

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803, USA

The Boulevard, Langford Lane
Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

MATLAB® is a trademark of The MathWorks, Inc., and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not
constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the
MATLAB® software.

Library of Congress Cataloging-in-Publication Data
Introduction to pattern recognition : a MATLAB® approach / Sergios Theodoridis … [et al.].

p. cm.
“Compliment of the book Pattern recognition, 4th edition, by S. Theodoridis and K. Koutroumbas,
Academic Press, 2009.”
Includes bibliographical references and index.
ISBN (alk. paper)

1. Pattern recognition systems. 2. Pattern recognition systems–Mathematics. 3. Numerical analysis.
4. MATLAB. I. Theodoridis, Sergios, 1951–. II. Theodoridis, Sergios, Pattern recognition.
TK7882.P3I65 2010
006.4–dc22

2010004354

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our website at www.elsevierdirect.com

Printed in the United States
10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

Preface

The aim of this book is to serve pedagogic goals as a complement of the book Pattern Recognition,
4th Edition, by S. Theodoridis and K. Koutroumbas (Academic Press, 2009). It is the offspring of
our experience in teaching pattern recognition for a number of years to different audiences such as
students with good enough mathematical background, students who are more practice-oriented, pro-
fessional engineers, and computer scientists attending short training courses. The book unravels along
two directions.

The first is to develop a set of MATLAB-based examples so that students will be able to experiment
with methods and algorithms met in the various stages of designing a pattern recognition system—that
is, classifier design, feature selection and generation, and system evaluation. To this end, we have made
an effort to “design” examples that will help the reader grasp the basics behind each method as well as
the respective cons and pros. In pattern recognition, there are no magic recipes that dictate which method
or technique to use for a specific problem. Very often, old good and simple (in concept) techniques can
compete, from an efficiency point of view, with more modern and elaborate techniques. To this end,
that is, selecting the most appropriate technique, it is unfortunate that these days more and more people
follow the so-called black-box approach: try different techniques, using a related S/W package to play
with a set of parameters, even if the real meaning of these parameters is not really understood.

Such an “unscientific” approach, which really prevents thought and creation, also deprives the
“user” of the ability to understand, explain, and interpret the obtained results. For this reason, most of
the examples in this book use simulated data. Hence, one can experiment with different parameters and
study the behavior of the respective method/algorithm. Having control of the data, readers will be able
to “study,” “investigate,” and get familiar with the pros and cons of a technique. One can create data that
can push a technique to its “limits”—that is, where it fails. In addition, most of the real-life problems are
solved in high-dimensional spaces, where visualization is impossible; yet, visualizing geometry is one
of the most powerful and effective pedagogic tools so that a newcomer to the field will be able to “see”
how various methods work. The 3-dimensioanal space is one of the most primitive and deep-rooted
experiences in the human brain because everyone is acquainted with and has a good feeling about and
understanding of it.

The second direction is to provide a summary of the related theory, without mathematics. We
have made an effort, as much as possible, to present the theory using arguments based on physical
reasoning, as well as point out the role of the various parameters and how they can influence the
performance of a method/algorithm. Nevertheless, for a more thorough understanding, the mathematical
formulation cannot be bypassed. It is “there” where the real worthy secrets of a method are, where the
deep understanding has its undisputable roots and grounds, where science lies. Theory and practice
are interrelated—one cannot be developed without the other. This is the reason that we consider this
book a complement of the previously published one. We consider it another branch leaning toward the
practical side, the other branch being the more theoretical one. Both branches are necessary to form the
pattern-recognition tree, which has its roots in the work of hundreds of researchers who have effortlessly
contributed, over a number of decades, both in theory and practice.

ix

x Preface

All the MATLAB functions used throughout this book can be downloaded from the companion
website for this book at www.elsevierdirect.com/9780123744869. Note that, when running the MATLAB
code in the book, the results may slightly vary among different versions of MATLAB. Moreover, we
have made an effort to minimize dependencies on MATLAB toolboxes, as much as possible, and have
developed our own code.

Also, in spite of the careful proofreading of the book, it is still possible that some typos may
have escaped. The authors would appreciate readers notifying them of any that are found, as well as
suggestions related to the MATLAB code.

CHAPTER

1Classifiers Based on Bayes
Decision Theory

1.1 INTRODUCTION
In this chapter, we discuss techniques inspired by Bayes decision theory. The theoretical developments
of the associated algorithms were given in [Theo 09, Chapter 2]. To the newcomer in the field of
pattern recognition the chapter’s algorithms and exercises are very important for developing a basic
understanding and familiarity with some fundamental notions associated with classification. Most of
the algorithms are simple in both structure and physical reasoning.

In a classification task, we are given a pattern and the task is to classify it into one out of c classes.
The number of classes, c, is assumed to be known a priori. Each pattern is represented by a set of feature
values, x(i), i = 1,2, . . . , l, which make up the l-dimensional feature vector1 x = [x(1),x(2), . . . ,x(l)]T ∈
Rl . We assume that each pattern is represented uniquely by a single feature vector and that it can belong
to only one class.

Given x ∈ Rl and a set of c classes, ωi , i = 1,2, . . . ,c, the Bayes theory states that

P(ωi|x)p(x) = p(x|ωi)P(ωi) (1.1)

where

p(x) =
c∑

i=1

p(x|ωi)P(ωi)

where P(ωi) is the a priori probability of class ωi; i = 1,2, . . . ,c, P(ωi |x) is the a posteriori probability
of class ωi given the value of x; p(x) is the probability density function (pdf) of x; and p(x|ωi), i =
1 = 2, . . . ,c, is the class conditional pdf of x given ωi (sometimes called the likelihood of ωi with
respect to x).

1.2 BAYES DECISION THEORY
We are given a pattern whose class label is unknown and we let x ≡ [x(1),x(2), . . . ,x(l)]T ∈ Rl be
its corresponding feature vector, which results from some measurements. Also, we let the number of
possible classes be equal to c, that is, ω1, . . . ,ωc.

1In contrast to [Theo 09], vector quantities are not boldfaced here in compliance with MATLAB notation.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00001-4 1

2 CHAPTER 1 Classifiers Based on Bayes Decision Theory

According to the Bayes decision theory, x is assigned to the class ωi if

P(ωi |x) > P(ωj |x), ∀j �= i (1.2)

or, taking into account Eq. (1.1) and given that p(x) is positive and the same for all classes, if

p(x|ωi)P(ωi) > p(x|ωj)P(ωj), ∀j �= i (1.3)

Remark
• The Bayesian classifier is optimal in the sense that it minimizes the probability of error [Theo 09,

Chapter 2].

1.3 THE GAUSSIAN PROBABILITY DENSITY FUNCTION
The Gaussian pdf [Theo 09, Section 2.4.1] is extensively used in pattern recognition because of its
mathematical tractability as well as because of the central limit theorem. The latter states that the pdf
of the sum of a number of statistically independent random variables tends to the Gaussian one as the
number of summands tends to infinity. In practice, this is approximately true for a large enough number
of summands.

The multidimensional Gaussian pdf has the form

p(x) = 1

(2π)l/2|S|1/2
exp

(
−1

2
(x − m)T S−1(x − m)

)
(1.4)

where m = E[x] is the mean vector, S is the covariance matrix defined as S = E[(x − m)(x − m)T], |S|
is the determinant of S.

Often we refer to the Gaussian pdf as the normal pdf and we use the notation N (m,S). For the
1-dimensional case, x ∈ R, the above becomes

p(x) = 1√
2πσ

exp

(
−(x − m)2

2σ 2

)
(1.5)

where σ 2 is the variance of the random variable x.

Example 1.3.1. Compute the value of a Gaussian pdf, N (m,S), at x1 = [0.2, 1.3]T and x2 =
[2.2, −1.3]T , where

m = [0, 1]T , S =
[

1 0
0 1

]

1.3 The Gaussian Probability Density Function 3

Solution. Use the function comp_gauss_dens_val to compute the value of the Gaussian pdf. Specifi-
cally, type

m=[0 1]'; S=eye(2);
x1=[0.2 1.3]'; x2=[2.2 -1.3]';
pg1=comp_gauss_dens_val(m,S,x1);
pg2=comp_gauss_dens_val(m,S,x2);

The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.

Example 1.3.2. Consider a 2-class classification task in the 2-dimensional space, where the data in
both classes, ω1, ω2, are distributed according to the Gaussian distributionsN (m1,S1) and N (m2,S2),
respectively. Let

m1 = [1, 1]T , m2 = [3, 3]T , S1 = S2 =
[

1 0
0 1

]

Assuming that P(ω1) = P(ω2) = 1/2, classify x = [1.8, 1.8]T into ω1 or ω2.

Solution. Utilize the function comp_ gauss_dens_val by typing

P1=0.5;
P2=0.5;
m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';
p1=P1*comp_gauss_dens_val(m1,S,x);
p2=P2*comp_gauss_dens_val(m2,S,x);

The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].

Example 1.3.3. Generate N = 500 2-dimensional data points that are distributed according to the

Gaussian distribution N (m,S), with mean m = [0, 0]T and covariance matrix S =
[

σ 2
1 σ12

σ12 σ2
2

]
, for the

following cases:

σ 2
1 = σ2

2 = 1, σ12 = 0

σ 2
1 = σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 2, σ12 = 0

4 CHAPTER 1 Classifiers Based on Bayes Decision Theory

σ 2
1 = 0.2, σ2

2 = 2, σ12 = 0

σ 2
1 = 2, σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 1, σ12 = 0.5

σ 2
1 = 0.3, σ2

2 = 2, σ12 = 0.5

σ 2
1 = 0.3, σ2

2 = 2, σ12 = −0.5

Plot each data set and comment on the shape of the clusters formed by the data points.

Solution. To generate the first data set, use the built-in MATLAB function mvnrnd by typing

randn('seed',0) %Initialization of the randn function
m=[0 0]';
S=[1 0;0 1];
N=500;
X = mvnrnd(m,S,N)';

where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).

To plot the data set, type

figure(1), plot(X(1,:),X(2,:),'.');
figure(1), axis equal
figure(1), axis([-7 7 -7 7])

Working similarly for the second data set, type

m=[0 0]';
S=[0.2 0;0 0.2];
N=500;
X = mvnrnd(m,S,N)';
figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
corresponds to its “minor axis.” In addition, the major and minor axes of the cluster are parallel to
the axes (Figure 1.1(d, e)).

1.3 The Gaussian Probability Density Function 5

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

26 24 22 0 2 4 6

26

24

22

0

2

4

6

(a) (b) (c)

(d) (e)

(f) (g) (h)

FIGURE 1.1

Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 �= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f),
when σ12 �= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.

6 CHAPTER 1 Classifiers Based on Bayes Decision Theory

1.4 MINIMUM DISTANCE CLASSIFIERS
1.4.1 The Euclidean Distance Classifier
The optimal Bayesian classifier is significantly simplified under the following assumptions:

• The classes are equiprobable.
• The data in all classes follow Gaussian distributions.
• The covariance matrix is the same for all classes.
• The covariance matrix is diagonal and all elements across the diagonal are equal. That is, S = σ 2I ,

where I is the identity matrix.

Under these assumptions, it turns out that the optimal Bayesian classifier is equivalent to the minimum
Euclidean distance classifier. That is, given an unknown x, assign it to class ωi if

||x − mi|| ≡
√

(x − mi)T (x − mi) < ||x − mj||, ∀i �= j

It must be stated that the Euclidean classifier is often used, even if we know that the previously
stated assumptions are not valid, because of its simplicity. It assigns a pattern to the class whose mean
is closest to it with respect to the Euclidean norm.

1.4.2 The Mahalanobis Distance Classifier
If one relaxes the assumptions required by the Euclidean classifier and removes the last one, the one
requiring the covariance matrix to be diagonal and with equal elements, the optimal Bayesian classifier
becomes equivalent to the minimum Mahalanobis distance classifier. That is, given an unknown x, it is
assigned to class ωi if

√
(x − mi)T S−1(x − mi) <

√
(x − mj)T S−1(x − mj), ∀j �= i

where S is the common covariance matrix. The presence of the covariance matrix accounts for the shape
of the Gaussians [Theo 09, Section 2.4.2].

Example 1.4.1. Consider a 2-class classification task in the 3-dimensional space, where the
two classes, ω1 and ω2, are modeled by Gaussian distributions with means m1 = [0, 0, 0]T and
m2 = [0.5, 0.5, 0.5]T , respectively. Assume the two classes to be equiprobable. The covariance matrix
for both distributions is

S =
⎡
⎢⎣

0.8 0.01 0.01

0.01 0.2 0.01

0.01 0.01 0.2

⎤
⎥⎦

Given the point x = [0.1, 0.5, 0.1]T , classify x (1) according to the Euclidean distance classifier and
(2) according to the Mahalanobis distance classifier. Comment on the results.

1.4 Minimum Distance Classifiers 7

Solution. Take the following steps:

Step 1. Use the function euclidean_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
z=euclidean_classifier(m,x)

The answer is z = 1; that is, the point is classified to the ω1 class.

Step 2. Use the function mahalanobis_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
S=[0.8 0.01 0.01;0.01 0.2 0.01; 0.01 0.01 0.2];
z=mahalanobis_classifier(m,S,x);

This time, the answer is z = 2, meaning the point is classified to the second class. For this case, the
optimal Bayesian classifier is realized by the Mahalanobis distance classifier. The point is assigned
to class ω2 in spite of the fact that it lies closer to m1 according to the Euclidean norm.

1.4.3 Maximum Likelihood Parameter Estimation of Gaussian pdfs
One problem often met in practice is that the pdfs describing the statistical distribution of the data in the
classes are not known and must be estimated using the training data set. One approach to this function
estimation task is to assume that a pdf has a specific functional form but we do not know the values of
the parameters that define it. For example, we may know that the pdf is of Gaussian form but not the
mean value and/or the elements of its covariance matrix.

The maximum likelihood (ML) technique [Theo 09, Section 2.5.1] is a popular method for such a
parametric estimation of an unknown pdf. Focusing on Gaussian pdfs and assuming that we are given
N points, xi ∈ Rl , i = 1,2, . . . ,N , which are known to be normally distributed, the ML estimates of the
unknown mean value and the associated covariance matrix are given by

mML = 1

N

N∑
i=1

xi

and

SML = 1

N

N∑
i=1

(xi − mML)(xi − mML)T

Often, instead of N , the summation associated with the covariance matrix is divided by N − 1 since
this provides an unbiased estimate [Theo 09, Section 2.5.1]. The next example focuses on the estimation
of the unknown parameters of the Gaussian pdf.

8 CHAPTER 1 Classifiers Based on Bayes Decision Theory

Example 1.4.2. Generate 50 2-dimensional feature vectors from a Gaussian distribution, N (m,S),
where

m = [2,−2]T , S =
[

0.9 0.2
0.2 0.3

]

Let X be the resulting matrix, having the feature vectors as columns. Compute the ML estimate of the
mean value, m, and the covariance matrix, S, of N (m,S) and comment on the resulting estimates.

Solution. To generate X, type

randn('seed',0)
m = [2 -2]; S = [0.9 0.2; 0.2 .3];
X = mvnrnd(m,S,50)';

To compute the ML estimates of m and S, type

[m_hat, S_hat]=Gaussian_ML_estimate(X);

The results are

m_hat = [2.0495, −1.9418]T , S_hat =
[

0.8082 0.0885
0.0885 0.2298

]

It can be observed that the estimates that define the corresponding Gaussian pdf, although close
to the true values of the parameters, cannot be trusted as good estimates. This is due to the fact that
50 points are not enough to result in reliable estimates. Note that the returned values depend on the
initialization of the random generator (involved in function mvnrnd), so there is a slight deviation
among experiments.

Exercise 1.4.1
Repeat Example 1.4.2 for N = 500 points and N = 5000 points. Comment on the results.

Example 1.4.3. Generate two data sets, X (training set) and X1 (test set), each consisting of N = 1000
3-dimensional vectors that stem from three equiprobable classes, ω1, ω2, and ω3. The classes are
modeled by Gaussian distributions with means m1 = [0, 0, 0]T , m2 = [1, 2, 2]T , and m3 = [3, 3, 4]T ,
respectively; their covariance matrices are

S1 = S2 = S3 =
⎡
⎣ 0.8 0 0

0 0.8 0
0 0 0.8

⎤
⎦ = σ 2I

1. Using X, compute the maximum likelihood estimates of the mean values and the covariance matrices
of the distributions of the three classes. Since the covariance matrices are known to be the same,
estimate them for each class and compute their average. Use the latter as the estimate of the (common)
covariance matrix.

1.4 Minimum Distance Classifiers 9

2. Use the Euclidean distance classifier to classify the points of X1 based on the ML estimates computed
before.

3. Use the Mahalanobis distance classifier to classify the points of X1 based on the ML estimates
computed before.

4. Use the Bayesian classifier to classify the points of X1 based on the ML estimates computed before.
5. For each case, compute the error probability and compare the results (all classifiers should result in

almost the same performance. Why?).

Solution. To generate X, use the function generate_gauss_classes by typing

m=[0 0 0; 1 2 2; 3 3 4]';
S1=0.8*eye(3);
S(:,:,1)=S1;S(:,:,2)=S1;S(:,:,3)=S1;
P=[1/3 1/3 1/3]'; N=1000;
randn('seed',0)
[X,y]=generate_gauss_classes(m,S,P,N);

where

X is the 3 × N matrix that contains the data vectors in its columns,

y is an N -dimensional vector that contains the class labels of the respective data vectors,

P is the vector of the respective class a priori probabilities.

The data set X1 is generated similarly:

randn('seed',100);
[X1,y1]=generate_gauss_classes(m,S,P,N);

where randn is initialized using seed = 100.
Perform the following:

Step 1. To compute the ML estimates of the mean values and covariance matrix (common to all three
classes), use Gaussian_ML_estimate by typing

class1_data=X(:,find(y==1));

[m1_hat, S1_hat]=Gaussian_ML_estimate(class1_data);

class2_data=X(:,find(y==2));

[m2_hat, S2_hat]=Gaussian_ML_estimate(class2_data);

class3_data=X(:,find(y==3));

[m3_hat, S3_hat]=Gaussian_ML_estimate(class3_data);

S_hat=(1/3)*(S1_hat+S2_hat+S3_hat);

m_hat=[m1_hat m2_hat m3_hat];

Step 2. For the Euclidean distance classifier, use the ML estimates of the means to classify the data
vectors of X1, typing

z_euclidean=euclidean_classifier(m_hat,X1);

10 CHAPTER 1 Classifiers Based on Bayes Decision Theory

where z_euclidean is an N -dimensional vector containing the labels of the classes where the
respective data vectors are assigned by the Euclidean classifier.

Step 3. Similarly for the Mahalanobis distance classifier, type

z_mahalanobis=mahalanobis_classifier(m_hat,S_hat,X1);

Step 4. For the Bayesian classifier, use function bayes_classifier and provide as input the matrices m,
S, P, which were used for the data set generation. In other words, use the true values of m, S, and P
and not their estimated values. Type

z_bayesian=bayes_classifier(m,S,P,X1);

Step 5. To compute the error probability for each classifier, compare the vector y1 of the true class labels
of the vectors of X1 with vectors z_euclidean, z_mahalanobis, and z_bayesian, respectively. For
each comparison, examine the vector elements in pairs and count the number of matches (i.e., correct
classifications); divide by the length of y1. Type

err_euclidean = (1-length(find(y1==z_euclidean))/length(y1));
err_mahalanobis = (1-length(find(y1==z_mahalanobis))/length(y1));
err_bayesian = (1-length(find(y1==z_bayesian))/length(y1));

The error probabilities for the Euclidean, Mahalanobis, and Bayesian classifiers are 7.61%,
7.71%, and 7.61%, respectively. The results are almost equal since all of the four assumptions
in Subsection 1.4.1 are valid, which implies that in the present case the three classifiers are
equivalent.

Exercise 1.4.2
Repeat Example 1.4.3 using

S1 = S2 = S3 =
⎡
⎣ 0.8 0.2 0.1

0.2 0.8 0.2
0.1 0.2 0.8

⎤
⎦ �= σ 2I

Comment on the results.

Exercise 1.4.3
Repeat Example 1.4.3 using P1 = 1/2, P2 = P3 = 1/4 to generate X and X1. For this case, because the a
priori probabilities are not equal, the Bayesian classifier should result in the best performance. Why?

Exercise 1.4.4
Repeat Example 1.4.3 using P(ω1) = P(ω2) = P(ω3) = 1/3 and

S1 =
⎡
⎣ 0.8 0.2 0.1

0.2 0.8 0.2
0.1 0.2 0.8

⎤
⎦ , S2 =

⎡
⎣ 0.6 0.01 0.01

0.01 0.8 0.01
0.01 0.01 0.6

⎤
⎦ , S3 =

⎡
⎣ 0.6 0.1 0.1

0.1 0.6 0.1
0.1 0.1 0.6

⎤
⎦

Experiment with the mean values (bringing them closer or taking them farther away) and the a priori
probabilities. Comment on the results.

1.5 Mixture Models 11

1.5 MIXTURE MODELS
When the pdf that describes the data points in a class is not known, it has to be estimated prior to
the application of the Bayesian classifier. In this section, we focus on a very popular method to model
unknown probability density functions, known as mixture modeling [Theo 09, Section 2.5.5].

An arbitrary pdf can be modeled as a linear combination of J pdfs in the form

p(x) =
J∑

j=1

Pjp(x| j) (1.6)

where

J∑
j=1

Pj = 1,
∫

p(x| j)dx = 1

for sufficiently large J. In most cases, p(x| j) are chosen to be Gaussians, N (mj ,Sj), j = 1,2, . . . ,J.
The expansion in Eq. (1.6) points out a way to generate data from pdfs of a more complex functional

form: multimodal (many-peaked) pdfs. The meaning of Eq. (1.6) is that the data are generated from
each one of the (summand) pdfs, p(x| j), with probability Pj .

Example 1.5.1. Consider the 2-dimensional pdf

p(x) = P1p(x|1)+ P2p(x|2) (1.7)

where p(x| j), j = 1,2 are normal distributions with means m1 = [1, 1]T and m2 = [3, 3]T and covariance
matrices

S1 =
[

σ 2
1 σ12

σ12 σ2
2

]
, S2 =

[
σ 2 0
0 σ 2

]

with σ 2
1 = 0.1, σ2

2 = 0.2, σ12 = −0.08, σ 2 = 0.1.
Generate and plot a set X consisting of N = 500 points that stem from p(x) for (i) P1 = P2 = 0.5,

and (ii) for P1 = 0.85, P2 = 0.15; and (iii) experiment by changing the parameters σ 2
1 , σ2

2 , σ12, σ 2 of
the covariance matrices and the mixing probabilities P1 and P2.

Solution. To generate X, use the function mixt_model by typing

randn('seed',0); % used for the initialization of MATLAB's randn generator
m1=[1, 1]'; m2=[3, 3]';
m=[m1 m2];
S(:,:,1)=[0.1 -0.08; -0.08 0.2];
S(:,:,2)=[0.1 0; 0 0.1];
P=[1/2 1/2];
N=500;

12 CHAPTER 1 Classifiers Based on Bayes Decision Theory

sed=0; % used for the initialization of MATLAB's rand generator
[X,y]=mixt_model(m,S,P,N,sed);
plot(X(1,:),X(2,:),'.');

where

sed is the “seed” used for the initialization of the built-in MATLAB random generator function
rand, which generates numbers from the uniform distribution in the interval [0, 1],

y is a vector whose ith element contains the label of the distribution that generated the ith data
vector

The next steps are carried out in a similar manner. From Figure 1.2, one can verify the multi-
modal nature of the pdf of x. That is, x is spread over two well-separated regions in space. Comparing
Figures 1.2(a, b), observe that in the latter case, since P1 �= P2, one of the two high-density regions is
sparser in data points.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) (b)

(d)(c)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE 1.2

Example 1.5.1 (a) results obtained for the setup of case (i), (b) setup of case (ii), and (c)–(d) for some values of
case (iii).

1.6 The Expectation-Maximization Algorithm 13

1.6 THE EXPECTATION-MAXIMIZATION ALGORITHM
Let us assume that we are given a set of N points, xi ∈ Rl , i = 1,2, . . . ,N , whose statistical properties
are described by a pdf that is expanded as in Eq. (1.6). Adopting a value for J, the task is to use these
data points to estimate the parameters that enter in the expansion—that is, the probability parameters
Pj , j = 1,2, . . . ,J and the parameters associated with each one of the terms p(x| j), j = 1,2, . . . ,J. For
example, if we assume each one of the summand pdfs to be a Gaussian distribution with σ2

j I covariance
matrix:

p(x| j) = 1

(2π)l/2σ l
j

exp

(
−(x − mj)

T (x − mj)

2σ 2
j

)
, j = 1,2, . . . ,J

then the associated unknown parameters are the mean values mj , j = 1,2, . . . ,J (lJ parameters in total)
and the J covariances σ 2

j , j = 1,2, . . . ,J (J parameters in total).
The expectation-maximization (EM) algorithm iteratively computes the corresponding estimates,

starting from some user-defined initial values [Theo 09, Section 2.5.5].

Example 1.6.1. Generate a set X of N = 500 2-dimensional points that stem from the following pdf:

p(x) =
3∑

j=1

Pjp(x| j)

where the p(x| j)’s, j = 1,2,3 are (2-dimensional) normal distributions with mean values m1 = [1, 1]T ,
m2 = [3, 3]T , m3 = [2, 6]T and covariance matrices S1 = 0.1I , S2 = 0.2I , S3 = 0.3I , respectively (I is
the 2 × 2 identity matrix). In addition, P1 = 0.4, P2 = 0.4, and P3 = 0.2.

The idea is to use the previously generated data and pretend that we do not know how they were
generated. We assume that the pdf p(x) underlying X is a weighted sum of J (Eq. (1.6)) normal distri-
butions with covariance matrices of the form Si = σ 2

i I , and we employ the EM algorithm to estimate
the unknown parameters in the adopted model of p(x). The goal is to demonstrate the dependence of
the EM algorithm on the initial conditions and the parameter J. To this end, we use the following sets
of initial parameter estimates:

• J = 3, m1,ini = [0, 2]T , m2,ini = [5, 2]T , m3,ini = [5, 5]T , S1,ini = 0.15I , S2,ini = 0.27I , S3,ini =
0.4I and P1,ini = P2,ini = P3,ini = 1/3

• J = 3, m1,ini = [1.6, 1.4]T , m2,ini = [1.4, 1.6]T , m3,ini = [1.3, 1.5]T , S1,ini = 0.2I , S2,ini = 0.4I ,
S3,ini = 0.3I and P1,ini = 0.2, P2,ini = 0.4, P3,ini = 0.4

• J = 2, m1,ini = [1.6, 1.4]T , m2,ini = [1.4, 1.6]T , S1,ini = 0.2I , S2,ini = 0.4I and P1,ini =
P2,ini = 1/2

Comment on the results.

14 CHAPTER 1 Classifiers Based on Bayes Decision Theory

Solution. To generate and plot the data set X, type

randn('seed',0);
m1=[1, 1]'; m2=[3, 3]';m3=[2, 6]';
m=[m1 m2 m3];
S(:,:,1)=0.1*eye(2);
S(:,:,2)=0.2*eye(2);
S(:,:,3)=0.3*eye(2);
P=[0.4 0.4 0.2];
N=500;
sed=0;
[X,y]=mixt_model(m,S,P,N,sed);
plot_data(X,y,m,1)

Then do the following:

Step 1. Use the function em_alg_ function to estimate the mixture model parameters by typing

m1_ini=[0; 2];m2_ini=[5; 2];m3_ini=[5; 5];

m_ini=[m1_ini m2_ini m3_ini];

s_ini=[.15 .27 .4];

Pa_ini=[1/3 1/3 1/3];

e_min=10 (̂-5);

[m_hat,s_hat,Pa,iter,Q_tot,e_tot]=...

em_alg_function(X,m_ini,s_ini,Pa_ini,e_min);

where

m_hat is an l × J matrix whose jth column is the estimate for the mean of the jth distribution,

s is a J-dimensional vector whose jth element is the variance for the jth distribution(it is assumed
that the covariance matrices of the distributionsare of the form s(j) ∗ I , where I is the identity
matrix),

Pa is a J-dimensional vector with a jth element that is the estimate of the a priori probability of
the jth distribution.

The final estimates obtained by the EM algorithm are (rounded to the second decimal):
• m̂1 = [1.02, 0.98]T , m̂2 = [2.94, 3.02]T , m̂3 = [2.03, 6.00]T

• Ŝ1 = 0.10I , Ŝ2 = 0.22I , Ŝ3 = 0.30I
• P̂1 = 0.39, P̂2 = 0.43, P̂3 = 0.18

The algorithm converged after 12 iterations (see Figure 1.3(a)).

Step 2. Working as in step 1, obtain the results
• m̂1 = [1.01, 0.84]T , m̂2 = [2.66, 3.86]T , m̂3 = [1.02, 1.26]T

• Ŝ1 = 0.09I , Ŝ2 = 1.28I , Ŝ3 = 0.07I
• P̂1 = 0.26, P̂2 = 0.62, P̂3 = 0.12

The algorithm converged after 533 iterations (see Figure 1.3(b)).

1.6 The Expectation-Maximization Algorithm 15

(a)
21 0 1 2 3 4 5 6

1

2

3

4

5

6

7

(b)
22 21 0 1 2 3 4 5 6

1

2

3

4

5

6

7

(c)
22 21 0 1 2 3 4 5 6

1

2

3

4

5

6

7

FIGURE 1.3

Example 1.6.1 initial (+) and final (�) estimates of the mean values of the normal distributions for all three
cases.

Step 3. Working as in step 1, obtain the results

• m̂1 = [1.01, 0.97]T , m̂2 = [2.66, 3.86]T

• Ŝ1 = 0.10I , Ŝ2 = 1.27I
• P̂1 = 0.38, P̂2 = 0.62

The algorithm converged after 10 iterations (see Figure 1.3(c)).

In the first case, the good initialization of the algorithm led to parameter estimates that are very close
to the true parameters, which were used for the generation of the data set. In the second case, the bad
initialization led to poor parameter estimates. In the third case, the wrong choice of the order of the
model (number of involved normal distributions) led to bad estimates. Using the EM algorithm, one
has to be cautious about parameter initialization as well as the choice of the value of J.

16 CHAPTER 1 Classifiers Based on Bayes Decision Theory

Some popular methods for estimating the correct order of the problem (in our case J) are based on
so-called information-based criteria. For an application of these criteria in the current framework, see
[Theo 09, Chapter 16], where such methods are used to identify the number of dense regions (clusters)
formed by a set of data vectors.

Example 1.6.2. In this example, the EM algorithm is used in a classification application. A 2-class
problem is considered. The data set X consists of N = 1000 2-dimensional vectors. Of these, 500 stem
from class ω1, which is modeled as p1(x) = ∑3

j=1 P1jp1(x| j), where p1(x| j), j = 1,2,3 are normal

distributions with mean values m11 = [1.25, 1.25]T , m12 = [2.75, 2.75]T , m13 = [2, 6]T , and covari-
ance matrices S1j = σ 2

1jI , j = 1,2,3, where σ 2
11 = 0.1, σ 2

12 = 0.2, σ 2
13 = 0.3, respectively. The mixing

probabilities are P11 = 0.4, P12 = 0.4, and P13 = 0.2.
The other 500 data vectors stem from class ω2, which is modeled as p2(x) = ∑3

j=1 P2jp2(x| j), where

p2(x| j), j = 1,2,3 are also normal distributions with means m21 = [1.25, 2.75]T , m22 = [2.75, 1.25]T ,
m23 = [4, 6]T , and covariance matrices S2j = σ 2

2jI , j = 1,2,3, where σ 2
21 = 0.1, σ 2

22 = 0.2, σ 2
23 = 0.3,

respectively. The mixing probabilities are P21 = 0.2, P22 = 0.3, and P23 = 0.5.
The setup of the problem is shown in Figure 1.4. Each class consists of points that are spread to

more than one dense region. Such a setup is a typical scenario where mixture modeling and the EM
algorithm are used to estimate the corresponding pdfs for each class.

The data set X is used as the training set, and we pretend that we do not know how it was generated.
We assume that, somehow, we have a priori information about the number of dense regions in each
class, so we adopt a mixture model with three Gaussian components to model the pdf in each class.
The data set X is used by the EM algorithm for estimating the “unknown” parameters involved in the
respective model pdf expansions.

–1 0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

FIGURE 1.4

Data set X of Example 1.6.2.

1.6 The Expectation-Maximization Algorithm 17

With the pdf estimates for each class obtained, the Bayesian classifier is mobilized. An additional
data set Z of 1000 data vectors is also generated such that the first half stem from p1(x) and the rest
stem from p2(x). The set Z is used for testing the performance of the resulting classifier.

Use the EM algorithm to estimate p1(x) and p2(x) based on the data set X using the following initial
parameter estimates:

• For p1(x): Three normal distributionswith initial mean estimates m11,ini = [0, 2]T , m12,ini = [5, 2]T ,
m13,ini = [5, 5]T ; initial variance estimates σ 2

11,ini = 0.15, σ 2
12,ini = 0.27, σ 2

13,ini = 0.4; and mixing
probabilities P11,ini = P12,ini = P13,ini = 1/3.

• For p2(x): Three normal distributionswith initial mean estimates m21,ini = [5, 2]T , m22,ini = [3, 4]T ,
m23,ini = [2, 5]T ; initial variance estimates σ 2

21,ini = 0.15, σ 2
22,ini = 0.27, σ 2

23,ini = 0.35; and mixing
probabilities P21,ini = P22,ini = P23,ini = 1/3.

Having obtained the estimates of p1(x) and p2(x), employ the Bayes classification rule to classify the
vectors in Z and compute the classification error.

Solution. To generate the subset X1 of X, which contains the data points from class ω1, type

m11=[1.25 1.25]'; m12=[2.75 2.75]';m13=[2 6]';
m1=[m11 m12 m13];
S1(:,:,1)=0.1*eye(2);
S1(:,:,2)=0.2*eye(2);
S1(:,:,3)=0.3*eye(2);
P1=[0.4 0.4 0.2];
N1=500;
sed=0;
[X1,y1]=mixt_model(m1,S1,P1,N1,sed);

The subset X2 of X with the points from class ω2 is generated similarly (again use sed = 0). Let X2 and
y2 be the two MATLAB variables resulting from the mixt_model function in this case.

To generate the set Z, we work in a similar manner. Specifically, Z is generated in two steps: First,
500 points are generated from class ω1 via the following code:

mZ11=[1.25 1.25]'; mZ12=[2.75 2.75]';mZ13=[2 6]';
mZ1=[mZ11 mZ12 mZ13];
SZ1(:,:,1)=0.1*eye(2);
SZ1(:,:,2)=0.2*eye(2);
SZ1(:,:,3)=0.3*eye(2);
wZ1=[0.4 0.4 0.2];
NZ1=500;
sed=100;
[Z1,yz1]=mixt_model(mZ1,SZ1,wZ1,NZ1,sed);

The remaining 500 points from the second class are generated similarly (with sed = 100). In this
case, let Z2, yz2 be the two corresponding MATLAB variables resulting from the mixt_model
function.

18 CHAPTER 1 Classifiers Based on Bayes Decision Theory

Finally, type Z = [Z1 Z2]; and do the following:

Step 1. To estimate the Gaussian mixture model of each class, type

m11_ini=[0; 2]; m12_ini=[5; 2]; m13_ini=[5; 5];

m1_ini=[m11_ini m12_ini m13_ini];

S1_ini=[0.15 0.27 0.4];

w1_ini=[1/3 1/3 1/3];

m21_ini=[5; 2]; m22_ini=[3; 4]; m23_ini=[2; 5];

m2_ini=[m21_ini m22_ini m23_ini];

S2_ini=[0.15 0.27 0.35];

w2_ini=[1/3 1/3 1/3];

m_ini{1}=m1_ini;

m_ini{2}=m2_ini;

S_ini{1}=S1_ini;

S_ini{2}=S2_ini;

w_ini{1}=w1_ini;

w_ini{2}=w2_ini;

[m_hat,S_hat,w_hat,P_hat]=...

EM_pdf_est([X1 X2],[ones(1,500) 2*ones(1,500)],m_ini,S_ini,w_ini);

The estimated values of the remaining parameters involved in p1(x) and p2(x) are
• For p1(x): The mean values are m̂11 = [1.27, 1.22]T , m̂12 = [2.69, 2.76]T , m̂13 = [2.03, 6.00]T ;

the variances are σ̂11 = 0.10, σ̂12 = 0.22, σ̂13 = 0.31; the mixing probabilities are P̂11 = 0.38,
P̂12 = 0.44, P̂13 = 0.18.

• For p2(x): The mean values are m̂21 = [1.22, 2.77]T , m̂22 = [2.75, 1.22]T , m̂23 = [4.03, 5.97]T ;
the variances are σ̂21 = 0.11, σ̂22 = 0.20, σ̂23 = 0.30; the mixing probabilities are P̂21 = 0.19,
P̂22 = 0.31, P̂23 = 0.50.

The a priori class probability P(ωi), i = 1,2 for each class is estimated as the number of vectors in the
respective class divided by the total number of vectors. In our case, P(ω1) = P(ω2) = 0.5.

Step 2. Use function mixture_Bayes to classify the data vectors of Z and function compute_error to
obtain the classification error. Type

for j=1:2

le=length(S_hat{j});

te=[];

for i=1:le

te(:,:,i)=S_hat{j}(i)*eye(2);

end

S{j}=te;

end

1.7 Parzen Windows 19

[y_est]=mixture_Bayes(m_hat,S,w_hat,P_hat,Z);

[classification_error]=compute_error([ones(1,500) 2*ones(1,500)],y_est);

The computed classification error is equal to 4.20%.

Remark
• In a classification task, when the number of summands in the mixture model is not known, the task

is run a number of times with different values of J; the value that results in the lowest classification
error over the test set is adopted.

Exercise 1.6.1
Repeat Example 1.6.2 using X1, X2 ,Z1, Z2 with the following initial parameter values:

• For p1(x): Three normal distributions with initial mean estimates m11,ini = [5, 5]T , m12,ini = [5.5, 5.5]T ,
m13,ini = [5, 5]T ; initial variance estimates σ11,ini = 0.2, σ12,ini = 0.4, σ13,ini = 0.3; and mixing probabilities
P11,ini = 0.2, P12,ini = 0.4, P13,ini = 0.4.

For p2(x): Three normal distributions with initial mean estimates m21,ini = [2, 2]T , m22,ini =
[1.98, 1.98]T , m23,ini = [2.4, 2.4]T ; initial variance estimates σ21,ini = 0.06, σ22,ini = 0.05, σ23,ini = 0.4; and
mixing probabilities P21,ini = 0.8, P22,ini = 0.1, P23,ini = 0.1.

• For p1(x): Three normal distributions with initial mean estimates m11,ini = [1.6, 1.4]T , m12,ini = [1.4, 1.6]T ,
m13,ini = [1.3, 1.5]T ; initial variance estimates σ11,ini = 0.2, σ12,ini = 0.4, σ13,ini = 0.3; and mixing probabil-
ities P11,ini = 0.2, P12,ini = 0.4, P13,ini = 0.4.

For p2(x): Three normal distributions with initial mean estimates m21,ini = [1.5, 1.7]T , m22,ini =
[1.7, 1.5]T , m23,ini = [1.6, 1.6]T ; initial variance estimates σ21,ini = 0.6, σ22,ini = 0.05, σ23,ini = 0.02; and
mixing probabilities P21,ini = 0.1, P22,ini = 0.8, P23,ini = 0.1.

• For p1(x): Four normal distributions with initial mean estimates m11,ini = [0, 2]T , m12,ini = [5, 2]T , m13,ini =
[5, 5]T , m14,ini = [3, 4]T ; initial variance estimates σ11,ini = 0.15, σ12,ini = 0.27, σ13,ini = 0.4, σ14,ini = 0.2;
and mixing probabilities P11,ini = P12,ini = P13,ini = P14,ini = 1/4.

For p2(x): Four normal distributions with initial mean estimates m21,ini = [1, 2]T , m22,ini = [3.2, 1.5]T ,
m23,ini = [1, 4]T , m24,ini = [4, 2]T ; initial variance estimates σ21,ini = 0.15, σ22,ini = 0.08, σ23,ini = 0.27,
σ24,ini = 0.05; and mixing probabilities P21,ini = P22,ini = P23,ini = P24,ini = 1/4.

• For p1(x): Two normal distributions with initial mean estimates m11,ini = [0, 2]T , m12,ini = [5, 2]T ; initial
variance estimates σ11,ini = 0.15, σ12,ini = 0.27; and mixing probabilities P11,ini = P12,ini = 1/2.

For p2(x): One normal distribution with initial mean estimate m21,ini = [1, 2]T ; initial variance estimate
σ21,ini = 0.15; and mixing probability P21,ini = 1.

• For p1(x): One normal distribution with initial mean estimate m11,ini = [2, 2]T ; initial variance estimates
σ11,ini = 0.4; and mixing probability P11,ini = 1.

For p2(x): One normal distribution with initial mean estimate m21,ini = [1, 2]T ; initial variance estimate
σ21,ini = 0.15; and mixing probability P21,ini = 1.

For each scenario comment on the EM estimates and find the classification error of the Bayesian classifier.

1.7 PARZEN WINDOWS
This section and the following section deal with nonparametric estimation of an unknown pdf associated
with a given set of data points. According to the Parzen windows pdf estimation method, if we are given
N data points, xi ∈ Rl , i = 1,2, . . . ,N , that follow an unknown distribution, their pdf can be estimated

20 CHAPTER 1 Classifiers Based on Bayes Decision Theory

using the expansion

p(x) ≈ 1

Nhl

N∑
i=1

φ

(
x − xi

h

)
(1.8)

for sufficiently large N and sufficiently small values of h, which is a user-defined parameter [Theo 09,
Section 2.5.6], φ(·) is an appropriately defined kernel function. A commonly used kernel function is
the Gaussian, and in this case the expansion becomes

p(x) ≈ 1

N

N∑
i=1

1

(2π)l/2hl
exp

(
−(x − xi)

T (x − xi)

2h2

)
(1.9)

Example 1.7.1. Generate N = 1000 data points lying in the real axis, xi ∈ R, i = 1,2, . . . ,N , from the
following pdf, and plot p(x):

p(x) = 1

3

1√
2πσ 2

1

exp

(
− x2

2σ 2
1

)
+ 2

3

1√
2πσ2

2

exp

(
−(x − 2)2

2σ2
2

)

where σ 2
1 = σ2

2 = 0.2.
Use the Parzen windows approximation of Eq. (1.9), with h = 0.1, and plot the obtained

estimate.

Solution. The pdf is actually a Gaussian mixture model. Use the function generate_gauss_classes to
generate the required data set, typing

m=[0; 2]';
S(:,:,1)=[0.2];

S(:,:,2)=[0.2];
P=[1/3 2/3];
N=1000;
randn('seed',0);
[X]=generate_gauss_classes(m,S,P,N);

Step 1. To plot the pdf, assume x ∈ [−5, 5] and type

x=-5:0.1:5;

pdfx=(1/3)*(1/sqrt(2*pi*0.2))*exp(-(x. 2̂)/0.4)

+(2/3)*(1/sqrt(2*pi*0.2))*exp(-((x-2). 2̂)/0.4);

plot(x,pdfx); hold;

Step 2. To compute and plot the approximation of the pdf for h = 0.1 and x ∈ [−5, 5], use function
Parzen_ gauss_kernel as follows:

1.8 k-Nearest Neighbor Density Estimation 21

h=0.1;
pdfx_approx=Parzen_gauss_kernel(X,h,-5,5);
plot(-5:h:5,pdfx_approx,'r');

Exercise 1.7.1
Repeat the experiment in Example 1.7.1 with h = 0.01, N = 1000 and h = 0.1, N = 10,000. Comment on the
results. The choice of h for a given N needs careful consideration. Tips related to this choice are provided in
[Theo 09, Section 2.5.6] and the references therein.

Exercise 1.7.2
Generate N = 1000 data points from the following 2-dimensional pdf:

p(x) ≡ p(x(1),x(2)) = 1

3

1

2πσ 2 exp

{
−x2(1)+ x2(2)

2σ 2

}
+ 2

3

1

2πσ 2 exp

{
−x2(1)+ (x(2)− 2)2

2σ 2

}

Repeat the experiment in Example 1.7.1.

Exercise 1.7.3
Use the setup for the classification task in Example 1.4.3. Classify the data points of the set X1 using the
Bayesian classifier, where the estimate of the required values p(x|ω1), p(x|ω2) for each point in X1 is obtained
via the Parzen window estimation method. Use different values of h and choose the one that results in the
best error performance of the classifier.

1.8 k-NEAREST NEIGHBOR DENSITY ESTIMATION
Let us consider a set of N points, x1,x2, . . . ,xN ∈ Rl , that stem from a statistical distribution unknown
to us. The goal is to estimate the value of the unknown pdf at a given point x. According to the k-nearest
neighbor estimation technique, the following steps are performed:

1. Choose a value for k.
2. Find the distance between x and all training points xi , i = 1,2, . . . ,N . Any distance measure can

be used (e.g., Euclidean, Mahalanobis).
3. Find the k-nearest points to x.
4. Compute the volume V(x) in which the k-nearest neighbors lie.
5. Compute the estimate by

p(x) ≈ k

NV(x)

If the Euclidean distance is employed and the distance between the k-furthest neighbor and x is ρ,
the volume V(x) is equal to

V(x) = 2ρ in the 1-dimensional space

V(x) = πρ2 in the 2-dimensional space

22 CHAPTER 1 Classifiers Based on Bayes Decision Theory

or

V(x) = 4

3
πρ3 in the 3-dimensional space

For the more general case of l dimensions and/or Mahalanobis distance, see [Theo 09, Section 2.5.6].

Example 1.8.1. Consider the data set generated in Example 1.7.1 and use the k-nearest neighbor
density estimator to estimate the required pdf with k = 21.

Solution. To generate the set X of the data vectors, work as in Example 1.7.1. Assuming that we
are interested in approximating the pdf for x ∈ [−5, 5] (as in Example 1.7.1), we use the function
knn_density_estimate, typing

pdfx_approx=knn_density_estimate(X,21,-5,5,0.1);
plot(-5:0.1:5,pdfx_approx,'r');

Exercise 1.8.1
Repeat Example 1.8.1 for k = 5,100. Repeat with N = 5000.

Exercise 1.8.2
Use the setup for the classification task in Example 1.4.3. Classify the data points of set X1 using the Bayesian
classifier. Estimate the required values p(x|ω1), p(x|ω2) for each point in X1 via the k-nearest neighbor density
estimation method. Use different values of k and choose the one that results in the best error performance
of the classifier.

1.9 THE NAIVE BAYES CLASSIFIER
In the naive Bayes classification scheme, the required estimate of the pdf at a point x = [x(1), . . . ,x(l)]T ∈
Rl is given as

p(x) =
l∏

j=1

p(x(j))

That is, the components (features) of the feature vector x are assumed to be statistically independent. This
assumption is convenient in high-dimensional spaces, where, because of the curse of dimensionality
[Theo 09, Section 2.5.6], a large number of training points should be available to obtain a reliable
estimate of the corresponding multidimensional pdf. Instead, with the naive Bayes classifier, although
the independence assumption may not be valid, the final performance may still be good since reliable
estimates of the 1-dimensional pdfs can be obtained with relatively few data points.

Example 1.9.1. Generate a set X1 that consists of N1 = 50 5-dimensional data vectors that stem from
two equiprobable classes, ω1 and ω2. The classes are modeled by Gaussian distributions with means

1.9 The Naive Bayes Classifier 23

m1 = [0,0,0,0,0]T and m2 = [1,1,1,1,1]T and respective covariance matrices

S1 =

⎡
⎢⎢⎢⎢⎣

0.8 0.2 0.1 0.05 0.01
0.2 0.7 0.1 0.03 0.02
0.1 0.1 0.8 0.02 0.01
0.05 0.03 0.02 0.9 0.01
0.01 0.02 0.01 0.01 0.8

⎤
⎥⎥⎥⎥⎦ , S2 =

⎡
⎢⎢⎢⎢⎣

0.9 0.1 0.05 0.02 0.01
0.1 0.8 0.1 0.02 0.02
0.05 0.1 0.7 0.02 0.01
0.02 0.02 0.02 0.6 0.02
0.01 0.02 0.01 0.02 0.7

⎤
⎥⎥⎥⎥⎦

In a similar manner, generate a data set X2 consisting of N2 = 10,000 data points. X1 is used for training;
X2, for testing.

In the spirit of the naive Bayes classifier, we assume that for each class the features of the fea-
ture vectors are statistically independent (although we know this is not true), and that each follows
a 1-dimensional Gaussian distribution. For each of the five dimensions and for each of the two
classes, use the training set X1 to compute the maximum likelihood estimates of the mean values
m1j, m2j, j = 1,2, . . . ,5 and the variances σ 2

1j , σ 2
2j , j = 1,2, . . . ,5.

Perform the following steps:

Step 1. Classify the points of the test set X2 using the naive Bayes classifier, where for a given x, p(x|ωi)

is estimated as

p(x|ωi) =
5∏

j=1

1√
2πσ 2

ij

exp

(
−(x(j)− mij)

2

2σ 2
ij

)
, i = 1,2

where x(j) is the jth component of x. Compute the error probability.

Step 2. Compute the ML estimates of m1, m2, S1, and S2 using X1. Employ the ML estimates in the
Bayesian classifier in the 5-dimensional space. Compute the error probability.

Step 3. Compare the results obtained in steps 1 and 2.

Solution. To generate sets X1 and X2, type

m=[zeros(5,1) ones(5,1)];
S(:,:,1)=[0.8 0.2 0.1 0.05 0.01;

0.2 0.7 0.1 0.03 0.02;
0.1 0.1 0.8 0.02 0.01;
0.05 0.03 0.02 0.9 0.01;
0.01 0.02 0.01 0.01 0.8];

S(:,:,2)=[0.9 0.1 0.05 0.02 0.01;
0.1 0.8 0.1 0.02 0.02;
0.05 0.1 0.7 0.02 0.01;
0.02 0.02 0.02 0.6 0.02;
0.01 0.02 0.01 0.02 0.7];

P=[1/2 1/2]'; N_1=100;
randn('state',0);
[X1,y1]=generate_gauss_classes(m,S,P,N_1);

24 CHAPTER 1 Classifiers Based on Bayes Decision Theory

N_2=10000;
randn('state',100);
[X2,y2]=generate_gauss_classes(m,S,P,N_2);

Assuming that the features are independent, use function Gaussian_ML_estimate to compute the ML
estimate of the mean and the variance per feature for each class (using set X1). Type

for i=1:5
[m1_hat(i), S1_hat(i)]=Gaussian_ML_estimate(X1(i,find(y1==1)));

end
m1_hat=m1_hat'; S1_hat=S1_hat';

for i=1:5
[m2_hat(i), S2_hat(i)]=Gaussian_ML_estimate(X1(i,find(y1==2)));

end
m2_hat=m2_hat'; S2_hat=S2_hat';

Then, do the following:

Step 1. To classify each point in X2 according to the naive Bayes classification scheme, type

for i=1:5

perFeature1(i,:)=normpdf(X2(i,:),m1_hat(i),sqrt(S1_hat(i)));

perFeature2(i,:)=normpdf(X2(i,:),m2_hat(i),sqrt(S2_hat(i)));

end

naive_probs1=prod(perFeature1);

naive_probs2=prod(perFeature2);

classified=ones(1,length(X2));

classified(find(naive_probs1<naive_probs2))=2;

To compute the classification error, type

true_labels=y2;

naive_error=sum(true_labels∼=classified)/length(classified)

Step 2. To compute the maximum likelihood estimates of the “unknown” mean values and covariance
matrices m1, m2, S1, and S2, based on X1, type

[m1_ML, S1_ML]=Gaussian_ML_estimate(X1(:,find(y1==1)));

[m2_ML, S2_ML]=Gaussian_ML_estimate(X1(:,find(y1==2)));

To classify the data vectors of X2 using the Bayesian classifier, which is based on the ML estimates
of the respective parameters, type

m_ML(:,1)=m1_ML;

m_ML(:,2)=m2_ML;

1.10 The Nearest Neighbor Rule 25

S_ML(:,:,1)=S1_ML;

S_ML(:,:,2)=S2_ML;

P=[1/2 1/2];

z=bayes_classifier(m_ML,S_ML,P,X2);

To compute the classification error, type

true_labels=y2;

Bayes_ML_error=sum(true_labels∼=z)/length(z)

Step 3. The resulting classification errors—naive_error and Bayes_ML_error—are 0.1320 and 0.1426,
respectively. In other words, the naive classification scheme outperforms the standard ML-based
scheme. If the experiment is repeated for the case where X1 consists of 20 instead of 50 points, the
difference between the performance of the two classifiers is even more noticeable in favor of the
naive Bayes classifier.

Exercise 1.9.1
1. Classify the points of the set X2 in Example 1.9.1, adopting the optimal Bayesian classifier. That is, use

the true values of the means and covariance matrices associated with the 5-dimensional Gaussian pdfs.
Compare the results with those obtained in Example 1.9.1.

2. Repeat Example 1.9.1 with X1 consisting of N1 = 1000 data vectors.

Remark
• The previous example is very important in the sense that it demonstrates that it is often preferable to

use suboptimal searching techniques if the use of the optimal method results in excessive computa-
tions and/or poor estimates due to a limited amount of data. This is often the case in high-dimensional
spaces because of the curse of dimensionality [Theo 09, Section 2.5.6].

1.10 THE NEAREST NEIGHBOR RULE
Nearest neighbor (NN) is one of the most popular classification rules, although it is an old technique.
We are given c classes, ωi , i = 1,2, . . . ,c, and a point x ∈ Rl , and N training points, xi , i = 1,2, . . . ,N ,
in the l-dimensional space, with the corresponding class labels. Given a point, x, whose class label is
unknown, the task is to classify x in one of the c classes. The rule consists of the following steps:

1. Among the N training points, search for the k neighbors closest to x using a distance measure (e.g.,
Euclidean, Mahalanobis). The parameter k is user-defined. Note that it should not be a multiple of c.
That is, for two classes k should be an odd number.

2. Out of the k-closest neighbors, identify the number ki of the points that belong to class ωi. Obviously,∑c
i=1 ki = k.

3. Assign x to class ωi , for which ki > kj , j �= i. In other words, x is assigned to the class in which the
majority of the k-closest neighbors belong.

26 CHAPTER 1 Classifiers Based on Bayes Decision Theory

For large N (in theory N → ∞), the larger k is the closer the performance of the k-NN classifier to
the optimal Bayesian classifier is expected to be [Theo 09, Section 2.6]. However, for small values of N
(in theory, for its finite values), a larger k may not result in better performance [Theo 09, Problem 2.34].

A major problem with the k-NN classifier, as well as with its close relative the k-NN density estimator,
is the computational complexity associated with searching for the k-nearest neighbors, especially in
high-dimensional spaces. This search is repeated every time a new point x is classified, for which a
number of suboptimal techniques have been suggested [Theo 09, Section 2.6].

Example 1.10.1
1. Consider a 2-dimensional classification problem where the data vectors stem from two equiprobable

classes, ω1 and ω2. The classes are modeled by Gaussian distributions with means m1 = [0,0]T ,
m2 = [1,2]T , and respective covariance matrices

S1 = S2 =
[

0.8 0.2
0.2 0.8

]

Generate two data sets X1 and X2 consisting of 1000 and 5000 points, respectively.
2. Taking X1 as the training set, classify the points in X2 using the k-NN classifier, with k = 3 and

adopting the squared Euclidean distance. Compute the classification error.

Solution

Step 1. To generate sets X1 and X2, type

m=[0 0; 1 2]';

S=[0.8 0.2;0.2 0.8];

S(:,:,1)=S;S(:,:,2)=S;

P=[1/2 1/2]'; N_1=1000;

randn('seed',0)

[X1,y1]=generate_gauss_classes(m,S,P,N_1);

N_2=5000;

randn('seed',100)

[X2,y2]=generate_gauss_classes(m,S,P,N_2);

Step 2. For the classification task, use function k_nn_classifier and type

k=3;

z=k_nn_classifier(X1,y1,k,X2);

To compute the classification error, type

pr_err=sum(z∼=y2)/length(y2)

1.10 The Nearest Neighbor Rule 27

The classification error is 15.12%. Note that different seeds for the randn function are likely to lead to
slightly different results.

Exercise 1.10.1
Repeat Example 1.10.1 for k = 1,7,15. For each case compute the classification error rate. Compare the
results with the error rate obtained by the optimal Bayesian classifier, using the true values of the mean and
the covariance matrix.

Exercise 1.10.2
Compose your own example of a 2-class classification task in the 5-dimensional space. Assume the data to
follow the Gaussian pdf in both classes. Choose the mean values and covariance matrices. Produce two data
sets, one for training and one for testing. Use the nearest neighbor classifier. Experiment with different values
of the mean values, the covariance matrix, the parameter k, and the length of the training data set. Comment
on the obtained results as well as the computational time involved.

CHAPTER

2Classifiers Based on Cost
Function Optimization

2.1 INTRODUCTION
This chapter deals with techniques and algorithms that “emancipate” from the Bayes decision theory
rationale. The focus is on the direct design of a discriminant function/decision surface that separates the
classes in some optimal sense according to an adopted criterion. The techniques that are built around the
optimal Bayesian classifier rely on the estimation of the pdf functions describing the data distribution
in each class. However, in general this turns out to be a difficult task, especially in high-dimensional
spaces. Alternatively, one may focus on designing a decision surface that separates the classes directly
from the training data set, without having to deduce it from the pdfs. This is an easier problem, and
although the solution may not correspond to the optimal (Bayesian) classifier, in practice, where the
size of the available training data set is limited, it most often turns out to result in better performance
compared to that of the Bayes classifier when the latter employs estimates of the involved pdfs. The
interested reader can find a few more related comments in [Theo 09, Section 10.5.2].

We begin with the simple case of designing a linear classifier, described by the equation

wT x + w0 = 0

which can also be written as

w′T x′ ≡ [wT ,w0]

[
x
1

]
= 0

That is, instead of working with hyperplanes in the Rl space, we work with hyperplanes in the Rl+1

space, which pass through the origin. This is only for notational simplification.
Once a w′ is estimated, an x is classified to class ω1(ω2) if

w′T x′ = wT x + w0 > (<)0

for the 2-class classification task. In other words, this classifier generates a hyperplane decision surface;
points lying on one side of it are classified to ω1 and points lying on the other side are classified to
ω2. For notational simplicity, we drop out the prime and adhere to the notation w, x; the vectors are
assumed to be augmented with w0 and 1, respectively, and they reside in the Rl+1 space.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00002-6 29

30 CHAPTER 2 Classifiers Based on Cost Function Optimization

(a) (b)

(c)

FIGURE 2.1

(a) Linearly separable 2-class classification problem; (b)–(c) 2-class classification problems that are not linearly
separable.

2.2 THE PERCEPTRON ALGORITHM
The perceptron algorithm is appropriate for the 2-class problem and for classes that are linearly
separable. Figure 2.1(a) shows an example of linearly separable classes, and Figure 2.1(b,c) shows
two cases of classes that are not linearly separable. The perceptron algorithm computes the values of
the weights w of a linear classifier, which separates the two classes.

The algorithm is iterative. It starts with an initial estimate in the extended (l + 1)-dimensional
space and converges to a solution in a finite number of iteration steps. The solution w correctly clas-
sifies all the training points (assuming, of course, that they stem from linearly separable classes).
Note that the perceptron algorithm converges to one out of infinite possible solutions. Starting from
different initial conditions, different hyperplanes result. The update at the tth iteration step has the
simple form

w(t + 1) = w(t)−ρt

∑
x∈Y

δxx

2.2 The Perceptron Algorithm 31

where w is the augmented-by-w0 vector, Y is the set of wrongly classified samples by the current
estimate w(t), δx is −1 if x ∈ ω1 and +1 if x ∈ ω2, and ρt is a user-defined parameter that controls the
convergence speed and must obey certain requirements to guarantee convergence (for example, ρt can
be chosen to be constant, ρt = ρ). The algorithm converges when Y becomes empty.

Once the classifier has been computed, a point, x, is classified to either of the two classes depending
on the outcome of the following operation:

f (wT x) = f (w1x(1)+ w2x(2)+ · · · + wlx(l)+ w0) (2.1)

The function f (·) in its simplest form is the step or sign function (f (z) = 1 if z > 0; f (z) = −1 if z < 0).
However, it may have other forms; for example, the output may be either 1 or 0 for z > 0 and z < 0,
respectively. In general, it is known as the activation function.

The basic network model, known as perceptron or neuron, that implements the classification opera-
tion implied by the operation in Eq. (2.1), is shown in Figure 2.2. For a more theoretical treatment of
the perceptron algorithm see [Theo 09, Section 3.3].

To run the perceptron algorithm, type

[w, iter,mis_clas] = perce(X,y, w_ini,rho)

where

X is the (l + 1)× N matrix that contains the (augmented-by-1) training vectors as columns,

y is the N -dimensional vector, whose ith component is the class label of the respective feature vector
(−1 or +1),

w_ini is the initial estimate of w,

rho is the (constant) learning rate,

w is the vector computed by the algorithm,

iter is the number of performed iterations,

mis_clas is the number of misclassified vectors (it is nonzero if the iterations reach 20000, which
indicates that the algorithm has not converged and the problem is likely not to be linearly separable;
otherwise it is 0).

x(1)

x(2)

x l()

f

w1

w2

wl

1

w0

S

FIGURE 2.2

Perceptron structure.

32 CHAPTER 2 Classifiers Based on Cost Function Optimization

Example 2.2.1. Generate four 2-dimensional data sets Xi , i = 1, . . . ,4, each containing data vectors
from two classes. In all Xi’s the first class (denoted −1) contains 100 vectors uniformly distributed
in the square [0, 2] × [0, 2]. The second class (denoted +1) contains another 100 vectors uni-
formly distributed in the squares [3, 5] × [3, 5], [2, 4] × [2, 4], [0, 2] × [2, 4], and [1, 3] × [1, 3]
for X1, X2, X3, and X4, respectively. Each data vector is augmented with a third coordinate that
equals 1.

Perform the following steps:

1. Plot the four data sets and notice that as we move from X1 to X3 the classes approach each other but
remain linearly separable. In X4 the two classes overlap.

2. Run the perceptron algorithm for each Xi , i = 1, . . . ,4, with learning rate parameters 0.01 and 0.05
and initial estimate for the parameter vector [1, 1, −0.5]T .

3. Run the perceptron algorithm for X3 with learning rate 0.05 using as initial estimates for w
[1, 1, −0.5]T and [1, 1, 0.5]T .

4. Comment on the results.

Solution. To retain the reproducibility of the results, the MATLAB random number generator for the
uniform distribution is initialized using as seed the value of 0. This is achieved by typing

rand('seed',0)

To generate the data set X1 as well as the vector containing the class labels of the points in it, type

N=[100 100]; % Number of vectors in each class
l=2; % Dimensionality of the input space
x=[3 3]';
X1=[2*rand(l,N(1)) 2*rand(l,N(2))+x*ones(1,N(2))];
X1=[X1; ones(1,sum(N))];
y1=[-ones(1,N(1)) ones(1,N(2))];

The remaining data sets may be generated by repeating the preceding code where the third line is
replaced by

x=[2 2]'; for X2
x=[0 2]'; for X3
x=[1 1]'; for X4

Then, do the following:

Step 1. To plot X1, where points of different classes are denoted by different colors, type

figure(1), plot(X1(1,y1==1),X1(2,y1==1),'bo',...

X1(1,y1==-1),X1(2,y1==-1),'r.')

figure(1), axis equal

2.2 The Perceptron Algorithm 33

Table 2.1 Number of Iterations Performed by the Perceptron
Algorithm in Example 2.2.1

X1 X2 X3 X4

rho=0.01 134 134 5441 No convergence
rho=0.05 5 5 252 No convergence

Step 2. To run the perceptron algorithm for X1 with learning parameter 0.01, type

rho=0.01; % Learning rate

w_ini=[1 1 -0.5]';

[w,iter,mis_clas]=perce(X1,y1,w_ini,rho)

By altering the previous code, the perceptron algorithm may be performed on the remaining data
sets using different learning parameter values. Table 2.1 contains the results obtained by performing
the previous experiments.

Step 3. Working as in step 2, compute the w’s using the perceptron algorithm for initial estimates
[1, 1, −0.5]T and [1, 1, 0.5]T . The results are [−0.0002, 0.5364, −1.0725]T and [−0.0103, 0.3839,
−0.7525]T , respectively.

Based on the previous results, three general conclusions may be drawn: First, for a fixed learning
parameter, the number of iterations (in general) increases as the classes move closer to each other
(i.e., as the problem becomes more difficult). Second, the algorithm fails to converge for the data
set X4, where the classes are not linearly separable (it runs for the maximum allowable number of
iterations that we have set). Third, different initial estimates for w may lead to different final estimates
for it (although all of them are optimal in the sense that they separate the training data of the two
classes).

2.2.1 The Online Form of the Perceptron Algorithm
The form of the perceptron algorithm just described is known as the batch form; at each iteration step,
all of the data points are considered and an update is performed after all of the data have been processed
by the current estimate. In the online version, data are considered sequentially, several times, and an
update may be performed after the consideration of each point. Every set of N successive iterations,
where all data points have been considered, is known as an epoch. The algorithmic update is performed
according to the following scheme:

w(t + 1) = w(t)+ρy(t)x(t), if y(t)(w
T (t)x(t)) ≤ 0

w(t + 1) = w(t) otherwise

where ρ is the parameter controlling convergence, and x(t) denotes the point considered in the tth
iteration.

34 CHAPTER 2 Classifiers Based on Cost Function Optimization

The class labels y(t) are equal to −1 and +1 for the two classes ω2 and ω1, respectively. A pseudocode
for this scheme is given as:

1. Choose w(0); usually w(0) = 0
2. Choose ρ

3. Choose max_iter (maximum number of iterations)
4. t = 0
5. Repeat

• count_miscl = 0
• For i = 1 to N

– If yi(w(t)T xi) ≤ 0, then
w(t + 1) = w(t)+ρyixi

count_miscl = count_miscl + 1
– Else

w(t + 1) = w(t)
– End {If}
– t = t + 1

• End {For}
6. Until count_miscl = 0 or (t>=max_iter)

Example 2.2.2. Run the online version of the perceptron algorithm on the data sets of Example 2.2.1,
with learning parameter values 0.01 and 0.05 and an initial estimate for the parameter vector
[1, 1, −0.5]T . Comment on the results.

Solution. Repeat the code given in Example 2.2.1, where now the perce function is replaced by
the perce_online function. (The maximum number of iterations was set to 107. This large number
is required when classes are very close together.) The results obtained after performing the exper-
iments are given in Table 2.2. Once more, the closer the classes, the more iterations required for
convergence. In addition, no convergence occurs for data sets containing classes that are not linearly
separable.

Table 2.2 Number of Iterations Performed by Online Perceptron
Algorithm in Example 2.2.2

X1 X2 X3 X4

rho=0.01 600 600 6589400 No convergence
rho=0.05 400 400 7729200 No convergence

Note: The number of iterations required for convergence increases by 1 when the
next vector is considered. In contrast, in the batch mode of the algorithm the number
of iterations increases by 1 after the whole data set has been considered once.

2.3 The Sum of Error Squares Classifier 35

2.3 THE SUM OF ERROR SQUARES CLASSIFIER
The goal in this section remains the same: to estimate the vector of parameters, w, in the extended Rl+1

space of a linear classifier (hyperplane),

wT x = 0

where x is the (augmented-by-1) feature vector. However, in this section the assumption of linear
separability is not required. The method, also known as least squares (LS), estimates the best linear
classifier, where the term “best” corresponds to the w that minimizes the cost:

J(w) =
N∑

i=1

(yi − wT xi)
2 (2.2)

where yi is the known class label of xi, i = 1,2, . . . ,N ; and N is the number of training points.
Define

X =

⎡
⎢⎢⎢⎢⎣

xT
1

xT
2

...

xT
N

⎤
⎥⎥⎥⎥⎦, y =

⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦

It can be shown that the LS estimate is given by

ŵ = (XT X)−1XT y (2.3)

The matrix (XT X)−1XT is also known as the pseudoinverse of X and is denoted as X # [Theo 09,
Section 3.4.3].

A significant advantage of the LS method is that it has a single solution (corresponding to the single
minimum of J(w)). In addition, this is obtained by solving a linear system of equations (Eq. (2.3)).

In practice, the inversion of the (l + 1)× (l + 1) matrix, XT X, may pose some numerical difficulties,
especially in high-dimensional spaces. Besides being computationally complex, it is not uncommon for
the matrix to be nearly singular. In such cases, one may add a small positive constant along the main
diagonal and solve the system:

ŵ = (XT X + CI)−1XT y (2.4)

where I is the (l + 1)× (l + 1) identity matrix, and C is a user-defined small positive constant. It can be
shown [Theo 09, Section 4.19.2] that Eq. (2.4) is the minimizer of the regularized version of the cost
in Eq. (2.2), or

J(w) =
N∑

i=1

(yi − wT xi)
2 + CwT w (2.5)

36 CHAPTER 2 Classifiers Based on Cost Function Optimization

To obtain the LS solution use the function

function [w] = SSErr(X, y,C)

where

X, y are defined as in the perce function,

C is the parameter included in Eq. (2.4),

w is the LS estimator returned by the function.

Note that the original (nonregularized) version of the LS classifier is obtained for C = 0.

Example 2.3.1
1. Generate a set X1 of N1 = 200 data vectors, such that the first 100 vectors stem from class ω1,

which is modeled by the Gaussian distribution with mean m1 = [0, 0, 0, 0, 0]T . The rest stem from
class ω2, which is modeled by the Gaussian distribution with mean m2 = [1, 1, 1, 1, 1]T . Both
distributions share the following covariance matrix:

S =

⎡
⎢⎢⎢⎢⎣

0.9 0.3 0.2 0.05 0.02
0.3 0.8 0.1 0.2 0.05
0.2 0.1 0.7 0.015 0.07

0.05 0.2 0.015 0.8 0.01
0.02 0.05 0.07 0.01 0.75

⎤
⎥⎥⎥⎥⎦

Generate an additional data set X2 of N2 = 200 data vectors, following the prescription used for X1.
Apply the optimal Bayes classifier on X2 and compute the classification error.

2. Augment each feature vector in X1 and X2 by adding a 1 as the last coordinate. Define the class
labels as −1 and +1 for the two classes, respectively. Using X1 as the training set, apply the SSErr
MATLAB function (with C = 0) to obtain the LS estimate ŵ. Use this estimate to classify the vectors
of X2 according to the inequality

ŵT x > (<)0

Compute the probability of error. Compare the results with those obtained in step 1.
3. Repeat the previous steps, first with X2 replaced by a set X3 containing N3 = 10,000 data vectors

and then with a set X4 containing N4 = 100,000 data vectors. Both X3 and X4 are generated using
the prescription adopted for X1. Comment on the results.

Solution. Do the following:

Step 1. To ensure reproducibility of the results, set seed = 0 for the randn MATLAB function for the
generation of X1; for the generation of X2, X3, and X4 set seed = 100. Set the parameters of the
Gaussians that model the two classes by typing

m(:,1)=[0 0 0 0 0]';

m(:,2)=[1 1 1 1 1]';

S=[.9 .3 .2 .05 .02; .3 .8 .1 .2 .05;

2.3 The Sum of Error Squares Classifier 37

.2 .1 .7 .015 .07; .05 .2 .015 .8 .01; .02 .05 .07 .01 .75];

P=[1/2 1/2];

To generate X1 and the required class labels (1 for ω1, 2 for ω2), type

N1=200;

randn('seed',0)

X1=[mvnrnd(m(:,1),S,fix(N1/2)); mvnrnd(m(:,2),S,N1-fix(N1/2))]';

z1=[ones(1,fix(N1/2)) 2*ones(1,N1-fix(N1/2))];

X2 is generated in a similar fashion. To compute the Bayesian classification error based on X2, type

S_true(:,:,1)=S;

S_true(:,:,2)=S;

[z]=bayes_classifier(m,S_true,P,X2);

err_Bayes_true=sum(z~=z2)/sum(N2)

This error is 14%.

Step 2. To augment the data vectors of X1 by an additional coordinate that equals +1, and to change
the class labels from 1, 2 (used before) to −1, +1, respectively, type

X1=[X1; ones(1,sum(N1))];

y1=2*z1-3;

The set X2 is treated similarly. To compute the classification error of the LS classifier based on X2,
type

[w]=SSErr(X1,y1,0);

SSE_out=2*(w'*X2>0)-1;

err_SSE=sum(SSE_out.*y2<0)/sum(N2)

This error is 15%.

Step 3. By replacing X2 with X3 and X4, and applying the code given in steps 1 and 2, the results shown
in Table 2.3 are obtained. From this table one can easily see that the classification error of the LS

Table 2.3 Classification Error Estimates for the Bayesian
and LS Classifiers as Test Points Increase, in Example 2.3.1

Bayesian Classifier LS Classifier

N = 200 14.00% 15.00%
N =10,000 14.68% 14.98%
N =100,000 14.67% 14.75%

38 CHAPTER 2 Classifiers Based on Cost Function Optimization

classifier is very close to that of the Bayesian classifier. This is justified by the fact that the optimal
decision classifier for our problem is linear [Theo 09, Section 2.4.2]. Note that as the classification
errors of the two classifiers are computed with more accuracy (i.e., as the number of vectors in the
test set increases), they get closer to each other. This shows the importance of having large data sets
not only for training but for testing as well.

Example 2.3.2. Generate a set of N1 = 1000 data vectors such that the first 500 stem from class ω1
modeled by the Gaussian distribution with mean m1 = [0, 0, 0, 0, 0]T and the rest stem from class
ω2 modeled by the Gaussian distribution with mean m2 = [2, 2, 0, 2, 2]T . Both distributions have the
following covariance matrix:

S =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 10−350 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

Each data vector is augmented by a sixth coordinate, which equals +1 for all vectors. Let X1 be the
(l + 1)× N matrix whose columns are the vectors of the data set (for reproducibility of the results, set
seed = 0 for the randn MATLAB function).

In addition, generate a set X2 that contains 10,000 points, using the prescription followed for X1 (for
reproducibility of the results, set seed = 100 for the randn MATLAB function).

1. Compute the condition number of the matrix X1XT
1 (the larger the condition number, the closer the

matrix is to singularity). Run the original (nonregularized) version of the LS classifier (Eq. (2.3)) to
estimate w.

2. Repeat step 1 for the regularized version (Eq. (2.4)) of the LS classifier for C = 0.1.

3. Comment on the results obtained in steps 1 and 2.

4. Estimate the classification error associated with the w’s resulting from steps 1 and 2 based on the
data set X2.

Solution. To generate the matrix X1, type

m=[0 0 0 0 0; 2 2 0 2 2]';
S=[1 0 0 0 0; 0 1 0 0 0; 0 0 10ˆ(-350) 0 0; 0 0 0 1 0; 0 0 0 0 1];
[l,l]=size(S);
N1=1000;
randn('seed',0)
X1=[mvnrnd(m(:,1),S,fix(N1/2)); mvnrnd(m(:,2),S,N1-fix(N1/2))]';
X1=[X1; ones(1,N1)];
y1=[ones(1,fix(N1/2)) -ones(1,N1-fix(N1/2))];

2.3 The Sum of Error Squares Classifier 39

In a similar manner, produce X2. Take the following steps:

Step 1. To compute the condition number of X1XT
1 and the solution vector w for the original version of

the LS classifier, type

cond_num=cond(X1*X1')

w=SSErr(X1,y1,0)

Step 2. To repeat step 1 for the regularized version of the LS classifier, type

C=0.1;

cond_num=cond(X1*X1'+C*eye(l+1))

w=SSErr(X1,y1,C)

Step 3. Observe that the condition number of X1XT
1 (1.4767 × 1017) is orders of magnitude greater

than that of X1XT
1 + CI (9.3791 × 104), where I is the (l + 1)× (l + 1) identity matrix. In the

original version (C = 0), and for the current MATLAB working precision, X1XT
1 is singular and

no estimates of w are provided, since the linear system (Eq. (2.3)) cannot be solved. In con-
trast, the regularized version X1XT

1 + CI is invertible and an estimate for w is obtained, namely
[−0.2158, −0.1888, 0, −0.2178, −0.1851, 0.8012]T .

Step 4. Compute the classification error on X2 for a given w by typing

SSE_out=2*(w'*X2>0)-1;

err_SSE=sum(SSE_out.*y2<0)/N2

For the regularized version of the LS classifier, the classification error rate equals 2.67%.

2.3.1 The Multiclass LS Classifier
Assume that we are given a set of N training data points, xi ∈ Rl , i = 1,2, . . . ,N , and assume that these
originate from c > 2 classes. The task is to design a classifier that consists of c linear discriminant
functions (one for each class):

gj(x) ≡ wT
j x + wj0, j = 1,2, . . . ,c

The design is based on the LS criterion.
The classification rule is now as follows: Given x, classify it to class ωi if

gi(x) > gj(x), ∀j �= i

Following the rationale exposed in [Theo 09, Section 3.4.1], we design the c linear functions as follows:
For each xi, define the c-dimensional class label vector

yi = [yi1,yi2, . . . ,yic]T , i = 1,2, . . . ,N

40 CHAPTER 2 Classifiers Based on Cost Function Optimization

whose jth element, yij, is 1 if xi ∈ ωj , and 0 otherwise. Estimate wj and wj0 to minimize the cost

N∑
i=1

(yij − wT
j xi − wj0)

2, j = 1,2, . . . ,c

That is, one has to solve c LS problems, one for each class. It has to be emphasized that the class labels
associated with each training point are different for each one of the c problems depending on whether the
point belongs to the respective class or not. More specifically, in the jth LS problem, the class label is 1
for each point of the jth class and 0for the points from all the other classes. Note that each hyperplane, wj,
is trained so that ideally all the points from class ωj lie on one of its sides and all the other points lie on the
other side.

To solve each one of the c LS problems, we follow exactly the same procedure followed for Eq. (2.2).
As before, the thresholds wj0 are embedded in the respective wj’s by extending the dimensionality of
the feature space by one.

Example 2.3.3
1. Consider a 3-class classification problem that involves three equiprobable classes ω1, ω2, and ω3.

The classes are modeled by Gaussian distributions with means m1 = [1, 1, 1]T , m2 = [5, 3, 2]T ,
and m3 = [3, 3, 4]T , respectively. All distributions share the same covariance matrix:

S =
⎡
⎣ 0.8 0.2 0.1

0.2 0.8 0.2
0.1 0.2 0.8

⎤
⎦

Generate and plot two data sets, X1 (training set) and X2 (test set), which respectively consist of
1000 and 10,000 data vectors. Apply the SSErr MATLAB function on X1 to estimate the parameter
vectors w1, w2, w3 of the three linear discriminant functions in the extended 4-dimensional space.
Use the set X2 to compute the error probability.

2. From the theory [Theo 09, Section 3.5.2], it is known that the LS criterion, when used with 0, 1 as
desired response values (class labels), provides the LS estimates of the posterior probabilities; that
is, if wj is the LS estimate of the parameter vector of the jth linear discriminant function, then

gj(x) ≡ wT
j x ≈ P(ωj |x)

To verify this, compute the true a posteriori probabilities P(ωj |xi) and their LS estimates, gj(xi),
j = 1, . . . ,c, i = 1, . . . ,N2, on the vectors of X2 (N2 is the number of vectors in X2). Then compute

the average square error of the estimate of the P(ωj |xi)’s using the gj(xi)’s.
3. Compute the classification error of the (optimal) Bayesian classifier on X2 and compare it with that

resulting from the LS classifier in step 1.

Hint
Recall that

P(ωj |x) = p(x|ωj)P(ωj)

p(x)
, j = 1,2,3

2.3 The Sum of Error Squares Classifier 41

where

p(x) = P(ω1)p(x|ω1)+ P(ω2)p(x|ω2)+ P(ω3)p(x|ω3)

with P(ωi) being the a priori probability of class ωi.

Solution. Take the following steps:

Step 1. To ensure reproducibility of the results, initialize the randn MATLAB function using as seed
the values 0 for X1 and 100 for X2. To generate X1, type

% Definition of the parameters

m=[1 1 1; 5 3 2; 3 3 4]';

[l,c]=size(m);

S1=[0.8 0.2 0.1; 0.2 0.8 0.2; 0.1 0.2 0.8];

S(:,:,1)=S1;

S(:,:,2)=S1;

S(:,:,3)=S1;

P=[1/3 1/3 1/3];

% Generation of the data set X1

N1=1000;

randn('seed',0)

[X1,y1]=generate_gauss_classes(m,S,P,N1);

[l,N1]=size(X1);

X1=[X1; ones(1,N1)];

To plot the data set X1, using different colors for points of different classes, type

figure(1), plot3(X1(1,y1==1),X1(2,y1==1),X1(3,y1==1),'r.',...

X1(1,y1==2),X1(2,y1==2),X1(3,y1==2),'g.',...

X1(1,y1==3),X1(2,y1==3),X1(3,y1==3),'b.')

Use the Rotate 3D button to view the data set from different angles.
Next, define the c × N1 dimensional matrix z1, each column of which corresponds to a training

point. Specifically, its ith column elements equal zero except one, which equals unity. The position
of the latter indicates the class where the corresponding vector xi of X1 belongs.

z1=zeros(c,N1);

for i=1:N1

z1(y1(i),i)=1;

end

42 CHAPTER 2 Classifiers Based on Cost Function Optimization

In a similar manner, generate X2 and z2. To estimate the parameter vectors of the three discriminant
functions, type

w_all=[];
for i=1:c

w=SSErr(X1,z1(i,:),0);
w_all=[w_all w];

end

In the (l + 1)× c matrix w_all, the ith column corresponds to the parameter vector of the ith
discriminant function.

To compute the classification error using the set X2, type

[vali,class_est]=max(w_all'*X2);
err=sum(class_est˜=y2)/N2

The classification error in this case is 5.11% (estimated based on X2).

Step 2. To compute the estimates of the a posteriori probabilities as they result in the framework of the
LS classifier, type

aposte_est=w_all'*X2;

To compute the true a posteriori probabilities, type the following block of statements

aposte=[];
for i=1:N2

t=zeros(c,1);
for j=1:c

t(j)=comp_gauss_dens_val(m(:,j),S(:,:,j),X2(1:l,i))*P(j);
end
tot_t=sum(t);
aposte=[aposte t/tot_t];

end

To compute the average square error in the estimation of the P(ωj |xi)’s by using the gj(xi)’s, type

approx_err=sum(sum((aposte-aposte_est).ˆ2))/(N2*c)

The error is 0.0397. Note that this is very low, indicating a good estimate.

Step 3. To compute the optimal Bayesian classification error, and since the true a posteriori probabilities
are known, type

[vali,class]=max(aposte);
err_ba=sum(class˜=y2)/N2

2.4 Support Vector Machines: The Linear Case 43

Alternatively, use the bayes_classifier MATLAB function. The classification error for this case is
4.82% (estimated based on X2).

Some comments are in order. First, it is easy to check that the probability estimates may be greater
than 1 or less than 0. Although this contradicts the physical meaning of the probability, it can happen since
the method that estimates the parameter vector w of the LS classifier does not impose any restrictions
affecting the values of the a posteriori probabilities (i.e., nonnegativity and sum to 1). However, the sum
of the estimates of the a posteriori probabilities for a given vector is very close to 1.

Exercise 2.3.1
1. Consider the setup of Example 2.3.3 where now the means of the three classes ω1, ω2, and ω3 are

m1 = [0, 0, 0]T , m2 = [1, 2, 2]T , and m3 = [3, 3, 4]T , respectively. Apply the SSErr MATLAB function on
the data set X1 to estimate the parameter vectors w1, w2, and w3 of the three linear discriminant functions,
in the extended 4-dimensional space. Use the set X2 to compute the error probability.

2. Compute the classification error of the (optimal) Bayesian classifier on X2 and compare it with that
resulting from the LS classifier in step 1.

Hint
It turns out that the classification errors for the LS and Bayesian classifiers are 18.36% and 9.90%,
respectively. In contrast to Example 2.3.3, the difference between these errors is large. (Why? Observe
the plot of X1 and think how w1, w2, and w3 are placed in the feature space.)

2.4 SUPPORT VECTOR MACHINES: THE LINEAR CASE
Analytic treatment and derivation of the associated formulas for the SVM classifiers can be found in
[Theo 09, Section 3.7]. Here, besides the MATLAB functions, we provide a few hints related to the
physical understanding behind the SVM rationale.

At the heart of SVM classifier design is the notion of the margin. Consider the linear classifier

wT x + w0 = 0 (2.6)

The margin is the region between the two parallel hyperplanes

wT x + w0 = 1, wT x + w0 = −1 (2.7)

It can easily be shown [Theo 09, Section 3.2] that the Euclidean distance of any point that lies on either
of the two hyperplanes in Eq. (2.7) from the classifier hyperplane given by Eq. (2.6) is equal to 1

||w|| ,
where || · || denotes the Euclidean norm.

A question sometimes raised by a newcomer in the field is why the margin is defined by these two
“magic” numbers, +1 and −1. The answer is that this is not an issue. Let us consider a hyperplane in
space—for example, Eq. (2.6), as shown in Figure 2.3 by the full line and two parallel to it hyperplanes
(dotted lines) wT x + w0 = ±d. The parameter d can take any value, which means that the two planes
can be close to or far away from each other. Fixing the value of d and dividing both sides of the previous
equation by d, we obtain ±1 on the right side. However, the direction and the position in space of the two

44 CHAPTER 2 Classifiers Based on Cost Function Optimization

wTx 1w0 5 2d

wTx 1w0 5 d

wTx 1w0 5 02

1

d

d

FIGURE 2.3

Line and its margin of size 2d.

Class 11; Class 21

FIGURE 2.4

Two linear classifiers and the associated margin lines for a 2-class classification problem (filled circles
correspond to class +1; empty circles correspond to class −1).

hyperplanes do not change. The same applies to the hyperplane described by Eq. (2.6). Normalization
by a constant value d has no effect on the points that lie on (and define) a hyperplane.

So far, we have considered that an error is “committed” by a point if it is on the wrong side of the
decision surface formed by the respective classifier. Now we are going to be more demanding. It is not
only the points on the wrong side of the classifier that contribute to an error-counting function; it is also
any point that lies inside the margin, even if it is on the correct side of the classifier. Only points that lie
outside the margin and on the correct side of the classifier make no contribution to the error-counting
cost. Figure 2.4 shows two overlapping classes and two linear classifiers denoted by a dash-dotted and
a solid line, respectively. For both cases, the margins have been chosen to include five points. Observe
that for the case of the “dash-dotted” classifier, in order to include five points the margin had to be made
narrow.

Imagine that the open and filled circles in Figure 2.4 are houses in two nearby villages and that a
road must be constructed in between the two villages. One has to decide where to construct the road
so that it will be as wide as possible and incur the least cost (in the sense of demolishing the smallest
number of houses). No sensible engineer would choose the “dash-dotted” option.

2.4 Support Vector Machines: The Linear Case 45

The idea is similar with designing a classifier. It should be “placed” between the highly populated
(high probability density) areas of the two classes and in a region that is sparse in data, leaving the
largest possible margin. This is dictated by the requirement for good generalization performance that
any classifier has to exhibit. That is, the classifier must exhibit good error performance when it is faced
with data outside the training set. Any classifier “knows” the training set very well, since it has been
trained on it. Thus, we can construct a classifier that results in a very low error rate on the training set
but behaves poorly when faced with “unknown” data. Loosely speaking, this is because the classifier
has adjusted itself to learn the “idiosyncrasies” of the specific training set—its specific details—and so
it cannot behave well in a slightly different set [Theo 09, Sections 3.7.1, 4.9, 5.1]. Elaborate on this
reasoning and explain why the “dash-dotted” classifier is expected to result in inferior generalization
performance compared to the “solid” classifier, even though both have similar performance with respect
to the number of margin errors on the training set.

This discussion leads to the following mathematical formulation. Given a set of training points,
xi , with respective class labels, yi ∈ {−1,1}, i = 1,2, . . . ,N , for a 2-class classification task, compute a
hyperplane (Eq. (2.6)) so as to

Minimize J(w,w0,ξ) = 1

2
||w||2 + C

N∑
i=1

ξi (2.8)

Subject to wT xi + w0 ≥ 1 − ξi, if xi ∈ ω1 (2.9)

wT xi + w0 ≤ −1 + ξi, if xi ∈ ω2 (2.10)

ξi ≥ 0 (2.11)

The margin width is equal to 2/||w||. The margin errors, ξi, are nonnegative; they are zero for points
outside the margin and on the correct side of the classifier and positive for points inside or outside the
margin and on the wrong side of the classifier (This can be verified by a close inspection of the constraints
in Eqs. (2.9) and (2.10). C is a user-defined constant. Minimizing the cost is a trade-off between a large
margin and a small number of margin errors (for more details see [Theo 09, Section 3.7]). It turns out
that the solution is given as a weighted average of the training points:

w =
N∑

i=1

λiyixi (2.12)

The coefficients λi are the Lagrange multipliers of the optimization task and they are zero for all points
outside the margin and on the correct side of the classifier. These points therefore do not contribute to
the formation of the direction of the classifier. The rest of the points, with nonzero λi’s, which contribute
to the buildup of w, are called support vectors.

To generate a linear SVM classifier, the SMO2 MATLAB function can be used. Specifically, SMO2
is called by typing

[alpha,w0,w,evals,stp,glob] = . . .

SMO2(X ′,y′,kernel,kpar1,kpar2,C, tol,steps,eps,method)

46 CHAPTER 2 Classifiers Based on Cost Function Optimization

where its inputs are

a matrix X ′ containing the points of the data set (each row is a point),

the class labels of the data points (y′),
the type of kernel function to be used (in our case ′linear′),
two kernel parameters kpar1 and kpar2 (in the linear case both are set to 0),

the parameter C,

the parameter tol,

the maximum number of iteration steps of the algorithm,

a threshold eps (a very small number, typically on the order of 10−10) used in the comparison of two
numbers (if their difference is less than this threshold, they are considered equal to each other),

the optimization method to be used (0 →Platt, 1 →Keerthi modification 1, 2 →Keerthi modifi-
cation 2),1

alpha is a vector containing the Lagrange multipliers corresponding to the training points,

w0 is the threshold value,

w is the vector containing the hyperplane parameters, returned by the algorithm.

The parameter tol is a scalar that controls the accuracy of the obtained solution [Theo 09,
Section 3.7.2]. The larger the value of tol is, the farther from the solution the algorithm may stop.
A typical value for tol is 0.001.

Example 2.4.1. In the 2-dimensional space, we are given two equiprobable classes, which follow
Gaussian distributions with means m1 = [0, 0]T and m2 = [1.2, 1.2]T and covariance matrices S1 =
S2 = 0.2I , where I is the 2 × 2 identity matrix.

1. Generate and plot a data set X1 containing 200 points from each class (400 points total), to be used
for training (use the value of 50 as seed for the built-in MATLAB randn function). Generate another
data set X2 containing 200 points from each class, to be used for testing (use the value of 100 as
seed for the built-in MATLAB randn function).

2. Based on X1, run Platt’s algorithm to generate six SVM classifiers that separate the two classes,
using C = 0.1, 0.2, 0.5, 1, 2, 20. Set tol = 0.001.
(a) Compute the classification error on the training and test sets.
(b) Count the support vectors.
(c) Compute the margin (2/||w||).
(d) Plot the classifier as well as the margin lines.

Solution. Do the following:

Step 1. To generate the data set X1, type

1More details can be found in the comments of the function.

2.4 Support Vector Machines: The Linear Case 47

randn('seed',50)

m=[0 0; 1.2 1.2]'; % mean vectors

S=0.2*eye(2); % covariance matrix

points_per_class=[200 200];

X1=mvnrnd(m(:,1),S,points_per_class(1))';

X1=[X1 mvnrnd(m(:,2),S,points_per_class(2))'];

y1=[ones(1,points_per_class(1))...

-ones(1,points_per_class(2))];

To plot the data set X1, type

figure(1), plot(X1(1,y1==1),X1(2,y1==1),'r.',...

X1(1,y1==-1),X1(2,y1==-1),'bo')

Notice that the classes overlap.
To generate X2 repeat the code, replacing the first line with

randn('seed',100)

Step 2. To generate the required SVM classifier for C = 0.1, use the SMO2 function, typing

kernel='linear';

kpar1=0;

kpar2=0;

C=0.1;

tol=0.001;

steps=100000;

eps=10ˆ(-10);

method=0;

[alpha, w0, w, evals, stp, glob] = SMO2(X1', y1',...

kernel, kpar1, kpar2, C, tol, steps, eps, method)

The other classifiers are generated similarly.
(a) To compute the classification error on the training set, X1, type

Pe_tr=sum((2*(w*X1-w0>0)-1).*y1<0)/length(y1)

The classification error on the test set, X2, is computed similarly.
(b) To plot the classifier hyperplane as well as the margin lines, use the function svcplot_book by

typing2 the following:

2To plot the results of more than one experiment, change the value of figt4, which is the number of the figure where the
plot will take place.

48 CHAPTER 2 Classifiers Based on Cost Function Optimization

Table 2.4 Results for Various Values of C in Example 2.4.1

C = 0.1 C = 0.2 C = 0.5 C = 1 C = 2 C = 20

No. support vectors 82 61 44 37 31 25
Training error 2.25% 2.00% 2.00% 2.25% 3.25% 2.50%
Test error 3.25% 3.00% 3.25% 3.25% 3.50% 3.50%
Margin 0.9410 0.8219 0.7085 0.6319 0.6047 0.3573

global figt4
figt4=2;
svcplot_book(X1',y1',kernel,kpar1,kpar2,alpha,-w0)

(c) To count the support vectors, type

sup_vec=sum(alpha>0)

(d) To compute the margin, type

marg=2/sqrt(sum(w.ˆ2))

The results of these experiments are shown in Table 2.4. It is readily seen that the margin of the
solution increases as C decreases. This is natural because decreasing C makes the “margin term”
in Eq. (2.8) more significant. For the problem at hand, the best performance (minimum test error)
is obtained for C = 0.2.

Exercise 2.4.1
Repeat Example 2.4.1, now with the covariance matrices of the Gaussian distributions S1 = S2 = 0.3I.
Comment on the results.

2.4.1 Multiclass Generalizations
In the previous section, we dealt with the SVM for the 2-class case. Although mathematical gener-
alizations for the multiclass case are available, the task tends to become rather complex. When more
than two classes are present, there are several different approaches that evolve around the 2-class case.
In this section, we focus on one of these methods, known as one-against-all (for more details on the
multiclass problem see [Theo 09, Section 3.7.3]). These techniques are not tailored to the SVM. They
are general and can be used with any classifier developed for the 2-class problem. Moreover, they are
not just pedagogical toys, but are actually widely used.

According to the one-against-all method, c classifiers have to be designed. Each one of them is
designed to separate one class from the rest (recall that this was the problem solved in Section 2.3.1,
based on the LS criterion). For the SVM paradigm, we have to design c linear classifiers:

wT
j x + wj0, j = 1,2, . . . ,c

2.4 Support Vector Machines: The Linear Case 49

For example, to design classifier w1, we consider the training data of all classes other than ωi to
form the second class. Obviously, unless an error is committed we expect all points from class ω1 to
result in

wT
1 x + w10 > 0

and the data from the rest of the classes to result in negative outcomes. A x is classified in ωi if

wT
i x + wi0 > wT

j x + wj0, ∀i �= j

Remark
• A drawback of one-against-all is that after the training there are regions in the space, where no

training data lie, for which more than one hyperplane gives a positive value or all of them result in
negative values [Theo 09, Section 3.7.3, Problem 3.15].

Example 2.4.2
1. Generate and plot two data sets X1 (training) and X2 (test) using the prescription of Example 2.3.3,

except that now each set consists of 120 data points.
2. Based on X1, estimate the parameter vectors w1, w2, w3 of the three linear discriminant func-

tions using the first modification of Platt’s algorithm [Keer 01] (SVM classifiers). Estimate the
classification error rate based on X2.

Solution. Proceed as follows:

Step 1. To generate X1 and X2, work as in Example 2.3.3. To plot X1, type

figure(1), plot3(X1(1,z1(1,:)==1),X1(2,z1(1,:)==1),...

X1(3,z1(1,:)==1),'r.',X1(1,z1(2,:)==1),X1(2,z1(2,:)==1),...

X1(3,z1(2,:)==1),'gx',X1(1,z1(3,:)==1),X1(2,z1(3,:)==1),...

X1(3,z1(3,:)==1),'bo')

Step 2. In this case, matrices z1 and z2 are created in the same spirit as in Example 2.3.3, but now the 0
elements are replaced by −1. Specifically, type

z1=-ones(c,N1);

for i=1:N1

z1(y1(i),i)=1;

end

where c is the number of classes and N1 is the number of training vectors. Similarly obtain z2.

To compute the SVM classifiers, type

kernel='linear'; %SVM parameter defintion

kpar1=0;

kpar2=0;

C=20;

50 CHAPTER 2 Classifiers Based on Cost Function Optimization

tol=0.001;

steps=100000;

eps=10ˆ(-10);

method=1;

for i=1:c

[alpha(:,i), w0(i), w(i,:), evals, stp, glob] =...

SMO2(X1', z1(i,:)', kernel, kpar1, kpar2, C,...

tol, steps, eps, method)

marg(i)=2/sqrt(sum(w(i,:).2)) % Margin

%Counting the number of support vectors

sup_vec(i)=sum(alpha(:,i)>0)

end
To estimate the classification error rate based on X2, type

[vali,class_est]=max(w*X2-w0'*ones(1,N2));

err_svm=sum(class_est~=y2)/N2

The classification error in this case turns out to be 5.00%. For comparison, we mention that the
Bayesian classification error is 3.33%. (Explain why the latter value is different from that extracted
in Example 2.3.3.)

2.5 SVM: THE NONLINEAR CASE
To employ the SVM technique for solving a nonlinear classification task, we adopt the philosophy of
mapping the feature vectors in a higher-dimensional space, where we expect, with high probability, the
classes to be linearly separable. This is guaranteed by the celebrated Cover’s theorem [Theo 09, Section
4.13]. The mapping is as follows:

x �→ φ(x) ∈ H

where the dimension of H is higher than Rl and, depending on the choice of the (nonlinear) φ(·),
can even be infinite. Moreover, if the mapping function is carefully chosen from a known family of
functions that have specific desirable properties, the inner product between the images (φ(x1), φ(x2))
of two points x1, x2 can be written as

< φ(x1),φ(x2) >= k(x1,x2)

where < ·, · > denotes the inner product operation in H and k(·, ·) is a function known as kernel function.
That is, inner products in the high-dimensional space can be performed in terms of the associated kernel
function acting in the original low-dimensional space. The space H associated with k(·, ·) is known as a
reproducing kernel Hilbert space (RKHS) (for more formal definitions see [Theo 09, Section 4.18] and
references therein).

2.5 SVM: The Nonlinear Case 51

A notable characteristic of the SVM optimization is that all operations can be cast in terms of inner
products. Thus, to solve a linear problem in the high-dimensional space (after the mapping), all we
have to do is replace the inner products with the corresponding kernel evaluations. Typical examples of
kernel functions are (a) the radial basis function (RBF), defined as

k(x,y) = exp

(
−||x − y||2

σ 2

)

where σ is a user-defined parameter that specifies the rate of decay of k(x,y) toward zero, as y moves
away from x and (b) the polynomial function, defined as

k(x,y) = (xT y +β)n

where β and n are user-defined parameters.
Note that solving a linear problem in the high-dimensional space is equivalent to solving a nonlinear

problem in the original space. This is easily verified. As in Eq. (2.12), the hyperplane computed by the
SVM method in the high-dimensional space H is

w =
N∑

i=1

λiyiφ(xi) (2.13)

Given a x, we first map it to φ(x) and then test whether the following is less than or greater than zero:

g(x) ≡< w,φ(x) > +w0 =
N∑

i=1

λiyi < φ(x),φ(xi) > +w0

=
N∑

i=1

λiyik(x,xi)+ w0 (2.14)

From the previous relation, it becomes clear that the explicit form of the mapping function φ(·)
is not required; all we have to know is the kernel function since data appear only in inner products.
Observe that the resulting discriminant function, g(x), is nonlinear because of the nonlinearity of the
kernel function.

To generate a nonlinear SVM classifier, the SMO2 MATLAB function, discussed in Section 2.4,
may be used. The input argument kernel takes the values ′poly′ for the polynomial kernel or ′rbf ′ for the
RBF kernel. In the former case, kpar1 and kpar2 correspond to the β and n parameters, respectively;
in the latter case, kpar1 corresponds to the σ parameter.

Example 2.5.1
1. Generate a 2-dimensional data set X1 (training set) as follows. Select N=150 data points in the

2-dimensional [−5, 5] × [−5, 5] region according to the uniform distribution (set the seed for
the rand function equal to 0). Assign a point x = [x(1), x(2)]T to the class +1 (−1) according to the
rule 0.05(x3(1)+ x2(1)+ x(1)+ 1) > (<)x(2). (Clearly, the two classes are nonlinearly separable;

52 CHAPTER 2 Classifiers Based on Cost Function Optimization

in fact, they are separated by the curve associated with the equation 0.05(x3(1)+ x2(1)+ x(1)+ 1) =
x(2).) Plot the points in X1. Generate an additional data set X2 (test set) using the same prescription
as for X1 (set the seed for the rand function equal to 100).

2. Design a linear SVM classifier using the first modification of Platt’s algorithm with parameters C = 2
and tol = 0.001. Compute the training and test errors and count the number of support vectors.

3. Generate a nonlinear SVM classifier using the radial basis kernel functions for σ = 0.1 and 2. Use
the first modification of Platt’s algorithm, with C = 2 and tol = 0.001. Compute the training and
test error rates and count the number of support vectors. Plot the decision regions defined by the
classifier.

4. Repeat step 3 using the polynomial kernel functions (xT y +β)n for (n,β) = (5,0) and (3,1). Draw
conclusions.

5. Design the SVM classifiers using the radial basis kernel function with σ = 1.5 and using the poly-
nomial kernel function with n = 3 and β = 1. Use the first modification of Platt’s algorithm with
tol = 0.001 for C = 0.2, 20, 200.

Solution. Take the following steps:

Step 1. To generate the data set X1 and the vector y1 containing the class labels for the vectors in X1,
type

l=2; % Dimensionality

N=150; % Number of vectors

% Generating the training set

rand('seed',0)

X1=10*rand(l,N)-5;

for i=1:N

t=0.05*(X1(1,i)ˆ3+X1(1,i)ˆ2+X1(1,i)+1);

if(t>X1(2,i))

y1(i)=1;

else

y1(i)=-1;

end

end

To plot the data set X1 (see Figure 2.5(a)), type

figure(1), plot(X1(1,y1==1),X1(2,y1==1),'r+',...

X1(1,y1==-1),X1(2,y1==-1),'bo')

figure(1), axis equal

To generate X2 work as in the case of X1.

Step 2. To generate a linear SVM classifier based on X1 with C = 2 and tol = 0.001, type

kernel='linear';

kpar1=0;

2.5 SVM: The Nonlinear Case 53

(b)
24 22 0 2 424 22 0 2 4

(c)

24

22

0

2

4

24

22

0

2

4

24 22 0 2 4

24

22

0

2

4

(a)

Class 11
Class 21

FIGURE 2.5

(a) Training set for Example 2.5.1. (b) Decision curve associated with the classifier using the radial basis kernel
function (σ = 2) and C = 2. (c) Decision curve realized by the classifier using the polynomial kernel function
(β = 1, n = 3) and C = 2. Observe that different kernels result in different decision surfaces. Support vectors
are encircled. Dotted lines indicate the margin.

kpar2=0;

C=2;

tol=0.001;

steps=100000;

eps=10ˆ(-10);

method=1;

[alpha, w0, w, evals, stp, glob] = SMO2(X1', y1', ...

kernel, kpar1, kpar2, C, tol, steps, eps, method)

54 CHAPTER 2 Classifiers Based on Cost Function Optimization

To compute the training error, type

Pe1=sum((2*(w*X1-w0>0)-1).*y1<0)/length(y1)

Similarly compute the test error. To count the number of support vectors, type

sup_vec=sum(alpha>0)

Step 3. To generate a nonlinear SVM classifier employing the radial basis kernel function with σ = 0.1,
work as in step 2 but now set

kernel='rbf';

kpar1=0.1;

kpar2=0;

Work similarly for the other value of σ . To compute the training error, the process is as follows:

• The support vectors are stacked in a matrix, while their Lagrange multipliers and their class
labels are stacked to vectors. Type

X_sup=X1(:,alpha'∼=0);
alpha_sup=alpha(alpha∼=0)';
y_sup=y1(alpha∼=0);

• Each vector is classified separately. Type

for i=1:N
t=sum((alpha_sup.*y_sup).*...
CalcKernel(X_sup',X1(:,i)',kernel,kpar1,kpar2)')-w0;
if(t>0)

out_train(i)=1;
else

out_train(i)=-1;
end

end

• Compute the training error as

Pe1=sum(out_train.*y1<0)/length(y1)

The test error is computed in a similar manner. To count the number of support vectors, type

sup_vec=sum(alpha>0)

To plot the decision regions formed by the classifier (see Figure 2.5(b)), type

global figt4=3;

svcplot_book(X1',y1',kernel,kpar1,kpar2,alpha,-w0)

2.5 SVM: The Nonlinear Case 55

Table 2.5 Results for the SVM Classifiers Designed in Steps 2,
3, and 4 of Example 2.5.1

Training Error Testing Error No. Support Vectors

Linear 7.33% 7.33% 26
RBF (0.1) 0.00% 32.67% 150
RBF (2) 1.33% 3.33% 30
poly (5,0) — — —
poly (3,1) 0.00% 2.67% 8

Note: RBF(a) denotes the SVM classifier corresponding to the radial basis kernel
function with σ = a; poly (n,β) denotes the SVM classifer with the polynomial
kernel function of the form (xT y +β)n. The algorithm does not converge for the
case poly(5,0).

Step 4. To generate a nonlinear SVM classifier with the polynomial kernel function using n = 3 and
β = 1, work as before but now set

kernel='poly';

kpar1=1;

kpar2=3;

The training and test errors as well as the number of support vectors are computed as in the previous
step (see also Figure 2.5(c)). Work similarly for the other combinations of β and n. The results
obtained by the different SVM classifiers are summarized in Table 2.5. From this table, the following
conclusions can be drawn.

First, the linear classifier performs worse than the nonlinear SVM classifiers. This is expected
since the involved classes in the problem at hand are nonlinearly separable. Second, the choice of
parameters for the kernel functions used in the nonlinear SVM classifiers significantly affect the
performance of the classifier; parameters should be chosen carefully, after extensive experimenta-
tion (see, for example, RBF(0.1) and try RBF(5)). Finally, low training error does not necessarily
guarantee low test error; note that the latter should be considered in evaluating performance.

Step 5. To generate the corresponding SVM classifiers, work as before but set C to 0.2,20,200.

Example 2.5.2
1. Generate a 2-dimensional data set X1 (training set) as follows. Consider the nine squares [i, i + 1] ×

[j, j + 1], i = 0,1,2, j = 0,1,2 and draw randomly from each one 30 uniformly distributed points.
The points that stem from squares for which i + j is even (odd) are assigned to class +1 (−1)
(reminiscent of the white and black squares on a chessboard). Plot the data set and generate an
additional data set X2 (test set) following the prescription used for X1 (as in Example 2.5.1, set the
seed for rand at 0 for X1 and 100 for X2).

2. (a) Design a linear SVM classifier, using the first modification of Platt’s algorithm, with C = 200
and tol = 0.001. Compute the training and test errors and count the number of support vectors.

56 CHAPTER 2 Classifiers Based on Cost Function Optimization

(b) Employ the previous algorithm to design nonlinear SVM classifiers, with radial basis kernel
functions, for C = 0.2, 2, 20, 200, 2000, 20, 000. Use σ = 1,1.5, 2,5. Compute the training and
test errors and count the number of support vectors.

(c) Repeat for polynomial kernel functions, using n = 3,5 and β = 1.
3. Draw conclusions.

Solution. Do the following:

Step 1. To generate the data set X1, type

l=2; %Dimensionality

poi_per_square=30; %Points per square

N=9*poi_per_square; %Total no. of points

%Generating the training set

rand('seed',0)

X1=[];

y1=[];

for i=0:2

for j=0:2

X1=[X1 rand(l,poi_per_square)+...

[i j]'*ones(1,poi_per_square)];

if(mod(i+j,2)==0)

y1=[y1 ones(1,poi_per_square)];

else

y1=[y1 -ones(1,poi_per_square)];

end

end

end

To plot X1 work as in Example 2.5.1 (see Figure 2.6(a)). To generate X2, work as in the case of X1.

Step 2. For all these experiments, work as in Example 2.5.1 (see also Figure 2.6(b)).

Step 3. From the results obtained, the following conclusions can be drawn.

• First, as expected, the linear classifier is inadequate to handle this problem (the resulting
training and test errors are greater than 40%). The same holds true for the SVMs with
polynomial kernels (>20% test error for all combinations of parameters). This has to do
with the specific nature of this example.

• Second, the SVM classifiers with radial basis kernel functions give very good results for
specific choices of the parameter σ . In Table 2.6, the best results for the radial basis kernel
SVM classifiers are presented (all of them have been obtained for C = 2000). From this
table, once more it can be verified that very low values of σ lead to very poor generalization
(k training error, high test error). An intuitive explanation is that very small σ ’s cause the

2.5 SVM: The Nonlinear Case 57

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

(a) (b)

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

Class 21
Class 11

FIGURE 2.6

(a) Training set for Example 2.5.2. (b) Decision curve of the SVM classifier, with radial basis kernel functions
(σ = 1) and C = 2000. Support vectors are encircled; dotted lines indicate the margin.

Table 2.6 Results for the SVM Classifiers Obtained for
σ = 0.1,1,1.5,2,5 in Example 2.5.2

Training Error Test Error No. Support Vectors

RBF(0.1) 0.00% 10.00% 216
RBF(1) 1.85% 3.70% 36
RBF(1.5) 5.56% 7.04% 74
RBF(2) 8.15% 8.52% 128
RBF(5) 35.56% 31.48% 216

Note: RBF(a) denotes the SVM classifier with radial basis kernel functions
with σ = a.

k(x,xi)’s to drop rapidly toward zero around each xi ∈ X1, which leads to an increase in the
number of support vectors (since many points are required to “cover” the space where the
data lie). For each training point, xi , the summation in the classification rule in Eq. (2.14) is
mostly affected by the corresponding term λiyik(xi ,xi). This explains the low training error.
In contrast, since the k(x,xi)’s do not sufficiently “cover” the space away from the training
points, the summation in Eq. (2.14) may be almost zero for several test points (from both
classes) and the respective labels cannot be accurately predicted.

On the other hand, large values of σ (in our example σ = 5 is considered as such) lead to
poor results for both the training and test sets. An intuitive explanation for this is that, when
σ is large, all k(x,xi)’s remain almost constant in the area where the data points lie. This also
leads to an increase in support vectors (since almost all points are of equal importance) with

58 CHAPTER 2 Classifiers Based on Cost Function Optimization

almost equal values for the λi’s. Thus, the summation in the classification rule in Eq. (2.14)
exhibits low variation for the various x’s (from both the training and the test set), which leads
to reduced discrimination capability. Values between these two ends lead to more acceptable
results, with the best performance being achieved for σ = 1 in the present example. The
previous discussion makes clear the importance of choosing, for each problem, the right
values for the involved parameters.

• Third, for fixed kernel parameters and C varying from 0.2 to 20,000, the number of SVs (in
general) decreases, as expected.

2.6 THE KERNEL PERCEPTRON ALGORITHM
As stated before, all operations in obtaining the SVM classifier can be cast in the form of inner products.
This is also possible with a number of other algorithms; the perceptron algorithm is a notable example.
The “inner product formulation” can be exploited by following the so-called kernel trick.

Kernel trick: Substitute each inner product xT y with the kernel function k(x,y). This is equivalent to
solving the problem in some high-dimensional space where the inner product is defined in terms of the
respective kernel function. Adopting this trick, a linear task in the high-dimensional space is equivalent
to a nonlinear task in the original feature space, where the training data lie. More on this issue may be
found in [Theo 09, Section 4.19].

To call the kernel perceptron algorithm, type

[a, iter,count_misclas] = kernel_ perce(X,y,kernel, kpar1,kpar2,max_iter)

where

X is the matrix whose columns are the data vectors,

y is a vector containing the class labels of the data points,

kernel, kpar1, and kpar2 are defined as in the SMO2 function,

max_iter is the maximum allowable number of iterations that the algorithm can perform,

a is a vector, whose ith coordinate contains the number of times the ith point was misclassified,

iter is the number of iterations performed by the algorithm,

count_misclas is the number of misclassified points.

A given vector x is classified to class +1 or class −1 according to whether the following is positive or
negative:

g(x) =
N∑

i=1

aiyik(x,xi)+
N∑

i=1

aiyi

Example 2.6.1
1. Consider the data sets X1 (training set) and X2 (test set) from Example 2.5.1. Run the kernel per-

ceptron algorithm using X1 as the training set where the kernel functions are (a) linear, (b) radial
basis functions with σ = 0.1,1, 1.5,2,5, 10,15,20, and (c) polynomials of the form (xT y +β)n

2.6 The Kernel Perceptron Algorithm 59

for (n,β) = (3,1), (5,1), (15,1), (3,0), (5,0). For all these cases compute the training error and the
test error rates and count the training vectors xi with ai > 0 as well as the iterations the algorithm
runs. Use 30,000 as the maximum number of allowable iterations.

2. For each one of the previous cases, plot in the same figure the training set X1 (use different colors
and symbols for each class) and the decision boundary between the classes.

Solution. Take the following steps:

Step 1. To run the kernel perceptron algorithm for the linear kernel, type

kernel='linear';

kpar1=0;

kpar2=0;

max_iter=30000;

[a,iter,count_misclas]=kernel_perce(X1,y1,kernel,...

kpar1,kpar2,max_iter);

where kpar1 and kpar2 are defined as in the SMO2 MATLAB function depending on the type of
kernel function considered.

To run the algorithm using the radial basis kernel function with σ = 0.1, type

kernel='rbf';

kpar1=0.1;

kpar2=0;

max_iter=30000;

[a,iter,count_misclas]=kernel_perce(X1,y1,kernel,...

kpar1,kpar2,max_iter);

To run the algorithm using the polynomial kernel function with (n,β) = (3,1), type

kernel='poly'; kpar1=1; kpar2=3;

max_iter=30000;

[a,iter,count_misclas]=kernel_perce(X1,y1,kernel,...

kpar1,kpar2,max_iter);

Other cases with different parameters are treated similarly.
To compute the training error, type

for i=1:N

K=CalcKernel(X1',X1(:,i)',kernel,kpar1,kpar2)';

out_train(i)=sum((a.*y1).*K)+sum(a.*y1);

end

err_train=sum(out_train.*y1<0)/length(y1)

60 CHAPTER 2 Classifiers Based on Cost Function Optimization

Class 11; Class 21(a)
24 22 0 2 4

24

22

0

2

4

(b)
24 22 0 2 4

24

22

0

2

4

FIGURE 2.7

Training set for Example 2.6.1 and resulting decision curves associated with the kernel perceptron algorithm,
using the radial basis kernel function with (a) σ = 0.1 and (b) σ = 1.5.

where N is the number of training vectors. To compute the test error, type

for i=1:N

K=CalcKernel(X1',X2(:,i)',kernel,kpar1,kpar2)';

out_test(i)=sum((a.*y1).*K)+sum(a.*y1);

end

err_test=sum(out_test.*y2<0)/length(y2)

To count the total number of misclassifications during training, type

sum_pos_a=sum(a>0)

Step 2. To plot the training set (see Figures 2.7 and 2.8), type

figure(1), hold on

figure(1), plot(X1(1,y1==1),X1(2,y1==1),'ro',...

X1(1,y1==-1),X1(2,y1==-1),'b+')

figure(1), axis equal

Note that the vectors of the training set from class +1 (−1) are marked by circles (pluses). Finally,
to plot the decision boundary in the same figure, type

bou_x=[-5 5];

bou_y=[-5 5];

resolu=.05;

fig_num=1;

plot_kernel_perce_reg(X1,y1,a,kernel,kpar1,kpar2,...

bou_x,bou_y, resolu,fig_num)

2.6 The Kernel Perceptron Algorithm 61

(a) (b)
24 22 0 2 4

24

22

0

2

4

24 22 0 2 4

24

22

0

2

4

Class 11; Class 21

FIGURE 2.8

(a) Training set for Example 2.6.1 and resulting decision curves associated with the kernel perceptron
algorithm using polynomial kernel functions with (a) (n,β) = (3,0) and (b) (n,β) = (3,1).

where

bou_x and bou_y are 2-dimensional vectors that define the (rectangular) region of space over
which the boundary will be drawn; specifically, (bou_x(1),bou_y(1)) defines the lower
left corner of the region while (bou_x(2),bou_y(2)) defines the upper right corner of the
region,

resolu is the resolution with which the decision boundary is determined (the lower the resolution,
the finer the drawing of the decision boundary),

fig_num is the number of the MATLAB figure where the plot of the decision boundary
takes place.

The results of the experiments for the linear and radial basis kernel functions are summarized
in Table 2.7. The results of the experiments for the polynomial kernel functions are summarized in
Table 2.8. From the tables three conclusions can be drawn.
• First, for the linear kernel, the kernel perceptron algorithm does not converge because the problem

is not linearly separable (it terminates after 30,000 iterations).
• Second, for the radial basis kernel functions, the kernel perceptron algorithm converges for a wide

range of σ values. However, as the value of σ increases, the algorithm needs more iterations to
converge and when σ becomes very large, the algorithm fails to converge. Moreover, the decision line
obtained for the case where σ = 0.1 is rather “rough,” indicating a classifier with poor generalization
performance (why?). The best values for σ seem to be around 1. Finally, the number of vectors with
nonzero ai’s generally increases as σ increases (why?).

• Third, for the polynomial kernel functions, the kernel perceptron algorithm does not converge when
the β parameter equals 0, but does converge when β is set to 1. For β = 0 the high-dimensional
space (in which the “implicit” mapping is performed) is of lower dimensionality compared to that
corresponding to β = 1; thus it follows that the problem is not linearly separable in the 4-dimensional

62 CHAPTER 2 Classifiers Based on Cost Function Optimization

Table 2.7 Results of Linear and RBF Kernel Functions in Example 2.6.1

Training Error Test Error Vectors xi with Positive a No. Iterations

Linear 6.00% 5.33% 29 30000
RBF(0.1) 0.00% 1.33% 32 4
RBF(1) 0.00% 2.00% 33 6
RBF(1.5) 0.00% 2.00% 29 18
RBF(2) 0.00% 3.33% 27 5
RBF(5) 0.00% 1.33% 42 52
RBF(10) 0.00% 3.33% 55 409
RBF(15) 0.00% 5.33% 65 7747
RBF(20) 11.33% 16.00% 65 30000

30000 means no convergence.
Note: RBF(a) denotes the radial basis kernel functions with σ = a.

Table 2.8 Results of Polynomial Kernel Functions in Example 2.6.1

Training Error Test Error Vectors xi with Positive a No. Iterations

poly(3,0) 8.00% 8.67% 40 30000
poly(5,0) 6.00% 7.33% 34 30000
poly(3,1) 0.00% 3.33% 39 256
poly(5,1) 0.00% 3.33% 37 474
poly(15,1) 0.00% 5.33% 31 4977

30000 means no convergence.
Note: poly(n,β) denotes the polynomial kernel functions of the form (xT y +β)n.

space defined by poly(3,0), but is linearly separable in the 9-dimensional space defined by
poly(3,1).3

Remark
• As with SVMs, we observe that the right choice of kernel function, as well as the choice of respective

parameters, comes with experimentation. It depends on the specific data set and there are yet no
magic recipes (see Exercise 2.6.1).

Exercise 2.6.1
1. Consider the data sets X1 (training set) and X2 (test set) from Example 2.5.2. Run the kernel perceptron

algorithm using X1 as the training set where the kernel functions are (a) linear, (b) radial basis with
σ = 0.1,0.5,1, 1.5,2,5, and (c) polynomial of the form (xT y + 1)n for n = 3,5,15, 18,20,22. For all three

3The choice n = 3, β = 0 implies the mapping [x(1),x(2)]T → [x3(1),x3(2),
√

3x2(1)x(2),
√

3x(1)x2(2)]T (4-dimensional
space); the choice n = 3, β = 1 implies the mapping [x(1),x(2)]T → [x3(1),x3(2),

√
3x2(1)x(2),

√
3x(1)x2(2),√

3x2(1),
√

3x2(2),
√

6x(1)x(2),
√

3x(1),
√

3x(2)]T (9-dimensional space).

2.7 The AdaBoost Algorithm 63

cases, count the training and test errors, the number of misclassifications during training and the number
of iterations the algorithm runs. Use 30,000 as the maximum number of allowable iterations.

2. For each case plot in the same figure the training set X1, the test set X2, and the decision boundary
between the two classes. Use different colors and symbols for each class.

Hint
To perform the required experiments, work as in the previous example, now defining the bou_x and
bou_y parameters as

bou_x=[0 3];
bou_y=[0 3];

This problem is more difficult than the one considered in Example 2.6.1. The results show that both
the linear and the polynomial kernels are unable to solve it (with the specific values for the parameters).
The radial basis function kernel can solve the problem for a rather narrow range of values for parameter σ .

2.7 THE ADABOOST ALGORITHM
The AdaBoost algorithm implements a very interesting idea. To start with, a very simple classifier,
known as base or weak, is adopted. By simple we mean a classifier that does slightly better than a
random guess; that is, it results in an error rate slightly less than 0.5 (for the 2-class case). AdaBoost
is an iterative algorithm that generates (final) classifier that is based on a number of base classifiers
designed in a sequential manner, one after the other.

The secret of the algorithm is that during the training of the tth base classifier (at the tth iteration),
each training vector xi is appropriately weighted by a weight wi, whose value depends on whether xi

was incorrectly classified by the (t − 1) base classifier (wi is increased) or not (wi is decreased). Thus
vectors that keep failing receive more and more attention (weight). The final classifier (defined after the
termination of the algorithm) is given as a weighted average of all the base classifiers designed before.

It turns out that such a scheme converges to a zero error on the training set. The error rate on the
test set converges to a certain level. This is very interesting. Usually, training a classifier until zero
error over the training set is obtained results in overfitting [Theo 09, Section 4.9]. This is because as
was stated before, the classifier learns much about the “specificities” of the particular training set and
tends to result in high error rates when facing a test data set, which is “unknown” to it. This is not the
case with the AdaBoost algorithm and has been an issue of discussion among experts [Theo 09, Section
4.22; Meas 08].

The choice of a base classifier that achieves a classification error rate of less than 0.5 is not always
obvious. Several base classifiers have been proposed, a popular class of which is the so-called “stumps.”
Stumps may be represented as single-node classification trees. That is, the two classes in the classification
problem are separated according to a single rule. Such a classifier is discussed next.

Assume the dimensionality of the feature space to be equal to l. First, a dimension, say j ≤ l, is
chosen and the minimum and maximum values of the N (l-dimensional) vectors of the training set X
along the jth dimension are computed. A number θ , which serves as a threshold, is randomly chosen
between these two extreme values and the data vectors are separated into two classes depending on the
position of their jth coordinates, xi(j), i = 1, . . . ,N with respect to θ .

64 CHAPTER 2 Classifiers Based on Cost Function Optimization

x1 x2 x3

Points from class 11
Points from class 21

x4 x5 x6 x7

21 11

� �

(a)

x1 x2 x3 x4 x5 x6 x7

2111

(b)

FIGURE 2.9

First scenario (a) and second scenario (b) of the base classifier applied to a 7-point data set.

More specifically, the following two scenarios are considered: (a) the vectors whose jth coordinate
is less than θ are assigned to class −1; (b) the vectors whose jth coordinate is less than θ are assigned to
class +1 (obviously, this is opposite to the first scenario). For both, the error classification rates ea and
eb are computed (as the summation of the weights of all vectors that are misclassified). The scenario
that results in a lower classification rate is adopted to define the classifier.

To better understand this idea, consider the setup of Figure 2.9, which shows projections of the
seven points of a training data set to a given dimension. The scenarios (a) and (b) are illustrated in
Figures 2.9(a) and 2.9(b), respectively. In Figure 2.9(a) we observe that six vectors (all except x4) are
misclassified. Assuming that the weights for all of the data points are equal, ea = 6/7. The opposite
holds in Figure 2.9(b), where eb = 1/7.

The previously described base classifier is completely specified by

• The dimension along which the classification takes place
• The value of the threshold θ

• An index that takes the values +1 or −1 according to whether scenario (a) or (b) has been
selected

It turns out that the resulting classifier generally satisfies the requirement for the classification error to
be less than 0.5.

Example 2.7.1. Consider the 2-class 2-dimensional classification problem where the classes are
described by the pdfs given in Example 1.6.2, where now m11 = [1.25,1.25]T , m12 = [2.75,4.5]T ,
m13 = [2,11]T , m21 = [2.75,0]T , m22 = [1.25,2.75]T and m23 = [4,8]T . Generate a data set X con-
sisting of N = 100 data points, such that 50 stem from the first class and 50 stem from the second
class.
1. Run the AdaBoost algorithm on the data set X to generate a “strong” classifier as a sequence of

simple stump classifiers having the structure described before. Use T_max = 3000, the maximum
number of base classifiers (i.e., iterations).

2. Classify the vectors of the training set X using the previous classifier. Compute the classification
error P when only the first t base classifiers are taken into account, t = 1, . . . ,T_max. Plot P versus
the number of base classifiers.

3. Generate a test data set Z using the specifications of set X. Classify the vectors of set Z using
the classifier that results from the previous step. Compute the classification error P when only the

2.7 The AdaBoost Algorithm 65

first t base classifiers are taken into account, t = 1, . . . ,T_max. Plot P versus the number of base
classifiers.

4. Observe the plots generated in steps 2 and 3 and draw conlusions.

Solution. To generate the data sets X and Z, work as in Example 1.6.2, as follows:

Step 1. Use the boost_clas_coord MATLAB function by typing

[pos_tot, thres_tot,sleft_tot,a_tot,P_tot,K] = boost_clas_coord(X,y,T_max)

where

X is an l × N matrix, each column of which is a feature vector,

y is an N -dimensional vector whose ith coordinate is the class label (+1 or −1) of the class in
which the ith data vector belongs,

T_max is the maximum allowable number of base classifiers,

pos_tot is a vector whose tth coordinate is the integer indicating the chosen dimension for the
tth base classifier,

thres_tot is a vector whose tth coordinate is the threshold on the chosen dimension for the tth
base classifier,

sleft_tot is a vector whose tth coordinate is a variable taking the value +1 or −1 according to
whether scenario (a) or (b) has been selected in the tth base classifier,

a_tot is a vector whose tth coordinate is the weight for the tth base classifier,

P_tot is a vector whose tth coordinate is the (weighted) probability of classification error for
the tth base classifier,

K is the number of base classifiers generated by the algorithm.

Step 2. Use the boost_clas_coord_out MATLAB function by typing

[y_out,P_error] = boost_clas_coord_out(pos_tot, thres_tot,sleft_tot,a_tot,P_tot,K ,X,y)

where

pos_tot, thres_tot, sleft_tot, a_tot, P_tot, K , X, y are defined as in the boost_clas_coord
MATLAB function,

y_out is an N -dimensional vector whose ith coordinate is the class label (+1 or −1) of the class
in which the ith data vector has been assigned by the classifier,

P_error is a K -dimensional vector whose tth coordinate gives the (unweighted) classification
error for the current data set when only the tth first base classifiers are taken into account.

To plot the classification error on X versus the number of base classifiers (see Figure 2.10(a)),
type

figure(3), plot(P_error)

Step 3. Work as in step 2, replacing X with Z (see Figure 2.10(b)).

66 CHAPTER 2 Classifiers Based on Cost Function Optimization

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

(a) (b)

No. of classifiers No. of classifiers

C
la

ss
if

ic
at

io
n

er
ro

r

C
la

ss
if

ic
at

io
n

er
ro

r

FIGURE 2.10

Results from Example 2.7.1: (a) classification error for the training set versus the number of base classifiers;
(b) classification error for the test set versus the number of base classifiers.

Step 4. For the training set X, the classification error tends to 0as the number of base classifiers increases
(see Figure 2.10(a)). For the test set Z, the classification error tends to a positive limit as the number
of base classifiers increases (see Figure 2.10(b)).4

Exercise 2.7.1
Consider a 2-class 2-dimensional classification task, where the classes are described by normal distributions
with means [1, 1]T (class +1) and [s, s]T (class −1) and identity covariance matrices. Set s = 2. Generate a
data set X consisting of 50 points from the first class and 50 points from the second class.
1. Repeat steps 1, 2, and 3 of Example 2.7.1 and draw conclusions.
2. Repeat step 1 for s = 3,4,6.

2.8 MULTILAYER PERCEPTRONS
The perceptron algorithm and the associated “architecture” of the basic perceptron element were dis-
cussed in Section 2.2. The perceptron can be considered an attempt to model the basic building element,
the neuron, of the human brain. Each neuron is excited by receiving input signals x(1),x(2), . . . ,x(l).
Each is subsequently weighted by the weights w1,w2, . . . ,wl , which are also known as synaptic weights,
in analogy to the terminology used in neuroscience. The weighted sum then goes through the activation
function, and if its value is higher than a threshold value (−w0) the neuron “fires.” That is, it gives an
output value; otherwise, it remains inactive.

In a multilayer perceptron, many basic perceptron elements (neurons) are connected in a network
topology. Figure 2.11 illustrates such a multilayer perceptron or neural network. The neurons are placed

4The plots may be slightly different if different initial conditions are used for the functions rand and randn.

2.8 Multilayer Perceptrons 67

Input layer

First hidden layer (L1 nodes)

Second hidden layer (L2 nodes)

Output layer

x (1) x (2) x l()

w11
2

w12
3

w2l
1

y

FIGURE 2.11

Multilayer perceptron with two hidden-layers and a single node in the output layer. The input is applied
to the input-layer nodes. The weight that connects the ith node of the k−1 layer with the jth node of the k layer
is denoted wk

ji. Each node has the perceptron structure depicted in Figure 2.2. To keep the figure simple, the
activation function and the threshold value w0 for all nodes are not shown.

in successive layers and connections are allowed only between nodes of successive layers. In Figure
2.11 there are three layers of neurons: two hidden layers and one output layer consisting of a single
neuron. Sometimes the nodes, where the inputs (the feature values in our case) are applied, are said to
form the input layer. However, no processing takes place in the input nodes.

It is not difficult to see that the output of a neural network, denoted ŷ, is a highly nonlinear function
of the input (feature) values x(i), i = 1,2, . . . , l. This is because, in each neuron of the network, the
result of the corresponding linear combination is “pushed” through the associated nonlinear activation
function and the outcome is subsequently passed over to the neurons of the next layer.

The goal of training a multilayer perceptron is to estimate the weights, as well as the threshold values,
of all neurons involved in the network. To this end, a cost function is chosen. The most popular choice
is the least squares loss function. Assume that we are given a set of training data points, (yi ,xi), i =
1,2 . . . ,N , where yi is the true class label of xi ∈ Rl . The labels are usually either 1, for class ω1 or 0
for class ω2 in a 2-class classification task. Other choices are possible. If ŷi denotes the output of the
network when its input is fed with xi , the goal is to compute the unknown weights so that

J =
N∑

i=1

(yi − ŷi)
2 (2.15)

is minimum. Note that each ŷi is a function of all the weights and thresholds of all neurons.
The algorithmic scheme for performing the previous minimization is iterative and is widely known

as the backpropagation (BP) algorithm.The algorithm starts from some arbitrary initial values for all the
unknown parameters, and converges to a local minimum of the cost function in Eq. (2.15). In general,
the cost function has a number of local minima. Thus, the choice of initial values influences the solution
obtained by the algorithm. In practice, the algorithm runs several times, starting from different initial

68 CHAPTER 2 Classifiers Based on Cost Function Optimization

values; the weights corresponding to the best solution are chosen. (More on the properties of multilayer
perceptrons and backpropagation can be found in [Theo 09, Chapter 4].)

For an understanding of the meaning of the parameters involved in the associated MATLAB code,
let us briefly comment on the basic structure of the backpropagation algorithm. It belongs to the gradient
descent family of algorithms, and its basic iteration step is of the form

w(new) = w(old)+�w (2.16)

where old and new refer to the estimates at the previous and current iteration steps, respectively. The
correction term is related to the gradient of the cost, computed at w(old):

�w = −μ
∂J

∂w
(2.17)

and w refers to the weight parameters (including the threshold) of a network neuron.5

Because of the highly nonlinear dependence of the cost function on the unknown parameters, the con-
vergence of the algorithm presents difficulties and can be very slow and nonsmooth with an oscillatory
behavior with respect to the successive values of the cost function. The behavior of the algorithm largely
depends on the value of the learning rate μ. This should be small enough to guarantee convergence
of the algorithm, but not too small, since such a choice may lead to very slow convergence rates. One
would like larger μ values when the algorithm moves to regions of the landscape, defined by J(w),
that exhibit broad minima in order to speed up convergence. On the other hand, smaller μ values are
desirable when the algorithm moves to regions that exhibit steep or narrow minima, in order to avoid
overshooting the minimum. Figure 2.12 shows the landscape of a 2-dimensional cost function, which
contains two minima, one broad and one narrow.

A better-behaved and popular version of the algorithm is the so-called backpropagation with momen-
tum term. This version needs an extra parameter, α, known as the momentum term (usually between 0.1
and 0.8), that controls the correction, which now becomes

�w(new) = α�w(old)−μ
∂J

∂w

It can be shown that the momentum term effectively increases the learning rate when the algorithm
moves to regions of the landscape of J(w) that exhibit broad local minima [Theo 09, Section 4.7].

Another variant of the BP algorithm, called adaptive BP, adapts the value of μ at each iteration
based on the current (J(t)) as well as the previous (J(t − 1)) values of the cost function. It works as
follows: If J(t)

J(t−1)
< 1, μ increases by a factor of ri (typically 1.05); if J(t)

J(t−1)
> c (typically 1.04), μ

decreases by a factor of rd (typically 0.7).
To generate a multilayer perceptron one may use the NN_training function by typing

[net, tr] = NN_training(X,y,k,code, iter,par_vec)

5To make possible the computation of ∂J
∂w , the activation function must be smoothed out to become differentiable.

A popular smoothed activation function that takes values in the interval [−1, 1] is the hyperbolic tangent defined as
tanh(z) = 1−exp(−z)

1+exp(−z) , z ∈ R. Other choices are possible.

2.8 Multilayer Perceptrons 69

w1

w2

J

FIGURE 2.12

Landscape of a 2-dimensional function containing a broad and a narrow minima.

where

X contains the training vectors in its columns,

y is a vector containing the class labels for the data vectors,

code specifies the training algorithm to be used (1 for standard BP, 2 for BP with momentum term,
and 3 for BP with adaptive learning rate),

iter is the maximum number of iterations to be performed by the algorithm,

par_vec is a 5-dimensional vector containing the values of (a) the learning rate used in the standard
BP algorithm, (b) the momentum term used in the BP with momentum term, and (c) the three
values involved in the BP with adaptive learning rate,

net is the network structure returned, which follows the programming structure used by MATLAB,

tr is a structure which contains, among other quantities, the performance of the network during
training with respect to the number of epochs.6

Example 2.8.1. Consider a 2-class 2-dimensional classification problem. The points of the first (sec-
ond) class, denoted +1 (−1), stem from three (four) Gaussian distributions with means [−5, 5]T ,
[5, −5]T , [10, 0]T ([−5, −5]T , [0, 0]T , [5, 5]T , [15, −5]T), with equal probability. The covariance
matrix for each distribution is σ 2I , where σ 2 = 1 and I is the 2×2 identity matrix.

6See the MATLAB help tool for more details.

70 CHAPTER 2 Classifiers Based on Cost Function Optimization

1. Generate and plot a data set X1 (training set) containing 60 points from class +1 (approximately
20 from each distribution) and 80 points from class −1 (again approximately 20 points from each
distribution). Use the same prescription to generate a set X2 (test set).

2. Based on X1, train two 2-layer feedforward neural networks (FNNs) with two and four nodes in the
hidden layer.7 All hidden-layer nodes use the hyperbolic tangent (tanh) as the activation function,
while the output node uses the linear activation function.8 Run the standard backpropagation (BP)
algorithm for 9000 iterations with a learning rate of 0.01. Compute the training and test errors (based
on X1 and X2, respectively) and plot the training points as well as the decision regions formed by
each network. Also plot the training error versus the number of iterations.

3. Repeat step 2 using a learning rate of 0.0001 in the standard BP algorithm.
4. Repeat step 2, employing the adaptive BP algorithm for 6000 iterations, with a learning rate of

0.0001 and ri = 1.05, rd = 0.7, and c = 1.04.
5. Comment on the results obtained in steps 2, 3, and 4.

Solution. Take the following steps:

Step 1. To generate the data set X1, type

randn('seed',0)

%Parameter definition

l=2; % Dimensionality

m1=[-5 5; 5 -5; 10 0]'; %Means of Gaussians

m2=[-5 -5; 0 0; 5 5; 15 -5]';

[l,c1]=size(m1); %no of gaussians per class

[l,c2]=size(m2);

P1=ones(1,c1)/c1; %Probabilities of the gaussians per class

P2=ones(1,c2)/c2;

s=1; %variance

%%%%%%%%%%%%%%%%%%%

% Generation of training data from the first class

N1=60; %Number of first class data points

for i=1:c1

S1(:,:,i)=s*eye(l);

end

sed=0; %Random generator seed

[X1,y1]=mixt_model(m1,S1,P1,N1,sed);

%%%%%%%%%%%%%%%%%%

7The number of input nodes is equal to the dimensionality of the input space (two in our case); the number of output
nodes is equal to the number of classes minus 1 (one in our case).
8Note that the latter can also be of the tanh type. However, one can generally use different activation functions in the
various layers; this is the philosophy adopted here.

2.8 Multilayer Perceptrons 71

(a)

20

(b)
210 25 0 5 10 15 20

210

25

0

5

10

15

210 25 0 5 10 15 20
28

26

24

22

0

2

4

6

8

Class 11 training vector
Class 21 training vector

FIGURE 2.13

(a) Training set for Example 2.8.1. (b) Decision regions formed by the two-layer FNN with four hidden-layer
nodes, trained with the standard BP algorithm with learning rate 0.01 and 9000 iterations.

% Generation of training data from the second class

N2=80; %Number of second class data points

for i=1:c2

S2(:,:,i)=s*eye(l);

end

sed=0; %Random generator seed

[X2,y2]=mixt_model(m2,S2,P2,N2,sed);

%%%%%%%%%%%%%%%%%

%Production of the unified data set

X1=[X1 X2]; %Data vectors

y1=[ones(1,N1) -ones(1,N2)]; %Class labels

To plot the data set X1 (see Figure 2.13(a)), type

figure(10), hold on

figure(10), plot(X1(1,y1==1),X1(2,y1==1),'r.',...

X1(1,y1==-1),X1(2,y1==-1),'bx')

In a similar manner, X2 can be generated (to maintain reproducibility of the results, use sed = 100
where the previous code used sed = 0).

Step 2. To train a two-layer FNN with two nodes in the hidden layer, using the standard BP algorithm
with a learning rate of 0.01 and a maximum of 9000 iterations, type the following:

72 CHAPTER 2 Classifiers Based on Cost Function Optimization

rand('seed',100) %Random generators initialization

randn('seed',100)

iter=9000; %Number of iterations

code=1; %Code for the chosen training algorithm

k=2; %number of hidden layer nodes

lr=.01; %learning rate

par_vec=[lr 0 0 0 0];

[net,tr]=NN_training(X1,y1,k,code,iter,par_vec);

To compute the training and test error rates, type

pe_train=NN_evaluation(net,X1,y1)

pe_test=NN_evaluation(net,X2,y2)

To plot the data points as well as the decision regions formed by the resulting FNN, type

maxi=max(max([X1'; X2']));

mini=min(min([X1'; X2']));

bou=[mini maxi];

fig_num=1; %Number of figure

resolu=(bou(2)-bou(1))/100; %Resolution of figure

plot_NN_reg(net,bou,resolu,fig_num) %Decision region plot

figure(fig_num), hold on %Plotting training set

figure(fig_num), plot(X1(1,y1==1),X1(2,y1==1),'r.',...

X1(1,y1==-1),X1(2,y1==-1),'bx')

To plot the training error versus the number of iterations (see Figure 2.14), type

figure(11), plot(tr.perf)

The FNN with four hidden-layer nodes can be designed similarly. The only change is in the parameter
k, which indicates the number of nodes. The decision regions are shown in Figure 2.13(b). The results
are summarized in Table 2.9.

Step 3. Working as in step 2, design the required FNNs. The only change in this case is in the learning
rate parameter lr.

Step 4. In this case, work as in step 2 with the following changes

iter=6000; %Number of iterations

code=3; %Code for the chosen training algorithm

k=2; %number of hidden layer nodes

lr=.0001; %learning rate

par_vec=[lr 0 1.05 0.7 1.04]; %Parameter vector

2.8 Multilayer Perceptrons 73

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Standard BP, lr 5 0.01

Adaptive BP, lr 5 0.0001

Standard BP, lr 5 0.0001

Tr
ai

ni
ng

 e
rr

or

No. iterations

FIGURE 2.14

Plot of the training error versus the number of iterations for standard BP with lr = 0.01 (dashed line), standard
BP with lr = 0.0001 (solid line), and adaptive BP with lr = 0.0001 (dash-dotted line), for Example 2.8.1.

Table 2.9 Results for the FNNs Trained by the
Standard BP Algorithm, with Learning Rate 0.01
and 9000 Iterations, from Example 2.8.1

Two Nodes Four Nodes

Training error 29.29% 0
Test error 30.71% 0

Note: When fewer than the minimum required hidden-layer nodes are
employed, the resulting FNN is unable to solve the problem.

Table 2.10 Results for the FNNs Trained by the
Adaptive BP Algorithm, with Learning Rate 0.0001
and 6000 Iterations, from Example 2.8.1

Two Nodes Four Nodes

Training error 29.29% 0
Test error 32.14% 0

As in the previous cases, the value of k should be changed to 4 in order to design a two-layer FNN
with four hidden-layer nodes. The results are summarized in Table 2.10.

Step 5. Note that the classes involved in the current classification problem can be perfectly separated
using three lines.

74 CHAPTER 2 Classifiers Based on Cost Function Optimization

From the previous experiments the following conclusions can be drawn. First, the number of hidden
nodes directly affects the learning ability of the neural network. The experiments indicate that an FNN
with two hidden-layer nodes is unable to learn the classification problem considered in this example. In
contrast, an FNN with four hidden-layer nodes has enough nodes to realize the required decision curves
(see Tables 2.9 and 2.10 as well as the decision regions formed by each FNN).

Second, the learning rate affects the speed of the convergence of the backpropagation algo-
rithm. Small learning rate values may slow down the convergence speed of the BP algorithm (see
Figure 2.14).

Third, even when it starts with a small learning rate value, the adaptive BP algorithm exhibits very
fast convergence compared to the standard BP algorithm because it adjusts the value at each iteration to
“match” the landscape terrain (see Figure 2.14). The price for this desirable behavior is some additional
checks during the execution of the algorithm to adjust the learning rate.

Remark
• When the dimensionality of the data is higher than 3 (which is often the case), no visualization of

the data is possible. In such cases, the number of hidden-layer nodes chosen is usually the result of
extensive experimentation.

Exercise 2.8.1
Repeat Example 2.8.1, now with the covariance matrix of the involved Gaussian distributions being σ 2I,
where σ 2 = 4.

In this case, the points from each class are more spreadout and the classes are not so clearly separated as
in Example 2.8.1. Thus, a degradation of the resulting networks’ performance is expected (see Figure 2.15).
The training and test errors are (slightly) increased compared with those given in the previous example.
However, the results support the conclusions drawn in Example 2.8.1.

(a) (b)
215 210 25 0 5 10 15 20

215

210

25

0

5

10

215 210 25 0 5 10 15 20
215

210

25

0

5

10

15

20

Class 11 training vector
Class 21 training vector

FIGURE 2.15

(a) Training set for Exercise 2.8.1. (b) Decision regions produced by the two-layer FNN with four hidden-layer
nodes, trained with the standard BP algorithm with learning rate 0.01 and 9000 iterations.

2.8 Multilayer Perceptrons 75

Example 2.8.2. Consider a 2-class 2-dimensional classification problem. The points of the first (sec-
ond) class, denoted +1 (−1), stem from one out of four (five) Gaussian distributions with means
[−10, 0]T , [0, −10]T , [10, 0]T , [0, 10]T ([−10, −10]T , [0, 0]T , [10, −10]T , [−10, 10]T , [10, 10]T)
with equal probability. The covariance matrix for each distribution is σ 2I , where σ 2 = 4 and I is the
2×2 identity matrix.
1. Generate and plot a data set X1 (training set) containing 80 points from class +1 (20 from each

distribution) and 100 points from class −1 (20 points from each distribution). Use the same
prescription to generate a data set X2 (test set).

2. Based on X1, train three 2-layer feedforward neural networks (FNNs) with three, four, and ten
nodes in the hidden layer. The activation function of the hidden-layer nodes is the hyperbolic tan-
gent (tanh); the output node has a linear activation function. Use the adaptive BP algorithm for
10,000 iterations with a learning rate of 0.01 (for the rest of the parameters of the algorithm, use
the values given in Example 2.8.1). Compute the training and test errors (based on X1 and X2,
respectively) and plot the data points as well as the decision regions formed by each network. Draw
conclusions.

3. Design a two-layer FNN with 10 hidden-layer nodes and use the adaptive BP algorithm to train it,
based on X1. Compute the training and test error rates after 300, 400, 1000, 2000, 3000, 4000, 5000,
and 10,000 iterations. Set the learning rate parameter to 0.01 and the other parameters to the same
values used in Example 2.8.1. Draw conclusions.

Solution. Take the following steps:

Step 1. Generate X1 and X2 as in Example 2.8.1.

Step 2. The required experiments can be carried out working as in step 2 of Example 2.8.1. The data
set and the decision regions formed by the previous three FNNs are given in Figure 2.16. The
classification results are shown in Table 2.11.

The minimum number of required nodes for this example is four (why?). The decision regions
defined by the FNN with four hidden-layer nodes capture well the data distribution of each class.
However, they lead to greater classification error compared with that obtained by the FNN with
ten hidden-layer nodes. The latter offers enhanced capabilities in solving the current classification
problem because it has more free parameters (the weights) to adjust in order to fit the problem.
However, care must be taken when training large networks, as discussed next.

Step 3. From the results given in Table 2.12, observe that in the (approximate) range of 500 to 3000
iterations the test error (which is indicative of the generalization capability of the network) remains
3.89%. For more iterations, the training error is further decreased while the test error is increased
to values higher than 3.89%. This suggests that, in this case, more than (approximately) 3000
iterations leads to network overtraining. That is, the network starts to focus on the “specificities”
of the training set X1, which leads to degraded generalization performance. This is an important
issue in the training of FNNs. One way to detect overtraining is to adopt a set of data (a validation
set) which is different from X1, and periodically measure on it the performance of the FNN that is
obtained during training. If the error resulting from this data set starts to increase, while the training
error decreases, the training stops.

76 CHAPTER 2 Classifiers Based on Cost Function Optimization

Class 11 training vector
Class 21 training vector

215 210 25 0 5 10 15 20
215

210

25

0

5

10

15

20

215

210

25

0

5

10

15

20

(a)
215 210 25 0 5 10 15 20

215

210

25

0

5

10

15

20

(b)

215
215

210

25

0

5

10

15

20

210 25 0 5 10 15 20
(c)

215 210 25 0 5 10 15 20
(d)

FIGURE 2.16

(a) Training set for Example 2.8.2. (b)–(d) Decision regions formed by the 2-layer FNN with three, four, and
ten hidden-layer nodes, respectively, trained with the adaptive BP algorithm with learning rate 0.01 and
10,000 iterations.

Table 2.11 Results for the FNNs Trained by the Adaptive BP
Algorithm, with Learning Rate 0.01 and 10,000 Iterations
from Example 2.8.2

Three Nodes Four Nodes Ten Nodes

Training error 25.56% 6.67% 1.67%
Test error 30.00% 8.33% 7.22%

Note: The other parameters of the algorithm are specified as in Example 2.8.1.

2.8 Multilayer Perceptrons 77

Table 2.12 Results for a Two-Layer FNN with 10 Hidden-Layer Nodes Trained by the Adaptive BP
Algorithm, with Learning Rate 0.01 and for Various Numbers of Iterations from Example 2.8.2

No. Iterations

300 500 1000 2000 3000 4000 5000 10,000

Training error 3.89% 2.22% 2.22% 2.22% 2.22% 1.67% 1.67% 1.67%
Test error 4.44% 3.89% 3.89% 3.89% 3.89% 5.56% 6.11% 7.22%

Exercise 2.8.2
Consider a 2-class 2-dimensional classification problem. The points of the first (second) class, denoted +1
(−1), stem from one out of eight Gaussian distributions with means [−10, 0]T , [0, −10]T , [10, 0]T , [0, 10]T ,
[−10, 20]T , [10, 20]T , [20, 10]T , [20, −10]T ([−10, −10]T , [0, 0]T , [10, −10]T , [−10, 10]T , [10, 10]T ,
[20, 20]T , [20, 0]T , [0, 20]T) with equal probability. The covariance matrix for each distribution is σ 2I, where
σ 2 = 1 and I is the 2×2 identity matrix.

Take the following steps:

1. Generate and plot a data set X1 (training set) containing 160 points from class +1 (20 from each distribu-
tion) and another 160 points from class −1 (20 points from each distribution). Use the same prescription
to generate a data set X2 (test set).

2. Run the adaptive BP algorithm with learning rate 0.01 and for 10,000 iterations, to train 2-layer FNNs
with 7, 8, 10, 14, 16, 20, 32, and 40 hidden-layer nodes (the values of the rest of the parameters for the
adaptive BP algorithm are chosen as in Example 2.8.1).

3. Repeat step 2 for σ 2 = 2,3,4 and draw conclusions.

Note that this is a more complex problem compared with those considered before, and the required
number of hidden layer nodes is higher than that in the examples discussed previously. Note also that for the
FNN with 16 hidden-layer nodes for s = 1 and 4, no satisfactory solution is obtained, although the network is,
in principle, capable of learning the classification task (the FNN with 14 hidden-layer nodes performs much
better). This may be because the landscape of the cost function J(w) is such that it prevents the algorithm
from converging to a good solution. That is, the algorithm may be trapped in a local minimum of the cost
function that does not correspond to a satisfactory solution for the classification problem at hand.

CHAPTER

3Data Transformation
Feature Generation and
Dimensionality Reduction

3.1 INTRODUCTION
In this chapter, we deal with linear and nonlinear transformation techniques, which are used to generate
a set of features from a set of measurements or from a set of originally generated features. The goal is
to obtain new features that encode the classification information in a more compact way compared with
the original features. This implies a reduction in the number of features needed for a given classification
task, which is also known as dimensionality reduction because the dimension of the new feature space
is now reduced. The goal, of course, is to achieve this dimensionality reduction in some optimal sense
so that the loss of information, which in general is unavoidable after reducing the original number of
features, is as small as possible.

3.2 PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is one of the most popular techniques for dimensionality reduction.
Starting from an original set of l samples (features), which form the elements of a vector x ∈ Rl , the
goal is to apply a linear transformation to obtain a new set of samples:

y = AT x

so that the components of y are uncorrelated. In a second stage, one chooses the most significant of
these components. The steps are summarized here:

1. Estimate the covariance matrix S. Usually the mean value is assumed to be zero, E[x] = 0. In this
case, the covariance and autocorrelation matrices coincide, R ≡ E[xxT] = S. If this is not the case, we
subtract the mean. Recall that, given N feature vectors, xi ∈ Rl , i = 1,2 , . . . , N , the autocorrelation
matrix estimate is given by

R ≈ 1

N

N∑
i=1

xix
T
i (3.1)

2. Perform the eigendecomposition of S and compute the l eigenvalues/eigenvectors, λi, ai ∈ Rl ,
i = 0, 2, . . . , l − 1.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00003-8 79

80 CHAPTER 3 Data Transformation

3. Arrange the eigenvalues in descending order, λ0 ≥ λ1 ≥ · · · ≥ λl−1.
4. Choose the m largest eigenvalues. Usually m is chosen so that the gap between λm−1 and λm is large.

Eigenvalues λ0,λ1, . . . ,λm−1 are known as the m principal components.
5. Use the respective (column) eigenvectors ai, i = 0,1,2, . . . ,m − 1 to form the transformation matrix

A = [
a0 a1 a2 · · · am−1

]
6. Transform each l-dimensional vector x in the original space to an m-dimensional vector y via

the transformation y = AT x. In other words, the ith element y(i) of y is the projection of x on ai(
y(i) = aT

i x
)
.

As pointed out in [Theo 09, Section 6.3], the total variance of the elements of x,
∑l−1

i=0 E[x2(i)] (for
zero mean), is equal to the sum of the eigenvalues

∑l−1
i=0 λi. After the transformation, the variance of the

ith element, E[y2(i)], i = 0,2, . . . , l − 1, is equal to λi. Thus, selection of the elements that correspond
to the m largest eigenvalues retains the maximum variance.

To compute the principal components, type

[eigenval,eigenvec,explain,Y ,mean_vec] = pca_ fun(X,m)

where

X is an l × N matrix with columns that are the data vectors,

m is the number of the most significant principal components taken into account,

eigenval is an m-dimensional column vector containing the m largest eigenvalues of the covariance
matrix of X in descending order,

eigenvec is an l × m-dimensional matrix, containing in its columns the eigenvectors that correspond
to the m largest eigenvalues of the covariance matrix of X,

explain is an l-dimensional column vector whose ith element is the percentage of the total variance
retained along (in the MATLAB terminology explained by) the ith principal component,

Y is an m × N matrix containing the projections of the data points of X to the space spanned by the
m vectors of eigenvec,

mean_vec is the mean vector of the column vectors of X.

Example 3.2.1
1. Generate a set X1 of N = 500 2-dimensional vectors from a Gaussian distribution with zero mean

and covariance matrix

S1 =
[

0.3 0.2
0.2 1.0

]

Perform PCA on X1; that is, compute the two eigenvalues/eigenvectors of the estimate Ŝ1 of S1
obtained using the vectors of X1. Taking into account that the ith eigenvalue “explains” the variance
along the direction of the ith eigenvector of Ŝ1, compute the percentage of the total variance explained

3.2 Principal Component Analysis 81

0 1 2 3

2.5

1.5

0.5

20.5

21.5

22.5

23 22 21

a0

a1a1

210 25 0 5 10

26

22

2

6

10

(a) (b)

a0

FIGURE 3.1

Data points of X1(a) and X2(b) considered in Example 3.2.1, together with the (normalized) eigenvectors of Ŝ1

and Ŝ2 , respectively.

by each of the two components as the ratio λi
λ0+λ1

, i = 0,1. Plot the data set X1 as well as the

eigenvectors of Ŝ1. Comment on the results.

2. Similarly generate a data set X2, now with the covariance matrix S2 =
[

0.3 0.2
0.2 9.0

]
. Repeat the

previous experiment.

Solution. Take the following steps:

Step 1. To generate the data set X1, type

randn('seed',0) %For reproducubility of the results

S1=[.3 .2; .2 1];

[l,l]=size(S1);

mv=zeros(1,l);

N=500;

m=2;

X1=mvnrnd(mv,S1,N)';

To apply PCA on X1 and to compute the percentage of the total variance explained by each
component, type

[eigenval,eigenvec,explained,Y,mean_vec]=pca_fun(X1,m);

To plot the points of the data set X1 together with the (normalized) eigenvectors of Ŝ1, type (see
Figure 3.1(a))

figure(1), hold on

figure(1), plot(X1(1,:),X1(2,:),'r.')

82 CHAPTER 3 Data Transformation

figure(1), axis equal

figure(1), line([0; eigenvec(1,1)],[0; eigenvec(2,1)])

figure(1), line([0; eigenvec(1,2)],[0; eigenvec(2,2)])

The percentages of the total variance explained by the first and second components are 78.98%
and 21.02%, respectively. This means that if we project the points of X1 along the direction of the
principal eigenvector (that corresponds to the largest eigenvalue of Ŝ1), we retain 78.98% of the
total variance of X1; 21.02% of the total variance, associated with the second principal component,
will be “lost.”

Step 2. To generate the data set X2, repeat the previous code, where now X1 and S1 are replaced by X2
and S2, respectively. In this case, the percentages of the total variance explained by the first and
second components are 96.74% and 3.26%, respectively. This means that if we project the points of
X2 along the direction of the eigenvector that corresponds to the largest eigenvalue of Ŝ1, we retain
almost all the variance of X2 in the 2-dimensional space (see Figure 3.1(b)). Explain this using
physical reasoning.

The goal of the next example is to demonstrate that projecting in a lower-dimensional space, so as
to retain most of the variance, does not necessarily guarantee that the classification-related information
is preserved.

Example 3.2.2
1. a. Generate a data set X1 consisting of 400 2-dimensional vectors that stem from two classes. The

first 200 stem from the first class, which is modeled by the Gaussian distribution with mean
m1 = [−8, 8]T ; the rest stem from the second class, modeled by the Gaussian distribution with
mean m2 = [8, 8]T . Both distributions share the covariance matrix

S =
[

0.3 1.5
1.5 9.0

]
b. Perform PCA on X1 and compute the percentage of the total amount of variance explained by

each component.
c. Project the vectors of X1 along the direction of the first principal component and plot the data

set X1 and its projection to the first principal component. Comment on the results.
2. Repeat on data set X2, which is generated as X1 but with m1 = [−1, 0]T and m2 = [1, 0]T .
3. Compare the results obtained and draw conclusions.

Solution. Take the following steps:

Step 1(a). To generate data set X1 and the vector y1, whose ith coordinate contains the class label of the
ith vector of X1, type

randn('seed',0) %For reproducibility of the results

S=[.3 1.5; 1.5 9];

[l,l]=size(S);

mv=[-8 8; 8 8]';

N=200;

3.2 Principal Component Analysis 83

X1=[mvnrnd(mv(:,1),S,N); mvnrnd(mv(:,2),S,N)]';
y1=[ones(1,N), 2*ones(1,N)];

Step 1(b). To compute the eigenvalues/eigenvectors and variance percentages required in this
step, type

m=2;

[eigenval,eigenvec,explained,Y,mean_vec]=pca_fun(X1,m);

Step 1(c). The projections of the data points of X1 along the direction of the first principal component
are contained in the first row of Y , returned by the function pca_ fun. To plot the data vectors of X1
as well as their projections, type

%Plot of X1

figure(1), hold on

figure(1), plot(X(1,y==1),X(2,y==1),'r.',X(1,y==2),X(2,y==2),'bo')

%Computation of the projections of X1

w=eigenvec(:,1);

t1=w'*X(:,y==1);
t2=w'*X(:,y==2);

X_proj1=[t1;t1].*((w/(w'*w))*ones(1,length(t1)));

X_proj2=[t2;t2].*((w/(w'*w))*ones(1,length(t2)));

%Plot of the projections

figure(1), plot(X_proj1(1,:),X_proj1(2,:),'k.',...

X_proj2(1,:),X_proj2(2,:),'ko')

figure(1), axis equal
%Plot of the eigenvectors

figure(1), line([0; eigenvec(1,1)], [0; eigenvec(2,1)])

figure(1), line([0; eigenvec(1,2)], [0; eigenvec(2,2)])

The percentages of the total amount of variance explained by the first and second components are
87.34% and 12.66%, respectively. That is, the projection to the direction of the first component
retains most of the total variance of X1.

Step 2(a). To generate X2, the code for X1 is executed again, with m1 = [−1, 0]T and m2 = [1, 0]T .

Step 2(b)–(c). The codes in the (b)–(c) branches of step 1 are executed for X2. The percentages of
the total amount of variance explained by the two principal components are 90.19% and 9.81%,
respectively.

Step 3. In the two previous cases approximately 90% of the total variance of the data sets is retained
after projecting along the first principal component. However, there is no guarantee that class dis-
crimination is retained along this direction. Indeed, in the case of X1 the data in the two classes,
after projection along the first principal eigenvector, remain well separated. However, this is not the
case for data set X2 (see Figure 3.2).

84 CHAPTER 3 Data Transformation

210 25 0 5 10

0

4

8

12

16

a0

a1

210 25 0 5 10

28

24

0

4

8

a0

a1

(a) (b)

FIGURE 3.2

Data points (gray) of X1 (a) and X2 (b) considered in Example 3.2.2, along with the (normalized) eigenvectors
of Ŝ1 and Ŝ2, respectively. The data points of the two classes of X1, after projection along the first principal
eigenvector (black), remain well separated. This is not the case for X2.

Exercise 3.2.1
Take the following steps:

1. Generate a data set X1 consisting of 400 3-dimensional vectors that stem from two classes. The first half of
them stem from the first class, which is modeled by the Gaussian distribution with mean m1 = [−6, 6, 6]T ;
the rest stem from the second class, modeled by the Gaussian distribution with mean m2 = [6, 6, 6]T .
Both distributions share the covariance matrix

S =
⎡
⎢⎣

0.3 1.0 1.0

1.0 9.0 1.0

1.0 1.0 9.0

⎤
⎥⎦

Perform PCA on X1 and compute the percentage of the total amount of variance explained by each
principal component. Project the vectors of X1 on the space spanned by the first two principal components
Y1 and Y2. Plot the data in the X11-X12, X11-X13, X12-X13, Y1-Y2,Y1-Y3,Y2-Y3 subspaces (six MATLAB
figures in total).

2. Generate a data set X2 as in step 1, now with m1 = [−2, 0, 0]T and m2 = [2, 0, 0]T . Repeat the process
as described in step 1.

3. Compare the results obtained from each data set and draw conclusions.

3.3 THE SINGULAR VALUE DECOMPOSITION METHOD
Given an l × N matrix, X, there exist square unitary matrices U and V of dimensions l × l and N × N ,
respectively, so that

X = U

[
�

1
2 O

O 0

]
VT

3.3 The Singular Value Decomposition Method 85

where � is a square r × r matrix, with r ≤ min{l, N} (r is equal to the rank of X). Since matrices U and
V are unitary, their column vectors are, by definition, orthonormal and UUT = I and VVT = I . Matrix

�
1
2 is given by

�
1
2 =

⎡
⎢⎢⎢⎣

√
λ0 √

λ1
. . . √

λr−1

⎤
⎥⎥⎥⎦

where λi, i = 0,2, . . . ,r − 1, are the r nonzero eigenvalues of XXT , which are the same with the eigen-
values of XT X [Theo 09, Section 6.4], and known as the singular values of X. Equivalently, we can
write

X =
r−1∑
i=0

√
λiuiv

T
i (3.2)

where ui, vi , i = 0,1, . . . ,r − 1, are the corresponding eigenvectors of XXT and XT X, respectively.
Moreover, ui and vi , i = 0, . . . ,r − 1 are the first r column vectors of U and V , respectively. The rest of
the column vectors of U and V correspond to zero eigenvalues.

If we retain m ≤ r terms in the summation of Eq. (3.2), that is,

X̂ =
m−1∑
i=0

√
λiuiv

T
i (3.3)

then X̂ is the best approximation (in the Frobenius sense) of X of rank m [Theo 09, Section 6.4].
To compute the Singular Value Decomposition (SVD) of a matrix X, type

[U,s,V ,Y] = svd_ fun(X,m)

where

X is an l × N matrix whose columns contain the data vectors,

m is the number of the largest singular values that will be taken into account,

U is an l × l matrix containing the eigenvectors of XXT in descending order,

s is an r-dimensional vector containing the singular values in descending order,

V is an N × N matrix containing the eigenvectors of XT X in descending order,

Y is an m × N matrix containing the projections of the data points of X on the space spanned by the
m leading eigenvectors contained in U.

More on SVD can be found in [Theo 09, Section 6.4].

Exercise 3.3.1

1. Consider the data set X1 of Exercise 3.2.1. Perform singular value decomposition using svd_ fun. Then
project the vectors of X1 on the space spanned by the m leading eigenvectors contained in U (that
correspond to Y1 and Y2). Finally, plot the data in the X11-X12, X11-X13, X12-X13,Y1-Y2,Y1-Y3,Y2-Y3
spaces (six MATLAB figures in total).

86 CHAPTER 3 Data Transformation

2. Repeat for the data set X2 of Exercise 3.2.1 and compare the results.
Observe that the results obtained for the SVD case are similar to those obtained in Exercise 3.2.1

for the PCA case (why?).

Example 3.3.1. Generate a data set of N = 100 vectors of dimensionality l = 2000. The vectors stem
from the Gaussian distribution with a mean equal to the l-dimensional zero vector and a diagonal
covariance matrix, S, having all of its nonzero elements equal to 0.1 except S(1,1) and S(2,2), which
are equal to 10,000. Apply PCA and SVD on the previous data set and draw your conclusions.

Solution. To generate matrix X, containing the vectors of the data set, type

N=100;
l=2000;
mv=zeros(1,l);
S=0.1*eye(l);
S(1,1)=10000;
S(2,2)=10000;
randn('seed',0)
X=mvnrnd(mv,S,N)';

Note that the data exhibit significant spread along the first two axes, that is, along the vectors

e1 = [1,

l−1︷ ︸︸ ︷
0, . . . , 0]T and e2 = [0, 1,

l−2︷ ︸︸ ︷
0, . . . , 0]T .

To run PCA and SVD on X and to measure the execution time of each method, type

%PCA
t0=clock;
m=5;
[eigenval,eigenvec,explain,Y]=pca_fun(X,m);
time1=etime(clock,t0)
'----'
%SVD
t0=clock;
m=min(N,l);
[U,S,V,Y]=svd_fun(X,m);
time2=etime(clock,t0)

From the previously obtained results, two conclusions can be drawn.
First, both methods identify (approximately) e1 and e2 as the most significant directions. To verify

this, compare the first two columns of eigenvec produced by PCA with the first two columns of U,
that is, U(:,1 : 2), produced by SVD, by typing

[eigenvec(:,1:2) U(:,1:2)]'

Second, provided that enough computer memory is available, PCA will take orders of magnitude
more time than SVD (if not enough memory is available, PCA will not run at all). The difference in

3.4 Fisher’s Linear Discriminant Analysis 87

the performance of the two methods lies in the fact that in PCA we perform eigendecomposition on
the l × l covariance matrix while in SVD we perform eigendecomposition on the N × N XT X and then,
with a simple transformation, compute the eigenvectors of XXT (which may be viewed as a scaled
approximation of the autocorrelation matrix). Moreover, it has to be emphasized that, in general for
such cases where N < l, the obtained estimate of the autocorrelation matrix is not a good one. Such
cases, where N < l, arise in image-processing applications, in Web mining, in microarray analysis, and
the like.

3.4 FISHER’S LINEAR DISCRIMINANT ANALYSIS
In PCA, the dimensionality reduction is performed in an unsupervised mode. Feature vectors are
projected on the subspace spanned by the dominant eigenvectors of the covariance (autocorrelation)
matrix. In this section, computation of the subspace on which one projects, in order to reduce dimen-
sionality, takes place in a supervised mode. This subspace is also determined via the solution of an
eigendecomposition problem, but the corresponding matrix is different.

In the 2-class case, the goal is to search for a single direction, w, so that the respective projections y
of the l-dimensional feature vectors x ∈ Rl maximize Fisher’s discriminant ratio.

Fisher’s discriminant ratio of a scalar feature y in a 2-class classification task is defined as

FDR = (μ1 −μ2)
2

σ 2
1 +σ 2

2

where μ1, μ2 are the mean values of y, and σ 2
1 , σ 2

2 are the variances of y in the two classes, respectively.
In other words, after the projection on w the goal is for the mean values of the data points in the two
classes to be as far apart as possible and for the variances to be as small as possible. It turns out that
w is given by the maximum eigenvector of the matrix product S−1

w Sb [Theo 09, Section 5.8], where for
two equiprobable classes

Sw = 1

2
(S1 + S2)

is known as the within-class scatter matrix, with S1, S2 being the respective covariance matrices. Sb is
known as the between-class scatter matrix, defined by

Sb = 1

2
(m1 − m0)(m1 − m0)

T + 1

2
(m2 − m0)(m2 − m0)

T

where m0 is the overall mean of the data x in the original Rl space and m1, m2 are the mean values
in the two classes, respectively [Theo 09, Section 5.6.3]. It can be shown, however, that in this special
2-class case the eigenanalysis step can be bypassed and the solution directly given by

w = S−1
w (m1 − m2)

In the c-class case, the goal is to find the m ≤ c − 1 directions (m-dimensional subspace) so that the
so-called J3 criterion, defined as

J3 = trace{S−1
w Sb}

88 CHAPTER 3 Data Transformation

is maximized. In the previous equation

Sw =
c∑

i=1

PiSi , Sb =
c∑

i=1

Pi(mi − m0)(mi − m0)
T

and the Pi’s denote the respective class a priori probabilities. This is a generalization of the FDR
criterion in the multiclass case with different a priori probabilities. The m directions are given by
the m dominant eigenvectors of the matrix product S−1

w Sb.
It must be pointed out that the rank of the Sb matrix is c − 1 at the most (although it is given as a

sum of c matrices, only c − 1 of these terms are independent [Theo 09, Section 5.6.3]. This is the reason
that m was upper-bounded by c − 1; only the c − 1 largest eigenvalues (at most) are nonzero. In some
cases, this may be a drawback because the maximum number of features that this method can generate
is bounded by the number of classes [Theo 09, Section 5.8].

Example 3.4.1
1. Apply linear discriminant analysis (LDA) on the data set X2 generated in the second part of

Example 3.2.2.
2. Compare the results obtained with those obtained from the PCA analysis.

Solution. Take the following steps:

Step 1. To estimate the mean vectors of each class using the available samples, type

mv_est(:,1)=mean(X2(:,y2==1)')';
mv_est(:,2)=mean(X2(:,y2==2)')';

To compute the within-scatter matrix Sw, use the scatter_mat function, which computes the within
class (Sw), the between class (Sb), and the mixture class (Sm) [Theo 09, Section 5.6.3] for a c-class
classification problem based on a set of data vectors. This function is called by

[Sw,Sb,Sm]=scatter_mat(X2,y2);

Since the two classes are equiprobable, the direction w along which Fisher’s discriminant ratio is
maximized is computed as w = S−1

w (m1 − m2). In MATLAB terms this is written as

w=inv(Sw)*(mv_est(:,1)-mv_est(:,2))

Finally, the projection of the data vectors of X2 on the direction w as well as the plot of the results
is carried out through the following statements (see Figure 3.3)

%Plot of the data set
figure(1), plot(X(1,y==1),X(2,y==1),'r.',...

X(1,y==2),X(2,y==2),'bo')

figure(1), axis equal
%Computation of the projections

t1=w'*X(:,y==1);

3.4 Fisher’s Linear Discriminant Analysis 89

210 25 0 5 10

28

24

0

4

8

w

FIGURE 3.3

Points of the data set X2 (gray) and their projections (black) along the direction of w, from Example 3.4.1.

t2=w'*X(:,y==2);

X_proj1=[t1;t1].*((w/(w'*w))*ones(1,length(t1)));

X_proj2=[t2;t2].*((w/(w'*w))*ones(1,length(t2)));

%Plot of the projections

figure(1), hold on

figure(1), plot(X_proj(1,y==1),X_proj(2,y==1),'y.',...

X_proj(1,y==2),X_proj(2,y==2),'co')

Step 2. Comparing the result depicted in MATLAB figure 1, which was produced by the execution
of the previous code, to the corresponding result obtained by the PCA analysis, it is readily observed
that the classes remain well separated when the vectors of X2 are projected along the w direc-
tion that results from Fisher’s discriminant analysis. In contrast, classes were heavily overlapped
when they were projected along the principal direction provided by PCA.

Example 3.4.2
1a. Generate a data set of 900 3-dimensional data vectors, which stem from two classes—the first 100

vectors from a zero-mean Gaussian distribution with covariance matrix

S1 =
⎡
⎣ 0.5 0 0

0 0.5 0
0 0 0.01

⎤
⎦

The rest grouped in 8 groups of 100 vectors. Each group stems from a Gaussian distribution. All
of these distributions share the covariance matrix

S2 =
⎡
⎣ 1 0 0

0 1 0
0 0 0.01

⎤
⎦

90 CHAPTER 3 Data Transformation

while their means are

• m2
1 = [a, 0, 0]T

• m2
2 = [a/2, a/2, 0]T

• m2
3 = [0, a, 0]T

• m2
4 = [−a/2, a/2, 0]T

• m2
5 = [−a, 0, 0]T

• m2
6 = [−a/2, −a/2, 0]T

• m2
7 = [0, −a, 0]T

• m2
8 = [a/2, −a/2, 0]T

where a = 6 (m2
i denotes the mean of the ith Gaussian distribution of the second class).

Take the following steps:

1b. Plot the 3-dimensional data set and view it from different angles to get a feeling of how the data
are spread in the 3-dimensional space (use the Rotate-3D MATLAB utility).

1c. Perform Fisher’s discriminant analysis on the previous data set. Project the data on the subspace
spanned by the eigenvectors that correspond to the nonzero eigenvalues of the matrix product
S−1

w Sb. Comment on the results.
2. Repeat step 1 for a 3-class problem where the data are generated like those in step 1, with the

exception that the last group of 100 vectors, which stem from the Gaussian distribution with mean
m2

8, is labeled class 3.

Solution. Take the following steps:

Step 1(a). To generate a 3 × 900-dimensional matrix whose columns are the data vectors, type

%Initialization of random number generator

randn('seed',10)

%Definition of the parameters
S1=[.5 0 0; 0 .5 0; 0 0 .01];

S2=[1 0 0; 0 1 0; 0 0 .01];

a=6;

mv=[0 0 0; a 0 0; a/2 a/2 0; 0 a 0; -a/2 a/2 0;...

-a 0 0; -a/2 -a/2 0; 0 -a 0; a/2 -a/2 0]';

N=100;

% Generation of the data set
X=[mvnrnd(mv(:,1),S1,N)];

for i=2:9

X=[X; mvnrnd(mv(:,i),S2,N)];

end

X=X';

c=2; %No of classes

y=[ones(1,N) 2*ones(1,8*N)]; %Class label vector

3.4 Fisher’s Linear Discriminant Analysis 91

Step 1(b). To plot the data set X in the 3-dimensional space, type

figure(1), plot3(X(1,y==1),X(2,y==1),X(3,y==1),'r.',...
X(1,y==2),X(2,y==2),X(3,y==2),'b.')
figure(1), axis equal

With the Rotate-3D button of MATLAB figure 1, you can view the data set from different angles.
It is easy to notice that the variation of data along the third direction is very small (because of the
small values of S1(3,3) and S2(3,3)). The data set in the 3-dimensional space may be considered as
lying across the x − y plane, with a very small variation along the z axis.

Clearly, the projection of the data set in the x − y plane retains the separation of the classes,
but this is not the case with the projections on the x − z and y − z planes. In addition, observe that
there is no single direction (1-dimensional space) w that retains the separation of the classes after
projecting X on it.

Step 1(c). To perform Fisher’s discriminant analysis, first compute the scatter matrices Sw and Sb; then
perform eigendecomposition on the matrix S−1

w Sb; finally, project the data on the subspace spanned
by the eigenvectors of S−1

w Sb that correspond to the nonzero eigenvalues. The following MATLAB
code may be used:

% Scatter matrix computation
[Sw,Sb,Sm]=scatter_mat(X,y);
% Eigendecomposition of Swˆ (-1)*Sb
[V,D]=eig(inv(Sw)*Sb);
% Sorting the eigenvalues in descending order
% and rearranging accordingly the eigenvectors
s=diag(D);
[s,ind]=sort(s,1,'descend');
V=V(:,ind);
% Selecting in A the eigenvectors corresponding
% to non-zero eigenvalues
A=V(:,1:c-1);
% Project the data set on the space spanned by
% the column vectors of A
Y=A'*X;

Here we used the code for the multiclass case with c = 2. Since the number of classes is equal to
2, only one eigenvalue of S−1

w Sb is nonzero (0.000234). Thus, Fisher’s discriminant analysis gives
a single direction (1-dimensional space) along which the data will be projected.

To plot the projections of X on the subspace spanned by the eigenvector of S−1
w Sb, which

corresponds to the nonzero eigenvalue, type

figure(2), plot(Y(y==1),0,'ro',Y(y==2),0,'b.')
figure(2), axis equal

92 CHAPTER 3 Data Transformation

Observe that the projections of the data of the two classes coincide. Thus, in this case Fisher’s
discriminant analysis cannot provide a smaller subspace where the class discrimination is retained.
This happens because the number of classes is equal to 2 and so the dimensionality of the reduced
subspace is at most 1, which is not sufficient for the current problem.

Step 2(a). To generate a 3 × 900-dimensional matrix whose columns are data vectors, repeat the code
given in step 1(a), replacing the last two lines with

% Definition of the number of classes

c=3;

% Definition of the class label of each vector

y=[ones(1,N) 2*ones(1,7*N) 3*ones(1,N)];

Step 2(b). To plot the data set X in the 3-dimensional space, type

figure(1), plot3(X(1,y==1),X(2,y==1),X(3,y==1),'r.',X(1,y==2),...

X(2,y==2),X(3,y==2),'b.',X(1,y==3),X(2,y==3),X(3,y==3),'g.')

figure(1), axis equal

Step 2(c). Adopt the MATLAB code of step 1(c) for the current data set. In this case, since there are three
classes, we may have at most two nonzero eigenvalues of S−1

w Sb. Indeed, the nonzero eigenvalues
now turn out to be 0.222145 and 0.000104.

To plot the projections of X on the space spanned by the eigenvectors of S−1
w Sb that correspond

to the nonzero eigenvalues (2-dimensional space), type

figure(3), plot(Y(1,y==1),Y(2,y==1),'ro',...

Y(1,y==2),Y(2,y==2),'b.',Y(1,y==3),Y(2,y==3),'gx')

figure(3), axis equal

In this case, observe that the projection in the 2-dimensional subspace retains the separation among
the classes at a satisfactory level.

Finally, keep in mind that there are data sets where the dimensionality reduction from projection
in any subspace of the original space may cause substantial loss of class discrimination. In such
cases, nonlinear techniques may be useful.

3.5 THE KERNEL PCA
The three methods considered so far for dimensionality reduction are linear. A subspace of low dimen-
sion is first constructed as, for example, the span of the m dominant directions in the originalRl , l > m
space.

The choice of dominant directions depends on the method used. In a second stage, all vectors of
interest in Rl are (linearly) projected in the low-dimensional subspace. Such techniques are appropriate
whenever our data in Rl lie (approximately) on a linear manifold (e.g., hyperplane). However, in many

3.5 The Kernel PCA 93

0 1

0

1

21 2120.8 20.4 0.4 0.820.5 0 0.5 1 1.5

0

0.4

0.8

1.2

1.2

1.6
0.8

0.6

0.4

0.2

20.2

2

(a) (b)

FIGURE 3.4

(a) The 2-dimensional data points lying (approximately) on a line (linear manifold). (b) The 2-dimensional data
points lying (approximately) on a semicircle (nonlinear manifold).

cases the data are distributed around a lower-dimensional manifold, which is not linear (e.g., around a
circle or a sphere in a 3-dimensional space).

Figures 3.4(a,b) show two cases where data in the 2-dimensional space lie (approximately) on a
linear and a nonlinear manifold, respectively. Both manifolds are 1-dimensional since a straight line
and the circumference of a circle can be parameterized in terms of a single parameter.

The kernel PCA is one technique for dimensionality reduction when the data lie (approximately)
on a nonlinear manifold. According to the method, data are first mapped into a high-dimensional space
via a nonlinear mapping:

x ∈ Rl �→ φ(x) ∈ H

PCA is then performed in the new space H, chosen to be an RKHS. The inner products can be expressed
in terms of the kernel trick, as discussed in Section 2.5.

Although a (linear) PCA is performed in the RKHS space H, because of the nonlinearity of the
mapping function φ(·), the method is equivalent to a nonlinear function in the original space. Moreover,
since every operation can be expressed in inner products, the explicit knowledge of φ(·) is not required.
All that is necessary is to adopt the kernel function that defines the inner products. More details are
given in [Theo 09, Section 6.7.1].

To use the kernel PCA, type

[s,V ,Y] = kernel_PCA(X, m, choice, para)

where

X is an l × N matrix whose columns contain the data vectors,

m is the number of (significant) principal components that will be considered,

choice is the type of kernel function to be used (‘pol’ for polynomial, ‘exp’ for exponential),

para is a 2-dimensional vector containing the parameters for the kernel function; for polynomials it
is (xT y + para(1))para(2) and for exponentials it is exp(−(x − y)T (x − y)/(2para(1)2)),

94 CHAPTER 3 Data Transformation

s is an N -dimensional vector that contains the computed eigenvalues after applying the kernel PCA,

V is an N × N matrix whose columns are the eigenvectors corresponding to the principal components
of the Gram matrix, K, which is involved in the kernel PCA [Theo 09, Section 6.7.1],

Y is an m × N dimensional matrix that contains the projections of the data vectors of X on the
subspace spanned by the m principal components.

Example 3.5.1. This example illustrates the rationale behind the kernel PCA. However, since kernel
PCA implies, first, a mapping to a higher-dimensional space, visualization of the results is generally
not possible. Therefore, we will “cheat” a bit and use a mapping function φ(·) that does not correspond
to a kernel function k(·, ·). (After all, the mapping to an RKHS is required only for the computational
tractability needed to compute inner products efficiently.) However, this function allows transforma-
tion of a 2-dimensional space, where our data points lie around a nonlinear manifold, into another
2-dimensional space, where the data points are mapped around a linear manifold.

Consider a data set X consisting of 21 2-dimensional points of the form xi =(xi(1),xi(2)) =
(cos θi +si , sinθi + s′

i), where θi = (i − 1) ∗ (π/20), i = 1, . . . ,21 and si, s′
i are random numbers that

stem from the uniform distribution in [−0.1, 0.1] (see Figure 3.5(a)). These points lie around the
semicircle modeled by x2(1)+ x2(2) = 1, which is centered at the origin and is positive along the x2
axis.

The mapping function φ(·) is defined as

φ

([
x(1)

x(2)

])
=

[
tan−1

(
x(2)
x(1)

)
√

x2(1)+ x2(2)

]

By applying φ(·) on the data set X, we get the set Y = {yi = φ(xi), i = 1, . . . ,21}, which is illustrated in
Figure 3.5(b). Note that the points of Y lie around a linear manifold (straight line) in the transformed
domain. Then we apply linear PCA on Y and keep only the first principal component, since almost all of
the total variance of the data set (99.87%) is retained along this direction.1 Let Z = {zi = [zi(1), zi(2)]T ,
i = 1, . . . ,21} be the set containing the projections of yi’s on the first principal component in the trans-
formed space (see Figure 3.5(c)). Mapping zi’s back to the original space via the inverse function of
φ(·), which is given by

φ−1
([

z(1)

z(2)

])
=

[
z(2)cos z(1)

z(2)sin z(1)

]
≡

[
x′(1)

x′(2)

]

the points (x′(1), x′(2)) are obtained that lie on the semicircle defined by x2(1)+ x2(2) = 1, with
x(2) > 0 (see Figure 3.5(d)).

1Linear PCA requires subtraction of the mean of the data vectors (which is performed in the pca_fun function). In our
case, this vector equals [0,1]T . After PCA, this vector is added to each projection of the points along the direction of the
first principal component.

3.5 The Kernel PCA 95

21 20.820.620.420.2 0 0.2 0.4 0.6 0.8 1

20.2

0

0.2

0.4

0.6

0.8

1

1.2

21 20.5 0 0.5 1 1.5

0

0.4

0.8

1.2

1.6

2

21 20.8 20.620.420.2 0 0.2 0.4 0.6 0.8 1

20.2

0

0.2

0.4

0.6

0.8

1

1.2

21 20.5 0 0.5 1 1.5

0

0.4

0.8

1.2

1.6

2

(a) (b)

(c) (d)

FIGURE 3.5

Example 3.5.1: (a) Data set in the original space (around a semicircle). (b) Data set in the transformed space
(around a straight line). (c) Direction corresponding to the first principal component and the images
(projections) of the points on it in the transformed space. (d) Images of the points in the original space.

Remark
• Observe that the nonlinear mapping transformed the original manifold to a linear one. Thus, the

application of the (linear) PCA on the transformed domain is fully justified. Of course, in the general
case one should not expect to be so “lucky”—that is, to have the transformed data lying across a linear
manifold.

In the next example we consider kernel PCA in the context of a classification task. More specifically,
the goal is to demonstrate the potential of the kernel PCA to transform a nonlinear classification problem,
in the (original) l-dimensional space, into a linear one in an m(< l) dimensional space. If this is achieved,
the original classification problem can be solved in the transformed space by a linear classifier.

96 CHAPTER 3 Data Transformation

Example 3.5.2
1. Generate two data sets X and Xtest , each one containing 200 3-dimensional vectors. In each, the first

N1 = 100 vectors stem from class 1, which is modeled by the uniform distribution in [−0.5, 0.5]3,
while the rest, N2 = 100, stem from class −1 and lie around the sphere with radius r = 2 and centered
at the origin. The N2 points for each data set are generated as follows.

Randomly select a pair of numbers, x(1) and x(2), that stem from the uniform distribution in the
range [−2, 2], and check if x2(1)+ x2(2) is less than r2. If this is not the case, choose a different
pair. Otherwise, generate two points of the sphere as (x(1), x(2),

√
r2 − x2(1)− x2(2) + ε1) and

(x(1), x(2),−√
r2 − x2(1)− x2(2) + ε2), where ε1 and ε2 are random numbers that stem from the

uniform distribution in the interval [−0.1, 0.1].
Repeat this procedure N2/2 times to generate N2 points. Also generate the vectors y and ytest

which contain the class labels of the points of X and Xtest , respectively. Then plot the data sets.

2. Perform kernel PCA on X using the exponential kernel function with σ = 1 and keep only the first
two most significant principal components. Project the data points of X onto the subspace spanned
by the two principal components and let Y be the set of these projections (plot Y).

3. Design a least squares (LS) classifier based on Y .
4. Evaluate the performance of the previous classifier based on Xtest as follows: For each vector in

x ∈ Xtest , determine its projection onto the space spanned by the two most significant principal
components, computed earlier, and classify it using the LS classifier generated in step 3. Assign x
to the class where its projection has been assigned. Plot the projections of the points of Xtest onto
the subspace spanned by the two principal components along with the straight line that realizes the
classifier.

5. Repeat steps 2 through 4 with σ = 0.6.

Solution. Take the following steps:

Step 1. To generate the points of X that belong to class 1, type

rand('seed',0)

noise_level=0.1;

n_points=[100 100]; %Points per class

l=3;

X=rand(l,n_points(1))- (0.5*ones(l,1))*ones(1,n_points(1));

To generate the points of X that belong to class −1, type

r=2; %Radius of the sphere

for i=1:n_points(2)/2

e=1;

while(e==1)

temp=(2*r)*rand(1,l-1)-r;

if(rˆ 2-sum(temp.ˆ 2)>0)

3.5 The Kernel PCA 97

e=0;
end

end
t=sqrt(rˆ 2-sum(temp.ˆ 2))+noise_level*(rand-0.5);

qw=[temp t; temp -t]';
X=[X qw];

end

The data set Xtest is generated similarly (use the value 100 as the seed for the rand function).
To define the class labels of the data vectors, type

[l,N]=size(X);
y=[ones(1,n_points(1)) -ones(1,n_points(2))];

y_test=[ones(1,n_points(1)) -ones(1,n_points(2))];

To plot the data set X, type2

figure(1), plot3(X(1,y==1),X(2,y==1),X(3,y==1),'r.',...

X(1,y==-1),X(2,y==-1),X(3,y==-1),'b+')
figure(1), axis equal

Xtest is plotted similarly. Clearly, the two classes are nonlinearly separable.

Step 2. To perform kernel PCA with kernel exponential and σ = 1, type

[s,V,Y]=kernel_PCA(X,2,'exp',[1 0]);

Note that Y contains in its columns the images of the points of X on the space spanned by the first
two principal components, while V contains the respective principal components.

To plot Y , type

figure(2), plot(Y(1,y==1),Y(2,y==1),'r.',Y(1,y==-1),Y(2,y==-1),'b+')

Step 3. To design the LS classifier based on Y , type

w=SSErr([Y; ones(1,sum(n_points))],y,0);

Note that each column vector of Y has been augmented by 1. The resulting w is [33.8001, 2.4356,
−0.8935].

Step 4. Type the following to generate the Ytest set, containing in its columns the projections of the
vectors of Xtest to the space spanned by the principal components:

[l,N_test]=size(X_test);

2Use the Rotate 3D button to observe the data set from different angles.

98 CHAPTER 3 Data Transformation

Y_test=[];

for i=1:N_test

[temp]=im_point(X_test(:,i),X,V,2,'exp',[1 0]);

Y_test=[Y_test temp];

end

To classify the vectors of Xtest (Ytest) and compute the classification error, type

y_out=2*(w'*[Y_test; ones(1,sum(n_points))]>0)-1;

class_err=sum(y_out.*y_test<0)/sum(n_points);

Figure 3.6(a) shows the Ytest set together with the line that corresponds to the linear classifier. This
is produced by typing

figure(6), plot(Y_test(1,y==1),Y_test(2,y==1),'r.',...

Y_test(1,y==-1),Y_test(2,y==-1),'b+')

figure(6), axis equal

% Ploting the linear classifier (works only if w(1)˜=0)

y_lin=[min(Y_test(2,:)') max(Y_test(2,:)')];

x_lin=[(-w(3)-w(2)*y_lin(1))/w(1) (-w(3)-w(2)*y_lin(2))/w(1)];

figure(6), hold on

figure(6), line(x_lin,y_lin)

Step 5. For this step, repeat the codes given in steps 2 through 4. Now in the call of the kernel PCA
function (step 2), [1, 0] is replaced by [0.6, 0] (see also Figure 3.6(b)).

20.02 0 0.02 0.04 0.06 0.08
20.04

20.02

0

0.02

0.04

(a) (b)
20.07 20.05 20.03 20.01 0.01

20.03

20.01

0.01

0.03

FIGURE 3.6

Ytest set produced in step 4 and linear classifier determined in step 3 of Example 3.5.2 for σ = 1 (a) and
σ = 0.6 (b).

3.5 The Kernel PCA 99

The previous steps having been performed, three conclusions can be drawn:
• First, kernel PCA may lead to mappings in lower-dimensional spaces, where the involved classes can

be linearly separated, even though this is not the case in the original space. This cannot be achieved
with linear PCA.

• Second, the choice of the kernel function parameters is critical. To verify this, try step 5 with
σ = 3. In this case, the arrangement of the classes in the transformed space looks very similar to the
arrangement in the original space.

• Third, for this problem the two classes remain linearly separable even in the 1-dimensional space as
defined by the first principal component.

Example 3.5.3
1. Generate two data sets X1 and X2 as follows:

• X1 consists of 300 2-dimensional points. The first N1 = 100 points stem from class 1, which is
modeled by the uniform distribution in the region [−2.5, −1.5] × [−0.5, 0.5]; the next N2 = 100
points stem from class 2, which is modeled by the uniform distribution in the area [0.5, 1.5] ×
[−2.5, −1.5]; and the final, N3 = 100 points stem from class 3 and lie around the circle C with
radius r = 4 and centered at the origin.

More specifically, the last N3 points are generated as follows: The points of the form xi =
−r + 2r

N2/2−1 i, i = 0, . . . , N2/2 − 1 in the x axis are selected (they lie in the interval [−2, 2]). For

each xi the quantities v1
i =

√
r2 − x2

i + ε1
i and v2

i = −
√

r2 − x2
i + ε2

i are computed, where ε1
i , ε2

i

stem from the uniform distribution in the interval [−0.1, 0.1]T . The points (xi ,v1
i) and (xi ,v2

i),
i = 0, . . . , N2 − 1, lie around C.

• X2 consists of 300 2-dimensional points. Points N1 = 100, N2 = 100, and N3 = 100 stem from
classes 1, 2, and 3, respectively. They lie around the circles centered at the origin and having
radii r1 = 2, r2 = 4, and r3 = 6, respectively (the points of each class are generated by adopting
the procedure used for generating the last N3 points of the previous data set, X1).

Generate the vectors y1 and y2, which contain the class labels of the data points of the sets X1 and
X2, respectively. Plot X1 and X2.

2. Perform kernel PCA on X1, using the exponential kernel function with σ = 1 and keep only the first
two principal components. Determine and plot the set Y1, which contains the projections of the data
points of X1 onto the subspace spanned by the two principal components. Repeat the steps for X2
and draw conclusions.

Solution. Take the following steps:

Step 1. To generate the data set X1, type

rand('seed',0)

noise_level=0.1;

%%%

n_points=[100 100 100];

100 CHAPTER 3 Data Transformation

l=2;

% Production of the 1st class

X1=rand(l,n_points(1))- [2.5 0.5]'*ones(1,n_points(1));

% Production of the 2nd class X1=[X1

rand(l,n_points(2))- [-0.5 2.5]'*ones(1,n_points(2))];

% Production of the 3rd class

c1=[0 0];

r1=4;

b1=c1(1)-r1;

b2=c1(1)+r1;

step=(b2-b1)/(n_points(2)/2-1);

for t=b1:step:b2

temp=[t c1(2)+sqrt(r1ˆ 2-(t-c1(1))ˆ 2)+noise_level*(rand-0.5);...

t c1(2)-sqrt(r1ˆ 2-(t-c1(1))ˆ 2)+noise_level*(rand-0.5)]';

X1=[X1 temp];

end

To generate the vector of the labels y1, type

y1=[ones(1,n_points(1)) 2*ones(1,n_points(2)) 3*ones(1,n_points(3))];

To plot the data set X1, type

figure(1), plot(X1(1,y1==1),X1(2,y1==1),'r.',...

X1(1,y1==2),X1(2,y1==2),'bx',...

X1(1,y1==3),X1(2,y1==3),'go')

Step 2. To perform kernel PCA on X1 with the exponential kernel function (σ = 1), type

m=2;

[s,V,Y1]=kernel_PCA(X1,m,'exp',[1 0]);

To plot Y1, type

figure(2), plot(Y1(1,y1==1),Y1(2,y1==1),'r.',...

Y1(1,y1==2),Y1(2,y1==2),'bx',...

Y1(1,y1==3),Y1(2,y1==3),'go')

Work similarly for X2.
In Y1 the classes are linearly separable, but this is not the case in Y2. That is, kernel PCA does not

necessarily transform nonlinear classification problems into linear ones.

3.6 Laplacian Eigenmap 101

Exercise 3.5.1
In this exercise, we see how the original space is transformed using kernel PCA. To ensure visualization of the
results, we consider a 2-dimensional problem, which will be mapped to the 2-dimensional space spanned by
the first two principal components that result from the kernel PCA. More specifically, go through the following
steps:

Step 1. Generate a data set X , which contains 200 2-dimensional vectors. N1 = 100 vectors stem from class
1, which is modeled by the uniform distribution in [−0.5, 0.5]2; N2 = 100 vectors stem from class −1 and
lie around the circle with radius 1 and centered at the origin. The N2 points are produced as the last N3
points of the X1 data set in Example 3.5.3.

Step 2. Repeat step 1 from Example 3.5.2, with σ = 0.4.

Step 3. Repeat step 2 from Example 3.5.2.

Step 4. Consider the points x of the form (−2 + i ∗ 0.1,−2 + j ∗ 0.1), i, j = 0, . . . ,40 (these form a rectangular
grid in the region [−2,2]2) and their images in the space spanned by the two principal compo-
nents, determined in step 2. Classify the image of each point x using the LS classifier designed
in step 3 and produce two figures. The first corresponds to the transformed space and an image
point is plotted with a green o if it is classified to the first class (+1) and with a cyan x if it is
classified to the second class (−1). The second figure corresponds to the original space and the cor-
responding points x are drawn similarly. Observe how the implied nonlinear transformation deforms
the space.

Step 5. Repeat steps 2 through 4, with σ = 1.

Hint
To generate X , work as in Example 3.5.3. To define the class labels of the data vectors and to plot X , work
as in Example 3.5.2. To perform kernel PCA and define the linear classifier, also work as in Example 3.5.2.
To carry out step 4, use the MATLAB function plot_orig_trans_kPCA by typing

m=2;
choice='exp';
para=[0.4 0];
reg_spec=[-2 0.1 2; -2 0.1 2];
fig_or=5;
fig_tr=6;
plot_orig_trans_kPCA(X,V,m,choice,para,w,reg_spec,fig_or,fig_tr)

The results are shown in Figure 3.7. Observe how the points inside the circle (denoted by o) in the original
space are expanded in the transformed space. Also notice the difference between the transformed spaces
for σ = 0.4 and σ = 1, respectively (Figure 3.7(a, c)).

3.6 LAPLACIAN EIGENMAP
The Laplacian eigenmap method belongs to the family of so-called graph-based methods for dimen-
sionality reduction. The idea is to construct a graph, G(V ,E), where nodes correspond to the data points
xi , i = 1,2, . . . , N . If two points are close, the corresponding nodes are connected via an edge, which
is weighted accordingly. The closer two points are the higher the value of the weight of the respective
edge.

102 CHAPTER 3 Data Transformation

(a) (b)

(c) (d)

20.02 0 0.02 0.04 0.06 0.08
20.04

20.02

0

0.02

0.04

20.05 20.03 20.010 0.01 0.03 0.05
20.06

20.05

20.04

20.03

20.02

20.01

0

0.01

22.5 21.5 20.5 0.5 1.5 2.5
22

21

0

1

2

22
22.5 21.5 20.5 0.5 1.5 2.5

21

0

1

2

FIGURE 3.7

(a) Linear classifier in the space spanned by the first two principal components resulting from the kernel PCA,
using exponential kernel function with σ = 0.4, from Exercise 3.5.1. (b) Equivalent of the linear classifier in the
original space. (c) Linear classifier in the space spanned by the first two principal components using the
exponential kernel function with σ = 1, from Exercise 3.5.1. (d) Equivalent of the linear classifier in the original
space. Observe the influence of the value of σ .

Closeness is determined via a threshold value. For example, if the squared Euclidean distance
between two points, ||xi − xj ||2, is less than a user-defined threshold, say e, the respective nodes
are connected and are said to be neighbors. The corresponding weight can be defined in different
ways. A common choice for the weights W(i, j) between the nodes i and j is, for some user-defined
variable σ 2,

W(i, j) =
{

exp
(
−||xi−xj||2

σ 2

)
, if ||xi − xj||2 < e

0 otherwise

3.6 Laplacian Eigenmap 103

Thus, the graph encodes the local information in the original, high-dimensional, space Rl .
It is further assumed that the data xi ∈ Rl lie on a smooth manifold of dimension m. The value of m

is assumed to be known. For example, the original data may live in the 3-dimensional space R3, but lie
around a sphere. The latter is a 2-dimensional smooth manifold since two parameters suffice to describe
the surface of a sphere.

The goal of the method is to obtain an m-dimensional representation of the data so that the local
neighborhood information in the manifold is optimally retained. In this way, the local geometric structure
of the manifold is reflected in the obtained solution.

The Laplacian eigenmap turns out to be equivalent to an eigenvalue/eigenvector problem of the
so-called Laplacian matrix. This matrix encodes the local information as described by the weights of
the edges in the graph [Theo 09, Section 6.7.2].

To use the Laplacian eigenmap, type

y = lapl_eig(X,e,sigma2,m)

where

e is the value of the threshold,

sigma2 is the σ 2 parameter,

y is an m × N matrix whose ith column defines the projection of the ith data vector to the
m-dimensional subspace.

Example 3.6.1. Generate a 3-dimensional Archimedes spiral as a pack of 11 identical 2-dimensional
Archimedes spirals, one above the other. A 2-dimensional spiral is described in polar coordinates by the
equation r = aθ , where a is a user-defined parameter. In our case, the points of a 3-dimensional spiral
are generated as follows: For θ , take the values from θinit to θfin with step θstep and compute

r = aθ
x = r cosθ
y = r sinθ

The 11 points of the form (x,y,z), where z = −1,−0.8,−0.6, . . . ,0.8,1, are points of the spiral. Use
a = 0.1, θinit = 0.5, θfin = 2.05 ∗ π , θstep = 0.2.

Plot the 3-dimensional spiral so that all points of the same 2-dimensional spiral are plotted using
the same symbol and all groups of 11 points of the form (x,y,z), where x and y are fixed and z takes the
values −1,−0.8,−0.6, . . . ,0.8,1, are plotted using the same color.

1. Perform the Laplacian eigenmap on the points of the previous data set for manifold dimension
m = 2. Plot the results.

2. Perform linear PCA on the same data set, using the first two principal components. Plot the
results.

3. Compare the results obtained in steps 1 and 2.

Solution. To generate and plot the 3-dimensional spiral, call the function spiral_3D by typing

a=0.1;
init_theta=0.5;

104 CHAPTER 3 Data Transformation

fin_theta=2.05*pi;
step_theta=0.2;
plot_req=1; % Request for plot the spiral
fig_id=1; % Number id of the figure
% Producing the 3D spiral
[X,color_tot,patt_id]=spiral_3D(a,init_theta,...
fin_theta,step_theta,plot_req,fig_id);
[l,N]=size(X);

Use Rotate 3D to see the spiral from different viewpoints.
Do the following:

Step 1. To perform the Laplacian eigenmap, call the function lapl_eig by typing

e=0.35;
sigma2=sqrt(0.5);
m=2;
y=lapl_eig(X,e,sigma2,m);

To plot the results, type

figure(2), hold on
for i=1:N

figure(2), plot(y(1,i),y(2,i),patt_id(i),'Color',color_tot(:,i)')
end

Step 2. To perform linear PCA, call the function pca_fun by typing:

[eigenval,eigenvec,explain,Y]=pca_fun(X,m);

To plot the results, type

figure(3), hold on
for i=1:N

figure(3), plot(Y(1,i),Y(2,i),patt_id(i),'Color',color_tot(:,i)')
end

Step 3. Observing MATLAB figure 1 on the computer screen, notice how the color ofeach 2-dimensional
spiral varies from red to yellow to green to cyan to blue. On the mapping produced by the Lapla-
cian eigenmap method (MATLAB figure 2), the following two comments are in order: Each
2-dimensional spiral is “stretched” so that the points are placed on a line segment (horizontal
direction); in each vertical direction the succession of the colors observed in MATLAB figure 1 is
the same as that observed in MATLAB figure 2. Thus, for the given choice of parameters for the
Laplacian eigenmap, the method successfully “unfolds” the 3-dimensional spiral.

The linear PCA (MATLAB figure 3) also succeeds in “stretching” each 2-dimensional spiral so
that the points are placed on a line segment (horizontal direction). However, the succession of colors

3.6 Laplacian Eigenmap 105

in the vertical direction is not the same as that observed in MATLAB figure 1 (green, yellow, red,
cyan, blue). This indicates that after the projection produced by PCA, points that are distant from each
other in the 3-dimensional space lie close in the 2-dimensional representation (see, for example,
the red and cyan points in the original 3-dimensional space and in the reduced 2-dimensional
space).

Finally, the results obtained by the Laplacian eigenmap are sensitive to the choice of parameters.
If, for example, the previous experiment is performed for e = 0.5 and sigma2 = 1, the Laplacian
eigenmap fails to completely “unfold” the spiral (in this case, red is close to green). However, this
unfolding, although not perfect, is still better than the one produced by linear PCA. In general,
extensive experimentation is required before choosing the right values for the parameters involved
in the Laplacian eigenmap method.

Exercise 3.6.1
1. Generate a “cut cylinder” of radius r = 0.5 in the 3-dimensional space as a pack of 11 identical “cut

circles,” one above the other, as in Example 3.6.1. For the jth circle, with center cj = [cj1,cj2]T , the
following points are selected:

• (xi,cj2 +
√

r2 − (xi − cj1)
2) for xi ranging from cj1 − r to cj1 + r, with step (2r)/(N − 1).

• (xi,cj2 −
√

r2 − (xi − cj1)
2) for xi ranging from cj1 + r down to (cj1 − r)/4, with the previously

chosen step, where N is the number of points on which xi is sampled in the range [cj1 − r,
cj1 + r].

Plot the cut cylinder so that all points of the same 2-dimensional cut circle are plotted using the same
symbol, and all groups of 11 points of the form (x,y,z), where x and y are fixed and z takes the values
−1,−0.8,−0.6, . . . ,0.8,1 are plotted using the same color.

2. Perform the Laplacian eigenmap on the points of the previous data set for manifold dimension m = 2.
Plot the results.

3. Perform linear PCA on the same data set using the first two principal components and plot the results.
4. Compare the results obtained in steps 2 and 3.

Hints

1. To generate and plot the 3-dimensional cut cylinder, call the function cut_cylinder_3D by typing

r=0.5;
center=[0 0];
N=25;
plot_req=1; %Request for plot the cylinder
fig_id=1; %Number id of the figure
% Producing the 3D cut cylinder
[X,color_tot,patt_id]=cut_cylinder_3D(r,center,N,plot_req,...
fig_id);
[l,N]=size(X);

Use Rotate 3D to observe the cut cylinder from different viewpoints.
2. Apply step 1 of Example 3.6.1, using the same parameters for the Laplacian eigenmap method.

106 CHAPTER 3 Data Transformation

3. Apply step 2 of Example 3.6.1.
4. Observe that, once again, the Laplacian eigenmap gives better results compared with those of the

linear PCA. However, this is not the case when the cut cylinder has a radius equal to 5. (Why?
Compare the height of the cylinder with its radius.)

CHAPTER

4Feature Selection

4.1 INTRODUCTION
In this chapter we present techniques for the selection of a subset of features from a larger pool of
available features. The goal is to select those that are rich in discriminatory information with respect to
the classification problem at hand. This is a crucial step in the design of any classification system, as a
poor choice of features drives the classifier to perform badly. Selecting highly informative features is an
attempt (a) to place classes in the feature space far apart from each other (large between-class distance)
and (b) to position the data points within each class close to each other (small within-class variance).

Another major issue in feature selection is choosing the number of features l to be used out of an
original m > l. Reducing this number is in line with our goal of avoiding overfitting to the specific
training data set and of designing classifiers that result in good generalization performance—that is,
classifiers that perform well when faced with data outside the training set. The choice of l depends
heavily on the number of available training patterns, N. For more details see [Theo 09, Chapter 5].

Before feature selection techniques can be used, a preprocessing stage is necessary for “housekeep-
ing” purposes, such as removal of outlier points and data normalization.

4.2 OUTLIER REMOVAL
An outlier is a point that lies far away from the mean value of the corresponding random variable;
points with values far from the rest of the data may cause large errors during the classifier training
phase. This is not desirable, especially when the outliers are the result of noisy measurements. For
normally distributed data, a threshold of 1, 2, or 3 times the standard deviation is used to define outliers.
Points that lie away from the mean by a value larger than this threshold are removed. However, for
non-normal distributions, more rigorous measures should be considered (e.g., cost functions).

Example 4.2.1. Generate N = 100 points using a 1-dimensional Gaussian distribution of mean value
m = 1 and variance σ 2 = 0.16. Then add six outlier points, namely, 6.2,−6.4,6.8,4.2,15. Note that all
of them are away from the mean value by more than 3σ . These numbers are inserted in random positions
among the rest of the points. Use the m-file simpleOutlierRemoval.m to identify and print the outliers
as well as the corresponding indices in the array.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00004-x 107

108 CHAPTER 4 Feature Selection

Solution. Generate the data set.

randn('seed',0);
m=1; var=0.16;
stdevi=sqrt(var);
norm_dat=m+stdevi*randn(1,100);

Generate the outliers.

outl=[6.2 -6.4 4.2 15.0 6.8];

Add outliers at the end of the data.

dat=[norm_dat';outl'];

Scramble the data.

rand('seed',0); % randperm() below calls rand()
y=randperm(length(dat));x=dat(y);

Identify outliers and their corresponding indices.

times=1; % controls the tolerance threshold
[outliers,Index,new_dat]=simpleOutlierRemoval(x,times);
[outliers Index]

The new_dat file contains the data after the outliers have been rejected. The program output should
look like this:

outliers index
4.2 3
6.8 49
15 58
6.2 60
-6.4 84

where index indicates the position of each outlier in x. By changing the variable times (i.e., the tolerated
threshold) a different number of outliers may be detected. Try running the program with different values
for the times variable.

4.3 DATA NORMALIZATION
Data normalization is a useful step often adopted, prior to designing a classifier, as a precaution when
the feature values vary in different dynamic ranges. In the absence of normalization, features with large
values have a stronger influence on the cost function in designing the classifier. Data normalization
restricts the values of all features within predetermined ranges.

4.3 Data Normalization 109

A common technique is to normalize the features to zero mean and unit variance via linear methods.
Assume that our training data contain N values of a specific feature, x. Let x and σ be the respective
mean value and standard deviation, computed using the values of the specific feature, x, from all classes.
The values of the feature, after normalization, become

x̂i = xi − x

σ
, i = 1,2, . . . ,N (4.1)

where x̂i is the normalized value.
Alternatively, values may be normalized by restricting the range of the allowed values to lie between

a minimum and a maximum as, for example, in the interval [0,1] or [−1,1]. A third technique is
employed in cases where the data are not evenly distributed around the mean; one may adopt nonlinear
methods—softmax scaling, for example, squashes data values nonlinearly in the interval [0,1]. That is,

x̂i = 1

1 + exp(−y)
(4.2)

where y = xi−x
rσ and r is a user-defined parameter.

Example 4.3.1. To demonstrate the data normalization procedure using the three techniques just men-
tioned, we will use realistic data coming from medical images in the area of histopathology.Two images
are shown in Figure 4.1. For both, the mean value and the skewness of the gray levels of the pixels within
the five regions defined by the squares will be used as features. These regions are known as regions of
interest (ROI). Each image consists of a number of nuclei. The nuclei in Figure 4.1(a) correspond to

(a) (b)

FIGURE 4.1

Histopathology images of (a) high-grade and (b) low-grade astrocytomas. The differences between the two
grades are not visually evident. Squares denote the ROIs.

110 CHAPTER 4 Feature Selection

Table 4.1 Mean Value and Skewness from Five Extracted ROIs
in Images of High-Grade and Low-Grade Astrocytomas

High-Grade Astrocytomas Low-Grade Astrocytomas

Mean Value Skewness Mean Value Skewness

114.36 0.11 150.07 0.35

100.44 0.27 153.09 −0.28

109.42 −3.69 113.58 0.55

109.75 −0.07 130.84 0.47

104.41 −3.79 158.74 −0.30

a so-called high-grade astrocytoma and are different from those in Figure 4.1(b), which correspond to
low-grade astrocytoma.

Obviously, the goal of a pattern recognition (PR) system would be to distinguish between the two
grades of astrocytoma. Table 4.1 shows the derived values for the two features for each one of the
five ROIs and for each one of the two pathological cases. It is readily observed that the values of
the two features differ significantly in dynamic range. The goal is to normalize the values for both
classes.

Solution. By making use of the provided m-files normalizeStd.m, normalizeMnmx.m, and normalize-
Softmax.m, the values can be normalized by the following steps:

Step 1. Insert the values from Table 4.1 into two files, class1.dat and class2.dat; store the files in the
hard drive; and load the respective features into two arrays, class1 and class2:

class1=load('class1.dat')';
class2=load('class2.dat')';

Step 2. Normalize the data in both classes to zero mean and standard deviation equal to 1, using
normalizeStd:

[c1,c2]=normalizeStd(class1,class2);

Step 3. Normalize the data so that they lie in [−1,1]:

[c1,c2]=normalizeMnmx(class1,class2,-1,1);

Step 4. Normalize the data in [0,1] using softmax:

[c1,c2]=normalizeSoftmax(class1,class2,0.5);

Print matrices c1 and c2 after each normalization procedure; the results should look like
those in Table 4.2. Observe that the values of both features now vary in the same dynamic
range.

4.4 Hypothesis Testing: The t-Test 111

Table 4.2 Results of Normalization

Normalized to zero mean and unit variance

High-Grade Astrocytomas Low-Grade Astrocytomas

Mean Value Skewness Mean Value Skewness

−0.46 0.45 1.17 0.60
−1.10 0.55 1.30 0.22
−0.69 −1.84 −0.50 0.72
−0.67 0.34 0.29 0.67
−0.91 −1.90 1.56 0.20

Normalized in [−1 1] using minmax

−0.52 0.80 0.70 0.91
−1.00 0.87 0.81 0.62
−0.69 −0.95 −0.55 1.00
−0.68 0.71 0.04 0.96
−0.86 −1.00 1.00 0.61

Normalized in [0 1] using softmax

0.28 0.71 0.91 0.77
0.10 0.75 0.93 0.61
0.20 0.02 0.27 0.81
0.21 0.66 0.64 0.79
0.14 0.02 0.96 0.60

4.4 HYPOTHESIS TESTING: THE t-TEST
The first step in feature selection is to look at each feature individually and check whether or not it is
an informative one. If not, the feature is discarded. To this end, statistical tests are commonly used. The
idea is to test whether the mean values that a feature has in two classes differ significantly. In the case of
more than two classes, the test may be applied for each class pair. Assuming that the data in the classes
are normally distributed, the so-called t-test is a popular choice.

The goal of the statistical t-test is to determine which of the following two hypotheses is true:

H1: The mean values of the feature in the two classes are different.

H0: The mean values of the feature in the two classes are equal.

The first is known as the alternative hypothesis (the values in the two classes differ significantly); the
second, as the null hypothesis (the values do not differ significantly). If the null hypothesis holds true,
the feature is discarded. If the alternative hypothesis holds true, the feature is selected. The hypothesis
test is carried out against the so-called significance level, ρ, which corresponds to the probability of

112 CHAPTER 4 Feature Selection

committing an error in our decision. Typical values used in practice are ρ = 0.05 and ρ = 0.001. (More
on this statistical test can be found in [Theo 09, Section 5.4].

Example 4.4.1. Assume that a feature follows Gaussian distributions in both classes of a 2-class
classification problem. The respective mean values are m1 = 8.75 and m2 = 9; their common variance
is σ 2 = 4.

1. Generate the vectors x1 and x2, each containing N = 1000 samples from the first and the second
distribution, respectively.

2. Pretend that the means m1 and m2, as well as the variance σ 2, are unknown. Assumed to be known
are the vectors x1 and x2 and the fact that they come from distributions with equal (yet unknown)
variance. Use the t-test to check whether the mean values of the two distributionsdiffer significantly,
using as significance level the value ρ = 0.05.
Repeat this procedure for ρ = 0.001 and draw conclusions.

Solution. Do the following:

Step 1. To generate the vectors x1 and x2, type

randn('seed',0)

m1=8.75;

m2=9;

stdevi=sqrt(4);

N=1000;

x1=m1+stdevi*randn(1,N);

x2=m2+stdevi*randn(1,N);

Step 2. Apply the t-test using the MATLAB ttest2 function, typing

rho=0.05;

[h] = ttest2(x1,x2,rho)

where

h = 0 (corresponding to the null hypothesis H0) indicates that there is no evidence, at the ρ

significance level, that the mean values are not equal

h = 1 (corresponding to the alternative hypothesis H1) indicates that the hypothesis that the
means are equal can be rejected, at the ρ significance level.

If the latter case is the outcome, the feature is selected; otherwise, it is rejected. In our case, the
result is h = 1, which implies that the hypothesis of the equality of the means can be rejected at the
5% significance level. The feature is thus selected.

Step 3. Repeating for ρ = 0.001, obtain h = 0, which implies that there is no evidence to reject the
hypothesis of the equality of the means, at significance level of 0.1%. Thus, the feature is discarded.
Comparing this result with that of step 2, we can conclude that the smaller the ρ (i.e., the more
confident we want to be in our decision), the harder to reject the equality hypothesis.

4.5 The Receiver Operating Characteristic Curve 113

Exercise 4.4.1
Repeat the t-test using for the variance the values 1 and 16. Compare and explain the obtained results.

Remark
• The t-test assumes that the values of the features are drawn from normal distributions. However, in real

applications this is not always the case. Thus, each feature distribution should be tested for normality
prior to applying the t-test. Normality tests may be of the Lilliefors or the Kolmogorov-Smirnov type,
for which MATLAB functions are provided (lillietest and kstest, respectively).

If the feature distributionsturn out not to be normal, one should choose a nonparametric statistical
significance test, such as the Wilcoxon rank sum test, using the ranksum MATLAB function, or the
Fisher ratio, provided in the current library and described in Section 4.6.

4.5 THE RECEIVER OPERATING CHARACTERISTIC CURVE
The receiver operating characteristic (ROC) curve is a measure of the class-discrimination capabi-
lity of a specific feature. It measures the overlap between the pdfs describing the data distribution
of the feature in two classes [Theo 09, Section 5.5]. This overlap is quantified in terms of an area
between two curves, also known as AUC (area under the receiver operating curve). For complete
overlap, the AUC value is 0, and for complete separation it is equal to 0.5 [Theo 09, Section 5.5].

Example 4.5.1. Consider two 1-dimensional Gaussian distributions with mean values m1 = 2 and
m2 = 0 and variances σ 2

1 = σ 2
2 = 1, respectively.

1. Generate 200 points from each distribution.
2. Plot the respective histograms, using the function plotHist.
3. Compute and plot the corresponding AUC values using the function ROC.

Solution. Do the following:

Step 1. Generate the two classes, typing

randn('seed',0);

N=200;

m1=2;m2=0;var1=1;var2=1;

class1=m1+var1*randn(1,N);

class2=m2+var2*randn(1,N);

Step 2. Plot the histogram of the resulting values, typing

plotHist(class1,class2);

The following classlabels array contains the class labels of the respective points generated from the
Gaussian distributions and it is a prerequisite of the ROC function.

classlabels = [1*ones(N,1); -1*ones(N,1)];

114 CHAPTER 4 Feature Selection

23 22 21 0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10

Feature values

Fr
eq

ue
nc

y

Probability distribution functions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

�

1
2

�

ROC Curve—AUC 5 0.4436

(a) (b)

FIGURE 4.2

(a) Distributions with partial overlap between pdfs of the two classes. (b) Corresponding ROC curve.

Step 3. Calculate and plot the results (Figure 4.2) utilizing the ROC function. Type

[AUC_Value] = ROC([class1 class2]',classlabels,1);

% The last argument has been set to 1, because a plot

% will be generated.

Exercise 4.5.1
Repeat the previous experiment with (a) m1 = 0 and m2 = 0, and (b) m1 = 5 and m2 = 0. Comment on the
results.

4.6 FISHER’S DISCRIMINANT RATIO
Fisher’s discriminant ratio (FDR) is commonly employed to quantify the discriminatory power of
individual features between two equiprobable classes. In other words, it is independent of the type of
class distribution. Let m1 and m2 be the respective mean values and σ 2

1 and σ 2
2 the respective variances

associated with the values of a feature in two classes. The FDR is defined as

FDR = (m1 − m2)
2

(σ 2
1 +σ 2

2)
(4.3)

Example 4.6.1. Generate N = 200 5-dimensional data vectors that stem from two equiprobable
classes, ω1 and ω2. The classes are modeled by Gaussian distributions with, respectively, means

4.6 Fisher’s Discriminant Ratio 115

m1 = [1, 1, 0, 6, 3]T and m2 = [11.5, 11, 10, 6.5, 4]T and covariance matrices

S1 =

⎡
⎢⎢⎢⎢⎣

0.06 0 0 0 0
0 0.5 0 0 0
0 0 3 0 0
0 0 0 0.001 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ S2 =

⎡
⎢⎢⎢⎢⎣

0.06 0 0 0 0
0 0.6 0 0 0
0 0 4 0 0
0 0 0 0.001 0
0 0 0 0 4

⎤
⎥⎥⎥⎥⎦

Compute the FDR values for the five features and draw conclusions.

Solution. Do the following:

Step 1. To generate the data vectors from the first class, type

randn('seed',0)

N=200;

m1=[1 1 0 6 3];

S1=diag([.06 .5 3 .001 3]);

class1=mvnrnd(m1,S1,fix(N/2))';

The data vectors of the second class are generated similarly.

Step 2. Compute the FDR for each feature, typing

l=length(m1);

for i=1:l

FDR(i)= Fisher(class1(i,:)',class2(i,:)');

end

FDR

The FDR values for the five features are 930.521, 79.058, 13.771, 107.284, and 0.057,
respectively.

Step 3. The results indicate that for features having large differences between the means of the classes
and small variances in each class, a high value of FDR will be obtained. In addition, if two features
have the same absolute mean difference and a different sum of variances (σ 2

1 +σ 2
2), the one with the

smallest sum of variances will get a higher FDR value (e.g., features 2 and 3). On the other hand,
if two features have the same sum of variances and different absolute mean differences, the feature
with the larger absolute mean difference will get a higher FDR value (e.g., features 3 and 5).

Example 4.6.2. The goal of this example is to demonstrate the use of the FDR criterion in ranking a
number of features with respect to their class-discriminatory power. We turn our attention once more
to a realistic example coming from ultrasound imaging.

Figure 4.3(a) is an ultrasound image of a human liver diagnosed with liver cirrhosis. Figure 4.3(b)
is an image corresponding to fatty liver infiltration. Obviously, the ultimate goal of a related PR system

116 CHAPTER 4 Feature Selection

(a) (b)

FIGURE 4.3

Selected ROIs from (a) cirrhotic liver and (b) liver with fatty infiltration.

is this: Given an unknown ultrasound image, “diagnose” whether it belongs to the first or to the second
type of disease. To this end, given an image, an ROI (indicated by a square in the figure) is marked and
features are computed from this region.

In this example, the features used are

• The mean value of the gray levels of pixels in each ROI
• The corresponding standard deviation
• The skewness
• The kurtosis

The mathematical definition of these quantities is provided in [Theo 09, Section 7.2.1].
To test the discriminatory power of each of the listed features, we select ten ROIs from the individual

images (as indicated in Figure 4.3) available for training. The resulting values are shown in Table 4.3.
To derive the respective features from each ROI, the MATLAB m-files mean2.m, std2.m, skewness.m,

Table 4.3 Features Calculated from 10 ROIs in Images of Cirrhotic and Fatty Liver Types

Cirrhotic Liver Fatty Liver

Mean Std Skew Kurtosis Mean Std Skew Kurtosis

73.73 20.72 0.19 2.38 100.85 24.83 1.11 6.27
77.84 22.07 0.32 3.10 111.77 26.31 0.19 2.29
78.43 19.47 0.53 3.37 114.13 25.89 0.06 2.45
70.56 19.65 0.41 2.91 98.67 20.61 0.24 2.71
70.27 20.81 0.78 3.95 96.96 20.78 0.32 2.46
71.91 16.79 0.44 2.80 111.33 20.38 0.28 2.76
71.35 18.40 0.84 4.61 114.76 23.04 0.22 2.54
59.02 17.84 0.47 2.51 122.71 28.27 0.90 4.73
67.36 16.48 0.25 2.72 106.44 22.00 0.27 2.43
72.42 21.33 0.92 5.32 103.36 22.31 0.18 2.67

4.7 Class Separability Measures 117

and kurtosis.m, have been used. The goal is to use the values of Table 4.3 and compute the FDR for
each feature and rank it accordingly.

Solution. The values of the features given in Table 4.3 are stored in two files, cirrhoticLiver.dat and
fattyLiver.dat, corresponding to the Cirrhotic and Fatty Infiltrationclasses, respectively. In the following
steps, we compute the FDR value and rank features in FDR-descending order.

Step 1. Load the values of Table 4.3 into two files, cirrhoticLiver.dat and fattyLiver.dat; store the files
in the hard drive; and load the respective features in two arrays, class1 and class2:

class1=load('cirrhoticLiver.dat')';

class2=load('fattyLiver.dat')';

feature_names={'Mean','Std','Skewness','Kurtosis'};

Step 2. Calculate each feature’s FDR, typing

[NumOfFeatures,N]=size(class1);
for i=1:NumOfFeatures

FDR_value(i)=Fisher(class1(i,:),class2(i,:));

end

Step 3. Sort features in descending FDR value, typing

[FDR_value,feature_rank]=sort(FDR_value,'descend');

FDR_value', feature_names(feature_rank)'

The printout of these commands is the following:

FDR_value feature_names
13.888 'Mean'
1.492 'Std'
0.105 'Skewness'
0.021 'Kurtosis'

If one has to choose the most informative feature, according to the FDR criterion, this is the
mean. The next most informative is the standard deviation, and so on. Note that for this example
images were taken under the same scanning conditions, which justifies the use of the mean value as a
feature.

4.7 CLASS SEPARABILITY MEASURES
In the previous sections, measures that quantify the class-discriminatory power of individual features
were discussed. In this section, we turn our attention from individual features to combinations of
features (i.e., feature vectors) and describe measures that quantify class separability in the respective
feature space.

118 CHAPTER 4 Feature Selection

Three class-separability measures are considered: divergence (implemented by the MATLAB func-
tion divergence), Bhattacharyya distance (divergenceBhata), and scatter matrices (ScatterMatrices).

4.7.1 Divergence
The definition of the divergence measure, for the general case, can be found in [Theo 09, Section 5.6].
Assume that we are given two normally distributed classes in the l-dimensional space. The divergence
between them is defined as

d1,2 = 1

2
trace

{
S−1

1 S2 + S−1
2 S1 − 2I

}
+ 1

2
(m1 − m2)

T
(

S−1
1 + S−1

2

)
(m1 − m2) (4.4)

where Si is the covariance matrix; mi , i = 1,2 is the respective mean vector of the ith class; and I is the
l×l identity matrix.

The divergence measure exhibits a strong dependence on the variances. It turns out that, even for equal
mean values, d1,2 can take large values provided that the variances in the two classes are significantly
different. This becomes evident from the following example.

Example 4.7.1. We consider two classes and assume the features to be independent and normally
distributed in each one. Specifically, the first (second) class is modeled by the Gaussian distribution
with mean m1 = [3,3]T (m2 = [2.3,2.3]T) and covariance matrix S1 = 0.2I (S2 = 1.9I).

Generate 100 data points from each class. Then compute the divergence between the two classes
and plot the data.

Solution. Do the following:

Step 1. To generate data for the two classes, type

m1=[3 3]’;S1=0.2*eye(2);

m2=[2.3 2.3]’;S2=1.9*eye(2);

randn(’seed’,0);

class1=mvnrnd(m1,S1,100)’;
randn(’seed’,100);

class2=mvnrnd(m2,S2,100)’;

Step 2. Compute the divergence, employing the divergence function by typing

Distance=divergence(class1,class2);

The value of the divergence between the two classes is 5.7233. Plot the data, using the plotData.m
function as follows:

featureNames={’1’,’2’};

plotData(class1,class2,1:2,featureNames);

4.7 Class Separability Measures 119

Feature 1

Fe
at

ur
e

2

0 1 2 3 4 5 6 7

22

22 21

21

0

1

2

3

4

5

FIGURE 4.4

Plot of the data in Example 4.7.1. Observe the small difference in mean values and the large difference in
variances. The points in the two classes are denoted by “pluses” and “squares,” respectively.

The program output is shown in Figure 4.4. Observe that, in spite of the fact that the mean values
of the two classes are very close, the variances of the features differ significantly, so the divergence
measure results in a large value.

Exercise 4.7.1
Repeat the previous experiment considering the following cases:

Case 1. m1 = [3,3]T and S1 = 0.2I; m2 = [2.3,2.3T] and S2 = 0.2I. That is, this corresponds to small
differences between mean values and equal variances.

Case 2. m1 = [1,1]T and S1 = 0.2I; m2 = [4,4]T and S2 = 0.2I. That is, this corresponds to large differ-
ences between mean values and equal variances.

Case 3. m1 = [1,1]T and S1 = 0.2I; m2 = [4,4]T and S2 = 1.9I. That is, this corresponds to large differ-
ences between mean values and large differences between variances.

Comment on the results.

4.7.2 Bhattacharyya Distance and Chernoff Bound
Considering Gaussian distributionsin both classes, the Bhattacharyya distance bears a close relationship
to the error of the Bayesian classifier [Theo 09, Section 5.6.2]. The Bhattacharyya distance B1,2 between
two classes is defined as

B1,2 = 1

8
(m1 − m2)

T
(

S1 + S2

2

)−1

(m1 − m2)+ A (4.5)

120 CHAPTER 4 Feature Selection

where A = 0.5 ln 0.5(|S1+S2|)√|S1||S2| and | · | denotes the determinant of the respective matrix. The Chernoff
bound is an upper bound of the optimal Bayesian error and is given by

eCB = exp(−B1,2)
√

P(ω1)P(ω2) (4.6)

where P(ω1),P(ω2) are the a priori class probabilities.

Example 4.7.2. Consider a 2-class 2-dimensional classification problem with two equiprobable
classes ω1 and ω2 modeled by the Gaussian distributionsN (m1,S1) and N (m2,S2), respectively, where
m1 = [3,3]T and S1 = 0.2I , and m2 = [2.3,2.3]T and S2 = 1.9I . This is the case of small differences
between mean values and large differences between variances.

Compute the Bhattacharyya distance and the Chernoff bound between the two classes.

Solution. Do the following:

Step 1. To generate data for the two classes, type

m1=[3 3]';S1=0.2*eye(2);
m2=[2.2 2.2]';S2=1.9*eye(2);
randn('seed',0);
class1=mvnrnd(m1,S1,100)';
randn('seed',100);
class2=mvnrnd(m2,S2,100)';

Step 2. To compute the Bhattacharyya distance and the Chernoff bound, type

BhattaDistance=divergenceBhata (class1,class2);
ChernoffBound=0.5*exp(-BhattaDistance);

The resulting values are 0.3730 and 0.3443, respectively.

Exercise 4.7.2
Consider the three cases in Exercise 4.7.1 and compute the Bhattacharyya distance and the Chernoff bound.
Comment on the results.

4.7.3 Measures Based on Scatter Matrices
Scatter matrices are among the most popular measures for quantifying the way feature vectors “scatter”
in the feature space. Because of their rich physical meaning, a number of class-separability measures
are built around them. Three such measures are the following [Theo 09, Section 5.6.3]:

J1 = trace{Sm}
trace{Sw} (4.7)

J2 = |Sm|
|Sw| (4.8)

J3 = trace{S−1
w Sb} (4.9)

4.7 Class Separability Measures 121

where Sm is the mixture scatter matrix, Sw is the within-class scatter matrix, and Sb is the between-class
scatter matrix.

The respective definitions are

Sw =
c∑

i=1

PiSi (4.10)

where Pi denotes the a priori probability of class i = 1,2, . . . ,c and Si is the respective covariance matrix
of class i.

Sb =
c∑

i=1

Pi(mi − m0)(mi − m0)
T (4.11)

where m0 = ∑c
i=1 Pimi is the global mean vector (considering the data from all classes). It can be shown

that

Sm = Sw + Sb (4.12)

Large values of J1, J2, and J3 indicate that data points in the respective feature space have small
within-class variance and large between-class distance.

Example 4.7.3. In this example, the previously defined J3 measure will be used to choose the best l
features out of m > l originally generated features. To be more realistic, we will consider Example 4.6.2,
where four features (mean, standard deviation, skewness, and kurtosis) were used. From Table 4.3 we
have ten values for each feature and for each class. The goal is to select three out of the four features
that will result in the best J3 value.

1. Normalize the values of each feature to have zero mean and unit variance.
2. Select three out of the four features that result in the best J3 value.
3. Plot the data points in the 3-dimensional space for the best feature combination.

Solution. Do the following:

Step 1. Load files cirrhoticLiver.dat and fattyLiver.dat containing the feature values from the ROIs in
Example 4.6.2:

class1=load('cirrhoticLiver.dat')';

class2=load('fattyLiver.dat')';

To normalize features using the provided normalizeStd function, type

[class1,class2]=normalizeStd(class1,class2);

Step 2. Evaluate J3 for the 3-feature combination [1,2,3], where 1 stands for mean, 2 for standard
deviation, and so on, by typing

[J]=ScatterMatrices(class1([1 2 3],:),class2([1 2 3],:));

122 CHAPTER 4 Feature Selection

0
1

2

0

2

4
22

22 22
21

21

0

1

2

3

S
ke

w
ne

ss

Mean

Standard deviation

FIGURE 4.5

Plot of the (normalized) 3-feature combination (mean value, standard deviation, and skewness). This
combination leads to good class separation.

Work similarly to evaluate the J3 for the remaining 3-feature combinations: [1,2,4], [1,3,4], [2,3,4].
The results are 3.9742, 3.9741, 3.6195, and 1.3972 for the combinations [1,2,3], [1,2,4], [1,3,4],
and [2,3,4], respectively.

Step 3. To plot the results of the feature combination [1,2,3], utilize the provided plotData function:

featureNames = {'mean','standart dev','skewness','kurtosis'};
plotData(class1,class2,[1 2 3],featureNames);

The program output is shown in Figure 4.5.

Exercise 4.7.3
Repeat the experiment for all of the 3-feature combinations. Compare the results with those obtained in
Example 4.7.3 and comment.

4.8 FEATURE SUBSET SELECTION
We now build on experience gained from the previous sections to address the feature selection stage.
There are two major steps involved:

• Reduce the number of features by discarding the less informative ones, using scalar feature
selection.

• Consider the features that survive from the previous step in different combinations in order to
keep the “best” combination.

The first step is required to reduce the overall number of computations required in searching for the
“best” combination.

4.8 Feature Subset Selection 123

4.8.1 Scalar Feature Selection
One way of reducing the available features is to consider them individually and use one of the related
criteria, such as the t-test, ROC, or FDR, to discard and/or rank them in descending order; then choose the
top, say, l features. Such an approach does not take into account existing correlations among the features,
so here the cross-correlation coefficient between them is considered and the following procedure may
be followed [Theo 09, Section 5.7.1].

First, features are ranked in descending order according to some criterion C. Let i1 be the index of
the best one. Next, the cross-correlations among the first (top-ranked) feature with each of the remaining
features are computed. The index, i2, of the second most important feature, xi2 , is computed as

i2 = max
j

{a1Cj − a2|ρi1, j|}, j �= i1 (4.13)

which incorporates the value of the criterion C for the jth feature, as well as the cross-correlations (ρi1,j)
between the best feature (i1) and feature j �= i1. The parameters a1 and a2 are user defined.

The rest of the features are ranked according to

ik = max
j

{
a1Cj − a2

k − 1

k−1∑
r=1

|ρir , j|
}

, j �= ir , r = 1,2, . . . ,k − 1 (4.14)

for k = 3,4, . . . ,m. Observe that the average correlation with all the previously considered features is
taken into account.

Example 4.8.1. This example demonstrates the ranking of a given number of features according to
their class-discriminatory power. We will use the same data as in Example 4.6.2. Recall that there are
two classes and four features (mean, standard deviation, skewness, and kurtosis); their respective values
for the two classes are summarized in Table 4.3.

1. Normalize the features so as to have zero mean and unit variance. Then use the FDR criterion to
rank the features by considering each one independently (see Example 4.6.2).

2. Use the scalar feature selection technique described before to rank the features. Use the FDR in
place of the criterion C. Set a1 = 0.2 and a2 = 0.8.

3. Comment on the results.

Solution. Do the following:

Step 1. Load files cirrhoticLiver.dat and fattyLiver.dat containing the features from the ROIs in
Example 4.6.2:

class1=load('cirrhoticLiver.dat')’;

class2=load('fattyLiver.dat')’;

To normalize and rank the features using the FDR criterion with the ScalarFeature-
SelectionRanking function, type

[class1,class2]=normalizeStd(class1,class2);

[T]=ScalarFeatureSelectionRanking(class1,class2,'Fisher');

124 CHAPTER 4 Feature Selection

Step 2. To rank the features use their cross-correlation with the compositeFeaturesRanking function:

featureNames = {'mean ','st. dev.','skewness','kurtosis'};

a1=0.2;a2=0.8;

[p]= compositeFeaturesRanking (class1,class2,a1,a2,T);

Print out the results, typing

fprintf('\n Scalar Feature Ranking \n');
for i=1:size(T,1)

fprintf('(%10s) \n',featureNames{T(i,2)});
end

fprintf('\n Scalar Feature Ranking with correlation \n');
for i=1:size(p,1)

fprintf('(%10s) \n',featureNames{p(i)});
end

The program output is

Scalar Feature Ranking

(mean)

(st. dev.)

(skewness)

(kurtosis)

Scalar Feature Ranking with correlation

(mean)

(kurtosis)

(st. dev.)

(skewness)

Step 3. As can be seen, the rank order provided by the FDR class-separability criterion differs from
the ranking that results when both the FDR and the cross-correlations are considered. It must
be emphasized that different values for coefficients a1 and a2 (see Eq. (4.14)) may change the
ranking.

4.8.2 Feature Vector Selection
We assume that m features have survived from the scalar feature selection. The goal now is to find
the “best” combination of features. Usually, either the number l of the feature space or an upper limit
of it is chosen a priori. Such a choice heavily depends on the number of available training data, as

4.8 Feature Subset Selection 125

already stated. One idea is to examine all possible combinations of the m features (i.e., combinations of
2,3, . . . ,m), use each combination to design the classifier, evaluate the classifier’s performance by one of
the available methods (e.g., leave-one-out), and end up with the best combination. The computational
burden of such an approach can be prohibitive in real problems. Thus, other, less computationally
expensive methods may be employed. To assess the computational effort involved, we will examine three
techniques:

• Exhaustive search
• Sequential forward and backward selection
• Forward floating search selection

Exhaustive Search
According to this technique, all possible combinations will be “exhaustively” formed and for each
combination its class separability will be computed. Different class separability measures will be
used.

Example 4.8.2. We will demonstrate the procedure for selecting the “best” feature combination in
the context of computer-aided diagnosis in mammography. In digital X-ray breast imaging, micro-
calcifications are concentrations of small white spots representing calcium deposits in breast tissue
(see Figure 4.6). Often they are assessed as a noncancerous sign, but depending on their shape and
concentration patterns, they may indicate cancer. Their significance in breast cancer diagnosis tasks
makes it important to have a pattern recognition system that detects the presence of microcalcifica-
tions in a mammogram. To this end, a procedure similar to the one used in Example 4.6.2 will be
adopted here.

Four features are derived for each ROI: mean, standard deviation, skewness, and kurtosis. Figure 4.6
shows the selected ROIs for the two classes (10 for normal tissue; 11 for abnormal tissue with
microcalcifications).

(a) (b)

FIGURE 4.6

Mammogram showing (a) ten ROIs selected from regions of normal tissue and (b) eleven ROIs from regions
with abnormal tissue containing microcalcifications.

126 CHAPTER 4 Feature Selection

Table 4.4 Feature Values Calculated from ROIs of Abnormal
and Normal Mammogram Regions

Ten ROIs from normal regions Eleven ROIs with microcalcification

Mean Std Skew Kurt Mean Std Skew Kurt

129.53 20.21 0.37 2.72 127.88 19.20 1.14 4.59
107.07 20.47 0.68 3.96 120.42 22.27 1.11 3.61
94.97 14.66 0.35 3.89 109.86 17.71 0.89 3.72

109.50 17.83 0.31 2.36 118.30 14.32 0.71 4.40
102.47 21.14 0.26 2.45 123.44 19.11 0.68 4.31
142.68 28.17 0.30 2.63 103.10 12.65 0.55 3.95
74.16 12.05 0.30 2.17 106.85 12.44 0.38 3.23

118.49 32.67 0.51 2.89 145.46 16.74 0.65 4.53
104.65 17.72 0.23 2.69 96.95 15.14 0.79 5.90
91.09 20.00 0.82 3.73 118.29 13.12 0.69 4.65

– – – – 116.56 13.87 0.48 3.76

Table 4.4 lists the values of the respective features for each class.

1. Employ the exhaustive search method to select the best combination of three features out of the
four previously mentioned, according to the divergence, the Bhattacharyya distance, and the J3
measure associated with the scatter matrices.

2. Plot the data in the subspace spanned by the features selected in step 1.

Solution. Do the following:

Step 1. Load the values from the preceding table into the following two files: breastMicrocalcifications
.dat and breastNormalTissue.dat. Store the files on the hard drive. To load the respective features in
two arrays, class1 and class2, type

class1=load('breastMicrocalcifications.dat')';

class2=load('breastNormalTissue.dat')';

To normalize the features so that all of them have zero mean and unit variance, type

[class1,class2]=normalizeStd(class1,class2);

Select the best combination of features using the J3 criterion:

costFunction='ScatterMatrices';

[cLbest,Jmax]=exhaustiveSearch(class1,class2, costFunction,[3]);

where
costFunction is a string identifying the employed criterion,

cLbest is an array containing the best combination of features,

Jmax is the criterion value for the feature combination cLbest.

The value 3 in the bracket indicates our interest in the best 3-feature combination

4.8 Feature Subset Selection 127

0
2

0
1

2
3

0

0.5

1

1.5

2

2.5

Mean

S
ke

w
ne

ss

Standard deviation

21.5

21

2422
22

21

20.5

FIGURE 4.7

Output of the J3 class-separability measure showing the best feature combination—mean, standard deviation,
and skewness—using exhaustive search. Pluses and squares indicate points into the two classes, respectively.

Work similarly for the divergence and the Bhattacharyya distance, where now costFunction is set
equal to ′divergence′ and ′divergenceBhata′, respectively.

Step 2. To form the classes c1 and c2 using the best feature combination, type

c1 = class1(cLbest,:);c2 = class2(cLbest,:);

Plot the data using the provided plotData function:

featureNames = {'mean ','st. dev.','skewness','kurtosis'};

plotData(c1,c2,cLbest,featureNames);

The program output is shown in Figure 4.7.

Exercise 4.8.2
Compute the J3 measure for the feature combination mean, skewness, kurtosis in Example 4.8.2 and
compare the results with those obtained there.

Suboptimal Searching Techniques
Although exhaustive search is an optimal scheme, it is computationally expensive and often may not
be feasible, especially in cases where the number of available features is large. In such cases, there are
computationally efficient suboptimal searching techniques, such as sequential forward selection (SFS),
sequential backward selection (SBS), sequential forward floating selection (SFFS), and sequential
backward floating selection (SBFS) [Theo 09, Section 5.7.2].

128 CHAPTER 4 Feature Selection

Example 4.8.3. The goal of this example is to demonstrate the (possible) differences in accuracy
between the suboptimal feature selection techniques SFS, SBS, and SFFS and the optimal exhaustive
search technique, which will be considered as the “gold standard.” This time, we will work with an
example inspired by the field of texture classification in images. Texture classification is an important
application of pattern recognition [Petr 06].

We assume that we are given two images of different textures. We associate each texture with a
different class. In each of the two images, we form 25 ROIs (see Figure 4.8). These 50 total patterns
form the training set, which will be used for selecting the “best” combination of features. Thus, for each
pattern (ROI) 20 features are generated:

• Four first-order statistics: the mean, standard deviation, skewness, and kurtosis of each ROI
• Sixteen second-order (textural) features, derived from the four co-occurrence matrices of each ROI,

for the directions 0◦, 90◦, 45◦, 135◦ [Theo 09, Section 7.2]. From each matrix, the extracted (four)
features are contrast, correlation, energy, and homogeneity.

The features are ordered so that the first four are the first-order statistics, the next four are the
contrasts of the four co-occurrence matrices, the next four are the correlations of the four co-occurrence
matrices, and so on.

Once the feature generation phase is completed, two 25×20 arrays are formed: dataClass1.dat and
dataClass2.dat.

We assume that we are working in a 2-dimensional feature space, and we evaluate the per-
formance of the four feature selection methods in determining the best 2-feature combination,
employing the functions exhaustiveSearch, SequentialForwardSelection, SequentialBackwardSelection,
and SequentialForwardFloatingSelection. Work as follows:

1. Normalize the features to have zero mean and unit variance. Then rank them utilizing scalar feature
selection, which employs the FDR criterion and a cross-correlation measure between pairs of features
(see Section 4.8.1). Set a1 = 0.2 and a2 = 0.8.

(a) (b)

FIGURE 4.8

Terrain images and superimposed image ROIs used to form the training data set for Examples 4.8.3
and 4.8.4.

4.8 Feature Subset Selection 129

2. Select the 14 highest-ranked features and employ the exhaustive search method with the J3 criterion
to select the best combination of two features.

3. Repeat step 2 for SFS, SBS, and SFFS and comment on the results obtained.

Solution. To load the data sets of the two classes, type

class_1=load('testClass1.dat')';
class_2=load('testClass2.dat')';

and then do the following:

Step 1. Normalize and rank features in FDR descending order, typing

[class_1,class_2]=normalizeStd(class_1,class_2);
[TFisher]=ScalarFeatureSelectionRanking(...

class_1,class_2,'Fisher');
[pFisher]= compositeFeaturesRanking (...

class_1,class_2,0.2,0.8,TFisher);

Step 2. Select the 14 highest-ranked features, typing

NumOfFeats=14;
inds=sort(pFisher,'ascend');

Use function exhaustiveSearch and the J3 criterion to determine the best combination of two features,
typing

[cLbest,Jmax]=exhaustiveSearch(...
class_1(inds,:),class_2(inds,:),'ScatterMatrices',2);

Print out the results, typing

fprintf('\n Exhaustive Search -> Best of two:');
fprintf('(%d)',inds(cLbest));

Step 3. Working similarly for the suboptimal searching techniques (sequential forward selection,
sequential backward selection, and floating search), type

[cLbestSFS,JSFS]=SequentialForwardSelection(...
class_1(inds,:),class_2(inds,:),'ScatterMatrices',2);
fprintf('\n Sequential Forward Selection -> Best of two:');
fprintf('(%d)',inds(cLbestSFS));

[cLbestSBS,JSBS]=SequentialBackwardSelection(...
class_1(inds,:),class_2(inds,:),'ScatterMatrices',2);

130 CHAPTER 4 Feature Selection

fprintf('\n Sequential Backward Selection -> Best of two:');

fprintf('(%d)',inds(cLbestSBS));

[cLbestSFFS,JSFFS]=sequentialForwardFloatingSelection(...

class_1(inds,:),class_2(inds,:),'ScatterMatrices',2);

fprintf('\n Floating Search Method -> Best of two:');

fprintf('(%d)',inds(cLbestSFFS));

fprintf('\n');

The program outputs are

Exhaustive Search -> Best of two: (1) (6)

Sequential Forward Selection -> Best of two: (1) (5)

Sequential Backward Selection -> Best of two: (2) (9)

Floating Search Method -> Best of two: (1) (6)

It can be seen that the results of exhaustive search and floating search coincide, whereas the sequential
forward selection and sequential backward selection result in different feature combinations. In practice,
floating search has become very popular. Although it is suboptimal and is inspired by a rationale
similar to that behind the sequential techniques, it has a unique advantage; the potential to correct some
wrong decisions made in previous iterations. Of course, this is gained at the expense of some extra
computation.

Exercise 4.8.3
Experiment with different numbers of the highest-ranked features, such as four, eight, ten, twenty. Comment
on the results.

Example 4.8.4. Designing a Classification System
The goal of this example is to demonstrate the various stages involved in the design of a classification
system. We will adhere to the 2-class texture classification task of Figure 4.8.

The following five stages will be explicitly considered:

• Data collection for training and testing
• Feature generation
• Feature selection
• Classifier design
• Performance evaluation

Data collection. A number of different images must be chosen for both the training and the test set.
However, for this specific case study, one can select the data by selecting different ROIs from two

4.8 Feature Subset Selection 131

images (one for each class). To form the training data set, 25 ROIs are selected from each image
representing the two classes (see Figure 4.8). The same procedure is followed for the test set. How-
ever, this time different ROIs must be selected. The ROIs are collected via the provided program
RoisGen.m.

Many times it is not possible to have different sets for training and testing, since the number of
the available data is usually small. In such cases, the same data have to be utilized for training as well
as testing. Of course, this has to be “cleverly” done to make sure that the error estimation is based
on patterns that have not been considered in the training. (We will come to this point later; see also
[Theo 09, Section 10.3].)

Feature generation. From each of the selected ROIs, a number of features is generated. We have decided
on 20 different texture-related features. In practice, the number depends on the application as well as
on the expert’s experience in the field of application. One can employ already known and previously
used features, but new features often may have to be generated in order to capture more (classification-
related) information for the specific problem. The expert’s knowledge and imagination are critical at
this stage.

For our example, the following features are generated from each ROI:

• Four first-order statistics textural features (mean, standard deviation, skewness, and kurtosis) derived
from the respective histogram.

• Sixteen second-order textural features—four (contrast, correlation, energy, and homogeneity) from
each of the four co-occurrence matrices [Theo 09, Section 7.2.1] associated with each ROI. Function
FeatGen is employed to generate the features.

Feature selection. Of the 20 generated features, some may turn out not to be very informative or some
may exhibit high mutual correlation. In the latter case, there is no point in using all of them because
they do not carry complementary information. Moreover, one has to keep in mind that the number of
features, l (i.e., the dimension of the feature space in which the design of the classifier will take place),
must be relatively small with respect to the number of training/test points to ensure good generalization
performance of the designed classifier.

A rule of thumb is to keep l less than one-third of the training points. In our case, we chose
l = 3 because that turns out to result in good performance and also gives us the possibility of
visualization of the data for pedagogic purposes. In practice, one has to experiment with different
values of l and choose the one that results in the best performance as measured by an appropriate
criterion.

In this example, feature selection is achieved as follows. First, we use scalar feature selection
(function compositeFeaturesRanking), discussed in Section 4.8.1, which employs the FDR criterion
as well as a cross-correlation measure between pairs of features in order to rank them. The highest-
ranked are identified and exhaustive search is employed to select the combination that maximizes the
J3 criterion (function exhaustiveSearch). The reader may experiment with other techniques that have
been discussed. During this stage, feature preprocessing (e.g., feature normalization) also takes place.

Classifier design. During this stage, different classifiers are employed in the the selected feature space;
the one that results in the best performance is chosen. In this example we use the k-nearest neighbor
(k-NN) classifier. Note that this is a special classifier that needs no training; it suffices to have access to

132 CHAPTER 4 Feature Selection

the training data set. (The reader is encouraged to experiment with the different classifiers discussed in
this book.)

Performance evaluation. The performance of the classifier, in terms of its error rate, is measured against
the test data set. However, in order to cover the case where the same data must be used for both training
and testing, the leave-one-out (LOO) method will be employed. LOO is particularly useful in cases
where only a limited data set is available.

The idea behind LOO is the following. Given N training points, use N − 1 for training the classifier
and the remaining point for testing. Repeat the procedure N times, each time leaving out a different
sample. Finally, average out the number of errors committed by the N different test points. Although
the method is computationally expensive, since the classifier has to be trained N times, the same data
set is utilized for training and testing and, at the same time, the testing is carried out on points that have
not been used in the training.

For more details on LOO and other related techniques, see [Theo 09, Section 10.3].

Solution. As a first option, you may create your own data sets by typing

RoisGen;
FeatGen;

Four data sets will result: trainingClass1.dat, trainingClass2.dat, testClass1.dat, and testClass2.dat. If
you follow this option, skip the first two lines of the code that follows. Alternatively, you may use the
data sets that are provided on the website associated with this book. If this is the case, follow all the
lines of code given.

Step 1. Read the training data and normalize the feature values:

c1_train=load('trainingClass1.dat')';
c2_train=load('trainingClass2.dat')';

% Normalize dataset
superClass=[c1_train c2_train];
for i=1:size(superClass,1)

m(i)=mean(superClass(i,:)); % mean value of i-th feature
s(i)=std (superClass(i,:)); % std of i-th feature
superClass(i,:)=(superClass(i,:)-m(i))/s(i);

end
c1_train=superClass(:,1:size(c1_train,2));
c2_train=superClass(:,size(c1_train,2)+1:size(superClass,2));

Step 2. Rank the features using the normalized training data set. We have adopted the scalar feature-
ranking technique, which employs FDR in conjunction with feature correlation. The ranking results
are returned in variable p.

[T]=ScalarFeatureSelectionRanking(c1_train,c2_train,'Fisher');
[p]= compositeFeaturesRanking (c1_train,c2_train,0.2,0.8,T);

4.8 Feature Subset Selection 133

Step 3. To reduce the dimensionality of the feature space, work with the seven highest-ranked features:

inds=sort(p(1:7),'ascend');

c1_train=c1_train(inds,:);

c2_train=c2_train(inds,:);

Step 4. Choose the best feature combination consisting of three features (out of the previously selected
seven) using the exhaustive search method.

[cLbest,Jmax] = exhaustiveSearch(c1_train,c2_train,'ScatterMatrices',[3]);

Step 5. Form the resulting training data set (using the best feature combination) along with the
corresponding class labels.

trainSet=[c1_train c2_train];

trainSet=trainSet(cLbest,:);

trainLabels=[ones(1,size(c1_train,2)) 2*ones(1,size(c2_train,2))];

Step 6. Load the test data set and normalize it using the mean and standard deviation (computed over
the training data set Why?). Form the vector of the corresponding test labels.

c1_test=load('testClass1.dat')';

c2_test=load('testClass2.dat')';

for i=1:size(c1_test,1)

c1_test(i,:)=(c1_test(i,:)-m(i))/s(i);

c2_test(i,:)=(c2_test(i,:)-m(i))/s(i);

end

c1_test=c1_test(inds,:);

c2_test=c2_test(inds,:);

testSet=[c1_test c2_test];

testSet=testSet(cLbest,:);

testLabels=[ones(1,size(c1_test,2)) 2*ones(1,size(c2_test,2))];

Step 7. Plot the test data set by means of function plotData (Figure 4.9). Observe the good separation
of the classes. This is a consequence of the fact that the two selected types of textures are quite
different, leading to an “easy” problem, if the right combination of features is selected. Obviously,
in practice, such “easy” problems are the exception rather than the rule.

%Provide names for the features

featureNames={'mean','stand dev','skewness','kurtosis',...

'Contrast 0','Contrast 90','Contrast 45','Contrast 135',...

'Correlation 0','Correlation 90','Correlation 45','Correlation 135',...

'Energy 0','Energy 90','Energy 45','Energy 135',...

134 CHAPTER 4 Feature Selection

0 1 2 3

0

1

2

0

1

2

3

Contrast 0

Skewness

C
or

re
la

ti
on

 0

21

21

2122
22

22

23

FIGURE 4.9

Plot of the patterns of the two classes, employing a 3-feature combination. Observe that this combination
results in well-separated classes in the 3-dimensional feature space.

'Homogeneity 0','Homogeneity 90','Homogeneity 45','Homogeneity 135'};

fNames=featureNames(inds);

fNames=fNames(cLbest);

plotData(c1_test(cLbest,:),c2_test(cLbest,:),1:3,fNames);

Step 8. Classify the feature vectors of the test data using the k-NN classifier (k = 3) and compute
the classification error. For this, use functions k_nn_classifier and compute_error, which were
introduced in Chapter 1.

[classified]=k_NN_classifier(trainSet,trainLabels,3,testSet);

[classif_error]=compute_error(testLabels,classified);

We now employ the LOO method to evaluate the performance of the classifier, so this time we do
not make use of the testing data sets.

Step 9. Load all data, normalize them, and create class labels.

c1_train=load('trainingClass1.dat')';

c1=c1_train;

Labels1=ones(1,size(c1,2));

4.8 Feature Subset Selection 135

c2_train=load('trainingClass2.dat')';

c2=c2_train;

Labels2=2*ones(1,size(c2,2));

[c1,c2]=normalizeStd(c1,c2);

AllDataset=[c1 c2];

Labels=[Labels1 Labels2];

Step 10. Keep features of the best feature combination (determined previously) and discard the rest.

AllDataset=AllDataset(inds,:);

AllDataset=AllDataset(cLbest,:);

Step 11. Apply LOO on the k-NN classifier (k = 3) and compute the error.

[M,N]=size(AllDataset);

for i=1:N

dec(i)=k_nn_classifier([AllDataset(:,1:i-1) AllDataset(:,i+1:N)],...

[Labels(1,1:i-1) Labels(1,i+1:N)],3,AllDataset(:,i));

end

LOO_error=sum((dec˜=Labels))/N;

The LOO error is 1%.

CHAPTER

5Template Matching

5.1 INTRODUCTION
In this chapter, we assume that each class is represented by a single pattern. A set of such reference
patterns (or prototypes) is available and stored in a database. Given an unknown test pattern, template
matching consists of searching the database for the reference pattern most “similar” to the given test
pattern. This is equivalent to defining a matching cost that quantifies similarity between the test pattern
and the reference patterns.

Template-matching techniques are very common in string matching, speech recognition, alignment
of molecular sequences, image retrieval, and so forth. They often come with different names depending
on the application. For example, in speech recognition the term dynamic time warping is used, whereas
in string matching Edit (or Levenstein) distance is quite common.

This chapter is devoted to a series of examples of increasing complexity, culminating in an example
from speech recognition.

5.2 THE EDIT DISTANCE
A string pattern is defined as an ordered sequence of symbols taken from a discrete and finite set. For
example, if the finite set consists of the letters of the alphabet, the strings are words. The Edit distance
between two string patterns A and B, denoted D(A,B), is defined as the minimum total number of
changes (C), insertions (I), and deletions (R) required to change pattern A into pattern B,

D(A,B) = min︸︷︷︸
j

[C(j)+ I(j)+ R(j)] (5.1)

where j runs over all possible combinations of symbol variations in order to obtain B from A. If the two
strings are exactly the same, then D(A,B) = 0. For every symbol “change,” “insertion,” or “deletion,”
the cost increases by one.

The required minimum is computed by means of the dynamic programming methodology [Theo 09,
Section 8.2.1]. That is, an optimal path is constructed in the 2-dimensional grid formed by the two
sequences in the 2-dimensional space, by locating one sequence across the horizontal axis and the
other across the vertical axis. The Edit distance is commonly used in spell-checking systems where the
prototypes stem from the vocabulary of words.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00005-1 137

138 CHAPTER 5 Template Matching

Example 5.2.1. Compute the Edit distance between the words “book” and “bokks,” taking the former
as the reference string. Plot the optimal matching path and comment on the sequence of operations
needed to change “bokks” to “book.” Repeat for the words “template” (reference) and “teplatte.”

Solution. Use function editDistance by typing

[editCost,Pred]=editDistance('book','bokks');

The Edit distance equals 2 and is stored in the variable editCost. The value of 2 is the result of a symbol
change (k to o) and a deletion (s at the end of the word). To extract the matching path, give matrix Pred
as input to function BackTracking as follows:

L_test=length('bokks'); % number of rows of the grid
L_ref=length('book'); % number of columns of the grid
[BestPath]=BackTracking(Pred,L_test,L_ref,1,'book','bokks');
% The fourth input argument indicates that a plot of the best
% path will be generated. The last two arguments serve as labels for the
resulting axes.

The resulting best path is stored in the vector variable BestPath and is presented in Figure 5.1(a),
where the reference pattern has been placed on the horizontal axis. Each element of vector BestPath is a
complex number and stands for a node in the path. The real part of the element is the node’s row index
and the imaginary part is its column index. Inspection of the path in Figure 5.1(a) reveals that the first

b

b

o

o

k

o

k

k

s

(a)
t m l t

t

e

l

p

a

t

t

e

(b)
e p a e

FIGURE 5.1

(a) Optimal matching path between “book” and “bokks.” (b) Optimal matching path between “template” and
“teplatte.” A diagonal transition between two successive nodes amounts either to zero cost (if the
corresponding symbols are the same) or to one (if the corresponding symbols are different). Horizontal
transitions (symbol insertions) and vertical transitions (deletions) contribute one to the total cost.

5.3 Matching Sequences of Real Numbers 139

occurrence of k in “bokks” has been changed to o. In addition, the vertical segment of the best path is
interpreted as the deletion of s in “bokks.” A total of one symbol change and one symbol deletion is
needed to convert “bokks” to “book” in an optimal way.

Similarly, the Edit cost for matching “teplatte” against “template” equals 2, and the resulting best
path can be seen in Figure 5.1(b). In this case, an insertion (horizontal segment) and a deletion (vertical
segment) are required to convert “teplatte” to the reference pattern in an optimal way.

Exercise 5.2.1
Given the words “impose,” “ignore,” and “restore” as prototypes, determine which one stands for the most
likely correction of the mistyped word “igposre” in terms of the edit distance. Note that, as is the case with
most spell checkers, ties result in multiple correction possibilities.

5.3 MATCHING SEQUENCES OF REAL NUMBERS
In this section, we focus on a slightly different task, that of matching sequences of real numbers. In
contrast to Section 5.2, where the goal was to change one string pattern to another, the aim here is to
measure how similar/dissimilar are two given ordered sequences of numbers. For example, if we are
given two real numbers, x,y, their similarity can be quantified by the absolute value of their difference.
If we are given two vectors (i.e., two strings of real numbers of equal length), we can use the respective
Euclidean distance. A more interesting case is when two sequences of numbers are of different length.
One approach to this problem is to allow local “stretching”/“compressing,” known as warping, achieved
by constructing the optimal (low-cost) path through nodes of the respective grid. The grid is formed by
the two sequences in the 2-dimensional space by locating one sequence along the horizontal axis and
the other along the vertical axis.

Assuming that the reference sequence is placed on the horizontal axis, the dimensions of the grid
are J×I , where I and J are the lengths of the reference and test sequences, respectively. In the sim-
plest case, the cost assigned to each node of the grid is equal to the absolute value of the difference
between the respective numbers associated with a specific node. The type and the allowable degree of
expansion/compression are determined by the so-called local constraints. Popular choices include the
Sakoe-Chiba and Itakura constraints [Theo 09, Section 8.2]. Basically, these are constraints imposed
on the allowable jumps among nodes in the grid.

The purpose of matching sequences of numbers is pedagogical and is used as an intermediate step
to help the reader acquire a better understanding of the concepts underlying dynamic time warping for
speech recognition, which is treated in the next section (see [Theo 09, Section 8.2.3]).

Example 5.3.1. Let P = {−1,−2,0,2} be the prototype and T = {−1,−2,−2,0,2} be the unknown
pattern.

1. Compute the matching cost and the resulting best path by adopting the Sakoe-Chiba local
constraints. Comment on the shape of the resulting best path.

2. Repeat with T = {−1,−2,−2,−2,−2,0,2}.

140 CHAPTER 5 Template Matching

Solution

Step 1. For T = {−1,−2,−2,−2,−2,0,2}, use function DTW Sakoe and type

P=[-1,-2,0,2];

T=[-1,-2,-2,0,2];
[MatchingCost,BestPath,D,Pred]=DTWSakoe(P,T,1);

where D is the array having as elements the costs associated with optimally reaching each node of
the grid. The value 1 is used if a plot is required; if not, 0 is used. Although the two sequences differ
by one symbol, the matching cost equals 0. This is due to the fact that a) the absolute difference
was employed as the (node) cost and b) the only difference between the two sequences is symbol
repetition.

To further interpret the result, observe the respective best path in Figure 5.2(a). It can be seen that
the vertical segment of the path corresponds to a local stretching operation; that is, the symbol −2
of the prototype (horizontal axis) is matched against two consecutive occurrences of −2 in
sequence T .

Step 2. To repeat the experiment with T = {−1,−2,−2,−2,−2,0,2} type

P=[-1,-2,0,2];
T=[-1,-2,-2,-2,-2,0,2];

[MatchingCost,BestPath,D,Pred]=DTWSakoe(P,T,1);

The matching cost remains 0 and the resulting best path is presented in Figure 5.2(b). It can be seen
that the vertical segment of the path is now four nodes long. This should not come as a surprise

21

22

22

22

22

0

2

21 22 0 22
(b)

21

22

22

0

2

21 22 0
(a)

FIGURE 5.2

(a) Best path for P = {−1,−2,0,2} and T = {−1,−2,−2,0,2}. (b) Best path for P = {−1,−2,0,2} and
T = {−1,−2,−2,−2,−2, 0,2}.

5.3 Matching Sequences of Real Numbers 141

because, as before, T differs from P in terms of symbol repetition. The length of repetition does not
affect the cost; it only causes a more intense time-warping effect. To draw an analogy with speech,
we may have the same phoneme but one time it is said fast and another time slowly. Long horizontal
or vertical segments are very common when the Sakoe-Chiba local constraints are employed. If no
global constraints are specified, the horizontal (vertical) segments can become arbitrarily long. This
behavior is often undesirable with real-world signals, such as in speech.

Example 5.3.2. Let P = {1,0,1} be the prototype, and let T1 = {1,1,0,0,0,1,1,1}, T2 = {1,1,0,0,1}
be two unknown patterns. Compute the matching cost for the standard Itakura local constraints between
P and T1 and between P and T2.

Solution. To compute the matching cost for the two unknown patterns using the standard Itakura local
constraints, use function DTWItakura and type

P=[1,0,1];
T1=[1,1,0,0,0,1,1,1];
T2=[1,1,0,0,1];
[MatchCost1,BestPath1,D1,Pred1]=DTWItakura(P,T1,1);
[MatchCost2,BestPath2,D2,Pred2]=DTWItakura(P,T2,1);

The returned value of MatchCost1 is ∞, whereas the value of MatchCost2 is 0. This is because
one property of the standard Itakura constraints is that the maximum allowed stretching factor for the
prototype is 2. In other words, the length of the unknown pattern has to be, in the worst case, twice the
length of the prototype. If this rule is violated, the DTWItakura function returns ∞. In the case of P and
T2, this rule is not violated and the best path can be seen in Figure 5.3.

1

1

0

0

1

1 10

FIGURE 5.3

Best path for P = {1,0,1} and T = {1,1,0,0,1} using the standard Itakura local constraints.

142 CHAPTER 5 Template Matching

Example 5.3.3. This example demonstrates the importance of the endpoint constraints [Theo 09,
Section 8.2.3]. Let the sequence P = {−8,−4,0,4,0,−4} be a prototype. Also let the sequence
T = {0,−8,−4,0,4, 0,−4,0,0} be the unknown pattern.

1. Compute the matching cost by adopting the Sakoe-Chiba local constraints and comment on the
result.

2. Repeat, allowing for endpoint constraints. Specifically, omit at most two symbols from each
endpoint of T .

Solution

Step 1. For the first case, type

P=[-8,-4,0,4,0,-4];

T=[0,-8,-4,0,4,0,-4,0,0];

[MatchingCost,BestPath,D,Pred]=DTWSakoe(P,T,1);

The matching cost turns out to be 16. In practice, the cost is normalized by dividing it by the length
of the best path. In this example, the best path is 9 nodes long, as can be seen in Figure 5.4(a), and
so the normalized cost is 1.778. Hence, although P and T can be considered practically the same
(they only differ in the trailing zeros), the matching cost is nonzero.

28 24 0 4 0 0 4 024

0

28

24

0

4

0

24

0

0

28 24 24

0

28

24

0

4

0

24

0

0

(a) (b)

FIGURE 5.4

(a) Best path for P = {−8,−4,0,4,0,−4} and T = {0,−8,−4,0,4,0,−4,0,0}, no endpoint constraints.
(b) Previous sequences matched while allowing endpoint constraints.

5.4 Dynamic Time Warping in Speech Recognition 143

Inspection of Figure 5.4(a) reveals that time stretching occurs at the beginning and end of the
path and is due to the existence of zeros at the endpoints. This is a common situation; that is, the
unknown pattern contains “garbage” near the endpoints. As a remedy, we can resort to a variation
of the standard matching scheme, where it is possible to omit a number of symbols at the endpoints
of the unknown pattern; it suffices to specify the maximum number of symbols to omit. This
type of enhancement to the standard matching mechanism can be easily embedded in the dynamic
programming methodology.

Step 2. To employ the endpoint constraints in the current example, use function DTWSakoeEndp and
type

P=[-8,-4,0,4,0,-4];

T=[0,-8,-4,0,4,0,-4,0,0];

[MatchingCost,BestPath,D,Pred]=DTWSakoeEndp(P,T,2,2,1);

In this function call, the third and fourth arguments stand for the number of symbols that can be
omitted at each endpoint (2 in this example). The fifthindicates that a plot of the best path will be
generated. The resulting matching cost is zero, as can be verified from Figure 5.4(b), where the first
row and the last two rows of the grid have been skipped by the algorithm.

Endpoint constraints are very useful in speech recognition because the unknown pattern usually
has silence periods around the endpoints, whereas the prototypes are free of such phenomena.

5.4 DYNAMIC TIME WARPING IN SPEECH RECOGNITION
Here we focus on a simple task in speech recognition known as isolated word recognition (IWR). We
assume that the spoken utterance consists of discrete words; that is, there exist sufficient periods of
silence between successive words (hence the term “isolated”). This is a convenient assumption, since
it allows for employing segmentation algorithms capable of locating the boundaries (endpoints) of the
spoken words with satisfactory precision. Note that in practice a certain amount of silence/noise is likely
to exist close to the endpoints of the detected word after the segmentation stage.

At the heart of any IWR system is an architecture consisting of a set of reference patterns (proto-
types) and a distance measure. Recognition of a test (unknown) pattern is achieved by searching for
the best match between the test and each one of the reference patterns, on the basis of the adopted
measure.

As a first stage, a feature extraction algorithm converts each signal into a sequence of feature
vectors—instead of matching sequences of real numbers, the task is computing the matching cost
between two sequences of vectors. However, the rationale is the same, and the only difference lies in
replacing the absolute value with the Euclidean distance between vectors. In speech recognition, this
type of matching is known as dynamic time warping (DTW).

We now develop a simple, speaker-dependent IWR system for a 10-word vocabulary consisting of
“zero,” “one,” . . . , “nine” and uttered by a single male speaker. We are actually building an “isolated digit
recognition” system. We need a total of 10 utterances to use as prototypes and a number of utterances
for testing.

144 CHAPTER 5 Template Matching

At this point, you may record your own audio files or you may use the files available via this book’s
website. If you record your own files, name the prototypes as follows: zero.wav, one.wav, and so on,
for the sake of compatibility, and place all 10 in a single folder (this is the naming convention we have
adopted for the audio samples on the website). Note that “clean” prototypes are desirable. That is, make
sure silence/noise has been removed, at least to the extent possible, from the endpoints of the prototypes
before storing. Such care need not be taken with the samples that will be used for testing. In addition,
the file names for the test patterns need not follow any naming convention and it suffices to store the
unknown patterns in the folder where the prototypes are held.

To build the system, we use short-term energy and short-term zero-crossing rate as features [Theo 09,
Section 7.5.4], so that each signal is represented by a sequence of 2-dimensional feature vectors. Note
that this is not an optimal feature set in any sense and has only been adopted for simplicity.

The feature extraction stage is accomplished by typing the following code:

protoNames={'zero','one','two','three','four','five',...
'six','seven','eight','nine'};

for i=1:length(protoNames)
[x,Fs,bits]=wavread(protoNames{i}]);
winlength = round(0.02*Fs); % 20 ms moving window length
winstep = winlength; % moving window step. No overlap
[E,T]=stEnergy(x,Fs,winlength,winstep);
[Zcr,T]=stZeroCrossingRate(x,Fs,winlength,winstep);
protoFSeq{i}=[E;Zcr];

end

which performs feature extraction per prototype and uses a single cell array (protoFSeq) to hold the
feature sequences from all prototypes. To extract the features, a moving windows technique is employed
[Theo 09, Section 7.5.1]. The length of the moving windows is equal to 20 milliseconds and there is no
overlap between successive windows.

To find the best match for an unknown pattern—forexample, a pattern stored in file upattern1.wav—
type the following code:

[test,Fs,bits]=wavread('upattern1');
winlength = round(0.02*Fs); % use the same values as before
winstep = winlength;
[E,T]=stEnergy(test,Fs,winlength,winstep);
[Zcr,T]=stZeroCrossingRate(test,Fs,winlength,winstep);
Ftest=[E;Zcr];

tolerance=0.1;
LeftEndConstr=round(tolerance/winstep); % left endpoint constraint
RightEndConstr = LeftEndConstr;
for i=1:length(protoNames)

[MatchingCost(i),BestPath{i},D{i},Pred{i}]=DTWSakoeEndp(...
protoFSeq{i},Ftest,LeftEndConstr,RightEndConstr,0);

end

5.4 Dynamic Time Warping in Speech Recognition 145

[minCost,indexofBest]=min(MatchingCost);
fprintf('The unknown pattern has been identified as %s \n',...

protoNames{indexofBest});

This code uses the standard Sakoe local constraints and allows for endpoint constraints. Specifically,
it is assumed that the length of silence/noise at each endpoint may not exceed 0.1 seconds (i.e., at
most 5 frames can be skipped from each endpoint of the test utterance). Note that, instead of using
the function DTWSakoeEndp to compute the matching cost, we could have used DTWItakuraEndp. To
avoid repeating the code for each unknown pattern, the whole system is available on the website as a
single m-file under the name IsoDigitRec.m.

Remarks
• Errors may occur in the experiments. This is also expected in practice, and is even more true here

since only two features have been used for pedagogic simplicity.
• Moreover, this a speaker-dependent speech recognition example. Hence, if you record your own

voice and test the system using the provided prototypes, the performance may not to be a good
one, especially if the accent of the speaker is very different from the accent we used to record the
prototypes. You can reconstruct the whole example by using your own voice for both the test data
and the prototypes.

CHAPTER

6Hidden Markov Models

6.1 INTRODUCTION
In general, a hidden Markov model (HMM) is a type of stochastic modeling appropriate for nonstationary
stochastic sequences whose statistical properties undergo distinct random transitions among a set of,
say, k different stationary processes. In other words, HMMs are used to model piecewise stationary
processes. A stationary process is one whose statistical properties do not change with time.

We assume that we are given a set of observations (feature vectors), x1,x2, . . . ,xN ∈ Rl . In contrast to
what has been assumed in previous chapters, here we allow each observation to be generated (emitted)
by a different source. Each source is described by different statistical properties. For example, assuming
two sources (stationary processes), k = 2, one may generate data points sequentially, according to either
a Gaussian or a Chi-square distribution. Hence, each observation may have been emitted by either of
the two sources, but we do not have access to this information. A hidden Markov model is a way to
model such a nonstationary process.

6.2 MODELING
An important issue concerning any HMM is its modeling. We first assume that the number of sources,
k, that emit the observations is known. In practice, this has to be inferred by exploiting any available
knowledge about the problem at hand following some physical reasoning. Each emitting source is
associated with a state, and k is known as the number of states.

The next set of parameters that need to be specified are the probabilitydensities describing each state,
that is, p(x| j), j = 1, . . . ,k. This is natural, since each state is an emitting source statistically described
by the respective pdf.

Since the process undergoes random jumps from one state to another, the model should also have
access to the set of state transition probabilities, P(i| j), i, j = 1, . . . ,k, where P(i| j) is the probability
of the system jumping from state j to state i.

Finally, since any observation sequence must have an origin, x1, one needs to know the a priori
probability P(i), i = 1, . . . ,k—that is, the probability of the first observation being emitted by state i.

If the observation sequence is discrete, taken from a finite alphabet set, the pdfs p(x| j) become
probabilities.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00006-3 147

148 CHAPTER 6 Hidden Markov Models

In summary, an HMM is described by the following set of parameters:

• The number of states, k.
• The probability densities, p(x| j), j = 1, . . . ,k. For discrete variables, where x = r, r = 1, . . . ,L, the

observation probability matrix that is defined as

B =
⎡
⎢⎣

P(x = 1|1) P(x = 1|2) . . . P(x = 1|k)

...
...

...
...

P(x = L|1) p(x = L|2) . . . P(x = L|k)

⎤
⎥⎦

• The state transition matrix, A,

A =
⎡
⎢⎣

P(1|1) p(2|1) . . . p(k|1)

...
...

...
...

P(1|k) P(2|k) . . . P(k|k)

⎤
⎥⎦

• The vector π of the initial probabilities,

π =

⎡
⎢⎢⎢⎣

P(1)

P(2)
...

P(k)

⎤
⎥⎥⎥⎦

6.3 RECOGNITION AND TRAINING
During recognition, we assume that we have more than one HMM, each one described by a different
set of parameters. Obviously, each HMM models a different piecewise stationary process. For example,
one may model a process consisting of two emitting sources (e.g., one Gaussian and one Chi-square,
two states); another may correspond to a process consisting of three sources (e.g., three Gaussians with
different mean values and covariance matrices).

Given an observation sequence and a number, M , of HMMs (each one modeling a different process),
the goal of the recognition phase is to decide which one of the HMMs is more likely to have emitted the
received sequence. The so-called any path or Baum-Welch and best path or Viterbi are two approaches
used for recognition [Theo 09, Section 9.6]. Both provide a probability-related score for each involved
HMM; the HMM scoring the maximum is considered as the most probable to have emitted the specific
observation sequence. The recognition stage assumes that all parameters that define the involved HMMs
have been estimated and are known.

In the training phase the parameters describing an HMM are estimated. To this end, one (or more)
long enough observation sequence that has been generated by the corresponding stochastic process is
used to estimate the unknown parameters (e.g., using Maximum Likelihood parameter estimation argu-
ments). The Baum-Welch and Viterbi techniques are commonly used for training [Theo 09, Section 9.6].

6.3 Recognition and Training 149

Example 6.3.1. In this example, two coins (C1, C2) are used to generate a sequence of observations
consisting of heads (H) or tails (T). Both coins are not fair toward the heads or tails outcome. We
have chosen P(H|C1) = 0.8 (P(T |C1) = 0.2) and P(H|C2) = 0.3 (P(T |C2) = 0.7). Somebody is behind
a curtain and tosses the coins provided to us, sequentially, the resulting outcomes, without, however,
disclosing which one of the two coins was tossed. Moreover, there is an added difficulty. The person
who performs the experiment behind the curtain does not toss the two coins in a “fair” way; instead he
or she gives preference to one of them. To this end, the person uses a third coin, C3, with P(H|C3) = 0.7.
Each time the outcome of C3 is heads, coin C1 generates the next observation; otherwise, coin C2 does.

A little thought reveals that such an experiment corresponds to a state transition matrix equal to

A =
[

0.7 0.3
0.7 0.3

]

where two states have been considered, each one associated with one of the coins, C1 or C2, that generate
the observation sequence. Let us assume that coin C1 has just been used. Then the probability of tossing
the same coin, C1, is equal to 0.7—that is, P(1|1) = 0.7. Obviously, the probability of tossing C2 is
equal to the probability P(T |C3) (i.e., P(2|1) = 0,3). On the other hand, if C2 was the last used, the
probability of tossing the same coin, C2, would be 0.3 and the probability of tossing C1 would be
0.7—that is, P(2|2) = 0.3 and P(1|2) = 0.7.

Let HHHTHHHHTHHHHTTHH be the observation sequence of heads and tails that have resulted
from the above experiment. We are also given two HMMs:

• A1 =
[

0.7 0.3
0.7 0.3

]
, B1 =

[
0.8 0.3
0.2 0.7

]
, π1 = [0.7, 0.3]T

• A2 =
[

0.6 0.4
0 1

]
, B2 = B1, π2 = π1

Compute the recognition probability of this sequence for each HMM and comment on the results.

Solution. First create the two HMMs. Type

% First HMM
A1 = [0.7 0.3;0.7 0.3];
B1 = [0.8 0.3;0.2 0.7];
pi1 = [0.7 0.3]';
% Second HMM
A2 = [0.6 0.4;0 1];
B2 = B1;
pi2 = pi1;

Then rewrite the sequence of heads and tails as a sequence of 1s and 2s, where 1 stands for heads and 2
for tails. To compute the recognition probabilities, say Pr1 and Pr2, use function BWDoHMMst, which
implements the standard Baum-Welch (any-path) algorithm for discrete-observation HMMs. Type

150 CHAPTER 6 Hidden Markov Models

O = [1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1];
[Pr1]=BWDoHMMst(pi1,A1,B1,O);
[Pr2]=BWDoHMMst(pi2,A2,B2,O);
Pr1, Pr2

The screen output is

Pr1 = 5.5481e-005
Pr2 = 6.2033e-007

It can be seen that the first model results in higher recognition probability. This is natural, since in
this HMM the correct parameters associated with the experiment have been used. In real life, of course,
access to the true values of the parameters is hardly the case. What one expects is that the training of
the HMM is sufficient and that the estimated parameters have values close to the correct ones. The
second model has a state transition matrix that corresponds to a completely different process. Indeed,
A2 is a so-called left-to-right HMM, meaning that its state transition matrix is upper triangular: Once
the model reaches the second state, it will stay there until the whole observation sequence has been
emitted. Naturally, this has nothing to do with the given observation sequence, where heads and tails
interchange (with a bias toward heads Why?).

The goal of this example was to demonstrate the essence of the recognition phase; it attempts
to “match” an observation sequence with the data emission “mechanism,” which is implied by the
respective HMM.

Concerning the matrices common in both HMMs (i.e., B1 = B2 and π1 = π2), observe that each
column of B1 (B2) reflects the bias of the respective coin. Remember that C1 is biased toward heads
(P(H|C1) = 0.8), and this is why B1(1,1) = 0.8 and B1(2,1) = 0.2. Following a similar reasoning, we
assign the values B1(1,2) = 0.3 and B1(2,2) = 0.7. In addition, π1 = [0.7, 0.3]T because it is C3 that
decides which coin is the first to be tossed. Once more, it has to be emphasized that in practice the
values of B and π are estimated during training, using an appropriate observation sequence, for each
model.

Hint
Function BWDoHMMst is a nonscaled version of the any-path (Baum-Welch) method. Because of the
lack of scaling, if the observation sequence is too long, numerical problems (underflow) may occur,
since the standard algorithm employs multiplications of probabilities. Fortunately, it is possible to
avoid numerical instabilities by using a proper scaling technique in the method’s implementation. The
resulting function is BWDoHMMsc. If you replace BWDoHMMst with BWDoHMMsc in the last lines
of the previous code, variables Pr1 and Pr2 become −4.25 and −6.27, respectively. The minus sign
is the effect of the presence of a logarithm in the scaling process, which replaces multiplications with
additions. Scaling is very useful in real-world applications, where symbol sequences can be very long
[Theo 09, Section 9.6].

Example 6.3.2. For the setting of the previous example, compute the Viterbi score and the respective
best-state sequence for each of the two HMMs. Comment on the results. By best-state, we mean
associating each observation with a specific state. Identification of the best-state sequence is also known

6.3 Recognition and Training 151

as back-tracking. This is an important part of the recognition stage. Once the winning HMM has been
decided, one has to identify the state (source) from which individual points in the observation sequence
have been emitted. In other words, it classifies observations to states.

Solution. To compute the Viterbi score, we use function ViterbiDoHMMst, which implements the
standard Viterbi algorithm. This function returns both the score and the best-state sequence, the latter
as a vector of complex numbers. The higher the score, the better the matching. Each element of the
vector encodes a node of the best path. For implementation, we have made the assumption that the real
part of each complex number stands for the y-coordinate of the node (state number); the imaginary part
stands for the x-coordinate (observation (time) index). Therefore, we are only interested in the real part
of variable BestPath.

Type

% First HMM
pi1 = [0.7 0.3]';
A1 = [0.7 0.3;0.7 0.3];
B1 = [0.8 0.3;0.2 0.7];
% Second HMM
pi2 = pi1;
A2 = [0.6 0.4;0 1];
B2 = B1;
O = [1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1];
[Score1, BestPath1] = VitDoHMMst(pi1,A1,B1,O);
[Score2, BestPath2] = VitDoHMMst(pi2,A2,B2,O);
BestStateSeq1 = real(BestPath1);
BestStateSeq2 = real(BestPath2);
Score1, Score2, BestStateSeq1, BestStateSeq2

The screen output is

Score1 = 1.0359e-006
Score2 = 9.2355e-008
BestStateSeq1 = 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1
BestStateSeq2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

As expected, the first HMM (A1) has resulted in a significantly higher Viterbi score. Moreover,
unveiling the best-state sequences justifies the outcome of the recognition stage; that is, the first of the
two models is better matched to the observation sequence. Specifically, if BestStateSeq1 is examined
jointly with the sequence of observations, it can be seen that a 1 in the best-state sequence, indicating
the first state, occurs whenever heads appears in the observation sequence. A similar observation holds
for the second state, which occurs when tails appear. This ties in well with the statistical properties of
the emitting process. State 1, associated with coin C1, has higher probability of emitting heads. The
opposite is true for state 2, associated with coin C2.

On the other hand, the second HMM (A2) spends 13 time instances in its first state, switches to the
second state, and remains there until the end, because of the lack of backward transitions (i.e., from

152 CHAPTER 6 Hidden Markov Models

state 2 back to state 1). In other words, the best-state sequence, according to the second HMM, is not
representative of the underlying coin-tossing statistical mechanism.

Hint (1)
The scaled version of function ViterbiDoHMMst is ViterbiDoHMMsc. We have employed the base-10
logarithm, and the respective scores are −5.9847 and −7.0345. Note that most often in practice Viterbi
scoring gives results that compare with those of the Baum-Welch (any-path) method.

Hint (2)
In general, it is good to avoid zero entries in the HMM matrices. In such cases, it is common to
replace zeros with small probabilities, say a value of 0.001 or even less. This is particularly true for the
initialization of the respective HMM parameters in the training phase (an issue discussed in the next
example).

Example 6.3.3. So far, we have assumed the HMM parameters to be known, which is not realistic for
the majority of real-word applications. In this example, we will focus on the training phase. We will
estimate the HMM parameters given a set of training sequences. Specifically, we will use the first 70 out
of 100 observation sequences, which are available in the DOHMMTrainingData.mat file located in the
“Data” folder in the software that accompanies this book. Each sequence in the file was generated by the
coin-tossing experiment of Example 6.3.1. Using multiple sequences for training is common in practice,
where different realizations (observation instances) of the stochastic HMM process are available and
are exploited in an averaging rationale.

Assume that we have decided to train a 2-state HMM and consider the following two initialization
options:

A =
[

0.6 0.4
0.6 0.4

]
, B =

[
0.6 0.2
0.4 0.8

]
, π = [0.6, 0.4]T

A =
[

0.6 0.4
0 1

]
, B =

[
0.6 0
0.4 1

]
, π = [0.5, 0.5]T

For each initialization scheme, train the HMM with the Baum-Welch training method and comment on
the results.

Solution. Load the training data stored in DOHMMTrainingData.mat. You will first need to switch to
the respective folder and then type

load DOHMMTrainingData;

Variable TrainingData now resides in MATLAB’s workspace. It is a cell array, with each cell containing
a string of Hs and Ts, and is interpreted as a symbol sequence of the training set. For example, if you
type

TrainingData{1}

the screen output is

HHHHTTHHTTTHTTHHHHTTHTHHHTHHHHTHHTTTHTHTHHH

6.3 Recognition and Training 153

Before we proceed, each string will be converted to a sequence of symbol IDs and stored in a new cell
array, NumericData. This is convenient because, from an implementation point of view, it is easier to
work with numbers. Assuming that 1 stands for heads and 2 for tails, type

L=length(TrainingData);
for i=1:L

for j=1:length(TrainingData{i})
if TrainingData{i}(j)=='H'

NumericData{i}(j)=1;
else

NumericData{i}(j)=2;
end

end
end

Next, initialize the HMM with the first set of values. Type

pi_init_1 = [0.6 0.4]';
A_init_1 = [0.6 0.4; 0.6 0.4];
B_init_1 = [0.6 0.2; 0.4 0.8];

Then use function MultSeqTrainDoHMMBWsc to train the HMM with the Baum-Welch training
algorithm. Type

maxEpoch=1000;
[piTrained_1, ATrained_1, BTrained_1, SumRecProbs_1]=...

MultSeqTrainDoHMMBWsc(pi_init_1, A_init_1, B_init_1, ...
NumericData(1:70), maxEpoch);

where

Input variable maxEpoch defines the maximum number of iterations during the training stage.
Although we have set it to a large value, the training algorithm is expected to converge in a few
iterations (less than 20) mainly because of the simplicity of the problem.

Function MultSeqTrainDoHMMBWsc implements the scaled version of the Baum-Welch train-
ing algorithm, which stops iterating when the sum of recognition probabilities of the training
sequences ceases to increase.

Variable SumRecProbs_1 is a vector whose ith element is the sum of recognition probabilities at
the ith iteration of the training algorithm (obviously, the length of this vector is the number of
iterations that took place).

If you now type

piTrained_1, ATrained_1, BTrained_1

the screen output is

piTrained_1 = ATrained_1 = BTrained_1 =
0.7141 0.6743 0.3257 0.7672 0.3544
0.2859 0.6746 0.3254 0.2328 0.6456

154 CHAPTER 6 Hidden Markov Models

The training stage has terminated after only two iterations (the length of variable SumRecProbs_1),
and the resulting HMM matrices are very close to the true ones, describing the generation mechanism
of the observation sequences. This is also a consequence of the fact that the values used to initialize the
HMM were already close to the true values.

We now repeat the training phase and initialize the HMM with the second set of parameter values.
Type

pi_init_2 = [0.5 0.5]';
A_init_2 = [0.6 0.4; 0 1];
B_init_2 = [0.6 0; 0.4 1];
maxEpoch=1000;
[piTrained_2, ATrained_2, BTrained_2, SumRecProbs_2]=...

MultSeqTrainDoHMMBWsc(pi_init_2, A_init_2, B_init_2, ...
NumericData(1:70), maxEpoch);

piTrained_2, ATrained_2, BTrained_2

The screen output is

piTrained_2 = ATrained_2 = BTrained_2 =
1 1.0000 0.0000 0.6333 0
0 0 1.0000 0.3667 1.0000

This time, the training phase has terminated after 13 iterations (the length of variable SumRecProbs_2).
For the second initialization scheme, the resulting estimates of the HMM matrices are quite different
from the true ones. Interestingly, this second HMM can be interpreted as a single-coin model biased
toward heads because, in the resulting state-transition matrix, ATrained_2(2,2) = 1; that is, the HMM
will never leave the first state. Furthermore, since piTrained_2(1) = 1, the first state will always be the
starting one.

Overall, the HMM will always start at the first state and stay there until the end. This is mainly
due to the fact that zeros at initialization remain zeros at the end of the training stage, which is why,
for example, ATrained_2(2,1) equals zero. In general, zeros at the initialization stage imply that we
are certain that the respective events are not encountered in the training sequences. This is a very strict
assumption, which must be fully justified by physical reasoning. In general, it is best to assign small
values instead of zeros to the respective elements, if we expect that these elements must have small
values. As a matter of fact, even if at the end of the training stage some elements end up with zero values
(although initialized with nonzero values), it is advisable to set them manually to a small (enough) value
because the resulting parameter estimates from the training phase can hardly be “exact” representations
of the problem under study (and a zero does not allow for deviations).

Exercise 6.3.1
Repeat the training procedure for the second initialization scenario by replacing each zero with 0.01.
Comment on the results.

Example 6.3.4. Repeat the experiment in Example 6.3.3 for the first initialization scenario. This time
use Viterbi training. Comment on the results.

6.3 Recognition and Training 155

Solution. For training with the Viterbi algorithm, only change the training function. Type

[piTrained_1, ATrained_1, BTrained_1, SumRecProbs_1]=...
MultSecTrainDoHMMVITsc(pi_init_1, A_init_1, B_init_1, ...
NumericData(1:70), maxEpoch);

piTrained_1, ATrained_1, BTrained_1

The screen output is

piTrained_1 = ATrained_1 = BTrained_1 =
0.6857 0.6278 0.3722 1 0
0.3143 0.6288 0.3712 0 1

The training algorithm converged after three iterations. The main difference, with respect to the values
obtained using the Baum-Welch method in Example 6.3.3, lies in the resulting estimate of the observation
probability matrix. The obtained matrix indicates that the first state can only emit heads and, similarly,
the second state can only emit tails. This is because of the simplicity of the Viterbi training method,
which is based on computing frequencies of events [Theo 09, Section 9.6].

Example 6.3.5. Compute the Viterbi score for each of the remaining 30 symbol sequences in
file DOHMMTrainingData.mat. Use both of the HMMs that resulted from the training stage of
Example 6.3.3.

Solution. Assuming that the following variables still reside in MATLAB’s workspace—piTrained_1,
ATrained_1, BTrained_1, piTrained_2, ATrained_2, BTrained_2, and NumericData; so type

for i=71:100
[ViterbiScoreScaled1(i),BestPath1{i}] = VitDoHMMsc(...

piTrained_1,ATrained_1,BTrained_1,NumericData{i});
[ViterbiScoreScaled2(i),BestPath2{i}] = VitDoHMMsc(...

piTrained_2,ATrained_2,BTrained_2,NumericData{i});
end

After the termination of the for loop, the ith element of ViterbiScoreScaled1 (ViterbiScoreScaled2) is
the Viterbi score of the ith symbol sequence for the first (second) HMM and, similarly, the ith cell of
the variable BestPath1 (BestPath2) is the respective best path.

Exercise 6.3.2
Compare the Viterbi scores of the two HMMs on the basis of each observation sequence used for testing.
Comment on the results.

Example 6.3.6. In this example, we will work with observation sequences that consist of real numbers,
thus departing from the assumption that the emissions are drawn from a finite and discrete alphabet.
For this, we adopt an experimental setup in which two generators of real numbers are available. The
first one, G1, follows a Gaussian distribution with mean value and standard deviation both equal to 1.

156 CHAPTER 6 Hidden Markov Models

The second generator, G2, is also Gaussian with mean value and standard deviation equal to 3 and 1,
respectively. At each time instance, one of the two generators is chosen to emit an observation (real
number) based on the outcome of a coin toss; if the outcome is heads, G1 is used to generate (emit) the
real number; if the outcome is tails, G2 is used to generate the observation. The coin is slightly biased
toward heads (P(H) = 0.55).

Because we are now dealing with real numbers, the use of an observation probability matrix no
longer makes sense. However, for the sake of uniformity in implementation, we will retain the notation
of the B matrix but assign a different meaning to it. Specifically, if k is the number of states, the size
of B is 2 × k, and each column contains the mean value and the standard deviation of the Gaussian
that describes the pdf of the respective state observations. In other words, assuming that we know the
functional form of the underlying pdfs, we use the corresponding parameters that define them. This will
also be the case if non-Gaussian pdfs are chosen. Often in practice, mixture models are employed that
are more representative of a number of real-life problems [Theo 09, Section 9.6], so more complicated
modeling of more parameters (than the mean and standard deviation) is needed.

Let the following observation sequence be a realization of the previously stated experimental setup:

1.1 1.0 1.15 0.97 0.98 1.2 1.11 3.01 2.99 2.97 3.1 3.12 2.96

Compute the Viterbi score and the respective best-state path of this observation sequence for each of
the following HMMs:

A1 =
[

0.55 0.45
0.55 0.45

]
, B1 =

[
1 3
1 1

]
, π1 = [1, 0]T

A2 = A1, B2 =
[−1 1

3 2

]
, π2 = π1

Solution. It can be observed that the difference between the two HMMs lies in the mean values and
standard deviations associated with the probability densities per state. To proceed, we first create the
two HMMs typing

pi1=[1 0]'; pi2=pi1;
A1=[0.55 0.45; 0.55 0.45]; A2=A1;
B1=[1 1; 3 1]';
B2=[-1 1; 3 2]';
O = [1.1 1.0 1.15 0.97 0.98 1.2 1.11 3.01 2.99 2.97 ...

3.1 3.12 2.96];

We then compute the recognition scores, say Pr1 and Pr2, by typing

[Pr1,bp1] = VitCoHMMsc(pi1,A1,B1,O);
[Pr2,bp2] = VitCoHMMsc(pi2,A2,B2,O);
bs1=real(bp1);
bs2=real(bp2);
Pr1, Pr2
bs1, bs2

6.3 Recognition and Training 157

The screen output is

Pr1 = -8.8513
Pr2 = -15.1390

bs1 = 1 1 1 1 1 1 1 2 2 2 2 2 2
bs2 = 1 2 2 2 2 2 2 2 2 2 2 2 2

Note that we have used the scaled version of the Viterbi algorithm. The value of Pr1 is significantly
higher because the observation pdfs of the first HMM more accurately model the experiment under
study. This also becomes evident from the respective best-state sequences (variables bs1 and bs2).
Justify the resulting sequence of states by comparing it with the observation sequence and using physical
reasoning.

Exercise 6.3.3
Determine whether it is possible to treat the problem in the previous example in the discrete observation
domain?

Hint
The answer is positive if we quantize the real numbers to the symbols of a finite discrete alphabet. There are
many ways to accomplish this, including clustering algorithms. For simplicity, here we suggest using a simple
thresholding technique. Any value less than Th = 2 will be converted to 1 and, similarly, values greater that
Th will be quantized to 2. Type

Th=2;
for i=1:length(O)

if O(i)<Th
Oq(i)=1;

else
Oq(i)=2;

end
end

Proceed as in Example 6.3.2.

Exercise 6.3.4
Load the contents of file CoTrainData.mat to create a cell array with 1100 cells in MATLAB’s workspace. Each
cell encapsulates a sequence of real numbers, which were recorded at the output of the experiment described
in Example 6.3.6. Use the first 800 cells to train an HMM with the Baum-Welch method. Experiment with the
initial conditions and the number of states. Finally, choose an HMM and compute the recognition probability
for the remaining 300 sequences.

CHAPTER

7Clustering

7.1 INTRODUCTION
In previous chapters we dealt with supervised pattern recognition—that is, with problems where the class
label for each training pattern was known. In this chapter we consider the unsupervised case, where
this information is not available. The aim now is to determine “sensible” groups (clusters) formed
by the available patterns in order to extract useful information concerning similarity or dissimilarity
among them.

7.2 BASIC CONCEPTS AND DEFINITIONS
As has been the case so far, we assume that each training pattern is represented by a set of l features that
form an l-dimensional vector x = [x(1), . . . ,x(l)]T . Thus, each training pattern corresponds to a point
(vector) in an l-dimensional space.

Definition of Clustering: Given a set of data vectors X = {x1, . . . ,xN }, group them such that “more
similar” vectors are in the same cluster and “less similar” vectors are in different clusters. The set, �,
containing these clusters is called a clustering of X. (A more rigorous definition of clustering can be
found in [Theo 09, Section 11.1.3].)

Example 7.2.1. Consider the data vectors shown in Figure 7.1. Two clusterings that are in line with
the definition just given are �1 = {{x1, x2}, {x3, x4},{x5, x6, x7}} and �2 = {{x1, x2, x3, x4},{x5, x6, x7}}.

x1 x2

x3
x4

x5

x6

x7

FIGURE 7.1

Clustering examples for Example 7.2.1.

Copyright © 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-374486-9.00007-5 159

160 CHAPTER 7 Clustering

Both are “sensible,” in the sense that the vectors close to each other are included in the same cluster.
However, there is no extra data information to indicate which should be finally selected. In general, the
best approach when dealing with clustering problems is to consult an expert in the field of application.

Another possibility would be the clustering �3 = {{x1, x7},{x3, x4},{x5, x6, x2}}, but this is not
sensible since grouping x1 and x7, which are far from each other, seems to contradict physical reasoning.
The same holds true for clustering x2 together with x5, x6.

Remarks
• The previous definition of clustering is a loose one. Note, however, that clustering has no rigorous

definition.1 The inability to give a rigorous definition for the clustering problem stems from the fact
that no external information (class labels) is available, and the term “similarity” is itself loose. As a
consequence, subjectivity is an inescapable feature of clustering we have to live with.

• Any pattern may belong exclusively to a single cluster (hard clustering) or it may belong
simultaneously to more than one cluster up to a certain degree (fuzzy clustering).

• The “amount of proximity” is quantified via a proximity measure. This can be a similarity (usually
denoted s) or a dissimilarity (usually denoted d) measure. In addition, depending on the clustering
method used, proximity may be defined (a) between vectors, (b) between a vector and a set of vectors
(cluster), and (c) between sets of vectors (clusters) [Theo 09, Section 11.2].

7.3 CLUSTERING ALGORITHMS
The naive approach to determining the clustering that best fits a data set, X, is to consider all possible
clusterings and select the one that is most sensible according to a criterion or rationale. For example,
one may choose the clustering that optimizes a preselected criterion, which quantifies the requirement
for more “similar” vectors to be in the same cluster and less “similar” vectors to be in different clusters.
However, the number of all possible clusterings is huge, even for a moderate number of patterns, N .
A way out of this situation is the development of clustering algorithms, which consider only a small
fraction of the possible clusterings. The clusterings to be considered depend on the specific algorithmic
procedure.

Several clustering algorithms have been developed. Some of them return a single clustering; others
return a hierarchy of clusterings. The following rough classification contains most of the well-known
clustering algorithms.

Algorithms that return a single clustering include

• Sequential algorithms, which are conceptually simple, performing a single pass or very few passes
on the data set [Theo 09, Chapter 12].

• Cost function optimization algorithms, which adopt a cost function J that quantifies the term
“sensible,” and return a clustering that optimizes J. This category contains hard clustering
algorithms, such as the celebrated k-means, fuzzy clustering algorithms, such as the fuzzy
c-means (FCM), probabilistic clustering algorithms, such as the EM, and possibilistic algorithms
[Theo 09, Chapter 14].

1Other definitions can be found in [Theo 09, Section 11.2].

7.4 Sequential Algorithms 161

• Miscellaneous algorithms, which do not fit the previous categories, for example, competitive
learning algorithms, valley-seeking algorithms, density-based algorithms, and subspace-clustering
algorithms [Theo 09, Chapter 15].

Algorithms that return a hierarchy of clusterings include

• Agglomerative algorithms, which generate a sequence of clusterings of a decreasing number of
clusters, m. At each step, the pair of “closest” clusters in the current clustering is identified and
merged into one (while the remaining clusters are unaltered) in order to give rise to the next clustering.

• Divisive algorithms, which, in contrast to the agglomerative algorithms, generate a sequence of
clusterings of an increasing number of clusters, m. At each step, an appropriately chosen cluster is
split into two smaller clusters [Theo 09, Chapter 13].

7.4 SEQUENTIAL ALGORITHMS
In this section, we consider the Basic Sequential Algorithmic Scheme (BSAS) as well as some of its
refinements.

7.4.1 BSAS Algorithm
The BSAS algorithm performs a single pass on a given data set. In addition, each cluster is represented
by the mean of the vectors that have been assigned to it.2 BSAS works as follows. For each new vector x,
presented to the algorithm, its distance from the already formed clusters is computed. If these distances
are larger than a (user-defined) threshold of dissimilarity, �, and if the maximum allowable number of
clusters, q, have not been reached, a new cluster containing x is created. Otherwise, x is assigned to its
closest cluster and the corresponding representative is updated. The algorithm terminates when all data
vectors have been considered once.

To apply BSAS on a data set X, type

[bel,repre] = BSAS(X, theta,q,order)

where

X is an l×N matrix containing the data vectors in its columns,

theta is the dissimilarity threshold,

q is the maximum allowable number of clusters,

order is an N -dimensional vector containing a permutation of the integers 1,2, . . . ,N , where its ith
element specifies the order of presentation of the ith vector to the algorithm,

bel is an N -dimensional vector whose ith element indicates the cluster where the ith data vector is
assigned,

repre is a matrix that contains the l-dimensional (mean) representative of the clusters in its columns.

2Other choices are possible. For example, each cluster might be represented by the first vector that has been assigned to
it. Such a solution is less computationally demanding, but often leads to low-quality results because a randomly chosen
vector of a cluster is not likely to be a good representative of it.

162 CHAPTER 7 Clustering

Remarks
• In its original form, BSAS is suitable for unraveling compact clusters (i.e., clusters whose points are

aggregated around a specific point in the data space).
• The algorithm is sensitive to the order of data presentation and the choice of the parameter �. If the

data are presented in a different order and/or the parameter � is given a different value, a different
clustering may result.

• BSAS is fast, because it requires a single pass on the data set, X; thus, it is a good candidate for
processing large data sets. However, in several cases the resulting clustering may be of low quality.
Improvements can be achieved in a refinement step, as discussed in the following subsection.

• Sometimes, the clustering returned by BSAS is used as a starting point for other more sophisticated
clustering algorithms, to generate clusterings of improved quality.

• BSAS results in a rough estimate of the number of clusters underlying the data set at hand.

To more accurately estimate the number of clusters in X, BSAS may be run for different values of �

in a range [�min,�max]. For each value, r runs are performed using different orders of data presentation;
then the number of clusters m� most frequently met is identified and a plot of m� versus � is performed.
“Flat” areas in the plot is an indication of the existence of clusters; the flattest area is likely to correspond
to the number of clusters underlying X (sometimes it is useful to also consider the second flattest area,
provided that it is “significantly” large).

7.4.2 Clustering Refinement
Reassignment Procedure
This procedure is applied on a clustering that has already been obtained. It performs a single pass over
the data set. The closest cluster for each vector, x, is determined. After all vectors have been considered,
each cluster is redefined using the vectors identified as closest to it. If cluster representatives are used,
they are re-estimated accordingly (a usual representative is the mean of all the vectors in a cluster).

To apply the reassignment procedure, type

[bel,new_repre] = reassign(X,repre, order)

where new_repre contains in its columns the re-estimated values of the mean vectors of the clusters; all
other parameters are defined as for function BSAS.

Merging Procedure
This procedure is also applied on a clustering � of a given data set. Its aim is to merge clusters in � that
exhibit high “similarity” (low “dissimilarity”). Specifically, the cluster pair that, according to a pres-
elected dissimilarity measure between sets (clusters), exhibits the lowest dissimilarity is determined.
If this is greater than a (user-defined) cluster-dissimilarity threshold, M1, the procedure is terminated.
Otherwise, the two clusters are merged and the procedure is repeated on the resulting clustering.

Merging is sensitive to the value of parameter M1, the choice of which mostly depends on the problem
at hand. Loosely speaking, M1 is chosen so that clusters lying “close” to each other and “away” from
most of the rest are merged. This procedure should be used only in cases where the number of clusters
is “large”. In all cases, it is desirable to have the merging of clusters approved by an expert in the field
of application.

7.4 Sequential Algorithms 163

The previously described procedures may be used to “refine” a “primitive” clustering obtained, for
example, by a sequential algorithm (BSAS).

Example 7.4.1. Consider the 2-dimensional data set X consisting of the following vectors: x1 =
[2, 5]T , x2 = [6, 4]T , x3 = [5, 3]T , x4 = [2, 2]T , x5 = [1, 4]T , x6 = [5, 4]T , x7 = [3, 3]T , x8 = [2, 3]T ,
x9 = [2, 4]T , x10 = [8, 2]T , x11 = [9, 2]T , x12 = [10, 2]T , x13 = [11, 2]T , x14 = [10, 3]T , x15 = [9, 1]T

(Figure 7.2). Plot the data set and perform a “visual” clustering on it.

1. Apply the BSAS algorithm on X, presenting its elements in the order x8, x6, x11, x1, x5, x2, x3, x4,
x7, x10, x9, x12, x13, x14, x15 for � = 2.5 and q = 15.

2. Repeat step 1, now with the order of presentation of the data vectors to the algorithm as x7, x3, x1,
x5, x9, x6, x8, x4, x2, x10, x15, x13, x14, x11, x12.

3. Repeat step 1, now with � = 1.4.
4. Repeat step 1, now with the maximum allowable number of clusters, q, equaling 2.

Solution. To generate the data set X (Figure 7.2), type

% Data set generation
X=[2 5; 6 4; 5 3; 2 2; 1 4; 5 4; 3 3; 2 3;...
2 4; 8 2; 9 2; 10 2; 11 2; 10 3; 9 1]';
[l,N]=size(X);
% Plot of the data set
figure (1), plot(X(1,:),X(2,:),'.')
figure(1), axis equal

0 1 32 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

x1

x2

x3

x4

x5 x6

x7x8

x9

x10 x11 x12 x13

x14

x15

FIGURE 7.2

Setup of the data set from Example 7.4.1.

164 CHAPTER 7 Clustering

A “visual” inspection reveals three clusters: C1 = {x8, x1, x5, x4, x7, x9}, C2 = {x6, x2, x3}, and
C3 = {x11, x10, x12, x13, x14, x15}.

Continue with the following steps.

Step 1. To apply the BSAS algorithm on X, type

q=15; % maximum number of clusters
theta=2.5; % dissimilarity threshold
order=[8 6 11 1 5 2 3 4 7 10 9 12 13 14 15];

[bel, repre]=BSAS(X,theta,q,order);

The resulting clustering is the same as that derived by the visual inspection in the previous step.

Step 2. Repeat the code given in step 1 for the new order of data presentation, ending with the following
four clusters: C1 = {x7, x3, x6, x2}, C2 = {x1, x5, x9, x8, x4}, C3 = {x10, x15, x11}, and C4 =
{x13, x14, x12}. This shows the dependence of BSAS on the order of presentation of data vectors.

Step 3. Repeat the code given in step 1 for � = 1.4 to obtain the following six clusters: C1 = {x4, x7, x8},
C2 = {x2, x3, x6}, C3 = {x10, x11, x15}, C4 = {x1, x9}, C5 = {x5}, and C6 = {x12, x13, x14}. Compare
with the results of step 2 to see the influence of � on the clustering results.

Step 4. Repeat step 1 for q = 2 to obtain the following clusters: C1 = {x1, x4, x5, x7, x8, x9}, C2 =
{x2, x3, x6, x10, x11, x12, x13, x14, x15}. The results show the influence of q on the formation of the
clusters. Note that one should be very careful in imposing restrictions on the maximum number of
allowable clusters, since an underestimation may prevent the algorithm from finding the clustering
that best fits the data.

In the next example, we show how the BSAS algorithm may be utilized to estimate the number of
(compact) clusters underlying a data set X.

Example 7.4.2. Generate and plot a data set X1, that consists of N = 400 2-dimensional data vectors.
These vectors form four equally sized groups, each one of which contains vectors that stem from
Gaussian distributions with means m1 = [0, 0]T , m2 = [4, 0], m3 = [0, 4], m4 = [5, 4]T , respectively,
and respective covariance matrices

S1 = I , S2 =
[

1 0.2
0.2 1.5

]
, S3 =

[
1 0.4

0.4 1.1

]
, S4 =

[
0.3 0.2
0.2 0.5

]

Then do the following:

1. Determine the number of clusters formed in X1 by doing the following:
a. Determine the maximum, dmax, and the minimum, dmin, (Euclidean) distances between any two

points in the data set.3

b. Determine the values of � for which the BSAS will run. These may be defined as
�min, �min + s,�min + 2s, . . . ,�max, where �min = 0.25 dmin+dmax

2 and �min = 1.75 dmin+dmax
2 and

3Where N is large, approximations of these distances may be used.

7.4 Sequential Algorithms 165

s = �min+�max
n�−1 , where n� is the number of different (successive) values of � that will be

considered. Use n� = 50.
c. For each of the previously defined values of �, run the BSAS algorithm ntimes = 10, so that the

data vectors are presented with different ordering to BSAS in each run. From the ntimes estimates
of the number of clusters, select the most frequently met value, m�, as the most accurate. Let
mtot be the n�-dimensional vector, which contains the m� values.

d. Plot m� versus �. Determine the widest flat region, r, of �’s (excluding the one that corresponds
to the single-cluster case) and let nr be the number of �’s in {�min,�min + s, . . . ,�max} that also
lie in r. If nr is “significant” (e.g., greater than 10% of n�), the corresponding number of clusters
is selected as the best estimate, mbest , and the mean of the values of � in r is chosen as the
corresponding best value for � (�best). Otherwise, single-cluster clustering is adopted.

2. Run the BSAS algorithm for � = �best and plot the data set using different colors and symbols for
points from different clusters.

3. Apply the reassignment procedure on the clustering results obtained in the previous step and plot
the new clustering.

Solution. To generate the required data set, type

randn('seed',0)
m=[0 0; 4 0; 0 4; 5 4];
S(:,:,1)=eye(2);
S(:,:,2)=[1.0 .2; .2 1.5];
S(:,:,3)=[1.0 .4; .4 1.1];
S(:,:,4)=[.3 .2; .2 .5];

n_points=100*ones(1,4); %Number of points per group

X1=[];
for i=1:4

X1=[X1; mvnrnd(m(i,:),S(:,:,i),n_points(i))];
end
X1=X1';

Plot the data set by typing

figure(1), plot(X1(1,:),X1(2,:),'.b')
figure(1), axis equal

As can be observed, X1 consists of four (not very clearly separated) clusters.

Step 1. To estimate the number of clusters, proceed as follows:

a. Determine the minimum and the maximum distances between points of X1 by typing

[l,N]=size(X1);
% Determination of the distance matrix

166 CHAPTER 7 Clustering

dista=zeros(N,N);
for i=1:N

for j=i+1:N
dista(i,j)=sqrt(sum((X1(:,i)-X1(:,j)).ˆ2));
dista(j,i)=dista(i,j);

end
end

true_maxi=max(max(dista));
true_mini=min(dista(˜ logical(eye(N))));

b. Determine �min, �max, and s by typing

meani=(true_mini+true_maxi)/2;
theta_min=.25*meani;
theta_max=1.75*meani;
n_theta=50;
s=(theta_max-theta_min)/(n_theta-1);

c. Run BSAS ntimes for all values of �, each time with a different ordering of the data, by typing

q=N;
n_times=10;
m_tot=[];
for theta=theta_min:s:theta_max

list_m=zeros(1,q);
for stat=1:n_times %for each value of Theta BSAS runs n_times times

order=randperm(N);
[bel, m]=BSAS(X1,theta,q,order);
list_m(size(m,2))=list_m(size(m,2))+1;

end
[q1,m_size]=max(list_m);
m_tot=[m_tot m_size];

end

d. Plot m� versus � (see Figure 7.3(a)) by typing

theta_tot=theta_min:s:theta_max;
figure(2), plot(theta_tot,m_tot)

Determine the final estimate of the number of clusters and the corresponding �, as previously
described, by typing:

% Determining the number of clusters
m_best=0;
theta_best=0;
siz=0;

7.4 Sequential Algorithms 167

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

(a)

24 22 0 2 4 6 8
23

21

1

3

5

7

(b)

24 22 0 2 4 6 8
23

21

1

3

5

7

(c)

Cluster
representatives

FIGURE 7.3

(a) Plot of m� versus � for Example 7.4.2. (b) Clustering output of BSAS, using the value of � determined in
step 2(d) of Example 7.4.2. (c) Result obtained after reassignment. Different clusters are indicated by different
symbols.

for i=1:length(m_tot)
if(m_tot(i)˜ =1) %Excluding the single-cluster clustering

t=m_tot-m_tot(i);
siz_temp=sum(t==0);
if(siz<siz_temp)

siz=siz_temp;
theta_best=sum(theta_tot.*(t==0))/sum(t==0);
m_best=m_tot(i);

end
end

end
%Check for the single-cluster clustering

168 CHAPTER 7 Clustering

if(sum(m_tot==m_best)<.1*n_theta)
m_best=1;
theta_best=sum(theta_tot.*(m_tot==1))/sum(m_tot==1);

end

Step 2. Run the BSAS algorithm for � = �best :

order=randperm(N);

[bel, repre]=BSAS(X1,theta_best,q,order);

Plot the results (see Figure 7.3(b)), typing

figure(11), hold on

figure(11), plot(X1(1,bel==1),X1(2,bel==1),'r.',...

X1(1,bel==2),X1(2,bel==2),'g*',X1(1,bel==3),X1(2,bel==3),'bo',...

X1(1,bel==4),X1(2,bel==4),'cx',X1(1,bel==5),X1(2,bel==5),'md',...

X1(1,bel==6),X1(2,bel==6),'yp',X1(1,bel==7),X1(2,bel==7),'ks')

figure(11), plot(repre(1,:),repre(2,:),'k+')

Step 3. To run the reassignment procedure, type

[bel,new_repre]=reassign(X1,repre,order);

Plot the results working as in the previous step (see Figure 7.3(c)). Compare the results obtained by
the current and previous steps, observing the influence of reassignment on the results.

Exercise 7.4.1
Generate and plot a data set, X2, that consists of 300 2-dimensional points stemming from the normal distri-
bution with mean m1 = [0, 0]T and covariance matrix equal to the 2×2 identity matrix. Repeat step 1 of
Example 7.4.2 and draw conclusions.

Observe that X2 contains no clusters.

7.5 COST FUNCTION OPTIMIZATION CLUSTERING ALGORITHMS
In this section, each cluster, Cj, in a clustering is parameterized by a vector of parameters θj . The aim
is to identify the values of these parameter vectors, which characterize the clustering structure of X in
an optimal sense. This is carried out via the optimization of appropriately defined functions.

7.5.1 Hard Clustering Algorithms
In the algorithms of this category, it is assumed that each data vector belongs exclusively to a single
cluster.

7.5 Cost Function Optimization Clustering Algorithms 169

k-Means, or Isodata, Algorithm
This is the most widely known clustering algorithm, and its rationale is very simple. In this case, the
parameter vectors θj (also called cluster representatives or simply representatives) correspond to points
in the l-dimensional space, where the vectors of data set X live. k-means assumes that the number of
clusters underlying X, m, is known. Its aim is to move the points θj , j = 1, . . . ,m, into regions that are
dense in points of X (clusters).

The k-means algorithm is of iterative nature. It starts with some initial estimates θ1(0), . . . ,θm(0),
for the parameter vectors θ1, . . . ,θm . At each iteration t,

• the vectors xi that lie close to each θj(t − 1) are identified and then
• the new (updated) value of θj , θj(t), is computed as the mean of the data vectors that lie closer to

θj(t − 1).

The algorithm terminates when no changes occur in θj’s between two successive iterations. To run
the k-means algorithm, type

[theta,bel,J] = k_means(X, theta_ini)

where

X is an l×N matrix whose columns contain the data vectors,

theta_ini is an l×m matrix whose columns are the initial estimates of θj (the number of clusters, m,
is implicitly defined by the size of theta_ini),

theta is a matrix of the same size as theta_ini, containing the final estimates for the θj’s,

bel is an N -dimensional vector whose ith element contains the cluster label for the ith data vector,

J is the value of the cost function given in Eq. (7.1) (see below) for the resulting clustering.

Remarks
• k-means is suitable for unraveling compact clusters.
• The k-means algorithm is a fast iterative algorithm because (a) in practice it requires only a few

iterations to converge and (b) the computations required at each iteration are not complicated. Thus,
it poses as a candidate for processing large data sets.

• It can be shown that the k-means algorithm minimizes the cost function

J(θ ,U) =
N∑

i=1

m∑
j=1

uij||xi − θj ||2 (7.1)

where θ = [θT
1 , . . . ,θT

m]T , ||.|| stands for the Euclidean distance, and uij = 1 if xi lies closest to θj; 0
otherwise. In words, k-means minimizes the sum of the squared Euclidean distances of each data
vector from its closest parameter vector. When the data vectors of X form m compact clusters
(with no significant difference in size), it is expected that J is minimized when each θj is placed
(approximately) in the center of each cluster, provided that m is known. This is not necessarily the
case when (a) the data vectors do not form compact clusters, or (b) their sizes differ significantly, or
(c) the number of clusters, m, has not been estimated correctly.

170 CHAPTER 7 Clustering

• k-means cannot guarantee convergence to the global minimum of J(θ ,U) (which, hopefully, corre-
sponds to the best possible clustering). In other words, it returns clusterings corresponding to local
minima of J(θ ,U). Consequently, different initializations of the algorithm may lead to different
final clusterings. Care must be taken in the initialization of θj (see the practical hints that follow).
If the initial values for, say, m1, of θj lie away from the region where the data vectors lie, they
may never be updated. As a consequence, k-means algorithm will proceed as if there were only
m − m1 θj’s.

• Accurate estimation of the number of clusters (representatives) is crucial for the algorithm, since a
poor estimate will prevent it from unraveling the clustering structure of X. More specifically, if a
larger number of representatives is used, it is likely that at least one “physical” cluster will be split
into two or more. On the other hand, if a smaller number of representatives is used, two or more
physical clusters are likely to be represented by a single representative, which in general will lie in
a sparse region (with respect to the number of data points) between those clusters.

• The algorithm is sensitive to the presence of outliers (that is, points that lie away from almost all
data vectors in X) and “noisy” data vectors. Such points are the result of a noisy process unrelated
to the clustering structure of X. Since both outliers and noisy points are necessarily assigned to a
cluster, they influence the respective mean representatives.

• k-means is suitable for real-valued data and, in principle, should not be used with discrete-valued
data.

Practical Hints
• Assuming that m is fixed, and to increase our chances of obtaining a reliable clustering, we may run

k-means several times, each time using different initial values for the representatives, and select the
best possible clustering (according to J). Three simple methods for choosing initial values for θj’s
are (a) random initialization, (b) random selection of m data vectors from X as the initial estimates
of θj’s, and (c) utilization of the clustering output of a simpler (e.g., sequential) algorithm as input.

• Two simple ways to estimate m are:
– Use the methodology described for the BSAS algorithm.
– For each value of m, in a suitably chosen range [mmin,mmax], run the k-means algorithm nrun

times (each time using different initial values) and determine the clustering (among the nrun

produced) that minimizes the cost function J. Let Jm be the value of J for the latter clus-
tering. Plot Jm versus m and search for a significant local change (it appears as a significant
“knee”). If such a knee occurs, its position indicates the desired number of clusters. Otherwise,
it is an indication that there is no clustering structure (that contains compact clusters) in the
data set.

• Two simple ways to deal with outliers are (a) to determine the points that lie at “large” distances
from most of the data vectors in X and discard them, or (b) to run k-means and identify the clusters
with very few elements. An alternative is to use algorithms that are less sensitive to outliers (this is
the case with the PAM algorithm, discussed later).

Example 7.5.1. Generate and plot a data set, X3, that consists of N = 400 2-dimensional points. These
points form four equally sized groups. Each group contains vectors that stem from Gaussian distributions

7.5 Cost Function Optimization Clustering Algorithms 171

with means m1 = [0, 0]T , m2 = [10, 0], m3 = [0, 9], and m4 = [9, 8]T , respectively, and respective
covariance matrices

S1 = I , S2 =
[

1 0.2
0.2 1.5

]
, S3 =

[
1 0.4

0.4 1.1

]
, S4 =

[
0.3 0.2
0.2 0.5

]

where I denotes the 2×2 identity matrix. Then do the following:

1. Apply the k-means algorithm on X3 for m = 4. Using the rand built-in MATLAB function, initialize
the parameter vectors θj’s. Compare the final estimates of θj’s with the mean values of the Gaussians,
mj’s. Plot the parameter vectors θj’s and the points of X3. Use different colors for vectors of different
clusters.

2. Repeat step 1 for m = 3.
3. Repeat step 1 for m = 5.
4. Repeat step 1, now with the θj initialized as follows:θ1(0) = [−2.0, −2.0]T , θ2(0) = [−2.1, −2.1]T ,

θ3(0) = [−2.0, −2.2]T , θ4(0) = [−2.1, −2.2]T .
5. Repeat step 1, now with θ1, θ2, and θ3 initialized randomly as before and θ4(0) set equal to [20, 20]T .
6. Comment on the results.

Solution. To generate and plot X3, work as in Example 7.4.2, but with different Gaussian means. The
plot shows that X3 contains four clearly separated compact clusters.

Proceed as follows:

Step 1. To apply the k-means algorithm for m = 4 and random initialization of θj’s, type

m=4;

[l,N]=size(X3);

rand('seed',0)

theta_ini=rand(l,m);

[theta,bel,J]=k_means(X3,theta_ini);

To plot X3, using different colors for points from different clusters, and θj’s (Figure 7.4(a)), type

figure(1), hold on

figure(1), plot(X3(1,bel==1),X3(2,bel==1),'r.',...

X3(1,bel==2),X3(2,bel==2),'g*',X3(1,bel==3),X3(2,bel==3),'bo',...

X3(1,bel==4),X3(2,bel==4),'cx',X3(1,bel==5),X3(2,bel==5),'md',...

X3(1,bel==6),X3(2,bel==6),'yp',X3(1,bel==7),X3(2,bel==7),'ks')

figure(1), plot(theta(1,:),theta(2,:),'k+')

figure(1), axis equal

Step 2. Work as in step 1 for m = 3 (Figure 7.4(b)).

Step 3. Work as in step 1 for m = 5 (Figure 7.4(c)).

172 CHAPTER 7 Clustering

24 22 0 2 4 6 8 10 12 14
24

22

0

2

4

6

8

10

12

(a)

24 22 0 2 4 6 8 10 12 14
24

22

0

2

4

6

8

10

12

(c)
24 22 0 2 4 6 8 10 12 14

24

22

0

2

4

6

8

10

12

(d)

25 0 5 10 15 20
25

0

5

10

15

20

(e)

24 22 0 2 4 6 8 10 12 14
24

22

0

2

4

6

8

10

12

(b)

Cluster
representatives

FIGURE 7.4

Clustering results obtained by the k-means algorithm in Example 7.5.1. Points from different clusters are
indicated by different symbols and/or shading.

7.5 Cost Function Optimization Clustering Algorithms 173

Step 4. Work as in step 1; for the initialization of θj’s (see Figure 7.4(d)), type

theta_ini=[-2 -2; -2.1 -2.1; -2 -2.2; -2.1 -2.2]';

Step 5. Work as in step 1; for the initialization of θj’s (see Figure 7.4(e)), type

theta_ini=rand(l,m);

theta_ini(:,m)=[20 20]';

Step 6. From the results obtained in step 1, observe that k-means has correctly identified the clus-
ters underlying X3. Moreover, the estimated θj’s are in close agreement with the mj’s. In all
other cases, however, k-means fails to identify the clustering structure of X3. Specifically, in
steps 2 and 3 it imposes clustering structures on X3 with three and five clusters, respectively, although
the true number of underlying clusters is four. In step 4, the bad initialization of θj’s leads to a poor-
quality clustering. Finally, in step 5, we have another bad initialization, where now a parameter
vector (θ4) is initialized away from the region where the vectors of X3 lie. Consequently, it is never
updated and the k-means proceeds as if m = 3.

Exercise 7.5.1
Consider the data set X2 generated in Exercise 7.4.1. Apply the k-means algorithm for m = 2,3 and random
initialization of θj ’s, and draw conclusions.

Hint
Observe that, although X2 contains no clusters, the application of k-means imposes a clustering structure on
it, as was the case in Example 7.5.1.

Table 7.1 Values of the Gaussian Means and Values of θj’s for Data Sets
in Examples 7.5.1 and 7.5.2

Means (mj ’s) θj’s (Example 7.5.1) θj’s (Example 7.5.2)

j = 1 0 0.073 0.308

0 0.026 0.282

j = 2 9 8.955 8.778

8 7.949 7.878

j = 3 10 10.035 9.700

0 0.058 0.214

j = 4 0 0.075 0.290

9 8.954 8.875

174 CHAPTER 7 Clustering

Example 7.5.2. Generate and plot a data set X4, which consists of N = 500 2-dimensional points.
The first 400 are generated as in Example 7.5.1; the remaining 100 are generated from the uniform
distribution in the region [−2, 12] × [−2, 12].

1. Apply the k-means algorithm on X4 for m = 4. Initialize θj as in step 1 of Example 7.5.1.
2. Compare the estimates obtained for θj’s with those obtained in step 1 of Example 7.5.1.

Solution. To generate the first 400 points of X4, work as in Example 7.5.1. To generate the remaining
100, type

noise=rand(2,100)*14-2;
X4=[X4 noise];

Plot the data set, typing

figure(1), plot(X4(1,:),X4(2,:),'.b')
figure(1), axis equal

Clearly, the data points of X4 form the four clusters, as it was the case with data set X3 in Example 7.5.1.
However, now they are in the presence of noise.
Step 1. To apply the k-means algorithm for m = 4, work as in step 1 of Example 7.5.1.

Step 2. Table 7.1 on the previous page shows the values of the Gaussian means as well as the estimates
of θj’s obtained here and in step 1 of Example 7.5.1. Clearly, the presence of noise degrades the
quality of the θj ’s estimates obtained.

Example 7.5.3
1. Generate a data set X5 consisting of 515 2-dimensional data points. The first 500 stem from the

normal distribution with mean m1 = [0, 0]T ; the remaining 15 stem from the normal distribution
with mean m2 = [5, 5]T . The covariance matrices of the distributions are S1 = 1.5I and S2 = I ,
respectively, where I is the 2 × 2 identity matrix.

2. Apply the k-means algorithm on X5 for m = 2 and draw conclusions.

Solution. Take the following steps:

Step 1. To generate the data set X5, type

randn('seed',0)
m=[0 0; 5 5];
S(:,:,1)=1.5*eye(2);

S(:,:,2)=eye(2);

n_points=[500 15];

X5=[];

7.5 Cost Function Optimization Clustering Algorithms 175

for i=1:2

X5=[X5; mvnrnd(m(i,:),S(:,:,i),n_points(i))];

end

X5=X5';

Plot the data set, typing

figure(1), plot(X5(1,:),X5(2,:),'.b')

figure(1), axis equal

The data set consists of two well-separated clusters of significantly unequal size.

Step 2. To apply the k-means algorithm and plot the results, work as in step 1 in Example 7.5.1. From
the results obtained, we can see that the algorithm fails to identify successfully the two clusters.
Specifically, it ends up with two clusters the first one of which is (roughly speaking) one half of the
true “large” cluster underlying X5; the second one contains the remaining points of the true “large”
cluster as well as the points of the true “small” cluster.

Example 7.5.4
1. Generate and plot a data set X6 consisting of variously shaped non-overlapping clusters in the

2-dimensional space. The first cluster consists of 600 points lying around the circle centered at
(0, 0) and having radius equal to 6. The second cluster consists of 200 points lying around the
ellipse centered at (0, 0) and having parameters a = 3 and b = 1. The third cluster consists of 200
points lying around the line segment with endpoints (8, −7) and (8, 7). The fourth cluster consists
of 100 points lying around the semicircle centered at (13, 0) and having radius equal to 3 and y
coordinates that are all negative.

2. Apply the k-means algorithm to data set X6 and plot the clustering results. Draw conclusions.

Solution. Take the following steps:

Step 1. To generate the first cluster of points of the data set X6, type

rand('seed',0)

n_points=[600 200 200 100]; %Points per cluster

noise=.5;

X6=[];

%Construction of the 1st cluster (circle, center (0,0), R=6)

R=6;

mini=-R;

maxi=R;

step=(maxi-mini)/(fix(n_points(1)/2)-1);

for x=mini:step:maxi

176 CHAPTER 7 Clustering

y1=sqrt(Rˆ2-xˆ2)+noise*(rand-.5);

y2=-sqrt(Rˆ2-xˆ2)+noise*(rand-.5);

X6=[X6; x y1; x y2];

end

To generate the second cluster, type

%Construction of the 2nd cluster (ellipse, centered at (0,0), a=3,b=1))

a=3;

b=1;

mini=-a;

maxi=a;

step=(maxi-mini)/(fix(n_points(2)/2)-1);

for x=mini:step:maxi

y1=b*sqrt(1-xˆ2/aˆ2)+noise*(rand-.5);

y2=-b*sqrt(1-xˆ2/aˆ2)+noise*(rand-.5);

X6=[X6; x y1; x y2];

end

To generate the third cluster, type

% Construction of the 3rd cluster (line segment, endpoints (8,-7), (8,7))

mini=-7;

maxi=7;

step=(maxi-mini)/(n_points(3)-1);

x_coord=8;

for y=mini:step:maxi

X6=[X6; x_coord+noise*(rand-.5) y+noise*(rand-.5)];

end

Finally, to generate the fourth cluster, type

%Construction of the 4th cluster (semicircle, center (13,0), R=3;, y<0)

R=3;

x_center=13;

mini=x_center-R;

maxi=x_center+R;

step=(maxi-mini)/(n_points(4)-1);

for x=mini:step:maxi

y=-sqrt(Rˆ2-(x-x_center)ˆ2)+noise*(rand-.5);

7.5 Cost Function Optimization Clustering Algorithms 177

24 22 0 2 4 6 8 10 12 14 16

28

26

24

22

0

2

4

6

8

(a)

24 22 0 2 4 6 8 10 12 14 16

28

26

24

22

0

2

4

6

8

(b)

Cluster
representatives

FIGURE 7.5

(a) Data set generated in Example 7.5.4. (b) Clustering result obtained by k-means. Different symbols and/or
shades of gray indicate points from different clusters.

X6=[X6; x y];

end

X6=X6';

Plot the data set (see Figure 7.5(a)), typing

figure(5), plot(X6(1,:),X6(2,:),'.b')

figure(5), axis equal

Step 2. Apply k-means on X6 and plot the results, work as in step 1 of Example 7.5.1 (see Figure 7.5(b)).
It is clear that, in principle, k-means is unable to handle cases where noncompact clusters underlie
the data set. If there is an indication that such a clustering underlies in the data set, other clustering
algorithms should be utilized, as will be discussed later on.

The next example demonstrates how k-means can estimate the number of clusters, m, and, based on
that, estimate the clustering that best fits the data. Of course, it is assumed that only compact clusters
are involved.

Example 7.5.5
1. Consider (and plot) the data set X3 that was generated in Example 7.5.1. For each (integer) value

of m in the range [mmin,mmax], run the k-means algorithm nruns times and from the nruns-produced
clusterings keep the one with the minimum value, Jm , of J. Plot Jm versus m. If the resulting graph
exhibits a significant “knee,” its position indicates the number of clusters that are likely to underlie
X3. Otherwise, we have an indication that X3 likely possesses no clustering structure. Use mmin = 2,
mmax = 10, and nruns = 10.

178 CHAPTER 7 Clustering

2. Repeat step 1 for data sets X4, X1, and X2, which were considered in Examples 7.5.2 and 7.4.2 and
in Exercise 7.5.1, respectively.

3. Draw conclusions.

Solution. Take the following steps:

Step 1. To generate the data set X3, work as in Example 7.5.1. To perform the procedure described
before, type

[l,N]=size(X3);

nruns=10;

m_min=2;

m_max=10;

J_m=[];

for m=m_min:m_max

J_temp_min=inf;

for t=1:nruns

rand('seed',100*t)

theta_ini=rand(l,m);

[theta,bel,J]=k_means(X3,theta_ini);

if(J_temp_min>J)

J_temp_min=J;

end

end

J_m=[J_m J_temp_min];

end

m=m_min:m_max;

figure(1), plot(m,J_m)

Step 2. Repeat step 1 for each of the three cases.

Step 3. The plots of Jm versus m for each case are shown in Figure 7.6. From the figure, it follows that
for data set X3 there exists a sharp knee at m = 4. This is an indication that the number of clusters
underlying X3 is four. A similar sharp knee is obtained at m = 4 for X4, which is a noisy version
of X3. In the plot for X1, where the clusters are not so clearly separated, a less-sharpened knee is
encountered at m = 4. In all these cases, the methodology provides indications of the number of
clusters underlying the data sets. However, in the plot of X2, no significant knee is encountered,
which is indicative of the fact that no clustering structure exists.

Partitioning Around Medoids Algorithm
The partitioning around medoids (PAM) algorithm resembles the k-means algorithm. The main differ-
ence is that the cluster representatives are restricted to be points of the data set X. For example, such a

7.5 Cost Function Optimization Clustering Algorithms 179

0

1000

2000

3000

4000

5000

6000

7000

8000

J m

2 3 4 5 6 7 8 9 10

m

(a)

0

500

1000

1500

2000

2500

J m

2 3 4 5 6 7 8 9 10

m

(c)

1000

3000

5000

7000

9000

11000

J m

2 3 4 5 6 7 8 9 10

m

(b)

50

100

150

200

250

300

350

400

450

J m

2 3 4 5 6 7 8 9 10

m

(d)

FIGURE 7.6

Plot of Jm versus m for the data sets in Example 7.5.5: (a) X3 (sharp knee), (b) X4 (sharp knee), (c) X1 (less
sharp knee), and (d) X2 (no significant knee).

constraint may be imposed when the vectors of X have elements that take values from a discrete set, that
is, from any subset of the set of integers [Theo 09, Section 11.2.2]. Once more, the number of (compact)
clusters underlying the data set is assumed to be known. The set � of the vectors in X that best describe
the clustering structure (also known as medoids) are determined via the minimization of a cost function
J(�). This is defined as the summation, over all data vectors, of the distance between each data vector
and its closest medoid.

The algorithm is iterative. It starts by assigning m randomly chosen vectors of X in � and then
computing the corresponding value of J, J(�). At each iteration, all sets �ij = (�−{xi})∪ {xj}, xi ∈ �,
and xj ∈ X −� are considered. In words, �ij results if xi is removed from � and xj is inserted. For
each �ij, the corresponding value of the cost function J, J(�ij), is computed, and the one (say �qr)
whose J(�qr) is minimum is selected. If J(�qr) < J(�), then �qr replaces � and the procedure is
repeated. Otherwise, the algorithm terminates. The ith cluster, Ci, formed by the algorithm is identified
by those vectors that lie closer to the ith medoid (of the finally produced �) compared to the other
medoids.

180 CHAPTER 7 Clustering

To apply the PAM algorithm on a data set, X, type

[bel,cost,w,a,cost] = k_medoids(X,m,sed)

where

X is an l×N matrix whose columns contain the data vectors,

m is the number of clusters,

sed is a scalar integer used as the seed for the built-in MATLAB function rand,

bel is an N -dimensional vector whose ith element contains the label of the cluster where the ith data
vector is assigned after the convergence of the algorithm,

cost is the value of J(�) that corresponds to the (final) clustering generated by the algorithm,

w is an l×m matrix with columns that are the cluster representatives (medoids) obtained after the
convergence of the algorithm,

a is an m-dimensional vector containing the indices of the data vectors used as medoids.

Remarks
• Like k-means, PAM imposes a clustering structure on the data set X, even though the data vectors

in X do not exhibit a clustering structure.
• The algorithm is well suited to real-valued as well as discrete-valued data.
• PAM is less sensitive to the presence of noise compared to k-means.
• PAM is appropriate for small data sets. However, it is not efficient for large data sets since the

computational cost per iteration is significant [Theo 09, Section 14.5.2]. To deal with this problem,
other algorithms with the same philosophy, such as CLARA and CLARANS, that are less computa-
tionally intensive, have been developed. However, they cannot guarantee the convergence to a local
minimum of the cost function J(�) [Theo 09, Section 14.5.2].

Example 7.5.6
1. Generate and plot the data set X7, which consists of N = 216 2-dimensional vectors. The first 100

stem from the Gaussian distribution with mean m1 = [0, 0]T ; the next 100 stem from the Gaussian
distribution with mean m2 = [13, 13]T . The other two groups of eight points stem from the Gaussian
distributions with means m3 = [0, −40]T and m4 = [−30, −30]T , respectively. The covariance
matrices for all the Gaussians are equal to the 2×2 identity matrix. Obviously, the last two groups
of points may be considered outliers.

2. Apply the k-means and the PAM algorithms on X7, for m = 2. Plot the clustering in each case and
comment on the results.

Solution. Take the following steps:

Step 1. To generate and plot X7, type

randn('seed',0)
m=[0 0; 13 13; 0 -40; -30 -30]'; %means
[l,n_cl]=size(m);

7.5 Cost Function Optimization Clustering Algorithms 181

S=eye(2); %covariance matrix

n_points=[100 100 8 8]; %points per distribution

X7=[];

for i=1:n_cl

X7=[X7; mvnrnd(m(:,i)',S,n_points(i))];

end

X7=X7';

figure(1), plot(X7(1,:),X7(2,:),'.b')

Step 2. To apply the k-means algorithm on X7, type

m=2;

[l,N]=size(X7);

rand('seed',0)

theta_ini=rand(l,m);

[l,m]=size(theta_ini);

[theta,bel,J]=k_means(X7,theta_ini);

Plot the data vectors, using different colors for points that stem from different clusters, working as
in step 1 of Example 7.5.1 (see Figure 7.7(a)).

To apply the PAM algorithm on X7, type

[l,N]=size(X7);

m=2; %Number of clusters

sed=0; %Seed for the rand function

[bel,cost,w,a]=k_medoids(X7,m,sed)

240 230 220 210 0 10 20
250

240

230

220

210

0

10

20

(a)

240 230 220 210 0 10 20
250

240

230

220

210

0

10

20

(b)

Cluster representatives Medoids

FIGURE 7.7

Clusterings generated by (a) k-means and (b) PAM when applied on the data set X7, considered in
Example 7.5.6.

182 CHAPTER 7 Clustering

Plot the clustering results, working as in step 1 of Example 7.5.1 (see Figure 7.7(b)).
The representative of the first cluster (C1) computed by k-means is θ1 = [−1.974, −4.789]T ; the
corresponding medoid computed by PAM is [−1.3414, −2.6695]T . The second estimate is much
closer than the first one to [0, 0]T (the actual mean of the main volume of the data vectors in cluster
C1). This is seen in Figure 7.7(b), which shows that the medoid that corresponds to the first cluster,
C1, remains close to C1’s main volume of data. This is because the medoids are restricted to belong
to X7. In other words, the medoid of C1 is not allowed to move in the “empty region” between
the first 100 points and the two groups of outliers. This restriction does not hold for k-means (see
Figure 7.7(a)). As a consequence, in this case, the representative of C1 is influenced by the outliers
and thus is not a good representative of the main volume of the data vectors of C1.

Exercise 7.5.2
Repeat Example 7.5.1 for the PAM algorithm.

Exercise 7.5.3
Repeat Example 7.5.5 for the PAM algorithm.

Generalized Mixture Decomposition Algorithmic Scheme
This algorithm (GMDAS) relies on a probabilistic framework. Once more, the number of (compact)
clusters, m, is assumed to be known. Specifically, the probability density function (pdf) p(x) that
describes the data set X is modeled by a weighted mixture of m Gaussian distributions, p(x| j), j =
1, . . . ,m, each associated with a cluster:

p(x) =
m∑

j=1

Pjp(x| j)

where p(x| j) models the jth cluster. Each p(x| j) is specified by its mean mj and its covariance
matrix Sj .

The aim of GMDAS is to adjust the parameters mj and Sj of each p(x| j), as well as the mixing
parameters Pj (known also as a priori probabilities). To achieve this, it works iteratively. Some initial
estimates of mj(0), Sj(0), Pj(0) are adopted for mj , Sj, Pj , respectively, j = 1, . . . ,m. Then, at each
iteration, the algorithm updates, in order

• the a posteriori probabilities, P(j|xi) that xi stems from the distribution that models the cluster Cj,
j = 1, . . . ,m, i = 1, . . . ,N ,

• the means mj ,
• the covariance matrices Sj,
• the a priori probabilities Pj ,

GMDAS terminates when no significant change in the values of the parameters mj , Sj , and Pj , j =
1, . . . ,m, is encountered between two successive iterations [Theo 09, Section 14.2].

Note that the GMDAS does not specify explicitly a clustering on X. Instead, it gives (in addition
to the estimates of the parameters of the Gaussian distributions) the a posteriori probabilities P(j|xi),
j = 1, . . . ,m, i = 1, . . . ,N . However, if a specific clustering is required, we can define Cq as the cluster
containing all xi’s for which P(q|xi) is maximum among all P(j|xi)’s, j = 1, . . . ,m.

7.5 Cost Function Optimization Clustering Algorithms 183

To apply the GMDAS on a data set X, type

[ap,cp,mv,mc, iter,diffvec] = GMDAS(X,mv_ini,mc_ini,e,maxiter,sed)

where

X is an l×N matrix that contains the data vectors in its columns,

mv_ini is an l×m matrix whose columns contain the initial estimates of the means of the distributions,

mc_ini is an l×l×m matrix whose l×l 2-dimensional “slices” are the initial estimates of the
covariance matrices of the distributions,

e is the threshold involved in the terminating condition of the algorithm,4

maxiter is the maximum number of iterations the algorithm is allowed to run,

sed is the seed used for the initialization of the built-in MATLAB function rand,

ap is an m-dimensional vector that contains the final estimates of the a priori probabilities,

cp is an N×m matrix with a (i, j) element that is the probability that the ith vector stems from the
distribution that models the jth cluster,

mv and mc contain the final estimates of the means and the covariance matrices, respectively, and
share a structure with mv_ini and mc_ini, respectively,

iter is the number of iterations performed by the algorithm,

diffvec is a vector with a tth coordinate that contains the sum of the absolute differences of the
elements of the mv’s, mc’s, and the a priori probabilitiesbetween the tth and the (t − 1)th iteration.

Remarks
• Like the k-means and PAM algorithms, GMDAS imposes a clustering structure on X, even if such

a structure is not justified.
• The algorithmminimizes a suitably defined function and guarantees convergence to a local minimum

of it.
• The algorithm is sensitive to outliers, because of the requirement that

∑m
j=1 P(j |xi) = 1 for all xi’s.

• GMDAS is computationally demanding since, at each iteration, it requires the inversion of m covari-
ance matrices. Two ways to deal with this problem are (a) to assume that the covariance matrices of
all distributions are all equal and/or (b) to assume that each covariance matrix is diagonal.

Exercise 7.5.4
Repeat Example 7.5.1 using the GMDAS algorithm.

Hint
To obtain a (hard) clustering based on the returned a posteriori probabilities in the N×m matrix, cp,
type

[qw,bel]=max(cp');

where bel contains the cluster labels of the data vectors.

4The algorithm terminates when the sum of the absolute differences of the mv’s, mc’s, and the a priori probabilities
between two successive iterations is smaller than e.

184 CHAPTER 7 Clustering

Exercise 7.5.5
Repeat Example 7.5.5 using the GMDAS algorithm.

Hint
See the hint in the previous exercise to obtain a hard clustering from the a posteriori probabilities.

7.5.2 Nonhard Clustering Algorithms
In contrast to the previously examined algorithms, the algorithms in this category assume that each data
vector may belong to (or may be compatible with) more than one cluster up to a certain number.

Fuzzy c-Means Algorithm
In the fuzzy c-means (FCM) algorithm each (compact) cluster is represented by a parameter vector θj ,
j = 1, . . . ,m. Also, it is assumed that a vector xi of the data set X does not necessarily belong exclusively
to a single cluster Cj . Rather, it may belong simultaneously to more than one cluster up to some degree.
The variable uij quantifies the “grade of membership” of xi in cluster Cj , and it is required that uij ∈ [0, 1]
and

∑m
j=1 uij = 1 for all xi . Once more, the number of clusters, m, is assumed to be known.

The aim of FCM is to move each of the m available l-dimensional parameter vector (representative)
θj , j = 1, . . . ,m, toward regions in the data space that are dense in data points. Finally, the algorithm
involves an additional parameter q (>1) called the fuzzifier.

FCM is one of the most popular algorithms. It is iterative, starting with some initial estimates,
θ1(0), . . . ,θm(0), for θ1, . . . ,θm, respectively, and at each iteration t:

• The grade of membership, uij(t − 1), of the data vector xi in cluster Cj , i = 1, . . . ,N , j = 1, . . . ,m, is
computed, taking into account the (squared Euclidean) distances of xi from all θj’s, j = 1, . . . ,m.

• The representatives θj’s are updated as the weighted means of all data vectors (each data vector xi is
weighted by uq

ij(t − 1)).

The algorithm terminates when the difference in the values of θj’s between two successive iterations
is small enough. It returns the values of the parameter vectors (representatives) θj’s and the uij’s,
i = 1, . . . ,N , j = 1, . . . ,m. If a hard clustering is required, we can define Cj as the cluster containing all
xi for which uij > uik, k �= j.

To apply the FCM algorithm, type

[theta,U,obj_ fun] = fuzzy_c_means(X,m,q)

where

X contains the data vectors in its columns,

m is the number of clusters,

q is the fuzzifier,

theta contains the cluster representatives in its columns,

U is an N×m matrix containing in its ith row the grade of membership of xi in the m clusters,

obj_ fun is a vector whose tth coordinate is the value of the cost function, J, for the clustering
produced at the tth iteration.

7.5 Cost Function Optimization Clustering Algorithms 185

Remarks
• Like all previously presented cost function optimization algorithms, FCM imposes a clustering

structure on X, even if this is not physically justified.
• FCM stems from the minimization of the cost function

J(θ ,U) =
N∑

i=1

m∑
j=1

uq
ij||xi − θj ||2

where θ = [θT
1 , . . . ,θT

m]T , subject to the constraints uij ∈ [0, 1] and
∑m

j=1 uij = 1. That is, J(θ ,U) is
a weighted sum of the distances of all xi’s from all θj’s.

• The involvement of q is critical in fuzzy clustering. Typical values of q are in the range [1.5,3]
[Theo 09, Section 14.3].

• The algorithm is sensitive in the presence of outliers because of the requirement that
∑m

j=1 uij = 1
for all xi .

• Other fuzzy clustering algorithms where hypercurves of the second degree or hyperplanes are
used as representatives have also been proposed. These are mainly useful in image processing
applications [Theo 09, Section 14.3.2].

Exercise 7.5.6
Repeat Example 7.5.1, using FCM with q = 2.

Exercise 7.5.7
Repeat Example 7.5.3, using FCM with q = 2.

Exercise 7.5.8
Repeat Example 7.5.5, using FCM with q = 2.

The next exercise shows the influence of the fuzzifier parameter q in the resulting clustering.

Exercise 7.5.9
Apply the FCM on the data set X3 generated in Example 7.5.1 for q = 2, q = 10, and q = 25. Define and plot
the three corresponding hard clusterings, as discussed previously. Compare the uij parameters and the θj ’s
for the three cases and draw conclusions.

Hint
For low values of q (e.g., q = 2), each data vector turns out to belong almost exclusively to a single
cluster [Theo 09, Section 14.3]. That is, for each xi , only a single uij has a very high value (above 90%)
among ui1, . . . ,uim. However, as q increases, the uij’s for each data vector xi tend to become equal to
1
m = 0.25. Especially in the case where q = 25, this leads to a clustering that does not correspond to the
true underlying clustering structure of X3.

The next example shows the effect of outliers on the performance of the FCM.

Example 7.5.7. Apply the FCM algorithm on the data set X7 generated in Example 7.5.6. Produce a
hard clustering, as previously discussed, and plot the results. Comment on the grade of memberships of

186 CHAPTER 7 Clustering

the data points in the two obtained clusters. Compare the resulting representatives with those obtained
from the application of k-means and PAM on X7.

Solution. To apply the FCM algorithm on X7, type

[theta,U,obj_fun] = fuzzy_c_means(X7,m,q)

To obtain a hard clustering using U, type

[qw,bel]=max(U');

where bel contains the cluster labels of the data vectors.
Plot the clustering results, using different symbols and colors for vectors that belong to different clusters,
as in step 1 of Example 7.5.1 (see Figure 7.8).

Observation of the grade of memberships reveals that

• For the first 100 points, the grade of memberships in cluster C1 is significantly higher (>89.4%)
than that in cluster C2 (<10.6%) (see Figure 7.8).

• For the next 100 points, the grade of memberships in cluster C2 is significantly higher (>97.2%)
than that in cluster C1 (<2.8%).

• For the last 16 points (outliers), the grade of memberships in clusters C1 and C2 are significant
(>66.62% for C1 and >30.10% for C2), so their effect on the computation of both θ1 and θ2 is not
negligible.

Comparing the results shown in Figure 7.8 with those in Figure 7.7, we observe that the estimates of
θ2 (the representative of the upper right cluster) are better for k-means and PAM than for FCM (this is
because the outliers have no effect on the estimation of θ2 in k-means and PAM, which is not the case in
FCM), and that the estimates of θ1 (the representative of the other cluster) are better in PAM and FCM
than in k-means, in the sense that in PAM and FCM θ1 remains close to the main volume of the data set.

240 230 220 210 0 10 20
250

240

230

220

210

0

10

20 C1 cluster points

Cluster representatives
C2 cluster points

FIGURE 7.8

Clustering obtained by FCM on data set X7 in Example 7.5.7. The three lower left groups of points are from
cluster C1 ; the upper right group of points constitute cluster C2.

7.5 Cost Function Optimization Clustering Algorithms 187

This happens because in FCM the outliers contribute to the estimation of θ1 by (at least) 30%, while in
k-means they contribute by 100% (since in the hard clustering case a vector belongs exclusively (100%)
to a single cluster).

Possibilistic c-Means Algorithm
This algorithm (known as PCM) is also appropriate for unraveling compact clusters. The framework
here is similar to the one used in FCM: Each data vector xi is associated with a cluster Cj via a scalar uij.
However, the constraint that all uij’s for a given xi sum up to 1 is removed (it is only required that they
lie in the interval [0, 1]). As a consequence, the uij’s (for a given xi) are not interrelated anymore and
they cannot be interpreted as “grade of membership” of vector xi in cluster Cj, since this term implies
that the summation of uij’s for each xi should be constant. Rather, uij is interpreted as the “degree of
compatibility” between xi and Cj. The degree of compatibility between xi and Cj is independent of that
between xi and the remaining clusters.

As with FCM, a parameter q (> 1) is involved in PCM. However it does not act as a fuzzifier as it
was the case in FCM. Also, in contrast to FCM, PCM is less sensitive in knowing the “exact” number
of clusters. Rather, an overestimated value of m can be used (see also the remarks given below). A set
of parameters ηj, j = 1, . . . ,m, each one corresponding to a cluster, is also required (loosely speaking,
they are estimates of the “size” of the cluster [Theo 09, Section 14.4]). Like k-means and FCM, PCM’s
goal is to move the θj’s to regions of space that are dense in data points.

PCM is iterative. It starts with some initial estimates, θ1(0), . . . ,θm(0), for θ1, . . . ,θm, respectively,
and at each iteration,

• The “degree of compatibility”, uij(t − 1), of the data vector xi to cluster Cj, i = 1, . . . ,N , j = 1, . . . ,m,
is computed, taking into account the (squared Euclidean) distance of xi from θj and the parameter ηj .

• The representatives, θj’s, are updated, as in FCM, as the weighted means of all data vectors (each
data vector xi is weighted by uq

ij(t − 1)).

The algorithm terminates when the difference in the values of θj’s between two successive iterations is
small enough. It returns the values of the parameter vectors (representatives) θj’s and the “compatibility
coefficients” uij’s, i = 1, . . . ,N , j = 1, . . . ,m.

To apply PCM on a data set X, type

[U, theta] = possibi(X,m,eta,q,sed, init_ proc,e_thres)

where

X contains the data vectors in its columns,

m is the number of clusters,

eta is an m-dimensional array whose jth coordinate is the ηj parameter for the cluster Cj ,

q is the “q” parameter of the algorithm,

sed is a scalar integer used as the seed for the built-in MATLAB function rand,

init_ proc is an integer taking values 1, 2, or 3, with 1 corresponding to the rand_init initialization
procedure, which chooses randomly m vectors from the smallest hyper-rectangular that contains
all vectors of X and its sides are parallel to the axes; 2 corresponding to rand_data_init, which

188 CHAPTER 7 Clustering

chooses randomly m among the N vectors of X; and 3 corresponding to distant_init, which chooses
the m vectors of X that are “most distant” from each other. (The latter procedure achieves, in
general, better initialization at the cost of increased computations),

e_thres is the threshold involved in the terminating condition of the algorithm,

U is an N×m matrix with the (i, j) element that denotes the “degree of compatibility” of the ith data
vector with the jth cluster (after the convergence of the algorithm),

theta is an l×m matrix, each column of which corresponds to a cluster representative (after the
convergence of the algorithm).

Remarks
• In contrast to the previous algorithms discussed in this section, PCM does not impose a clustering

structure on X. This means that when the number of representatives it uses is higher than the “true”
number of clusters, after convergence some θj’s will (almost) coincide, and if the algorithm starts
from a proper initialization point, then hopefully all clusters (dense regions) will be represented by
one θj while some of them may be represented by two or more (almost) identical θj’s. On the other
hand, when the number of representatives, m, is less than the true number of clusters, say k, then
after convergence the algorithm will potentially recover m out of k clusters. As a consequence, the
case where a representative lies in a sparse region between clusters, is not encountered.

• Like the previous algorithms, PCM results from the minimization of a suitably defined cost function.
Alternative PCM schemes have also been proposed [Theo 09, Section 14.4].

• PCM is sensitive to the initial θj values and the estimates of ηj’s. One way to estimate the ηj values,
under the assumption that X does not contain many outliers, is to run the FCM algorithm and, after
its convergence, estimate each ηj as a (weighted) average of the dissimilarities between xi’s and θj’s,
as the latter is computed by FCM. Then, the estimates of θj ’s produced by FCM may be used to
initialize PCM [Theo 09, Section 14.4].

Exercise 7.5.10
1. Apply the PCM algorithm on the data set X3 generated in Example 7.5.1 for m = 4, m = 6, and m = 3.

Use q = 2 and ηj = 4, j = 1, . . . ,m, and initialize the θj ’s using the m vectors of X that are “most distant”
from each other (use the distant_init procedure). Compare the estimated θj values with the true ones and
comment on the results.

2. Repeat step 1, using the rand_init and rand_data_init MATLAB functions for the initialization of θj ’s
for m = 4.

3. Draw conclusions.

Note that in the case where the true number of clusters is overestimated (in our case for m = 6), the PCM
successfully estimates the four θj ’s that correspond to the (true) four underlying clusters in X3 (some of the
estimates coincide). In the opposite case, PCM successfully estimates three out of the true four θj ’s. Finally,
poor initialization of the PCM may lead to poor clustering results.

Exercise 7.5.11
Apply PCM on the data set X5 generated in Example 7.5.3 for m = 2, q = 2. Use the distant_init procedure
for the θj initialization and set ηj = 4, j = 1, . . . ,m.

Hint
Note that the PCM fails to identify the second (small) cluster.

7.6 Miscellaneous Clustering Algorithms 189

7.6 MISCELLANEOUS CLUSTERING ALGORITHMS
In this section, we consider algorithms that produce a single clustering and do not fall into either the
sequential or the cost function optimization category.

Competitive Leaky Learning Algorithm
Competitive leaky learning (LLA) is an algorithm suitable for unraveling compact clusters. Once again,
the number of clusters, m, that underlie the data set X, is assumed to be known. The aim of LLA is to
move m l-dimensional parameter vectors, wj’s, j = 1, . . . ,m,5 to regions that are “dense” in points of
X. Each parameter vector represents one “dense” region (cluster). The strategy is that of competition
among wj’s.

The LLA algorithm is iterative. It starts with some initial estimates w1(0), . . . ,wm(0), for w1, . . . ,wm,
respectively. At each iteration, t, a vector x is presented to the algorithm and the wj(t − 1) that is closer
to x than any other wk(t − 1), k = 1, . . . ,m (k �= j) is identified. wj(t − 1) is the winner in the competition
on x, and wj(t) is computed as

wj(t) = wj(t − 1)+ ηw(x − wj(t − 1)) (7.2)

The remaining wk(t)’s (losers) are computed as

wk(t) = wk(t − 1)+ ηl(x − wk(t − 1)), k �= j (7.3)

with ηw � ηl. The Cj(t) cluster, of the clustering formed at the tth iteration, contains all x ∈ X for which
wj(t) is closer compared to any other representative, j = 1, . . . ,m.

Care is taken to ensure that, in one epoch, which consists of N successive iterations, all data vectors
will be considered by LLA once. Convergence is achieved when the values of wj’s remain almost
unaltered between two successive epochs or the maximum number of epochs has been reached. The
outputs are the estimated values of wj’s and the corresponding clustering where each cluster Cj consists
of all vectors x of X that lie closer to wj than any other representative.

To apply LLA on a data set X, type

[w,bel,epoch] = LLA(X,w_ini,m,eta_vec,sed,max_epoch,e_thres, init_proc)

where

X contains the data vectors in its columns,

w_ini contains the initial estimates of the representatives in its columns,

m is the number of representatives (utilized only when w_ini is empty),

eta_vec is a two-dimensional vector containing the ηw and ηl parameters of the algorithm,

sed is the “seed” for the built-in MATLAB function rand,

max_epoch is the maximum number of epochs the algorithm is allowed to run,

5We use wj instead of θj to comply with the notation usually adopted for the competitive schemes.

190 CHAPTER 7 Clustering

e_thres is a (scalar) parameter used in the termination condition,

init_ proc is defined as in PCM,

w contains the final estimates of the representatives in its columns,

bel is an N -dimensional vector whose ith element contains the index of the representative that lies
closest to xi ,

epoch is the number of epochs performed by the algorithm in order to converge.

Remarks
• The learning-rate parameters ηw and ηl are chosen in the range [0, 1] with ηw � ηl .
• Geometrically speaking, all representatives move toward the data vector x currently considered by

the algorithm. However, the losers move at a much slower rate than the winner, as implied by the
choice of ηw and ηl .

• LLA “imposes” a clustering structure on X, as is the case with most of the algorithms that have been
discussed.

• LLA is not overly sensitive to the initialization of the wj’s because, even if a wj initially lies away
from the region where the data vectors lie, it will gradually move to that region given Eq. (7.3).
Therefore, it is likely to win at a given x at some iteration.

• For ηl = 0, the basic competitive learning scheme is obtained. In this case, only the winner is updated
(i.e., moves toward the data vector x at hand), while the values of the other representatives remain
unaltered. This makes the algorithm sensitive to poor initialization since if a wj initially lies away
from the region where the data vectors lie, it is likely to lose in all competitions for the vectors of X.
In this case, there is no way it can move close to the region where the data lie and so it has not the
ability to represent a cluster physically formed in X (such a wj is also called a dead representative).

• Other competitive learning algorithms have been proposed in the literature. In close affinity with
them is the self-organizing map (SOM) scheme. However, in SOMs the representatives wj’s are
interrelated [Theo 09, Section 15.3].

Exercise 7.6.1
1. Apply LLA on the data set X3 generated in Example 7.5.1, for m = 4, m = 3, and m = 6. Use ηw = 0.1

and ηl = 0.0001, max_epoch = 100, and e_thres = 0.0001. Use the distant_init MATLAB function for the
wj initialization. In each case, plot the data points (all with the same color) as well as the wj ’s (final
estimates).

2. Repeat step 1 for m = 4, where now ηl = 0.01.
Note that, in the case where the number of representatives is underestimated or overestimated, the

resulting clustering does not correspond to the actual clustering structure of the points in X3. In addition,
if ηl is not much smaller than ηw, the algorithm gives poor results, even if m is equal to the true number
of clusters.

Exercise 7.6.2
Apply LLA on the data set X5 generated in Example 7.5.3, for m = 2, adopting the parameter values used in
Exercise 7.6.1.

Hint
Note that it succeeds in identifying the two clusters even though they have significantly different sizes, in
contrast to, say, k-means and FCM.

7.6 Miscellaneous Clustering Algorithms 191

Exercise 7.6.3
Apply LLA on the data set X3 generated in Example 7.5.1, for m = 4, where now the wj ’s are initialized as
w1(0) = [5.5, 4.5]T , w2(0) = [4.5, 5.5]T , w3 = [5, 5]T , and w4 = [50, 50]T . Use ηw = 0.1 and (a) ηl = 0.0001
and (b) ηl = 0 (basic competitive learning scheme).

Note that for ηl = 0.0001, all representatives represent clusters in X3, although the representative w4 has
been initialized away from the region where the points of X3 lie. For ηl = 0, however, w4 does not change.

Valley-Seeking Clustering Algorithm
According to this method (known as VS), the clusters are considered as peaks of the pdf, p(x), that
describes X, separated by valleys. In contrast to the algorithms considered so far, no representatives
(parameter vectors) are used here. Instead, clustering is based on the local region, V(x), around each
data vector x ∈ X. The latter is defined as the set of vectors in X (excluding x) that lie at a distance less
than a from x, where a is a user-defined parameter. As a distance measure, the squared Euclidean may
be used (other distances may be used as well). VS also requires an (overestimated) value of the number
of clusters, m.

The algorithm is iterative, starting with an initial assignment of the vectors of X to the m clusters; at
each epoch (N successive iterations) all data vectors are presented once. During the tth epoch and for
each xi in X, i = 1, . . . ,N , the region V(xi) is determined and the cluster where most of the data vectors
in V(xi) belong is identified and stored. After all data vectors have been presented (during the tth epoch),
reclustering takes place and each xi is now assigned to the cluster that has the largest number of points
in V(xi). The algorithm terminates when no reclustering occurs between two successive epochs.

To apply the VS algorithm on a data set X, type

[bel, iter] = valley_seeking(X,a,bel_ini,max_iter)

where

X contains the data vectors in its columns,

a is the parameter that specifies the size of the neighborhood V(x) of a data point x,

bel_ini is an N -dimensional vector whose ith coordinate contains the label of the cluster where the
xi vector is initially assigned,

max_iter is the maximum allowable number of iterations,

bel is an N -dimensional vector having the same structure as bel_ini, described earlier and contains
the cluster labels of xi’s after convergence,

iter is the number of iterations performed until convergence is achieved.

Remarks
• In certain cases, VS may recover noncompact clusters.
• The algorithm is sensitive to the choice of a. One way to face this sensitivity is to run the algorithm

for several values of a and carefully interpret the results.
• The algorithm is sensitive to the initial assignment of the data vectors to clusters. Poor initialization

leads to poor clustering results. One solution is to run another algorithm (e.g., a sequential algorithm)
and use the resulting clustering as the initial one for VS.

• VS is a mode-seeking algorithm. That is, if more than the actual number of clusters in X are used
initially, then in principle, after convergence, some of them will become empty. This implies that
VS does not impose a clustering structure on X. In this sense, it resembles PCM.

192 CHAPTER 7 Clustering

Exercise 7.6.4
Consider the data set X3 generated in Example 7.5.1. Adopt the squared Euclidean distance and apply the
VS algorithm on it for a = 12,1.52,22, . . . ,82. For the definition of the initial clustering
(a) use m = 7 clusters with random initialization,
and
(b) the output of the BSAS algorithm with � = 2.5. For each case, plot the clustering result and draw
conclusions.

Hint
To generate a random initial clustering, type

m=7;
rand('seed',0)
bel_ini= fix(m*rand(1,N))+1;

To generate initial clustering using the BSAS algorithm, type

theta=2.5;
q=N;
order=[];
[bel_ini, m]=BSAS(X3,theta,q,order);

To apply VS on X3 and to plot the clustering results, type

max_iter=50;
for it=1:.5:8

a=itˆ2;
[bel,iter]=valley_seeking(X3,a,bel_ini,max_iter);
% Plotting of the points of the clusters
figure(11), close
figure(11), plot(X3(1,bel==1),X3(2,bel==1),'r.',...
X3(1,bel==2),X3(2,bel==2),'g*',X3(1,bel==3),X3(2,bel==3),'bo',...
X3(1,bel==4),X3(2,bel==4),'cx',X3(1,bel==5),X3(2,bel==5),'md',...
X3(1,bel==6),X3(2,bel==6),'yp',X3(1,bel==7),X3(2,bel==7),'ks')

end

VS with random initialization fails to identify the clustering structure of X3; the opposite holds true
when the initialization stems from BSAS. This happens because, in the case where � is “small,” BSAS
tends to generate several small compact clusters with no significant overlap. The application of VS on
such a clustering will potentially merge the small neighboring clusters that are parts of a larger physical
cluster. In contrast, with random initialization, the initial clustering is likely to have several largely
overlapping clusters, which are more difficult to handle (in this case, each V(xi) is likely to contain
points from all clusters).

Note that not all values of a are appropriate for unraveling the true clustering structure of X3.

Exercise 7.6.5
Repeat Exercise 7.6.4 for the data set X5 generated in Example 7.5.3.

Hint
Note that VS succeeds in identifying the two clusters of significantly different size.

7.6 Miscellaneous Clustering Algorithms 193

Example 7.6.1
1. Generate and plot the data set X8, which contains 650 2-dimensional data vectors. The first 300 lie

around the semicircle with radius r = 6, which is centered at (−15,0), and they have their second
coordinate positive. The next 200 lie around the line segment with endpoints (10,−7) and (10,7).
The next 100 lie around the semicircle with radius r = 3, which is centered at (21,0), and have
their second coordinate negative. Finally, the last 50 points belong to the spiral of Archimedes and
are defined as (x,y) = (aspθ cos(θ),aspθ sin(θ)), where asp = 0.2 (a user-defined parameter) and
θ = π ,π + s,π + 2s, . . . ,6π , where s = 5π/49.

2. Adopt the squared Euclidean distance and apply the VS algorithm on X8 for a = 12,1.52,22, . . . ,82.
For the definition of the initial clustering, use the output of the BSAS algorithm with � = 2.5. Draw
your conclusions.

3. Consider the result of VS if the semicircle in X8, which corresponds to the third group of points,
was centered at (12,0).

Solution. Take the following steps:

Step 1. To generate the first group of points in X8, type

rand('seed',0)

n_points=[300 200 100 50]; %No of points in the first 3 clusters

noise=.5;

X8=[];

%Construction of the 1st cluster (circle, center (-15,0), R=6)

R=6;

x_center1=-15;

y_center1=0;

mini=x_center1-R;

maxi=x_center1+R;

step=(maxi-mini)/(n_points(1)-1);

for x=mini:step:maxi

y1=y_center1 + sqrt(Rˆ2-(x-x_center1)ˆ2)+noise*(rand-.5);

X8=[X8; x y1];

end

To generate the second group, type

%Construction of the 2nd cluster (line segment, endpoints (10,-7), (10,7))

mini=-7;

maxi=7;

step=(maxi-mini)/(n_points(2)-1);

194 CHAPTER 7 Clustering

x_coord=10;
for y=mini:step:maxi

X8=[X8; x_coord+noise*(rand-.5) y+noise*(rand-.5)];
end

To generate the third group, type

%Construction of the 3rd cluster (semicircle, center (21,0), R=3;, y<0)
R=3;
x_center=21;
y_center=0;
mini=x_center-R;
maxi=x_center+R;

step=(maxi-mini)/(n_points(3)-1);

for x=mini:step:maxi
y=y_center - sqrt(Rˆ2-(x-x_center)ˆ2)+noise*(rand-.5);
X8=[X8; x y];

end

Finally, to generate the fourth group, type

% Construction of the fourth cluster (archimidis spiral)
asp=0.2;
step=(5*pi)/(n_points(4)-1);
count=0;
x_tot=[];
y_tot=[];
for theta=pi:step:6*pi

count=count+1;
r=asp*theta;
x_tot=[x_tot; r*cos(theta)];
y_tot=[y_tot; r*sin(theta)];

end
X8=[X8; x_tot y_tot];

Step 2. For the values of a in the range [42, 62], VS succeeds in identifying the clusters of X8 (see
Figure 7.9(a)).

Step 3. For the alternative scenario (Figure 7.9(b)), VS fails to do so (identifying the two rightmost
clusters as a single cluster). Thus, we conclude that VS can deal with clusters of arbitrary shape
only under the assumption that they are well separated from each other.

7.6 Miscellaneous Clustering Algorithms 195

(a)

�20 �15 �10 �5 0 5 10 15 20

�15

�10

�5

0

5

10

(b)

�20 �15 �10 �5 0 5 10 15

�10

�5

0

5

10
15

FIGURE 7.9

Clusterings produced by the VS algorithm in Example 7.6.1: (a) step 2 (four clusters); (b) step 3 (three
clusters). Points from different clusters are denoted by different symbols/shades of gray.

Spectral Clustering
Spectral clustering algorithms utilize graph theory concepts and certain optimization criteria that stem
from matrix theory.6 More specifically, the algorithms of this kind construct a weighted graph, G,
where (a) each vertex, vi , corresponds to a point, xi, of the data set X, and subsequently (b) associate
a weight wij with the edge eij that connects the two vertices, vi and vj . The weight wij is an indication
of the “distance” between the corresponding data points xi and xj . The aim is to cut the graph into m
disconnected components via the optimization of a criterion. These components identify the clusters
underlying X. In the sequel, we consider the 2-cluster case (that is, m = 2); the criterion to be optimized
is the so-called normalized cut, or Ncut [Theo 09, Section 15.2.4].

Before describing the algorithm, some definitions are in order. Among the various ways of defining
the weights of the graph, a common one is

wij =
{

exp
(
−||xi−xj ||2

2σ 2

)
, if ||xi − xj|| < e

0, otherwise
(7.4)

where e and σ 2 are user-defined parameters and || · || denotes the Euclidean distance.
In words, given a data point xi , for all points xj that lie from xi a distance greater than e, we assign

wij = 0. For the xj points whose distance from xi is less than e, the weight wij decreases as the distance
between xi and xj increases. Thus, the weights encode information related to the mutual distances among
the points of X.

Once the weighted graph has been formed, the goal is to divide (cut) it into two parts, say A and B,
so that the points in A and B have the least similarity compared to any other bipartitioning. Similarity

6Other algorithms that use graph theory alone (without using matrix theory criteria) can be found in [Theo 09, Section
15.2].

196 CHAPTER 7 Clustering

in this case is quantified in terms of the distance-related weights. According to the normalized cut
criterion, separation of the two parts of the graph (clusters) takes place so that the edges connecting the
two parts have minimum sum of weights (indicating clusters separated as much as possible according
to the criterion used). The normalized cut criterion also considers the “volume” of the clusters and takes
care to avoid forming small isolated clusters.

The respective optimization turns out to be NP-hard. This is alleviated by slightly reformulating the
problem, which then becomes an eigenvalue-eigenvector problem of the so-called Laplacian matrix of
the graph. The Laplacian matrix is directly related to the weights associated with the graph; that is, it
encodes the distance information among the points to be clustered [Theo 09, Section 15.2.4].

To apply the described algorithm on a data set, X, type

bel = spectral_Ncut2(X,e,sigma2)

where

X contains the data vectors in its columns,

e is the parameter that defines the size of the neighborhood around each vector,

sigma2 is a user-defined parameter that controls the width of the Gaussian function in Eq. (7.4),

bel is an N -dimensional vector whose ith element contains the label of the cluster to which the ith
data vector is assigned.

Remarks
• Spectral clustering algorithms impose a clustering structure on X.
• In principle, spectral clustering algorithms are able to recover clusters of various shapes.
• Other spectral clustering algorithms that stem from the optimization of criteria such as the so-called

ratiocut have been proposed [Theo 09, Section 15.2.4]. A discussion on the quality of the clusterings
that result from the spectral clustering method can be found in [Guat 98].

• In the case where more than two clusters are expected, the previous scheme can be used
hierarchically. That is, at each step each resulting cluster is further partitioned into two clusters
[Shi 00]. A different approach can be found in [Luxb 07].

Exercise 7.6.6
Consider the data set X2 from Exercise 7.4.1 and apply the previous algorithm using e = 2 and sigma2 = 2.
Draw conclusions.

Hint
Note that the algorithm imposes a clustering structure on X2, although X2 does not possess a clustering
structure.

Exercise 7.6.7
1. Generate and plot the data set X9, which consists of 200 2-dimensional vectors. The first 100 stem from

the Gaussian distribution with mean [0, 0]T ; the remaining points stem from the Gaussian distribution
with mean [5, 5]T . Both distributions share the identity covariance matrix.

2. Apply the previous spectral clustering algorithm on X9 using e = 2 and sigma2 = 2. Draw conclusions.

Hint
Note that the algorithm correctly identifies the clusters in X9.

7.6 Miscellaneous Clustering Algorithms 197

Example 7.6.2. Do the following:
1. Generate and plot the data set X10 consisting of 400 data points lying around two circles. Specifically,

the first 200 points lie around the circle with radius r1 = 3, which is centered at (0,0); the remaining
points lie around the circle with radius r2 = 6, which is centered at (1,1).

2. Apply the spectral clustering algorithm on X10 for e = 1.5 and sigma2 = 2 and plot the results.
3. Repeat this for e = 3. Comment on the results.

Solution. Take the following steps:

Step 1. To generate the data set X10, type

rand('seed',0)

R1=3; %Radius of the 1st circle

R2=6; %Radius of the 2nd circle

center=[0 0; 1 1]'; % Centers of the circles (in columns)

n_points=[200 200]; %Number of points per cluster

step1=2*R1/(n_points(1)/2-1);

step2=2*R2/(n_points(2)/2-1);

%Points around the first circle

X10=[];

for x=-R1+center(1,1):step1:R1+center(1,1)

y=sqrt(R1ˆ2-(x-center(1,1))ˆ2);

X10=[X10; x center(2,1)+y+rand-.5; x center(2,1)-y+rand-.5];

end

%Points around the second circle

for x=-R2+center(1,2):step2:R2+center(1,2)

y=sqrt(R2ˆ2-(x-center(1,2))ˆ2);

X10=[X10; x center(2,2)+y+rand-.5; x center(2,2)-y+rand-.5];

end

Plot the data set by typing

X10=X10';

[l,N]=size(X10)

figure(1), plot(X10(1,:),X10(2,:),'k.')

figure(1), axis equal

Step 2. To apply the spectral clustering algorithm, type

e=1.5; %Thershold for the distance in the definition of W

sigma2=2; %The sigmaˆ 2 in the exponential in the definition of W

bel=spectral_Ncut2(X10,e,sigma2);

198 CHAPTER 7 Clustering

�6 �4 �2 0 2 4 6 8

�4

�2

0

2

4

6

(a)

�6 �4 �2 0 2 4 6 8

�4

�2

0

2

4

6

(b)

FIGURE 7.10

Clustering resulting from application of the spectral clustering algorithm on data set X10 in Example 7.6.2 when
(a) e = 1.5 and (b) e = 3. Points assigned in the same cluster are denoted by the same symbol. Observe the
sensitivity in the choice of parameters.

Plot the clustering results (see Figure 7.10(a)), typing

figure(2),plot(X10(1,bel==0),X10(2,bel==0),'ro',...
X10(1,bel==1),X10(2,bel==1),'b*')
figure(2), axis equal

Step 3. Work as in step 2, setting e equal to 3 (Figure 7.10(b)). Comparing Figures 7.10(a) and 7.10(b),
note the influence of the parameter values on the quality of the resulting clustering. Provide a physical
explanation for that.

Exercise 7.6.8
Repeat Example 7.6.2 for the case where the second circle is centered at (3,3), for various values of e and
sigma2. Comment on the results.

Hint
Note that, in this case, the algorithm fails to identify the two (overlapping) clusters.

7.7 HIERARCHICAL CLUSTERING ALGORITHMS
In contrast to the clustering algorithms discussed so far, which return a single clustering, the algorithms in
this section return a hierarchy of N nested clusterings, where N is the number of data points in X. A clus-
tering �, consisting of k clusters, is said to be nested in the clustering �′, containing r (< k) clusters, if
each cluster in � is a subset of a cluster in �′. For example, the clustering �1 = {{x1, x2},{x3},{x4, x5}} is
nested in the clustering �2 = {{x1, x2, x3},{x4, x5}}, but �1 is not nested in �3 = {{x1, x3},{x2},{x4, x5}}
or in �4 = {{x1, x3,x4},{x2, x5}}.

7.7 Hierarchical Clustering Algorithms 199

The two main categories of hierarchical clustering algorithms are:

• Agglomerative. Here the initial clustering �0 consists of N clusters, each containing a single element
of X. The clustering �1, produced at the next step, contains N − 1 clusters and �0 is nested in it.
Finally, the �N−1 clustering is obtained, which contains a single cluster (the whole data set X).

• Divisive. Here the reverse path is followed. The initial cluster �0 consists of a single cluster (the
whole data set X). In the next step the clustering �1 is produced, which consists of two clusters and is
nested in �0. Finally, the �N−1 clustering is obtained, which consists of N clusters, each containing
a single element of X.

In the sequel, we consider only the agglomerative clustering algorithms. Specifically, (a) the generalized
agglomerative algorithmic scheme and (b) specific algorithms that stem from it are discussed.

7.7.1 Generalized Agglomerative Scheme
This scheme (known as GAS) starts with the clustering �0, which consists of N clusters, each containing
a single data vector. The clustering �t (at the tth level of the clustering hierarchy) consists of (a)
the cluster formed by the merging of the two “most similar” (“less distant”) clusters of the �t−1
clustering, and (b) all the remaining clusters of the �t−1 clustering. The resulting clustering, �t , now
contains N − t clusters (note that �t−1 contains N − t + 1 clusters). The algorithm continues until the
�N−1 clustering is produced, where all points belong to a single cluster. It returns the hierarchy of
clusterings.

Remarks
• If two points come together in a single cluster at clustering �t (tth level of the clustering hierarchy),

they will remain in the same cluster for all subsequent clusterings (i.e., for �t+1, . . . ,�N−1).
• The number of operations required by GAS is O(N3).

An important issue related to GAS is the definition of a measure of proximity between clusters. In
the sequel, we discuss a recursive definition of the distance (denoted by d(·)) between two clusters—
specifically, the distance between any pair of clusters in the �t clustering is defined in terms of the
distances between the pairs of clusters in �t−1. This gives rise to some of the most widely used
agglomerative hierarchical algorithms.

Let d(xi ,xj) denotes the distance between two data vectors. By definition, the distance between
two single-element clusters is defined as the distance between their elements: d({xi}, {xj}) ≡ d(xi , xj).
Consider two clusters Cq, Cs at the �t clustering, t > 0 (tth level of hierarchy):

• If both Cq and Cs are included in the �t−1 clustering (level t − 1), their distance remains unaltered
in �t .

• If Cq is the result of the merging of the clusters Ci and Cj in the �t−1 clustering, and Cs is another
cluster different from Ci and Cj in �t−1, then d(Cq ,Cs) is defined as

d(Cq ,Cs) = aid(Ci ,Cs)+ ajd(Cj ,Cs)+ bd(Ci ,Cj)+ c|d(Ci ,Cs)− d(Cj ,Cs)| (7.5)

Different choices of the parameters ai, aj , b, and c give rise to different distance measures between
clusters and consequently lead to different clustering algorithms. Two of these follow.

200 CHAPTER 7 Clustering

7.7.2 Specific Agglomerative Clustering Algorithms
Single-link: It results from GAS if in Eq. (7.5) we set ai = aj = 0.5, b = 0, and c = −0.5. In this

case Eq. (7.5) becomes

d(Cq ,Cs) = min{d(Ci ,Cs),d(Cj ,Cs)} (7.6)

It turns out that Eq. (7.6) can also be written as

d(Cq ,Cs) = min
x∈Cq ,y∈Cs

d(x,y) (7.7)

Complete-link: It results from GAS if in Eq. (7.5) we set ai = aj = 0.5, b = 0, and c = 0.5. In this
case Eq. (7.5) becomes

d(Cq ,Cs) = max{d(Ci ,Cs),d(Cj ,Cs)} (7.8)

It turns out that Eq. (7.8) can also be written as

d(Cq ,Cs) = max
x∈Cq ,y∈Cs

d(x,y) (7.9)

Example 7.7.1. Consider the data set X11 = {x1, x2, x3, x4, x5, x6} and let

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 4 20 22 23
1 0 3 22 24 25
4 3 0 23 25 26
20 22 23 0 3.5 3.6
22 24 25 3.5 0 3.6
23 25 26 3.6 3.7 0

⎤
⎥⎥⎥⎥⎥⎥⎦

be the 6×6 matrix whose (i, j) element, dij , is the distance between the data vectors xi and xj (see
Figure 7.11).
1. Apply, step by step, the single-link algorithm on X11.
2. Repeat step 1 for the complete link algorithm.

x1

x2

x3 x6

x5x41

3
3.6 3.7

3.5

FIGURE 7.11

Data set considered in Example 7.7.1. The numbers (1, 3, 3.5, 3.6, 3.7) indicate respective distances. Large
distance values are not shown.

7.7 Hierarchical Clustering Algorithms 201

Solution. Take the following steps:

Step 1. Single-link algorithm. Initially �0 = {{x1},{x2},{x3},{x4},{x5},{x6}} (level 0 of the cluster-
ing hierarchy). The two closest clusters in �0 are {x1} and {x2}, with d({x1},{x2}) = 1. These
are merged to form the next clustering, �1 = {{x1,x2},{x3},{x4},{x5},{x6}} (level 1). The clos-
est clusters in �1 are {x1,x2} and {x3} since, taking into account Eq. (7.7), d({x1 , x2},{x3}) =
min(d({x1}, {x3}),d({x2},{x3})) = 3 is the minimum distance between any pair of clusters in �1.
Thus, �2 = {{x1, x2,x3}, {x4},{x5},{x6}} (level 2).
The closest clusters in �2 are {x4} and {x5} since d({x4 },{x5}) = 3.5 is the minimum distance between
any pair of clusters in �2. Thus, �3 = {{x1, x2,x3}, {x4, x5},{x6}} (level 3). Similarly, the closest
clusters in �3 are {x4,x5} and {x6}, since d({x4 , x5},{x6}) = min(d({x4},{x6}), d({x5},{x6}) = 3.6
is the minimum distance among any pair of clusters in �3, and so �4 = {{x1, x2, x3}, {x4, x5, x6}}
(level 4).
Finally, the two clusters in �4 are joined to form the final clustering, �5 = {{x1, x2, x3, x4, x5, x6}}
(level 5). Note that d({x1 , x2, x3},{x4, x5, x6}) = mini=1, 2, 3, j=4, 5, 6d(xi , xj) = 20.

Step 2. Complete-link algorithm. Initially �0 = {{x1},{x2}, {x3},{x4}, {x5},{x6}} (level 0 of the clustering
hierarchy). The two closest clusters in �0 are {x1} and {x2}, with d({x1},{x2}) = 1, which are merged
to form the next clustering, �1 = {{x1, x2}, {x3},{x4}, {x5},{x6}} (level 1).
The closest clusters in �1 are {x4} and {x5} since d({x4},{x5}) = 3.5, which is the minimum dis-
tance among all cluster pairs in �1 (according to Eq. (7.9), d({x1, x2},{x3}) = max(d({x1},{x3}),
d({x2},{x3})) = 4). Thus, �2 = {{x1, x2}, {x3},{x4,x5}, {x6}} (level 2).
The closest clusters in �2 are {x4, x5} and {x6} since d({x4, x5},{x6}) = max(d({x4},{x6}),
d({x5},{x6})) = 3.7 is the minimum distance between any pair of clusters in �2. Thus, �3 =
{{x1, x2}, {x3},{x4, x5, x6}} (level 3). Similarly, the closest clusters in �3 are {x1, x2} and {x3} since
d({x1, x2},{x3}) = max(d({x1},{x3}), d({x2},{x3}) = 4 is the minimum distance between any pair of
clusters in �3. Thus, �4 = {{x1, x2, x3}, {x4, x5, x6}} (level 4).
Finally, the two clusters in �4 are joined to form the final clustering, �5 = {{x1, x2, x3, x4, x5, x6}}
(level 5). Note that d({x1 , x2, x3},{x4, x5, x6}) = maxi=1, 2, 3, j=4, 5, 6d(xi , xj) = 26.

Dendrograms
An issue that often arises with hierarchical clustering algorithms concerns visualization of the hierarchies
formed. One tool often used is the so-called proximity dendrogram (more specifically, the dissimilar-
ity (similarity) dendrogram if a dissimilarity (similarity) distance measure between clusters has been
adopted). This has a tree structure like the one shown in Figure 7.12, which shows the dissimilarity
dendrogram of the clustering hierarchy after applying the single-link algorithm to the data set X11.

At level 0 of the hierarchy, each data vector forms a single cluster. At level 1, {x1} and {x2} are
merged into a single cluster, forming the clustering �1; this is illustrated by joining them with the
junction shown in the figure, which corresponds to dissimilarity level 1. We say that the clustering �1
is formed at dissimilarity level 1. At the second level of the hierarchy, the clusters {x1,x2} and {x3} are
merged and a junction at dissimilarity level 3 is inserted. Thus, clustering �2 is formed at dissimilarity
level 3.

Continuing in this spirit, we can see how the remaining part of the dendrogram is constructed. �0,
�1, �2, �3, �4, �5 are created at dissimilarity levels 0, 1, 3, 3.5, 3.6, 20, respectively.

202 CHAPTER 7 Clustering

x4 x5 x6x1 x2 x3

1

3
3.5
3.6

0

20

�0 � {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}}

�1� {{x1, x2}, {x3}, {x4}, {x5}, {x6}}

�2� {{x1, x2, x3}, {x4}, {x5}, {x6}}
�3� {{x1, x2, x3}, {x4, x5}, {x6}}

�4� {{x1, x2, x3}, {x4, x5, x6}}

�5� {{x1, x2, x3, x4, x5, x6}}

FIGURE 7.12

Dissimilarity dendrogram produced by the single-link algorithm when applied on data set X11 in Example 7.7.1.

1

3.5
3.7

0

26

4

x4 x5 x6x1 x2 x3
�0 � {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}}

�1 � {{x1, x2}, {x3}, {x4}, {x5}, {x6}}

�3 � {{x1, x2}, {x3}, {x4, x5, x6}}

�4 � {{x1, x2, x3}, {x4, x5, x6}}

�5 � {{x1, x2, x3, x4, x5, x6}}

�2 � {{x1, x2}, {x3}, {x4, x5}, {x6}}

FIGURE 7.13

Dissimilarity dendrogram obtained by the complete-link algorithm when applied on data set X11 in
Example 7.7.1.

Clearly, the proximity dendrogram is a useful tool in visualizing information concerning a clustering
hierarchy. Its usefulness becomes more apparent in cases where the number of data points is large
(Figure 7.13 shows the dissimilarity dendrogram formed by the complete link algorithm when applied
on data set X11).

7.7 Hierarchical Clustering Algorithms 203

To run the generalized agglomerative scheme (GAS), type

[bel, thres] = agglom(prox_mat,code)

where

prox_mat is the N×N dissimilarity matrix for the N vectors of the data set X,

(prox_mat(i, j) is the distance between vectors xi and xj),

code is an integer indicating the specific clustering algorithm to be used (1 stands for single link;
2 stands for complete link),

bel is an N×N matrix whose (i, j) element contains the cluster label for the jth vector in the ith
clustering. (The first row of bel corresponds to the N -cluster clustering; the second row, to the
(N − 1)-cluster clustering; and the N th row, to the single-cluster clustering),

thres is an N -dimensional vector containing the dissimilarity levels where each new clustering is
formed.

Remarks
• The clusterings generated by the single-link algorithm are formed at lower dissimilarity levels, while

those generated by the complete-link algorithm are formed at higher dissimilarity levels. This is due
to the fact that the min and max operators are used to define their distance measures. All the other
algorithms are compromises between these extreme cases.

• Algorithms such as unweighted pair group method average (UPGMA), unweighted pair group
method centroid (UPGMC), Ward, or minimum variance all stem from Eq. (7.5) for different choices
of parameters [Theo 09, Section 13.2.2].

• An important issue with hierarchical algorithms is that of monotonicity. We say that a hierarchy
of clusterings generated by such algorithms exhibits the monotonicity property if the dissimilarity
level where the tth clustering of the hierarchy, �t , is formed is greater than the dissimilarity levels
of all clusterings formed at previous levels. Monotonicity is a property of the clustering algorithm,
not of the data set at hand. It can be shown that the single-link and complete-link algorithms exhibit
the monotonicity property, while other agglomerative algorithms do not (e.g., UPGMC, described
in [Theo 09, Section 13.2.2]).

• The single-link and complete-link algorithms, as well as a number of others, may be derived from
a graph theory framework [Theo 09, Section 13.2.5].

• In cases where there are ties (i.e., more than one pair of clusters share the same minimum distance
at the tth level of the clustering hierarchy), one pair is arbitrarily selected to be merged. This choice
affects, in general, the clustering hierarchy formed by the complete-link and all other clustering
algorithms that stem from Eq. (7.5) except the single-link algorithm.

7.7.3 Choosing the Best Clustering
When a clustering hierarchy is available, an important issue is the choice of the specific clustering that
best represents the underlying clustering structure of the data set X. Several methods have been proposed
for this. A simple one is to search the hierarchy for clusters that have a large lifetime. The lifetime of a

204 CHAPTER 7 Clustering

cluster is defined as the absolute difference between the proximity level at which the cluster is formed
and the proximity level at which it is absorbed into a larger cluster. In the dendrogram of Figure 7.12 for
example, the clusters {x1,x2,x3} and {x4,x5,x6} have large lifetimes, which indicates that the clustering
that best represents the corresponding data set is {{x1,x2,x3},{x4,x5,x6}}. Similar comments hold for
the dendrogram in Figure 7.13.

Two other methods are proposed in [Bobe 93] and also discussed in [Theo 09]. In the sequel, we
consider an extended version of one of them. According to this method, where the most representative
clustering of X in the hierarchy contains clusters that exhibit “low dissimilarity” among its members.
The “degree of dissimilarity” in a cluster C is measured in terms of the quantity

h(C) = maxx,y∈Cd(x,y)7

where d(x,y) is the dissimilarity between the vectors x and y. In addition, a threshold of dissimilarity, θ ,
is employed. The criterion for choosing the clustering in the hierarchy that best describes the underlying
clustering structure of X may be stated as

“Choose the �t clustering if there exists a cluster C in the �t+1 clustering with h(C) > θ .”

The parameter θ may be defined as

θ = μ+λσ

where μ and σ are the mean and the standard deviation of the dissimilarities between the data points of
X and λ is a user-defined parameter. Clearly, the choice of λ is crucial. To avoid the risk of relying on a
single value of λ, we may work as follows. Let λ scan a range of values and obtain, for each such value,
the clustering �t that satisfies the previous criterion. Then, excluding the cases where �0 and �N−1
have been selected, compute the fraction of the number of times each clustering has been selected and,
finally, consider the clustering selected most of the times as the likeliest to represent the data set under
study.

However, note that, along with the most frequently selected clustering, the next few frequently
selected clusterings may fit the data well (especially if they have been selected a significant number of
times). After all, this is the main benefit of hierarchical clustering—it suggests more than one clustering
that fit the data reasonably well. This may prove useful in providing a more complete “picture” of the
clustering structure of X.

To apply the previously described technique, type

[lambda,cut_point_tot,hist_cut] = dendrogram_cut(bel,prox_mat)

where

prox_mat and bel are defined as in the agglom function,

lambda is a vector of the values of the λ parameter, for which a clustering (other than �0 and �N)
is obtained,

cut_point_tot is a vector containing the index of the selected clustering for a given value of λ,

7Other measures may be used.

7.7 Hierarchical Clustering Algorithms 205

hist_cut is a vector whose tth component contains the number of times the tth clustering has been
selected (excluding 1-cluster and N -cluster clusterings).

This function also plots the corresponding histogram.

Example 7.7.2. Generate and plot the data set X12, using the prescription followed in Example 7.5.1.
Here each of the four clusters consists of 10 points. Then

1. Compute the matrix containing the (squared Euclidean) distances between any pair of vectors
of X12 and a vector that accumulates the upper diagonal elements row-wise.

2. Apply the single-link and complete-link algorithms on X12 and draw the corresponding
(dissimilarity) dendrograms.

3. Determine the clusterings that best fit the clustering structure of X12. Comment on the results.

Solution. To generate the data set X12, type

randn('seed',0)
m=[0 0; 10 0; 0 9; 9 8];
[n_clust,l]=size(m);
S(:,:,1)=eye(2);
S(:,:,2)=[1.0 .2; .2 1.5];
S(:,:,3)=[1.0 .4; .4 1.1];
S(:,:,4)=[.3 .2; .2 .5];
n_points=10*ones(1,4);
X12=[];
for i=1:n_clust

X12=[X12; mvnrnd(m(i,:),S(:,:,i),n_points(i))];
end
X12=X12';
[l,N]=size(X12);

Plot X12 (see Figure 7.14(a)), typing

figure(3),plot(X12(1,:),X12(2,:),'.b')

Then proceed as follows.

Step 1. To compute the distance matrix for the data vectors of X12, type

for i=1:N

for j=i+1:N

dista(i,j)=dist(X12(:,i),X12(:,j));

dista(j,i)=dista(i,j);

end

end

206 CHAPTER 7 Clustering

24 22 0 2 4 6 8 10 12
24

22

0

2

4

6

8

10

12

(a)

16 28 4 18 17 19 27 11 15 12 13

0

10

20

30

40

50

(b)

27 28 18 4 19 13 21 23 24 26 30 22 25 29 1 8 6 2 9 3 10 5 7 11 17 15 16 12 20 140

50

100

150

200

250

300

(c)

D
is

si
m

ila
rit

y
le

ve
l

Data vectors Data vectors

D
is

si
m

ila
rit

y
le

ve
l

20 14 1 8 2 7 9 6 3 10 5 21 22 25 24 26 23 29 30

FIGURE 7.14

(a) The data set X12, considered in Example 7.7.2. (b)–(c) The dissimilarity dendrograms obtained by the
single-link and complete-link algorithms, respectively, when they are applied on X12. The horizontal axis
contains the labels of the data vectors.

To stack the computed distances to a data vector, type

dist_vec=[];

for i=1:N-1

dist_vec=[dist_vec dista(i,i+1:N)];

end

Step 2. To apply the single link algorithm on X12 and draw the corresponding dissimilarity dendrogram
(see Figure 7.14(b)), type

Z=linkage(dist_vec,'single');

[bel,thres]=agglom(dista,1);

figure(10), dendrogram(Z)

7.7 Hierarchical Clustering Algorithms 207

The function linkage is a built-in MATLAB function, which performs agglomerative clustering
and returns its results to a different (more compact but less comprehensible) format, compared to
the form adopted in the agglom function. In addition, the function dendrogram is also a built-in
MATLAB function, which takes as input the output of the linkage and draws the corresponding
dendrogram. Work similarly with the complete link, where now the second argument in the function
agglom will be equal to 2 and the second argument of the function linkage will be equal to ′complete′
(see also Figure 7.14(c)).

Step 3. To determine the clusterings of the hierarchy generated by the single-link algorithm that best fit
the underlying structure of X12, type

[lambda,cut_point_tot,hist_cut] = dendrogram_cut(bel,dista);

This function forms a histogram with the frequency of selection of each cluster (see Figure 7.15(a)).
Note that the first bar corresponds to the 2-cluster clustering case. The corresponding histogram for
the complete-link algorithm is shown in Figure 7.15(b).

From Figures 7.14(b) and (c), it follows that the clusterings in the hierarchy generated by
the complete-link algorithm are formed at higher dissimilarity levels compared to those of the
clusterings generated by the single-link algorithm. Despite that and other minor differences, both
dendrograms suggest that the 2-cluster and 4-cluster clusterings best fit the clustering struc-
ture of X12. This is verified by the histograms in Figure 7.15 and is in line with our intuition
(see Figure 7.14(a)).

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clusterings

Fr
eq

ue
nc

y

(a) (b)

5 10 15 20 25 30 35 40
Clusterings

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fr
eq

ue
nc

y

FIGURE 7.15

Choice of the clusterings that best fit the clustering structure of X12. (a)–(b) The histograms showing the
frequency selection of the clusterings of the hierarchy produced by the single-link and the complete-link
algorithms, respectively, when they are applied on the data set X12 (the clusterings �0 and �N−1 have been
excluded).

208 CHAPTER 7 Clustering

Exercise 7.7.1
Generate and plot the data set X13, using the prescription followed in Example 7.6.1, here with the four clusters
consisting of 30, 20, 10, and 51 points, respectively. Repeat Example 7.7.2 for X13. Draw conclusions.

Note that the single- and complete-link algorithms can in principle detect clusters of various shapes
provided that they are well separated.

Appendix

This appendix lists the functions (m-files) developed by the authors and used in the examples in this
book. Functions used that are part of MATLAB’s commercial distribution have been omitted; the reader
is referred to the respective MATLAB manuals.

In the following list, functions are ordered alphabetically by chapter. For further function details,
including descriptions of input and output arguments, refer to MATLAB’s help utility. Also see the
complete source code of the listed m-files, provided as part of the software on the companion website.

Chapter 1
bayes_classifier Bayesian classification rule for c classes, modeled by Gaussian distributions (also

used in Chapter 2).

comp_gauss_dens_val Computes the value of a Gaussian distribution at a specific point (also used in
Chapter 2).

compute_error Computes the error of a classifier based on a data set (also used in Chapter 4).

em_alg_function EM algorithm for estimating the parameters of a mixture of normal distributions,
with diagonal covariance matrices.

EM_pdf_est EM estimation of the pdfs of c classes. It is assumed that the pdf of each class is a mixture
of Gaussians and that the respective covariance matrices are diagonal.

euclidean_classifier Euclidean classifier for the case of c classes.

Gaussian_ML_estimate Maximum Likelihood parameters estimation of a multivariate Gaussian
distribution.

generate_gauss_classes Generates a set of points that stem from c classes, given the corresponding a
priori class probabilities and assuming that each class is modeled by a Gaussian distribution (also
used in Chapter 2).

k_nn_classifier k-nearest neighbor classifier for c classes (also used in Chapter 4).

knn_density_estimate k-nn-based approximation of a pdf at a given point.

mahalanobis_classifier Mahalanobis classifier for c classes.

mixt_model Generates a set of data vectors that stem from a mixture of normal distributions (also used
in Chapter 2).

mixt_value Computes the value of a pdf that is given as a mixture of normal distributions, at a given
point.

mixture_Bayes Bayesian classification rule for c classes, whose pdf’s are mixtures of normal
distributions.

Parzen_gauss_kernel Parzen approximation of a pdf using a Gaussian kernel.

plot_data Plotting utility, capable of visualizing 2-dimensional data sets that consist of, at most,
7 classes.

Auxiliary functions gauss.

209

210 Appendix

Chapter 2
base_clas_coord Implements a specific weak classifier.

base_clas_coord_out Computes the output of the weak classifier implemented by the base_clas_coord
function.

boost_clas_coord Generation of a “strong” classifier, using the Adaboost algorithm, that utilizes weak
classifiers generated by the base_clas_coord function.

boost_clas_coord_out Computes the output of a “strong” classifier B as a weighted sum of the outputs
of the weak classifiers.

CalcKernel Computes the value of a kernel function between two points.

kernel_perce Implements the kernel perceptron algorithm.

NN_evaluation Returns the classification error of a neural network based on a data set.

NN_training Returns a trained multilayer perceptron.

perce Realizes the perceptron learning rule, in a batch mode.

perce_online Realizes the online perceptron learning rule.

plot_kernel_perce_reg Plots the decision boundary that is generated by the kernel perceptron
algorithm.

plot_NN_reg Plots the decision boundary that is formed by a neural network.

SMO2 Generates a SVM classifier using either Platt’s algorithm or one of its two modifications
proposed by Keerthi.

SSErr Generates the linear classifier that optimizes the sum of error squares criterion.

svcplot_book Support Vector Machine plotting utility. It plots the decision regions, the decision surfaces
and the margin obtained by a SVM classifier.

Chapter 3
cut_cylinder_3D Generates a cut cylinder in the 3-dimensional space.

im_ point Performs the projection of a vector on the subspace spanned by the first m principal
components, that result after performing kernel PCA on a data set.

K_fun Computes the value of a kernel function (polynomial or exponential) for two vectors.

kernel_PCA Performs kernel PCA based on a given set of data vectors.

lapl_eig Performs Laplacian eigenmap based on a given data set.

pca_fun Performs Principal Component Analysis (PCA) based on a data set.

plot_orig_trans_kPCA Plots, in different figures, (a) the data points and the classifier in the original
(2-dimensional) data space and (b) the projections of the data points and the classifier in the space
spanned by the two most significant principal components, as they are computed using the kernel
PCA method.

Appendix 211

scatter_mat Computes the within scatter matrix, the between scatter matrix and the mixture scatter
matrix for a c-class classification problem, based on a given data set.

spiral_3D Creates a 3-dimensional Archimedes spiral.

svd_fun Performs Singular Value Decomposition (SVD) of a matrix.

Chapter 4
compositeFeaturesRanking Scalar feature ranking that takes into account the cross-correlation

coefficient.

divergence Computes the divergence between two classes.

divergenceBhata Computes the Bhattacharyya distance between two classes.

exhaustiveSearch Exhaustive search for the best feature combination, depending on the adopted class
separability measure.

Fisher Computes Fisher’s discriminant ratio of a scalar feature in a 2-class problem.

normalizeMnmx Performs MinMax normalization in a given interval [l r].

normalizeSoftmax Performs Softmax normalization in the interval [0 1].

normalizeStd Performs data normalization to zero mean and standard deviation equal to 1.

plotData Plotting utility for class data.

plotHist Plots the histograms of two classes for the same feature.

ROC Plots the ROC curve and computes the area under the curve.

ScalarFeatureSelection Ranking Features are treated individually and are ranked according to the
adopted class separability criterion.

ScatterMatrices Class separability measure, which is computed using the within-class and mixture
scatter matrices.

SequentialBackward Selection Feature vector selection by means of the Sequential Backward
Selection technique.

SequentialForward FloatingSelection Feature vector selection by means of the Sequential Forward
Floating Selection technique.

SequentialForward Selection Feature vector selection by means of the Sequential Forward Selection
technique.

simpleOutlierRemoval Removes outliers from a normally distributed data set by means of the
thresholding method.

Chapter 5
BackTracking Performs backtracking on a matrix of node predecessors and returns the best path. This

function is also used in Chapter 6.

DTWItakura Computes the Dynamic Time Warping cost between two feature sequences, based on
the standard Itakura local constraints.

212 Appendix

DTWItakuraEndp Similar to DTWItakura, with the addition that endpoints constraints are allowed
in the test sequence.

DTWSakoe Computes the Dynamic Time Warping cost between two feature sequences, based on the
Sakoe-Chiba local constraints.

DTWSakoeEndp Similar to DTWSakoe, with the addition that endpoints constraints are allowed in
the test sequence.

editDistance Computes the Edit (Levenstein) distance between two sequences of characters.

Auxiliary functions stEnergy, stZeroCrossingRate, IsoDigitRec.

Chapter 6
BWDoHMMsc Computes the recognition probability of an HMM, given a sequence of discrete

observations, by means of the scaled version of the Baum-Welch (any-path) method.

BWDoHMMst Same as BWDoHMMSc, except that no scaling is employed.

MultSeqTrainDoHMMBWsc Baum-Welch training (scaled version) of a Discrete Observation HMM,
given multiple training sequences.

MultSeqTrain DoHMMVITsc Viterbi training (scaled version) of a Discrete Observation HMM, given
multiple training sequences.

MultSeqTrainCoHMMBWsc Baum-Welch training (scaled version) of a Continuous Observation
HMM, given multiple training sequences.

VitCoHMMsc Computes the scaled Viterbi score of an HMM, given a sequence of l-dimensional
vectors of continuous observations, under the assumption that the pdf of each state is a Gaussian
mixture.

VitCoHMMst Same as VitCoHMMsc except that no scaling is employed.

VitDoHMMsc Computes the scaled Viterbi score of a Discrete Observation HMM, given a sequence
of observations.

VitDoHMMst Same as VitDoHMMsc, except that no scaling is employed.

Chapter 7
agglom Generalized Agglomerative Scheme (GAS) for data clustering. It runs, on demand, either the

single-link or the complete-link algorithm.

BSAS Basic Sequential Algorithmic Scheme (BSAS algorithm) for data clustering.

CL_step Performs a step of the complete-link algorithm.

dendrogram_cut Determines the clusterings of a hierarchy that best fit the underlying clustering
structure of the data set at hand.

fuzzy_c_means FCM algorithm for data clustering.

GMDAS Generalized Mixture Decomposition Algorithmic Scheme (GMDAS algorithm) for data
clustering.

k_means k-means clustering algorithm.

Appendix 213

k_medoids k-medoids clustering algorithm.

LLA Competitive leaky learning algorithm for data clustering.

possibi Possibilistic clustering algorithm, adopting the squared Euclidean distance.

SL_step Performs a step of the single-link algorithm.

spectral_Ncut2 Spectral clustering based on the normalized cut criterion.

valley_seeking Valley-seeking algorithm for data clustering.

Auxiliary functions cost_comput, distan, distant_init, rand_data_init, rand_init, reassign.

References

[Bobe 93] Boberg J., Salakoski T., “General formulation and evaluation of agglomerative clustering
methods with metric and non-metric distances,” Pattern Recognition, Vol. 26(9):1395–1406,1993.

[Guat 98] Guattery S., Miller G.L., “On the quality of spectral separators,” SIAM Journal of Matrix
Analysis and Applications, Vol. 19(3):701–719, 1998.

[Keer 01] Keerthi S.S., Shevade S.K., Bhattacharyya C., Murthy K.R.K., “Improvements to Platt’s
SMO Algorithm for SVM Classifier Design,” Neural Computation, Vol. 13(3):637–649, 2001.

[Luxb 07] Luxburg U., “A tutorial on Spectral Clustering,” Statistics and Computing, Vol. 17(4):
395–416, 2007.

[Meas 08] Mease D., Wyner A. “Evidence contrary to the statistical view of boosting,” Journal of
Machine Learning Research, Vol. 9:131–156, 2008.

[Petr 06] Petrou M., Sevilla P.G., Image Processing: Dealing with Texture, John Wiley & Sons, 2006.

[Shi 00] Shi J., Malik J., “Normalized cuts and edge segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 22(8):888–905, 2000.

[Theo 09] Theodoridis S., Koutroumbas K. Pattern Recognition, 4th ed., Academic Press, 2009.

215

Index

A
Activation function, 31
AdaBoost algorithm, 63
Agglomerative clustering algorithms, 200
Area under the receiver operating curve

(AUC), 113

B
Bhattacharyya distance, 119
Baum-Welch method, 148
Bayesian classifiers, 1
Best path method, 148
Basic Sequential Algorithmic Scheme

(BSAS), 161

C
Chernoff bound, 120
Class separability measures, 117
Clustering, 159
Complete link agglomerative algorithm,

200
Cost function optimization clustering

algorithms, 168

D
Data normalization, 108
Dimensionality reduction, 79
Dissimilarity dendrogram, 201
Dynamic time warping, 139

Speech recognition, 143

E
Edit distance, 137
Endpoint constraints, 142
Epoch, 33
Euclidean distance classifier, 6
Expectation-Maximization (EM)

algorithm, 13

F
Feature selection, 107
Feature vector selection, 124
Fisher’s discriminant ratio, 114
Fuzzy c-means (FCM) clustering

algorithm, 184

G
Gaussian probability density function, 2
Generalization performance, 45
Generalized Mixture Decomposition

Algorithmic Scheme (GMDAS), 182

H
Hard clustering algorithms, 168
Hidden Markov models (HMM), 147
Hierarchical clustering algorithms, 198
Hypothesis testing, 111

I
Isodata clustering algorithm, 169
Isolated word recognition, 143

217

218 Index

K
k-means clustering algorithm, 169
k-nearest neighbor probability density

estimation, 21
Kernel PCA, 92
Kernel perceptron, 58
Kernel trick, 58

L
Laplacian eigenmap, 101
Laplacian matrix, 196
Least squares (LS) classifier, 35
Levenstein distance, 137
Local constraints

Itakura, 139
Sakoe-Chiba, 139

M
Mahalanobis distance classifier, 6
Matching sequences of real numbers, 139
Maximum likelihood estimation

technique, 7
Medoid, 179
Minimum distance classifiers, 6
Mixture modeling, 11
Momentum term, 68
Multiclass least squares classifier, 39
Multilayer perceptrons, 66

N
Naive Bayes classifier, 22
Nearest neighbor (NN) classification rule,

148

Neural networks, 66
Neuron, 31, 66

O
One-against-all method, 48
Outlier removal, 107

P
Partitioning around medoids (PAM)

algorithm, 178
Parzen windows, 19
Perceptron algorithm, 30
Possibilistic c-means (PCM) algorithm, 187
Principal component analysis

(PCA), 79
Principle components, 80
Pseudoinverse, 35

R
Receiver Operating Characteristic Curve

(ROC), 113
Reproducing kernel Hilbert spaces, 50

S
Scalar feature selection, 123
Sequential backward floating selection

method, 127
Sequential backward selection

method, 127
Sequential clustering algorithms, 161
Sequential forward floating selection

method, 127
Sequential forward selection method,

127
Single-link agglomerative algorithm, 200

Index 219

Singular value decomposition (SVD), 84
Singular values, 85
Spectral clustering, 195
State transition matrix, 148
Support vector machines (SVM)

the linear case, 43
the multiclass case, 48
the nonlinear case, 50

Support vectors, 45
Synaptic weights, 66

T
t-test, 112
Template matching, 137

V
Viterbi algorithm, 148
Viterbi reestimation method, 148

W
Warping, 139

	Elsevier - An Introduction to Pattern Recognition: A Matlab Approach (03-2010) (ATTiCA)
	Copyright
	Preface
	1 Classifiers Based on Bayes Decision Theory
	Introduction
	Bayes Decision Theory
	The Gaussian Probability Density Function
	Minimum Distance Classifiers
	The Euclidean Distance Classifier
	The Mahalanobis Distance Classifier
	Maximum Likelihood Parameter Estimation of Gaussian pdfs

	Mixture Models
	The Expectation-Maximization Algorithm
	Parzen Windows
	k-Nearest Neighbor Density Estimation
	The Naive Bayes Classifier
	The Nearest Neighbor Rule

	2 Classifiers Based on Cost Function Optimization
	Introduction
	The Perceptron Algorithm
	The Online Form of the Perceptron Algorithm

	The Sum of Error Squares Classifier
	The Multiclass LS Classifier

	Support Vector Machines: The Linear Case
	Multiclass Generalizations

	SVM: The Nonlinear Case
	The Kernel Perceptron Algorithm
	The AdaBoost Algorithm
	Multilayer Perceptrons

	3 Data Transformation: Feature Generation and Dimensionality Reduction
	Introduction
	Principal Component Analysis
	The Singular Value Decomposition Method
	Fisher's Linear Discriminant Analysis
	The Kernel PCA
	Laplacian Eigenmap

	4 Feature Selection
	Introduction
	Outlier Removal
	Data Normalization
	Hypothesis Testing: The t-Test
	The Receiver Operating Characteristic Curve
	Fisher's Discriminant Ratio
	Class Separability Measures
	Divergence
	Bhattacharyya Distance and Chernoff Bound
	Measures Based on Scatter Matrices

	Feature Subset Selection
	Scalar Feature Selection
	Feature Vector Selection

	5 Template Matching
	Introduction
	The Edit Distance
	Matching Sequences of Real Numbers
	Dynamic Time Warping in Speech Recognition

	6 Hidden Markov Models
	Introduction
	Modeling
	Recognition and Training

	7 Clustering
	Introduction
	Basic Concepts and Definitions
	Clustering Algorithms
	Sequential Algorithms
	BSAS Algorithm
	Clustering Refinement

	Cost Function Optimization Clustering Algorithms
	Hard Clustering Algorithms
	Nonhard Clustering Algorithms

	Miscellaneous Clustering Algorithms
	Hierarchical Clustering Algorithms
	Generalized Agglomerative Scheme
	Specific Agglomerative Clustering Algorithms
	Choosing the Best Clustering

	Appendix
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

