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Kernel Methods for Pattern Analysis

Pattern Analysis is the process of finding general relations in a set of data,
and forms the core of many disciplines, from neural networks to so-called syn-
tactical pattern recognition, from statistical pattern recognition to machine
learning and data mining. Applications of pattern analysis range from bioin-
formatics to document retrieval.

The kernel methodology described here provides a powerful and unified
framework for all of these disciplines, motivating algorithms that can act on
general types of data (e.g. strings, vectors, text, etc.) and look for general
types of relations (e.g. rankings, classifications, regressions, clusters, etc.).
This book fulfils two major roles. Firstly it provides practitioners with a large
toolkit of algorithms, kernels and solutions ready to be implemented, many
given as Matlab code suitable for many pattern analysis tasks in fields such
as bioinformatics, text analysis, and image analysis. Secondly it furnishes
students and researchers with an easy introduction to the rapidly expanding
field of kernel-based pattern analysis, demonstrating with examples how to
handcraft an algorithm or a kernel for a new specific application, while
covering the required conceptual and mathematical tools necessary to do so.

The book is in three parts. The first provides the conceptual foundations
of the field, both by giving an extended introductory example and by cov-
ering the main theoretical underpinnings of the approach. The second part
contains a number of kernel-based algorithms, from the simplest to sophis-
ticated systems such as kernel partial least squares, canonical correlation
analysis, support vector machines, principal components analysis, etc. The
final part describes a number of kernel functions, from basic examples to
advanced recursive kernels, kernels derived from generative models such as
HMMs and string matching kernels based on dynamic programming, as well
as special kernels designed to handle text documents.

All those involved in pattern recognition, machine learning, neural net-
works and their applications, from computational biology to text analysis
will welcome this account.
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Preface

The study of patterns in data is as old as science. Consider, for example,
the astronomical breakthroughs of Johannes Kepler formulated in his three
famous laws of planetary motion. They can be viewed as relations that he
detected in a large set of observational data compiled by Tycho Brahe.

Equally the wish to automate the search for patterns is at least as old
as computing. The problem has been attacked using methods of statistics,
machine learning, data mining and many other branches of science and en-
gineering.

Pattern analysis deals with the problem of (automatically) detecting and
characterising relations in data. Most statistical and machine learning meth-
ods of pattern analysis assume that the data is in vectorial form and that
the relations can be expressed as classification rules, regression functions or
cluster structures; these approaches often go under the general heading of
‘statistical pattern recognition’. ‘Syntactical’ or ‘structural pattern recogni-
tion’ represents an alternative approach that aims to detect rules among, for
example, strings, often in the form of grammars or equivalent abstractions.

The evolution of automated algorithms for pattern analysis has undergone
three revolutions. In the 1960s efficient algorithms for detecting linear rela-
tions within sets of vectors were introduced. Their computational and sta-
tistical behaviour was also analysed. The Perceptron algorithm introduced
in 1957 is one example. The question of how to detect nonlinear relations
was posed as a major research goal at that time. Despite this developing
algorithms with the same level of efficiency and statistical guarantees has
proven an elusive target.

In the mid 1980s the field of pattern analysis underwent a ‘nonlinear revo-
lution’ with the almost simultaneous introduction of backpropagation multi-
layer neural networks and efficient decision tree learning algorithms. These

xi
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approaches for the first time made it possible to detect nonlinear patterns,
albeit with heuristic algorithms and incomplete statistical analysis. The
impact of the nonlinear revolution cannot be overemphasised: entire fields
such as data mining and bioinformatics were enabled by it. These nonlinear
algorithms, however, were based on gradient descent or greedy heuristics
and so suffered from local minima. Since their statistical behaviour was not
well understood, they also frequently suffered from overfitting.

A third stage in the evolution of pattern analysis algorithms took place
in the mid-1990s with the emergence of a new approach to pattern analy-
sis known as kernel-based learning methods that finally enabled researchers
to analyse nonlinear relations with the efficiency that had previously been
reserved for linear algorithms. Furthermore advances in their statistical
analysis made it possible to do so in high-dimensional feature spaces while
avoiding the dangers of overfitting. From all points of view, computational,
statistical and conceptual, the nonlinear pattern analysis algorithms devel-
oped in this third generation are as efficient and as well founded as linear
ones. The problems of local minima and overfitting that were typical of
neural networks and decision trees have been overcome. At the same time,
these methods have been proven very effective on non vectorial data, in this
way creating a connection with other branches of pattern analysis.

Kernel-based learning first appeared in the form of support vector ma-
chines, a classification algorithm that overcame the computational and sta-
tistical difficulties alluded to above. Soon, however, kernel-based algorithms
able to solve tasks other than classification were developed, making it in-
creasingly clear that the approach represented a revolution in pattern analy-
sis. Here was a whole new set of tools and techniques motivated by rigorous
theoretical analyses and built with guarantees of computational efficiency.

Furthermore, the approach is able to bridge the gaps that existed be-
tween the different subdisciplines of pattern recognition. It provides a uni-
fied framework to reason about and operate on data of all types be they
vectorial, strings, or more complex objects, while enabling the analysis of a
wide variety of patterns, including correlations, rankings, clusterings, etc.

This book presents an overview of this new approach. We have attempted
to condense into its chapters an intense decade of research generated by a
new and thriving research community. Together its researchers have created
a class of methods for pattern analysis, which has become an important part
of the practitioner’s toolkit.

The algorithms presented in this book can identify a wide variety of
relations, ranging from the traditional tasks of classification and regres-
sion, through more specialised problems such as ranking and clustering, to
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advanced techniques including principal components analysis and canonical
correlation analysis. Furthermore, each of the pattern analysis tasks can
be applied in conjunction with each of the bank of kernels developed in the
final part of the book. This means that the analysis can be applied to a
wide variety of data, ranging from standard vectorial types through more
complex objects such as images and text documents, to advanced datatypes
associated with biosequences, graphs and grammars.

Kernel-based analysis is a powerful new tool for mathematicians, scientists
and engineers. It provides a surprisingly rich way to interpolate between pat-
tern analysis, signal processing, syntactical pattern recognition and pattern
recognition methods from splines to neural networks. In short, it provides
a new viewpoint whose full potential we are still far from understanding.

The authors have played their part in the development of kernel-based
learning algorithms, providing a number of contributions to the theory, im-
plementation, application and popularisation of the methodology. Their
book, An Introduction to Support Vector Machines, has been used as a text-
book in a number of universities, as well as a research reference book. The
authors also assisted in the organisation of a European Commission funded
Working Group in ‘Neural and Computational Learning (NeuroCOLT)’ that
played an important role in defining the new research agenda as well as in
the project ‘Kernel Methods for Images and Text (KerMIT)’ that has seen
its application in the domain of document analysis.

The authors would like to thank the many people who have contributed to
this book through discussion, suggestions and in many cases highly detailed
and enlightening feedback. Particularly thanks are owing to Gert Lanckriet,
Michinari Momma, Kristin Bennett, Tijl DeBie, Roman Rosipal, Christina
Leslie, Craig Saunders, Bernhard Schölkopf, Nicolò Cesa-Bianchi, Peter
Bartlett, Colin Campbell, William Noble, Prabir Burman, Jean-Philippe
Vert, Michael Jordan, Manju Pai, Andrea Frome, Chris Watkins, Juho
Rousu, Thore Graepel, Ralf Herbrich, and David Hardoon. They would
also like to thank the European Commission and the UK funding council
EPSRC for supporting their research into the development of kernel-based
learning methods.

Nello Cristianini is Assistant Professor of Statistics at University of Cal-
ifornia in Davis. Nello would like to thank UC Berkeley Computer Science
Department and Mike Jordan for hosting him during 2001–2002, when Nello
was a Visiting Lecturer there. He would also like to thank MIT CBLC and
Tommy Poggio for hosting him during the summer of 2002, as well as the
Department of Statistics at UC Davis, which has provided him with an ideal
environment for this work. Much of the structure of the book is based on
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courses taught by Nello at UC Berkeley, at UC Davis and tutorials given in
a number of conferences.

John Shawe-Taylor is professor of computing science at the University
of Southampton. John would like to thank colleagues in the Computer
Science Department of Royal Holloway, University of London, where he was
employed during most of the writing of the book.
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Basic concepts
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Pattern analysis

Pattern analysis deals with the automatic detection of patterns in data,
and plays a central role in many modern artificial intelligence and computer
science problems. By patterns we understand any relations, regularities or
structure inherent in some source of data. By detecting significant patterns
in the available data, a system can expect to make predictions about new
data coming from the same source. In this sense the system has acquired
generalisation power by ‘learning’ something about the source generating
the data. There are many important problems that can only be solved using
this approach, problems ranging from bioinformatics to text categorization,
from image analysis to web retrieval. In recent years, pattern analysis has
become a standard software engineering approach, and is present in many
commercial products.

Early approaches were efficient in finding linear relations, while nonlinear
patterns were dealt with in a less principled way. The methods described
in this book combine the theoretically well-founded approach previously
limited to linear systems, with the flexibility and applicability typical of
nonlinear methods, hence forming a remarkably powerful and robust class
of pattern analysis techniques.

There has been a distinction drawn between statistical and syntactical
pattern recognition, the former dealing essentially with vectors under sta-
tistical assumptions about their distribution, and the latter dealing with
structured objects such as sequences or formal languages, and relying much
less on statistical analysis. The approach presented in this book reconciles
these two directions, in that it is capable of dealing with general types of
data such as sequences, while at the same time addressing issues typical of
statistical pattern analysis such as learning from finite samples.

3



4 Pattern analysis

1.1 Patterns in data

1.1.1 Data

This book deals with data and ways to exploit it through the identification
of valuable knowledge. By data we mean the output of any observation,
measurement or recording apparatus. This therefore includes images in
digital format; vectors describing the state of a physical system; sequences
of DNA; pieces of text; time series; records of commercial transactions, etc.
By knowledge we mean something more abstract, at the level of relations
between and patterns within the data. Such knowledge can enable us to
make predictions about the source of the data or draw inferences about the
relationships inherent in the data.

Many of the most interesting problems in AI and computer science in
general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution. As an example consider the
problem of recognising genes in a DNA sequence. We do not know how to
specify a program to pick out the subsequences of, say, human DNA that
represent genes. Similarly we are not able directly to program a computer to
recognise a face in a photo. Learning systems offer an alternative method-
ology for tackling these problems. By exploiting the knowledge extracted
from a sample of data, they are often capable of adapting themselves to infer
a solution to such tasks. We will call this alternative approach to software
design the learning methodology. It is also referred to as the data driven or
data based approach, in contrast to the theory driven approach that gives
rise to precise specifications of the required algorithms.

The range of problems that have been shown to be amenable to the learn-
ing methodology has grown very rapidly in recent years. Examples include
text categorization; email filtering; gene detection; protein homology detec-
tion; web retrieval; image classification; handwriting recognition; prediction
of loan defaulting; determining properties of molecules, etc. These tasks are
very hard or in some cases impossible to solve using a standard approach,
but have all been shown to be tractable with the learning methodology.
Solving these problems is not just of interest to researchers. For example,
being able to predict important properties of a molecule from its structure
could save millions of dollars to pharmaceutical companies that would nor-
mally have to test candidate drugs in expensive experiments, while being
able to identify a combination of biomarker proteins that have high predic-
tive power could result in an early cancer diagnosis test, potentially saving
many lives.

In general, the field of pattern analysis studies systems that use the learn-
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ing methodology to discover patterns in data. The patterns that are sought
include many different types such as classification, regression, cluster analy-
sis (sometimes referred to together as statistical pattern recognition), feature
extraction, grammatical inference and parsing (sometimes referred to as syn-
tactical pattern recognition). In this book we will draw concepts from all of
these fields and at the same time use examples and case studies from some
of the applications areas mentioned above: bioinformatics, machine vision,
information retrieval, and text categorization.

It is worth stressing that while traditional statistics dealt mainly with
data in vector form in what is known as multivariate statistics, the data for
many of the important applications mentioned above are non-vectorial. We
should also mention that pattern analysis in computer science has focussed
mainly on classification and regression, to the extent that pattern analysis is
synonymous with classification in the neural network literature. It is partly
to avoid confusion between this more limited focus and our general setting
that we have introduced the term pattern analysis.

1.1.2 Patterns

Imagine a dataset containing thousands of observations of planetary posi-
tions in the solar system, for example daily records of the positions of each
of the nine planets. It is obvious that the position of a planet on a given day
is not independent of the position of the same planet in the preceding days:
it can actually be predicted rather accurately based on knowledge of these
positions. The dataset therefore contains a certain amount of redundancy,
that is information that can be reconstructed from other parts of the data,
and hence that is not strictly necessary. In such cases the dataset is said
to be redundant : simple laws can be extracted from the data and used to
reconstruct the position of each planet on each day. The rules that govern
the position of the planets are known as Kepler’s laws. Johannes Kepler dis-
covered his three laws in the seventeenth century by analysing the planetary
positions recorded by Tycho Brahe in the preceding decades.

Kepler’s discovery can be viewed as an early example of pattern analysis,
or data-driven analysis. By assuming that the laws are invariant, they can
be used to make predictions about the outcome of future observations. The
laws correspond to regularities present in the planetary data and by inference
therefore in the planetary motion itself. They state that the planets move in
ellipses with the sun at one focus; that equal areas are swept in equal times
by the line joining the planet to the sun; and that the period P (the time
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D P D2 P 3

Mercury 0.24 0.39 0.058 0.059
Venus 0.62 0.72 0.38 0.39
Earth 1.00 1.00 1.00 1.00
Mars 1.88 1.53 3.53 3.58
Jupiter 11.90 5.31 142.00 141.00
Saturn 29.30 9.55 870.00 871.00

Table 1.1. An example of a pattern in data: the quantity D2/P 3 remains
invariant for all the planets. This means that we could compress the data
by simply listing one column or that we can predict one of the values for
new previously unknown planets, as happened with the discovery of the

outer planets.

of one revolution around the sun) and the average distance D from the sun
are related by the equation P 3 = D2 for each planet.

Example 1.1 From Table 1.1 we can observe two potential properties of
redundant datasets: on the one hand they are compressible in that we could
construct the table from just one column of data with the help of Kepler’s
third law, while on the other hand they are predictable in that we can, for
example, infer from the law the distances of newly discovered planets once we
have measured their period. The predictive power is a direct consequence of
the presence of the possibly hidden relations in the data. It is these relations
once discovered that enable us to predict and therefore manipulate new data
more effectively.

Typically we anticipate predicting one feature as a function of the remain-
ing features: for example the distance as a function of the period. For us
to be able to do this, the relation must be invertible, so that the desired
feature can be expressed as a function of the other values. Indeed we will
seek relations that have such an explicit form whenever this is our intention.
Other more general relations can also exist within data, can be detected and
can be exploited. For example, if we find a general relation that is expressed
as an invariant function f that satisfies

f(x) = 0, (1.1)

where x is a data item, we can use it to identify novel or faulty data items
for which the relation fails, that is for which f(x) �= 0. In such cases it is,
however, harder to realise the potential for compressibility since it would
require us to define a lower-dimensional coordinate system on the manifold
defined by equation (1.1).
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Kepler’s laws are accurate and hold for all planets of a given solar sys-
tem. We refer to such relations as exact. The examples that we gave above
included problems such as loan defaulting, that is the prediction of which
borrowers will fail to repay their loans based on information available at the
time the loan is processed. It is clear that we cannot hope to find an exact
prediction in this case since there will be factors beyond those available to
the system, which may prove crucial. For example, the borrower may lose
his job soon after taking out the loan and hence find himself unable to ful-
fil the repayments. In such cases the most the system can hope to do is
find relations that hold with a certain probability. Learning systems have
succeeded in finding such relations. The two properties of compressibility
and predictability are again in evidence. We can specify the relation that
holds for much of the data and then simply append a list of the exceptional
cases. Provided the description of the relation is succinct and there are
not too many exceptions, this will result in a reduction in the size of the
dataset. Similarly, we can use the relation to make predictions, for example
whether the borrower will repay his or her loan. Since the relation holds
with a certain probability we will have a good chance that the prediction
will be fulfilled. We will call relations that hold with a certain probability
statistical.

Predicting properties of a substance based on its molecular structure is
hindered by a further problem. In this case, for properties such as boiling
point that take real number values, the relations sought will necessarily have
to be approximate in the sense that we cannot expect an exact prediction.
Typically we may hope that the expected error in the prediction will be
small, or that with high probability the true value will be within a certain
margin of the prediction, but our search for patterns must necessarily seek a
relation that is approximate. One could claim that Kepler’s laws are approx-
imate if for no other reason because they fail to take general relativity into
account. In the cases of interest to learning systems, however, the approx-
imations will be much looser than those affecting Kepler’s laws. Relations
that involve some inaccuracy in the values accepted are known as approxi-
mate. For approximate relations we can still talk about prediction, though
we must qualify the accuracy of the estimate and quite possibly the proba-
bility with which it applies. Compressibility can again be demonstrated if
we accept that specifying the error corrections between the value output by
the rule and the true value, take less space if they are small.

The relations that make a dataset redundant, that is the laws that we
extract by mining it, are called patterns throughout this book. Patterns
can be deterministic relations like Kepler’s exact laws. As indicated above
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other relations are approximate or only holds with a certain probability.
We are interested in situations where exact laws, especially ones that can
be described as simply as Kepler’s, may not exist. For this reason we will
understand a pattern to be any relation present in the data, whether it be
exact, approximate or statistical.

Example 1.2 Consider the following artificial example, describing some
observations of planetary positions in a two dimensional orthogonal coor-
dinate system. Note that this is certainly not what Kepler had in Tycho’s
data.

x y x2 y2 xy

0.8415 0.5403 0.7081 0.2919 0.4546
0.9093 −0.4161 0.8268 0.1732 −0.3784
0.1411 −0.99 0.0199 0.9801 −0.1397

−0.7568 −0.6536 0.5728 0.4272 0.4947
−0.9589 0.2837 0.9195 0.0805 −0.272
−0.2794 0.9602 0.0781 0.9219 −0.2683

0.657 0.7539 0.4316 0.5684 0.4953
0.9894 −0.1455 0.9788 0.0212 −0.144
0.4121 −0.9111 0.1698 0.8302 −0.3755

−0.544 −0.8391 0.296 0.704 0.4565

The left plot of Figure 1.1 shows the data in the (x, y) plane. We can
make many assumptions about the law underlying such positions. However
if we consider the quantity c1x

2 +c2y
2 +c3xy+c4x+c5y+c6 we will see that

it is constant for some choice of the parameters, indeed as shown in the left
plot of Figure 1.1 we obtain a linear relation with just two features, x2 and
y2. This would not generally the case if the data were random, or even if
the trajectory was following a curve different from a quadratic. In fact this
invariance in the data means that the planet follows an elliptic trajectory.
By changing the coordinate system the relation has become linear.

In the example we saw how applying a change of coordinates to the data
leads to the representation of a pattern changing. Using the initial coor-
dinate system the pattern was expressed as a quadratic form, while in the
coordinate system using monomials it appeared as a linear function. The
possibility of transforming the representation of a pattern by changing the
coordinate system in which the data is described will be a recurrent theme
in this book.
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Fig. 1.1. The artificial planetary data lying on an ellipse in two dimensions and the
same data represented using the features x2 and y2 showing a linear relation

The pattern in the example had the form of a function f that satisfied

f(x) = 0,

for all the data points x. We can also express the pattern described by
Kepler’s third law in this form

f(D, P ) = D2 − P 3 = 0.

Alternatively

g (D, P ) = 2 log D − 3 log P = 0.

Similarly, if we have a function g that for each data item (x,y) predicts
some output values y as a function of the input features x, we can express
the pattern in the form

f (x,y) = L (g (x) ,y) = 0,

where L : Y × Y → R
+ is a so-called loss function that measures the
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disagreement between its two arguments outputting 0 if and only if the two
arguments are the same and outputs a positive discrepancy if they differ.

Definition 1.3 A general exact pattern for a data source is a non-trivial
function f that satisfies

f(x) = 0,

for all of the data, x, that can arise from the source.

The definition only covers exact patterns. We first consider the relaxation
required to cover the case of approximate patterns. Taking the example of
a function g that predicts the values y as a function of the input features
x for a data item (x,y), if we cannot expect to obtain an exact equality
between g (x) and y, we use the loss function L to measure the amount of
mismatch. This can be done by allowing the function to output 0 when
the two arguments are similar, but not necessarily identical, or by allowing
the function f to output small, non-zero positive values. We will adopt the
second approach since when combined with probabilistic patterns it gives a
distinct and useful notion of probabilistic matching.

Definition 1.4 A general approximate pattern for a data source is a non-
trivial function f that satisfies

f(x) ≈ 0

for all of the data x, that can arise from the source.

We have deliberately left vague what approximately equal to zero might
mean in a particular context.

Finally, we consider statistical patterns. In this case there is a probability
distribution that generates the data. In many cases the individual data
items can be assumed to be generate independently and identically, a case
often referred to as independently and identically distributed or i.i.d. for
short. We will use the symbol E to denote the expectation of some quantity
under a distribution. If we wish to indicate the distribution over which the
expectation is taken we add either the distribution or the variable as an
index.

Note that our definitions of patterns hold for each individual data item
in the case of exact and approximate patterns, but for the case of a statis-
tical pattern we will consider the expectation of a function according to the
underlying distribution. In this case we require the pattern function to be
positive to ensure that a small expectation arises from small function values
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and not through the averaging of large positive and negative outputs. This
can always be achieved by taking the absolute value of a pattern function
that can output negative values.

Definition 1.5 A general statistical pattern for a data source generated
i.i.d. according to a distribution D is a non-trivial non-negative function f

that satisfies

EDf(x) = Exf(x) ≈ 0.

If the distribution does not satisfy the i.i.d. requirement this is usually
as a result of dependencies between data items generated in sequence or
because of slow changes in the underlying distribution. A typical example
of the first case is time series data. In this case we can usually assume that
the source generating the data is ergodic, that is, the dependency decays
over time to a probability that is i.i.d. It is possible to develop an analysis
that approximates i.i.d. for this type of data. Handling changes in the
underlying distribution has also been analysed theoretically but will also be
beyond the scope of this book.

Remark 1.6 [Information theory] It is worth mentioning how the patterns
we are considering and the corresponding compressibility are related to the
traditional study of statistical information theory. Information theory de-
fines the entropy of a (not necessarily i.i.d.) source of data and limits the
compressibility of the data as a function of its entropy. For the i.i.d. case
it relies on knowledge of the exact probabilities of the finite set of possible
items.

Algorithmic information theory provides a more general framework for
defining redundancies and regularities in datasets, and for connecting them
with the compressibility of the data. The framework considers all com-
putable functions, something that for finite sets of data becomes too rich a
class. For in general we do not have access to all of the data and certainly
not an exact knowledge of the distribution that generates it.

Our information about the data source must rather be gleaned from a
finite set of observations generated according to the same underlying distri-
bution. Using only this information a pattern analysis algorithm must be
able to identify patterns. Hence, we give the following general definition of
a pattern analysis algorithm.
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Definition 1.7 [Pattern analysis algorithm] A Pattern analysis algorithm
takes as input a finite set of examples from the source of data to be analysed.
Its output is either an indication that no patterns were detectable in the
data, or a positive pattern function f that the algorithm asserts satisfies

Ef(x) ≈ 0,

where the expectation is with respect to the data generated by the source.
We refer to input data examples as the training instances, the training ex-
amples or the training data and to the pattern function f as the hypothesis
returned by the algorithm. The value of the expectation is known as the
generalisation error.

Note that the form of the pattern function is determined by the particular
algorithm, though of course the particular function chosen will depend on
the sample of data given to the algorithm.

It is now time to examine in more detail the properties that we would like
a pattern analysis algorithm to possess.

1.2 Pattern analysis algorithms

Identifying patterns in a finite set of data presents very different and distinc-
tive challenges. We will identify three key features that a pattern analysis
algorithm will be required to exhibit before we will consider it to be effective.

Computational efficiency Since we are interested in practical solutions
to real-world problems, pattern analysis algorithms must be able to handle
very large datasets. Hence, it is not sufficient for an algorithm to work well
on small toy examples; we require that its performance should scale to large
datasets. The study of the computational complexity or scalability of algo-
rithms identifies efficient algorithms as those whose resource requirements
scale polynomially with the size of the input. This means that we can bound
the number of steps and memory that the algorithm requires as a polyno-
mial function of the size of the dataset and other relevant parameters such
as the number of features, accuracy required, etc. Many algorithms used in
pattern analysis fail to satisfy this apparently benign criterion, indeed there
are some for which there is no guarantee that a solution will be found at all.
For the purposes of this book we will require all algorithms to be computa-
tionally efficient and furthermore that the degree of any polynomial involved
should render the algorithm practical for large datasets.
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Robustness The second challenge that an effective pattern analysis algo-
rithm must address is the fact that in real-life applications data is often
corrupted by noise. By noise we mean that the values of the features for
individual data items may be affected by measurement inaccuracies or even
miscodings, for example through human error. This is closely related to the
notion of approximate patterns discussed above, since even if the underlying
relation is exact, once noise has been introduced it will necessarily become
approximate and quite possibly statistical. For our purposes we will require
that the algorithms will be able to handle noisy data and identify approxi-
mate patterns. They should therefore tolerate a small amount of noise in the
sense that it will not affect their output too much. We describe an algorithm
with this property as robust.

Statistical stability The third property is perhaps the most fundamental,
namely that the patterns the algorithm identifies really are genuine patterns
of the data source and not just an accidental relation occurring in the finite
training set. We can view this property as the statistical robustness of the
output in the sense that if we rerun the algorithm on a new sample from
the same source it should identify a similar pattern. Hence, the output of
the algorithm should not be sensitive to the particular dataset, just to the
underlying source of the data. For this reason we will describe an algorithm
with this property as statistically stable or stable for short. A relation iden-
tified by such an algorithm as a pattern of the underlying source is also
referred to as stable, significant or invariant. Again for our purposes we will
aim to demonstrate that our algorithms are statistically stable.

Remark 1.8 [Robustness and stability] There is some overlap between ro-
bustness and statistical stability in that they both measure sensitivity of the
pattern function to the sampling process. The difference is that robustness
emphasise the effect of the sampling on the pattern function itself, while sta-
tistical stability measures how reliably the particular pattern function will
process unseen examples. We have chosen to separate them as they lead to
different considerations in the design of pattern analysis algorithms.

To summarise: a pattern analysis algorithm should possess three properties:
efficiency, robustness and statistical stability. We will now examine the third
property in a little more detail.
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1.2.1 Statistical stability of patterns

Proving statistical stability Above we have seen how discovering pat-
terns in data can enable us to make predictions and hence how a stable
pattern analysis algorithm can extend the usefulness of the data by learn-
ing general properties from the analysis of particular observations. When a
learned pattern makes correct predictions about future observations we say
that it has generalised, as this implies that the pattern has more general
applicability. We will also refer to the accuracy of these future predictions
as the quality of the generalization. This property of an observed relation
is, however, a delicate one. Not all the relations found in a given set of data
can be assumed to be invariant or stable. It may be the case that a relation
has arisen by chance in the particular set of data. Hence, at the heart of
pattern analysis is the problem of assessing the reliability of relations and
distinguishing them from ephemeral coincidences. How can we be sure we
have not been misled by a particular relation we have observed in the given
dataset? After all it is always possible to find some relation between any
finite set of numbers, even random ones, provided we are prepared to allow
arbitrarily complex relations.

Conversely, the possibility of false patterns means there will always be
limits to the level of assurance that we are able to give about a pattern’s
stability.

Example 1.9 Suppose all of the phone numbers stored in your friend’s
mobile phone are even. If (s)he has stored 20 numbers the probability of this
occurring by chance is approximately 2× 10−6, but you probably shouldn’t
conclude that you would cease to be friends if your phone number were
changed to an odd number (of course if in doubt, changing your phone
number might be a way of putting your friendship to the test).

Pattern analysis and hypothesis testing The pattern analysis algo-
rithm similarly identifies a stable pattern with a proviso that there is a
small probability that it could be the result of a misleading dataset. The
status of this assertion is identical to that of a statistical test for a property
P . The null hypothesis of the test states that P does not hold. The test
then bounds the probability that the observed data could have arisen if the
null hypothesis is true. If this probability is some small number p, then we
conclude that the property does hold subject to the caveat that there is a
probability p we were misled by the data. The number p is the so-called
significance with which the assertion is made. In pattern analysis this prob-



1.2 Pattern analysis algorithms 15

ability is referred to as the confidence parameter and it is usually denoted
with the symbol δ.

If we were testing for the presence of just one pattern we could apply the
methodology of a statistical test. Learning theory provides a framework for
testing for the presence of one of a set of patterns in a dataset. This at
first sight appears a difficult task. For example if we applied the same test
for n hypotheses P1, . . . , Pn, and found that for one of the hypotheses, say
P ∗, a significance of p is measured, we can only assert the hypothesis with
significance np. This is because the data could have misled us about any one
of the hypotheses, so that even if none were true there is still a probability
p for each hypothesis that it could have appeared significant, giving in the
worst case a probability of np that one of the hypotheses appears significant
at level p. It is therefore remarkable that learning theory enables us to
improve on this worst case estimate in order to test very large numbers (in
some cases infinitely many) of hypotheses and still obtain significant results.

Without restrictions on the set of possible relations, proving that a certain
pattern is stable is impossible. Hence, to ensure stable pattern analysis we
will have to restrict the set of possible relations. At the same time we
must make assumptions about the way in which the data is generated by
the source. For example we have assumed that there is a fixed distribution
and that the data is generated i.i.d. Some statistical tests make the further
assumption that the data distribution is Gaussian making it possible to
make stronger assertions, but ones that no longer hold if the distribution
fails to be Gaussian.

Overfitting At a general level the task of a learning theory is to derive
results which enable testing of as wide as possible a range of hypotheses,
while making as few assumptions as possible. This is inevitably a trade-off.
If we make too restrictive assumptions there will be a misfit with the source
and hence unreliable results or no detected patterns. This may be because
for example the data is not generated in the manner we assumed; say a
test that assumes a Gaussian distribution is used for non-Gaussian data or
because we have been too miserly in our provision of hypotheses and failed
to include any of the patterns exhibited by the source. In these cases we
say that we have underfit the data. Alternatively, we may make too few
assumptions either by assuming too much flexibility for the way in which
the data is generated (say that there are interactions between neighbouring
examples) or by allowing too rich a set of hypotheses making it likely that
there will be a chance fit with one of them. This is called overfitting the
data.
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In general it makes sense to use all of the known facts about the data,
though in many cases this may mean eliciting domain knowledge from ex-
perts. In the next section we describe one approach that can be used to
incorporate knowledge about the particular application domain.

1.2.2 Detecting patterns by recoding

As we have outlined above if we are to avoid overfitting we must necessarily
bias the learning machine towards some subset of all the possible relations
that could be found in the data. It is only in this way that the probability
of obtaining a chance match on the dataset can be controlled. This raises
the question of how the particular set of patterns should be chosen. This
will clearly depend on the problem being tackled and with it the dataset
being analysed. The obvious way to address this problem is to attempt to
elicit knowledge about the types of patterns that might be expected. These
could then form the basis for a matching algorithm.

There are two difficulties with this approach. The first is that eliciting
possible patterns from domain experts is not easy, and the second is that it
would mean designing specialist algorithms for each problem.

An alternative approach that will be exploited throughout this book fol-
lows from the observation that regularities can be translated. By this we
mean that they can be rewritten into different regularities by changing the
representation of the data. We have already observed this fact in the exam-
ple of the planetary ellipses. By representing the data as a feature vector of
monomials of degree two, the ellipse became a linear rather than a quadratic
pattern. Similarly, with Kepler’s third law the pattern becomes linear if we
include log D and log P as features.

Example 1.10 The most convincing example of how the choice of represen-
tation can make the difference between learnable and non-learnable patterns
is given by cryptography, where explicit efforts are made to find represen-
tations of the data that appear random, unless the right representation, as
revealed by the key, is known. In this sense, pattern analysis has the op-
posite task of finding representations in which the patterns in the data are
made sufficiently explicit that they can be discovered automatically.

It is this viewpoint that suggests the alternative strategy alluded to above.
Rather than devising a different algorithm for each problem, we fix on a
standard set of algorithms and then transform the particular dataset into
a representation suitable for analysis using those standard algorithms. The
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advantage of this approach is that we no longer have to devise a new al-
gorithm for each new problem, but instead we must search for a recoding
of the data into a representation that is suited to the chosen algorithms.
For the algorithms that we will describe this turns out to be a more nat-
ural task in which we can reasonably expect a domain expert to assist. A
further advantage of the approach is that much of the efficiency, robustness
and stability analysis can be undertaken in the general setting, so that the
algorithms come already certified with the three required properties.

The particular choice we fix on is the use of patterns that are determined
by linear functions in a suitably chosen feature space. Recoding therefore
involves selecting a feature space for the linear functions. The use of linear
functions has the further advantage that it becomes possible to specify the
feature space in an indirect but very natural way through a so-called kernel
function. The kernel technique introduced in the next chapter makes it
possible to work directly with objects such as biosequences, images, text
data, etc. It also enables us to use feature spaces whose dimensionality is
more than polynomial in the relevant parameters of the system, even though
the computational cost remains polynomial. This ensures that even though
we are using linear functions the flexibility they afford can be arbitrarily
extended.

Our approach is therefore to design a set of efficient pattern analysis algo-
rithms for patterns specified by linear functions in a kernel-defined feature
space. Pattern analysis is then a two-stage process. First we must recode the
data in a particular application so that the patterns become representable
with linear functions. Subsequently, we can apply one of the standard linear
pattern analysis algorithms to the transformed data. The resulting class of
pattern analysis algorithms will be referred to as kernel methods.

1.3 Exploiting patterns

We wish to design pattern analysis algorithms with a view to using them
to make predictions on new previously unseen data. For the purposes of
benchmarking particular algorithms the unseen data usually comes in the
form of a set of data examples from the same source. This set is usually
referred to as the test set. The performance of the pattern function on
random data from the source is then estimated by averaging its performance
on the test set. In a real-world application the resulting pattern function
would of course be applied continuously to novel data as they are received by
the system. Hence, for example in the problem of detecting loan defaulters,
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the pattern function returned by the pattern analysis algorithm would be
used to screen loan applications as they are received by the bank.

We understand by pattern analysis this process in all its various forms
and applications, regarding it as synonymous with Machine Learning, at
other times as Data Mining, Pattern Recognition or Pattern Matching; in
many cases the name just depends on the application domain, type of pat-
tern being sought or professional background of the algorithm designer. By
drawing these different approaches together into a unified framework many
correspondences and analogies will be made explicit, making it possible to
extend the range of pattern types and application domains in a relatively
seamless fashion.

The emerging importance of this approach cannot be over-emphasised.
It is not an exaggeration to say that it has become a standard software
engineering strategy, in many cases being the only known method for solving
a particular problem. The entire Genome Project, for example, relies on
pattern analysis techniques, as do many web applications, optical character
recognition (OCR) systems, marketing analysis techniques, and so on. The
use of such techniques is already very extensive, and with the increase in
the availability of digital information expected in the next years, it is clear
that it is destined to grow even further.

1.3.1 The overall strategy

All the conceptual issues discussed in the previous sections have arisen out of
practical considerations in application domains. We have seen that we must
incorporate some prior insights about the regularities in the source gener-
ating the data in order to be able to reliably detect them. The question
therefore arises as to what assumptions best capture that prior knowledge
and/or expectations. How should we model the data generation process and
how can we ensure we are searching the right class of relations? In other
words, how should we insert domain knowledge into the system, while still
ensuring that the desiderata of efficiency, robustness and stability can be
delivered by the resulting algorithm? There are many different approaches
to these problems, from the inferring of logical rules to the training of neu-
ral networks; from standard statistical methods to fuzzy logic. They all
have shown impressive results for particular types of patterns in particular
domains.

What we will present, however, is a novel, principled and unified approach
to pattern analysis, based on statistical methods that ensure stability and ro-
bustness, optimization techniques that ensure computational efficiency and
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enables a straightforward incorporation of domain knowledge. Such algo-
rithms will offer many advantages: from the firm theoretical underpinnings
of their computational and generalization properties, to the software engi-
neering advantages offered by the modularity that decouples the inference
algorithm from the incorporation of prior knowledge into the kernel.

We will provide examples from the fields of bioinformatics, document
analysis, and image recognition. While highlighting the applicability of the
methods, these examples should not obscure the fact that the techniques
and theory we will describe are entirely general, and can in principle be
applied to any type of data. This flexibility is one of the major advantages
of kernel methods.

1.3.2 Common pattern analysis tasks

When discussing what constitutes a pattern in data, we drew attention to
the fact that the aim of pattern analysis is frequently to predict one feature
of the data as a function of the other feature values. It is therefore to be
expected that many pattern analysis tasks isolate one feature that it is their
intention to predict. Hence, the training data comes in the form

(x, y),

where y is the value of the feature that the system aims to predict, and x is
a vector containing the remaining feature values. The vector x is known as
the input, while y is referred to as the target output or label. The test data
will only have inputs since the aim is to predict the corresponding output
values.

Supervised tasks The pattern analysis tasks that have this form are re-
ferred to as supervised, since each input has an associated label. For this
type of task a pattern is sought in the form

f (x, y) = L (y, g (x)) ,

where g is referred to as the prediction function and L is known as a loss
function. Since it measures the discrepancy between the output of the pre-
diction function and the correct value y, we may expect the loss to be close
to zero when a pattern is detected. When new data is presented the target
output is not available and the pattern function is used to predict the value
of y for the given input x using the function g (x). The prediction that
f (x, y) = 0 implies that the discrepancy between g (x) and y is small.

Different supervised pattern analysis tasks are distinguished by the type
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of the feature y that we aim to predict. Binary classification, refering to the
case when y ∈ {−1, 1}, is used to indicate that the input vector belongs to
a chosen category (y = +1), or not (y = −1). In this case we use the so-
called discrete loss function that returns 1 if its two arguments differ and 0
otherwise. Hence, in this case the generalisation error is just the probability
that a randomly drawn test example is misclassified. If the training data is
labelled as belonging to one of N classes and the system must learn to assign
new data points to their class, then y is chosen from the set {1, 2, . . . , N}
and the task is referred to as multiclass classification. Regression refers to
the case of supervised pattern analysis in which the unknown feature is real-
valued, that is y ∈ R. The term regression is also used to describe the case
when y is vector valued, y ∈ R

n, for some n ∈ N, though this can also be
reduced to n separate regression tasks each with one-dimensional output but
with potentially a loss of useful information. Another variant of regression
is time-series analysis. In this case each example consists of a series of
observations and the special feature is the value of the next observation in
the series. Hence, the aim of pattern analysis is to make a forecast based on
previous values of relevant features.

Semisupervised tasks In some tasks the distinguished feature or label is
only partially known. For example in the case of ranking we may only have
available the relative ordering of the the examples in the training set, while
our aim is to enable a similar ordering of novel data. For this problem an
underlying value function is often assumed and inference about its value
for the training data is made during the training process. New data is
then assessed by its value function output. Another situation in which only
partial information is available about the labels is the case of transduction.
Here only some of the data comes with the value of the label instantiated.
The task may be simply to predict the label for the unlabelled data. This
corresponds to being given the test data during the training phase.

Alternatively, the aim may be to make use of the unlabelled data to
improve the ability of the pattern function learned to predict the labels of
new data. A final variant on partial label information is the query scenario
in which the algorithm can ask for an unknown label, but pays a cost for
extracting this information. The aim here is to minimise a combination of
the generalization error and querying cost.

Unsupervised tasks In contrast to supervised learning some tasks do not
have a label that is only available for the training examples and must be
predicted for the test data. In this case all of the features are available in
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both training and test data. Pattern analysis tasks that have this form
are referred to as unsupervised. The information or pattern needs to be
extracted without the highlighted ‘external’ information provided by the
label. Clustering is one of the tasks that falls into this category. The aim
here is to find a natural division of the data into homogeneous groups. We
might represent each cluster by a centroid or prototype and measure the
quality of the pattern by the expected distance of a new data point to its
nearest prototype.

Anomaly or novelty-detection is the task of detecting new data points
that deviate from the normal. Here, the exceptional or anomalous data
are not available in the training phase and are assumed not to have been
generated by the same source as the rest of the data. The task is tackled by
finding a pattern function that outputs a low expected value for examples
generated by the data source. If the output generated by a new example
deviates significantly from its expected value, we identify it as exceptional
in the sense that such a value would be very unlikely for the standard data.
Novelty-detection arises in a number of different applications. For example
engine monitoring attempts to detect abnormal engine conditions that may
indicate the onset of some malfunction.

There are further unsupervised tasks that attempt to find low-dimensional
representations of the data. Here the aim is to find a projection function
PV that maps X into a space V of a given fixed dimension k

PV : X −→ V ,

such that the expected value of the residual

f (x) = ‖PV (x) − x‖2

is small, or in other words such that f is a pattern function. The kernel
principal components analysis (PCA) falls into this category.

A related method known as kernel canonical correlation analysis (CCA)
considers data that has separate representations included in each input,
for example x = (xA,xB) for the case when there are two representations.
CCA now seeks a common low-dimensional representation described by two
projections PA

V and PB
V such that the residual

f (x) =
∥∥PA

V

(
xA
)− PB

V

(
xB
)∥∥2

is small. The advantage of this method becomes apparent when the two
representations are very distinct but our prior knowledge of the data assures
us that the patterns of interest are detectable in both. In such cases the
projections are likely to pick out dimensions that retain the information of
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interest, while discarding aspects that distinguish the two representations
and are hence irrelevant to the analysis.

Assumptions and notation We will mostly make the statistical assump-
tion that the sample of data is drawn i.i.d. and we will look for statistical
patterns in the data, hence also handling approximate patterns and noise.
As explained above this necessarily implies that the patterns are only identi-
fied with high probability. In later chapters we will define the corresponding
notions of generalization error.

Now we introduce some of the basic notation. We denote the input space
by X and for supervised tasks use Y to denote the target output domain.
The space X is often a subset of R

n, but can also be a general set. Note
that if X is a vector space, the input vectors are given as column vectors. If
we wish to form a row vector for an instance x, we can take the transpose
x′. For a supervised task the training set is usually denoted by

S = {(x1, y1), . . . , (x�, y�)} ⊆ (X × Y )� ,

where � is the number of training examples. For unsupervised tasks this
simplifies to

S = {x1, . . . ,x�} ⊆ X�.

1.4 Summary

• Patterns are regularities that characterise the data coming from a par-
ticular source. They can be exact, approximate or statistical. We have
chosen to represent patterns by a positive pattern function f that has
small expected value for data from the source.

• A pattern analysis algorithm takes a finite sample of data from the source
and outputs a detected regularity or pattern function.

• Pattern analysis algorithms are expected to exhibit three key properties:
efficiency, robustness and stability.

Computational efficiency implies that the performance of the algorithm
scales to large datasets.
Robustness refers to the insensitivity of the algorithm to noise in the
training examples.
Statistical stability implies that the detected regularities should indeed
be patterns of the underlying source. They therefore enable prediction on
unseen data.
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• Recoding, by for example a change of coordinates, maintains the presence
of regularities in the data, but changes their representation. Some repre-
sentations make regularities easier to detect than others and fixing on one
form enables a standard set of algorithms and analysis to be used.

• We have chosen to recode relations as linear patterns through the use
of kernels that allow arbitrary complexity to be introduced by a natural
incorporation of domain knowledge.

• The standard scenarios in which we want to exploit patterns in data in-
clude binary and multiclass classification, regression, novelty-detection,
clustering, and dimensionality reduction.

1.5 Further reading and advanced topics

Pattern analysis (or recognition, detection, discovery) has been studied in
many different contexts, from statistics to signal processing, to the various
flavours of artificial intelligence. Furthermore, many relevant ideas have
been developed in the neighboring fields of information theory, machine vi-
sion, data-bases, and so on. In a way, pattern analysis has always been a
constant theme of computer science, since the pioneering days. The refer-
ences [39], [40], [46], [14], [110], [38], [45] are textbooks covering the topic
from some of these different fields.

There are several important stages that can be identified in the evolution
of pattern analysis algorithms. Efficient algorithms for detecting linear re-
lations were already used in the 1950s and 1960s, and their computational
and statistical behaviour was well understood [111], [44]. The step to han-
dling nonlinear relations was seen as a major research goal at that time.
The development of nonlinear algorithms that maintain the same level of
efficiency and stability has proven an elusive goal. In the mid 80s the field
of pattern analysis underwent a nonlinear revolution, with the almost simul-
taneous introduction of both backpropagation networks and decision trees
[19], [109], [57]. Although based on simple heuristics and lacking a firm
theoretical foundation, these approaches were the first to make a step to-
wards the efficient and reliable detection of nonlinear patterns. The impact
of that revolution cannot be overemphasized: entire fields such as data-
mining and bioinformatics became possible as a result of it. In the mid
90s, the introduction of kernel-based learning methods [143], [16], [32], [120]
has finally enabled researchers to deal with nonlinear relations, while retain-
ing the guarantees and understanding that have been developed for linear
algorithms over decades of research.

From all points of view, computational, statistical, and conceptual, the
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nonlinear pattern analysis algorithms developed in this third wave are as
efficient and as well-founded as their linear counterparts. The drawbacks
of local minima and incomplete statistical analysis that is typical of neural
networks and decision trees have been circumvented, while their flexibility
has been shown to be sufficient for a wide range of successful applications.
In 1973 Duda and Hart defined statistical pattern recognition in the con-
text of classification in their classical book, now available in a new edition
[40]. Other important references include [137], [46]. Algorithmic informa-
tion theory defines random data as data not containing any pattern, and
provides many insights for thinking about regularities and relations in data.
Introduced by Chaitin [22], it is discussed in the introductory text by Li and
Vitani [92]. A classic introduction to Shannon’s information theory can be
found in Cover and Thomas [29].

The statistical study of pattern recognition can be divided into two main
(but strongly interacting) directions of research. The earlier one is that
presented by Duda and Hart [40], based on bayesian statistics, and also to
be found in the recent book [53]. The more recent method based on empirical
processes, has been pioneered by Vapnik and Chervonenkis’s work since the
1960s, [141], and has recently been greatly extended by several authors.
Easy introductions can be found in [76], [5], [141]. The most recent (and
most effective) methods are based on the notions of sharp concentration [38],
[17] and notions of Rademacher complexity [9], [80], [134], [135].

The second direction will be the one followed in this book for its sim-
plicity, elegance and effectiveness. Other discussions of pattern recognition
via specific algorithms can be found in the following books: [14] and [110]
for neural networks; [109] and [19] for decision trees, [32], and [102] for a
general introduction to the field of machine learning from the perspective of
artificial intelligence.

More information about Kepler’s laws and the process by which he arrived
at them can be found in a book by Arthur Koestler [78].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net
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Kernel methods: an overview

In Chapter 1 we gave a general overview to pattern analysis. We identified
three properties that we expect of a pattern analysis algorithm: compu-
tational efficiency, robustness and statistical stability. Motivated by the
observation that recoding the data can increase the ease with which pat-
terns can be identified, we will now outline the kernel methods approach to
be adopted in this book. This approach to pattern analysis first embeds the
data in a suitable feature space, and then uses algorithms based on linear
algebra, geometry and statistics to discover patterns in the embedded data.

The current chapter will elucidate the different components of the ap-
proach by working through a simple example task in detail. The aim is to
demonstrate all of the key components and hence provide a framework for
the material covered in later chapters.

Any kernel methods solution comprises two parts: a module that performs
the mapping into the embedding or feature space and a learning algorithm
designed to discover linear patterns in that space. There are two main
reasons why this approach should work. First of all, detecting linear relations
has been the focus of much research in statistics and machine learning for
decades, and the resulting algorithms are both well understood and efficient.
Secondly, we will see that there is a computational shortcut which makes
it possible to represent linear patterns efficiently in high-dimensional spaces
to ensure adequate representational power. The shortcut is what we call a
kernel function.

25
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2.1 The overall picture

This book will describe an approach to pattern analysis that can deal effec-
tively with the problems described in Chapter 1 one that can detect stable
patterns robustly and efficiently from a finite data sample. The strategy
adopted is to embed the data into a space where the patterns can be dis-
covered as linear relations. This will be done in a modular fashion. Two
distinct components will perform the two steps. The initial mapping com-
ponent is defined implicitly by a so-called kernel function. This component
will depend on the specific data type and domain knowledge concerning the
patterns that are to be expected in the particular data source. The pattern
analysis algorithm component is general purpose, and robust. Furthermore,
it typically comes with a statistical analysis of its stability. The algorithm is
also efficient, requiring an amount of computational resources that is poly-
nomial in the size and number of data items even when the dimension of the
embedding space grows exponentially.

The strategy suggests a software engineering approach to learning sys-
tems’ design through the breakdown of the task into subcomponents and
the reuse of key modules.

In this chapter, through the example of least squares linear regression, we
will introduce all of the main ingredients of kernel methods. Though this
example means that we will have restricted ourselves to the particular task
of supervised regression, four key aspects of the approach will be highlighted.

(i) Data items are embedded into a vector space called the feature space.
(ii) Linear relations are sought among the images of the data items in

the feature space.
(iii) The algorithms are implemented in such a way that the coordinates

of the embedded points are not needed, only their pairwise inner
products.

(iv) The pairwise inner products can be computed efficiently directly from
the original data items using a kernel function.

These stages are illustrated in Figure 2.1.
These four observations will imply that, despite restricting ourselves to

algorithms that optimise linear functions, our approach will enable the de-
velopment of a rich toolbox of efficient and well-founded methods for dis-
covering nonlinear relations in data through the use of nonlinear embedding
mappings. Before delving into an extended example we give a general defi-
nition of a linear pattern.
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Fig. 2.1. The function φ embeds the data into a feature space where the nonlinear
pattern now appears linear. The kernel computes inner products in the feature
space directly from the inputs.

Definition 2.1 [Linear pattern] A linear pattern is a pattern function drawn
from a set of patterns based on a linear function class.

2.2 Linear regression in a feature space

2.2.1 Primal linear regression

Consider the problem of finding a homogeneous real-valued linear function

g(x) = 〈w,x〉 = w′x =
n∑

i=1

wixi,

that best interpolates a given training set S = {(x1, y1), . . . , (x�, y�)} of
points xi from X ⊆ R

n with corresponding labels yi in Y ⊆ R. Here, we
use the notation x = (x1, x2, . . . , xn) for the n-dimensional input vectors,
while w′ denotes the transpose of the vector w ∈R

n. This is naturally one
of the simplest relations one might find in the source X×Y , namely a linear
function g of the features x matching the corresponding label y, creating a
pattern function that should be approximately equal to zero

f ((x, y)) = |y − g(x)| = |y − 〈w,x〉| ≈ 0.



28 Kernel methods: an overview

This task is also known as linear interpolation. Geometrically it corresponds
to fitting a hyperplane through the given n-dimensional points. Figure 2.2
shows an example for n = 1.

y=g(x)=<w,x>

ξ

yi

w

xi

Fig. 2.2. A one-dimensional linear regression problem.

In the exact case, when the data has been generated in the form (x,g(x)),
where g(x) = 〈w,x〉 and there are exactly � = n linearly independent points,
it is possible to find the parameters w by solving the system of linear equa-
tions

Xw = y,

where we have used X to denote the matrix whose rows are the row vectors
x′

1, . . . ,x
′
� and y to denote the vector (y1, . . . , y�)′.

Remark 2.2 [Row versus column vectors] Note that our inputs are column
vectors but they are stored in the matrix X as row vectors. We adopt
this convention to be consistent with the typical representation of data in
an input file and in our Matlab code, while preserving the standard vector
representation.

If there are less points than dimensions, there are many possible w that
describe the data exactly, and a criterion is needed to choose between them.
In this situation we will favour the vector w with minimum norm. If there
are more points than dimensions and there is noise in the generation process,
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then we should not expect there to be an exact pattern, so that an approx-
imation criterion is needed. In this situation we will select the pattern with
smallest error. In general, if we deal with noisy small datasets, a mix of
the two strategies is needed: find a vector w that has both small norm and
small error.

The distance shown as ξ in the figure is the error of the linear function
on the particular training example, ξ = (y − g(x)). This value is the output
of the putative pattern function

f ((x, y)) = |y − g(x)| = |ξ| .
We would like to find a function for which all of these training errors are
small. The sum of the squares of these errors is the most commonly cho-
sen measure of the collective discrepancy between the training data and a
particular function

L (g, S) = L (w, S) =
�∑

i=1

(yi − g(xi))2 =
�∑

i=1

ξ2
i =

�∑
i=1

L ((xi, yi) , g) ,

where we have used the same notation L ((xi, yi) , g) = ξ2
i to denote the

squared error or loss of g on example (xi, yi) and L (f, S) to denote the
collective loss of a function f on the training set S. The learning prob-
lem now becomes that of choosing the vector w ∈ W that minimises the
collective loss. This is a well-studied problem that is applied in virtually
every discipline. It was introduced by Gauss and is known as least squares
approximation.

Using the notation above, the vector of output discrepancies can be writ-
ten as

ξ = y − Xw.

Hence, the loss function can be written as

L(w, S) = ‖ξ‖2
2 = (y − Xw)′(y − Xw). (2.1)

Note that we again use X′ to denote the transpose of X. We can seek
the optimal w by taking the derivatives of the loss with respect to the
parameters w and setting them equal to the zero vector

∂L(w, S)
∂w

= −2X′y + 2X′Xw = 0,

hence obtaining the so-called ‘normal equations’

X′Xw = X′y. (2.2)
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If the inverse of X′X exists, the solution of the least squares problem can
be expressed as

w = (X′X)−1X′y.

Hence, to minimise the squared loss of a linear interpolant, one needs to
maintain as many parameters as dimensions, while solving an n× n system
of linear equations is an operation that has cubic cost in n.

This cost refers to the number of operations and is generally expressed as a
complexity of O

(
n3
)
, meaning that the number of operations t (n) required

for the computation can be bounded by

t (n) ≤ Cn3

for some constant C.
The predicted output on a new data point can now be computed using

the prediction function

g(x) = 〈w,x〉.

Remark 2.3 [Dual representation] Notice that if the inverse of X′X exists
we can express w in the following way

w = (X′X)−1X′y = X′X(X′X)−2X′y = X′α,

making it a linear combination of the training points, w =
∑�

i=1 αixi.

Remark 2.4 [Pseudo-inverse] If X′X is singular, the pseudo-inverse can be
used. This finds the w that satisfies the equation (2.2) with minimal norm.
Alternatively we can trade off the size of the norm against the loss. This is
the approach known as ridge regression that we will describe below.

As mentioned Remark 2.4 there are situations where fitting the data ex-
actly may not be possible. Either there is not enough data to ensure that the
matrix X′X is invertible, or there may be noise in the data making it unwise
to try to match the target output exactly. We described this situation in
Chapter 1 as seeking an approximate pattern with algorithms that are ro-
bust. Problems that suffer from this difficulty are known as ill-conditioned,
since there is not enough information in the data to precisely specify the
solution. In these situations an approach that is frequently adopted is to
restrict the choice of functions in some way. Such a restriction or bias is
referred to as regularisation. Perhaps the simplest regulariser is to favour
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functions that have small norms. For the case of least squares regression,
this gives the well-known optimisation criterion of ridge regression.

Computation 2.5 [Ridge regression] Ridge regression corresponds to solv-
ing the optimisation

min
w

Lλ(w,S) = min
w

λ ‖w‖2 +
�∑

i=1

(yi − g(xi))2, (2.3)

where λ is a positive number that defines the relative trade-off between
norm and loss and hence controls the degree of regularisation. The learning
problem is reduced to solving an optimisation problem over R

n.

2.2.2 Ridge regression: primal and dual

Again taking the derivative of the cost function with respect to the param-
eters we obtain the equations

X′Xw+λw =
(
X′X+λIn

)
w = X′y, (2.4)

where In is the n × n identity matrix. In this case the matrix (X′X+λIn)
is always invertible if λ > 0, so that the solution is given by

w =
(
X′X+λIn

)−1 X′y. (2.5)

Solving this equation for w involves solving a system of linear equations
with n unknowns and n equations. The complexity of this task is O(n3).
The resulting prediction function is given by

g(x) = 〈w,x〉 = y′X
(
X′X+λIn

)−1 x.

Alternatively, we can rewrite equation (2.4) in terms of w (similarly to
Remark 2.3) to obtain

w = λ−1X′ (y − Xw) = X′α,

showing that again w can be written as a linear combination of the training
points, w =

∑�
i=1 αixi with α = λ−1 (y − Xw). Hence, we have

α = λ−1 (y − Xw)

⇒ λα =
(
y − XX′α

)
⇒ (

XX′ + λI�

)
α = y

⇒ α = (G + λI�)
−1y, (2.6)
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where G = XX′ or, component-wise, Gij = 〈xi,xj〉. Solving for α involves
solving � linear equations with � unknowns, a task of complexity O(�3). The
resulting prediction function is given by

g(x) = 〈w,x〉 =

〈
�∑

i=1

αixi,x

〉
=

�∑
i=1

αi 〈xi,x〉 = y′ (G + λI�)
−1 k,

where ki = 〈xi,x〉. We have thus found two distinct methods for solving the
ridge regression optimisation of equation (2.3). The first given in equation
(2.5) computes the weight vector explicitly and is known as the primal so-
lution, while equation (2.6) gives the solution as a linear combination of the
training examples and is known as the dual solution. The parameters α are
known as the dual variables.

The crucial observation about the dual solution of equation (2.6) is that
the information from the training examples is given by the inner products
between pairs of training points in the matrix G = XX′. Similarly, the
information about a novel example x required by the predictive function is
just the inner products between the training points and the new example x.

The matrix G is referred to as the Gram matrix . The Gram matrix
and the matrix (G + λI�) have dimensions � × �. If the dimension n of the
feature space is larger than the number � of training examples, it becomes
more efficient to solve equation (2.6) rather than the primal equation (2.5)
involving the matrix (X′X+λIn) of dimension n × n. Evaluation of the
predictive function in this setting is, however, always more costly since the
primal involves O(n) operations, while the complexity of the dual is O(n�).
Despite this we will later see that the dual solution can offer enormous
advantages.

Hence one of the key findings of this section is that the ridge regression
algorithm can be solved in a form that only requires inner products between
data points.

Remark 2.6 [Primal-dual] The primal-dual dynamic described above recurs
throughout the book. It also plays an important role in optimisation, text
analysis, and so on.

Remark 2.7 [Statistical stability] Though we have addressed the question
of efficiency of the ridge regression algorithm, we have not attempted to
analyse explicitly its robustness or stability. These issues will be considered
in later chapters.



2.2 Linear regression in a feature space 33

2.2.3 Kernel-defined nonlinear feature mappings

The ridge regression method presented in the previous subsection addresses
the problem of identifying linear relations between one selected variable
and the remaining features, where the relation is assumed to be functional.
The resulting predictive function can be used to estimate the value of the
selected variable given the values of the other features. Often, however, the
relations that are sought are nonlinear, that is the selected variable can only
be accurately estimated as a nonlinear function of the remaining features.
Following our overall strategy we will map the remaining features of the
data into a new feature space in such a way that the sought relations can
be represented in a linear form and hence the ridge regression algorithm
described above will be able to detect them.

We will consider an embedding map

φ : x ∈ R
n �−→ φ(x) ∈ F ⊆ R

N .

The choice of the map φ aims to convert the nonlinear relations into linear
ones. Hence, the map reflects our expectations about the relation y =
g(x) to be learned. The effect of φ is to recode our dataset S as Ŝ =
{(φ(x1), y1), ...., (φ(x�), y�)}. We can now proceed as above looking for a
relation of the form

f ((x, y)) = |y − g(x)| = |y − 〈w, φ (x)〉| = |ξ| .
Although the primal method could be used, problems will arise if N is
very large making the solution of the N × N system of equation (2.5) very
expensive. If, on the other hand, we consider the dual solution, we have
shown that all the information the algorithm needs is the inner products
between data points 〈φ (x) ,φ (z)〉 in the feature space F . In particular
the predictive function g(x) = y′ (G + λI�)

−1 k involves the Gram matrix
G = XX′ with entries

Gij = 〈φ(xi),φ(xj)〉 , (2.7)

where the rows of X are now the feature vectors φ(x1)′, . . . ,φ(x�)′, and the
vector k contains the values

ki = 〈φ(xi),φ(x)〉 . (2.8)

When the value of N is very large, it is worth taking advantage of the dual
solution to avoid solving the large N × N system. Making the optimistic
assumption that the complexity of evaluating φ is O(N), the complexity
of evaluating the inner products of equations (2.7) and (2.8) is still O(N)
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making the overall complexity of computing the vector α equal to

O(�3 + �2N), (2.9)

while that of evaluating g on a new example is

O(�N). (2.10)

We have seen that in the dual solution we make use of inner products in
the feature space. In the above analysis we assumed that the complexity
of evaluating each inner product was proportional to the dimension of the
feature space. The inner products can, however, sometimes be computed
more efficiently as a direct function of the input features, without explicitly
computing the mapping φ. In other words the feature-vector representation
step can be by-passed. A function that performs this direct computation is
known as a kernel function.

Definition 2.8 [Kernel function] A kernel is a function κ that for all x, z ∈
X satisfies

κ(x, z) = 〈φ(x),φ(z)〉 ,

where φ is a mapping from X to an (inner product) feature space F

φ : x �−→ φ(x) ∈ F .

Kernel functions will be an important theme throughout this book. We
will examine their properties, the algorithms that can take advantage of
them, and their use in general pattern analysis applications. We will see
that they make possible the use of feature spaces with an exponential or
even infinite number of dimensions, something that would seem impossible
if we wish to satisfy the efficiency requirements given in Chapter 1. Our
aim in this chapter is to give examples to illustrate the key ideas underly-
ing the proposed approach. We therefore now give an example of a kernel
function whose complexity is less than the dimension of its corresponding
feature space F , hence demonstrating that the complexity of applying ridge
regression using the kernel improves on the estimates given in expressions
(2.9) and (2.10) involving the dimension N of F .

Example 2.9 Consider a two-dimensional input space X ⊆ R
2 together

with the feature map

φ : x = (x1, x2) �−→ φ(x) =(x2
1, x

2
2,
√

2x1x2) ∈ F = R
3.
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The hypothesis space of linear functions in F would then be

g(x) = w11x
2
1 + w22x

2
2 + w12

√
2x1x2

The feature map takes the data from a two-dimensional to a three-dimensional
space in a way that linear relations in the feature space correspond to
quadratic relations in the input space. The composition of the feature map
with the inner product in the feature space can be evaluated as follows

〈φ(x),φ(z)〉 =
〈
(x2

1, x
2
2,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)
〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)2 = 〈x, z〉2 .

Hence, the function

κ(x, z) = 〈x, z〉2

is a kernel function with F its corresponding feature space. This means that
we can compute the inner product between the projections of two points
into the feature space without explicitly evaluating their coordinates. Note
that the same kernel computes the inner product corresponding to the four-
dimensional feature map

φ : x = (x1, x2) �−→ φ(x) =(x2
1, x

2
2, x1x2, x2x1) ∈ F = R

4,

showing that the feature space is not uniquely determined by the kernel
function.

Example 2.10 The previous example can readily be generalised to higher
dimensional input spaces. Consider an n-dimensional space X ⊆ R

n; then
the function

κ(x, z) = 〈x, z〉2

is a kernel function corresponding to the feature map

φ:x �−→ φ(x) =(xixj)n
i,j=1 ∈ F = R

n2
,

since we have that

〈φ(x),φ(z)〉 =
〈
(xixj)n

i,j=1, (zizj)n
i,j=1

〉
=

n∑
i,j=1

xixjzizj =
n∑

i=1

xizi

n∑
j=1

xjzj

= 〈x, z〉2 .
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If we now use this kernel in the dual form of the ridge regression algo-
rithm, the complexity of the computation of the vector α is O(n�2 + �3) as
opposed to a complexity of O(n2�2 + �3) predicted in the expressions (2.9)
and (2.10). If we were analysing 1000 images each with 256 pixels this
would roughly correspond to a 50-fold reduction in the computation time.
Similarly, the time to evaluate the predictive function would be reduced by
a factor of 256.

The example illustrates our second key finding that kernel functions can
improve the computational complexity of computing inner products in a
feature space, hence rendering algorithms efficient in very high-dimensional
feature spaces.

The example of dual ridge regression and the polynomial kernel of degree 2
have demonstrated how a linear pattern analysis algorithm can be efficiently
applied in a high-dimensional feature space by using an appropriate kernel
function together with the dual form of the algorithm. In the next remark
we emphasise an observation arising from this example as it provides the
basis for the approach adopted in this book.

Remark 2.11 [Modularity] There was no need to change the underlying
algorithm to accommodate the particular choice of kernel function. Clearly,
we could use any suitable kernel for the data being considered. Similarly, if
we wish to undertake a different type of pattern analysis we could substitute
a different algorithm while retaining the chosen kernel. This illustrates the
modularity of the approach that makes it possible to consider the algorith-
mic design and analysis separately from that of the kernel functions. This
modularity will also become apparent in the structure of the book.

Hence, some chapters of the book are devoted to the theory and practice
of designing kernels for data analysis. Other chapters will be devoted to
the development of algorithms for some of the specific data analysis tasks
described in Chapter 1.

2.3 Other examples

The previous section illustrated how the kernel methods approach can imple-
ment nonlinear regression through the use of a kernel-defined feature space.
The aim was to show how the key components of the kernel methods ap-
proach fit together in one particular example. In this section we will briefly
describe how kernel methods can be used to solve many of the tasks outlined
in Chapter 1, before going on to give an overview of the different kernels we
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will be considering. This will lead naturally to a road map for the rest of
the book.

2.3.1 Algorithms

Part II of the book will be concerned with algorithms. Our aim now is to
indicate the range of tasks that can be addressed.

Classification Consider now the supervised classification task. Given a set

S = {(x1, y1), . . . , (x�, y�)}

of points xi from X ⊆ R
n with labels yi from Y = {−1, +1}, find a prediction

function g(x) = sign (〈w,x〉 − b) such that

E[0.5 |g(x) − y|]

is small, where we will use the convention that sign (0) = 1. Note that the 0.5
is included to make the loss the discrete loss and the value of the expectation
the probability that a randomly drawn example x is misclassified by g.

Since g is a thresholded linear function, this can be regarded as learning a
hyperplane defined by the equation 〈w,x〉 = b separating the data according
to their labels, see Figure 2.3. Recall that a hyperplaneis an affine subspace
of dimension n− 1 which divides the space into two half spaces correspond-
ing to the inputs of the two distinct classes. For example in Figure 2.3 the
hyperplane is the dark line, with the positive region above and the negative
region below. The vector w defines a direction perpendicular to the hyper-
plane, while varying the value of b moves the hyperplane parallel to itself.
A representation involving n + 1 free parameters therefore can describe all
possible hyperplanes in R

n.
Both statisticians and neural network researchers have frequently used

this simple kind of classifier, calling them respectively linear discriminants
and perceptrons. The theory of linear discriminants was developed by Fisher
in 1936, while neural network researchers studied perceptrons in the early
1960s, mainly due to the work of Rosenblatt. We will refer to the quantity
w as the weight vector, a term borrowed from the neural networks literature.

There are many different algorithms for selecting the weight vector w,
many of which can be implemented in dual form. We will describe the
perceptron algorithm and support vector machine algorithms in Chapter 7.
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Fig. 2.3. A linear function for classification creates a separating hyperplane.

Principal components analysis Detecting regularities in an unlabelled
set S = {x1, . . . ,x�} of points from X ⊆ R

n is referred to as unsuper-
vised learning. As mentioned in Chapter 1, one such task is finding a low-
dimensional representation of the data such that the expected residual is as
small as possible. Relations between features are important because they
reduce the effective dimensionality of the data, causing it to lie on a lower
dimensional surface. This may make it possible to recode the data in a
more efficient way using fewer coordinates. The aim is to find a smaller set
of variables defined by functions of the original features in such a way that
the data can be approximately reconstructed from the new coordinates.

Despite the difficulties encountered if more general functions are consid-
ered, a good understanding exists of the special case when the relations are
assumed to be linear. This subcase is attractive because it leads to analyti-
cal solutions and simple computations. For linear functions the problem is
equivalent to projecting the data onto a lower-dimensional linear subspace
in such a way that the distance between a vector and its projection is not
too large. The problem of minimising the average squared distance between
vectors and their projections is equivalent to projecting the data onto the
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space spanned by the first k eigenvectors of the matrix X′X

X′Xvi = λivi

and hence the coordinates of a new vector x in the new space can be obtained
by considering its projection onto the eigenvectors 〈x,vi〉, i = 1, . . . , k. This
technique is known as principal components analysis (PCA).

The algorithm can be rendered nonlinear by first embedding the data
into a feature space and then consider projections in that space. Once
again we will see that kernels can be used to define the feature space, since
the algorithm can be rewritten in a form that only requires inner products
between inputs. Hence, we can detect nonlinear relations between variables
in the data by embedding the data into a kernel-induced feature space, where
linear relations can be found by means of PCA in that space. This approach
is known as kernel PCA and will be described in detail in Chapter 6.

Remark 2.12 [Low-rank approximation] Of course some information about
linear relations in the data is already implicit in the rank of the data matrix.
The rank corresponds to the number of non-zero eigenvalues of the covari-
ance matrix and is the dimensionality of the subspace in which the data
lie. The rank can also be computed using only inner products, since the
eigenvalues of the inner product matrix are equal to those of the covariance
matrix. We can think of PCA as finding a low-rank approximation, where
the quality of the approximation depends on how close the data is to lying
in a subspace of the given dimensionality.

Clustering Finally, we mention finding clusters in a training set S =
{x1, . . . ,x�} of points from X ⊆ R

n. One method of defining clusters is
to identify a fixed number of centres or prototypes and assign points to
the cluster defined by the closest centre. Identifying clusters by a set of
prototypes divides the space into what is known as a Voronoi partitioning.

The aim is to minimise the expected squared distance of a point from its
cluster centre. If we fix the number of centres to be k, a classic procedure
is known as k-means and is a widely used heuristic for clustering data.
The k-means procedure must have some method for measuring the distance
between two points. Once again this distance can always be computed using
only inner product information through the equality

‖x − z‖2 = 〈x,x〉 + 〈z, z〉 − 2〈x, z〉.

This distance, together with a dual representation of the mean of a given set
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of points, implies the k-means procedure can be implemented in a kernel-
defined feature space. This procedure is not, however, a typical example of
a kernel method since it fails to meet our requirement of efficiency. This
is because the optimisation criterion is not convex and hence we cannot
guarantee that the procedure will converge to the optimal arrangement. A
number of clustering methods will be described in Chapter 8.

2.3.2 Kernels

Part III of the book will be devoted to the design of a whole range of
kernel functions. The approach we have outlined in this chapter shows how
a number of useful tasks can be accomplished in high-dimensional feature
spaces defined implicitly by a kernel function. So far we have only seen
how to construct very simple polynomial kernels. Clearly, for the approach
to be useful, we would like to have a range of potential kernels together
with machinery to tailor their construction to the specifics of a given data
domain. If the inputs are elements of a vector space such as R

n there is
a natural inner product that is referred to as the linear kernel by analogy
with the polynomial construction. Using this kernel corresponds to running
the original algorithm in the input space. As we have seen above, at the
cost of a few extra operations, the polynomial construction can convert
the linear kernel into an inner product in a vastly expanded feature space.
This example illustrates a general principle we will develop by showing how
more complex kernels can be created from simpler ones in a number of
different ways. Kernels can even be constructed that correspond to infinite-
dimensional feature spaces at the cost of only a few extra operations in the
kernel evaluations.

An example of creating a new kernel from an existing one is provided by
normalising a kernel. Given a kernel κ(x, z) that corresponds to the feature
mapping φ, the normalised kernel κ(x, z) corresponds to the feature map

x �−→ φ(x) �−→ φ(x)
‖φ(x)‖ .

Hence, we will show in Chapter 5 that we can express the kernel κ̂ in terms
of κ as follows

κ̂(x, z) =
〈

φ(x)
‖φ(x)‖ ,

φ(z)
‖φ(z)‖

〉
=

κ(x, z)√
κ(x,x)κ(z, z)

.

These constructions will not, however, in themselves extend the range of
data types that can be processed. We will therefore also develop kernels
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that correspond to mapping inputs that are not vectors into an appropriate
feature space. As an example, consider the input space consisting of all
subsets of a fixed set D. Consider the kernel function of two subsets A1 and
A2 of D defined by

κ (A1, A2) = 2|A1∩A2|,

that is the number of common subsets A1 and A2 share. This kernel corre-
sponds to a feature map φ to the vector space of dimension 2|D| indexed by
all subsets of D, where the image of a set A is the vector with

φ (A)U =
{

1; if U ⊆ A,
0; otherwise.

This example is defined over a general set and yet we have seen that it
fulfills the conditions for being a valid kernel, namely that it corresponds to
an inner product in a feature space. Developing this approach, we will show
how kernels can be constructed from different types of input spaces in a way
that reflects their structure even though they are not in themselves vector
spaces. These kernels will be needed for many important applications such
as text analysis and bioinformatics. In fact, the range of valid kernels is very
large: some are given in closed form; others can only be computed by means
of a recursion or other algorithm; in some cases the actual feature mapping
corresponding to a given kernel function is not known, only a guarantee
that the data can be embedded in some feature space that gives rise to the
chosen kernel. In short, provided the function can be evaluated efficiently
and it corresponds to computing the inner product of suitable images of its
two arguments, it constitutes a potentially useful kernel.

Selecting the best kernel from among this extensive range of possibilities
becomes the most critical stage in applying kernel-based algorithms in prac-
tice. The selection of the kernel can be shown to correspond in a very tight
sense to the encoding of our prior knowledge about the data and the types
of patterns we can expect to identify. This relationship will be explored
by examining how kernels can be derived from probabilistic models of the
process generating the data.

In Chapter 3 the techniques for creating and adapting kernels will be
presented, hence laying the foundations for the later examples of practical
kernel based applications. It is possible to construct complex kernel func-
tions from simpler kernels, from explicit features, from similarity measures
or from other types of prior knowledge. In short, we will see how it will
be possible to treat the kernel part of the algorithm in a modular fashion,
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constructing it from simple components and then modifying it by means of
a set of well-defined operations.

2.4 The modularity of kernel methods

The procedures outlined in the previous sections will be generalised and
analysed in subsequent chapters, but a consistent trend will emerge. An
algorithmic procedure is adapted to use only inner products between inputs.
The method can then be combined with a kernel function that calculates
the inner product between the images of two inputs in a feature space, hence
making it possible to implement the algorithm in a high-dimensional space.

The modularity of kernel methods shows itself in the reusability of the
learning algorithm. The same algorithm can work with any kernel and
hence for any data domain. The kernel component is data specific, but can
be combined with different algorithms to solve the full range of tasks that
we will consider. All this leads to a very natural and elegant approach to
learning systems design, where modules are combined together to obtain
complex learning systems. Figure 2.4 shows the stages involved in the im-
plementation of kernel pattern analysis. The data is processed using a kernel
to create a kernel matrix, which in turn is processed by a pattern analysis
algorithm to producce a pattern function. This function is used to process
unseen examples. This book will follow a corresponding modular structure

DATA

K

PA ALGORITHM PATTERN FUNCTION KERNEL MATRIXKERNEL FUNCTION

Aκ(x,z) f(x)=Σαiκ(xi,x)

Fig. 2.4. The stages involved in the application of kernel methods.

developing each of the aspects of the approach independently.
From a computational point of view kernel methods have two important

properties. First of all, they enable access to very high-dimensional and cor-
respondingly flexible feature spaces at low computational cost both in space
and time, and yet secondly, despite the complexity of the resulting function
classes, virtually all of the algorithms presented in this book solve convex
optimisation problems and hence do not suffer from local minima. In Chap-
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ter 7 we will see that optimisation theory also confers other advantages on
the resulting algorithms. In particular duality will become a central theme
throughout this book, arising within optimisation, text representation, and
algorithm design.

Finally, the algorithms presented in this book have a firm statistical foun-
dation that ensures they remain resistant to overfitting. Chapter 4 will give
a unified analysis that makes it possible to view the algorithms as special
cases of a single framework for analysing generalisation.

2.5 Roadmap of the book

The first two chapters of the book have provided the motivation for pattern
analysis tasks and an overview of the kernel methods approach to learning
systems design. We have described how at the top level they involve a two-
stage process: the data is implicitly embedded into a feature space through
the use of a kernel function, and subsequently linear patterns are sought in
the feature space using algorithms expressed in a dual form. The resulting
systems are modular: any kernel can be combined with any algorithm and
vice versa. The structure of the book reflects that modularity, addressing in
three main parts general design principles, specific algorithms and specific
kernels.

Part I covers foundations and presents the general principles and prop-
erties of kernel functions and kernel-based algorithms. Chapter 3 presents
the theory of kernel functions including their characterisations and prop-
erties. It covers methods for combining kernels and for adapting them in
order to modify the geometry of the feature space. The chapter lays the
groundwork necessary for the introduction of specific examples of kernels in
Part III. Chapter 4 develops the framework for understanding how their sta-
tistical stability can be controlled. Again it sets the scene for Part II, where
specific algorithms for dimension reduction, novelty-detection, classification,
ranking, clustering, and regression are examined.

Part II develops specific algorithms. Chapter 5 starts to develop the
tools for analysing data in a kernel-defined feature space. After covering a
number of basic techniques, it shows how they can be used to create a simple
novelty-detection algorithm. Further analysis of the structure of the data
in the feature space including implementation of Gram–Schmidt orthonor-
malisation, leads eventually to a dual version of the Fisher discriminant.
Chapter 6 is devoted to discovering patterns using eigenanalysis. The tech-
niques developed include principal components analysis, maximal covari-
ance, and canonical correlation analysis. The application of the patterns in
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classification leads to an alternative formulation of the Fisher discriminant,
while their use in regression gives rise to the partial least squares algorithm.
Chapter 7 considers algorithms resulting from optimisation problems and
includes sophisticated novelty detectors, the support vector machine, ridge
regression, and support vector regression. On-line algorithms for classifica-
tion and regression are also introduced. Finally, Chapter 8 considers ranking
and shows how both batch and on-line kernel based algorithms can be cre-
ated to solve this task. It then considers clustering in kernel-defined feature
spaces showing how the classical k-means algorithm can be implemented
in such feature spaces as well as spectral clustering methods. Finally, the
problem of data visualisation is formalised and solved also using spectral
methods. Appendix C contains an index of the pattern analysis methods
covered in Part II.

Part III is concerned with kernels. Chapter 9 develops a number of tech-
niques for creating kernels leading to the introduction of ANOVA kernels,
kernels defined over graphs, kernels on sets and randomised kernels. Chapter
10 considers kernels based on the vector space model of text, with empha-
sis on the refinements aimed at taking account of the semantics. Chapter
11 treats kernels for strings of symbols, trees, and general structured data.
Finally Chapter 12 examines how kernels can be created from generative
models of data either using the probability of co-occurrence or through the
Fisher kernel construction. Appendix D contains an index of the kernels
described in Part III.

We conclude this roadmap with a specific mention of some of the questions
that will be addressed as the themes are developed through the chapters
(referenced in brackets):

• Which functions are valid kernels and what are their properties? (Chapter
3)

• How can we guarantee the statistical stability of patterns? (Chapter. 4)
• What algorithms can be kernelised? (Chapter 5, 6, 7 and 8)
• Which problems can be tackled effectively using kernel methods? (Chap-

ters 9 and 10)
• How can we develop kernels attuned to particular applications? (Chapters

10, 11 and 12)

2.6 Summary

• Linear patterns can often be detected efficiently by well-known techniques
such as least squares regression.
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• Mapping the data via a nonlinear function into a suitable feature space
enables the use of the same tools for discovering nonlinear patterns.

• Kernels can make it feasible to use high-dimensional feature spaces by
avoiding the explicit computation of the feature mapping.

• The proposed approach is modular in the sense that any kernel will work
with any kernel-based algorithm.

• Although linear functions require vector inputs, the use of kernels enables
the approach to be applied to other types of data.

2.7 Further reading and advanced topics

The method of least squares for linear regression was (re)invented and made
famous by Carl F. Gauss (1777–1855) in the late eighteenth century, by
using it to predict the position of an asteroid that had been observed by
the astronomer Giuseppe Piazzi for several days and then ‘lost’. Before
Gauss (who published it in Theoria motus corporum coelestium, 1809), it
had been independently discovered by Legendre (but published only in 1812,
in Nouvelle Methods pour la determination des orbites des cometes. It is now
a cornerstone of function approximation in all disciplines.

The Widrow–Hoff algorithm is described in [160]. The ridge regression
algorithm was published by Hoerl and Kennard [58], and subsequently dis-
covered to be a special case of the regularisation theory of [138] for the so-
lution of ill-posed problems. The dual form of ridge regression was studied
by Saunders et al., [115], which gives a formulation similar to that presented
here. An equivalent heuristic was widely used in the neural networks liter-
ature under the name of weight decay. The combination of ridge regression
and kernels has also been explored in the literature of Gaussian Processes
[161] and in the literature on regularization networks [107] and RKHSs:
[155], see also [131].

The linear Fisher discriminant dates back to 1936 [44], and its use with
kernels to the works in [11] and [100], see also [123]. The perceptron al-
gorithm dates back to 1957 by Rosenblatt [111], and its kernelization is a
well-known folk algorithm, closely related to the work in [1].

The theory of linear discriminants dates back to the 1930s, when Fisher
[44] proposed a procedure for classification of multivariate data by means of
a hyperplane. In the field of artificial intelligence, attention was drawn to
this problem by the work of Frank Rosenblatt [111], who starting from 1956
introduced the perceptron learning rule. Minsky and Papert’s famous book
Perceptrons [101] analysed the computational limitations of linear learning
machines. The classical book by Duda and Hart (recently reprinted in a
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new edition [40]) provides a survey of the state-of-the-art in the field. Also
useful is [14] which includes a description of a class of generalised learning
machines.

The idea of using kernel functions as inner products in a feature space
was introduced into machine learning in 1964 by the work of Aizermann,
Bravermann and Rozoener [1] on the method of potential functions and this
work is mentioned in a footnote of the very popular first edition of Duda
and Hart’s book on pattern classification [39]. Through this route it came
to the attention of the authors of [16], who combined it with large margin
hyperplanes, leading to support vector machines and the (re)introduction of
the notion of a kernel into the mainstream of the machine learning literature.

The use of kernels for function approximation however dates back to Aron-
szain [6], as does the development of much of their theory [155].

An early survey of the modern usage of kernel methods in pattern analysis
can be found in [20], and more accounts in the books by [32] and [120]. The
book [141] describes SVMs, albeit with not much emphasis on kernels. Other
books in the area include: [131], [68], [55].

A further realization of the possibilities opened up by the concept of the
kernel function is represented by the development of kernel PCA by [121]
that will be discussed in Chapter 6. That work made the point that much
more complex relations than just linear classifications can be inferred using
kernel functions.

Clustering will be discussed in more detail in Chapter 8, so pointers to
the relevant literature can be found in Section 8.5.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net
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Properties of kernels

As we have seen in Chapter 2, the use of kernel functions provides a powerful
and principled way of detecting nonlinear relations using well-understood
linear algorithms in an appropriate feature space. The approach decouples
the design of the algorithm from the specification of the feature space. This
inherent modularity not only increases the flexibility of the approach, it also
makes both the learning algorithms and the kernel design more amenable
to formal analysis. Regardless of which pattern analysis algorithm is being
used, the theoretical properties of a given kernel remain the same. It is the
purpose of this chapter to introduce the properties that characterise kernel
functions.

We present the fundamental properties of kernels, thus formalising the
intuitive concepts introduced in Chapter 2. We provide a characterization
of kernel functions, derive their properties, and discuss methods for design-
ing them. We will also discuss the role of prior knowledge in kernel-based
learning machines, showing that a universal machine is not possible, and
that kernels must be chosen for the problem at hand with a view to captur-
ing our prior belief of the relatedness of different examples. We also give a
framework for quantifying the match between a kernel and a learning task.

Given a kernel and a training set, we can form the matrix known as the
kernel, or Gram matrix: the matrix containing the evaluation of the kernel
function on all pairs of data points. This matrix acts as an information
bottleneck, as all the information available to a kernel algorithm, be it about
the distribution, the model or the noise, must be extracted from that matrix.
It is therefore not surprising that the kernel matrix plays a central role in
the development of this chapter.

47
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3.1 Inner products and positive semi-definite matrices

Chapter 2 showed how data can be embedded in a high-dimensional feature
space where linear pattern analysis can be performed giving rise to non-
linear pattern analysis in the input space. The use of kernels enables this
technique to be applied without paying the computational penalty implicit
in the number of dimensions, since it is possible to evaluate the inner prod-
uct between the images of two inputs in a feature space without explicitly
computing their coordinates.

These observations imply that we can apply pattern analysis algorithms
to the image of the training data in the feature space through indirect evalu-
ation of the inner products. As defined in Chapter 2, a function that returns
the inner product between the images of two inputs in some feature space
is known as a kernel function.

This section reviews the notion and properties of inner products that will
play a central role in this book. We will relate them to the positive semi-
definiteness of the Gram matrix and general properties of positive semi-
definite symmetric functions.

3.1.1 Hilbert spaces

First we recall what is meant by a linear function. Given a vector space X

over the reals, a function

f : X −→ R

is linear if f(αx) = αf(x) and f(x + z) = f(x) + f(z) for all x, z ∈ X and
α ∈ R.

Inner product space A vector space X over the reals R is an inner prod-
uct space if there exists a real-valued symmetric bilinear (linear in each
argument) map 〈·, ·〉, that satisfies

〈x,x〉 ≥ 0.

The bilinear map is known as the inner, dot or scalar product. Furthermore
we will say the inner product is strict if

〈x,x〉 = 0 if and only if x = 0.

Given a strict inner product space we can define a norm on the space X by

‖x‖2 =
√

〈x,x〉.
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The associated metric or distance between two vectors x and z is defined as
d(x, z) = ‖x − z‖2. For the vector space R

n the standard inner product is
given by

〈x, z〉 =
n∑

i=1

xizi.

Furthermore, if the inner product is not strict, those points x for which
‖x‖ = 0 form a linear subspace since Proposition 3.5 below shows 〈x,y〉2 ≤
‖x‖2 ‖y‖2 = 0, and hence if also ‖z‖ = 0 we have for all a, b ∈ R

‖ax + bz‖2 = 〈ax + bz,ax + bz〉 = a2 ‖x‖2 + 2ab 〈x, z〉 + b2 ‖z‖2 = 0.

This means that we can always convert a non-strict inner product to a strict
one by taking the quotient space with respect to this subspace.

A vector space with a metric is known as a metric space, so that a strict
inner product space is also a metric space. A metric space has a derived
topology with a sub-basis given by the set of open balls.

An inner product space is sometimes referred to as a Hilbert space, though
most researchers require the additional properties of completeness and sep-
arability, as well as sometimes requiring that the dimension be infinite. We
give a formal definition.

Definition 3.1 A Hilbert Space F is an inner product space with the ad-
ditional properties that it is separable and complete. Completeness refers
to the property that every Cauchy sequence {hn}n≥1 of elements of F con-
verges to a element h ∈ F , where a Cauchy sequence is one satisfying the
property that

sup
m>n

‖hn − hm‖ → 0, as n → ∞.

A space F is separable if for any ε > 0 there is a finite set of elements
h1, . . . , hN of F such that for all h ∈ F

min
i

‖hi − h‖ < ε.

Example 3.2 Let X be the set of all countable sequences of real numbers
x = (x1, x2, . . . , xn, . . .), such that the sum

∞∑
i=1

x2
i < ∞,
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with the inner product between two sequences x and y defined by

〈x,y〉 =
∞∑
i=1

xiyi.

This is the space known as L2.

The reason for the importance of the properties of completeness and sepa-
rability is that together they ensure that Hilbert spaces are either isomorphic
to R

n for some finite n or to the space L2 introduced in Example 3.2. For our
purposes we therefore require that the feature space be a complete, separa-
ble inner product space, as this will imply that it can be given a coordinate
system. Since we will be using the dual representation there will, however,
be no need to actually construct the feature vectors.

This fact may seem strange at first since we are learning a linear function
represented by a weight vector in this space. But as discussed in Chapter 2
the weight vector is a linear combination of the feature vectors of the training
points. Generally, all elements of a Hilbert space are also linear functions in
that space via the inner product. For a point z the corresponding function
fz is given by

fz(x) = 〈x, z〉.

Finding the weight vector is therefore equivalent to identifying an appropri-
ate element of the feature space.

We give two more examples of inner product spaces.

Example 3.3 Let X = R
n, x = (x1, . . . , xn)′, z = (z1, . . . , zn)′. Let λi be

fixed positive numbers, for i = 1, . . . , n. The following defines a valid inner
product on X

〈x, z〉 =
n∑

i=1

λixizi = x′Λz,

where Λ is the n × n diagonal matrix with entries Λii = λi.

Example 3.4 Let F = L2 (X) be the vector space of square integrable func-
tions on a compact subset X of R

n with the obvious definitions of addition
and scalar multiplication, that is

L2 (X) =
{

f :
∫

X
f (x)2 dx < ∞

}
.
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For f , g ∈ X, define the inner product by

〈f, g〉 =
∫

X
f(x)g(x)dx.

Proposition 3.5 (Cauchy–Schwarz inequality) In an inner product
space

〈x, z〉2 ≤ ‖x‖2 ‖z‖2 .

and the equality sign holds in a strict inner product space if and only if x
and z are rescalings of the same vector.

Proof Consider an abitrary ε > 0 and the following norm

0 ≤ ‖(‖z‖ + ε)x ± z (‖x‖ + ε)‖2

= 〈(‖z‖ + ε)x ± z (‖x‖ + ε) , (‖z‖ + ε)x ± z (‖x‖ + ε)〉
= (‖z‖ + ε)2 ‖x‖2 + ‖z‖2 (‖x‖ + ε)2 ± 2 〈(‖z‖ + ε)x, z (‖x‖ + ε)〉
≤ 2 (‖z‖ + ε)2 (‖x‖ + ε)2 ± 2 (‖z‖ + ε) (‖x‖ + ε) 〈x, z〉 ,

implying that

∓〈x, z〉 ≤ (‖x‖ + ε) (‖z‖ + ε) .

Letting ε → 0 gives the first result. In a strict inner product space equality
implies

x ‖z‖ ± z ‖x‖ = 0,

making x and z rescalings as required.

Angles, distances and dimensionality The angle θ between two vectors
x and z of a strict inner product space is defined by

cos θ =
〈x, z〉
‖x‖ ‖z‖

If θ = 0 the cosine is 1 and 〈x, z〉 = ‖x‖ ‖z‖, and x and z are said to be
parallel. If θ = π

2 , the cosine is 0, 〈x, z〉 = 0 and the vectors are said to be
orthogonal.

A set S = {x1, . . . ,x�} of vectors from X is called orthonormal if
〈
xi,xj

〉
=
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δij , where δij is the Kronecker delta satisfying δij = 1 if i = j, and 0 other-
wise. For an orthonormal set S, and a vector z ∈ X, the expression

�∑
i=1

〈xi, z〉xi

is said to be a Fourier series for z. If the Fourier series for z equals z for all
z, then the set S is also a basis. Since a Hilbert space is either equivalent to
R

n or to L2, it will always be possible to find an orthonormal basis, indeed
this basis can be used to define the isomorphism with either R

n or L2.
The rank of a general n × m matrix X is the dimension of the space

spanned by its columns also known as the column space. Hence, the rank
of X is the smallest r for which we can express

X = RS,

where R is an n×r matrix whose linearly independent columns form a basis
for the column space of X, while the columns of the r×m matrix S express
the columns of X in that basis. Note that we have

X′ = S′R′,

and since S′ is m× r, the rank of X′ is less than or equal to the rank of X.
By symmetry the two ranks are equal, implying that the dimension of the
space spanned by the rows of X is also equal to its rank.

An n × m matrix is full rank if its rank is equal to min (n, m).

3.1.2 Gram matrix

Given a set of vectors, S = {x1, . . . ,x�} the Gram matrix is defined as the
� × � matrix G whose entries are Gij = 〈xi,xj〉. If we are using a kernel
function κ to evaluate the inner products in a feature space with feature
map φ, the associated Gram matrix has entries

Gij = 〈φ (xi) , φ (xj)〉 = κ (xi,xj) .

In this case the matrix is often referred to as the kernel matrix. We will use
a standard notation for displaying kernel matrices as:

K 1 2 · · · �

1 κ (x1,x1) κ (x1,x2) · · · κ (x1,x�)
2 κ (x2,x1) κ (x2,x2) · · · κ (x2,x�)
...

...
...

. . .
...

� κ (x�,x1) κ (x�,x2) · · · κ (x�,x�)
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where the symbol K in the top left corner indicates that the table represents
a kernel matrix – see the Appendix B for a summary of notations.

In Chapter 2, the Gram matrix has already been shown to play an im-
portant role in the dual form of some learning algorithms. The matrix is
symmetric since Gij = Gji, that is G′ = G. Furthermore, it contains all
the information needed to compute the pairwise distances within the data
set as shown above. In the Gram matrix there is of course some information
that is lost when compared with the original set of vectors. For example
the matrix loses information about the orientation of the original data set
with respect to the origin, since the matrix of inner products is invariant
to rotations about the origin. More importantly the representation loses
information about any alignment between the points and the axes. This
again follows from the fact that the Gram matrix is rotationally invariant
in the sense that any rotation of the coordinate system will leave the matrix
of inner products unchanged.

If we consider the dual form of the ridge regression algorithm described in
Chapter 2, we will see that the only information received by the algorithm
about the training set comes from the Gram or kernel matrix and the as-
sociated output values. This observation will characterise all of the kernel
algorithms considered in this book. In other words all the information the
pattern analysis algorithms can glean about the training data and chosen
feature space is contained in the kernel matrix together with any labelling
information.

In this sense we can view the matrix as an information bottleneck that
must transmit enough information about the data for the algorithm to be
able to perform its task. This view also reinforces the view that the kernel
matrix is the central data type of all kernel-based algorithms. It is therefore
natural to study the properties of these matrices, how they are created,
how they can be adapted, and how well they are matched to the task being
addressed.

Singular matrices and eigenvalues A matrix A is singular if there is a
non-trivial linear combination of the columns of A that equals the vector 0.
If we put the coefficients xi of this combination into a (non-zero) vector x,
we have that

Ax = 0 = 0x.

If an n × n matrix A is non-singular the columns are linearly independent
and hence space a space of dimension ṅ. Hence, we can find vectors ui such
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that

Aui = ei,

where ei is the ith unit vector. Forming a matrix U with ith column equal
to ui we have

AU = I

the identity matrix. Hence, U = A−1 is the multiplicative inverse of A.
Given a matrix A, the real number λ and the vector x are an eigenvalue

and corresponding eigenvector of A if

Ax = λx.

It follows from the observation above about singular matrices that 0 is an
eigenvalue of a matrix if and only if it is singular. Note that for an eigenvalue,
eigenvector pair x, λ, the quotient obeys

x′Ax
x′x

= λ
x′x
x′x

= λ. (3.1)

The quotient of equation (3.1) is known as the Rayleigh quotient and
will form an important tool in the development of the algorithms of Chapter
6. Consider the optimisation problem

max
v

v′Av
v′v

(3.2)

and observe that the solution is invariant to rescaling. We can therefore
impose the constraint that ‖v‖ = 1 and solve using a Lagrange multiplier.
We obtain for a symmetric matrix A the optimisation

max
v

(
v′Av − λ

(
v′v − 1

))
,

which on setting the derivatives with respect to v equal to zero gives

Av = λv.

We will always assume that an eigenvector is normalised.
Hence, the eigenvector of the largest eigenvalue is the solution of the

optimisation (3.2) with the corresponding eigenvalue giving the value of
the maximum. Since we are seeking the maximum over a compact set we
are guaranteed a solution. A similar approach can also yield the minimum
eigenvalue.

The spectral norm or 2-norm of a matrix A is defined as

max
v

‖Av‖
‖v‖ =

√
max

v

v′A′Av
v′v

. (3.3)
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Symmetric matrices and eigenvalues We say a square matrix A is
symmetric if A′ = A, that is the (i, j) entry equals the (j, i) entry for all
i and j. A matrix is diagonal if its off-diagonal entries are all 0. A square
matrix is upper (lower) triangular if its above (below) diagonal elements
are all zero.

For symmetric matrices we have that eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal, since if µ, z is a second eigenvalue, eigen-
vector pair with µ �= λ, we have that

λ 〈x, z〉 = 〈Ax, z〉
= (Ax)′ z

= x′A′z

= x′Az

= µ 〈x, z〉 ,

implying that 〈x, z〉 = x′z = 0. This means that if A is an n×n symmetric
matrix, it can have at most n distinct eigenvalues. Given an eigenvector–
eigenvalue pair x, λ of the matrix A, the transformation

A �−→ Ã = A − λxx′,

is known as deflation. Note that since x is normalised

Ãx = Ax − λxx′x = 0,

so that deflation leaves x an eigenvector but reduces the corresponding eigen-
value to zero. Since eigenvectors corresponding to distinct eigenvalues are
orthogonal the remaining eigenvalues of A remain unchanged. By repeat-
edly finding the eigenvector corresponding to the largest positive (or smallest
negative) eigenvalue and then deflating, we can always find an orthonormal
set of n eigenvectors, where eigenvectors corresponding to an eigenvalue of
0 are added by extending the set of eigenvectors obtained by deflation to
an orthonormal basis. If we form a matrix V with the (orthonormal) eigen-
vectors as columns and a diagonal matrix Λ with Λii = λi, i = 1, . . . , n, the
corresponding eigenvalues, we have VV′ = V′V = I, the identity matrix
and

AV = VΛ.

This is often referred to as the eigen-decomposition of A, while the set of
eigenvalues λ (A) are known as its spectrum. We generally assume that the
eigenvalues appear in order of decreasing value

λ1 ≥ λ2 ≥ · · · ≥ λn.
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Note that a matrix V with the property VV′ = V′V = I is known as an
orthonormal or unitary matrix.

The principal minors of a matrix are the submatrices obtained by selecting
a subset of the rows and the same subset of columns. The corresponding
minor contains the elements that lie on the intersections of the chosen rows
and columns.

If the symmetric matrix A has k non-zero eigenvalues then we can express
the eigen-decomposition as

A = VΛV′ = VkΛkV′
k,

where Vk and Λk are the matrices containing the k columns of V and the
principal minor of Λ corresponding to non-zero eigenvalues. Hence, A has
rank at most k. Given any vector v in the span of the columns of Vk we
have

v = Vku = AVkΛ−1
k u,

where Λ−1
k is the diagonal matrix with inverse entries, so that the columns

of A span the same k-dimensional space, implying the rank of a symmetric
matrix A is equal to the number of non-zero eigenvalues.

For a matrix with all eigenvalues non-zero we can write

A−1 = VΛ−1V′,

as

VΛ−1V′VΛV′ = I,

showing again that only full rank matrices are invertible.
For symmetric matrices the spectral norm can now be simply evaluated

since the eigen-decomposition of A′A = A2 is given by

A2 = VΛV′VΛV′ = VΛ2V′,

so that the spectrum of A2 is
{
λ2 : λ ∈ λ (A)

}
. Hence, by (3.3) we have

‖A‖ = max
λ∈λ(A)

|λ| .

The Courant–Fisher Theorem gives a further characterisation of eigen-
values extending the characterisation of the largest eigenvalue given by the
Raleigh quotient. It considers maximising or minimising the quotient in a
subspace T of specified dimension, and then choosing the subspace either to
minimise the maximum or maximise the minimum. The largest eigenvalue
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case corresponds to taking the dimension of T to be that of the whole space
and hence maximising the quotient in the whole space.

Theorem 3.6 (Courant–Fisher) If A ∈ R
n×n is symmetric, then for

k = 1, . . . , n, the kth eigenvalue λk (A) of the matrix A satisfies

λk(A) = max
dim(T )=k

min
0 �=v∈T

v′Av
v′v

= min
dim(T )=n−k+1

max
0 �=v∈T

v′Av
v′v

,

with the extrema achieved by the corresponding eigenvector.

Positive semi-definite matrices A symmetric matrix is positive semi-
definite, if its eigenvalues are all non-negative. By Theorem 3.6 this holds if
and only if

v′Av ≥ 0

for all vectors v, since the minimal eigenvalue satisfies

λm(A) = min
0 �=v∈Rn

v′Av
v′v

.

Similarly a matrix is positive definite, if its eigenvalues are positive or equiv-
alently

v′Av > 0, for v �= 0.

We now give two results concerning positive semi-definite matrices.

Proposition 3.7 Gram and kernel matrices are positive semi-definite.

Proof Considering the general case of a kernel matrix let

Gij = κ (xi,xj) = 〈φ (xi) ,φ (xj)〉 , for i, j = 1, . . . , �.

For any vector v we have

v′Gv =
�∑

i,j=1

vivjGij =
�∑

i,j=1

vivj 〈φ (xi) ,φ (xj)〉

=

〈
�∑

i=1

viφ (xi) ,

�∑
j=1

vjφ (xj)

〉

=

∥∥∥∥∥
�∑

i=1

viφ (xi)

∥∥∥∥∥
2

≥ 0,
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as required.

Proposition 3.8 A matrix A is positive semi-definite if and only if A =
B′B for some real matrix B.

Proof Suppose A = B′B, then for any vector v we have

v′Av=v′B′Bv = ‖Bv‖2 ≥ 0,

implying A is positive semi-definite.
Now suppose A is positive semi-definite. Let AV = VΛ be the eigen-

decomposition of A and set B =
√

ΛV′, where
√

Λ is the diagonal matrix
with entries

(√
Λ
)

ii
=

√
λi. The matrix exists since the eigenvalues are

non-negative. Then

B′B = V
√

Λ
√

ΛV′ = VΛV′ = AVV′ = A,

as required.

The choice of the matrix B in the proposition is not unique. For example
the Cholesky decomposition of a positive semi-definite matrix A provides an
alternative factorisation

A = R′R,

where the matrix R is upper-triangular with a non-negative diagonal. The
Cholesky decomposition is the unique factorisation that has this property;
see Chapter 5 for more details.

The next proposition gives another useful characterisation of positive
(semi-) definiteness.

Proposition 3.9 A matrix A is positive (semi-)definite if and only if all of
its principal minors are positive (semi-)definite.

Proof Consider a k×k minor M of A. Clearly by inserting 0s in the positions
of the rows that were not chosen for the minor M we can extend any vector
u ∈ R

k to a vector v ∈ R
n. Observe that for A positive semi-definite

u′Mu = v′Av ≥ 0,

with strict inequality if A is positive definite and u �= 0. Hence, if A is
positive (semi-)definite so is M. The reverse implication follows, since A is
a principal minor of itself.
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Note that each diagonal entry is a principal minor and so must be non-
negative for a positive semi-definite matrix.

Determinant and trace The determinant det(A) of a square matrix A
is the product of its eigenvalues. Hence, for a positive definite matrix the
determinant will be strictly positive, while for singular matrices it will be
zero.

If we consider the matrix as a linear transformation

x �−→ Ax = VΛV′x,

V′x computes the projection of x onto the eigenvectors that form the
columns of V, multiplication by Λ rescales the projections, while the prod-
uct with V recomputes the resulting vector. Hence the image of the unit
sphere is an ellipse with its principal axes equal to the eigenvectors and
with its lengths equal to the eigenvalues. The ratio of the volume of the
image of the unit sphere to its pre-image is therefore equal to the absolute
value of the determinant (the determinant is negative if the sphere has un-
dergone a reflection). The same holds for any translation of a cube of any
size aligned with the principal axes. Since we can approximate any shape
arbitrarily closely with a collection of such cubes, it follows that the ratio of
the volume of the image of any object to that of its pre-image is equal to the
determinant. If we follow A with a second transformation B and consider
the volume ratios, we conclude that det(AB) = det(A) det(B).

The trace tr(A) of a n × n square matrix A is the sum of its diagonal
entries

tr(A) =
n∑

i=1

Aii.

Since we have

tr(AB) =
n∑

i=1

n∑
j=1

AijBji =
n∑

i=1

n∑
j=1

BijAji = tr(BA),

the trace remains invariant under transformations of the form A −→ V−1AV
for unitary V since

tr(V−1AV) = tr((AV)V−1) = tr(A).

It follows by taking V from the eigen-decomposition of A that the trace of
a matrix is equal to the sum of its eigenvalues.



60 Properties of kernels

3.2 Characterisation of kernels

Recall that a kernel function computes the inner product of the images under
an embedding φ of two data points

κ(x, z) = 〈φ(x), φ(z)〉 .

We have seen how forming a matrix of the pairwise evaluations of a kernel
function on a set of inputs gives a positive semi-definite matrix. We also saw
in Chapter 2 how a kernel function implicitly defines a feature space that
in many cases we do not need to construct explicitly. This second obser-
vation suggests that we may also want to create kernels without explicitly
constructing the feature space. Perhaps the structure of the data and our
knowledge of the particular application suggest a way of comparing two in-
puts. The function that makes this comparison is a candidate for a kernel
function.

A general characterisation So far we have only one way of verifying
that the function is a kernel, that is to construct a feature space for which
the function corresponds to first performing the feature mapping and then
computing the inner product between the two images. For example we used
this technique to show the polynomial function is a kernel and to show that
the exponential of the cardinality of a set intersection is a kernel.

We will now introduce an alternative method of demonstrating that a
candidate function is a kernel. This will provide one of the theoretical tools
needed to create new kernels, and combine old kernels to form new ones.

One of the key observations is the relation with positive semi-definite
matrices. As we saw above the kernel matrix formed by evaluating a kernel
on all pairs of any set of inputs is positive semi-definite. This forms the
basis of the following definition.

Definition 3.10 [Finitely positive semi-definite functions] A function

κ : X × X −→ R

satisfies the finitely positive semi-definite property if it is a symmetric func-
tion for which the matrices formed by restriction to any finite subset of the
space X are positive semi-definite.

Note that this definition does not require the set X to be a vector space.
We will now demonstrate that the finitely positive semi-definite property
characterises kernels. We will do this by explicitly constructing the feature
space assuming only this property. We first state the result in the form of a
theorem.
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Theorem 3.11 (Characterisation of kernels) A function

κ : X × X −→ R,

which is either continuous or has a finite domain, can be decomposed

κ(x, z) = 〈φ(x),φ(z)〉

into a feature map φ into a Hilbert space F applied to both its arguments
followed by the evaluation of the inner product in F if and only if it satisfies
the finitely positive semi-definite property.

Proof The ‘only if’ implication is simply the result of Proposition 3.7. We
will now show the reverse implication. We therefore assume that κ satisfies
the finitely positive semi-definite property and proceed to construct a feature
mapping φ into a Hilbert space for which κ is the kernel.

There is one slightly unusual aspect of the construction in that the el-
ements of the feature space will in fact be functions. They are, however,
points in a vector space and will fulfil all the required properties. Recall our
observation in Section 3.1.1 that learning a weight vector is equivalent to
identifying an element of the feature space, in our case one of the functions.
It is perhaps natural therefore that the feature space is actually the set of
functions that we will be using in the learning problem

F =

{
�∑

i=1

αiκ(xi, ·) : � ∈ N, xi ∈ X, αi ∈ R, i = 1, . . . , �

}
.

We have chosen to use a caligraphic F reserved for function spaces rather
than the normal F of a feature space to emphasise that the elements are
functions. We should, however, emphasise that this feature space is a set
of points that are in fact functions. Note that we have used a · to indicate
the position of the argument of the function. Clearly, the space is closed
under multiplication by a scalar and addition of functions, where addition
is defined by

f, g ∈ F =⇒ (f + g)(x) = f(x) + g(x).

Hence, F is a vector space. We now introduce an inner product on F as
follows. Let f, g ∈ F be given by

f(x) =
�∑

i=1

αiκ(xi,x) and g(x) =
n∑

i=1

βiκ(zi,x)
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then we define

〈f, g〉 =
�∑

i=1

n∑
j=1

αiβjκ(xi, zj) =
�∑

i=1

αig(xi) =
n∑

j=1

βjf(zj), (3.4)

where the second and third equalities follow from the definitions of f and
g. It is clear from these equalities that 〈f, g〉 is real-valued, symmetric and
bilinear and hence satisfies the properties of an inner product, provided

〈f, f〉 ≥ 0 for all f ∈ F .

But this follows from the assumption that all kernel matrices are positive
semi-definite, since

〈f, f〉 =
�∑

i=1

�∑
j=1

αiαjκ(xi,xj) = α′Kα ≥ 0,

where α is the vector with entries αi, i = 1, . . . , �, and K is the kernel matrix
constructed on x1,x2, . . . ,x�.

There is a further property that follows directly from the equations (3.4)
if we take g = κ(x, ·)

〈f, κ(x, ·)〉 =
�∑

i=1

αiκ(xi,x) = f(x). (3.5)

This fact is known as the reproducing property of the kernel. It remains to
show the two additional properties of completeness and separability. Sepa-
rability will follow if the input space is countable or the kernel is continuous,
but we omit the technical details of the proof of this fact. For completeness
consider a fixed input x and a Cauchy sequence (fn)∞n=1. We have

(fn(x) − fm(x))2 = 〈fn − fm, κ(x, ·)〉2 ≤ ‖fn − fm‖2κ(x,x)

by the Cauchy–Schwarz inequality. Hence, fn(x) is a bounded Cauchy se-
quence of real numbers and hence has a limit. If we define the function

g(x) = lim
n→∞

fn(x),

and include all such limit functions in F we obtain the Hilbert space Fκ

associated with the kernel κ.
We have constructed the feature space, but must specify the image of an

input x under the mapping φ

φ : x ∈ X �−→ φ(x) = κ(x, ·) ∈ Fκ.
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We can now evaluate the inner product between an element of Fκ and the
image of an input x using equation (3.5)

〈f,φ(x)〉 = 〈f, κ(x, ·)〉 = f(x).

This is precisely what we require, namely that the function f can indeed be
represented as the linear function defined by an inner product (with itself)
in the feature space Fκ. Furthermore the inner product is strict since if
‖f‖ = 0, then for all x we have that

f(x) = 〈f,φ(x)〉 ≤ ‖f‖ ‖φ(x)‖ = 0.

Given a function κ that satisfies the finitely positive semi-definite prop-
erty we will refer to the corresponding space Fκ as its Reproducing Kernel
Hilbert Space (RKHS). Similarly, we will use the notation 〈·, ·〉Fκ for the
corresponding inner product when we wish to emphasise its genesis.

Remark 3.12 [Reproducing property] We have shown how any kernel can
be used to construct a Hilbert space in which the reproducing property
holds. It is fairly straightforward to see that if a symmetric function κ(·, ·)
satisfies the reproducing property in a Hilbert space F of functions

〈κ(x, ·), f(·)〉F = f(x), for f ∈ F ,

then κ satisfies the finitely positive semi-definite property, since

�∑
i,j=1

αiαjκ(xi,xj) =
�∑

i,j=1

αiαj〈κ(xi, ·), κ(xj , ·)〉F

=

〈
�∑

i=1

αiκ(xi, ·),
�∑

j=1

αjκ(xj , ·)
〉

F

=

∥∥∥∥∥
�∑

i=1

αiκ(xi, ·)
∥∥∥∥∥

2

F
≥ 0.

Mercer kernel We are now able to show Mercer’s theorem as a conse-
quence of the previous analysis. Mercer’s theorem is usually used to con-
struct a feature space for a valid kernel. Since we have already achieved this
with the RKHS construction, we do not actually require Mercer’s theorem
itself. We include it for completeness and because it defines the feature
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space in terms of an explicit feature vector rather than using the function
space of our RKHS construction. Recall the definition of the function space
L2 (X) from Example 3.4.

Theorem 3.13 (Mercer) Let X be a compact subset of R
n. Suppose κ is a

continuous symmetric function such that the integral operator Tκ : L2(X) →
L2(X)

(Tκf) (·) =
∫

X
κ(·,x)f(x)dx,

is positive, that is ∫
X×X

κ(x, z)f(x)f(z)dxdz ≥ 0,

for all f ∈ L2(X). Then we can expand κ(x, z) in a uniformly convergent
series (on X × X) in terms of functions φj, satisfying

〈
φj , φi

〉
= δij

κ(x, z) =
∞∑

j=1

φj(x)φj(z).

Furthermore, the series
∑∞

i=1 ‖φi‖2
L2(X) is convergent.

Proof The theorem will follow provided the positivity of the integral opera-
tor implies our condition that all finite submatrices are positive semi-definite.
Suppose that there is a finite submatrix on the points x1, . . . ,x� that is not
positive semi-definite. Let the vector α be such that

�∑
i,j=1

κ(xi,xj)αiαj = ε < 0,

and let

fσ(x) =
�∑

i=1

αi
1

(2πσ)d/2
exp

(‖x − xi‖2

2σ2

)
∈ L2(X),

where d is the dimension of the space X. We have that

lim
σ→0

∫
X×X

κ(x, z)fσ(x)fσ(z)dxdz = ε.

But then for some σ > 0 the integral will be less than 0 contradicting the
positivity of the integral operator.
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Now consider an orthonormal basis φi(·), i = 1, . . . of Fκ the RKHS of
the kernel κ. Then we have the Fourier series for κ(x, ·)

κ(x, z) =
∞∑
i=1

〈κ(x, ·),φi(·)〉φi(z) =
∞∑
i=1

φi(x)φi(z),

as required.
Finally, to show that the series

∑∞
i=1 ‖φi‖2

L2(X) is convergent, using the
compactness of X we obtain

∞ >

∫
X

κ(x,x)dx = lim
n→∞

∫
X

n∑
i=1

φi(x)φi(x)dx

= lim
n→∞

n∑
i=1

∫
X

φi(x)φi(x)dx = lim
n→∞

n∑
i=1

‖φi‖2
L2(X)

Example 3.14 Consider the kernel function κ(x, z) = κ(x − z). Such a
kernel is said to be translation invariant, since the inner product of two
inputs is unchanged if both are translated by the same vector. Consider the
one-dimensional case in which κ is defined on the interval [0, 2π] in such a
way that κ(u) can be extended to a continuous, symmetric, periodic function
on R. Such a function can be expanded in a uniformly convergent Fourier
series

κ(u) =
∞∑

n=0

an cos(nu).

In this case we can expand κ(x − z) as follows

κ(x − z) = a0 +
∞∑

n=1

an sin(nx) sin(nz) +
∞∑

n=1

an cos(nx) cos(nz).

Provided the an are all positive this shows κ(x, z) is the inner product in
the feature space defined by the orthogonal features

{φi(x)}∞i=0 = (1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx), . . .),

since the functions, 1, cos(nu) and sin(nu) form a set of orthogonal func-
tions on the interval [0, 2π]. Hence, normalising them will provide a set
of Mercer features. Note that the embedding is defined independently of
the parameters an, which subsequently control the geometry of the feature
space.
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Example 3.14 provides some useful insight into the role that the choice of
kernel can play. The parameters an in the expansion of κ(u) are its Fourier
coefficients. If, for some n, we have an = 0, the corresponding features are
removed from the feature space. Similarly, small values of an mean that the
feature is given low weighting and so will have less influence on the choice
of hyperplane. Hence, the choice of kernel can be seen as choosing a filter
with a particular spectral characteristic, the effect of which is to control the
influence of the different frequencies in determining the optimal separation.

Covariance kernels Mercer’s theorem enables us to express a kernel as a
sum over a set of functions of the product of their values on the two inputs

κ(x, z) =
∞∑

j=1

φj(x)φj(z).

This suggests a different view of kernels as a covariance function determined
by a probability distribution over a function class. In general, given a dis-
tribution q(f) over a function class F , the covariance function is given by

κq(x, z) =
∫
F

f(x)f(z)q(f)df.

We will refer to such a kernel as a covariance kernel . We can see that this
is a kernel by considering the mapping

φ : x �−→ (f(x))f∈F

into the space of functions on F with inner product given by

〈a (·) , b (·)〉 =
∫
F

a (f) b (f) q (f) df .

This definition is quite natural if we consider that the ideal kernel for
learning a function f is given by

κf (x, z) = f(x)f(z), (3.6)

since the space F = Fκf
in this case contains functions of the form

�∑
i=1

αiκf (xi, ·) =
�∑

i=1

αif(xi)f(·) = Cf(·).

So for the kernel κf , the corresponding F is one-dimensional, containing only
multiples of f . We can therefore view κq as taking a combination of these
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simple kernels for all possible f weighted according to the prior distribution
q. Any kernel derived in this way is a valid kernel, since it is easily verified
that it satisfies the finitely positive semi-definite property

�∑
i=1

�∑
j=1

αiαjκq(xi,xj) =
�∑

i=1

�∑
j=1

αiαj

∫
F

f(xi)f(xj)q(f)df

=
∫
F

�∑
i=1

�∑
j=1

αiαjf(xi)f(xj)q(f)df

=
∫
F

(
�∑

i=1

αif(xi)

)2

q(f)df ≥ 0.

Furthermore, if the underlying class F of functions are {−1, +1}-valued, the
kernel κq will be normalised since

κq(x,x) =
∫
F

f(x)f(x)q(f)df =
∫
F

q(f)df = 1.

We will now show that every kernel can be obtained as a covariance kernel
in which the distribution has a particular form. Given a valid kernel κ,
consider the Gaussian prior q that generates functions f according to

f(x) =
∞∑
i=1

uiφi(x),

where φi are the orthonormal functions of Theorem 3.13 for the kernel κ,
and ui are generated according to the Gaussian distribution N (0, 1) with
mean 0 and standard deviation 1. Notice that this function will be in L2(X)
with probability 1, since using the orthonormality of the φi we can bound
its expected norm by

E

[
‖f‖2

L2(X)

]
= E

⎡⎣ ∞∑
i=1

∞∑
j=1

uiuj

〈
φi,φj

〉
L2(X)

⎤⎦
=

∞∑
i=1

∞∑
j=1

E [uiuj ]
〈
φi,φj

〉
L2(X)

=
∞∑
i=1

E[u2
i ]‖φi‖2

L2(X) =
∞∑
i=1

‖φi‖2
L2(X) < ∞,

where the final inequality follows from Theorem 3.13. Since the norm is a
positive function it follows that the measure of functions not in L2(X) is 0,
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as otherwise the expectation would not be finite. But curiously the function
will almost certainly not be in Fκ for infinite-dimensional feature spaces.
We therefore take the distribution q to be defined over the space L2(X).

The covariance function κq is now equal to

κq(x, z) =
∫

L2(X)
f(x)f(z)q(f)df

= lim
n→∞

n∑
i,j=1

φi(x)φj(z)
∫

Rn

uiuj

n∏
k=1

(
1√
2π

exp(−u2
k/2)duk

)

= lim
n→∞

n∑
i,j=1

φi(x)φj(z)δij =
∞∑
i=1

φi(x)φi(z)

= κ(x, z).

3.3 The kernel matrix

Given a training set S = {x1, . . . ,x�} and kernel function κ(·, ·), we intro-
duced earlier the kernel or Gram matrix K = (Kij)�

i,j=1 with entries

Kij = κ(xi,xj), for i, j = 1, . . . , �.

The last subsection was devoted to showing that the function κ is a valid
kernel provided its kernel matrices are positive semi-definite for all training
sets S, the so-called finitely positive semi-definite property. This fact enables
us to manipulate kernels without necessarily considering the corresponding
feature space. Provided we maintain the finitely positive semi-definite prop-
erty we are guaranteed that we have a valid kernel, that is, that there exists
a feature space for which it is the corresponding kernel function. Reasoning
about the similarity measure implied by the kernel function may be more
natural than performing an explicit construction of its feature space.

The intrinsic modularity of kernel machines also means that any kernel
function can be used provided it produces symmetric, positive semi-definite
kernel matrices, and any kernel algorithm can be applied, as long as it
can accept as input such a matrix together with any necessary labelling
information. In other words, the kernel matrix acts as an interface between
the data input and learning modules.

Kernel matrix as information bottleneck In view of our characteri-
sation of kernels in terms of the finitely positive semi-definite property, it
becomes clear why the kernel matrix is perhaps the core ingredient in the
theory of kernel methods. It contains all the information available in order
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to perform the learning step, with the sole exception of the output labels in
the case of supervised learning. It is worth bearing in mind that it is only
through the kernel matrix that the learning algorithm obtains information
about the choice of feature space or model, and indeed the training data
itself.

The finitely positive semi-definite property can also be used to justify
intermediate processing steps designed to improve the representation of the
data, and hence the overall performance of the system through manipulating
the kernel matrix before it is passed to the learning machine. One simple
example is the addition of a constant to the diagonal of the matrix. This
has the effect of introducing a soft margin in classification or equivalently
regularisation in regression, something that we have already seen in the ridge
regression example. We will, however, describe more complex manipulations
of the kernel matrix that correspond to more subtle tunings of the feature
space.

In view of the fact that it is only through the kernel matrix that the
learning algorithm receives information about the feature space and input
data, it is perhaps not surprising that some properties of this matrix can
be used to assess the generalization performance of a learning system. The
properties vary according to the type of learning task and the subtlety of
the analysis, but once again the kernel matrix plays a central role both in
the derivation of generalisation bounds and in their evaluation in practical
applications.

The kernel matrix is not only the central concept in the design and anal-
ysis of kernel machines, it can also be regarded as the central data structure
in their implementation. As we have seen, the kernel matrix acts as an
interface between the data input module and the learning algorithms. Fur-
thermore, many model adaptation and selection methods are implemented
by manipulating the kernel matrix as it is passed between these two modules.
Its properties affect every part of the learning system from the computation,
through the generalisation analysis, to the implementation details.

Remark 3.15 [Implementation issues] One small word of caution is perhaps
worth mentioning on the implementation side. Memory constraints mean
that it may not be possible to store the full kernel matrix in memory for
very large datasets. In such cases it may be necessary to recompute the
kernel function as entries are needed. This may have implications for both
the choice of algorithm and the details of the implementation.

Another important aspect of our characterisation of valid kernels in terms
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of the finitely positive semi-definite property is that the same condition holds
for kernels defined over any kind of inputs. We did not require that the
inputs should be real vectors, so that the characterisation applies whatever
the type of the data, be it strings, discrete structures, images, time series,
and so on. Provided the kernel matrices corresponding to any finite training
set are positive semi-definite the kernel computes the inner product after
projecting pairs of inputs into some feature space. Figure 3.1 illustrates this
point with an embedding showing objects being mapped to feature vectors
by the mapping φ.

xxx

x

xx

o

o

o

o

o
o

φ

φ

Fig. 3.1. The use of kernels enables the application of the algorithms to non-
vectorial data.

Remark 3.16 [Kernels and prior knowledge] The kernel contains all of the
information available to the learning machine about the relative positions
of the inputs in the feature space. Naturally, if structure is to be discovered
in the data set, the data must exhibit that structure through the kernel
matrix. If the kernel is too general and does not give enough importance
to specific types of similarity. In the language of our discussion of priors
this corresponds to giving weight to too many different classifications. The
kernel therefore views with the same weight any pair of inputs as similar or
dissimilar, and so the off-diagonal entries of the kernel matrix become very
small, while the diagonal entries are close to 1. The kernel can therefore only
represent the concept of identity. This leads to overfitting since we can easily
classify a training set correctly, but the kernel has no way of generalising to
new data. At the other extreme, if a kernel matrix is completely uniform,
then every input is similar to every other input. This corresponds to every
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input being mapped to the same feature vector and leads to underfitting of
the data since the only functions that can be represented easily are those
which map all points to the same class. Geometrically the first situation
corresponds to inputs being mapped to orthogonal points in the feature
space, while in the second situation all points are merged into the same
image. In both cases there are no non-trivial natural classes in the data,
and hence no real structure that can be exploited for generalisation.

Remark 3.17 [Kernels as oracles] It is possible to regard a kernel as defining
a similarity measure between two data points. It can therefore be considered
as an oracle, guessing the similarity of two inputs. If one uses normalised
kernels, this can be thought of as the a priori probability of the inputs being
in the same class minus the a priori probability of their being in different
classes. In the case of a covariance kernel over a class of classification func-
tions this is precisely the meaning of the kernel function under the prior
distribution q(f), since

κq(x, z) =
∫
F

f(x)f(z)q(f)df = Pq (f(x) = f(z)) − Pq (f(x) �= f(z)) .

Remark 3.18 [Priors over eigenfunctions] Notice that the kernel matrix
can be decomposed as follows

K =
�∑

i=1

λiviv′
i,

where vi are eigenvectors and λi are the corresponding eigenvalues. This de-
composition is reminiscent of the form of a covariance kernel if we view each
eigenvector vi as a function over the set of examples and treat the eigenval-
ues as a (unnormalised) distribution over these functions. We can think of
the eigenvectors as defining a feature space, though this is restricted to the
training set in the form given above. Extending this to the eigenfunctions
of the underlying integral operator

f (·) �−→
∫

X
κ (x, ·) f (x) dx

gives another construction for the feature space of Mercer’s theorem. We
can therefore think of a kernel as defining a prior over the eigenfunctions
of the kernel operator. This connection will be developed further when we
come to consider principle components analysis. In general, defining a good
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kernel involves incorporating the functions that are likely to arise in the
particular application and excluding others.

Remark 3.19 [Hessian matrix] For supervised learning with a target vector
of {+1,−1} values y, we will often consider the matrix Hij = yiyjKij . This
matrix is known as the Hessian for reasons to be clarified later. It can
be defined as the Schur product (entrywise multiplication) of the matrix
yy′ and K. If λ,v is an eigenvalue-eigenvector pair of K then λ,u is an
eigenvalue-eigenvector pair of H, where ui = viyi, for all i.

Selecting a kernel We have already seen in the covariance kernels how
the choice of kernel amounts to encoding our prior expectation about the
possible functions we may be expected to learn. Ideally we select the kernel
based on our prior knowledge of the problem domain and restrict the learning
to the task of selecting the particular pattern function in the feature space
defined by the chosen kernel. Unfortunately, it is not always possible to make
the right choice of kernel a priori. We are rather forced to consider a family
of kernels defined in a way that again reflects our prior expectations, but
which leaves open the choice of the particular kernel that will be used. The
learning system must now solve two tasks, that of choosing a kernel from
the family, and either subsequently or concurrently of selecting a pattern
function in the feature space of the chosen kernel.

Many different approaches can be adopted for solving this two-part learn-
ing problem. The simplest examples of kernel families require only limited
amount of additional information that can be estimated from the training
data, frequently without using the label information in the case of a super-
vised learning task.

More elaborate methods that make use of the labelling information need
a measure of ‘goodness’ to drive the kernel selection stage of the learning.
This can be provided by introducing a notion of similarity between kernels
and choosing the kernel that is closest to the ideal kernel described in equa-
tion (3.6) given by κ(x, z) = y(x)y(z). A measure of matching between
kernels or, in the case of the ideal kernel, between a kernel and a target
should satisfy some basic properties: it should be symmetric, should be
maximised when its arguments are equal, and should be minimised when
applied to two independent kernels.

Furthermore, in practice the comparison with the ideal kernel will only be
feasible when restricted to the kernel matrix on the training set rather than
between complete functions, since the ideal kernel can only be computed
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on the training data. It should therefore be possible to justify that reliable
estimates of the true similarity can be obtained using only the training set.

Cone of kernel matrices Positive semi-definite matrices form a cone in
the vector space of � × � matrices, where by cone we mean a set closed
under addition and under multiplication by non-negative scalars. This is
important if we wish to optimise over such matrices, since it implies that
they will be convex, an important property in ensuring the existence of
efficient methods. The study of optimization over such sets is known as
semi-definite programming (SDP). In view of the central role of the kernel
matrix in the above discussion, it is perhaps not surprising that this recently
developed field has started to play a role in kernel optimization algorithms.

We now introduce a measure of similarity between two kernels. First
consider the Frobenius inner product between pairs of matrices with identical
dimensions

〈M,N〉 = M · N =
�∑

i,j=1

MijNij = tr(M′N).

The corresponding matrix norm is known as the Frobenius norm. Further-
more if we consider tr(M′N) as a function of M, its gradient is of course
N.

Based on this inner product a simple measure of similarity between two
kernel matrices K1and K2 is the following:

Definition 3.20 The alignment A (K1,K2) between two kernel matrices
K1 and K2 is given by

A(K1,K2) =
〈K1,K2〉√

〈K1,K1〉〈K2,K2〉
The alignment between a kernel K and a target y is simply A(K,yy′), as
yy′ is the ideal kernel for that target. For y ∈ {−1, +1}� this becomes

A(K,yy′) =
y′Ky
�‖K‖ .

Since the alignment can be viewed as the cosine of the angle between the
matrices viewed as �2-dimensional vectors, it satisfies −1 ≤ A(K1,K2) ≤ 1.

The definition of alignment has not made use of the fact that the matrices
we are considering are positive semi-definite. For such matrices the lower
bound on alignment is in fact 0 as can be seen from the following proposition.
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Proposition 3.21 Let M be symmetric. Then M is positive semi-definite
if and only if 〈M,N〉 ≥ 0 for every positive semi-definite N.

Proof Let λ1, λ2, . . . , λ� be the eigenvalues of M with corresponding eigen-
vectors v1,v2, . . . ,v�. It follows that

〈M,N〉 =

〈
�∑

i=1

λiviv′
i,N

〉
=

�∑
i=1

λi〈viv′
i,N〉 =

�∑
i=1

λiv′
iNvi.

Note that v′
iNvi ≥ 0 if N is positive semi-definite and we can choose N so

that only one of these is non-zero. Furthermore, M is positive semi-definite
if and only if λi ≥ 0 for all i, and so 〈M,N〉 ≥ 0 for all positive semi-definite
N if and only if M is positive semi-definite.

The alignment can also be considered as a Pearson correlation coefficient
between the random variables K1(x, z) and K2(x, z) generated with a uni-
form distribution over the pairs (xi, zj). It is also easily related to the
distance between the normalised kernel matrices in the Frobenius norm∥∥∥∥ K1

‖K1‖
− K2

‖K2‖

∥∥∥∥ = 2 − A(K1,K2)

3.4 Kernel construction

The characterization of kernel functions and kernel matrices given in the
previous sections is not only useful for deciding whether a given candidate
is a valid kernel. One of its main consequences is that it can be used to
justify a series of rules for manipulating and combining simple kernels to
obtain more complex and useful ones. In other words, such operations on
one or more kernels can be shown to preserve the finitely positive semi-
definiteness ‘kernel’ property. We will say that the class of kernel functions
is closed under such operations. These will include operations on kernel
functions and operations directly on the kernel matrix. As long as we can
guarantee that the result of an operation will always be a positive semi-
definite symmetric matrix, we will still be embedding the data in a feature
space, albeit a feature space transformed by the chosen operation. We first
consider the case of operations on the kernel function.
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3.4.1 Operations on kernel functions

The following proposition can be viewed as showing that kernels satisfy a
number of closure properties, allowing us to create more complicated kernels
from simple building blocks.

Proposition 3.22 (Closure properties) Let κ1 and κ2 be kernels over
X × X, X ⊆ R

n, a ∈ R
+, f(·) a real-valued function on X, φ: X −→ R

N

with κ3 a kernel over R
N × R

N , and B a symmetric positive semi-definite
n × n matrix. Then the following functions are kernels:

(i) κ(x, z) = κ1(x, z) + κ2(x, z),
(ii) κ(x, z) = aκ1(x, z),
(iii) κ(x, z) = κ1(x, z)κ2(x, z),
(iv) κ(x, z) = f(x)f(z),
(v) κ(x, z) = κ3(φ(x),φ(z)),
(vi) κ(x, z) = x′Bz.

Proof Let S a finite set of points {x1, . . . ,x�}, and let K1 and K2, be the
corresponding kernel matrices obtained by restricting κ1 and κ2 to these
points. Consider any vector α ∈R

�. Recall that a matrix K is positive
semi-definite if and only if α′Kα ≥ 0, for all α.

(i) We have

α′ (K1 + K2) α = α′K1α + α′K2α ≥ 0,

and so K1+K2 is positive semi-definite and κ1 +κ2 a kernel function.
(ii) Similarly α′aK1α = aα′K1α ≥ 0, verifying that aκ1 is a kernel.
(iii) Let

K = K1

⊗
K2

be the tensor product of the matrices K1 and K2 obtained by re-
placing each entry of K1 by K2 multiplied by that entry. The tensor
product of two positive semi-definite matrices is itself positive semi-
definite since the eigenvalues of the product are all pairs of products
of the eigenvalues of the two components. The matrix corresponding
to the function κ1κ2 is known as the Schur product H of K1 and
K2 with entries the products of the corresponding entries in the two
components. The matrix H is a principal submatrix of K defined by
a set of columns and the same set of rows. Hence for any α ∈ R

�,
there is a corresponding α1 ∈ R

�2 , such that

α′Hα = α′
1Kα1 ≥ 0,
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and so H is positive semi-definite as required.
(iv) Consider the 1-dimensional feature map

φ : x �−→ f(x) ∈ R;

then κ(x, z) is the corresponding kernel.
(v) Since κ3 is a kernel, the matrix obtained by restricting κ3 to the

points φ(x1), . . . ,φ(x�) is positive semi-definite as required.
(vi) Consider the diagonalisation of B = V′ΛV by an orthogonal matrix

V, where Λ is the diagonal matrix containing the non-negative eigen-
values. Let

√
Λ be the diagonal matrix with the square roots of the

eigenvalues and set A =
√

ΛV. We therefore have

κ(x, z) = x′Bz = x′V′ΛVz = x′A′Az = 〈Ax,Az〉 ,

the inner product using the linear feature mapping A.

Remark 3.23 [Schur product] The combination of kernels given in part (iii)
is often referred to as the Schur product. We can decompose any kernel into
the Schur product of its normalisation and the 1-dimensional kernel of part
(iv) with f(x) =

√
κ(x,x).

The original motivation for introducing kernels was to search for nonlinear
patterns by using linear functions in a feature space created using a nonlinear
feature map. The last example of the proposition might therefore seem an
irrelevance since it corresponds to a linear feature map. Despite this, such
mappings can be useful in practice as they can rescale the geometry of the
space, and hence change the relative weightings assigned to different linear
functions. In Chapter 10 we will describe the use of such feature maps in
applications to document analysis.

Proposition 3.24 Let κ1(x, z) be a kernel over X×X, where x, z ∈ X, and
p(x) is a polynomial with positive coefficients. Then the following functions
are also kernels:

(i) κ(x, z) =p(κ1(x, z)),
(ii) κ(x, z) = exp(κ1(x, z)),
(iii) κ(x, z) = exp(−‖x − z‖2 /(2σ2)).

Proof We consider the three parts in turn:
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(i) For a polynomial the result follows from parts (i), (ii), (iii) of Propo-
sition 3.22 with part (iv) covering the constant term if we take f(·)
to be a constant.

(ii) The exponential function can be arbitrarily closely approximated by
polynomials with positive coefficients and hence is a limit of kernels.
Since the finitely positive semi-definiteness property is closed under
taking pointwise limits, the result follows.

(iii) By part (ii) we have that exp(〈x, z〉 /σ2) is a kernel for σ ∈ R
+. We

now normalise this kernel (see Section 2.3.2) to obtain the kernel

exp(〈x, z〉 /σ2)√
exp(‖x‖2 /σ2) exp(‖z‖2 /σ2)

= exp
(〈x, z〉

σ2
− 〈x,x〉

2σ2
− 〈z, z〉

2σ2

)

= exp

(
−‖x − z‖2

2σ2

)
.

Remark 3.25 [Gaussian kernel] The final kernel of Proposition 3.24 is
known as the Gaussian kernel. These functions form the hidden units of
a radial basis function network, and hence using this kernel will mean the
hypotheses are radial basis function networks. It is therefore also referred
to as the RBF kernel. We will discuss this kernel further in Chapter 9.

Embeddings corresponding to kernel constructions Proposition 3.22
shows that we can create new kernels from existing kernels using a number
of simple operations. Our approach has demonstrated that new functions
are kernels by showing that they are finitely positive semi-definite. This is
sufficient to verify that the function is a kernel and hence demonstrates that
there exists a feature space map for which the function computes the cor-
responding inner product. Often this information provides sufficient insight
for the user to sculpt an appropriate kernel for a particular application. It
is, however, sometimes helpful to understand the effect of the kernel combi-
nation on the structure of the corresponding feature space.

The proof of part (iv) used a feature space construction, while part (ii)
corresponds to a simple re-scaling of the feature vector by

√
a. For the

addition of two kernels in part (i) the feature vector is the concatenation of
the corresponding vectors

φ(x) = [φ1(x),φ2(x)] ,
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since

κ (x, z) = 〈φ(x),φ(z)〉 = 〈[φ1(x), φ2(x)] , [φ1(z), φ2(z)]〉 (3.7)

= 〈φ1(x),φ1(z)〉 + 〈φ2(x),φ2(z)〉 (3.8)

= κ1(x, z) + κ2(x, z).

For the Hadamard construction of part (iii) the corresponding features are
the products of all pairs of features one from the first feature space and one
from the second. Thus, the (i, j)th feature is given by

φ(x)ij = φ1(x)iφ2(x)j for i = 1, . . . , N1 and j = 1, . . . , N2,

where Ni is the dimension of the feature space corresponding to φi, i = 1, 2.
The inner product is now given by

κ (x, z) = 〈φ(x),φ(z)〉 =
N1∑
i=1

N2∑
j=1

φ(x)ijφ(z)ij

=
N1∑
i=1

φ1(x)iφ1(z)i

N2∑
j=1

φ2(x)jφ2(z)j (3.9)

= κ1(x, z)κ2(x, z). (3.10)

The definition of the feature space in this case appears to depend on the
choice of coordinate system since it makes use of the specific embedding
function. The fact that the new kernel can be expressed simply in terms of
the base kernels shows that in fact it is invariant to this choice. For the case
of an exponent of a single kernel

κ(x, z) = κ1(x, z)s,

we obtain by induction that the corresponding feature space is indexed by
all monomials of degree s

φi(x) = φ1(x)i1
1 φ1(x)i2

2 . . .φ1(x)iN
N , (3.11)

where i = (i1, . . . , iN ) ∈ N
N satisfies

N∑
j=1

ij = s.

Remark 3.26 [Feature weightings] It is important to observe that the mono-
mial features do not all receive an equal weighting in this embedding. This
is due to the fact that in this case there are repetitions in the expansion
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given in equation (3.11), that is, products of individual features which lead
to the same function φi. For example, in the 2-dimensional degree-2 case,
the inner product can be written as

κ (x, z) = 2x1x2z1z2 + x2
1z

2
1 + x2

2z
2
2

=
〈(√

2x1x2, x
2
1, x

2
2

)
,
(√

2z1z2, z
2
1 , z

2
2

)〉
,

where the repetition of the cross terms leads to a weighting factor of
√

2.

Remark 3.27 [Features of the Gaussian kernel] Note that from the proofs
of parts (ii) and (iii) of Proposition 3.24 the Gaussian kernel is a polynomial
kernel of infinite degree. Hence, its features are all possible monomials
of input features with no restriction placed on the degrees. The Taylor
expansion of the exponential function

exp (x) =
∞∑
i=0

1
i!

xi

shows that the weighting of individual monomials falls off as i! with increas-
ing degree.

3.4.2 Operations on kernel matrices

We can also transform the feature space by performing operations on the
kernel matrix, provided that they leave it positive semi-definite and sym-
metric. This type of transformation raises the question of how to compute
the kernel on new test points.

In some cases we may have already constructed the kernel matrix on both
the training and test points so that the transformed kernel matrix contains
all of the information that we will require. In other cases the transformation
of the kernel matrix corresponds to a computable transformation in the
feature space, hence enabling the computation of the kernel on test points.

In addition to these computational problems there is also the danger that
by adapting the kernel based on the particular kernel matrix, we may have
adjusted it in a way that is too dependent on the training set and does not
perform well on new data.

For the present we will ignore these concerns and mention a number of
different transformations that will prove useful in different contexts, where
possible explaining the corresponding effect in the feature space. Detailed
presentations of these methods will be given in Chapters 5 and 6.
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Simple transformations There are a number of very simple transforma-
tions that have practical significance. For example adding a constant to all
of the entries in the matrix corresponds to adding an extra constant fea-
ture, as follows from parts (i) and (iv) of Proposition 3.22. This effectively
augments the class of functions with an adaptable offset, though this has
a slightly different effect than introducing such an offset into the algorithm
itself as is done with for example support vector machines.

Another simple operation is the addition of a constant to the diagonal.
This corresponds to adding a new different feature for each input, hence
enhancing the independence of all the inputs. This forces algorithms to
create functions that depend on more of the training points. In the case
of hard margin support vector machines this results in the so-called 2-norm
soft margin algorithm, to be described in Chapter 7..

A further transformation that we have already encountered in Section
2.3.2 is that of normalising the data in the feature space. This transforma-
tion can be implemented for a complete kernel matrix with a short sequence
of operations, to be described in Chapter 5.

Centering data Centering data in the feature space is a more complex
transformation, but one that can again be performed by operations on the
kernel matrix. The aim is to move the origin of the feature space to the
centre of mass of the training examples. Furthermore, the choice of the
centre of mass can be characterised as the origin for which the sum of the
norms of the points is minimal. Since the sum of the norms is the trace
of the kernel matrix this is also equal to the sum of its eigenvalues. It
follows that this choice of origin minimises the sum of the eigenvalues of
the corresponding kernel matrix. We describe how to perform this centering
transformation on a kernel matrix in Chapter 5.

Subspace projection In high-dimensional feature spaces there is no a pri-
ori reason why the eigenvalues of the kernel matrix should decay. If each
input vector is orthogonal to the remainder, the eigenvalues will be equal to
the norms of the inputs. If the points are constrained in a low-dimensional
subspace, the number of non-zero eigenvalues is equal to the subspace di-
mension. Since the sum of the eigenvalues will still be equal to the sum of
the squared norms, the individual eigenvalues will be correspondingly larger.

Although it is unlikely that data will lie exactly in a low-dimensional
subspace, it is not unusual that the data can be accurately approximated
by projecting into a carefully chosen low-dimensional subspace. This means
that the sum of the squares of the distances between the points and their
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approximations is small. We will see in Chapter 6 that in this case the first
eigenvectors of the covariance matrix will be a basis of the subspace, while
the sum of the remaining eigenvalues will be equal to the sum of the squared
residuals. Since the eigenvalues of the covariance and kernel matrices are
the same, this means that the kernel matrix can be well approximated by a
low-rank matrix.

It may be that the subspace corresponds to the underlying structure of the
data, and the residuals are the result of measurement or estimation noise.
In this case, subspace projections give a better model of the data for which
the corresponding kernel matrix is given by the low-rank approximation.
Hence, forming a low-rank approximation of the kernel matrix can be an
effective method of de-noising the data. In Chapter 10 we will also refer
to this method of finding a more accurate model of the data as semantic
focussing.

In Chapters 5 and 6 we will present in more detail methods for creating
low-rank approximations, including projection into the subspace spanned by
the first eigenvectors, as well as using the subspace obtained by performing a
partial Gram–Schmidt orthonormalisation of the data points in the feature
space, or equivalently taking a partial Cholesky decomposition of the kernel
matrix. In both cases the projections and inner products of new test points
can be evaluated using just the original kernel.

Whitening If a low-dimensional approximation fails to capture the data
accurately enough, we may still find an eigen-decomposition useful in order
to alter the scaling of the feature space by adjusting the size of the eigenval-
ues. One such technique, known as whitening , sets all of the eigenvalues to
1, hence creating a feature space in which the data distribution is spherically
symmetric. Alternatively, values may be chosen to optimise some measure
of fit of the kernel, such as the alignment.

Sculpting the feature space All these operations amount to moving the
points in the feature space, by sculpting their inner product matrix. In some
cases those modifications can be done in response to prior information as,
for example, in the cases of adding a constant to the whole matrix, adding
a constant to the diagonal and normalising the data. The second type of
modification makes use of parameters estimated from the matrix itself as
in the examples of centering the data, subspace projection and whitening.
The final example of adjusting the eigenvalues to create a kernel that fits
the data will usually make use of the corresponding labels or outputs.

We can view these operations as a first phase of learning in which the most
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appropriate feature space is selected for the data. As with many traditional
learning algorithms, kernel methods improve their performance when data
are preprocessed and the right features are selected. In the case of kernels
it is also possible to view this process as selecting the right topology for
the input space, that is, a topology which either correctly encodes our prior
knowledge concerning the similarity between data points or learns the most
appropriate topology from the training set.

Viewing kernels as defining a topology suggests that we should make use
of prior knowledge about invariances in the input space. For example, trans-
lations and rotations of hand written characters leave their label unchanged
in a character recognition task, indicating that these transformed images,
though distant in the original metric, should become close in the topology
defined by the kernel.

Part III of the book will look at a number of methods for creating kernels
for different data types, introducing prior knowledge into kernels, fitting a
generative model to the data and creating a derived kernel, and so on. The
aim of the current chapter has been to provide the framework on which these
later chapters can build.

3.5 Summary

• Kernels compute the inner product of projections of two data points into
a feature space.

• Kernel functions are characterised by the property that all finite kernel
matrices are positive semi-definite.

• Mercer’s theorem is an equivalent formulation of the finitely positive semi-
definite property for vector spaces.

• The finitely positive semi-definite property suggests that kernel matrices
form the core data structure for kernel methods technology.

• Complex kernels can be created by simple operations that combine simpler
kernels.

• By manipulating kernel matrices one can tune the corresponding embed-
ding of the data in the kernel-defined feature space.

3.6 Further reading and advanced topics

Jorgen P. Gram (1850–1916) was a Danish actuary, remembered for (re)dis-
covering the famous orthonormalisation procedure that bears his name, and
for studying the properties of the matrix A′A. The Gram matrix is a cen-
tral concept in this book, and its many properties are well-known in linear
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algebra. In general, for properties of positive (semi-)definite matrices and
general linear algebra, we recommend the excellent book of Carl Meyer [98],
and for a discussion of the properties of the cone of PSD matrices, the col-
lection [166].

The use of Mercer’s theorem for interpreting kernels as inner products
in a feature space was introduced into machine learning in 1964 by the
work of Aizermann, Bravermann and Rozoener on the method of potential
functions [1], but its possibilities did not begin to be fully understood until
it was used in the article by Boser, Guyon and Vapnik that introduced the
support vector method [16] (see also discussion in Section 2.7).

The mathematical theory of kernels is rather old: Mercer’s theorem dates
back to 1909 [97], and the study of reproducing kernel Hilbert spaces was
developed by Aronszajn in the 1940s. This theory was used in approximation
and regularisation theory, see for example the book of Wahba and her 1999
survey [155], [156]. The seed idea for polynomial kernels was contained in
[106]. Reproducing kernels were extensively used in machine learning and
neural networks by Poggio and Girosi from the early 1990s. [48]. Related
results can be found in [99]. More references about the rich regularization
literature can be found in section 4.6.

Chapter 1 of Wahba’s book [155] gives a number of theoretical results
on kernel functions and can be used an a reference. Closure properties are
discussed in [54] and in [99]. Anova kernels were introduced by Burges and
Vapnik [21]. The theory of positive definite functions was also developed in
the context of covariance and correlation functions, so that classical work in
statistics is closely related [156], [157].

The discussion about Reproducing Kernel Hilbert Spaces in this chapter
draws on the paper of Haussler [54]. Our characterization of kernel functions,
by means of the finitely positive semi-definite property, is based on a theorem
of Saitoh [113]. This approach paves the way to the use of general kernels
on general types of data, as suggested by [118] and developed by Watkins
[158], [157] and Haussler [54]. These works have greatly extended the use of
kernels, showing that they can in fact be defined on general objects, which
do not need to be Euclidean spaces, allowing their use in a swathe of new
real-world applications, on input spaces as diverse as biological sequences,
text, and images.

The notion of kernel alignment was proposed by [33] in order to capture
the idea of similarity of two kernel functions, and hence of the embedding
they induce, and the information they extract from the data. A number
of formal properties of such quantity are now known, many of which are
discussed in the technical report , but two are most relevant here: its inter-
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pretation as the inner product in the cone of positive semi-definite matrices,
and consequently its interpretation as a kernel between kernels, that is a
higher order kernel function. Further papers on this theme include [72],
[73]. This latest interpretation of alignment was further analysed in [104].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net



4

Detecting stable patterns

As discussed in Chapter 1 perhaps the most important property of a pattern
analysis algorithm is that it should identify statistically stable patterns. A
stable relation is one that reflects some property of the source generating the
data, and is therefore not a chance feature of the particular dataset. Proving
that a given pattern is indeed significant is the concern of ‘learning theory’,
a body of principles and methods that estimate the reliability of pattern
functions under appropriate assumptions about the way in which the data
was generated. The most common assumption is that the individual train-
ing examples are generated independently according to a fixed distribution,
being the same distribution under which the expected value of the pattern
function is small. Statistical analysis of the problem can therefore make use
of the law of large numbers through the ‘concentration’ of certain random
variables.

Concentration would be all that we need if we were only to consider one
pattern function. Pattern analysis algorithms typically search for pattern
functions over whole classes of functions, by choosing the function that best
fits the particular training sample. We must therefore be able to prove
stability not of a pre-defined pattern, but of one deliberately chosen for its
fit to the data.

Clearly the more pattern functions at our disposal, the more likely that
this choice could be a spurious pattern. The critical factor that controls
how much our choice may have compromised the stability of the resulting
pattern is the ‘capacity’ of the function class. The capacity will be related to
tunable parameters of the algorithms for pattern analysis, hence making it
possible to directly control the risk of overfitting the data. This will lead to
close parallels with regularisation theory, so that we will control the capacity
by using different forms of ‘regularisation’.

85
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4.1 Concentration inequalities

In Chapter 1 we introduced the idea of a statistically stable pattern function
f as a non-negative function whose expected value on an example drawn
randomly according to the data distribution D is small

Ex∼Df(x) ≈ 0.

Since we only have access to a finite sample of data, we will only be able to
make assertions about this expected value subject to certain assumptions.
It is in the nature of a theoretical model that it is built on a set of precepts
that are assumed to hold for the phenomenon being modelled. Our basic
assumptions are summarised in the following definition of our data model.

Definition 4.1 The model we adopt will make the assumption that the
distribution D that provides the quality measure of the pattern is the same
distribution that generated the examples in the finite sample used for train-
ing purposes. Furthermore, the model assumes that the individual training
examples are independently and identically distributed (i.i.d.). We will de-
note the probability of an event A under distribution D by PD(A). The
model makes no assumptions about whether the examples include a label,
are elements of R

n, though some mild restrictions are placed on the gener-
ating distribution, albeit with no practical significance.

We gave a definition of what was required of a pattern analysis algorithm
in Definition 1.7, but for completeness we repeat it here with some embel-
lishments.

Definition 4.2 A pattern analysis algorithm takes as input a finite set S of �

data items generated i.i.d. according to a fixed (but unknown) distribution D
and a confidence parameter δ ∈ (0, 1). Its output is either an indication that
no patterns were detectable, or a pattern function f that with probability
1 − δ satisfies

EDf(x) ≈ 0.

The value of the expectation is known as the generalisation error of the
pattern function f .

In any finite dataset, even if it comprises random numbers, it is always
possible to find relations if we are prepared to create sufficiently complicated
functions.
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Example 4.3 Consider a set of � people each with a credit card and mobile
phone; we can find a degree � − 1 polynomial g(t) that given a person’s
telephone number t computes that person’s credit card number c = g(t),
making |c − g(t)| look like a promising pattern function as far as the sample
is concerned. This follows from the fact that a degree � − 1 polynomial can
interpolate � points. However, what is important in pattern analysis is to
find relations that can be used to make predictions on unseen data, in other
words relations, that capture some properties of the source generating the
data. It is clear that g(·) will not provide a method of computing credit
card numbers for people outside the initial set.

The aim of this chapter is to develop tools that enable us to distinguish be-
tween relations that are the effect of chance and those that are ‘meaningful’.
Intuitively, we would expect a statistically stable relation to be present in
different randomly generated subsets of the dataset, in this way confirming
that the relation is not just the property of the particular dataset.

Example 4.4 The relation found between card and phone numbers in
Example 4.3 would almost certainly change if we were to generate a second
dataset. If on the other hand we consider the function that returns 0 if the
average height of the women in the group is less than the average height
of the men and 1 otherwise, we would expect different subsets to usually
return the same value of 0.

Another way to ensure that we have detected a significant relation is to
check whether a similar relation could be learned from scrambled data: if
we randomly reassign the height of all individuals in the sets of Example
4.4, will we still find a relation between height and gender? In this case
the probability that this relation exists would be a half since there is equal
chance of different heights being assigned to women as to men. We will refer
to the process of randomly reassigning labels as randomisation of a labelled
dataset. It is also sometimes referred to as permutation testing . We will see
that checking for patterns in a randomised set can provide a lodestone for
measuring the stability of a pattern function.

Randomisation should not be confused with the concept of a random
variable. A random variable is any real-valued quantity whose value depends
on some random generating process, while a random vector is such a vector-
valued quantity. The starting point for the analysis presented in this chapter
is the assumption that the data have been generated by a random process.
Very little is assumed about this generating process, which can be thought
of as the distribution governing the natural occurrence of the data. The
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only restricting assumption about the data generation is that individual
examples are generated independently of one another. It is this property of
the randomly-generated dataset that will ensure the stability of a significant
pattern function in the original dataset, while the randomisation of the labels
has the effect of deliberately removing any stable patterns.

Concentration of one random variable The first question we will con-
sider is that of the stability of a fixed function of a finite dataset. In other
words how different will the value of this same function be on another dataset
generated by the same source? The key property that we will require of the
relevant quantity or random variable is known as concentration. A random
variable that is concentrated is very likely to assume values close to its ex-
pectation since values become exponentially unlikely away from the mean.
For a concentrated quantity we will therefore be confident that it will assume
very similar values on new datasets generated from the same source. This
is the case, for example, for the function ‘average height of the female indi-
viduals’ used above. There are many results that assert the concentration
of a random variable provided it exhibits certain properties. These results
are often referred to as concentration inqualities. Here we present one of the
best-known theorems that is usually attributed to McDiarmid.

Theorem 4.5 (McDiarmid) Let X1, . . . , Xn be independent random vari-
ables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn, x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then for all ε > 0

P {f (X1, . . . , Xn) − Ef (X1, . . . , Xn) ≥ ε} ≤ exp
( −2ε2∑n

i=1 c2
i

)
The proof of this theorem is given in Appendix A.1.
Another well-used inequality that bounds the deviation from the mean for

the special case of sums of random variables is Hoeffding’s inequality. We
quote it here as a simple special case of McDiarmid’s inequality when

f(X1, . . . , Xn) =
n∑

i=1

Xi.

Theorem 4.6 (Hoeffding’s inequality) If X1, . . . , Xn are independent
random variables satisfying Xi ∈ [ai, bi], and if we define the random variable
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Sn =
∑n

i=1 Xi, then it follows that

P{|Sn − E[Sn]| ≥ ε} ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.

Estimating univariate means As an example consider the average of a
set of � independent instances r1, r2, . . . , r� of a random variable R given
by a probability distribution P on the interval [a, b]. Taking Xi = ri/� it
follows, in the notation of Hoeffding’s Inequality, that

S� =
1
�

�∑
i=1

ri = Ê[R],

where Ê[R] denotes the sample average of the random variable R. Further-
more

E[Sn] = E

[
1
�

�∑
i=1

ri

]
=

1
�

�∑
i=1

E [ri] = E[R],

so that an application of Hoeffding’s Inequality gives

P{|Ê[R] − E[R]| ≥ ε} ≤ 2 exp
(
− 2�ε2

(b − a)2

)
,

indicating an exponential decay of probability with the difference between
observed sample average and the true average. Notice that the probability
also decays exponentially with the size of the sample. If we consider Example
4.4, this bound shows that for moderately sized randomly chosen groups of
women and men, the average height of the women will, with high probability,
indeed be smaller than the average height of the men, since it is known that
the true average heights do indeed differ significantly.

Estimating the centre of mass The example of the average of a random
variable raises the question of how reliably we can estimate the average of
a random vector φ(x), where φ is a mapping from the input space X into
a feature space F corresponding to a kernel κ (·, ·). This is equivalent to
asking how close the centre of mass of the projections of a training sample

S = {x1,x2, . . . ,x�}
will be to the true expectation

Ex[φ(x)] =
∫

X
φ(x)dP (x).
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We denote the centre of mass of the training sample by

φS =
1
�

�∑
i=1

φ(xi).

We introduce the following real-valued function of the sample S as our mea-
sure of the accuracy of the estimate

g(S) = ‖φS − Ex[φ(x)]‖ .

We can apply McDiarmid’s theorem to the random variable g(S) by bound-
ing the change in this quantity when xi is replaced by x̂i to give Ŝ

|g(S) − g(Ŝ)| = |‖φS − Ex[φ(x)]‖ − ‖φS′ − Ex[φ(x)]‖|
≤ ‖φS − φS′‖ =

1
�

∥∥φ(xi) − φ(x′
i)
∥∥ ≤ 2R

�
,

where R = supx∈X ‖φ(x)‖. Hence, applying McDiarmid’s theorem with
ci = 2R/�, we obtain

P {g(S) − ES [g(S)] ≥ ε} ≤ exp
(
−2�ε2

4R2

)
. (4.1)

We are now at the equivalent point after the application of Hoeffding’s
inequality in the one-dimensional case. But in higher dimensions we no
longer have a simple expression for ES [g(S)]. We need therefore to consider
the more involved argument. We present a derivation bounding ES [g(S)]
that will be useful for the general theory we develop below. The derivation
is not intended to be optimal as a bound for ES [g(S)]. An explanation of
the individual steps is given below

ES [g(S)] = ES [‖φS − Ex[φ(x)]‖] = ES

[∥∥φS − ES̃ [φS̃ ]
∥∥]

= ES

[∥∥ES̃ [φS − φS̃ ]
∥∥] ≤ ESS̃

[∥∥φS − φS̃

∥∥]
= EσSS̃

[
1
�

∥∥∥∥∥
�∑

i=1

σi (φ(xi) − φ(x̃i))

∥∥∥∥∥
]

= EσSS̃

[
1
�

∥∥∥∥∥
�∑

i=1

σiφ(xi) −
�∑

i=1

σiφ(x̃i)

∥∥∥∥∥
]

(4.2)

≤ 2ESσ

[
1
�

∥∥∥∥∥
�∑

i=1

σiφ(xi)

∥∥∥∥∥
]

(4.3)

=
2
�
ESσ

⎡⎢⎣
⎛⎝〈 �∑

i=1

σiφ(xi),
�∑

j=1

σjφ(xj)

〉⎞⎠1/2
⎤⎥⎦
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≤ 2
�

⎛⎝ESσ

⎡⎣ �∑
i,j=1

σiσjκ(xi,xj)

⎤⎦⎞⎠1/2

=
2
�

(
ES

[
�∑

i=1

κ(xi,xi)

])1/2

(4.4)

≤ 2R√
�
. (4.5)

It is worth examining the stages in this derivation in some detail as they
will form the template for the main learning analysis we will give below.

• The second equality introduces a second random sample S̃ of the same
size drawn according to the same distribution. Hence the expectation of
its centre of mass is indeed the true expectation of the random vector.

• The expectation over S̃ can now be moved outwards in two stages, the
second of which follows from an application of the triangle inequality.

• The next equality makes use of the independence of the generation of the
individual examples to introduce random exchanges of the corresponding
points in the two samples. The random variables σ = {σ1, . . . , σ�} as-
sume values −1 and +1 independently with equal probability 0.5, hence
either leave the effect of the examples xi and x̃i as it was or effectively
interchange them. Since the points are generated independently such a
swap gives an equally likely configuration, and averaging over all possible
swaps leaves the overall expectation unchanged.

• The next steps split the sum and again make use of the triangle inequality
together with the fact that the generation of S and S̃ is identical.

• The movement of the square root function through the expectation follows
from Jensen’s inquality and the concavity of the square root.

• The disappearance of the mixed terms σiσjκ(xi,xj) for i �= j follows
from the fact that the four possible combinations of −1 and +1 have
equal probability with two of the four having the opposite sign and hence
cancelling out.

Hence, setting the right-hand side of inequality (4.1) equal to δ, solving
for ε, and combining with inequality (4.4) shows that with probability at
least 1 − δ over the choice of a random sample of � points, we have

g(S) ≤ R√
�

(
2 +

√
2 ln

1
δ

)
. (4.6)
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This shows that with high probability our sample does indeed give a good
estimate of E[φ(x)] in a way that does not depend on the dimension of the
feature space. This example shows how concentration inequalities provide
mechanisms for bounding the deviation of quantities of interest from their
expected value, in the case considered this was the function g that measures
the distance between the true mean of the random vector and its sample
estimate. Figures 4.1 and 4.2 show two random samples drawn from a 2-
dimensional Gaussian distribution centred at the origin. The sample means
are shown with diamonds.
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Fig. 4.1. The empirical centre of mass based on a random sample
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Fig. 4.2. The empirical centre of mass based on a second random sample.

Rademacher variables As mentioned above, the derivation of inequalities
(4.2) to (4.4) will form a blueprint for the more general analysis described
below. In particular the introduction of the random {−1, +1} variables
σi will play a key role. Such random numbers are known as Rademacher
variables. They allow us to move from an expression involving two samples
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in equation (4.2) to twice an expression involving one sample modified by
the Rademacher variables in formula (4.3).

The result motivates the use of samples as reliable estimators of the true
quantities considered. For example, we have shown that the centre of mass
of the training sample is indeed a good estimator for the true mean. In the
next chapter we will use this result to motivate a simple novelty-detection
algorithm that checks if a new datapoint is further from the true mean
than the furthest training point. The chances of this happening for data
generated from the same distribution can be shown to be small, hence when
such points are found there is a high probability that they are outliers.

4.2 Capacity and regularisation: Rademacher theory

In the previous section we considered what were effectively fixed pattern
functions, either chosen beforehand or else a fixed function of the data. The
more usual pattern analysis scenario is, however, more complex, since the
relation is chosen from a set of possible candidates taken from a function
class. The dangers inherent in this situation were illustrated in the example
involving phone numbers and credit cards. If we allow ourselves to choose
from a large set of possibilities, we may find something that ‘looks good’ on
the dataset at hand but does not reflect a property of the underlying process
generating the data. The distance between the value of a certain function
in two different random subsets does not only depend therefore on its being
concentrated, but also on the richness of the class from which it was chosen.
We will illustrate this point with another example.

Example 4.7 [Birthday paradox] Given a random set of N people, what is
the probability that two of them have the same birthday? This probability
depends of course on N and is surprisingly high even for small values of N .
Assuming that the people have equal chance of being born on all days, the
probability that a pair have the same birthday is 1 minus the probability
that all N have different birthdays

P (same birthday) = 1 −
N∏

i=1

365 − i + 1
365

= 1 −
N∏

i=1

(
1 − i − 1

365

)

≥ 1 −
N∏

i=1

exp
(
− i − 1

365

)
= 1 − exp

(
−

N∑
i=1

(i − 1)
365

)

= 1 − exp
(
−N(N − 1)

730

)
.
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It is well-known that this increases surprisingly quickly. For example taking
N = 28 gives a probability greater than 0.645 that there are two people in
the group that share a birthday. If on the other hand we consider a pre-fixed
day, the probability that two people in the group have their birthday on that
day is

P (same birthday on a fixed day) =
N∑

i=2

(
N

i

)(
1

365

)i(364
365

)N−i

.

If we evaluate this expression for N = 28 we obtain 0.002 7. The difference
between the two probabilities follows from the fact that in the one case we
fix the day after choosing the set of people, while in the second case it is
chosen beforehand. In the first case we have much more freedom, and hence
it is more likely that we will find a pair of people fitting our hypothesis. We
will expect to find a pair of people with the same birthday in a set of 28
people with more than even chance, so that no conclusions could be drawn
from this observation about a relation between the group and that day. For
a pre-fixed day the probability of two or more having a birthday on the
same day would be less than 0.3%, a very unusual event. As a consequence,
in the second case we would be justified in concluding that there is some
connection between the chosen date and the way the group was selected, or
in other words that we have detected a significant pattern.

Our observation shows that if we check for one property there is unlikely
to be a spurious match, but if we allow a large number of properties such as
the 365 different days there is a far higher chance of observing a match. In
such cases we must be careful before drawing any conclusions.

Uniform convergence and capacity What we require if we are to use a
finite sample to make inferences involving a whole class of functions is that
the difference between the sample and true performance should be small
for every function in the class. This property will be referred to as uniform
convergence over a class of functions. It implies that the concentration holds
not just for one function but for all of the functions at the same time.

If a set is so rich that it always contains an element that fits any given
random dataset, then the patterns found may not be significant and it is
unlikely that the chosen function will fit a new dataset even if drawn from
the same distribution. The example given in the previous section of finding
a polynomial that maps phone numbers to credit card numbers is a case in
point. The capability of a function class to fit different data is known as its
capacity . Clearly the higher the capacity of the class the greater the risk of
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overfitting the particular training data and identifying a spurious pattern.
The critical question is how one should measure the capacity of a function
class. For the polynomial example the obvious choice is the degree of the
polynomial, and keeping the degree smaller than the number of training ex-
amples would lessen the risk described above of finding a spurious relation
between phone and credit card numbers. Learning theory has developed a
number of more general measures that can be used for classes other than
polynomials, one of the best known being the Vapnik–Chervonenkis dimen-
sion.

The approach we adopt here has already been hinted at in the previous
section and rests on the intuition that we can measure the capacity of a
class by its ability to fit random data. The definition makes use of the
Rademacher variables introduced in the previous section and the measure is
therefore known as the Rademacher complexity.

Definition 4.8 [Rademacher complexity] For a sample S = {x1, . . . ,x�}
generated by a distribution D on a set X and a real-valued function class F
with domain X, the empirical Rademacher complexity of F is the random
variable

R̂�(F) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
∣∣∣∣∣x1, . . . ,x�

]
,

where σ = {σ1, . . . , σ�} are independent uniform {±1}-valued (Rademacher)
random variables. The Rademacher complexity of F is

R�(F) = ES

[
R̂�(F)

]
= ESσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
]

.

The sup inside the expectation measures the best correlation that can be
found between a function of the class and the random labels. It is important
to stress that pattern detection is a probabilistic process, and there is there-
fore always the possibility of detecting a pattern in noise. The Rademacher
complexity uses precisely the ability of the class to fit noise as its measure of
capacity. Hence controlling this measure of capacity will intuitively guard
against the identification of spurious patterns. We now give a result that
formulates this insight as a precise bound on the error of pattern functions
in terms of their empirical fit and the Rademacher complexity of the class.

Note that we denote the input space with Z in the theorem, so that in
the case of supervised learning we would have Z = X × Y . We use ED for
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the expectation with respect to the underlying distribution, while Ê denotes
the empirical expectation measured on a particular sample.

Theorem 4.9 Fix δ ∈ (0, 1) and let F be a class of functions mapping from
Z to [0, 1]. Let (zi)�

i=1 be drawn independently according to a probability
distribution D. Then with probability at least 1 − δ over random draws of
samples of size �, every f ∈ F satisfies

ED [f(z)] ≤ Ê [f(z)] + R�(F) +

√
ln(2/δ)

2�

≤ Ê [f(z)] + R̂�(F) + 3

√
ln(2/δ)

2�
.

Proof For a fixed f ∈ F we have

ED [f(z)] ≤ Ê [f(z)] + sup
h∈F

(
EDh − Êh

)
.

We now apply McDiarmid’s inequality bound to the second term on the
right-hand side in terms of its expected value. Since the function takes
values in the range [0, 1], replacing one example can change the value of the
expression by at most 1/�. Subsituting this value of ci into McDiarmid’s
inequality, setting the right-hand side to be δ/2, and solving for ε, we obtain
that with probability greater than 1 − δ/2

sup
h∈F

(
EDh − Êh

)
≤ ES

[
sup
h∈F

(
EDh − Êh

)]
+

√
ln(2/δ)

2�
.

giving

ED [f(z)] ≤ Ê [f(z)] + ES

[
sup
h∈F

(
EDh − Êh

)]
+

√
ln(2/δ)

2�
.

We must now bound the middle term of the right-hand side. This is where we
follow the technique applied in the previous section to bound the deviation
of the mean of a random vector

ES

[
sup
h∈F

(
EDh − Êh

)]
= ES

[
sup
h∈F

ES̃

[
1
�

�∑
i=1

h(z̃i) −
1
�

�∑
i=1

h(zi)

∣∣∣∣∣S
]]

≤ ESES̃

[
sup
h∈F

1
�

�∑
i=1

(h(z̃i) − h(zi))

]

= EσSS̃

[
sup
h∈F

1
�

�∑
i=1

σi (h(z̃i) − h(zi))

]



4.3 Pattern stability for kernel-based classes 97

≤ 2ESσ

[
sup
h∈F

∣∣∣∣∣1�
�∑

i=1

σih(zi)

∣∣∣∣∣
]

= R� (F) .

Finally, with probability greater than 1−δ/2, we can bound the Rademacher
complexity in terms of its empirical value by a further application of McDi-
armid’s theorem for which ci = 2/�. The complete results follows.

The only additional point to note about the proof is its use of the fact
that the sup of an expectation is less than or equal to the expectation of the
sup in order to obtain the second line from the first. This follows from the
triangle inequality for the �∞ norm.

The theorem shows that modulo the small additional square root factor
the difference between the empirical and true value of the functions or in
our case with high probability the difference between the true and empirical
error of the pattern function is bounded by the Rademacher complexity of
the pattern function class. Indeed we do not even need to consider the full
Rademacher complexity, but can instead use its empirical value on the given
training set. In our applications of the theorem we will invariably make use
of this empirical version of the bound.

In the next section we will complete our analysis of stability by computing
the (empirical) Rademacher complexities of the kernel-based linear classes
that are the chosen function classes for the majority of the methods pre-
sented in this book. We will also give an example of applying the theorem
for a particular pattern analysis task.

4.3 Pattern stability for kernel-based classes

Clearly the results of the previous section can only be applied if we are able to
bound the Rademacher complexities of the corresponding classes of pattern
functions. As described in Chapter 1, it is frequently useful to decompose
the pattern functions into an underlying class of functions whose outputs
are fed into a so-called loss function. For example, for binary classification
the function class F may be a set of real-valued functions that we convert
to a binary value by thresholding at 0. Hence a function g ∈ F is converted
to a binary output by applying the sign function to obtain a classification
function h

h (x) = sgn (g (x)) ∈ {±1} .
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We can therefore express the pattern function using the discrete loss function
L given by

L (x, y) =
1
2
|h (x) − y| =

{
0, if h (x) = y;
1, otherwise.

Equivalently we can apply the Heaviside function, H(·) that returns 1 if its
argument is greater than 0 and zero otherwise as follows

L (x, y) = H(−yg(x)).

Hence, the pattern function is H ◦ f , where f (x, y) = −yg(x). We use the
notation F̂ to also denote the class

F̂ = {(x, y) �→ −yg(x) : g ∈ F} .

Using this loss implies that

ED [H(−yg(x))] = ED [H(f(x, y))] = PD (y �= h(x)) .

This means we should consider the Rademacher complexity of the class

H ◦ F̂ =
{
H ◦ f : f ∈ F̂

}
.

Since we will bound the complexity of such classes by assuming the loss
function satisfies a Lipschitz condition, it is useful to introduce an auxiliary
loss function A that has a better Lipschitz constant and satisfies

H(f(x, y)) ≤ A(f(x, y)), (4.7)

where the meaning of the Lipschitz condition is given in the following defini-
tion. A function A satisfying equation (4.7) will be known as a dominating
cost function.

Definition 4.10 A loss function A : R → [0, 1] is Lipschitz with constant
L if it satisfies∣∣A(a) −A(a′)

∣∣ ≤ L
∣∣a − a′

∣∣ for all a, a′ ∈ R.

We use the notation (·)+ for the function

(x)+ =
{

x, if x ≥ 0;
0, otherwise.
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The binary classification case described above is an example where such a
function is needed, since the true loss is not a Lipschitz function at all. By
taking A to be the hinge loss given by

A(f(x, y)) = (1 + f(x, y))+ = (1 − yg(x))+ ,

we get a Lipschitz constant of 1 with A dominating H.
Since our underlying class will usually be linear functions in a kernel-

defined feature space, we first turn our attention to bounding the Rademacher
complexity of these functions. Given a training set S the class of functions
that we will primarily be considering are linear functions with bounded norm{

x →
�∑

i=1

αiκ(xi,x): α′Kα ≤ B2

}
⊆ {x → 〈w,φ (x)〉 : ‖w‖ ≤ B} = FB,

where φ is the feature mapping corresponding to the kernel κ and K is
the kernel matrix on the sample S. Note that although the choice of func-
tions appears to depend on S, the definition of FB does not depend on the
particular training set.

Remark 4.11 [The weight vector norm] Notice that for this class of func-
tions, f(x) = 〈w,φ (x)〉 =

〈∑�
i=1 αiφ (xi) ,φ (x)

〉
=
∑�

i=1 αiκ(xi,x), we
have made use of the derivation

‖w‖2 = 〈w,w〉 =

〈
�∑

i=1

αiφ (xi) ,
�∑

j=1

αjφ (xj)

〉

=
�∑

i,j=1

αiαj 〈φ (xi) ,φ (xj)〉 =
�∑

i,j=1

αiαjκ (xi,xj)

= α′Kα,

in order to show that FB is a superset of our class. We will further investigate
the insights that can be made into the structure of the feature space using
only information gleaned from the kernel matrix in the next chapter.

The proof of the following theorem again uses part of the proof given in
the first section showing the concentration of the mean of a random vector.
Here we use the techniques of the last few lines of that proof.

Theorem 4.12 If κ : X × X → R is a kernel, and S = {x1, . . . ,x�} is a
sample of points from X, then the empirical Rademacher complexity of the
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class FB satisfies

R̂�(FB) ≤ 2B

�

√√√√ �∑
i=1

κ(xi,xi) =
2B

�

√
tr (K)

Proof The result follows from the following derivation

R̂�(FB) = Eσ

[
sup

f∈FB

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
]

= Eσ

[
sup

‖w‖≤B

∣∣∣∣∣
〈

w,
2
�

�∑
i=1

σiφ (xi)

〉∣∣∣∣∣
]

≤ 2B

�
Eσ

[∥∥∥∥∥
�∑

i=1

σiφ(xi)

∥∥∥∥∥
]

=
2B

�
Eσ

⎡⎢⎣
⎛⎝〈 �∑

i=1

σiφ(xi),
�∑

j=1

σjφ(xj)

〉⎞⎠1/2
⎤⎥⎦

≤ 2B

�

⎛⎝Eσ

⎡⎣ �∑
i,j=1

σiσjκ(xi,xj)

⎤⎦⎞⎠1/2

=
2B

�

(
�∑

i=1

κ(xi,xi)

)1/2

.

Note that in the proof the second line follows from the first by the linearity
of the inner product, while to get the third we use the Cauchy–Schwarz
inequality. The last three lines mimic the proof of the first section except
that the sample is in this case fixed.

Remark 4.13 [Regularisation strategy] When we perform some kernel-
based pattern analysis we typically compute a dual representation α of
the weight vector. We can compute the corresponding norm B as α′Kα

where K is the kernel matrix, and hence estimate the complexity of the
corresponding function class. By controlling the size of α′Kα, we therefore
control the capacity of the function class and hence improve the statistical
stability of the pattern, a method known as regularisation.
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Properties of Rademacher complexity The final ingredient that will
be required to apply the technique are the properties of the Rademacher
complexity that allow it to be bounded in terms of properties of the loss
function. The following theorem summarises some of the useful properties
of the empirical Rademacher complexity, though the bounds also hold for
the full complexity as well. We need one further definition.

Definition 4.14 Let F be a subset of a vector space. By conv (F ) we
denote the set of convex combinations of elements of F .

Theorem 4.15 Let F ,F1, . . . ,Fn and G be classes of real functions. Then:

(i) If F ⊆ G, then R̂�(F) ≤ R̂�(G);
(ii) R̂�(F) = R̂�(convF);
(iii) For every c ∈ R, R̂�(cF) = |c|R̂�(F);
(iv) If A : R → R is Lipschitz with constant L and satisfies A(0) = 0,

then R̂� (A ◦ F) ≤ 2LR̂�(F);

(v) For any function h, R̂�(F + h) ≤ R̂�(F) + 2
√

Ê [h2] /�;
(vi) For any 1 ≤ q < ∞, let LF ,h,q = {|f − h|q| f ∈ F}. If ‖f − h‖∞ ≤ 1

for every f ∈ F , then R̂�(LF ,h,q) ≤ 2q

(
R̂�(F) + 2

√
Ê [h2] /�

)
;

(vii) R̂�(
∑n

i=1 Fi) ≤
∑n

i=1 R̂�(Fi).

Though in many cases the results are surprising, with the exception of (iv)
their proofs are all relatively straightforward applications of the definition
of empirical Rademacher complexity. For example, the derivation of part
(v) is as follows

R̂�(F + h) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σi (f (xi) + h(xi))

∣∣∣∣∣
]

≤ Eσ

[
2
�

sup
f∈F

∣∣∣∣∣
�∑

i=1

σif (xi)

∣∣∣∣∣
]

+ Eσ

[
2
�

∣∣∣∣∣
�∑

i=1

σih(xi)

∣∣∣∣∣
]

≤ R̂�(F) +
2
�

⎛⎝Eσ

⎡⎣ �∑
i,j=1

σih(xi)σjh(xj)

⎤⎦⎞⎠1/2

= R̂�(F) +
2
�

(
�∑

i=1

h(xi)2
)1/2

= R̂�(F) +
2
�

(
�Ê
[
h2
])1/2

.
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The proof of (iv) is discussed in Section 4.6.

Margin bound We are now in a position to give an example of an applica-
tion of the bound. We will take the case of pattern analysis of a classification
function. The results obtained here will be used in Chapter 7 where we de-
scribe algorithms that optimise the bounds we derive here based involving
either the margin or the slack variables.

We need one definition before we can state the theorem. When using the
Heaviside function to convert a real-valued function to a binary classification,
the margin is the amount by which the real value is on the correct side of
the threshold as formalised in the next definition.

Definition 4.16 For a function g : X → R, we define its margin on
an example (x, y) to be yg(x). The functional margin of a training set
S = {(x1, y1), . . . , (x�, y�)}, is defined to be

m(S, g) = min
1≤i≤�

yig(xi).

Given a function g and a desired margin γ we denote by ξi = ξ ((xi, yi), γ, g)
the amount by which the function g fails to achieve margin γ for the example
(xi, yi). This is also known as the example’s slack variable

ξi = (γ − yig(xi))+ ,

where (x)+ = x if x ≥ 0 and 0 otherwise.

Theorem 4.17 Fix γ > 0 and let F be the class of functions mapping from
Z = X × Y to R given by f (x, y) = −yg(x), where g is a linear function in
a kernel-defined feature space with norm at most 1. Let

S = {(x1, y1), . . . , (x�, y�)}

be drawn independently according to a probability distribution D and fix δ ∈
(0, 1). Then with probability at least 1 − δ over samples of size � we have

PD (y �= sgn (g(x))) = ED [H(−yg(x))]

≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the kernel matrix for the training set and ξi = ξ ((xi, yi), γ, g).
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Proof Consider the loss function A : R → [0, 1], given by

A(a) =

⎧⎨⎩
1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

By Theorem 4.9 and since the loss function A−1 dominates H−1, we have
that

ED [H(f(x, y)) − 1] ≤ ED [A(f(x, y)) − 1]

≤ Ê [A(f(x, y)) − 1] + R̂�((A− 1) ◦ F) + 3

√
ln(2/δ)

2�
.

But the function A(−yig(xi)) ≤ ξi/γ, for i = 1, . . . , �, and so

ED [H(f(x, y))] ≤ 1
�γ

�∑
i=1

ξi + R̂�((A− 1) ◦ F) + 3

√
ln(2/δ)

2�
.

Since (A− 1) (0) = 0, we can apply part (iv) of Theorem 4.15 with L = 1/γ

to give R̂�((A− 1) ◦ F) ≤ 2R̂�(F)/γ. It remains to bound the empirical
Rademacher complexity of the class F

R̂�(F) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi, yi)

∣∣∣∣∣
]

= Eσ

[
sup
f∈F1

∣∣∣∣∣2�
�∑

i=1

σiyig (xi)

∣∣∣∣∣
]

= Eσ

[
sup
f∈F1

∣∣∣∣∣2�
�∑

i=1

σig (xi)

∣∣∣∣∣
]

= R̂�(F1)

=
2
�

√
tr (K),

where we have used the fact that g ∈ F1 that is that the norm of the weight
vector is bounded by 1, and that multiplying σi by a fixed yi does not alter
the expectation. This together with Theorem 4.12 gives the result.

If the function g has margin γ, or in other words if it satisfies m(S, g) ≥ γ,
then the first term in the bound is zero since all the slack variables are zero
in this case.

Remark 4.18 [Comparison with other bounds] This theorem mimics the
well-known margin based bound on generalisation (see Section 4.6 for de-
tails), but has several advantages. Firstly, it does not involve additional
log(�) factors in the second term and the constants are very tight. Further-
more it handles the case of slack variables without recourse to additional
constructions. It also does not restrict the data to lie in a ball of some
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predefined radius, but rather uses the trace of the matrix in its place as
an empirical estimate or effective radius. Of course if it is known that the
support of the distribution is in a ball of radius R about the origin, then we
have

4
�γ

√
tr(K) ≤ 4

�γ

√
�R2 = 4

√
R2

�γ2
.

Despite these advantages it suffers from requiring a square root factor of the
ratio of the effective dimension and the training set size. For the classifica-
tion case this can be avoided, but for more general pattern analysis tasks it
is not clear that this can always be achieved. We do, however, feel that the
approach succeeds in our aim of providing a unified and transparent frame-
work for assessing stability across a wide range of different pattern analysis
tasks.

As we consider different algorithms in later chapters we will indicate the
factors that will affect the corresponding bound that guarantees their sta-
bility. Essentially this will involve specifying the relevant loss functions and
estimating the corresponding Rademacher complexities.

4.4 A pragmatic approach

There exist many different methods for modelling learning algorithms and
quantifying the reliability of their results. All involve some form of capacity
control, in order to prevent the algorithm from fitting ‘irrelevant’ aspects of
the data. The concepts outlined in this chapter have been chosen for their
intuitive interpretability that can motivate the spirit of all the algorithms
discussed in this book. However we will not seek to derive statistical bounds
on the generalization of every algorithm, preferring the pragmatic strategy of
using the theory to identify which parameters should be kept under control
in order to control the algorithm’s capacity. For detailed discussions of
statistical bounds covering many of the algorithms, we refer the reader to
the last section of this and the following chapters, which contain pointers to
the relevant literature.

The relations we will deal with will be quite diverse ranging from corre-
lations to classifications, from clusterings to rankings. For each of them,
different performance measures can be appropriate, and different cost func-
tions should be optimised in order to achieve best performance. In some
cases we will see that we can estimate capacity by actually doing the ran-
domisation ourselves, rather than relying on a priori bounds such as those
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given above. Such attempts to directly estimate the empirical Rademacher
complexity are likely to lead to much better indications of the generalisation
as they can take into account the structure of the data, rather than slightly
uninformative measures such as the trace of the kernel matrix.

Our strategy will be to use cost functions that are ‘concentrated’, so that
any individual pattern that has a good performance on the training sample
will with high probability achieve a good performance on new data from
the same distribution. For this same stability to apply across a class of
pattern functions will depend on the size of the training set and the degree
of control that is applied to the capacity of the class from which the pattern
is chosen. In practice this trade-off between flexibility and generalisation
will be achieved by controlling the parameters indicated by the theory. This
will often lead to regularization techniques that penalise complex relations
by controlling the norm of the linear functions that define them.

We will make no effort to eliminate every tunable component from our
algorithms, as the current state-of-the-art in learning theory often does not
give accurate enough estimates for this to be a reliable approach. We will
rather emphasise the role of any parameters that can be tuned in the al-
gorithms, leaving it for the practitioner to decide how best to set these
parameters with the data at his or her disposal.

4.5 Summary

• The problem of determining the stability of patterns can be cast in a
statistical framework.

• The stability of a fixed pattern in a finite sample can be reliably verified
if it is statistically concentrated, something detectable using McDiarmid’s
inequality.

• When considering classes of pattern functions, the issue of the capacity of
the class becomes crucial in ensuring that concentration applies simulta-
neously for all functions.

• The Rademacher complexity measures the capacity of a class. It assesses
the ‘richness’ of the class by its ability to fit random noise. The differ-
ence between empirical and true estimation over the pattern class can be
bounded in terms of its Rademacher complexity.

• Regularisation is a method of controlling capacity and hence ensuring that
detected patterns are stable.

• There are natural methods for measuring and controlling the capacity of
linear function classes in kernel-defined feature spaces.
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4.6 Further reading and advanced topics

The modelling of learning algorithms with methods of empirical processes
was pioneered by Vladimir Vapnik and Alexei Chervonenkis (VC) [144], [145]
in the 1970s, and greatly extended in more recent years by a large number
of other researchers. Their work emphasised the necessity to control the
capacity of a class of functions, in order to avoid overfitting, and devised a
measure of capacity known as VC dimension [142].

Their analysis does not, however, extend to generalisation bounds involv-
ing the margin or slack variables. The first papers to develop these bounds
were [124] and [8]. The paper [124] developed the so-called luckiness frame-
work for analysing generalisation based on fortuitous observations during
training such as the size of the margin. The analysis of generalisation in
terms of the slack variables in the soft margin support vector machine is
given in [125]. A description of generalisation analysis for support vector
machines based on these ideas is also contained in Chapter 4 of the book [32].
In this chapter we have, however, followed a somewhat different approach,
still within a related general framework.

The original VC framework was specialised for the problem of classifica-
tion, and later extended to cover regression problems and novelty-detection.
Its extension to general classes of patterns in data is difficult. It is also
well-known that traditional VC arguments provide rather loose bounds on
the risk of overfitting. A number of new methodologies have been proposed
in recent years to overcome some of these problems, mostly based on the
notion of concentration inequalities [18], [17], and the use of Rademacher
complexity: [80], [9], [82], [10], [80]. At an intuitive level we can think of
Rademacher complexity as being an empirical estimate of the VC dimen-
sion. Despite the transparency of the results we have described, we have
omitted a proof of part (iv) of Theorem 4.15. This is somewhat non-trivial
and we refer the interested reader to [85] who in turn refer to [85]. The full
proof of the result requires a further theorem proved by X. Fernique.

The analysis we presented in this chapter aims at covering all the types of
patterns we are interested in, and therefore needs to be very general. What
has remained unchanged during this evolution from VC to Rademacher-
type of arguments, is the use of the notion of uniform convergence of the
empirical means of a set of random variables to their expectations, although
the methods for proving uniform convergence have become simpler and more
refined. The rate of such uniform convergence is however still dictated by
some measure of richness of such set.

The use of Rademacher Complexity for this purpose is due to [80]. Our
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discussion of Rademacher complexity for kernel function classes is based on
the paper by Bartlett and Mendelson [10] and on the lectures given by Peter
Bartlett at UC Berkeley in 2001. The discussion of concentration inequalities
is based on Boucheron, Lugosi and Massart [17] and on the seminar notes
of Gabor Lugosi.

More recently tighter bounds on generalisation of SVMs has been obtained
using a theoretical linking of Bayesian and statistical learning [84]. Finally,
notions of regularizations date back to [138], and certainly have been fully
exploited by Wahba in similar contexts [155].

The books [38] and [4] also provide excellent coverage of theoretical foun-
dations of inference and learning.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net





Part II

Pattern analysis algorithms





5

Elementary algorithms in feature space

In this chapter we show how to evaluate a number of properties of a data set
in a kernel-defined feature space. The quantities we consider are of interest
in their own right in data analysis, but they will also form building blocks
towards the design of complex pattern analysis systems. Furthermore, the
computational methods we develop will play an important role in subsequent
chapters.

The quantities include the distance between two points, the centre of mass,
the projections of data onto particular directions, the rank, the variance and
covariance of projections of a set of data points, all measured in the feature
space. We will go on to consider the distance between the centres of mass
of two sets of data.

Through the development of these methods we will arrive at a number
of algorithmic solutions for certain problems. We give Matlab code for nor-
malising the data, centering the data in feature space, and standardising the
different coordinates. Finally, we develop two pattern analysis algorithms,
the first is a novelty-detection algorithm that comes with a theoretical guar-
antee on performance, while the second is a first kernelised version of the
Fisher discriminant algorithm. This important pattern analysis algorithm
is somewhat similar to the ridge regression algorithm already previewed in
Chapter 2, but tackles classification and takes account of more subtle struc-
ture of the data.

111
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5.1 Means and distances

Given a finite subset S = {x1, . . . ,x�} of an input space X, a kernel κ(x, z)
and a feature map φ into a feature space F satisfying

κ(x, z) = 〈φ(x), φ(z)〉,

let φ(S) = {φ(x1), . . . ,φ(x�)} be the image of S under the map φ. Hence
φ(S) is a subset of the inner product space F . In this chapter we continue
our investigation of the information that can be obtained about φ(S) using
only the inner product information contained in the kernel matrix K of
kernel evaluations between all pairs of elements of S

Kij = κ(xi,xj), i, j = 1, . . . , �.

Working in a kernel-defined feature space means that we are not able to
explicitly represent points. For example the image of an input point x is
φ(x), but we do not have access to the components of this vector, only
to the evaluation of inner products between this point and the images of
other points. Despite this handicap there is a surprising amount of useful
information that can be gleaned about φ(S).

Norm of feature vectors The simplest example already seen in Chapter
4 is the evaluation of the norm of φ(x) that is given by

‖φ(x)‖2 =
√

‖φ(x)‖2 =
√

〈φ(x), φ(x)〉 =
√

κ(x,x).

Algorithm 5.1 [Normalisation] Using this observation we can now imple-
ment the normalisation transformation mentioned in Chapters 2 and 3 given
by

φ̂ (x) =
φ(x)
‖φ(x)‖ .

For two data points the transformed kernel κ̂ is given by

κ̂(x, z) =
〈
φ̂ (x) , φ̂ (z)

〉
=
〈

φ(x)
‖φ(x)‖ ,

φ(z)
‖φ(z)‖

〉
=

〈φ(x), φ(z)〉
‖φ(x)‖‖φ(z)‖ (5.1)

=
κ(x, z)√

κ(x,x)κ(z, z)
.

The corresponding transformation of the kernel matrix can be implemented
by the operations given in Code Fragment 5.1.
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% original kernel matrix stored in variable K
% output uses the same variable K
% D is a diagonal matrix storing the inverse of the norms
D = diag(1./sqrt(diag(K)));
K = D * K * D;

Code Fragment 5.1. Matlab code normalising a kernel matrix.

We can also evaluate the norms of linear combinations of images in the
feature space. For example we have∥∥∥∥∥

�∑
i=1

αiφ(xi)

∥∥∥∥∥
2

=

〈
�∑

i=1

αiφ(xi),
�∑

j=1

αjφ(xj)

〉

=
�∑

i=1

αi

�∑
j=1

αj 〈φ(xi), φ(xj)〉

=
�∑

i,j=1

αiαjκ(xi,xj).

Distance between feature vectors A special case of the norm is the
length of the line joining two images φ(x) and φ(z), which can be computed
as

‖φ(x) − φ(z)‖2 = 〈φ(x) − φ(z),φ(x) − φ(z)〉
= 〈φ(x),φ(x)〉 − 2 〈φ(x), φ(z)〉 + 〈φ(z), φ(z)〉
= κ(x,x) − 2κ(x, z) + κ(z, z).

Norm and distance from the centre of mass As a more complex and
useful example consider the centre of mass of the set φ(S). This is the vector

φS =
1
�

�∑
i=1

φ(xi).

As with all points in the feature space we will not have an explicit vector
representation of this point. However, in this case there may also not exist
a point in X whose image under φ is φS . In other words, we are now
considering points that potentially lie outside φ(X), that is the image of the
input space X under the feature map φ.

Despite this apparent inaccessibility of the point φS , we can compute its
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norm using only evaluations of the kernel on the inputs

‖φS‖2
2 = 〈φS , φS〉 =

〈
1
�

�∑
i=1

φ(xi),
1
�

�∑
j=1

φ(xj)

〉

=
1
�2

�∑
i,j=1

〈φ(xi),φ(xj)〉 =
1
�2

�∑
i,j=1

κ(xi,xj).

Hence, the square of the norm of the centre of mass is equal to the average
of the entries in the kernel matrix. Incidentally this implies that this sum
is greater than or equal to zero, with equality if the centre of mass is at the
origin of the coordinate system. Similarly, we can compute the distance of
the image of a point x from the centre of mass φS

‖φ(x) − φS‖2 = 〈φ(x),φ(x)〉 + 〈φS ,φS〉 − 2〈φ(x), φS〉

= κ(x,x) +
1
�2

�∑
i,j=1

κ(xi,xj) −
2
�

�∑
i=1

κ(x,xi). (5.2)

Expected distance from the centre of mass Following the same ap-
proach it is also possible to express the expected squared distance of a point
in a set from its mean

1
�

�∑
s=1

‖φ(xs) − φS‖2 =
1
�

�∑
s=1

κ(xs,xs) +
1
�2

�∑
i,j=1

κ(xi,xj)

− 2
�2

�∑
i,s=1

κ(xs,xi) (5.3)

=
1
�

�∑
s=1

κ(xs,xs) −
1
�2

�∑
i,j=1

κ(xi,xj). (5.4)

Hence, the average squared distance of points to their centre of mass is the
average of the diagonal entries of the kernel matrix minus the average of all
the entries.

Properties of the centre of mass If we translate the origin of the feature
space, the norms of the training points alter, but the left-hand side of equa-
tion (5.4) does not change. If the centre of mass is at the origin, then, as we
observed above, the entries in the matrix will sum to zero. Hence, moving
the origin to the centre of mass minimises the first term on the right-hand
side of equation (5.4), corresponding to the sum of the squared norms of the
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points. This also implies the following proposition that will prove useful in
Chapter 8.

Proposition 5.2 The centre of mass φS of a set of points φ (S) solves the
following optimisation problem

min
µ

1
�

�∑
s=1

‖φ(xs) − µ‖2 .

Proof Consider moving the origin to the point µ. The quantity to be
optimised corresponds to the first term on the right-hand side of equation
(5.4). Since the left-hand side does not depend on µ, the quantity will be
minimised by minimising the second term on the right-hand side, something
that is achieved by taking µ = φS . The result follows.

Centering data Since the first term on the right-hand side of equation
(5.4) is the trace of the matrix divided by its size, moving the origin to
the centre of mass also minimises the average eigenvalue. As announced
in Chapter 3 we can perform this operation implicitly by transforming the
kernel matrix. This follows from the fact that the new feature map is given
by

φ̂(x) = φ(x) − φS = φ(x) − 1
�

�∑
i=1

φ(xi).

Hence, the kernel for the transformed space is

κ̂(x, z) =
〈
φ̂(x), φ̂(z)

〉
=

〈
φ(x) − 1

�

�∑
i=1

φ(xi), φ(z) − 1
�

�∑
i=1

φ(xi)

〉

= κ(x, z) − 1
�

�∑
i=1

κ(x,xi) −
1
�

�∑
i=1

κ(z,xi) +
1
�2

�∑
i,j=1

κ(xi,xj).

Expressed as an operation on the kernel matrix this can be written as

K̂ = K − 1
�
jj′K − 1

�
Kjj′ +

1
�2

(
j′Kj

)
jj′,

where j is the all 1s vector. We have the following algorithm.

Algorithm 5.3 [Centering data] We can centre the data in the feature space
with the short sequence of operations given in Code Fragment 5.2.
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% original kernel matrix stored in variable K
% output uses the same variable K
% K is of dimension ell x ell
% D is a row vector storing the column averages of K
% E is the average of all the entries of K
ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
J = ones(ell,1) * D;
K = K - J - J’ + E * ones(ell, ell);

Code Fragment 5.2. Matlab code for centering a kernel matrix.

The stability of centering The example of centering raises the question
of how reliably we can estimate the centre of mass from a training sample or
in other words how close our sample centre will be to the true expectation

Ex[φ(x)] =
∫

X
φ(x)dP (x).

Our analysis in Chapter 4 bounded the expected value of the quantity

g(S) = ‖φS − Ex[φ(x)]‖ .

There it was shown that with probability at least 1− δ over the choice of a
random sample of � points, we have

g(S) ≤
√

2R2

�

(
√

2 +

√
ln

1
δ

)
, (5.5)

assuring us that with high probability our sample does indeed give a good
estimate of Ex[φ(x)] in a way that does not depend on the dimension of the
feature space, where the support of the distribution is contained in a ball of
radius R around the origin.

5.1.1 A simple algorithm for novelty-detection

Centering suggests a simple novelty-detection algorithm. If we consider the
training set as a sample of points providing an estimate of the distances
d1, . . . , d� from the point Ex[φ(x)], where

di = ‖φ(xi) − Ex[φ(x)]‖ ,

we can bound the probability that a new random point x�+1 satisfies

d�+1 = ‖φ(x�+1) − Ex[φ(x)]‖ > max
1≤i≤�

di,
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with

P

{
‖φ(x�+1) − Ex[φ(x)]‖ > max

1≤i≤�
di

}
= P

{
max

1≤i≤�+1
di = d�+1 �= max

1≤i≤�
di

}
≤ 1

� + 1
,

by the symmetry of the i.i.d. assumption. Though we cannot compute the
distance to the point Ex[φ(x)], we can, by equation (5.2), compute

‖φ(x) − φS‖ =

√√√√κ(x,x) +
1
�2

�∑
i,j=1

κ(xi,xj) −
2
�

�∑
i=1

κ(x,xi). (5.6)

Then we can with probability 1−δ estimate ‖φ(x�+1) − Ex[φ(x)]‖ using the
triangle inequality and (5.5)

d�+1 = ‖φ(x�+1) − Ex[φ(x)]‖
quad ≥ ‖φ(x�+1) − φS‖ − ‖φS − Ex[φ(x)]‖

≥ ‖φ(x�+1) − φS‖ −
√

2R2

�

(
√

2 +

√
ln

1
δ

)
.

Similarly, we have that for i = 1, . . . , �

di = ‖φ(xi) − Ex[φ(x)]‖ ≤ ‖φ(xi) − φS‖ + ‖φS − Ex[φ(x)]‖ .

We now use the inequalities to provide a bound on the probability that a test
point lies outside a ball centred on the empirical centre of mass. Effectively
we choose its radius to ensure that with high probability it contains the ball
of radius max1≤i≤� di with centre Ex[φ(x)]. With probability 1− δ we have
that

P

{
‖φ(x�+1) − φS‖ > max

1≤i≤�
‖φ(xi) − φS‖ + 2

√
2R2

�

(
√

2 +

√
ln

1
δ

)}

≤ P

{
max

1≤i≤�+1
di = d�+1 �= max

1≤i≤�
di

}
≤ 1

� + 1
. (5.7)

Using H(x) to denote the Heaviside function we have in the notation of
Chapter 1 a pattern analysis algorithm that returns the pattern function

f(x)

= H
(
‖φ(x) − φS‖ − max

1≤i≤�
‖φ(xi) − φS‖ − 2

√
2R2

�

(
√

2 +

√
ln

1
δ

))
,
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since by inequality (5.7) with probability 1 − δ the expectation is bounded
by

Ex[f(x)] ≤ 1/(� + 1).

Hence, we can reject as anomalous data items satisfying f (x) = 1, and
reject authentic examples with probability at most 1/(�+1). This gives rise
to the following novelty-detection algorithm.

Algorithm 5.4 [Simple novelty detection] An implementation of the simple
novelty-detection algorithm is given in Code Fragment 5.3.

% K kernel matrix of training points
% inner products between ell training and t test points
% stored in matrix Ktest of dimension (ell + 1) x t
% last entry in each column is inner product with itself
% confidence parameter
delta = 0.01
% first compute distances of data to centre of mass
% D is a row vector storing the column averages of K
% E is the average of all the entries of K
ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
traindist2 = diag(K) - 2 * D’ + E * ones(ell, 1);
maxdist = sqrt(max(traindist2));
% compute the estimation error of empirical centre of mass
esterr = sqrt(2*max(diag(K))/ell)*(sqrt(2) + sqrt(log(1/delta)));
% compute resulting threshold
threshold = maxdist + 2 * esterr;
threshold = threshold * threshold;
% now compute distances of test data
t = size(Ktest,2);
Dtest = sum(Ktest(1:ell,:)) / ell;
testdist2 = Ktest(ell+1,:) - 2 * Dtest + E * ones(1, t);
% indices of novel test points are now
novelindices = find ( testdist2 > threshold )

Code Fragment 5.3. Matlab code for simple novelty detection algorithm.

The pattern function is unusual in that it is not always a thresholded linear
function in the kernel-defined feature space, though by equation (5.2) if the
feature space is normalised the function can be represented in the standard
form. The algorithm considers a sphere containing the data centred on the
centre of mass of the data sample. Figure 5.1 illustrates the spheres for data
generated according to a spherical two-dimensional Gaussian distribution.
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Fig. 5.1. Novelty detection spheres centred on the empirical centre of mass.

In Chapter 7 we will consider letting the centre of the hypersphere shift
in order to reduce its radius. This approach results in a state-of-the-art
method for novelty-detection.

Stability of novelty-detection The following proposition assesses the sta-
bility of the basic novelty-detection Algorithm 5.4.

Proposition 5.5 Suppose that we wish to perform novelty-detection based
on a training sample

S = {x1, . . . ,x�} ,

using the feature space implicitly defined by the kernel κ(x, z); let f(x) be
given by

f(x)

= H
(
‖φ(x) − φS‖ − max

1≤i≤�
‖φ(xi) − φS‖ − 2

√
2R2

�

(
√

2 +

√
ln

1
δ

))

where ‖φ(x) − φS‖ can be computed using equation (5.6). Then the func-
tion f(x) is equivalent to identifying novel points that are further from the
centre of mass in the feature space than any of the training points. Hence,
with probability 1 − δ over the random draw of the training set, any points
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drawn according to the same distribution will have f(x) = 1 with probability
less than 1/(� + 1).

5.1.2 A simple algorithm for classification

If we consider now the case of binary classification, we can divide the training
set S into two sets S+ and S− containing the positive and negative examples
respectively. One could now use the above methodology to compute the
distance d+(x) =

∥∥φ(x) − φS+

∥∥ of a test point x from the centre of mass
φS+ of S+ and the distance d−(x) =

∥∥φ(x) − φS−

∥∥ from the centre of mass
of the negative examples. A simple classification rule would be to assign x
to the class corresponding to the smaller distance

h(x) =
{

+1, if d−(x) > d+(x);
−1, otherwise.

We can express the function h(x) in terms of the sign function

h(x) = sgn
(∥∥φ(x) − φ̄S−

∥∥2 −
∥∥φ(x) − φ̄S+

∥∥2
)

= sgn

⎛⎝−κ(x,x) − 1
�2
+

�+∑
i,j=1

κ(xi,xj) +
2
�+

�+∑
i=1

κ(x,xi)

+κ(x,x) +
1
�2
−

�++�−∑
i,j=�++1

κ(xi,xj) −
2
�−

�++�−∑
i=�++1

κ(x,xi)

⎞⎠
= sgn

⎛⎝ 1
�+

�+∑
i=1

κ(x,xi) −
1
�−

�∑
i=�++1

κ(x,xi) − b

⎞⎠ ,

where we have assumed that the positive examples are indexed from 1 to
�+ and the negative examples from �+ + 1 to �+ + �− = � and where b is a
constant being half of the difference between the average entry of the posi-
tive examples kernel matrix and the average entry of the negative examples
kernel matrix. This gives the following algorithm.
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Algorithm 5.6 [Parzen based classifier] The simple Parzen based classifier
algorithm is as follows:

input Data S = {(x1, y1) , . . . , (x�, y�)}.
process α+

i = �−1
+ if yi = +1, 0 otherwise.

2 α−
i = �−1

− if yi = −1, 0 otherwise.
3 b = 0.5

(
α+′Kα+ − α−′Kα−)

4 α = α+ − α−;

5 h (x) = sgn
(∑�

i=1 αiκ (xi,x) − b
)

output Function h, dual variables α and offset b.

If the origin of the feature space is equidistant from the two centres of
mass, the offset b will be zero since the average entry of the kernel matrix
is equal to the square of the norm of the centre of mass.

Note that h(x) is a thresholded linear function in the feature space with
weight vector given by

w =
1
�+

�+∑
i=1

φ(xi) −
1
�−

�∑
i=�++1

φ(xi).

This function is the difference in likelihood of the Parzen window density
estimator for positive and negative examples. The name derives from view-
ing the kernel κ(·, ·) as a Parzen window that can be used to estimate the
input densities for the positive and negative empirical distributions. This is
natural when for example considering the Gaussian kernel.

Remark 5.7 [On stability analysis] We will not present a stability bound for
this classifier, though one could apply the novelty-detection argument for the
case where a new example was outside the novelty-detection pattern function
derived for its class. In this case we could assert with high confidence that
it belonged to the other class.

Consideration of the distances to the centre of mass of a dataset has led to
some simple algorithms for both novelty-detection and classification. They
are, however, constrained by not being able to take into account information
about the spread of the data. In Section 5.3 we will investigate how the
variance of the data can also be estimated using only information contained
in the kernel matrix. First, however, we turn our attention to projections.
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5.2 Computing projections: Gram–Schmidt, QR and Cholesky

The basic classification function of the previous section had the form of a
thresholded linear function

h(x) = sgn (〈w,φ(x)〉) ,

where the weight vector w had the form

w =
1
�+

�+∑
i=1

φ(xi) −
1
�−

�∑
i=�++1

φ(xi).

Hence, the computation only requires knowledge of the inner product be-
tween two feature space vectors.

The projection Pw (φ(x)) of a vector φ(x) onto the vector w is given as

Pw (φ(x)) =
〈w,φ(x)〉
‖w‖2 w.

This example illustrates a general principle that also enables us to compute
projections of vectors in the feature space. For example given a general
vector

w =
�∑

i=1

αiφ(xi),

we can compute the norm of the projection Pw (φ(x)) of the image of a
point x onto the vector w as

‖Pw (φ(x))‖ =
〈w,φ(x)〉

‖w‖ =
∑�

i=1 αiκ (xi,x)√∑�
i,j=1 αiαjκ (xi,xj)

.

Using Pythagoras’s theorem allows us to compute the distance of the point
from its projection as

‖Pw (φ(x)) − φ(x)‖2 = ‖φ(x)‖2 − ‖Pw (φ(x))‖2

= κ (x,x) −

(∑�
i=1 αiκ (xi,x)

)2

∑�
i,j=1 αiαjκ (xi,xj)

.

If we have a set of orthonormal vectors w1, . . . ,wk with corresponding
dual representations given by α1, . . . ,αk, we can compute the orthogo-
nal projection PV (φ(x)) of a point φ(x) into the subspace V spanned by
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w1, . . . ,wk as

PV (φ(x)) =

(
�∑

i=1

αj
iκ (xi,x)

)k

j=1

,

where we have used the vectors w1, . . . ,wk as a basis for V .

Definition 5.8 A projection is a mapping P satisfying

P (φ(x)) = P 2 (φ(x)) and 〈P (φ(x)) ,φ(x) − P (φ(x))〉 = 0,

with its dimension dim (P ) given by the dimension of the image of P . The
orthogonal projection to P is given by

P⊥ (φ(x)) = φ(x) − P (φ(x))

and projects the data onto the orthogonal complement of the image of P ,
so that dim (P ) + dim

(
P⊥) = N , the dimension of the feature space.

Remark 5.9 [Orthogonal projections] It is not hard to see that the orthog-
onal projection is indeed a projection, since

P⊥
(
P⊥ (φ(x))

)
= P⊥ (φ(x)) − P

(
P⊥ (φ(x))

)
= P⊥ (φ(x)) ,

while 〈
P⊥ (φ(x)) ,φ(x) − P⊥ (φ(x))

〉
=
〈
P⊥ (φ(x)) ,φ(x) − (φ(x) − P (φ(x)))

〉
= 〈(φ(x) − P (φ(x))) , P (φ(x))〉 = 0.

Projections and deflations The projection Pw (φ(x)) of φ(x) onto w
introduced above are onto a 1-dimensional subspace defined by the vector
w. If we assume that w is normalised, Pw (φ(x)) can also be expressed as

Pw (φ(x)) = ww′φ(x).

Hence, its orthogonal projection P⊥
w (φ(x)) can be expressed as

P⊥
w (φ(x)) =

(
I − ww′)φ(x).

If we have a data matrix X with rows φ(xi), i = 1, . . . , �, then deflating the
matrix X′X with respect to one of its eigenvectors w is equivalent to pro-
jecting the data using P⊥

w . This follows from the observation that projecting
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the data creates the new data matrix

X̃ = X
(
I − ww′)′ = X

(
I − ww′) , (5.8)

so that

X̃′X̃ =
(
I − ww′)X′X

(
I − ww′)

= X′X − ww′X′X − X′Xww′ + ww′X′Xww′

= X′X − λww′ − λww′ + λww′ww′

= X′X − λww′,

where λ is the eigenvalue corresponding to w.
The actual spread of the data may not be spherical as is implicitly as-

sumed in the novelty detector derived in the previous section. We may
indeed observe that the data lies in a subspace of the feature space of lower
dimensionality.

We now consider how to find an orthonormal basis for such a subspace.
More generally we seek a subspace that fits the data in the sense that the
distances between data items and their projections into the subspace are
small. Again we would like to compute the projections of points into sub-
spaces of the feature space implicitly using only information provided by the
kernel.

Gram–Schmidt orthonormalisation We begin by considering a well-
known method of deriving an orthonormal basis known as the Gram–Schmidt
procedure. Given a sequence of linearly independent vectors the method
creates the basis by orthogonalising each vector to all of the earlier vectors.
Hence, if we are given the vectors

φ (x1) ,φ (x2) , . . . ,φ (x�) ,

the first basis vector is chosen to be

q1 =
φ (x1)

‖φ (x1)‖
.

The ith vector is then obtained by subtracting from φ (xi) multiples of
q1, . . . ,qi−1 in order to ensure it becomes orthogonal to each of them

φ (xi) −→ φ (xi) −
i−1∑
j=1

〈qj ,φ (xi)〉qj =
(
I − Qi−1Q′

i−1

)
φ (xi) ,

where Qi is the matrix whose i columns are the first i vectors q1, . . . ,qi. The
matrix (I − QiQ′

i) is a projection matrix onto the orthogonal complement
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of the space spanned by the first i vectors q1, . . . ,qi. Finally, if we let

νi =
∥∥(I − Qi−1Q′

i−1

)
φ (xi)

∥∥ ,

the next basis vector is obtained by normalising the projection

qi = ν−1
i

(
I − Qi−1Q′

i−1

)
φ (xi) .

It follows that

φ (xi) = Qi−1Q′
i−1φ (xi) + νiqi = Qi

(
Q′

i−1φ (xi)
νi

)

= Q

⎛⎝Q′
i−1φ (xi)

νi

0�−i

⎞⎠ = Qri,

where Q = Q� is the matrix containing all the vectors qi as columns. This
implies that the matrix X containing the data vectors as rows can be de-
composed as

X′ = QR,

where R is an upper triangular matrix with ith column

ri =

⎛⎝Q′
i−1φ (xi)

νi

0�−i

⎞⎠ .

We can also view ri as the respresentation of xi in the basis

{q1, . . . ,q�} .

QR-decomposition This is the well-known QR-decomposition of the ma-
trix X′ into the product of an orthonormal matrix Q and upper triangular
matrix R with positive diagonal entries.

We now consider the application of this technique in a kernel-defined
feature space. Consider the matrix X whose rows are the projections of a
dataset

S = {x1, . . . ,x�}
into a feature space defined by a kernel κ with corresponding feature map-
ping φ. Applying the Gram–Schmidt method in the feature space would
lead to the decomposition

X′ = QR,
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defined above. This gives the following decomposition of the kernel matrix

K = XX′ = R′Q′QR = R′R.

Definition 5.10 This is the Cholesky decomposition of a positive semi-
definite matrix into the product of a lower triangular and upper triangular
matrix that are transposes of each other.

Since the Cholesky decomposition is unique, performing a Cholesky de-
composition of the kernel matrix is equivalent to performing Gram–Schmidt
orthonormalisation in the feature space and hence we can view Cholesky
decomposition as the dual implementation of the Gram–Schmidt orthonor-
malisation.

Cholesky implementation The computation of the (j, i)th entry in the
matrix R corresponds to evaluating the inner product between the ith vector
φ (xi) with the jth basis vector qj , for i > j. Since we can decompose φ (xi)
into a component lying in the subspace spanned by the basis vectors up to
the jth for which we have already computed the inner products and the
perpendicular complement, this inner product is given by

νj 〈qj ,φ (xi)〉 = 〈φ (xj) ,φ (xi)〉 −
j−1∑
t=1

〈qt, φ (xj)〉 〈qt, φ (xi)〉 ,

which corresponds to the Cholesky computation performed for j = 1, . . . , �

Rji = ν−1
j

(
Kji −

j−1∑
t=1

RtjRti

)
, i = j + 1, . . . , �,

where νj is obtained by keeping track of the residual norm squared di of the
vectors in the orthogonal complement. This is done by initialising with the
diagonal of the kernel matrix

di = Kii

and updating with

di ← di − R2
ji

as the ith entry is computed. The value of νj is then the residual norm of
the next vector; that is

νj =
√

dj .
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Note that the new representation of the data as the columns of the matrix
R gives rise to exactly the same kernel matrix. Hence, we have found a new
projection function

φ̂ : xi �−→ ri

which gives rise to the same kernel matrix on the set S; that is

κ (xi,xj) = κ̂ (xi,xj) =
〈
φ̂ (xi) , φ̂ (xj)

〉
, for all i, j = 1, . . . , �.

This new projection maps data into the coordinate system determined by
the orthonormal basis q1, . . . ,q�. Hence, to compute φ̂ and thus κ̂ for new
examples, we must evaluate the projections onto these basis vectors in the
feature space. This can be done by effectively computing an additional
column denoted by r of an extension of the matrix R from an additional
column of K denoted by k

rj = ν−1
j

(
kj −

j−1∑
t=1

Rtjrt

)
, j = 1, . . . , �.

We started this section by asking how we might find a basis for the data
when it lies in a subspace, or close to a subspace, of the feature space. If the
data are not linearly independent the corresponding residual norm dj will
be equal to 0 when we come to process an example that lies in the subspace
spanned by the earlier examples. This will occur if and only if the data lies
in a subspace of dimension j−1, which is equivalent to saying that the rank
of the matrix X is j − 1. But this is equivalent to deriving

K = R′R

with R a (j − 1) × � matrix, or in other words to K having rank j − 1. We
have shown the following result.

Proposition 5.11 The rank of the dataset S is equal to that of the kernel
matrix K and by symmetry that of the matrix X′X.

We can therefore compute the rank of the data in the feature space by
computing the rank of the kernel matrix that only involves the inner prod-
ucts between the training points. Of course in high-dimensional feature
spaces we may expect the rank to be equal to the number of data points.
If we use the Gaussian kernel this will always be the case if the points are
distinct.

Clearly the size of dj indicates how independent the next example is from



128 Elementary algorithms in feature space

the examples processed so far. If we wish to capture the most important
dimensions of the data points it is therefore natural to vary the order that
the examples are processed in the Cholesky decomposition by always choos-
ing the point with largest residual norm, while those with small residuals
are eventually ignored altogether. This leads to a reordering of the order
in which the examples are processed. The reordering is computed by the
statement

[a, I(j + 1)] = max(d);

in the Matlab code below with the array I storing the permutation.
This approach corresponds to pivoting in Cholesky decomposition, while

failing to include all the examples is referred to as an incomplete Cholesky
decomposition. The corresponding approach in the feature space is known
as partial Gram–Schmidt orthonormalisation.

Algorithm 5.12 [Cholesky decomposition or dual Gram–Schmidt] Matlab
code for the incomplete Cholesky decomposition, equivalent to the dual
partial Gram–Schmidt orthonormalisation is given in Code Fragment 5.4.

Notice that the index array I stores the indices of the vectors in the order
in which they are chosen, while the parameter η allows for the possibility
that the data is only approximately contained in a subspace. The residual
norms will all be smaller than this value, while the dimension of the feature
space obtained is given by T . If η is set small enough then T will be equal
to the rank of the data in the feature space. Hence, we can determine the
rank of the data in the feature space using Code Fragment 5.4.

The partial Gram–Schmidt procedure can be viewed as a method of re-
ducing the size of the residuals by a greedy strategy of picking the largest at
each iteration. This naturally raises the question of whether smaller residu-
als could result if the subspace was chosen globally to minimise the residuals.
The solution to this problem will be given by choosing the eigensubspace
that will be shown to minimise the sum-squared residuals. The next section
begins to examine this approach to assessing the spread of the data in the fea-
ture space, though final answers to these questions will be given in Chapter
6.

5.3 Measuring the spread of the data

The mean estimates where the data is centred, while the variance measures
the extent to which the data is spread. We can compare two zero-mean uni-
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% original kernel matrix stored in variable K
% of size ell x ell.
% new features stored in matrix R of size T x ell
% eta gives threshold residual cutoff
j = 0;
R = zeros(ell,ell);
d = diag(K);
[a,I(j+1)] = max(d);
while a > eta

j = j + 1;
nu(j) = sqrt(a);
for i = 1:ell

R(j,i) = (K(I(j),i) - R(:,i)’*R(:,I(j)))/nu(j);
d(i) = d(i) - R(j,i)^2;

end
[a,I(j+1)] = max(d);

end
T = j;
R = R(1:T,:);
% for new example with vector of inner products
% k of size ell x 1 to compute new features r
r = zeros(T, 1);
for j=1:T

r(j) = (k(I(j)) - r’*R(:,I(j)))/nu(j);
end

Code Fragment 5.4. Matlab code for performing incomplete Cholesky decomposi-
tion or dual partial Gram–Schmidt orthogonalisation.

variate random variables using a measure known as the covariance defined
to be the expectation of their product

cov (x, y) = Exy[xy].

Frequently, raw feature components from different sensors are difficult to
compare because the units of measurement are different. It is possible to
compensate for this by standardising the features into unitless quantities.
The standardisation x̂ of a feature x is

x̂ =
x − µx

σx
,

where µx and σx are the mean and standard deviation of the random variable
x. The measure x̂ is known as the standard score. The covariance

Ex̂ŷ[x̂ŷ]
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of two such scores gives a measure of correlation

ρxy = corr (x, y) = Exy

[
(x − µx)

(
y − µy

)
σxσy

]
between two random variables. A standardised score x̂ has the property

that µx̂ = 0, σx̂ = 1. Hence, the correlation can be seen as the cosine of the
angle between the standardised scores. The value ρxy is also known as the
Pearson correlation coefficient. Note that for two random vectors x and y

the following three conditions are equivalent:

ρxy = 1;

x̂ = ŷ;

y = b + wx for some b and for some w > 0.

Similarly ρxy = −1 if and only if x̂ = −ŷ and the same holds with a
negative w. This means that by comparing their standardised scores we can
measure for linear correlations between two (univariate) random variables.
In general we have

ρxy =
{

0; if the two variables are linearly uncorrelated,
±1; if there is an exact linear relation between them.

More generally ∣∣ρxy

∣∣ ≈ 1 if and only if y ≈ b + wx,

and we talk about positive and negative linear correlations depending on
the sign of ρxy. Hence, we can view

∣∣ρxy

∣∣ as an indicator for the presence of
a pattern function of the form g (x, y) = y − b − wx.

The above observations suggest the following preprocessing might be help-
ful if we are seeking linear models.

Algorithm 5.13 [Standardising data] When building a linear model it is
natural to standardise the features in order to make linear relations more
apparent. Code Fragment 5.5 gives Matlab code to standardise input fea-
tures by estimating the mean and standard deviation over a training set.

Variance of projections The above standardisation treats each coordi-
nate independently. We will now consider measures that can take into ac-
count the interaction between different features. As discussed above if we
are working with a kernel-induced feature space, we cannot access the coor-
dinates of the points φ(S). Despite this we can learn about the spread in the
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% original data stored in ell x N matrix X
% output uses the same variable X
% M is a row vector storing the column averages
% SD stores the column standard deviations
ell = size(X,1);
M = sum(X) / ell;
M2 = sum(X.^2)/ell;
SD = sqrt(M2 - M.^2);
X = (X - ones(ell,1)*M)./(ones(ell,1)*SD);

Code Fragment 5.5. Matlab code for standardising data.

feature space. Consider the �×N matrix X whose rows are the projections
of the training points into the N -dimensional feature space

X =
[

φ(x1) φ(x2) . . . φ(x�)
]′ .

Note that the feature vectors themselves are column vectors. If we assume
that the data has zero mean or has already been centred then the covariance
matrix C has entries

Cst =
1
�

�∑
i=1

φ(xi)sφ(xi)t, s, t = 1, . . . , N .

Observe that

�Cst=
�∑

i=1

φ(xi)sφ(xi)t =

(
�∑

i=1

φ(xi)φ(xi)′
)

st

=
(
X′X

)
st

.

If we consider a unit vector v ∈R
N then the expected value of the norm of

the projection ‖Pv (φ(x))‖ = v′φ(x)/ (v′v) = v′φ(x) of the training points
onto the space spanned by v is

µv = Ê [‖Pv (φ(x))‖] = Ê
[
v′φ(x)

]
= v′

Ê [φ(x)] = 0,

where we have again used the fact that the data is centred. Hence, if we
wish to compute the variance of the norms of the projections onto v we have

σ2
v = Ê

[
(‖Pv (φ(x))‖ − µv)2

]
= Ê

[
‖Pv (φ(x))‖2

]
=

1
�

�∑
i=1

‖Pv (φ(xi))‖2

but we have

1
�

�∑
i=1

‖Pv (φ(x))‖2 =
1
�

�∑
i=1

v′φ(xi)φ(xi)′v = Ê
[
v′φ(xi)φ(xi)′v

]
(5.9)

=
1
�
v′X′Xv.



132 Elementary algorithms in feature space

So the covariance matrix contains the information needed to compute the
variance of the data along any projection direction. If the data has not
been centred we must subtract the square of the mean projection since the
variance is given by

σ2
v = Ê

[
(‖Pv (φ(x))‖ − µv)2

]
= Ê

[
‖Pv (φ(x))‖2

]
− µ2

v

=
1
�
v′X′Xv −

(
1
�
v′X′j

)2

,

where j is the all 1s vector.

Variance of projections in a feature space It is natural to ask if we
can compute the variance of the projections onto a fixed direction v in
the feature space using only inner product information. Clearly, we must
choose the direction v so that we can express it as a linear combination of
the projections of the training points

v =
�∑

i=1

αiφ(xi) = X′α.

For this v we can now compute the variance as

σ2
v =

1
�
v′X′Xv −

(
1
�
v′X′j

)2

=
1
�
α′XX′XX′α−

(
1
�
α′XX′j

)2

=
1
�
α′ (XX′)2 α − 1

�2

(
α′XX′j

)2

=
1
�
α′K2

α − 1
�2

(
α′Kj

)2 ,

again computable from the kernel matrix.
Being able to compute the variance of projections in the feature space sug-

gests implementing a classical method for choosing a linear classifier known
as the Fisher discriminant. Using the techniques we have developed we will
be able to implement this algorithm in the space defined by the kernel.

5.4 Fisher discriminant analysis I

The Fisher discriminant is a classification function

f (x) = sgn (〈w,φ (x)〉 + b) ,
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where the weight vector w is chosen to maximise the quotient

J(w) =
(µ+

w − µ−
w)2(

σ+
w

)2 +
(
σ−

w

)2 , (5.10)

where µ+
w is the mean of the projection of the positive examples onto the

direction w, µ−
w the mean for the negative examples, and σ+

w, σ−
w the cor-

responding standard deviations. Figure 5.2 illustrates the projection onto a
particular direction w that gives good separation of the means with small
variances of the positive and negative examples. The Fisher discriminant
maximises the ratio between these quantities. The motivation for this choice

Fig. 5.2. The projection of points on to a direction w with positive and negative
examples grouped separately.

is that the direction chosen maximises the separation of the means scaled
according to the variances in that direction. Since we are dealing with
kernel-defined feature spaces, it makes sense to introduce a regularisation
on the norm of the weight vector w as motivated by Theorem 4.12. Hence,
we consider the following optimisation.

Computation 5.14 [Regularised Fisher discriminant] The regularised Fisher
discriminant chooses w to solve the following optimisation problem

max
w

J(w) =
(µ+

w − µ−
w)2(

σ+
w

)2 +
(
σ−

w

)2 + λ ‖w‖2
(5.11)
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First observe that the quotient is invariant under rescalings of the vector
w so that we can constrain the denominator to have a fixed value C. Using
a Lagrange multiplier ν we obtain the solution vector as

w� = argmax
w

((
Ê
[
yw′φ(x)

])2
− ν

(
1
�+

w′X′I+I+Xw −
(

1
�+

w′X′j+

)2

+
1
�−

w′X′I−I−Xw −
(

1
�−

w′X′j−

)2

+ λw′w − C

))
,

where we have used a simplification of the numerator and the results of the
previous section for the denominator. It is now a relatively straightforward
derivation to obtain

w� = argmax
w

((
1
�
y′Xw

)2

− ν

(
1
�+

w′X′I+Xw −
(

1
�+

w′X′j+

)2

+
1
�−

w′X′I−Xw −
(

1
�−

w′X′j−

)2

+ λw′w − C

))

= argmax
w

((
1
�
y′Xw

)2

− ν

(
λw′w − C

+
�

2�+�−
w′X′

(
2�−

�
I++

2�−

��+
j+j′+−

2�+

�
I− +

2�+

��−
j−j′−

)
Xw

))
,

where we have used y to denote the vector of {−1, +1} labels, I+ (resp. I−)
to indicate the identity matrix with 1s only in the columns corresponding
to positive (resp. negative) examples and j+ (resp. j−) to denote the vector
with 1s in the entries corresponding to positive (resp. negative) examples
and otherwise 0s. Letting

B = D − C+ − C− (5.12)

where D is a diagonal matrix with entries

Dii =
{

2�−/� if yi = +1
2�+/� if yi = −1,

(5.13)

and C+ and C− are given by

C+
ij =

{
2�−/ (��+) if yi = +1 = yj

0 otherwise
(5.14)

and

C−
ij =

{
2�+/ (��−) if yi = −1 = yj

0 otherwise,
(5.15)
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we can write

w� = argmax
w

((
1
�
y′Xw

)2

− ν

(
λw′w − C +

�

2�+�−
w′X′BXw

))
.

(5.16)
Varying C will only cause the solution to be rescaled since any rescaling of
the weight vector will not affect the ratio of the numerator to the quantity
constrained. If we now consider the optimisation

w� = argmax
w

(
y′Xw − ν ′

(
λw′w − C +

�

2�+�−
w′X′BXw

))
, (5.17)

it is clear that the solutions of problems (5.16) and (5.17) will be identical up
to reversing the direction of w�, since once the denominator is constrained
to have value C the weight vector w that maximises (5.17) will maximise
(5.16). This holds since the maxima of y′Xw and (y′Xw)2 coincide with a
possible change of sign of w. Hence, with an appropriate re-definition of ν,
λ and C

w�= argmax
w

(
y′Xw − ν

2
w′X′BXw + C − λν

2
w′w

)
.

Taking derivatives with respect to w we obtain

0 = X′y − νX′BXw − λνw,

so that λνw = X′ (y − νBXw) ,

Dual expression This implies that we can express w in the dual form as a
linear combination of the training examples w = X′α, where α is given by

α =
1
λν

(y − νBXw) . (5.18)

Substituting for w in equation (5.18) we obtain

λνα = y − νBXX′α = y − νBKα.

giving

(νBK + λνI) α = y.

Since the classification function is invariant to rescalings of the weight vector,
we can rescale α by ν to obtain

(BK + λI) α = y.

Notice the similarity with the ridge regression solution considered in Chapter
2, but here the real-valued outputs are replaced by the binary labels and
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the additional matrix B is included, though for balanced datasets this will
be close to I. In general the solution is given by

α = (BK + λI)−1 y,

so that the corresponding classification function is

h(x) = sgn

(
�∑

i=1

αiκ(x,xi) − b

)
= sgn

(
k′ (BK + λI)−1 y − b

)
, (5.19)

where k is the vector with entries κ(x,xi), i = 1, . . . , � and b is an appropriate
offset. The value of b is chosen so that w′µ+ − b = b − w′µ−, that is so
that the decision boundary bisects the line joining the two centres of mass.
Taking the weight vector w = X′α, we have

b = 0.5α′X
(

1
�+

X′j+ +
1
�−

X′j−

)
= 0.5α′XX′t = 0.5α′Kt, (5.20)

where t is the vector with entries

ti =
{

1/�+ if yi = +1
1/�− if yi = −1.

(5.21)

We summarise in the following computation.

Computation 5.15 [Regularised kernel Fisher discriminant] The regu-
larised kernel Fisher discriminant chooses the dual variables α as follows

α = (BK + λI)−1 y,

where K is the kernel matrix, B is given by (5.12)-(5.15), and the resulting
classification function is given by (5.19) and the threshold b by (5.20) and
(5.21).

Finally, we give a more explicit description of the dual algorithm.

Algorithm 5.16 [Dual Fisher discriminant] Matlab code for the dual Fisher
discriminant algorithm is given in Code Fragment 5.6.

Proposition 5.17 Consider the classification training set

S = {(x1, y1), . . . , (x�, y�)} ,

with a feature space implicitly defined by the kernel κ(x, z). Let

f(x) = y′(BK + λI)−1k − b,



5.5 Summary 137

% K is the kernel matrix of ell training points
% lambda the regularisation parameter
% y the labels
% The inner products between the training and t test points
% are stored in the matrix Ktest of dimension ell x t
% the true test labels are stored in ytruetest
ell = size(K,1);
ellplus = (sum(y) + ell)/2;
yplus = 0.5*(y + 1);
ellminus = ell - ellplus;
yminus = yplus - y;
t = size(Ktest,2);
rescale = ones(ell,1)+y*((ellminus-ellplus)/ell);
plusfactor = 2*ellminus/(ell*ellplus);
minusfactor = 2*ellplus/(ell*ellminus);
B = diag(rescale) - (plusfactor * yplus) * yplus’

- (minusfactor * yminus) * yminus’;
alpha = (B*K + lambda*eye(ell,ell))\y;
b = 0.25*(alpha’*K*rescale)/(ellplus*ellminus);
ytest = sign(Ktest’*alpha - b);
error = sum(abs(ytruetest - ytest))/(2*t)

Code Fragment 5.6. Kernel Fisher discriminant algorithm

where K is the �×� matrix with entries Kij = κ(xi,xj), k is the vector with
entries ki = κ(xi,x), B is defined by equations (5.12)–(5.15) and b is defined
by equations (5.20)–(5.21). Then the function f(x) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel κ(x, z) that
solves the Fisher discriminant problem (5.10) regularised by the parameter
λ.

Remark 5.18 [Statistical properties] In this example of the kernel Fisher
discriminant we did not obtain an explicit performance guarantee. If we
observe that the function obtained has a non-zero margin γ we could apply
Theorem 4.17 but this in itself does not motivate the particular choice of
optimisation criterion. Theorem 4.12 as indicated above can motivate the
regularisation of the norm of the weight vector, but a direct optimisation of
the bound will lead to the more advanced algorithms considered in Chapter
7.

5.5 Summary

• Many properties of the data in the embedding space can be calculated
using only information obtained through kernel evaluations. These include
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distances between points, distances of points from the centre of mass,
dimensionality of the subspace spanned by the data, and so on.

• Many transformations of the data in the embedding space can be re-
alised through operations on the kernel matrix. For example, translating
a dataset so that its centre of mass coincides with the origin corresponds
to a set of operations on the kernel matrix; normalisation of the data
produces a mapping to vectors of norm 1, and so on.

• Certain transformations of the kernel matrix correspond to performing
projections in the kernel-defined feature space. Deflation corresponds to
one such projection onto the orthogonal complement of a 1-dimensional
subspace. Using these insights it is shown that incomplete Cholesky
decomposition of the kernel matrix is a dual implementation of partial
Gram–Schmidt orthonormalisation in the feature space.

• Three simple pattern analysis algorithms, one for novelty-detection and
the other two for classification, have been described using the basic geo-
metric relations derived in this chapter.

• The Fisher discriminant can be viewed as optimising a measure of the
separation of the projections of the data onto a 1-dimensional subspace.

5.6 Further reading and advanced topics

In this chapter we have shown how to evaluate a number of properties of a
set of points in a kernel defined feature space, typically the image of a generic
dataset through the embedding map φ. This discussion is important both as
a demonstration of techniques and methods that will be used in the following
three chapters, and because the properties discussed can be directly used to
analyse data, albeit in simple ways. In this sense, they are some of the first
pattern analysis algorithms we have presented.

It is perhaps surprising how much information about a dataset can be
obtained simply from its kernel matrix. The idea of using Mercer kernels
as inner products in an embedding space in order to implement a learning
algorithm dates back to Aizermann, Braverman and Rozonoer [1], who con-
sidered a dual implementation of the perceptron algorithm. However, its
introduction to mainstream machine learning literature had to wait until
1992 with the first paper on support vector machines [16]. For some time
after that paper, kernels were only used in combination with the maximal
margin algorithm, while the idea that other types of algorithms could be
implemented in this way began to emerge. The possibility of using kernels
in any algorithm that can be formulated in terms of inner products was first
mentioned in the context of kernel PCA (discussed in Chapter 6) [121], [20].
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The centre of mass, the distance, the expected squared distance from
the centre are all straight-forward applications of the kernel concept, and
appear to have been introduced independently by several authors since the
early days of research in this field. The connection between Parzen windows
and the centres of mass of the two classes was pointed out by Schölkopf
and is discussed in the book [120]. Also the normalisation procedure is
well-known, while the centering procedure was first published in the paper
[121]. Kernel Gram–Schmidt was introduced in [31] and can also be seen
as an approximation of kernel PCA. The equivalent method of incomplete
Cholesky decomposition was presented by [7]. See [49] for a discussion of
QR decomposition.

Note that in Chapter 6 many of these ideas will be re-examined, including
the kernel Fisher discriminant and kernel PCA, so more references can be
found in Section 6.9.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.
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Pattern analysis using eigen-decompositions

The previous chapter saw the development of some basic tools for working
in a kernel-defined feature space resulting in some useful algorithms and
techniques. The current chapter will extend the methods in order to under-
stand the spread of the data in the feature space. This will be followed by
examining the problem of identifying correlations between input vectors and
target values. Finally, we discuss the task of identifying covariances between
two different representations of the same object.

All of these important problems in kernel-based pattern analysis can be
reduced to performing an eigen- or generalised eigen-analysis, that is the
problem of finding solutions of the equation Aw = λBw given symmetric
matrices A and B. These problems range from finding a set of k directions
in the embedding space containing the maximum amount of variance in the
data (principal components analysis (PCA)), through finding correlations
between input and output representations (partial least squares (PLS)), to
finding correlations between two different representations of the same data
(canonical correlation analysis (CCA)). Also the Fisher discriminant analysis
from Chapter 5 can be cast as a generalised eigenvalue problem.

The importance of this class of algorithms is that the generalised eigen-
vectors problem provides an efficient way of optimising an important family
of cost functions; it can be studied with simple linear algebra and can be
solved or approximated efficiently using a number of well-known techniques
from computational algebra. Furthermore, we show that the problems can
be solved in a kernel-defined feature space using a dual representation, that
is, they only require information about inner products between datapoints.

140
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6.1 Singular value decomposition

We have seen how we can sometimes learn something about the covariance
matrix C by using the kernel matrix K = XX′. For example in the previous
chapter the variances were seen to be given by the covariance matrix, but
could equally be evaluated using the kernel matrix. The close connection
between these two matrices will become more apparent if we consider the
eigen-decomposition of both matrices

�C = X′X = UΛ̃NU′ and K = XX′= VΛ�V′,

where the columns ui of the orthonormal matrix U are the eigenvectors of
�C, and the columns vi of the orthonormal matrix V are the eigenvectors
of K. Now consider an eigenvector–eigenvalue pair v, λ of K. We have

�C(X′v) = X′XX′v = X′Kv = λX′v,

implying that X′v, λ is an eigenvector–eigenvalue pair for �C. Furthermore,
the norm of X′v is given by∥∥X′v

∥∥2 = v′XX′v = λ,

so that the corresponding normalised eigenvector of �C is u = λ−1/2X′v.
There is a symmetry here since we also have that

λ−1/2Xu = λ−1XX′v = v.

We can summarise these relations as follows

u = λ−1/2X′v and v = λ−1/2Xu.

We can deflate both �C and K of the corresponding eigenvalues by making
the following deflation of X:

X �−→ X̃ = X − vv′X = X − λ1/2vu′ = X − Xuu′. (6.1)

This follows from the equalities

X̃X̃
′
=
(
X − vv′X

) (
X − vv′X

)′ = XX′ − λvv′,

and

X̃′X̃ =
(
X − vv′X

)′ (X − vv′X
)

= X′X − X′vv′X = X′X − λuu′.

Hence, the first t = rank(XX′) ≤ min(N, �) columns Ut of U can be chosen
as

Ut = X′VtΛ
−1/2
t , (6.2)
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where we assume the t non-zero eigenvalues of K and �C appear in descend-
ing order. But by the symmetry of �C and K these are the only non-zero
eigenvalues of �C, since we can transform any eigenvector–eigenvalue pair
u, λ of �C to an eigenvector–eigenvalue pair Xu, λ of K. It follows, as we
have already seen, that

t = rank(XX′) = rank(X′X).

By extending Ut to U and Λ1/2
t to an N ×� matrix whose additional entries

are all zero, we obtain the singular value decomposition (SVD) of the matrix
X′ defined as a decomposition

X′ = UΣV′,

where Σ is an N × � matrix with all entries 0 except the leading diagonal
which has entries σi =

√
λi satisfying σ1 ≥ σ2 ≥ · · · ≥ σt > 0 for t =

rank(X) ≤min(N, �) with U and V square matrices satisfying

V′V = I so that V′ = V−1 and similarly U′ = U−1,

also known as orthogonal matrices.

Consequences of singular value decomposition There are a number
of interesting consequences. Notice how equation (6.2) implies a dual repre-
sentation for the jth eigenvector uj of �C with the coefficients given by the
corresponding eigenvector vj of K scaled by λ

−1/2
j , that is

uj = λ
−1/2
j

�∑
i=1

(vj)i φ(xi) =
�∑

i=1

αj
iφ(xi), j = 1, . . . , t,

where the dual variables αj for the jth vector uj are given by

αj = λ
−1/2
j vj . (6.3)

and vj , λj are the jth eigenvector–eigenvalue pair of the kernel matrix.
It is important to remark that if we wish to compute the projection of a

new data point φ(x) onto the direction uj in the feature space, this is given
by

Puj (φ(x)) = u′
jφ(x) =

〈
�∑

i=1

αj
iφ(xi), φ(x)

〉
=

�∑
i=1

αj
i 〈φ(xi), φ(x)〉

=
�∑

i=1

αj
iκ(xi,x), (6.4)
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Hence we will be able to project new data onto the eigenvectors in the feature
space by performing an eigen-decomposition of the kernel matrix. We will
present the details of this algorithm in Section 6.2.1 after introducing primal
principal components analysis in the next section.

Remark 6.1 [Centering not needed] Although the definition of the covari-
ance matrix assumes the data to be centred, none of the derivations given in
this section make use of this fact. Hence, we need not assume that the co-
variance matrix is computed for centred data to obtain dual representations
of the projections.

Remark 6.2 [Notation conventions] We have used the notation uj for the
primal eigenvectors in contrast to our usual wj . This is to maintain con-
sistency with the standard notation for the singular value decomposition
of a matrix. Note that we have used the standard notation for the dual
variables.

6.2 Principal components analysis

In the previous chapter we saw how the variance in any fixed direction in the
feature space could be measured using only the kernel matrix. This made it
possible to find the Fisher discriminant function in a kernel-defined feature
space by appropriate manipulation of the kernel matrix. We now consider
finding a direction that maximises the variance in the feature space.

Maximising variance If we assume that the data has been centred in the
feature space using for example Code Fragment 5.2, then we can compute
the variance of the projection onto a normalised direction w as

1
�

�∑
i=1

(Pw (φ(xi)))
2 = Ê

[
w′φ(x)φ(x)′w

]
= w′

Ê
[
φ(x)φ(x)′

]
w

=
1
�
w′X′Xw = w′Cw,

where we again use Ê [f(x)] to denote the empirical mean of f(x)

Ê [f(x)] =
1
�

�∑
i=1

f(xi),

and C = 1
�X

′X is the covariance matrix of the data sample. Hence, finding
the directions of maximal variance reduces to the following computation.
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Computation 6.3 [Maximising variance] The direction that maximises the
variance can be found by solving the following problem

maxw w′Cw,
subject to ‖w‖2 = 1.

(6.5)

Eigenvectors for maximising variance Consider the quotient

ρ(w) =
w′Cw
w′w

.

Since rescaling w has a quadratic effect on ρ(w), the solution of (6.5) is the
direction that maximises ρ(w). Observe that this is the optimisation of the
Raleigh quotient given in (3.2) , where it was observed that the solution is
given by the eigenvector corresponding to the largest eigenvalue with the
value of ρ(w) given by the eigenvalue. We can search for the direction
of second largest variance in the orthogonal subspace, by looking for the
largest eigenvector in the matrix obtained by deflating the matrix C with
respect to w. This gives the eigenvector of C corresponding to the second-
largest eigenvalue. Repeating this step shows that the mutually orthogonal
directions of maximum variance in order of decreasing size are given by the
eigenvectors of C.

Remark 6.4 [Explaining variance] We have seen that the size of the eigen-
value is equal to the variance in the chosen direction. Hence, if we project
into a number of orthogonal directions the total variance is equal to the sum
of the corresponding eigenvalues, making it possible to say what percentage
of the overall variance has been captured, where the overall variance is given
by the sum of all the eigenvalues, which equals the trace of the kernel matrix
or the sum of the squared norms of the data.

Since rescaling a matrix does not alter the eigenvectors, but simply rescales
the corresponding eigenvalues, we can equally search for the directions of
maximum variance by analysing the matrix �C = X′X. Hence, the first
eigenvalue of the matrix �C equals the sum of the squares of the projections
of the data into the first eigenvector in the feature space. A similar conclu-
sion can be reached using the Courant–Fisher Theorem 3.6 applied to the
first eigenvalue λ1. By the above observations and equation (5.9) we have

λ1(�C) = λ1(X′X) = max
dim(T )=1

min
0 �=u∈T

u′X′Xu
u′u
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= max
0 �=u

u′X′Xu
u′u

= max
0 �=u

‖Xu‖2

‖u‖2 = max
0 �=u

�∑
i=1

Pu (φ(xi))
2

=
�∑

i=1

‖φ(xi)‖2 − min
0 �=u

�∑
i=1

∥∥∥P⊥
u (φ(xi))

∥∥∥2
,

where P⊥
u (φ(x)) is the projection of φ(x) into the space orthogonal to u.

The last equality follows from Pythagoras’s theorem since the vectors are
the sum of two orthogonal projections. Furthermore, the unit vector that
realises the max and min is the first column u1 of the matrix U of the
eigen-decomposition

X′X = UΛU′

of X′X.
A similar application of the Courant–Fisher Theorem 3.6 to the ith eigen-

value of the matrix �C gives

λi(�C) = λi(X′X) = max
dim(T )=i

min
0 �=u∈T

u′X′Xu
u′u

= max
dim(T )=i

min
0 �=u∈T

�∑
j=1

Pu (φ(xj))
2 =

�∑
j=1

Pui (φ(xj))
2 ,

that is, the sum of the squares of the projections of the data in the direction
of the ith eigenvector ui in the feature space. If we consider projecting into
the space Uk spanned by the first k eigenvectors, we have

k∑
i=1

λi =
k∑

i=1

�∑
j=1

Pui (φ(xj))
2 =

�∑
j=1

k∑
i=1

Pui (φ(xj))
2 =

�∑
j=1

‖PUk
(φ(xj))‖2 ,

where we have used PUk
(φ(x)) to denote the orthogonal projection of φ(x)

into the subspace Uk. Furthermore, notice that if we consider k = N the
projection becomes the identity and we have

N∑
i=1

λi =
�∑

j=1

‖PUN
(φ(xj))‖2 =

�∑
j=1

‖φ(xj)‖2 , (6.6)

something that also follows from the fact that the expressions are the traces
of two similar matrices �C and Λ.

Definition 6.5 [Principal components analysis] Principal components anal-
ysis (PCA) takes an initial subset of the principal axes of the training data
and projects the data (both training and test) into the space spanned by
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this set of eigenvectors. We effectively preprocess a set of data by project-
ing it into the subspace spanned by the first k eigenvectors of the covariance
matrix of the training set for some k < �. The new coordinates are known as
the principal coordinates with the eigenvectors referred to as the principal
axes.

Algorithm 6.6 [Primal principal components analysis] The primal principal
components analysis algorithm performs the following computation:

input Data S = {x1, . . . ,x�} ⊂ R
n, dimension k.

process µ = 1
�

∑�
i=1 xi

C = 1
�

∑�
i=1 (xi − µ) (xi − µ)′

[U,Λ] = eig (�C)
x̃i = U′

kxi, i = 1, . . . , �.
output Transformed data S̃ = {x̃1, . . . , x̃�}.

Remark 6.7 [Data lying in a subspace] Suppose that we have a data ma-
trix in which one column is exactly constant for all examples. Clearly, this
feature carries no information and will be set to zero by the centering op-
eration. Hence, we can remove it by projecting onto the other dimensions
without losing any information about the data. Data may in fact lie in a
lower-dimensional subspace even if no individual feature is constant. This
corresponds to the subspace not being aligned with any of the axes. The
principal components analysis is nonetheless able to detect such a subspace.
For example if the data has rank r then only the first r eigenvalues are non-
zero and so the corresponding eigenvectors span the subspace containing the
data. Therefore, projection into the first r principal axes exactly captures
the training data.

Remark 6.8 [Denoising] More generally if the eigenvalues beyond the kth
are small we can think of the data as being approximately k-dimensional,
the features beyond the kth being approximately constant the data has little
variance in these directions. In such cases it can make sense to project the
data into the space spanned by the first k eigenvectors. It is possible that
the variance in the dimensions we have removed is actually the result of
noise, so that their removal can in some cases improve the representation of
the data. Hence, performing principal components analysis can be regarded
as an example of denoising .
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Remark 6.9 [Applications to document analysis] We will also see in Chap-
ter 10 how principal components analysis has a semantic focussing effect
when applied in document analysis, with the eigenvectors representing con-
cepts or themes inferred from the statistics of the data. The representation
of an input in the principal coordinates can then be seen as an indication of
how much it is related to these different themes.

Remark 6.10 [PCA for visualisation] In Chapter 8 we will also see how a
low-dimensional PCA projection can be used as a visualisation tool. In the
case of non-numeric datasets this is particularly powerful since the data itself
does not have a natural geometric structure, but only a high-dimensional
implicit representation implied by the choice of kernel. Hence, in this case
kernel PCA can be seen as a way of inferring a low-dimensional explicit
geometric feature space that best captures the structure of the data.

PCA explaining variance The eigenvectors of the covariance matrix or-
dered by decreasing eigenvalue correspond to directions of decreasing vari-
ance in the data, with the eigenvalue giving the amount of variance captured
by its eigenvector. The larger the dimension k of the subspace Uk the greater
percentage of the variance that is captured. These approximation proper-
ties are explored further in the alternative characterisation given below. We
can view identification of a low-dimensional subspace capturing a high pro-
portion of the variance as a pattern identified in the training data. This
of course raises the question of whether the pattern is stable, that is, if the
subspace we have identified will also capture the variance of new data arising
from the same distribution. We will examine this statistical question once
we have introduced a dual version of the algorithm.

Remark 6.11 [Centering not needed] The above derivation does not make
use of the fact that the data is centred. It therefore follows that if we define

C =
1
�
X′X

with X not centred, the same derivation holds as does the proposition given
below. Centering the data has the advantage of reducing the overall sum of
the eigenvalues, hence removing irrelevant variance arising from a shift of the
centre of mass, but we can use principal components analysis on uncentred
data.

Alternative characterisations An alternative characterisation of the prin-
cipal components (or principal axes) of a dataset will be important for the



148 Pattern analysis using eigen-decompositions

analysis of kernel PCA in later sections. We first introduce some additional
notation. We have used PU (φ(x)) to denote the orthogonal projection of an
embedded point φ(x) into the subspace U . We have seen above that we are
also interested in the error resulting from using the projection rather than
the actual vector φ(x). This difference

P⊥
U (φ(x)) = φ(x) − PU (φ(x))

is the projection into the orthogonal subspace and will be referred to as the
residual . We can compute its norm from the norms of φ(x) and PU (φ(x))
using Pythagoras’s theorem. We will typically assess the quality of a pro-
jection by the average of the squared norms of the residuals of the training
data

1
�

�∑
i=1

∥∥∥P⊥
U (φ(xi))

∥∥∥2
=

1
�
‖ξ‖2 , where ξi =

∥∥∥P⊥
U (φ(xi))

∥∥∥ .

The next proposition shows that using the space spanned by the first k

principal components of the covariance matrix minimises this quantity.

Proposition 6.12 Given a training set S with covariance matrix C, the
orthogonal projection PUk

(φ(x)) into the subspace Uk spanned by the first
k eigenvectors of C is the k-dimensional orthogonal projection minimising
the average squared distance between each training point and its image, in
other words Uk solves the optimisation problem

minU J⊥(U) =
∑�

i=1

∥∥P⊥
U (φ(xi))

∥∥2

2
subject to dimU = k.

(6.7)

Furthermore, the value of J⊥(U) at the optimum is given by

J⊥(U) =
N∑

i=k+1

λi, (6.8)

where λ1, . . . , λN are the eigenvalues of the matrix �C in decreasing order.

Proof A demonstration of this fact will also illuminate various features of
the principal coordinates. Since, PU (φ(xi)) is an orthogonal projection it
follows from Pythagoras’s theorem that

J⊥(U) =
�∑

i=1

∥∥∥P⊥
U (φ(xi))

∥∥∥2

2
=

�∑
i=1

‖φ(xi) − PU (φ(xi))‖2
2
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=
�∑

i=1

‖φ(xi)‖2 −
�∑

i=1

‖PU (φ(xi))‖2
2 . (6.9)

Hence, the optimisation (6.7) has the same solution as the optimisation
problem

maxU J(U) =
∑�

i=1 ‖PU (φ(xi))‖2
2

subject to dimU = k.
(6.10)

Let w1, . . . ,wk be a basis for a general space U expressed in the principal
axes. We can then evaluate J(U) as follows

J(U) =
�∑

i=1

‖PU (φ(xi))‖2
2 =

�∑
i=1

k∑
j=1

Pwj (φ(xi))2

=
k∑

j=1

�∑
i=1

Pwj (φ(xi))2 =
k∑

j=1

�∑
s=1

(
wj

s

)2 �∑
i=1

Pus(φ(xi))2

=
k∑

j=1

�∑
s=1

(
wj

s

)2
λs =

�∑
s=1

λs

k∑
j=1

(
wj

s

)2 .

Since, the wj are orthogonal we must have

as =
k∑

j=1

(
wj

s

)2 ≤ 1,

for all s (consider extending to an orthonormal basis

W =
[
w1 · · ·wkwk+1 · · ·w�

]
and observing that

(
WW′)

ss
=

�∑
j=1

(
wj

s

)2 = 1

for all s), while

�∑
s=1

as =
�∑

s=1

k∑
j=1

(
wj

s

)2 =
k∑

j=1

�∑
s=1

(
wj

s

)2 = k.

Therefore we have

J(U) =
�∑

s=1

λsas ≤
k∑

s=1

λs = J(Uk), (6.11)
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showing that Uk does indeed optimise both (6.7) and (6.10). The value of
the optimum follows from (6.9), (6.11) and (6.6).

Principal axes capturing variance If we take k = � nothing is lost in
the projection and so summing all the eigenvalues gives us the sum of the
norms of the feature vectors

�∑
i=1

‖φ(xi)‖2 =
�∑

i=1

λi,

a fact that also follows from the invariance of the trace to the orthogonal
transformation

�C �−→ �U′CU = Λ�.

The individual eigenvalues say how much of the sum of the norms squared
lies in the space spanned by the ith eigenvector. By the above discussion
the eigenvectors of the matrix X′X give the directions of maximal variance
of the data in descending order with the corresponding eigenvalues giving
the size of the variance in that direction multiplied by �. It is the fact that
projection into the space Uk minimises the resulting average squared residual
that motivates the use of these eigenvectors as a coordinate system.

We now consider how this analysis can be undertaken using only inner
product information and hence exploiting a dual representation and kernels.

6.2.1 Kernel principal components analysis

Kernel PCA is the application of PCA in a kernel-defined feature space
making use of the dual representation. Section 6.1 has demonstrated how
projections onto the feature space eigenvectors can be computed through a
dual representation computed from the eigenvectors and eigenvalues of the
kernel matrix.

We now present the details of the kernel PCA algorithm before providing
a stability analysis assessing when the resulting projection captures a stable
pattern of the data. We continue to use Uk to denote the subspace spanned
by the first k eigenvectors in the feature space. Using equation (6.4) we can
compute the k-dimensional vector projection of new data into this subspace
as

PUk
(φ(x)) =

(
u′

jφ(x)
)k
j=1

=

(
�∑

i=1

αj
iκ(xi,x)

)k

j=1

, (6.12)
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where

αj = λ
−1/2
j vj

is given in terms of the corresponding eigenvector and eigenvalue of the
kernel matrix. Equation (6.12) forms the basis of kernel PCA.

Algorithm 6.13 [Kernel PCA] The kernel PCA algorithm performs the
following computation:

input Data S = {x1, . . . ,x�} , dimension k.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2
(j′Kj) jj′,

[V,Λ] = eig (K)
αj = 1√

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 αj
iκ(xi,x)

)k

j=1

output Transformed data S̃ = {x̃1, . . . , x̃�}.
The Matlab code for this computation is given in Code Fragment 6.1.

Figure 6.1 shows the first principal direction as a shading level for the sam-
ple data shown using primal PCA. Figure 6.2 shows the same data analysed
using kernel PCA with a nonlinear kernel.

6.2.2 Stability of principal components analysis

The critical question for assessing the performance of kernel PCA is the
extent to which the projection captures new data drawn according to the
same distribution as the training data. The last line of the Matlab code
in Code Fragment 6.1 computes the average residual of the test data. We
would like to ensure that this is not much larger than the average residual of
the training data given by the expression in the comment eight lines earlier.
Hence, we assess the stability of kernel PCA through the pattern function

f(x) =
∥∥∥P⊥

Uk
(φ(x))

∥∥∥2
= ‖φ(x) − PUk

(φ(x))‖2

= ‖φ(x)‖2 − ‖PUk
(φ(x))‖2 ,

that is, the squared norm of the orthogonal (residual) projection for the
subspace Uk spanned by the first k eigenvectors. As always we wish the
expected value of the pattern function to be small

Ex [f(x)] = Ex

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≈ 0.
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% K is the kernel matrix of the training points
% inner products between ell training and t test points
% are stored in matrix Ktest of dimension (ell + 1) x t
% last entry in each column is inner product with self
% k gives dimension of projection space
% V is ell x k matrix storing the first k eigenvectors
% L is k x k diagonal matrix with eigenvalues

ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
J = ones(ell,1) * D;
K = K - J - J’ + E * ones(ell, ell);
[V, L] = eigs(K, k, ’LM’);
invL = diag(1./diag(L)); % inverse of L
sqrtL = diag(sqrt(diag(L))); % sqrt of eigenvalues
invsqrtL = diag(1./diag(sqrtL)); % inverse of sqrtL
TestFeat = invsqrtL * V’ * Ktest(1:ell - 1,:);
TrainFeat = sqrtL * V’; % = invsqrtL * V’ * K;
% Note that norm(TrainFeat, ’fro’) = sum-squares of
% norms of projections = sum(diag(L)).
% Hence, average squared norm not captured (residual) =
% (sum(diag(K)) - sum(diag(L)))/ell
% If we need the new inner product information:
Knew = V * L * V’; % = TrainFeat’ * TrainFeat;
% between training and test
Ktestnew = V * V’ * Ktest(1:ell - 1,:);
% and between test and test
Ktestvstest = Ktest(1:ell - 1,:)’*V*invL*V’*Ktest(1:ell - 1,:);
% The average sum-squared residual of the test points is
(sum(Ktest(ell + 1,:) - diag(Ktestvstest)’)/t

Code Fragment 6.1. Matlab code for kernel PCA algorithm.

Our aim is to relate the empirical value of the residual given by the pattern
function f(x) to its expected value. Since the eigenvalues of �C and the
kernel matrix K are the same, it follows from equation (6.8) that � times the
empirical average of the pattern function is just the sum of those eigenvalues
from k + 1 to �. We introduce the notation λ>t(S) =

∑�
i=t+1 λi for these

sums. Hence, the critical question is how much larger than the empirical
expectation

Ê

[
‖P⊥

Uk
(φ(x))‖2

]
=

1
�
λ>t(S)

is the true expectation

E

[∥∥∥P⊥
Ut

(φ(x))
∥∥∥2
]

.
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Fig. 6.1. The shading shows the value of the projection on to the first principal
direction for linear PCA.

Fig. 6.2. The shading shows the the value of the projection on to the first principal
direction for nonlinear PCA.

It is worth noting that if we can bound the difference between these for some
value of t, for k > t we have

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≤ E

[∥∥∥P⊥
Ut

(φ(x))
∥∥∥2
]

,
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so that the bound for t also applies to k-dimensional projections. This
observation explains the min in the theorem below giving a bound on the
difference between the two expectations.

Theorem 6.14 If we perform PCA in the feature space defined by a kernel
κ then with probability greater than 1 − δ, for any 1 ≤ k ≤ �, if we project
new data onto the space Uk spanned by the first k eigenvectors in the feature
space, the expected squared residual is bounded by

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]

≤ min
1≤t≤k

⎡⎣1
�
λ>t(S) +

8
�

√√√√(t + 1)
�∑

i=1

κ(xi,xi)2

⎤⎦
+3R2

√
ln(2�/δ)

2�
,

where the support of the distribution is in a ball of radius R in the feature
space.

Remark 6.15 [The case of a Gaussian kernel] Reading of the theorem is
simplified if we consider the case of a normalised kernel such as the Gaussian.
In this case both R and κ(xi,xi) are equal to 1 resulting in the bound

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]
≤ min

1≤t≤k

[
1
�
λ>t(S) + 8

√
(t + 1)

�

]
+ 3

√
ln(2�/δ)

2�
.

Hence, Theorem 6.14 indicates that the expected squared residual of a test
point will be small provided the residual eigenvalues are small for some value
t ≤ k, which is modest compared to �. Hence, we should only use kernel
PCA when the eigenvalues become small at an early stage in the spectrum.
Provided we project into a space whose dimension exceeds the index of this
stage, we will with high probability capture most of the variance of unseen
data.

The overall message is that capturing a high proportion of the variance of
the data in a number of dimensions significantly smaller than the samples
size indicates that a reliable pattern has been detected and that the same
subspace will, with high probability, capture most of the variance of the test
data. We can therefore view the theorem as stating that the percentage of
variance captured by low-dimensional eigenspaces is concentrated and hence
reliably estimated from the training sample.

A proof of this theorem appears in Appendix A.2. The basis for the
statistical analysis are the Rademacher complexity results of Chapter 4. The
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difficulty in applying the method is that the function class does not appear
to be linear, but interestingly it can be viewed as linear in the feature space
defined by the quadratic kernel

κ̂(x, z) = κ(x, z)2.

Hence, the use of kernels not only defines a feature space and provides the
algorithmic tool to compute in that space, but also resurfaces as a proof tech-
nique for analysing the stability of principal components analysis. Though
this provides an interesting and distinctive use of kernels we have preferred
not to distract the reader from the main development of this chapter and
have moved the proof details to an appendix.

Whitening PCA computed the directions of maximal variance and used
them as the basis for dimensionality reduction. The resulting covariance
matrix of the projected data retains the same eigenvalues corresponding
to the eigenvectors used to define the projection space, but has a diagonal
structure. This follows from the observation that given a centred data matrix
X, the projected data XUk has covariance matrix

1
�
U′

kX
′XUk =

1
�
U′

kUΛU′Uk =
1
�
Λk.

Whitening is a technique that transforms the projected data to make the
resulting covariance matrix equal to the identity by rescaling the projection
directions by Λ−1/2

k to obtain XUkΛ
−1/2
k , so that the covariance becomes

1
�
Λ−1/2

k U′
kX

′XUkΛ
−1/2
k =

1
�
Λ−1/2

k U′
kUΛU′UkΛ

−1/2
k =

1
�
Λ−1/2

k ΛkΛ
−1/2
k

=
1
�
I.

This is motivated by the desire to make the different directions have equal
weight, though we will see a further motivation for this in Chapter 12. The
transformation can be implemented as a variant of kernel PCA.

Algorithm 6.16 [Whitening] The whitening algorithm is given in Code
Fragment 6.2. Note that j denotes the all 1s vector.

6.3 Directions of maximum covariance

Principal components analysis measures the variance in the data by identify-
ing the so-called principal axes that give the directions of maximal variance
in decreasing importance. PCA sets a threshold and discards the principal
directions for which the variance is below that threshold.
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input Data S = {x1, . . . ,x�} , dimension k.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2 (j′Kj) jj′,
[V,Λ] = eig (K)
αj = 1

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 αj
iκ(xi,x)

)k

j=1

output Transformed data S̃ = {x̃1, . . . , x̃�}.

Code Fragment 6.2. Pseudocode for the whitening algorithm.

Consider for a moment that we are tackling a regression problem. Per-
forming PCA as a precursor to finding a linear regressor is referred to as
principal components regression (PCR) and is motivated mainly through its
potential for denoising and hence reducing the variance of the resulting re-
gression error. There is, however, a danger inherent in this approach in that
what is important for the regression estimation is not the size of the variance
of the data, but how well it can be used to predict the output. It might be
that the high variance directions identified by PCA are uncorrelated with
the target, while a direction with relatively low variance nonetheless has
high predictive potential.

In this section we will begin to examine methods for measuring when
directions carry information useful for prediction. This will allow us again
to isolate directions that optimise the derived criterion. The key is to look
for relationships between two random variables.

In Section 5.3 we defined the covariance of two zero-mean univariate ran-
dom variables x and y as E[xy]. This is in contrast to the correlation coef-
ficient which normalises with respect to the variances of the two variables.
We now consider extending our consideration to multidimensional random
vectors.

Consider two multivariate random vectors giving rise to a dataset S con-
taining pairs (x,y) from two different spaces X and Y . We call such a
dataset paired in the sense that the process generating the data generates
items in pairs, one from X and one from Y .

Example 6.17 For example, if we have a set of labelled examples for
a supervised learning task, we can view it as a paired dataset by letting
the input space be X and the output space be Y . If the labels are binary
this makes examples from Y a Bernoulli sequence, but more generally for
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regression Y = R, and of course we can consider the case where Y = R
n or

indeed has a more complex structure.

We are interested in studying the covariance between the two parts of
a paired dataset even though those two parts live in different spaces. We
achieve this by using an approach similar to that adopted to study the
variance of random vectors. There we projected the data onto a direction
vector w to create a univariate random variable, whose mean and standard
deviation could subsequently be computed. Here we project the two parts
onto two separate directions specified by unit vectors wx and wy, to obtain
two random variables w′

xx and w′
yy that are again univariate and hence

whose covariance can be computed. In this way we can assess the relation
between x and y. Note that for the purposes of this exposition we are
assuming that the input space is the feature space. When we come to apply
this analysis in Section 6.7.1, we will introduce a kernel-defined feature space
for the first component only. We give a definition of a paired dataset in which
the two components correspond to distinct kernel mappings in Section 6.5.

Again following the analogy with the unsupervised case, given two di-
rections wx and wy, we can measure the covariance of the corresponding
random variables as

Ê
[
w′

xxw′
yy
]

= Ê
[
w′

xxy′wy

]
= w′

xÊ
[
xy′]wy = w′

xCxywy,

where we have used Cxy to denote the sample covariance matrix Ê [xy′]
between X and Y . If we consider two matrices X and Y whose ith rows are
the feature vectors of corresponding examples xi and yi, we can write

Cxy = Ê
[
xy′] =

1
�

�∑
i=1

xiy′
i =

1
�
X′Y.

Now that we are able to measure the covariance for a particular choice of
directions, it is natural to ask if we can choose the directions to maximise
this quantity. Hence, we would like to solve the following optimisation.

Computation 6.18 [Maximising Covariance] The directions wx, wy of
maximal covariance can be found as follows

maxwx,wy C(wx,wy) = w′
xCxywy = 1

�w
′
xX

′Ywy,
subject to ‖wx‖2 = ‖wy‖2 = 1.

(6.13)

We can again convert this to maximising a quotient by introducing an in-
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variance to scaling

max
wx,wy

C(wx,wy)
‖wx‖ ‖wy‖

= max
wx,wy

w′
xCxywy

‖wx‖ ‖wy‖
. (6.14)

Remark 6.19 [Relation to Rayleigh quotient] Note the similarity to the
Rayleigh quotient considered above, but in this case Cxy is not a square
matrix since its row dimension is equal to the dimension of X, while its
column dimension is given by the dimension of Y . Furthermore, even if
these dimensions were equal, Cxy would not be symmetric and here we are
optimising over two vectors.

Proposition 6.20 The directions that solve the maximal covariance opti-
misation (6.13) are the first singular vectors wx = u1 and wy = v1 of the
singular value decomposition of Cxy

Cxy = UΣV′;

the value of the covariance is given by the corresponding singular value σ1.

Proof Using the singular value decomposition of Cxy and taking into account
that U and V are orthornormal matrices so that, for example, ‖Vw‖ = ‖w‖
and any wx can be expressed as Uux for some ux, the solution to problem
(6.13) becomes

max
wx,wy :‖wx‖2=‖wy‖2=1

C(wx,wy) = max
ux,vy :‖Uux‖2=‖Vvy‖2=1

(Uux)′ CxyVvy

= max
ux,vy :‖ux‖2=‖vy‖2=1

u′
xU

′UΣV′Vvy

= max
ux,vy :‖ux‖2=‖vy‖2=1

u′
xΣvy.

The last line clearly has a maximum of the largest singular value σ1, when
we take ux = e1 and vy = e1 the first unit vector (albeit of different dimen-
sions). Hence, the original problem is solved by taking wx = u1 = Ue1 and
wy = v1 = Ve1, the first columns of U and V respectively.

Proposition 6.20 shows how to compute the directions that maximise the
covariance. If we wish to identify more than one direction, as we did for
example with the principal components, we must apply the same strategy
of projecting the data onto the orthogonal complement by deflation. From
equation (5.8), this corresponds to the operations

X ←− X
(
I − u1u′

1

)
and Y ←− Y

(
I − v1v′

1

)
.
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The resulting covariance matrix is therefore

1
�

(
I − u1u′

1

)
X′Y

(
I − v1v′

1

)
=

(
I − u1u′

1

)
UΣV′ (I − v1v′

1

)
= UΣV′ − σ1u1v′

1

= Cxy − σ1u1v′
1,

implying that this corresponds to the deflation procedure for singular value
decomposition given in equation (6.1). The next two directions of maximal
covariance will now be given by the second singular vectors u2 and v2 with
the value of the covariance given by σ2. Proceeding in similar fashion we
see that the singular vectors give the orthogonal directions of maximal co-
variance in descending order. This provides a series of directions in X and
in Y that have the property of being maximally covariant resulting in the
singular value decomposition of Cxy

Cxy =
�∑

i=1

σiuiv′
i.

Computation and dual form If we wish to avoid performing a singular
value decomposition of Cxy, for example when working in a kernel-defined
feature space, we can find the singular vectors through an eigenanalysis of
the matrix CxyC′

xy, to obtain U, and of C′
xyCxy, to obtain V. Incidentally,

this also reminds us that the singular directions are orthogonal, since they
are the eigenvectors of a symmetric matrix. Now observe that

C′
xyCxy =

1
�2

Y′XX′Y =
1
�2

Y′KxY,

where Kx is the kernel matrix associated with the space X. The dimension
of this system will be Ny, the same as that of the Y space. It follows from
a direct comparison with PCA that

uj =
1
σj

Cxyvj .

Hence, the projection of a new point φ (x) onto uj is given by

u′
jφ (x) =

1
�σj

v′
jY

′Xφ (x) =
�∑

i=1

αj
iκ (xi,x) ,

where

αj =
1

�σj
Yvj .
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Remark 6.21 [On stability analysis] We do not provide a stability analysis
for the features selected by maximising the covariance, though it is clear that
we can view them as eigenvectors of a corresponding eigen-decomposition
based on a sample estimation of covariances. Hence, similar techniques to
those used in Appendix A.2 could be used to show that provided the number
of features extracted is small compared to the size of the sample, we can
expect the test example performance to mimic closely that of the training
sample.

Alternative characterisation There is another characterisation of the
largest singular vectors that motivates their use in choosing a prediction
function from X to Y in the case of a supervised learning problem with
Y = R

n. We will discuss multi-variate regression in more detail at the
end of the chapter, but present the characterisation here to complement the
covariance approach presented above. The approach focuses on the choice
of the orthogonal matrices of the singular value decomposition.

Suppose that we seek orthogonal matrices Û and V̂ such that the columns
of S = XÛ and T = YV̂ are as similar as possible. By this we mean that
we seek to minimise a simple discrepancy D between S and T defined as

D(Û, V̂) =
m∑

i=1

|si − ti|2 +
n∑

i=m+1

|si|2 , (6.15)

where we have assumed that S has more columns than T. If we let T̄ =
[T,0], or in other words T is padded with 0s to the size of S, we have

D(Û, V̂) =
∥∥S − T̄

∥∥2

F
=
〈
S − T̄,S − T̄

〉
F

= 〈S,S〉F − 2
〈
S, T̄

〉
F

+
〈
T̄, T̄

〉
F

= trS′S − 2 trS′T + trT′T

= tr Û′X′XÛ − 2 tr Û′X′YV̂ + tr V̂′Y′YV̂

= trX′X + trY′Y − 2 tr Û′X′YV̂.

Hence, the maximum of D is obtained when tr Û′X′YV̂ is minimised. But
we have

tr Û′X′YV̂ = � tr Û′UΣV′V̂ = � tr ṼŨ
′
Σ,

for appropriately sized orthogonal matrices Ṽ and Ũ. Since multiplying
by an orthogonal matrix from the left will not change the two-norm of the
columns, the value of the expression is clearly maximised when ṼŨ

′
= I,
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the identity matrix. Hence, the choice of Û and V̂ that minimises D(Û, V̂)
is the orthogonal matrices of the singular value decomposition.

Before we continue our exploration of patterns that can be identified using
eigen-decompositions, we must consider a more expanded class of techniques
that solve the so-called generalised eigenvector problem.

6.4 The generalised eigenvector problem

A number of problems in kernel-based pattern analysis can be reduced to
solving a generalised eigenvalue problem, a standard problem in multivariate
statistics

Aw = λBw

with A, B symmetric matrices, B positive definite. Hence, the normal
eigenvalue problem is a special case obtained by taking B = I, the iden-
tity matrix. The problem arises as the solution of the maximisation of a
generalised Rayleigh quotient

ρ (w) =
w′Aw
w′Bw

,

which has a positive quadratic form rather than a simple norm squared in
the denominator. Since the ratio is invariant to rescaling of the vector w,
we can maximise the ratio by constraining the denominator to have value
1. Hence, the maximum quotient problem can be cast as the optimization
problem

max w′Aw
subject to w′Bw = 1.

(6.16)

Applying the Lagrange multiplier technique and differentiating with respect
to w we arrive at the generalised eigenvalue problem

Aw − λBw = 0. (6.17)

Since by assumption B is positive definite we can convert to a standard
eigenvalue problem by premultiplying by B−1 to obtain

B−1Aw = λw.

But note that although both A and B are assumed to be symmetric, B−1A
need not be. Hence we cannot make use of the main results of Section
3.1. In particular the eigenvectors will not in general be orthogonal. There
is, however, a related symmetric eigenvalue problem that reveals something
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about the structure of the eigenvectors of (6.16). Since B is positive definite
it possesses a symmetric square root B1/2 with the property that

B1/2B1/2 = B.

Consider premultiplying (6.17) by B1/2 and reparametrise the solution vec-
tor w as B−1/2v. We obtain the standard eigenvalue problem

B−1/2AB−1/2v = λv, (6.18)

where now the matrix B−1/2AB−1/2 = (B−1/2AB−1/2)′ is symmetric. Ap-
plying the results of Chapter 3, we can find a set of orthonormal eigenvector
solutions of (6.18) λi, vi. Hence, the solutions of (6.17) have the form

wi = B−1/2vi,

where v1, . . . ,v� are the orthonormal eigenvectors of (6.18) with the associ-
ated eigenvalues being the same. Since B1/2 is a bijection of the space R

�

we can write

ρ =
w′Aw
w′Bw

=

(
B1/2w

)′
B−1/2AB−1/2

(
B1/2w

)∥∥B1/2w
∥∥2

the generalised Rayleigh quotient is given by the associated Rayleigh quo-
tient for the standard eigenvalue problem (6.18) after the bijection B1/2 has
been applied. We can therefore see the generalised eigenvalue problem as
an eigenvalue problem in a transformed space. The following propositions
are simple consequences of these observations.

Proposition 6.22 Any vector v can be written as a linear combination
of the eigenvectors wi, i = 1, . . . , �. The generalised eigenvectors of the
problem Aw = λBw have the following generalised orthogonality properties:
if the eigenvalues are distinct, then in the metrics defined by A and B, the
eigenvectors are orthonormal

w′
iBwj = δij

w′
iAwj = δijλi.

Proof For i �= j we have (assuming without loss of generality that λj �= 0)

0 = v′
ivj = w′

iB
1/2B1/2wj = w′

iBwj =
1
λj

w′
iAwj ,

which gives the result for i �= j. Now consider

λi = λiv′
ivi = λiw′

iB
1/2B1/2wi = λiw′

iBwi = w′
iAwi,
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which covers the case of i = j.

Definition 6.23 [Conjugate vectors] The first property

w′
iBwj = δij , for i, j = 1, . . . , �,

is also referred to as conjugacy with respect to B, or equivalently that the
vectors wi are conjugate.

Proposition 6.24 There is a global maximum and minimum of the gener-
alised Rayleigh quotient. The quotient is bounded by the smallest and the
largest eigenvalue

ρ� ≤ ρ ≤ ρ1,

so that the global maximum ρ1 is attained by the associated eigenvector.

Remark 6.25 [Second derivatives] We can also study the stationary points,
by examining the second derivative or Hessian at the eigenvectors

H =
∂2ρ

∂w2
|w=wi =

2
w′

iBwi
(A − ρiB).

For all 1 < i < �, H has positive and negative eigenvalues, since(
B−1/2v1

)′
(A − ρiB)B−1/2v1 = w′

1Aw1 − ρi = ρ1 − ρi > 0,

while (
B−1/2v�

)′
(A − ρiB)B−1/2

v� = w′
�Aw� − ρi = ρ� − ρi < 0.

It follows that all the eigensolutions besides the largest and smallest are
saddle points.

Proposition 6.26 If λi, wi are the eigenvalues and eigenvectors of the
generalised eigenvalue problem

Aw = λBw,

then the matrix A can be decomposed as

A =
�∑

i=1

λiBwi (Bwi)
′ .
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Proof We can decompose

B−1/2AB−1/2 =
�∑

i=1

λiviv′
i,

implying that

A =
�∑

i=1

λiB1/2vi

(
B1/2vi

)′
=

�∑
i=1

λiBwi (Bwi)
′ ,

as required.

Definition 6.27 [Generalised deflation] The final proposition suggests how
we can deflate the matrix A in an iterative direct solution of the generalised
eigenvalue problem

Aw = λBw.

After finding a non-zero eigenvalue–eigenvector pair λ, w we deflate A by

A ←− A−λBw (Bw)′ = A−λBww′B′,

leaving B unchanged.

6.5 Canonical correlation analysis

We have looked at two ways of detecting stable patterns through the use of
eigen-decompositions firstly to optimise variance of the training data in ker-
nel PCA and secondly to maximise the covariance between two views of the
data typically input and output vectors. We now again consider the case in
which we have two views of the data which are paired in the sense that each
example as a pair of representations. This situation is sometimes referred
to as a paired dataset. We will show how to find correlations between the
two views.

An extreme case would be where the second view is simply the labels
of the examples. In general we are interested here in cases where we have
a more complex ‘output’ that amounts to a different representation of the
same object.

Example 6.28 A set of documents containing each document in two dif-
ferent languages is a paired dataset. The two versions give different views of
the same underlying object, in this case the semantic content of the docu-
ment. Such a dataset is known as a parallel corpus. By seeking correlations
between the two views, we might hope to extract features that bring out
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the underlying semantic content. The fact that a pattern has been found
in both views suggests that it is not related to the irrelevant representation
specific aspects of one or other view, but rather to the common underlying
semantic content. This example will be explored further in Chapter 10.

This section will develop the methodology for finding these common pat-
terns in different views through seeking correlations between projection val-
ues from the two views. Using an appropriate regularisation technique, the
methods are extended to kernel-defined feature spaces.

Recall that in Section 5.3 we defined the correlation between two zero-
mean univariate random variables x and y to be

ρ = corr (x, y) =
E [xy]√

E [xx] E [yy]
=

cov(x, y)√
var(x)

√
var(y)

.

Definition 6.29 [Paired dataset] A paired dataset is created when each
object x ∈ X can be viewed through two distinct projections into two feature
spaces

φa : x −→ Fa and φb : x −→ Fb,

where Fa is the feature space associated with one representation and Fb the
feature space for the other. Figure 6.3 illustrates this configuration. The
corresponding kernel functions are denoted κa and κb. Hence, we have a
multivariate random vector (φa (x) ,φb (x)). Assume we are given a training
set

S = {(φa (x1) ,φb (x1)) , . . . , (φa (x�) ,φb (x�))}
drawn independently at random according to the underlying distribution.
We will refer to such a set as a paired or aligned dataset in the feature space
defined by the kernels κa and κb.

We now seek to maximise the empirical correlation between xa = w′
aφa (x)

and xb = w′
bφb (x) over the projection directions wa and wb

max ρ =
Ê [xaxb]√

Ê [xaxa] Ê [xbxb]

=
Ê
[
w′

aφa (x) φb (x)′ wb

]√
Ê
[
w′

aφa (x) φa (x)′ wa

]
Ê
[
w′

bφb (x) φb (x)′ wb

]
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φa(x) φb(x)

x

Fig. 6.3. The two embeddings of a paired dataset.

=
w′

aCabwb√
w′

aCaawaw′
bCbbwb

, (6.19)

where we have decomposed the empirical covariance matrix as follows

C =
1
�

�∑
i=1

(φa (x) ,φb (x)) (φa (x) , φb (x))′

=

(
1
�

∑�
i=1 φa (x) φa (x)′ 1

�

∑�
i=1 φb (x) φa (x)′

1
�

∑�
i=1 φa (x) φb (x)′ 1

�

∑�
i=1 φb (x) φb (x)′

)

=
(
Caa Cba

Cab Cbb

)
.

This optimisation is very similar to that given in (6.14). The only differ-
ence is that here the denominator of the quotient measures the norm of the
projection vectors differently from the covariance case. In the current opti-
misation the vectors wa and wb are again only determined up to direction
since rescaling wa by λa and wb by λb results in the quotient

λaλbw′
aCabwb√

λ2
aw′

aCaawaλ
2
bw

′
bCbbwb

=
λaλbw′

aCabwb

λaλb

√
w′

aCaawaw′
bCbbwb

=
w′

aCabwb√
w′

aCaawaw′
bCbbwb

.

This implies that we can constrain the two terms in the denominator to
individually have value 1. Hence, the problem is solved by the following
optimisation problem.

Computation 6.30 [CCA] Given a paired dataset with covariance matrix
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Cab, canonical correlation analysis finds the directions wa,wb that maximise
the correlation of corresponding projections by solving

maxwa,wb
w′

aCabwb

subject to w′
aCaawa = 1 and w′

bCbbwb = 1.
(6.20)

Solving CCA Applying the Lagrange multiplier technique to the optimi-
sation (6.20) gives

max w′
aCabwb −

λa

2
(
w′

aCaawa − 1
)− λy

2
(
w′

bCbbwb − 1
)
.

Taking derivatives with respect to wa and wb we obtain the equations

Cabwb − λaCaawa = 0 and Cbawa − λbCbbwb = 0. (6.21)

Subtracting w′
a times the first from w′

b times the second we have

λaw′
aCaawa − λbw′

bCbbwb = 0,

which, taking into account the two constraints, implies λa = λb. Using λ

to denote this value we obtain the following algorithm for computing the
correlations.

Algorithm 6.31 [Primal CCA] The following method finds the directions
of maximal correlation:

Input covariance matrices Caa, Cbb, Cba and Cab

Process solve the generalised eigenvalue problem:(
0 Cab

Cba 0

)(
wa

wb

)
= λ

(
Caa 0
0 Cbb

)(
wa

wb

)
Output eigenvectors and eigenvalues wj

a, wj
b and λj > 0, j = 1, . . . , �.

(6.22)

This is an example of a generalised eigenvalue problem described in the
last section. Note that the value of the eigenvalue for a particular eigenvector
gives the size of the correlation since w′

a times the top portion of (6.22) gives

ρ = w′
aCabwb = λaw′

aCaawa = λ.

Hence, we have all eigenvalues lying in the interval [−1, +1], with each λi

and eigenvector (
wa

wb

)
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paired with an eigenvalue −λi with eigenvector(
wa

−wb

)
.

We are therefore only interested in half the spectrum which we can take to
be the positive eigenvalues. The eigenvectors corresponding to the largest
eigenvalues are those that identify the strongest correlations. Note that in
this case by Proposition 6.22 the eigenvectors will be conjugate with respect
to the matrix (

Caa 0
0 Cbb

)
,

so that for i �= j we have

0 =

(
wj

a

wj
b

)′(
Caa 0
0 Cbb

)(
wi

a

wi
b

)
=
(
wj

a

)′
Caawi

a +
(
wj

b

)′
Cbbwi

b

and

0 =

(
wj

a

wj
b

)′(
Caa 0
0 Cbb

)(
wi

a

−wi
b

)
=
(
wj

a

)′
Caawi

a −
(
wj

b

)′
Cbbwi

b

yielding (
wj

a

)′
Caawi

a = 0 =
(
wj

b

)′
Cbbwi

b.

This implies that, as with PCA, we obtain a diagonal covariance matrix if
we project the data into the coordinate system defined by the eigenvectors,
whether we project each view independently or simply the sum of the pro-
jections of the two views in the common space. The directions themselves
will not, however, be orthogonal in the standard inner product of the feature
space.

Dual form of CCA Naturally we wish to solve the problem in the dual
formulation. Hence, we consider expressing wa and wb in terms of their
respective parts of the training sample by creating a matrix Xa whose rows
are the vectors φa (xi), i = 1, . . . , � and the matrix Xb with rows φb (xi)

wa = X′
aαa and wb = X′

bαb.

Substituting into (6.20) gives

max α′
aXaX′

aXbX′
bαb

subject to α′
aXaX′

aXaX′
aαa = 1 and α′

bXbX′
bXbX′

bαb = 1,
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or equivalently the following optimisation problem.

Computation 6.32 [Kernel CCA] Given a paised dataset with respect to
kernels κa and κb, kernel canonical correlation analysis finds the directions
of maximal correlation by solving

maxαa,αb
α′

aKaKbαb

subject to α′
aK

2
aαa = 1 and α′

bK
2
bαb = 1,

where Ka and Kb are the kernel matrices for the two representations.

Figure 6.4 shows the two feature spaces with the projections of 7 points.
The shading corresponds to the value of the projection on the first correlation
direction using a Gaussian kernel in each feature space.

Overfitting in CCA Again applying the Lagrangian techniques this leads
to the equations

KaKbαb − λK2
aαa = 0 and KbKaαa − λK2

bαb = 0.

These equations highlight the potential problem of overfitting that arises in
high-dimensional feature spaces. If the dimension Na of the feature space
Fa satisfies Na � �, it is likely that the data will be linearly independent
in the feature space. For example this is always true for a Gaussian kernel.
But if the data are linearly independent in Fa the matrix Ka will be full
rank and hence invertible. This gives

αa =
1
λ
K−1

a Kbαb (6.23)

and so

K2
bαb − λ2K2

bαb = 0.

This equation will hold for all vectors αb with λ = 1. Hence, we are able to
find perfect correlations between arbitrary projections in Fb and an appro-
priate choice of the projection in Fa. Clearly these correlations are failing to
distinguish spurious features from those capturing the underlying semantics.
This is perhaps most clearly demonstrated if we consider a random permu-
tation σ of the examples for the second projections to create the vectors(

φa (xi) ,φb

(
xσ(i)

))
, i = 1, . . . , �.

The kernel matrix Ka will be unchanged and hence still invertible. We are
therefore still able to find perfect correlations even though the underlying
semantics are no longer correlated in the two representations.
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Fig. 6.4. Two feature spaces for a paired dataset with shading indicating the value
of the projection onto the first correlation direction.

These observations show that the class of pattern functions we have se-
lected are too flexible. We must introduce some regularisation to control the
flexibility. We must, therefore, investigate the statistical stability of CCA,
if we are to ensure that meaningful patterns are found.
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Stability analysis of CCA Maximising correlation corresponds to min-
imising the empirical expectation of the pattern function

gwa,wb
(x) =

∥∥w′
aφa (x) − w′

bφb (x)
∥∥2 ,

subject to the same conditions, since

Ê

[∥∥w′
aφa (x) − w′

bφb (x)
∥∥2
]

= Ê

[∥∥w′
aφa (x)

∥∥2
]

+ Ê

[∥∥w′
bφb (x)

∥∥2
]
−

2Ê
[〈

w′
aφa (x) ,w′

bφb (x)
〉]

= 2
(
1 − w′

aCabwb

)
.

The function gwa,wb
(x) ≈ 0 captures the property of the pattern that we

are seeking. It assures us that the feature w′
aφa (x) that can be obtained

from one view of the data is almost identical to w′
bφb (x) computable from

the second view. Such pairs of features are therefore able to capture un-
derlying properties of the data that are present in both views. If our as-
sumption is correct, that what is essential is common to both views, then
these features must be capturing some important properties. We can ob-
tain a stability analysis of the function by simply viewing gwa,wb

(x) as a
regression function, albeit with special structure, attempting to learn the
constant 0 function. Applying the standard Rademacher bound, observe
that the empirical expected value of gwa,wb

(x) is simply 2 (1 − w′
aCabwb).

Furthermore, we can use the same technique as that described in Theorem
A.3 of Appendix A.2 to represent the function as a linear function in the
feature space determined by the quadratic kernel

κ̂ (x, z) = (κa (x, z) + κb (x, z))2 ,

with norm-squared

2
∥∥waw′

b

∥∥2

F
= 2 tr

(
wbw′

awaw′
b

)
= ‖wa‖2 ‖wb‖2 .

This gives the following theorem.

Theorem 6.33 Fix A and B in R
+. If we obtain a feature given by the

pattern function gwa,wb
(x) with ‖wa‖ ≤ A and ‖wb‖ ≤ B, on a paired

training set S of size � in the feature space defined by the kernels κa and κb

drawn i.i.d. according to a distribution D, then with probability greater than
1− δ over the generation of S, the expected value of gwa,wb

(x) on new data
is bounded by

ED [gwa,wb
(x)] ≤ 2

(
1 − w′

aCabwb

)
+
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�

�∑
i=1

(κa(xi,xi) + κb(xi,xi))
2 + 3R2

√
ln(2/δ)

2�
,

where

R2 = max
x∈ supp(D)

(κa(x,x) + κb(x,x)) .

The theorem indicates that the empirical value of the pattern function
will be close to its expectation, provided that the norms of the two direc-
tion vectors are controlled. Hence, we must trade-off between finding good
correlations while not allowing the norms to become too large.

Regularisation of CCA Theorem 6.33 shows that the quality of the gen-
eralisation of the associated pattern function is controlled by the product
of the norms of the weight vectors wa and wb. We therefore introduce a
penalty on the norms of these weight vectors. This gives rise to the primal
optimisation problem.

Computation 6.34 [Regularised CCA] The regularised version of CCA is
solved by the optimisation:

max
wa,wb

ρ (wa,wb) (6.24)

=
w′

aCabwb√(
(1 − τa)w′

aCaawa + τa ‖wa‖2
)(

(1 − τ b)w′
bCbbwb + τ b ‖wb‖2

) ,

where the two regularisation parameters τa and τ b control the flexibility in
the two feature spaces.

Notice that τa, τ b interpolate smoothly between the maximisation of the
correlation and the maximisation of the covariance described in Section 6.3.
Dualising we arrive at the following optimisation problem.

Computation 6.35 [Kernel regularised CCA] The dual regularised CCA
is solved by the optimisation

maxαa,αb
α′

aKaKbαb

subject to (1 − τa) α′
aK

2
aαa + τaα

′
aKaαa = 1

and (1 − τ b) α′
bK

2
bαb + τ bα

′
bKbαb = 1.
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Note that as with ridge regression we regularised by penalising the norms
of the weight vectors. Nonetheless, the resulting form of the equations ob-
tained does not in this case correspond to a simple addition to the diagonal
of the kernel matrix, the so-called ridge of ridge regression.

Solving dual regularised CCA Using the Lagrangian technique, we can
now obtain the equations

KaKbαb − λ (1 − τa)K2
aαa − λτaKaαa = 0

and KbKaαa − λ (1 − τ b)K2
bαb − λτ bKbαb = 0,

hence forming the generalised eigenvalue problem(
0 KaKb

KbKa 0

)(
αa

αb

)
= λ

(
(1 − τa)K2

a + τaKa 0
0 (1 − τ b)K2

b + τ bKb

)(
αa

αb

)
.

One difficulty with this approach can be the size of the resulting generalised
eigenvalue problem, since it will be twice the size of the training set. A
method of tackling this is to use the partial Gram–Schmidt orthonormali-
sation of the data in the feature space to form a lower-dimensional approx-
imation to the feature representation of the data. As described in Section
5.2 this is equivalent to performing an incomplete Cholesky decomposition
of the kernel matrices

Ka = R′
aRa and Kb = R′

bRb,

with the columns of Ra and Rb being the new feature vectors of the train-
ing points in the orthonormal basis created by the Gram–Schmidt process.
Performing an incomplete Cholesky decomposition ensures that Ra ∈ R

na×�

has linearly independent rows so that RaR′
a is invertible. The same holds

for RbR′
b with Rb ∈ R

nb×�.
We can now view our problem as a primal canonical correlation analysis

with the feature vectors given by the columns of Ra and Rb. This leads to
the equations

RaR′
bwb − λ (1 − τa)RaR′

awa − λτawa = 0 (6.25)

and RbR′
awa − λ (1 − τ b)RbR′

bwb − λτ bwb = 0.

From the first equation, we can now express wa as

wa =
1
λ

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bwb,
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which on substitution in the second gives the normal (albeit non-symmetric)
eigenvalue problem(
(1 − τ b)RbR′

b + τ bI
)−1 RbR′

a

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bwb = λ2wb

of dimension nb × nb. After performing a full Cholesky decomposition

R′R =
(
(1 − τ b)RbR′

b + τ bI
)

of the non-singular matrix on the right hand side, we then take

ub = Rwb,

which using the fact that the transpose and inversion operations commute
leads to the equivalent symmetric eigenvalue problem(

R′)−1 RbR′
a

(
(1 − τa)RaR′

a + τaI
)−1 RaR′

bR
−1ub = λ2ub.

By symmetry we could have created an eigenvalue problem of dimension
na × na. Hence, the size of the eigenvalue problem can be reduced to the
smaller of the two partial Gram–Schmidt dimensions.

We can of course recover the full unapproximated kernel canonical cor-
relation analysis if we simply choose na = rank (Ka) and nb = rank (Kb).
Even in this case we have avoided the need to solve a generalised eigenvalue
problem, while at the same time reducing the dimension of the problem by
at least a factor of two since min (na, nb) ≤ �. The overall algorithm is as
follows.

Algorithm 6.36 [Kernel CCA] Kernel canonical correlation analysis can
be solved as shown in Code Fragment 6.3.

This means that we can have two views of an object that together create
a paired dataset S through two different representations or kernels. We
use this procedure to compute correlations between the two sets that are
stable in the sense that they capture properties of the underlying distribution
rather than of the particular training set or view.

Remark 6.37 [Bilingual corpora] Example 6.28 has already mentioned as
examples of paired datasets so-called parallel corpora in which each docu-
ment appears with its translation to a second language. We can apply the
kernel canonical correlation analysis to such a corpus using kernels for text
that will be discussed in Chapter 10. This will provide a means of projecting
documents from either language into a common semantic space.
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Input kernel matrices Ka and Kb with parameters τa and τ b

Process Perform (incomplete) Cholesky decompositions:
Ka = R′

aRa and Kb = R′
bRb of dimensions na and nb;

perform a complete Cholesky decomposition:
(1 − τ b)RbR′

b + τ bI = R′R
solve the eigenvalue problem:
(R′)−1 RbR′

a ((1 − τa)RaR′
a + τaI)

−1 RaR′
bR

−1ub = λ2ub

to give each λj , uj
b

compute wj
b = R−1ub, wj

b = wj
b/‖wj

b‖
wj

a = 1
λj

((1 − τa)RaR′
a + τaI)

−1 RaR′
bw

j
b

wj
a = wj

a/‖wj
a‖

Output eigenvectors and values wj
a, wj

b and λj > 0,.
j = 1, . . . ,min (na, nb)

.

Code Fragment 6.3. Pseudocode for the kernel CCA algorithm.

Remark 6.38 [More than 2 representations] Notice that a simple manipu-
lation of equation (6.22) gives the alternative formulation(

Caa Cab

Cba Cbb

)(
wa

wb

)
= (1 + λ)

(
Caa 0
0 Cbb

)(
wa

wb

)
which suggests a natural generalisation, namely seeking correlations between
three or more views. Given k multivariate random variables, it reduces to
the generalised eigenvalue problem⎛⎜⎜⎜⎜⎝

C11 C12 · · · C1k

C21 C22 · · · ...
...

...
. . .

...
Ck1 · · · · · · Ckk

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

w1
...
...
wk

⎞⎟⎟⎟⎟⎠

= ρ

⎛⎜⎜⎜⎝
C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...
0 0 · · · Ckk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

w1
...
...
wk

⎞⎟⎟⎟⎟⎠ ,

where we use Cij to denote the covariance matrix between the ith and jth
views. Note that for k > 2 there is no obvious way of reducing such a
generalised eigenvalue problem to a lower-dimensional eigenvalue problem
as was possible using the Cholesky decomposition in the case k = 2.
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6.6 Fisher discriminant analysis II

We considered the Fisher discriminant in Section 5.4, arriving at a dual
formulation that could be solved by solving a set of linear equations. We
revisit it here to highlight the fact that it can also be viewed as the solution
of a generalised eigenvalue problem and so is closely related to the correla-
tion and covariance analysis we have been studying in this chapter. Recall
that Computation 5.14 characterised the regularised Fisher discriminant as
choosing its discriminant vector to maximise the quotient

(µ+
w − µ−

w)2(
σ+

w

)2 +
(
σ−

w

)2 + λ ‖w‖2
.

This can be expressed using the notation of Section 5.4 as

max
w

w′X′yy′Xw
λw′w + �

2�+�−w′X′BXw
= max

w

w′Ew
w′Fw

,

where

E = X′yy′X and F = λI +
�

2�+�−
X′BX.

Hence, the solution is the eigenvector corresponding to the largest eigenvalue
of the generalised eigenvalue problem

Ew = µFw,

as outlined in Section 6.4. Note that the matrix E has rank 1 since it can
be decomposed as

E =
(
X′y

) (
y′X

)
,

where X′y has just one column. This implies that only the first eigenvector
contains useful information and that it can be found by the matrix inversion
procedure described in Section 5.4.

6.7 Methods for linear regression

The previous section showed how the Fisher discriminant is equivalent to
choosing a feature by solving a generalised eigenvalue problem and then
defining a threshold in that one-dimensional space. This section will return
to the problem of regression and consider how the feature spaces derived
from solving eigenvalue problems might be used to enhance regression accu-
racy.

We first met regression in Chapter 2 when we considered simple linear
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regression subsequently augmented with a regularisation of the regression
vector w to create so-called ridge regression defined in Computation 7.21.
In this section we consider performing linear regression using a new set
of coordinates that has been extracted from the data with the methods
presented above. This will lead to an easier understanding of some popular
regression algorithms.

First recall the optimisation of least squares regression. We seek a vector
w that solves

min
w

‖Xw − y‖2
2 ,

where as usual the rows of X contain the feature vectors of the examples
and the desired outputs are stored in the vector y. If we wish to consider
a more general multivariate regression both w and y become matrices W
and Y and the norm is taken as the Frobenius matrix norm

min
W

‖XW − Y‖2
F ,

since this is equivalent to summing the squared norms of the individual
errors.

Principal components regression Perhaps the simplest method to con-
sider is the use of the features returned by PCA. If we were to use the first
k eigenvectors of X′X as our features and leave Y unchanged, this would
correspond to performing PCA and regressing in the feature space given by
the first k principal axes, so the data matrix now becomes XUk, where Uk

contains the first k columns of the matrix U from the singular value decom-
position X′ = UΣV′. Using the fact that premultiplying by an orthogonal
matrix does not affect the norm, we obtain

min
B

‖XUkB − Y‖2
F = min

B

∥∥V′VΣ′U′UkB − V′Y
∥∥2

F

= min
B

∥∥Σ′
kB − V′Y

∥∥2

F
,

where Σk is the matrix obtained by taking the first k rows of Σ. Letting
Σ−1

k denote the matrix obtained from Σk by inverting its diagonal elements,
we have Σ−1

k Σ′
k = Ik, so the solution B with minimal norm is given by

B = Σ−1
k V′Y = Σ̄−1

k V′
kY,

where Vk contains the first k columns of V and Σ̄−1
k is the square matrix

containing the first k columns of Σ−1
k . It follows from the singular value

decomposition that

V′
k = Σ̄−1

k U′
kX

′, (6.26)
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so we can also write

B = Σ̄−2
k U′

kX
′Y.

This gives the primal form emphasising that the components are computed
by an inner product between the corresponding feature vectors uj that form
the columns of U and the data matrix X′Y weighted by the inverse of the
corresponding eigenvalue.

If we recall that V contains the eigenvectors vj of the kernel matrix and
that kernel PCA identifies the dual variables of the directions uj as

1
σj

vj ,

it follows from equation (6.26) that the regression coefficient for the jth
principal component is given by the inner product between its dual rep-
resentation and the target outputs again with an appropriate weighting of
the inverse of the corresponding singular value. We can therefore write the
resulting regression function for the univariate case in the dual form as

f (x) =
k∑

j=1

1
σj

�∑
s=1

vjsys

�∑
i=1

1
σj

vjiκ (xi,x) ,

where vjs denotes the sth component of the jth eigenvector vj . Hence

f (x) =
�∑

i=1

αiκ (xi,x)

where

α =
k∑

j=1

1
λj

(
v′

jy
)
vj .

The form of the solution has an intuitive feel in that we work out the covari-
ances with the target values of the different eigenvectors and weight their
contribution to α proportionately. This also implies that we can continue
to add additional dimensions without recomputing the previous coefficients
in the primal space but by simply adding in a vector to α in the dual resp-
resentation. This is summarised in Algorithm 6.39.

Algorithm 6.39 [Principal components regression] The dual principal com-
ponents regression (PCR) algorithm is given in Code Fragment 6.4.
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input Data S = {x1, . . . ,x�} , dimension k and
target output vectors ys, s = 1, . . . , m.

process Kij = κ (xi,xj), i, j = 1, . . . , �
K = K − 1

� jj
′K − 1

�Kjj′ + 1
�2 (j′Kj) jj′,

[V,Λ] = eig (K)
αs =

∑k
j=1

1
λj

(
v′

jy
s
)
vj , s = 1, . . . , m.

output Regression functions fs (x) =
∑�

i=1 αs
i κ (xi,x), s = 1, . . . , m.

Code Fragment 6.4. Pseudocode for dual principal components regression.

Regression features from maximal covariance We can see from the
previous example that the critical measure for the different coordinates is
their covariance with the matrix X′Y, since the regression coefficient is pro-
portional to this quantity. This suggests that rather than using PCA to
choose the features, we should select directions that maximise the covari-
ance. Proposition 6.20 showed that the directions that maximise the co-
variance are given by the singular vectors of the matrix X′Y. Furthermore,
the characterisation of the minimisers of equation (6.15) as the orthogonal
matrices of the singular value decomposition of X′Y suggests that they may
provide a useful set of features when solving a regression problem from an
input space X = R

n to an output space Y = R
m. There is an implicit re-

striction as there are only m non-zero singular values of the matrix X′Y. We
must therefore consider performing regression of the variables Y in terms of
XUk, where Uk is the matrix formed of the first k ≤ m columns of U. We
seek a k × m matrix of coefficients B that solves the optimisation

min
B

‖XUkB − Y‖2
F = min

B
〈XUkB − Y,XUkB − Y〉F

= min
B

(
tr(B′U′

kX
′XUkB) − 2 tr(B′U′

kX
′Y)

+ tr(Y′Y)
)

= min
B

(
tr(B′U′

kX
′XUkB) − 2 tr(B′U′

kX
′Y)

)
.

The final regression coefficients are given by UkB. We seek the minimum by
computing the gradient with respect to B and setting to zero. This results
in the equation

U′
kX

′XUkB = U′
kX

′Y = U′
kUΣV′ = ΣkV′

k.
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The solution for B can be computed using, for example, a Cholesky decom-
position of U′

kX
′XUk, though for the case where k = 1, it is given by

B =
σ1

u′
1X′Xu1

v′
1.

If we wish to compute the dual representation of this regression coefficient,
we must express

u1B =
σ1

u′
1X′Xu1

u1v′
1 = X′α,

for some α. By observing that u1 = 1
σ1

X′Yv1 we obtain

α =
1

u′
1X′Xu1

Yv1v′
1.

Note that the 1
σ1

Yv1 are the dual variables of u1, so that we again see
the dual variables of the feature playing a role in determining the dual
representation of the regression coefficients. For k > 1, there is no avoiding
solving a system of linear equations.

When we compare PCR and the use of maximal covariance features, PCR
has two advantages. Firstly, the coefficients can be obtained by simple inner
products rather than solving linear equations, and secondly, the restriction
to take k ≤ m does not apply. The disadvantage of PCR is that the choice of
features does not take into account the output vectors Y so that the features
are unable to align with the maximal covariance directions. As discussed
above the features that carry the regression information may be of relatively
low variance and so could potentially be removed by the PCA phase of the
algorithm.

The next section will describe an algorithm known as partial least squares
that combines the advantages of both methods while further improving the
covariance obtained and providing a simple method for iteratively computing
the feature directions.

6.7.1 Partial least squares

When developing a regression algorithm, it appears that it may not be the
variance of the inputs, but their covariance with the target that is more
important. The partial least squares approach uses the covariance to guide
the selection of features before performing least-squares regression in the
derived feature space. It is very popular in the field of chemometrics, where
high-dimensional and correlated representations are commonplace. This sit-
uation will also arise if we use kernels to project the data into spaces where
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the new coordinates are far from uncorrelated and where the dimension of
the space is much higher than the sample size. The combination of PLS
with kernels produces a powerful algorithm that we will describe in the next
subsection after first deriving the primal version here.

Our first goal is to find the directions of maximum covariance. Since we
have already described in Section 6.3 that these are computed by the singular
value decomposition of X′Y and have further discussed the difficulties of
using the resulting features at the end of the previous section, it seems a
contradiction that we should be able to further improve the covariance. This
is certainly true of the first direction and indeed the first direction that is
chosen by the partial least squares algorithm is that given by the singular
vector corresponding to the largest singular value. Consider now performing
regression using only this first direction. The regression coefficient is the one
for the case k = 1 given in the previous subsection as bv′

1, where

b =
σ1

u′
1X′Xu1

,

while the approximation of Y will be given by

bXu1v′
1.

Hence, the values across the training set of the hidden feature that has been
used are given in the vector Xu1. This suggests that rather than deflate X′Y
by σ1u1v′

1 as required for the singular value decomposition, we deflate X
by projecting its columns into the space orthogonal to Xu1. Using equation
(5.8) which gives the projection matrix for a normalised vector w as(

I − ww′) ,

we obtain the deflation of X = X1 as

X2 =
(
I − X1u1u′

1X
′
1

u′
1X

′
1X1u1

)
X1 = X1−

X1u1u′
1X

′
1X1

u′
1X

′
1X1u1

= X1

(
I − u1u′

1X
′
1X1

u′
1X

′
1X1u1

)
.

(6.27)
If we now recursively choose a new direction, the result will be that the
vector of values of the next hidden feature will necessarily be orthogonal
to Xu1 since it will be a linear combination of the columns of the deflated
matrix all of which are othogonal to that vector.

Remark 6.40 [Conjugacy] It is important to distinguish between the or-
thogonality between the values of a feature across the training examples,
and the orthogonality of the feature vectors. Vectors that satisfy the or-
thogonality considered here are referred to as conjugate. Furthermore, this
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will imply that the coefficients can be computed iteratively at each stage
since there can be no interaction between a set of conjugate features.

Remark 6.41 [Conjugacy of eigenvectors] It may seem surprising that de-
flating using Xu1 leads to orthogonal features when, for an eigenvalue de-
composition, we deflate by the equivalent of u1; that is, the first eigenvector.
The reason that the eigenvalue deflation leads to conjugate features is that
for the eigenvalue case Xu1 = σ1v1 is the first eigenvector of the kernel ma-
trix. Hence, using the eigenvectors results in features that are automatically
conjugate.

Since we have removed precisely the direction that contributed to the
maximal covariance, namely Xu1, the maximal covariance of the deflated
matrix must be at least as large as σ2, the second singular value of the
original matrix. In general, the covariance of the deflated matrix will be
larger than σ2. Furthermore, this also means that the restriction to k ≤ m

no longer applies since we do not need to deflate Y at all. We summarise
the PLS feature extraction in Algorithm 6.42.

Algorithm 6.42 [PLS feature extraction] The PLS feature extraction al-
gorithm is given in Code Fragment 6.5.

input Data matrix X ∈ R
�×N , dimension k, target vectors Y ∈ R

�×m.
process X1 = X

for j = 1, . . . , k
let uj ,vj , σj be the first singular vector/value of X′

jY,

Xj+1 =
(
I − Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)
Xj

end
output Feature directions uj , j = 1, . . . , k.

Code Fragment 6.5. Pseudocode for PLS feature extraction.

Remark 6.43 [Deflating Y] We can if we wish use a similar deflation strat-
egy for Y giving, for example

Y2 =
(
I − X1u1u′

1X
′
1

u′
1X

′
1X1u1

)
Y.

Surprisingly even if we do, the fact that we are only removing the explained
covariance means it will have no effect on the extraction of subsequent fea-
tures. An alternative way of seeing this is that we are projecting into the
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space spanned by the columns of X2 and so are only removing components
parallel to X1u1. This also ensures that we can continue to extract hidden
features as long as there continues to be explainable variance in Y, typically
for values of k > m. Deflating Y will, however, be needed for dual partial
least squares.

Remark 6.44 [Relation to Gram–Schmidt orthonormalisation] For one-
dimensional outputs the PLS feature extraction can be viewed as a Gram–
Schmidt orthonormalisation of the so-called Krylov space of vectors

X′y,
(
X′X

)1X′y, . . . ,
(
X′X

)k−1 X′y

with respect to the inner product

〈a,b〉 = a′(X′X
)
b.

It is also closely related to the conjugate gradient method as applied to
minimising the expression

1
2
u′(X′X

)
u − yX′u.

Orthogonality and conjugacy of PLS features There are some nice
properties of the intermediate quantities computed in the algorithm. For
example the vectors ui are not only conjugate but also orthogonal as vectors,
as the following derivation demonstrates. Suppose i < j, then we can write

Xj = Z
(
Xi −

Xiuiu′
iX

′
iXi

u′
iX

′
iXiui

)
,

for some matrix Z. Hence

Xjui = Z
(
Xi −

Xiuiu′
iX

′
iXi

u′
iX

′
iXiui

)
ui = 0. (6.28)

Note that uj is in the span of the rows of Xj , that is uj = X′
jα, for some

α. It follows that

u′
jui = α′Xjui = 0.

Furthermore, if we let

pj =
X′

jXjuj

u′
jX

′
jXjuj

,
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we have u′
ipj = 0 for i < j. This follows from

u′
ipj =

u′
iX

′
jXjuj

u′
jX

′
jXjuj

= 0, (6.29)

again from equation (6.28). Furthermore, we clearly have u′
jpj = 1. The

projection of Xj can also now be expressed as

Xj+1 = Xj

(
I − uju′

jX
′
jXj

u′
jX

′
jXjuj

)
= Xj

(
I − ujp′

j

)
. (6.30)

Computing the regression coefficients If we consider a test point with
feature vector φ (x) the transformations that we perform at each step should
also be applied to φ1 (x) = φ (x) to create a series of feature vectors

φj+1 (x)′ = φj (x)′
(
I − ujp′

j

)
.

This is the same operation that is performed on the rows of Xj in equation
(6.30). We can now write

φ (x)′ = φk+1 (x)′ +
k∑

j=1

φj (x)′ ujp′
j .

The feature vector that we need for the regression φ̂ (x) has components

φ̂ (x) =
(
φj (x)′ uj

)k
j=1

,

since these are the projections of the residual vector at stage j onto the next
feature vector uj . Rather than compute φj (x)′ iteratively, consider using
the inner products between the original φ (x)′ and the feature vectors uj

stored as the columns of the matrix U

φ (x)′ U = φk+1 (x)′ U +
k∑

j=1

φj (x)′ ujp′
jU

= φk+1 (x)′ U + φ̂ (x)′ P′U,

where P is the matrix whose columns are pj , j = 1, . . . , k. Finally, since for
s > j, (I − usp′

s)uj = uj , we can write

φk+1 (x)′ uj = φk (x)′
(
I − ukp′

k

)
uj = 0, for j = 1, . . . , k.

It follows that the new feature vector can be expressed as

φ̂ (x)′ = φ (x)′ U
(
P′U

)−1 .
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As observed above the regression coefficients for the jth dimension of the
new feature vector is

σj

u′
jX

′
jXjuj

v′
j ,

where vj is the complementary singular vector associated with uj so that

σjvi = Y′Xiui

It follows that the overall regression coefficients can be computed as

W = U
(
P′U

)−1 C′, (6.31)

where C is the matrix with columns

cj =
Y′Xjuj

u′
jX

′
jXjuj

.

This appears to need a matrix inversion, but equation (6.29) implies that
the matrix P′U is upper triangular with constant diagonal 1 so that the
computation of (

P′U
)−1 C′

only involves the solution of m sets of k linear equations in k unknowns with
an upper triangular matrix.

Iterative computation of singular vectors The final promised ingredi-
ent of the new algorithm is an iterative method for computing the maximal
singular value and associated singular vectors. The technique is known as
the iterative power method and can also be used to find the largest eigen-
value of a matrix. It simply involves repeatedly multiplying a random initial
vector by the matrix and then renormalising. Supposing that ZΛZ′ is the
eigen-decomposition of a matrix A, then the computation

Asx =
(
ZΛZ′)s x = ZΛsZ′x ≈ z1λ

s
1z

′
1x

shows that the vector converges to the largest eigenvector and the renormal-
isation coefficient to the largest eigenvalue provided z′1x �= 0.

In general this is not very efficient, but in the case of low-rank matrices
such as Cxy when the output dimension m is small, it proves very effective.
Indeed for the case when m = 1 a single iteration is sufficient to find the
exact solution. Hence, for solving a standard regression problem this is more
efficient than performing an SVD of X′Y.
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Algorithm 6.45 [Primal PLS] The primal PLS algorithm is given in Code
Fragment 6.6. The repeat loop computes the first singular value by the

input Data matrix X ∈ R
�×N , dimension k, target outputs Y ∈ R

�×m.
process µ = 1

�X
′j computes the means of components

X1 = X − jµ′ centering the data
Ŷ = 0
for j = 1, . . . , k
uj=first column of X′

jY
uj= uj/ ‖uj‖
repeat
uj = X′

jYY′Xjuj

uj= uj/ ‖uj‖
until convergence
pj = X′

jXjuj

u′
jX

′
jXjuj

cj = Y′Xjuj

u′
jX

′
jXjuj

Ŷ = Ŷ + Xjujc′j
Xj+1 = Xj

(
I − ujp′

j

)
end
W = U (P′U)−1 C′

output Mean vector µ, training outputs Ŷ, regression coefficients W

Code Fragment 6.6. Pseudocode for the primal PLS algorithm.

iterative method. This results in uj converging to the first right singular
vector Y′Xj . Following the loop we compute pj and cj , followed by the
deflation of Xj given by

X → X − Xujp′
j .

as required. We can deflate Y to its residual but it does not affect the
correlations discovered since the deflation removes components in the space
spanned by Xjuj , to which Xj+1 has now become orthogonal. From our
observations above it is clear that the vectors Xjuj generated at each stage
are orthogonal to each other.

We must now allow the algorithm to classify new data. The regression
coefficients W are given in equation (6.31).

Code Fragment 6.7 gives Matlab code for the complete PLS algorithm in
primal form. Note that it begins by centering the data since covariances are
computed on centred data.

We would now like to show how this selection can be mimicked in the dual
space.
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% X is an ell x n matrix whose rows are the training inputs
% Y is ell x m containing the corresponding output vectors
% T gives the number of iterations to be performed
mux = mean(X); muy = mean(Y); jj = ones(size(X,1),1);
X = X - jj*mux; Y = Y - jj*muy;
for i=1:T
YX = Y’*X;
u(:,i) = YX(1,:)’/norm(YX(1,:));
if size(Y,2) > 1, % only loop if dimension greater than 1

uold = u(:,i) + 1;
while norm(u(:,i) - uold) > 0.001,

uold = u(:,i);
tu = YX’*YX*u(:,i);
u(:,i) = tu/norm(tu);

end
end
t = X*u(:,i);
c(:,i) = Y’*t/(t’*t);
p(:,i) = X’*t/(t’*t);
trainY = trainY + t*c(:,i)’;
trainerror = norm(Y - trainY,’fro’)/sqrt(ell)
X = X - t*p(:,i)’;
% compute residual Y = Y - t*c(:,i)’;
end
% Regression coefficients for new data
W = u * ((p’*u)\c’);
% Xtest gives new data inputs as rows, Ytest true outputs
elltest = size(Xtest,1); jj = ones(elltest,1);
testY = (Xtest - jj*mux) * W + jj*muy;
testerror = norm(Ytest - testY,’fro’)/sqrt(elltest)

Code Fragment 6.7. Matlab code for the primal PLS algorithm.

6.7.2 Kernel partial least squares

The projection direction in the feature space at each stage is given by the
vector uj . This vector is in the primal space while we must work in the dual
space. We therefore express a multiple of uj as

ajuj = X′
jβj ,

which is clearly consistent with the derivation of uj in the primal PLS algo-
rithm. For the dual PLS algorithm we must implement the deflation of Y.
This redundant step for the primal will be needed to get the required dual
representations. We use the notation Yj to denote the jth deflation. This
leads to the following recursion for β

β = YjY′
jXjX′

jβ = YjY
′
jKjβ
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with the normalisation β =
β

‖β‖ .

This converges to a dual representation βj of a scaled version ajuj of uj ,
where note that we have moved to a kernel matrix Kj . Now we need to
compute a rescaled τ j = ajXjuj and cj from βj . We have

τ j = ajXjuj = XjX′
jβj = Kjβj ,

while we work with a rescaled version ĉj of cj

ĉj =
Y′

jτ j

τ ′
jτ j

=
Y′

jXjuj

aju′
jX

′
jXjuj

=
1
aj

cj ,

so that we can consider τ j as a rescaled dual representation of the output
vector cj . However, when we compute the contribution to the training
output values

τ j ĉ′j = Xjuj

(
Y′

jXjuj

u′
jX

′
jXjuj

)′
,

the rescalings cancel to give the correct result. Again with an automatic
correction for the rescaling, Algorithm 6.42 gives the deflation of Xj as

Xj+1 =

(
I − τ jτ

′
j

τ ′
jτ j

)
Xj ,

with an equivalent deflation of the kernel matrix given by

Kj+1 = Xj+1X′
j+1

=

(
I − τ jτ

′
j

τ ′
jτ j

)
XjX′

j

(
I − τ jτ

′
j

τ ′
jτ j

)

=

(
I − τ jτ

′
j

τ ′
jτ j

)
Kj

(
I − τ jτ

′
j

τ ′
jτ j

)
,

all computable without explicit feature vectors. We also need to consider
the vectors pj

pj =
X′

jXjuj

u′
jX

′
jXjuj

= aj

X′
jτ j

τ ′
jτ j

.
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Properties of the dual computations We now consider the properties
of these new quantities. First observe that the τ j are orthogonal since for
j > i

τ ′
jτ i = ajaiu′

jX
′
jXiui = 0,

as the columns of Xj are all orthogonal to Xiui. This furthermore means
that for i < j (

I − τ iτ
′
i

τ ′
iτ i

)
τ j = τ j ,

implying

X′
jτ j = X′τ j ,

so that

pj = aj
X′τ j

τ ′
jτ j

.

Note βj can be written as Yjxj for xj = bjY′
jKjβj , for some scaling bj .

This implies that provided we deflate Y using

Yj+1 =

(
I − τ jτ

′
j

τ ′
jτ j

)
Yj ,

so the columns of Yj are also orthogonal to Xiui for i < j, it follows that

β′
jτ i = x′

jY
′
jXiui = 0.

From this we have (
I − τ iτ

′
i

τ ′
iτ i

)
βj = βj ,

for i < j, so that

X′
jβj = X′βj

Computing the regression coefficients All that remains to be computed
are the regression coefficients. These again must be computed in dual form,
that is we require

W = X′α,

so that a new input φ (x) can be processed using

φ (x)′ W = φ (x)′ X′α = k′α,
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where k is the vector of inner products between the test point and the
training inputs. From the analysis of the primal PLS in equation (6.31) we
have

W = U
(
P′U

)−1 C′.

Using B to denote the matrix with columns βj and diag (a) for the diagonal
matrix with entries diag (a)ii = ai, we can write

U = X′Bdiag (a)−1 .

Similarly using T to denote the matrix with columns τ j

P′U = diag (a) diag
(
τ ′

iτ i

)−1 T′XX′B diag (a)−1

= diag (a) diag
(
τ ′

iτ i

)−1 T′KB diag (a)−1 .

Here diag (τ ′
iτ i) is the diagonal matrix with entries diag (τ ′

iτ i)ii = τ ′
iτ i.

Finally, again using the orthogonality of Xjuj to τ i, for i < j, we obtain

cj =
Y′

jXjuj

u′
jX

′
jXjuj

=
Y′Xjuj

u′
jX

′
jXjuj

= aj
Y′τ j

τ ′
jτ j

,

making

C = Y′Tdiag
(
τ ′

iτ i

)−1 diag (a) .

Putting the pieces together we can compute the dual regression variables as

α = B
(
T′KB

)−1 T′Y.

Finally, the dual solution is given component-wise by

fj(x) =
�∑

i=1

αj
iκ (xi,x) , j = 1, . . . , m.

Remark 6.46 [Rescaling matrices] Observe that

T′KB = diag
(
τ ′

iτ i

)
diag (a)−1 P

′
Udiag (a)

and so is also upper triangular, but with rows and columns rescaled. The
rescaling caused by diag (τ ′

iτ i) could be removed since we can easily compute
this matrix. This might be advantageous to increase the numerical stability,
since P′U was optimally stable with diagonal entries 1, so the smaller the
rescalings the better. The matrix diag (a) on the other hand is not readily
accessible.
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Remark 6.47 [Notation] The following table summarises the notation used
in the above derivations:

uj primal projection directions βj dual projection directions
U matrix with columns uj B matrix with columns βj

cj primal output vector τ j dual of scaled output vector
C matrix with columns cj T matrix with columns τ j

W primal regression coefficients α dual regression coefficients
P matrix with columns pj K kernel matrix

Algorithm 6.48 [Kernel PLS] The kernel PLS algorithm is given in Code
Fragment 6.8. Code Fragment 6.9 gives Matlab code for the complete PLS

input Data S = {x1, . . . ,x�}, dimension k, target outputs Y ∈ R
�×m.

process Kij = κ (xi,xj), i, j = 1, . . . , �
K1 = K
Ŷ = Y
for j = 1, . . . , k

βj=first column of Ŷ
βj= βj/

∥∥βj

∥∥
repeat

βj = ŶŶ
′
Kjβj

βj= βj/
∥∥βj

∥∥
until convergence

τ j = Kjβj

cj = Ŷ′τ j/ ‖τ j‖2

Ŷ = Ŷ − τ jc′j
Kj+1 =

(
I − τ jτ

′
j/ ‖τ j‖2

)
Kj

(
I − τ jτ

′
j/ ‖τ j‖2

)
end
B = [β1, . . . ,βk] T = [τ 1, . . . , τ k]
α = B (T′KB)−1 T′Y

output Training outputs Y − Ŷ and dual regression coefficients α

Code Fragment 6.8. Pseudocode for the kernel PLS algorithm.

algorithm in dual form. Note that it should also begin by centering the data
but we have for brevity omitted this step (see Code Fragment 5.2 for Matlab
code for centering).
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% K is an ell x ell kernel matrix
% Y is ell x m containing the corresponding output vectors
% T gives the number of iterations to be performed
KK = K; YY = Y;
for i=1:T
YYK = YY*YY’*KK;
beta(:,i) = YY(:,1)/norm(YY(:,1));
if size(YY,2) > 1, % only loop if dimension greater than 1

bold = beta(:,i) + 1;
while norm(beta(:,i) - bold) > 0.001,
bold = beta(:,i);
tbeta = YYK*beta(:,i);
beta(:,i) = tbeta/norm(tbeta);

end
end
tau(:,i) = KK*beta(:,i);
val = tau(:,i)’*t(:,i);
c(:,i) = YY’*tau(:,i)/val;
trainY = trainY + tau(:,i)*c(:,i)’;
trainerror = norm(Y - trainY,’fro’)/sqrt(ell)
w = KK*tau(:,i)/val;
KK = KK - tau(:,i)*w’ - w*tau(:,i)’

+ tau(:,i)*tau(:,i)’*(tau(:,i)’*w)/val;
YY = YY - tau(:,i)*c(:,i)’;
end
% Regression coefficients for new data
alpha = beta * ((tau’*K*beta)\tau’)*Y;
% Ktest gives new data inner products as rows, Ytest true outputs
elltest = size(Xtest,1);
testY = Ktest * alpha;
testerror = norm(Ytest - testY,’fro’)/sqrt(elltest)

Code Fragment 6.9. Matlab code for the dual PLS algorithm.

6.8 Summary

• Eigenanalysis can be used to detect patterns within sets of vectors.
• Principal components analysis finds directions based on the variance of

the data.
• The singular value decomposition of a covariance matrix finds directions

of maximal covariance.
• Canonical correlation analysis finds directions of maximum correlation.
• Fisher discriminant analysis can also be derived as the solution of a gen-

eralised eigenvalue problem.
• The methods can be implemented in kernel-defined feature spaces.
• The patterns detected can also be used as feature selection methods for

subsequent analysis, as for example principal components regression.
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• The iterative use of directions of maximal covariance in regression gives
the state-of-the-art partial least squares regression procedure, again im-
plementable in kernel-defined feature spaces.

6.9 Further reading and advanced topics

The use of eigenproblems to solve statistical problems dates back to the
1930s. In 1936 Sir Ronald Fisher, the English statistician who pioneered
modern data analysis, published ‘The use of multiple measurements in tax-
onomic problems’, where his linear discriminant algorithm is described [44].
The basic ideas behind principal components analysis (PCA) date back to
Karl Pearson in 1901, but the general procedure as described in this book
was developed by Harold Hotelling, whose pioneering paper ‘Analysis of
a Complex of Statistical Variables with Principal Component’ appeared in
1933 [61]. A few years later in 1936, Hotelling [62] further introduced canon-
ical correlation analysis (CCA), with the article ‘Relations between two sets
of variables’.

So in very few years much of multivariate statistics had been introduced,
although it was not until the advent of modern computers that it could show
its full power. All of these algorithms were linear and were not regularised.
Classically they were justified under the assumption that the data was gen-
erated according to a Gaussian distribution, but the main computational
steps are the same as the ones described and generalised in this chapter.
For an introduction to classical multivariate statistics see [159]. The statis-
tical analysis of PCA is based on the papers [127] and [126]. Many of these
methods suffer from overfitting when directly applied to high-dimensional
data. The need for regularisation was, for example, recognised by Vinod in
[151]. A nice unified survey of eigenproblems in pattern recognition can be
found in [15].

The development of the related algorithm of partial least squares has in
contrast been rather different. It was introduced by Wold [162] in 1966 and
developed in [164], [163], see also Höskuldsson [60] and Wold [165] for a full
account. It has mostly been developed and applied in the field of chemomet-
rics, where it is common to have very high-dimensional data. Based on ideas
motivated by conjugate gradient methods in least squares problems (see for
example conjugate gradient in [49]), it has been used in applications for
many years. Background material on SVD and generalised eigenproblems
can be found in many linear algebra books, for example [98].

The enhancement of these classical methods with the use of kernels has
been a recurring theme over the last few years in the development of kernel
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methods. Schölkopf et al. introduced it with kernel PCA [121]. Later
several groups produced versions of kernel CCA [7], [83], [2], and of kernel
FDA [100], [11]. Kernel PLS was introduced by Rosipal and Trejo [112].

Applications of kernel CCA in cross-lingual information retrieval are de-
scribed in [151] while applications in bioinformatics are covered in [168],
[149]. A more thorough description of kernel CCA is contained in [52], with
applications to image retrieval and classification given in [152, 51]. Kernel
CCA is also described in the book [131].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net



7

Pattern analysis using convex optimisation

This chapter presents a number of algorithms for particular pattern analysis
tasks such as novelty-detection, classification and regression. We consider
criteria for choosing particular pattern functions, in many cases derived
from stability analysis of the corresponding tasks they aim to solve. The
optimisation of the derived criteria can be cast in the framework of convex
optimization, either as linear or convex quadratic programs. This ensures
that as with the algorithms of the last chapter the methods developed here
do not suffer from the problem of local minima. They include such celebrated
methods as support vector machines for both classification and regression.

We start, however, by describing how to find the smallest hypersphere
containing the training data in the embedding space, together with the use
and analysis of this algorithm for detecting anomalous or novel data. The
techniques introduced for this problem are easily adapted to the task of
finding the maximal margin hyperplane or support vector solution that sep-
arates two sets of points again possibly allowing some fraction of points to
be exceptions. This in turn leads to algorithms for the case of regression.

An important feature of many of these systems is that, while enforcing
the learning biases suggested by the stability analysis, they also produce
‘sparse’ dual representations of the hypothesis, resulting in efficient algo-
rithms for both training and test point evaluation. This is a result of the
Karush–Kuhn–Tucker conditions, which play a crucial role in the practical
implementation and analysis of these algorithms.

195
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7.1 The smallest enclosing hypersphere

In Chapter 1 novelty-detection was cited as one of the pattern analysis
algorithms that we aimed to develop in the course of this book. A novelty-
detection algorithm uses a training set to learn the support of the distribu-
tion of the ‘normal’ examples. Future test examples are then filtered by the
resulting pattern function to identify any abnormal examples that appear
not to have been generated from the same training distribution.

In Chapter 5 we developed a simple novelty-detection algorithm in a gen-
eral kernel-defined feature space by estimating when new data is outside the
hypersphere around the centre of mass of the distribution with radius large
enough to contain all the training data. In this section we will further inves-
tigate the use of feature space hyperspheres as novelty detectors, where it is
understood that new examples that lie outside the hypersphere are treated
as ‘abnormal’ or ‘novel’.

Clearly the smaller the hypersphere the more finely tuned the novelty-
detection that it realises. Hence, our aim will be to define smaller hyper-
spheres for which we can still guarantee that with high probability they
contain most of the support of the training distribution. There are two re-
spects in which the novelty-detection hypersphere considered in Chapter 5
may be larger than is necessary. Firstly, the centre of the hypersphere was
fixed at the centre of mass, or an estimate thereof, based on the training
data. By allowing its centre to move it may be possible to find a smaller
hypersphere that still contains all the training data. The second concern is
that just one unlucky training example may force a much larger radius than
should really be needed, implying that the solution is not robust. Ideally we
would therefore like to find the smallest hypersphere that contains all but
some small proportion of extreme training data.

Given a set of data embedded in a space, the problem of finding the
smallest hypersphere containing a specified non-trivial fraction of the data
is unfortunately NP-hard. Hence, there are no known algorithms to solve
this problem exactly. It can, however, be solved exactly for the case when
the hypersphere is required to include all of the data. We will therefore
first tackle this problem. The solution is of interest in its own right, but
the techniques developed will also indicate a route towards an approximate
solution for the other case. Furthermore, the approach adopted for novelty-
detection points the way towards a solution of the classification problem
that we tackle in Section 7.2.
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7.1.1 The smallest hypersphere containing a set of points

Let us assume that we are given a training set S = {x1, . . . ,x�} with an
associated embedding φ into a Euclidean feature space F with associated
kernel κ satisfying

κ (x, z) = 〈φ (x) ,φ (z)〉 .

The centre of the smallest hypersphere containing S is the point c that
minimises the distance r from the furthest datapoint, or more precisely

c∗ = argmin
c

max
1≤i≤�

‖φ (xi) − c‖ ,

with R the value of the expression at the optimum. We have derived the
following computation.

Computation 7.1 [Smallest enclosing hypersphere] Given a set of points

S = {x1, . . . ,x�}
the hypersphere (c,r) that solves the optimisation problem

minc,r r2

subject to ‖φ (xi) − c‖2 = (φ (xi) − c)′(φ (xi) − c) ≤ r2

i = 1, . . . , �,
(7.1)

is the hypersphere containing S with smallest radius r.

We can solve constrained optimisation problems of this type by defining
a Lagrangian involving one Lagrange multiplier αi ≥ 0 for each constraint

L(c, r,α) = r2 +
�∑

i=1

αi

[
‖φ (xi) − c‖2 − r2

]
.

We then solve by setting the derivatives with respect to c and r equal to
zero

∂L(c, r,α)
∂c

= 2
�∑

i=1

αi(φ (xi) − c) = 0, and

∂L(c, r,α)
∂r

= 2r

(
1 −

�∑
i=1

αi

)
= 0,

giving the following equations
�∑

i=1

αi = 1 and as a consequence c =
�∑

i=1

αiφ (xi) .
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The second equality implies that the centre of the smallest hypersphere
containing the datapoints always lies in their span. This shows that the
centre can be expressed in the dual representation. Furthermore, the first
equality implies that the centre lies in the convex hull of the training set.
Inserting these relations into the Lagrangian we obtain

L(c, r,α) = r2 +
�∑

i=1

αi

[
‖φ (xi) − c‖2 − r2

]

=
�∑

i=1

αi 〈φ (xi) − c,φ (xi) − c〉

=
�∑

i=1

αi

⎛⎝κ (xi,xi) +
�∑

k,j=1

αjαkκ (xj ,xk) − 2
�∑

j=1

αjκ (xi,xj)

⎞⎠
=

�∑
i=1

αiκ (xi,xi) +
�∑

k,j=1

αkαjκ (xj ,xk) − 2
�∑

i,j=1

αiαjκ (xi,xj)

=
�∑

i=1

αiκ (xi,xi) −
�∑

i,j=1

αiαjκ (xi,xk) ,

where we have used the relation
∑�

i=1 αi = 1 to obtain line 2 and to take
the middle expression out of the brackets after line 3. The Lagrangian has
now been expressed wholly in terms of the Lagrange parameters, something
referred to as the dual Lagrangian. The solution is obtained by maximising
the resulting expression. We have therefore shown the following algorithm,
where we use H to denote the Heaviside function H (x) = 1, if x ≥ 0 and 0
otherwise.

Algorithm 7.2 [Smallest hypersphere enclosing data] The smallest hyper-
sphere in a feature space defined by a kernel κ enclosing a dataset S is
computed given in Code Fragment 7.1.

We have certainly achieved our goal of decreasing the size of the hyper-
sphere since now we have located the hypersphere of minimal volume that
contains the training data.

Remark 7.3 [On sparseness] The solution obtained here has an additional
important property that results from a theorem of optimization known as
the Kuhn-Tucker Theorem. This theorem states that the Lagrange param-
eters can be non-zero only if the corresponding inequality constraint is an
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Input training set S = {x1, . . . ,x�}

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and αi ≥ 0, i = 1, . . . , �.

4 r∗ =
√

W (α∗)
5 D =

∑�
i,j=1 α∗

i α
∗
jκ (xi,xj) − r∗2

6 f(x) = H
[
κ (x,x) − 2

∑�
i=1 α∗

i κ (xi,x) + D
]

7 c∗ =
∑�

i=1 α∗
i φ (xi)

Output centre of sphere c∗ and/or function f testing for inclusion

Code Fragment 7.1. Pseudocode for computing the minimal hypersphere.

equality at the solution. These so-called Karush–Kuhn–Tucker (KKT) com-
plementarity conditions are satisfied by the optimal solutions α∗, (c∗, r∗)

α∗
i

[
‖φ (xi) − c∗‖2 − r∗2

]
= 0, i = 1, . . . , �.

This implies that only the training examples xi that lie on the surface of
the optimal hypersphere have their corresponding α∗

i non-zero. For the
remaining examples, the corresponding parameter satisfies α∗

i = 0. Hence,
in the expression for the centre only the points on the surface are involved.
It is for this reason that they are sometimes referred to as support vectors.

We will denote the set of indices of the support vectors with sv. Using
this notation the pattern function becomes

f(x) = H
[
κ (x,x) − 2

∑
i∈sv

α∗
i κ (x,xi) + D

]
,

hence involving the evaluation of only # sv inner products rather than � as
was required for the hypersphere of Chapter 5.

Remark 7.4 [On convexity] In Chapter 3 we showed that for a kernel
function the matrix with entries (κ(xi,xj))

�
i,j=1 is positive semi-definite for

all training sets, the so-called finitely positive semi-definite property. This
in turn means that the optimisation problem of Algorithm 7.2 is always
convex. Hence, the property required for a kernel function to define a feature
space also ensures that the minimal hypersphere optimisation problem has
a unique solution that can be found efficiently. This rules out the problem
of encountering local minima.
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Note that the function f output by Algorithm 7.2 outputs 1, if the new
point lies outside the chosen sphere and so is considered novel, and 0 other-
wise. The next section considers bounds on the probability that the novelty
detector identifies a point as novel that has been generated by the orig-
inal distribution, a situation that constitutes an erroneous output. Such
examples will be false positives in the sense that they will be normal data
identified by the algorithm as novel.

Data arising from novel conditions will be generated by a different distri-
bution and hence we have no way of guaranteeing what output f will give.
In this sense we have no way of bounding the negative positive rate. The
intuition behind the approach is that the smaller the sphere used to define
f , the more likely that novel data will fall outside and hence be detected
as novel. Hence, in the subsequent development we will examine ways of
shrinking the sphere, while still retaining control of the false positive rate.

7.1.2 Stability of novelty-detection

In the previous section we developed an algorithm for computing the smallest
hypersphere enclosing a training sample and for testing whether a new point
was contained in that hypersphere. It was suggested that the method could
be used as a novelty-detection algorithm where points lying outside the
hypersphere would be considered abnormal. But is there any guarantee
that points from the same distribution will lie in the hypersphere? Even in
the hypersphere based on the centre of gravity of the distribution we had to
effectively leave some slack in its radius to allow for the inaccuracy in our
estimation of their centre. But if we are to allow some slack in the radius of
the minimal hypersphere, how much should it be?

In this section we will derive a stability analysis based on the techniques
developed in Chapter 4 that will answer this question and give a novelty-
detection algorithm with associated stability guarantees on its performance.

Theorem 7.5 Fix γ > 0 and δ ∈ (0, 1). Let (c, r) be the centre and ra-
dius of a hypersphere in a feature space determined by a kernel κ from a
training sample S = {x1, . . . ,x�} drawn randomly according to a probability
distribution D. Let g (x) be the function defined by

g (x) =

⎧⎪⎨⎪⎩
0, if ‖c − φ(x)‖ ≤ r;(
‖c − φ(x)‖2 − r2

)
/γ, if r2 ≤ ‖c − φ(x)‖2 ≤ r2 + γ;

1, otherwise.
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Then with probability at least 1 − δ over samples of size � we have

ED [g(x)] ≤ 1
�

�∑
i=1

g (xi) +
6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
,

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof Consider the loss function A : R → [0, 1], given by

A(a) =

⎧⎪⎨⎪⎩
0, if R2a < r2 − ‖c‖2;(
R2a + ‖c‖2 − r2

)
/γ, if r2 − ‖c‖2 ≤ R2a ≤ r2 − ‖c‖2 + γ;

1, otherwise.

Hence, we can write g (x) = A (f (x)), where

f (x) = ‖c − φ(x)‖2 /R2 − ‖c‖2 /R2 = ‖φ(x)‖2 /R2 − 2 〈c, φ(x)〉 /R2.

Hence, by Theorem 4.9 we have that

ED [g(x)] ≤ Ê [g(x)] + R̂�

(
A ◦

(
F + ‖φ(x)‖2 /R2

))
+ 3

√
ln(2/δ)

2�
, (7.2)

where F is the class of linear functions with norm bounded by 1 with respect
to the kernel

κ̂
(
xi,xj

)
= 4κ

(
xi,xj

)
/R2 = 〈2φ(xi)/R, 2φ(xj)/R〉 .

Since A (0) = 0, we can apply part 4 of Theorem 4.15 with L = R2/γ to
give

R̂�

(
A ◦

(
F + ‖φ(x)‖2 /R2

))
≤ 2R2R̂�

(
F + ‖φ(x)‖2 /R2

)
/γ.

By part 5 of Theorem 4.15, we have

R̂�(F + ‖φ(x)‖2 /R2) ≤ R̂�(F) + 2
√

Ê

[
‖φ(x)‖4 /R4

]
/�

≤ R̂�(F) +
2√
�
,

while by Theorem 4.12 we have

R̂�(F) =
2
�

√√√√ �∑
i=1

κ̂(xi,xi) =
4

R�

√√√√ �∑
i=1

κ(xi,xi) =
4√
�
.

Putting the pieces into (7.2) gives the result.
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Consider applying Theorem 7.5 to the minimal hypersphere (c∗, r∗) con-
taining the training data. The first term vanishes since

1
�

�∑
i=1

g (xi) = 0.

If a test point x lies outside the hypersphere of radius r =
√

r∗2 + γ with
centre c∗ it will satisfy g (xi) = 1. Hence with probability greater than 1− δ

we can bound the probability p of such points by

6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
,

since their contribution to ED [g(x)] is p, implying that p ≤ ED [g(x)]. Since(
r∗ +

√
γ
)2 = r∗2 +2r∗

√
γ + γ ≥ r∗2 + γ we also have that, with probability

greater than 1 − δ, points from the training distribution will lie outside a
hypersphere of radius r∗ +

√
γ centred at c∗ with probability less than

6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
.

Hence, by choosing a radius slightly larger than r∗ we can ensure that test
data lying outside the hypersphere can be considered ‘novel’.

Remark 7.6 [Size of the hypersphere] The results of this section formalise
the intuition that small radius implies high sensitivity to novelties. If for
a given kernel the radius is small we can hope for good novelty-detection.
The next section will consider ways in which the radius of the ball can be
reduced still further, while still retaining control of the sensitivity of the
detector.

7.1.3 Hyperspheres containing most of the points

We have seen in the last section how enlarging the radius of the smallest
hypersphere containing the data ensures that we can guarantee with high
probability that it contains the support of most of the distribution. This still
leaves unresolved the sensitivity of the solution to the position of just one
point, something that undermines the reliability of the parameters, resulting
in a pattern analysis system that is not robust.

Theorem 7.5 also suggests a solution to this problem. Since the bound
also applies to hyperspheres that fail to contain some of the training data,
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we can consider smaller hyperspheres provided we control the size of the
term

1
�

�∑
i=1

g (xi) ≤
1
γ

�∑
i=1

(
‖c − φ(xi)‖2 − r2

)
+

. (7.3)

In this way we can consider hyperspheres that balance the loss incurred by
missing a small number of points with the reduction in radius that results.
These can potentially give rise to more sensitive novelty detectors.

In order to implement this strategy we introduce a notion of slack variable
ξi = ξi (c, r,xi) defined as

ξi =
(
‖c − φ(xi)‖2 − r2

)
+

,

which is zero for points inside the hypersphere and measures the degree to
which the distance squared from the centre exceeds r2 for points outside.
Let ξ denote the vector with entries ξi, i = 1, . . . , �. Using the upper bound
of inequality (7.3), we now translate the bound of Theorem 7.5 into the
objective of the optimisation problem (7.1) with a parameter C to control the
trade-off between minimising the radius and controlling the slack variables.

Computation 7.7 [Soft minimal hypersphere] The sphere that optimises a
trade off between equation (7.3) and the radius of the sphere is given as the
solution of

minc,r,ξ r2 + C ‖ξ‖1

subject to ‖φ(xi) − c‖2 = (φ(xi) − c)′(φ(xi) − c) ≤ r2 + ξi

ξi ≥ 0, i = 1, . . . , �.
(7.4)

We will refer to this approach as the soft minimal hypersphere.

An example of such a sphere obtained using a linear kernel is shown in
Figure 7.1. Note how the centre of the sphere marked by a × obtained by
the algorithm is now very close to the centre of the Gaussian distribution
generating the data marked by a diamond.

Again introducing Lagrange multipliers we arrive at the Lagrangian

L(c, r,α, ξ) = r2 + C
�∑

i=1

ξi +
�∑

i=1

αi

[
‖φ(xi) − c‖2 − r2 − ξi

]
−

�∑
i=1

βiξi.

Differentiating with respect to the primal variables gives

∂L(c, r,α, ξ)
∂c

= 2
�∑

i=1

αi(φ(xi) − c)= 0;
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Fig. 7.1. The ‘sphere’ found by Computation 7.7 using a linear kernel.

∂L(c, r,α, ξ)
∂r

= 2r

(
1 −

�∑
i=1

αi

)
= 0;

∂L(c, r,α, ξ)
∂ξi

= C − αi − βi = 0.

The final equation implies that αi ≤ C since βi = C −αi ≥ 0. Substituting,
we obtain

L(c, r,α, ξ) = r2 + C
�∑

i=1

ξi +
�∑

i=1

αi

[
‖φ(xi) − c‖2 − r2 − ξi

]
−

�∑
i=1

βiξi

=
�∑

i=1

αi 〈φ(xi) − c,φ(xi) − c〉

=
�∑

i=1

αiκ (xi,xi) −
�∑

i,j=1

αiαjκ (xi,xj) ,

which is the dual Lagrangian.
Hence, we obtain the following algorithm.

Algorithm 7.8 [Soft hypersphere minimisation] The hypersphere that op-
timises the soft bound of Computation 7.7 is computed in Code Fragment
7.2.
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Input training set S = {x1, . . . ,x�}, δ > 0, γ > 0, C > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and 0 ≤ αi ≤ C, i = 1, . . . , �.

4 choose i such that 0 < α∗
i < C

5 r∗ =
√

κ (xi,xi) − 2
∑�

j=1 α∗
jκ (xj ,xi) +

∑�
i,j=1 α∗

i α
∗
jκ (xi,xj)

6 D =
∑�

i,j=1 α∗
i α

∗
jκ (xi,xj) − (r∗)2 − γ

7 f(·) = H
[
κ (·, ·) − 2

∑�
i=1 α∗

i κ (xi, ·) + D
]

8 ‖ξ∗‖1 =
(
W (α∗) − (r∗)2

)
/C

9 c∗ =
∑�

i=1 α∗
i φ (xi)

Output centre of sphere c∗ and/or function f testing for containment
sum of slacks ‖ξ∗‖1, the radius r∗

Code Fragment 7.2. Pseudocode for soft hypersphere minimisation.

The function f again outputs 1 to indicate as novel new data falling
outside the sphere. The size of the sphere has been reduced, hence increasing
the chances that data generated by a different distribution will be identified
as novel. The next theorem shows that this increase in sensitivity has not
compromised the false positive rate, that is the probability of data generated
according to the same distribution being incorrectly labelled as novel.

Theorem 7.9 Fix δ > 0 and γ > 0. Consider a training sample S =
{x1, . . . ,x�} drawn according to a distribution D and let c∗, f and ‖ξ∗‖1

be the output of Algorithm 7.8. Then the vector c∗ is the centre of the soft
minimal hypersphere that minimises the objective r2 + C ‖ξ‖1 for the image
φ(S) of the set S in the feature space F defined by the kernel κ (xi,xj) =
〈φ (xi) ,φ (xj)〉. Furthermore, r∗ is the radius of the hypersphere, while the
sum of the slack variables is ‖ξ∗‖1. The function f outputs 1 on test points
x ∈ X drawn according to the distribution D with probability at most

1
γ�

‖ξ∗‖1 +
6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
, (7.5)

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof The first part of the theorem follows from the previous derivations.
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The expression for the radius r∗ follows from two applications of the Karush–
Kuhn–Tucker conditions using the fact that 0 < α∗

i < C. Firstly, since
β∗

i = C − α∗
i �= 0, we have that ξ∗i = 0, while α∗

i �= 0 implies

0 = ‖xi − c∗‖2 − (r∗)2 − ξ∗i = ‖xi − c∗‖2 − (r∗)2 .

The expression for ‖ξ∗‖1 follows from the fact that

W (α∗) = (r∗)2 + C ‖ξ∗‖1 ,

while (7.5) follows from Theorem 7.5 and the fact that

1
�

�∑
i=1

g (xi) ≤
1
γ�

‖ξ∗‖1 ,

while

PD (f (x) = 1) ≤ ED [g(x)] ,

where g(x) is the function from Theorem 7.5 with c = c∗ and r = r∗.

The algorithm is designed to optimise the bound on the probability of
new points lying outside the hypersphere. Despite this there may be any
number of training points excluded. We are also not guaranteed to obtain
the smallest hypersphere that excludes the given number of points.

ν-formulation There is an alternative way of parametrising the problem
that allows us to exert some control over the fraction of points that are
excluded from the hypersphere. Note that in Theorem 7.9 the parameter C

must be chose larger than 1/�, since otherwise the constraint
�∑

i=1

αi = 1

cannot be satisfied.

Computation 7.10 [ν-soft minimal hypersphere] If we consider setting the
parameter C = 1/ (ν�), as C varies between 1/� and ∞ in Theorem 7.9, the
same solutions are obtained as the parameter ν varies between 0 and 1 in
the optimisation problem

minc,r,ξ
1
� ‖ξ‖1 + νr2

subject to ‖φ (xi) − c‖2 = (φ(xi) − c)′(φ(xi) − c) ≤ r2 + ξi

ξi ≥ 0, i = 1, . . . , �.
(7.6)

The solutions clearly correspond since this is just a rescaling of the objective.
This approach will be referred to as the ν-soft minimal hypersphere.
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An example of novelty-detection using a radial basis function kernel is
given in Figure 7.2. Note how the area of the region has again reduced
though since the distribution is a circular Gaussian the performance has
probably not improved.

Fig. 7.2. Novelty detection in a kernel defined feature space.

The analysis for the soft hypersphere is identical to the ν-soft minimal
hypersphere with an appropriate redefinition of the parameters. Using this
fact we obtain the following algorithm.

Algorithm 7.11 [ν-soft minimal hypersphere] The hypersphere that opti-
mises the ν-soft bound is computed in Code Fragment 7.3.

As with the previous novelty-detection algorithms, the function f indi-
cates as novel points for which its output is 1. The next theorem is again
concerned with bounding the false positive rate, but also indicates the role
of the parameter ν.
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Input training set S = {x1, . . . ,x�}, δ > 0, γ > 0, 0 < ν < 1

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and 0 ≤ αi ≤ 1/ (ν�) , i = 1, . . . , �.

4 choose i such that 0 < α∗
i < 1/ (ν�)

5 r∗ =
√

κ (xi,xi) − 2
∑�

j=1 α∗
jκ (xj ,xi) +

∑�
i,j=1 α∗

i α
∗
jκ (xi,xj)

6 D =
∑�

i,j=1 α∗
i α

∗
jκ (xi,xj) − (r∗)2 − γ

7 f(·) = H
[
κ (·, ·) − 2

∑�
i=1 α∗

i κ (xi, ·) + D
]

8 ‖ξ∗‖1 = ν�
(
W (α∗) − (r∗)2

)
9 c∗ =

∑�
i=1 α∗

i φ (xi)
Output centre of sphere c∗ and/or function f testing for containment

sum of slacks ‖ξ∗‖1, the radius r∗

Code Fragment 7.3. Pseudocode for the soft hypersphere.

Theorem 7.12 Fix δ > 0 and γ > 0. Consider a training sample S =
{x1, . . . ,x�} drawn according to a distribution D and let c∗, f and ‖ξ∗‖1

be the output of Algorithm 7.11. Then the vector c∗ is the centre of the
soft minimal hypersphere that minimises the objective r2 + ‖ξ‖1 / (ν�) for
the image φ(S) of the set S in the feature space F defined by the kernel
κ (xi,xj) = 〈φ (xi) ,φ (xj)〉. Furthermore, r∗ is the radius of the hyper-
sphere, while the sum of the slack variables is ‖ξ∗‖1 and there are at most
ν� training points outside the hypersphere centred at c∗ with radius r∗, while
at least ν� of the training points do not lie in the interior of the hyper-
sphere. The function f outputs 1 on test points x ∈ X drawn according to
the distribution D with probability at most

1
γ�

‖ξ∗‖1 +
6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
,

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof Apart from the observations about the number of training points
lying inside and outside the hypersphere the result follows directly from an
application of Theorem 7.9 using the fact that the objective can be scaled
by ν to give νr∗2 + �−1 ‖ξ∗‖1. For a point xi lying outside the hypersphere
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we have ξ∗i > 0 implying that β∗
i = 0, so that α∗

i = 1/ (ν�). Since

�∑
i=1

α∗
i = 1,

there can be at most ν� such points. Furthermore this equation together
with the upper bound on α∗

i implies that at least ν� training points do not
lie in the interior of the hypersphere, since for points inside the hypersphere
α∗

i = 0.

Remark 7.13 [Varying γ] Theorem 7.12 applies for a fixed value of γ. In
practice we would like to choose γ based on the performance of the algorithm.
This can be achieved by applying the theorem for a set of k values of γ with
the value of δ set to δ/k. This ensures that with probability 1−δ the bound
holds for all k choices of γ. Hence, we can apply the most useful value for the
given situation at the cost of a slight weakening of the bound. The penalty
is an additional ln(k)

� under the square root in the probability bound. We
omit this derivation as it is rather technical without giving any additional
insight. We will, however, assume that we can choose γ in response to the
training data in the corollary below.

Theorem 7.12 shows how ν places a lower bound on the fraction of points
that fail to be in the interior of the hypersphere and an equal upper bound
on those lying strictly outside the hypersphere. Hence, modulo the points
lying on the surface of the hypersphere, ν determines the fraction of points
not enclosed in the hypersphere. This gives a more intuitive parametrisation
of the problem than that given by the parameter C in Theorem 7.9. This
is further demonstrated by the following appealing corollary relating the
choice of ν to the false positive error rate.

Corollary 7.14 If we wish to fix the probability bound of Theorem 7.12 to
be

p + 3

√
ln(2/δ)

2�
=

1
γ�

‖ξ∗‖1 +
6R2

γ
√

�
+ 3

√
ln(2/δ)

2�
(7.7)

for some 0 < p < 1, and can choose γ accordingly, we will minimise the
volume of the corresponding test hypersphere obtained by choosing ν = p.

Proof Using the freedom to choose γ, it follows from equation (7.7) that

γ =
1
p

(
1
�
‖ξ∗‖1 +

6R2

√
�

)
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so that the radius squared of the test hypersphere is

r∗2 + γ = r∗2 +
1
p

(
1
�
‖ξ∗‖1 +

6R2

√
�

)
= r∗2 +

1
p�

‖ξ∗‖1 +
6R2

p
√

�
,

implying that p times the volume is

pr∗2 +
1
�
‖ξ∗‖1 +

6R2

√
�

,

which is equivalent to the objective of Computation 7.10 if ν = p.

Remark 7.15 [Combining with PCA] During this section we have restricted
our consideration to hyperspheres. If the data lies in a subspace of the
feature space the hypersphere will significantly overestimate the support of
the distribution in directions that are perpendicular to the subspace. In such
cases we could further reduce the volume of the estimation by performing
kernel PCA and applying Theorem 6.14 with δ set to δ/2 to rule out points
outside a thin slab around the k-dimensional subspace determined by the
first k principal axes. Combining this with Theorem 7.12 also with δ set to
δ/2 results in a region estimated by the intersection of the hypersphere with
the slab.

Remark 7.16 [Alternative approach] If the data is normalised it can be
viewed as lying on the surface of a hypersphere in the feature space. In this
case there is a correspondence between hyperspheres in the feature space and
hyperplanes, since the decision boundary determined by the intersection of
the two hyperspheres can equally well be described by the intersection of a
hyperplane with the unit hypersphere. The weight vector of the hyperplane
is that of the centre of the hypersphere containing the data. This follows
immediately from the form of the test function if we assume that κ (x,x) = 1,
since

f(x) = H
[
κ (x,x) − 2

�∑
i=1

α∗
i κ (xi,x) + D

]

= H
[
−2

�∑
i=1

α∗
i κ (xi,x) + D + 1

]
.

This suggests that an alternative strategy could be to search for a hyperplane
that maximally separates the data from the origin with an appropriately
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adjusted threshold. For normalised data this will result in exactly the same
solution, but for data that is not normalised it will result in the slightly
different optimisation problem. The approach taken for classification in the
next section parallels this idea.

7.2 Support vector machines for classification

In this section we turn our attention to the problem of classification. For
novelty-detection we have seen how the stability analysis of Theorem 7.5
guides Computation 7.7 for the soft minimal hypersphere. Such an approach
gives a principled way of choosing a pattern function for a particular pattern
analysis task. We have already obtained a stability bound for classification in
Theorem 4.17 of Chapter 4. This gives a bound on the test misclassification
error or generalisation error of a linear function g(x) with norm 1 in a kernel-
defined feature space of

PD (y �= g(x)) ≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
, (7.8)

where K is the kernel matrix for the training set and ξi = ξ ((xi, yi), γ, g) =
(γ − yig(xi))+. We now use this bound to guide the choice of linear function
returned by the learning algorithm. As with the (soft) minimal hyperspheres
this leads to a quadratic optimisation problem though with some slight ad-
ditional complications. Despite these we will follow a similar route to that
outlined above starting with separating hyperplanes and moving to soft so-
lutions and eventually to ν-soft solutions.

Remark 7.17 [Choosing γ and the threshold] Again as with the bound for
the stability of novelty-detection, strictly speaking the bound of (7.8) only
applies if we have chosen γ a priori, while in practice we will choose γ after
running the learning algorithm. A similar strategy to that described above
involving the application of Theorem 4.17 for a range of values of γ ensures
that we can use the bound for approximately the observed value at the cost
of a small penalty under the square root. We will again omit these technical
details for the sake of readability and treat (7.8) as if it held for all choices
of γ. Similarly, the bound was proven for g(x) a simple linear function,
while below we will consider the additional freedom of choosing a threshold
without adapting the bound to take this into account.
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7.2.1 The maximal margin classifier

Let us assume initially that for a given training set

S = {(x1, y1), . . . , (x�, y�)} ,

there exists a norm 1 linear function

g(x) = 〈w,φ (xi)〉 + b

determined by a weight vector w and threshold b and that there exists γ > 0,
such that ξi = (γ − yig(xi))+ = 0 for 1 ≤ i ≤ �. This implies that the first
term on the right-hand side of (7.8) vanishes. In the terminology of Chapter
4 it implies that the margin m(S, g) of the training set S satisfies

m(S, g) = min
1≤i≤�

yig(xi) ≥ γ.

Informally, this implies that the two classes of data can be separated by a
hyperplane with a margin of γ as shown in Figure 7.3. We will call such

Fig. 7.3. Example of large margin hyperplane with support vectors circled.

a training set separable or more precisely linearly separable with margin γ.
More generally a classifier is called consistent if it correctly classifies all of
the training set.
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Since the function w has norm 1 the expression 〈w, φ (xi)〉 measures the
length of the perpendicular projection of the point φ (xi) onto the ray de-
termined by w and so

yig(xi) = yi (〈w,φ (xi)〉 + b)

measures how far the point φ(xi) is from the boundary hyperplane, given
by

{x : g (x) = 0} ,

measuring positively in the direction of correct classification. For this reason
we refer to the functional margin of a linear function with norm 1 as the
geometric margin of the associated classifier. Hence m(S, g) ≥ γ implies
that S is correctly classified by g with a geometric margin of at least γ.

For such cases we consider optimising the bound of (7.8) over all functions
g for which such a γ exists. Clearly, the larger the value of γ the smaller the
bound. Hence, we optimise the bound by maximising the margin m(S, g).

Remark 7.18 [Robustness of the maximal margin] Although the stability
of the resulting hyperplane is guaranteed provided m(S, g) = γ is large, the
solution is not robust in the sense that a single additional training point
can reduce the value of γ very significantly potentially even rendering the
training set non-separable.

In view of the above criterion our task is to find the linear function that
maximises the geometric margin. This function is often referred to as the
maximal margin hyperplane or the hard margin support vector machine.

Computation 7.19 [Hard margin SVM] Hence, the choice of hyperplane
should be made to solve the following optimisation problem

maxw,b,γ γ

subject to yi (〈w,φ (xi)〉 + b) ≥ γ, i = 1, . . . , �,
and ‖w‖2 = 1.

(7.9)

Remark 7.20 [Canonical hyperplanes] The traditional way of formulat-
ing the optimisation problem makes use of the observation that rescaling
the weight vector and threshold does not change the classification function.
Hence we can fix the functional margin to be 1 and minimise the norm of
the weight vector. We have chosen to use the more direct method here as it
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follows more readily from the novelty detector of the previous section and
leads more directly to the ν-support vector machine discussed later.

For the purposes of conversion to the dual it is better to treat the op-
timisation as minimising −γ. As with the novelty-detection optimisation
we derive a Lagrangian in order to arrive at the dual optimisation problem.
Introducing Lagrange multipliers we obtain

L(w, b, γ,α, λ) = −γ −
�∑

i=1

αi [yi (〈w,φ (xi)〉 + b) − γ] + λ
(
‖w‖2 − 1

)
.

Differentiating with respect to the primal variables gives

∂L(w, b, γ,α, λ)
∂w

= −
�∑

i=1

αiyiφ(xi) + 2λw = 0,

∂L(w, b, γ,α, λ)
∂γ

= −1 +
�∑

i=1

αi = 0, and

∂L(w, b, γ,α, λ)
∂b

= −
�∑

i=1

αiyi = 0. (7.10)

Substituting we obtain

L(w, b, γ,α, λ) = −
�∑

i=1

αiyi 〈w,φ (xi)〉 + λ ‖w‖2 − λ

=
(
− 1

2λ
+

1
4λ

) �∑
i,j=1

αiyiαjyj 〈φ(xi),φ(xj)〉 − λ

= − 1
4λ

�∑
i,j=1

αiαjyiyjκ (xi,xj) − λ.

Finally, optimising the choice of λ gives

λ =
1
2

⎛⎝ �∑
i,j=1

αiαjyiyjκ (xi,xj)

⎞⎠1/2

,

resulting in

L(α) = −
⎛⎝ �∑

i,j=1

αiαjyiyjκ (xi,xj)

⎞⎠1/2

, (7.11)
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which we call the dual Lagrangian. We have therefore derived the following
algorithm.

Algorithm 7.21 [Hard margin SVM] The hard margin support vector ma-
chine is implemented in Code Fragment 7.4.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
√

−W (α∗)
5 choose i such that 0 < α∗

i

6 b = yi (γ∗)2 −∑�
j=1 α∗

jyjκ (xj ,xi)

7 f(·) = sgn
(∑�

j=1 α∗
jyjκ (xj , ·) + b

)
;

8 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.4. Pseudocode for the hard margin SVM.

The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.21.

Theorem 7.22 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)} ,

is drawn according to a distribution D is linearly separable in the feature
space implicitly defined by the kernel κ and suppose Algorithm 7.21 outputs
w, α∗, γ∗ and the function f . Then the function f realises the hard margin
support vector machine in the feature space defined by κ with geometric
margin γ∗. Furthermore, with probability 1 − δ, the generalisation error of
the resulting classifier is bounded by

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the corresponding kernel matrix.

Proof The solution of the optimisation problem in Algorithm 7.21 clearly
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optimises (7.11) subject to the constraints of (7.10). Hence, the optimisation
of W (α) will result in the same solution vector α∗. It follows that

γ∗ = −L(w∗, b∗, γ∗,α∗, λ∗) =
√

−W (α∗).

The result follows from these observations and the fact that w is a simple
rescaling of the solution vector w∗ by twice the Lagrange multiplier λ∗.
Furthermore

2λ∗ =
2
2

⎛⎝ �∑
i,j=1

α∗
i α

∗
jyiyjκ (xi,xj)

⎞⎠1/2

=
√

−W (α∗).

If w is the solution given by Algorithm 7.21, it is a rescaled version of the
optimal solution w∗. Since the weight vector w has norm and geometric
margin equal to

√
−W (α∗), its functional margin is −W (α∗) = γ∗, while

the vectors with non-zero α∗
i have margin equal to the functional margin –

see Remark 7.23 – this gives the formula for b.

Remark 7.23 [On sparseness] The Karush–Kuhn–Tucker complementarity
conditions provide useful information about the structure of the solution.
The conditions state that the optimal solutions α∗, (w∗, b∗) must satisfy

α∗
i [yi (〈w∗,φ (xi)〉 + b∗) − γ∗] = 0, i = 1, . . . , �.

This implies that only for inputs xi for which the geometric margin is γ∗,
and that therefore lie closest to the hyperplane, are the corresponding α∗

i

non-zero. All the other parameters α∗
i are zero. This is a similar situation

to that encountered in the novelty-detection algorithm of Section 7.1. For
the same reason the inputs with non-zero α∗

i are called support vectors (see
Figure 7.3) and again we will denote the set of indices of the support vectors
with sv.

Remark 7.24 [On convexity] Note that the requirement that κ is a kernel
means that the optimisation problem of Algorithm 7.21 is convex since the
matrix G = (yiyjκ(xi,xj))

�
i,j=1 is also positive semi-definite, as the following

computation shows

β′Gβ =
�∑

i,j=1

βiβjyiyjκ(xi,xj) =

〈
�∑

i=1

βiyiφ(xi),
�∑

j=1

βjyjφ(xj)

〉

=

∥∥∥∥∥
�∑

i=1

βiyiφ(xi)

∥∥∥∥∥
2

≥ 0.
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Hence, the property required of a kernel function to define a feature space
also ensures that the maximal margin optimisation problem has a unique
solution that can be found efficiently. This rules out the problem of local
minima often encountered in for example training neural networks.

Remark 7.25 [Duality gap] An important result from optimisation theory
states that throughout the feasible regions of the primal and dual problems
the primal objective is always bigger than the dual objective, when the
primal is a minimisation. This is also indicated by the fact that we are
minimising the primal and maximising the dual. Since the problems we are
considering satisfy the conditions of strong duality, there is no duality gap
at the optimal solution. We can therefore use any difference between the
primal and dual objectives as an indicator of convergence. We will call this
difference the duality gap. Let α̂ be the current value of the dual variables.
The possibly still negative margin can be calculated as

γ̂ =
minyi=1 (〈ŵ,φ (xi)〉) − maxyi=−1 (〈ŵ, φ (xi)〉)

2
,

where the current value of the weight vector is ŵ. Hence, the duality gap
can be computed as

−
√
−W (α̂) + γ̂.

Alternative formulation There is an alternative way of defining the max-
imal margin optimisation by constraining the functional margin to be 1 and
minimising the norm of the weight vector that achieves this. Since the
resulting classification is invariant to rescalings this delivers the same clas-
sifier. We can arrive at this formulation directly from the dual optimisation
problem (7.10) if we use a Lagrange multiplier to incorporate the constraint

�∑
i=1

αi = 1

into the optimisation. Again using the invariance to rescaling we can elect
to fix the corresponding Lagrange variable to a value of 2. This gives the
following algorithm.

Algorithm 7.26 [Alternative hard margin SVM] The alternative hard mar-
gin support vector machine is implemented in Code Fragment 7.5.
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Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αi − 1

2

∑�
i,j=1 αiαjyiyjκ (xi,xj)

subject to
∑�

i=1 yiαi = 0 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
(∑

i∈sv α∗
i

)−1/2

5 choose i such that 0 < α∗
i

6 b = yi −
∑

j∈sv α∗
jyjκ (xj ,xi)

7 f(·) = sgn
(∑

j∈sv α∗
jyjκ (xj , ·) + b

)
;

8 w =
∑

j∈sv yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.5. Pseudocode for the alternative version of the hard SVM.

The following theorem characterises the output and analyses the stability
of Algorithm 7.26.

Theorem 7.27 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)} ,

is drawn according to a distribution D, is linearly separable in the feature
space implicitly defined by the kernel κ(xi,xj), and suppose Algorithm 7.26
outputs w, α∗, γ∗ and the function f . Then the function f realises the
hard margin support vector machine in the feature space defined by κ with
geometric margin γ∗. Furthermore, with probability 1− δ, the generalisation
error is bounded by

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the corresponding kernel matrix.

Proof The generalisation follows from the equivalence of the two classifiers.
It therefore only remains to show that the expression for γ∗ correctly com-
putes the geometric margin. Since we know that the solution is just a scaling
of the solution of problem (7.10) we can seek the solution by optimising µ,
where

α = µα†
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and α† is the solution to problem (7.10). Hence, µ is chosen to maximise

µ
�∑

i=1

α†
i −

µ2

2

�∑
i,j=1

yiyjα
†
iα

†
jκ(xi,xj) = µ − µ2

2

�∑
i,j=1

yiyjα
†
iα

†
jκ(xi,xj)

giving

µ∗ =

⎛⎝ �∑
i,j=1

yiyjα
†
iα

†
jκ(xi,xj)

⎞⎠−1

= −W (α†)−1 = (γ∗)−2 ,

implying

γ∗ = (µ∗)−1/2 =

(
µ∗

�∑
i=1

α†
i

)−1/2

=

(
�∑

i=1

α∗
i

)−1/2

,

as required.

An example using the Gaussian kernel is shown in Figure 7.4.

Fig. 7.4. Decision boundary and support vectors when using a gaussian kernel.

7.2.2 Soft margin classifiers

The maximal margin classifier is an important concept, but it can only be
used if the data are separable. For this reason it is not applicable in many
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real-world problems where the data are frequently noisy. If we are to ensure
linear separation in the feature space in such cases, we will need very complex
kernels that may result in overfitting. Since the hard margin support vector
machine always produces a consistent hypothesis, it is extremely sensitive
to noise in the training data. The dependence on a quantity like the margin
opens the system up to the danger of being very sensitive to a few points.
For real data this will result in a non-robust estimator.

This problem motivates the development of more robust versions that
can tolerate some noise and outliers in the training set without drastically
altering the resulting solution. The motivation of the maximal margin hy-
perplane was the bound given in (7.8) together with the assumption that the
first term vanishes. It is the second assumption that led to the requirement
that the data be linearly separable. Hence, if we relax this assumption and
just attempt to optimise the complete bound we will be able to tolerate some
misclassification of the training data. Exactly as with the novelty detector
we must optimise a combination of the margin and 1-norm of the vector ξ,
where ξi = ξ ((yi,xi), γ, g) = (γ − yig(xi))+. Introducing this vector into
the optimisation criterion results in an optimisation problem with what are
known as slack variables that allow the margin constraints to be violated.
For this reason we often refer to the vector ξ as the margin slack vector .

Computation 7.28 [1-norm soft margin SVM] The 1-norm soft margin
support vector machine is given by the computation

minw,b,γ,ξ −γ + C
∑�

i=1 ξi

subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi, ξi ≥ 0,
i = 1, . . . , �, and ‖w‖2 = 1.

(7.12)

The parameter C controls the trade-off between the margin and the size
of the slack variables. The optimisation problem (7.12) controls the 1-norm
of the margin slack vector. It is possible to replace the 1-norm with the
square of the 2-norm. The generalisation analysis for this case is almost
identical except for the use of the alternative squared loss function

A(a) =

⎧⎨⎩
1, if a < 0;
(1 − a/γ)2, if 0 ≤ a ≤ γ;
0, otherwise.

The resulting difference when compared to Theorem 4.17 is that the empir-
ical loss involves 1/γ2 rather than 1/γ and the Lipschitz constant is 2/γ in
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place of 1/γ. Hence, the bound becomes

PD (y �= g(x)) ≤ 1
�γ2

�∑
i=1

ξ2
i +

8
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
. (7.13)

In the next section we look at optimising the 1-norm bound and, following
that, turn our attention to the case of the 2-norm of the slack variables.

1-Norm soft margin – the box constraint The corresponding Lagrangian
for the 1-norm soft margin optimisation problem is

L(w, b, γ, ξ,α,β, λ) = −γ + C

�∑
i=1

ξi −
�∑

i=1

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi]

−
�∑

i=1

βiξi + λ
(
‖w‖2 − 1

)
with αi ≥ 0 and βi ≥ 0. The corresponding dual is found by differentiating
with respect to w, ξ, γ and b, and imposing stationarity

∂L(w, b, γ, ξ,α, β, λ)
∂w

= 2λw −
�∑

i=1

yiαiφ (xi) = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂ξi

= C−αi−βi = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂b

=
�∑

i=1

yiαi = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂γ

= 1 −
�∑

i=1

αi = 0.

Resubstituting the relations obtained into the primal, we obtain the follow-
ing adaptation of the dual objective function

L(α, λ) = − 1
4λ

�∑
i,j=1

yiyjαiαjκ (xi,xj) − λ,

which, again optimising with respect to λ, gives

λ∗ =
1
2

⎛⎝ �∑
i,j=1

yiyjαiαjκ (xi,xj)

⎞⎠1/2

(7.14)
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resulting in

L(α) = −
⎛⎝ �∑

i,j=1

αiαjyiyjκ (xi,xj)

⎞⎠1/2

.

This is identical to that for the maximal margin, the only difference being
that the constraint C−αi−βi=0, together with βi ≥ 0 enforces αi ≤ C. The
KKT complementarity conditions are therefore

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi] = 0, i = 1, . . . , �,
ξi (αi − C) = 0, i = 1, . . . , �.

Notice that the KKT conditions imply that non-zero slack variables can
only occur when αi = C. The computation of b∗ and γ∗ from the optimal
solution α∗ can be made from two points xi and xj satisfying yi = −1,
yj = +1 and C > α∗

i , α
∗
j > 0. It follows from the KKT conditions that

yi(〈φ (xi) ,w∗〉 + b∗) − γ∗ = 0 = yj(〈φ (xj) ,w∗〉 + b∗) − γ∗

implying that

−〈φ (xi) ,w∗〉 − b∗ − γ∗ = 〈φ (xj) ,w∗〉 + b∗ − γ∗

or b∗ = −0.5 (〈φ (xi) ,w∗〉 + 〈φ (xj) ,w∗〉) (7.15)

while γ∗ = 〈φ (xj) ,w∗〉 + b∗. (7.16)

We therefore have the following algorithm.

Algorithm 7.29 [1-norm soft margin support vector machine] The 1-norm
soft margin support vector machine is implemented in Code Fragment 7.6.

The following theorem characterises the output and statistical stability of
Algorithm 7.29.

Theorem 7.30 Fix δ > 0 and C ∈ [1/�,∞). Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}
is drawn according to a distribution D and suppose Algorithm 7.29 outputs
w, α∗, γ∗ and the function f . Then the function f realises the 1-norm soft
margin support vector machine in the feature space defined by κ. Further-
more, with probability 1 − δ, the generalisation error is bounded by

1
C�

−
√
−W (α∗)
C�γ∗ +

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,
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Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0, C ∈ [1/�,∞)

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi ≤ C, i = 1, . . . , �.

4 λ∗ = 1
2

(∑�
i,j=1 yiyjα

∗
i α

∗
jκ (xi,xj)

)1/2

5 choose i, j such that −C < α∗
i yi < 0 < α∗

jyj < C

6 b∗ = −λ∗(
∑�

k=1 α∗
kykκ (xk,xi) +

∑�
k=1 α∗

kykκ (xk,xj) )
7 γ∗ = 2λ∗∑�

k=1 α∗
kykκ (xk,xj) + b∗

8 f(·) = sgn
(∑�

j=1 α∗
jyjκ (xj , ·) + b∗

)
;

9 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.6. Pseudocode for 1-norm soft margin SVM.

where K is the corresponding kernel matrix.

Proof Note that the rescaling of b∗ is required since the function f(x)
corresponds to the weight vector

w = 2λ∗w∗ =
�∑

i=1

yiα
∗
i φ (xi) .

All that remains to show is that the error bound can be derived from the
general formula

PD (y �= g(x)) ≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
.

We need to compute the sum of the slack variables. Note that at the opti-
mum we have

L(w∗, b∗, γ∗, ξ∗,α∗, β∗, λ∗) = −
√

−W (α∗) = −γ∗ + C
�∑

i=1

ξ∗i

and so
�∑

i=1

ξ∗i =
γ∗ −

√
−W (α∗)
C

.
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Substituting into the bound gives the result.

An example of the soft margin support vector solution using a Gaussian
kernel is shown in Figure 7.5. The support vectors with zero slack variables
are circled, though there are other support vectors that fall outside the
positive and negative region corresponding to their having non-zero slack
variables.

Fig. 7.5. Decision boundary for a soft margin support vector machine using a gauss-
ian kernel.

Surprisingly the algorithm is equivalent to the maximal margin hyper-
plane, with the additional constraint that all the αi are upper bounded by
C. This gives rise to the name box constraint that is frequently used to refer
to this formulation, since the vector α is constrained to lie inside the box
with side length C in the positive orthant. The trade-off parameter between
accuracy and regularisation directly controls the size of the αi. This makes
sense intuitively as the box constraints limit the influence of outliers, which
would otherwise have large Lagrange multipliers. The constraint also en-
sures that the feasible region is bounded and hence that the primal always
has a non-empty feasible region.

Remark 7.31 [Tuning the parameter C] In practice the parameter C is
varied through a wide range of values and the optimal performance assessed
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using a separate validation set or a technique known as cross-validation
for verifying performance using only the training set. As the parameter
C runs through a range of values, the margin γ∗ varies smoothly through
a corresponding range. Hence, for a given problem, choosing a particular
value for C corresponds to choosing a value for γ∗, and then minimising
‖ξ‖1 for that size of margin.

As with novelty-detection, the parameter C has no intuitive meaning.
However, the same restrictions on the value of C, namely that C ≥ 1/�,
that applied for the novelty-detection optimisation apply here. Again this
suggests using

C = 1/ (ν�) ,

with ν ∈ (0, 1] as this leads to a similar control on the number of outliers
in a way made explicit in the following theorem. This form of the support
vector machine is known as the ν-support vector machine or new support
vector machine.

Algorithm 7.32 [ν-support vector machine] The ν-support vector machine
is implemented in Code Fragment 7.7.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0, ν ∈ (0, 1]

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi ≤ 1/ (ν�) , i = 1, . . . , �.

4 λ∗ = 1
2

(∑�
i,j=1 yiyjα

∗
i α

∗
jκ (xi,xj)

)1/2

5 choose i, j such that −1/ (ν�) < α∗
i yi < 0 < α∗

jyj < 1/ (ν�)
6 b∗ = −λ∗(

∑�
k=1 α∗

kykκ (xk,xi) +
∑�

k=1 α∗
kykκ (xk,xj) )

7 γ∗ = 2λ∗∑�
k=1 α∗

kykκ (xk,xj) + b∗

8 f(·) = sgn
(∑�

j=1 α∗
jyjκ (xj , ·) + b∗

)
;

9 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.7. Pseudocode for the soft margin SVM.
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The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.32, while at the same time elucidating the role of
the parameter ν.

Theorem 7.33 Fix δ > 0 and ν ∈ (0, 1]. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

is drawn according to a distribution D and suppose Algorithm 7.32 outputs
w, α∗, γ∗ and the function f . Then the function f realises the ν-support
vector machine in the feature space defined by κ. Furthermore, with prob-
ability 1 − δ, the generalisation error of the resulting classifier is bounded
by

ν − ν
√
−W (α∗)
γ∗ +

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
, (7.17)

where K is the corresponding kernel matrix. Furthermore, there are at most
ν� training points that fail to achieve a margin γ∗, while at least ν� of the
training points have margin at most γ∗.

Proof This is a direct restatement of Proposition 7.30 with C = 1/ (ν�). It
remains only to show the bounds on the number of training points failing
to achieve the margin γ∗ and having margin at most γ∗. The first bound
follows from the fact that points failing to achieve margin γ∗ have a non-zero
slack variable and hence αi = 1/ (ν�). Since

�∑
i=1

αi = 1,

it follows there can be at most ν� such points. Since αi ≤ 1/ (ν�) it similarly
follows that at least ν� points have non-zero αi implying that they have
margin at most γ∗.

Remark 7.34 [Tuning ν] The form of the generalisation error bound in
Proposition 7.33 gives a good intuition about the role of the parameter ν.
It corresponds to the noise level inherent in the data, a value that imposes
a lower bound on the generalisation error achievable by any learning algo-
rithm.

We can of course use the bound of (7.17) to guide the best choice of
the parameter ν, though strictly speaking we should apply the bound for a
range of values of ν, in order to work with the bound with non-fixed ν. This
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would lead to an additional log(�)/� factor under the final square root, but
for simplicity we again omit these details.

Remark 7.35 [Duality gap] In the case of the 1-norm support vector ma-
chine the feasibility gap can again be computed since the ξi, γ, and b are
not specified when moving to the dual and so can be chosen to ensure that
the primary problem is feasible. If we choose them to minimise the primal
we can compute the difference between primal and dual objective functions.
This can be used to detect convergence to the optimal solution.

2-Norm soft margin – weighting the diagonal In order to minimise
the bound (7.13) we can again formulate an optimisation problem, this time
involving γ and the 2-norm of the margin slack vector

minw,b,γ,ξ −γ + C
∑�

i=1 ξ2
i

subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi, ξi ≥ 0,
i = 1, . . . , �, and ‖w‖2 = 1.

(7.18)

Notice that if ξi < 0, then the first constraint will still hold if we set ξi = 0,
while this change will reduce the value of the objective function. Hence,
the optimal solution for the problem obtained by removing the positivity
constraint on ξi will coincide with the optimal solution of (7.18). Hence we
obtain the solution to (7.18) by solving the following computation.

Computation 7.36 [2-norm soft margin SVM] The 2-norm soft margin
support vector machine is given by the optimisation:

minw,b,γ,ξ −γ + C
∑�

i=1 ξ2
i

subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi,
i = 1, . . . , �, and ‖w‖2 = 1.

(7.19)

The Lagrangian for problem (7.19) of Computation 7.36 is

L(w, b, γ, ξ,α, λ) = −γ + C
�∑

i=1

ξ2
i −

�∑
i=1

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi]

+ λ
(
‖w‖2 − 1

)
with αi ≥ 0. The corresponding dual is found by differentiating with respect
to w, ξ, γ and b, imposing stationarity
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∂L(w, b, γ, ξ,α, λ)
∂w

= 2λw −
�∑

i=1

yiαiφ (xi) = 0,

∂L(w, b, γ, ξ,α, λ)
∂ξi

= 2Cξi−αi = 0,

∂L(w, b, γ, ξ,α, λ)
∂b

=
�∑

i=1

yiαi = 0,

∂L(w, b, γ, ξ,α, λ)
∂γ

= 1 −
�∑

i=1

αi = 0.

Resubstituting the relations obtained into the primal, we obtain the follow-
ing adaptation of the dual objective function

L(w, b, γ, ξ, α, λ) = − 1
4C

�∑
i=1

α2
i −

1
4λ

�∑
i,j=1

yiyjαiαjκ (xi,xj) − λ,

which, again optimising with respect to λ, gives

λ∗ =
1
2

⎛⎝ �∑
i,j=1

yiyjαiαjκ (xi,xj)

⎞⎠1/2

(7.20)

resulting in

L(α, λ) = − 1
4C

�∑
i=1

α2
i −

⎛⎝ �∑
i,j=1

αiαjyiyjκ (xi,xj)

⎞⎠1/2

.

We can see that adding the 2-norm regularisation of the slack variables in the
primal corresponds to regularising the dual with the 2-norm of the Lagrange
multipliers. As C is varied, the size of this 2-norm squared will vary from a
minimum of 1/� corresponding to a uniform allocation of

αi =
1
�

to a maximum of 0.5 when exactly one positive and one negative example
each get weight 0.5. Maximising the above objective over α for a particular
value C is equivalent to maximising

W (α) = −µ
�∑

i=1

α2
i −

�∑
i,j=1

αiαjyiyjκ (xi,xj)
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= −
�∑

i,j=1

yiyjαiαj (κ (xi,xj) + µδij) ,

for some value of µ = µ (C), where δij is the Kronecker δ defined to be 1 if
i = j and 0 otherwise. But this is just the objective of Algorithm 7.21 with
the kernel κ (xi,xj) replaced by (κ (xi,xj) + µδij).

Hence, we have the following algorithm.

Algorithm 7.37 [2-norm soft margin SVM] The 2-norm soft margin sup-
port vector machine is implemented in Code Fragment 7.8.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyj (κ (xi,xj) + µδij)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
√

−W (α∗)
5 choose i such that 0 < α∗

i

6 b = yi (γ∗)2 −∑�
j=1 α∗

jyj (κ (xi,xj) + µδij)

7 f(x) = sgn
(∑�

j=1 α∗
jyjκ (xj ,x) + b

)
;

8 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.8. Pseudocode for the 2-norm SVM.

The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.37.

Theorem 7.38 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

drawn according to a distribution D in the feature space implicitly defined by
the kernel κ and suppose Algorithm 7.37 outputs w, α∗, γ∗ and the function
f . Then the function f realises the hard margin support vector machine
in the feature space defined by (κ (xi,xj) + µδij) with geometric margin γ∗.
This is equivalent to minimising the expression −γ + C

∑�
i=1 ξ2

i involving
the 2-norm of the slack variables for some value of C, hence realising the
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2-norm support vector machine. Furthermore, with probability 1 − δ, the
generalisation error of the resulting classifier is bounded by

min

(
µ ‖α∗‖2

�γ∗4 +
8
√

tr(K)
�γ∗ + 3

√
ln(4/δ)

2�
,
4
√

tr(K) + �µ

�γ∗ + 3

√
ln(4/δ)

2�

)
,

where K is the corresponding kernel matrix.

Proof The value of the slack variable ξ∗i can be computed by observing that
the contribution to the functional output of the µδij term is µα∗

i for the
unnormalised weight vector w whose norm is given by

‖w‖2 = −W (α∗) = γ∗2.

Hence, for the normalised weight vector its value is µα∗
i /γ∗. Plugging this

into the bound (7.13) for the 2-norm case shows that the first term of the
minimum holds with probability 1−(δ/2). The second term of the minimum
holds with probability 1 − (δ/2) through an application of the hard margin
bound in the feature space defined by the kernel

(κ (xi,xj) + µδij) .

The 2-norm soft margin algorithm reduces to the hard margin case with
an extra constant added to the diagonal. In this sense it is reminiscent
of the ridge regression algorithm. Unlike ridge regression the 2-norm soft
margin algorithm does not lose the sparsity property that is so important for
practical applications. We now return to give a more detailed consideration
of ridge regression including a strategy for introducing sparsity.

7.3 Support vector machines for regression

We have already discussed the problem of learning a real-valued function
in both Chapters 2 and 6. The partial least squares algorithm described
in Section 6.7.1 can be used for learning functions whose output is in any
Euclidean space, so that the 1-dimensional output of a real-valued function
can be seen as a special case. The term regression is generally used to refer to
such real-valued learning. Chapter 2 used the ridge regression algorithm to
introduce the dual representation of a linear function. We were not, however,
in a position to discuss the stability of regression or extensions to the basic
algorithm at that stage. We therefore begin this section by redressing this
shortcoming of our earlier presentation. Following that we will give a fuller
description of ridge regression and other support vector regression methods.
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7.3.1 Stability of regression

In order to assess the stability of ridge regression we must choose a pattern
function similar to that used for classification functions, namely a measure
of discrepancy between the generated output and the desired output. The
most common choice is to take the squared loss function between prediction
and true output

f (z) = f (x, y) = L (y, g (x)) = (y − g (x))2 .

The function g is here the output of the ridge regression algorithm with the
form

g (x) =
�∑

i=1

αiκ (xi,x) ,

where α is given by

α = (K + λI�)
−1y.

We can now apply Theorem 4.9 to this function to obtain the following
result.

Theorem 7.39 Fix B > 0 and δ ∈ (0, 1). Let FB be the class of linear
functions with norm at most B, mapping from a feature space defined by the
kernel κ over a space X. Let

S = {(x1, y1), . . . , (x�, y�)}
be drawn independently according to a probability distribution D on X × R,
the image of whose support in the feature space is contained in a ball of
radius R about the origin, while the support of the output value y lies in the
interval [−BR, BR]. Then with probability at least 1 − δ over the random
draw of S, we have, for all g ∈ FB

ED
[
(y − g (x))2

]
≤ 1

�

�∑
i=1

(yi − g (xi))
2 +

16RB

�

(
B
√

tr(K) + ‖y‖2

)
+ 12 (RB)2

√
ln(2/δ)

2�
,

where K is the kernel matrix of the training set S.

Proof We define the loss function class LF ,h,2 to be

LF ,h,2 =
{

(g − h)2
∣∣∣ g ∈ F

}
.
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We will apply Theorem 4.9 to the function (y − g (x))2 / (2RB)2 ∈ LF ,h,2

with F = FB/(2RB) = F1/(2R) and h (x, y) = y/ (2RB). Since this ensures
that in the support of the distribution the class is bounded in the interval
[0, 1], we have

ED
[
(y − g (x))2 / (2RB)2

]
≤ Ê

[
(y − g (x))2 / (2RB)2

]
+R̂�(LF ,h,2) + 3

√
ln(2/δ)

2�
.

Multiplying through by (2RB)2 gives

ED
[
(y − g (x))2

]
≤ Ê

[
(y − g (x))2

]
+ (2RB)2 R̂�(LF ,h,2)

+ 12 (RB)2
√

ln(2/δ)
2�

.

The first term on the right-hand side is simply the empirical squared loss.
By part (vi) of Proposition 4.15 we have

R̂�(LF ,h,2) ≤ 4

(
R̂�(F1/(2R)) + 2

√
Ê

[
y2/ (2RB)2

]
/�

)
.

This together with Theorem 4.12 gives the result.

7.3.2 Ridge regression

Theorem 7.39 shows that the expected value of the squared loss can be
bounded by its empirical value together with a term that involves the trace
of the kernel matrix and the 2-norm of the output values, but involving a
bound on the norm of the weight vector of the linear functions. It therefore
suggests that we can optimise the off-training set performance by solving
the computation:

Computation 7.40 [Ridge regression optimisation] The ridge regression
optimisation is achieved by solving

minw
∑�

i=1 ξ2
i

subject to yi − 〈w,φ (xi)〉 = ξi,
i = 1, . . . , �, and ‖w‖ ≤ B.

(7.21)
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Applying the Lagrange multiplier technique we obtain the Lagrangian

L(w, ξ,β, λ) =
�∑

i=1

ξ2
i +

�∑
i=1

βi [yi − 〈φ (xi) ,w〉 − ξi] + λ
(
‖w‖2 − B2

)
.

Again taking derivatives with respect to the primal variables gives

2λw =
�∑

i=1

βiφ (xi) and 2ξi = βi, i = 1, . . . , �.

Resubstituting into L we have

L(β, λ) = −1
4

�∑
i=1

β2
i +

�∑
i=1

βiyi −
1
4λ

�∑
i,j=1

βiβjκ (xi,xj) − λB2.

Letting αi = βi/ (2λ) be the dual coefficients of the solution weight vector
results in the optimisation

min
α

−λ

�∑
i=1

α2
i + 2

�∑
i=1

αiyi −
�∑

i,j=1

αiαjκ (xi,xj) .

Differentiating with respect to the parameters and setting the derivative
equal to zero leads to the following algorithm.

Algorithm 7.41 [Kernel ridge regression] The ridge regression algorithm
is implemented as follows:

Input training set S = {(x1, y1), . . . , (x�, y�)}, λ > 0
Process α∗= (K + λI�)

−1y
2 f(x) =

∑�
j=1 α∗

jκ (xj ,x)
3 w =

∑�
j=1 α∗

jφ(xj)
Output weight vector w, dual α∗ and/or function f

implementing ridge regression

The algorithm was already introduced in Chapter 2 (see (2.6)). Strictly
speaking we should have optimised over λ, but clearly different values of λ

correspond to different choices of B, hence varying λ is equivalent to varying
B.

The example of ridge regression shows how once again the form of the
bound on the stability of the pattern function leads to the optimisation prob-
lem that defines the solution of the learning task. Despite this well-founded
motivation, dual ridge regression like dual partial least squares suffers from
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the disadvantage that the solution vector α∗ is not sparse. Hence, to eval-
uate the learned function on a novel example we must evaluate the kernel
with each of the training examples. For large training sets this will make
the response time very slow.

The sparsity that arose in the case of novelty-detection and classification
had its roots in the inequalities used to define the optimisation criterion.
This follows because at the optimum those points for which the function
output places them in a region where the loss function has zero derivative
must have their Lagrange multipliers equal to zero. Clearly for the 2-norm
loss this is never the case.

We therefore now examine how the square loss function of ridge regres-
sion can be altered with a view to introducing sparsity into the solutions
obtained. This will then lead to the use of the optimisation techniques ap-
plied above for novelty-detection and classification but now used to solve
regression problems, hence developing the support vector regression (SVR)
algorithms.

7.3.3 ε-insensitive regression

In order to encourage sparseness, we need to define a loss function that
involves inequalities in its evalution. This can be achieved by ignoring errors
that are smaller than a certain threshold ε > 0. For this reason the band
around the true output is sometimes referred to as a tube. This type of loss
function is referred to as an ε-insensitive loss function. Using ε-insensitive
loss functions leads to the support vector regression algorithms.

Figure 7.6 shows an example of a one-dimensional regression function with
an ε-insensitive band. The variables ξ measure the cost of the errors on the
training points. These are zero for all points inside the band. Notice that
when ε = 0 we recover standard loss functions such as the squared loss used
in the previous section as the following definition makes clear.

Definition 7.42 The (linear) ε-insensitive loss function Lε(x, y, g) is de-
fined by

Lε(x, y, g) = |y − g(x)|ε = max (0, |y − g(x)| − ε) ,

where g is a real-valued function on a domain X, x ∈ X and y ∈ R. Similarly
the quadratic ε-insensitive loss is given by

Lε
2(x, y, g) = |y − g(x)|2ε .
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Fig. 7.6. Regression using ε-insensitive loss.

Continuing the development that we began with ridge regression it is
most natural to consider taking the square of the ε-insensitive loss to give
the so-called quadratic ε-insensitive loss.

Quadratic ε-insensitive loss We can optimise the sum of the quadratic
ε-insensitive losses again subject to the constraint that the norm is bounded.
This can be cast as an optimisation problem by introducing separate slack
variables for the case where the output is too small and the output is too
large. Rather than have a separate constraint for the norm of the weight
vector we introduce the norm into the objective function together with a
parameter C to measure the trade-off between the norm and losses. This
leads to the following computation.

Computation 7.43 [Quadratic ε-insensitive SVR] The weight vector w
and threshold b for the quadratic ε-insensitive support vector regression are
chosen to optimise the following problem

minw,b,ξ,ξ̂ ‖w‖2 + C
∑�

i=1(ξ
2
i + ξ̂

2

i ),
subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi, i = 1, . . . , �,

yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i, i = 1, . . . , �.

⎫⎪⎬⎪⎭ (7.22)
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We have not constrained the slack variables to be positive since negative
values will never arise at the optimal solution. We have further included an
offset parameter b that is not penalised. The dual problem can be derived
using the standard method and taking into account that ξiξ̂i = 0 and there-
fore that the same relation αiα̂i = 0 holds for the corresponding Lagrange
multipliers

maxα̂,α
∑�

i=1 yi(α̂i − αi) − ε
∑�

i=1(α̂i + αi)
−1

2

∑�
i,j=1(α̂i − αi)(α̂i − αj)

(
κ (xi,xj) + 1

C δij

)
,

subject to
∑�

i=1(α̂i − αi) = 0,
α̂i ≥ 0, αi ≥ 0, i = 1, . . . , �.

The corresponding KKT complementarity conditions are

αi (〈w, φ (xi)〉 + b − yi − ε − ξi) = 0, i = 1, . . . , �,

α̂i

(
yi − 〈w,φ (xi)〉 − b − ε − ξ̂i

)
= 0, i = 1, . . . , �,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , �,

Remark 7.44 [Alternative formulation] Note that by substituting β =
α̂ − α and using the relation αiα̂i = 0, it is possible to rewrite the dual
problem in a way that more closely resembles the classification case

maxβ
∑�

i=1 yiβi − ε
∑�

i=1 |βi| − 1
2

∑�
i,j=1 βiβj

(
κ (xi,xj) + 1

C δij

)
,

subject to
∑�

i=1 βi = 0.

Notice that if we set ε = 0 we recover ridge regression, but with an unpe-
nalised offset that gives rise to the constraint

�∑
i=1

βi = 0.

We will in fact use α in place of β when we use this form later.

Hence, we have the following result for a regression technique that will
typically result in a sparse solution vector α∗.

Algorithm 7.45 [2-norm support vector regression] The 2-norm support
vector regression algorithm is implemented in Code Fragment 7.9.

Though the move to the use of the ε-insensitive loss was motivated by the
desire to introduce sparsity into the solution, remarkably it can also improve
the generalisation error as measured by the expected value of the squared
error as is bourne out in practical experiments.
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Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0

Process find α∗ as solution of the optimisation problem:

maxα W (α) =
�∑

i=1

yiαi − ε
�∑

i=1

|αi| − 1
2

�∑
i,j=1

αiαj

(
κ(xi,xj) + 1

C δij

)
subject to

∑�
i=1 αi = 0.

4 w =
∑�

j=1 α∗
jφ(xj)

5 b∗ = −ε − (α∗
i /C) + yi −

∑�
j=1 α∗

jκ(xj ,xi) for i with α∗
i > 0.

6 f(x) =
∑�

j=1 α∗
jκ(xj ,x) + b∗,

Output weight vector w, dual α∗, b∗ and/or function f
implementing 2-norm support vector regression

Code Fragment 7.9. Pseudocode for 2-norm support vector regression.

The quadratic ε-insensitive loss follows naturally from the loss function
used in ridge regression. There is, however, an alternative that parallels the
use of the 1-norm of the slack variables in the support vector machine. This
makes use of the linear ε-insensitive loss.

Linear ε-insensitive loss A straightforward rewriting of the optimisation
problem (7.22) that minimises the linear loss is as follows:

Computation 7.46 [Linear ε-insensitive SVR] The weight vector w and
threshold b for the linear ε-insensitive support vector regression are chosen
to optimise the following problem

minw,b,ξ,ξ̂
1
2 ‖w‖2 + C

∑�
i=1(ξi + ξ̂i),

subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi, i = 1, . . . , �,
yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i, i = 1, . . . , �,
ξi, ξ̂i ≥ 0, i = 1, . . . , �.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.23)

The corresponding dual problem can be derived using the now standard
techniques

max
∑�

i=1(α̂i − αi)yi − ε
∑�

i=1(α̂i + αi)
−1

2

∑�
i,j=1(α̂i − αi)(α̂j − αj)κ (xi,xj),

subject to 0 ≤ αi, α̂i ≤ C, i = 1, . . . , �,∑�
i=1(α̂i − αi) = 0, i = 1, . . . , �.
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The KKT complementarity conditions are

αi (〈w, φ (xi)〉 + b − yi − ε − ξi) = 0, i = 1, . . . , �,

α̂i

(
yi − 〈w,φ (xi)〉 − b − ε − ξ̂i

)
= 0, i = 1, . . . , �,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , �,
(αi − C) ξi = 0, (α̂i − C) ξ̂i = 0, i = 1, . . . , �.

Again as mentioned in Remark 7.44 substituting αi for α̂i − αi, and taking
into account that αiα̂i = 0, we obtain the following algorithm.

Algorithm 7.47 [1-norm support vector regression] The 1-norm support
vector regression algorithm is implemented in Code Fragment 7.10.

Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0

Process find α∗ as solution of the optimisation problem:
maxα W (α) =

∑�
i=1 yiαi − ε

∑�
i=1 |αi| − 1

2

∑�
i,j=1 αiαjκ(xi,xj)

subject to
∑�

i=1 αi = 0, −C ≤ αi ≤ C, i = 1, . . . , �.

4 w =
∑�

j=1 α∗
jφ(xj)

5 b∗ = −ε + yi −
∑�

j=1 α∗
jκ(xj ,xi) for i with 0 < α∗

i < C.
6 f(x) =

∑�
j=1 α∗

jκ(xj ,x) + b∗,
Output weight vector w, dual α∗, b∗ and/or function f

implementing 1-norm support vector regression

Code Fragment 7.10. Pseudocode for 1-norm support vector regression.

Remark 7.48 [Support vectors] If we consider the band of ±ε around the
function output by the learning algorithm, the points that are not strictly
inside the tube are support vectors. Those not touching the tube will have
the absolute value of the corresponding αi equal to C.

Stability analysis of ε-insensitive regression The linear ε-insensitive
loss for support vector regression raises the question of what stability anal-
ysis is appropriate. When the output values are real there are a large range
of possibilities for loss functions all of which reduce to the discrete loss in
the case of classification. An example of such a loss function is the loss that
counts an error if the function output deviates from the true output by more
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than an error bound γ

Hγ(x, y, g) =
{

0, if |y − g(x)| ≤ γ;
1, otherwise.

We can now apply a similar generalisation analysis to that developed for
classification by introducing a loss function

A(a) =

⎧⎨⎩
0, if a < ε,
(a − ε) / (γ − ε), if ε ≤ a ≤ γ,
1, otherwise.

Observe that Hγ(x, y, g) ≤ A(|y − g(x)|) ≤ |y − g(x)|ε, so that we can apply
Theorem 4.9 to A(|y − g(x)|) to give an upper bound on ED [Hγ(x, y, g)]
while the empirical error can be upper bounded by

�∑
i=1

|yi − g(xi)|ε =
�∑

i=1

(ξi + ξ̂i).

Putting the pieces together gives the following result.

Theorem 7.49 Fix B > 0 and δ ∈ (0, 1). Let FB be the class of linear
functions with norm at most B, mapping from a feature space defined by the
kernel κ over a space X. Let

S = {(x1, y1), . . . , (x�, y�)}
be drawn independently according to a probability distribution D on X × R.
Then with probability at least 1− δ over the random draw of S, we have for
all g ∈ FB

PD (|y − g(x)| > γ) = ED [Hγ(x, y, g)]

≤

∥∥∥ξ + ξ̂
∥∥∥

1

� (γ − ε)
+

4B
√

tr(K)
� (γ − ε)

+ 3

√
ln(2/δ)

2�
,

where K is the kernel matrix of the training set S.

The result shows that bounding a trade-off between the sum of the linear
slack variables and the norm of the weight vector will indeed lead to an
improved bound on the probability that the output error exceeds γ.

ν-support vector regression One of the attractive features of the 1-norm
support vector machine was the ability to reformulate the problem so that
the regularisation parameter specifies the fraction of support vectors in the
so-called ν-support vector machine. The same approach can be adopted here
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in what is known as ν-support vector regression. The reformulation involves
the automatic adaptation of the size ε of the tube.

Computation 7.50 [ν-support vector regression] The weight vector w and
threshold b for the ν-support vector regression are chosen to optimise the
following problem:

minw,b,ε,ξ,ξ̂
1
2 ‖w‖2 + C

(
νε + 1

�

∑�
i=1(ξi + ξ̂i)

)
,

subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi,
yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i,
ξi, ξ̂i ≥ 0, i = 1, . . . , �,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.24)

Applying the now usual analysis leads to the following algorithm.

Algorithm 7.51 [ν-support vector regression] The ν-support vector regres-
sion algorithm is implemented in Code Fragment 7.11.

Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0, 0 < ν < 1.

Process find α∗ as solution of the optimisation problem:
maxα W (α) =

∑�
i=1 yiαi − ε

∑�
i=1 |αi| − 1

2

∑�
i,j=1 αiαjκ(xi,xj)

subject to
∑�

i=1 αi = 0,
∑�

i=1 |αi| ≤ Cν, −C/� ≤ αi ≤ C/�, i = 1, . . . , �.

4 w =
∑�

j=1 α∗
jφ(xj)

5 b∗ = −ε + yi −
∑�

j=1 α∗
jκ(xj ,xi) for i with 0 < α∗

i < C/�.
6 f(x) =

∑�
j=1 α∗

jκ(xj ,x) + b∗,
Output weight vector w, dual α∗, b∗ and/or function f

implementing ν-support vector regression

Code Fragment 7.11. Pseudocode for new SVR.

As with the ν-support vector machine the parameter ν controls the frac-
tion of errors in the sense that there are at most ν� training points that fall
outside the tube, while at least ν� of the training points are support vectors
and so lie either outside the tube or on its surface.
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7.4 On-line classification and regression

The algorithms we have described in this section have all taken a training
set S as input and processed all of the training examples at once. Such an
algorithm is known as a batch algorithm.

In many practical tasks training data must be processed one at a time
as it is received, so that learning is started as soon as the first example
is received. The learning follows the following protocol. As each example
is received the learner makes a prediction of the correct output. The true
output is then made available and the degree of mismatch or loss made in the
prediction is recorded. Finally, the learner can update his current pattern
function in response to the feedback received on the current example. If
updates are only made when non-zero loss is experience, the algorithm is
said to be conservative.

Learning that follows this protocol is known as on-line learning. The aim
of the learner is to adapt his pattern function as rapidly as possible. This is
reflected in the measures of performance adopted to analyse on-line learning.
Algorithms are judged according to their ability to control the accumulated
loss that they will suffer in processing a sequence of examples. This measure
takes into account the rate at which learning takes place.

We first consider a simple on-line algorithm for learning linear functions
in an on-line fashion.

The perceptron algorithm The algorithm learns a thresholded linear
function

h (x) = sgn 〈w,φ (x)〉

in a kernel-defined feature space in an on-line fashion making an update
whenever a misclassified example is processed. If the weight vector after t

updates is denoted by wt then the update rule for the (t + 1)st update when
an example (xi, yi) is misclassified is given by

wt+1 = wt + yiφ (xi) .

Hence, the corresponding dual update rule is simply

αi = αi + 1,

if we assume that the weight vector is expressed as

wt =
�∑

i=1

αiyiφ (xi) .



242 Pattern analysis using convex optimisation

This is summarised in the following algorithm.

Algorithm 7.52 [Kernel perceptron] The dual perceptron algorithm is im-
plemented in Code Fragment 7.12.

Input training sequence (x1, y1), . . . , (x�, y�), . . .
Process α = 0, i = 0, loss = 0
2 repeat
3 i = i + 1
4 if sgn

(∑�
j=1 αjyjκ(xj ,xi)

)
�= yi

5 αi = αi + 1
6 loss = loss +1
7 until finished
8 f (x) =

∑�
j=1 αjyjκ(xj ,x)

Output dual variables α, loss and function f

Code Fragment 7.12. Pseudocode for the kernel perceptron algorithm.

We can apply the perceptron algorithm as a batch algorithm to a full
training set by running through the set repeating the updates until all of
the examples are correctly classified.

Assessing the performance of the perceptron algorithm The algo-
rithm does not appear to be aiming for few updates, but for the batch case
the well-known perceptron convergence theorem provides a bound on their
number in terms of the margin of the corresponding hard margin support
vector machine as stated in the theorem due to Novikoff.

Theorem 7.53 (Novikoff) If the training points

S = {(x1, y1) , . . . , (x�, y�)}
are contained in a ball of radius R about the origin, the hard margin support
vector machine weight vector w∗ with no bias has geometric margin γ and
we begin with the weight vector

w0 = 0 =
�∑

i=1

0φ (xi) ;

then the number of updates of the perceptron algorithm is bounded by

R2

γ2
.
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Proof The result follows from two sequences of inequalities. The first shows
that as the updates are made the norm of the resulting weight vector cannot
grow too fast, since if i is the index of the example used for the tth update,
we have

‖wt+1‖2 = 〈wt + yiφ (xi) ,wt + yiφ (xi)〉
= ‖wt‖2 + 2yi 〈wt,φ (xi)〉 + ‖φ (xi)‖2

≤ ‖wt‖2 + R2 ≤ (t + 1)R2,

since the fact we made the update implies the middle term cannot be pos-
itive. The other sequence of inequalities shows that the inner product be-
tween the sequence of weight vectors and the vector w∗ (assumed without
loss of generality to have norm 1) increases by a fixed amount each update

〈w∗,wt+1〉 = 〈w∗,wt〉 + yi 〈w∗,φ (xi)〉 ≥ 〈w∗,wt〉 + γ ≥ (t + 1) γ.

The two inequalities eventually become incompatible as they imply that

t2γ2 ≤ 〈w∗,wt〉2 ≤ ‖wt‖2 ≤ tR2.

Clearly, we must have

t ≤ R2

γ2
,

as required.

The bound on the number of updates indicates that each time we make
a mistake we are effectively offsetting the cost of that mistake with some
progress towards learning a function that correctly classifies the training set.
It is curious that the bound on the number of updates is reminiscient of the
bound on the generalisation of the hard margin support vector machine.

Despite the number of updates not being a bound on the generalisation
performance of the resulting classifier, we now show that it does imply such
a bound. Indeed the type of analysis we now present will also imply a bound
on the generalisation of the hard margin support vector machine in terms
of the number of support vectors.

Recall that for the various support vector machines for classification and
the ε-insensitive support vector machine for regression only a subset of the
Lagrange multipliers is non-zero. This property of the solutions is referred
to as sparseness. Furthermore, the support vectors contain all the informa-
tion necessary to reconstruct the hyperplane or regression function. Hence,
for classification even if all of the other points were removed the same max-
imal separating hyperplane would be found from the remaining subset of



244 Pattern analysis using convex optimisation

the support vectors. This shows that the maximal margin hyperplane is a
compression scheme in the sense that from the subset of support vectors we
can reconstruct the maximal margin hyperplane that correctly classifies the
whole training set.

For the perceptron algorithm the bound is in terms of the number of up-
dates made to the hypothesis during learning, that is the number bounded by
Novikoff’s theorem. This is because the same hypothesis would be generated
by performing the same sequence of updates while ignoring the examples on
which updates were not made. These examples can then be considered as
test examples since they were not involved in the generation of the hypothe-
sis. There are �k ways in which a sequence of k updates can be created from
a training set of size �, so we have a bound on the number of hypotheses
considered. Putting this together using a union bound on probability gives
the following proposition.

Theorem 7.54 Fix δ > 0. If the perceptron algorithm makes 1 ≤ k ≤ �/2
updates before converging to a hypothesis f (x) that correctly ranks a training
set

S = {(x1, y1), . . . , (x�, y�)}
drawn independently at random according to a distribution D, then with
probability at least 1− δ over the draw of the set S, the generalisation error
of f (x) is bounded by

PD (f (x) �= y) ≤ 1
� − k

(
k ln � + ln

�

2δ

)
. (7.25)

Proof We first fix 1 ≤ k ≤ �/2 and consider the possible hypotheses that can
be generated by sequences of k examples. The proof works by bounding the
probability that we choose a hypothesis for which the generalisation error is
worse than the bound. We use bold i to denote the sequence of indices on
which the updates are made and i0 to denote some a priori fixed sequence
of indices. With fi we denote the function obtained by updating on the
sequence i

P

{
S : ∃i s.t. PD (fi (x) �= y) >

1
� − k

(
k ln � + ln

�

2δ

)}
≤ �kP

{
S : PD (fi0 (x) �= y) >

1
� − k

(
k ln � + ln

�

2δ

)}
≤ �k

(
1 − 1

� − k

(
k ln � + ln

�

2δ

))�−k
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≤ �k exp
(
−� − k

� − k

(
k ln � + ln

�

2δ

))
≤ 2δ

�
.

Hence, the total probability of the bound failing over the different choices
of k is at most δ as required.

Combining this with the bound on the number of updates provided by
Novikoff’s theorem gives the following corollary.

Corollary 7.55 Fix δ > 0. Suppose the hard margin support vector machine
has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}
drawn independently at random according to a distribution D and contained
in a ball of radius R about the origin. Then with probability at least 1 − δ

over the draw of the set S, the generalisation error of the function f (x)
obtained by running the perceptron algorithm on S in batch mode is bounded
by

PD (f (x) �= y) ≤ 2
�

(
R2

γ2
ln � + ln

�

2δ

)
,

provided

R2

γ2
≤ �

2
.

There is a similar bound on the generalisation of the hard margin support
vector machine in terms of the number of support vectors. The proof tech-
nique mimics that of Theorem 7.54, the only difference being that the order
of the support vectors does not affect the function obtained. This gives the
following bound on the generalisation quoted without proof.

Theorem 7.56 Fix δ > 0. Suppose the hard margin support vector machine
has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}
drawn independently at random according to a distribution D. Then with
probability at least 1 − δ over the draw of the set S, its generalisation error
is bounded by

1
� − d

(
d log

e�

d
+ log

�

δ

)
,
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where d = # sv is the number of support vectors.

The theorem shows that the smaller the number of support vectors the
better the generalisation that can be expected. If we were to use the bound
to guide the learning algorithm a very different approach would result. In-
deed we can view the perceptron algorithm as a greedy approach to optimis-
ing this bound, in the sense that it only makes updates and hence creates
non-zero αi when this is forced by a misclassification.

Curiously the generalisation bound for the perceptron algorithm is at
least as good as the margin bound obtained for the hard margin support
vector machine! In practice the support vector machine typically gives better
generalisation, indicating that the apparent contradiction arises as a result
of the tighter proof technique that can be used in this case.

Remark 7.57 [Expected generalisation error] A slightly tighter bound on
the expected generalisation error of the support vector machine in terms of
the same quantities can be obtained by a leave-one-out argument. Since,
when a non-support vector is omitted, it is correctly classified by the re-
maining subset of the training data the leave-one-out estimate of the gener-
alisation error is

# sv
�

.

A cyclic permutation of the training set shows that the expected error of a
test point is bounded by this quantity. The use of an expected generalisation
bound gives no guarantee about its variance and hence its reliability. Indeed
leave-one-out bounds are known to suffer from this problem. Theorem 7.56
can be seen as showing that in the case of maximal margin classifiers a
slightly weaker bound does hold with high probability and hence that in
this case the variance cannot be too high.

Remark 7.58 [Effects of the margin] Note that in SVMs the margin has
two effects. Its maximisation ensures a better bound on the generalisation,
but at the same time it is the margin that is the origin of the sparseness of
the solution vector, as the inequality constraints generate the KKT comple-
mentarity conditions. As indicated above the maximal margin classifier does
not attempt to control the number of support vectors and yet in practice
there are frequently few non-zero αi. This sparseness of the solution can be
exploited by implementation techniques for dealing with large datasets.
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Kernel adatron There is an on-line update rule that models the hard mar-
gin support vector machine with fixed threshold 0. It is a simple adaptation
of the perceptron algorithm.

Algorithm 7.59 [Kernel adatron] The kernel adatron algorithm is imple-
mented in Code Fragment 7.13.

Input training set S = {(x1, y1), . . . , (x�, y�)}
Process α = 0, i = 0, loss = 0
2 repeat
3 for i = 1 : �

4 αi ← αi +
(
1 − yi

∑�
j=1 αjyjκ (xj ,xi)

)
5 if αi < 0 then αi ← 0.
6 end
7 until α unchanged
8 f (x) = sgn

(∑�
j=1 αjyjκ(xj ,x)

)
Output dual variables α, loss and function f

Code Fragment 7.13. Pseudocode for the kernel adatron algorithm.

For each αi this can be for one of two reasons. If the first update did not
change αi then

1 − yi

�∑
j=1

αjyjκ (xj ,xi) = 0

and so (xi, yi) has functional margin 1. If, on the other hand, the value of
αi remains 0 as a result of the second update, we have

1 − yi

�∑
j=1

αjyjκ (xj ,xi) < 0

implying (xi, yi) has functional margin greater than 1. It follows that at
convergence the solution satisfies the KKT complementarity conditions for
the alternative hard margin support vector machine of Algorithm 7.26 once
the condition

�∑
i=1

αiyi = 0

arising from a variable threshold has been removed. The algorithm can
be adapted to handle a version of the 1-norm soft margin support vector
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machine by introducing an upper bound on the value of αi, while a version
of the 2-norm support vector machine can be implemented by adding a
constant to the diagonal of the kernel matrix.

Remark 7.60 [SMO algorithm] If we want to allow a variable threshold the
updates must be made on a pair of examples, an approach that results in
the SMO algorithm. The rate of convergence of both of these algorithms is
strongly affected by the order in which the examples are chosen for updating.
Heuristic measures such as the degree of violation of the KKT conditions
can be used to ensure very effective convergence rates in practice.

On-line regression On-line learning algorithms are not restricted to clas-
sification problems. Indeed in the next chapter we will describe such an
algorithm for ranking that will be useful in the context of collaborative
filtering. The update rule for the kernel adatron algorithm also suggests
a general methodology for creating on-line versions of the optimisations we
have described. The objective function for the alternative hard margin SVM
is

W (α) =
�∑

i=1

αi −
1
2

�∑
i,j=1

αiαjyiyjκ (xi,xj) .

If we consider the gradient of this quantity with respect to an individual αi

we obtain

∂W (α)
∂αi

= 1 − yi

�∑
j=1

αjyjκ (xj ,xi)

making the first update of the kernel adatron algorithm equivalent to

αi ← αi +
∂W (α)

∂αi

making it a simple gradient ascent algorithm augmented with corrections to
ensure that the additional constraints are satisfied. If, for example, we apply
this same approach to the linear ε-insensitive loss version of the support
vector regression algorithm with fixed offset 0, we obtain the algorithm.

Algorithm 7.61 [On-line support vector regression] On-line support vector
regression is implemented in Code Fragment 7.14.
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Input training set S = {(x1, y1), . . . , (x�, y�)}
Process α = 0, i = 0, loss = 0
2 repeat
3 for i = 1 : �
4 α̂i ← αi;
5 αi ← αi + yi − ε sgn (αi) −

∑�
j=1 αjκ (xj ,xi) ;

6 if α̂iαi < 0 then αi ← 0;
7 end
8 until α unchanged
9 f (x) =

∑�
j=1 αjκ(xj ,x)

Output dual variables α, loss and function f

where for αi = 0 , sgn (αi) is interpreted to be the number in [−1, +1] that gives
the update in line 5 the smallest absolute value.

Code Fragment 7.14. Pseudocode for the on-line support vector regression.

7.5 Summary

• The smallest hypersphere enclosing all points in the embedding space can
be found by solving a convex quadratic program. This suggests a simple
novelty-detection algorithm.

• The stability analysis suggests a better novelty detector may result from
a smaller hypersphere containing a fixed fraction of points that minimises
the sum of the distances to the external points. This can again be com-
puted by a convex quadratic program. Its characteristic function can be
written in terms of a kernel expansion, where only certain points have
non-zero coefficients. They are called support vectors and because of the
many zero coefficients the expansion is called ‘sparse’.

• If there is a maximal margin hyperplane separating two sets of points
in the embedding space, it can be found by solving a convex quadratic
program. This gives the hard margin support vector machine classification
algorithm.

• The stability analysis again suggests improved generalisation will fre-
quently result from allowing a certain (prefixed) fraction of points to
be ‘margin’ errors while minimising the sizes of those errors. This can
again be found by solving a convex quadratic program and gives the well-
known soft margin support vector machines. Also in this case, the kernel
expansion of the classification function can be sparse, as a result of the
Karush–Kuhn–Tucker conditions. The pre-image of this hyperplane in
the input space can be very complex, depending on the choice of ker-
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nel. Hence, these algorithms are able to optimise over highly nonlinear
function classes through an application of the kernel trick.

• A nonlinear regression function that realises a trade-off between loss and
smoothness can be found by solving a convex quadratic program. This
corresponds to a regularised linear function in the embedding space. Fix-
ing the regularization term to be the 2-norm of the linear function in the
embedding space, different choices of loss can be made. The quadratic
loss yields the nonlinear version of ridge regression introduced in Chapter
2. Both linear and quadratic ε-insensitive losses yield support vector ma-
chines for regression. Unlike ridge regression these again result in sparse
kernel expansions of the solutions.

• The absence of local minima from the above algorithms marks a major
departure from traditional systems such as neural networks, and jointly
with sparseness properties makes it possible to create very efficient imple-
mentations.

7.6 Further reading and advanced topics

The systematic use of optimisation in pattern recognition dates back at least
to Mangasarian’s pioneering efforts [95] and possibly earlier. Many different
authors have independently proposed algorithms for data classification or
other tasks based on the theory of Lagrange multipliers, and this approach
is now part of the standard toolbox in pattern analysis.

The problem of calculating the smallest sphere containing a set of data
was first posed in the hard-margin case by [117], [20] for the purpose of
calculating generalisation bounds that depend on the radius of the enclosing
sphere. It was subsequently addressed by Tax and Duin [136] in a soft
margin setting for the purpose of modeling the input distribution and hence
detecting novelties. This approach to novelty detection was cast in a ν-SVM
setting by Schölkopf et al. [119].

The problem of separating two sets of data with a maximal margin hy-
perplane has been independently addressed by a number of authors over a
long period of time. Large margin hyperplanes in the input space were, for
example, discussed by Duda and Hart [39], Cover [28], Smith [129], Vapnik
et al. [146], [143], and several statistical mechanics papers (for example [3]).
It is, however, the combination of this optimisation problem with kernels
that produced support vector machines, as we discuss briefly below. See
Chapter 6 of [32] for a more detailed reconstruction of the history of SVMs.

The key features of SVMs are the use of kernels, the absence of local
minima, the sparseness of the solution and the capacity control obtained by
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optimising the margin. Although many of these components were already
used in different ways within machine learning, it is their combination that
was first realised in the paper [16]. The use of slack variables for noise
tolerance, tracing back to [13] and further to [129], was introduced to the
SVM algorithm in 1995 in the paper of Cortes and Vapnik [27]. The ν-
support vector algorithm for classification and regression is described in
[122].

Extensive work has been done over more than a decade by a fast growing
community of theoreticians and practitioners, and it would be difficult to
document all the variations on this theme. In a way, this entire book is an
attempt to systematise this body of literature.

Among many connections, it is worth emphasising the connection between
SVM regression, ridge regression and regularisation networks. The concept
of regularisation was introduced by Tikhonov [138], and was introduced into
machine learning in the form of regularisation networks by Girosi et al. [48].
The relation between regularisation networks and support vector machines
has been explored by a number of authors [47], [157], [131], [43].

Finally for a background on convex optimisation and Kuhn–Tucker theory
see for example [94], and for a brief introduction see Chapter 5 of [32].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.
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Ranking, clustering and data visualisation

In this chapter we conclude our presentation of kernel-based pattern anal-
ysis algorithms by discussing three further common tasks in data analysis:
ranking, clustering and data visualisation.

Ranking is the problem of learning a ranking function from a training set
of ranked data. The number of ranks need not be specified though typically
the training data comes with a relative ordering specified by assignment to
one of an ordered sequence of labels.

Clustering is perhaps the most important and widely used method of un-
supervised learning: it is the problem of identifying groupings of similar
points that are relatively ‘isolated’ from each other, or in other words to
partition the data into dissimilar groups of similar items. The number of
such clusters may not be specified a priori. As exact solutions are often com-
putationally hard to find, effective approximations via relaxation procedures
need to be sought.

Data visualisation is often overlooked in pattern analysis and machine
learning textbooks, despite being very popular in the data mining literature.
It is a crucial step in the process of data analysis, enabling an understand-
ing of the relations that exist within the data by displaying them in such
a way that the discovered patterns are emphasised. These methods will al-
low us to visualise the data in the kernel-defined feature space, something
very valuable for the kernel selection process. Technically it reduces to find-
ing low-dimensional embeddings of the data that approximately retain the
relevant information.

252
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8.1 Discovering rank relations

Ranking a set of objects is an important task in pattern analysis, where the
relation sought between the datapoints is their relative rank. An example
of an application would be the ranking of documents returned to the user
in an information retrieval task, where it is hard to define a precise absolute
relevance measure, but it is possible to sort by the user’s preferences. Based
on the query, and possibly some partial feedback from the user, the set of
documents must be ordered according to their suitability as answers to the
query.

Another example of ranking that uses different information is the task
known as collaborative filtering. Collaborative filtering aims to rank items
for a new user based only on rankings previously obtained from other users.
The system must make recommendations to the new user based on informa-
tion gleaned from earlier users. This problem can be cast in the framework
of learning from examples if we treat each new user as a new learning task.
We view each item as an example and the previous users’ preferences as its
features.

Example 8.1 If we take the example of a movie recommender system, a film
is an example whose features are the gradings given by previous users. For
users who have not rated a particular film the corresponding feature value
can be set to zero, while positive ratings are indicated by a positive feature
value and negative ratings by a negative value. Each new user corresponds
to a new learning task. Based on a small set of supplied ratings we must
learn to predict the ranking the user would give to films he or she has not
yet seen.

In general we consider the following ranking task. Given a set of ranked
examples, that is objects x ∈ X assigned to a label from an ordered set Y , we
are required to predict the rank of new instances. Ranking could be tackled
as a regression or classification problem by treating the ranks as real-values
or the assignment to a particular rank value as a classification. The price of
making these reductions is not to make full use of the available information
in the reduction to classification or the flexibility inherent in the ordering
requirement in the reduction to regression. It is therefore preferable to treat
it as a problem in its own right and design specific algorithms able to take
advantage of the specific nature of that problem.

Definition 8.2 [Ranking] A ranking problem is specified by a set

S = {(x1, y1), . . . , (x�, y�)}
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of instance/rank pairs. We assume an implicit kernel-defined feature space
with corresponding feature mapping φ so that φ(xi) is in R

n for some n,
1 ≤ n ≤ ∞. Furthermore, we assume its rank yi is an element of a finite set
Y with a total order relation. We say that xi is preferred over xj (or vice
versa) if yi � yj (or yi ≺ yj). The objects xi and xj are not comparable
if yi = yj . The induced relation on X is a partial ordering that partitions
the input space into equivalence classes. A ranking rule is a mapping from
instances to ranks r : X → Y .

Remark 8.3 [An alternative reduction] One could also transform it into the
problem of predicting the relative ordering of all possible pairs of examples,
hence obtaining a 2-class classification problem. The problem in this ap-
proach would be the extra computational cost since the sample size for the
algorithm would grow quadratically with the number of examples. If on the
other hand the training data is given in the form of all relative orderings, we
can generate a set of ranks as the equivalence classes of the equality relation
with the induced ordering.

Definition 8.4 [Linear ranking rules] A linear ranking rule first embeds the
input data into the real axis R by means of a linear function in the kernel-
defined feature space f(x) = 〈w,φ (x)〉. The real-value is subsequently
converted to a rank by means of |Y | thresholds by, y ∈ Y that respect the
ordering of Y , meaning that y ≺ y′ implies by ≤ by′ . We will denote by b
the k-dimensional vector of thresholds. The ranking of an instance x is then
given by

rw,b(x) = min {y ∈ Y : f(x) = 〈w, φ (x)〉 < by} ,

where we assume that the largest label has been assigned a sufficiently large
value to ensure the minimum always exists. If w is given in a dual repre-
sentation

w =
�∑

i=1

αiφ (xi) ,

the ranking function is

rw,b(x) = min

{
y ∈ Y : f(x) =

�∑
i=1

αiκ (xi,x) < by

}
.

A linear ranking rule partitions the input space into |Y | + 1 equivalence
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classes corresponding to parallel bands defined by the direction w and the
thresholds bi as shown in the two upper diagrams of Figure 8.1. The lower
diagrams give examples of nonlinear rankings arising from the use of appro-
priate kernel functions.

Fig. 8.1. Examples of the partitioning resulting from linear and nonlinear ranking
functions.

Remark 8.5 [Degrees of freedom] The example of Figure 8.1 shows an
important freedom available to ranking algorithms namely that the classes
need not be equally spaced, we just need the ordering right. This is the
key difference between the ranking functions we are considering and using
regression on, for example, integer-ranking values.
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Remark 8.6 [Ordering within ranks] The ranking functions described above
have an additional feature in that the elements within each equivalence class
can also be ordered by the value of the function g(x), though we will ignore
this information. This is a consequence of the fact that we represent the
ranking by means of an embedding from X to the real line.

The algorithms we will discuss differ in the way w and b are chosen and
as a result also differ in their statistical and computational properties. On
the one hand, statistical considerations suggest that we seek stable functions
whose testing performance matches the accuracy achieved on the training
set. This will point for example to notions such as the margin while con-
trolling the norm of w. On the other hand, the computational cost of the
algorithm should be kept as low as possible and so the size of the optimiza-
tion problem should also be considered. Finally, we will want to use the
algorithm in a kernel-defined feature space, so a dual formulation should
always be possible.

8.1.1 Batch ranking

The starting point for deriving a batch-ranking algorithm will be consider-
ation of statistical stability. Our strategy for deriving a stability bound will
be to create an appropriate loss function that measures the performance of
a choice of ranking function given by w and b. For simplicity the measure
of error will just be a count of the number of examples that are assigned the
wrong rank, while the generalisation error will be the probability that a ran-
domly drawn test example receives the wrong rank. For a further discussion
of the loss function, see Remark 8.12.

Taking this view we must define a loss function that upper bounds the
ranking loss, but that can be analysed using Theorem 4.9. We do this by
defining two classification problems in augmented feature spaces such that
getting both classifications right is equivalent to getting the rank right. We
can think of one classification guaranteeing the rank is big enough, and the
other that it is not too big.

Recoding the problem The key idea is to add one extra feature to the
input vectors for each rank, setting their values to zero for all but the rank
corresponding to the correct rank. The feature corresponding to the correct
rank if available is set to 1. We use φ to denote this augmented vector

φ (x, y) = [φ (x) , 0, . . . , 0, 1, 0, . . . , 0] = [φ (x) , ey] ,
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where we use ey to denote the unit vector with yth coordinate equal to 1.
We now augment the weight vector by a coordinate of −by in the position
of the feature corresponding to rank y ∈ Y

ŵb =
[
w,−b0,−b1,−b2, . . . ,−b|Y |

]
,

where for simplicity of notation we have assumed that Y = {1, . . . , |Y |} and
have chosen b0 to be some value smaller than 〈w,φ (x)〉 for all w and x.
Using this augmented representation we how have

〈ŵb,φ (x, y)〉 = 〈w,φ (x)〉 − by,

where y is the rank of x. Now if (w,b) correctly ranks an example (x, y)
then

y = rw,b(x) = min
{
y′ ∈ Y : 〈w, φ (x)〉 < by′

}
= min

{
y′ ∈ Y : 〈ŵb,φ (x, y)〉 < by′ − by

}
,

implying that

〈ŵb, φ (x, y)〉 < 0. (8.1)

Furthermore, we have

〈ŵb,φ (x, y − 1)〉 = 〈w,φ (x)〉 − by−1,

and so if (w,b) correctly ranks (x, y) then

y = rw,b(x) = min
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
= min

{
y′ ∈ Y : 〈ŵb,φ (x, y − 1)〉 < by′ − by−1

}
,

implying that

〈ŵb,φ (x, y − 1)〉 ≥ 0. (8.2)

Suppose that inequalities (8.1) and (8.2) hold for (w,b) on an example
(x, y). Then since 〈ŵb,φ (x, y)〉 < 0, it follows that 〈w, φ (x)〉 < by and so

y ∈ {y′ ∈ Y : 〈w,φ (x)〉 < by′
}

,

while 〈ŵb,φ (x, y − 1)〉 ≥ 0 implies 〈w,φ (x)〉 ≥ by−1 hence

y − 1 �∈ {y′ ∈ Y : 〈w, φ (x)〉 < by′
}

,

giving

rw,b(x) = min
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
= y,

the correct rank. Hence we have shown the following proposition
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Proposition 8.7 The ranker rw,b(·) correctly ranks (x, y) if and only if
〈ŵb,φ (x, y)〉 < 0 and 〈ŵb,φ (x, y − 1)〉 ≥ 0.

Hence the error rate of rw,b(x) is bounded by the classifier rate on the
extended set. The proposition therefore reduces the analysis of the ranker
rw,b(x) to that of a classifier in an augmented space.

Stability of ranking In order to analyse the statistical stability of ranking,
we need to extend the data distribution D on X×Y to the augmented space.
We simply divide the probability of example (x, y) equally between the two
examples (φ (x, y) ,−1) and (φ (x, y − 1) , 1). We then apply Theorem 4.17
to upper bound the classifier error rate with probability 1 − δ by

1
�γ

�∑
i=1

(
ξl
i + ξu

i

)
+

4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
,

where ξu
i , ξl

i are the slack variables measuring the amount by which the ex-
ample (xi, yi) fails to meet the margin γ for the lower and upper thresholds.
Hence, we can bound the error of the ranker by

PD (rw,b(x) �= y) ≤ 2
�γ

�∑
i=1

(
ξl
i + ξu

i

)
+

8
�γ

√
tr(K) + 6

√
ln(2/δ)

2�
, (8.3)

where the factor 2 arises from the fact that either derived example being
misclassified will result in a ranking error.

Ranking algorithms If we ignore the effects of the vector b on the norm
of ŵb we can optimise the bound by performing the following computation.

Computation 8.8 [Soft ranking] The soft ranking bound is optimised as
follows

minw,b,γ,ξu,ξl −γ + C
∑�

i=1

(
ξu
i + ξl

i

)
subject to 〈w,φ (xi)〉 ≤ byi − γ + ξl

i, yi �= |Y |, ξl
i ≥ 0,

〈w,φ (xi)〉 ≥ byi−1 + γ − ξu
i , yi �= 1, ξu

i ≥ 0,
i = 1, . . . , �, and ‖w‖2 = 1.

(8.4)

Applying the usual technique of creating the Lagrangian and setting
derivatives equal to zero gives the relationships

1 =
�∑

i=1

(
αu

i + αl
i

)
,
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w =
1
2λ

�∑
i=1

(
αu

i − αl
i

)
φ (xi) ,∑

i:yi=y

αl
i =

∑
i:yi=y−1

αu
i , y = 2, . . . , |Y | ,

0 ≤ αu
i , αl

i ≤ C.

Resubstituting into the Lagrangian results in the dual Lagrangian

L(αu,αl, λ) = − 1
4λ

�∑
i,j=1

(
αu

i − αl
i

)(
αu

j − αl
j

)
κ (xi,xj) − λ.

As in previous cases optimising for λ gives an objective that is the square
root of the objective of the equivalent dual optimisation problem contained
in the following algorithm.

Algorithm 8.9 [ν-ranking] The ν-ranking algorithm is implemented in
Code Fragment 8.1.

Input S = {(x1, y1), . . . , (x�, y�)}, ν ∈ (0, 1]
maxαu,αl W (αu,αl) = −∑�

i,j=1

(
αu

i − αl
i

) (
αu

j − αl
j

)
κ(xi,xj),

subject to
∑

i:yi=y αl
i =

∑
i:yi=y−1 αu

i , y = 2, . . . , |Y |,
0 ≤ αu

i , αl
i ≤ 1/ (ν�) , i = 1, . . . , �,

∑�
i=1

(
αu

i + αl
i

)
= 1

compute αi = αu∗
i − αl∗

i

f(x) =
∑�

i=1 αiκ(xi,x)
b =

(
b1, . . . , b|Y |−1,∞

)
where by = 0.5 (f (xi) + f (xj))

γ = 0.5 (f (xj) − f (xi))
where (xi, y), (xj , y + 1) satisfy 0 < αl∗

i < 1/ (ν�)
and 0 < αu∗

j < 1/ (ν�),
output rα,b(x), γ

Code Fragment 8.1. Pseudocode for the soft ranking algorithm.

The next theorem characterises the output of Algorithm 8.9.

Theorem 8.10 Fix ν ∈ (0, 1]. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}
drawn according to a distribution D over X × Y , where Y = {1, . . . , |Y |}
is a finite set of ranks and suppose rα,b(x), γ is the output of Algorithm
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8.9, then rα,b(x) optimises the bound of (8.3). Furthermore, there are at
most ν� training points that fail to achieve a margin γ from both adjacent
thresholds and hence have non-zero slack variables, while at least ν� of the
training points have margin at least γ.

Proof By the derivation given above setting C = 1/ (ν�), the solution vector
is a rescaled version of the solution of the optimisation problem (8.4). The
setting of the values by follows from the Karush–Kuhn–Tucker conditions
that ensure ξl∗

i = 0 and the appropriate rescaling of f (xi) is γ∗ from the
upper boundary if 0 < αl∗

i < C, with the corresponding result when 0 <

αu∗
j < C. The bounds on the number of training points achieving the margin

follow from the bounds on αu
i and αl

i.

Remark 8.11 [Measuring stability] We have omitted an explicit general-
isation bound from the proposition to avoid the message getting lost in
technical details. The bound could be computed by ignoring b|Y | and b0

and removing one of the derived examples for points with rank 1 or |Y | and
hence computing the margin and slack variables for the normalised weight
vector. These could then be plugged into (8.3).

Remark 8.12 [On the loss function] We have measured loss by counting
the number of wrong ranks, but the actual slack variables get larger the
further the distance to the correct rank. Intuitively, it does seem reasonable
to count a bigger loss if the rank is out by a greater amount. Defining a loss
that takes the degree of mismatch into account and deriving a corresponding
convex relaxation is beyond the scope of this book.

This example again shows the power and flexibility of the overall approach
we are advocating. The loss function that characterises the performance of
the task under consideration is upper bounded by a loss function to which
the Rademacher techniques can be applied. This in turn leads to a uniform
bound on the performance of the possible functions on randomly generated
test data. By designing an algorithm to optimise the bound we therefore
directly control the stability of the resulting pattern function. A careful
choice of the loss function ensures that the optimisation problem is convex
and hence has a unique optimum that can be found efficiently using standard
optimisation algorithms.
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8.1.2 On-line ranking

With the exception of Section 7.4 all of the algorithms that we have so
far considered for classification, regression, novelty-detection and, in the
current subsection, for ranking all assume that we are given a set of training
examples that can be used to drive the learning algorithm towards a good
solution. Unfortunately, training sets are not always available before we
start to learn.

Example 8.13 A case in point is Example 8.1 given above describing the
use of collaborative filtering to recommend a film. Here we start with no
information about the new user. As we obtain his or her views of a few
films we must already begin to learn and hence direct our recommendations
towards films that are likely to be of interest.

The learning paradigm that considers examples being presented one at a
time with the system being allowed to update the inferred pattern function
after each presentation is known as on-line learning .

Perhaps the best known on-line learning algorithm is the perceptron al-
gorithm given in Algorithm 7.52. We now describe an on-line ranking algo-
rithm that follows the spirit of the perceptron algorithm. Hence, it considers
one example at a time ranking it using its current estimate of the weight
vector w and ranking thresholds b. We again assume that the weight vector
is expressed in the dual representation

w =
�∑

i=1

αiφ (xi) ,

where now the value of αi can be positive or negative. The αi are initialised
to 0. The vector b must be initialised to an ordered set of integer values,
which can, for example, be taken to be all 0, except for b|Y |, which is set to
∞ and remains fixed throughout.

If an example is correctly ranked then no change is made to the current
ranking function rα,b(x). If on the other hand the estimated rank is wrong
for an example (xi, yi), an update is made to the dual variable αi as well as
to one or more of the rank thresholds in the vector b.

Suppose that the estimated rank y < yi. In this case we decrement
thresholds by′ for y′ = y, . . . , yi−1 by 1 and increment αi by yi−y. When y >

yi we do the reverse by incrementing the thresholds by′ for y′ = yi, . . . , y− 1
by 1 and decrementing αi by y−yi. This is given in the following algorithm.
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Algorithm 8.14 [On-line ranking] The on-line ranking algorithm is imple-
mented in Code Fragment 8.2.

Input training sequence (x1, y1), . . . , (x�, y�), . . .
Process α = 0, b = 0, b|Y | = ∞, i = 0
2 repeat
3 i = i + 1
4 y = rα,b (xi)
3 if y < yi

4 αi = αi + yi − y
5 y′ = y′ − 1 for y′ = y, . . . , yi − 1
6 else if y > yi

7 αi = αi + yi − y
8 y′ = y′ + 1 for y′ = yi, . . . , y − 1
9 end
10 until finished
Output rα,b(x)

Code Fragment 8.2. Pseudocode for on-line ranking.

In order to verify the correctness of Algorithm 8.14 we must check that
the update rule preserves a valid ranking function or in other words that
the vector of thresholds remains correctly ordered

y < y′ =⇒ by ≤ by′ .

In view of the initialisation of b to integer values and the integral updates,
the property could only become violated in one of two cases. The first is if
by = by+1 and we increment by by 1, while leaving by+1 fixed. It is clear from
the update rule above that this could only occur if the estimated rank was
y+1, a rank that cannot be returned when by = by+1. A similar contradiction
shows that the other possible violation of decrementing by+1 when by = by+1

is also ruled out. Hence, the update rule does indeed preserve the ordering
of the vector of thresholds.

Stability analysis of on-line ranking We will give an analysis of the
stability of Algorithm 8.14 based on the bound given in Theorem 7.54 for
the perceptron algorithm. Here, the bound is in terms of the number of
updates made to the hypothesis. Since the proof is identical to that of
Theorem 7.54, we do not repeat it here.

Theorem 8.15 Fix δ > 0. If the ranking perceptron algorithm makes 1 ≤
k ≤ �/2 updates before converging to a hypothesis rα,b (x) that correctly
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ranks a training set

S = {(x1, y1), . . . , (x�, y�)}
drawn independently at random according to a distribution D, then with
probability at least 1− δ over the draw of the set S, the generalisation error
of rα,b (x) is bounded by

PD (rα,b (x) �= y) ≤ 1
� − k

(
k ln � + ln

�

2δ

)
. (8.5)

Thus, a bound on the number of updates of the perceptron-ranking algo-
rithm can be translated into a generalisation bound of the resulting classifier
if it has been run until correct ranking of the (batch) training set has been
achieved. For practical purposes this gives a good indication of how well the
resulting ranker will perform since we can observe the number of updates
made and plug the number into the bound (7.25). From a theoretical point
of view one would like to have some understanding of when the number of
updates can be expected to be small for the chosen algorithm.

We now give an a priori bound on the number of updates of the perceptron-
ranking algorithm by showing that it can be viewed as the application of the
perceptron algorithm for a derived classification problem and then applying
Novikoff’s Theorem 7.53. The weight vector w∗ will be the vector solving
the maximal margin problem for the derived training set

Ŝ = {(φ (x, y) ,−1) , (φ (x, y − 1) , 1) : (x, y) ∈ S}
for a ranking training set S. The updates of the perceptron-ranking algo-
rithm correspond to slightly more complex examples

φ
(
x, y : y′

)
=

y′−1∑
u=y

φ (x, u) .

When the estimated rank y < yi the example (φ (x, y : yi) , 1) is misclassi-
fied and updating on this example is equivalent to the perceptron-ranking
algorithm update. Similarly, when the estimated rank y > yi the example
(φ (x, yi : y) ,−1) is misclassified and the updates again correspond. Hence,
since ∥∥φ (x, y : y′

)∥∥2 ≤ (|Y | − 1)
(
‖φ (x)‖2 + 1

)
,

we can apply Theorem 7.53 to bound the number of updates by

(|Y | − 1)
(
R2 + 1

)
γ2

,
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where R is a bound on the norm of the feature vectors φ (x) and γ is the
margin obtained by the corresponding hard margin batch algorithm. This
gives the following corollary.

Corollary 8.16 Fix δ > 0. Suppose the batch ranking algorithm with ν =
1/� has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}
drawn independently at random according to a distribution D and contained
in a ball of radius R about the origin. Then with probability at least 1 − δ

over the draw of the set S, the generalisation error of the ranking function
rα,b (x) obtained by running the on-line ranking algorithm on S in batch
mode is bounded by

PD (rα,b (x) �= y) ≤ 2
�

(
(|Y | − 1)

(
R2 + 1

)
γ2

ln � + ln
�

2δ

)
,

provided

(|Y | − 1)
(
R2 + 1

)
γ2

≤ �

2
.

8.2 Discovering cluster structure in a feature space

Cluster analysis aims to discover the internal organisation of a dataset by
finding structure within the data in the form of ‘clusters’. This generic
word indicates separated groups of similar data items. Intuitively, the di-
vision into clusters should be characterised by within-cluster similarity and
between-cluster (external) dissimilarity. Hence, the data is broken down
into a number of groups composed of similar objects with different groups
containing distinctive elements. This methodology is widely used both in
multivariate statistical analysis and in machine learning.

Clustering data is useful for a number of different reasons. Firstly, it can
aid our understanding of the data by breaking it into subsets that are signif-
icantly more uniform than the overall dataset. This could assist for example
in understanding consumers by identifying different ‘types’ of behaviour that
can be regarded as prototypes, perhaps forming the basis for targeted mar-
keting exercises. It might also form the initial phase of a more complex
data analysis. For example, rather than apply a classification algorithm to
the full dataset, we could use a separate application for each cluster with
the intention of rendering the local problem within a single cluster easier to
solve accurately. In general we can view the clustering as making the data



8.2 Discovering cluster structure in a feature space 265

simpler to describe, since a new data item can be specified by indicating its
cluster and then its relation to the cluster centre.

Each application might suggest its own criterion for assessing the quality
of the clustering obtained. Typically we would expect the quality to involve
some measure of fit between a data item and the cluster to which it is
assigned. This can be viewed as the pattern function of the cluster analysis.
Hence, a stable clustering algorithm will give assurances about the expected
value of this fit for a new randomly drawn example. As with other pattern
analysis algorithms this will imply that the pattern of clusters identified in
the training set is not a chance occurrence, but characterises some underlying
property of the distribution generating the data.

Perhaps the most common choice for the measure assumes that each clus-
ter has a centre and assesses the fit of a point by its squared distance from
the centre of the cluster to which it is assigned. Clearly, this will be min-
imised if new points are assigned to the cluster whose centre is nearest. Such
a division of the space creates what is known as a Voronoi diagram of re-
gions each containing one of the cluster centres. The boundaries between
the regions are composed of intersecting hyperplanes each defined as the set
of points equidistant from some pair of cluster centres.

Throughout this section we will adopt the squared distance criterion for
assessing the quality of clustering, initially based on distances in the input
space, but subsequently generalised to distances in a kernel-defined feature
space. In many ways the use of kernel methods for clustering is very natu-
ral, since the kernel-defines pairwise similarities between data items, hence
providing all the information needed to assess the quality of a clustering.
Furthermore, using kernels ensures that the algorithms can be developed
in full generality without specifying the particular similarity measure being
used.

Ideally, all possible arrangements of the data into clusters should be tested
and the best one selected. This procedure is computationally infeasible in
all but very simple examples since the number of all possible partitions
of a dataset grows exponentially with the number of data items. Hence,
efficient algorithms need to be sought. We will present a series of algorithms
that make use of the distance in a kernel-defined space as a measure of
dissimilarity and use simple criteria of performance that can be used to
drive practical, efficient algorithms that approximate the optimal solution.

We will start with a series of general definitions that are common to all
approaches, before specifying the problem as a (non-convex) optimisation
problem. We will then present a greedy algorithm to find sub-optimal solu-
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tions (local minima) and a spectral algorithm that can be solved globally at
the expense of relaxing the optimisation criterion.

8.2.1 Measuring cluster quality

Given an unlabelled set of data

S = {x1, . . . ,x�} ,

we wish to find an assignment of each point to one of a finite – but not
necessarily prespecified – number N of classes. In other words, we seek a
map

f : S → {1, 2, . . . , N} .

This partition of the data should be chosen among all possible assignments
in such a way as to solve the measure of clustering quality given in the
following computation.

Computation 8.17 [Cluster quality] The clustering function should be
chosen to optimise

f = argmin
f

∑
i,j:fi=f(xi)=f(xj)=fj

‖φ (xi) − φ (xj)‖2 , (8.6)

where we have as usual assumed a projection function φ into a feature space
F , in which the kernel κ computes the inner product

κ (xi,xj) = 〈φ (xi) , φ (xj)〉 .

We will use the short notation fi = f (xi) throughout this section. Figure
8.2 shows an example of a clustering of a set of data into two clusters with
an indication of the contributions to (8.6). As indicated above this is not the
most general clustering criterion that could be considered, but we begin by
showing that it does have a number of useful properties and does subsume
some apparently more general criteria. A first criticism of the criterion is
that it does not seem to take into account the between-cluster separation,
but only the within-cluster similarity. We might want to consider a criterion
that balanced both of these two factors

min
f

⎧⎨⎩ ∑
i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λ
∑

i,j:fi �=fj

‖φ (xi) − φ (xj)‖2

⎫⎬⎭ . (8.7)
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Fig. 8.2. An example of a clustering of a set of data.

However, observe that we can write

∑
i,j:fi �=fj

‖φ (xi) − φ (xj)‖2 =
�∑

i,j=1

‖φ (xi) − φ (xj)‖2

−
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2

= A −
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2 ,

where A is constant for a given dataset. Hence, equation (8.7) can be ex-
pressed as

min
f

⎧⎨⎩ ∑
i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λ
∑

i,j:fi �=fj

‖φ (xi) − φ (xj)‖2

⎫⎬⎭
= min

f

⎧⎨⎩(1 + λ)
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λA

⎫⎬⎭ ,

showing that the same clustering function f solves the two optimisations
(8.6) and (8.7). These derivations show that minimising the within-cluster
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distances for a fixed number of clusters automatically maximises the between-
cluster distances.

There is another nice property of the solution of the optimisation criterion
(8.6). If we simply expand the expression, we obtain

opt =
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2

=
N∑

k=1

∑
i:fi=k

∑
j:fj=k

〈φ (xi) − φ (xj) , φ (xi) − φ (xj)〉

=
N∑

k=1

2

⎛⎝∣∣f−1 (k)
∣∣ ∑

i:fi=k

κ (xi,xi) −
∑

i:fi=k

∑
j:fj=k

κ (xi,xj)

⎞⎠
=

N∑
k=1

2
∣∣f−1 (k)

∣∣ ∑
i:fi=k

‖φ(xi) − µk‖2 ,

where the last line follows from (5.4) of Chapter 5 expressing the average-
squared distance of a set of points from their centre of mass, and

µk =
1

|f−1 (k)|
∑

i∈f−1(k)

φ (xi) (8.8)

is the centre of mass of those examples assigned to cluster k, a point often
referred to as the centroid of the cluster. This implies that the optimisation
criterion (8.6) is therefore also equivalent to the criterion

f = argmin
f

N∑
k=1

⎛⎝ ∑
i:fi=k

‖φ(xi) − µk‖2

⎞⎠ = argmin
f

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
,

(8.9)
that seeks a clustering of points minimising the sum-squared distances to
the centres of mass of the clusters. One might be tempted to assume that
this implies the points are assigned to the cluster whose centroid is nearest.
The following theorem shows that indeed this is the case.

Theorem 8.18 The solution of the clustering optimisation criterion

f = argmin
f

∑
i,j:fi=fj

‖φ (xi) − φ (xj)‖2

of Computation 8.17 can be found in the form

f (xi) = argmin
1≤k≤N

‖φ (xi) − µk‖ ,
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where µj is the centroid of the points assigned to cluster j.

Proof Let µk be as in equation (8.8). If we consider a clustering function g

defined on S that assigns points to the nearest centroid

g (xi) = argmin
1≤k≤N

‖φ (xi) − µk‖ ,

we have, by the definition of g

�∑
i=1

∥∥∥φ(xi) − µg(xi)

∥∥∥2
≤

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
. (8.10)

Furthermore, if we let

µ̂k =
1

|g−1 (k)|
∑

i∈g−1(k)

φ (xi)

it follows that
�∑

i=1

∥∥∥φ(xi) − µ̂g(xi)

∥∥∥2
≤

�∑
i=1

∥∥∥φ(xi) − µg(xi)

∥∥∥2
(8.11)

by Proposition 5.2. But the left-hand side is the value of the optimisation
criterion (8.9) for the function g. Since f was assumed to be optimal we
must have

�∑
i=1

∥∥∥φ(xi) − µ̂g(xi)

∥∥∥2
≥

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
,

implying with (8.10) and (8.11) that the two are in fact equal. The result
follows.

The characterisation given in Proposition 8.18 also indicates how new data
should be assigned to the clusters. We simply use the natural generalisation
of the assignment as

f (x) = argmin
1≤k≤N

‖φ (x) − µk‖ .

Once we have chosen the cost function of Computation 8.17 and observed
that its test performance is bound solely in terms of the number of centres
and the value of equation (8.6) on the training examples, it is clear that any
clustering algorithm must attempt to minimise the cost function. Typically
we might expect to do this for different numbers of centres, finally selecting
the number for which the bound on ED min

1≤k≤N
‖φ (x) − µk‖2 is minimal.
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Hence, the core task is given a fixed number of centres N find the partition
into clusters which minimises equation (8.6). In view of Proposition 8.18,
we therefore arrive at the following clustering optimisation strategy.

Computation 8.19 [Clustering optimisation strategy] The clustering op-
timisation strategy is given by

input S = {x1, . . . ,x�}, integer N

process µ = argminµ

∑�
i=1 min1≤k≤N ‖φ (xi) − µk‖2

output f (·) = argmin1≤k≤N ‖φ (·) − µk‖

Figure 8.3 illustrates this strategy by showing the distances (dotted ar-
rows) involved in computed the sum-squared criterion. The minimisation of
this sum automatically maximises the indicated distance (dot-dashed arrow)
between the cluster centres.

Fig. 8.3. The clustering criterion reduces to finding cluster centres to minimise
sum-squared distances.

Remark 8.20 [Stability analysis] Furthermore we can see that this strat-
egy suggests an appropriate pattern function for our stability analysis to
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estimate

ED min
1≤k≤N

‖φ (x) − µk‖2 ;

the smaller the bound obtained the better the quality of the clustering
achieved.

Unfortunately, unlike the optimisation problems that we have described
previously, this problem is not convex. Indeed the task of checking if there
exists a solution with value better than some threshold turns out to be NP-
complete. This class of problems is generally believed not to be solvable
in polynomial time, and we are therefore forced to consider heuristic or
approximate algorithms that seek solutions that are close to optimal.

We will describe two such approaches in the next section. The first will
use a greedy iterative method to seek a local optimum of the cost function,
hence failing to be optimal precisely because of its non-convexity. The sec-
ond method will consider a relaxation of the cost function to give an approx-
imation that can be globally optimised. This is reminiscent of the approach
taken to minimise the number of misclassification when applying a support
vector machine to non-separable data. By introducing slack variables and
using their 1-norm to upper bound the number of misclassifications we can
approximately minimise this number through solving a convex optimisation
problem.

The greedy method will lead to the well-known k-means algorithm, while
the relaxation method gives spectral clustering algorithms. In both cases
the approaches can be applied in kernel-defined feature spaces.

Remark 8.21 [Kernel matrices for well-clustered data] We have seen how
we can compute distances in a kernel-defined feature space. This will provide
the technology required to apply the methods in these spaces. It is often
more natural to consider spaces in which unrelated objects have zero inner
product. For example using a Gaussian kernel ensures that all distances
between points are less than

√
2 with the distances becoming larger as the

inputs become more orthogonal. Hence, a good clustering is achieved when
the data in the same cluster are concentrated close to the prototype and
the prototypes are nearly orthogonal. This means that the kernel matrix
for clustered data – assuming without loss of generality that the data are
sorted by cluster – will be a perturbation of a block-diagonal matrix with
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one block for each cluster⎛⎜⎜⎝
B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4

⎞⎟⎟⎠
Note that this would not be the case for other distance functions where, for
example, negative inner products were possible.

On between cluster distances There is one further property of this min-
imisation that relates to the means of the clusters. If we consider the co-
variance matrix of the data, we can perform the following derivation

�C =
�∑

i=1

(φ (xi) − φS) (φ (xi) − φS)′

=
�∑

i=1

(
φ (xi) − µfi

+ µfi
− φS

) (
φ (xi) − µfi

+ µfi
− φS

)′
=

�∑
i=1

(
φ (xi) − µfi

) (
φ (xi) − µfi

)′
+

N∑
k=1

⎛⎝ ∑
i:fi=k

(φ (xi) − µk)

⎞⎠ (µk − φS)′

+
N∑

k=1

(µk − φS)
∑

i:fi=k

(φ (xi) − µk)
′

+
�∑

i=1

(
µfi

− φS

) (
µfi

− φS

)′
=

�∑
i=1

(
φ (xi) − µfi

) (
φ (xi) − µfi

)′
+

N∑
k=1

∣∣f−1 (k)
∣∣ (µk − φS) (µk − φS)′ .

Taking traces of both sides of the equation we obtain

tr (�C) =
�∑

i=1

∥∥φ (xi) − µfi

∥∥2 +
N∑

k=1

∣∣f−1 (k)
∣∣ ‖µk − φS‖2 .
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The first term on the right-hand side is just the value of the Computation
8.19 that is minimised by the clustering function, while the value of the left-
hand side is independent of the clustering. Hence, the clustering criterion
automatically maximises the trace of the second term on the right-hand side.
This corresponds to maximising

N∑
k=1

∣∣f−1 (k)
∣∣ ‖µk − φS‖2 ;

in other words the sum of the squares of the distances from the overall mean
of the cluster means weighted by their size. We again see that optimising the
tightness of the clusters automatically forces their centres to be far apart.

8.2.2 Greedy solution: k-means

Proposition 8.18 confirms that we can solve Computation 8.17 by identifying
centres of mass of the members of each cluster. The first algorithm we
will describe attempts to do just this and is therefore referred to as the k-
means algorithm. It keeps a set of cluster centroids C1, C2, . . . , CN that are
initialised randomly and then seeks to minimise the expression

�∑
i=1

∥∥φ(xi) − Cf(xi)

∥∥2 , (8.12)

by adapting both f as well as the centres. It will converge to a solution in
which Ck is the centre of mass of the points assigned to cluster k and hence
will satisfy the criterion of Proposition 8.18.

The algorithm alternates between updating f to adjust the assignment of
points to clusters and updating the Ck giving the positions of the centres
in a two-stage iterative procedure. The first stage simply moves points to
the cluster whose cluster centre is closest. Clearly this will reduce the value
of the expression in (8.12). The second stage repositions the centre of each
cluster at the centre of mass of the points assigned to that cluster. We have
already analysed this second stage in Proposition 5.2 showing that moving
the cluster centre to the centre of mass of the points does indeed reduce the
criterion of (8.12).

Hence, each stage can only reduce the expression (8.12). Since the number
of possible clusterings is finite, it follows that after a finite number of itera-
tions the algorithm will converge to a stable clustering assignment provided
ties are broken in a deterministic way. If we are to implement in a dual form
we must represent the clusters by an indicator matrix A of dimension �×N
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containing a 1 to indicate the containment of an example in a cluster

Aik =
{

1 if xi is in cluster k;
0 otherwise.

We will say that the clustering is given by matrix A. Note that each row
of A contains exactly one 1, while the column sums give the number of
points assigned to the different clusters. Matrices that have this form will
be known as cluster matrices. We can therefore compute the coordinates of
the centroids Ck as the N columns of the matrix

X′AD,

where X contains the training example feature vectors as rows and D is
a diagonal N × N matrix with diagonal entries the inverse of the column
sums of A, indicating the number of points ascribed to that cluster. The
distances of a new test vector φ(x) from the centroids is now given by

‖φ(x) − Ck‖2 = ‖φ(x)‖2 − 2 〈φ(x), Ck〉 + ‖Ck‖2

= κ (x,x) − 2
(
k′AD

)
k

+
(
DA′XX′AD

)
kk

,

where k is the vector of inner products between φ(x) and the training ex-
amples. Hence, the cluster to which φ(x) should be assigned is given by

argmin
1≤k≤N

‖φ(x) − Ck‖2 = argmin
1≤k≤N

(
DA′KAD

)
kk

− 2
(
k′AD

)
k
,

where K is the kernel matrix of the training set. This provides the rule for
classifying new data. The update rule consists in reassigning the entries in
the matrix A according to the same rule in order to redefine the clusters.

Algorithm 8.22 [Kernel k-means] Matlab code for the kernel k-means al-
gorithm is given in Code Fragment 8.3.

Despite its popularity, this algorithm is prone to local minima since the
optimisation is not convex. Considerable effort has been devoted to finding
good initial guesses or inserting additional constraints in order to limit the
effect of this fact on the quality of the solution obtained. In the next section
we see two relaxations of the original problem for which we can find the
global solution.

8.2.3 Relaxed solution: spectral methods

In this subsection, rather than relying on gradient descent methods to tackle
a non-convex problem, we make a convex relaxation of the problem in order
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% original kernel matrix stored in variable K
% clustering given by a ell x N binary matrix A
% and cluster allocation function f
% d gives the distances to cluster centroids
A = zeros(ell,N);
f = ceil(rand(ell,1)* N);
for i=1,ell

A(i,f(i)) = 1;
end
change = 1;
while change = 1

change = 0;
E = A * diag(1./sum(A));
Z = ones(ell,1)* diag(E’*K*E)’- 2*K*E;
[d, ff] = min(Z, [], 2);
for i=1,ell
if f(i) ~= ff(i)
A(i,ff(i)) = 1;
A(i, f(i)) = 0;
change = 1;

end
end
f = ff;

end

Code Fragment 8.3. Matlab code to perform k-means clustering.

to obtain a closed form approximation. We can then study the approxima-
tion and statistical properties of its solutions.

Clustering into two classes We first consider the simpler case when there
are just two clusters. In this relaxation we represent the cluster assignment
by a vector y ∈ {−1, +1}�, that associates to each point a {−1, +1} label.
For the two classes case the clustering quality criterion described above is
minimised by maximising∑

yi �=yj

‖φ (xi) − φ (xj)‖2 .

Assuming that the data is normalised and the sizes of the clusters are equal
this will correspond to minimising the so-called cut cost

2
∑

yi �=yj

κ (xi,xj) =
�∑

i,j=1

κ (xi,xj) −
�∑

i,j=1

yiyjκ (xi,xj) ,

subject to y ∈ {−1, +1}�,
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since it measures the kernel ‘weight’ between vertices in different clusters.
Hence, we must solve

max y′Ky
subject to y ∈ {−1, +1}�.

We can relax this optimisation by removing the restriction that y be a
binary vector while controlling its norm. This is achieved by maximising
the Raleigh quotient (3.2)

max
y′Ky
y′y

.

As observed in Chapter 3 this is solved by the eigenvector of the matrix K
corresponding to the largest eigenvalue with the value of the quotient equal
to the eigenvalue λ1. Hence, we obtain a lower bound on the cut cost of

0.5

⎛⎝ �∑
i,j=1

κ (xi,xj) − λ1

⎞⎠,

giving a corresponding lower bound on the value of the sum-squared cri-
terion. Though such a lower bound is useful, the question remains as to
whether the approach can suggest useful clusterings of the data. A very
natural way to do so in this two-cluster case is simply to threshold the vec-
tor y hence converting it to a binary clustering vector. This naive approach
can deliver surprisingly good results though there is no a priori guarantee
attached to the quality of the solution.

Remark 8.23 [Alternative criterion] It is also possible to consider minimis-
ing a ratio between the cut size and a measure of the size of the clusters.
This leads through similar relaxations to different eigenvalue problems. For
example if we let D be the diagonal matrix with entries

Dii =
�∑

j=1

Kij ,

then useful partitions can be derived from the eigenvectors of

D−1K, D−1/2KD−1/2 and K − D

with varying justifications. In all cases thresholding the resulting vectors
delivers the corresponding partitions. Generally the approach is motivated
using the Gaussian kernel with its useful properties discussed above.
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Multiclass clustering We now consider the more general problem of multi-
class clustering. We start with an equivalent formulation of the sum-of-
squares minimization problem as a trace maximization under special con-
straints. By successively relaxing these constraints we are led to an approx-
imate algorithm with nice global properties.

Consider the derivation and notation introduced to obtain the program
for k-means clustering. We can compute the coordinates of the centroids Ck

as the N columns of the matrix

X′AD,

where X is the data matrix, A a matrix assigning points to clusters and D a
diagonal matrix with inverses of the cluster sizes on the diagonal. Consider
now the matrix

X′ADA′.

It has � columns with the ith column a copy of the cluster centroid corre-
sponding to the ith example. Hence, we can compute the sum-squares of
the distances from the examples to their corresponding cluster centroid as∥∥X′ADA′ − X′∥∥2

F
=

∥∥(I� − ADA′)X∥∥2

F

= tr
(
X′ (I� − ADA′)X)

= tr
(
XX′)− tr

(√
DA′XX′A

√
D
)

,

since (
I� − ADA′)2 =

(
I� − ADA′)

as A′AD =
√

DA′A
√

D = IN , indicating that (I� − ADA′) is a projection
matrix. We have therefore shown the following proposition.

Proposition 8.24 The sum-squares cost function ss(A) of a clustering,
given by matrix A can be expressed as

ss(A) = tr (K) − tr
(√

DA′KA
√

D
)

,

where K is the kernel matrix and D = D (A) is the diagonal matrix with
the inverses of the column sums of A.

Since the first term is not affected by the choice of clustering, the propo-
sition leads to the Computation.
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Computation 8.25 [Multiclass clustering] We can minimise the cost ss(A)
by solving

maxA tr
(√

DA′KA
√

D
)

subject to A is a cluster matrix and D = D (A).

Remark 8.26 [Distances of the cluster centres from the origin] We can see
that tr

(√
DA′KA

√
D
)

is the sum of the squares of the cluster centroids,
relating back to our previous observations about the sum-square criterion
corresponding to maximising the sum-squared distances of the centroids
from the overall centre of mass of the data. This shows that this holds for
the origin as well and since an optimal clustering is invariant to translations
of the coordinate axes, this will be true of the sum-squared distances to any
fixed point.

We have now arrived at a constrained optimisation problem whose solution
solves to the min-squared clustering criterion. Our aim now is to relax the
constraints to obtain a problem that can be optimised exactly, but whose
solution will not correspond precisely to a clustering. Note that the matrices
A and D = D (A) satisfy

√
DA′A

√
D = IN = H′H, (8.13)

where H = A
√

D. Hence, only requiring that this � × N matrix satisfies
equation (8.13), we obtain the relaxed maximization problem given in the
computation.

Computation 8.27 [Relaxed multiclass clustering] The relaxed maximisa-
tion for multiclass clustering is obtained by solving

max tr (H′KH)
subject to H′H = IN ,

The solutions of Computation 8.27 will not correspond to clusterings, but
may lead to good clusterings. The important property of the relaxation is
that it can be solved in closed-form.

Proposition 8.28 The maximum of the trace tr (H′KH) over all � × N

matrices satisfying H′H = IN is equal to the sum of the first N eigenvalues
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of K

max
H′H=IN

tr
(
H′KH

)
=

N∑
k=1

λk

while the H∗ realising the optimum is given by

VNQ,

where Q is an arbitrary N × N orthonormal matrix and VN is the � × N

matrix composed of the first N eigenvectors of K. Furthermore, we can
lower bound the sum-squared error of the best clustering by

min
A clustering matrix

ss(A) = tr (K) − max
A clustering matrix

tr
(√

DA′KA
√

D
)

≥ tr (K) − max
H′H=IN

tr
(
H′KH

)
=

�∑
k=N+1

λk.

Proof Since H′H = IN the operator P = HH′ is a rank N projection. This
follows from the fact that (HH′)2 = HH′HH′ = HINH′ = HH′ and
rankH = rankH′H = rank IN = N . Therefore

INH′KHIN = H′HH′XX′HH′H =
∥∥H′PX

∥∥2

F
= ‖PX‖2

F .

Hence, we seek the N -dimensional projection of the columns of X that max-
imises the resulting sum of the squared norms. Treating these columns as the
training vectors and viewing maximising the projection as minimising the
residual we can apply Proposition 6.12. It follows that the maximum will be
realised by the eigensubspace spanned by the N eigenvectors corresponding
to the largest eigenvalues for the matrix XX′ = K. Clearly, the projection
is only specified up to an arbitrary N × N orthonormal transformation Q.

At first sight we have not gained a great deal by moving to the relaxed
version of the problem. It is true that we have obtained a strict lower bound
on the quality of clustering that can be achieved, but the matrix H that
realises that lower bound does not in itself immediately suggest a method of
performing a clustering that comes close to the bound. Furthermore, in the
case of multi-class clustering we do not have an obvious simple thresholding
algorithm for converting the result of the eigenvector analysis into a clus-
tering as we found in the two cluster examples. We mention three possible
approaches.
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Re-clustering One approach is to apply a different clustering algorithm
in the reduced N -dimensional representation of the data, when we map
each example to the corresponding row of the matrix VN , possibly after
performing a renormalisation.

Eigenvector approach We will describe a different method that is related
to the proof of Proposition 8.28. Consider the choice H∗ = VN that realises
the optimum bound of the proposition. Let W = VN

√
ΛN be obtained

from VN by multiplying column i by
√

λi, i = 1, . . . , N . We now form the
cluster matrix A by setting the largest entry in each row of W to 1 and the
remaining entries to 0.

QR approach An alternative approach is inspired by a desire to construct
an approximate cluster matrix which is related to VN by an orthonormal
transformation

A ≈ VNQ,

implying that

V′
N ≈ QA′.

If we perform a QR decomposition of V′
N we obtain

V′
N = Q̂R

with Q̂ an N ×N orthogonal matrix and R an N × � upper triangular. By
assigning vector i to the cluster index by the row with largest entry in the
column i of matrix R, we obtain a cluster matrix A′ ≈ R, hence giving a
value of ss(A) close to that given by the bound.

8.3 Data visualisation

Visualisation refers to techniques that can present a dataset

S = {x1, . . . ,x�}
in a manner that reveals some underlying structure of the data in a way
that is easily understood or appreciated by a user. A clustering is one
type of structure that can be visualised. If for example there is a natural
clustering of the data into say four clusters, each one grouped tightly around
a separate centroid, our understanding of the data is greatly enhanced by
displaying the four centroids and indicating the tightness of the clustering
around them. The centroids can be thought of as prototypical data items.
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Hence, for example in a market analysis, customers might be clustered into a
set of typical types with individual customers assigned to the type to which
they are most similar.

In this section we will consider a different type of visualisation. Our aim
is to provide a two- or three-dimensional ‘mapping’ of the data, hence dis-
playing the data points as dots on a page or as points in a three-dimensional
image. This type of visualisation is of great importance in many data mining
tasks, but it assumes a special role in kernel methods, where we typically
embed the data into a high-dimensional vector space. We have already
considered measures for assessing the quality of an embedding such as the
classifier margin, correlation with output values and so on. We will also
in later chapters be looking into procedures for transforming prior models
into embeddings. However once we arrive at the particular embedding, it
is also important to have ways of visually displaying the data in the chosen
feature space. Looking at the data helps us get a ‘feel’ for the structure of
the data, hence suggesting why certain points are outliers, or what type of
relations can be found. This can in turn help us pick the best algorithm
out of the toolbox of methods we have been assembling since Chapter 5.
In other words being able to ‘see’ the relative positions of the data in the
feature space plays an important role in guiding the intuition of the data
analyst.

Using the first few principal components, as computed by the PCA al-
gorithm of Chapter 6, is a well-known method of visualisation forming the
core of the classical multidimensional scaling algorithm. As already demon-
strated in Proposition 6.12 PCA minimises the sum-squared norms of the
residuals between the subspace representation and the actual data.

Naturally if one wants to look at the data from an angle that emphasises a
certain property, such as a given dichotomy, other projections can be better
suited, for example using the first two partial least squares features. In this
section we will assume that the feature space has already been adapted to
best capture the view of the data we are concerned with but typically using
a high-dimensional kernel representation. Our main concern will therefore
be to develop algorithms that can find low-dimensional representations of
high-dimensional data.

Multidimensional scaling This problem has received considerable atten-
tion in multivariate statistics under the heading of multidimensional scal-
ing (MDS). This is a series of techniques directly aimed at finding optimal
low-dimensional embeddings of data mostly for visualisation purposes. The
starting point for MDS is traditionally a matrix of distances or similarities
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rather than a Gram matrix of inner products or even a Euclidean embed-
ding. Indeed the first stages of the MDS process aim to convert the matrix
of similarities into a matrix of inner products. For metric MDS it is assumed
that the distances correspond to embeddings in a Euclidean space, while for
non-metric MDS these similarities can be measured in any way. Once an
approximate inner product matrix has been formed, classical MDS then uses
the first two or three eigenvectors of the eigen-decomposition of the resulting
Gram matrix to define two- or three-dimensional projections of the points
for visualisation. Hence, if we make use of a kernel-defined feature space the
first stages are no longer required and MDS reduces to computing the first
two or three kernel PCA projections.

Algorithm 8.29 [MDS for kernel-embedded data] The MDS algorithm for
data in a kernel-defined feature space is as follows:

input Data S = {x1, . . . ,x�} , dimension k = 2, 3.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2
(j′Kj) jj′,

[V,Λ] = eig (K)
αj = 1√

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 αj
iκ(xi,x)

)k

j=1

output Display transformed data S̃ = {x̃1, . . . , x̃�}.

Visualisation quality We will consider a further method of visualisation
strongly related to MDS, but which is motivated by different criteria for
assessing the quality of the representation of the data.

We can define the problem of visualisation as follows. Given a set of points

S = {φ (x1) , . . . ,φ (x�)}
in a kernel-defined feature space F with

φ : X −→ F ,

find a projection τ from X into R
k, for small k such that

‖τ (xi) − τ (xj)‖ ≈ ‖φ (xi) − φ (xj)‖ , for i, j = 1, . . . , �.

We will use τ s to denote the projection onto the sth component of τ and with
a slight abuse of notation, as a vector of these projection values indexed by
the training examples. As mentioned above it follows from Proposition 6.12
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that the embedding determined by kernel PCA minimises the sum-squared
residuals

�∑
i=1

‖τ (xi) − φ (xi)‖2 ,

where we make τ an embedding into a k-dimensional subspace of the feature
space F . Our next method aims to control more directly the relationship
between the original and projection distances by solving the following com-
putation.

Computation 8.30 [Visualisation quality] The quality of a visualisation
can be optimsed as follows

minτ E(τ ) =
�∑

i,j=1

〈φ (xi) ,φ (xj)〉 ‖τ (xi) − τ (xj)‖2

=
�∑

i,j=1

κ (xi,xj) ‖τ (xi) − τ (xj)‖2 ,

subject to ‖τ s‖ = 1, τ s ⊥ j, s = 1, . . . , k, (8.14)

and τ s ⊥ τ t, s, t = 1, . . . , k.

Observe that it follows from the constraints that
�∑

i,j=1

‖τ (xi) − τ (xj)‖2 =
�∑

i,j=1

k∑
s=1

(τ s(xi) − τ s(xj))
2

=
k∑

s=1

�∑
i,j=1

(τ s(xi) − τ s(xj))
2

= 2
k∑

s=1

⎛⎝�

�∑
i=1

τ s(xi)2 −
�∑

i,j=1

τ s(xi)τ s(xj)

⎞⎠
= 2�k − 2

k∑
s=1

�∑
i=1

τ s(xi)
�∑

j=1

τ s(xj) = 2�k.

It therefore follows that, if the data is normalised, solving Computation 8.30
corresponds to minimising

E(τ ) =
�∑

i,j=1

(
1 − 0.5 ‖φ (xi) − φ (xj)‖2

)
‖τ (xi) − τ (xj)‖2
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= 2�k −
�∑

i,j=1

0.5 ‖φ (xi) − φ (xj)‖2 ‖τ (xi) − τ (xj)‖2 ,

hence optimising the correlation between the original and projected squared
distances. More generally we can see minimisation as aiming to put large
distances between points with small inner products and small distances be-
tween points having large inner products. The constraints ensure equal
scaling in all dimensions centred around the origin, while the different di-
mensions are required to be mutually orthogonal to ensure no structure is
unnecessarily reproduced.

Our next theorem will characterise the solution of the above optimisation
using the eigenvectors of the so-called Laplacian matrix. This matrix can
also be used in clustering as it frequently possesses more balanced properties
than the kernel matrix. It is defined as follows.

Definition 8.31 [Laplacian matrix] The Laplacian matrix L (K) of a kernel
matrix K is defined by

L (K) = D − K,

where D is the diagonal matrix with entries

Dii =
�∑

j=1

Kij .

Observe the following simple property of the Laplacian matrix. Given any
real vector v = (v1, . . . , v�) ∈ R

�

�∑
i,j=1

Kij (vi − vj)
2 = 2

�∑
i,j=1

Kijv
2
i − 2

�∑
i,j=1

Kijvivj

= 2v′Dv − 2v′Kv = 2v′L (K)v.

It follows that the all 1s vector j is an eigenvector of L (K) with eigenvalue 0
since the sum is zero if vi = vj = 1. It also implies that if the kernel matrix
has positive entries then L (K) is positive semi-definite. In the statement of
the following theorem we separate out λ1 as the eigenvalue 0 , while ordering
the remaining eigenvalues in ascending order.

Theorem 8.32 Let

S = {x1, . . . ,x�}
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be a set of points with kernel matrix K. The visualisation problem given
in Computation 8.30 is solved by computing the eigenvectors v1,v2, . . . ,v�

with corresponding eigenvalues 0 = λ1, λ2 ≤ . . . ≤ λ� of the Laplacian
matrix L (K). An optimal embedding τ is given by τ i = vi+1, i = 1, . . . , k

and the minimal value of E(τ ) is

2
k+1∑
�=2

λ�.

If λk+1 < λk+2 then the optimal embedding is unique up to orthonormal
transformations in R

k.

Proof The criterion to be minimised is

�∑
i,j=1

κ (xi,xj) ‖τ (xi) − τ (xj)‖2 =
k∑

s=1

�∑
i,j=1

κ (xi,xj) (τ s(xi) − τ s(xj))
2

= 2
k∑

s=1

τ ′
sL (K) τ s.

Taking into account the normalisation and orthogonality constraints gives
the solution as the eigenvectors of L (K) by the usual characterisation of
the Raleigh quotients. The uniqueness again follows from the invariance
under orthonormal transformations together with the need to restrict to the
subspace spanned by the first k eigenvectors.

The implementation of this visualisation technique is very straightforward.

Algorithm 8.33 [Data visualisation] Matlab code for the data visualisation
algorithm is given in Code Fragment 8.4.

% original kernel matrix stored in variable K
% tau gives the embedding in k dimensions
D = diag(sum(K));
L = D - K;
[V,Lambda] = eig(L);
Lambda = diag(Lambda);
I = find(abs(Lambda) > 0.00001)
objective = 2*sum(Lambda(I(1:k)))
Tau = V(:,I(1:k));
plot(Tau(:,1), Tau(:,2), ’x’)

Code Fragment 8.4. Matlab code to implementing low-dimensional visualisation.
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8.4 Summary

• The problem of learning a ranking function can be solved using kernel
methods.

• Stability analysis motivates the development of an optimisation criterion
that can be efficiently solved using convex quadratic programming.

• Practical considerations suggest an on-line version of the method. A sta-
bility analysis is derived for the application of a perceptron-style algorithm
suitable for collaborative filtering.

• The quality of a clustering of points can be measured by the expected
within cluster distances.

• Analysis of this measure shows that it has many attractive properties.
Unfortunately, minimising the criterion on the training sample is NP-
hard.

• Two kernel approaches to approximating the solution are presented. The
first is the dual version of the k-means algorithm. The second relies on
solving exactly a relaxed version of the problem in what is known as
spectral clustering.

• Data in the feature space can be visualised by finding low-dimensional
embeddings satisfying certain natural criteria.

8.5 Further reading and advanced topics

The problem of identifying clusters in a set of data has been a classic topic
of statistics and machine learning for many years. The book [40] gives a
general introduction to many of the main ideas, particularly to the vari-
ous cost functions that can be optimised, as well as presenting the many
convenient properties of the cost function described in this book, the ex-
pected square distance from cluster-centre. The classical k-means algorithm
greedily attempts to optimise this cost function.

On the other hand, the clustering approach based on spectral analysis
is relatively new, and still the object of current research. In the NIPS
conference 2001, for example, the following independent works appeared:
[34], [169], [103], [12]. Note also the article [74]. The statistical stability of
spectral clustering has been investigated in [126], [103].

The kernelisation of k-means is a folk algorithm within the kernel machines
community, being used as an example of kernel-based algorithms for some
time. The combination of spectral clustering with kernels is more recent.

Also the problem of learning to rank data has been addressed by several
authors in different research communities. For recent examples, see Herbrich
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et al. [56] and Crammer and Singer [30]. Our discussion in this chapter
mostly follows Crammer and Singer.

Visualising data has for a long time been a vital component of data mining,
as well as of graph theory, where visualising is also known as graph drawing.
Similar ideas were developed in multivariate statistics, with the problem of
multidimensional scaling [159]. The method presented in this chapter was
developed in the chemical literature, but it has natural equivalents in graph
drawing [105].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net
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Constructing kernels





9

Basic kernels and kernel types

There are two key properties that are required of a kernel function for an
application. Firstly, it should capture the measure of similarity appropri-
ate to the particular task and domain, and secondly, its evaluation should
require significantly less computation than would be needed in an explicit
evaluation of the corresponding feature mapping φ. Both of these issues will
be addressed in the next four chapters but the current chapter begins the
consideration of the efficiency question.

A number of computational methods can be deployed in order to short-
cut the computation: some involve using closed-form analytic expressions,
others exploit recursive relations, and others are based on sampling. This
chapter aims to show several different methods in action, with the aim of
illustrating how to design new kernels for specific applications. It will also
pave the way for the final three chapters that carry these techniques into
the design of advanced kernels.

We will also return to an important theme already broached in Chapter 3,
namely that kernel functions are not restricted to vectorial inputs: kernels
can be designed for objects and structures as diverse as strings, graphs, text
documents, sets and graph-nodes. Given the different evaluation methods
and the diversity of the types of data on which kernels can be defined,
together with the methods for composing and manipulating kernels outlined
in Chapter 3, it should be clear how versatile this approach to data modelling
can be, allowing as it does for refined customisations of the embedding map
φ to the problem at hand.

291
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9.1 Kernels in closed form

We have already seen polynomial and Gaussian kernels in Chapters 2 and
3. We start by revisiting these important examples, presenting them in a
different light in order to illustrate a series of important design principles
that will lead us to more sophisticated kernels. The polynomial kernels in
particular will serve as a thread linking this section with those that follow.

Polynomial kernels In Chapter 3, Proposition 3.24 showed that the space
of valid kernels is closed under the application of polynomials with positive
coefficients. We now give a formal definition of the polynomial kernel.

Definition 9.1 [Polynomial kernel] The derived polynomial kernel for a
kernel κ1 is defined as

κ (x, z) = p (κ1 (x, z)) ,

where p (·) is any polynomial with positive coefficients. Frequently, it also
refers to the special case

κd (x, z) = (〈x, z〉 + R)d ,

defined over a vector space X of dimension n, where R and d are parameters.

Expanding the polynomial kernel κd using the binomial theorem we have

κd (x, z) =
d∑

s=0

(
d

s

)
Rd−s 〈x, z〉s . (9.1)

Our discussion in Chapter 3 showed that the features for each component
in the sum together form the features of the whole kernel. Hence, we have
a reweighting of the features of the polynomial kernels

κ̂s (x, z) = 〈x, z〉s , for s = 0, . . . , d.

Recall from Chapter 3 that the feature space corresponding to the kernel
κ̂s (x, z) has dimensions indexed by all monomials of degree s, for which we
use the notation

φi(x) = xi = xi1
1 xi2

2 . . . xin
n ,

where i = (i1, . . . , in) ∈ N
n satisfies

n∑
j=1

ij = s.
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The features corresponding to the kernel κd (x, z) are therefore all functions
of the form φi(x) for i satisfying

n∑
j=1

ij ≤ d.

Proposition 9.2 The dimension of the feature space for the polynomial
kernel κd (x, z) = (〈x, z〉 + R)d is(

n + d

d

)
.

Proof We will prove the result by induction over n. For n = 1, the number
is correctly computed as d + 1. Now consider the general case and divide
the monomials into those that contain at least one factor x1 and those that
have i1 = 0. Using the induction hypothesis there are

(
n+d−1

d−1

)
of the first

type of monomial, since there is a 1-1 correspondence between monomials of
degree at most d with one factor x1 and monomials of degree at most d− 1
involving all base features. The number of monomials of degree at most d

satisfying i1 = 0 is on the other hand equal to
(
n−1+d

d

)
since this corresponds

to a restriction to one fewer input feature. Hence, the total number of all
monomials of degree at most d is equal to(

n + d − 1
d − 1

)
+
(

n − 1 + d

d

)
=
(

n + d

d

)
,

as required.

Remark 9.3 [Relative weightings] Note that the parameter R allows some
control of the relative weightings of the different degree monomials, since by
equation (9.1), we can write

κd (x, z) =
d∑

s=0

asκ̂s (x, z) ,

where

as =
(

d

s

)
Rd−s.

Hence, increasing R decreases the relative weighting of the higher order
polynomials.
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Remark 9.4 [On computational complexity] One of the reasons why it is
possible to reduce the evaluation of polynomial kernels to a very simple
computation is that we are using all of the monomials. This has the effect
of reducing the freedom to control the weightings of individual monomials.
Paradoxically, it can be much more expensive to use only a subset of them,
since, if no pattern exists that can be exploited to speed the overall compu-
tation, we are reduced to enumerating each monomial feature in turn. For
some special cases, however, recursive procedures can be used as a shortcut
as we now illustrate.

All-subsets kernel As an example of a different combination of features
consider a space with a feature φA for each subset A ⊆ {1, 2, . . . , n} of the
input features, including the empty subset. Equivalently we can represent
them as we did for the polynomial kernel as features

φi(x) = xi1
1 xi2

2 . . . xin
n ,

with the restriction that i = (i1, . . . , in) ∈ {0, 1}n. The feature φA is given
by multiplying together the input features for all the elements of the subset

φA (x) =
∏
i∈A

xi.

This generates all monomial features for all combinations of up to n different
indices but here, unlike in the polynomial case, each factor in the monomial
has degree 1.

Definition 9.5 [All-subsets embedding] The all-subsets kernel is defined by
the embedding

φ : x �−→ (φA (x))A⊆{1,...,n} ,

with the corresponding kernel κ⊆(x, z) given by

κ⊆(x, z) = 〈φ (x) ,φ (z)〉 .

There is a simple computation that evaluates the all-subsets kernel as the
following derivation shows

κ⊆(x, z) = 〈φ (x) ,φ (z)〉 =
∑

A⊆{1,...,n}
φA (x) φA (z) =

∑
A⊆{1,...,n}

∏
i∈A

xizi

=
n∏

i=1

(1 + xizi) ,
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where the last step follows from an application of the distributive law. We
summarise this in the following computation.

Computation 9.6 [All-subsets kernel] The all-subsets kernel is computed
by

κ⊆ (x, z) =
n∏

i=1

(1 + xizi)

for n-dimensional input vectors.

Note that each subset in this feature space is assigned equal weight unlike
the variable weightings characteristic of the polynomial kernel. We will see
below that the same kernel can be formulated in a recursive way, giving rise
to a class known as the ANOVA kernels. They build on a theme already ap-
parent in the above where we see the kernel expressed as a sum of products,
but computed as a product of sums.

Remark 9.7 [Recursive computation] We can clearly compute the polyno-
mial kernel of degree d recursively in terms of lower degree kernels using the
recursion

κd (x, z) = κd−1 (x, z) (〈x, z〉 + R) .

Interestingly it is also possible to derive a recursion in terms of the input
dimensionality n. This recursion follows the spirit of the inductive proof for
the dimension of the feature space given for polynomial kernels. We use the
notation

κm
s (x, z) = (〈x1:m, z1:m〉 + R)s ,

where x1:m denotes the restriction of x to its first m features. Clearly we
can compute

κ0
s (x, z) = Rs and κm

0 (x, z) = 1.

For general m and s, we divide the products in the expansion of

(〈x1:m, z1:m〉 + R)s

into those that contain at least one factor xmzm and those that contain no
such factor. The sum of the first group is equal to sκm

s−1 (x, z) xmzm since
there is a choice of s factors in which the xmzm arises, while the remaining
factors are drawn in any way from the other s−1 components in the overall
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product. The sum over the second group equals κm−1
s (x, z), resulting in the

recursion

κm
s (x, z) = sκm

s−1 (x, z) xmzm + κm−1
s (x, z) .

Clearly, this is much less efficient than the direct computation of the defini-
tion, since we must compute O (nd) intermediate values giving a complex-
ity of O (nd), even if we save all the intermediate values, as compared to
O (n + d) for the direct method. The approach does, however, motivate the
use of recursion introduced below for the computation of kernels for which
a direct route does not exist.

Gaussian kernels Gaussian kernels are the most widely used kernels and
have been extensively studied in neighbouring fields. Proposition 3.24 of
Chapter 3 verified that the following kernel is indeed valid.

Definition 9.8 [Gaussian kernel] For σ > 0, the Gaussian kernel is defined
by

κ (x, z) = exp

(
−‖x − z‖2

2σ2

)
.

For the Gaussian kernel the images of all points have norm 1 in the re-
sulting feature space as κ (x,x) = exp (0) = 1. The feature space can be
chosen so that the images all lie in a single orthant, since all inner products
between mapped points are positive.

Note that we are not restricted to using the Euclidean distance in the
input space. If for example κ1 (x, z) is a kernel corresponding to a feature
mapping φ1 into a feature space F1, we can create a Gaussian kernel in F1

by observing that

‖φ1 (x) − φ1 (z)‖2 = κ1 (x,x) − 2κ1 (x, z) + κ1 (z, z) ,

giving the derived Gaussian kernel as

κ (x, z) = exp
(
−κ1 (x,x) − 2κ1 (x, z) + κ1 (z, z)

2σ2

)
.

The parameter σ controls the flexibility of the kernel in a similar way to the
degree d in the polynomial kernel. Small values of σ correspond to large
values of d since, for example, they allow classifiers to fit any labels, hence
risking overfitting. In such cases the kernel matrix becomes close to the
identity matrix. On the other hand, large values of σ gradually reduce the



9.2 ANOVA kernels 297

kernel to a constant function, making it impossible to learn any non-trivial
classifier. The feature space has infinite-dimension for every value of σ but
for large values the weight decays very fast on the higher-order features.
In other words although the rank of the kernel matrix will be full, for all
practical purposes the points lie in a low-dimensional subspace of the feature
space.

Remark 9.9 [Visualising the Gaussian feature space] It can be hard to
form a picture of the feature space corresponding to the Gaussian kernel.
As described in Chapter 3 another way to represent the elements of the
feature space is as functions in a Hilbert space

x �−→ φ (x) = κ (x, ·) = exp

(
−‖x − ·‖2

2σ2

)
,

with the inner product between functions given by〈
�∑

i=1

αiκ (xi, ·) ,

�∑
j=1

βjκ (xj , ·)
〉

=
�∑

i=1

�∑
j=1

αiβjκ (xi,xj) .

To a first approximation we can think of each point as representing a new
potentially orthogonal direction, but with the overlap to other directions
being bigger the closer the two points are in the input space.

9.2 ANOVA kernels

The polynomial kernel and the all-subsets kernel have limited control of
what features they use and how they weight them. The polynomial kernel
can only use all monomials of degree d or of degree up to d with a weighting
scheme depending on just one parameter R. As its name suggests, the
all-subsets kernel is restricted to using all the monomials corresponding to
possible subsets of the n input space features. We now present a method
that allows more freedom in specifying the set of monomials.

The ANOVA kernel κd of degree d is like the all-subsets kernel except that
it is restricted to subsets of the given cardinality d. We can use the above
notation xi to denote the expression xi1

1 xi2
2 . . . xin

n , where i = (i1, . . . , in) ∈
{0, 1}n with the further restriction that

n∑
j=1

ij = d.

For the case d = 0 there is one feature with constant value 1 corresponding



298 Basic kernels and kernel types

to the empty set. The difference between the ANOVA and polynomial kernel
κd (x, z) is the exclusion of repeated coordinates.

ANOVA stands for ANalysis Of VAriance, the first application of Hoeffd-
ing’s decompositions of functions that led to this kernel (for more about the
history of the method see Section 9.10). We now give the formal definition.

Definition 9.10 [ANOVA embedding] The embedding of the ANOVA ker-
nel of degree d is given by

φd : x �−→ (φA (x))|A|=d ,

where for each subset A the feature is given by

φA (x) =
∏
i∈A

xi = xiA ,

where iA is the indicator function of the set A.

The dimension of the resulting embedding is clearly
(
n
d

)
, since this is the

number of such subsets, while the resulting inner product is given by

κd (x, z) = 〈φd(x), φd(z)〉 =
∑
|A|=d

φA (x) φA (z)

=
∑

1≤i1<i2<···<id≤n

(xi1zi1)(xi2zi2) . . . (xidzid)

=
∑

1≤i1<i2<···<id≤n

d∏
j=1

xijzij .

Note again the sums of products in the definition of the kernel.

Remark 9.11 [Feature space] Notice that this is a proper subspace of the
embedding space generated by a polynomial kernel of degree d, since instead
of imposing 1 ≤ i1 < i2 < · · · < id ≤ n, the polynomial kernel only requires
the weaker restriction 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n. The weighting of the
subspace of features considered for the ANOVA kernel is also uniform in the
polynomial kernel, but the weightings of the features with repeated indices
is higher.

We have been keen to stress that it should be possible to evaluate a kernel
faster than by an explicit computation of the feature vectors. Here, for an
explicit computation, the number of operations grows as d

(
n
d

)
since there

are
(
n
d

)
features each of which requires O (d) operations to evaluate. We

now consider a recursive method of computation following the spirit of the
recursive evaluation of the polynomial kernel given in Remark 9.7.
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Naive recursion We again introduce a series of intermediate kernels. Again
using the notation x1:m = (x1, . . . , xm) we introduce, for m ≥ 1 and s ≥ 0

κm
s (x, z) = κs (x1:m, z1:m) ,

which is the ANOVA kernel of degree s applied to the inputs restricted to the
first m coordinates. In order to evaluate κm

s (x, z) we now argue inductively
that its features can be divided into two groups: those that contain xm and
the remainder. There is a 1-1 correspondence between the first group and
subsets of size d−1 restricted to x1:m−1, while the second group are subsets
of size d restricted to x1:m−1. It follows that

κm
s (x, z) = (xmzm) κm−1

s−1 (x, z) + κm−1
s (x, z) . (9.2)

The base of the recursion occurs when m < s or s = 0. Clearly, we have

κm
s (x, z) = 0, if m < s, (9.3)

since no subset of size s can be found, while

κm
0 (x, z) = 1, (9.4)

as the empty set has a feature value of 1. We summarise this in the following
computation.

Computation 9.12 [ANOVA recursion] The ANOVA kernel is given by
the following recursion

κm
0 (x, z) = 1, if m ≥ 0,

κm
s (x, z) = 0, if m < s,

κm
s (x, z) = (xmzm) κm−1

s−1 (x, z) + κm−1
s (x, z)

The computational framework presented here forms the basis for several
further generalisations that will be discussed in this and subsequent chapters
leading to the introduction of string kernels in Chapter 11.

Remark 9.13 [Cost of naive recursion] As we observed above, a direct
computation of the kernel by expicit evaluation of the features would in-
volve O

(
d
(
n
d

))
operations. If we were to implement the recursion given in

equations (9.2) to (9.4), this would also remain very costly. If we denote
with a function T (m, s) the cost of performing the recursive calculation of
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κm
s (x, z), we can use the recurrence relation to deduce the following estimate

for the number of operations

T (m, s) = T (m − 1, s) + T (m − 1, s − 1) + 3

> T (m − 1, s) + T (m − 1, s − 1),

with T (m, s) = 1 for m < s and T (m, 0) = 1. For these base values we have
the inequality

T (m, s) ≥
(

m

s

)
,

while using an inductive assumption gives

T (m, s) > T (m − 1, s) + T (m − 1, s − 1)

≥
(

m − 1
s

)
+
(

m − 1
s − 1

)
=
(

m

s

)
.

Hence the cost of computing the kernel κd (x, z) is at least
(
n
d

)
which is still

exponential in the degree d.

Dynamic programming evaluation The naive recursion is inefficient
because it repeats many of the same computations again and again. The
key to a drastic reduction in the overall computational complexity is to save
the values of κm

s (x, z) in a dynamic programming table indexed by s and
m as they are computed:

DP m = 1 2 · · · n

s = 0 1 1 · · · 1
1 x1z1 x1z1 + x2z2 · · · ∑n

i=1 xizi

2 0 κ2
2 (x, z) · · · κn

2 (x, z)
...

...
...

. . .
...

d 0 0 · · · κn
d (x, z)

(9.5)

If we begin computation with the first row from left to right and continue
down the table taking each row in turn, the evaluation of a particular entry
depends on the entry diagonally above to its left and the entry immediately
to its left. Hence, both values will already be available in the table. The
required kernel evaluation is the bottom rightmost entry in the table. We
summarise in the following algorithm.

Algorithm 9.14 [ANOVA kernel] The ANOVA kernel κd is computed in
Code Fragment 9.1.
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Input vectors x and z of length n, degree d
Process for j = 0 : n
2 DP (0, j) = 1;
3 end
6 for k = 1 : d
7 DP (k, k − 1) = 0;
9 for j = k : n
10 DP (k, j) = DP (k, j − 1) + x (j) z (j) DP (k − 1, j − 1) ;
11 end
12 end
Output kernel evaluation κd (x, z) = DP (d, n)

Code Fragment 9.1. Pseudocode for ANOVA kernel.

Cost of the computation The computation involves

3
(

nd − d(d − 1)
2

)

numerical operations. If we take into account that entries κm
s (x, z) with

m > n − d + s cannot affect the result, this can be reduced still further.

Remark 9.15 [Dynamic programming notation] Such a staged recursive
implementation is often referred to as a dynamic programming, though dy-
namic programs can involve more complex evaluations at each stage and
can be run over more general structures such as graphs rather than simple
tables. We will use a uniform notation for showing dynamic programming
tables following the example of (9.5), with DP in the upper left corner indi-
cating this type of table. See Appendix B for details of the different table
types.

Remark 9.16 [On using different degrees] Observe that the final column in
the table contains the ANOVA kernel evaluations for all degrees up to and
including d. It is therefore possible, at very little extra cost, to evaluate the
kernel

κ≤d (x, z) =
d∑

s=0

κs (x, z) ,
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or indeed any appropriate reweighting of the component kernels. If we take
this to the extreme value of d = n, we recover the all-subsets kernel

κ⊆(x, z) = κ≤n (x, z) =
n∑

s=0

κs (x, z) ,

though the method of computation described here is a lot less efficient than
that given in Remark 9.1

κ⊆(x, z) =
n∏

i=1

(1 + xizi) ,

which provides a simpler recursion of complexity only O (3n). Viewed re-
cursively we can see

κ⊆(xm, zm) = κ⊆(xm−1, zm−1) (1 + xmzm) ,

corresponding to dividing all subsets into those that contain m and those
that do not.

Remark 9.17 [Uneven term weighting] In both the ANOVA kernel and
the all-subsets kernel, we have the freedom to downplay some features and
emphasise others by simply introducing a weighting factor ai ≥ 0 whenever
we evaluate

aixizi,

so that, for example, the all-subsets kernel becomes

κ⊆(x, z) =
n∏

i=1

(1 + aixizi) .

In the case of the ANOVA evaluation it is also possible to vary weightings
of the features depending on the structure of the monomial. For example,
monomials with non-consecutive indices can have their weights reduced.
This will form a key ingredient in the string kernels.

Computation 9.18 [Alternative recursion for the ANOVA kernel] Other
recursive computations are possible for the ANOVA kernel. When originally
introduced, the recursion given was as follows

κ0 (x, z) = 1

κd (x, z) =
1
d

d∑
s=1

(−1)s+1κd−s (x, z) κ̄s (x, z)
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where κ̄s (x, z) =
∑n

i=1(xizi)s.

Remark 9.19 [Correctness of alternative recursion] The correctness of this
alternative can be verified formally. Intuitively, since κ̄s (x, z) = 〈x, z〉, the
first term in the sum is

1
d
κd−1 (x, z) 〈x, z〉 ,

which includes the d subsets as features with weighting 1, but also includes
features φi(x) for which some components have repeated entries. The second
term removes these but introduces others which are in turn removed by the
following term and so on. The complexity of this method using tables is
O
(
nd + d2

)
, which is comparable to Algorithm 9.14. However the version

discussed above is more useful for extensions to the case of strings and is
numerically more stable.

Remark 9.20 [Extensions to general kernels on structures] We can view
the individual components xizi in the ANOVA kernel as a base kernel

κi (x, z) = xizi.

Indeed the reweighting scheme discussed in Remark 9.17 can be seen as
changing this base kernel to

κi (x, z) = aixizi.

Taking this view suggests that we could compare data types more general
than real numbers in each coordinate, be they discrete objects such as char-
acters, or multi-coordinate vectors. More generally we can simply replace
the n coordinates by n general base kernels that provide different methods
of comparing the two objects. We do not require that the ith kernel depends
only on the ith coordinate. It might depend on a set of coordinates that
could overlap with the coordinates affecting other features. In general all
of the base kernels could depend on all of the input coordinates. Given a
sequence κ1 (x, z) , . . . , κn (x, z) of base kernels, this more general version of
the ANOVA kernel therefore has the following form

κA
d (x, z) =

∑
1≤i1<i2<···<id≤n

d∏
j=1

κij (x, z) .

There are many different applications where this might prove useful. For
example it allows us to consider the case when the inputs are discrete struc-
tures with d components, with κi (x, z) providing a comparison of the ith
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subcomponent. Both recursions can still be used. For example the original
recursion becomes

κm
s (x, z) = κm (x, z) κm−1

s−1 (x, z) + κm−1
s (x, z) ,

while for the second recursion we must replace the evaluation of κ̄s (x, z) by

κ̄s (x, z) =
n∑

i=1

κi (x, z)s .

9.3 Kernels from graphs

The ANOVA kernel is a method that allows us to be slightly more selective
about which monomials are included. Clearly it is, however, very far from
general. Ideally we would like to extend the range of selective options avail-
able while still retaining the efficient computation it affords. We will achieve
this by first showing how the all-subsets kernel computation can be repre-
sented using a graph. This will suggest a more general family of methods
that subsumes all three examples considered so far.

As a first example consider the all-subsets kernel. We can illustrate the
computation

κ⊆ (x, z) =
n∏

i=1

(1 + xizi)

with the graph shown in Figure 9.1. Here the computation flows from left

1

x y1 1 x y2 2 x yn n

1 1

Fig. 9.1. Kernel graph for the all-subsets kernel.

to right with the value at a node given by summing over the edges reaching
that node, the value at the previous node times the value on the edge. The
double edges enable us to code the fact that the previous value is multiplied
by the factor

(1 + xizi) .
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We can view the graph as an illustration of the computational strategy,
but it also encodes the features of the kernel as the set of directed paths
from the leftmost to the rightmost vertex. Each such path must go through
each vertex using either the upper or lower edge. Using the lower edge
corresponds to including the feature while using the upper edge means that
it is left out. It follows that there are 2n paths in 1-1 correspondence with
the subsets of {1, . . . , n}, that is with the coordinates of the kernel feature
mapping.

The perspective afforded by illustrating the kernel computation as a graph
suggests defining a more general set of kernels in terms of a general graph
structure.

Consider a directed (edges have an associated direction) graph G = (V, E)
where V is a set of vertices with two labelled vertices: s the source vertex
and t the sink vertex. The set E of directed edges without loops is labelled
with the base kernels. For the all-subsets kernel these were either a constant
or xizi for some i, but in general we could consider the base kernels κi (x, z)
in the spirit of Remark 9.20. If we treat a constant function as a kernel we
can simply view the edges e ∈ E as indexing a kernel κe (x, z). Note that
we will denote path p by the sequence of vertices it contains, for example

p = (u0u1 . . . ud) ,

where it is understood that (ui → ui+1) ∈ E for i = 1, . . . , d − 1. If
(ud → v) ∈ E then pv denotes the path

(u0u1 . . . udv) .

We summarise in the following definition.

Definition 9.21 A kernel graph is a directed graph G = (V, E) with a
source vertex s of in-degree 0 and sink vertex t of out-degree 0. Furthermore,
each edge e is labelled with a kernel κe. Let Pst be the set of directed paths
from vertex s to vertex t and for a path p = (u0u1 · · ·ud) let

κp (x, z) =
d∏

i=1

κ(ui−1→ui) (x, z) ,

that is, the product of the kernels associated with the edges of p. We now
introduce the graph kernel specified by the graph G by

κG (x, z) =
∑

p∈Pst

κp (x, z) =
∑

p∈Pst

d∏
i=1

κ(ui−1→ui) (x, z) .
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For simplicity we assume that no vertex has a directed edge to itself. If the
graph has no directed loops we call the graph simple, while in general we
allow directed loops involving more than one edge.

A graph kernel can be seen to be a kernel since sums and products of
kernels are kernels though for graphs with loops there will be an issue of
convergence of the infinite sums involved. Notice that if the base kernels
are the simple products xizi or the constant 1, then we have each path
corresponding to a monomial feature formed as the product of the factors
on that path.

Remark 9.22 [Vertex labelled versus edge labelled graphs] We have in-
troduced kernel graphs by labelling the edges with base kernels. It is also
possible to label the vertices of the graph and again define the kernel as the
sum over all paths with the features for a path being the product of the
features associated with nodes on the path. We omit these details as they
do not add any additional insights.

Remark 9.23 [Flexibility of graph kernels] Clearly the range of options
available using different graphs G is very large. By adjusting the structure
of the graph we can control which monomial features are included. We have
even allowed the possibility of graphs with loops that would give rise to
infinite feature spaces including monomials of arbitrary length. We have
been able to significantly broaden the definition of the kernels, but can we
retain the efficient computational methods characteristic of the all-subsets
kernel? In particular if the graph is directed does the computation dictated
by the directed graph really compute the kernel?

Computation of graph kernels Given a kernel graph G = (V, E), con-
sider introducing a kernel for each vertex u ∈ V defined by

κu (x, z) =
∑

p∈Psu

κp (x, z) .

Hence, we have κG (x, z) = κt (x, z) and we take κs (x, z) = 1. Consider a
vertex u. All paths arriving at u from s must reach u by a directed edge
into u. Similarly, any path p from s to a vertex v that has a directed edge e

to u can be extended to a path pu from s to u. We can therefore decompose
the sum

κu (x, z) =
∑

p∈Psu

κp (x, z) =
∑

v:v→u

∑
p∈Psv

κpu (x, z)
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=
∑

v:v→u

κ(v→u) (x, z)
∑

p∈Psv

κp (x, z)

=
∑

v:v→u

κ(v→u) (x, z) κv (x, z) . (9.6)

This is a set of linear equations for the vector of unknown values

κ = (κu (x, z))u∈V \s .

If we define the square matrix A indexed by V \ s to have entries

Auv =

⎧⎨⎩
κ(v→u) (x, z) if (v → u) ∈ E

−1 if u = v,
0 otherwise,

(9.7)

and the vector b to have entries

bu =
{−κ(s→u) (x, z) if (s → u) ∈ E

0 otherwise,
(9.8)

then we can rewrite equation (9.6) to give the computation:

Computation 9.24 [General graph kernels] Using A given by (9.7) and b
by (9.8), the evaluation of the general graph kernel is obtained by solving

Aκ = b,

and returning

κ (x, z) = κt (x, z) .

Hence, provided the matrix A is invertible, we can in general solve the
system in O

(
|V |3

)
steps to evaluate the kernel. The question of invertibility

is related to the fact that once the graph has loops we cannot guarantee
in general that the kernel evaluation will be bounded. Hence, care must
be taken in defining graphs with loops. There are several types of graph
structures other than the simple graph kernels with no loops for which more
efficient computations exist.

If the graph is simple we can order the computation so that the values
needed to compute κu (x, z) have already been evaluated. We must perform
a so-called topological sort of the vertices to obtain an order that is compat-
ible with the partial order determined by the directed edges. This results
in the computation described by the graph structure, multiplying the val-
ues stored at the previous nodes with the factor on the edge and summing,
giving a complexity of O (|E|).
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Algorithm 9.25 [Simple graph kernels] Computation of simple graph ker-
nels is given in Code Fragment 9.2.

Input vectors x and z of length n, simple graph kernel G = (V, E)

Process Find an ordering ui of the vertices of G
2 such that ui → uj implies i < j.

DP (1) = 1;
6 for i = 2 : |V |
7 DP (i) = 0;
9 for j : uj → ui

10 DP (i) = DP (i) + κ(uj→ui) (x, z) DP (j) ;
11 end
12 end
Output kernel evaluation κG (x, z) = DP (|V |)

Code Fragment 9.2. Pseudocode for simple graph kernels.

Remark 9.26 [Message passing] The evaluation of the array entry DP (i) at
the vertex ui can be viewed as the result of a set of messages received from
vertices uj , for which there is an edge uj → ui. The message passed by the
vertex uj is its computed value DP (j). Algorithms of this type are referred
to as message passing algorithms and play an important role in Bayesian
belief networks.

Example 9.27 [Polynomial kernel] We can also represent the polynomial
kernel as a simple graph kernel. The graph corresponding to its computation
is shown in Figure 9.2. Clearly, paths from the leftmost to rightmost vertex

R
x y1 1

x y2 2

x yn n

R
x y1 1

x y2 2

x yn n

R
x y1 1

x y2 2

x yn n

d 1− d1 2 3

Fig. 9.2. Kernel graph for the polynomial kernel.

again correspond to its features, but notice how many different paths give
rise to the same feature. It is this that gives rise to the different weightings
that the various monomials receive.
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Example 9.28 [ANOVA kernel] Recall the recursive computation of the
ANOVA kernel illustrated in Table (9.5). Now consider creating a graph
whose vertices are the entries in the table with directed edges to a vertex
from the entries used to compute the value stored at that vertex. The edges
are labelled with the factor that is applied to the value in the computation.
Hence, for example, the vertex (1, 2) corresponding to the entry for s = 1
and m = 2 has a directed edge labelled x2y2 from vertex (0, 1) and an edge
from (1, 1) labelled 1. This corresponds to the recursive computation

κ2
1 (x, z) = (x2z2) κ2−1

1−1 (x, z) + κ2−1
1 (x, z) .

We have included one extra vertex (0, 0) corresponding to s = 0 and m = 0
with edges labelled 1 from vertex (0, i) to (0, i + 1) for i = 0, . . . , n − 1.
Finally, vertices (s, m) with s > m together with associated edges have been
deleted since they correspond to entries that are always 0. The graph is
shown in Figure 9.3. We can view the graph as an illustration of the com-
putational strategy, but it also encodes the features of the kernel as the set
of directed paths from the vertex (0, 0) to the vertex (d, n). Each such path
corresponds to the monomial formed by the product of all the factors on the
path. Hence, for example, the path (0, 0) (1, 1) · · · (d, d) (d, d + 1) · · · (d, n)
corresponds to the feature x1x2 · · ·xd. Clearly, to reach the vertex (d, n)
we must move down d rows; each time we do so the feature indexing that
column is included. Hence, each path corresponds to one set of d features
with different paths selecting a different subset.

Remark 9.29 [Regular language kernels] There is a well-known equivalence
between languages specified by regular expressions, also known as regular
languages, and languages recognised by non-deterministic or deterministic
finite state automata (FSA). We can use directed labelled graphs to specify
non-deterministic FSAs. The nodes of the graph correspond to the states of
the FSA, with the source being the initial state, and the sink the accepting
state. The directed edges are labelled with symbols from the alphabet of
the language or a symbol ε for so-called ε-transitions that do not generate
a symbol. Hence, we can view a kernel graph as a non-deterministic FSA
over the alphabet of base kernels, where ε-transitions correspond to edges
labelled by 1. The languages of the non-deterministic FSA is the set of finite
strings that are accepted by the FSA. This is exactly the set of monomial
features specified by the kernel graph with the only difference that for the
kernel graph a reordering of the base kernels specifies the same feature, while
for the FSA, permuting the symbols in a string creates a distinct word in
the language. Modulo this difference, we can use regular expressions as a
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Fig. 9.3. Kernel graph for the ANOVA kernel.

shorthand for specifying the monomial features that we wish to include in
our feature space, with the guarantee that the evaluation of the resulting
kernel will be polynomial in the number of states of an equivalent non-
deterministic FSA.

9.4 Diffusion kernels on graph nodes

One of the appeals of using kernel methods for pattern analysis is that
they can be defined on non-vectorial data, making it possible to extend the
application of the techniques to many different types of objects. In later
chapters we will define specialist kernels for strings and trees to further
illustrate this point, but here we introduce a method that can take any basic
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comparison rule and convert it into a valid kernel. All that is required is some
measure of similarity that captures at the simplest level association between
two objects, perhaps only non-zero for objects that are closely related. The
construction will use this to construct a refined similarity that relates all
objects and is guaranteed to be a kernel.

The method again uses paths in graphs to create more complex relations
between objects. In the kernel graphs described in the previous section the
labelling of the graph was adjusted for each kernel evaluation κG (x, z). In
this section we describe how similar ideas can be used to define a new kernel
over a set of data, where each data item is associated with a vertex of the
graph.

Definition 9.30 [Base similarity graph] A base similarity graph for a dataset
S is a graph G = (S, E), whose vertices are the data items in S, while
the (undirected) links between them are labelled with some base similarity
measure τ (x, z). The (base) similarity matrix B = B1 of G is indexed by
the elements of S with entries

Bxz = τ (x, z) = τ1 (x, z) .

In general, the base similarity could be a simple method of comparing the
objects with the only restriction that it must be symmetric. Furthermore,
no assumption is made that it corresponds to a kernel, though if it is a kernel
the method will deliver derived kernels. This would therefore allow us to
create more complex kernels in a principled way.

Remark 9.31 [Finite domains] In general a base similarity over a finite do-
main could be specified by the similarity matrix B. This is the most general
way to specify it. Both the kernels defined in this section are introduced
for finite domains and deal directly with the similarity matrix. However,
for large (or infinite) domains we require a compact function that exploits
some features of the data, to create a similarity between objects. We will
see that the kernels introduced here can be extended in this way when we
treat a specific application area in Chapter 10. We want to emphasise here
that the kernels can be defined between elements of non-metric spaces as
long as some base comparisons are available.

Consider now the similarity τ2 (x, z) obtained by summing the products
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of the weights on all paths of length 2 between two vertices x and z

τ2 (x, z) =
∑

(x0x1x2)∈P 2
xz

2∏
i=1

τ1 (xi−1,xi) ,

where we use P k
xz to denote the set of paths of length k starting at x and

finishing at z.

Remark 9.32 [Paths as features] Notice that in this case we cannot view
the paths as features, since the set of paths used in the sum depends on
the arguments of the kernel function. This is in contrast to the fixed set of
paths used for the graph kernels. We cannot therefore conclude that this is
a kernel simply by considering sums and products of kernels.

Now consider how to compute the corresponding similarity matrix B2

τ2 (x, z) = (B2)xz =
∑

(x0x1x2)∈P 2
xz

2∏
i=1

τ1 (xi−1,xi)

=
∑

(x,x1)∈E

τ1 (x,x1) τ1 (x1, z)

= B2
xz.

Hence, the new similarity matrix is simply the square of the base similarity
matrix. It now is immediately apparent that the resulting function τ2 is
indeed a kernel, since the square of a symmetric matrix is always positive
semi-definite, as its eigenvectors remain unchanged but the corresponding
eigenvalues are each squared.

If we want to determine the features of this kernel we rewrite the sum as

(B2)xz =
∑

(x,x1)∈E

τ1 (x,x1) τ1 (x1, z) =
�∑

i=1

τ1 (x,xi) τ1 (xi, z)

=
〈
(τ1 (x,xi))

�
i=1 , (τ1 (z,xi))

�
i=1

〉
,

where we have assumed that the datapoints are given as

S = {x1,x2, . . . ,x�} .

Hence, the kernel corresponds to the projection into the space with features
given by the evaluation of the base similarity with each of the examples

φ : x �−→ (τ1 (x,xi))
�
i=1 .
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The intuition behind this construction is that we can enhance the base
similarity by linking objects that share a number of ‘common friends’. Hence
we might consider taking a combination of the two matrices

B1 + B2.

We can similarly extend the consideration to paths of length k

τk (x, z) =
∑

(x0x1...xk)∈P k
xz

k∏
i=1

τ1 (xi−1,xi) .

A simple inductive argument shows that the corresponding similarity matrix
Bk satisfies

Bk = Bk.

We would expect the relevance of longer paths to decay since linking objects
through long paths might create erroneous measures of similarity. We can
control the contribution of longer paths by introducing a decay factor λ into
a general sum. For example if we choose

K =
∞∑

k=0

1
k!

λkBk,

we can write

K = exp (λB) ,

leading to the following definition.

Definition 9.33 [Exponential diffusion kernel] We will refer to

K = exp (λB)

as the exponential diffusion kernel of the base similarity measure B.

Definition 9.34 [von Neumann diffusion kernel] An alternative combination
gives rise to the so-called von Neumann diffusion kernel

K =
∞∑

k=0

λkBk = (I − λB)−1 ,

which will only exist provided

λ < ‖B‖−1
2 ,

where ‖B‖2 is the spectral radius of B.
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Note that the justification that the diffusion kernels are indeed valid ker-
nels is contained in Remark 9.36 below.

Computation 9.35 [Evaluating diffusion kernels] We can evaluate these
kernels by performing an eigen-decomposition of B, apply the corresponding
function to the eigenvalues and remultiply the components back together.
This follows from the fact that for any polynomial p (x)

p
(
V′ΛV

)
= V′p (Λ)V,

for any orthonormal matrix V and diagonal matrix Λ. This strategy works
since B is symmetric and so can be expressed in the form

B = V′ΛV,

where Λ contains its real eigenvalues.

Remark 9.36 [Eigenvalues and relation to kernel PCA] The computation
also re-emphasises the point that all of the kernels have the same eigenvectors
as B: they simply apply a reweighting to the eigenvalues. Note that using
the diffusion construction when the base similarity measure is a kernel can
therefore be viewed as a soft version of kernel PCA. PCA applies a threshold
function to the eigenvalues, setting those smaller than λk to zero. In contrast
the diffusion kernels apply a function to each eigenvalue: (1 − µλ)−1 for the
von Neumann kernel and exp (µλ) for the exponential kernel, that increases
the relative weight of the larger eigenvalues when compared to the smaller
ones. The fact that the functions (1 − µλ)−1 and exp (µλ) have positive
values for λ in the indicated range ensures that the kernel matrices are
indeed positive semi-definite.

We will further explore these kernels in applications to textual data in
Chapter 10.

9.5 Kernels on sets

As another example of a non-vectorial space consider the set of subsets P(D)
of a fixed domain D, a set sometimes referred to as the power set of D. The
elements of the input space are therefore sets. They could include all the
subsets of D or some subselection of the whole power set

X ⊆ P(D).

Consider now two elements A1 and A2 of X, that is two subsets of the
domain D. In Chapter 2 we gave one example of a kernel κ (A1, A2) on such
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subsets of D defined as

κ (A1, A2) = 2|A1∩A2|.

In this section we will extend the range of available kernels.
Suppose that D is equipped with a measure or probability density function

µ. If D is finite this is simply a mapping from D to the positive reals. For
infinite D there are technical details involving a σ-algebra of subsets known
as the measurable sets. We must assume that the sets included in X are all
measurable. In either case µ defines an integration over the set D

µ (f) =
∫

D
f (a) dµ (a) ,

for so-called measurable functions. In particular the indicator function IA

of a measurable set A defines the measure (or probability) of the set by

µ (A) = µ (IA) ∈ R
+.

Definition 9.37 [Intersection kernel] We now define the intersection kernel
over the subsets of D by

κ∩ (A1, A2) = µ (A1 ∩ A2) ,

that is, the measure of the intersection between the two sets.

This can be seen to be a valid kernel by considering the feature space of
all measurable functions with the inner product defined by

〈f1, f2〉 =
∫

D
f1 (a) f2 (a) dµ (a) .

The feature mapping is now given by

φ : A �−→ IA,

implying that

κ∩ (A1, A2) = µ (A1 ∩ A2) =
∫

D
IA1∩A2 (a) dµ (a)

=
∫

D
IA1 (a) IA2 (a) dµ (a) = 〈IA1 , IA2〉

= 〈φ (A1) ,φ (A2)〉 ,

as required. This construction also makes clear that we could have mapped
to the indicator function of the complementary set provided the measure of
this set is finite.
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Definition 9.38 [Union complement kernel] Assuming that µ (D) = 1, we
have the union complement kernel

κ̃ (A1, A2) = µ ((D \ A1) ∩ (D \ A2)) = 1 − µ (A1 ∪ A2) .

There are many cases in which we may want to represent data items as
sets. There is also the potential for an interesting duality, since we represent
an object by the items it contains, while the items themselves can also be
described by the set of objects they are contained in. This duality will be
exploited in the case of kernels for text briefly discussed here but covered in
detail in Chapter 10.

Example 9.39 Consider a document as a set of words from a dictionary
D. The similarity between two documents d1 and d2 will then be the mea-
sure of the intersection between those two sets. The importance of a word
can also be encoded in a distribution over D weighting the calculation of the
measure of the intersection. As mentioned above we can also compare words
by defining a function over documents indicating in which documents they
appear. This induces a duality between term-based and document-based
representations that can be exploited in many ways. This duality corre-
sponds to the duality implied by kernel-based representations, and hence
when using this kind of data there is an interesting interpretation of dual
features that will be explored further in Chapter 10.

Remark 9.40 [Agreement kernel] We can sum the two kernels κ∩ and κ̃

described above to obtain the kernel

κ (A1, A2) = κ̃ (A1, A2) + κ∩ (A1, A2)

= 1 − µ (A1 ∪ A2) + µ (A1 ∩ A2)

= 1 − µ (A1 \ A2) − µ (A2 \ A1) ,

that is, the measure of the points on which the two indicator functions agree.
If we used indicator functions I−A which mapped elements not in the set to
−1, then, after introducing a factor of 1/2, this would give rise to the kernel

κ̂ (A1, A2) =
1
2

〈
I−A1

, I−A2

〉
=

1
2

(κ (A1, A2) − µ (A1 \ A2) − µ (A2 \ A1))

=
1
2
− µ (A1 \ A2) − µ (A2 \ A1) .
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The second kernel is simply the first minus 1/2. This will be a better starting
point since it leaves more options open – we can always add 1/2 as this is
equivalent to adding an extra feature with constant value

√
1/2, but in

general we cannot subtract a constant from the kernel matrix.

Derived subsets kernel Our final example of defining kernels over sets
considers the case where we already have a kernel κ0 defined on the elements
of a universal set U .

Definition 9.41 [Derived subsets kernel] Given a base kernel κ0 on a set
U , we define the subset kernel derived from κ0 between finite subsets A and
B of U by

κ (A, B) =
∑
a∈A

∑
b∈B

κ0 (a, b) .

The following proposition verifies that a derived subsets kernel is indeed
a kernel.

Proposition 9.42 Given a kernel κ0 on a set U the derived subsets kernel
κ is an inner product in an appropriately defined feature space and hence is
a kernel.

Proof Let φ0 be an embedding function into a feature space F0 for the
kernel κ0 so that

κ0 (a, b) = 〈φ0 (a) ,φ0 (b)〉 .

Consider the embedding function for a finite subset A ⊆ U defined by

φ (A) =
∑
a∈A

φ0 (a) ∈ F0.

We have

κ (a, b) =
∑
a∈A

∑
b∈B

κ0 (a, b) =
∑
a∈A

∑
b∈B

〈φ0 (a) , φ0 (b)〉

=

〈∑
a∈A

φ0 (a) ,
∑
b∈B

φ0 (b)

〉
= 〈φ (A) ,φ (B)〉 ,

as required.
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Example 9.43 Another application of the derived subsets kernel idea is in
allowing deformed matches in normal kernels. This can be useful when we
want to introduce specific invariances into the kernel design. Suppose we are
computing the kernel between the images x, z ∈ X of two handwritten char-
acters. We know that the two arguments should be considered equivalent
if slight transformations of the images are applied, such as small rotations,
translations, thickenings and even the addition of some noise. Suppose we
devise a function

φ : X → P(X)

that expands the argument to a set of arguments that are all equivalent to
it, hence introducing a ‘jittering’ effect. The similarity of two images x and
z can now be measured in P(X) between the sets of images φ (x) and φ (z)
using the derived subsets kernel for a base kernel for comparing images.

9.6 Kernels on real numbers

There is an interesting application of the intersection kernel that defines
further kernels for real numbers. This can in turn be combined with the
ANOVA kernel construction to obtain new kernels between vectors. Let us
first consider real numbers x, z ∈ R. The simplest and most obvious kernel
is of course

κ (x, z) = xz,

though we can equally use the polynomial or Gaussian kernel construction
in one-dimension to obtain for example

κ (x, z) = exp
(
−(x − z)2

2σ2

)
.

Now consider representing x ∈ R
+ by the interval [0, x], that is the set

{y : 0 ≤ y ≤ x}. Applying an intersection kernel with the standard integra-
tion measure we obtain

κ (x, z) = min (x, z) . (9.9)

Hence, normalising we obtain that

κ (x, z) =
min(x, z)√

min(x, x) min(z, z)
=

min(x, z)√
xz

is a kernel. Similarly representing x ∈ R
+ by the interval [0, x−p] for some

p > 0 and applying the intersection construction, we obtain that

κ (x, z) =
1

max(x, z)p
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is a kernel, which when normalised gives the kernel

κ (x, z) =
(xz)p/2

max(x, z)p
.

For p = 1 we have

κ (x, z) =
√

xz

max(x, z)
, (9.10)

while for p = 2 we get an interesting variant of the standard inner product

κ (x, z) =
xz

max(x, z)2
.

If there is an upper bound C on the value of x we can map to the interval
[x, C] to obtain the kernel

κ (x, z) = C − max (x, z) .

Furthermore we are not restricted to using 1-dimensional sets. For example
mapping x ∈ R

+ to the rectangle

[0, x] × [
0, x−1

]
,

results in an intersection kernel

κ (x, z) =
min (x, z)
max(x, z)

.

Of course the 2-dimensional construction is more natural for two-dimensional
vectors and gives kernels such as

κ ((x1, x2) , (z1, z2)) = min (x1, z1) min (x2, z2)

and

κ ((x1, x2) , (z1, z2)) =
√

x1x2z1z2

max (x1, z1) max (x2, z2)
.

Actually these last two kernels could have been obtained by applying the
generalised ANOVA construction of degree 2 (see Remark 9.20) using the
base kernels given in equations (9.9) and (9.10) respectively.

Finally consider mapping z ∈ R to the function g (|· − z|) ∈ L2 (µ) for
some fixed g and defining the inner product via the integration

κ (z1, z2) =
∫

g (|x − z1|) g (|x − z2|) dµ (x) .

This is clearly a kernel since the image of z is a point in the corresponding
Hilbert space. Taking µ to be the standard measure, the choice of the
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function g could be a Gaussian to give a soft comparison of two numbers or
for example a threshold function

g (x) =
{

1 if x ≤ C;
0 otherwise.

This results in the kernel

κ (z1, z2) = max (0, 2C − |z1 − z2|) . (9.11)

Remark 9.44 [Distance induced by min kernel] The distance induced by
the ‘min’ kernel of equation (9.9) is

‖φ (x) − φ (z)‖2 = x + z − 2 min(x, z)

= max(x, z) − min(x, z) = |x − z| ,
as opposed to the normal Euclidean distance induced by the standard kernel
xz.

Remark 9.45 [Spline kernels] Notice that we can put together the ideas
of the generalised ANOVA construction of Remark 9.20 with the the ‘min’
kernel

κ (x, z) = min (x, z)

to obtain the so-called spline kernels for multi-dimensional data.

9.7 Randomised kernels

There are cases of kernels where the feature space is explicitly constructed
by a vector

φ (x) = (φi (x))i∈I ,

and each of the individual φi (x) are simple to compute, but the size of the set
I makes complete evaluation of the feature vector prohibitively expensive.
If the feature space inner product is given by

κ (x, z) =
〈
(φi (x))i∈I , (φi (z))i∈I

〉
=
∑
i∈I

µiφi (x) φi (z) ,

with
∑

i µi = 1 then we can estimate the value of the inner product by
sampling indices according to µ and forming an empirical estimate of the
inner product through an average of N randomly drawn features

κ̂ (x, z) =
1
N

∑
i∼µ

φi (x) φi (z) .
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We can bound the maximal deviation that can be caused by changing a
single feature by 2c/N where [−c, c] is a bound on the range of the functions
φi. Applying McDiarmid’s Theorem 4.5 we obtain

P {κ̂ (x, z) − Eκ̂ (x, z) ≥ ε} ≤ exp

(
−2ε2∑N

i=1 4c2/N2

)
= exp

(−Nε2

2c2

)
.

Observing that Eκ̂ (x, z) = κ (x, z) and that the same argument can be
applied to −κ̂ (x, z) gives

P {|κ̂ (x, z) − κ (x, z)| ≥ ε} ≤ 2 exp
(−Nε2

2c2

)
.

Hence, with high probability we obtain a good estimate of the true kernel
evaluation even using only a modest number of features. If for example we
require that with probability at least 1−δ all of the entries in an �×� kernel
matrix are within ε of their true values, we should choose N so that

2 exp
(−Nε2

2c2

)
≤ 2δ

� (� + 1)
,

implying that

N ≥ 2c2

ε2
ln

� (� + 1)
δ

.

This leads to the following computation.

Computation 9.46 [Evaluating randomised kernels] With probability at
least 1−δ we can estimate all the entries of the kernel matrix of a randomised
kernel to accuracy ε by sampling

N ≥ 2c2

ε2
ln

� (� + 1)
δ

features φk and setting

κ̂ (xi,xj) =
1
N

N∑
k=1

φk (xi) φk (xj) ,

for i, j = 1, . . . , �, where the range of the features is bounded in [−c, c].

Remark 9.47 [Sampling intersection kernels] One example where this could
arise is in kernels defined in terms of intersection of sets

κ∩ (A1, A2) = µ (A1 ∩ A2) .
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The features here are the elements of the domain D. If the structure of
the sets makes it difficult to integrate the measure over their intersection,
we may be able to use the randomisation approach. This is equivalent to
estimating the integral

µ (A1 ∩ A2) =
∫

D
IA1∩A2 (a) dµ (a)

via a Monte Carlo random sampling. Hence, if we can efficiently generate
random examples according to µ, we can apply the randomisation approach.
An example where this might be relevant is for a kernel between boolean
functions. Estimating when a boolean function has any satisfying assign-
ment becomes NP-hard even if, for example, we restrict the structure of the
function to a disjunctive normal form with 3 literals per clause. Hence, an
exact evaluation of the integral would be computationally infeasible. We
can, however, sample binary vectors and check if they satisfy both func-
tions. Note that such a kernel would be needed in an application where the
examples were boolean functions and we were looking for patterns among
them.

9.8 Other kernel types

This section concludes this chapter’s overview of methods for designing ker-
nels by outlining the three kernel types to be presented in the last three
chapters of the book. Although they will be discussed in detail later, it is
worth placing them in the context of the current survey to furnish a fuller
picture of the diversity of data and techniques available.

9.8.1 Kernels from successive embeddings

We saw in Chapter 3 that the class of kernel functions satisfies a series of
closure properties. Furthermore, we saw that as long as we can show the
existence of an embedding function φ such that

κ (x, z) = 〈φ (x) ,φ (z)〉
then we know that κ is a kernel, even if we are not able either computation-
ally or explicitly to construct φ. These two facts open up the possibility
of defining kernels by successive adjustments, either performing successive
embeddings or manipulating the given kernel function (or matrix). In this
way we can sculpt the feature space for the particular application.

We must exploit knowledge of the domain by designing a series of simple
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embeddings each of which could for example introduce some invariance into
the embedding by ensuring that all transformations of an example under a
particular invariance are mapped to the same image. Any classifier using
the resulting kernel will be invariant to that transformation. Note also that
further embeddings cannot undo this invariance. Hence, the final kernel will
exhibit invariance to all of the transformations considered.

The overall kernel resulting from a sequence of such embeddings is by def-
inition a valid kernel, although we might not be able to explicitly construct
its features. The proof of validity follows the stages of its construction by
composing the sequence of successive embeddings to create the embedding
corresponding to the overall kernel

φ (x) = ψ1 (x) ◦ ψ2 (x) ◦ · · · ◦ ψn (x) .

Figure 9.4 illustrates this point with a sequence of two embeddings progres-
sively increasing the separation of the datapoints associated with the two
classes of a classification problem.

Fig. 9.4. A sequence of two embeddings can be composed to create an overall
embedding with desirable properties.

Example 9.48 In Chapter 10 we will see this approach applied in the case of
text documents, where we can successively embed a document to gradually
take care of synonymy, semantics, stop words, removal of document length
information, and so on. Each of these properties is realised by composing
with an additional embedding function and can be seen as implementing
an invariance. A similar approach may well be applicable in other domains
such as, for example, machine vision.
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9.8.2 Kernels over general structures

In Remark 9.20 we saw how the ANOVA construction could be used to define
a kernel in a recursive fashion, provided a set of base kernels was available.
This situation is not uncommon in recursively-defined data structures, such
as strings and trees. For example, comparing two symbols in the sequence
provides a base kernel for the case of strings. We will show how this can
be used to recursively build a kernel between sequences of symbols, hence
enabling pattern analysis of documents, DNA sequences, etc.

This approach makes it possible to build general kernels defined over
structured data objects, provided we have a way to compare the elemen-
tary components of such structures. Typically the method of combination
corresponds to a recursive computation. The approach is not restricted to
strings or mathematical structures such as trees or graphs, but can be ap-
plied to complex objects that arise in particular application domains such
as web pages, chemometrics, and so on.

9.8.3 Kernels from generative information

When designing a kernel for a particular application it is vital that it should
incorporate as much domain knowledge as possible. At the simplest level
the similarity measure defined by the kernel should reflect our understanding
of the relative distances between data items. Indeed one advantage of the
kernel approach is that this question is often easier to answer than the direct
definition of pattern functions that would otherwise be needed.

There are, however, other more sophisticated methods of incorporating
such domain knowledge. For example we can construct a model of the way
that the data are generated, in what are known as generative models. In
this approach, the generative models could be deterministic or probabilistic,
and could be either simple functions or complex graphical structures such
as finite state automata or hidden Markov models (HMMs). In Chapter
12 we will explore methods for converting these models of the data into
kernel functions, hence developing several frameworks for incorporating prior
knowledge in a principled way including the well-known Fisher kernels.

9.9 Summary

• Many kernels can be computed in closed form including the polynomial
and Gaussian kernels.

• Many kernels can be defined using recursive relations including the poly-
nomial kernel, the all-subsets kernel and the ANOVA kernel.
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• Graph kernels generalise the family of recursively-defined kernels allowing
more detailed sculpting of which features are to be included.

• Kernels over graph nodes can be defined in terms of diffusion processes
starting from a general base similarity measure.

• Simple kernels can be defined based on fundamental set operations.
• Sampling can enable accurate estimation of kernels whose feature set pro-

hibits efficient exact evaluation.

9.10 Further reading and advanced topics

In the early years of research on kernel methods only functions in closed
form were considered. The introduction of ANOVA kernels gave the first
example of kernels defined by means of a recursive relation, which could be
efficiently evaluated using dynamic programming. That in turn triggered
the observation that other kernels could be defined in terms of recursive
relations, or even in terms of very general computational procedures. At
the same time, the idea that kernels need to be defined on vectorial inputs
was been recognised as unnecessarily restrictive. From 1999 the first kernels
between strings defined by means of recursions started to appear [158], [157],
[54]. After those first contributions, a flood of different approaches have been
proposed, the main ones are summarised in this chapter with more detailed
presentations of many of them deferred to Chapter 11. More recently it has
been recognised that one does not even need to have a kernel function at
all, just a kernel matrix for the available data. This has led to optimisation
procedures for directly inferring the kernel matrix, which are not discussed
here.

Gaussian and polynomial kernels were already discussed in the first pa-
per on support vector machines [16]. Gaussian kernels in particular have
been investigated for a long time within the literature on reproducing ker-
nel Hilbert spaces [156]. ANOVA kernels were first suggested by Burges and
Vapnik (under the name of Gabor kernels) in 1995 [21] in the form described
in Computation 9.18. The recursion described in Algorithm 9.14 was pro-
posed by Chris Watkins in 1999 [157]. The paper of Takimoto and Warmuth
[132] introduces the ‘all subsets kernel’ as well as the idea of kernels based
on paths in a graph.

These regular language kernels are related to the rational kernels proposed
in [26].

Diffusion kernels were proposed by Imre Kondor in [82], while von Neu-
mann kernels were introduced in [71]. The bag-of-words kernels were pro-
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posed by Thorsten Joachims [67] and can be considered as an example of
kernels between sets.

The discussion of kernels over sets or between numbers is largely a col-
lection of folk results, but strongly influenced by discussions with Chris
Watkins.

Kernels over general structures were simultaneouly elaborated by Watkins
and by Haussler [158], [157], [54] and will be discussed in further detail in
Chapter 11.

Kernels based on data compression ideas from information theory have
been proposed [36] and form yet another approach for defining similarity
measures satisfying the finitely positive semi-definite property. Kernels de-
fined on sets of points have also been recently explored in [65], while an
interesting approach for graph kernels has been proposed by [75].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.
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Kernels for text

The last decade has seen an explosion of readily available digital text that
has rendered attempts to analyse and classify by hand infeasible. As a re-
sult automatic processing of natural language text documents has become a
main research interest of Artificial Intelligence (AI) and computer science in
general. It is probably fair to say that after multivariate data, natural lan-
guage text is the most important data format for applications. Its particular
characteristics therefore deserve specific attention.

We will see how well-known techniques from Information Retrieval (IR),
such as the rich class of vector space models, can be naturally reinterpreted
as kernel methods. This new perspective enriches our understanding of the
approach, as well as leading naturally to further extensions and improve-
ments. The approach that this perspective suggests is based on detecting
and exploiting statistical patterns of words in the documents. An important
property of the vector space representation is that the primal–dual dialectic
we have developed through this book has an interesting counterpart in the
interplay between term-based and document-based representations.

The goal of this chapter is to introduce the Vector Space family of kernel
methods highlighting their construction and the primal–dual dichotomy that
they illustrate. Other kernel constructions can be applied to text, for ex-
ample using probabilistic generative models and string matching, but since
these kernels are not specific to natural language text, they will be discussed
separately in Chapters 11 and 12.

327
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10.1 From bag of words to semantic space

Although the task of automatically analysing the meaning of a document
falls under the heading of natural language processing, it was the IR commu-
nity that developed the relatively simple representation that is today most
commonly used to assess the topic of a document. This representation is
known as the vector space model (VSM) or the ‘bag-of-words’ approach. It
is this technique that forms the basis of the kernels developed in this chap-
ter. As mentioned above, other representations of text are certainly possible
including those relying on a string level analysis or on probabilistic models.
These approaches will be mentioned as special cases in later chapters that
are mainly concerned with other data formats.

One of the aims of this chapter is to show that by using the VSM to
create kernels, it is possible to extend its applicability beyond IR to the
full range of tasks that can be solved using the kernel approach, including
correlation analysis, novelty-detection, classification, ranking, clustering and
so on. Some of these tasks reappear with different names in the context of
document analysis. For example document classification is often referred to
as categorisation, on-line classification as filtering, while novelty detection is
known as new topic detection.

10.1.1 Representing text

The simplest possible version of the VSM is the representation of a document
as a bag-of-words. A bag is a set in which repeated elements are allowed,
so that not only the presence of a word but also its frequency is taken into
account. Hence, a document is represented by the words it contains, with
the ordering of the words and punctuation being ignored. This implies that
some grammatical information is lost, since there is no representation of the
word ordering. This furthermore implies that phrases are also broken into
their constituent words and hence the meaning of a phrase such as ‘bread
winner’ is lost. We begin with some definitions.

Definition 10.1 [Vector space model] Words are any sequence of letters
from the basic alphabet separated by punctuation or spaces. We use term
synonymously with word. A dictionary can be defined by some permanent
predefined set of terms, but in practice we only need to consider those words
actually appearing in the documents being processed. We refer to this full
set of documents as the corpus and the set of terms occurring in the corpus
as the dictionary . Hence, we can view a document as a bag of terms or
bag-of-words. We can represent a bag as a vector in a space in which each
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dimension is associated with one term from the dictionary

φ : d �−→ φ (d) = (tf (t1, d) , tf (t2, d) , . . . , tf (tN , d)) ∈ R
N ,

where tf (ti, d) is the frequency of the term ti in the document d. Hence, a
document is mapped into a space of dimensionality N being the size of the
dictionary, typically a very large number.

Despite the high-dimensionality of the dictionary, the vector associated
with a given document is sparse, i.e. has most of its entries equal to 0, since
it will contain only very few of the vast number of possible words.

Definition 10.2 [Document–term matrix] The document–term matrix of a
corpus is the matrix whose rows are indexed by the documents of the corpus
and whose columns are indexed by the terms. The (i, j)th entry gives the
frequency of term tj in document di

D =

⎛⎜⎝tf (t1, d1) · · · tf (tN , d1)
...

. . .
...

tf (t1, d�) · · · tf (tN , d�)

⎞⎟⎠ .

The term–document matrix is the transpose D′of the document–term ma-
trix. The term-by-term matrix is given by D′D while the document-by-
document matrix is DD′.

Note that the document–term matrix is simply the data matrix X we have
used consistently throughout this book. Hence, the term-by-term matrix is
� times the covariance matrix, while the document-by-document matrix is
the corresponding kernel matrix.

Remark 10.3 [Interpreting duality] An interesting feature of the VSM will
be an additional interpretation of the duality between representations of
kernel algorithms. Here the dual representation corresponds to a document
view of the problem, while the primal description provides a term view. In
the same way that a document can be seen as the counts of the terms that
appear in it, a term can be regarded as the counts of the documents in which
it appears. These two views are represented by the rows of a document–term
matrix with the rows of its transpose giving the representation of terms.

Since it is often the case that the corpus size is less than the number of
terms or dictionary size, it is sometimes useful to compute in a document-
based or dual representation, whereas for intuitive and interpretational pur-
poses it is usually better to work in the term-based or primal representation.
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We can exploit the power of duality in kernel methods by stating the prob-
lem in the intuitive term representation, and then dualising it to provide a
document-based implementation.

10.1.2 Semantic issues

The representation of documents provided by the VSM ignores any semantic
relation between words. One important issue is to improve the vector space
representation to ensure that documents containing semantically equivalent
words are mapped to similar feature vectors.

For example synonymous words give two ways of saying the same thing,
but are assigned distinct components. Hence, the VSM despite retaining
enough information to take account of this similarity, is unable to do so
without extra processing. We will present a range of methods that aim to
address this and related problems.

On the other hand, the case of homonymy when a single word has two
distinct meanings is an example that the VSM will be less able to handle
since it has thrown away the contextual information that could disambiguate
the meaning. Despite this, some context can be derived from the statistics of
the words in the document. We begin, however, by mentioning two simpler
operations that can improve the quality of the embedding.

The first is to apply different weights wi to each coordinate or equivalently
to give varying weights to the terms. Perhaps the simplest example of this
is the removal of uninformative terms such as ‘and’, ‘of’, ‘the’, and so on.
This is equivalent to assigning a weight of 0 to these coordinates. This
technique was pioneered in the IR literature, where such words are referred
to as stop words, with the complete set known as the stop list. We consider
more general weighting schemes in the next section.

The second effect that can cause problems is the influence of the length
of a document. Clearly, the longer a document the more words it contains
and hence, the greater the norm of its associated vector. If the length of the
document is not relevant for the tasks we are trying to solve, for example
categorisation by topic, it makes sense to remove this effect by normalising
the embedding vectors. Using the technique developed in Chapter 5 and
given in (5.1), we define a kernel that discards this information as follows

κ̂(x,y) =
〈

φ(x)
‖φ(x)‖ ,

φ(y)
‖φ(y)‖

〉
=

κ(x,y)√
κ(x,x)κ(y,y)

.

Typically the normalisation is implemented as either the first transformation
or as the final embedding. We will not consider the normalisation for each
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of the different semantic embeddings but assume that when required it is
included as a final stage.

Remark 10.4 [On successive embeddings] The operations can be performed
in sequence, creating a series of successive embeddings, each of which adds
some additional refinement to the semantics of the representation, for ex-
ample term weighting followed by normalisation. This chapter will describe
a number of operations designed to refine the semantic quality of the rep-
resentation. Any of these refinements can be included in a sequence. As
described in the last chapter, if we compose these successive embeddings we
create a single map that incorporates different aspects of domain knowledge
into the representation.

10.2 Vector space kernels

Given a document, we have seen how it can be represented by a row vector

φ (d) = (tf (t1, d) , tf (t2, d) , . . . , tf (tN , d)) ∈ R
N ,

in which each entry records how many times a particular term is used in
the document. Typically φ (d) can have tens of thousands of entries, often
more than the number of training examples. Nonetheless, for a particu-
lar document the representation is extremely sparse, having only relatively
few non-zero entries. This preliminary embedding can then be refined by
successive operations that we will examine later in the chapter.

As indicated in Definition 10.2 we can create a document–term matrix D
whose rows are the vectors associated with the documents of the corpus. It
is common in IR to work with the transpose or term–document matrix D′,
but we have chosen to maintain consistency with our use in earlier chapters
of the matrix X, whose rows are the feature vectors of the training examples.
Hence, there is a direct correspondence between X and D where features
become terms and examples become documents.

Definition 10.5 [Vector space kernel] Within the VSM we can create a
kernel matrix as

K = DD′

corresponding to the vector space kernel

κ (d1, d2) = 〈φ (d1) ,φ (d2)〉 =
N∑

j=1

tf (tj , d1) tf (tj , d2) .
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Cost of the computation In order to compute the kernel κ we must
first convert the document into a list of the terms that they contain. This
process is known as tokenisation. It has been a fundamental processing
technique of computer science since the design of the first compilers. Each
term encountered in the corpus is assigned its own unique number. This
ensures that the list of terms in a document can be reordered into ascending
term order together with an associated frequency count. In this way the
document is converted into a list L (d) rather than the impractically long
explicit vector φ (d). It is now a relatively simple and efficient task to
compute

κ (d1, d2) = A (L (d1) , L (d2)) ,

using the lists L (d1) and L (d2) as inputs, where the algorithm A (·, ·) tra-
verses the lists, computing products of frequencies whenever the term num-
bers match. In summary, the computation of the kernel does not involve
explicit evaluation of the feature vectors φ (d), but uses an intermediate
representation of a list L (d) of terms. Hence, although we are working in
a space that is typically of very high dimension, the computation of the
projections and subsequent inner product evaluation can be implemented in
a time proportional to the sum of the lengths of the two documents

O (|d1| + |d2|) .

We should contrast this approach with systems that require explicit weights
to be maintained for each component.

Remark 10.6 [Nonlinear embeddings] Throughout this chapter we will
restrict ourselves to considering linear transformations of the basic VSM,
always laying emphasis on the power of capturing important domain knowl-
edge. However, it is of course possible to consider nonlinear embeddings
using standard kernel constructions. For example a polynomial kernel over
the normalised bag-of-words representation

κ̄ (d1, d2) = (κ (d1, d2) + 1)d = (〈φ (d1) , φ (d2)〉 + 1)d ,

uses all n-tuples of words for 0 ≤ n ≤ d as features. The same approach
can be used for any of the vector space kernels using polynomial kernels or
other kernel constructions such as the Gaussian kernel.
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10.2.1 Designing semantic kernels

As indicated above the bag-of-words representation has many shortcomings,
partly the neglecting of the word order but also of the semantic content
of the words themselves. In order to address this second omission, we will
consider transformations of the document vectors φ (d). The VSM considers
only the simplest case of linear transformations of the type φ̃ (d) = φ (d)S,
where S is a matrix that could be diagonal, square or, in general, any N ×k

matrix. Using this transformation the corresponding kernel takes the form

κ̃ (d1, d2) = φ (d1)SS′φ (d2)
′ = φ̃ (d1) φ̃ (d2)

′ .

That this is a kernel follows directly from the explicit construction of a
feature vector. We refer to S as the semantic matrix. Different choices
of the matrix S lead to different variants of the VSMs. As indicated in
Remark 10.4 we will often create S as a composition of several stages. We
will examine some of these in the coming subsections. Hence, we might
define

S = RP,

where R is a diagonal matrix giving the term weightings or relevances, while
P is a proximity matrix defining the semantic spreading between the different
terms of the corpus.

Term weighting As mentioned in the previous section not all words have
the same importance in establishing the topic of a document. Indeed, in IR
the so-called stop words are removed before the analysis starts. The entropy
or the frequency of a word across the documents in a corpus can be used to
quantify the amount of information carried by a word. This is an ‘absolute’
measure in the sense that it takes no account of particular topics or tasks.
For categorisation one could also define a relative measure of the importance
of a word with respect to the given topic, such as the mutual information.
Here we consider an absolute measure known as idf that weights terms as a
function of their inverse document frequency. Suppose that there are � doc-
uments in the corpus and let df (t) be the number of documents containing
the term t. The usual measure of inverse document frequency for a term t

is then given by

w (t) = ln
(

�

df (t)

)
.

Implicit in this weighting is the possibility of stop words, since if a term is
contained in every document then df (t) = � and w (t) = 0, effectively ex-
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cluding the term from the dictionary and hence reducing the dimensionality
of the feature space. For efficiency reasons it is still preferable to create an
explicit stop list of terms that should a priori be excluded from the features.

The use of the logarithmic function ensures that none of the weights can
become too large relative to the weight of a term that occurs in roughly half
of the documents. This is occasionally further controlled by removing words
that occur in fewer than one or two documents, since they are viewed as too
exceptional to be of use in analysing future documents.

Given a term weighting w (t) whether defined by the idf rule or some
alternative scheme, we can now define a new VSM by choosing the matrix
R to be diagonal with entries

Rtt = w (t) .

The associated kernel simply computes the inner product

κ̃ (d1, d2) = φ (d1)RR′φ (d2)
′ =

∑
t

w (t)2 tf (t, d1) tf (t, d2) ,

again clearly implementable by a weighted version Aw of the algorithm A:

κ̃ (d1, d2) = Aw (L (d1) , L (d2)) .

The evaluation of this kernel involves both term frequencies and inverse
document frequencies. It is therefore often referred to as the tf–idf repre-
sentation. Since these measures do not use label information, they could
also be estimated from an external, larger unlabelled corpus that provides
background knowledge for the system.

Term proximity matrix The tf–idf representation implements a down-
weighting of irrelevant terms as well as highlighting potentially discrimina-
tive ones, but nonetheless is still not capable of recognising when two terms
are semantically related. It is therefore not able to establish a connection
between two documents that share no terms, even when they address the
same topic through the use of synonyms. The only way that this can be
achieved is through the introduction of semantic similarity between terms.
Within the VSM this requires that a proximity matrix P has non-zero off-
diagonal entries Pij > 0 when the term i is semantically related to the term
j. Given such a matrix, the vector space kernel

κ̃ (d1, d2) = φ (d1)PP′φ (d2)
′ (10.1)

corresponds to representing a document by a less sparse vector φ (d)P that
has non-zero entries for all terms that are semantically similar to those



10.2 Vector space kernels 335

present in the document ḋ. This is closely related to a technique from
IR known as ‘query expansion’, where a query is expanded to include not
only the actual query terms but any terms that are semantically related.
Alternatively, we can view the matrix PP′ as encoding a semantic strength
between terms. This is perhaps most clearly apparent if we let Q = PP′

and expand the equation (10.1)

κ̃ (d1, d2) =
∑
i,j

φ (d1)i Qijφ (d2)j ,

so that we can view Qij as encoding the amount of semantic relation between
terms i and j. Note that defining the similarity by inferring Q requires
the additional constraint that Q be positive semi-definite, suggesting that
defining P will in general be more straightforward.

Remark 10.7 [Stemming] One method of detecting some semantic simi-
larities is known as stemming . This technique, implemented as part of the
tokeniser, automatically removes inflexions from words, hence ensuring that
different forms of the same word are treated as equivalent terms. For ex-
ample ‘structural’, ‘structure’ and ‘structured’ would all be mapped to the
common stem ‘structure’ and so be treated as the same term. This effec-
tively performs a dimension reduction, while linking the different forms of
the word as semantically identical. We can implement this within the VSM
by setting Pij = s−1/2, for all terms i, j that are reduced to the same stem,
where s is the number of distinct terms involved. Of course this is just
of theoretical interest as in practice the terms are all mapped to a single
stemmed term in the list L (d).

10.2.2 Designing the proximity matrix

Remark 10.7 suggests a way of defining the proximity matrix P by putting
non-zero entries between those terms whose semantic relation is apparent
from their common stem. The question remains of how we can obtain more
general semantic matrices that link synonymous or related terms that do
not share a common core. We now give a series of methods for obtaining
semantic relationships or learning them directly from a corpus be it the
training corpus or a separate set of documents. Though we present the
algorithms in a term-based representation, we will in many cases show how
to implement them in dual form, hence avoiding the explicit computation
of the matrix P.
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Explicit construction of the proximity matrix Perhaps the most nat-
ural method of incorporating semantic information is by inferring the relat-
edness of terms from an external source of domain knowledge. In this section
we briefly describe one such approach. In the next section we will see how
we can use co-occurrence information to infer semantic relations between
terms, hence avoiding the need to make use of such external information.

A semantic network such as Wordnet provides a way to obtain term-
similarity information. A semantic network encodes relationships between
words of a dictionary in a hierarchical fashion, where the more general terms
occur higher in the tree structure, so that for example ‘spouse’ occurs above
‘husband’ and ‘wife’, since it is their hypernym. We can use the distance
between two terms in the hierarchical tree provided by Wordnet to give an
estimate of their semantic proximity. This can then be used to modify the
metric of the vector space of the bag-of-words feature space.

In order to introduce this information into the kernel, we can handcraft
the matrix P by setting the entry Pij to reflect the semantic proximity
between the terms i and j. A simple but effective choice is to set this equal
to the inverse of their distance in the tree, that is the length of the shortest
path connecting them. The use of this semantic proximity gives rise to the
vector space kernel

κ̃ (d1, d2) = φ (d1)PP′φ (d2)
′ .

Generalised vector space model An early attempt to overcome the lim-
itations of the VSMs by introducing semantic similarity between terms is
known as the generalised VSM or GVSM. This method aims at capturing
term–term correlations by looking at co-occurrence information. Two terms
are considered semantically related if they frequently co-occur in the same
documents. Indeed this simple observation forms the basis of most of the
techniques we will develop in this chapter. This means that two documents
can be seen as similar even if they do not share any terms, but the terms
they contain co-occur in other documents. The GVSM method represents a
document by a vector of its similarities with the different documents in the
corpus, in other words a document is represented by the embedding

φ (d) = φ (d)D′,

where D is the document–term matrix, equivalent to taking P = D′. This
definition does not make immediately clear that it implements a semantic
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similarity, but if we compute the corresponding kernel

κ̃ (d1, d2) = φ (d1)D′Dφ (d2)
′ .

Now we can observe that the matrix D′D has a nonzero (i, j)th entry if and
only if there is a document in the corpus in which the ith and jth terms
co-occur, since (

D′D
)
ij

=
∑

d

tf (i, d) tf (j, d) .

So two terms co-occurring in a document are considered related with the
strength of the relationship given by the frequency and number of their co-
occurrences. If there are fewer documents than terms, this has the effect of
dimensionality reduction by mapping from the vectors indexed by terms to
a lower-dimensional space indexed by the documents of the corpus. Though
appealing, the GVSM is too naive in its use of the co-occurrence information.
The coming subsections examine more subtle uses of this information to
create more refined semantics.

Latent semantic kernels The IR community developed a very effective
vector space representation of documents that can capture semantic informa-
tion through the use of co-occurrence information known as latent semantic
indexing (LSI). Conceptually, LSI follows the same approach as GVSMs,
only that the technique used to extract the semantic information from the
co-occurrences is very different making use as it does of singular value de-
composition (SVD). We will see that this amounts to a special choice of the
matrix P with some useful properties.

Recall from Section 6.1 that the SVD of the matrix D′ is

D′ = UΣV′

where Σ is a diagonal matrix of the same dimensions as D, and U and V
are unitary matrices whose columns are the eigenvectors of D′D and DD′

respectively. LSI now projects the documents into the space spanned by the
first k columns of U, using these new k-dimensional vectors for subsequent
processing

d �−→ φ (d)Uk,

where Uk is the matrix containing the first k columns of U. This choice
can be motivated by recalling that the eigenvectors define the subspace that
minimises the sum-squared differences between the points and their projec-
tions, that is it defines the subspace with minimal sum-squared residuals as
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spelled out in Proposition 6.12. Hence, the eigenvectors for a set of docu-
ments can be viewed as concepts described by linear combinations of terms
chosen in such a way that the documents are described as accurately as
possible using only k such concepts.

Note that terms that co-occur frequently will tend to align in the same
eigenvectors, since SVD merges highly correlated dimensions in order to
define a small number of dimensions able to reconstruct the whole feature
vector. Hence, the SVD is using the co-occurrence information in a sophis-
ticated algorithm that can maximise the amount of information extracted
by a given number of dimensions.

The definition of LSI shows that it is identical to performing PCA in the
feature space as described in (6.12). Hence, the new kernel becomes that of
kernel PCA

κ̃ (d1, d2) = φ (d1)UkU′
kφ (d2)

′ ,

showing that the matrix P has in this case been chosen equal to Uk. If we
compare this with the GVSM we can write its projection as

κGSVM (d1, d2) = φ (d1)D′Dφ (d2)
′ = φ (d1)U′ΣUφ (d2)

′ .

Hence, there are two adaptations that have taken place when compared to
GVSM. Firstly, dimensionality reduction has been introduced through the
restriction to k eigenvectors, and secondly the removal of the matrix Σ has
ensured that the projections of the data are orthonormal.

The fact that LSI is equivalent to PCA also implies that we can implement
the algorithm in the dual representation to obtain from (6.12) the evaluation
of the projection as follows.

Computation 10.8 [Latent semantic kernels]Latent semantic kernels are
implemented by projecting onto the features

φ(d)Uk =

⎛⎝λ
−1/2
i

�∑
j=1

(vi)j κ(dj , d)

⎞⎠k

i=1

,

where κ is the base kernel, and λi,vi are the eigenvalue, eigenvector pairs
of the kernel matrix.

The base kernel can now be chosen as the bag-of-words kernel or more
generally a complex kernel involving term weightings or even the polynomial
construction. For this reason we refer to this dual construction as latent
semantic kernels (LSK).
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Again we see the sculpting of the feature space through a series of trans-
formations each using additional domain knowledge to further refine the
semantics of the embedding. If we wish to represent the LSKs with a prox-
imity matrix we can do so by taking

P = UkU′
k

since this leads to an identical kernel, while the matrix P is now square and
so defines connection strengths between the different terms. Notice how as
k increases, the matrix tends to the identity, returning to the treatment of
all terms as semantically distinct. Hence, the value of k controls the amount
of semantic smoothing that is introduced into the representation.

Exploiting multilingual corpora Aligned corpora are formed of pairs
of documents that are translations of each other in two languages. They
are examples of the paired training sets introduced when we considered
canonical correlation analysis in Section 6.5. We can treat the translation
as a complex label for the first document, or consider the two versions as
two views of the same object.

In this way we can use a bilingual corpus to learn a semantic mapping that
is useful for tasks that have nothing to do with the second language. The
translations can be seen as complex labels that enable us to elicit refined
semantic mappings that project the documents onto key directions that are
able to remove semantically irrelevant aspects of the representation.

LSKs can be used to derive a more refined language independent represen-
tation. This is achieved by concatenating the two versions of the document
into a single bilingual text. LSI is then applied to create a set of k semantic
dimensions. A new document or query in only one language is projected
using the projections derived from the eigenvectors obtained from the con-
catenated documents.

The latent semantic approach looks for directions of maximum variance
but is restricted by its concatenation of the feature spaces of the two lan-
guages. An alternative method for creating semantic features is to use kernel
CCA. This method treats the two versions of the document as two views of
the same semantic object. It therefore finds independent projections for the
two languages that map to a common semantic space. This space can be
used for further document analysis.

Remark 10.9 [Cross-lingual information retrieval] Cross-lingual informa-
tion retrieval (CLIR) is concerned with the task of retrieving documents
in one language with queries from a different language. The technique is
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intended for users who have a passive knowledge of a language enabling
them to read documents, but not sufficient expertise to choose a suitable
query for the information they require. The semantic space provides an ideal
representation for performing CLIR.

Semantic diffusion kernels We would like to continue our exploitation
of the dual perspective between document-based and term-based represen-
tations. If we regard documents as similar that share terms, we have seen
how we can equally well regard as related terms that co-occur in many
documents. This suggests we might extend the similarity implications even
further by, for example, regarding documents that share terms that co-occur
as similar – this is the effect of using the co-occurrence analysis in further
processing. Extrapolating this interaction suggests the introduction of a re-
currence relation. For this section we will denote the matrix D′D with G
and as usual DD′ is the base kernel matrix K. Consider refined similarity
matrices K̂ between documents and Ĝ between terms defined recursively by

K̂ = µDĜD′ + K and Ĝ = µD′K̂D + G. (10.2)

We can interpret this as augmenting the similarity given by K through
indirect similarities measured by G and vice versa. The factor µ < ‖K‖−1

ensures that the longer range effects decay exponentially (recall that ‖K‖ =
maxλ∈λ(K) |λ| denotes the spectral norm of K).

Recall Definition 9.34 of the von Neumann diffusion kernel K̄ over a base
kernel K1 in Section 9.4

K̄ = (I − λK1)
−1

We can characterise the solution of the above recurrences in the following
proposition.

Proposition 10.10 Provided µ < ‖K‖−1 = ‖G‖−1, the kernel K̂ that
solves the recurrences (10.2) is K times the von Neumann kernel over the
base kernel K, while the matrix Ĝ satisfies

Ĝ = G(I − µG)−1.

The proof of the proposition is given in Appendix A.3.
Note that we can view K̂(µ) as a kernel based on the proximity matrix

P =
√

µĜ + I since

DPP′D′ = D(µĜ + I)D′ = µDĜD′ + K = K̂(µ).

Hence, the solution Ĝ defines a refined similarity between terms.
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The kernel K̂ combines these indirect link kernels with an exponentially
decaying weight. This and the diffusion kernels suggest an alternative weight-
ing scheme that shows faster decay. Given a kernel K, consider the expo-
nential diffusion kernel of Definition 9.33

K̄(µ) = K
∞∑

t=1

µtKt

t!
= K exp(µK).

One advantage of this definition is that the series is convergent for all values
of µ, so that no restrictions need to be placed on this parameter. The next
proposition gives the semantic proximity matrix corresponding to K̄(µ).

Proposition 10.11 Let K̄(µ) = K exp(µK). Then K̄(µ) corresponds to a
semantic proximity matrix

exp
(µ

2
G
)

.

Again the proof of the proposition can be found in Appendix A.3.

Remark 10.12 [Applying the diffusion kernels to unseen data] Note that
for the case of text the application of the derived kernel is not restricted
to the examples used in the kernel matrix. As with kernel PCA we can
project new examples into the coordinate system determined by the principal
axes and reweight them with the appropriate function of the corresponding
eigenvalue. Hence, we can compute the diffusion construction on a modestly
sized training set, but apply it to previously unseen data.

10.3 Summary

• The VSM developed in the IR community provides a rich source of kernels
for the analysis of text documents.

• The simplest example is the bag-of-words kernel that treats all terms in
the corpus as independent features.

• Refinements of the VSM are characterised by the use of different semantic
matrices S.

Term weighting schemes lead to diagonal semantic matrices
Off-diagonal entries can be set using external sources such as semantic
nets.
Alternatively we can learn semantic relations through co-occurrence anal-
ysis of the training corpus.
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The GVSM gives the simplest approach, with latent semantic kernels and
diffusion kernels making more refined use of the co-occurrence informa-
tion.
Multilingual corpora can further refine the choice of semantic concepts as
well as enabling cross-lingual information analysis.

10.4 Further reading and advanced topics

Kernel methods provide a natural framework for pattern analysis in text.
This is not just through their interpretation of duality, but also because
the function of a kernel in deciding if two documents, sentences or words
have a similar meaning is much easier than actually analysing that meaning.
This similarity measure can often be obtained by borrowing methods from
different disciplines, as is evident from the diverse literature on which this
chapter has been based.

The conventional VSM was introduced in 1975 by Salton et al. [114], and
became the standard representation of documents in IR. Its use as a kernel,
proposed by Joachims [68], is equivalent to setting the matrix P = I. A
number of variations on that theme have been suggested, for example the
GVSM [167], LSI [37] and many others, all of which have an obvious kernel
counterpart.

Following this first embedding, a number of other, possibly nonlinear,
mappings can be performed. Both Joachims, and Dumais et al. [41] used
polynomial and Gaussian kernels to further refine the vector space repre-
sentation, so further mapping the data into a richer space, for classification
tasks using support vector machines.

The European project KerMIT has developed a number of new and sophis-
ticated representations, kernels and algorithms, and their website contains
a number of publications concerned with kernels for text, see www.euro-
kermit.org. Also the book by Thorsten Joachims [69] is entirely devoted to
text classification using kernel methods.

The survey paper [66] contains a framework using as a unifying concept
the proximity matrix. The paper [128] discusses the semantic smoothing
as performed by means of semantic networks and a particular choice of
proximity matrix. The paper on latent semantic kernels [35, 31] discusses
the use of those ideas within kernel methods, and the paper by [86] compares
a number of choices of term weighting schemes, and hence indirectly of
embedding maps.

The use of kCCA for cross language analysis is presented in [153] and the
use of diffusion kernels in [71] (more background information about kernel
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CCA can be found in Section 6.9 and diffusion kernels in Section 9.10). Other
methods for cross-language analysis include adaptations of LSI described in
[92]. Combinations of text and hyperlink information, in hypertext kernels,
are described in [69].

Of course other kernels for text can be devised which do not use the VSM,
as those based on string matching [93], and and probabilistic modeling, as
in [59], but are better addressed within the context of Chapters 11 and 12.
See Section 11.9 and Section 12.4 for more references.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net
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Kernels for structured data: strings, trees, etc.

Probably the most important data type after vectors and free text is that
of symbol strings of varying lengths. This type of data is commonplace in
bioinformatics applications, where it can be used to represent proteins as
sequences of amino acids, genomic DNA as sequences of nucleotides, pro-
moters and other structures. Partly for this reason a great deal of research
has been devoted to it in the last few years. Many other application do-
mains consider data in the form of sequences so that many of the techniques
have a history of development within computer science, as for example in
stringology, the study of string algorithms.

Kernels have been developed to compute the inner product between im-
ages of strings in high-dimensional feature spaces using dynamic program-
ming techniques. Although sequences can be regarded as a special case of a
more general class of structures for which kernels have been designed, we will
discuss them separately for most of the chapter in order to emphasise their
importance in applications and to aid understanding of the computational
methods. In the last part of the chapter, we will show how these concepts
and techniques can be extended to cover more general data structures, in-
cluding trees, arrays, graphs and so on.

Certain kernels for strings based on probabilistic modelling of the data-
generating source will not be discussed here, since Chapter 12 is entirely
devoted to these kinds of methods. There is, however, some overlap between
the structure kernels presented here and those arising from probabilistic
modelling covered in Chapter 12. Where appropriate we will point out the
connections.

The use of kernels on strings, and more generally on structured objects,
makes it possible for kernel methods to operate in a domain that tradition-
ally has belonged to syntactical pattern recognition, in this way providing a
bridge between that field and statistical pattern analysis.

344
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11.1 Comparing strings and sequences

In this chapter we consider the problem of embedding two sequences in a
high-dimensional space in such a way that their relative distance in that
space reflects their similarity and that the inner product between their im-
ages can be computed efficiently. The first decision to be made is what
similarity notion should be reflected in the embedding, or in other words
what features of the sequences are revealing for the task at hand. Are we
trying to group sequences by length, composition, or some other proper-
ties? What type of patterns are we looking for? This chapter will describe
a number of possible embeddings providing a toolkit of techniques that ei-
ther individually or in combination can be used to meet the needs of many
applications.

Example 11.1 The different approaches all reduce to various ways of
counting substrings or subsequences that the two strings have in common.
This is a meaningful similarity notion in biological applications, since evo-
lutionary proximity is thought to result both in functional similarity and
in sequence similarity, measured by the number of insertions, deletions and
symbol replacements. Measuring sequence similarity should therefore give
a good indication about the functional similarity that bioinformatics re-
searchers would like to capture.

We begin by defining what we mean by a string, substring and subsequence
of symbols. Note that we will use the term substring to indicate that a
string occurs contiguously within a string s, and subsequence to allow the
possibility that gaps separate the different characters resulting in a non-
contiguous occurrence within s.

Definition 11.2 [Strings and substrings] An alphabet is a finite set Σ of |Σ|
symbols. A string

s = s1 . . . s|s|,

is any finite sequence of symbols from Σ, including the empty sequence
denoted ε, the only string of length 0. We denote by Σn the set of all finite
strings of length n, and by Σ∗ the set of all strings

Σ∗ =
∞⋃

n=0

Σn.

We use [s = t] to denote the function that returns 1 if the strings s and t are
identical and 0 otherwise. More generally [p (s, t)] where p (s, t) is a boolean
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expression involving s and t, returns 1 if p (s, t) is true and 0 otherwise. For
strings s, t, we denote by |s| the length of the string s and by st the string
obtained by concatenating the strings s and t. The string t is a substring of
s if there are (possibly empty) strings u and v such that

s = utv.

If u = ε, we say that t is a prefix of s, while if v = ε, t is known as a suffix.
For 1 ≤ i ≤ j ≤ |s|, the string s (i : j) is the substring si . . . sj of s. The
substrings of length k are also referred to as k-grams or k-mers.

Definition 11.3 [Subsequence] We say that u is a subsequence of a string
s, if there exist indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|,
such that uj = sij , for j = 1, . . . , |u|. We will use the short-hand notation
u = s (i) if u is a subsequence of s in the positions given by i. We denote by
|i| = |u| the number of indices in the sequence, while the length l(i) of the
subsequence is i|u|− i1 +1, that is, the number of characters of s covered by
the subsequence. The empty tuple is understood to index the empty string
ε. Throughout this chapter we will use the convention that bold indices i
and j range over strictly ordered tuples of indices, that is, over the sets

Ik = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik} ⊂ N
k, k = 0, 1, 2, . . . .

Example 11.4 For example, the words in this sentence are all strings from
the alphabet Σ = {a, b, ..., z}. Consider the string s ="kernels". We have
|s| = 7, while s (1 : 3) ="ker" is a prefix of s, s (4 : 7) ="nels” is a suffix of
s, and together with s (2 : 5) ="erne”all three are substrings of s. The string
s (1, 2, 4, 7) ="kens" is a subsequence of length 4, whose length l (1, 2, 4, 7)
in s is 7. Another example of a subsequence is s (2, 4, 6) ="enl".

Remark 11.5 [Binary representation] There is a 1–1 correspondence be-
tween the set Ik and the binary strings with exactly k 1s. The tuple
(i1, . . . , ik) corresponds to the binary string with 1s in positions ij , j =
1, . . . , k. For some of the discussions below it can be easier to think in terms
of binary strings or vectors, as in Example 11.18.

Remark 11.6 [On strings and sequences] There is some ambiguity be-
tween the terms ‘string’ and ‘sequence’ across different traditions. They are
sometimes used equivalently both in computer science and biology, but in
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most of the computer science literature the term ‘string’ requires contigu-
ity, whereas ‘sequence’ implies only order. This makes a difference when
moving to substrings and subsequences. What in the biological literature
are called ‘sequences’ are usually called ‘strings’ in the computer science
literature. In this chapter we will follow the computer science convention,
though frequently including an indication as to whether the given substring
is contiguous or not in order to minimise possible confusion.

Embedding space All the kernels presented in this chapter can be defined
by an explicit embedding map from the space of all finite sequences over an
alphabet Σ to a vector space F . The coordinates of F are indexed by a subset
I of strings over Σ, that is by a subset of the input space. In some cases I

will be the set Σp of strings of length p giving a vector space of dimension
|Σ|p, while in others it will be the infinite-dimensional space indexed by Σ∗.
As usual we use φ to denote the feature mapping

φ: s �−→ (φu (s))u∈I ∈ F .

For each embedding space F , there will be many different maps φ to
choose from. For example, one possibility is to set the value of the coordinate
φu (s) indexed by the string u to be a count of how many times u occurs as a
contiguous substring in the input string s, while another possible choice is to
count how many times u occurs as a (non-contiguous) subsequence. In this
second case the weight of the count can also be tuned to reflect how many
gaps there are in the different occurrences. We can also count approximate
matches appropriately weighting for the number of mismatches.

In the next section we use the example of a simple string kernel to in-
troduce some of the techniques. This will set the scene for the subsequent
sections where we develop string kernels more tuned to particular applica-
tions.

11.2 Spectrum kernels

Perhaps the most natural way to compare two strings in many applications
is to count how many (contiguous) substrings of length p they have in com-
mon. We define the spectrum of order p (or p-spectrum) of a sequence s to
be the histogram of frequencies of all its (contiguous) substrings of length
p. Comparing the p-spectra of two strings can give important information
about their similarity in applications where contiguity plays an important
role. We can define a kernel as the inner product of their p-spectra.
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Definition 11.7 [The p-spectrum kernel] The feature space F associated
with the p-spectrum kernel is indexed by I = Σp, with the embedding given
by

φp
u (s) = |{(v1, v2) : s = v1uv2}| , u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s) φp

u (t) .

Example 11.8 [2-spectrum kernel] Consider the strings "bar", "bat",
"car" and "cat". Their 2-spectra are given in the following table:

φ ar at ba ca

bar 1 0 1 0
bat 0 1 1 0
car 1 0 0 1
cat 0 1 0 1

with all the other dimensions indexed by other strings of length 2 having
value 0, so that the resulting kernel matrix is:

K bar bat car cat

bar 2 1 1 0
bat 1 2 0 1
car 1 0 2 1
cat 0 1 1 2

Example 11.9 [3-spectrum kernel] As a further example, consider the fol-
lowing two sequences

s ="statistics"
t ="computation"

The two strings contain the following substrings of length 3

"sta", "tat", "ati", "tis", "ist", "sti", "tic", "ics"
"com", "omp", "mpu", "put", "uta", "tat", "ati", "tio", "ion"

and they have in common the substrings "tat" and "ati", so their inner
product would be κ (s, t) = 2.
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Many alternative recursions can be devised for the calculation of this
kernel with different costs and levels of complexity. We will present a few of
them spread through the rest of this chapter, since they illustrate different
points about the design of string kernels.

In this section we present the first having a cost O (p |s| |t|). Our aim in
later sections will be to show how the cost can be reduced to O (p (|s| + |t|)) =
O (p max (|s| , |t|)) making it linear in the length of the longer sequence.

The first method will nonetheless be useful because it will introduce some
methods that are important when considering more sophisticated kernels, for
example ones that can tolerate partial matches and insertions of irrelevant
symbols. It will also illustrate an important consideration that makes it
possible to use partial results of the evaluation of one entry in the kernel
matrix to speed up the computation of other entries in the same row or
column. In such cases the complexity of computing the complete kernel
matrix can be less than O

(
�2
)

times the cost of evaluating a single entry.

Computation 11.10 [p-spectrum recursion] We can first define an ‘auxil-
iary’ kernel known as the k-suffix kernel to assist in the computation of the
p-spectrum kernel. The k-suffix kernel κS

k (s, t) is defined by

κS
k (s, t) =

{
1 if s = s1u, t = t1u, for u ∈ Σk

0 otherwise.

Clearly the evaluation of κS
k (s, t) requires O (k) comparisons, so that the

p-spectrum kernel can be evaluated using the equation

κp (s, t) =
|s|−p+1∑

i=1

|t|−p+1∑
j=1

κS
p (s (i : i + p) , t (j : j + p))

in O (p |s| |t|) operations.

Example 11.11 The evaluation of the 3-spectrum kernel using the above
recurrence is illustrated in the following Table 11.1 and 11.2, where each
entry computes the kernel between the corresponding prefixes of the two
strings.

Remark 11.12 [Computational cost] The evaluation of one row of the ta-
ble for the p-suffix kernel corresponds to performing a search in the string
t for the p-suffix of a prefix of s. Fast string matching algorithms such
as the Knuth–Morris–Pratt algorithm can identify the matches in time
O (|t| + p) = O (|t|), suggesting that the complexity could be improved to
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DP : κS
3 ε c o m p u t a t i o n

ε 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 1 0 0 0
i 0 0 0 0 0 0 0 0 0 1 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0

Table 11.1. 3-spectrum kernel between two strings.

DP : κ3 ε c o m p u t a t i o n
ε 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 1 1 1 1
i 0 0 0 0 0 0 0 0 1 2 2 2
s 0 0 0 0 0 0 0 0 1 2 2 2
t 0 0 0 0 0 0 0 0 1 2 2 2
i 0 0 0 0 0 0 0 0 1 2 2 2
c 0 0 0 0 0 0 0 0 1 2 2 2
s 0 0 0 0 0 0 0 0 1 2 2 2

Table 11.2. 3-spectrum kernel between strings.

O (|s| |t|) operations using this approach. We do not pursue this further
since we will consider even faster implementations later in this chapter.

Remark 11.13 [Blended spectrum kernel] We can also consider a ‘blended’
version of this kernel κ̃p, where the spectra corresponding to all values 1 ≤
d ≤ p are simultaneously compared, and weighted according to λd. This
requires the use of an auxiliary p-suffix kernel κ̃S

p that records the level of
similarity of the suffices of the two strings. This kernel is defined recursively
as follows

κ̃S
0 (sa, tb) = 0,
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κ̃S
p (sa, tb) =

{
λ2
(
1 + κ̃S

p−1 (s, t)
)
, if a = b;

0, otherwise.

The blended spectrum kernel can be defined using the same formula as the
p-spectrum kernel as follows

κ̃p (s, t) =
|s|−p+1∑

i=1

|t|−p+1∑
j=1

κ̃S
p (s (i : i + p) , t (j : j + p)) ,

resulting in the same time complexity as the original p-spectrum kernel.

As mentioned above later in this chapter we will give a more efficient
method for computing the p-spectrum kernel. This will be based on a tree-
like data structure known as a trie. We first turn to considering subsequences
rather than substrings as features in our next example.

11.3 All-subsequences kernels

In this section we consider a feature mapping defined by all contiguous or
non-contiguous subsequences of a string.

Definition 11.14 [All-subsequences kernel] The feature space associated
with the embedding of the all-subsequences kernel is indexed by I = Σ∗,
with the embedding given by

φu (s) = |{i: u = s (i)}| , u ∈ I,

that is, the count of the number of times the indexing string u occurs as a
subsequence in the string s. The associated kernel is defined by

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈Σ∗

φu (s) φu (t) .

An explicit computation of this feature map will be computationally in-
feasible even if we represent φu (s) by a list of its non-zero components, since
if |s| = m we can expect of the order of

min
((

m

k

)
, |Σ|k

)
distinct subsequences of length k. Hence, for m > 2 |Σ| the number of non-
zero entries considering only strings u of length m/2 is likely to be at least
|Σ|m/2, which is exponential in the length m of the string s.
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Remark 11.15 [Set intersection] We could also consider this as a case of a
kernel between multisets, as outlined in Chapter 9. The measure of the in-
tersection is a valid kernel. Neither definition suggests how the computation
of the kernel might be effected efficiently.

Example 11.16 All the (non-contiguous) subsequences in the words
"bar", "baa", "car" and "cat" are given in the following two tables:

φ ε a b c r t aa ar at ba br bt

bar 1 1 1 0 1 0 0 1 0 1 1 0
baa 1 2 1 0 0 0 1 0 0 2 0 0
car 1 1 0 1 1 0 0 1 0 0 0 0
cat 1 1 0 1 0 1 0 0 1 0 0 0

φ ca cr ct bar baa car cat

bar 0 0 0 1 0 0 0
baa 0 0 0 0 1 0 0
car 1 1 0 0 0 1 0
cat 1 0 1 0 0 0 1

and since all other (infinite) coordinates must have value zero, the kernel
matrix is

K bar baa car cat

bar 8 6 4 2
baa 6 12 3 3
car 4 3 8 4
cat 2 3 4 8

Notice that in general, the diagonal elements of this kernel matrix can vary
greatly with the length of a string and even as illustrated here between
words of the same length, when they have different numbers of repeated
subsequences. Of course this effect can be removed if we choose to normalise
this kernel. Notice also that all the entries are always positive placing all
the feature vectors in the positive orthant. This suggests that centering may
be advisable in some situations (see Code Fragment 5.2).

Evaluating the kernel We now consider how the kernel κ can be evalu-
ated more efficiently than via an explicit computation of the feature vectors.
This will involve the definition of a recursive relation similar to that derived
for ANOVA kernels in Chapter 9. Its computation will also follow similar
dynamic programming techniques in order to complete a table of values with
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the resulting kernel evaluation given by the final entry in the table. In pre-
senting this introductory kernel, we will introduce terminology, definitions
and techniques that will be used throughout the rest of the chapter.

First consider restricting our attention to the feature indexed by a string
u. The contribution of this feature to the overall inner product can be
expressed as

φu (s) φu (t) =
∑

i:u=s(i)

1
∑

j:u=t(j)

1 =
∑

(i,j):u=s(i)=t(j)

1,

where it is understood that i and j range over strictly ordered tuples of
indices. Hence, the overall inner product can be expressed as

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈I

∑
(i,j):u=s(i)=t(j)

1 =
∑

(i,j):s(i)=t(j)

1. (11.1)

The key to the recursion is to consider the addition of one extra symbol a

to one of the strings s. In the final sum of equation (11.1) there are two
possibilities for the tuple i: either it is completely contained within s or its
final index corresponds to the final a. In the first case the subsequence is a
subsequence of s, while in the second its final symbol is a. Hence, we can
split this sum into two parts∑

(i,j):sa(i)=t(j)

1 =
∑

(i,j):s(i)=t(j)

1 +
∑

u:t=uav

∑
(i,j):s(i)=u(j)

1, (11.2)

where for the second contribution we have used the fact that the last char-
acter of the subsequence is a which must therefore occur in some position
within t.

Computation 11.17 [All-subsequences kernel] Equation (11.2) leads to the
following recursive definition of the kernel

κ (s, ε) = 1, (11.3)

κ (sa, t) = κ (s, t) +
∑

k:tk=a

κ (s, t (1 : k − 1))

where we have used the fact that every string contains the empty string ε

exactly once. By the symmetry of kernels, an analogous recurrence relation
can be given for κ (s, ta)

κ (ε, t) = 1

κ (s, ta) = κ (s, t) +
∑

k:sk=a

κ (s (1 : k − 1) , t) .
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Similar symmetric definitions will exist for other recurrences given in this
chapter, though in future we will avoid pointing out these alternatives.

An intuitive reading of the recurrence states that common subsequences
are either contained completely within s and hence included in the first
term of the recurrence or must end in the symbol a, in which case their final
symbol can be matched with occurrences of a in the second string.

Example 11.18 Consider computing the kernel between the strings s =
"gatt" and t ="cata", where we add the symbol a ="a" to the string
"gatt" to obtain the string sa = "gatta". The rows of the tables are
indexed by the pairs (i, j) such that sa (i) = t (j) with those not involving
the final character of sa listed in the first table, while those involving the
final character are given in the second table. The binary vectors below each
string show the positions of the entries in the vectors i and j.

g a t t a sa (i) = t (j) c a t a

0 0 0 0 0 ε 0 0 0 0
0 1 1 0 0 at 0 1 1 0
0 1 0 1 0 at 0 1 1 0
0 1 0 0 0 a 0 1 0 0
0 0 1 0 0 t 0 0 1 0
0 0 0 1 0 t 0 0 1 0
0 1 0 0 0 a 0 0 0 1

g a t t a sa (i) = t (j) c a t a

0 0 0 0 1 a 0 1 0 0
0 0 0 0 1 a 0 0 0 1
0 1 0 0 1 aa 0 1 0 1
0 0 0 1 1 ta 0 0 1 1
0 0 1 0 1 ta 0 0 1 1
0 1 1 0 1 ata 0 1 1 1
0 1 0 1 1 ata 0 1 1 1

Hence, we see that the 14 rows implying κ (sa, t) = 14 are made up of the 7
rows of the first table giving κ (s, t) = 7 plus κ ("gatt", "c") = 1 given by
the first row of the second table and κ ("gatt", "cat") = 6 corresponding
to rows 2 to 7 of the second table.

Cost of the computation As for the case of the ANOVA kernels discussed
in Chapter 9 a recursive evaluation of this kernel would be very expensive.
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Clearly, a similar strategy of computing the entries into a table based on
dynamic programming methods will result in an efficient computation. The
table has one row for each symbol of the string s and one column for each
symbol of the string t; the entries κij = κ (s (1 : i) , t (1 : j)) give the kernel
evaluations on the various prefices of the two strings:

DP ε t1 t2 · · · tm
ε 1 1 1 · · · 1
s1 1 κ11 κ12 · · · κ1m

s2 1 κ21 κ22 · · · κ2m
...

...
...

...
. . .

...
sn 1 κn1 κn2 · · · κnm = κ (s, t)

The first row and column are given by the base case of the recurrence. The
general recurrence of (11.3) allows us to compute the (i, j)th entry as the
sum of the (i − 1, j)th entry together with all the entries (i − 1, k − 1) with
1 ≤ k < j for which tk = si. Clearly, filling the rows in sequential order
ensures that at each stage the values required to compute the next entry
have already been computed at an earlier stage.

The number of operations to evaluate the single (i, j)th entry is O (j)
since we must check through all the symbols in t up to jth. Hence, to fill
the complete table will require O

(
|s| |t|2

)
operations using this still slightly

naive approach.

Example 11.19 Example 11.18 leads to the following table:

DP ε g a t t a

ε 1 1 1 1 1 1
c 1 1 1 1 1 1
a 1 1 2 2 2 3
t 1 1 2 4 6 7
a 1 1 3 5 7 14

Speeding things up We can improve the complexity still further by ob-
serving that as we fill the ith row the sum∑

k≤j:tk=si

κ (s (1 : i − 1) , t (1 : k − 1))
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required when we reach the jth position could have been precomputed into
an array P by the following computation

last = 0;
P (0) = 0;
for k = 1 : m

P (k) = P (last) ;
if tk = si then

P (k) = P (last) + DP (i − 1, k − 1) ;
last = k;

end
end

Using the array p we can now compute the next row with the simple loop

for k = 1 : m

DP (i, k) = DP (i − 1, k) + P (k) ;
end

We now summarise the algorithm.

Algorithm 11.20 [All-non-contiguous subsequences kernel] The all–non-
contiguous subsequences kernel is computed in Code Fragment 11.1.

Input strings s and t of lengths n and m

Process for j = 1 : m
2 DP (0, j) = 1;
3 end
4 for i = 1 : n
5 last = 0; P (0) = 0;
6 for k = 1 : m
7 P (k) = P (last) ;
8 if tk = si then
9 P (k) = P (last) + DP (i − 1, k − 1)
10 last = k;
11 end
12 end
13 for k = 1 : m
14 DP (i, k) = DP (i − 1, k) + P (k) ;
15 end
16 end
Output kernel evaluation κ (s, t) = DP (n, m)

Code Fragment 11.1. Pseudocode for the all-non-contiguous subsequences kernel.
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Example 11.21 The array p for each row is interleaved with the evaluations
of DP for the Example 11.18 in the following table:

DP ε g a t t a

ε 1 1 1 1 1 1
p 0 0 0 0 0 0
c 1 1 1 1 1 1
p 0 0 1 1 1 2
a 1 1 2 2 2 3
p 0 0 0 2 4 4
t 1 1 2 4 6 7
p 0 0 1 1 1 7
a 1 1 3 5 7 14

Cost of the computation Since the complexity of both loops individually
is O (|t|) their complexity performed sequentially is also O (|t|), making the
overall complexity O (|s| |t|).

Algorithm 11.20 is deceptively simple. Despite this simplicity it is giving
the exponential improvement in complexity that we first observed in the
ANOVA computation. We are evaluating an inner product in a space whose
dimension is exponential in |s| and in |t| with just O (|s| |t|) operations.

Remark 11.22 [Computational by-products] We compute the kernel κ (s, t)
by solving the more general problem of computing κ (s (1 : i) , t (1 : j)) for all
values of i ≤ |s| and j ≤ |t|. This means that at the end of the computation
we could also read off from the table the evaluation of the kernel between
any prefix of s and any prefix of t. Hence, from the table of Example 11.19
we can see that κ ("gatt", "cat") = 6 by reading off the value of DP (4, 3).

11.4 Fixed length subsequences kernels

We can adapt the recursive relation presented above in a number of ways,
until we are satisfied that the feature space implicitly defined by the kernel
is tuned to the particular task at hand.

Our first adaptation reduces the dimensionality of the feature space by
only considering non-contiguous substrings that have a given fixed length p.

Definition 11.23 [Fixed Length Subsequences Kernel] The feature space
associated with the fixed length subsequences kernel of length p is indexed
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by Σp, with the embedding given by

φp
u (s) = |{i: u = s (i)}| , u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s) φp

u (t) .

Evaluating the kernel We can perform a similar derivation as for the all-
subsequences kernel except that we must now restrict the index sequences
to the set Ip of those with length p

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈Σp

∑
(i,j):u=s(i)=t(j)

1 =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

1.

Following the derivations of the previous section we arrive at∑
(i,j)∈Ip×Ip:sa(i)=t(j)

1 =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

1 +
∑

u:t=uav

∑
(i,j)∈Ip−1×Ip−1:s(i)=u(j)

1,

where, as before, the lengths of the sequences considered in the two compo-
nents of the sum differ.

Computation 11.24 [Fixed length subsequence kernel] This leads to the
following recursive definition of the fixed length subsequences kernel

κ0 (s, t) = 1,

κp (s, ε) = 0, for p > 0, (11.4)

κp (sa, t) = κp (s, t) +
∑

k:tk=a

κp−1 (s, t (1 : k − 1)) .

Note that now we not only have a recursion over the prefixes of the strings,
but also over the lengths of the subsequences considered. The following
algorithm includes this extra recursion to compute the kernel by storing the
evaluation of the previous kernel in the table DPrec.

Algorithm 11.25 [Fixed length subsequences kernel] The fixed length sub-
sequences kernel is computed in Code Fragment 11.2.
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Input strings s and t of lengths n and m length p

Process DP (0 : n, 0 : m) = 1;
2 for l = 1 : p
3 DPrec = DP;
4 for j = 1 : m
5 DP (0, j) = 1;
6 end
7 for i = 1 : n − p + l
8 last = 0; P (0) = 0;
9 for k = 1 : m
10 P (k) = P (last) ;
11 if tk = si then
12 P (k) = P (last) + DPrec (i − 1, k − 1) ;
13 last = k;
14 end
15 end
16 for k = 1 : m
17 DP (i, k) = DP (i − 1, k) + P (k) ;
18 end
19 end
20 end
Output kernel evaluation κp (s, t) = DP (n, m)

Code Fragment 11.2. Pseudocode for the fixed length subsequences kernel.

Cost of the computation At the pth stage we must be able to access
the row above both in the current table and in the table DPrec from the
previous stage. Hence, we must create a series of tables by adding an extra
loop to the overall algorithm making the overall complexity O (p |s| |t|). On
the penultimate stage when l = p − 1 we need only compute up to row
n − 1, since this is all that is required in the final loop with l = p. In the
implementation given above we have made use of this fact at each stage,
so that for the lth stage we have only computed up to row n − p + l, for
l = 1, . . . , p.

Example 11.26 Using the strings from Example 11.18 leads to the follow-
ing computations for p = 0, 1, 2, 3 given in Table 11.3. Note that the sum
of all four tables is identical to that for the all-subsequences kernel. This is
because the two strings do not share any sequences longer than 3 so that
summing over lengths 0, 1, 2, 3 subsumes all the common subsequences. This
also suggests that if we compute the p subsequences kernel we can, at almost
no extra cost, compute the kernel κl for l ≤ p. Hence, we have the flexibility
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DP : κ0 ε g a t t a
ε 1 1 1 1 1 1
c 1 1 1 1 1 1
a 1 1 1 1 1 1
t 1 1 1 1 1 1
a 1 1 1 1 1 1

DP : κ1 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 1 1 1 2
t 0 0 1 2 3 4
a 0 0 2 3 4 6

DP : κ2 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 0 0 0 0
t 0 0 0 1 2 2
a 0 0 0 1 2 5

DP : κ3 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 0 0 0 0
t 0 0 0 0 0 0
a 0 0 0 0 0 2

Table 11.3. Computations for the fixed length subsequences kernel.

to define a kernel that combines these different subsequences kernels with
different weightings al ≥ 0

κ (s, t) =
p∑

l=1

alκl (s, t) .

The only change to the above algorithm would be that the upper bound of
the loop for the variable i would need to become n rather than n − p + l

and we would need to accumulate the sum at the end of the l loop with the
assignment

Kern = Kern +a (l) DP (n, m) ,

where the variable Kern is initialised to 0 at the very beginning of the
algorithm.

11.5 Gap-weighted subsequences kernels

We now move to a more general type of kernel still based on subsequences,
but one that weights the occurrences of subsequences according to how
spread out they are. In other words the kernel considers the degree of pres-
ence of a subsequence to be a function of how many gaps are interspersed
within it. The computation of this kernel will follow the approach developed
in the previous section for the fixed length subsequences kernel. Indeed we
also restrict consideration to fixed length subsequences in this section.

The kernel described here has often been referred to as the string kernel in
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the literature, though this name has also been used to refer to the p-spectrum
kernel. We have chosen to use long-winded descriptive names for the kernels
introduced here in order to avoid further proliferating the existing confusion
around different names. We prefer to regard ‘string kernel’ as a generic term
applicable to all of the kernels covered in this chapter.

The key idea behind the gap-weighted subsequences kernel is still to com-
pare strings by means of the subsequences they contain – the more subse-
quences in common, the more similar they are – but rather than weighting
all occurrences equally, the degree of contiguity of the subsequence in the
input string s determines how much it will contribute to the comparison.

Example 11.27 For example: the string "gon" occurs as a subsequence of
the strings "gone", "going" and "galleon", but we consider the first oc-
currence as more important since it is contiguous, while the final occurrence
is the weakest of all three.

The feature space has the same coordinates as for the fixed subsequences
kernel and hence the same dimension. In order to deal with non-contiguous
substrings, it is necessary to introduce a decay factor λ ∈ (0, 1) that can be
used to weight the presence of a certain feature in a string. Recall that for
an index sequence i identifying the occurrence of a subsequence u = s (i)
in a string s, we use l(i) to denote the length of the string in s. In the
gap-weighted kernel, we weight the occurrence of u with the exponentially
decaying weight λl(i).

Definition 11.28 [Gap-weighted subsequences kernel] The feature space
associated with the gap-weighted subsequences kernel of length p is indexed
by I = Σp, with the embedding given by

φp
u (s) =

∑
i:u=s(i)

λl(i), u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s) φp

u (t) .

Remark 11.29 [Two limits] Observe that we can recover the fixed length
subsequences kernel by choosing λ = 1, since the weight of all occurrences
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will then be 1 so that

φp
u (s) =

∑
i:u=s(i)

1l(i) = |{i: u = s (i)}| , u ∈ Σp.

On the other hand, as λ → 0, the kernel approximates the p-spectrum kernel
since the relative weighting of strings longer than p tends to zero. Hence, we
can view the gap-weighted kernel as interpolating between these two kernels.

Example 11.30 Consider the simple strings "cat", "car", "bat", and
"bar". Fixing p = 2, the words are mapped as follows:

φ ca ct at ba bt cr ar br

cat λ2 λ3 λ2 0 0 0 0 0
car λ2 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 λ2 λ3 0 0 0
bar 0 0 0 λ2 0 0 λ2 λ3

So the unnormalised kernel between "cat" and "car" is κ("cat","car") =
λ4, while the normalised version is obtained using

κ("cat", "cat") = κ("car", "car") = 2λ4 + λ6

as κ̂("cat","car") = λ4/(2λ4 + λ6) = (2 + λ2)−1.

11.5.1 Naive implementation

The computation of this kernel will involve both techniques developed for the
fixed subsequences kernel and for the p-spectrum kernel. When computing
the p-spectrum kernel we considered substrings that occurred as a suffix
of a prefix of the string. This suggests considering subsequences whose
final occurrence is the last character of the string. We introduce this as an
auxiliary kernel.

Definition 11.31 [Gap-weighted suffix subsequences kernel] The feature
space associated with the gap-weighted subsequences kernel of length p is
indexed by I = Σp, with the embedding given by

φp,S
u (s) =

∑
i∈I

|s|
p :u=s(i)

λl(i), u ∈ Σp,
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where we have used Ik
p to denote the set of p-tuples of indices i with ip = k.

The associated kernel is defined as

κS
p (s, t) =

〈
φp,S (s) ,φp,S (t)

〉
=
∑
u∈Σp

φp,S
u (s) φp,S

u (t) .

Example 11.32 Consider again the simple strings "cat", "car", "bat",
and "bar". Fixing p = 2, the words are mapped for the suffix version as
follows:

φ2,S
u (s) ca ct at ba bt cr ar br

cat 0 λ3 λ2 0 0 0 0 0
car 0 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 0 λ3 0 0 0
bar 0 0 0 0 0 0 λ2 λ3

Hence, the suffix kernel between "cat" and "car" is κS
2 ("cat","car") = 0,

while suffix kernel between "cat" and "bat" is κS
2 ("cat","bat") = λ4.

Figure 11.1 shows a visualisation of a set of strings derived from an em-
bedding given by the gap-weighted subsequences kernel of length 4, with
λ = 0.8. As in the case of the p-spectrum kernel, we can express the gap-
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algorithm
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Fig. 11.1. Visualisation of the embedding created by the gap-weighted subsequences
kernel.
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weighted subsequences kernel in terms of its suffix version as

κp (s, t) =
|s|∑
i=1

|t|∑
j=1

κS
p (s (1 : i) , t (1 : j)) ,

since

κp (s, t) =
∑
u∈Σp

∑
i∈Ip:u=s(i)

λl(i)
∑

j∈Ip:u=t(j)

λl(j) =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

λl(i)+l(j)

=
|s|∑
i=1

|t|∑
j=1

∑
(i,j)∈Ii

p×Ij
p:s(i)=t(j)

λl(i)+l(j)

=
|s|∑
i=1

|t|∑
j=1

κS
p (s (1 : i) , t (1 : j)) .

Recall that [u = v] denotes the function that returns 1 if the strings u and
v are identical and 0 otherwise. We can therefore evaluate the suffix version
for the case p = 1 simply as

κS
1 (s, t) =

[
s|s| = t|t|

]
λ2.

We can now devise a recursion for the suffix version of the kernel by observ-
ing that, for extensions of s and t by single symbols a and b respectively,
the suffix version is only non-zero if a = b, since the last character of the
subsequence is constrained to occur as the final symbol.

The pairs (i, j) of subsequences can now be divided according to where
their penultimate symbols occurred in the two strings. It follows that when
a = b and p > 1 the value of the kernel can be obtained by summing
the (p − 1)th kernel over all pairs of positions in s and t with appropriate
weightings. This is shown in the following computation.

Computation 11.33 [Naive recursion of gap-weighted subsequences ker-
nels] The naive recursion for the gap-weighted subsequences kernel is given
as follows

κS
p (sa, tb) =

∑
(i,j)∈I

|s|+1
p ×I

|t|+1
p :sa(i)=tb(j)

λl(i)+l(j)

= [a = b]
|s|∑
i=1

|t|∑
j=1

λ2+|s|−i+|t|−j
∑

(i,j)∈Ii
p−1×Ij

p−1:s(i)=t(j)

λl(i)+l(j)
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= [a = b]
|s|∑
i=1

|t|∑
j=1

λ2+|s|−i+|t|−jκS
p−1 (s (1 : i) , t (1 : j)) . (11.5)

Example 11.34 Using the strings from Example 11.18 leads to the com-
putations shown in Table 11.4 for the suffix version for p = 1, 2, 3. Hence

DP : κS
1 g a t t a

c 0 0 0 0 0
a 0 λ2 0 0 λ2

t 0 0 λ2 λ2 0
a 0 λ2 0 0 λ2

DP : κS
2 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 λ4 λ5 0
a 0 0 0 0 λ7 + λ5 + λ4

DP : κS
3 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 0 0 0
a 0 0 0 0 2λ7

Table 11.4. Computations for the gap-weighted subsequences kernel.

the gap-weighted subsequences kernels between s ="gatta" and t ="cata"
for p = 1, 2, 3 are

κ1 ("gatta", "cata") = 6λ2,

κ2 ("gatta", "cata") = λ7 + 2λ5 + 2λ4

and κ3 ("gatta", "cata") = 2λ7.

Cost of the computation If we were to implement a naive evaluation of
the gap-weighted suffix subsequences kernel using the recursive definition of
Computation 11.33, then for each value of p we must sum over all the entries
in the previous table. This leads to a complexity of O

(
|t|2 |s|2

)
to complete

the table. Since there will be p tables required to evaluate κp this gives an

overall complexity of O
(
p |t|2 |s|2

)
.
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Remark 11.35 [Possible Computational Strategy] There are two different
ways in which this complexity could be reduced. The first is to observe that
the only non-zero entries in the tables for the suffix versions are the positions
(i, j) for which si = tj . Hence, we could keep a list L (s, t) of these pairs

L (s, t) = {(i, j) : si = tj} ,

and sum over the list L (s, t) rather than over the complete arrays. The
entries in the list could be inserted in lexicographic order of the index pairs.
When summing over the list to compute an entry in position (k, l) we would
need to consider all entries in the list before the (k, l)th entry, but only in-
clude those (i, j) with i < k and j < l. This approach could also improve the
memory requirements of the algorithm while the complexity would reduce
to

O
(
p |L (s, t)|2

)
≤ O

(
p |t|2 |s|2

)
.

The list version will be competitive when the list is short. This is likely
to occur when the size of the alphabet is large, so that the chances of two
symbols being equal becomes correspondingly small.

We will not develop this approach further but consider a method that
reduces the complexity to O (p |t| |s|). For small alphabets this will typically
be better than using the list approach.

11.5.2 Efficient implementation

Consider the recursive equation for the gap-weighted subsequences kernel
given in equation (11.5). We now consider computing an intermediate dy-
namic programming table DPp whose entries are

DPp (k, l) =
k∑

i=1

l∑
j=1

λk−i+l−jκS
p−1 (s (1 : i) , t (1 : j)) .

Given this table we can evaluate the kernel by observing that

κS
p (sa, tb) =

{
λ2 DPp (|s| , |t|) if a = b;
0 otherwise.

Computation 11.36 [Gap-weighted subsequences kernel] There is a natu-
ral recursion for evaluating DPp (k, l) in terms of DPp (k − 1, l), DPp (k, l − 1)
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and DPp (k − 1, l − 1)

DPp (k, l) =
k∑

i=1

l∑
j=1

λk−i+l−jκS
p−1 (s (1 : i) , t (1 : j))

= κS
p−1 (s (1 : k) , t (1 : l)) + λ DPp (k, l − 1) (11.6)

+ λ DPp (k − 1, l) − λ2 DPp (k − 1, l − 1) .

Correctness of the recursion The correctness of this recursion can be
seen by observing that the contributions to the sum can be divided into
three groups: when (i, j) = (k, l) we obtain the first term; those with i = k,
j < l are included in the second term with the correct weighting; those with
j = l and i < k are included in the third term; while those with i < k, j < l,
are included in the second, third and fourth terms with opposite weighting
in the fourth, leading to their correct inclusion in the overall sum.

Example 11.37 Using the strings from Example 11.18 leads to the DP
computations of Table 11.5 for p = 2, 3. Note that we do not need to com-
pute the last row and column. The final evaluation of κ3 ("gatta", "cata")
is given by the sum of the entries in the κS

3 table.

The complexity of the computation required to compute the table DPp

for a single value of p is clearly O (|t| |s|) as is the complexity of computing
κS

p from DPp making the overall complexity of computing the kernel κp (s, t)
equal to O (p |t| |s|).

Algorithm 11.38 [Gap-weighted subsequences kernel] The gap-weighted
subsequences kernel is computed in Code Fragment 11.3.

Remark 11.39 [Improving the complexity] Algorithm 11.38 seems to fail
to make use of the fact that in many cases most of the entries in the table
DPS are zero. This fact forms the basis of the list algorithm with complexity
O
(
p |L (s, t)|2

)
. It would be very interesting if the two approaches could

be combined to create an algorithm with complexity O (p |L (s, t)|), though
this seems to be a non-trivial task.

11.5.3 Variations on the theme

The inspiration for the gap-weighted subsequences kernel is first and fore-
most from the consideration of DNA sequences where it is likely that inser-
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DP : κS
1 g a t t a

c 0 0 0 0 0
a 0 λ2 0 0 λ2

t 0 0 λ2 λ2 0
a 0 λ2 0 0 λ2

DP2 g a t t
c 0 0 0 0
a 0 λ2 λ3 λ4

t 0 λ3 λ4 + λ2 λ5 + λ3 + λ2

DP : κS
2 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 λ4 λ5 0
a 0 0 0 0 λ7 + λ5 + λ4

DP3 g a t t
c 0 0 0 0
a 0 0 0 0
t 0 0 λ4 2λ5

DP : κS
3 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 0 0 0
a 0 0 0 0 2λ7

Table 11.5. Computations for the dynamic programming tables of the
gap-weighted subsequences kernel.

tions and deletions of base pairs could occur as genes evolve. This suggests
that we should be able to detect similarities between strings that have com-
mon subsequences with some gaps.

This consideration throws up a number of possible variations and gen-
eralisations of the gap-weighted kernel that could be useful for particular
applications. We will discuss how to implement some of these variants in
order to show the flexibility inherent in the algorithms we have developed.

Character-weightings string kernel Our first variant is to allow dif-
ferent weightings for different characters that are skipped over by a sub-
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Input strings s and t of lengths n and m, length p, parameter λ

Process DPS (1 : n, 1 : m) = 0;
2 for i = 1 : n
3 for j = 1 : m
4 if si = tj
5 DPS (i, j) = λ2;
6 end
7 end
8 end
9 DP (0, 0 : m) = 0;
10 DP (1 : n, 0) = 0;
11 for l = 2 : p
12 Kern (l) = 0;
13 for i = 1 : n − 1
14 for j = 1 : m − 1
15 DP (i, j) = DPS (i, j) + λ DP (i − 1, j) +
16 λ DP (i, j − 1) − λ2 DP (i − 1, j − 1) ;
17 if si = tj
18 DPS (i, j) = λ2 DP (i − 1, j − 1) ;
19 Kern (l) = Kern (l) + DPS (i, j) ;
20 end
21 end
22 end
23 end
Output kernel evaluation κp (s, t) = Kern (p)

Code Fragment 11.3. Pseudocode for the gap-weighted subsequences kernel.

sequence. In the DNA example, this might perhaps be dictated by the
expectation that certain base pairs are more likely to become inserted than
others.

These gap-weightings will be denoted by λa for a ∈ Σ. Similarly, we will
consider different weightings for characters that actually occur in a subse-
quence, perhaps attaching greater importance to certain symbols. These
weightings will be denoted by µa for a ∈ Σ. With this generalisation the
basic formula governing the recursion of the suffix kernel becomes

κS
p (sa, tb) = [a = b] µ2

a

n∑
i=1

m∑
j=1

λ (s (i + 1 : n)) λ (t (j + 1 : m))

κS
p−1 (s (1 : i) , t (1 : j)) ,
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where n = |s|, m = |t| and we have used the notation λ (u) for

λ (u) =
|u|∏
i=1

λui .

The corresponding recursion for DPp (k, l) becomes

DPp (k, l) = κS
p−1 (s (1 : k) , t (1 : l)) + λtl DPp (k, l − 1)

+ λsk
DPp (k − 1, l) − λtlλsk

DPp (k − 1, l − 1) ,

with κS
p (sa, tb) now given by

κS
p (sa, tb) =

{
µ2

a DPp (|s| , |t|) if a = b;
0 otherwise.

Algorithm 11.40 [Character weightings string kernel] An implementation
of this variant can easily be effected by corresponding changes to lines 5, 15
and 17 of Algorithm 11.38

5 DPS (i, j) = µ (si)
2 ;

15a DP (i, j) = DPS (i, j) + λ (si) DP (i − 1, j) +
15b λ (tj) (DP (i, j − 1) − λ (si) DP (i − 1, j − 1)) ;
17 DPS (i, j) = µ (si)

2 DP (i − 1, j − 1) ;

Soft matching So far, distinct symbols have been considered entirely un-
related. This may not be an accurate reflection of the application under
consideration. For example, in DNA sequences it is more likely that certain
base pairs will arise as a mutation of a given base pair, suggesting that some
non-zero measure of similarity should be set between them.

We will assume that a similarity matrix A between symbols has been
given. We may expect that many of the entries in A are zero, that the
diagonal is equal to 1, but that some off-diagonal entries are non-zero. We
must also assume that A is positive semi-definite in order to ensure that a
valid kernel is defined, since A is the kernel matrix of the set of all single
character strings when p = 1.

With this generalisation the basic formula governing the recursion of the
suffix kernel becomes

κS
p (sa, tb) = λ2Aab

|s|∑
i=1

|t|∑
j=1

λ|s|−i+|t|−jκS
p−1 (s (1 : i) , t (1 : j)) .
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The corresponding recursion for DPp (k, l) remains unchanged as in (11.6),
while κS

p (sa, tb) is now given by

κS
p (sa, tb) = λ2Aab DP

p
(|s| , |t|) .

Algorithm 11.41 [Soft matching string kernel] An implementation of soft
matching requires the alteration of lines 4, 5, 16 and 17 of Algorithm 11.38

4 if A (s (i) , t (j)) �= 0
5 DPS (i, j) = λ2A (si, tj) ;
16 if A (si, tj) �= 0
17 DPS (i, j) = λ2A (si, tj) DP (i − 1, j − 1) ;

Weighting by number of gaps It may be that once an insertion occurs
its length is not important. In other words we can expect bursts of inserted
characters and wish only to penalise the similarity of two subsequences by
the number and not the length of the bursts. For this variant the recursion
becomes

κS
p (sa, tb) = [a = b]

|s|∑
i=1

|t|∑
j=1

λ[i�=|s|]λ[j �=|t|]κS
p−1 (s (1 : i) , t (1 : j)) ,

since we only apply the penalty λ if the previous character of the subsequence
occurs before position |s| in s and before position |t| in t.

In this case we must create the dynamic programming table DPp whose
entries are

DPp (k, l) =
k∑

i=1

l∑
j=1

κS
p−1 (s (1 : i) , t (1 : j)) ,

using the recursion

DPp (k, l) = κS
p−1 (s (1 : k) , t (1 : l)) + DPp (k, l − 1)

+ DPp (k − 1, l) − DPp (k − 1, l − 1) ,

corresponding to λ = 1. Given this table we can evaluate the kernel by
observing that if a = b then

κS
p (sa, tb) = DPp (|s| , |t|) + (λ − 1) (DPp (|s| , |t| − 1) + DPp (|s| − 1, |t|))

+
(
λ2 − 2λ + 1

)
DPp (|s| − 1, |t| − 1) ,
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since the first term ensures the correct weighting of κS
p−1 (s, t), while the

second corrects the weighting of those entries involving a single λ factor and
the third term adjusts the weighting of the remaining contributions.

Algorithm 11.42 [Gap number weighting string kernel] An implementation
of weighting by number of gaps requires setting λ = 1 in lines 5 and 15 and
altering line 17 to

17a DPS (i, j) = DP (i − 1, j − 1) + (λ − 1) (DP (i − 2, j − 1)
17b + DP (i − 1, j − 2) + (λ − 1) DP (i − 2, j − 2)) ;

Remark 11.43 [General symbol strings] Though we have introduced the
kernels in this chapter with character symbols in mind, they apply to any
alphabet of symbols. For example if we consider the alphabet to be the set
of reals we could compare numeric sequences. Clearly we will need to use
the soft matching approach described above. The gap-weighted kernel is
only appropriate if the matrix A comparing individual numbers has many
entries equal to zero. An example of such a kernel is given in (9.11).

11.6 Beyond dynamic programming: trie-based kernels

A very efficient, although less general, class of methods for implementing
string kernels can be obtained by following a different computational ap-
proach. Instead of using dynamic programming as the core engine of the
computation, one can exploit an efficient data structure known as a ‘trie’
in the string matching literature. The name trie is derived from ‘retrieval
tree’. Here we give the definition of a trie – see Definition 11.56 for a formal
definition of trees.

Definition 11.44 [Trie] A trie over an alphabet Σ is a tree whose internal
nodes have their children indexed by Σ. The edges connecting a parent to
its child are labelled with the corresponding symbol from Σ. A complete trie
of depth p is a trie containing the maximal number of nodes consistent with
the depth of the tree being p. A labelled trie is a trie for which each node
has an associated label.

In a complete trie there is a 1–1 correspondence between the nodes at
depth k and the strings of length k, the correspondence being between the
node and the string on the path to that node from the root. The string
associated with the root node is the empty string ε. Hence, we will refer to
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the nodes of a trie by their associated string. The key observation behind
the trie-based approach is that one can therefore regard the leaves of the
complete trie of depth p as the indices of the feature space indexed by the
set Σp of strings of length p.

The algorithms extract relevant substrings from the source string being
analysed and attach them to the root. The substrings are then repeatedly
moved into the subtree or subtrees corresponding to their next symbol until
the leaves corresponding to that substring are reached.

For a source string s there are 1
2 |s| (|s| + 1) non-trivial substrings s (i : j)

being determined by an initial index in i ∈ {1, . . . , |s|} and a final index
j ∈ {i, . . . , |s|}. Typically the algorithms will only consider a restricted
subset of these possible substrings. Each substring can potentially end up
at a number of leaves through being processed into more than one subtree.
Once the substrings have been processed for each of the two source strings,
their inner product can be computed by traversing the leaves, multiplying
the corresponding weighted values at each leaf and summing.

Computation 11.45 [Trie-based String Kernels] Hence we can summarise
the algorithm into its four main phases:

phase 1: Form all substrings s (i : j) satisfying initial criteria;
phase 2: work the substrings of string s down from root to leaves;
phase 3: work the substrings of string t down from root to leaves;
phase 4: compute products at leaves and sum over the tree.

This breakdown is just conceptual, but it does suggest an added advantage
of the approach when we are computing a kernel matrix for a set

S =
{

s1, . . . , s�
}

of strings. We need to perform phase 2 only once for each row of the kernel,
subsequently repeating phases 3 and 4 as we cycle through the set S with
the results of phase 2 for the string indexing the row retained at the leaves
throughout.

Despite these advantages it is immediately clear that the approach does
have its restrictions. Clearly, if all the leaves are populated then the com-
plexity will be at least |Σ|p, which for large values of p will become inefficient.
Similarly, we must restrict the number of strings that can arrive at each leaf.
If we were to consider the general gap-weighted kernel this could be of the
order of the number of substrings of the source string s further adding to
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the complexity. For the examples we consider below we are able to place a
bound on the number of populated leaves.

11.6.1 Trie computation of the p-spectrum kernels

As a simple first example let us consider this approach being used to compute
the p-spectrum kernel. In this case the strings that are filtered down the trie
are the substrings of length p of the source string s. The algorithm creates
a list Ls (ε) attached to the root node ε containing these |s| − p + 1 strings
u, each with an associated index i initialised to 0. A similar list Lt (ε)
is created for the second string t. We now process the nodes recursively
beginning with the call ‘processnode(ε)’ using the following strategy after
initialising the global variable ‘Kern’ to 0. The complete algorithm is given
here.

Algorithm 11.46 [Trie-based p-spectrum] The trie-based computation of
the p-spectrum is given in Code Fragment 11.4.

Input strings s and t, parameter p

Process Let Ls (ε) = {(s (i : i + p − 1) , 0) : i = 1 : |s| − p + 1}
2 Let Lt (ε) = {(t (i : i + p − 1) , 0) : i = 1 : |t| − p + 1}
3 Kern = 0;
4 processnode(ε, 0) ;
where processnode(v,depth)
6 let Ls (v), Lt (v) be the lists associated with v;
7 if depth = p
8 Kern = Kern + |Ls (v)| |Lt (v)| ;
9 end
10 else if Ls (v) and Lt (v) both not empty
11 while there exists (u, i) in the list Ls (v)
12 add (u, i + 1) to the list Ls (vui+1) ;
13 end
14 while there exists (u, i) in the list Lt (v)
15 add (u, i + 1) to the list Lt (vui+1) ;
16 end
17 for a ∈ Σ
18 processnode(va,depth +1) ;
19 end
20 end
Output κp (s, t) = Kern

Code Fragment 11.4. Pseudocode for trie-based implementation of spectrum kernel.
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Correctness of the algorithm The correctness of the algorithm follows
from the observation that for all the pairs (u, i) in the list Ls (v) we have
v = u (1 : i), similarly for Lt (v). This is certainly true at the start of the
algorithm and continues to hold since (u, i + 1) is added to the list at the
vertex vui+1 = u (1 : i + 1). Hence, the substrings reaching a leaf vertex v

are precisely those substrings equal to v. The length of the list Ls (v) is
therefore equal to

φp
v (s) = |{(v1, v2) : s = v1vv2}| ,

implying the algorithm correctly computes the p-spectrum kernel.

Cost of the computation The complexity of the computation can be
divided into the preprocessing which involves O (|s| + |t|) steps, followed by
the processing of the lists. Each of the |s| − p + 1 + |t| − p + 1 substrings
processed gets passed down at most p times, so the complexity of the main
processing is O (p (|s| − p + 1 + |t| − p + 1)) giving an overall complexity of

O (p (|s| + |t|)) .

At first sight there appears to be a contradiction between this complexity
and the size of the feature space |Σ|p, which is exponential in p. The reason
for the difference is that even for moderate p there are far fewer substrings
than leaves in the complete trie of depth p. Hence, the recursive algorithm
will rapidly find subtrees that are not populated, i.e. nodes u for which
one of the lists Ls (u) or Lt (u) is empty. The algorithm effectively prunes
the subtree below these nodes since the recursion halts at this stage. Hence,
although the complete tree is exponential in size, the tree actually processed
O (p (|s| + |t|)) nodes.

Remark 11.47 [Computing the kernel matrix] As already discussed above
we can use the trie-based approach to complete a whole row of a kernel
matrix more efficiently than if we were to evaluate each entry independently.
We first process the string s indexing that row, hence populating the leaves
of the trie with the lists arising from the string s. The cost of this processing
is O (p |s|). For each string ti, i = 1, . . . , �, we now process it into the trie
and evaluate its kernel with s. For the ith string this takes time O

(
p
∣∣ti∣∣).

Hence, the overall complexity is

O

(
p

(
|s| +

�∑
i=1

∣∣ti∣∣)) ,
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rather than

O

(
p

(
� |s| +

�∑
i=1

∣∣ti∣∣)) ,

that would be required if the information about s is not retained. This leads
to the overall complexity for computing the kernel matrix

O

(
p�

�∑
i=1

∣∣ti∣∣) .

Despite the clear advantages in terms of computational complexity, there is
one slight drawback of this method discussed in the next remark.

Remark 11.48 [Memory requirements] If we are not following the idea
of evaluating a row of the kernel matrix, we can create and dismantle the
tree as we process the strings. As we return from a recursive call all of the
information in that subtree is no longer required and so it can be deleted.
This means that at every stage of the computation there are at most p |Σ|
nodes held in memory with the substrings distributed among their lists. The
factor of |Σ| in the number of nodes arises from the fact that as we process
a node we potentially create all of its |Σ| children before continuing the
recursion into one of them.

Remark 11.49 [By-product information] Notice that the trie also contains
information about the spectra of order less than p so one could use it to
calculate a blended spectrum kernel of the type

κp,a(s, t) =
p∑

i=1

aiκi(s, t),

by simply making the variable ‘Kern’ an array indexed by depth and updat-
ing the appropriate entry as each node is processed.

11.6.2 Trie-based mismatch kernels

We are now in a position to consider some extensions of the trie-based
technique developed above for the p-spectrum kernel. In this example we
will stick with substrings, but consider allowing some errors in the substring.
For two strings u and v of the same length, we use d (u, v) to denote the
number of characters in which u and v differ.
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Definition 11.50 [Mismatch kernel] The mismatch kernel κp,m is defined
by the feature mapping

φp,m
u (s) = |{(v1, v2) : s = v1vv2 : |u| = |v| = p, d (u, v) ≤ m}| ,

that is the feature associated with string u counts the number of substrings
of s that differ from u by at most m symbols. The associated kernel is
defined as

κp,m (s, t) = 〈φp,m (s) ,φp,m (t)〉 =
∑
u∈Σp

φp,m
u (s) φp,m

u (t) .

In order to apply the trie-based approach we initialise the lists at the root
of the trie in exactly the same way as for the p-spectrum kernel, except that
each substring u has two numbers attached (u, i, j), the current index i as
before and the number j of mismatches allowed so far. The key difference in
the processing is that when we process a substring it can be added to lists
associated with more than one child node, though in all but one case the
number of mismatches will be incremented. We give the complete algorithm
before discussing its complexity.

Algorithm 11.51 [Trie-based mismatch kernel] The trie-based computation
of the mismatch kernel is given in Code Fragment 11.5.

Cost of the computation The complexity of the algorithm has been some-
what compounded by the mismatches. Each substring at a node potentially
gives rise to |Σ| substrings in the lists associated with its children. If we
consider a single substring u at the root node it will reach all the leaves that
are at a distance at most m from u. If we consider those at a distance k for
some 0 ≤ k ≤ m there are (

p

k

)
|Σ|k

such strings. So we can bound the number of times they are processed by

O
(
pk+1 |Σ|k

)
,

hence the complexity of the overall computation is bounded by

O
(
pm+1 |Σ|m (|s| + |t|)),

taking into account the number of substrings at the root node. Clearly, we
must restrict the number of mismatches if we wish to control the complexity
of the algorithm.
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Input strings s and t, parameters p and m

Process Let Ls (ε) = {(s (i : i + p − 1) , 0, 0) : i = 1 : |s| − p + 1}
2 Let Lt (ε) = {(t (i : i + p − 1) , 0, 0) : i = 1 : |t| − p + 1}
3 Kern = 0;
4 processnode(ε, 0) ;
where processnode(v,depth)
6 let Ls (v), Lt (v) be the lists associated with v;
7 if depth = p
8 Kern = Kern + |Ls (v)| |Lt (v)| ;
9 end
10 else if Ls (v) and Lt (v) both not empty
11 while there exists (u, i, j) in the list Ls (v)
12 add (u, i + 1, j) to the list Ls (vui+1) ;
13 if j < m
14 for a ∈ Σ, a �= ui+1

15 add (u, i + 1, j + 1) to the list Ls (va) ;
16 end
17 while there exists (u, i, j) in the list Lt (v)
18 add (u, i + 1, j) to the list Lt (vui+1) ;
19 if j < m
20 for a ∈ Σ, a �= ui+1

21 add (u, i + 1, j + 1) to the list Lt (va) ;
22 end
23 for a ∈ Σ
24 processnode(va,depth +1) ;
25 end
26 end
Output κp,m (s, t) = Kern

Code Fragment 11.5. Pseudocode for the trie-based implementation of the mis-
match kernel.

Remark 11.52 [Weighting mismatches] As discussed in the previous sec-
tion when we considered varying the substitution costs for different pairs
of symbols, it is possible that some mismatches may be more costly than
others. We can assume a matrix of mismatch costs A whose entries Aab give
the cost of symbol b substituting symbol a. We could now define a feature
mapping for a substring u to count the number of substrings whose total
mismatch cost is less than a threshold σ. We can evaluate this kernel with
a few adaptations to Algorithm 11.51. Rather than using the third compo-
nent of the triples (u, i, j) to store the number of mismatches, we store the
total cost of mismatches included so far. We now replace lines 13–16 of the
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algorithm with

13 for a ∈ Σ, a �= ui+1

14 if j + A (a, ui+1) < σ

15 add (u, i + 1, j + C (a, ui+1)) to the list Ls (va) ;
16 end

with similar changes made to lines 19–22.

11.6.3 Trie-based restricted gap-weighted kernels

Our second extension considers the gap-weighted features of the subse-
quences kernels. As indicated in our general discussion of the trie-based
approach, it will be necessary to restrict the sets of subsequences in some
way. Since they are typically weighted by an exponentially-decaying func-
tion of their length it is natural to restrict the subsequences by the lengths
of their occurrences. This leads to the following definition.

Definition 11.53 [Restricted gap-weighted subsequences kernel] The fea-
ture space associated with the m-restricted gap-weighted subsequences kernel
κp,m of length p is indexed by I = Σp, with the embedding given by

φp,m
u (s) =

∑
i:u=s(i)

[l(i) ≤ m + p] λl(i)−p, u ∈ Σp.

The associated kernel is defined as

κp,m (s, t) = 〈φp,m (s) ,φp,m (t)〉 =
∑
u∈Σp

φp,m
u (s) φp,m

u (t) .

In order to apply the trie-based approach we again initialise the lists at
the root of the trie in a similar way to the previous kernels, except that each
substring should now have length p + m since we must allow for as many
as m gaps. Again each substring u has two numbers attached (u, i, j), the
current index i as before and the number j of gaps allowed so far. We must
restrict the first character of the subsequence to occur at the beginning of
u as otherwise we would count subsequences with fewer than m gaps more
than once. We avoid this danger by inserting the strings directly into the
lists associated with the children of the root node.

At an internal node the substring can be added to the same list more than
once with different numbers of gaps. When we process a substring (u, i, j)
we consider adding every allowable number of extra gaps (the variable k in
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the next algorithm is used to store this number) while still ensuring that the
overall number is not more than m. Hence, the substring can be inserted
into as many as m of the lists associated with a node’s children.

There is an additional complication that arises when we come to compute
the contribution to the inner product at the leaf nodes, since not all of the
substrings reaching a leaf should receive the same weighting. However, the
number of gaps is recorded and so we can evaluate the correct weighting
from this information. Summing for each list and multiplying the values
obtained gives the overall contribution. For simplicity we will simply denote
this computation by κ (Ls (v) , Lt (v)) in the algorithm given below.

Algorithm 11.54 [Trie-based restricted gap-weighted subsequences kernel]
The trie-based computation of the restricted gap-weighted subsequences ker-
nel is given in Code Fragment 11.6.

Cost of the computation Again the complexity of the algorithm is con-
siderably expanded since each of the original |s| − p−m + 1 substrings will
give rise to (

p + m − 1
m − 1

)
different entries at leaf nodes. Hence, the complexity of the overall algorithm
can be bounded this number of substrings times the cost of computation on
the path from root to leaf, which is at most O (p + m) for each substring,
giving an overall complexity of

O ((|s| + |t|) (p + m)m) .

In this case it is the number of gaps we allow that has a critical impact on
the complexity. If this number is made too large then the dynamic program-
ming algorithm will become more efficient. For small values of the decay
parameter λ it is, however, likely that we can obtain a good approxima-
tion to the full gap-weighted subsequences kernel with modest values of m

resulting in the trie-based approach being more efficient.

Remark 11.55 [Linear time evaluation] For all the trie-based kernels, it is
worth noting that if we do not normalise the data it is possible to evaluate
a linear function

f (s) =
∑
i∈sv

αiκ (si, s)
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Input strings s and t, parameters p and m

Process for i = 1 : |s| − p − m + 1
2 add (s (i : i + p + m − 1) , 1, 0) to the list Ls (si)
3 end
4 for i = 1 : |t| − p − m + 1
5 add (t (i : i + p + m − 1) , 1, 0) to the list Lt (ti)
6 end
7 Kern = 0;
8 for a ∈ Σ
9 processnode(a, 0) ;
10 end

where processnode(v,depth)
12 let Ls (v), Lt (v) be the lists associated with v;
13 if depth = p
14 Kern = Kern +κ (Ls (v) , Lt (v)) ;
15 end
16 else if Ls (v) and Lt (v) both not empty
17 while there exists (u, i, j) in the list Ls (v)
18 for k = 0 : m − j
19 add (u, i + k + 1, k + j) to the list Ls (vui+k+1) ;
20 end
21 while there exists (u, i, j) in the list Lt (v)
22 for k = 0 : m − j
23 add (u, i + k + 1, k + j) to the list Lt (vui+k+1) ;
24 end
25 for a ∈ Σ
26 processnode(va,depth +1) ;
27 end
28 end
Output κp (s, t) = Kern

Code Fragment 11.6. Pseudocode for trie-based restricted gap-weighted subse-
quences kernel.

in linear time. This is achieved by creating a tree by processing all of the
support vectors in sv weighting the substrings from si at the corresponding
leaves by αi. The test string s is now processed through the tree and the
appropriately weighted contributions to the overall sum computed directedly
at each leaf.
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11.7 Kernels for structured data

In this chapter we have shown an increasingly sophisticated series of kernels
that perform efficient comparisons between strings of symbols of different
lengths, using as features:

• all contiguous and non-contiguous subsequences of any size;
• all subsequences of a fixed size; all contiguous substrings of a fixed size or

up to a fixed size, and finally;
• all non-contiguous substrings with a penalisation related to the size of the

gaps.

The evaluation of the resulting kernels can in all cases be reduced to a
dynamic programming calculation of low complexity in the length of the
sequences and the length of the subsequences used for the matching. In
some cases we have also shown how the evaluation can be sped up by the
use of tries to achieve a complexity that is linear in the sum of the lengths
of the two input strings.

Our aim in this section is to show that, at least for the case of dynamic pro-
gramming, the approaches we have developed are not restricted to strings,
but can be extended to a more general class we will refer to as ‘structured
data’.

By structured data we mean data that is formed by combining simpler
components into more complex items frequently involving a recursive use of
simpler objects of the same type. Typically it will be easier to compare the
simpler components either with base kernels or using an inductive argument
over the structure of the objects. Examples of structured data include the
familiar examples of vectors, strings and sequences, but also subsume more
complex objects such as trees, images and graphs.

From a practical viewpoint, it is difficult to overemphasise the importance
of being able to deal in a principled way with data of this type as they almost
invariably arise in more complex applications. Dealing with this type of data
has been the objective of a field known as structural pattern recognition.
The design of kernels for data of this type enables the same algorithms and
analyses to be applied to entirely new application domains.

While in Part II of this book we presented algorithms for detecting and
analysing several different types of patterns, the extension of kernels to
structured data paves the way for analysing very diverse sets of data-types.
Taken together, the two advances open up possibilities such as discovering
clusters in a set of trees, learning classifications of graphs, and so on.

It is therefore by designing specific kernels for structured data that kernel
methods can demonstrate their full flexibility. We have already discussed
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one kernel of this type when we pointed out that both the ANOVA and string
kernels can be viewed as combining kernel evaluations over substructures of
the objects being compared.

In this final section, we will provide a more general framework for design-
ing kernels for this type of data, and we will discuss the connection between
statistical and structural pattern analysis that this approach establishes.
Before introducing this framework, we will discuss one more example with
important practical implications that will not only enable us to illustrate
many of the necessary concepts, but will also serve as a building block for a
method to be discussed in Chapter 12.

11.7.1 Comparing trees

Data items in the form of trees can be obtained as the result of biological
investigation, parsing of natural language text or computer programs, XML
documents and in some representations of images in machine vision. Being
able to detect patterns within sets of trees can therefore be of great practical
importance, especially in web and biological applications. In this section we
derive two kernel functions that can be used for this task, as well as provide
a conceptual stepping stone towards certain kernels that will be defined in
the next chapter.

We will design a kernel between trees that follows a similar approach to
those we have considered between strings, in that it will also exploit their
recursive structure via dynamic programming.

Recall that for strings the feature space was indexed by substrings. The
features used to describe trees will be ‘subtrees’ of the given tree. We begin
by defining what we mean by a tree and subtree. We use the convention
that the edges of a tree are directed away from the root towards the leaves.

Definition 11.56 [Trees] A tree T is a directed connected acyclic graph
in which each vertex (usually referred to as nodes for trees) except one has
in-degree one. The node with in-degree 0 is known as the root r (T ) of the
tree. Nodes v with out-degree d+ (v) = 0 are known as leaf nodes, while
those with non-zero out-degree are internal nodes. The nodes to which
an internal node v is connected are known as its children, while v is their
parent. Two children of the same parent are said to be siblings. A struc-
tured tree is one in which the children of a node are given a fixed ordering,
ch1 (v) , . . . , chd+(v) (v). Two trees are identical if there is a 1–1 correspon-
dence between their nodes that respects the parent–child relation and the
ordering of the children for each internal node. A proper tree is one that
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contains at least one edge. The size |T | of a tree T is the number of its
nodes.

Definition 11.57 [k-ary labelled trees] If the out-degrees of all the nodes
are bounded by k we say the tree is k-ary ; for example when k = 2, the
tree is known as a binary tree. A labelled tree is one in which each node has
an associated label. Two labelled trees are identical if they are identical as
trees and corresponding nodes have the same labels. We use T to denote
the set of all proper trees, with TA denoting labelled proper trees with labels
from the set A.

Definition 11.58 [Subtrees: general and co-rooted] A complete subtree τ (v)
of a tree T at a node v is the tree obtained by taking the node v together
with all vertices and edges reachable from v. A co-rooted subtree of a tree
T is the tree resulting after removing a sequence of complete subtrees and
replacing their roots. This is equivalent to deleting the complete subtrees
of all the children of the selected nodes. Hence, if a node v is included in
a co-rooted subtree then so are all of its siblings. The root of a tree T is
included in every co-rooted subtree. A general subtree of a tree T is any
co-rooted subtree of a complete subtree.

Remark 11.59 [Strings and trees] We can view strings as labelled trees in
which the set of labels is the alphabet Σ and each node has at most one
child. A complete subtree of a string tree corresponds to a suffix of the
string, a rooted subtree to a prefix and a general subtree to a substring.

For our purposes we will mostly be concerned with structured trees which
are labelled with information that determines the number of children. We
now consider the feature spaces that will be used to represent trees. Again
following the analogy with strings the index set of the feature space will be
the set of all trees, either labelled or unlabelled according to the context.

Embedding map All the kernels presented in this section can be defined
by an explicit embedding map from the space of all finite trees possibly
labelled with a set A to a vector space F , whose coordinates are indexed by
a subset I of trees again either labelled or unlabelled. As usual we use φ to
denote the feature mapping

φ: T �−→ (φS (T ))S∈I ∈ F

The aim is to devise feature mappings for which the corresponding kernel
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can be evaluated using a recursive calculation that proceeds bottom-up from
the leaves to the root of the trees. The basic recursive relation connects the
value of certain functions at a given node with the function values at its
children. The base of the recursion will set the values at the leaves, ensuring
that the computation is well-defined.

Remark 11.60 [Counting subtrees] As an example of a recursive compu-
tation over a tree consider evaluating the number N(T ) of proper co-rooted
subtrees of a tree T . Clearly for a leaf node v there are no proper co-rooted
subtrees of τ (v), so we have N (τ (v)) = 0. Suppose that we know the value
of N (τ (vi)) for each of the nodes vi = chi (r (T )), i = 1, . . . , d+ (r (T )) that
are children of the root r (T ) of T . In order to create a proper co-rooted
subtree of T we must include all of the nodes r (T ) , v1, . . . , vd+(r(T )), but we
have the option of including any of the co-rooted subtrees of τ (vi) or simply
leaving the node vi as a leaf. Hence, for node vi we have N (τ (vi)) + 1
options. These observations lead to the following recursion for N (T ) for a
proper tree T

N(T ) =
d+(r(T ))∏

i=1

(N(τ (chi (r (T )))) + 1) ,

with N (τ (v)) = 0, for a leaf node v.

We are now in a position to consider two kernels over trees.

Co-rooted subtree kernel The feature space for this kernel will be in-
dexed by all trees with the following feature mapping.

Definition 11.61 [Co-rooted subtree kernel] The feature space associated
with the co-rooted subtree kernel is indexed by I = T the set of all proper
trees with the embedding given by

φr
S (T ) =

{
1 if S is a co-rooted subtree of T ;
0 otherwise.

The associated kernel is defined as

κr (T1, T2) = 〈φr (T1) ,φr (T2)〉 =
∑
S∈T

φr
S (T1) φr

S (T2) .

If either tree T1 or T2 is a single node then clearly

κr (T1, T2) = 0,
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since for an improper tree T

φr (T ) = 0.

Furthermore if d+ (r (T1)) �= d+ (r (T1)) then κr (T1, T2) = 0 since a co-
rooted subtree of T1 cannot be a co-rooted subtree of T2. Assume therefore
that

d+ (r (T1)) = d+ (r (T2)) .

Now to introduce the recursive computation, assume we have evaluated the
kernel between the complete subtrees on the corresponding children of r (T1)
and r (T2); that is we have computed

κr (τ (chi (r (T1))) , τ (chi (r (T2)))) , for i = 1, . . . , d+ (r (T1)) .

We now have that

κr (T1, T2) =
∑
S∈T

φr
S (T1) φr

S (T2)

=
d+(r(T1))∏

i=1

∑
Si∈T0

φr
Si

(τ (chi (r (T1)))) φr
Si

(τ (chi (r (T2)))) ,

where T0 denotes the set of all trees, both proper and improper, since the co-
rooted proper subtrees of T are determined by any combination of co-rooted
subtrees of τ (chi (r (T ))), i = 1, . . . , d+ (r (T1)).

Since there is only one improper co-rooted subtree we obtain the recursion

κr (T1, T2) =
d+(r(T1))∏

i=1

(κr (τ (chi (r (T1))) , τ (chi (r (T2)))) + 1) .

We have the following algorithm.

Algorithm 11.62 [Co-rooted subtree kernel] The computation of the co-
rooted subtree kernel is given in Code Fragment 11.7.

Cost of the computation The complexity of the kernel computation is at
most O (min (|T1| , |T2|)) since the recursion can only process each node of the
trees at most once. If the degrees of the nodes do not agree then the attached
subtrees will not be visited and the computation will be correspondingly
sped up.
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Input trees T1 and T2

Process Kern =processnode(r (T1) , r (T2)) ;
where processnode(v1, v2)
3 if d+ (v1) �= d+ (v2) or d+ (v1) = 0
4 return 0;
5 end
6 else
7 Kern = 1;
8 for i = 1 : d+ (v1)
9 Kern = Kern ∗ (processnode (chi (v1) , chi (v2)) + 1) ;
10 end
11 return Kern;
12 end
Output κr (T1, T2) = Kern

Code Fragment 11.7. Pseudocode for the co-rooted subtree kernel.

Remark 11.63 [Labelled trees] If the tree is labelled we must include in
line 3 of Algorithm 11.62 the test whether the labels of the nodes v1 and v2

match by replacing it by the line

3 if d+ (v1) �= d+ (v2) or d+ (v1) = 0 or label (v1) �= label (v2)

All-subtree kernel We are now in a position to define a slightly more
general tree kernel. The features will now be all subtrees rather than just
the co-rooted ones. Again we are considering unlabelled trees. The definition
is as follows.

Definition 11.64 [All-subtree kernel] The feature space associated with the
all-subtree kernel is indexed by I = T , the set of all proper trees with the
embedding given by

φS (T ) =
{

1 if S is a subtree of T ;
0 otherwise.

The associated kernel is defined as

κ (T1, T2) = 〈φ (T1) ,φ (T2)〉 =
∑
S∈T

φS (T1) φS (T2) .
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The evaluation of this kernel can be reduced to the case of co-rooted
subtrees by observing that

κ (T1, T2) =
∑

v1∈T1,v2∈T2

κr (τ (v1) , τ (v2)) . (11.7)

In other words the all-subtree kernel can be computed by evaluating the
co-rooted kernel for all pairs of nodes in the two trees. This follows from
the fact that any subtree of a tree T is a co-rooted subtree of the complete
subtree τ (v) for some node v of T .

Rather than use this computation we would like to find a direct recursion
for κ (T1, T2). Clearly if T1 or T2 is a leaf node we have

κ (T1, T2) = 0.

Furthermore, we can partition the sum (11.7) as follows

κ (T1, T2) =
∑

v1∈T1,v2∈T2

κr (τ (v1) , τ (v2))

= κr (T1, T2) +
d+(r(T1))∑

i=1

κ (τ (chi (r (T1))) , T2)

+
d+(r(T2))∑

i=1

κ (T1, τ (chi (r (T2))))

−
d+(r(T1))∑

i=1

d+(r(T2))∑
j=1

κ (τ (chi (r (T1))) , τ (chj (r (T2)))) ,

since the subtrees are either co-rooted in both T1 and T2 or are subtrees of a
child of r (T1) or a child of r (T2). However, those that are not co-rooted with
either T1 or T2 will be counted twice making it necessary to subtract the final
sum. We therefore have Algorithm 11.65, again based on the construction of
a table indexed by the nodes of the two trees using dynamic programming.
We will assume that the nj nodes vj

1, . . . , v
j
nj of the tree Tj have been ordered

so that the parent of a node has a later index. Hence, the final node vj
nj

is the root of Tj . This ordering will be used to index the tables DP (i1, i2)
and DPr (i1, i2). The algorithm first completes the table DPr (i1, i2) with the
value of the co-rooted tree kernel before it computes the all-subtree kernel in
the array DP (i1, i2). We will also assume for the purposes of the algorithm
that childj

k (i) gives the index of the kth child of the node indexed by i in
the tree Tj . Similarly, d+

j (i) is the out-degree of the node indexed by i in
the tree Tj .
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Algorithm 11.65 [All-subtree kernel] The computation of the all-subtree
kernel is given in Code Fragment 11.8.

Input unlabelled trees T1 and T2

Process Assume vj
1, . . . , v

j
nj

a compatible ordering of nodes of Tj , j = 1, 2
2 for i1 = 1 : n1

3 for i2 = 1 : n2

4 if d+
1 (i1) �= d+

2 (i2) or d+
1 (i1) = 0

5 DPr (i1, i2) = 0;
6 else
7 DPr (i1, i2) = 1;
8 for k = 1 : d+

1 (i1)
9 DPr (i1, i2) = DPr (i1, i2) ∗

(
DPr

(
child1

k (i1) , child2
k (i2)

)
+ 1

)
;

10 end
11 end
12 end
13 for i1 = 1 : n1

14 for i2 = 1 : n2

15 if d+
1 (i1) = 0 or d+

2 (i2) = 0
16 DP (i1, i2) = 0;
17 else
18 DP (i1, i2) = DPr (i1, i2) ;
19 for j1 = 1 : d+

1 (i1)
20 DP (i1, i2) = DP (i1, i2) + DP

(
child1

j1 (i1) , i2
)
;

21 for j2 = 1 : d+
2 (i2)

22 DP (i1, i2) = DP (i1, i2) + DP
(
i1, child2

j2 (i2)
)
;

23 for j1 = 1 : d+
1 (i1)

24 DP (i1, i2) = DP (i1, i2) − DP
(
child1

j1 (i1) , child2
j2 (i2)

)
;

25 end
26 end
27 end
28 end
Output κ (T1, T2) = DP (n1, n2)

Code Fragment 11.8. Pseudocode for the all-subtree kernel.
.

Cost of the computation The structure of the algorithm makes clear
that the complexity of evaluating the kernel can be bounded by

O
(|T1| |T2| d2

max

)
,

where dmax is the maximal out-degree of the nodes in the two trees.
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Remark 11.66 [On labelled trees] Algorithm 11.65 does not take into ac-
count possible labellings of the nodes of the tree. As we observed for the
co-rooted tree kernel, the computation of the co-rooted table DPr (i1, i2)
could be significantly sped up by replacing line 4 with

4 if d+ (v1) �= d+ (v2) or d+ (v1) = 0 or label (v1) �= label (v2).

However, no such direct simplification is possible for the computation of
DP (i1, i2). If the labelling is such that very few nodes share the same label,
it may be faster to create small separate DPr tables for each type and simply
sum over all of these tables to compute

κ (T1, T2) = DP (n1, n2) ,

avoiding the need to create the complete table for DP (i1, i2), 1 ≤ i1 < n1,
1 ≤ i2 < n2.

Notice how the all-subtree kernel was defined in terms of the co-rooted
subtrees. We first defined the simpler co-rooted kernel and then summed its
evaluation over all possible choices of subtrees. This idea forms the basis of
a large family of kernels, based on convolutions over substructures. We now
turn to examine a more general framework for these kernels.

11.7.2 Structured data: a framework

The approach used in the previous sections for comparing strings, and sub-
sequently trees, can be extended to handle more general types of data struc-
tures. The key idea in the examples we have seen has been first to define a
way of comparing sub-components of the data such as substrings or subtrees
and then to sum these sub-kernels over a set of decompositions of the data
items.

We can think of this summing process as a kind of convolution in the sense
that it averages over the different choices of sub-component. In general the
operation can be thought of as a convolution if we consider the different
ways of dividing the data into sub-components as analagous to dividing an
interval into two subintervals. We will build this intuitive formulation into
the notion of a convolution kernel. We begin by formalising what we mean
by structured data.

As discussed at the beginning of Section 11.7, a data type is said to be
‘structured’ if it is possible to decompose it into smaller parts. In some cases
there is a natural way in which this decomposition can occur. For example a
vector is decomposed into its individual components. However, even here we
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can think of other possible decompositions by for example selecting a subset
of the components as we did for the ANOVA kernel. A string is structured
because it can be decomposed into smaller strings or symbols and a tree can
be decomposed into subtrees.

The idea is to compute the product of sub-kernels comparing the parts
before summing over the set of allowed decompositions. It is clear that when
we create a decomposition we need to specify which kernels are applicable
for which sub-parts.

Definition 11.67 [Decomposition Structure] A decomposition structure for
a datatype D is specified by a multi-typed relation R between an element
x of D and a finite set of tuples of sub-components each with an associated
kernel

((x1, κ1) , . . . , (xd, κd)) ,

for various values of d. Hence

R (((x1, κ1) , . . . , (xd, κd)) , x)

indicates that x can be decomposed into components x1, . . . , xd each with
an attached kernel. Note that the kernels may vary between different de-
compositions of the same x, so that just as x1 depends on the particular
decomposition, so does κ1. The relation R is a subset of the disjoint sum
of the appropriate cartesian product spaces. The set of all admissible parti-
tionings of x is defined as

R−1(x) =
D⋃

d=1

{((x1, κ1) , . . . , (xd, κd)) : R (((x1, κ1) , . . . , (xd, κd)) , x)} ,

while the type T (x) of the tuple x = ((x1, κ1) , . . . , (xd, κd)) is defined as

T (x) = (κ1, . . . , κd) .

Before we discuss how we can view many of the kernels we have met as
exploiting decompositions of this type, we give a definition of the convolution
or R-kernel that arises from a decomposition structure R.

Definition 11.68 [Convolution Kernels] Let R be a decomposition structure
for a datatype D. For x and z elements of D the associated convolution
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kernel is defined as

κR(x, z) =
∑

x∈R−1(x)

∑
z∈R−1(z)

[T (x) = T (z)]
|T (x)|∏
i=1

κi (xi, zi) .

We also refer to this as the R-convolution kernel or R-kernel for short. Note
that the product is only defined if the boolean expression is true, but if this
is not the case the square bracket function is zero.

Example 11.69 In the case of trees discussed above, we can define the
decomposition structures R1 and R2 by:

R1 ((S, κ0) , T ) if and only if S is a co-rooted subtree of T ;

R2 ((S, κ0) , T ) if and only if S is a subtree of T ;

where κ0 (S1, S2) = 1 if S1 = S2 and 0 otherwise. The associated R-kernels
are clearly the co-rooted subtree kernel and the all-subtree kernel respec-
tively.

Example 11.70 For the case of the co-rooted tree kernel we could also
create the recursive decomposition structure R by:

R1 (((T1, κR + 1) , . . . , (Td, κR + 1)) , T )

if and only if T1, . . . , Td are the trees at the children of the root r (T ) ;

R1 ((T, 0) , T ) if T is an improper tree.

By the definition of the associated R-kernel we have

κR (S, T ) =

⎧⎪⎨⎪⎩
0 if d+ (r (S)) �= d+ (r (T )) or d+ (r (S)) = 0;∏d+(r(T ))

i=1 (κR (τ (chi (r (T ))) , τ (chi (r (S)))) + 1)
otherwise.

This is precisely the recursive definition of the co-rooted subtree kernel.

The two examples considered here give the spirit of the more flexible de-
composition afforded by R-decomposition structures. We now give examples
that demonstrate how the definition subsumes many of the kernels we have
considered in earlier chapters.

Example 11.71 Suppose X is a vector space of dimension n. Let κi be
the kernel defined by

κi (x, z) = xizi.
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Consider the decomposition structure

R = {(((x, κi1) , . . . , (x, κid)) ,x) : 1 ≤ i1 < i2 < · · · < id ≤ n, x ∈ R
n} .

Here the associated R-kernel is defined as

κR (x, z) =
∑

1≤i1<···<id≤n

d∏
j=1

κij (x, z) =
∑

1≤i1<···<id≤n

d∏
j=1

xizi,

which we have already met in Chapter 9 as the ANOVA kernel. The gener-
alisation of the ANOVA kernel to arbitrary subkernels described in Remark
9.20 seems even more natural in this presentation. Note how the kernel has
again the sum of products structure that we have seen recurring in many
different guises.

Example 11.72 The more complex kernels defined over graphs can also
be recreated as R-kernels if we index the subkernels κe by the edges e ∈ E

of the graph G = (V, E). The R-structure for a graph kernel defined by the
identified vertices a and b in G is now given by

R ={(((
x, κ(u0→u1)

)
, . . . ,

(
x, κ(ud−1→ud)

))
,x
)

: x ∈ R
n, (u0, . . . , ud) ∈ Pab

}
,

where Pab is the set of paths from node a to node b, represented by the
sequence of edges. This follows straightforwardly from the definition of the
graph kernel as

κG (x, z) =
∑

p∈Pab

d∏
i=1

κ(ui−1→ui) (x, z) .

Notice that the type match in the definition of the R-kernel ensures that
only matching paths enter into the sum.

Example 11.73 A very similar structure to the ANOVA case can be used
to create the Gaussian kernel. Here we consider the base kernels to be

κi (x, z) = exp

(
−(xi − zi)

2

2σ2

)

and the structure to be given by

R = {(((x, κ1) , . . . , (x, κn)) ,x) : x ∈ R
n} ,
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so that the associated R-kernel is simply

κR (x, z) =
n∏

i=1

κi (x, z) =
d∏

i=1

exp

(
−(xi − zi)

2

2σ2

)

= exp

(
−
∑d

i=1 (xi − zi)
2

2σ2

)
= exp

(
−‖x − z‖2

2σ2

)
.

Example 11.74 It is very simple to construct decomposition structures
for the various string kernels. For example the gap-weighted k-subsequences
kernel is created using

R =
{((

u, λl(i)κ0

)
, s
)

: s ∈ Σ∗, i ∈ Ik, u = s (i)
}

,

where κ0 is the kernel returning 1 if the substrings are identical and 0
otherwise.

R-convolution kernels seem to provide a very natural generalisation of
both ANOVA and graph kernels on the one hand and the tree and substring
kernels on the other hand. There are clear distinctions between the struc-
tures in these two cases. In the ANOVA and graph kernels the components
are chosen to be the whole structure and the variation is made between the
kernels used to compare the objects, while in the tree and substring ker-
nel the variation is mainly focussed on the substructure selection with the
kernels usually being identical.

These observations suggest that there is much unexplored flexibility in
the R-kernels definition that has the potential to lead to many interesting
new kernels. For example using a graph structure to determine how the
kernels of different sub-components are combined might be a first step in
this directions. The simplest example might be combining the ANOVA con-
struction with the recursive definition of the co-rooted tree kernel given in
Example 11.70.

Such combinations raise two questions. First, are the associated R-kernels
for decomposition structures always kernels? Second, when can we expect to
be able to find efficient methods for computing the R-kernel even when the
sums involved are exponentially large? We will not attempt to investigate
the second question any further, but provide a brief justification that R-
kernels are indeed kernels.

Proposition 11.75 Let κR be the kernel defined by the decomposition struc-
ture R. It follows that κR is an inner product in an appropriately defined
feature space.
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Proof We will apply Proposition 9.42 by showing that the kernel κR is a
subset kernel over an appropriately defined universal set. The set in question
for a data item x is R−1 (x), which by the definition of a decomposition
structure is finite as required. The elements of the set are compared using
the product of valid kernels and hence the subset is defined with elements
that are compared with a valid kernel. The result follows. In the case of a
recursive definition, an additional inductive argument must be made using
structural induction over the decomposition structure.

Remark 11.76 [Syntactical Pattern Recognition] The class of kernels we
have developed in this section provides a link with the field of structural pat-
tern recognition. Syntactic or structural pattern recognition deals with the
problem of detecting common patterns in sets of structured data, typically
representing them as rules. By using kernels that operate on structured data,
we are ‘interpolating’ between statistical and syntactic pattern recognition,
two branches of pattern analysis that rarely interact.

11.8 Summary

• Strings of symbols can be compared by kernels that sum the number of
common substrings or subsequences.

• Dynamic programming techniques allow us to compute such kernels effi-
ciently.

• A whole range of variations on this theme allow one to tune a kernel to
the particular application.

• Trie-based computation provides fast evaluation of some restrictions of
these kernels.

• Kernels can also be defined over more complex structures such as trees.
• Convolution kernels define a framework that subsumes both structure and

ANOVA style kernels.

11.9 Further reading and advanced topics

Although the first papers dealing with kernels for strings and trees appeared
in 1999, there is already a considerable literature dealing with this problem.
Watkins and Haussler [158], [157], [54] certainly are to be credited with
starting this research direction, where ideas from classical string matching
algorithms, based on dynamic programming, were used to construct recur-
sive kernels. A good starting point for understanding the techniques used
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by them are the very readable books by Dan Gusfield [50] and Durbin et al.
[42].

The first application of these theoretical ideas came in the field of text
categorisation, with the paper of Lodhi et al. [93], followed by applica-
tions in bioinformatics. The computational cost of dynamic programming
approaches to string kernels slowed down their uptake in larger-scale appli-
cations, until the publication of a series of papers demonstrating the use of
different computational techniques for performing very similar computations
at much cheaper cost, for example using tries [90], [89]. Spectrum kernels
and the other methods have been applied to large real world problems in
bioinformatics [87], [88]. Novel methods of computation using suffix trees
are described in [154]. Our discussion of trie-based kernels was based on
these papers, whereas the discussion on dynamic programming kernels goes
back to Watkins.

Although motivated by string analysis, Haussler’s framework is very gen-
eral, and can motivate kernels for very diverse types of data. For example
[23] presents the dynamic programming method for comparing two trees in
the context of language parsing.

Ralf Herbrich’s book presents some variations of the basic recursions for
gappy string matching kernels [55]. An excellent introduction to string com-
putations by means of dynamic programming is given in [50] and a discus-
sion of the merits of bottom-up over top-down computations of recurrence
relations can be found in [24].

Finally, recent work by Mohri, Cortes and Haffner [25] on Rational Kernels
is closely related to what we have presented here, but is not discussed in
this chapter for lack of space. For constantly updated pointers to online
literature and free software see the book’s companion website: www.kernel-
methods.net
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Kernels from generative models

It is often the case that we know something about the process generating the
data. For example, DNA sequences have been generated through evolution
in a series of modifications from ancestor sequences, text can be viewed as
being generated by a source of words perhaps reflecting the topic of the
document, a time series may have been generated by a dynamical system
of a certain type, 2-dimensional images by projections of a 3-dimensional
scene, and so on.

For all of these data sources we have some, albeit imperfect, knowledge
about the source generating the data, and hence of the type of invariances,
features and similarities (in a word, patterns) that we can expect it to con-
tain. Even simple and approximate models of the data can be used to create
kernels that take account of the insight thus afforded.

Models of data can be either deterministic or probabilistic and there are
also several different ways of turning them into kernels. In fact some of
the kernels we have already encountered can be regarded as derived from
generative data models.

However in this chapter we put the emphasis on generative models of the
data that are frequently pre-existing. We aim to show how these models
can be exploited to provide features for an embedding function for which
the corresponding kernel can be efficiently evaluated.

Although the emphasis will be mainly on two classes of kernels induced
by probabilistic models, P-kernels and Fisher kernels, other methods exist
to incorporate generative information into kernel design. Indeed in some
sense every kernel can be regarded as embodying our generative assumptions
about the data.

397
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12.1 P -kernels

A very general type of kernel can be obtained by defining a joint probability
distribution P (x, z) on pairs of data items (x, z) from the product space
X ×X of a finite or countably infinite input space X. We assume the joint
probability P (x, z) does not depend on the order of the items so that P is
symmetric, but to be a kernel

κ (x, z) = P (x, z) ,

it must also satisfy the finitely positive semi-definite property.

Definition 12.1 [P -kernel] A probability distribution P (x, z) over a prod-
uct space X × X that satisfies the finitely positive semi-definite property
will be known as a P -kernel on the set X.

Given a kernel κ on a countably infinite space X, we can create a P -kernel
that is essentially identical to κ provided∑

x∈X

∑
z∈X

κ (x, z) = M < ∞,

since the distribution

P (x, z) =
1
M

κ (x, z)

satisfies the definition of a P -kernel.
On the other hand, not all distributions will be P -kernels, as the simple

example of a two element set

X = {x1, x2} ,

with probabilities

P (x1, x1) = P (x2, x2) = 0;

P (x1, x2) = P (x2, x1) = 0.5

shows, since the matrix (
0 0.5

0.5 0

)
indexed by x1, x2 has eigenvalues λ = ±0.5.

We have presented P -kernels for countably infinite input spaces since these
are the types of data for which we take this approach. For uncountably
infinite sets a P -kernel would be defined by a probability density function
p (x, z) again assumed symmetric and required to satisfy the finitely positive
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semi-definite property. A kernel κ would be equivalent to such a P -kernel
through a renormalisation provided∫

X

∫
X

κ (x, z) dxdz = M < ∞.

It follows for example that any bounded kernel over a compact domain can
be regarded as a P -kernel.

Hence, a P -kernel is a very broad class of kernels that by itself does not
provide interesting insights. Its real interest arises when we study how one
might generate such joint probability distributions.

As a simple example consider a probability distribution P (x) on the finite
or countably infinite set X. We can define a 1-dimensional P -kernel using
the following product

κ(x, z) = P (x)P (z).

This follows immediately from the observation that this kernel corresponds
to the 1-dimensional embedding

φ : x �−→ P (x) .

This example suggests the following definition for a probabilistic model.

Definition 12.2 [Data model] A model m of a data generation process
is an artificial distribution that assigns to each data item x a probability
P (x|m) of being generated. This can be seen as an estimate of the true
distribution that generated the data. In practice we do not know precisely
how the data was generated, but we may have a class of possible models
M and a prior distribution PM or belief as to which model was more likely
to have generated the data. This is encoded in a distribution PM (m) over
the set of models, where m is used to denote the individual model possibly
described by a set of parameters. Hence, for example different settings of
hidden variables are viewed as different models.

Remark 12.3 [Modelling process] The definition of a data model only re-
quires that it be a probability distribution. In practice we typically define
the distribution in a way that reflects our understanding of the processes
that actually generate the real data. It is for this reason that the term model
is used since the distribution results from a model of the generation process.
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The first part of this chapter considers probability distributions arising
from data models that give rise to more general and interesting classes of
P -kernels.

12.1.1 Conditional-independence (CI) and marginalisation

Building on the example at the end of the previous section, we can create
a joint distribution that is positive semi-definite by combining a number
of different 1-dimensional distributions P (x, z|m) = P (x|m)P (z|m). We
choose m at random from a set M to combine the different distributions as
follows

P (x, z) =
∑

m∈M

P (x, z|m)PM (m) =
∑

m∈M

P (x|m)P (z|m)PM (m),

where we have used PM (m) to denote the probability of drawing the distri-
bution parametrised by m. We could again consider a probability density
function in the case that M were an uncountably infinite set.

If we view the set M as a set of potential models of the data distribution
each weighted according to our prior belief PM (m) in that particular model,
the distribution corresponds to our prior estimation of the probability that x

and z arise as a pair of independently generated examples. It is this view that
also suggests the idea of marginalisation. If we view P (x, z|m) PM (m) as a
probability distribution over triples (x, z, m), then the probability P (x, z)
is its marginal distribution, since it involves integrating over the unknown
variable m. For this reason the kernels are sometimes referred to as marginal
kernels.

In general, marginalising does not guarantee that the distribution satis-
fies the finitely positive semi-definite property. In our case it follows from
the combination of marginalising over distributions each of which is finitely
positive semi-definite because of the independence assumption in the gen-
eration of x and z. For this reason we say that x and z are conditionally
independent given m. Hence, the assumption of conditional independence

P (x, z|m) = P (x|m)P (z|m)

is a sufficient (but not necessary) condition for positive semi-definiteness.
This class of kernels, obtained by marginalisation of conditionally inde-

pendent functions, is extremely general, and can be efficiently computed for
many classes of functions, using algorithmic tools developed in the theory
of probabilistic graphical models. This often allows us to turn a generative
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model of the data into a kernel function. The dimensions of the embed-
ding space are indexed by the elements of a set of probabilistic models
φm(x) = P (x|m) as indicated in the following definition summarising the
approach.

Definition 12.4 [Marginalisation kernels] Given a set of data models M

and a prior distribution PM on M , we can compute the probability that a
pair of examples x and z is generated together

PM (x, z) =
∑

m∈M

P (x|m)P (z|m)PM (m).

If we consider the projection function

φ : x �−→ (P (x|m))m∈M ∈ F ,

in a feature space F indexed by M , PM (x, z) corresponds to the inner
product

〈f, g〉 =
∑

m∈M

fmgmPM (m)

between φ (x) and φ (z). It follows that PM (x, z) is a P -kernel. We refer to
PM (x, z) as the marginalisation kernel for the model class M .

12.1.2 Representing multivariate distributions

Defining a data model requires us to create a class of multivariate proba-
bility distributions. The simplest form for such distributions is to assume
independence between the different coordinates and hence use a collection
of independent 1-dimensional distributions. Once we allow interactions be-
tween the different variables, the number of degrees of freedom increases
substantially. For example to specify a multivariate Gaussian distribution
we need O

(
n2
)

parameters to give the covariance matrix.
In view of these complications it is natural to search for models that lie

somewhere between complete independence of the variables and full depen-
dence. Graphical models are a representation that allows us to specify a
dependence structure in the form of a directed acyclic graph whose nodes
are the variables. The distribution of the variable A that labels a node
becomes independent if we specify the values of the set N− (A) of vari-
ables on vertices with edges (B → A) pointing at A. Hence, if the labelling
A1, . . . , An of the nodes is such that there are no edges from later to earlier
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vertices, then the distribution can be computed using

P (A1, . . . , An) =
n∏

i=1

P
(
Ai|N− (Ai)

)
.

Specifying the individual conditional probabilities might involve a lookup
table in the case of binary variables or some other distribution for more
complex variables. Note that one can interpret an edge from node A to
node B as implying that A is a partial cause for B.

Hence graphical models provide a compact representation of a joint prob-
ability distribution. For example the joint distribution

P (A, B, C, D) = P (A)P (B|A)P (C|A)P (D|C, B)

can be represented by the graphical model in Figure 12.1.

A

B

D

C

Fig. 12.1. A simple example of a graphical model.

So far we have considered graphical models in which the nodes are in one-
to-one correspondence with the observed variables. In practice we may not
be able to observe all of the relevant variables. In this case we distinguish
between the observables and the so-called hidden variables, with the overall
graphical model being defined over both sets of variables.

An example of a graphical model with hidden states is shown in Figure
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12.3. It shows a sequence of hidden variables (h1, . . . , hn) linked so that the
next variable is conditionally dependent on the previous hidden variable.
Each hidden variable hi conditions a corresponding distribution for the ob-
servable variable si. This is known as a 1-stage Markov model. We can
also represent this by a sequence of nodes linked into a path, where the ith
node has a state variable hi that can take a number of possible values and
the node emits a symbol depending on the value of hi, while the value of
hi depends probabilistically on hi−1. Hence, the symbol emission has been
included into the function of the node.

We can make the diagram more explicit by creating a node for each state,
that is each state variable–value pair. In this view the transitions take us
from one state to another and we have a probabilistic finite state automata
whose nodes emit symbols. We prefer to take this general framework as our
definition of a hidden Markov model.

Definition 12.5 [Hidden Markov model] A hidden Markov model (HMM)
M comprises a finite set of states A with an initial state aI , a final state aF ,
a probabilistic transition function PM (a|b) giving the probability of moving
to state a given that the current state is b, and a probability distribution
P (σ|a) over symbols σ ∈ Σ ∪ {ε} for each state a ∈ A.

A hidden Markov model generates strings probabilistically by initialising
the state to aI and repeatedly performing random transitions each followed
by a random generation of a symbol, until the state aF is reached.

12.1.3 Fixed length strings generated by a hidden binomial
model

The kernel presented in this subsection is a somewhat ‘degenerate’ example
of an important class of models. Nonetheless its discussion sets the scene for
two more complex generative models also for fixed length symbol sequences,
each based on different assumptions about the hidden generating mecha-
nism. These will be presented in the following two subsections followed by
extensions to handle the case of strings of different lengths.

Consider comparing symbol strings that have the same length n with indi-
vidual symbols drawn from a finite alphabet Σ. We assume that the symbols
are generated by ‘emission’ from a sequence of hidden state variables repre-
sented by a string of the same length h = (h1 . . . hn), where the individual
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emission probabilities are independent that is

P (s|h) =
n∏

i=1

P (si|hi),

and as posited in the general framework the probabilities of generating two
strings s and t are also treated as independent. This generation model
is illustrated in Figure 12.2. Note that to cast this in the framework of

h1 h2 h3 h4 h5 h6 h7 h8

s2 s3 s4 s5 s6 s7 s8s1

Fig. 12.2. A simple hidden model for generating fixed length strings.

Definition 12.5, we would need to expand each state variable into the set of
states that it can assume and include transitions from the set of states for
hi to those for hi+1, i = 1, . . . , n − 1, as well as including transitions from
the initial state aI and to the final state aF . An example of this type of
(formal) construction is given in the next subsection.

For the time being we leave the form of the distribution P (si|hi) unspec-
ified, though there is a further assumption that the probabilities of the hid-
den states P (h) can also be decomposed into a product over the individual
symbols

P (h) =
n∏

i=1

P (hi)

so that the kernel involves summing over all hidden strings and marginalising
the probability to obtain the marginalisation kernel

κ (s, t) =
∑

h∈Σn

P (s|h)P (t|h)P (h)

=
∑

h∈Σn

n∏
i=1

P (si|hi)P (ti|hi)P (hi) .

We have already encountered sums of products within kernel calculations
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when we considered the kernels defined by summing over all paths in a graph.
This form will also prove a recurring theme in this chapter. The sum is over
a large number of hidden models, each of which can be used to compute a
probability by means of a product. The key idea is that in certain important
cases this can be computed as the product of sums by effectively exchanging
the two operators, and hence achieving a significant computational saving.
This will motivate a number of dynamic programming methods, but in the
specific case considered here we will be able to obtain a closed form solution.

We can write

κ (s, t) =
∑

h∈Σn

n∏
i=1

P (si|hi)P (ti|hi)P (hi)

=
n∏

i=1

∑
σ∈Σ

P (si|σ)P (ti|σ)P (σ), (12.1)

where the expression on the right-hand side of the first line can be obtained
by applying the distributive law to the product of sums given in the sec-
ond line. The variable hi tells us which term to take in the ith factor of
the product with the overall expression given by the sum over all possible
choices, that is over all strings h.

We have presented this example more as an illustration of the swapping
step. In this case the result is rather trivial, since we could pre-compute a
table of

P (a, b) =
∑
σ∈Σ

P (a|σ)P (b|σ)P (σ), for a, b ∈ Σ,

and then the kernel could be evaluated as

κ (s, t) =
n∏

i=1

P (si, ti).

This is a simple product of base kernels

κi (s, t) = P (si, ti)

and so could also be viewed as an ANOVA kernel of degree n.
It does, however, also illustrate a general property of P -kernels, namely

that if we create P -kernels for each part Xi of a set of n disjoint components
of data items from a set X = X1 × · · · × Xn, their product also becomes a
P -kernel, since ∑

s∈X

∑
t∈X

P (s, t) =
∑
s∈X

∑
t∈X

n∏
i=1

P (si, ti)
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=
n∏

i=1

∑
si∈Xi

∑
ti∈Xi

P (si, ti)

=
n∏

i=1

1 = 1.

Remark 12.6 [States and symbols] It is worth noting that although we
discussed this example using the same set of symbols for the strings as for
the states, these could be defined over different sets. In view of our final
observations this will not have a very significant impact in this example, but
we will see that in the next subsection this does afford us extra flexibility.

12.1.4 Fixed length strings generated by a hidden markov model

The model above was not very realistic, but did demonstrate the type of
computations that we are considering in this section, particularly the idea
of marginalising over sums of products. For our next model we continue with
the assumptions that the two strings s and t have fixed length n and are
composed of symbols from an alphabet Σ. Furthermore we assume that they
have been generated by a hidden model M , whose elements are represented
by strings h of n states each from a set A, and that each symbol is generated
independently, so that

P (s, t|h) =
n∏

i=1

P (si|hi)P (ti|hi)

as before. Where we extend the previous model is in the structure of the
distribution P (h). Whereas before this distribution assumed independence
of the individual states, we now introduce a 1-stage Markov structure into
the hidden model for M , that is we let

PM (h) = PM (h1)PM (h2|h1) . . . PM (hn|hn−1).

The hidden model is illustrated in Figure 12.3. Formally, if we wish to cast
this in the framework of Definition 12.5, we must define the states of the
model to be

{aI} ∪ A × {1, . . . , n} ∪ aF ,

with the transition probabilities given by

PM ((a, i) |aI) =
{

PM (a) if i = 1;
0 otherwise,
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h1 h2 h3 h4 h5 h6 h7 h8

s2 s3 s4 s5 s6 s7 s8s1

Fig. 12.3. The hidden Markov model for a fixed length string.

PM ((a, i) | (b, j)) =
{

PM (a|b) if i = j + 1;
0 otherwise,

PM (aF | (b, j)) =
{

1 if i = n;
0 otherwise.

This means that in order to marginalise, we need to sum over a more
complex probability distribution for the hidden states to obtain the corre-
sponding marginalisation kernel

κ (s, t) =
∑

h∈An

P (s|h)P (t|h)PM (h)

=
∑

h∈An

n∏
i=1

P (si|hi) P (ti|hi) PM (hi|hi−1) , (12.2)

where we have used the convention that PM (h1|h0) = PM (h1).

Remark 12.7 [Describing the models] We consider each hidden sequence h

as a template for the sequences s, t in the sense that if we are in state hi at
position i, the probability that the observable sequence has a symbol si in
that position is a function of hi. In our generative model, sequences are gen-
erated independently from the hidden template with probabilities P (si|hi)
that can be specified by a matrix of size |Σ| × |A|. So given this matrix and
a fixed h, we can compute P (s|h) and P (t|h). The problem is that there
are |A|n different possible models for generating our sequences s, t, that is
the feature space is spanned by a basis of |A|n dimensions. Furthermore, we
consider a special generating process for h of Markov type: the probability
of a state depends only on the preceeding state. The consequent marginali-
sation step will therefore be prohibitively expensive, if performed in a direct
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way. As in Chapter 11, we will exploit dynamic programming techniques to
speed it up.

Consider the set of states Ak
a of length k that end with a given by

Ak
a =

{
h ∈ Ak : hk = a

}
.

We introduce a series of subkernels κk,a for k = 1, . . . , n and a ∈ A as follows

κk,a (s, t) =
∑

h∈Ak
a

P (s|h)P (t|h)PM (m)

=
∑

h∈Ak
a

k∏
i=1

P (si|hi) P (ti|hi) PM (hi|hi−1) ,

where we have implicitly extended the definitions of P (s|h) and P (h) to
cover the case when h has fewer than n symbols by ignoring the rest of the
string s.

Clearly, we can express the HMM kernel simply by

κ (s, t) =
∑
a∈A

κn,a (s, t) .

For k = 1 we have

κ1,a (s, t) = P (s1|a) P (t1|a) PM (a) .

We now obtain recursive equations for computing κk+1,a (s, t) in terms of
κk,b (s, t) for b ∈ A, as the following derivation shows

κk+1,a (s, t) =
∑

h∈Ak+1
a

k+1∏
i=1

P (si|hi) P (ti|hi) PM (hi|hi−1)

=
∑
b∈A

P (sk+1|a) P (tk+1|a) PM (a|b)

∑
h∈Ak

b

k∏
i=1

P (si|hi) P (ti|hi) PM (hi|hi−1)

=
∑
b∈A

P (sk+1|a) P (tk+1|a) PM (a|b) κk,b (s, t) .

When computing these kernels we need to use the usual dynamic pro-
gramming tables, one for each κk,b (s, t), though of course we can overwrite
those obtained for k − 1 when computing k + 1. The result is summarised
in the following algorithm.
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Algorithm 12.8 [Fixed length hidden Markov model kernel] The fixed
length Hidden Markov Model kernel is computed in Code Fragment 12.1.

Input Symbol strings s and t, state transition probability matrix PM (a|b),
initial state probabilities PM (a)
and conditional probabilities P (σ|a) of symbols given states.

Process Assume p states, 1, . . . , p.
2 for a = 1 : p
3 DPr (a) = P (s1|a) P (t1|a) PM (a) ;
4 end
5 for i = 1 : n
6 Kern = 0;
7 for a = 1 : p
8 DP (a) = 0;
9 for b = 1 : p
10 DP (a) = DP (a) + P (si|a) P (ti|a) PM (a|b) DPr (b) ;
11 end
12 Kern = Kern + DP (a) ;
13 end
14 DPr = DP;
14 end
Output κ (s, t) = Kern

Code Fragment 12.1. Pseudocode for the fixed length HMM kernel.

The complexity of the kernel can be bounded from the structure of the
algorithm by

O
(
n |A|2

)
.

Remark 12.9 [Reversing sums and products] It is possible to see the dy-
namic programming as partially reversing the sum and product of equation
12.2. At each stage we compute a product of the sums of the previous phase.
This enable the algorithm to break down the very large sum of (12.2) into
manageable stages.

Example 12.10 The kernel presented here compares two strings of the
same length under a hidden Markov model assumption. The strings are
assumed to be ‘aligned’, that is the generic model h assumes that the ith
symbol in each sequence was generated in a conditionally independent way,
given the hidden state hi, and that the sequence of hidden states has a
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Markovian structure. This makes sense in those situations in which there is
no possibility of insertions or deletions, but we can accurately model random
substitutions or mutations of symbols.

12.1.5 Pair hidden Markov model kernels

There are several possible ways to generalise the fixed length hidden Markov
model kernel given above. In this and the next subsection we present two
different extensions. The kernel presented above makes sense if we assume
that two sequences have the same length and are generated by a ‘template’
sequence that has a Markov structure.

This subsection develops a kernel for strings of different lengths but again
generated by an underlying Markov process, a case that has significant im-
portance in computational biology. An alternative way to model the gen-
erative process of a fixed length sequence is to assume that all positions in
the sequence are associated with the leaves of a tree, being generated si-
multaneously by an underlying evolution-like process. A generalisation to
Markovian trees will be presented in the following section.

In this section we investigate the case when the two sequences have differ-
ent lengths, generated by emission from hidden states that again satisfy the
Markov property. This will make it possible to consider the insertion and
deletion of symbols that could have created gaps in the pairwise alignment,
hence creating alternative alignments between the sequences and possibly
altering their lengths.

The change required to achieve this extra flexibility is at first sight very
small. We simply augment the alphabet with the empty symbol ε. As a
result a state can generate a symbol for one string while adding nothing to
another. This means that the states will no longer correspond to the symbol
positions. For this reason we must consider a general Markov model given
by a set A of states with transition probabilities given by a matrix

Mab = PM (b|a)

giving the probability of moving to state b from state a. There is now no
longer a linear ordering imposed on the states, which therefore can form a
general probabilistic finite state automaton. We must, however, specify an
initial state aI with no associated emission and with no transitions to it.
The model M comprises all possible trajectories h of states beginning at the
initial state h0 = aI . It is also possible to require the trajectories to end a
specified final state aF , though to simplify the exposition we omit this re-
striction. It follows that the probability of a trajectory h = (h0, h1, . . . , hN )
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is given by

PM (h) =
N∏

i=1

PM (hi|hi−1) .

The emission probabilities for non-initial states are given by the probabilities

P (σ|a) , for a ∈ A and σ ∈ Σ̂ = Σ ∪ {ε} ,

with the probability that a trajectory h of length N generates a string s

given by

P (s|h) =
∑

ŝ∈Σ̂N

[ŝ = s]
N∏

i=1

P (si|hi) ,

where we use [ŝ = s] for the function outputting 1 when the two strings are
equal after deletion of any empty symbols and 0 otherwise. As usual we
consider the marginalisation kernel

κ(s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

Remark 12.11 [Pair hidden Markov models] Our method of defining the
generation is slightly unconventional. The more standard approach allows
states to emit one symbol for each sequence, only one of which can be the
empty character. Occasionally the symbol emission is also shifted from the
states to the transitions. We have preferred to have emission from states to
link with the previous and following subsections. Allowing states to emit
pairs of characters complicates the verification of conditional independence,
since we can no longer simply view the kernel as estimating the probability
of the two strings arising from the modelling process, that is as a marginali-
sation kernel. The simplification achieved here results in some slight changes
to the dynamic programme computations where we introduce pair hidden
Markov models as a computational tool, but we feel that this is a price worth
paying for the conceptual simplification.

Example 12.12 We give an example to illustrate the computations of
pair HMMs. Two proteins or genes are said to be homologous if they are
both descendents from a common ancestor. The sequences may differ from
the ancestor’s as a result of deletions, insertions and mutations of symbols
where these processes occurred independently for the two sequences after
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their first evolutionary divergence. The distance can be estimated by com-
puting the alignments of the two sequences. For example the two sequences
s =‘AACGTACTGACTA’ and t =‘CGTAGAATA’ may be aligned in the following
way

AACGTACTGA-CTA

--CGTA--GAA-TA

among others. When assessing the probability that two sequences are ho-
mologous, a meaningful measure of similarity and hence potentially an inter-
esting kernel, is given by computing the probabilities of the two sequences
being generated from a common ancestor summed over all potential an-
cestors. The ancestors are modelled as a sequence of states encoding the
changes that occurred at each point, deletion, insertion or mutation. The
state sequence is assumed to be Markovian since the probabilities of spe-
cific changes depend only on the changes occurring at the previous step.
This approach typically leads to different possible ‘alignments’ of the se-
quences, each with a given probability. For each possible hidden ancestor
model h we can calculate the probability that each of the two sequences
is its descendent P (s|h) and P (t|h), and we can sum this over all possible
ancestors, marginalising in this way over all possible evolutionary ancestors:
P (s, t) =

∑
h P (s|h)P (t|h)P (h).

The apparently small change we have introduced to handle gaps compli-
cates the dynamic programming computations. We must now not only con-
sider summing over all sequences ending in a certain stage, but also specify
the positions we have reached in each of the strings in much the same way as
we did for the string kernels in Chapter 11. Before we can do this we have an
additional problem that states which emit ε can emit ε to both sequences
complicating the recursion as in this case no new symbols are processed.
This problem will be overcome by transforming our hidden Markov model
into a so-called pair hidden Markov model generating the same distribution.
We begin with a definition of pair hidden Markov models.

Definition 12.13 [Pair hidden Markov model] A data model whose states
emit ordered pairs of data will be known as pair data model. Hence, a pair
model M is specified by a set of distributions for h ∈ M that assigns to each
pair of data items (x1, x2) a probability Ph (x1, x2) = P ((x1, x2) |h). A pair
hidden Markov model is a hidden Markov model whose states emit ordered
pairs of data items.
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Note that in general a pair data model will not define a kernel if we take

κ (x1, x2) =
∑
h∈M

P ((x1, x2) |h), (12.3)

since the generation of the two examples is not necessarily independent. This
will not, however, concern us since we use the pair hidden Markov model to
generate a distribution that we know to be a valid kernel. Our use of the
pair hidden Markov model is simply a stepping stone towards creating an
efficient algorithm for evaluating that kernel.

The initial pair hidden Markov model is simply the hidden Markov model
where each state uses its generating function to generate two symbols inde-
pendently rather than the single symbol generated by the original model.
The kernel defined by equation (12.3) is clearly the same as the marginali-
sation kernel by its definition.

The pair hidden Markov model is now adapted in two stages. The first
creates a new model M̂ from M by separating each state that can generate
pairs (ε, ε) as well as symbols from Σ into two states, one that generates
only (ε, ε) and one that only generates pairs with at least one symbol from
Σ. The second stage involves the removal of the states that emit only (ε, ε).
In both cases we must verify that the distribution generated by the model
remains unchanged.

For the first stage consider a state a that can emit (ε, ε) as well as
other combinations. We create a new state aε for each such state a. The
state aε emits (ε, ε) with probability 1, while the new emission probabilities
P̂ ((σ1, σ2) |a) for a are given by

P̂ ((σ1, σ2) |a) =

{
P (σ1|a)P (σ2|a)

1−P (ε|a)2
if σ1 �= ε or σ2 �= ε;

0 otherwise,

so that a can no longer emit (ε, ε). Furthermore the transition probabilities
are adapted as follows

PM̂ (a|b) = PM (a|b)
(
1 − P (ε|a)2

)
for all b �= a,

PM̂ (a|a) = PM̂ (a|aε) = PM (a|a)
(
1 − P (ε|a)2

)
,

PM̂ (aε|b) = PM (a|b) P (ε|a)2 for all b �= a,

PM̂ (aε|a) = PM̂ (aε|aε) = PM (a|a) P (ε|a)2 .

It is readily verified that the state aε in M̂ corresponds to emitting the pair
(ε, ε) in state a in M , and so the pair hidden Markov model M̂ generates
an identical distribution over pairs to that generated by M .
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The second state of the adaptation involves removing all the states that
only emit the pair (ε, ε). This is a standard operation on probabilistic finite
state automata involving appropriately adjusting the transition probabilities
between the remaining states. We omit the details as it is not central to our
development.

We therefore now assume that we have a pair hidden Markov model none
of whose states emit the pair (ε, ε). Consider the sequences of states Aa that
end with a given by

Aa =
{

h ∈ M̂ : h|h| = a, h0 = aI

}
.

We introduce a series of subkernels κi,j,a for a ∈ A as follows

κi,j,a (s, t) =
∑

h∈Aa

P̂ (s (1 : i) , t (1 : j) |h)PM̂ (h).

Clearly, we can express the marginalisation kernel quite simply as

κ (s, t) =
∑
a∈A

κ|s|,|t|,a (s, t) ,

though if a finish state were specified we would only need the corresponding
subkernel. The base of the dynamic programme recursion requires us to com-
pute κ0,0,a (s, t) for all states a ∈ A. Clearly, for aI we have κ0,0,aI (s, t) = 1,
while for general a ∈ A \ {aI}

κ0,0,a (s, t) = 0.

We now obtain recursive equations for computing κi,j,a (s, t) in terms of
κi−1,j,b (s, t) , κi,j−1,b (s, t) and κi−1,j−1,b (s, t) for b ∈ A, as the following
derivation shows

κi,j,a (s, t) =
∑

h∈Aa

P ((s, t) |h)PM̂ (h)

=
∑
b∈A

P ((si, ε) |a) PM̂ (a|b) κi−1,j,b (s, t)

+
∑
b∈A

P ((ε, tj) |a) PM̂ (â|b) κi,j−1,b (s, t)

+
∑
b∈A

P ((si, tj) |a) PM̂ (a|b) κi−1,j−1,b (s, t) .

This is again a set of equations for κi,j,a (s, t) assuming that we have previ-
ously computed κi−1,j,b (s, t) , κi,j−1,b (s, t) and κi−1,j−1,b (s, t) and results in
the following algorithm.



12.1 P -kernels 415

Algorithm 12.14 [Pair hidden Markov models] The pair hidden Markov
model kernel is computed in Code Fragment 12.2.

Input Symbol strings s and t, state transition probability matrix
PM (a|b), initial state 0, final state p and conditional probabilities
P ((σ1, σ2) |a) of pairs of symbols given states.

Process Assume p states, 0, . . . , p. Lengths of s and t are n and m.
2 for a = 0 : p
3 Kern (0, 0, a) = 0;
4 for i = 0 : n Kern (i,−1, a) = 0;
5 for j = 0 : m Kern (−1, j, a) = 0;
8 end
9 Kern (0, 0, 0) = 1;
10 for i = 1 : n
11 for a = 1 : p
12 Kern (i, 0, a) = 0;
13 for b = 0 : p
14 Kern (i, 0, a) = Kern (i, 0, a)

+P ((si, ε) |a) PM (a|b) Kern (i − 1, 0, b) ;
15 end
16 end
17 for i = 0 : n
18 for j = 1 : m
19 for a = 1 : p
20 Kern (i, j, a) = 0;
21 for b = 0 : p
22 Kern (i, j, a) = Kern (i, j, a)

+P ((si, ε) |a) PM (a|b) Kern (i − 1, j, b)
23 +P ((ε, tj) |a) PM (a|b) Kern (i, j − 1, b)
24 +P ((si, tj) |a) PM (a|b) Kern (i − 1, j − 1, b) ;
25 end
26 end
27 end
Output κ (s, t) = Kern (n, m, p)

Code Fragment 12.2. Pseudocode for the pair HMM kernel.

Remark 12.15 [Defining pair HMMs directly] We have introduced pair
hidden Markov models as a stepping stone towards an efficient algorithm as
they enable us to remove the possibility of no symbols at all being emitted
by a state. Authors typically choose to define their models using pair hidden
Markov models. This has the advantage of making the design more natural
in some cases. The disadvantage is that extra conditions need to be applied
to ensure that a valid kernel is generated, essentially ensuring that paths
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between states that emit two symbols are independent whether they emit
symbols to one string or the other.

12.1.6 Hidden tree model kernels

The previous subsection considers unequal length sequences using a hidden
Markov model. In this section we return to aligned equal length sequences,
but consider a more complex generating model.

Another way to model the hidden structure generating two aligned strings
of the same length n is to assume their symbols are associated to the n leaves
of a tree, in which the state of each node depends probabilistically on the
state of its parent node. The state of the leaves is assumed to represent
the sequence. This is a probabilistic graphical model, and can be used as a
generative model of the sequence and so to design a marginalisation kernel

PM (s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

The set M of models is therefore defined by a fixed tree of internal nodes
v0, v1, . . . , vN each labelled with h (vi) from a set A of states. We will as-
sume that the state a = h (n) of a node n is compatible with the num-
ber child (n) = child (a) of its children and determines the distributions
Pi,a (b) = Pi (b|a) of probability that the ith child chi (v) is in state b given
its parent is in state a. The states of leaf nodes are assumed to be the corre-
sponding symbol from Σ. Hence, after we specify a probability distribution
PM (a) over the state h (v0) of the root node, this implies a distribution over
the states of the n leaf nodes l1, . . . , ln. This probabilistic graphical model
describes a distribution of probability over all sequences from Σn given by

P (s) =
∑
h∈M

n∏
k=1

[h (lk) = sk] PM (h (v0))
N∏

i=0

child(h(vi))∏
j=1

Pj (h (chj (vi)) |h (vi)) .

Example 12.16 Consider the case of a fixed binary tree with binary states
and symbols. Furthermore, we assume the conditional probabilities are the
same for both children, so that we have only two degrees of freedom ε and
δ for the internal nodes

P (0|1) = ε P (1|0) = δ

P (1|1) = 1 − ε P (0|0) = 1 − δ,

with another degree of freedom τ for the probability of the root-state

P (h(v0) = 1) = τ and P (h(v0) = 0) = 1 − τ .
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Hence, for this example we need only specify three parameters.

Figure 12.4 shows an example of a hidden tree model. The tree model

h1

h2 h3

h7h6h5h4

S1 S2 S3 S4 S5 S6 S7 S8

Fig. 12.4. A hidden tree model for generating a fixed length string.

is another example of a probabilistic graphical model. In general the num-
ber of different states of the tree make it impractical to perform a direct
computation of the associated marginalisation kernel

κ(s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

Since this probability is parametrised by the state of the internal nodes,
there are exponentially many states h that can be used to measure the
probability of a sequence corresponding to the exponentially many features
φh(s) = P (s|h) for h ∈ M that define the feature space. Once again we must
devise a dynamic programme that can short-circuit the full computation by
making use of the specific structure of the model.

This dynamic programme is an example of a message passing algorithm,
that with a single depth-first traversal of the tree can compute the joint
probability of the two input sequences summed over all compatible hidden
states. This quantity is stored at the root node, after the traversal when
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the relative message passing is completed. At each node, a number of values
or ‘messages’ are stored, and they are calculated based only on the values
stored at their children, as will be described below.

Once again we must store separate values at each node for each state. As
usual we define these as auxiliary kernels

κv,a(s, t) =
∑

h∈Ta(v)

P (s|h)P (t|h)PM (h),

where Ta (v) is the sub-model generated on the complete subtree rooted at
the node v with the node v fixed into state a, i.e. all labellings possible for
the nodes of the subtree with the root in state a. The critical recursion that
now makes possible the computation is as follows

κv,a(s, t) =
∑

h∈Ta(v)

P (s|h)P (t|h)PM (h)

=
∑

b∈Achild(a)

child(a)∏
j=1

P (bj |a)
∑

h∈Tbj
(chj(v))

P (s|h)P (t|h)PM (h)

=
∑

b∈Achild(a)

child(a)∏
j=1

P (bj |a) κchj(v),bj
(s, t)

=
child(a)∏

j=1

∑
b∈A

P (b|a) κchj(v),b (s, t) ,

where the final line again follows from the use of the distributive law as in
equation (12.1). If we consider the case of a binary tree with binary states,
the computation at an internal node v involves two values

κchj(v),0 (s, t) and κchj(v),1 (s, t)

being received from each of the two children ch1 (v) and ch2 (v). These four
values are then combined with the probabilities P (0|0), P (0|1), P (1|0) and
P (1|1) to compute the values

κv,0 (s, t) and κv,1 (s, t)

subsequently passed on to its parent. In general there are |A| messages from
each child that must be received and appropriately processed.

The value of the kernel is given

κ(s, t) =
∑
a∈A

PM (a) κvo,a(s, t),
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that is the appropriately weighted sum of the kernels obtained by fixing
the root node v0 to each of the possible states. Similarly, the base of the
recursion is given by

κli,a(s, t) = [si = ti = a] ,

since this corresponds to a deterministic state at the leaf li which either
agrees with both of the corresponding symbols si and ti or not. The re-
sult is summarised in the following algorithm that uses a recursive function
returning an array of kernel values indexed by the states.

Algorithm 12.17 [Hidden tree model kernel] The hidden tree model kernel
is computed in Code Fragment 12.3.

The complexity of Algorithm 12.17 can be estimated by observing that
each node v of the tree is visited once with a call to Treerecur (v) and that
the computation involved for each call is bounded by O

(
|A|2 d+

)
, where d+

is the maximum number of children of the tree nodes. Hence, the overall
algorithm has complexity

O
(
N |A|2 d+

)
,

since N is the number of nodes in the tree.

Remark 12.18 [Swapping sums and products] Note how the strategy suc-
ceeds in breaking down the overall sum of products into a staged sequence
of manageable sums, one at each internal node. Hence, there has again been
a partial swapping of the sums and products from the original definition,
each swap leading to a corresponding reduction in the complexity.

Example 12.19 Consider Example 12.16. Since this is a binary tree the
recursion is somewhat simpler with all the indexing sets running from 0 to
1. For this case lines 17-26 of the algorithm can, for example, be replaced by

17 Kern (0) = ((1 − δ) Kerp (0, 0) + ε Kerp (0, 1))
18 ((1 − δ) Kerp (1, 0) + ε Kerp (1, 1)) ;
19 Kern (1) = (δ Kerp (0, 0) + (1 − ε) Kerp (0, 1))
20 (δ Kerp (1, 0) + (1 − ε) Kerp (1, 1)) ;

Example 12.20 [Phylogenetic profiles] In its simplest form a phylogenetic
profile of a gene or a protein is a string of bits each indicating the presence
or absence of a homologue of the gene or protein in a different organism. It
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Input Symbol strings s and t, tree structure and conditional state
probabilities PM (a|b), initial state probabilities PM (a)

Process Assume p states, 1, . . . , p.
2 DP = Treerecur (v0) ;
3 Kern = 0;
4 for a = 1 : p
5 Kern = Kern +PM (a) DP (a) ;
6 end
where Treerecur (v)
8 if v = li
9 if si = ti DP (si) = 1;
10 return DP;
11 end
12 for j = 1 : child (v)
13 DPp (j, :) = Treerecur (chj (v)) ;
14 for a = 1 : p
15 if child (a) �= child (v)
16 DP (a) = 0;
17 else
18 DP (a) = 1;
19 for j = 1 : child (a)
20 DPq = 0;
21 for b = 1 : p
22 DPq = DPq +PM (a|b) DPp (j, b) ;
23 end
24 DP (a) = DP (a) DPq;
25 end
26 end
27 return DP;
Output κ (s, t) = Kern

Code Fragment 12.3. Pseudocode for the hidden tree model kernel.

is assumed that functionally related genes have similar phylogenetic profiles.
In this context the question of defining similarity between such profiles is
crucial. Instead of just counting the number of organisms in which the
two genes are simultaneously present or absent, intuitively one could hope
to obtain more information by comparing the entire evolutionary history
of the two genes. Though the precise history is not available, it can be
modeled by a phylogenetic tree and probabilities can be computed with it.
A phylogenetic tree of a group of organisms is a rooted tree, where each leaf
represents an organism currently existing, and each internal node represents
an extinct species, with the edges of the tree indicating that the child
species evolved from the parent. The transmission of genes during evolution
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can be modelled using the tree models considered in this section, that is a
probabilistic graphical model that defines a joint probability distribution P

for a set of random binary variables indexed by the nodes of the tree. The
probabilities that a species has a gene when its parent does not is encoded
in P (0|1) and so on. Hence, assuming knowledge of the phylogenetic tree,
the kernel we have defined can be used to measure the relatedness of two
genes based on their phylogenetic profiles.

Remark 12.21 [More general tree kernels] It is possible to extend the above
kernel to consider all subtrees of the given tree structure, where the subtrees
are obtained by pruning complete subtrees. Furthermore it is possible to
consider the case in which we do not know the topology of the tree, and
we want to marginalise over a large number of possible topologies. More
information and pointers to the relevant literature can be found in Section
12.4.

12.2 Fisher kernels

12.2.1 From probability to geometry

The main idea behind marginalisation kernels was to consider the probabil-
ity of the data given one model P (x|m) as a feature. Given a single model
this is very little information that is potentially misleading since two very
different data items could be given the same probability by the model with-
out this indicating any similarity. The marginalisation kernels overcame
this weakness by comparing the scores of data items under several different
models, typically exponentially many models.

We now consider an alternative strategy known as the Fisher kernel that
attempts to extract from a single generative model more information than
simply their output probability. The aim is to analyse how the score de-
pends on the model, which aspects of the model have been important in
determining that score, and hence obtaining information about the internal
representation of the data items within the model.

For such an approach to work we require the single model to be more
flexible so that we can measure how it adapts to individual data items. We
will therefore need the model to be smoothly parametrised so that derivatives
of the model with respect to the parameters can be computed.

Remark 12.22 [Relation between generative model and Fisher kernels]
These ideas are clearly related. In the case of marginalisation kernels we
typically create a finite but very large set of models over which the scores



422 Kernels from generative models

are computed. We now consider a parametrised model with a particular pa-
rameter setting, but measure how the model changes in the neighbourhood
of that setting. Hence, we can see the approach as considering a class of
models obtained by deforming the current model. In this case, however, the
information is summarised in a feature space whose dimension is equal to
the number of parameters. Despite these connections the approaches are
complementary in the sense that marginalisation kernels typically consider
a set of models indexed by a discrete set, for example the paths of a hid-
den Markov model. Any smooth parameters are treated as constant. The
Fisher kernel on the other hand is based only on the modelling of smooth
parameters.

Remark 12.23 [Features from internal computations] Yet another approach
would be to extract information from the ‘internal computations’ of the
model in order to evaluate its probabilities. It is the generation process of
a data point that should enable a fuller description in the feature space, so
that the difference in the generation process and not just in the computed
probability can be exploited for comparing two examples x and z.

Our starting point is a smooth parametric model Pθ0 (x) = P
(
x|θ0

)
of

the data that computes the probability of a given input x being produced
by the underlying generative process with the vector of parameters θ set to
θ0.

We will construct features φi one for each model parameter θi by exam-
ining slight perturbations of that parameter around the given setting θ0

i , in
this way obtaining several models or perspectives by extracting information
about how the different parameters affect the score of x.

More specifically, if one wanted to adapt the parameters of a model in
order to accommodate a new data item by increasing its likelihood under
the model, the parameters will have to be adapted in different ways. If we
use a gradient approach to parameter tuning, the partial derivatives of the
score Pθ0 (x) with respect to the parameters contain the information about
how much each parameter should be moved in order to accommodate the
new point.

In this perspective, it seems natural to compare two data points through
the directions in which they ‘stretch’ the parameters of the model, that is by
viewing the score function at the two points as a function of the parameters
and comparing the two gradients. If the gradient vectors are similar it
means that the two data items would adapt the model in the same way,
that is from the point of view of the given parametric model at the current



12.2 Fisher kernels 423

parameter setting they are similar in the sense that they would require
similar adaptations to the parameters.

Remark 12.24 [Features corresponding to constraints] There are other
intuitive interpretations of the approach of describing the data items by the
perturbations of the score caused by slight parameter movements. Consider
a model that calculates the probability of a data item x being generated by
checking if it satisfies certain constraints, with each constraint being assessed
by one parameter. If some are violated, the data item is less representative of
the model and so will receive a lower score, depending on the magnitude and
number of the violations. The Fisher kernel compares two data points with
respect to all relevant properties of the data model by comparing the pattern
of behaviour of each with respect to the different constraints. One could also
view these features as the Lagrange multipliers assessing the degree to which
the input is attempting to violate the different constraints.

What we have introduced in an intuitive way is a representation of the
data that is based on a single parametrised probabilistic model. The pur-
pose of Fisher kernels is to capture the internal representation of the data
exploited by such models in order to compute its score.

Definition 12.25 [Smoothly parametrised model class] A smoothly para-
metrised model class is a set of probability distributions

M = {Pθ (x) : θ ∈ Θ}
on an input space X, where Θ ⊆ R

N for some finite N . We say that each
parameter setting θ determines a model m (θ) of the data. We define the
likelihood of a data item x with respect to the model m(θ) for a given setting
of the parameters θ to be

Lθ(x) = P (x|θ) = Pθ (x) .

Probabilistic models assess the degree of fit of a data point to a model by
its likelihood. We can learn the model parameters θ by adapting them to
maximise the likelihood of the training set, i.e. the probability

�∏
i=1

Lθ(xi)

that all of the training points were generated independently in the model.
The problem of learning a model in this way is something with which we are
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not concerned in this book. We will assume throughout that the setting of
the parameters θ0 has been determined. This can be done, for example, by
gradient ascent of the likelihood of the training set. From this perspective an
intuitive way to assess the relationship of a new point to the model is to see
what update would be necessary to the parameters in order to incorporate
it, that is what is the gradient of the likelihood at this point. If a point is
a prototypical example of the points accepted by the model, its likelihood
will already be close to maximal and little or no tuning of the parameters
will be necessary. If a point is very unusual with respect to some property,
the gradient in that direction will be large in order to incorporate the new
point.

As we have seen in the discussion so far the information we want to
exploit is contained in the gradient of the likelihood function of the given
data point taken with respect to the tunable parameters. In practice we
consider the log of the likelihood function since this means that products
of probabilities become sums, while at the same time the resulting gradient
vector is just rescaled. We can also use the second order derivatives to refine
the comparison.

Definition 12.26 [Fisher score and Fisher information matrix] The log-
likelihood of a data item x with respect to the model m(θ0) for a given
setting of the parameters θ0 is defined to be

logLθ0(x).

Consider the vector gradient of the log-likelihood

g (θ, x) =
(

∂ logLθ(x)
∂θi

)N

i=1

.

The Fisher score of a data item x with respect to the model m(θ0) for a
given setting of the parameters θ0 is

g
(
θ0, x

)
.

The Fisher information matrix with respect to the model m(θ0) for a given
setting of the parameters θ0 is given by

IM = E

[
g
(
θ0, x

)
g
(
θ0, x

)′] ,

where the expectation is over the generation of the data point x according
to the data generating distribution.

The Fisher score gives us an embedding into the feature space R
N and
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hence immediately suggests a possible kernel. The matrix IM can be used
to define a non-standard inner product in that feature space.

Definition 12.27 [Fisher kernel] The invariant Fisher kernel with respect
to the model m(θ0) for a given setting of the parameters θ0 is defined as

κ(x, z) = g
(
θ0, x

)′ I−1
M g

(
θ0, z

)
.

The practical Fisher kernel is defined as

κ(x, z) = g
(
θ0, x

)′ g (θ0, z
)
.

Remark 12.28 [Problem of small norms] Notice that this kernel may give
a small norm to very typical points, while atypical points may have large
derivatives and so a correspondingly larger norm. The derivative of the log
implies division by P (x|θ), which will to some extent reinforce this effect.
There is, therefore, a danger that the inner product between two typical
points can become very small, despite their being similar in the model. This
effect is can of course be overcome by normalising the kernel.

Remark 12.29 [Using the Gaussian kernel] Another way to use the Fisher
score that does not suffer from the problem described above is to use the
Gaussian kernel based on distance in the Fisher score space

κ (x, z) = exp

(
−
∥∥g (θ0, x

)− g
(
θ0, z

)∥∥2

2σ2

)
.

We examine now some simple examples to illustrate the concepts intro-
duced so far.

Example 12.30 [1-dim Gaussian Fisher kernel] Consider the model class
M on X = R defined by the 1-dimensional Gaussian distributions

M =

{
P (x|θ) =

1√
2πσ

exp

(
−(x − µ)2

2σ2

)
: θ = (µ, σ) ∈ R

2

}
.

The log-likelihood of a point x as a function of the parameters θ = (µ, σ) is

logL(µ,σ) (x) = −(x − µ)2

2σ2
− 1

2
log (2πσ) .



426 Kernels from generative models

Hence, the Fisher scores of a point x at parameter setting θ0 = (µ0, σ0) is

g
(
θ0, x

)
=

(
(x − µ0)

σ2
0

,
(x − µ0)

2

σ3
0

− 1
2σ0

)
.

If we use the embedding

φ (x) = g
(
θ0, x

)
,

as in the practical Fisher kernel, then we obtain the following embedding
for the case when µ0 = 0 and σ0 = 1

φ (x) =
(
x, x2 − 0.5

)
,

which is equivalent to the polynomial kernel of degree 2 with the real line
being embedded onto the curve y = x2 − 0.5 as shown in Figure 12.5. Using
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Fig. 12.5. Feature space embedding corresponding to the Fisher kernel of a one-
dimensional Gaussians.

hyperplanes in this 2-dimensional space shows that the embedding will allow
classifications that reflect exclusions of independent amounts of each tail of
the Gaussian, something not possible with the standard (1-dimensional)
inner product. Note that this will be true even if the true Gaussian is
different from that given by the parameter setting θ0, though the closer to
the true distribution it is the easier it will be to achieve the separation.

Example 12.31 [Two fixed width Gaussians] If we assume our data has
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been generated by two Gaussians with pre-fixed widths both equal to σ

and means stored as the parameters θ = (µ+, µ−), the gradient of the log-
likelihood with respect to the two tunable parameters is

g
(
θ0, x

)
=

((
x − µ+

0

)
σ2

,

(
x − µ−

0

)
σ2

)
.

This will not enrich the capacity of the function class since it maps to a line
in the two-dimensional feature space.

The two examples above illustrate how different assumptions on the source
generating the data can change the embedding map, and a correct or even
approximately correct guess of the model can improve the embedding.

We now show with examples how Fisher kernels can be used to deal with
structured objects such as for example the strings of symbols in text or
DNA. Frequently a generative model exists for such objects or can be in-
ferred from easily available unlabelled data. We will gradually move from
artificial to real cases, starting from fixed length strings of independently
generated symbols, moving to Markov models and finally to HMMs. As
before with exponential case, the same string can be embedded in different
spaces depending on the generative model we decide to use.

Example 12.32 [Markov strings] We consider a generative model for strings
of length n parametrised by probabilities pu→σ that the next character fol-
lowing a string u of length k is σ. We therefore compute the likelihood of a
string s as

n−k∏
j=1

ps(j:j+k−1)→sj+k
,

that is the product of the probabilities for each of the characters that have
at least k predecessors in the string. If we assume that∑

σ∈Σ

pu→σ = 1, for all u ∈ Σk,

and that the first k symbols of the strings are fixed (if necessary these
could be k special marker symbols added to the beginning of the string),
the likelihoods corresponds to a distribution over the set of possible strings.
This implies certain constraints on the parameters pu→σ which would affect
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the calculation of the derivatives. We therefore choose to parametrise the
model with arbitrary real-values θ = (au→σ)u∈Σk,σ∈Σ with

pu→σ =
au→σ∑

σ∈Σ au→σ
.

The Fisher score now becomes

g
(
θ0, s

)
u→σ

=
∂ logLθ(s)

∂au→σ

=
n−k∑
j=1

∂ log ps(j:j+k−1)→sj+k

∂au→σ

=
n−k∑
j=1

[s (j : j + k − 1) = u]

(
[sj+k = σ]

1
as(j:j+k−1)→sj+k

− 1∑
σ∈Σ as(j:j+k−1)→σ

)
.

If we consider the parameter setting θ0 for which all au→σ = pu→σ = |Σ|−1

the computation simplifies to

g
(
θ0, s

)
u→σ

= |{(v1, v2) : s = v1uσv2}| |Σ| − |{(v1, v2) : s = v1uv2}| .

Ignoring the second term this becomes the p-spectrum kernel of length k+1
scaled by |Σ|. The second term subtracts the first term for the given u

averaged in s over the possible next characters σ, hence projecting the subset
of features that include a k-string u to the hyperplane perpendicular to the
all ones vector.

Remark 12.33 [Arbitrary length strings] Example 12.32 can be extended to
arbitrary length strings by introducing an end-of-string state to which we can
transfer with certain probability at any time. More generally the approach
suggests that we may improve the performance of the p-spectrum kernel by
tuning the parameters au→σ for example using counts of the transitions in
the whole corpus. This corresponds to learning the model from the training
data.

Note how the states of the corresponding Markov model are labelled by
subsequences uσ of length k + 1, with the transitions defined by adding
the next symbol to the suffix of length k. This suggests that we could
generalise the approach by allowing states that correspond to different length
subsequences perhaps chosen so that they are neither too frequent or too
rare. The transition for a state u and symbol σ would be to the longest



12.2 Fisher kernels 429

suffix of uσ that corresponds to a state. Again the transition parameters
could be inferred from the training data.

The examples we have considered so far have all been for the practical
Fisher kernel. The invariant Fisher kernel suffers from the drawback that it
requires us to compute a random matrix

IM = E

[
g
(
θ0, x

)
g
(
θ0, x

)′]
where x is drawn according to the input distribution, something that we
are not able to do in practice. Before considering this problem we will first
indicate why the name ‘invariant’ is appropriate. If we reparametrise the
model using an invertible differentiable transformation

ψ = ψ (θ) ,

we might expect that the resulting kernel would change. The embedding will
certainly alter and so the practical Fisher kernel will change with it, but the
invariant Fisher kernel is not affected by this reparametrisation since if κ̃ is
the transformed kernel we have

g
(
θ0, x

)′ =
(

∂ logLψ(x)
∂ψi

)N

i=1

J (ψ) = g
(
ψ0, x

)′ J (ψ0
)
,

where J
(
ψ0
)

is the Jacobian of the transformation ψ evaluated at ψ0. It
follows that

κ̃(x1, x2)

= g
(
ψ0, x1

)′ Ĩ−1
M g

(
ψ0, x2

)
= g

(
θ0, x1

)′ J (ψ0
)−1

E

[
J
(
ψ0
)′−1 g

(
θ0, x

)
g
(
θ0, x

)′ J (ψ0
)−1

]−1
J
(
ψ0
)′−1 g

(
θ0, x2

)
= g

(
θ0, x1

)′ J (ψ0
)−1 J

(
ψ0
)

E

[
g
(
θ0, x

)
g
(
θ0, x

)′]−1
J
(
ψ0
)′ J (ψ0

)′−1 g
(
θ0, x2

)
= g

(
θ0, x1

)′
E

[
g
(
θ0, x

)
g
(
θ0, x

)′]−1
g
(
θ0, x2

)
= κ (x1, x2) .

The invariant Fisher kernel is indeed invariant to any smooth invertible
reparametrisation of the model. This would appear to be a desirable prop-
erty if we believe that the choice of parametrisation is somewhat arbitrary.
We will see, however, that this view may be misleading.
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Let us return to the question of computing the Fisher information matrix

IM = E

[
g
(
θ0, x

)
g
(
θ0, x

)′] .

A natural approximation for the matrix is to take the empirical rather than
the true expectation. In other words we estimate the matrix by averaging
over the sample

ÎM = Ê

[
g
(
θ0, x

)
g
(
θ0, x

)′] =
1
�

�∑
i=1

g
(
θ0, xi

)
g
(
θ0, xi

)′ .
In this case ÎM is simply the covariance matrix of the Fisher scores. Hence,
the Fisher kernel becomes equivalent to whitening these scores (see Algo-
rithm 6.16), with the associated dangers of amplifying noise if certain pa-
rameters are not relevant for the information contained in the training set.
Hence, the invariance comes at the cost of possibly reducing the signal to
noise ratio in the representation.

12.2.2 Fisher kernels for hidden Markov models

We now consider deriving Fisher kernels for the hidden Markov models that
we developed to create generative kernels. Consider first the fixed length
hidden Markov models described in Section 12.1.4. We now view the model
as the sum over all of the state paths or individual models with the parame-
ters the various transition and emission probabilities, so that for a particular
parameter setting the probability of a sequence s is given by

PM (s) =
∑

m∈An

P (s|m)PM (m) =
∑

m∈An

PM (s, m),

where

PM (m) = PM (m1)PM (m2|m1) . . . PM (mn|mn−1),

and

P (s|m) =
n∏

i=1

P (si|mi)

so that

PM (s, m) =
n∏

i=1

P (si|mi) P (mi|mi−1) .
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The parameters of the model are the emission probabilities P (si|mi) and
the transition probabilities PM (mi|mi−1). For convenience we introduce
parameters

θsi|mi
= P (si|mi) and τmi|mi−1

= PM (mi|mi−1) ,

where we use the convention that PM (m1) = PM (m1|m0) with m0 = a0

for a special fixed state a0 �∈ A. We again have the difficulty experienced in
Example 12.32 that these parameters are not independent. Using the same
approach as was adopted in that example we introduce the unconstrained
parameters

θσ,a and τa,b

with

θσ|a =
θσ,a∑

σ′∈Σ θσ′,a
and τa|b =

τa,b∑
a′∈A τa′,b

.

We assemble these values into a parameter vector θ. Furthermore we assume
that the parameter setting at which the derivatives are computed satisfies∑

σ∈Σ

θσ,a =
∑
a∈A

τa,b = 1, (12.4)

for all a, b ∈ A in order to simplify the calculations.
We must compute the derivatives of the log-likelihood with respect to the

parameters θ and τ . The computations for both sets of parameters follow an
identical pattern, so to simplify the presentation we first derive a template
that subsumes both cases. Let

ψ̄ (b, a) =
ψ (b, a)∑

b′∈B ψ (b′, a)
, for a ∈ A and b ∈ B.

Let

Q (a,b) =
n∏

i=1

ψ̄ (bi, ai) ci,

for some constants ci. Consider the derivative of Q (a,b) with respect to
the parameter ψ (b, a) at a point

(
a0,b0

)
where∑

b∈B

ψ
(
b, a0

i

)
= 1 for all i. (12.5)

We have
∂Q (a,b)
∂ψ (b, a)

=
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=
n∑

k=1

ck

∏
i�=k

ψ̄
(
b0
i , a

0
i

)
ci

∂

∂ψ (b, a)
ψ (bk, ak)∑

b′∈B ψ (b′, ak)

=
n∑

k=1

(
[b0

k = b][a0
k = a]∑

b′∈B ψ
(
b′, a0

k

) − ψ
(
b0
k, a

0
k

)
[a0

k = a](∑
b′∈B ψ

(
b′, a0

k

))2
)

ck

∏
i�=k

ψ̄
(
b0
i , a

0
i

)
ci

=
n∑

k=1

(
[b0

k = b][a0
k = a]

ψ̄ (b, a)
− [a0

k = a]
)∏

i=k

ψ̄
(
b0
i , a

0
i

)
ci

=
n∑

k=1

(
[b0

k = b][a0
k = a]

ψ̄ (b, a)
− [a0

k = a]
)

Q
(
a0,b0

)
,

where we have made use (12.5) to obtain the third line from the second.
We now return to considering the derivatives of the log-likelihood, first with
respect to the parameter θσ,a

∂ log PM (s|θ)
∂θσ,a

=
1

PM (s|θ)
∂

∂θσ,a

∑
m∈An

n∏
i=1

P (si|mi) PM (mi|mi−1)

=
1

PM (s|θ)

∑
m∈An

∂

∂θσ,a

n∏
i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
.

Letting a be the sequence of states m and b the string s, with ψ (a, b) = θb,a

and ci = τmi|mi−1
we have

Q (a,b) =
n∏

i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
= PM (s, m|θ) .

It follows from the derivative of Q that

∂ log PM (s|θ)
∂θσ,a

=
∑

m∈An

n∑
k=1

(
[sk = σ][mk = a]

θσ|a
− [mk = a]

)
PM (s, m|θ)
PM (s|θ)

=
n∑

k=1

∑
m∈An

(
[sk = σ][mk = a]

θσ|a
− [mk = a]

)
PM (m|s,θ)

=
n∑

k=1

E

[
[sk = σ][mk = a]

θσ|a
− [mk = a]

∣∣∣∣ s,θ]

=
1

θσ|a

n∑
k=1

E [[sk = σ][mk = a]|s,θ] −
n∑

k=1

E [[mk = a]|s,θ] ,

where the expectations are over the hidden states that generate s. Now
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consider the derivatives with respect to the parameter τa,b

∂ log PM (s|θ)
∂τa,b

=
1

PM (s|θ)
∂

∂τa,b

∑
m∈An

n∏
i=1

P (si|mi) PM (mi|mi−1)

=
1

PM (s|θ)

∑
m∈An

∂

∂τa,b

n∏
i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
.

Letting a and b be the sequence of states m and b be the same sequence of
states shifted one position, with ψ (a, b) = τa,b and ci = θsi|mi

, we have

Q (a,b) =
n∏

i=1

θsi|mi

τmi,mi−1∑
a′∈A τa′,mi−1

τmi|mi−1
= PM (s, m|θ) .

It follows from the derivative of Q that

∂ log PM (s|θ)
∂τa,b

=
n∑

k=1

∑
m∈An

(
[mk−1 = b][mk = a]

τa|b
− [mk = a]

)
PM (m|s,θ)

=
1

τa|b

n∑
k=1

E [[mk−1 = b][mk = a]|s,θ] −
n∑

k=1

E [[mk = a]|s,θ] ,

It remains to compute the expectations in each of the sums. These are
the expectations that the particular emissions and transitions occurred in
the generation of the string s.

The computation of these quantities will rely on an algorithm known as
the forwards–backwards algorithm. As the name suggests this is a two-stage
algorithm that computes the quantities

fa (i) = P (s1 . . . si, mi = a) ,

in other words the probability that the ith hidden state is a with the prefix
of the string s together with the probability P (s) of the sequence. Following
this the backwards algorithm computes

ba (i) = P (si+1 . . . sn|mi = a) .

Once these values have been computed it is possible to evaluate the expec-
tation

E [[sk = σ][mk = a]|s]
= P (sk = σ, mk = a|s)
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= [sk = σ]
P (sk+1 . . . sn|mk = a) P (s1 . . . sk, mk = a)

P (s)

= [sk = σ]
fa (k) ba (k)

P (s)
.

Similarly

E [[mk = a]|s] = P (mk = a|s)
=

P (sk+1 . . . sn|mk = a) P (s1 . . . sk, mk = a)
P (s)

=
fa (k) ba (k)

P (s)
.

Finally, for the second pair of expectations the only tricky evaluation is
E [[mk−1 = b][mk = a]|s], which equals

P (sk+1 . . . sn|mk = a) P (s1 . . . sk−1, mk−1 = b) P (a|b) P (sk|mk = a)
P (s)

=
fb (k − 1) ba (k) τa|bθsk|a

P (s)
.

Hence, the Fisher scores can be evaluated based on the results of the
forwards–backwards algorithm. The forwards–backwards algorithm again
uses a dynamic programming approach based on the recursion

fb (i + 1) = θsi+1|b
∑
a∈A

fa (i) τ b|a,

with fa0 (0) = 1 and fa (0) = 0, for a = a0. Once the forward recursion is
complete we have

P (s) =
∑
a∈A

fa (n) .

The initialisation for the backward algorithm is

ba (n) = 1

with the recursion

bb (i) =
∑
a∈A

τa|bθσi+1|aba (i + 1) .

Putting all of these observations together we obtain the following algorithm,
where we only evaluate the Fisher scores for the emission probabilities for
brevity.
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Algorithm 12.34 [Fixed length Markov model Fisher kernel] The Fisher
scores for the fixed length Markov model Fisher kernel are computed in Code
Fragment 12.4.

Input Symbol string s, state transition probability matrix PM (a|b),
initial state probabilities PM (a) = PM (a|a0)
and conditional probabilities P (σ|a) of symbols given states.

Process Assume p states, 0, 1, . . . , p.
2 score (:, :) = 0;
3 forw (:, 0) = 0;
4 back (:, n) = 1;

f (0, 0) = 1; Prob = 0;
5 for i = 1 : n
7 for a = 1 : p
8 forw (a, i) = 0;
9 for b = 1 : p
10 forw (a, i) = forw (a, i) + PM (a|b) forw (b, i − 1) ;
11 end
12 forw (a, i) = forw (a, i) P (si|a) ;
13 end
14 end
15 for a = 1 : p
16 Prob = Prob + forw (a, n) ;
17 end
18 for i = n − 1 : 1
19 for a = 1 : p
20 back (a, i) = 0;
21 for b = 1 : p
22 back (a, i) = back (a, i) + PM (b|a) P (si+1|b) back (b, i + 1) ;
23 end
24 score (a, si) = score (a, si) + back (a, i) forw (a, i) / (P (si|a) Prob) ;
25 for σ ∈ Σ
26 score (a, σ) = score (a, σ) + back (a, i) forw (a, i) / Prob;
27 end
28 end
Output Fisher score = score

Code Fragment 12.4. Pseudocode to compute the Fisher scores for the fixed length
Markov model Fisher kernel.

12.3 Summary

• P -kernels arise from probability distributions over pairs of examples.
• marginalisation kernels compute the probability that two examples are

generated over a class of models.
• marginalisation kernels can be computed efficiently for a number of com-
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plex generative models including fixed length hidden Markov models, pair
hidden Markov models and hidden tree models.

• Fisher kernels use the gradient of the log-likelihood as a feature vector.
• Fisher kernels can be efficiently evaluated for hidden Markov models.

12.4 Further reading and advanced topics

The notion of P -kernel was introduced by Haussler [54], while Watkins [158],
[157] independently discussed conditional independence kernels, and the case
of hidden Markov models. These ideas were later applied by Vert, defining
first a family of kernels for strings based on simple probabilistic models [147]
and then based on the hidden tree model [148] (our discussion of the hidden
tree model is based on the work of Vert, while our discussion of the pair
HMM kernel is derived from the work of Watkins, but more generally draws
from the literature on context trees and on message-passing methods for
marginalising probabilities in graphical models). The formal presentation
of the pair-HMMs kernel is however based on the Durbin et al. ‘forward’
algorithm [42].

Pair HMMs have also been used as kernels by J.-P. Vert et al. [150].
Extensions of these ideas can be found in the papers of marginalised kernels
of Koji Tsuda [139], [78], which also exploit stochastic context free grammars
as generative models.

Another extension from trees to certain graphs is also possible using
the techniques from [133], but overall the general problem is best attacked
with the algorithms and concepts developed within the field of probabilistic
graphical models, where the sum-product algorithm and its extension are
used for marginalisation. A new book on this topic will be forthcoming
shortly [70].

The notion of Fisher kernel was defined by Jaakkola and Haussler [63],
[64] and later used by several authors, for example Hoffmann in [59]. For
the treatment of string kernels as Fisher kernels, see [116].

Rational Kernels [25] are based on the definition of transducers. They
can be related to pair HMMs but as with our presentation here have the ad-
vantage of automatically having the finitely positive semi-definite property.
Furthermore, they define a very broad class of kernels. A more recent paper
of Cuturi and Vert [36] also discusses string kernels based on probabilistic
models and pair HMMs.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net



Appendix A

Proofs omitted from the main text

A.1 Proof of McDiarmid’s theorem

Theorem A.1 (McDiarmid [96]) Let X1, . . . , Xn be independent random
variables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then for all ε > 0,

P {f (X1, . . . , Xn) − Ef (X1, . . . , Xn) ≥ ε} ≤ exp
( −2ε2∑n

i=1 c2
i

)
.

Proof Let Vi = Vi (X1, . . . , Xi) = E[f |X1, . . . , Xi]−E[f |X1, . . . , Xi−1], where
we have denoted f(X1, . . . , Xn) with a simple f . Hence

f − E[f ] =
n∑

i=1

Vi.

We will denote the probability distribution of Xi by Pi, while with P we
denote as above the overall distribution. So, for any s > 0, we have

P {f − E[f ] ≥ ε} = P

{
n∑

i=1

Vi ≥ ε

}
= P

{
exp

(
s

n∑
i=1

Vi

)
exp (−sε) ≥ 1

}

≤ E

[
exp

(
s

n∑
i=1

Vi

)]
exp (−sε)

= exp (−sε) E

[
n∏

i=1

exp (sVi)

]
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= exp (−sε) EX1...Xn−1EXn

[
n∏

i=1

exp (sVi) |X1, . . . , Xn−1

]

= exp (−sε) EX1...Xn−1

([
n−1∏
i=1

exp (sVi)

]
(A.1)

EXn [exp (sVn) |X1, . . . , Xn−1]) ,

where we have used the independence of the Vi from Xn, for i = 1, . . . , n−1
and the fact that the expectation of a product of independent variables
equals the product of their expectations. The random variables Vi satisfy

E[Vi|X1, . . . , Xi−1] = E[E[f |X1, . . . , Xi]|X1, . . . , Xi−1] − E[f |X1, . . . , Xi−1]

= E[f |X1, . . . , Xi−1] − E[f |X1, . . . , Xi−1] = 0.

while their range can be bounded by

Li = inf
a

Vi(X1, . . . , Xi−1, a) ≤ Vi (X1, . . . , Xi) ≤ sup
a

Vi(X1, . . . , Xi−1, a) = Ui.

If al and au are the values at which the inf and sup are attained, we have

|Ui − Li|
= |E[f |X1, . . . , Xi−1, Xi = au] − E[f |X1, . . . , Xi−1, Xi = al]|

=
∣∣∣∣∫

An−i

f (X1, . . . , Xi−1, au, xi+1, . . . xn) dPi+1(xi+1) . . . dPn(xn)

−
∫

An−i

f (X1, . . . , Xi−1, al, xi+1, . . . , xn) dPi+1(xi+1) . . . dPn(xn)
∣∣∣∣

≤
∫

An−i

dPi+1(xi+1) . . . dPn(xn) |f (X1, . . . , Xi−1, au, xi+1, . . . , xn)

−f (X1, . . . , Xi−1, al, xi+1, . . . , xn)|
≤ |ci| .

Letting Z(Xi) = Vi(X1, . . . , Xi−1, Xi) be the random variable depending
only on Xi for given fixed values of X1, . . . , Xi−1, note that

exp (sZ) ≤ Z − Li

Ui − Li
exp(sUi) +

Ui − Z

Ui − Li
exp(sLi),

by the convexity of the exponential function. Using the fact that

E[Z] = E[Vi|X1, . . . , Xi−1] = 0,

it follows that

E [exp (sVi) |X1, . . . , Xi−1] = E[exp (sZ)]
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≤ −Li

Ui − Li
exp(sUi) +

Ui

Ui − Li
exp(sLi)

= exp(ψ(s)),

where ψ(s) = ln( −Li
Ui−Li

exp(sUi) + Ui
Ui−Li

exp(sLi)). It is not hard to check
that ψ(0) = ψ′(0) = 0, while ψ′′(s) ≤ 0.25(Ui − Li)2 ≤ 0.25c2

i for s ≥ 0.
Hence, taking three terms of the Taylor series with remainder, we have that

E [exp (sVi) |X1, . . . , Xi−1] ≤ exp
(

s2c2
i

8

)
.

Plugging this into inequality (A.1) for i = n gives

P {f − E[f ] ≥ ε} ≤= exp (−sε) exp
(

s2c2
n

8

)
EX1...Xn−1

[
n−1∏
i=1

exp (sVi)

]
.

By iterating the same argument for n − 1, n − 2, . . . , 1, we can show that

P {f(X1, . . . , Xn) − Ef(X1, . . . , Xn) ≥ ε}

≤ exp (−sε)
n∏

i=1

exp
(

s2c2
i

8

)

= exp

(
−sε +

s2

8

n∑
i=1

c2
i

)

= exp
(
− 2ε2∑n

i=1 c2
i

)
,

where we have chosen s = 4ε
(∑n

i=1 c2
i

)−1 to minimise the expression.

A.2 Stability of principal components analysis

In this appendix we prove the following theorem from Chapter 6.

Theorem A.2 (Theorem 6.14) If we perform PCA in the feature space
defined by a kernel κ(x, z) then with probability greater than 1 − δ, for any
1 ≤ k ≤ �, if we project new data onto the space Uk, the expected squared
residual is bounded by

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]

≤ min
1≤t≤k

⎡⎣1
�
λ>t(S) +

8
�

√√√√(t + 1)
�∑

i=1

κ(xi,xi)2

⎤⎦
+3R2

√
ln(2�/δ)

2�
,
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where the support of the distribution is in a ball of radius R in the feature
space.

The observation that makes the analysis possible is contained in the fol-
lowing theorem.

Theorem A.3 The projection norm ‖PUk
(φ(x))‖2 is a linear function f̂ in

a feature space F̂ for which the kernel function is given by

κ̂(x, z) = κ(x, z)2.

Furthermore the 2-norm of the function f̂ is
√

k.

Proof Let X′ = UΣV′ be the singular value decomposition of the matrix
X′ whose rows are the images of the training examples in the feature space.
The projection norm is then given by

f̂(x) = ‖PUk
(φ(x))‖2 = φ(x)′UkU′

kφ(x),

where Uk is the matrix containing the first k columns of U. Hence we can
write

‖PUk
(φ(x))‖2 =

N∑
i,j=1

αijφ(x)iφ(x)j =
N∑

i,j=1

αijφ̂(x)ij ,

where φ̂ is the mapping into the feature space F̂ composed of all pairs of F

features and αij = (UkU′
k)ij . The standard polynomial construction gives

the corresponding kernel κ̂ as

κ̂(x, z) = κ(x, z)2 =

(
N∑

i=1

φ(x)iφ(z)i

)2

=
N∑

i,j=1

φ(x)iφ(z)iφ(x)jφ(z)j =
N∑

i,j=1

(φ(x)iφ(x)j)(φ(z)iφ(z)j)

= 〈φ(x),φ(z)〉 .

It remains to show that the norm of the linear function is
√

k. The norm
satisfies (note that ‖ · ‖F denotes the Frobenius norm and ui, i = 1, . . . , N ,
the orthonormal columns of U)

‖f̂‖2 =
N∑

i,j=1

α2
ij = ‖UkU′

k‖2
F =

〈
k∑

i=1

uiu′
i,

k∑
j=1

uju′
j

〉
F

=
k∑

i,j=1

(u′
iuj)2 = k,

as required.
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Since the norm of the residual can be viewed as a linear function we can
now apply the methods developed in Chapter 4.

Theorem A.4 If we perform PCA on a training set S of size � in the
feature space defined by a kernel κ(x, z) and project new data onto the space
Uk spanned by the first k eigenvectors, with probability greater than 1 − δ

over the generation of the sample S the expected squared residual is bounded
by

E

[
‖P⊥

Uk
(φ(x))‖2

]
≤ 1

�
λ>k(S) +

8
�

√√√√(k + 1)
�∑

i=1

κ(xi,xi)2 + 3R2

√
ln(2/δ)

2�
,

where

R2 = max
x∈supp(D)

κ(x,x).

Proof Prompted by Theorem A.3 we consider the linear function class

F̂√
k =

{
x → 〈w, φ (x)〉 : ‖w‖ ≤

√
k
}

with respect to the kernel

κ̂(x, z) = κ(x, z)2 = 〈φ(x),φ(z)〉 ,

with corresponding feature mapping φ̂. However, we further augment the
corresponding primal weight vectors with one further dimension while aug-
menting the corresponding feature vectors with a feature

‖φ(x))‖2 = κ(x,x) =
√

κ̂(x,x) = ‖φ̂(x))‖
that is the norm squared in the original feature space. We now apply The-
orem 4.9 to the loss class

F̂L =
{

fL : (φ̂(x), ‖φ̂(x))‖) �→ A(‖φ̂(x))‖ − f(φ̂(x))) | f ∈ F̂√
k

}
(A.2)

⊆ A ◦ F̂ ′√
k+1

,

where F̂ ′√
k+1

is the class of linear functions with norm bounded by
√

k + 1
in the feature space defined by the kernel

κ̂′(x, z) = κ̂(x, z) + κ(x,x)κ(z, z) = κ(x, z)2 + κ(x,x)κ(z, z)

and A is the function

A(x) =

⎧⎨⎩
0 if x ≤ 0;
x/R2 if 0 ≤ x ≤ R2;
1 otherwise.
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The theorem is applied to the pattern function A◦ f̂L where f̂ is the projec-
tion function of Theorem A.3 and f̂L is defined in (A.2). We conclude that
with probability 1 − δ

ED
[
A ◦ f̂L(x)

]
≤ Ê

[
A ◦ f̂L(x)

]
+ R̂�(A ◦ F̂ ′√

k+1
) + 3

√
ln(2/δ)

2�
. (A.3)

First note that the left-hand side of the inequality is equal to

1
R2

E

[
‖P⊥

Uk
(φ(x))‖2

]
,

since A acts as the identity in the range achieved by the function f̂L. Hence,
to obtain the result it remains to evaluate the first two expressions on the
right-hand side of equation (A.3). Again observing that A acts as the iden-
tity in the range achieved, the first is a scaling of the squared residual of the
training set when projecting into the space Uk, that is

1
R2

Ê

[
‖P⊥

Uk
(φ(x))‖2

]
=

1
�R2

�∑
i=k+1

λi =
1

�R2
λ>k(S).

The second expression is R̂�(A ◦ F̂ ′√
k+1

). Here we apply Theorem 4.12 and
Theorem 4.15 part 4 to obtain

R̂�(A ◦ F̂ ′√
k+1

) ≤ 4
√

k + 1
�R2

√
tr
(
K̂′
)

=
4

R2

√
k + 1

�

√√√√4
�

�∑
i=1

κ(xi,xi)2.

Assembling all the components and multiplying by R2 gives the result.

We now apply the bound � times to obtain a proof of Theorem 6.14.

Proof [Proof of Theorem 6.14] We apply Theorem A.4 for k = 1, . . . , �, in
each case replacing δ by δ/�. This ensures that with probability 1 − δ the
assertion holds for all � applications. The result follows from the observation
that for k ≥ t

E

[
‖P⊥

Uk
(φ(x))‖2

]
≤ E

[
‖P⊥

Ut
(φ(x))‖2

]
.

A.3 Proofs of diffusion kernels

Proposition A.5 Provided µ < ‖K‖−1 = ‖G‖−1, the kernel K̂ that solves
the recurrences (10.2) is K times the von Neumann kernel over the base



A.3 Proofs of diffusion kernels 443

kernel K, while the matrix Ĝ satisfies

Ĝ = G(I − µG)−1.

Proof First observe that

K(I − µK)−1 = K(I − µK)−1 − 1
µ

(I − µK)−1 +
1
µ

(I − µK)−1

= − 1
µ

(I − µK)(I − µK)−1 +
1
µ

(I − µK)−1

=
1
µ

(I − µK)−1 − 1
µ
I.

Now if we substitute the second recurrence into the first we obtain

K̂ = µ2DD′K̂DD′ + µDD′DD′ + K

= µ2K(K(I − µK)−1)K + µK2 + K

= µ2K(
1
µ

(I − µK)−1 − 1
µ
I)K + µK2 + K

= µK(I − µK)−1K + K(I − µK)−1(I − µK)

= K(I − µK)−1,

showing that the expression does indeed satisfy the recurrence. Clearly,
by the symmetry of the definition the expression for Ĝ also satisfies the
recurrence.

Proposition A.6 Let K̄(µ) = K exp(µK). Then K̄(µ) corresponds to a
semantic proximity matrix

exp
(µ

2
G
)

.

Proof Let D′ = UΣV′ be the singular value decomposition of D′, so that
K = VΛV′ is the eigenvalue decomposition of K, where Λ = Σ′Σ. We can
write K̄ as

K̄ = VΛ exp(µΛ)V′ = DUΣ exp(µΛ)Σ−1U′D′

= DU exp(µΛ)U′D′ = D exp(µG)D′,

as required.
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Notational conventions

B.1 List of symbols

N dimension of feature space L primal Lagrangian
y ∈ Y output and output space W dual Lagrangian
x ∈ X input and input space ||·||p p-norm, default is 2-norm
||A||F Frobenius norm of a matrix ||A|| spectral/2-norm of a matrix
F feature space ln natural logarithm
F class of real-valued functions e base of the natural log
L class of linear functions log log to the base 2
〈x, z〉 inner product of x and z x′, X′ transpose of vector, matrix
φ mapping to feature space N, R natural, real numbers
κ(x, z) kernel 〈φ (x) ,φ (z)〉 S training set
f(x) real-valued function � training set size
n dimension of input space φ (S) training set in feature space
R radius containing the data η learning rate
H Heaviside function ε error probability
w weight vector δ confidence
b bias γ margin
α dual variables ξ slack variables
C covariance matrix I identity matrix
(x)+ equals x, if x ≥ 0 else 0 K kernel matrix
sgn (x) equals 1, if x ≥ 0 else −1 # cardinality of a set
j all 1s vector

444
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B.2 Notation for Tables

Definition B.1 [Kernel matrix displays] We use a standard notation for
displaying kernel matrices as

K 1 2 · · · �

1 κ (x1,x1) κ (x1,x2) · · · κ (x1,x�)
2 κ (x2,x1) κ (x2,x2) · · · κ (x2,x�)
...

...
...

. . .
...

� κ (x�,x1) κ (x�,x2) · · · κ (x�,x�)

where the symbol K in the top right corner indicates that the table repre-
sents a kernel matrix.

Definition B.2 [Dynamic programming tables] Dynamic programming ta-
bles are displayed in a table with first row and column used for indices and
the top left cell marked with DP, as, for example, in the ANOVA dynamic
programming table:

DP 1 2 · · · n

0 1 1 · · · 1
1 x1z1 x1z1 + x2z2 · · · ∑n

i=1 xizi

2 0 κ2
2 (x, z) · · · κn

2 (x, z)
...

...
...

. . .
...

d 0 0 · · · κn
d (x, z)



Appendix C

List of pattern analysis methods

C.1 Pattern analysis computations

Reference Title Page

Computation 2.5 Ridge regression 31
Computation 5.14 Regularised Fisher discriminant 133
Computation 5.15 Regularised kernel Fisher discriminant 136
Computation 6.3 Maximising variance 144
Computation 6.18 Maximising covariance 157
Computation 6.30 Canonical correlation analysis 166
Computation 6.32 Kernel CCA 169
Computation 6.34 Regularised CCA 172
Computation 6.35 Kernel regularised CCA 172
Computation 7.1 Smallest enclosing hypersphere 197
Computation 7.7 Soft minimal hypersphere 203
Computation 7.10 ν-soft minimal hypersphere 206
Computation 7.19 Hard margin SVM 213
Computation 7.28 1-norm soft margin SVM 220
Computation 7.36 2-norm soft margin SVM 227
Computation 7.40 Ridge regression optimisation 232
Computation 7.43 Quadratic ε-insensitive SVR 235
Computation 7.46 Linear ε-insensitive SVR 237
Computation 7.50 ν-SVR 240
Computation 8.8 Soft ranking 258
Computation 8.17 Cluster quality 266
Computation 8.19 Cluster optimisation strategy 270
Computation 8.25 Multiclass clustering 278
Computation 8.27 Relaxed multiclass clustering 278
Computation 8.30 Visualisation quality 283

446
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C.2 Pattern analysis algorithms

Reference Title Page

Algorithm 5.1 Normalisation 112
Algorithm 5.3 Centering data 115
Algorithm 5.4 Simple novelty detection 118
Algorithm 5.6 Parzen based classifier 121
Algorithm 5.12 Cholesky decomposition or dual Gram–Schmidt 128
Algorithm 5.13 Standardising data 130
Algorithm 5.16 Kernel Fisher discriminant 136
Algorithm 6.6 Primal PCA 146
Algorithm 6.13 Kernel PCA 151
Algorithm 6.16 Whitening 155
Algorithm 6.31 Primal CCA 167
Algorithm 6.36 Kernel CCA 174
Algorithm 6.39 Principal components regression 178
Algorithm 6.42 PLS feature extraction 182
Algorithm 6.45 Primal PLS 186
Algorithm 6.48 Kernel PLS 191
Algorithm 7.2 Smallest hypersphere enclosing data 198
Algorithm 7.8 Soft hypersphere minimisation 204
Algorithm 7.11 ν-soft minimal hypersphere 207
Algorithm 7.21 Hard margin SVM 215
Algorithm 7.26 Alternative hard margin SVM 217
Algorithm 7.29 1-norm soft margin SVM 222
Algorithm 7.32 ν-SVM 225
Algorithm 7.37 2-norm soft margin SVM 229
Algorithm 7.41 Kernel ridge regression 233
Algorithm 7.45 2-norm SVR 236
Algorithm 7.47 1-norm SVR 238
Algorithm 7.51 ν-support vector regression 240
Algorithm 7.52 Kernel perceptron 242
Algorithm 7.59 Kernel adatron 247
Algorithm 7.61 On-line SVR 248
Algorithm 8.9 ν-ranking 259
Algorithm 8.14 On-line ranking 262
Algorithm 8.22 Kernel k-means 274
Algorithm 8.29 MDS for kernel-embedded data 282
Algorithm 8.33 Data visualisation 285
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List of kernels

D.1 Kernel definitions and computations

Reference Title Page

Definition 9.1 Polynomial kernel 292
Computation 9.6 All-subsets kernel 295
Computation 9.8 Gaussian kernel 296
Computation 9.12 ANOVA kernel 299
Computation 9.18 Alternative recursion for ANOVA kernel 302
Computation 9.24 General graph kernels 307
Definition 9.33 Exponential diffusion kernel 313
Definition 9.34 von Neumann diffusion kernel 313
Computation 9.35 Evaluating diffusion kernels 314
Computation 9.46 Evaluating randomised kernels 321
Definition 9.37 Intersection kernel 315
Definition 9.38 Union-complement kernel 316
Remark 9.40 Agreement kernel 316
Definition 9.41 Derived subsets kernel 317
Section 9.6 Kernels on real numbers 318
Remark 9.45 Spline kernels 320
Definition 10.5 Vector space kernel 331
Computation 10.8 Latent semantic kernels 338
Definition 11.7 The p-spectrum kernel 348
Computation 11.10 The p-spectrum recursion 349
Remark 11.13 Blended spectrum kernel 350
Computation 11.17 All-subsequences kernel 353
Computation 11.24 Fixed length subsequences kernel 358
Computation 11.33 Naive recursion for gap-weighted

subsequences kernel
364

Computation 11.36 Gap-weighted subsequences kernel 366
Computation 11.45 Trie-based string kernels 373

448
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D.2 Kernel algorithms

Reference Title Page

Algorithm 9.14 ANOVA kernel 300
Algorithm 9.25 Simple graph kernels 308
Algorithm 11.20 All–non-contiguous subsequences kernel 356
Algorithm 11.25 Fixed length subsequences kernel 358
Algorithm 11.38 Gap-weighted subsequences kernel 367
Algorithm 11.40 Character weighting string kernel 370
Algorithm 11.41 Soft matching string kernel 371
Algorithm 11.42 Gap number weighting string kernel 372
Algorithm 11.46 Trie-based p-spectrum kernel 374
Algorithm 11.51 Trie-based mismatch kernel 377
Algorithm 11.54 Trie-based restricted gap-weighted kernel 380
Algorithm 11.62 Co-rooted subtree kernel 386
Algorithm 11.65 All-subtree kernel 389
Algorithm 12.8 Fixed length HMM kernel 409
Algorithm 12.14 Pair HMM kernel 415
Algorithm 12.17 Hidden tree model kernel 419
Algorithm 12.34 Fixed length Markov model Fisher kernel 435
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Gram–Schmidt orthonormalisation

partial, 128
Gram–Schmidt orthonormalisation, 124
graph kernel, 305

hard margin support vector machine, 213
Heaviside function, 98
hidden Markov model, 403
hidden Markov model kernel

fixed length, 409
hidden tree model kernel, 419
hidden tree model kernels, 416
Hilbert space, 48
hinge loss, 99
Hoeffding’s inequality, 88
hyperplane, 37
hypersphere, 196

insensitive loss, 234
insensitive loss functions, 234
intersection kernel, 315

k-means algorithm, 273
Karush–Kuhn–Tucker (KKT) conditions, 199
kernel, 34
kernel adatron

new, 247
kernel canonical correlation analysis, 169
kernel graph, 305
kernel matrix, 52
kernel methods, 17
kernel normalisation, 112
kernel PCA, 150
kernel regularised CCA, 172
kernels for trees, 383
Kronecker delta, 51
Krylov space, 183
Kuhn-Tucker Theorem, 198

latent semantic kernels, 338
learning methodology, 4
least squares approximation, 29
leave one out, 246
likelihood, 423
linear ranking rule, 254
linear time evaluation, 380
linearly separable, 212
Lipschitz, 98
loss function, 9, 19

margin, 102
margin slack vector, 220
marginalisation kernel, 401
matric space, 49
maximal margin hyperplane, 213
maximising covariance, 157

maximising variance, 143
maximum covariance, 155
McDiarmid’s theorem, 88
Mercer’s theorem, 63
multiclass classification, 20
multidimensional scaling, 281

neural networks, 37
new support vector machine, 225
norm of centre of mass, 113
norm of feature vectors, 112
normalised kernel, 40
novelty detection, 21, 196
nu-ranking, 259

on-line classification, 241
on-line learning, 241, 261
on-line ranking algorithm

new, 262
on-line regression, 241
on-line support vector regression

new, 248
operator

positive, 64
orthonormal matrix, 56
overfitting, 15
overfitting CCA, 169

P-kernel, 398
p-spectrum, 347
pair hidden Markov model, 412
pair hidden Markov model kernel

fixed length, 415
paired dataset, 165
parametrised model class, 423
partial least squares, 180
pattern analysis algorithm, 12
pattern function, 86
perceptron, 37
perceptron algorithm, 261

new, 242
permutation testing, 87
phylogenetic profiles, 419
polynomial kernel, 292
positive definite matrices, 57
positive semi-definite matrices, 48, 57
power method, 185
primal solution, 32
principal axes, 146
principal components analysis, 38, 143
principal components regression, 156, 177
principal coordinates, 146
projection, 123
properties of the centre of mass, 114

QR-decomposition, 125

Rademacher, 92
Rademacher complexity, 95
Rademacher complexity of kernel classes, 99
random variable, 87
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random vector, 87
randomisation, 87
rank, 52
ranking, 20, 253
Rayleigh quotient, 54
RBF kernel, 77
real number kernels, 317
regression, 20, 230

algorithm, 2-norm, 232
regularisation, 30, 93
regularisation of CCA, 172
regularised Fisher discriminant, 133
regularised kernel Fisher discriminant, 136
reproducing kernel Hilbert space, 63
residual, 148
ridge regression, 31
robustness, 13

scalar product, 48
Schur product, 76
semantic kernels, 333
simple novelty detection, 116
singular value decomposition, 141
slack variable, 102, 203
slack variables

variables, 220
soft margin

algorithm, 1-norm, 221
algorithm, 2-norm, 227
optimisation, 219

soft matching string kernel, 370
soft minimal hypersphere, 203, 206
soft ranking, 258
solving CCA, 167
sparseness, 198, 243
spectral clustering, 274
spectrum kernel, 348
stability, 13
stability analysis of CCA, 170
stability of centering, 116
stability of novelty detection, 119
standardised data, 130
statistically stable, 13
stemming, 335

stop words, 330
string, 345
string kernel, 360
structured data, 382
subsequence, 346
subsequences kernel, 357

gap weighted, 361, 379
subspace projection, 80
substring, 345
supervised learning, 19
support vector machines, 211
support vector regression

1-norm, 238
2-norm, 236
new, 240

support vectors, 199, 216

term, 328
term–document matrix, 329
test set, 17
tf–idf representation, 334
trace, 59
training set, 22
transduction, 20
tree kernel

all-subtree, 387
co-rooted subtree, 385

trie, 372
trie-based kernels, 372

uniform convergence, 94
unitary matrix, 56
unsupervised learning, 21

variance, 130
variance of projections, 132
vector space kernel, 331
vector space model, 328
visualisation, 280
von Neumann kernel, 313
Voronoi diagram, 265

weighting by number of gaps, 371
whitening, 81
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