testing on a
catalog of possible gene sets.

2 Microarray terminology is convenient here, but of course the theory and methods apply
more generally.
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Let S (zS) be a score we attach to the z-values in S. We will mainly deal
with simple averages,

S (zS) =
∑
i∈S

s(zi)/m (9.2)

where s(z) is some function like z or z2, but more complicated scoring func-
tions are also of interest. A popular scoring choice is the GSEA statistic
(gene set enrichment analysis), essentially the maximum absolute differ-
ence3 between the cumulative distribution functions of the m z-values in S
and the N − m z-values not in S. A p-value pS is obtained by calculating
resampled versions of S and seeing what proportion of them exceed S (zS).

The problem is that there are two quite plausible but different resampling
schemes:

Column permutations The columns of X are randomly permuted giving
recalculated z-value vectors z∗1,z∗2, . . . ,x∗B as in Section 6.5, correspond-
ing scores

S ∗b = S
(
z∗bS

)
b = 1, 2, . . . , B, (9.3)

and p-value

p∗S = #
{
S ∗b > S

} /
B. (9.4)

Row randomization Random subsets of size m are selected from {1, 2,
. . . ,N}, say i†1, i†2, . . . , i†B, giving corresponding m-vectors and scores

z†b =
{
zi, i ∈ i†b

}
, S †b = S

(
z†b

)
, (9.5)

and p-value

p†S = #
{
S †b > S

} /
B. (9.6)

Exercise 9.1 In what way does a single permutation z-vector z∗ require
more computation than a single randomization vector z†?

Row randomization has the appealing feature of operating conditionally
on the observed vector z: it tests the null hypothesis that S is no bigger
than what might be obtained by a random selection of m elements from z.

Its defect concerns correlation between the genes. Suppose the N values
si = s(zi) in (9.2) have empirical mean and standard deviation

s ∼ (ms, sds). (9.7)

3 This difference is a version of the Kolmogorov–Smirnov test statistic.
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Then a row-randomized version of (9.2),

S † =
∑
i∈S†

s(zi)/m (9.8)

will have mean and standard deviation

S † ∼ (μ†, σ†) =
(
ms, sds

/√
m
)

(9.9)

just as if the genes were independent of each other.

Exercise 9.2 Formula (9.9) correctly gives (μ†, σ†) if we allow the subsets
i† to be chosen randomly and with replacement from {1, 2, . . . ,N}. What if
we insist that they be drawn without replacement?

Figure 9.2 Permutation standard deviations compared to
randomization standard deviations for S = z̄S, the average
z-value; 395 gene sets with m ≥ 10, p53 data. The points tend to
lie above the main diagonal (heavy line), especially for large m (m
indicated by numbers above x-axis). Dark square is ras pathway.

Taking s(zi) = zi for the p53 data gives mean and standard deviation4

s ∼ (0.00, 1.13). (9.10)

Figure 9.2 compares σ†S = 1.13/
√

m with the column permutation standard

4 The catalog of 522 gene sets includes, with repetitions, 15 059 genes, of which 4486 are
distinct. The values in (9.10) are those for the list of 15 059 rather than (0.04, 1.06) for
the original 10 100 values; (9.10) seems more appropriate for the comparison made in
Figure 9.2.
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deviation σ∗S obtained from B = 1000 values S ∗b (9.3) (for the 395 gene
sets S having m ≥ 10 members). The ratio σ∗S/σ

†
S has median 1.08 (light

line) but is considerably greater for large m, with median 1.50 for sets S
with m ≥ 50.

Positive correlations between the gene expressions inSmake the permu-
tation standard deviation σ∗S of S greater than the row randomization value
σs = sds /

√
m. The randomization p-value (9.6) will then be misleadingly

small, at least compared with p∗S, the usual permutation value.

Exercise 9.3 Let s∗S be the m-vector of values s(z∗i ), i ∈ S, corresponding
to a permutation vector z∗S, as in (9.3). If ΣS is the m×m covariance matrix
of s∗S under permutation, show that σ∗S/σ

†
S = Σ̄

1/2
S / sds, with Σ̄S the average

of the m2 elements of ΣS. (So ΣS = I gives σ∗S = σ
†
S/ sds, but positive off-

diagonal elements make σ∗S > σ
†
S/ sds.)

Permutation tests for enrichment have a serious weakness of their own,
as demonstrated by the following example. The BRCA microarray data of
Section 8.4 involved n = 15 breast cancer patients, seven with BRCA1
mutations, eight with BRCA2, on N = 3226 genes; z-values for each gene
were calculated as in (2.1)–(2.5), comparing the two BRCA categories.
The z-value histogram was highly overdispersed, empirical null estimate
N(−0.04, 1.522); Fdr analysis yielded no non-null genes.

An artificial catalog of 129 gene sets S, each of size m = 25, was
constructed by random selection from all N genes, making it highly un-
likely that any set was actually enriched. Enrichment was tested using
S =

∑
S |zi|/m, that is, (9.2) with s(z) = |z|. Figure 9.3 shows that the

permutation values S ∗ greatly underestimated the actual 129 S values. The
permutation p-values (9.4), B = 400, were very small for most of the sets
S: a standard Fdr analysis (BH(0.1) as in Section 4.2) labeled 113 of the
129 as “enriched,” even though we know that all of them were chosen at
random.

It is easy to spot the trouble here: the mean and standard deviation of the
N = 3226 values |zi| is

(ms, sds) = (1.17, 0.82) (9.11)

compared to the mean and standard deviation (m∗s, sd∗s) for all N · B permu-
tation values |z∗bi |, (

m∗s, sd∗s
)
= (0.81, 0.59). (9.12)

This makes a typical permuted score S ∗ =
∑
S |z∗i |/m smaller than the actual

score S =
∑
S |zi|/m.
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Figure 9.3 Line histogram shows scores S =
∑
S |zi|/m for 129

randomly selected gene sets from BRCA data, all m = 25. Solid
histogram is permutation scores S ∗b =

∑
S |z∗bi |/m, b = 1, 2, . . . ,

400. Dotted histogram shows restandardized scores S ∗∗ (9.13).

The values reported in (9.12) are just about what we would get if the z∗i
replicates followed a theoreticalN(0, 1) null distribution. This is a depend-
able feature of permutation t-tests, Section 6.5, which are immune to the
overdispersion seen in the BRCA z-values. The actual scores S =

∑
S |zi|/m

are not immune, and are shifted to the right in Figure 9.3.
Row randomization handles overdispersion correctly, but ignores corre-

lation; column permutation ignores overdispersion but correctly accounts
for correlation. Restandardization is a somewhat ad hoc attempt to deal cor-
rectly with both problems. Given a permutation score S ∗b (9.3), we com-
pute the restandardized score

S ∗∗b = ms +
sds

sd∗s

(
S ∗b − m∗s

)
(9.13)

where (ms, sds) are from (9.7) while (m∗s, sd∗s) are the permutation mean
and standard deviation of s(z∗bi ) over all B permutations and N genes as in
(9.13). The restandardized p-value is then

p∗∗S = #
{
S ∗∗b > S

} /
B. (9.14)

The dotted curve in Figure 9.3 is the histogram of all 129 · B restandard-
ized scores S ∗∗. It reasonably matches the actual S histogram; a BH(0.1)
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analysis of the 129 p∗∗S values now correctly declares all the sets to be un-
enriched.

Another way to write (9.14) is

p∗∗S = #

{
S ∗b − m∗s

sd∗s
>

S − ms

sds

} /
B. (9.15)

If we change s(z) to the standardized function

t(z) = (s(z) − ms) / sds (9.16)

with (ms, sds) thought of as fixed constants, e.g., as in (9.11), then the cor-
responding scoring function is

T (z) =
∑
S

t(zi)/m = (S (z) − ms) / sds (9.17)

and (9.15) becomes

p∗∗S = #
{
T ∗b > T

} /
B. (9.18)

In this sense, restandardization amounts to calculating the usual permuta-
tion p-value for a row-standardized version of S .

Exercise 9.4 Verify (9.18). Hint: (mt, sdt) = (0, 1).

The need for restandardization resembles the arguments for the empiri-
cal null in Chapter 6. Theoretically (9.11) should match (9.12) in the BRCA
example, but factors like those of Section 6.4 have spread out the distri-
bution of |zi|. These factors don’t affect the permutation distribution, and
some form of standardization is necessary before we can trust permuta-
tion p-values. This doesn’t have to be of form (3.16). The GSEA algorithm
achieves a similar effect by comparing the cdf of the z-values in S to the
cdf of all the others rather than to a theoretical N(0, 1) cdf.

Restandardization can be shown to yield reasonable inferences in a va-
riety of situations:

• if S was selected randomly, as in the row randomization model;
• if the theoretical null z ∼ N(0, 1) agrees with the empirical distribution

of the N z-values;
• if the zi are uncorrelated.

The method is not perfect, as examples can be constructed to show. Neither
the randomization nor permutation models perfectly describes how gene
sets S come under consideration in practice, making some sort of compro-
mise formula a necessity. Section 9.3 provides some theoretical support for
formula (9.13), in an admittedly specialized formulation.
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9.2 Efficient Choice of a Scoring Function

The previous section concerned the proper choice of a null hypothesis for
enrichment testing, with the control of Type I error (false rejection) in
mind. We are also interested in power, of course. This requires us to spec-
ify alternatives to null selection, which then leads to recipes for efficient
scoring functions S (z).

Row randomization (9.6) tests the null hypothesis that set S was chosen
by random selection from the N cases. The Poisson selection model allows
non-random selection. It starts with independent Poisson variates

Ii
ind∼ Poi(νi) νi = αe β

′ si/τβ (9.19)

for i = 1, 2, . . . ,N, where si = s(zi) is some feature function, a J-dimensional
function that we believe extracts the features of zi indicative of enrichment,
e.g., s(z) = (z, z2)′; β is an unknown J-dimensional parameter vector, and

τβ =

N∑
i=1

e β
′ si ; (9.20)

α is an unknown scalar parameter satisfying

α =
N∑

i=1

νi (9.21)

according to (9.19)–(9.20).
In what follows, νi will be small and the Ii almost all zeroes or ones,

mostly zeroes. It will be notationally convenient to assume that they are all
0 or 1. Then we define the selected gene set S as composed of those cases
having Ii = 1,

S = {i : Ii = 1} (9.22)

so S has

m =
N∑
1

Ii (9.23)

members. The Poisson assumptions (9.19) give m ∼ Poi(
∑
νi), or by (9.21),

m ∼ Poi(α). (9.24)

It is easy to calculate the probability gα,β(S) of selecting any particular
gene set S under model (9.19),

gα,β(S) =

(
e−ααm

m!

) (
m!em[β′ s̄S−log(τβ)]

)
(9.25)
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where

s̄S =
∑
S

si/m, (9.26)

called S (zS) in Section 9.1. This is a product of two exponential family
likelihoods, yielding maximum likelihood estimates α̂ = m and β̂ satisfying

N∑
i=1

sie
β̂′ si

/ N∑
i=1

e β̂
′ si = s̄S. (9.27)

Exercise 9.5 Verify (9.25) and (9.27). Show that the conditional distribu-
tion of S given its size m is

gβ(S|m) = m!em[β′ s̄S−log(τβ)]

= m!em[β′(s̄S−s̄)−(log(τβ)−β′ s̄)]
(9.28)

where s̄ =
∑N

1 si/N.

Parameter vector β = 0 corresponds to the row randomization null hy-
pothesis that S was selected at random. Non-zero β “tilts” the selection
toward gene sets having larger values of β′(s̄S − s̄), as seen in (9.28). An
efficient test rejects H0 : β = 0, i.e., that S was randomly selected, if s̄S is
far from its null expectation s̄. If s(z) is one-dimensional, as in Section 9.1,
we reject for extreme values of s̄S − s̄, either positive or negative, perhaps
using permutation methods to decide what “far from” means.

The choice of s(z) determines which alternatives the test will have power
against. Consider two candidates,

s(z) = z or s(z) = |z|. (9.29)

The first of these rejects if z̄S is far from z̄ =
∑N

1 zi/N: a good choice if
enrichment manifests itself as a shift of location in z-values, as seems to
be the case with the ras pathway in Figure 9.1. The second candidate has
power against scale alternatives, where the z-values inS are more dispersed
than in the whole population.

For general use one would like to have power against both shift and
scale alternatives, which suggests using a two-dimensional statistic s(z).
The maxmean statistic takes

s(z) =
(
s(1)(z), s(2)(z)

) ⎧⎪⎪⎨⎪⎪⎩s(1)(z) = max(z, 0)

s(2)(z) = −min(z, 0)
(9.30)

giving bivariate score function S (zS) = (s̄(1)
S , s̄(2)

S ). This is reduced to a
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one-dimensional test statistic by maximization,

S maxmean = max
(
s̄(1)
S , s̄(2)

S
)
. (9.31)

(Notice that this is not the same as S absmean = max(z̄S,−z̄S) = |z̄S|, the
two-sided version of the test based on means.)

Figure 9.4 Contours of equal power for testing (b, g) = (0, 1) in
situation (9.32); for S maxmean (9.31), GSEA
(Kolmogorov–Smirnov) statistic, and S absmean = |z̄S|. Comparing
contours for power = 0.5 shows S maxmean dominating GSEA and
nearly dominating S absmean.

Figure 9.4 compares the power of the maxmean test with that of the
GSEA (Kolmorogov–Smirnov) statistic and also with S absmean = |z̄S| in an
artificially simplified context: S consists of m = 25 independent normal
observations,

zi
ind∼ N

(
b, g2

)
i = 1, 2, . . . ,m = 25. (9.32)

Contours of equal power are shown for testing

H0 : (b, g) = (0, 1) (9.33)

versus alternatives (b ≥ 0, g ≥ 1) at level 0.95.
Better power is indicated by contours closer to the null hypothesis point

(b, g) = (0, 1). The maxmean test shows reasonable power in both direc-
tions. Comparing contours for power = 0.5 shows maxmean dominating
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GSEA and nearly dominating the absolute mean test.5 (The vertically ori-
ented contours for S absmean show that, as expected, it has power against shift
alternatives (b > 0) but not scale alternatives (s > 1).)

Enrichment testing was carried out using S maxmean on the catalog of 522
gene sets S; B = 1000 restandardized values yielded p-values p∗∗S for each
set. A Benjamini–Hochberg Fdr test with control level q = 0.1 (4.9)–(4.10)
yielded eight non-null cases, as illustrated in Figure 9.5. The top seven
show shifts of their z-values, five right and two left, and would have been
discovered by S absmean but the eighth set shows more of a scale effect. Note
that restandardization formula (9.13) was applied separately to s(1) and s(2)

in (9.30) and then combined to give

S ∗∗maxmean = max
{
s̄(1)∗∗
S , s̄(2)∗∗

S
}
. (9.34)

Figure 9.5 z-values for the 8 enriched gene sets, p53 data;
non-null cases from catalog of 522 sets, Benjamini–Hochberg
FDR control algorithm, q = 0.10, using p-values from maxmean
statistic.

5 The power calculations were done by simulation from model (9.32), for example
comparing the distribution of S maxmean for (b, g) = (0, 1) with the distribution for a grid
of alternatives (b ≥ 0, g ≥ 1). In this context, the GSEA statistic was essentially the
Kolmogorov–Smirnov distance between the cdf of z1, z2, . . . , z25 and a standard normal
cdf.
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A word about computation: With 522 gene sets to consider, B = 1000
resamples is not excessive. The eighth largest p-value needs to be less than
0.00153 in order to be declared non-null by the BH(0.1) procedure; that
is, less than two in 1000 values of S ∗∗S can exceed S S. Calculations were
carried out using the R program GSA, available through the CRAN library.
It would be convenient to pool the resamples for different gene sets. This
is the usual procedure for the permutation analysis of individual genes,
for example in the SAM procedure of Section 4.5. However, the gene set
resampling distributions depend heavily on both the size and correlation
structure of S, making pooling dangerous.

Exercise 9.6 Verify the threshold value 0.00153 above.

The Poisson selection model (9.19)–(9.22) follows row randomization
(9.5) in operating conditionally on the full collection z of N original z-
values, with only the selection process for S considered random. We could
instead think of S as fixed and the set of z-values in S, zS, as random,
perhaps following an exponential family of densities

fβ(zS) = cβe
βS (zS) f0(zS). (9.35)

Here f0(zS) is the baseline density for an unenriched set, β is an unknown
parameter, cβ is a constant making fβ integrate to 1, and S is some scoring
function that produces larger values under enrichment.

In this case the optimum test for null hypothesis H0 : β = 0 rejects for
S (zS) large. By choosing S as the GSEA statistic, GSEA becomes opti-
mum, etc., and we might very well use permutation/randomization meth-
ods to decide what “large” means. Taking S =

∑
S s(zi)/m gets us back to

our previous theory, still leaving us with the task of deciding on the appro-
priate form for s(z).

9.3 A Correlation Model

Restandardization attempts to correct enrichment p-values for both permu-
tation and randomization effects (9.13)–(9.14). This section6 discusses a
specialized model for correlated z-values where exact calculations are pos-
sible. We will see that restandardization fails to give exact answers, but is
reasonably accurate over a range of situations. (Arguments and proofs are
deferred to the section’s end.)

6 The material of this section is technical in nature and may be bypassed at first reading.
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Our model assumes that the N × n data matrix X is of the form

X
N×n
= U

N×n
+ V

N×J
a

J×n
(9.36)

where U and a have mutually independent normal entries,

uik
ind∼ N(0, 1) i = 1, 2, . . .N and k = 1, 2, . . . , n

ajk
ind∼ N

(
0, σ2

a

)
j = 1, 2, . . . , J and k = 1, 2, . . . , n;

(9.37)

σ2
a is assumed known in what follows. J is a small integer dividing N, say

with

H ≡ N/J and J1 ≡ J − 1. (9.38)

V is a fixed N × J matrix,

V
N×J
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1H −1H/J1 · · ·
−1H/J1 1H · · ·

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9.39)

where 1H is a vector of H 1’s. (All the off-diagonal vectors in (9.39) are
−1H/J1.)

Exercise 9.7 Let IJ be the J× J identity matrix and EH the H×H matrix
of 1’s. Show that

V ′V
J×J
= N

J

J2
1

(IJ −EJ/J) (9.40)

and

V ′V
N×N

=
J
J1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
EH −EH/J1 · · ·
−EH/J1 EH · · ·

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (9.41)

We assume that n is even, and define our vector of N z-values in terms
of the difference of averages of the last and first n/2 columns of X, say x̄2

and x̄1,

z =
√

n/4 (x̄2 − x̄1)
/
σ0 (9.42)

with

σ2
0 = 1 +

J
J1
σ2

a. (9.43)
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(zi is a two-sample t-statistic for case i, with the denominator known rather
than estimated.) In terms of (9.36),

z = (u + V A)/σ0 (9.44)

where, in notation similar to (9.42), the independent vectors u and A are
defined as

u =
√

n/4
(
Ū2 − Ū1

)
∼ NN(0, IN),

A =
√

n/4 (ā2 − ā1) ∼ NJ

(
0, σ2

aIJ

)
;

(9.45)

(9.44)–(9.45) imply that

z ∼ NN

(
0,

(
IN + σ

2
aV V ′) /σ2

0

)
. (9.46)

We will use z to illustrate correlation effects on the permutation and
randomization calculations of Section 9.1. Formula (9.41) shows that the
components zi are N(0, 1) with correlation between zi1 and zi2 depending
on whether i1 and i2 are in the same H-dimensional block of V in (9.39),(

zi1

zi2

)
∼ N2

((
0
0

)
,

(
1 ρi1,i2

ρi1,i2 1

))

where

ρi1,i2 =

⎧⎪⎪⎨⎪⎪⎩ρ same block

−ρ/J1 different blocks

[
ρ =

σ2
a

J1/J + σ2
a

]
. (9.47)

The root mean square correlation α of Section 8.2 is nearly7

α �
1√
J1

ρ

[
σ2

a =
J1

J

√
Jiα

1 − √J1α

]
. (9.48)

Given a gene set S of size m, let z̄S be the average z-value in S,

z̄S =
∑
S

zi/m. (9.49)

Our aim is to show the role of restandardization, both its benefits and limi-
tations, in assessing the variance of z̄S. To this end, let

mj = #{members of S in jth block of V}, (9.50)

7 The only approximation is setting ρii′ = ρ instead of 1, so (9.48) is accurate to order
O(1/N).
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j = 1, 2, . . . , J, that is, the number of zi values in S having ( j − 1)H < i ≤
jH (so

∑
mj = m). Define

C =
J
J1

J∑
j=1

(mj − m/J)2/m. (9.51)

Lemma 9.1 The marginal distribution of z̄S averaging over both u and
A in (9.44)–(9.45) is

z̄S ∼ N
(
0,

1
m

1 + (J/J1)σ2
aC

1 + (J/J1)σ2
a

)
. (9.52)

(Proof near the end of this section.)

C is a measure of correlation within S. If all m members of S are in the
same block, then the correlations (9.47) within S are big, giving C = m. At
the other extreme, if S is perfectly balanced across blocks, m j ≡ m/J, then
most correlations are small, and C = 0.

Exercise 9.8 Show that if S is randomly selected by m draws without
replacement from all N genes then

E{C} = 1. (9.53)

C is connected with permutation calculations, since these correctly ac-
count for correlations within S. We will see that row randomization effects
are connected with

σ̂2
A =

J∑
j=1

(
Aj − Ā

)2 /
J1

⎛⎜⎜⎜⎜⎜⎝Ā =
J∑
1

A j/J

⎞⎟⎟⎟⎟⎟⎠ , (9.54)

the sample variance of the random effects Aj in (9.44)–(9.45).

Theorem 9.2 Conditionally on σ̂2
A, z̄S has mean 0 and variance

var
{
z̄S

∣∣∣σ̂2
A

}
=

1
m

1 + (J/J1)σ̂2
aC

1 + (J/J1)σ2
a

. (9.55)

(Proof near the end of this section.)

Large values of σ̂2
A make the blocks of z-values from (9.44) more dis-

parate, and increase the variability (9.5) of z̄S† for randomly selected sub-
sets S†. With s(z) = z in (9.7), the component variance

sd2
s =

∥∥∥z2
∥∥∥ /

N (9.56)
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is conditionally distributed as a scaled non-central χ2 variate,

sd2
s

∣∣∣σ̂2
A ∼ χ2

N

(
δ2

) / (
Nσ2

0

) [
δ2 ≡ N(J/J1)σ̂2

A

]
(9.57)

as verified at the end of this section. (All the means are known to be zero in
model (9.44) so we are taking m = 0 in (9.7).) Familiar χ2 properties yield

sd2
s

∣∣∣σ̂2
A =

1 + (J/J1)σ̂2
A

1 + (J/J1)σ2
a

+ Op

(
N−

1
2

)
. (9.58)

This means that the factor σ̂2
A in (9.55) is effectively recoverable from sds

(9.56).
The unconditional distribution of σ̂2

A in (9.54) is a scaled central χ2,

σ̂2
A ∼ σ2

a χ
2
J1

/
J1 (9.59)

according to (9.45); σ̂2
A has coefficient of variation (2/J1)1/2. Taking J = 5,

as at the end of Section 8.2, gives CV = 0.707 so σ̂2
A can differ considerably

from σ2
a, and similarly the conditional variance (9.55) can vary from its

unconditional value in (9.52).
In any one realization of (9.44) we effectively know σ̂2

A from (9.58),
making the conditional variance (9.55) the correct one for computing the
enrichment significance level of S. Permutation calculations, on the other
hand, tend to produce the unconditional variance (9.52),

var∗
{
z̄∗S

}
�

1
m

1 + (J/J1)σ2
aC

1 + (J/J1)σ2
a

(9.60)

reflecting the fact that they can “see” correlations within S but not the
effects outside of S that determine σ̂2

A.
The restandardization formula (9.13) depends on ms = 0, sds from

(9.58), and

(m∗s, sd∗s) � (0, 1) (9.61)

giving

var∗∗
{
z̄∗∗S

}
�

1 + (J/J1)σ̂2
A

1 + (J/J1)σ2
a

var∗
{
z̄∗S

}
. (9.62)

To get from the permutation variance (9.60) to the conditional variance
(9.55), we should multiply by

R ≡ 1 + (J/J1)σ̂2
AC

1 + (J/J1)σ2
aC
. (9.63)
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Instead, the restandardization formula (9.62) multiplies (9.60) by

R̂ =
1 + (J/J1)σ̂2

A

1 + (J/J1)σ2
a

. (9.64)

Figure 9.6 Exact variance correction factor R versus
restandardization factor R̂ (9.63)–(9.64) for values of C and
r = σ̂A/σa as labeled; J = 5, σ2

a = 0.20. R̂ is exact for C = 1
(heavy dashed line).

We see that restandardization gives correct answers when C = 1, the
average case (9.53), but is only an approximation otherwise. Figure 9.6
compares R̂ with R for various choices of C and r = σ̂A/σa (taking J = 5
and σ2

a = 0.20, the value from (9.48) for α = 0.10). The restandardization
results seem reasonable, though far from exact for extreme choices of C. R
itself could be estimated from permutation and randomization calculations,
but the special nature of our model makes this an uncertain enterprise.

Proof of Lemma 9.1 Equations (9.44) and (9.45) give

σ0z̄S = ūS + v̄SA ∼ N
(
0,

1
m
+ σ2

a ‖v̄S‖2
)

(9.65)

where ūS =
∑
S ui/m, and likewise v̄S is the average of the rows of V

indexed by S. From (9.39) and (9.50),

v̄S =
J
J1

(
. . . ,

mj

m
− 1

J
, . . .

)
, (9.66)
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verifying (9.52) since

‖v̄S‖2 =
(

J
J1

)2 5∑
1

(
mj

m
− 1

J

)2

=
1
m

J
J1

C (9.67)

and σ2
0 = 1 + (J/J1)σ2

a. �

Proof of Theorem 9.2 Since
∑

j v̄S j = 0, (9.65) gives

σ0z̄S
∣∣∣A ∼ N (

v̄SÃ,
1
m

)
(9.68)

where Ã j = A j − Ā. But standard multivariate normal calculations show
that

E
{
v̄SÃ

∣∣∣σ̂2
A

}
= 0 and E

{(
v̄SÃ

)2
∣∣∣∣σ̂2

A

}
= σ̂2

A ‖v̄S‖2
/
J1. (9.69)

This combines with (9.67) to give (9.55), using σ2
0 = 1 + (J/J1)σ2

a. �

Exercise 9.9 Verify the preceding statement.

Non-central χ2 calculations Equation (9.44) givesσ0z|A ∼ NN(V A, IN).
Applying (9.40) shows that ‖V A‖2 = δ2, verifying (9.56)–(9.57). Distri-
bution χ2

N(δ2) has mean and variance (δ2 + N, 4δ2 + 2N), showing that the
variance of sd2

s |σ̂2
A is Op(N−1) (9.58).

Permutation calculations Model (9.36) makes the elements in any one
row of X i.i.d. normal variates

xik = uik +

J∑
j=1

vi ja jk
iid∼ N

(
0, σ2

0

)
(9.70)

for k = 1, 2, . . . , n. The permutation distribution of zi (9.42) has mean
and variance (0, σ̂2

i /σ
2
0), where σ̂2

i , the usual unbiased variance estimate∑
k(xik − xi·)2/(n − 1), has expectation σ2

0. Averaging over i = 1, 2, . . . ,N
supports (9.61).

Let x̄Sk be the average of xik for i ∈ S. The same argument as in (9.65)–
(9.67) shows that

x̄Sk
iid∼ N

(
0,

1
m

[
1 +

J
J1
σ2

aC

])
for k = 1, 2, . . . ,N. (9.71)

Also

z̄S =
√

n
4

x̄S(2) − x̄S(1)

σ0
, (9.72)
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the notation indicating averages of x̄Sk over k = 1, 2, . . . , n/2 and over
n/2 + 1, . . . , n, giving approximation (9.60).

9.4 Local Averaging

Enrichment has an exotic sound in the microarray context, where the choice
of gene sets seems rather mysterious, at least to those of us without the
required biogenetical background. There is however one situation where
gene sets are natural and enrichment a familiar tactic, though it doesn’t
involve genes. We will discuss the idea of local averaging in terms of the
DTI example of Section 2.5.

The DTI data reports z-values comparing dyslexic children with normal
controls at N = 15 443 brain locations or voxels, which can be thought of
as cubes roughly 1.5mm on a side. Voxel i has coordinates

(xi, yi, ui) (9.73)

where xi measures units from back to front of the brain, yi from right to left,
and ui from bottom to top. Figure 2.4 indicates the z-values on a horizontal
slice of the brain about half-way from bottom to top.

Local averaging amounts to smoothing the zi values by averaging them
over nearby voxels. In the example which follows, each zi is replaced with
Zi, the average of z j for j in the bigger cube

(xi ± 2, yi ± 2, ui ± 2). (9.74)

The bigger cube, call it Si, is five voxels on a side, containing a maximum
of 125 original voxels. (Only 2% of the cubes actually had 125 voxels, the
average number being 81 ± 25.)

A simple idea motivates local averaging: suppose that the voxels in Si

have independent normal z-values

z j
ind∼ N(μ j, 1) for j ∈ Si. (9.75)

Then averaging results in

Zi ∼ N(μ̄i, 1/mi) (9.76)

where mi is the number of voxels in Si and μ̄i is the average of μ j, j ∈ Si.
Rescaling to variance 1 gives

Z̃i =
√

miZi ∼ N
(√

miμ̄i, 1
)
. (9.77)

If μ̄i � μi, then going from zi ∼ N(μi, 1) to Z̃i ∼̇N(
√

miμi, 1) magnifies
effect sizes in the non-null cubes.
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Exercise 9.10 Suppose μ̄i = μi and mi = m for all values of i. (a) How
will averaging change g1 in the hierarchical model (2.47), (2.49)? (b) If
m = 9, π0 = 0.95, and g1 ∼ N(0, 2) in (2.49), graph fdr(z) = π0 f0(z)/ f (z)
for the original zi’s and the Z̃i’s.

Figure 9.7a N = 15 443 DTI z-values (solid histogram)
compared to local averages Zi (line histogram); standardized
(9.79). Local averaging has produced a heavier right tail.

Figure 9.7b Averaged values Z̃i for DTI data (9.79); horizontal
section, bottom of brain. Red, Z̃i > 0; green, Z̃i < 0; solid circles,
Z̃i > 2; solid squares, Z̃i < −2. Black arrows indicate enrichment
regions, f̂dr(Zi) ≤ 0.20.
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The N = 15 443 averaged values Zi had empirical null estimates(
δ̂0, σ̂0, π̂0

)
= (−0.15, 0.47, 0.940) (9.78)

using the MLE method of Section 6.3. This compares with (−0.12, 1.06,
0.984) for the original zi values pictured in Figure 5.1b. Figure 9.7a com-
pares histograms for the standardized z-values

Z̃i = (Zi + 0.15)/0.47 and z̃i = (zi + 0.12)/1.06. (9.79)

Averaging appears to have worked: the Z̃’s have a noticeably heavier right
tail, though the effect is nowhere as large as suggested by (9.77). (Note
that the ratio of σ̂0 values, 0.47/1.06, is closer to 1/2 than to the value
1/9 suggested by mi ∼ 81. Positive correlation within cubes increases the
variance of Zi in (9.76).)

A local false discovery rate analysis (6.38) based on the MLE method
yielded interesting regions of difference between the dyslexic brain pat-
terns and normal controls. Figure 9.7b indicates the Z̃i values on a horizon-
tal slice, this time at the bottom of the brain rather than the middle slice of
Figure 2.4. The black triangles indicate voxels with f̂dr(Zi) ≤ 0.20. These
“enrichment” regions, which were not found using the original zi’s, both
occur on the left side of the brain.

Local averaging is a simple form of enrichment that raises several points
of comparison with the previous sections:

• The reader may wonder what has happened to restandardization (9.13)–
(9.14). Our use of an empirical null in assessing f̂dr(Zi) for Figure 9.7b
is in the spirit of row randomization in that it takes account of the vari-
ability of Z j across all “gene sets” S j, not just within any one set of
interest Si. Empirical null calculations can also include permutation in-
formation, as in the sixth bullet point of Section 6.5.

• There is however an important difference. Permutation calculations (9.3),
(9.4) are done separately for each set Si, carrying over to restandardiza-
tion (9.13)–(9.14). This takes account of set differences, e.g., different
sizes mi or correlation structures, while the f̂dr(Zi) analysis treats all sets
Si the same.

• On the other hand, if the experimenters had set the DTI scanner to collect
data on a coarser scale, the Zi analysis would seem natural.

• The examples of previous chapters assumed that individual cases could
be treated as identical a priori. There the “gene sets” were singletons,
having mi = 1 and no internal correlation structure, encouraging identi-
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cal treatment (though we might have Bayesian reasons for treating them
differently, as in (5.21)–(5.25)).

• Suppose we did try to apply a restandardization formula to, say, the
prostate data example of Section 2.1. The permutation null distribution
for any one gene will be approximately z∗i ∼ N(0, 1), Section 6.5, mak-
ing (m∗s, sd∗s) � (0, 1) in (9.13). With s(z) = z, we get (ms, sds) = (z̄, σ̄),
the empirical mean and standard deviation of all N z-values. Formula
(9.14) then yields

p∗∗i = Φ
(zi − z̄
σ̄

)
(9.80)

as the restandardized p-value for case i. This compares with the empiri-
cal null p-value

p̂i = Φ

(
zi − δ̂0

σ̂0

)
(9.81)

where (δ̂0, σ̂0) are the empirical null mean and standard deviation, Chap-
ter 6.

Exercise 9.11 Verify (9.80).

The tension between row randomization and permutation brings us back
to questions of “learning from the experience of others,” Section 1.4 and
Section 2.6. Chapter 10 deals directly with the combination and separation
of cases in a false discovery rate analysis, where results like those of Fig-
ure 9.7b will be examined more skeptically.

Notes

Gene set enrichment analysis, and the GSEA algorithm, were proposed in
an influential paper by Subramanian et al. (2005) where the p53 data is
one of three main examples. The Bioconductor package limma (Smyth,
2004) offers a GSEA-like option based on z̄S. Other enrichment techniques
appear in Pavlidis et al. (2002) and Rahnenführer et al. (2004). Most of the
material in Section 9.1 and Section 9.2, including restandardization and the
maxmean statistic, is taken from Efron and Tibshirani (2007).
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Combination, Relevance, and Comparability

A tacit assumption underlies our previous examples of simultaneous infer-
ence: that all cases presented together should be analyzed together, such as
all 6033 genes for the prostate data in Figure 5.2, or all 15 443 DTI voxels.
This leads us down a perilous path. Omnibus combination may distort indi-
vidual inferences in both directions: interesting cases may be hidden while
uninteresting ones are enhanced. This chapter concerns the separation and
combination of cases in a large-scale data analysis.

Figure 10.1 illustrates separation/combination difficulties in terms of the
DTI data. Z-values for the 15 443 voxels have been separated into back
and front halves of the brain (x < 50 and x ≥ 50 in terms of Figure 2.4),
7661 voxels in back and 7782 in front. Two discrepancies strike the eye:
the heavy right tail in the combined histogram of Figure 5.1b comes exclu-
sively from the front; and the center of the back-half histogram is shifted
leftwards 0.35 units relative to the front.

Separate local false discovery rate analyses, assuming a theoretical null
distributionN(0, 1) as in Chapter 5, gave 271 voxels with f̂dr(zi) ≤ 0.20 for
the front-half data, those having zi ≥ 2.71, but none for the back half. This
is quite different from the combined analysis of Figure 5.2, where only the
184 voxels with zi ≥ 3.05 (including nine from the back) had f̂dr(zi) ≤ 0.20.

Scientific guidance would be most welcome at this point, but in its ab-
sence the statistical evidence of Figure 10.1 argues against a combined
analysis. Section 10.2 and Section 10.3 go further, suggesting still finer
separation of cases, while describing a convenient methodology for doing
so. The basic methodological idea is developed in Section 10.1. Applica-
tions to enrichment are discussed in Section 10.2. Section 10.4 discusses
whether false discovery rate methods maintain their inferential legitimacy
in the face of separation. Comparability, Section 10.5, concerns the type of
statistics that are appropriate for the combination of cases.

The central concern of this chapter is familiar in the family-wise error
rate literature, where it takes the form of the question “What is a family?”

185
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Figure 10.1 DTI data of Section 2.5 separated into back-half and
front-half voxels (x < 50 and x ≥ 50 in Figure 2.4). Separate
analyses gave 271 voxels with f̂dr ≤ 0.20 for front half, but none
for back half. MLE empirical null estimates (δ̂0, σ̂0) of
Section 6.3 show back-half center shifted 0.35 units to the left of
front half.

Miller’s introduction to the second edition of his simultaneous inference
book begins in this way:

Time has now run out. There is nowhere left for the author to go but to discuss just
what constitutes a family. This is the hardest part of the entire book because it is where
statistics takes leave of mathematics and must be guided by subjective judgement.1

We are at an advantage today because large-scale data sets allow us,
sometimes, to examine directly the trade-offs between separation and com-
bination of cases. False discovery rates, this chapter’s favored methodol-
ogy, help clarify the question. Basically, however, we won’t be able to an-
swer Miller’s question of what is the proper family for simultaneous anal-
ysis, though evidence like that in Figure 10.1 may strongly suggest what
is not. Miller’s “subjective judgements” still dominate practice. There are
some hints in what follows of a more principled approach to separation and
combination, particularly in the section on relevance, but at this stage they
remain just hints.

1 Section 1.5 of Westfall and Young’s 1993 book gives another nice discussion of basic
multiple inference conundrums.
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10.1 The Multi-Class Model

The two-groups model of Section 2.2 and Section 5.1 can be extended to
cover the situation where the N cases are divided into distinct classes, pos-
sibly having different choices of π0, f0(z), and f1(z) shown in Figure 2.3.
Figure 10.2 illustrates the scheme: two classes A and B (e.g., the front and
back halves of the brain in the DTI example) have a priori probabilities
wA and wB = 1 − wA. The two-groups model (5.1) holds separately within
each class, for example with π0 = πA0, f0(z) = fA0(z), and f1(z) = fA1(z)
in class A. It is important to note that the class label A or B is observed by
the statistician, in contrast to the null/non-null dichotomy which must be
inferred.

Figure 10.2 The multi-class model with two classes, A and B.
Two-groups model (5.1) holds separately within each class, with
possibly different parameters. Prior probabilities wA and wB
shown for the two classes.

The definitions of Section 5.1 apply separately within classes, for in-
stance to the class A mixture density and local false discovery rate

fA(z) = πA0 fA0(z) + πA1 fA1(z) and fdrA(z) = πA0 fA0(z)/ fA(z). (10.1)

A combined analysis, ignoring the class information in Figure 10.1, has
marginal densities

f0(z) = wA
πA0

π0
fA0(z) + wB

πB0

π0
fB0(z)

f1(z) = wA
πA1

π1
fA1(z) + wB

πB1

π1
fB1(z)

(10.2)
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where π0 = 1 − π1 is the combined null probability,

π0 = wAπA0 + wBπB0. (10.3)

This leads to overall marginal density and false discovery rate

f (z) = wA fA(z) + wB fB(z) and fdr(z) = π0 f0(z)/ f (z) (10.4)

just as in (5.2), (5.3). If class information were unavailable, we would have
to base our inference on fdr(z), but here we have the option of separately
employing fdrA(z) or fdrB(z).

Bayes theorem yields a useful relationship between the separate and
combined false discovery rates.

Theorem 10.1 Define wA(z) as the conditional probability of a case being
in class A given z,

wA(z) = Pr{A|z} (10.5)

and similarly define

wA0(z) = Pr0{A|z} (10.6)

to be the conditional probability of class A given z for a null case. Then

fdrA(z) = fdr(z)RA(z) where RA(z) =
wA0(z)
wA(z)

. (10.7)

Proof Let I be the event that a case is null, so I occurs in the two null
paths of Figure 10.2 but not otherwise. We have

fdrA(z)
fdr(z)

=
Pr{I|A, z}

Pr{I|z} =
Pr{I, A|z}

Pr{A|z} Pr{I|z}
=

Pr{A|I, z}
Pr{A|z} =

wA0(z)
wA(z)

.

(10.8)
�

Tail-area false discovery rates also obey the theorem. In the general no-
tation (2.12), (2.13),

FdrA(Z) = Fdr(Z)RA(Z) where RA(Z) =
Pr0{A|z ∈ Z}
Pr{A|z ∈ Z} . (10.9)

Exercise 10.1 Verify (10.9).

The virtue of Theorem 10.1 is that RA(z) is often easy to estimate, which
allows f̂drA(z) to be obtained from f̂dr(z) even if class A is too small for
direct estimation of fdrA (see Section 10.2). We do not need the theorem
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Figure 10.3 Heavy curve is logistic regression estimate of (10.5),
wA(z) = Pr{A|z}, where class A is the front-half portion of the DTI
data; dashed curve estimates wA0(z) = Pr0{A|z} (10.6).

for the DTI example of Figure 10.1 since class A is large, but the calculation
of RA(z) = wA0(z)/wA(z) is interesting in its own right.

The heavy curve in Figure 10.3 is an estimate of wA(z) = Pr{A|z} ob-
tained by ordinary logistic regression: the class indicators

ci =

⎧⎪⎪⎨⎪⎪⎩1 if casei in class A

0 if casei in class B
(10.10)

were regressed as a cubic logistic function of zi. As might be expected from
the two histograms, ŵA(z) increases smoothly with z and, in fact, a linear
logistic regression would have sufficed here.

In order to estimate wA0(z) = Pr0{A|z}, we need to make some assump-
tions about the null distributions in Figure 10.2. Assuming normal nulls
and using the MLE method of Section 6.3 gave estimates

fA0(z) ∼ N
(
δA0, σ

2
A0

)
and fB0(z) ∼ N

(
δB0, σ

2
B0

)
(10.11)

with

(δA0, σA0) = (0.06, 1.09) and (δB0, σB0) = (−0.29, 1.01). (10.12)

The null probabilities were πA0 = 0.969 and πB0 = 0.998. The dashed curve
in Figure 10.3 is ŵA0(z) estimated, using Bayes rule, from (10.11)–(10.12).
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Note: We assume wA = wB = 0.50 in Figure 10.2 since the front- and
back-half sets are nearly equal in size.

Exercise 10.2 (a) Show that (10.11) gives

wA0(z)
wB0(z)

=
wAπA0σB0

wBπB0σA0
exp−1

2

⎧⎪⎪⎨⎪⎪⎩
(
z − δA0

σA0

)2

−
(
z − δB0

σB0

)2
⎫⎪⎪⎬⎪⎪⎭ . (10.13)

(b) Express wA0(z) in terms of wA0(z)/wB0(z).

Looking at Figure 10.1, we might expect that f̂drA(z) would be much
lower than the combined estimate f̂dr(z) for large values of z, but that is not
the case. The empirical Bayes ratio

R̂A(z) = ŵA0(z)
/
ŵA(z) (10.14)

is ≥ 0.94 for z > 0, so formula (10.7) implies only small differences. Two
contradictory effects are at work: the longer right tail of the front-half distri-
bution by itself would produce small values of R̂A(z) and f̂drA(z). However,
the effect is mostly canceled by the rightward shift of the whole front-
half distribution, which substantially increases the numerator of f̂drA(z) =
π̂A0 f̂A0(z)/ f̂A(z).

The close match between ŵA0(z) and ŵA(z) near z = 0 is no accident.
Following through the definitions in Figure 10.3 and (10.1) gives, after a
little rearrangement,

wA(z)
1 − wA(z)

=
wA0(z)

1 − wA0(z)
1 + QA(z)
1 + QB(z)

(10.15)

where

QA(z) =
1 − fdrA(z)

fdrA(z)
and QB(z) =

1 − fdrB(z)
fdrB(z)

. (10.16)

Often fdrA(z) and fdrB(z) approximately equal 1.0 near z = 0, reflecting a
large preponderance of null cases and the fact that non-null cases tend to
produce z-values farther away from zero. Then (10.15) gives

wA(z) � wA0(z) for z near zero (10.17)

as seen in Figure 10.3.
Suppose we believe that fA0(z) = fB0(z) in Figure 10.2, i.e., that the

null cases are distributed identically in the two classes. (This being true
in particular if we accept the usual N(0, 1) theoretical null distribution.)
Then wA0(z) does not depend on z, and we obtain a simplified version of
Theorem 10.1.
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Corollary 10.2 If 2

fA0(z) = fB0(z) (10.18)

for all z then

fdrA(z) = c0 fdr(z)/wA(z) [c0 = wAπA0/π0]. (10.19)

Substituting z = 0 in (10.19) gives c0 = wA(0) fdrA(0)/ fdr(0) and

fdrA(z) =

(
fdrA(0)
fdr(0)

)
fdr(z) · wA(0)

wA(z)
. (10.20)

The first factor is often near 1, as mentioned before (10.17), yielding the
convenient approximation

fdrA(z) � fdr(z)
wA(0)
wA(z)

. (10.21)

(The missing factor fdrA(0)/ fdr(0) in (10.21) is likely to be ≤ 1 if A is an
enriched class, since “enrichment” implies lower null probabilities, making
approximation (10.21) conservative.) Formula (5.25) can be shown to be a
special case of (10.19).

Exercise 10.3 (a) Verify that Corollary 10.2 also applies to FdrA(Z) (10.9)
in the form

FdrA(Z) = c0 Fdr(Z)/wA(Z) (10.22)

where wA(Z) = Pr{A|z ∈ Z} and c0 = wAπA0/π0. (b) Show that (10.17) and
(10.18) together imply

dwA(z)
dz

∣∣∣∣∣
z=0
� 0. (10.23)

Approximation (10.23) can serve as a check on assumption (10.18). For
instance, the solid curve in Figure 10.3 has dŵA(z)/dz noticeably positive
near z = 0, casting doubt on (10.18) without recourse to normal mod-
els (10.11). This kind of argument is less convincing for small “enriched”
classes A where fdrA(0) may be a lot less than 1, invalidating the reasoning
leading up to (10.17).

Summary Making N, the number of cases, as large as possible is the
rationale for combined analysis, at least in an empirical Bayes framework.
Large N makes estimates like Fdr(Z) better approximations to the true

2 Notice that (10.18) is equivalent to fA0(z) = f0(z), using (10.2).
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Bayes value Fdr(Z), as in Section 2.4, justifying Bayesian interpretation
of our results. The danger of combination is that we may be getting an
accurate estimate of the wrong quantity: if FdrA(z) is much different than
FdrB(z), then Fdr(z) may be far from both. Theorem 10.1 and Corollary
10.2 offer the possibility of accurately estimating FdrA(z) even when A is a
small subclass of all N cases.

10.2 Small Subclasses and Enrichment

Corollary 10.2 is especially useful when A is a small subclass, for which
direct estimates f̂drA(z) or F̂drA(z) would be hopelessly inaccurate because
of inadequate sample size N. We encountered small subclasses in the p53
enrichment example of Chapter 9, and enrichment will be taken up later in
this section, but smallness can force itself upon our attention even in the
absence of preselected enrichment classes.

Figure 10.4 DTI z-values plotted versus distance x from back of
brain; stars indicate the 184 voxels with zi ≥ 3.05, those having
f̂dr(zi) ≤ 0.20 in combined analyses of all 15 443 voxels,
Figure 5.2. Running percentile curves show a general upward
shift of z-values around x = 62, the region including most of the
starred voxels.

The N = 15 443 DTI z-values zi are plotted versus xi, the voxel’s distance
from the back of the brain, in Figure 10.4. A clear wave is visible, cresting
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near x = 62. Most of the 184 voxels identified as non-null in the combined
fdr analysis, those with f̂dr(zi) ≤ 0.20, occurred at the top of the crest.

There is something worrisome here: the z-values around x = 62 are
shifted upward across their entire range, not just in the upper percentiles.
This might be due to a reading bias in the DTI imaging device, or a genuine
difference between dyslexic and normal children for all brain locations near
x = 62. In neither case would it be correct to assign some special signicance
to those voxels near x = 62 that happen to have large zi values.

Figure 10.4 suggests using finer subdivisions than the front/back split in
Figure 10.1. As an example, let class A be the 82 voxels located at x = 18.
These display some large z-values, attained without the benefit of riding a
wave crest.3 Their histogram is compared with that of all other voxels in
Figure 10.5, along with an estimate of the factor

R(z) = wA(0)/wA(z) (10.24)

in Corollary 10.2, formula (10.21).

Figure 10.5 DTI z-values for the 82 voxels at x = 18 (solid
histogram) compared with all other voxels (line histogram).
Dashed curve is 10 times R̂(z) = ŵA(0)/ŵA(z), formula (10.21),
Corollary 10.2; R̂(z) is less than 1 for large z, substantially
reducing f̂drA(z) below f̂dr(z). Triangles indicate threshold values
f̂drA(z) = 0.20 and f̂dr(z) = 0.20, at 2.62 and 3.05, respectively.

R̂(z) decreases for large values of z, making f̂drA(z) substantially smaller

3 Figure 9.7b also suggests something interesting going on near x = 18.
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than f̂dr(z), the combined empirical null fdr estimate. The threshold value
of z, that giving 0.20 as the estimated fdr, decreases from 3.05 for the com-
bined estimate f̂dr to 2.62 for f̂drA. The number of voxels having estimated
fdr less than 0.20 increases from two to five. (Note that R̂(z) = ŵA(0)/ŵA(z)
in (10.21) does not depend on how f̂dr(z) is estimated. The dashed curve
in Figure 10.5 applies just as well to empirical null estimation of fdr(z) in-
stead of theoretical null, in which case the threshold values increase to 2.68
and 3.17, respectively.)

Enrichment

Returning to the enrichment calculations of Chapter 9, we can reasonably
state the null hypothesis that class A is not enriched as fdrA(z) = fdr(z) for
all z, where fdr(z) is the false discovery rate ignoring class (10.4); in other
words, knowing that a case is in class A does not change our assessment of
its null probability.

Assuming fA0(z) = f0(z), as in Corollary 10.2, approximation (10.21)
yields the

enrichment null hypothesis: wA(z) = constant (10.25)

which means we can use ŵA(z) to test for enrichment. For instance, we
might estimate wA(z) by linear logistic regression and then test (10.25) with

S = β̂
/
ŝe (10.26)

where β̂ is the regression slope and ŝe its standard error.
Slope statistic (10.26) was computed for the P53 UP pathway (the top

row in Figure 9.5) comprising 40 of the 10 100 p53 data z-values: a stan-
dard linear logistic model for wA(z) gave β̂ = 0.699 ± 0.153 and

S = 0.699/0.153 = 4.58, (10.27)

two-sided p-value 4.7 · 10−6. Permutation analysis gave β̂ = 0.699 ± 0.240
and the more realistic value

S = 0.699/0.240 = 2.91, (10.28)

p = 0.0036.
Tests based on (10.26) can be shown to match asymptotically those

based on S = z̄A, the average of the z-values within A. (The connection is
through model (9.38).) There is no particular advantage to testing enrich-
ment with (10.26) rather than the methods of Chapter 9. However, having
found a significantly enriched class A like P53 UP in Figure 9.5, we can
use Corollary 10.2 to identify individual non-null cases within A. Formula
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(10.21), with ŵA(z) obtained from the linear logistic model above, yielded
nine genes in P53 UP with f̂drA(zi) ≤ 0.20, compared to just one based on
f̂dr(zi).

Exercise 10.4 Assuming fA0(z) = f0(z) for all z, show that the null hy-
pothesis H00 : fdrA(z) = fdr(z) for all z implies H0 : wA(z) = constant,
but H0 only implies fdrA(z) = constant · fdr(z). (So rejection of H0 implies
rejection of H00.)

Efficiency

How efficient is the formula based on Corollary 10.2,

f̂drA(z) = c0f̂dr(z)
/
ŵA(z) (10.29)

as an estimate of fdrA(z)? The following heuristic calculations suggest sub-
stantial, and sometimes enormous, savings over direct estimation, when A
is small.

Taking logarithms in (10.29) gives

l̂fdrA(z) = l̂fdr(z) − l̂wA(z) + constant (10.30)

with l̂fdrA(z) = log(fdrA(z)), etc. For reasons discussed later, l̂fdrA(z) and
l̂wA(z) are nearly uncorrelated, leading to a convenient approximation for
the standard deviation of l̂fdrA(z),

sd
{
l̂fdrA(z)

}
�

[
sd

{
l̂fdr(z)

}2
+ sd

{
l̂wA(z)

}2
] 1

2
. (10.31)

Of course, we expect f̂drA(z) to be more variable than f̂dr(z) since it is based
on fewer cases, NwA rather than N. Standard “square root of sample size”
considerations suggest

sd
{
l̂fdrA(z)

}
∼ 1√

wA
sd

{
l̂fdr(z)

}
(10.32)

if fdrA(z) were estimated directly in the same manner as fdr(z). The effi-
ciency question is how does (10.31) compare with (10.32)?

Table 10.1 makes the comparison for a version of situation (5.18): inde-
pendent zi are generated as in Figure 10.2, with

wA = 0.01, πA0 = 0.50, π0 = 0.95,

fA0 = fB0 ∼ N(0, 1) and fA1 = fB1 ∼ N(2.5, 1),
(10.33)

N = 3000 and 6000. So for N = 3000, A had 30 members, half of them of
the non-null N(2.5, 1) variety, compared with 5% non-null overall.
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Table 10.1 Ratio sd{l̂fdrA(z)}/ sd{l̂fdr(z)} using formula (10.31) with
linear logistic estimator ŵA(z); simulations from model (10.33). Bottom
row is true fdr(z).

z 2 2.5 3 3.5 4 4.5

N = 3000 2.2 2.0 2.0 2.0 1.8 1.4
N = 6000 2.9 3.3 2.7 2.4 2.0 1.5

fdr(z) .74 .46 .19 .066 .019 .006

The table shows values of sd{l̂fdrA(z)}/ sd{l̂fdr(z)} of about 1.5 to 3.0,
based on (10.31), in the range where the true fdr(z) value is less than
0.50. This compares with a ratio of 10 suggested by (10.32). Here f̂dr(z) =
π0 f0(z)/ f̂ (z) was calculated assuming π0 f0(z) known. Empirical null esti-
mation of π0 f0(z) sharply reduces the ratios, to near 1 for large z, because
sd{l̂fdr(z)} increases (as in Table 7.3) while sd{l̂wA(z)} stays the same. In
practice, direct empirical null estimation is impossible for a class A of only
60 members, leaving Corollary 10.2 as the sole hope for assessing f̂drA(z).

The standard deviation approximation (10.31) depends on l̂fdr(z) and
l̂wA(z) being nearly uncorrelated. Let y be the vector of discretized counts
for all N zi values, as in Section 5.2, and yA the counts for the z-values in
A. The Poisson regression estimate f̂dr depends on y while l̂wA depends
on the ratios r = (. . . yAk/yk . . . ) with y itself entering only in an ancillary
role. In outline, the argument for (10.31) depends on the general equality

var{X + Y} = var{X} + var{Y} + 2 cov {X, E(Y |X)} (10.34)

applied to X = l̂fdrk and Y = −l̂wAk. Both var{X} and var{Y} are O(1/N),
but because the expectation of r does not depend on y, the covariance term
in (10.31) is only O(1/N2).

Exercise 10.5 Verify (10.34).

10.3 Relevance

So far we have discussed the separation of cases into two classes A and B
(or A and not-A), of possibly distinct behavior. The previous theory can be
extended to include multiple classes, say one for every value of x in Fig-
ure 10.4, incorporating a notion of relevance between the classes. In the
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DTI example, for instance, we might assess the relevance between voxels
at xi and x j by some smooth kernel such as exp{−|xi − x j|/5} rather than
whether they occur in the same half of the brain.

Each case is now assumed to have three components,

case i = (xi, zi, Ii) i = 1, 2, . . . ,N, (10.35)

where xi is an observed vector of covariates, zi is the observed z-value,
and Ii is an unobservable null indicator, having Ii either 1 or 0 as case i is
null or non-null. The two-groups model (5.1) is assumed to hold separately
for each possible value x of the covariate, with parameters πx0, fx0(z), and
fx1(z), yielding

fx(z) = πx0 fx0(z)+(1−πx0) fx1(z) and fdrx(z) = πx0 fx0(z)/ fx(z). (10.36)

The class of cases with covariate x has a priori probability

w(x) = Pr{xi = x}. (10.37)

One can picture model (10.35)–(10.37) as an extended version of Fig-
ure 10.2, now with a separate arm originating at N for each value of x.

Suppose we are interested in false discovery rates for some category A
of cases, for example voxels in the hippocampus in the DTI brain study. We
have available a “relevance function” ρA(x) relating cases having covariate
x to category A. Formally, we interpret ρA(x) as the conditional probability
of A given x,

ρA(x) = Pr{A|x}. (10.38)

For the example of Section 10.1, where A was the front half of the brain,
ρA(x) equaled one or zero as x was ≥ 50 or < 50 (see Figure 2.4).

Theorem 10.1 generalizes to multiple classes.

Theorem 10.3 Under model (10.35)–(10.37), fdrA(z), the local false dis-
covery rate for category A, is related to fdr(z), the marginal false discovery
rate ignoring x, by

fdrA(z) = fdr(z)RA(z) where RA(z) =
E0{ρA(x)|z}
E{ρA(x)|z} , (10.39)

with E0{ρA(x)|z} the null conditional expectation of ρA(x) given z,

E0{ρA(x)|z} = E{ρA(x)|z, I = 1}. (10.40)

(Proof given below.)
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As in (10.9), Theorem 10.3 extends to FdrA(Z), now with RA(Z) =
E0{ρA(z)|z ∈ Z}/E{ρA(z)|z ∈ Z}.

Even if category A refers to a specific value of covariate x, say x = x0,
we still might wish to let ρA(x) fall off smoothly as x moves away from x0.
This would be in the traditional spirit of regression analysis, where we are
“borrowing strength” for estimating the conditional expectations in RA(z)
from nearby values of x. As a side benefit, the estimated false discovery
rates f̂drx0 (z) would change smoothly as a function of x0.

Exercise 10.6 Show how Theorem 10.3 reduces to Theorem 10.1 when
ρA(x) equals 1 or 0 for x equal or not equal to x0.

There is also a general version of Corollary 10.2.

Corollary 10.4 If the null density fx0(z) does not depend on x,

fx0(z) = f0(z) for all x (10.41)

then

fdrA(z) = c0 fdr(z)/E{ρA(x)|z} (10.42)

where

c0 = E{ρA(x)|I = 1} =
∫

ρA(x)w(x)πx0 dx/π0. (10.43)

Exercise 10.7 Use (10.39)–(10.40) to verify Corollary 10.4.

One can imagine a grand theory of large-scale testing in which every
case (10.35) is related to every other by similarities in both their covariates
and z-values. The relevance function theory of this section is only a small
step in that direction. Its main advantage lies in bringing regression theory,
our most flexible “relevance” methodology, to bear on empirical Bayes
testing problems.

Proof of Theorem 10.3 From (10.37) and (10.40), the conditional distri-
bution of x given category A is

w(x|A) =
w(x)ρA(x)

ρA
where ρA =

∫
w(x)ρA(x) dx = Pr{A}. (10.44)

The null probability given A is

πA0 =

∫
w(x|A)πx0 dx (10.45)
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with corresponding null density

fA0(z) =
∫

w(x|A)πx0 fx0(z) dx/πA0 (10.46)

and marginal density

fA(z) =
∫

w(x|A) fx(z) dx. (10.47)

Together, (10.44)–(10.46) yield

fdrA(z) =
πA0 fA0(z)

fA(z)
=

∫
ρA(x)w(x)πx0 fx0(z) dx∫
ρA(x)w(x) fx(z) dx

. (10.48)

The overall marginal quantities are

f (z) =
∫

w(x) fx(z) dx f0(z) =
∫

w(x)πx0 fx0(z) dx/π0 (10.49)

with π0 =
∫

w(x)πx0 dx and

fdr(z) =

∫
w(x)πx0 fx0(z) dx∫

w(x) fx(z) dx
. (10.50)

Dividing (10.48) by (10.50) gives

fdrA(z)
fdr(z)

=

⎡⎢⎢⎢⎢⎢⎣
∫
ρA(x)w(x)πx0 fx0(z) dx∫

w(x)πx0 fx0(z) dx

⎤⎥⎥⎥⎥⎥⎦
/ ⎡⎢⎢⎢⎢⎢⎣

∫
ρA(x)w(x) fx(z) dx∫

w(x) fx(z) dx

⎤⎥⎥⎥⎥⎥⎦
= E0{ρA(x)|z}/E{ρA(x)|z},

(10.51)

using Bayes theorem separately on the numerator and denominator of the
top equation, which verifies (10.39). �

10.4 Are Separate Analyses Legitimate?

The example of Section 10.1 split the DTI data into two halves, performing
separate false discovery rate analyses on each. Is this a legitimate tactic, or
do separate analyses compromise inferential properties such as false dis-
covery rate estimates? The answer will turn out to depend on the two faces
of empirical Bayes methodology: separation is fine from a Bayesian view-
point, but some caution is called for in the frequentist domain.

The Bonferroni FWER control method of Chapter 3 suggests why cau-
tion might be necessary. Applied to N simultaneous hypothesis tests, it
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rejects the null for those cases having p-values pi sufficiently small to ac-
count for multiplicity,

pi ≤ α/N (10.52)

where α is the significance level. If we separate the cases into two classes
of size N/2, rejecting for pi ≤ α/(N/2), we effectively double α. Some
adjustment of Bonferroni’s method is necessary after separation. Chang-
ing α to α/2 corrects things here, but more complicated situations, like
that suggested by Figure 10.4, require careful thought. False discovery rate
methods are more forgiving, often (but not always) requiring no adjustment
for separate analysis.

This is certainly true from a Bayesian point of view. Let (X, Z, I) be
random variables defined as in (10.35), with X indexing possible separation
strata (e.g., x in Figure 10.4), Z for z-values, and I equaling 1 or 0 as a
random case is null or non-null. Suppose that for each value X = x we have
a set Zx with conditional Bayesian false discovery rate (2.13) equaling a
target value q,

Fdrx{Zx} = Pr{I = 1|X = x and Z ∈ Zx} = q. (10.53)

Then the composite region

Z =
⋃

x

Zx (10.54)

has unconditional Bayesian Fdr equal to q,

Fdr(Z) = Pr{I = 1|Z ∈ Z} = q. (10.55)

So separate Fdr level-q control rules can be combined without fear of in-
creasing the overall Fdr level, which is to say that separation is a legitimate
tactic here. This might seem obvious, but it is not true for FWER control
rules.

Exercise 10.8 Prove (10.55).

Frequentist Fdr properties require more care. It is convenient to work
within the Poisson-independence assumptions of Section 2.4: that the num-
ber of cases N has Poisson distribution Poi(η) and that the zi are indepen-
dent. We suppose there are J possible values x of X, and for each x we have
a decision rule that decides “non-null” if

X = x and Z ∈ Zx (10.56)
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(not requiring condition (10.53)). The unbiased false discovery rate esti-
mate (2.45) for stratum x is

F̃drx = ex0/(Nx + 1) (10.57)

where Nx is the number of cases (xi, zi) satisfying (10.56) and ex0 is the null
hypothesis expectation of Nx,

ex0 = ηw(x)Fx0(Zx), (10.58)

Fx0(Zx) = Pr{z ∈ Zx|X = x and I = 1}.
The modified estimate F̃drx is conditionally unbiased for the expected

false discovery proportion in stratum x,

E
{
F̃drx

∣∣∣X = x
}
= E{Fdpx

∣∣∣X = x} (10.59)

as in Lemma 2.4. The combined estimate, ignoring x,

F̃drcomb =
etot,0

Ntot + 1

⎡⎢⎢⎢⎢⎢⎣etot,0 =
∑

x

ex0, Ntot =
∑

x

Nx

⎤⎥⎥⎥⎥⎥⎦ (10.60)

is unbiased for the overall expected false discovery proportion.
Simple algebra relates F̃drcomb to a weighted average of the F̃drx.

Theorem 10.5 Let 4

w̃(x) =
Nx + 1
Ntot + J

and F̃dr(·) =
∑

x

w̃(x)F̃drx (10.61)

where J is the number of strata x. Then

F̃drcomb =
Ntot + J
Ntot + 1

F̃dr(·). (10.62)

The factor

Pen ≡ (Ntot + J)/(Ntot + 1) (10.63)

can be thought of as a penalty for separating Fdr estimation into J classes.
If all the separate unbiased estimates F̃drx equal q, for example, the com-
bined unbiased estimate F̃drcomb takes the greater value Pen·q.

The largest penalty occurs for “single event” situations, say with N1 = 1
and N2 = N3 = · · · = NJ = 0, where Pen = (J+1)/2. In this case a separate
small value of F̃dr1 must be multiplied by a factor roughly proportional to

4 The weights w̃(x) are a regularized version of the empirical weights ŵ(x) = Nx/Ntot and
can be motivated by a vague Dirichlet prior distribution on the stratum probabilities.
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the number J of strata, reminiscent of the Bonferroni bound and its adjusted
p-values (3.15).

Figure 10.6 Histogram of z-values at N = 547 458 chromosome
sites, snp study, comparing 505 cardiovascular patients with 515
controls. Hash marks indicate 41 z-values having |zi| ≥ 4.0.
Smooth curve is proportional to N(0, 1) density function, almost
perfectly matching the histogram.

Figure 10.6 reports on a snp (single nucleotide polymorphism) study
examining N = 547 458 chromosome sites on n = 1020 subjects, 515
controls and 505 cardiovascular patients. The response variable yi j at site
i for person j was the number of observed polymorphisms (i.e., atypical
base pairs): yi j = 0, 1, or 2. For each site, a linear model was fit predicting
yi j, j = 1, 2, . . . , 1020, from disease status (healthy or sick) along with
gender and race covariates. A z-value zi was then computed as in (2.5)
from the t-value

ti = β̂i
/
ŝei (10.64)

where β̂i and ŝei were the usual regression coefficient and its standard error
for disease status.

The histogram of the 547 458 z-values is almost perfectly matched by
a N(0, 1) density. In this example the theoretical null (2.6) seems trust-
worthy, and the null probability π0 (2.7) must be nearly 1. Only 41 of the
snps give z-values exceeding 4 in absolute value, 18 on the right and 23
on the left. Table 10.2 shows the 41 z-values, their chromosome, and the
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number of sample sites per chromosome. For instance, chromosome 9 with
N(9) = 26 874 sites had only one z-value making the list, at zi = 4.51.

Table 10.2 The 41 snps with |zi| ≥ 4, snp study, Figure 10.6, showing
chromosome, number of measured snps per chromosome, z-value,
unbiased Fdr estimate F̃drx (10.57), penalized version F̃dr

+

x (10.66),
combined q-value q̂comb (10.67), and separate-chromosome q-value q̂sep,
as in (10.68).

Chrom x # snps z-value F̃drx F̃dr
+

x q̂comb q̂sep

1 42 075 −4.21 .53 .80 .57 .27
1 42 075 4.38 .53 .80 .72 .50
1 42 075 −4.22 .53 .80 .62 .34
1 42 075 −4.06 .53 .80 .88 1.00
2 45 432 −4.16 .72 1.00 .65 .72
2 45 432 −4.02 .72 1.00 .90 1.00
2 45 432 −4.46 .72 1.00 .64 .12
5 34 649 −4.21 1.00 1.00 .60 .88
6 36 689 4.25 .58 .87 .74 .39
6 36 689 4.14 .58 .87 .67 1.00
6 36 689 −4.34 .58 .87 .79 .17
7 30 170 4.28 .48 .72 .74 .19
7 30 170 −4.23 .48 .72 .64 .35
7 30 170 −4.06 .48 .72 .87 1.00
8 31 880 4.33 .67 1.00 .73 .48
8 31 880 4.53 .67 1.00 .63 .09
9 26 874 4.51 .85 1.00 .59 .17

10 29 242 −4.01 .93 1.00 .84 1.00
11 27 272 4.22 .43 .65 .63 .22
11 27 272 −4.77 .43 .65 .51 .05
11 27 272 −4.02 .43 .65 .84 .79
12 27 143 4.01 .34 .52 .83 1.00
12 27 143 4.58 .34 .52 .64 .04
12 27 143 −4.11 .34 .52 .74 .54
12 27 143 −5.10 .34 .52 .19 .00
13 20 914 −4.01 .33 .50 .81 1.00
13 20 914 −4.20 .33 .50 .56 .19
13 20 914 −4.03 .33 .50 .91 .58
15 16 625 4.03 .26 .39 .93 .93
15 16 625 −4.46 .26 .39 .57 .05
15 16 625 −4.23 .26 .39 .66 .19
17 14 341 −4.25 .30 .45 .78 .15
17 14 341 −4.24 .30 .45 .70 .32
18 16 897 4.24 .27 .40 .68 .19
18 16 897 4.02 .27 .40 .87 .98
18 16 897 4.67 .27 .40 .54 .02
19 9501 4.04 .20 .30 .90 .51
19 9501 4.21 .20 .30 .59 .12
20 14 269 4.28 .30 .45 .77 .27
20 14 269 −4.30 .30 .45 .79 .12
21 8251 4.02 .26 .39 .88 .48

As an example of Theorem 10.5, suppose we let x = 1, 2, . . . , 22 index
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chromosomes (chromosome 23 was excluded from the study) and take

Zx = {|z| ≥ 4} for x = 1, 2, . . . , 22. (10.65)

In this case Ntot = 41, J = 22, and Pen = (41 + 22)/(41 + 1) = 1.50.
Columns 4 and 5 of Table 10.2 show F̃drx and the penalized value

F̃dr
+

x = Pen · F̃drx. (10.66)

The idea behind F̃dr
+

x is to adjust the separate estimate F̃drx so that the
adjusted average equals the combined estimates F̃drcomb (10.62). None of
the separate estimates are strikingly small, though chromosome 19 gets
down to F̃dr19 = 0.20, adjusted to F̃dr

+

19 = 0.30.

Exercise 10.9 Verify F̃dr19 = 0.20.

The sixth column of Table 10.2 concerns application of the Benjamini–
Hochberg FDR control algorithm to the combined set of all 547 458 snps.
Tabled is q̂comb,i, the minimum value of q for which BH(q) would declare zi

non-null. Ordering the zi values according to absoute value, |z(1)| > |z(2)| >
. . . , the q-value corresponding to the ith ordered case is

q̂comb,(i) = 2 · N · Φ (|z(i)|) /i. (10.67)

Only the most extreme case, zi = −5.10, has even a moderately interest-
ing result, with q̂comb = 0.19. (Note that (10.67) is based on two-sided
p-values.)

Exercise 10.10 Justify (10.67) in terms of Corollary 4.2 (4.30).

By contrast, q-values calculated separately for the different chromo-
somes yield several interestingly small values q̂sep,i, the last column in
Table 10.2: zi = −4.51 on chromosome 9, for instance, has

q̂sep = 2 · 26874 · Φ(−4.51)/1 = 0.17. (10.68)

The histogram of the 26 874 chromosome 9 z-values looks just like Fig-
ure 10.2 except with 4.51 as the only outlier (indicated by the dot and
bar at the far right of Figure 10.6), giving a strong visual impression of a
significant discovery. Sixteen of the 41 snps have q̂sep ≤ 0.20, with six of
them ≤ 0.10.

Can these much more optimistic results be trusted? Probably not, at least
not from the point of view of Theorem 10.5. Changing 4 in (10.65) to 4.5
increases the penalty factor to Pen = 5.2, weakening any interest in the
chromosome 9 outcome. We do not have a neat formula like (10.66) for
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adjusting the q-values, but if we have been cherry-picking results from all
22 chromosomes then some sort of adjustment must be called for.

The snp study raises several points of concern relating to false discovery
rate analysis, especially as carried out at the extremes of a data set:

• In actuality, the data for chromosome 9 was analyzed first, at which point
4.51 looked like a clear discovery. The problem here, as with all frequen-
tist methods, lies in defining an appropriate frame of reference. Whether
mathematical statistics can improve on what Miller lamented as “subjec-
tive judgement” remains an open question, though perhaps the relevance
considerations of the previous section offer some guidance.

• The variability of Fdr(Z) or F̃dr(Z) as an estimate of the Bayes prob-
ability Fdr(Z) is enormous at the extremes of the z-values, where the
crucial quantity e+(Z) in (2.39) may be 1 or less. This undercuts faith
in the Bayesian interpretation of our Fdr estimates (which, in (10.53)–
(10.55), supported the legitimacy of separate analyses). Fdr and FWER
methods coalesce at the extremes, both requiring frequentist caution in
their use.

• These concerns vanish as we move in from the extremes of the z-value
histogram. The separation penalty factor Pen (10.63) decreases to 1 when
Ntot is much larger than J, while the implication of large e+(Z) supports
Bayesian interpretation of our Fdr estimates.

• Local fdr methods are of no help in the extreme tails, where semi-para-
metric fitting methods for f (z), Section 5.2, cannot be trusted.

• There is a certain “angels on the head of a pin” quality to the Fdr results
in Table 10.2. They require belief in calculations such as

Pr0{zi ≥ 4} = Φ(−4) = 3.2 · 10−5, (10.69)

well beyond the range of accuracy of the normal-theory approximations
for statistics (2.5), (10.64). Such beliefs are necessary for any multiple
testing procedure applied to the snp data.

• If all N = 547 458 snps were null, we would expect 34.7 z-values ex-
ceeding 4 in absolute value (according to the two-sided version of (10.69)).
The “higher criticism” test (4.42) rejects this hypothesis at the 0.05 level
for Ntot ≥ 45 (4.43), well beyond the observed value 41.

• Searching for enriched classes of snps is a promising tactic. However, in
this case grouping snps from the same gene and applying the slope test
(10.26) yielded no new discoveries.
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10.5 Comparability

Empirical Bayes methods involve each case learning from the experience
of others: other baseball players, other genes, other policemen, other snps.
To make this believable, the “others” have to be similar in nature to the case
at hand, or at least not obviously dissimilar. We wouldn’t try to learn about
prostate cancer genes from a leukemia study, even if the z-value histograms
resembled each other. Comparability, our subject here, refers to questions
of fair comparison in large-scale studies. It relates to the relevance calcula-
tions of Section 10.3, but with more emphasis on purely statistical correc-
tions and less on the underlying covariate connections.

Figure 10.7a z-values for chi-square data, Section 6.1B, plotted
versus number K of binding sites for each gene. Smoothing spline
regression (heavy curve) shows that sites with large K tend
toward larger z-values.

Figure 10.7a and Figure 10.7b illustrate two examples. The first refers
to the chi-square data of Figure 6.1b. Here the N = 16 882 z-values are
plotted versus K, the number of binding sites within each gene. We see that
the z-value algorithm of Section 6.1B tended to produce larger values for
larger K. Recentering the z-values by subtraction of the regression curve
produces a fairer comparison. (Repeating the f̂dr analysis of Figure 6.1b
after recentering, the seven z-values on the extreme right no longer had
f̂dr < 0.2.)

A more egregious example appears in Figure 10.7b. Thirteen brain tu-
mor patients were measured on two microarrays each, one from the tumor
center, the other from its periphery. One-sample t-statistics with 12 degrees
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Figure 10.7b z-values for N = 12 625 genes, n = 13 patients,
brain tumor study, plotted versus their order of being recorded.
Smoothing spline (heavy curve) reveals a strong periodic
disturbance.

of freedom, based on center/periphery differences, were calculated for each
of N = 12 625 genes and converted to z-values as in (2.5). The zi values
are plotted versus i, the order in which they were read. A substantial peri-
odic disturbance is evident, probably caused by defects in the microarray
reading mechanism.5

Subtracting off the oscillating curve is a minimal first step toward im-
proved comparability across genes. It may not be enough. In the DTI ex-
ample of Figure 10.4, the variability of the z-values changes along with
their running median. Application of Corollary 10.2, as in Figure 10.5, of-
fers a more forceful equilibration of the z-values.

Questions of comparability can arise more subtly. The early microarray
literature focused on “fold-change” rather than t-statistics in two-sample
comparisons. If the expression-level entries xi j are logarithms of the origi-
nal measurements (as with the prostate data), this amounts to analyzing the
numerators of the t-statistic (2.2),

di = x̄i(2) − x̄i(1) (10.70)

rather than ti = di/si.
A recent experimental comparison of microarray platforms used spike-in

5 The period matches the width of the rectangular microarray chip from which they were
read.
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samples6 to test agreement among different commercial technologies. The
good news was that the different microarray types agreed in locating non-
null genes. Less good was the authors’ recommendation of fold-change
rather than t-statistics for testing purposes, on the grounds that the di gave
more stable results.

Figure 10.8 Fold-change statistics di (10.70) for the prostate data
of Section 2.1. The genes have been divided into quartiles on the
basis of si, the estimated standard error. The di histogram for the
highest si quartile is much more dispersed than that for the lowest
quartile.

This last statement almost has to be true: ti = di/si is usually noisier than
di because of the randomness in the denominator. Stability is less important
than comparability though, as illustrated in Figure 10.8. There the prostate
data of Section 2.1 has been reanalyzed in terms of fold-changes di. The
N = 6033 genes have been divided into quartiles according to the size of si,
the estimated standard error. Histograms show di distributions in the lowest
and highest quartiles. Not surprisingly, the histogram is much wider for the
highest quartile.

Exercise 10.11 Why isn’t this surprising? Hint: Consider the situation

xi j
ind∼ N(0, σ2

i ).

A false discovery rate analysis based on the di values would preferen-
tially select genes i with high variability in their expression levels xi j, which

6 Artificially constructed biological samples where it is known which genes are null or
non-null.
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is probably irrelevant to their null/non-null status. The obvious way to cor-
rect for this is to divide di by si, getting us back to t-statistics ti. (The
corresponding figure for the ti values shows no difference between the two
histograms.)

The popular SAM algorithm described in Section 4.5 advocates use of a
compromise test statistic,

ui =
di

a0 + si
. (10.71)

Choosing a0 = 0 makes ui = ti, while letting a0 approach infinity makes
ui equivalent to di for testing purposes. As a0 increases, stability improves
(especially for genes that have very small values of si) but at the cost of
decreased comparability. With a0 equal the median of the N si values, one
of the SAM choices, the equivalent of Figure 10.8 still shows a large dis-
crepancy between the two histograms.

Double standardization (8.2) improves comparability across cases. It
makes fold-changes di equivalent to t-statistics. Full double standardiza-
tion isn’t a necessity, but if the rows of X are of vastly different scales,
non-comparability may be a concern, particularly for more complicated
situations than two-sample testing.

Empirical Bayes methods require the pooling of information across sets
of, hopefully, similar cases. This chapter’s topic, combination and separa-
tion, relevance, and comparability, concerned when and how the pooling
should be done. The discussion raised more questions than it settled, but
they are good questions that deserve some thought before embarking on
any large-scale data analysis.

Notes

Most of the material in Section 10.1 through Section 10.4 originated in
Efron (2008b). Genovese et al. (2006) consider more qualitative situations
than those of Section 10.1, where A or B might be classes of greater or
less a priori null probability. Their “weighted BH” rule transforms zi into
values zAi or zBi depending on the class and then carries out a combined Fdr
analysis, rather than keeping zi the same but using different FdrA or FdrB

analyses. Ferkingstad et al. (2008) explore the dependence of Fdr(z) on x
by means of explicit parametric models.

Q values, Section 10.4, were introduced by Storey (2002). Efron and
Morris (1971, 1972) used relevance functions for James–Stein estimation
where, as in Section 10.3, the question was one of combining data from
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more or less similar situations. The snp study, ongoing, comes from the
Stanford laboratory of T. Quertermous. Figure 10.7b is based on an unpub-
lished study from the Stanford School of Medicine.
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Prediction and Effect Size Estimation

A prediction problem begins with the observation of n independent vectors,
the “training set”,

(x j, y j) j = 1, 2, . . . , n, (11.1)

where x j is an N-vector of predictors and y j a real-valued response. Using
the training set, the goal is to construct an effective prediction rule r(x):
having observed a new vector x but not y, it is hoped that r(x) will accu-
rately predict y. An insurance company, for instance, might collect predic-
tors (age, gender, smoking habits) and be interested in predicting imminent
heart attacks.

Classical prediction methods depend on Fisher’s linear discriminant func-
tion. Here the response variable is dichotomous, y = 1 or 2 (perhaps repre-
senting “healthy” or “sick”) and x j has a multivariate normal distribution
whose mean vector depends on y,

y =

⎧⎪⎪⎨⎪⎪⎩1 x ∼ NN(δ1,Σ)

2 x ∼ NN(δ2,Σ).
(11.2)

In the Bayesian situation, where y has prior probabilities1

p1 = Pr{y = 1} and p2 = Pr{y = 2} (11.3)

an application of Bayes rule gives log posterior odds ratio

log

(
Pr{y = 2|x}
Pr{y = 1|x}

)
= β0 + β′x (11.4)

with
β′ = (δ2 − δ1)′Σ−1

β0 = log(p2/p1) +
(
δ′2Σ

−1δ2 − δ′1Σ
−1δ1

) /
2.

(11.5)

1 Notice that this is different than the two-groups model (2.7), where the distinction is
between the unobserved null vs non-null dichotomy, rather than healthy vs sick, which is
observable in the training set.

211
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Exercise 11.1 Verify (11.4)–(11.5).

The optimum Bayes rule predicts y = 1 or 2 as β0 + β′x, Fisher’s lin-
ear discriminant function, is less than or greater than 0; (11.4) is a nice
linear function of x, neatly dividing the space of possible x vectors into
prediction regions separated by the hyperplane β0 + β′x = 0. In practice,
β0 and β are estimated from the training set using the usual unbiased esti-
mates of δ1,δ2, and Σ in model (11.2), with log(p2/p1) perhaps estimated
by log(n2/n1), the observed numbers in the two categories.

All of this works well in the classic situation where the number of in-
dependent observations n is much bigger than N, the predictor dimension.
This is just what we don’t have in large-scale applications. Suppose we
wish to use the prostate data set of Section 2.1 to develop a prediction
rule for prostate cancer: given x, a microarray expression vector for the
N = 6033 genes, we want a rule r(x) that predicts whether the man who
provided x will develop prostate cancer. Now N = 6033, n = 102, and the
usual unbiased estimates of (11.4) will probably be useless, unbiasedness
being an unaffordable luxury in high dimensions.

A variety of computer-intensive prediction algorithms has been devel-
oped recently that trade bias for stability and accuracy: boosting, bagging,
support vector machines, LARS, Lasso, and ridge regression being some of
the prominent candidates. This chapter will discuss a comparatively simple
empirical Bayes approach to large-scale prediction. Besides adding to the
store of useful methodology, this will give us a chance to put prediction
problems into a false discovery rate context.

In the prostate example it seems obvious that a good prediction rule
should depend on genes that express themselves much differently in sick
and healthy subjects, perhaps those falling beyond the small triangles in
Figure 5.2. Fdr analysis aims to identify such genes. In Section 11.4 we
will go further, and try to estimate effect size, a quantitative assessment of
just how non-null a gene may be.

We begin in Section 11.1 with a simple model that leads to an empirical
Bayes algorithm for prediction and, eventually, to effect size estimation.
We restrict attention to the dichotomous case where each y j equals 1 or 2,
calling the two states “healthy” and “sick” for the sake of definiteness, and
refer to the components of x j as “gene expression” or just “genes”, though
of course the theory has nothing particularly to do with genomics.
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11.1 A Simple Model

Motivation for our empirical Bayes prediction rules starts from a drastically
idealized model for the predictor vectors x j in (11.1). We assume that the
components xi of a typical such vector x = (x1, x2, . . . , xi, . . . , xN)′ are
independently normal, with location and scale parameters μi and σi, and
with possibly different expectations in the two subject categories,

xi − μi

σi

ind∼ N
(
± δi

2c0
, 1

) ⎧⎪⎪⎨⎪⎪⎩“−” healthy class (y = 1)

“+” sick class (y = 2).
(11.6)

The constant c0 equals

c0 = (n1n2/n)1/2 (11.7)

where n1 and n2 are the number of healthy and sick subjects in the training
set, n = n1 + n2. (Dividing by c0 in (11.6) will make δi the effect size in
what follows.) Null genes have δi = 0, indicating no difference between
the two categories; non-null cases, particularly those with large values of
|δi|, are promising ingredients for effective prediction.

Let

ui = (xi − μi)/σi i = 1, 2, . . . ,N, (11.8)

be the standardized version of xi in (11.7) so that u has two possible N-
dimensional normal distributions,

u ∼ NN (±δ/(2c0), I) , (11.9)

“−” or “+” as y = 1 or 2, with δ = (δ1, δ2, . . . , δN)′ the vector of effect sizes
and I the N × N identity matrix.

The ideal prediction rule depends on the weighted sum

S =
N∑

i=1

δiui ∼ N
(
±‖δ‖2/2c0, ‖δ‖2

)
(11.10)

with “−” and “+” applying as in (11.6). If the two categories in (11.3) have
equal prior probabilities,

p1 = p2 = 0.50 (11.11)

we predict

healthy (y = 1) if S < 0

sick (y = 2) if S > 0.
(11.12)
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Prediction error rates of the first and second kinds, i.e., confusing healthy
with sick or vice versa, both equal

α ≡ Φ(−‖δ‖/2c0). (11.13)

We need ‖δ‖ = (
∑
δ2

i )1/2, the length of the effect size vector, to be large for
successful prediction.

Exercise 11.2 Use Fisher’s linear discriminant function to verify (11.10)–
(11.13).

The ideal rule (11.12) is unavailable even if we believe model (11.6): in
practice we need to estimate the parameters

(μi, σi, δi) i = 1, 2, . . . ,N, (11.14)

entering into S (11.10), more than 18 000 of them for the prostate data.
This is where the training data (11.1) comes in,

X
N×n
= (x1,x2, . . . ,xn) and y = (y1, y2, . . . , yn)′. (11.15)

By reordering the subjects, we can take the first n1 entries yj = 1 and the
last n2 entries y j = 2, that is, healthy subjects first. Let x̄i1 and S S i1 be
the mean and within-group sum of squares for gene i measurements in the
healthy subjects,

x̄i1 =

n1∑
j=1

xi j/n1 and S S i1 =

n1∑
j=1

(
xi j − x̄i1

)2
(11.16)

and similarly x̄i2 and S S i2 for the n2 sick subjects. Then

μ̂i =
x̄i1 + x̄i2

2
and σ̂2

i =
S S i1 + S S i2

n − 2
(11.17)

are unbiased estimates of μi and σ2
i .

The crucial prediction parameters are the effect sizes δi. This is where
unbiasedness fails us. Assume for the moment that σi is known, in which
case

δ̄i ≡ c0
x̄i2 − x̄i1

σi
∼ N(δi, 1) (11.18)

unbiasedly estimates δi. Substituting σ̂i for σi gives the two-sample t-
statistic ti (2.2) that we can transform to zi as in (2.5) with approximate
distribution

zi ∼̇ N(δi, 1), (11.19)

which becomes increasingly accurate for large values of n. For now we
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will treat it as exact, though the prediction program Ebay introduced in
Section 11.2 makes a small change to accommodate the effects of transfor-
mation (2.5).

This looks promising. For prediction purposes, however, we are hoping
to find extreme values of δi, either positive or negative, while selection bias
makes the extreme zi values overinflated estimates: z610 = 5.29 is the most
extreme z-value for the prostate data, but it is likely that δ610 is less than
5.29; z610 has won a “farthest from the origin” contest among N = 6033
contenders, partly no doubt from having δ610 large, but also from having a
positive random error (or else it probably would not have won the contest),
which is what selection bias means.

The pamr algorithm2 counteracts selection bias by shrinking the esti-
mates zi toward zero according to what is called a soft thresholding rule,

δ̂i = sign (zi) · (|zi| − λ)+ (11.20)

where x+ equals max(x, 0). That is, each zi is shrunk toward zero by some
fixed amount λ, under the restriction that shrinking never goes past zero.
A range of possible shrinkage parameters λ is tried, and for each one a
statistic like (11.10) is formed from the estimates (μ̂i, σ̂i, δ̂i),

Ŝ λ(x) =
N∑

i=1

δ̂iûi
[
ûi = (xi − μ̂i)

/
σ̂i

]
(11.21)

leading to the rule rλ(x) that predicts y = 1 or 2 as Ŝ λ(x) is less than or
greater than zero (11.12). A cross-validation method, described below, is
then employed to estimate αλ, the error rate for rλ(x) (as well as providing
separate estimates for errors of the first and second kinds).

Table 11.1 shows pamr output for the prostate data. As λ increased from
0, the estimated error rate α̂λ decreased, reaching a minimum of 0.08 at
λ = 2.16 and then increasing again. This suggests that rule r2.16(x) would
make only 8% errors in predicting prostate cancer from microarray mea-
surements.

Notice that the prediction statistic Ŝ λ(x) involves only those genes with
|zi| > λ, since δ̂i (11.20) is zero for |zi| ≤ λ. At λ = 2.16, only 377 of the
6033 genes are involved in the prediction. Less is more as far as prediction
is concerned, rules based on fewer predictions being generally easier to
implement and more reproducible.

2 Prediction analysis for microarrays, also known as the “nearest shrunken centroid”
algorithm, is available from the R library CRAN.
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Table 11.1 Cross-validated error rates α̂λ, pamr prediction rules applied
to prostate cancer data, for increasing choices of shrinkage parameter λ
(11.20)–(11.21). Taking λ = 2.16 gave α̂λ = 0.08, using a prediction rule
based on 377 genes.

Shrinkage
λ # Genes α̂λ

.00 6033 .34

.54 3763 .33
1.08 1931 .23
1.62 866 .12
2.16 377 .08
2.70 172 .10
3.24 80 .16
3.78 35 .30
4.32 4 .41
4.86 1 .48
5.29 0 .52

Cross-validation

Ten-fold cross-validation, used in pamr, randomly splits the n subjects into
ten “folds” with roughly proportional numbers of “healthy” and “sick” in
each fold. The prediction algorithm is refit ten times with the cases of each
fold withheld from the training set in turn, the cross-validated error rate α̂CV

being the average error rate on the withheld cases. A typical fold contained
ten subjects for the prostate data, five healthy and five sick, who were then
predicted by the rule constructed from the data of the other 92 subjects;
pamr actually repeats ten-fold cross-validation several times, averaging the
cross-validated error rates over all the repetitions.

Apparent error, how accurately a rule predicts its own training set, is
usually too optimistic. Cross-validation is a simple way to estimate, almost
unbiasedly, how well the rule will do on a new set of data. It is important
to remember that α̂CV is not an estimate of error for a specific rule, for
instance r̂2.16(x) in Table 11.1. Rather, it is the expected error rate for rules
selected according to the same recipe. Cross-validation is not perfect and
can give misleadingly optimistic estimates in situations like (6.36), but it is
almost always preferable to the apparent error rate.

Examining Table 11.1, it seems we should use λ = 2.16 for our pre-
diction rule. However, there is a subtle danger lurking here: because we
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have looked at all the data to select the “best” λ, this choice is not itself
cross-validated, and the corresponding rate 0.08 may be optimistic.

A small simulation study was run with N = 1000, n1 = n2 = 10, and

all xi j
ind∼ N(0, 1). In this situation, all δi in (11.6) are zero and α = 0.50 at

(11.13); but the minimum cross-validated pamr error rates in 100 simula-
tions of this set-up had median 0.30 with standard deviation ±0.16. This is
an extreme example. Usually the over-optimism is less severe, particularly
when good prediction is possible.

11.2 Bayes and Empirical Bayes Prediction Rules

We now assume a Bayes prior distribution g(δ) for the effect size parame-
ters δi in model (11.6). Reducing the data to z-values (11.19), we have, as
in (2.47),

δ ∼ g(·) and z|δ ∼ N(δ, 1) (11.22)

for a typical (δ, z) pair. For convenience we will treat g(δ) as a density
function but allow it to have discrete atoms, perhaps with an atom π0 at
δ = 0 as in the two-groups model (5.1), though that is not assumed here.

The normal hierarchical model (11.22) is a favorite in the empirical
Bayes literature because it leads to particularly simple Bayesian estimates.

Theorem 11.1 Let f (z) be the marginal density of z in model (11.22),

f (z) =
∫ ∞

−∞
ϕ(z − δ)g(δ) dδ

[
ϕ(z) = e−z2/2

/√
2π

]
. (11.23)

Then the posterior density of δ given z is

g(δ|z) = ezδ−ψ(z)
(
e−δ

2/2g(δ)
)

(11.24)

where

ψ(z) = log ( f (z)/ϕ(z)) . (11.25)

Proof According to Bayes theorem,

g(δ|z) = ϕ(z − δ)g(δ)/ f (z). (11.26)
�

Exercise 11.3 Complete the proof.

Formula (11.24) is an exponential family of densities for δ with canon-
ical, or natural, parameter z. The standard exponential family properties
reviewed in Appendix A then yield the following result.
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Corollary 11.2 Under model (11.22), δ has posterior mean and variance

E{δ|z} = ψ′(z) and var{δ|z} = ψ′′(z) (11.27)

where ψ′ and ψ′′ indicate the first and second derivatives of ψ(z). Going
further, the kth cumulant of δ given z equals dkψ(z)/dzk. Letting l(z) =
log( f (z)), we can rewrite (11.27) as

E{δ|z} = z + l′(z) and var{δ|z} = 1 + l′′(z), (11.28)

now with primes indicating derivatives of l(z).

The great advantage of Corollary 11.2 is that the moments of δ given z
are obtained directly from the marginal density of f (z) without requiring
explicit calculation of the prior g(δ), thus avoiding the usual difficulties of
deconvolution. This is essential for empirical Bayes applications, where
now we need only estimate f (z), not g(δ). The R algorithm3 Ebay uses
Poisson regression on histogram counts (5.11)–(5.15) to obtain a smooth
estimate l̂(z) of l(z) = log( f (z)), and then estimates of E{δ|z} and var{δ|z},

z −→ l̂(z) −→ l̂′(z) −→ Ê{δ|z} = z + l′(z) (11.29)

and v̂ar{δ|z} = 1 + l′′(z).

Figure 11.1 Estimated effect size Ê{δ|z}, from application of
Ebay algorithm to prostate cancer z-values. Dashed curve is soft
thresholding rule (11.20) using pamr value λ = 2.16.

The heavy curve in Figure 11.1 shows Ê{δ|z} obtained by application

3 See Appendix B.
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of Ebay to the prostate cancer z-values. We see that Ê{δ|z} is nearly zero
for z in (−2, 2), then grows almost linearly for |z| > 2. Gene 610, with
z610 = 5.29, is estimated to have effect size 4.11. Ê{δ|z} resembles a soft
thresholding rule (11.20), but with λ noticeably smaller than the pamr
choice 2.16, the latter being a more vigorous shrinker, particularly for neg-
ative values of z.

Beginning with a vector z of z-values obtained from t-statistics as in
(2.5), the Ebay algorithm produces prediction rules in the following steps:

1 A target error rate α0 is selected (default α0 = 0.025).
2 Poisson regression is used to generate effect size estimates

δ̂i = Ê{δ|zi} (11.30)

as at (11.29), with an adjustment to account for Student-t effects de-
scribed below at (11.33)–(11.34).

3 Letting δ̂m be the vector of m largest δ̂i values in absolute value, m is
selected to be the smallest integer such that the nominal error rate α̂m =

Φ(−‖δ̂m‖/2c0) (11.13) is less than α0, i.e., the minimum m making

‖δm‖ ≥ 2c0Φ
−1(1 − α0). (11.31)

4 The resulting empirical Bayes prediction rule is based on the sign of

Ŝ =
∑

m

δ̂iûi (11.32)

as in (11.12), (11.21), the summation being over the m selected cases.
5 Repeated ten-fold cross-validation is used to provide an unbiased esti-

mate of the rule’s prediction error, as described near the end of Sec-
tion 11.1.

Table 11.2 displays Ebay’s output for the prostate data. At the first step,
gene 610 with z610 = 5.29 and δ̂610 = 4.11 was selected, giving α̂ =

Φ(−4.11/2c0) = 0.342 (c0 = 5.05 (11.7)). The algorithm stopped at step
55, at which point α̂m first went below the target value α0 = 0.025.

Cross-validation estimates of prediction error were based on 20 inde-
pendent replications of ten-fold CV, α̂CV = 0.090 being the overall average
error (with standard error 0.003, obtained in the usual way for an average).
Averaging the CV prediction errors separately over the 50 healthy and 52
sick subjects indicated much poorer accuracy in predicting the latter. Note
that here α̂CV is honest in the sense that the form of the empirical Bayes rule
is completely determined, as opposed to our pamr example where the best
value λ = 2.16 was selected after examining the cross-validation results.
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Table 11.2 Ebay output for prostate cancer prediction rule (11.32). The
rule employs data from the 55 genes having the largest values of |δ̂i|, the
effect size estimates. Also shown is variance estimates v̂ar from (11.27),
theoretical prediction error estimates α̂, and α̂cor, error estimates
including correlations between the genes (11.38).

Step Index z δ̂ v̂ar α̂ α̂cor

1 610 5.29 4.11 .87 .342 .342
2 1720 4.83 3.65 .89 .293 .289
3 364 −4.42 −3.57 .92 .258 .258
4 3940 −4.33 −3.52 .92 .231 .231
5 4546 −4.29 −3.47 .93 .208 .223
6 4331 −4.14 −3.30 .97 .190 .197
7 332 4.47 3.24 .91 .175 .189
8 914 4.40 3.16 .92 .162 .175
...

...
...

...
...

...
...

45 4154 −3.38 −2.23 1.18 .032 .054
46 2 3.57 2.22 .97 .031 .055
47 2370 3.56 2.20 .97 .031 .053
48 3282 3.56 2.20 .97 .030 .052
49 3505 −3.33 −2.15 1.19 .029 .050
50 905 3.51 2.15 .97 .028 .051
51 4040 −3.33 −2.14 1.19 .027 .052
52 3269 −3.32 −2.12 1.19 .027 .050
53 805 −3.32 −2.12 1.19 .026 .048
54 4552 3.47 2.09 .97 .025 .048
55 721 3.46 2.09 .97 .025 .044

There are many reasons why α̂CV might exceed the ideal theoretical rate
α0: (μ̂i, σ̂i) (11.17) does not equal (μi, σi); the measurements xi in (11.6)
are not normally distributed; they are not independent; the empirical Bayes
estimates δ̂i differ from the true Bayes estimates δi = E{δ|zi} (11.27).

This last point causes trouble at the extreme ends of the z scale, where
|δ̂(z)| is largest but where we have the least amount of data for estimating
E{δ|z}. An option in Ebay allows for truncation of the δ̂ estimation pro-
cedure at some number ktrunc of observations in from the extremes. With
ktrunc = 10, used in the second row of Table 11.3, δ̂i for the ten largest zi

values is set equal to max{δ̂i : i ≤ N−10}, and similarly at the negative end
of the z scale. This was moderately effective in reducing the cross-validated
prediction errors in Table 11.3.
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Table 11.3 Cross-validation estimates of prediction error for prostate
cancer data (standard errors in parentheses). Prediction errors are much
larger in the sick category. Truncating the prediction rule reduces
prediction errors.

α̂CV Healthy Sick

no truncation .090 (.003) .044 (.005) .128 (.005)
ktrunc = 10 .073 (.004) .032 (.005) .107 (.006)

Student-t effects

Section 7.4 showed that the distribution of zi = Φ
−1(Fν(ti)) of a non-central

t-statistic with ν degrees of freedom is well-approximated by a modified
version of (11.22),

z ∼ N
(
δ, σ2(δ)

) [
σ2(δ) ≤ 1

]
(11.33)

where the function σ2(δ) depends on ν (see Figure 7.6). Rather than for-
mulas (11.29), Ebay uses

Ê{δ|z} = z + σ2(z)l̂′(z) and v̂ar{δ|z} = σ2(z)
[
1 + σ2(z)l̂′′(z)

]
. (11.34)

This produces slightly larger δ̂i estimates since σ2(zi) ≤ 1.

Exercise 11.4 (a) Suppose z ∼ N(δ, σ2
0) for some fixed varianceσ2

0. Show
that

E{δ|z} = z + σ2
0l′(z) and var{δ|z} = σ2

0

[
1 + σ2

0l′′(z)
]
. (11.35)

(b) Suggest an improvement on (11.34).

Correlation corrections

The assumption of gene-wise independence in our basic model (11.6) is
likely to be untrue, perhaps spectacularly untrue, in applications. It is not
difficult to make corrections for correlation structure. Suppose that the vec-
tor u of standardized predictors in (11.8) has covariance matrix Σ rather
than I , but we continue to use prediction rule (11.10), (11.12). Then the
error probability α (11.13) becomes

α = Φ(−Δ0 · γ) where

⎧⎪⎪⎨⎪⎪⎩Δ0 = ‖δ‖/2c0

γ =
(
δ′δ

/
δ′Σδ

)1/2
.

(11.36)
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Here Δ0 is the independence value while γ is a correction factor, usually
less than 1, that increases the error rate α.

Exercise 11.5 Verify (11.36).

The standardized variates ui have variance 1 so Σ is u’s correlation
matrix. At the mth step of the Ebay algorithm we can compute the obvious
estimate of γ,

γ̂m =
(
δ̂′mδ̂m

/
δ̂′mΣ̂mδ̂m

) 1
2 (11.37)

where Σ̂m is the m × m sample correlation matrix for the first-selected m
genes. The last column of Table 11.2 gives the correlation-corrected error
estimate

α̂cor = Φ

⎛⎜⎜⎜⎜⎝−‖δ̂m‖
2c0

γ̂m

⎞⎟⎟⎟⎟⎠ . (11.38)

These are nearly twice the size of the uncorrected values.

Table 11.4 Ebay output for the Michigan lung cancer study. Correlation
error estimates α̂cor are much more pessimistic, as confirmed by
cross-validation.

Step Index z-value δ̂ α̂ α̂cor

1 3144 4.62 3.683 .3290 .329
2 2446 4.17 3.104 .2813 .307
3 4873 4.17 3.104 .2455 .256
4 1234 3.90 2.686 .2234 .225
5 621 3.77 2.458 .2072 .213
6 676 3.70 2.323 .1942 .228
7 2155 3.69 2.313 .1824 .230
8 3103 3.60 2.140 .1731 .236
9 1715 3.58 2.103 .1647 .240

10 452 3.54 2.028 .1574 .243
...

...
...

...
...

...
193 3055 2.47 .499 .0519 .359
194 1655 −2.21 −.497 .0518 .359
195 2455 2.47 .496 .0517 .359
196 3916 2.47 .496 .0516 .359
197 4764 2.47 .495 .0515 .359
198 1022 −2.20 −.492 .0514 .359
199 1787 −2.19 −.490 .0513 .360
200 901 −2.18 −.486 .0512 .360
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Table 11.4 shows Ebay output for the Michigan lung cancer study, a mi-
croarray experiment with N = 5217 genes and n = 86 subjects, n1 = 62
“good outcomes” and n2 = 24 “poor outcomes”. Correlation problems
are much more severe here. Ebay stopped after m = 200 steps (the de-
fault stopping rule) without α̂ reaching the target value α0 = 0.025. The
correlation-corrected errors α̂cor are much more pessimistic, increasing af-
ter the first six steps, eventually to α̂cor = 0.36. A cross-validation error rate
of α̂CV = 0.37 confirmed the pessimism.

We could employ more elaborate recipes for selecting an empirical Bayes
prediction rule, for example “Use the rule corresponding to the minimum
value of α̂cor in the first 200 steps.” (This would select the rule based on
the first five genes in Table 11.4.) If Ebay were programmed to follow
such recipes automatically, which it isn’t, we could then get honest cross-
validation error rates α̂CV just as before.

11.3 Prediction and Local False Discovery Rates

The local false discovery rate fdr(z) (5.2) is

fdr(z) = π0ϕ(z)/ f (z) (11.39)

under the theoretical null distribution f0(z) = ϕ(z) (2.6). Comparing (11.39)
with (11.25) and (11.27) gives the following.

Corollary 11.3 Under the normal hierarchical model (11.22), δ has pos-
terior mean and variance

E{δ|z} = − d
dz

log fdr(z) and var{δ|z} = − d2

dz2
log fdr(z) (11.40)

when fdr(z) is calculated using the theoretical null (11.39).

There is something a little surprising about this result. It seemingly
makes sense that genes with low false discovery rates should be the ones
utilized in prediction rules, but (11.40) shows that this is not exactly true:
large values of δ̃i = E{δi|zi}, the Bayes effect size estimate, depend on the
rate of change of log fdr(zi), not on fdr(zi) itself. Small values of fdr(zi)
usually correspond to large values of |δ̃i|, but this doesn’t have to be the
case.

Let A(x) be the area under the curve E{δ|z} between 0 and x,

A(x) =
∫ x

0
E{δ|z} dz. (11.41)

The first equation in (11.40) then gives the following.
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Corollary 11.4 Under (11.22), (11.39),

fdr(x)
fdr(0)

= e−A(x). (11.42)

(This remains true for x < 0 with the definition A(x) = − ∫ 0

x
E{δ|z}dz.)

Looking at Ê{δ|z} for the prostate data, Figure 11.1, we can see that A(x)
is nearly zero for x < 2 but then increases roughly quadratically with x,
driving down fdr(x) according to (11.42).

Suppose that the appropriate null hypothesis distribution is N(δ0, σ
2
0) as

in (6.9), rather thanN(0, 1). We can change the normal hierarchical model
(11.22) to

δ ∼ g(·) and
z − δ0

σ0

∣∣∣∣∣δ ∼ N(δ, 1) (11.43)

so that δ still represents effect size on a N(0, 1) scale. The case δ = 0
corresponds to null density f0(z) = ϕ((z − δ0)/σ0)/σ0, giving fdr(z) =
π0 f0(z)/ f (z), where the marginal density f (z) is

f (z) =
∫ ∞

−∞

1
σ0
ϕ

(z − δ0 − δ
σ

)
g(δ) dδ. (11.44)

Differentiating log fdr(z) gives

− d
dz

log fdr(z) =
z − δ0

σ2
0

+ l′(z)

[
l′(z) =

d
dz

log f (z)

]
(11.45)

while an exponential family calculation similar to that for Theorem 11.1
yields a transformed version of (11.28),

E{δ|z} = z − δ0

σ0
+ σ0l′(z) and var{δ|z} = 1 + σ2

0l′′(z). (11.46)

So d log fdr(z)/dz = E{δ|z}/σ0, and the transformed version of Corollary
11.4 is

fdr(x)
fdr(δ0)

= e−A0(x)

[
A0(x) =

∫ x

δ0

E{δ|z} dz

/
σ0

]
. (11.47)

Exercise 11.6 Verify (11.45) and (11.46). Why does (11.46) differ from
(11.35)?

Figure 11.2 compares E{δ|z} from models (11.22) and (11.43) for the
prostate and leukemia data. Here we have chosen (δ0, σ0) in (11.43) to be
the MLE empirical null estimates of Section 6.3,

prostate (δ0, σ0) = (0.003, 1.06) leukemia = (0.094, 1.68). (11.48)



11.3 Prediction and Local False Discovery Rates 225

Figure 11.2 E{δ|z} from the normal hierarchical model (11.22),
solid curves; and from the transformed version (11.43), dashed
curves, with (δ0, σ0) the MLE empirical null values (11.48).
Changing from the theoretical to empirical null flattens E{δ|z}
near z = 0.

Note that the slight slope of Ê{δ|z} between −2 and 2 seen in Figure 11.1
for the prostate data is flattened by changing from (δ0, σ0) = (0, 1) to the
empirical null values. The flattening effect is much more dramatic for the
leukemia data. Area A0(x) is much smaller than A(x) and (11.47) is bigger
than (11.42), demonstrating in geometric terms why it is more difficult in
this case to get small values of fdr with the empirical null.

Large-scale hypothesis testing usually begins with the assumption that
most of the effects are zero, or at least small, as in (2.7)–(2.8), which sug-
gests that E{δ|z} should be near zero and flat for central values of z. The
main point of Figure 11.2 is diagnostic: Ê{δ|z} = z + l̂′(z) passing through
z = 0 at a sharp angle is a warning against casual use of the theoretical null.

Figure 11.3 concerns another, more vivid, geometric representation of
the relationship between false discovery rate and effect size. Let e(z) equal
E{δ|z} in the original hierarchical model (11.22),

e(z) = z + l′(z) (11.49)

(11.29), and define (δ0, σ0) from l(z) = log( f (z)) according to

δ0 : l′(δ0) = 0 and σ0 = 1
/

(−l′′(δ0))1/2 ; (11.50)
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Figure 11.3 Corollary 11.5 illustrated for the police data of
Figure 6.1c; hatched area Ã(x) determines the local false
discovery rate based on empirical null (11.53). It is much smaller
than A(x), the area of the outlined region (including Ã(x)) that
determines the theoretical null fdr (11.42). (Heavy curve is E{δ|z}
calculated according to the original hierarchical model (11.22).)

(δ0, σ0) are the central matching estimates (6.11). The tangent line to e(z)
at z = δ0 is

etan(z) = e(δ0) + e(δ0)′(z − δ0)
[
e(z)′ = de(z)/dz

]
. (11.51)

Corollary 11.5 Let Ã(x) be the area between e(z) and etan(z),

Ã(x) =
∫ x

δ0

[e(z) − etan(z)] dz. (11.52)

Then

f̃dr(x)

f̃dr(δ0)
= e−Ã(x) (11.53)

where f̃dr(z) is the local false discovery rate π0 f0(z)/ f (z) with f0(z) the
central matching empirical null distribution.4

(Proof at the end of this section.)

4 The locfdr central matching algorithm actually applies calculations (11.50) to a local
quadratic fit to log f̂ (z). It gave (δ̂0, σ̂0) = (0.04, 1.45) for the police data, rather than
(0.09, 1.37) from (11.50).
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Exercise 11.7 Show that for (δ0, σ0), the central matching values (11.50),
the transformed version of E{δ|z} in (11.46) satisfies

dE{δ|z}
dz

∣∣∣∣∣
z=δ0

= 0 (11.54)

(so that E{δ|z} is perfectly flattened near z = 0).

One thing is noticeably absent from Corollary 11.4 and Corollary 11.5:
π0, the prior null probability in fdr(z) = π0 f0(z)/ f (z). Its place is taken by
fdr(0) or f̃dr(δ0) in (11.42), (11.53). For the two-groups model (5.2),

fdr(0) = 1
/

(1 + OR(0))
[
OR(z) = (π1 f1(z))

/
(π0 f0(z))

]
, (11.55)

OR(z) being the posterior odds ratio for non-null given z. Under the zero
assumption (4.44) we employed to estimate π0, OR(0) = 0 and fdr(0) = 1.
It is quite reasonable to interpret the corollaries as saying

fdr(x) = e−A(x) and f̃dr(x) = e−Ã(x), (11.56)

thereby finessing the problem of estimating π0.
A(x) is easier to estimate than Ã(x) in Figure 11.3. The latter requires

estimating the lower tangent line, adding variability to the assessment of
a smaller quantity. This results in less accurate fdr estimates when based
on empirical null distributions, as seen in Table 7.3. Of course there is
really no choice in the police data example, where the theoretical null is
unrealistic.

Proof of Corollary 11.5 From e(z) = z+ l′(z) (11.49) and e(z)′ = 1+ l′′(z),
(11.50) gives

etan(z) = δ0 +
(
1 − 1

/
σ2

0

)
(z − δ0) (11.57)

and

ẽ(z) ≡ e(z) − etan(z) =
z − δ0

σ2
0

+ l′(z). (11.58)

But this equals −d log fdr(z)/dz (11.45), yielding (11.53). �

11.4 Effect Size Estimation

The traditional purpose of simultaneous significance testing has been to
identify non-null cases, usually assumed to be a small subset of all N pos-
sibilities in large-scale situations. Here we take up a more ambitious goal:
to assess effect sizes for those so identified, that is, to estimate how far
away non-null cases lie from the null hypothesis. Not all non-null cases
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are created equal: those with large effect sizes δi or −δi are the most useful
for prediction, and most likely to play key roles in an ongoing process of
scientific discovery.

We now combine the normal hierarchical model (11.22) with the two-
groups model (5.1) by assuming that the prior density g(δ) has an atom of
probability π0 at δ = 0, leaving probability π1 = 1 − π0 for the non-zero
values,

g(δ) = π0Δ0(δ) + π1g1(δ) and z|δ ∼ N(δ, 1). (11.59)

Here Δ0(·) represents a delta function at 0 while g1(·) is the prior density for
non-null δ values; (11.59) gives a two-groups model (5.1) with f0(z) = ϕ(z),
the N(0, 1) density, and

f1(z) =
∫ ∞

−∞
ϕ(z − δ)g1(δ) dδ. (11.60)

We also define J to be the indicator of the null status of a case,

J =

⎧⎪⎪⎨⎪⎪⎩0 null (δ = 0)

1 non-null (δ � 0)
(11.61)

(the reverse of the indicator I used previously).
By definition,

fdr(z) = Pr{J = 0|z}, (11.62)

the conditional probability of nullity given z. For any value j,

E{δ j|z} = E{δ j|z, J = 0} fdr(z) + E{δ j|z, J = 1} (1 − fdr(z))

= E{δ j|z, J = 1} (1 − fdr(z))
(11.63)

since δ = 0 if J = 0.
For convenient notation, let

E1(z) = E{δ|z, J = 1} and var1(z) = var{δ|z, J = 1}, (11.64)

the conditional mean and variance for a non-null case.

Exercise 11.8 Use (11.63) to show that

E1(z) =
E{δ|z}

1 − fdr(z)
and var1(z) =

var{δ|z}
1 − fdr(z)

− fdr(z)E1(z)2. (11.65)

Combined with (11.28), this yields

E1(z) =
z + l′(z)

1 − fdr(z)
and var1(z) =

1 + l′′(z)
1 − fdr(z)

− fdr(z)E1(z)2. (11.66)
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Plugging in estimates of l(z) and fdr(z) then gives Ê1(z) and v̂ar1(z). Fig-
ure 11.4 shows the resulting 90% empirical Bayes posterior bands for the
right tail of the prostate data,

Ê1(z) ± 1.645 v̂ar1(z)1/2. (11.67)

Figure 11.4 Estimated 90% empirical Bayes posterior band for a
non-null effect (11.67), prostate data, and estimated local false
discovery rate f̂dr(z). At z = 4, f̂dr = 0.05, and the 90% interval is
(1.14, 4.36).

At z = 4 we have f̂dr(z) = 0.05, Ê1(z) = 2.75, and v̂ar1(z)1/2 = 0.98,
so interval (11.67) is (1.14, 4.36). The literal interpretation is that, given
z = 4, there is a 5% chance that δ = 0 and, if not, a 90% chance that δ lies
in (1.14, 4.36). In other words, δ is positive with high probability and, if
so, the effect size is probably substantial.

From a traditional point of view, it seems strange that our assessment of
δ is split into two parts: a point probability at zero and an interval that does
not contain zero. But this is a natural consequence of the “mixed” prior
g(δ) in (11.59) which combines an atom at zero with a possibly diffuse,
non-zero component. This reinforces the point made in previous chapters
that large-scale significance testing is more than just a collection of in-
dividual tests done at the same time. Estimation and prediction are also
involved, as indirect evidence of an empirical Bayes nature, “learning from
the experience of others,” makes itself felt.

A version of Theorem 11.1 and Corollary 11.3 is available that applies
directly to the non-null posterior distribution g1(δ) = g(δ|z, J = 1).
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Theorem 11.6 Under model (11.59), g1(δ|z) is an exponential family,

g1(δ) = eδz−ψ1(z)
[
e−δ

2/2g1(δ)
]

(11.68)

where

ψ1(z) = log

{
1 − fdr(z)

fdr(z)

/
π1

π0

}
. (11.69)

Proof Bayes rule says that g1(δ|z) = ϕ(z − δ)g1(δ)/ f1(z), yielding

g1(δ|z) = eδz−log{ f1(z)/ϕ(z)} [e−δ2/2g1(δ)
]
. (11.70)

�
Exercise 11.9 Complete the proof by using fdr(z) = π0ϕ(z)/ f (z) to show
that

f1(z)
ϕ(z)

=
π0

π1

1 − fdr(z)
fdr(z)

. (11.71)

Differentiating ψ1(z) yields non-null posterior cumulants of δ given z,
the jth cumulant being

− d j

dz j
log

{
fdr(z)

1 − fdr(z)

}
; (11.72)

j = 1 and 2 are the non-null conditional mean and variance (as compared
with (11.40)), agreeing of course with expressions (11.65).

False coverage rate control

A more classically oriented frequentist approach to effect size estimation
aims to control FCR, the false coverage rate. We are given a method of
discovering non-null cases, for example the BH(q) algorithm of Chapter 4,
and also of assigning confidence intervals for the effect sizes δi of the dis-
covered cases. The method’s FCR is the expected proportion of discovered
cases in which δi is not in its assigned confidence interval.

FCR control is a laudable criterion, aimed against the bad practice of
assigning the usual confidence intervals to those cases selected as non-null
— say 5.29 ± 1.645 for δ610 in Table 11.2 — which completely ignores
selection bias.

The BY(q) FCR control algorithm5 works as follows: let CIz(p) be the
usual two-sided normal confidence interval of coverage probability 1 − p,

CIz(p) = z ± Φ−1
(
1 − p

2

)
(11.73)

5 Benjamini–Yekutieli; see Notes at this chapter’s end.
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(so p = 0.10 corresponds to z ± 1.645). Perform the BH(q) FDR control
algorithm of Section 4.2 on p1, p2, . . . , pN with pi = 2Φ(−|zi|), declaring,
say, R of the zi non-null. To each corresponding δi assign the confidence
interval

CIzi

(Rq
N

)
= zi ± Φ−1

(
1 − Rq

2N

)
. (11.74)

Then, assuming the zi are independent normal unbiased estimates of their
effect sizes δi,

zi
ind∼ N(δi, 1) i = 1, 2, . . . ,N, (11.75)

the false coverage rate will be no greater than q.

Figure 11.5 False coverage rate example: N = 10 000 pairs
(zi, δi) from model (11.75)–(11.76). Green points, the 1000
non-null cases, δi ∼ N(−3, 1); circled points, those 563 declared
non-null by BH(0.10) algorithm. Heavy black lines, BY(0.10)
FCR control confidence limits (11.74); blue dotted lines, Bayes
90% limit for non-null cases (11.80); red dashed lines, Ê1(z)
(11.65) and nominal 90% empirical Bayes limits (11.67). Bottom
numbers list fdr(z) for model (11.75)–(11.76). Dark triangles are
14 null cases (δi = 0) having zi < −2.75; 26 more, not pictured,
had zi > 2.75.

Figure 11.5 shows an application of the BY(q) algorithm, q = 0.10, to
a simulated data set in which N = 10 000 independent (δi, zi) pairs were
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generated as in (11.59), with

g(δ) = 0.90Δ0(δ) + 0.10ϕ−3,1(δ). (11.76)

That is, 90% of the effects were zero and 10%N(−3, 1). The BH(0.10) rule
declared R = 603 cases non-null, those having |zi| ≥ 2.75. Using (11.74),
the BY(q) algorithm assigned confidence intervals

zi ± 2.75 (11.77)

to the 603 cases declared non-null.

Exercise 11.10 Why is it not a coincidence that the BH cutoff |zi| ≥ 2.75
is nearly the same as the half-width 2.75 in (11.77)?

Because this is a simulation, we can see how well the BY algorithm
performed. Figure 11.5 plots (zi, μi) points for the 1000 actual non-null
cases, those having δi ∼ N(−3, 1); 563 of these were declared non-null,
those with zi ≤ −2.75. There were 40 false discoveries, those having δi = 0,
14 with zi ≤ −2.75 and 26 with zi ≥ 2.75 (not pictured).

The first thing to notice is that the FCR property is satisfied: only 43
of the R = 603 confidence intervals fail to cover δi, those for the 40 false
discoveries and three of 563 true discoveries, giving 43/603 = 0.07, sub-
stantially less than q = 0.10. However, the second thing is that the intervals
(11.77) are frighteningly wide — about 67% longer than the individual
90% intervals zi ± 1.645 — and poorly centered, particularly at the left
where all the δi fall in the upper halves of their intervals, as seen from the
heavy lines for the BY confidence limits.

An interesting comparison is with Bayes rule applied to (11.75)–(11.76).
This yields

Pr{δ = 0|zi} ≡ fdr(zi) =
0.90ϕ(z)

0.90ϕ(z) + 0.10ϕ−3,
√

2(z)
(11.78)

(ϕδ,σ(z) = ϕ((z − δ)/σ)/σ) and non-null posterior density

g1(δi|zi) ≡ g(δi|zi, Ji = 1) ∼ N
(
zi − 3

2
,

1
2

)
. (11.79)

That is, δi is null with probability fdr(zi) andN((zi −3)/2, 1/2) with proba-
bility 1 − fdr(zi). The blue dotted lines indicate the 90% posterior intervals
given that δi is non-null,

(zi − 3)/2 ± 1.645
/√

2, (11.80)

now a factor
√

2 shorter than zi ± 1.645.
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The Bayes intervals and the frequentist BY(q) intervals are pursuing
the same goal, to include the effect sizes δi with 90% certainty. At z =
−2.75, the BY(q) assessment is Pr{δ ∈ (−5.50, 0)} = 0.90, while Bayes
rule states that δ = 0 with probability fdr(−2.75) = 0.23, and otherwise
δ ∈ (−4.04,−1.71) with probability 0.90. This kind of bifurcated assess-
ment, as in Figure 11.4, is inherent to model (11.59). A principal cause of
BY(q)’s oversized intervals comes from using a connected set to describe
a disconnected situation.

As described in Chapter 4, the BH(q) FDR control algorithm enjoyed
both frequentist and Bayesian support, and both philosophies played roles
in the subsequent chapters’ empirical Bayes development. The same can-
not be said for FCR control and the BY(q) algorithm. Frequentist methods
like BY(q) enjoy the considerable charm of exact error control, without
requiring prior distributions, but the discrepancy evident in Figure 11.5 is
disconcerting.

The red dashed lines in Figure 11.5 are the 90% empirical Bayes inter-
vals (11.67). (Actually using v̂ar{δ|z} = 1+ l̂′′(z) (11.28), rather than v̂ar1(z).
These are nearly the same for f̂dr(z) small, while the former is a more sta-
ble estimator.) These are closer to the Bayes intervals, and f̂dr(z) is close to
the true fdr(z), e.g., fdr(−2.75) = 0.27, but the results are far from perfect.

There is a hierarchy of estimation difficulties connected with the meth-
ods of this chapter: fdr(z) is the easiest to estimate since it only requires
assessing the marginal density f (z) or its logarithm l(z); E{δ|z} = z + l′(z)
requires estimating the slope of l(z), while var{δ|z} = 1 + l′′(z) requires its
curvature. The Poisson regression estimates of Section 5.2 are quite de-
pendable for fdr(z), adequate for E{δ|z}, and borderline undependable for
var{δ|z}. Empirical Bayes assessment of effect size is a worthy goal, and
we can hope for the development of a more stable methodology.

11.5 The Missing Species Problem

We conclude with perhaps the first empirical Bayes success story, the so-
lution of the “missing species problem.” The original motivating data set is
shown in Table 11.5. Alexander Corbet, a naturalist, spent two years in the
early 1940s trapping butterflies in Malaysia (then Malaya). Let

nj = #{species trapped exactly j times in two years}. (11.81)

The table shows n1 = 118, this being the number of species so rare that
Corbet captured just one each; n2 = 74 species were trapped twice each, n3

three times each, etc.



234 Prediction and Effect Size Estimation

Table 11.5 Corbet’s Malaysian butterfly data; n j is the number of
butterfly species captured exactly j times in two years of trapping: 118
species were trapped just once each, 74 two times each, etc.

j 1 2 3 4 5 6 7 8 9 10 11 12 . . .

n j 118 74 44 24 29 22 20 19 20 15 12 14 . . .

Corbet then asked a very interesting prediction question: if he spent an
additional one year trapping — half as long as he had already been there —
how many new species could he expect to capture? One reason the question
is interesting is that it seems impossible to answer. It refers to n0, the num-
ber of Malaysian butterfly species not previously captured. And of course
n0 is missing from Table 11.5.

Fortunately, Corbet asked the right person: R. A. Fisher, the founding
father of modern statistical theory. We will return later to Fisher’s solution,
which involves a parametric empirical Bayes argument, but first we present
a non-parametric solution developed in the 1950s. Let S be the set of all
Malaysian butterfly species and let S = #S be their number (S ≥ 435 for
Corbet’s problem, the total of Table 11.5). The key assumption is that each
species s is trapped according to a Poisson process with intensity parameter
λs,

λs = Expected number of species s captured per unit time. (11.82)

The time unit is two years in Corbet’s example.
Letting xs be the number of times species s is trapped in the original one

unit of observation time, xs has Poisson probability density function

ps( j) = Pr{xs = j} = e−λsλ j
s

/
j! (11.83)

for j = 0, 1, 2, . . . . The expectation η j of nj is then given by

η j = E{nj} =
∑

s

e−λsλ j
s

/
j! = S

∫ ∞

0
e−λλ j/ j! dG(λ) (11.84)

where G(λ) is the (unobservable) empirical cdf of the λs values,

G(λ) = #{λs ≤ λ}/S . (11.85)

The essence of Poisson model (11.82) is that species s is trapped inde-
pendently in non-overlapping time intervals. In particular, for a new trap-
ping period of length t, the number of times species s will be captured
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follows a Poi(λst) distribution, independent of its original capture number
xs ∼ Poi(λs). Therefore species s has probability

qs(t) = e−λs
(
1 − e−λst

)
(11.86)

of not being seen during the original period and being seen in the new
trapping period.

Adding up over species, μ(t), the expected number of new species seen
in succeeding time t is

μ(t) =
∑

s

qs(t) = S
∫ ∞

0
e−λ

(
1 − e−λt

)
dG(λ)

= S
∫ ∞

0
e−λ

[
λt − (λt)2/2! + (λt)3/3! + . . .

]
dG(λ),

(11.87)

the last line following by Taylor expansion of 1 − exp(−λt). Comparing
(11.87) with (11.84) yields an intriguing formula,

μ(t) = η1t − η2t2 + η3t3 . . . . (11.88)

Each η j is unbiasedly estimated by its corresponding count n j (11.81), giv-
ing an unbiased estimate of μ(t),

μ̂(t) = n1t − n2t2 + n3t3 . . . , (11.89)

not involving the zero count n0.
Now we can answer Corbet’s question: for a proposed additional trap-

ping period of one year, i.e., t = 1/2 as long as the original period, our
prediction for the number of new species captured is6

μ̂(t) = 118

(
1
2

)
− 74

(
1
4

)
+ 44

(
1
8

)
− 24

(
1
16

)
· · · = 45.2. (11.90)

How accurate is μ̂(t)? Just as for the empirical Bayes estimates of Chap-
ter 2, the unbiasedness of μ̂(t) does not depend on independence among
the species-capture values xs, but its accuracy does. A useful bound on the
variance of μ̂(t), developed next, is available assuming independence,

xs
ind∼ Poi(λs) for s ∈ S. (11.91)

Let ps = (ps(0), ps(1), ps(2), . . . )′ be the vector7 of Poisson probabilities
(11.83) and Is the indicator vector

Is = (0, 0, . . . , 0, 1, 0, . . . )′ (11.92)
6 Perhaps a discouraging figure; it is not clear if Corbet continued his stay.
7 Theoretically, ps and Is have an infinite number of components, but that does not affect

the calculations that follow.
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with 1 in the jth place if xs = j. A standard multinomial calculation shows
that Is has expectation ps and covariance matrix

cov(Is) = diag(ps) − psp
′
s, (11.93)

“diag” denoting a diagonal matrix with the indicated entries (so var(ps( j)) =
ps( j)(1 − ps( j)), the usual binomial formula).

The vectors n = (n0, n1, n2, . . . )′ and η = (η0, η1, η2, . . . )′ are given by

n =
∑

s

Is and η =
∑

s

ps. (11.94)

Assuming independence,

cov(n) =
∑

s

cov(Is) = diag(η) −
∑

s

psp
′
s. (11.95)

Defining

u(t) =
(
0, t,−t2, t3, . . .

)′
, (11.96)

(11.89) gives

μ̂(t) =
∑

j

u(t) jn j = u(t)′n (11.97)

and

var (μ̂(t)) = u(t)′ cov(n)u(t)

= u(t)′ diag(η)u(t) −
∑

s

(u(t)′ps)
2 . (11.98)

We see that an upper bound on var(μ̂(t)) is

var (μ̂(t)) ≤ u(t)′ diag(η)u(t) =
∑
j≥1

η jt
2 j. (11.99)

Substituting nj for η j provides an approximation for the standard deviation
of μ̂(t),

ŝd {μ̂(t)} =
∑
j≥1

njt
2 j. (11.100)

This yields ŝd = 9.3 for Corbet’s data, so the coefficient of variation of esti-
mate 45.2 is about 20%. The term we are ignoring in (11.98),

∑
s(u(t)′ps)2,

is usually small. Without it, (11.99) gives var(μ̂(t)) under the Poisson model

nj
ind∼ Poi(η j), not unreasonable in its own right.
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Exercise 11.11 Show that the ignored term equals∑
s

(u(t)′ps)
2
= S

∫ ∞

0
qλ(t)

2 dG(λ)

[
qλ(t) = e−λ

(
1 − e−λt

)]
.

(11.101)

For an additional trapping period of two years, i.e., t = 1, (11.89),
(11.100) predict 75 ± 20 new species. The series in (11.89) diverges for
t > 1, invalidating the predictor μ̂(t). Fisher’s original approach to the miss-
ing species problem avoids this limitation at the expense of assuming that
the intensity cdf (11.85) is obtained from a gamma density function for
λ ≥ 0,

g(λ) = c(α, β)λα−1e−λ/β
[
c(α, β) = (βαΓ(α))−1

]
. (11.102)

The previous expressions now take on specific forms; for instance,

η j = S
Γ(α + j)

j!Γ(α)
(11.103)

for (11.84). Some algebra yields Fisher’s prediction formula:

Exercise 11.12 Show that the gamma assumption (11.102) results in

μ(t) = η1 {1 − 1/(1 + γt)α} /(γα)
[
γ = β/(1 + β)

]
. (11.104)

Figure 11.6 Solid curve is Fisher’s negative binomial estimates
η̂ j (11.105), compared to counts n j from Corbet’s Table 11.5;
η̂1 = 118, α̂ = 0.166, β̂ = 27.06.

Formula (11.103) can be re-expressed in decapitated negative binomial
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form

η j = η1
Γ(α + j)

j!Γ(α + 1)
γ j−1, (11.105)

decapitation referring to the elimination of η0. Maximum likelihood es-

timation in the model nj
ind∼ Poi(η j) gave MLE values α̂ = 0.166 and

β̂ = 27.06. Figure 11.6 compares Fisher’s estimate η̂ j from (11.105) (taking
η̂1 = n1) with n j from Table 11.5. The fit is not wonderful, but the results are
similar to those obtained non-parametrically: μ̂(0.5) = 46.6, μ̂(1) = 78.1.

We can go as far into the future as we wish now — for example, μ̂(2) =
120.4 expected new species for four additional trapping years — but the
predictions become increasingly speculative. The crucial function

qλ(t) = e−λ
(
1 − e−λt

)
(11.106)

which determines the probability that a species of intensity λ will be a new
capture (11.86), concentrates ever nearer zero as t increases. It is easy to
show that qλ(t) is maximized at

λmax =
(
log(t + 1)

) /
t, (11.107)

λmax = 0.37 for t = 2. The number of new captures depends ever more on
the behavior of g(λ) near λ = 0, where it cannot be well-estimated, and
there is no particular reason to trust Fisher’s negative binomial assumption
(11.102).

Table 11.6 Shakespeare word count data; 14 376 distinct words appeared
just once each in the canon, 4343 twice each, 305 eleven times each, etc.

1 2 3 4 5 6 7 8 9 10

0+ 14 376 4343 2292 1463 1043 837 638 519 430 364
10+ 305 259 242 223 187 181 179 130 127 128
20+ 104 105 99 112 93 74 83 76 72 63
30+ 73 47 56 59 53 45 34 49 45 52
40+ 49 41 30 35 37 21 41 30 28 19
50+ 25 19 28 27 31 19 19 22 23 14
60+ 30 19 21 18 15 10 15 14 11 16
70+ 13 12 10 16 18 11 8 15 12 7
80+ 13 12 11 8 10 11 7 12 9 8
90+ 4 7 6 7 10 10 15 7 7 5

The fascinating formula (11.89) has applications outside the biological
realm. Table 11.6 gives a statistical view of Shakespeare. Spevack (1968),
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a “canon” or authoritative volume of all Shakespeare’s plays and poems,
comprised 884 647 total words, among which were 31 534 distinct words.
Of these, 14 376 were so rare they showed up just once each, 4343 twice
each, etc. The table gives n j for j = 1, 2, . . . , 100, n1 = 14 376, n2 =

4343, . . . , n100 = 5.
Suppose one found proportion t of a “new” canon, that is, previously

unknown Shakespeare works of 884 647 · t total words. How many pre-
viously unused words would be seen? The predicted number is given by
μ̂(t) (11.89). For t = 1, that is, for a whole new canon of Shakespeare, the
prediction8 is

μ̂(1) = 11, 430 ± 178. (11.108)

Fisher’s model gives μ̂(1) = 11 483, nearly the same result using MLE
estimates α̂ = −0.3954, β̂ = 104.26.

A variation on missing species is the “missing mass problem.” Define

ν0 =
∑

0

λs

/∑
λs (11.109)

where
∑
λs is the sum over all species of the Poisson intensity parameters

(11.82), while
∑

0 λs is the corresponding sum over species not seen in
the original observation period; ν0 is the missing proportion of species,
weighted according to their natural prevalence.

The expected value of the numerator in (11.109) is∑
s

λse
−λs = S

∫ ∞

0
λe−λ dG(λ) = η1 (11.110)

while that for the denominator is∑
s

λs =
∑

s

E{xs} = E

{∑
s

xs

}
= E{T } (11.111)

where T is the total number of individuals observed, T =
∑

j jn j. The
obvious missing mass estimator is then

ν̂0 = n1/T. (11.112)

For the Shakespeare word counts,

ν̂0 = 14 376/884 647 = 0.016, (11.113)

8 Checks have been run, with reassuring results, by removing one of the plays,
recomputing the now reduced counts n j, and seeing how well (11.89) predicts the “new”
words in the removed material.
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suggesting that we have seen all but 1.6% of Shakespeare’s vocabulary,
when weighted by his usage frequency. (But not nearly that much in a
missing species sense: there is at least proportion 11 430/31 534 = 0.36
distinct missing words (11.108), and other methods raise this to more than
1.00.)

The early empirical Bayes literature is filled with other fascinating pre-
diction results concerning the hierarchical Poisson model

λ ∼ g(·) and x|λ ∼ Poi(λ). (11.114)

For example, (11.84) gives, almost immediately, Robbins’ prediction for-
mula

E{λ|x = j} = ( j + 1)η j+1/η j (11.115)

and the useful estimate Ê{λ|x = j} = ( j + 1)n j+1/nj, an analog of the
normal-theory result (11.28).

Exercise 11.13 Verify (11.115).

The missing species formula, like the James–Stein results of Chapter 1,
had a near-magical quality when it first appeared in the 1950s and 60s. But,
viewed in the context of this book, these are recognizable, if flamboyant,
relatives of our more workaday empirical Bayes methods for estimation,
testing, and prediction.

My own belief is that empirical Bayes theory is still in its adolescence.
The use of indirect evidence — what I called learning from the experience
of others — was not much needed for most of 20th century statistics, and
actively disparaged in important areas such as drug testing and clinical
trials. A total reliance on direct evidence is an unaffordable luxury in large-
scale applications. I expect, or at least hope, that 21st century statisticians
will perfect an empirical Bayes theory as complete and satisfying for large-
scale problems as linear regression and ANOVA are within their ambit.

Notes

The pamr prediction procedure was developed, under the name “nearest
shrunken centroids,” in Tibshirani et al. (2002). Tibshirani and Tibshirani
(2009) discuss a bias-correction for the kind of minimum-seeking cross-
validation suggested in Table 11.1. A full review of modern prediction
methods is available in Hastie et al.’s very readable 2009 text on “statis-
tical learning.” The Ebay empirical Bayes prediction algorithm appears in
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Efron (2009b). Subramanian et al. (2005) discuss the Michigan lung cancer
study.

The normal hierarchical model (11.22) goes far back into the empirical
Bayes literature, and played important roles in the profound investigations
of multidimensional normal estimation of Brown (1971) and Stein (1981).
Robbins (1956) includes the formula for E{δ|z} in (11.40), prediction for-
mula (11.115), and much more.

Benjamini and Yekutieli (2005) pioneered large-scale effect size estima-
tion, proposing the BY(q) algorithm. A version of Figure 11.5 appears in
Efron (2008a).

The missing species problem has a distinguished pedigree, with key con-
tributions by Good (1953), Good and Toulmin (1956) (crediting Alan Tur-
ing of Turing machine fame), as well as Robbins (1968). Fisher’s original
work with Corbet appears in Fisher et al. (1943). The Shakespeare data
and analysis is from Efron and Thisted (1976), where linear programming
methods are invoked to provide a lower bound of 35 000 on Shakespeare’s
unseen vocabulary. A later paper, Thisted and Efron (1987), applies ver-
sions of formula (11.89) to the question of authenticity of a newly discov-
ered poem attributed to Shakespeare.

Hierarchical models such as (2.47) and (11.114) are available for all
one-parameter exponential families, as discussed in Muralidharan (2009).





Appendix A

Exponential Families

Exponential families are the main connecting idea of classical statistics.
Here we will provide a very brief sketch of the theory as it applies to the
previous material, particularly that in Chapter 5. Advanced texts such as
Lehmann and Romano (2005b) discuss exponential families, and their ap-
plications to testing and estimation, in more detail.

A one-parameter exponential family F is a family of probability densi-
ties on a subset X of the real line,

fη(x) = eηx−ψ(η) f0(x) (x ∈ X) (A.1)

where η is the natural or canonical parameter, x is the sufficient statis-
tic, f0(x) is the carrier, X is the sample space, and ψ(η) is the cumu-
lant generating function, or more simply the normalizer, so called because
exp{−ψ(η)} is the positive constant required to make fη(x) integrate to 1,

eψ(η) =

∫
X

eηx f0(x) dx. (A.2)

The family F consists of all exponential “tilts” of f0(x), eηx f0(x), nor-
malized to integrate to 1. Exponential tilting enjoys a crucial statistical
property: if x1, x2, . . . , xN is an i.i.d. sample from fη(x), then x̄ =

∑
xi/N is

a sufficient statistic for estimating η, with densities

f X̄
η (x̄) = eN[ηx̄−ψ(η)] f x̄

0 (x̄), (A.3)

again a one-parameter exponential family. This greatly simplifies inference
theory for η, the original motivation for definition (A.1) in the 1930s. Per-
haps surprisingly, it then turned out that most familiar statistical families
— normal binomial, Poisson, gamma — were in fact of form (A.1).

As a first example, x ∼ N(μ, 1) has density functions

f (x) =
1√
2π

e−
1
2 (x−μ)2

= eμx−μ2/2 · ϕ(x) (A.4)

243
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for μ any value in (−∞,∞), where ϕ(x) is the standard normal density
exp{−x2/2}/√2π. This is of form (A.1), having sufficient statistic x, nat-
ural parameter η = μ, X equaling the whole real line, ψ(η) = η2/2, and
carrier ϕ(x). (So the entire normal family (A.4) can be obtained from ex-

ponential tilts of ϕ(x).) Repeated sampling x1, x2, . . . , xn
iid∼ N(μ, 1) as in

(A.3) produces essentially the same family, but now with sufficient statistic
x̄.

The sample space for the Poisson family is the non-negative integers
X = {0, 1, 2, . . . }. Its (discrete) density function can be written in its usual
form as

f (x) = e−μμx/x! = e(log μ)x−μ/x! (A.5)

for any μ > 0. This is again of type (A.1), with

η = log μ, ψ(η) = eη, (A.6)

and f0(x) = 1/x!. (It is only necessary for f0(x) to be positive, not to inte-
grate to 1.)

The cumulant generating function is so named because differentiating it
gives the cumulants of x. In particular, the mean and variance are the first
two derivatives with respect to η, the usual notation being

μ ≡ Eη{x} = ∂ψ(η)/∂η (A.7)

and

V ≡ varη{x} = ∂2ψ(η)
/
∂η2. (A.8)

For the Poisson family, where ψ(η) = exp(η), we get

μ = eη and V = eη, (A.9)

that is, the variance equals the expectation, and in fact all the higher cumu-
lants equal μ. Note that formulas (A.7) and (A.8) do not involve f0(x) or
any integration, which, if ψ(η) is available, makes them wonderfully con-
venient for calculating moments.

The deviance function D(η1, η2) is a measure of distance between two
members of an exponential family,

D(η1, η2) = 2 · Eη1

{
log

(
fη1 (x)

fη2 (x)

)}
= 2

∫
X

log

(
fη1 (x)

fη2 (x)

)
fη1 (x) dx. (A.10)

It is always non-negative, but usually not symmetric, D(η1, η2) � D(η2, η1).
(D(η1, η2)/2 is also known as the Kullback–Leibler distance, another re-
lated term being mutual information.) Deviance generalizes the concept of
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squared error distance (η1 − η2)2 or (μ1 − μ2)2, this being D(η1, η2) in the
normal family (A.4). For the Poisson family,

D(η1, η2) = 2μ1

[
log

(
μ1

μ2

)
−

(
1 − μ2

μ1

)]
. (A.11)

In a regression situation such as (5.15)–(5.17), minimizing the sum of de-
viances between the observations and a parameterized regression function
is equivalent to maximum likelihood estimation. This amounts to least
squares fitting in a normal regression problem, but “least deviance” is more
efficient in a Poisson regression context like (5.17).

A.1 Multiparameter Exponential Families

By changing η and x in (A.1) to K-dimensional vectors η and x we obtain
a K-parameter exponential family of densities

fη(x) = eη′x−ψ(η) f0(x). (A.12)

Now the factor exp{∑K
1 ηk xk} can tilt the carrier f0(x) in K possible direc-

tions. The sufficient statistic x is usually some K-dimensional function of
a more complicated set of data. Formula (A.12) provides a convenient way
for the statistician to model complex data sets flexibly, by focusing on K
summary statistics xk, for example powers of z in (5.10).

Once again, most of the familar multiparameter families — normal,
Dirichlet, multinomial — are of form (A.12). The multinomial family was
seen to play an important role in Section 5.2, where count yk was the num-
ber of the N z-values falling into the kth bin, for k = 1, 2, . . . ,K. If the zi are
independent, vector y = (y1, y2, . . . , yK)′ follows a multinomial distribution
on K categories, sample size N,

y ∼ multK(N,π) (A.13)

with

π = (π1, π2, . . . , πK)′ (A.14)

the vector of bin probabilities, πk = Pr{z ∈ Zk} in notation (5.11).
The multinomial density function

f (y) = c(y)
K∏

k=1

πyk

k

⎡⎢⎢⎢⎢⎢⎣c(y) = N!

/ K∏
1

yk!

⎤⎥⎥⎥⎥⎥⎦ (A.15)

is a (K − 1)-dimensional exponential family, one degree of freedom being
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lost to the constraint
∑K

1 πk = 1. A convenient parameterization lets η =
(η1, η2, . . . , ηK)′ be any vector in K-dimensional Euclidean space RK , and
defines

πk = eηk

/ K∑
1

eη j for k = 1, 2, . . . ,K. (A.16)

Then log(πk) = ηk − log(
∑

eη j ), and (A.15) takes the form of (A.12),

fη(y) = eη′y−ψ(η)c(y)

⎡⎢⎢⎢⎢⎢⎣ψ(η) = log
K∑
1

eη j

⎤⎥⎥⎥⎥⎥⎦ . (A.17)

This looks like a K-parameter family, but every scalar multiple m · η pro-
duces the same vector π in (A.16) and (A.13), removing one degree of
freedom.

Moment properties (A.7)–(A.8) extend directly to multivariate exponen-
tial families,

μ = Eη{x} = (· · · ∂ψ/∂ηk · · · )′ (A.18)

and

V = covη{x} =
(
· · · ∂2ψ

/
∂η j∂ηk · · ·

)
, (A.19)

the last notation indicating a K × K matrix of second derivatives. As in
(A.10), the deviance function is

D(η1,η2) = 2Eη1

{
log

(
fη1 (x)/ fη2 (x)

)}
. (A.20)

Exponential families and maximum likelihood estimation are closely re-
lated, both historically and mathematically. The “score function” equals

∂ log fη(x)

∂η
=

(
· · · ∂ log fη(x)

∂ηk
· · ·

)′
= x − μ (A.21)

from (A.12) and (A.18), so the MLE η̂ is the value of η making the expec-
tation vector μ equal the observed vector x. The second derivative matrix
is

∂2 log fη(x)

∂η2
=

(
· · · ∂

2 log fη(x)

∂η j∂ηk
· · ·

)
= −V (A.22)

according to (A.18)–(A.19). This implies that log fη(x) is a concave func-
tion of η (since the covariance matrix V is positive semidefinite for every
choice of η), usually making it straightforward to calculate iteratively the
MLE η̂.

These days multivariate exponential families play their biggest role in
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generalized linear models. A GLM supposes that the K-vector of natural
parameters η in (A.12) is a known linear function of a J-vector β (J ≤ K),
say

η = M
K×J

β. (A.23)

This construction extends the notion of ordinary linear models to non-
normal exponential families. It reduces the K-parameter family (A.12) to a
J-parameter exponential family, with natural parameter vector β and suf-
ficient statistic M′x. The MLE equations for β take the form

M ′ (x −μ(β)) = 0 (A.24)

where μ(β) is the expectation vector in (A.12) corresponding to η = Mβ.
McCullagh and Nelder (1989) is the standard reference for generalized lin-
ear models.

A.2 Lindsey’s Method

Model (5.10) is a J-parameter exponential family with natural parameter
β = (β1, β2, . . . , βJ)′, sufficient statistic x = (z, z2, . . . , zJ)′, and normalizer
ψ(β) equaling −β0. If z1, z2, . . . , zN is an i.i.d. sample from f (z) then, as in
(A.3), we still have a J-parameter exponential family, now with sufficient
statistic x̄ = (x̄1, x̄2, . . . , x̄J)′,

x̄ j =

N∑
i=1

z j
i

/
N, (A.25)

and natural parameter vector Nβ.
Solving for the MLE β̂ requires special programming, essentially be-

cause there is no closed form for ψ(β). Lindsey’s method (Lindsey, 1974;
Efron and Tibshirani, 1996, Sect. 2) is a way of using standard Poisson
GLM software to find β̂. The N z-values are binned into K counts y =
(y1, y2, . . . , yK)′ as in (5.11)–(5.12) so that the density fβ(z) is reduced to
a multinomial probability vector π(β) (A.14), with πk(β) = d · fβ(xk) in
notation (5.14).

A special relationship between multinomial and Poisson distributions is
then invoked: assuming that the yk’s are independent Poisson observations,

yk
ind∼ Poi(νk), νk = Nπk(β) for k = 1, 2, . . . ,K, (A.26)

the MLE β̂ in (A.26) equals that in the multinomial model of (A.13),
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y ∼ multK(N,π(β)). Family (5.10), for example, becomes a Poisson GLM
(A.23) in this formulation, with ηk = log(νk) and M having kth row(

xk, x2
k , . . . , xJ

k

)′
, (A.27)

xk being the kth bin midpoint (5.13).
In computing language R, the single call

glm(y ∼ M, family=Poisson) (A.28)

produces f̂ , the MLE for density f (z) in (5.10), evaluated at z = xk for k =
1, 2, . . . ,K. These are the heavy curves plotted, for example, in Figure 5.1
and Figure 6.1. Calling f̂ the MLE assumes that the zi are independent,
which is usually untrue; f̂ is better thought of as a smooth parametric fit to
the histogram heights yk, minimizing the total Poisson deviance (5.17) as a
fitting criterion.



Appendix B

Data Sets and Programs

Most of the data sets and R programs featured in the book are available at
the following web site:

http://statistics.stanford.edu/∼brad
Follow the link to Data Sets and Programs.

Data Sets

• Kidney data (Figure 1.2): 157 × 2 matrix kidneydata giving ages and
kidney scores.

• Prostate data (Figure 2.1): 6033 × 102 matrix prostatedata, columns
labeled 1 and 2 for Control and Treatment; also prostz, the 6033 z-values
in Figure 2.1 and Figure 4.6.

• DTI data (Figure 2.4): 15 443 × 4 matrix DTIdata; first three columns
give (x,y,z) brain coordinates, with z-values in fourth column.

• Leukemia data (Figure 6.1a): 7128 × 72 matrix leukdata, columns la-
beled 0 and 1 for AML and ALL; also leukz, the 7128 z-values shown
in Figure 4.6 and Figure 6.1a.

• Chi-square data (Figure 6.1b): 321 010× 3 matrix chisquaredata, col-
umn 1 = gene, columns 2 and 3 conditions 1 and 2, as in Table 6.1
(which is actually gene 23 except that one of the entries for condition 2
has been changed from 1 to 0); also chisqz, z-values (6.2) calculated for
the 16 882 of the 18 399 genes having at least three sites.

• Police data (Figure 6.1c): 2749-vector policez of z-values.
• HIV data (Figure 6.1d): 7680 × 8 matrix hivdata, columns labeled 0

and 1 for healthy controls and HIV patients; also hivz, vector of 7680
z-values obtained from two-sample t-tests on logged and standardized
version of hivdata.

• Cardio data (Figure 8.1): 20 426× 63 matrix cardiodata, first 44 columns
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healthy controls, last 19 cardiovascular patients; the columns are stan-
dardized but the matrix is not doubly standardized.

• P53 data (Figure 9.1): 10 100 × 50 matrix p53data, first 33 columns
mutated cell lines, last 17 unmutated; also p53z, vector of 10 100 z-
values.

• Brain data (Figure 10.7b): vector of 12 625 t-values braintval; also (x,y)
coordinates for smoothing spline brainsm.

• Michigan data (Table 11.4): 5217 × 86 matrix michigandata, first 24
columns bad outcomes, last 62 good outcomes.

• Shakespeare data (Table 11.6): 10 × 10 matrix shakedata.

Programs

• locfdr: Produces estimates of the local false discovery rate fdr(z) (5.2),
both assuming the theoretical null hypothesis as at (5.5) and using an
empirical null estimate as in Section 6.2 and Section 6.3. Only a vector
z of z-values need be entered, but the help file details a list of possible
special adjustments. Particularly valuable is the histogram plot super-
imposing the estimated null and mixture densities f̂0(z) and f̂ (z), which
should always be inspected for goodness of fit.

• simz: Generates an N × n matrix X of correlated z-values zi j ∼ N(0, 1),
with root mean square correlation (8.15) approximately equaling a tar-
get value α; see the paragraph on simulating correlated z-values in Sec-
tion 8.2. Comments at the beginning of simz show its use. Non-null ver-
sions of X can be obtained by adding appropriate constants to selected
entries, e.g., the top 5% of rows in the last n/2 columns.

• alpha: Inputs an N × n matrix X and outputs estimate (8.18) of the root
mean square correlation α. It is best to first remove potential systematic
effects from X. For instance, with the prostate data of Section 2.1, one
might subtract gene-wise means separately from the control and cancer
groups. (Or, more simply, separately apply alpha to the 50 control and
52 cancer columns of X.)

• Ebay: Produces the empirical Bayes estimated effect size Ê{δ|z} as in
Figure 11.1. All that need be provided is the “training data,” the N × n
predictor matrix X and the n-vector Y of zero/one responses, but the
help file lists a range of user modifications, including the folds call for
cross-validation.
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Koo, Prolla, Tomas A., and Weindruch, Richard. 2002. A mixture model approach
for the analysis of microarray gene expression data. Comput. Statist. Data Anal.,
39(1), 1–20.

Ashley, Euan A., Ferrara, Rossella, King, Jennifer Y., Vailaya, Aditya, Kuchinsky, Al-
lan, He, Xuanmin, Byers, Blake, Gerckens, Ulrich, Oblin, Stefan, Tsalenko, Anya,
Soito, Angela, Spin, Joshua M., Tabibiazar, Raymond, Connolly, Andrew J., Simp-
son, John B., Grube, Eberhard, and Quertermous, Thomas. 2006. Network analysis
of human in-stent restenosis. Circulation, 114(24), 2644–2654.

Aubert, J., Bar-Hen, A., Daudin, J.J., and Robin, S. 2004. Determination of the differ-
entially expressed genes in microarray experiments using local FDR. BMC Bioin-
formatics, 5(September).

Benjamini, Yoav, and Hochberg, Yosef. 1995. Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1),
289–300.

Benjamini, Yoav, and Yekutieli, Daniel. 2001. The control of the false discovery rate in
multiple testing under dependency. Ann. Statist., 29(4), 1165–1188.

Benjamini, Yoav, and Yekutieli, Daniel. 2005. False discovery rate-adjusted multiple
confidence intervals for selected parameters. J. Amer. Statist. Assoc., 100(469), 71–
93. With comments and a rejoinder by the authors.

Broberg, Per. 2004. A new estimate of the proportion unchanged genes in a microarray
experiment. Genome Biology, 5(5), P10.

Brown, L.D. 1971. Admissible estimators, recurrent diffusions, and insoluble boundary
value problems. Ann. Math. Statist., 42, 855–903.

Clarke, Sandy, and Hall, Peter. 2009. Robustness of multiple testing procedures against
dependence. Ann. Statist., 37(1), 332–358.

Desai, K., Deller, J., and McCormick, J. 2010. The distribution of number of false
discoveries for highly correlated null hypotheses. Ann. Appl. Statist. submitted,
under review.

Donoho, David, and Jin, Jiashun. 2009. Higher criticism thresholding: Optimal feature
selection when useful features are rare and weak. Proc. Natl. Acad. Sci. USA, 105,
14 790–14 795.

Dudoit, Sandrine, and van der Laan, Mark J. 2008. Multiple Testing Procedures with
Applications to Genomics. Springer Series in Statistics. New York: Springer.

251



252 References

Dudoit, Sandrine, Shaffer, Juliet Popper, and Boldrick, Jennifer C. 2003. Multiple hy-
pothesis testing in microarray experiments. Statist. Sci., 18(1), 71–103.

Dudoit, Sandrine, van der Laan, Mark J., and Pollard, Katherine S. 2004. Multiple
testing. I. Single-step procedures for control of general type I error rates. Stat. Appl.
Genet. Mol. Biol., 3, Art. 13, 71 pp. (electronic).

Efron, Bradley. 1969. Student’s t-test under symmetry conditions. J. Amer. Statist.
Assoc., 64, 1278–1302.

Efron, Bradley. 1987. Better bootstrap confidence intervals. J. Amer. Statist. Assoc.,
82(397), 171–200. With comments and a rejoinder by the author.

Efron, Bradley. 1996. Empirical Bayes methods for combining likelihoods. J. Amer.
Statist. Assoc., 91(434), 538–565. With discussion and a reply by the author.

Efron, Bradley. 2003. Robbins, empirical Bayes and microarrays. Ann. Statist., 31(2),
366–378.

Efron, Bradley. 2004. Large-scale simultaneous hypothesis testing: The choice of a null
hypothesis. J. Amer. Statist. Assoc., 99(465), 96–104.

Efron, Bradley. 2007a. Correlation and large-scale simultaneous significance testing. J.
Amer. Statist. Assoc., 102(477), 93–103.

Efron, Bradley. 2007b. Size, power and false discovery rates. Ann. Statist., 35(4),
1351–1377.

Efron, Bradley. 2008a. Microarrays, empirical Bayes and the two-groups model. Statist.
Sci., 23(1), 1–22.

Efron, Bradley. 2008b. Simultaneous inference: When should hypothesis testing prob-
lems be combined? Ann. Appl. Statist., 2(1), 197–223.

Efron, Bradley. 2009a. Are a set of microarrays independent of each other? Ann. Appl.
Statist., 3(September), 922–942.

Efron, Bradley. 2009b. Empirical Bayes estimates for large-scale prediction problems.
J. Amer. Statist. Assoc., 104(September), 1015–1028.

Efron, Bradley. 2010. Correlated z-values and the accuracy of large-scale statistical
estimates. J. Amer. Statist. Assoc. to appear.

Efron, Bradley, and Gous, Alan. 2001. Scales of evidence for model selection: Fisher
versus Jeffreys. Pages 208–256 of: Model Selection. IMS Lecture Notes Monogr.
Ser., vol. 38. Beachwood, OH: Inst. Math. Statist. With discussion by R. E. Kass,
G. S. Datta, and P. Lahiri, and a rejoinder by the authors.

Efron, Bradley, and Morris, Carl. 1971. Limiting the risk of Bayes and empirical Bayes
estimators. I. The Bayes case. J. Amer. Statist. Assoc., 66, 807–815.

Efron, Bradley, and Morris, Carl. 1972. Limiting the risk of Bayes and empirical Bayes
estimators. II. The empirical Bayes case. J. Amer. Statist. Assoc., 67, 130–139.

Efron, Bradley, and Morris, Carl. 1973. Stein’s estimation rule and its competitors –
An empirical Bayes approach. J. Amer. Statist. Assoc., 68, 117–130.

Efron, Bradley, and Thisted, Ronald. 1976. Estimating the number of unseen species:
How many words did Shakespeare know? Biometrika, 63(3), 435–447.

Efron, Bradley, and Tibshirani, Robert. 1993. An Introduction to the Bootstrap. Mono-
graphs on Statistics and Applied Probability, vol. 57. New York: Chapman and Hall.

Efron, Bradley, and Tibshirani, Robert. 1996. Using specially designed exponential
families for density estimation. Ann. Statist., 24(6), 2431–2461.

Efron, Bradley, and Tibshirani, Robert. 2007. On testing the significance of sets of
genes. Ann. Appl. Statist., 1(1), 107–129.



References 253

Efron, Bradley, Tibshirani, Robert, Storey, John D., and Tusher, Virginia. 2001. Em-
pirical Bayes analysis of a microarray experiment. J. Amer. Statist. Assoc., 96(456),
1151–1160.

Ferkingstad, Egil, Frigessi, Arnoldo, Rue, Håvard, Thorleifsson, Gudmar, and Kong,
Augustine. 2008. Unsupervised empirical Bayesian multiple testing with external
covariates. Ann. Appl. Statist., 2(2), 714–735.

Fisher, R.A. 1935. The Design of Experiments. Edinburgh: Oliver and Boyd.
Fisher, R.A., Corbet, A.S., and Williams, C.B. 1943. The relation between the number

of species and the number of individuals in a random sample of an animal population.
J. Anim. Ecol., 12, 42–58.

Genovese, Christopher, and Wasserman, Larry. 2002. Operating characteristics and
extensions of the false discovery rate procedure. J. Roy. Statist. Soc. Ser. B, 64(3),
499–517.

Genovese, Christopher, and Wasserman, Larry. 2004. A stochastic process approach to
false discovery control. Ann. Statist., 32(3), 1035–1061.

Genovese, Christopher R., Roeder, Kathryn, and Wasserman, Larry. 2006. False dis-
covery control with p-value weighting. Biometrika, 93(3), 509–524.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander,
E.S. 1999. Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286(5439), 531–537.

Good, I.J. 1953. The population frequencies of species and the estimation of population
parameters. Biometrika, 40, 237–264.

Good, I.J., and Toulmin, G.H. 1956. The number of new species, and the increase in
population coverage, when a sample is increased. Biometrika, 43, 45–63.

Gottardo, Raphael, Raftery, Adrian E., Yeung, Ka Yee, and Bumgarner, Roger E. 2006.
Bayesian robust inference for differential gene expression in microarrays with mul-
tiple samples. Biometrics, 62(1), 10–18, 313.

Hall, Peter. 1992. The Bootstrap and Edgeworth Expansion. Springer Series in Statis-
tics. New York: Springer-Verlag.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. 2009. The Elements of Sta-
tistical Learning. 2nd edn. Springer Series in Statistics. New York: Springer.

Hedenfalk, I., Duggan, D., Chen, Y.D., Radmacher, M., Bittner, M., Simon, R., Meltzer,
P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A., Trent, J.,
Raffeld, M., Yakhini, Z., Ben-Dor, A., Dougherty, E., Kononen, J., Bubendorf, L.,
Fehrle, W., Pittaluga, S., Gruvberger, S., Loman, N., Johannsoson, O., Olsson, H.,
and Sauter, G. 2001. Gene-expression profiles in hereditary breast cancer. N. Engl.
J. Med., 344(8), 539–548.

Heller, G., and Qing, J. 2003. A mixture model approach for finding informative genes
in microarray studies. Unpublished.

Hochberg, Yosef. 1988. A sharper Bonferroni procedure for multiple tests of signifi-
cance. Biometrika, 75(4), 800–802.

Hoeffding, Wassily. 1952. The large-sample power of tests based on permutations of
observations. Ann. Math. Statist., 23, 169–192.

Holm, Sture. 1979. A simple sequentially rejective multiple test procedure. Scand. J.
Statist., 6(2), 65–70.



254 References

Hommel, G. 1988. A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika, 75(2), 383–386.

James, W., and Stein, Charles. 1961. Estimation with quadratic loss. Pages 361–379 of:
Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I. Berkeley, Calif.: Univ.
California Press.

Jin, Jiashun, and Cai, T. Tony. 2007. Estimating the null and the proportional of non-
null effects in large-scale multiple comparisons. J. Amer. Statist. Assoc., 102(478),
495–506.

Jin, Jiashun, and Cai, T. Tony. 2010. Optimal rates of convergence for estimating the
null density and proportion of non-null effects in large-scale multiple testing. Ann.
Statist., 38(1), 100–145.

Johnson, Norman L., and Kotz, Samuel. 1970. Distributions in Statistics. Continuous
Univariate Distributions. 1. Boston, Mass.: Houghton Mifflin Co.

Johnstone, Iain M., and Silverman, Bernard W. 2004. Needles and straw in haystacks:
Empirical Bayes estimates of possibly sparse sequences. Ann. Statist., 32(4), 1594–
1649.

Kerr, M.K., Martin, M., and Churchill, G.A. 2000. Analysis of variance for gene ex-
pression microarray data. J. Comput. Biology, 7(6), 819–837.

Lancaster, H.O. 1958. The structure of bivariate distributions. Ann. Math. Statist., 29,
719–736.

Lehmann, Erich L., and Romano, Joseph P. 2005a. Generalizations of the familywise
error rate. Ann. Statist., 33(3), 1138–1154.

Lehmann, Erich L., and Romano, Joseph P. 2005b. Testing Statistical Hypotheses. 3rd
edn. Springer Texts in Statistics. New York: Springer.

Lemley, Kevin V., Lafayette, Richard A., Derby, Geraldine, Blouch, Kristina L., Ander-
son, Linda, Efron, Bradley, and Myers, Bryan D. 2008. Prediction of early progres-
sion in recently diagnosed IgA nephropathy. Nephrol. Dialysis Transplant., 23(1),
213–222.

Liao, J.G., Lin, Y., Selvanayagam, Z.E., and Shih, W.C.J. 2004. A mixture model for
estimating the local false discovery rate in DNA microarray analysis. BMC Bioin-
formatics, 20(16), 2694–2701.

Lindsey, J.K. 1974. Construction and comparison of statistical models. J. Roy. Statist.
Soc. Ser. B, 36, 418–425.

Marcus, Ruth, Peritz, Eric, and Gabriel, K.R. 1976. On closed testing procedures with
special reference to ordered analysis of variance. Biometrika, 63(3), 655–660.

McCullagh, P., and Nelder, J.A. 1989. Generalized Linear Models. 2nd edn. Mono-
graphs on Statistics and Applied Probability. London: Chapman & Hall.

Miller, Jr., Rupert G. 1981. Simultaneous Statistical Inference. 2nd edn. Springer Series
in Statistics. New York: Springer-Verlag.

Morris, Carl N. 1983. Parametric empirical Bayes inference: Theory and applications.
J. Amer. Statist. Assoc., 78(381), 47–65. With discussion.

Muralidharan, Omkar. 2009. High dimensional exponential family estimation via em-
pirical Bayes. Unpublished.

Muralidharan, Omkar. 2010. An empirical Bayes mixture method for effect size and
false discovery rate estimation. Ann. Appl. Statist., 4(1), 422–438.



References 255

Newton, M.A., Noueiry, A., Sarkar, D., and Ahlquist, P. 2004. Detecting differential
gene expression with a semiparametric hierarchical mixture method. Biostatistics,
5(2), 155–176.

Olshen, Richard, and Rajaratnam, Bala. 2009. The effect of correlation in false discov-
ery rate estimation. Tech. rept. Stanford University Department of Statistics.

Owen, Art B. 2005. Variance of the number of false discoveries. J. Roy. Statist. Soc.
Ser. B, 67(3), 411–426.

Pan, Wei, Lin, Jizhen, and Le, Chap T. 2003. A mixture model approach to detecting
differentially expressed genes with microarray data. Funct. Integr. Genomics, 3(3),
117–124.

Pavlidis, Paul, Lewis, Darrin P., and Noble, William Stafford. 2002. Exploring gene
expression data with class scores. Pac. Symp. Biocomput., 474–485.

Pitman, E.J.G. 1937. Significance Tests Which May be Applied to Samples From Any
Populations. Suppl. J. Roy. Statist. Soc., 4(1), 119–130.

Pounds, S., and Morris, S.W. 2003. Estimating the occurrence of false positives and
false negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values. BMC Bioinformatics, 19(10), 1236–1242.

Qiu, Xing, Klebanov, Lev, and Yakovlev, Andrei. 2005a. Correlation between gene
expression levels and limitations of the empirical Bayes methodology for finding
differentially expressed genes. Stat. Appl. Genet. Mol. Biol., 4, Art. 34, 32 pp. (elec-
tronic).

Qiu, Xing, Brooks, Andrew, Klebanov, Lev, and Yakovlev, Andrei. 2005b. The effects
of normalization on the correlation structure of microarray data. BMC Bioinformat-
ics, 6(1), 120.

Rahnenführer, Jörg, Domingues, Francisco S., Maydt, Jochen, and Lengauer, Thomas.
2004. Calculating the statistical significance of changes in pathway activity from
gene expression data. Stat. Appl. Genet. Mol. Biol., 3, Art. 16, 31 pp. (electronic).

Ridgeway, Greg, and MacDonald, John M. 2009. Doubly robust internal benchmarking
and false discovery rates for detecting racial bias in police stops. J. Amer. Statist.
Assoc., 104(486), 661–668.

Robbins, Herbert. 1956. An empirical Bayes approach to statistics. Pages 157–163
of: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and
Probability, 1954–1955, vol. I. Berkeley and Los Angeles: University of California
Press.

Robbins, Herbert. 1968. Estimating the total probability of the unobserved outcomes
of an experiment. Ann. Math. Statist., 39, 256–257.

Romano, Joseph P., Shaikh, Azeem M., and Wolf, Michael. 2008. Control of the false
discovery rate under dependence using the bootstrap and subsampling. TEST, 17(3),
417–442.

Schwartzman, A., and Lin, X. 2009. The effect of correlation in false discovery rate
estimation. Biostatistics Working Paper Series number 106. Harvard University.

Schwartzman, A., Dougherty, R.F., and Taylor, J.E. 2005. Cross-subject comparison of
principal diffusion direction maps. Magn. Reson. Med., 53(6), 1423–1431.

Simes, R.J. 1986. An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3), 751–754.



256 References

Singh, Dinesh, Febbo, Phillip G., Ross, Kenneth, Jackson, Donald G., Manola, Ju-
dith, Ladd, Christine, Tamayo, Pablo, Renshaw, Andrew A., D’Amico, Anthony V.,
Richie, Jerome P., Lander, Eric S., Loda, Massimo, Kantoff, Philip W., Golub,
Todd R., and Sellers, William R. 2002. Gene expression correlates of clinical
prostate cancer behavior. Cancer Cell, 1(2), 203–209.

Singh, R.S. 1979. Empirical Bayes estimation in Lebesgue-exponential families with
rates near the best possible rate. Ann. Statist., 7(4), 890–902.

Smyth, Gordon K. 2004. Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3,
Art. 3, 29 pp. (electronic).

Soric, Branko. 1989. Statistical “discoveries” and effect-size estimation. J. Amer.
Statist. Assoc., 84(406), 608–610.

Spevack, Marvin. 1968. A Complete and Systematic Concordance to the Works of
Shakespeare, Vols 1–6. Hildesheim: George Olms.

Stein, Charles M. 1956. Inadmissibility of the usual estimator for the mean of a mul-
tivariate normal distribution. Pages 197–206 of: Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I. Berkeley
and Los Angeles: University of California Press.

Stein, Charles M. 1981. Estimation of the mean of a multivariate normal distribution.
Ann. Statist., 9(6), 1135–1151.

Storey, John D. 2002. A direct approach to false discovery rates. J. Roy. Statist. Soc.
Ser. B, 64(3), 479–498.

Storey, John D. 2003. The positive false discovery rate: A Bayesian interpretation and
the q-value. Ann. Statist., 31(6), 2013–2035.

Storey, John D. 2007. The optimal discovery procedure: A new approach to simultane-
ous significance testing. J. Roy. Statist. Soc. Ser. B, 69(3), 347–368.

Storey, John D., Taylor, Jonathan E., and Siegmund, David. 2004. Strong control, con-
servative point estimation and simultaneous conservative consistency of false dis-
covery rates: A unified approach. J. Roy. Statist. Soc. Ser. B, 66(1), 187–205.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P.
2005. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci., 102(43), 15545–15550.

Thisted, Ronald, and Efron, Bradley. 1987. Did Shakespeare write a newly-discovered
poem? Biometrika, 74(3), 445–455.

Tibshirani, Robert, and Efron, Brad. 2002. Pre-validation and inference in microarrays.
Stat. Appl. Genet. Mol. Biol., 1, Art. 1, 20 pp. (electronic).

Tibshirani, Robert, and Hastie, Trevor. 2007. Outlier sums for differential gene expres-
sion analysis. Biostatistics, 8(1), 2–8.

Tibshirani, Robert, Hastie, Trevor, Narasimhan, Balasubramanian, and Chu, Gilbert.
2002. Diagnosis of multiple cancer types by shrunken centroids of gene expression.
Proc. Natl. Acad. Sci. USA, 99(10), 6567–6572.

Tibshirani, Ryan, and Tibshirani, Robert. 2009. A bias-correction for the minimum
error rate in cross-validation. Ann. Appl. Statist., 822–829.

Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W.,
Varambally, S., Cao, X.H., Tchinda, J., Kuefer, R., Lee, C., Montie, J.E., Shah, R.B.,



References 257

Pienta, K.J., Rubin, M.A., and Chinnaiyan, A.M. 2005. Recurrent fusion of TM-
PRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748),
644–648.

van’t Wout, A.B., Lehrman, G.K., Mikheeva, S.A., O’Keefe, G.C., Katze, M.G., Bum-
garner, R.E., Geiss, G.K., and Mullins, J.I. 2003. Cellular gene expression upon
human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines. J. Virol,
77(2), 1392–1402.

Westfall, P.H., and Young, S.S. 1993. Resampling-based Multiple Testing: Examples
and Methods for p-Value Adjustment. Wiley Series in Probability and Statistics.
New York, NY: Wiley-Interscience.

Wu, Baolin. 2007. Cancer outlier differential gene expression detection. Biostatistics,
8(3), 566–575.



Index

21st century, xi, 1, 15, 240

acceleration, 139
accuracy calculations, 27, 126, 141
accuracy formula, 114, 139, 148
alpha, 146–148, 250
apparent error, 216
atom, 217, 228, 229

batting averages, 7, 8
BAX gene, 163, 164
Bayes, x, 4, 5, 10, 12, 14, 18, 19, 23–25,

28, 55, 57, 69, 82, 90, 95, 97, 192,
205, 217, 220, 223, 231

hierarchical, 13
objective, 13

Bayes factor, 45, 74
Bayes intervals, 233
Bayes methods, 2
Bayes rule, 2, 3, 7, 13, 18, 53, 189, 211,

212, 230, 232, 233
Bayes theorem, 2, 27, 80, 188, 199, 217
Benjamini and Hochberg, x, 18, 23, 28,

46, 48, 52, 69
Benjamini–Hochberg algorithm, 48, 49,

54, 56, 57, 59, 64, 66, 69, 173, 204
bin centers, 116, 127, 129
bin width, 79, 90, 116, 118, 119
binomial distribution, 24, 31, 48
bivariate normal density, 117
block statistic, 150
block test, 152
Bonferroni bound, 17, 35, 36, 38, 39, 43,

81, 202
Bonferroni’s method, 81, 200
Boole’s inequality, 35, 40
bootstrap, 113, 115, 138–140

non-parametric, 115, 138, 139
bootstrap methods, 112, 138
brain tumor study, 207

BRCA data, 152, 162, 167, 168

canonical parameter, 217, 243
cardio data, 149–151, 153, 162, 249
central counts, 98, 160, 161
central matching, 97, 99–101, 104, 105,

108, 112, 129–131, 226, 227
estimates, 98–100, 103, 104, 129, 130,

226
chi-square data, 92, 93, 107, 112, 206,

249
chi-square distribution, 4, 93
chromosome, 147, 148, 202–205

sites, 202, 203
Clemente, 7–9
coefficient of variation, 23, 24, 77, 128,

178, 236
column permutation, 153, 165, 166, 168
combination, 28, 120, 163, 184–186,

192, 209
comparability, 94, 185, 206–209
conditional probability, 2, 188, 197, 228
confidence interval, 12, 14, 24, 230–233
control algorithm, 48, 173, 204, 230, 231,

233
Corbet, Alexander, 233–237, 241
Cornish–Fisher, 59, 135, 139
correlation, x, 24, 26, 27, 51, 55, 56, 68,

77, 104, 106, 111, 114, 115, 117,
118, 128, 129, 141, 143, 146–150,
152, 153, 155, 157, 159–162, 165,
167, 174, 176–178, 183, 220, 222,
223

column, 139, 143–146, 152, 153, 156,
168

count, 159
ecological, 149
negative, 68, 111, 160, 162

258



Index 259

rms, 55, 56, 104, 106, 113, 122, 123,
141, 145–149, 153–157, 159,
176, 250

row, 111, 143–147, 153, 156, 168
row and column, 141–143
sample, 67, 142–144, 222
simultaneous tests of, 64, 67

correlation across cases, 106, 108, 111,
113

correlation across units, 106, 109, 110
correlation clusters, 68
correlation corrections, 221
correlation distribution, 118, 120
correlation effects, 109, 139, 151, 159,

162, 176
correlation matrix, 113, 117, 144, 149,

152, 222
correlation of t-values, 157
correlation structure, 42, 56, 174, 183,

221
count vector, 116, 117, 126, 159, 161,

196
covariance matrix, 113, 116–119, 125,

128, 142, 148, 149, 154, 155, 157,
167, 221, 236, 246

covariate, 11, 80, 95, 107, 133, 147, 197,
198, 202, 206

unobserved, 107, 108, 111
CRAN, 174, 215
cross-validation, 215, 216, 219, 221–223,

240, 250
cumulant, 218, 230, 244

generating function, 243, 244
cumulative distribution functions (cdf),

16, 18, 19, 32, 39, 41, 43, 51, 53, 54,
60, 68, 72, 91, 93, 105, 111,
113–115, 119, 125, 132–135, 138,
165, 169, 173, 237

empirical, 53, 55, 124, 234
non-null, 86

deconvolution, 218
delta-method, 23, 115, 126, 127, 130
demeaning, 154, 155
deviance function, 244, 246
dichotomous case, 212
diffusion tensor imaging, 26
Dirichlet, 201, 245
disease status, 202
DTI data, 26, 28, 32, 34, 54, 57, 59–61,

71–73, 181, 182, 185, 186, 189,
199, 249

dyslexic, 26, 34, 181, 183
and normal children, 26, 193

Ebay, 215, 218–223, 240, 250
EER, 43, 45
effect size, 181, 212–214, 217–220,

223–225, 227–231, 233, 250
estimation, 211, 212, 227, 230, 241

effective sample size, 153, 155–157
efficiency, 1, 27, 90, 195
eigenvalues, 142–144
eigenvector, 149, 151, 152
empirical Bayes, ix, x, 1, 4, 5, 7, 10,

12–14, 18, 20–22, 27–29, 37, 46,
51–53, 55, 57, 63, 66, 69, 82,
88–90, 114, 115, 190, 191, 198,
199, 212, 213, 217–220, 223, 229,
231, 233–235, 240, 241, 250

confidence intervals, 12, 14, 233
methods, 7, 17, 30, 37, 70, 113, 206,

209, 240
posterior band, 229

empirical distribution, 20, 79, 109, 139,
169

empirical null, 84, 90, 91, 94–98,
106–108, 111, 112, 130, 141, 163,
167, 169, 183, 184, 186, 194,
224–226, 250

density, 90, 164
distribution, 56, 89, 160, 226, 227
estimation, 97, 102, 194, 196

empirical probability distribution, 29
enrichment, 82, 163, 164, 167, 170, 171,

173, 174, 178, 181–185, 191, 192,
194

analysis, 163–165, 184
estimation, x, xi, 1–3, 10, 13, 14, 20, 27,

28, 57, 58, 60, 71, 75–77, 80, 82,
88–90, 98, 99, 103, 104, 123, 156,
188, 195, 201, 220, 229, 233, 241,
243

effect size, 211, 212, 227, 230, 241
empirical Bayes, 1, 4, 13, 63, 113, 240
empirical null, 97, 102, 194, 196
James–Stein, 10, 11, 209
maximum likelihood, x, 1, 74, 75, 238,

245, 246
estimation accuracy, 113, 148
exchangeability, 80
expected false and true positives, 82, 83
exponential family, xi, 74, 82, 103, 104,

171, 174, 217, 224, 230, 243–247



260 Index

multiparameter, 105, 137, 245, 247
one-parameter, 137, 241, 243

exponential tilting, 243, 244
expression matrix, 47, 61, 133, 144, 146,

149
false coverage rate, 230–232
false discoveries, 21, 22, 47, 51, 59, 232
false discovery proportion, 22, 23, 29,

47–49, 51, 53, 55, 56, 106, 107,
130, 160, 201

false discovery rate, x, xi, 18, 20, 22, 23,
26, 28, 30, 37, 42, 43, 45–47, 50,
53, 57, 58, 60, 62, 64, 69, 70, 72, 73,
81–83, 97, 102, 105, 106, 128, 159,
160, 164, 184–186, 188, 194,
197–201, 205, 208, 212, 223, 225

Bayes, 18, 19, 23–25, 29, 55, 200
local, 19, 28, 29, 57, 70, 73, 77, 78, 82,

83, 86–88, 90, 97, 183, 185, 187,
197, 223, 226, 229, 250

positive, 51
false negative rate, 57, 69
FCR control, 230, 231, 233
FDR control, 30, 37, 45, 46, 48, 50, 51,

57, 58, 69, 70, 173, 204, 231, 233
filtration, 109
Fisher, R.A., ix, x, 14, 15, 31, 32, 36, 45,

48, 65, 111, 112, 234, 237–239, 241
Fisher’s linear discriminant function,

211, 212, 214
Fisher’s prediction formula, 237
Fisher’s scale of evidence, 31, 46

fold-change, 207–209
frequentist, ix, x, 1, 2, 5, 10, 14, 15, 18,

30, 37, 48, 54, 115, 199, 200, 205,
230, 233

methods, 205, 233
FWER, 30, 34, 35, 43, 44, 47, 49, 50, 81,

83, 185, 199, 200, 205
control, 35, 37, 40, 43

gamma density, 237
gamma distribution, 134
gene expression, 15, 141, 149, 163, 167,

212
gene set, 163–171, 173, 174, 176, 181,

183, 184
generalized linear model (GLM), 75,

127, 247
Poisson, 131, 247, 248

GSEA statistic, 165, 172–174
Hermite polynomial, 118, 119

hierarchical model, 241
Bayes, 27, 28, 96, 182
normal, 217, 223–226, 228, 241
Poisson, 240

high-dimensional statistical inference, 1
higher criticism, 59, 69, 205
hippocampus, 197
HIV data, 94, 96, 99, 105, 110–112, 148,

249
Holm’s procedure, 36–38, 40, 81
homogeneity assumption, 123–125
hyperparameter, 13

independence, 24–26, 36, 39, 50, 55, 56,
59, 66, 76, 84, 92, 106, 111, 113,
124, 125, 128, 130, 141, 152, 153,
221, 222, 235, 236

assumption, 24, 26, 55, 60, 106
column-wise, 141, 149, 153, 162

indirect evidence, 7, 229, 240
influence function, 127, 129, 130, 139

James–Stein estimator, 1, 5–7, 14, 27
Jensen’s inequality, 22, 23, 155

k-FWER, 43–45
kidney data, 11, 14, 249
Kolmogorov–Smirnov test statistic, 165,

172
Kronecker product, 154
Kullback–Leibler distance, 244
kurtosis, 132, 135

large-scale inference, 3, 9, 34, 163
learning from the experience of others,

10, 27, 184, 206, 229, 240
least squares, 10, 12, 110, 129, 131, 245
Lehmann alternatives, 20
leukemia data, 63, 64, 98, 111–114, 124,

132, 138, 146, 147, 224, 225, 249
likelihood, x, 1–3, 5, 13, 74, 75,

102–104, 171, 238, 245, 246
limma, 184
Lindsey’s method, 74–76, 88, 247
linear logistic model, 194, 195
linear regression, 5, 11, 34, 150, 152, 240
local averaging, 181–183
local true discovery rate, 84
locfdr, 34, 75, 76, 82, 86, 101, 103,

104, 127, 153, 226, 250
logistic regression estimate, 189

Malaysian butterfly data, 233, 234, 236
marginal density, 18, 19, 123, 187, 188,

199, 217, 218, 224, 233



Index 261

marginal distribution, 2, 4, 177
max-T , 40–43
maximum likelihood estimator (MLE), 3,

5, 102
maxmean statistic, 171–173, 184
mean, 2, 8, 9, 24, 28, 56, 68, 77, 87, 98,

104, 107, 115–117, 121, 125, 126,
132–135, 137, 141–144, 147, 149,
154, 156–159, 161, 165–168, 172,
173, 177, 178, 184, 211, 214, 250

and variance, 6, 23, 60, 82, 114, 144,
158, 159, 161, 180, 228, 230, 244

posterior, 13, 218, 223
Mehler’s identity, 118, 121
Michigan lung cancer study, 222, 223,

241
microarray, ix, 1, 15, 27, 28, 43, 45, 61,

81, 91, 96, 106, 107, 109, 121, 141,
143, 145, 148–150, 152, 163, 164,
167, 181, 206–208, 212, 215

microarray experiment, 61, 107, 112,
133, 143, 152, 163, 223

microarray study, 27, 61, 64, 91, 109,
113, 148, 163

Miller, Rupert, xi, 30, 45, 186, 205
min-p, 40, 41
missing mass problem, 239
missing species problem, 233, 237, 241
mixture density, 18, 21, 29, 71, 74, 88,

96, 101, 114, 187, 250
MLE method, 1, 90, 99, 101, 102, 104,

105, 108, 112, 153, 183, 189
multi-class model, 117, 119, 187
multinomial, 118, 125, 161, 236, 245,

247
multivariate normal, 2, 6, 28, 36, 146,

211, 245
calculations, 153, 180

natural parameter, 137, 217, 243, 244,
247

natural spline basis, 76, 90
nearest shrunken centroid, 215, 240
negative binomial, 237, 238
new species, 234, 235, 237, 238
non-central χ2, 178, 180
non-central t, 132, 137, 221

distribution, 133
non-null counts, 84, 85

smoothed, 84, 85, 96, 124
normal distribution, 3, 16, 84, 139, 153,

213

matrix normal, 154
multivariate normal, 211

null and alternative densities, 29
null hypothesis, x, 16, 26, 31, 32, 48, 49,

51, 55, 58, 65, 74, 83, 89, 96, 97,
105, 111, 113, 132, 135–137, 141,
149–151, 164, 165, 170–172, 174,
194, 195, 201, 224, 227, 250

blurry, 97
complete, 40–42
enrichment, 194

null proportion, 20, 28, 49, 54, 60, 66,
90, 98

odds ratio, 2, 211, 227
optimal discovery procedure, 45

p-values, 31–41, 45, 48–53, 57, 66, 70,
136, 141, 167, 169, 173, 174, 200,
204

adjusted, 34–37, 39–42, 202
p53 data, 163, 166, 173, 184, 194, 250

P53 UP, 194, 195
pamr, 215–219, 240
PCER, 43
penalty, 5, 50, 76, 201, 204, 205

correlation, 114, 118, 119, 122, 123,
128

permutation algorithms, 39
permutation calculations, 40, 97, 109,

110, 177–180, 183
permutation distribution, 41, 62, 64, 89,

111, 169, 180
permutation methods, 41, 42, 110–112,

149, 171, 174
permutation null, 97, 109, 111, 141, 149

distribution, 64, 109, 110, 184
point estimate, 22
Poisson assumption, 25, 170

Poisson-independence, 24, 25, 58, 200
Poisson deviance, 76, 248
Poisson process, 234
Poisson regression, 71, 75, 218, 219, 245

estimate, 74, 114, 123, 127, 196, 233
Poisson selection model, 170, 174
police data, 93, 95, 112, 226, 227, 249
positive regression dependence, 50, 69
posterior distribution, 2, 3, 12, 229
posterior interval, 12, 13, 232
posterior probability, 18, 53, 57, 74, 95
power, 34, 48, 57, 74, 83, 85–89, 104,

153, 163, 170–173
diagnostics, 83, 87, 88



262 Index

prediction, xi, 1, 7–10, 28, 211–217, 223,
228, 229, 234, 235, 237–241

computer-intensive, 212
prediction error, 7, 214, 219–221
prediction rule, 97, 211–213, 216, 217,

219–221, 223
ideal, 213

prior density, 2, 27, 95–97, 228
prior knowledge, 80, 88
prior probability, 17, 70, 83, 187, 211,

213
prostate data, 15, 17, 21, 24, 27, 41, 42,

44, 47, 50, 57, 60–63, 68, 71–73,
78–80, 82, 84, 85, 88, 148, 151,
184, 185, 207, 208, 212, 214–216,
219, 221, 224, 225, 229, 249, 250

randomization, 164–167, 169, 174, 176,
179

row, 165, 167–171, 174, 177, 183, 184
ras pathway, 164, 166, 171
relevance, x, 81, 82, 94, 185, 186,

196–198, 205, 206, 209
relevance function, 14, 197, 198, 209
restandardization, 168, 169, 173, 174,

176, 178, 179, 183, 184
restandardized, 168, 173, 184

risk function, 3
rms approximation, 121–123, 125, 161
Robbins, Herbert, x, 1, 14, 88, 240, 241

SAM, 61–64, 94, 110, 174, 209
scaling properties, 80, 81
score function, 171, 246
scoring function, 165, 169, 170, 174
secant, 19
second derivative matrix, 246
selection bias, 215, 230
separate analyses, 185, 186, 199, 205
separation, 184–186, 196, 199, 200, 205,

209
Shakespeare data, 238, 239, 241, 250
Shakespeare, Wm., 238–241

canon, 238, 239
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