

Doing Bayesian Data Analysis: A
Tutorial with R and BUGS

John K. Kruschke

Draft of May 11, 2010. Please do not circulate this preliminary draft. If you report
Bayesian analyses based on this book, please do cite it!̈⌢

Copyright c© 2010 by John K. Kruschke.

ii

Dedicated to my mother, Marilyn A. Kruschke,
and to the memory of my father, Earl R. Kruschke,

who both brilliantly exemplified and taught sound reasoning.
And, in honor of my father,

who dedicated his first book to his children,
I also dedicate this book to mine:

Claire A. Kruschke and Loren D. Kruschke

Contents

1 This Book’s Organization: Read Me First! 1
1.1 Real people can read this book .. 1
1.2 Prerequisites . 2
1.3 The organization of this book .. . 3

1.3.1 What are the essential chapters? 3
1.3.2 Where’s the equivalent of traditional test X in this book? 4

1.4 Gimme feedback (be polite) .5
1.5 Acknowledgments . 5

I The Basics: Parameters, Probability, Bayes’ Rule, and R 7

2 Introduction: Models we believe in 9
2.1 Models of observations and models of beliefs 10

2.1.1 Models have parameters . 11
2.1.2 Prior and posterior beliefs .13

2.2 Three goals for inference from data 13
2.2.1 Estimation of parameter values 13
2.2.2 Prediction of data values . 14
2.2.3 Model comparison . 14

2.3 The R programming language . 15
2.3.1 Getting and installing R . 15
2.3.2 Invoking R and using the command line15
2.3.3 A simple example of R in action 16
2.3.4 Getting help in R . 17
2.3.5 Programming in R . 18

2.3.5.1 Editing programs in R 18
2.3.5.2 Variable names in R . 18
2.3.5.3 Running a program . 19

2.4 Exercises . 19

3 What is this stuff called probability? 21
3.1 The set of all possible events .. . 22

3.1.1 Coin flips: Why you should care 22
3.2 Probability: Outside or inside the head 23

3.2.1 Outside the head: Long-run relative frequency 23
3.2.1.1 Simulating a long-run relative frequency 23

iii

iv CONTENTS

3.2.1.2 Deriving a long-run relative frequency24

3.2.2 Inside the head: Subjective belief 25

3.2.2.1 Calibrating a subjective belief by preferences 25

3.2.2.2 Describing a subjective belief mathematically 26

3.2.3 Probabilities assign numbers to possibilities 26

3.3 Probability distributions 26

3.3.1 Discrete distributions: Probability mass 27

3.3.2 Continuous distributions: Rendezvous with density† 27

3.3.2.1 Properties of probability density functions 29

3.3.2.2 The normal probability density function30

3.3.3 Mean and variance of a distribution 32

3.3.3.1 Mean as minimized variance 33

3.3.4 Variance as uncertainty in beliefs 34

3.3.5 Highest density interval (HDI) 34

3.4 Two-way distributions .35

3.4.1 Marginal probability . 36

3.4.2 Conditional probability .38

3.4.3 Independence of attributes .39

3.5 R code . 40

3.5.1 R code for Figure 3.1 . 40

3.5.2 R code for Figure 3.3 . 41

3.6 Exercises . 41

4 Bayes’ Rule 43
4.1 Bayes’ rule . 44

4.1.1 Derived from definitions of conditional probability 44

4.1.2 Intuited from a two-way discrete table 45

4.1.3 The denominator as an integral over continuous values. 47

4.2 Applied to models and data .47

4.2.1 Data order invariance . 49

4.2.2 An example with coin flipping . 50

4.2.2.1 p(D|θ) is notθ . 52

4.3 The three goals of inference .. 52

4.3.1 Estimation of parameter values 52

4.3.2 Prediction of data values . 52

4.3.3 Model comparison . 53

4.3.4 Why Bayesian inference can be difficult 56

4.3.5 Bayesian reasoning in everyday life 56

4.3.5.1 Holmesian deduction 56

4.3.5.2 Judicial exoneration . 57

4.4 R code . 57

4.4.1 R code for Figure 4.1 . 57

4.5 Exercises . 59

CONTENTS v

II All the Fundamentals Applied to Inferring a Binomial Prop ortion 63

5 Inferring a Binomial Proportion via Exact Mathematical An alysis 65
5.1 The likelihood function: Bernoulli distribution 66
5.2 A description of beliefs: The beta distribution 67

5.2.1 Specifying a beta prior . 68
5.2.2 The posterior beta . 70

5.3 Three inferential goals .. 71
5.3.1 Estimating the binomial proportion 71
5.3.2 Predicting data . 72
5.3.3 Model comparison . 73

5.3.3.1 Is the best model a good model? 75
5.4 Summary: How to do Bayesian inference 75
5.5 R code . 76

5.5.1 R code for Figure 5.2 . 76
5.6 Exercises . 79

6 Inferring a Binomial Proportion via Grid Approximation 83
6.1 Bayes’ rule for discrete values ofθ . 84
6.2 Discretizing a continuous prior density 84

6.2.1 Examples using discretized priors 85
6.3 Estimation . 87
6.4 Prediction of subsequent data 88
6.5 Model comparison . 89
6.6 Summary . 89
6.7 R code . 90

6.7.1 R code for Figure 6.2 etc. 90
6.8 Exercises . 92

7 Inferring a Binomial Proportion via the Metropolis Algori thm 97
7.1 A simple case of the Metropolis algorithm 98

7.1.1 A politician stumbles upon the Metropolis algorithm 99
7.1.2 A random walk . 101
7.1.3 General properties of a random walk 101
7.1.4 Why we care . 104
7.1.5 Why it works . 104

7.2 The Metropolis algorithm more generally 107
7.2.1 “Burn-in,” efficiency, and convergence 108
7.2.2 Terminology: Markov chain Monte Carlo 109

7.3 From the sampled posterior to the three goals 110
7.3.1 Estimation . 111

7.3.1.1 Highest density intervals from random samples 111
7.3.1.2 Using a sample to estimate an integral 112

7.3.2 Prediction . 113
7.3.3 Model comparison: Estimation ofp(D) 113

7.4 MCMC in BUGS . 115
7.4.1 Parameter estimation with BUGS 116
7.4.2 BUGS for prediction . 118

vi CONTENTS

7.4.3 BUGS for model comparison . 119
7.5 Conclusion . 120
7.6 R code . 121

7.6.1 R code for a home-grown Metropolis algorithm 121
7.7 Exercises . 123

8 Inferring Two Binomial Proportions via Gibbs Sampling 127
8.1 Prior, likelihood and posterior for two proportions 129
8.2 The posterior via exact formal analysis 130
8.3 The posterior via grid approximation 133
8.4 The posterior via Markov chain Monte Carlo 134

8.4.1 Metropolis algorithm . 135
8.4.2 Gibbs sampling . 136

8.4.2.1 Disadvantages of Gibbs sampling 139
8.5 Doing it with BUGS . 140

8.5.1 Sampling the prior in BUGS . 141
8.6 How different are the underlying biases? 142
8.7 Summary . 143
8.8 R code . 144

8.8.1 R code for grid approximation (Figures 8.1 and 8.2) 144
8.8.2 R code for Metropolis sampler (Figure 8.3) 146
8.8.3 R code for BUGS sampler (Figure 8.6) 149
8.8.4 R code for plotting a posterior histogram 151

8.9 Exercises . 153

9 Bernoulli Likelihood with Hierarchical Prior 157
9.1 A single coin from a single mint .. 158

9.1.1 Posterior via grid approximation 160
9.2 Multiple coins from a single mint 164

9.2.1 Posterior via grid approximation 166
9.2.2 Posterior via Monte Carlo sampling 169

9.2.2.1 Doing it with BUGS . 171
9.2.3 Outliers and shrinkage of individual estimates 175
9.2.4 Case study: Therapeutic touch .177
9.2.5 Number of coins and flips per coin 178

9.3 Multiple coins from multiple mints 178
9.3.1 Independent mints . 178
9.3.2 Dependent mints . 182
9.3.3 Individual differences and meta-analysis 184

9.4 Summary . 185
9.5 R code . 185

9.5.1 Code for analysis of therapeutic-touch experiment 185
9.5.2 Code for analysis of filtration-condensation experiment 188

9.6 Exercises . 191

CONTENTS vii

10 Hierarchical modeling and model comparison 195
10.1 Model comparison as hierarchical modeling 195
10.2 Model comparison in BUGS . 197

10.2.1 A simple example . 197
10.2.2 A realistic example with “pseudopriors” 199
10.2.3 Some practical advice when using transdimensional MCMC with

pseudopriors. 204
10.3 Model comparison and nested models 206
10.4 Review of hierarchical framework for model comparison. 208

10.4.1 Comparing methods for MCMC model comparison 208
10.4.2 Summary and caveats . 209

10.5 Exercises . 210

11 Null Hypothesis Significance Testing 215
11.1 NHST for the bias of a coin .216

11.1.1 When the experimenter intends to fixN 216
11.1.2 When the experimenter intends to fixz 219
11.1.3 Soul searching . 220
11.1.4 Bayesian analysis . 222

11.2 Prior knowledge about the coin 222
11.2.1 NHST analysis . 223
11.2.2 Bayesian analysis . 223

11.2.2.1 Priors are overt and should influence 223
11.3 Confidence interval and highest density interval 224

11.3.1 NHST confidence interval . 224
11.3.2 Bayesian HDI . 227

11.4 Multiple comparisons .. 227
11.4.1 NHST correction for experimentwise error 228
11.4.2 Just one Bayesian posterior no matter how you look at 230
11.4.3 How Bayesian analysis mitigates false alarms 231

11.5 What a sampling distributionis good for 231
11.5.1 Planning an experiment . 231
11.5.2 Exploring model predictions (posterior predictivecheck) 232

11.6 Exercises . 233

12 Bayesian Approaches to Testing a Point (“Null”) Hypothesis 239
12.1 The estimation (single prior) approach 240

12.1.1 Is a null value of a parameter among the credible values? 240
12.1.2 Is a null value of a difference among the credible values? 241

12.1.2.1 Differences of correlated parameters 242
12.1.3 Region of Practical Equivalence (ROPE) 244

12.2 The model-comparison (two-prior) approach 245
12.2.1 Are the biases of two coins equal or not? 246

12.2.1.1 Formal analytical solution 247
12.2.1.2 Example application . 248

12.2.2 Are different groups equal or not? 249
12.3 Estimation or model comparison? 251

12.3.1 What is the probability that the null value is true? 251

viii CONTENTS

12.3.2 Recommendations . 251
12.4 R code . 252

12.4.1 R code for Figure 12.5 . 252
12.5 Exercises . 255

13 Goals, Power, and Sample Size 259
13.1 The Will to Power . 260

13.1.1 Goals and Obstacles . 260
13.1.2 Power . 261
13.1.3 Sample Size . 262
13.1.4 Other Expressions of Goals . 264

13.2 Sample size for a single coin .. . 264
13.2.1 When the goal is to exclude a null value 265
13.2.2 When the goal is precision . 266

13.3 Sample size for multiple mints 267
13.4 Power: prospective, retrospective, and replication 269

13.4.1 Power analysis requires verisimilitude of simulated data 270
13.5 The importance of planning .. . 271
13.6 R code . 272

13.6.1 Sample size for a single coin .272
13.6.2 Power and sample size for multiple mints 274

13.7 Exercises . 281

III The Generalized Linear Model 289

14 Overview of the Generalized Linear Model 291
14.1 The generalized linear model (GLM) 292

14.1.1 Predictor and predicted variables 292
14.1.2 Scale types: metric, ordinal, nominal 293
14.1.3 Linear function of a single metric predictor 294

14.1.3.1 Reparameterization tox threshold form 296
14.1.4 Additive combination of metric predictors 296

14.1.4.1 Reparameterization tox threshold form 298
14.1.5 Nonadditive interaction of metric predictors 298
14.1.6 Nominal predictors . 300

14.1.6.1 Linear model for a single nominal predictor 300
14.1.6.2 Additive combination of nominal predictors 302
14.1.6.3 Nonadditive interaction of nominal predictors 303

14.1.7 Linking combined predictors to the predicted 304
14.1.7.1 The sigmoid (a.k.a. logistic) function 305
14.1.7.2 The cumulative normal (a.k.a. Phi) function 307

14.1.8 Probabilistic prediction .. . 308
14.1.9 Formal expression of the GLM . 308

14.2 Cases of the GLM . 311
14.2.1 Two or more nominal variables predicting frequency 313

14.3 Exercises . 315

CONTENTS ix

15 Metric Predicted Variable on a Single Group 317
15.1 Estimating the mean and precision of a normal likelihood 318

15.1.1 Solution by mathematical analysis 318
15.1.2 Approximation by MCMC in BUGS 322
15.1.3 Outliers and robust estimation: Thet distribution 323
15.1.4 When the data are non-normal: Transformations 326

15.2 Repeated measures and individual differences 328
15.2.1 Hierarchical model . 330
15.2.2 Implementation in BUGS . 331

15.3 Summary . 333
15.4 R code . 333

15.4.1 Estimating the mean and precision of a normal likelihood 333
15.4.2 Repeated measures: Normal across and normal within 335

15.5 Exercises . 338

16 Metric Predicted Variable with One Metric Predictor 343
16.1 Simple linear regression .. . 344

16.1.1 The hierarchical model and BUGS code 346
16.1.1.1 Standardizing the data for MCMC sampling 347
16.1.1.2 Initializing the chains 348

16.1.2 The posterior: How big is the slope? 349
16.1.3 Posterior prediction .350

16.2 Outliers and robust regression 352
16.3 Simple linear regression with repeated measures 354
16.4 Summary . 357
16.5 R code . 358

16.5.1 Data generator for height and weight 358
16.5.2 BRugs: Robust linear regression 359
16.5.3 BRugs: Simple linear regression with repeated measures 362

16.6 Exercises . 366

17 Metric Predicted Variable with Multiple Metric Predicto rs 371
17.1 Multiple linear regression 372

17.1.1 The perils of correlated predictors 372
17.1.2 The model and BUGS program 375

17.1.2.1 MCMC efficiency: Standardizing and initializing 376
17.1.3 The posterior: How big are the slopes? 376
17.1.4 Posterior prediction .378

17.2 Hyperpriors and shrinkage of regression coefficients 378
17.2.1 Informative priors, sparse data, and correlated predictors 382

17.3 Multiplicative interaction of metric predictors 383
17.3.1 The hierarchical model and BUGS code 384

17.3.1.1 Standardizing the data and initializing the chains 385
17.3.2 Interpreting the posterior .. . 385

17.4 Which predictors should be included? 388
17.5 R code . 390

17.5.1 Multiple linear regression .. 390
17.5.2 Multiple linear regression with hyperprior on coefficients 394

x CONTENTS

17.6 Exercises . 399

18 Metric Predicted Variable with One Nominal Predictor 401
18.1 Bayesian oneway ANOVA . 402

18.1.1 The hierarchical prior .403
18.1.1.1 Homogeneity of variance 404

18.1.2 Doing it with R and BUGS . 404
18.1.3 A worked example . 406

18.1.3.1 Contrasts and complex comparisons 407
18.1.3.2 Is there a difference? . 408

18.2 Multiple comparisons .. 409
18.3 Two group Bayesian ANOVA and the NHSTt test 412
18.4 R code . 413

18.4.1 Bayesian oneway ANOVA . 413
18.5 Exercises . 417

19 Metric Predicted Variable with Multiple Nominal Predict ors 421
19.1 Bayesian multi-factor ANOVA .. . 422

19.1.1 Interaction of nominal predictors 422
19.1.2 The hierarchical prior .424
19.1.3 An example in R and BUGS . 425
19.1.4 Interpreting the posterior .. . 428

19.1.4.1 Metric predictors and ANCOVA 428
19.1.4.2 Interaction contrasts . 429

19.1.5 Non-crossover interactions, rescaling, and homogeneous variances . 430
19.2 Repeated measures, a.k.a. within-subject designs 432

19.2.1 Why use a within-subject design? And why not? 434
19.3 R code . 435

19.3.1 Bayesian two-factor ANOVA . 435
19.4 Exercises . 444

20 Dichotomous Predicted Variable 449
20.1 Logistic regression .. 450

20.1.1 The model . 451
20.1.2 Doing it in R and BUGS . 451
20.1.3 Interpreting the posterior .. . 452
20.1.4 Perils of correlated predictors 454
20.1.5 When there are few 1’s in the data454
20.1.6 Hyperprior across regression coefficients 454

20.2 Interaction of predictors in logistic regression 455
20.3 Logistic ANOVA . 456

20.3.1 Within-subject designs .458
20.4 Summary . 458
20.5 R code . 459

20.5.1 Logistic regression code .459
20.5.2 Logistic ANOVA code . 463

20.6 Exercises . 468

CONTENTS xi

21 Ordinal Predicted Variable 471
21.1 Ordinal probit regression 472

21.1.1 What the data look like . 472
21.1.2 The mapping from metricx to ordinaly 472
21.1.3 The parameters and their priors 474
21.1.4 Standardizing for MCMC efficiency 475
21.1.5 Posterior prediction .475

21.2 Some examples . 476
21.2.1 Why are some thresholds outside the data? 478

21.3 Interaction . 480
21.4 Relation to linear and logistic regression 481
21.5 R code . 481
21.6 Exercises . 486

22 Contingency Table Analysis 489
22.1 Poisson exponential ANOVA .. 490

22.1.1 What the data look like . 490
22.1.2 The exponential link function 490
22.1.3 The Poisson likelihood . 492
22.1.4 The parameters and the hierarchical prior 494

22.2 Examples . 494
22.2.1 Credible intervals on cell probabilities 495

22.3 Log linear models for contingency tables 496
22.4 R code for Poisson exponential model 497
22.5 Exercises . 504

23 Tools in the Trunk 507
23.1 Reporting a Bayesian analysis 508

23.1.1 Essential points . 508
23.1.2 Optional points . 509
23.1.3 Helpful points . 509

23.2 MCMC burn-in and thinning .510
23.3 Functions for approximating highest density intervals 513

23.3.1 R code for computing HDI of a grid approximation 513
23.3.2 R code for computing HDI of a MCMC sample 513
23.3.3 R code for computing HDI of a function 515

23.4 Reparameterization of probability distributions 516
23.4.1 Examples . 516
23.4.2 Reparameterization of two parameters 517

References 519

Index 528

xii CONTENTS

Chapter 1

This Book’s Organization: Read Me
First!
Contents

1.1 Real people can read this book . 1
1.2 Prerequisites . 2
1.3 The organization of this book . 3

1.3.1 What are the essential chapters? 3
1.3.2 Where’s the equivalent of traditional test X in this book? 4

1.4 Gimme feedback (be polite) . 5
1.5 Acknowledgments . 5

Oh honey I’m searching for love that is true,
But driving through fog is so dang hard to do.
Please paint me a line on the road to your heart,
I’ll rev up my pick up and get a clean start.

1.1 Real people can read this book

This book explains how to actuallydo Bayesian data analysis, by real people (like you),
for realistic data (like yours). The book starts at the basics, with notions of probability and
programming, then progresses to advanced hierarchical models that are used in realistic data
analysis. In other words, you do not need to already know statistics and programming. This
book is speaking to a first-year graduate student or advancedundergraduate in the social or
biological sciences: Someone who grew up in Lake Wobegon1, but who is not the mythical
being that has the previous training of a nuclear physicist and then decided to learn about
Bayesian statistics.

This book provides broad coverage and ease of access. Section 1.3 describes the con-
tents in a bit more detail, but here are some highlights. Thisbook covers Bayesian analogues

1A popular weekly radio show on National Public Radio, calledA Prairie Home Companion, features
fictional anecdotes about a small town named Lake Wobegon. The stories, written and orated by Garrison
Keillor, always end with the phrase, “And that’s the news from Lake Wobegon, where all the women are strong,
all the men are good looking, and all the children are above average.” So, if you grew up there, ...

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

1

2 CHAPTER 1. THIS BOOK’S ORGANIZATION: READ ME FIRST!

of all the traditional statistical tests that are presentedin introductory statistics textbooks, in-
cluding t-tests, analysis of variance (ANOVA), regression, chi-square tests, and so on. This
book also covers crucial issues fordesigningresearch, such as statistical power and methods
for determining the sample size needed to achieve a desired research goal. And you don’t
need to already know statistics to read this book, which starts at the beginning, including
introductory chapters about concepts of probability, and an entire chapter devoted to Bayes’
rule. The important concept of hierarchical modeling is introduced with unique simple ex-
amples, and the crucial methods of Markov chain Monte Carlo sampling are explained at
length, starting with simple examples that, again, are unique to this book. Computer pro-
grams are thoroughly explained throughout the book, and listed in their entirety, so you can
use and adapt them to your own needs.

But wait, there’s more. As you may have noticed from the beginning of this chapter,
the chapters commence with a stanza of elegant and insightful verse composed by a famous
poet. The quatrains2 are formed of dactylic3 tetrameter4, or, colloquially speaking, “coun-
try waltz” meter. The poems regard conceptual themes of the chapter via allusion from
immortal human motifs often expressed by country western song lyrics, all in waltz timing.
If youdo notfind them tobeall that funny,
if theyleave youwanting backall of your money,
well honey somewaltzing’s asmallprice topay,
for all the goodlearning you’ll getif you stay.

1.2 Prerequisites

There is no avoiding mathematics when doing statistics. On the other hand, this book is def-
initely not a mathematical statistics textbook, in that it does not emphasize theorem proving,
and any mathematical statistician would be totally bummed at the informality, dude. But
I do expect that you are coming to this book with a dim knowledge of basic calculus. For
example, if you understand expressions like

∫

dx x= 1
2 x2, you’re probably good to go. No-

tice the previous sentence said “understand” the statementof the integral, not “generate”
the statement on your own! When mathematical derivations are helpful for understanding,
they will usually be presented with a thorough succession ofintermediate steps, so you can
actually come away feeling secure and familiar with the tripand destination, rather than
just feeling car sick after being thrown blindfolded into the trunk and driven around curves
at high speed.

The beginnings of your journey will go more smoothly if you have had some basic
experience programming a computer, but previous programming experience is not crucial.
A computer program is just a list of commands that the computer can execute. For example,
if you’ve ever typed an “=” in an Excel spreadsheet cell, you’ve written a programming
command. If you’ve ever written a list of commands in Basic orPascal or Java or any other
language, then you’re set. We will be using a language calledR, which isfree. More on R
later.

2quatrain [noun]: Four lines of verse. (Unless it’s written “qua train”, in which case it’s a philosopher
comparing something to a locomotive.)

3dactylic [adj.]: A metrical foot in poetry comprising one stressed and two unstressed syllables. (Not to be
confused with a pterodactyl, which was a flying dinosaur, andwhich probably sounded nothing like a dactyl
unless it fell from the sky and bounced twice: THUMP-bump-bump.)

4tetrameter[noun]: A line of verse containing four metrical feet. (Not to be confused with a quadraped,
which has four feet, but is averse to lines.)

1.3. THE ORGANIZATION OF THIS BOOK 3

• Section 2.3 introduces R.

• Chapter 4 explains Bayes’ rule.

• Chapter 7 explains Markov chain Monte Carlo methods.

• Section 7.4 introduces BUGS.

• Chapter 9 explains hierarchical models.

• Chapter 13 explains varieties of power analysis.

• Chapter 14 overviews the generalized linear model and various types of data
analyses that can be conducted.

• Section 23.1 summarizes how to report a Bayesian data analysis.

Figure 1.1: Essential sections of the book.

1.3 The organization of this book

This book has three major parts. The first part covers foundations: The basic ideas of
probabilities, models, Bayesian reasoning, and programming in R.

The second main part covers all the crucial ideas of modern Bayesian data analy-
sis while using the simplest possible type of data, namely dichotomous data such as
agree/disagree, remember/forget, male/female, etc. Because the data are so simplistic, the
focus can be on the Bayesian techniques. In particular, the modern techniques of “Markov
chain Monte Carlo” (MCMC) are explained thoroughly and intuitively. And, the ideas of
hierarchical models are thoroughly explored. Because the models are kept simple in this
part of the book, intuitions about the meaning of hierarchical dependencies can be devel-
oped in glorious graphic detail. This second part of the bookalso explores methods for
planning how much data will need to be collected to achieve a desired degree of precision
in the conclusions. This is called “sample size planning” or“power analysis”.

The third main part of the book applies the Bayesian methods to realistic data. The
applications are organized around the type of data being analyzed, and the type of measure-
ments that are used to explain or predict the data. For example, suppose you are trying to
predict college grade point average (GPA) from high school Scholastic Aptitude Test (SAT)
score. In this case the data to be predicted, the GPAs, are values on ametricscale, and the
predictor, the SAT scores, are also values on ametric scale. Suppose, on the other hand,
that you are trying to predict college GPA from gender. In this case the predictor is adi-
chotomousvalue, namely, male vs. female. Different types of measurement scales require
different types of mathematical models, but otherwise the underlying concepts are always
the same. Table 14.1 (p. 312) shows various combinations of measurement scales and their
corresponding models that are explored in detail in the third part of this book.

1.3.1 What are the essential chapters?

The foundations established in the first part of the book, andthe Bayesian ideas of the
second part, are important to understand. The applicationsto particular types of data, in the
third part, can be more selectively perused as needed. Within those parts, however, there

4 CHAPTER 1. THIS BOOK’S ORGANIZATION: READ ME FIRST!

are some chapters that are essential:

• Chapter 4 explains Bayes’ rule.

• Chapter 7 explains Markov chain Monte Carlo methods.

• Chapter 9 explains hierarchical models.

• Chapter 14 overviews the generalized linear model and various types of data analyses
that can be conducted.

As an emphasis of the book isdoingBayesian data analysis, it is also essential to learn the
programming languages R and BUGS:

• Section 2.3 introduces R.

• Section 7.4 introduces BUGS.

Finally, the ultimate purpose of data analysis is to convince other people that their beliefs
should be altered by the data. The results need to be communicated to a skeptical audience,
and therefore additional essential reading is

• Section 23.1 summarizes how to report a Bayesian data analysis.

Another important topic is the planning of research, as opposed to the analysis of data
after they have been collected. Bayesian techniques are especially nicely suited for estimat-
ing the probability that specified research goals can be achieved as a function of the sample
size for the research. Therefore, although it might not be essential on a first reading, it is
essential eventually to read

• Chapter 13 regarding power analysis.

Figure 1.1 puts these recommendations in a convenient reference box, re-arranged into the
order of presentation in the book.

1.3.2 Where’s the equivalent of traditional test X in this book?

Because many readers will be coming to this book after havingalready been exposed to tra-
ditional 20th-century statistics that emphasize null hypothesis significance testing (NHST),
this book will provide Bayesian approaches to the usual topics in NHST textbooks. Ta-
ble 1.1 lists various tests covered by standard introductory statistics textbooks, along with
their Bayesian analogues. If you have been previously contaminated by NHST, but want to
know how to do an analogous Bayesian analysis, Table 1.1 may be useful.

A superficial conclusion from Table 1.1 might be, “Gee, the table shows that traditional
statistical tests do something analogous to Bayesian analysis in every case, therefore it’s
pointless to bother with Bayesian analysis.” Such a conclusion would be wrong. First,
traditional NHST has deep problems, some of which are discussed in Chapter 11. Second,
Bayesian analysis yields richer and more informative inferences than NHST, as will be
shown in numerous examples in throughout the book.

1.4. GIMME FEEDBACK (BE POLITE) 5

Table 1.1: Bayesian analogues of 20th century null hypothesis significance tests.

Traditional Analysis Name Bayesian Analogue

t-test for a single mean Chapter 15
t-test for two independent groups Chapter 18 (Section 18.3)

Simple linear regression Chapter 16
Multiple linear regression Chapter 17

Oneway ANOVA Chapter 18
Multi-factor ANOVA Chapter 19
Logistic regression Chapter 20
Ordinal regression Chapter 21

Binomial test Chapters 5–9, 20
Chi-square test (contingency table) Chapter 22

Power analysis (sample size planning) Chapter 13

1.4 Gimme feedback (be polite)

I have worked thousands of hours on this book, and I want to make it better.
If you have suggestions regarding any aspect of this book, please do e-mail me:
JohnKruschke@gmail.com. Let me know if you’ve spotted egregious errors or innocuous
infelicities, typo’s or thoughto’s. Let me know if you have asuggestion for how to clarify
something. Especially let me know if you have a good example that would make things
more interesting or relevant. I’m also interested in complete raw data from research that is
interesting to a broad audience, and which can be used with acknowledgement but without
fee. Let me know also if you have more elegant programming code than what I’ve cob-
bled together. The outside margins of these pages are intentionally made wide so that you
have room to scribble your ridicule and epithets before re-phrasing them into kindly stated
suggestions in your e-mail to me. Rhyming couplets are especially appreciated. If I don’t
respond to your e-mail in a timely manner, it is only because Ican’t keep up with the deluge
of fan mail, not because I don’t appreciate your input. Thankyou in advance!

1.5 Acknowledgments

This book has been six years in the making, and many colleagues and students have pro-
vided helpful comments. The most extensive comments have come from Drs. Luiz Pessoa,
Mike Kalish, Jerry Busemeyer, and Adam Krawitz; thank you all! Particular sections were
insightfully improved by helpful comments from Drs. Michael Erickson, Robert Nosofsky,
and Geoff Iverson. Various parts of the book benefitted indirectly from communications
with Drs. Woojae Kim, Charles Liu, Eric-Jan Wagenmakers andJeffrey Rouder. Leads
to data sets were offered by Drs. Teresa Treat and Michael Trosset, among others.Very
welcome supportive feedback was provided by Dr. Michael Lee, and also by Dr. Adele
Diederich. A Bayesian-supportive working environment wasprovided by many colleagues
including Drs. Richard Shiffrin, Jerome Busemeyer, Peter Todd, James Townsend, Robert
Nosofsky, and Luiz Pessoa. Other department colleagues have been very supportive of
integrating Bayesian statistics into the curriculum, including Drs. Linda Smith and Amy
Holtzworth-Munroe. Various teaching assistants have provided helpful comments; in par-
ticular I especially thank Drs. Noah Silbert and Thomas Wisdom for their excellent as-

6 CHAPTER 1. THIS BOOK’S ORGANIZATION: READ ME FIRST!

sistance. As this book has evolved over the years, suggestions have been contributed by
numerous students, including Aaron Albin, Thomas Smith, Sean Matthews, Thomas Parr,
Kenji Yoshida, Bryan Bergert, and perhaps dozens of others who have contributed insight-
ful questions or comments that helped me tune the presentation in the book. To all the
people who have made suggestions but whom I have inadvertently forgotten to mention by
name, I extend my apologies and appreciation.

Part I

The Basics: Parameters, Probability,
Bayes’ Rule, and R

7

Chapter 2

Introduction: Models we believe in
Contents

2.1 Models of observations and models of beliefs 10
2.1.1 Models have parameters . 11
2.1.2 Prior and posterior beliefs . 13

2.2 Three goals for inference from data 13
2.2.1 Estimation of parameter values 13
2.2.2 Prediction of data values . 14
2.2.3 Model comparison . 14

2.3 The R programming language . 15
2.3.1 Getting and installing R . 15
2.3.2 Invoking R and using the command line 15
2.3.3 A simple example of R in action 16
2.3.4 Getting help in R . 17
2.3.5 Programming in R . 18

2.3.5.1 Editing programs in R 18
2.3.5.2 Variable names in R 18
2.3.5.3 Running a program 19

2.4 Exercises . 19

I just want someone who I can believe in,
Someone at home who will not leave me grievin’.
Show me a sign that you’ll always be true,
and I’ll be your model of faith and virtue.

Inferential statistical methods help us decide what to believe in. With inferential statistics,
we don’t just introspect to find the truth. Instead, we rely ondata from observations. Based
on the data, what should we believe in? Should we believe thatthe tossed coin is fair if
it comes up heads in 7 of 10 flips? Should we believe that we havecancer when the test
comes back positive? Should we believe that she loves me whenthe daisy has 17 petals?
Our beliefs can be modified when we have data, and this book is about techniques for
making inferencesfrom datato uncertain beliefs.

There might be some beliefs that cannot be decided by data, but such beliefs are dogmas
that lie (double entendre intended) beyond the reach of evidence. If you are wondering
about a belief that has no specific implications for concretefacts in the observable world,
then inferential statistics won’t help.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

9

10 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

Why do we need hefty tomes full of mathematics to help us make decisions based on
data? After all, we make lots of decisions every day without math. If we’re driving, we look
at the signal light and effortlessly decide whether it’s red or green. We don’t (consciously)
go through a laborious process of mathematical statistics and finally conclude that it is
probably the case that the light is red. There are two attributes of this situation that make
the decision easy. First, the data about the light are numerous: An unobstructed view of
the light results in a whole lot of photons striking our eyes.Second, there are only a few
possible beliefs about the light, that make very distinct predictions about the photons: If
the light is red, the photons are rather different than if the light is green. Consequently,
the decision is easy because there is little variance in the data and little uncertainty across
possible beliefs.

The math is most helpful when there is lots of variance in the data and lots of uncer-
tainty in our beliefs. Data from scientific experiments, especially those involving humans
or animals, are unmitigated heaps of variability. Theoriesin science tend to be rife with
parameters of uncertain magnitude, and competing theoriesare numerous. In these situ-
ations, the mathematics of statistical inference provide precise numerical bounds on our
uncertainty. The math allows us to determine accurately what the data imply for different
possible beliefs. The math can tell us exactly how likely or unlikely each possibility is, even
when there is an infinite spectrum of possibilities. It is this power, of precisely defining our
uncertainty, that makes inferential statistics such a useful tool, worth the effort of learning.

2.1 Models of observations and models of beliefs

Suppose we flip a coin to decide which team kicks off. The teams agree to this decision
procedure because they believe that the coin is fair. But howdo we determine whether the
coin really is fair? Even if we could study the exact minting process of the coin, and x-ray
every nuance of the coin’s interior, we would still need to test whether the coin really is fair
when it’s actually flipped. Ultimately, all we can do is flip the coin a few times and watch
its behavior. From these observations we can modify our beliefs about the fairness of the
coin.

Suppose we have a coin from our friend the numistmatist1. We notice that on the ob-
verse is embossed the head of Tanit (of ancient Carthage), and on the reverse side is em-
bossed a horse. The coin is gold and shows the date 350BCE. Do you believe that the coin is
fair? Maybe you do, but maybe you’re not very certain.2 Let’s flip it a few times. Suppose
we flip it ten times and we obtain this sequence: HTTTTTHTTT. That’s 2 heads and 8 tails.
Now what do you think? Do you have a suspicion that maybe the coin is biased to come up
tails more often than heads?

We’ve seen that the coin comes up horses a lot. Whoa! Let’s dismount and have a heart-
to-heart ’round the campfire. In that simple coin-flipping scenario we have made two sets of
assumptions. First, we have assumed that the coin has some inherent fairness or bias, that
we can’t directly observe. All we can actually observe is an inherently probabilistic effect
of that bias, namely, whether the coin comes up heads or tailson any given flip. We’ve made
lots of assumptions about exactly how the observable head ortail relates to the unobservable

1Numistmatist[noun]: A person who studies or collects coins.
2A tale about coins marked BCE is a well-known joke because anycoin actually minted BCE could not

have been marked BCE at the time it was minted. But even a coin marked with a bogus date might be a fair
flipper.

2.1. MODELS OF OBSERVATIONS AND MODELS OF BELIEFS 11

bias of the coin. For instance, we’ve assumed that the bias stays the same, flip after flip.
We’ve assumed that the coin can’t remember what it came up last flip, so that its flip this
time is uncorrupted by its previous landings. All these assumptions are about the process
that converts the unobservable bias into a probabilistic observable event. This collection of
assumptions about the coin flipping process is our model of the head-tail observations.

The second set of assumptions is about our beliefs regardingthe bias of the coin. We
assume that we believe most strongly in the coin being fair, but we also allow for the possi-
bility that the coin could be biased. Thus, we have a set of assumptions about how likely it
is for the coin to be fair or to be biased to different amounts. This collection of assumptions
is our model of our beliefs.

When we want to get specific about our model assumptions, thenwe have to use math-
ematical descriptions. A “formal” model uses mathematicalformulas to precisely describe
something. In this book, we’ll almost always be using formalmodels, and sowhenever
the term “model” comes up, you can assume it means a mathematical description. In the
context of statistical models, the models are typically models of probabilities. Some models
describe the probabilities of observable events; e.g., we can have a formula that describes
the probability that a coin will come up heads. Other models describe the extent to which
we believe in various underlying possibilities; e.g., we can have a formula that describes
how much we believe in each possible bias of the coin.

2.1.1 Models have parameters

Consider a model of the probability that it will rain at a particular location. This model is a
formula that generates a numerical probability as its output. The probability of rain depends
on many things, but in particular it might depend on elevation above sea level. Thus, the
probability of rain, which is the output of the model, depends on the location’s elevation,
which is a value that is input to the model. The exact relationship between input and output
could be modulated by another value that governs exactly howmuch the input affects the
output. This modulating value is called aparameter. The model formula specifies that the
input does affect the output, but the parameters govern exactly how much.

As another example, consider the probability that a coin comes up heads. We could
model the probability of heads as a function of the lopsidedness of the coin. To measure
lopsidedness, first consider slicing the coin like a bagel, exactly halfway between the head
and tail faces. The lopsidedness is defined as the mass of the tail side minus the mass of the
head side, measured in milligrams. Therefore, when lopsidedness is positive, the tail side
is heavier, and heads are more likely to come up. Then we use a formula to convert from
lopsidedness to probability of coming up heads. One such formula is graphed in the left
panel of Figure 2.1. The S-shaped curve indicates that when the lopsidedness is zero, i.e.,
x = 0, then the coin is fair, i.e., the probability of the outcomebeing a head is 50%, which
is written mathematically asp(datum= H|x) = 0.50. The S-shaped curve also shows that
when the coin is positively lopsided, i.e.,x > 0, then the coin is biased to come up heads
more often, but when the coin is negatively lopsided, i.e.x < 0, then the coin is biased to
come up heads less often.

The model, which gets us from a coin’s lopsidedness to its probability of coming up
heads, could have another variable that modulates the exactdegree of bias stemming from
a particular lopsidedness. For example, large-diameter coins might not be as affected by
lopsidedness as small-diameter coins. The variable that modulates the exact probability
bias is called a parameter, because its value is specified by the theorist rather than being

12 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model of Observable

x (i.e., lopsidedness)

p(
 d

at
um

=
H

 |
x

) γ = 0.3

γ = 1.5

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Model of Belief

γ
p(

γ) α = 1.5

α = 0.5

Figure 2.1: The left panel shows a model of the probability ofan observable datum,
i.e., a coin coming up heads, as a function of a measured input, x, the lopsidedness
of a coin. The exact form of the S-shaped curve is governed by aparameter,γ.
The graph shows the function for two different values of the parameterγ. The
right panel shows a model of how much we believe in candidate values ofγ. The
exact form of the hill-shaped beliefs depends on the value ofα, which is called a
“hyperparameter.”

measured from the world. Figure 2.1 shows the S-shaped curvefor two different values
of a parameter calledγ (Greek letter gamma). Whenγ is small, then a little lopsidedness
doesn’t bias the coin much. Whenγ is large, then a little lopsidedness produces a big bias
in the the coin.

We theorists might not know in advance exactly what value of the parameter to believe
in, so we entertain a spectrum of possible values, each with adifferent degree of belief.
The right panel of Figure 2.1 shows possible distributions of beliefs over the values of the
parameterγ. This is a model of our beliefs. The exact shape of the hill-shaped belief
distribution is governed by another parameter, this one calledα (Greek letter alpha). Theα
parameter is in our model of beliefs about the parameterγ, and therefore theα parameter
is called ahyperparameter. A hyperparameter is merely a parameter upon which other
parameters depend. Notice in the figure that whenα is large, we believe more in smallish
values ofγ, and whenα is small, we believe in a broader spectrum of larger values ofγ.

In summary, we can have a mathematical model of the probability that certain observ-
able events happen. This mathematical model has parameters. The values of the parameters
determine the exact probabilities generated by the model. Our beliefs regard the possi-
ble values of the parameters. We may believe strongly in someparameter values but less
strongly in other values. The form of our beliefs about various parameter values can itself
be expressed as a mathematical model, with its own (hyper-)parameters.

(Tangential aside for the philosophically inclined: The difference between a measured
data value, such as lopsidednessx = 1.2, and a hypothetical parameter value, such as
γ = 1.2, is not so clear cut as has been assumed above. On the one hand, whenever we make
an observation, we are converting something in the world into a numerical scale value. This
measurement process is itself a form of parameter estimation, because when we measure

2.2. THREE GOALS FOR INFERENCE FROM DATA 13

the lopsidedness of a coin, we are estimating the value of thelopsidedness parameter that
is most consistent with our mechanical interaction with thecoin. On the other hand, when
we estimate the value of a parameter in a model, we are essentially measuring the world in
terms of that parameter scale.)

2.1.2 Prior and posterior beliefs

We could believe that the coin is fair, that is, that the probability of coming up heads is 50%.
We could instead have other beliefs about the coin, especially if it’s dated 350BCE, which
no coin would be labeled if it were really minted BCE (becausethe people alive in 350BCE
didn’t yet know they were BCE). Perhaps, therefore, we also think it’s possible for the coin
to be biased to come up heads 20% of the time, or 80% of the time.Before observing the
coin flips, we might believe that each of these three dispositions is equally likely, that is, we
believe that there is a one-in-three chance that the bias is 20%, a one-in-three chance that
the bias is 50%, and a one-in-three chance that the bias is 80%.

After flipping the coin and observing 2 heads in 10 flips, we will want to modify our
beliefs. It makes sense that we should now believe more strongly that the bias is 20%,
because we observed 20% heads in the sample. This book is about determiningexactlyhow
much more strongly we should believe that the bias is 20%.

Before observing the flips of the coin, we had certain beliefsabout the possible biases of
the coin. This is called aprior belief because it’s our belief before taking into account some
particular set of observations. After observing the flips ofthe coin, we had modified beliefs.
These are called aposterior belief because they are computed after taking into account a
particular set of observations. Bayesian inference gets usfrom prior to posterior beliefs.

There is an infelicity in the terms “prior” and “posterior,”however. The terms connote
the passage of time, as if the prior beliefs were held temporally before the posterior beliefs.
But that is a misconception. There is no temporal ordering inthe prior and posterior beliefs!
Rather, the prior is simply the belief we hold byexcludinga particular set of data, and the
posterior is the belief we hold byincludingthe set of data. Despite this misleading temporal
connotation, the terms “prior” and “posterior” are firmly entrenched in the literature, so
we’ll use them too.

2.2 Three goals for inference from data

When we make observations of the world, we typically have oneof three goals in mind.
Each of these goals can be illustrated with the coin-flippingscenario.

2.2.1 Estimation of parameter values

One goal we may have is deciding to what extent we should believe in each of the possible
parameter values. In the case of the coin, we used the observed data to determine the extent
to which we should believe that the bias is 20%, 50%, or 80%. What we are determining is
how much we believe in each of the available parameter values.

Because the flip of the coin is a random process, we cannot be certain of the underlying
true probability of getting heads. So our posterior beliefsare an estimate. The posterior
beliefs typically increase the magnitude of belief in some parameter values, while lessening
the degree of belief in other parameter values. So this process of shifting our beliefs in
various parameter values is called “estimation of parameter values.”

14 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

2.2.2 Prediction of data values

Another goal we may have is predicting other data values, given our current beliefs about
the world. For example, given that we have just observed the ball leaving the pitcher’s hand
and we now believe it’s a curve ball, where do we predict the ball will be when it gets near
the plate? Or, given that we only saw how the ball crossed overthe plate, and from that we
believe it was a curve ball, then what do we predict was the pitcher’s grip on the ball as it
was released?

Notice that “prediction” is another of those words that connotes temporal order but
isn’t always used that way in statistics. Prediction simplymeans inferring the values of
some missing data based on some other included data, regardless of the actual temporal
relationship of the included and missing data.

An ability to make specific predictions is one of the primary uses of mathematical mod-
els. Models help us predict the effectiveness of a flu vaccine when distributed to the general
public. Models help us predict the paths of hurricanes. And models can help us predict
whether the next coin flip will be heads or tails.

In Bayesian inference, to predict data values, we typicallytake a weighted average of
our beliefs. We let each belief make its individual prediction, and then we weigh each of
those predictions according to how strongly we believe in them. For example, if we believe
strongly that the coin has a bias of 20% heads, and we only weakly believe in biases of 50%
or 80%, then our prediction will be a mixture of the three beliefs weighted strongly toward
20%; perhaps, therefore, we predict a 30% chance of a head on the next flip.

2.2.3 Model comparison

A third goal of statistical inference is model selection, a.k.a. model comparison. If we have
two different models of how something might happen, then an observation of what really
does happen can influence which model we believe in most. WhatBayesian inference tells
us is how to shift our magnitude of belief across the available models.

As a somewhat contrived example, suppose we have two different models of the coin.
One model assumes what we’ve described before, that the coincould have biases of 20%,
50%, or 80% heads. The second model assumes that the coin is either a perfectly fair coin or
else it’s a trick coin with two heads or two tails. This model allows the coin to biases of 0%,
50%, or 100% heads. Notice that the second model assumes different available parameter
values than the first model.

After observing 10 flips that had 2 tails, which model do we believe in more? Let’s
think about the second model. Because our observations werenot purely heads or purely
tails, we know that the posterior beliefs for that model mustload all belief on 50% heads,
because we did not observe all heads or all tails. This model then is stuck asserting that the
10 observed flips with just 2 tails were generated by a fair coin, which is not very likely.
The first model, on the other hand, has the belief of 20% heads available to it, which can
generate the observed data with high likelihood. Thereforewe should believe the first model
more strongly than the second. The mathematics of Bayesian inference can tellexactlyhow
much more to believe the first model than the second.

One of the nice qualities of Bayesian model comparison is that it intrinsically adjusts
for model complexity. More complex models will fit data better than simple models, merely
because the complex models have more flexibility. Unfortunately, more complex models
will also fit random noise better than simpler models. We are interested in the model that

2.3. THE R PROGRAMMING LANGUAGE 15

best fits the real trends in the data, not just the model that best fits the noise. As we will see
in later chapters, Bayesian methods naturally take into account the complexity of model.

2.3 The R programming language

In this book you will learn how to actuallydo Bayesian statistics. For any but the simplest
models, that means using a computer. Because the computer results are so central to doing
real Bayesian statistics, examples of using the R computer programming language will be
integrated into the simplest “toy” problems, so that R will not be an extra hurdle later.

The R language is great at doing Bayesian statistics for a number of reasons. First, it’s
free! You can get it via the web and easily install it on your computer. Second, it’s already
a popular language for doing Bayesian statistics, so there are lots of resources available.
Third, it is a powerful and easy, general-purpose computinglanguage, so you can use it for
many other applications too.

2.3.1 Getting and installing R

It’s easy to get and install R, but there are a lot of optional details in the process, and the
hardest part of installation is figuring out which little details donot apply to you!

Basic installation is easy. Go tohttp://cran.r-project.org/. At the top of that
webpage is a section headed “Download and Install R” followed by three links: Linux,
MacOS, and Windows. These three links refer to the type of operating system used on your
computer. Although R can be installed on any of those three types of operating system,
it turns out that another package will be using extensively,called BUGS, only works on
Windows. Macintosh users report that if they first install the freeware WINE (WINE Is Not
an Emulator) fromhttp://www.winehq.org/, and then install R and BUGS from within
WINE, everything works seamlessly. The same is supposed to be true of Unix/Linux users.
Therefore, from here on, I will assume that you are using Windows or WINE.

After clicking the Windows link, you will see a page with two links: base and contrib.
Click “base”. This opens a page with many links, most of whichyou will not need. Find
the link with a label that ends with “.exe” and is described as“Setup program...”. When
you click the .exe link, just save the file, and after it is saved, run it. This should install R
on your computer. There may be a few details that you have to navigate on your own, but
remember that centuries ago lots of people crossed the oceans in tiny wooden boats without
any electronics, so you can navigate the small perils of R installation.3

2.3.2 Invoking R and using the command line

Invoke R by double clicking the R icon in Windows. A user interface should open. In
particular, one of the windows will be a command line interface. This window is constantly
attentive to your every whim (well, every whim you can express in R). All you have to
do is type in your wish and R will execute it as a command. For example, if you type in
show(2+2), followed by pressing the Enter key, R will reply with4. In fact, if you just type
in 2+2, without theshow function, R will still reply with4.

A program(a.k.a.script) is just a list of commands that R executes. For example, you
could first type inx=2 and then, as a second command, type inx+x, to which R will reply4.

3Of course, lots of people failed to cross the ocean, but that’s different.

16 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

−2 −1 0 1 2

0
1

2
3

4

x

y

Figure 2.2: A simple graph drawn
by R. The R code that generated
this graph is on p. 17.

This is because R assumes that when you type inx+x, you are really asking for the value of
the sum of the value ofx with the value ofx, not an algebraic reformulation such as2*x that
some systems assume.4

2.3.3 A simple example of R in action

As a simple example of what R can do, let’s plot a quadratic function: y = x2. What looks
like a smooth curve on a graph is actually a set of points connected by straight lines, but the
lines are so small that the graph looks like a smooth curve. Sowhat we have to do is tell R
where all those densely packed points go.

Every point is specified by its x and y coordinates, so we have to provide R with a
list of x values and a list of corresponding y values. Let’s arbitrarily select x values from
−2 to +2, separated by intervals of 0.1. We have R set up the list of x values by using
the built-in sequencefunction: x = seq(from = -2 , to = 2 , by = 0.1). Inside R, the
variablex now refers to a list of 31 values:−2.0,−1.9, −1.8, ...,+2.0. This sort of ordered
list of numerical values is called a “vector” in R. In this textbook, programming commands
are typeset in a distinctive font,like this, to distinguish them from English prose and to
help demarcate the scope of the programming command when it is embedded in an English
sentence.

Next we tell R to create the correspondingy values. We type iny = xˆ2. R interprets
“ ˆ” to mean raising values to a power. Inside R, the variabley now refers to a vector of 31
values: 4.0, 3.61, 3.24, ..., 4.0.

All that remains is telling R to make a plot of thex andy points, connected by lines.
Conveniently, R has a built-in function calledplot, which we call by enteringplot(x ,
y , type="l"). The segment of code,type="l", tells R to plot lines only and not points.

4You might ask, if R were a Bayesian reasoner, when you typed in2+2, wouldn’t it reply something like,
“well, I believe most strongly in 4, but the answer might be a little higher or a little lower”? A Bayesian reasoner
would reply that way only if there were uncertainty introduced somewhere along the way. If the values to be
added were uncertain, or if summation itself were an uncertain process, then the sum would be uncertain too.
R assumes that numerals and arithmetic have no uncertainty.

2.3. THE R PROGRAMMING LANGUAGE 17

If we left that part of the command out, then R would plot only points by default, not the
connecting lines. The resulting plot is shown in Figure 2.2,and the complete R code that
generated the graph is shown below:

(SimpleGraph.R)

1 x = seq(from = -2 , to = 2 , by = 0.1) # Specify vector of x values.

2 y = xˆ2 # Specify corresponding y values.

3 plot(x , y , type = "l") # Make a graph of the x,y points.

4 dev.copy2eps(file = "SimpleGraph.eps") # Save the plot to an EPS file.

The code listing above has a few display features that will bestandard throughout this
book. First, the listing begins with the script’s filename. This filename is relevant when you
want to find the script on the website for this book. The filename is also in the index of
this book. Second, the listing has line numbers in the margin. These line numbers are not
part of the script, they are only part of the printed display.The line numbers are especially
useful for the long programs encountered later in the book.

The last line of the program uses the functiondev.copy2eps to save the graph to a file
using a format called encapsulated postscript (eps). The command might not work on all
installations of R, because some systems have not installedthe eps driver. If the command
doesn’t work on your system, don’t worry! You can save the graph in other formats, such
as pdf. But how? Hmmm... Typehelp(’dev.copy2eps’). Although the resulting help text
can be somewhat cryptic, it reveals alternative commands such asdev.copy2pdf, which save
the graph in pdf format.

2.3.4 Getting help in R

The plot function has many optional details that you can specify, such as the axis limits
and labels, font sizes, etc. You can learn more about those details by getting help from R.
Type the commandhelp(’plot’) and you can read all about it. In particular, the information
directs you to another command,par, that controls all the plot parameters. To learn about it,
typehelp(’par’). In general, it actuallyis helpful to use thehelp command. To get a list of
all sorts of online documentation, much of it written in readable prose instead of telegraphic
lists, typehelp.start(). Another useful way to find help with R is through web search. In
your favorite web searcher, type in the R terms you want help with. When searching with
the term “R” it helps to enclose it in square brackets, like this: [R].

A highly recommended resource is a summary of basic R commands that can be found
on a compact list available at this URL:
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Other versions of reference cards can be found by searching the web with the phrase “R
reference card”.

Much of the time you’ll learn about features of R on an as-needed basis, and usually
that means you’ll look for examples of the sort of thing you want to do and then imitate the
example. (Or, the example might at least provoke you into realizing that there is a better
way to do it than the method in the example!) Therefore, most of the examples in this
book have their full R code included. Hopefully it will help you to study those examples as
needed.

If you are already familiar with the programming languages Matlab or Python,
you can find thesauruses of synonymous commands in R at this web site:
http://mathesaurus.sourceforge.net/

18 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

2.3.5 Programming in R

Instead of typing all the commands one at a time at the commandline, you can type them
into a text document and then have R execute the document. Thedocument is called a
program.

Some important points for newbie programmers:

• Be sure you save your program in a file where you can find it again, with a filename
that is easy to recognize weeks later.

• Be sure to save the program every time you make a smallworkingchange.

• If you are about to make a big change, save the current workingversion and start the
modified version with a new filename. This way, when your modified version doesn’t
work, you still have the old working version to fall back on.

• Put lots of explanatory comments in your code, so that you canunderstand what
the heck you were doing when you come back to the program months later. To
include a comment in a program, simply type a “#” character, and everything after
that character, on the same line, will be ignored by the R interpreter. You can see
examples of comments in the code listings at the ends of the chapters.

2.3.5.1 Editing programs in R

Programs such as the one on p. 17 can be typed in any text-basedword processor, but it
can help enormously to use an editor that is “R friendly.” Thebasic editor built into R
is okay for small programs, but larger programs become unwieldy. One useful and free
editor is Tinn-R, available athttp://www.sciviews.org/Tinn-R/. It has many useful
features such displaying comments in different colors and fonts than the command lines,
highlighting matching parentheses, etc.

If you are using Windows Vista or Windows7, and if Tinn-R willnot communicate
with R, try the following fix: Browse to the folder Program Files> R > R-2.*. Right-click
the “etc” folder and open its Properties. On the security tab, change the permissions so
that the folder contents can be written to by you. This permits the Rconsole.site file to
be overwritten by Tinn-R. Now go to Tinn-R, and from its menu click R > Configure>
Permanent (Rprofile.site).

2.3.5.2 Variable names in R

You should name variables meaningfully, so that the programming commands are easy for
a reader to understand. If you name your variables cryptically, you will curse your poor
judgment when you return to the program weeks later and you have no idea what your
program does.

You can use fairly long, descriptive names. If the names get too long, however, then the
program becomes unwieldy to type and read. For example, suppose you want to name the
crucial final output of a program. You could name ittempfoo, but that’s not very meaningful,
and might even lead you to think that the variable is unimportant. Instead, you could name
it theCrucialFinalOutputThatWillChangeTheWorldForever, but that would be burdensome to
type and read as it gets re-used in the program. So, you might best name it something like
finalOutput, which is meaningful but not too long.

2.4. EXERCISES 19

Computer programmers typically use a naming convention called camelBack notation.
This is a way of connecting several words into a contiguous variable name without using
spaces between words. For example, suppose you want to name avariable “final output”.
You are not allowed to name a variable with a space in it because computer compilers in-
terpret spaces as separators of variables. One way to avoid using spaces is to connect the
words with explicit connectors such as an underscore or a dot, like this: final output or
final.output. Many programmers do use those naming conventions. But the underscore
notation can be difficult to read sometimes, and the dot notation is interpreted by some pro-
gramming languages (other than R) as referring to subcomponents of structured variables,
which confuses people who are familiar with that meaning of adot. Therefore, the spaces
are simply dropped, with successive words capitalized:finalOutput. The initial word is
typically not capitalized, but some people have different uses for initial-capitalized variable
names. R is case sensitive: the variablemyVar is different than the variablemyvar!

I will try to use camelBack notation in all the programs in this book. I may occasion-
ally lapse from bactrian beauty, instead slithering into snakeback notation (finaloutput) or
gooseneck notation (final output) or ant notation (final.output). If you see these lower
forms, quietly shun them, knowing that when you create your own programs, you will use
the more highly evolved dromedary design.

2.3.5.3 Running a program

Running a program is easy, but exactly how to do it depends on how you are interacting
with R.

If you are working in R’s command console, first make sure thatR has its working
directory specified as the folder in which the program resides. Do this by selecting menu
itemsFile thenChange dir..., and browsing to the appropriate folder in the pop-up dialogue
box. Then you can run the program by “source”-ing it. Do this by selecting menu items
File thenSource R code..., and browsing to the program in the pop-up dialogue box. You
can also type thesource("yourProgramName.R") command directly at the command line.

You will more often be working interactively with a program that is open in an edit-
ing window. To open an R editing window, select menu itemsFile then New scriptor
Open script. Once you have a program open in an editing window, you can runthe program,
or merely a few lines within it, by selecting menu itemsEdit thenRun line or selectionor
Run all. If you run the program from an editing window, every commandis echoed in the
command window. If you run the program bysourceing it in the command window, then
the program is executed without displaying the lines of code.

If you are working on a program in the editor Tinn-R, you will see menu buttons on the
top tool bar that are equivalent to the R commands reviewed above. There is a button for
setting the current working directory, there is another button for sourceing the program, and
yet another button for running only the lines selected in theprogram being edited.

2.4 Exercises

Exercise 2.1.[Purpose: To think about what beliefs can be altered by inference from data.] Suppose
I believe that exactly 47 angels can dance on my head. (These angels cannot be seen or
felt in any way.) Is there any evidence you could provide thatwould change my belief?

20 CHAPTER 2. INTRODUCTION: MODELS WE BELIEVE IN

Suppose I believe that exactly 47 anglers5 can dance on the floor of the bait shop. Is there
any evidence you could provide that would change my belief?

Exercise 2.2.[Purpose: To get you actively manipulating mathematical models of probabilities. Notice,

however, that these models have no parameters.]Suppose we have a four-sided die from a board
game. (On a tetrahedral die, each face is an equilateral triangle. When you roll the die, it
lands with one face down and the other three visible as the faces of a three-sided pyramid.
To read the value of the roll, you pick up the die and see what landed face down.) One side
has 1-dot, the second side has 2-dots, the third side has 3-dots, and the fourth side has 4-
dots. Denote the value of the bottom face asx. Consider the following three mathematical
descriptions of the probabilities ofx. Model A: p(x) = 1/4. Model B: p(x) = x/10.
Model C: p(x) = 12/(25x). For each model, determine the value ofp(x) for each value of
x. Describe in words what kind of bias (or lack of bias) is expressed by each model.

Exercise 2.3.[Purpose: To get you actively thinking about how data cause beliefs to shift.] Suppose
we have the tetrahedral die introduced in the previous exercise, along with the three candi-
date models of the die’s probabilities. Suppose that initially we are not sure what to believe
about the die. On the one hand, the die might be fair, with eachface landing with the same
probability. On the other hand, the die might be biased, withthe faces that have more dots
landing down more often (because the dots are created by embedding heavy jewels in the
die, so that the sides with more dots are more likely to land onthe bottom). On yet another
hand, the die might be biased such that more dots on a face makeit less likely to land down
(because maybe the dots are bouncy rubber or protrude from the surface). So, initially, our
beliefs about the three models can be described asp(A) = p(B) = p(C) = 1/3. Now we
roll the die 100 times and find these results: #1′s = 25, #2′s = 25, #3′s = 25, #4′s = 25.
Do these data change our beliefs about the models? Which model now seems most likely?
Suppose when we rolled the die 100 times we found these results: #1′s = 48, #2′s = 24,
#3′s= 16, #4′s= 12. Now which model seems most likely?

Exercise 2.4.[Purpose: Actually doing Bayesian statistics, eventually, and the next exercises, immedi-

ately.] Install R on your computer. (And if that’s not exercise, I don’t know what is.)

Exercise 2.5. [Purpose: Being able to record and communicate the results of your analyses.] Run
the code listed on p. 17. The last line of the code saves the graph to a file in a format
called “encapsulated PostScript” (abbreviated as eps), which your favorite word processor
might be able to import. If your favorite word processor doesnot import eps files, then read
the R documentation and find some other format that your word processor likes better; try
help(’dev.copy2eps’). You may find that you can just copy and paste the displayed graph
directly into your document, but it can be useful to save the graph as a stand-alone file for
future reference. Include the code listing and the resulting graph in a document that you
compose using a word processor of your choice.

Exercise 2.6.[Purpose: Getting experience with the details of the command syntax within R.] Adapt
the code listed in p. 17 so that it plots a cubic function (y = x3) over the intervalx ∈ [−3,+3].
Save the graph in a file format of your choice. Include a listing of your code, commented,
and the resulting graph.

5Angler [noun]: A person who fishes with a hook and line.

Chapter 3

What is this stuff called probability?
Contents

3.1 The set of all possible events . 22
3.1.1 Coin flips: Why you should care 22

3.2 Probability: Outside or inside the head 23
3.2.1 Outside the head: Long-run relative frequency 23

3.2.1.1 Simulating a long-run relative frequency 23
3.2.1.2 Deriving a long-run relative frequency 24

3.2.2 Inside the head: Subjective belief25
3.2.2.1 Calibrating a subjective belief by preferences 25
3.2.2.2 Describing a subjective belief mathematically 26

3.2.3 Probabilities assign numbers to possibilities 26
3.3 Probability distributions . 26

3.3.1 Discrete distributions: Probability mass 27
3.3.2 Continuous distributions: Rendezvous with density† 27

3.3.2.1 Properties of probability density functions 29
3.3.2.2 The normal probability density function 30

3.3.3 Mean and variance of a distribution 32
3.3.3.1 Mean as minimized variance 33

3.3.4 Variance as uncertainty in beliefs34
3.3.5 Highest density interval (HDI) 34

3.4 Two-way distributions . 35
3.4.1 Marginal probability . 36
3.4.2 Conditional probability . 38
3.4.3 Independence of attributes . 39

3.5 R code . 40
3.5.1 R code for Figure 3.1 . 40
3.5.2 R code for Figure 3.3 . 41

3.6 Exercises . 41

Oh darlin’ you change from one day to the next,
I’m feelin’ deranged and just plain ol’ perplexed.
I’ve learned to put up with your raves and your rants,
The mean I can handle but not variance.

Inferential statistical techniques provide precision to our uncertainty about possibilities.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

21

22 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

Uncertainty is measured in terms ofprobability, and so we have to establish the basic prop-
erties of probability before we can make inferences about it. This chapter introduces the
basic ideas of probability. If this chapter seems too abbreviated for you, an excellent be-
ginner’s introduction to the topics of this chapter has beenwritten by Albert and Rossman
(2001, pp. 227–320).

3.1 The set of all possible events

Suppose I have a coin that I am going to flip. How likely is it to come up a head? How
likely is it to come up a tail? How likely is it to come up a torso? Notice that when we
contemplate the likelihood of each outcome, we have a space of all possible outcomes in
mind. Torso is not one of the possible outcomes. Notice also that a single flip of a coin can
result in only one outcome; it can’t be both heads and tails ina single flip. The outcomes
are mutually exclusive.

Whenever we ask about how likely an event is, we always ask with a set of possible
events in mind. This set exhausts all possible outcomes, andthe outcomes are all mutually
exclusive. This set is called thesample space.

In the previous chapter, we talked about the probability of aflipped coin coming up
heads. The probability of coming up heads can be denoted withparameter labelθ (Greek
letter theta); for example, a coin is fair whenθ = .5 (spoken “theta equals point five”). We
also have talked about the degree of belief that the coin is fair. The degree of belief about a
parameter can be denotedp(θ). If the coin is minted by the federal government, we might
have a strong belief that the coin is fair, e.g.,p(θ = .5) = .99, spoken “the probability (or
degree of belief) that theta equals .5 is 99 percent”.

Both “probability” (of head or tail) and “degree of belief” (in fairness) refer to sample
spaces. The sample space for flips of a coin consists of two possible events: head and tail.
The sample space for coin bias consists of a continuum of possible values:θ = 0, θ = .01,
θ = .02, θ = .03, and all values in between, up toθ = 1. When we flip a given coin, we
are sampling from the space of head or tail. When we grab a coinat random from a sack of
coins, we are sampling from the space of possible biases.

3.1.1 Coin flips: Why you should care

The fairness of a coin might be hugely consequential for highstakes games, but it isn’t often
in life that we flip coins. So why bother studying the statistics of coin flips?

Because coin flips are a surrogate for myriad other real-lifeevents that we care about.
For a given type of heart surgery, what is the probability that patients survive more than 1
year? For a given type of drug, what is the probability of headache as a side effect? For
a particular training method, what is the probability of at least 10% improvement? For
a survey question, what is the probability that people will agree or disagree? In a two
candidate election, what is the probability that a person will vote for each candidate?

Whenever we are discussing coin flips, keep in mind that we could be talking about
some domain in which you are actually interested! The coins are merely a generic repre-
sentative of a universe of analogous applications.

3.2. PROBABILITY: OUTSIDE OR INSIDE THE HEAD 23

3.2 Probability: Outside or inside the head

Sometimes we talk about probabilities of events that are “out there” in the world. The face
of a flipped coin is such an event: We can observe the outcome ofa flip, and the probability
of coming up heads can be estimated by observing a bunch of flips.

But sometimes we talk about probabilities of events that arenot so clearly “out there,”
and instead are just possible beliefs “inside the head.” Ourbelief about the fairness of a coin
is an example of an event inside the head. (The coin may have anintrinsic bias, but right now
I’m referring to ourbelief about the bias.) Our beliefs refer to a space of mutually exclusive
and exhaustive possibilities, but it might be strange to saythat we randomly sample from
our beliefs, like we randomly sample from a sack of coins. Nevertheless, the mathematical
properties, of probabilities outside the head and beliefs inside the head, are the same in their
essentials, as we will see.

3.2.1 Outside the head: Long-run relative frequency

For events outside the head, it’s intuitive to think of probability as being the long-run relative
frequency of each possible event. For example, if I say that for a fair coin the probability
of heads is .5, what I mean is that if we flipped the coin many times, about 50% of the flips
would come up heads. In the long run, after flipping the coin many, many times, the relative
frequency of heads would be very nearly .5.

We can determine the long-run relative frequency two different ways. One way is to
approximate it by actually sampling from the space many times and tallying the number
of times each event happens. A second way is by deriving it mathematically. These two
methods are now explored in turn.

3.2.1.1 Simulating a long-run relative frequency

Suppose we want to know the long-run relative frequency of getting heads from a fair coin.
It might seem blatantly obvious that we should get about 50% heads in any long sequence of
flips. But let’s pretend that it’s not so obvious: All we know is that there’s some underlying
process that generates an “H” or a “T” when we sample from it. The process has a parameter
calledθ, whose value isθ = .5. If that’s all we know, then we can approximate the long-run
probability of getting an “H” by simply repeatedly samplingfrom the process. We sample
from the processN times, tally the number of times an “H” appeared, and estimate the
probability ofH by the relative frequency: est.θ = θ̂ = #H/N.

It gets tedious and time-consuming to manually sample a process, such as flipping a
coin. Instead, we can let the computer do the repeated sampling much faster (and hopefully
the computer feels less tedium than we do). Figure 3.1 shows the results of a computer
simulating many flips of a fair coin. The R programming language has pseudo-random
number generators built into it, which we will use often.1 On the first flip, the computer
randomly generates a head or a tail. It then computes the proportion of heads obtained
so far. If the first flip was a head, then the proportion of headsis 1/1 = 1.0. If the first
flip was a tail, then the proportion of heads is 0/1 = 0.0. Then the computer randomly
generates a second head or tail, and computes the proportionof heads obtained so far. If
the sequence so far is HH, then the proportion of heads is 2/2 = 1.0. If the sequence so far

1Pseudo-random number generators are not actually random; they are in fact deterministic. But the proper-
ties of the sequences they generate mimic the properties of random processes.

24 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Running Proportion of Heads

Flip Number

P
ro

po
rt

io
n

H
ea

ds

Flip Sequence = HHTHHTHTTT...

End Proportion = 0.494

Figure 3.1: Running
proportion of heads when
flipping a coin. The
x-axis is plotted on a
logarithmic scale so that
you can see the details
of the first few flips but
also the long-run trend
after many flips. (The R
code that generated this
graph is in Section 3.5.1
(RunningProportion.R).
When you run the code,
your graph will look
different than this one
because you will gener-
ate a different random
sequence of flips.)

is HT or TH, then the proportion of heads is 1/2 = 0.5. If the sequence so far is TT, then
the proportion of heads is 0/2 = 0.0. Then the computer generates a third head or tail, and
computes the proportion of heads so far, and so on for many flips. Figure 3.1 shows the
running proportion of heads as the sequence continues.

Notice in Figure 3.1 that at the end of the long sequence, the proportion of heads isnear
0.5 but not necessarily exactly equal to 0.5. This discrepancy reminds us that even this long
run is still just a finite random sample, and there is no guarantee that the relative frequency
of an event will match the true underlying probability of theevent. That’s why we say we
areapproximatingthe probability by the long-run relative frequency.

3.2.1.2 Deriving a long-run relative frequency

Sometimes, when the situation is simple enough mathematically, we can derive the exact
long-run relative frequency. The case of the fair coin is onesuch simple situation.

The sample space of the coin consists of 2 possible outcomes,head and tail. By the
assumption of fairness, we know that each outcome is equallylikely. Therefore the long-
run relative frequency of heads should be exactly one out of two, i.e., 1/2, and the long-run
relative frequency of tails should also be exactly 1/2.

This technique is easily extended to other simple situations. Consider, for example, a
standard six-sided die. It has six possible outcomes, namely 1 dot, 2 dots, ..., 6 dots. If we
assume that the die is fair, then the long-run relative frequency of each outcome should be
exactly 1/6.

Suppose that we put different dots on the faces of the six-side die. In particular, suppose
that we put 1 dot on one face, 2 dots on two faces, and 3 dots on the remaining three faces.
We still assume that each of the six faces is equally likely. Then the long-run relative
frequency of 1 dot is exactly 1/6, and the long-run relative frequency of 2 dots is exactly
2/6, and the long-run relative frequency of 3 dots is exactly 3/6.

3.2. PROBABILITY: OUTSIDE OR INSIDE THE HEAD 25

3.2.2 Inside the head: Subjective belief

How strongly do you believe that a coin minted by the US government is fair? If you believe
that the coin could be slightly different than exactly fair, then how strongly do you believe
thatθ = .51? Orθ = .49? If instead you are considering a coin that is ancient, asymmetric,
and lopsided, do you believe that it inherently hasθ = .50? How about a coin purchased at
a magic shop? We are not talking here about the true, inherentprobability that the coin will
come up heads. We are talking about our degree of belief in each possible probability.

To specify our subjective beliefs, we have to specify how likely we think each possible
outcome is. It can be hard to pin down mushy intuitive beliefs. In the next section we
explore one way to “calibrate” subjective beliefs, and in the subsequent section we discuss
ways to mathematically describe degrees of belief.

3.2.2.1 Calibrating a subjective belief by preferences

Consider a simple question that might affect travelers: How strongly do you believe that
there will be a snowstorm that closes the interstate highways near Indianapolis next New
Year’s Day? Your job in answering that question is to providea number between 0 and 1
that accurately reflects your belief probability. One way tocome up with such a number is
to calibrate your beliefs relative to other events with clear probabilities.

As a comparison event, consider a marbles-in-sack experiment. In a sack we put 10
marbles, 5 red and 5 white. We shake the sack and then draw a marble at random. The
probability of getting a red marble is, of course, 5/10 = 1/2 = .5. We will use this sack of
marbles as a comparison for considering snow in Indianapolis on New Year’s Day.

Consider the following two gambles that you can choose from:

• Gamble A: You get $100 if there is a traffic stopping snowstorm in Indianapolis next
New Year’s Day.

• Gamble B: You get $100 if you draw a red marble from a sack of marbles with 5 red
and 5 white marbles.

Which gamble would you prefer? If you prefer Gamble B, that means you think there is less
than a 50-50 chance of a traffic-stopping snowstorm in Indy. So at least you now know that
your subjective belief about the probability of traffic-stopping snowstorm is less than .5.

We can narrow down the degree of belief by considering other comparison gambles.
Consider these two gambles:

• Gamble A: You get $100 if there is a traffic stopping snowstorm in Indianapolis next
New Year’s Day.

• Gamble C: You get $100 if you draw a red marble from a sack of marbles with 1 red
and 9 white marbles.

Which gamble would you prefer? If you now prefer Gamble A, that means you think
there is more than a 10% chance of traffic-stopping snowstorm in Indy on New Year’s Day.
Taken together, the two comparison gambles have told you that your subjective probability
lies somewhere between .1 and .5. We could continue to consider preferences against other
candidate gambles to calibrate your subjective belief moreaccurately.

26 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

3.2.2.2 Describing a subjective belief mathematically

When there are several possible outcomes in a sample space, it might be too much effort to
try to calibrate your subjective belief about every possible outcome. Instead, you can use a
mathematical function to summarize your beliefs.

For example, you might believe that the average American woman is 5’4” tall, but be
open to the possibility that the average might be somewhat above or below that value. It is
too tedious and maybe impossible to specify your degree of belief that the average height is
4’1”, or 4’2”, or 4’3”, and so on up through 6’1’, 6’2”, and 6’3” etc. So you might instead
describe your degree of belief by a bell-shaped curve that ishighest at 5’4” and drops off
symmetrically above and below that most-likely height. Youcan change the width and
center of the curve until it seems to best capture your subjective belief. Later in the book
we will talk about exact mathematical formulas for functions like these, but the point now
is merely to understand the idea that mathematical functions can define curves that can be
used to describe degrees of belief.

3.2.3 Probabilities assign numbers to possibilities

In general, a probability, whether it’s outside the head or inside the head, is just a way
of assigning numbers to a set of mutually exclusive possibilities. The numbers, called
“probabilities,” merely need to satisfy three properties (Kolmogorov, 1956):

1. A probability value must be non-negative (i.e., zero or positive).

2. The sum of the probabilities across all events in the entire sample space must be 1.0
(i.e., one of the events in the space must happen, otherwise the space does not exhaust
all possibilities).

3. For any two mutually exclusive events, the probability that oneor the other occurs
is thesumof their individual probabilities. For example, the probability that a fair
six-sided die comes up 3-dotsor 4-dots is 1/6 + 1/6 = 2/6. As another example, if
you believe there is a 60% chance of 0 to<3 inches of snow, and a 20% chance of
3 to <6 inches of snow, then you should believe that there is a 80% (=60%+20%)
chance of 0 to<6 inches of snow.

Any assignment of numbers to events that respects those three properties will also have
all the properties of probabilities that we will discuss below. So whether a probability is
thought of as a long-run relative frequency of outcomes in the world, or as a magnitude of
a subjective belief, it behaves the same way mathematically.

3.3 Probability distributions

A probability distribution is simply a list of all possible outcomes and their corresponding
probabilities. For a coin, the probability distribution istrivial: We list two outcomes (head
and tail) and their two corresponding probabilities (θ and 1− θ). For other sets of outcomes,
however, the distribution can be more complex. For example,consider the total number
of calories consumed by a person in a day. There is some probability that the number of
calories consumed in a day will be 2000.0, some probability that the number will be less,
say 1898.3, some probability that the number will be more, say 2447.9, and so forth. When

3.3. PROBABILITY DISTRIBUTIONS 27

the outcomes are continuous, like calories, then the notionof probability takes on some
subtleties, as we will see.

3.3.1 Discrete distributions: Probability mass

When the sample space consists of discrete outcomes, then wecan talk about the probability
of each distinct outcome. For example, the sample space of a flipped coin has two discrete
outcomes, and we talk about the probability of head or tail. The sample space of a six-sided
die has six discrete outcomes, and we talk about the probability of 1 dot, 2 dots, and so
forth.

For continuous outcome spaces, we candiscretizethe space into a finite set of mutually
exclusive and exhaustive “bins.” For example, although calories consumed in a day is a
continuous scale, we can divide up the scale into a finite number of intervals, such as<1500,
1500-2000, 2000-2500, 2500-3000, and>3000. Then we can talk about the probability of
any one of those five intervals occurring: The probability of2000-2500 is perhaps highest,
with the probabilities of the other intervals dropping off from that high. Of course, the sum
of the probabilities across the five intervals must sum to 1.

The probability of a discrete outcome is sometimes referredto as a probabilitymass
to distinguish it from the probability density of an infinitesimal outcome, which will be
defined next.

3.3.2 Continuous distributions: Rendezvous with density†

If you think carefully about a continuous outcome space, yourealize that it becomes prob-
lematic to talk about the probability of a specific value on the continuum, as opposed to an
interval on the continuum. For example, the probability that I eat exactly 2319.58372019...
calories today is essentially nil, and that is true forany exact value you care to think of.
We can, however, talk about the probability of intervals: The probability that I eat between
2000 and 2500 calories today is, say, .43. The problem with using intervals, however, is
that their widths and edges are arbitrary, and very wide intervals are not very precise. So
what we will do is make the intervals infinitesimally narrow,and instead of talking about
the infinitesimal probability of that infinitesimal interval, we will talk about the ratio of the
probability to the interval width. That ratio is called the probability density. Examples and
further explanation follow.

Consider a spinner of the kind often found with board games. It has an arrow mounted
on a hub in the center, and a flick of the finger makes the arrow spin around. Friction causes
the arrow to eventually stop, pointing in some random direction. Along the perimeter of
points reached by the arrowhead, there is a numerical scale that reads continuously from 0
to 1, wrapping around the circumference of the circle so thatthe 1 touches the 0, as shown
in the top-left of Figure 3.2. We assume that the spinner is fair, so that any value from 0 to
1 is equally likely to be pointed at.

Let’s divide the spinner into 2 equal sectors, one from 0 to .5and the other from .5 to
1. When we spin the spinner, what is the probability that the outcome is in the first sector?
Obviously the answer is 1/2. Suppose instead we divide the spinner intoN equal sectors.
What is the probability that that the spinner stops in any oneof theN sectors? Obviously,

† “There is a mysterious cycle in human events. To some generations much is given. Of other generations
much is expected. This generation of Americans has a rendezvous with destiny.” Franklin Delano Roosevelt,
1936.

28 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

1/N. Notice that as we divide the spinner into more and more sectors, the probability of
stopping in any one of them gets smaller and smaller. So if we want to know the probability
of getting within a narrow range of a specific value, the probability is arbitrarily tiny.

But what if we instead consider the ratio of probability to sector width? The probability
of stopping in a sector is 1/N, and the width of a sector is 1/N, so the ratio is (1/N)/(1/N) =
1. That ratio is called the probabilitydensity. It is called probability density by analogy
with material density, which is defined as mass divided by volume. More loosely speaking,
density is defined as the amount of stuff divided by the space it takes up. Applying that to
the spinner, probability density in a sector is the amount ofprobability in that sector divided
by the size of the sector. Again by analogy to material density, the amount of probability in
the sector is called the probabilitymass. To reiterate, the probability density in an interval
is the probability mass of that interval divided by the interval width.

Our goal, however, is finding the probability densityat a point. To do that, we con-
sider the probability density in the limit as the interval width around the point becomes
infinitesimal. In the case of the fair spinner, this is easy: AsN gets infinitely large, 1/N gets
infinitesimally small. The density around a point in an interval is always (1/N)/(1/N) = 1,
even asN grows infinitely large. In conclusion, for this case of a fairspinner ranging from
0 to 1, the probability density at every value is exactly 1.

Probability densities are not always exactly 1. For example, suppose that we re-label
the spinner scale such that it starts at zero, but instead of uniformly going up to 1.0 in a 360◦

sweep, it goes only up to 0.5, as shown in the top-middle of Figure 3.2. Consider the sector
from 0 to 0.1. This sector covers 1/5th of the spinner, not 1/10th. Therefore, the probability
mass within the sector is 1/5 = .2, the sector width is 0.1, and the probability density within
the sector is.2/.1 = 2. In general for this spinner, for a sector of widthw, the probability
mass is 2w, and so the probability density in the sector is 2w/w = 2. The probability density
at a point is just the probability density of an infinitesimalinterval around the point. Thus,
for this case of a fair spinner ranging from 0 to 0.5, the probability density at every value is
exactly 2. Notice that all we have changed from the previous example is the scale that goes
around the circumference of the spinner. When the scale wentfrom 0 to 1, the density was
uniformly 1.0. When the scale went from 0 to 0.5, the density was uniformly 2.0.

Probability densities can be greater than 1, whereas probability masses cannot be greater
than 1. Consider an analogy to a sponge. A 1 gram sponge has a mass of 1 gram regardless
of how expanded or compressed it is. But the 1 gram sponge, when extremely tightly
compressed into a tiny volume, can have a density as high as metal.

Probability densities are not always uniform. Continuing with the spinner example,
suppose that the scale on the circumference of the spinner islogarithmic base-10, starting
at 1 and wrapping around to 100 (like the x-axis of Figure 3.1,but going only to 100), as
shown in the top-right of Figure 3.2. For this scale, the value of 10 appears 180◦ around the
circle from 1, and the value 100 meets the value 1. The sector from 1 to 10 spans half the
circle, and so the probability mass of the interval is .5, andthe (average) probability density
of this interval is.5/(10−1) = .05556. The sector from 10 to 100 spans the other half of the
circle, and its (average) probability density is.5/(100− 10) = .00556, ten times less than
the first half. As we consider smaller intervals, you can see that the density differences will
persist.

The lowly sponge can again educate our intuition. The 1 gram sponge can be squeezed
at one end while the other end remains unsqueezed. The overall mass of the sponge re-
mains 1 gram, but the density in the compressed end is much higher than the density in the
uncompressed end.

3.3. PROBABILITY DISTRIBUTIONS 29

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

Spinner with [0 , 1] scale

x

p(
x)

 d
en

si
ty

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

Spinner with [0 , .5] scale

x

p(
x)

 d
en

si
ty

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Spinner with [1 , 100] logarithmic scale

x
p(

x)
 d

en
si

ty

Figure 3.2: Spinners with different scales (above) and graphs of their probability
density functions (below).

3.3.2.1 Properties of probability density functions

Consider again the basic spinner with a uniform scale from 0 to 1. What is the probability
that the spinner lands somewhere between 0 and 1? The answer is, of course, 1, because
the spinner must, by definition, have an outcome in the range 0to 1. When we partition
the spinner intoN intervals, the probability of landing in any one interval is1/N. Notice,
therefore, that the sum of the probabilities of the intervals is 1: 1/N+...+1/N = N×1/N = 1.

In general, for any continuous value that is split up into intervals, the sum of the proba-
bilities of the individual intervals must be 1, because someparticular value must happen, by
definition. We can write that as an equation, but we need to define some notation first. Let
the continuous variable be denotedx. The width of an interval onx is denoted∆x (the sym-
bol “∆” is Greek letter capital delta). Leti be an index for the intervals, and let [xi , xi+∆x]
denote the interval betweenxi andxi+∆x. The probability mass of theith interval is denoted
p([xi , xi+∆x]). Then —and this is the point— the sum of those probability masses is 1:

∑

i

p([xi , xi+∆x]) = 1.0. (3.1)

Recall now the definition of probability density: It is the ratio of probability mass over
interval width. We can re-write Equation 3.1 in terms of the density of each interval, by
dividing and multiplying by∆x, as follows:

∑

i

∆x
p([xi , xi+∆x])

∆x
= 1.0 (3.2)

In the limit, as the interval width becomes infinitesimal, wedenote the width of the interval
aroundx asdx instead of∆x, and we denote the probabilitydensityin the infinitesimal

30 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

interval aroundx simply asp(x) (not to be confused withp([xi , xi +∆x]), which was the
probability mass in an interval). Then the summation in Equation 3.2 becomes an integral:

∑

i
︸︷︷︸
∫

∆x

︸︷︷︸

dx

p([xi , xi+∆x])
∆x

︸ ︷︷ ︸

p(x)

= 1.0 that is,
∫

dx p(x) = 1.0 (3.3)

In this book, integrals will be written with thedx term next to the integral sign, as in
Equation 3.3, instead of at the far right end of the expression. Although this placement is not
the most conventional notation, it is neither wrong nor unique to this book. The placement
of dx next to the integral sign makes it easy to see what variable isbeing integrated over,
without have to put subscripts on the integral sign. This usage is especially helpful later
when we encounter integrals of functions that involve multiple variables.

The lower half of Figure 3.2 plots the probability density functions of the three spinner
examples. The first example with the spinner had a scale that went from 0 to 1. As you may
recall, we figured out that the density is 1.0 for all values ofx on that scale. That density is
plotted in the lower-left panel of Figure 3.2. Does Equation3.3 work for this case? That is,
does the probability density integrate to 1.0? Consider thedensity graph: It is a rectangle
with height 1 and width 1, so its area is 1. The area under the density graphis the integral
of the density function, so clearly Equation 3.3 is verified.

The second example with the spinner had a scale that went from0 to .5, and we deter-
mined that the density was 2.0 for all values ofx. This density is plotted in the lower-middle
panel of Figure 3.2. Does Equation 3.3 work for this case? Does the probability density
integrate to 1.0? The density function is a rectangle, with height 2.0 and width 0.5, so its
area is 1.0.

The third example with the spinner involved a logarithmic scale that went from 1 to 100.
We determined that its density on the low end of the scale was greater than its density on
the high end of the scale. Although I won’t derive it here, it turns out that the density at the
point x is 1/(2 ln(10)x). (The mathematically inclined can find the method for deriving this
result in Section 23.4.) This density is plotted in the lower-right panel of Figure 3.2. Notice
that over the interval from 1 to 10, a typical density is around .05, which we determined
earlier. For the interval from 10 to 100, a typical density isaround .005, as we found before.
This density function also integrates to 1.0, as it must.

To reiterate, in Equation 3.3,p(x) is the probability density in the infinitesimal interval
aroundx. Typically we let context tell us whether we are referring toa probability mass
or a probability density, and use the same notation,p(x), for both. For example, ifx is
the value of the face of a six-sided die, thenp(x) is a probability mass. Ifx is the exact
point-value of number of calories consumed, thenp(x) is a probability density. There can
be “slippage” in the usage, however. For example, ifx refers to calories consumed, but the
scale is discretized into intervals, thenp(x) is really referring to the probability mass of the
interval in whichx falls. In the end, you’ll have to be careful and tolerant of ambiguity.

3.3.2.2 The normal probability density function

Any function that has only non-negative values and integrates to 1 (i.e., satisfies Equa-
tion 3.3) can be construed as a probability density function. Perhaps the most famous prob-
ability density function is thenormaldistribution, also known as the Gaussian distribution.
A graph of the normal curve is a bell-shape; an example is shown in Figure 3.3.

3.3. PROBABILITY DISTRIBUTIONS 31

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

Normal Probability Density

x

p(
x)

µ = 0

σ = 0.2

∆x = 0.02

∑
x

 ∆x p(x) = 0.998

Figure 3.3: A normal
probability density func-
tion, shown with a comb
of narrow intervals.
The integral is approxi-
mated by summing the
width times height of
each interval. (The R
code that generated this
graph is in Section 3.5.2
(IntegralOfDensity.R).)

The mathematical formula for the normal probability density has two parameters:µ
(Greek mu) is called themeanof the distribution andσ (Greek sigma) is called thestandard
deviation. The exact definitions of these terms will be provided in the next section, but for
now all you need to know is that the value ofµ governs where the middle of the bell shape
falls on thex-axis, and the value ofσ governs how wide the bell is. The exact mathematical
formula for the normal probability density is

p(x) =
1

σ
√

2π
exp

(

−
1
2

[x− µ
σ

]2
)

. (3.4)

Figure 3.3 shows an example of the normal distribution. The figure panel indicates the
mean and standard deviation of the particular normal distribution that is displayed. Notice
that the peak probability density can be greater than 1.0 when the standard deviation,σ, is
small. In other words, when the standard deviation is small,a lot of probability mass has to
get squeezed into a small interval, and consequently the probability density in that interval
is high.

Figure 3.3 also illustrates that the area under the normal curve is, in fact, 1. Thex axis
is divided into a dense comb of small intervals, with width denoted∆x. The integral of the
normal density is approximated by summing the masses of all the tiny intervals. As can
be seen in the text within the graph, the sum of the interval areas is very nearly 1.0. Only
rounding error, and the fact that the extreme tails of the distribution are not included in the
sum, prevent the sum from being exactly 1.

The normal probability density function can be used to describe the relative frequencies
of xvalues generated by a random process. The normal probability density function can also
be used to describe our degree of belief in differentx values. Let’s apply these two notions
to the case of guessing the height of a person selected at random. Under the first notion,
the idea is that the height of the person is influenced by myriad random factors, and so the
person’s height will tend to be aroundµ, but could be somewhat larger or smaller, with a

32 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

spread indicated byσ. In this case,p(x) refers to the probability density for observing a
valuex. Under the second notion, the idea is that we believe most strongly that the person’s
height isµ, but we also entertain the possibility that the person’s height could be larger or
smaller, with a spread indicated byσ. In this case,p(x) refers to the density of our belief
in valuex. The mathematics ofp(x) are the same for either meaning, whether we think of
p(x) as referring to (1) the relative frequency that a random process will generate various
values, or (2) degrees of belief in alternative possibilities.

3.3.3 Mean and variance of a distribution

When we have a numerical (not just categorical) valuex that is generated with probability
p(x), we can wonder what would be its average value in the long run, if we repeatedly
sampled values ofx. For example, if we have a fair six-sided die, then each of itssix values
should come up 1/6th of the time in the long run, and so the long-run average value of the
die is (1/6)1+ (1/6)2+ (1/6)3 + (1/6)4+ (1/6)5+ (1/6)6 = 3.5. As another example,
if we play a slot machine for which we win $100 with probability .001, we win $5 with
probability .14, and otherwise we lose $1, then in the long run our payoff is (.001)($100)+
(.14)($5)+ (.859)(−$1) = −$0.059; i.e., in the long run we lose about 6 cents per pull
of the bandit’s arm. Notice what we did in those calculations: We weighted each possible
outcome by the probability that it happens. This procedure defines themeanof a probability
distribution, which is also called theexpected value, and which is denotedE[x]:

E[x] =
∑

x

p(x) x. (3.5)

Equation 3.5 applies when the values ofx are discrete, and sop(x) denotes a probability
mass. When the values ofx are continuous, thenp(x) denotes a probability density and the
sum becomes an integral over infinitesimal intervals:

E[x] =
∫

dx p(x) x. (3.6)

The conceptual meaning is the same: The long-run average of the values.
The mean value of a distribution typically lies near the distribution’s middle, intuitively

speaking. For example, the mean of a normal distribution turns out to be the value of its
parameterµ, i.e.,E[x] = µ. A specific case appears in Figure 3.3, where it can be seen that
the bulk of the distribution is centered overx = µ; see the text in the figure for the exact
value ofµ.

Here’s an example of computing the mean of a continuous distribution, using Equa-
tion 3.6. Consider the probability density functionp(x) = 6x(1−x) defined over the interval
x ∈ [0, 1]. That really is a probability density function: It’s an upside down parabola start-
ing at x = 0, peaking overx = 0.5, and dropping down to baseline again atx = 1. Because
it is a symmetric distribution, intuition tells us that the mean should be at its midpoint, i.e.,
x = 0.5. Let’s check that it really is:

E[x] =
∫ 1

0
dx p(x) x

=

∫ 1

0
dx 6x(1− x) x

3.3. PROBABILITY DISTRIBUTIONS 33

= 6
∫ 1

0
dx

(

x2 − x3
)

= 6

[

1
3

x3 −
1
4

x4
]1

0

= 6

[(

1
3

13 − 1
4

14
)

−
(

1
3

03 − 1
4

04
)]

= 0.5 (3.7)

Thevarianceof a probability distribution is a number that represents the dispersion of
the distribution away from its mean. There are many conceivable definitions of how far
the values ofx are dispersed from their mean, but the definition used for thespecific term
“variance” is based on the squared difference betweenx and the mean. The definition of
variance is simply the mean squared deviation (MSD) of thex values from their mean:

varx =
∫

dx p(x) (x− E[x])2 . (3.8)

Notice that Equation 3.8 is just like the formula for the mean(Equation 3.6) except that
instead of integratingx weighted byx’s probability, we’re integrating(x− E[x])2 weighted
by x’s probability. In other words, the variance is just the average value of(x− E[x])2.
For a discrete distribution, the integral in Equation 3.8 becomes a sum, analogous to the
relationship between Equations 3.6 and 3.5. The square rootof the variance, sometimes
referred to as root mean squared deviation (RMSD), is calledthestandard deviationof the
distribution.

The variance of the normal distribution turns out to be the value of its parameterσ
squared; i.e., for the normal, varx = σ2. In other words, the standard deviation of the
normal distribution is the value of the parameterσ. In a normal distribution, about 34% of
the distribution lies betweenµ andµ + σ (see Exercise 3.4). Take a look at Figure 3.3 and
visually identify whereµ andµ + σ lie on thex axis (the values ofµ andσ are indicated
in the text within the figure) to get a visual impression of howfar one standard deviation
lies from the mean. Be careful, however, not to overgeneralize to distributions with other
shapes: Non-normal distributions can have very different areas between their mean and first
standard deviation.

3.3.3.1 Mean as minimized variance

An alternative conceptual emphasis starts with the definition of variance and derives a def-
inition of mean, instead of starting with the mean and working to a definition of variance.
Under this alternative conception, the goal is to define a value for thecentral tendencyof
a probability distribution. A value represents the centraltendency of the distribution if the
value is close to the highly probable values of the distribution. Therefore, we define the
central tendency of a distribution as the valueM that minimizes the long-run expected dis-
tance between it and all the other values ofx. But how should we define “distance” between
values? One way to define distance is as squared difference: The distance betweenx and
M is (x − M)2. One virtue of this definition is that the distance fromx to M is the same
as the distance fromM to x, because (x − M)2 = (M − x)2. But the primary virtue of this
definition is that it makes a lot of subsequent algebra tractable (which will not be rehearsed
here). The central tendency is, therefore, the valueM that minimizes the expected value of

34 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

(x − M)2. Thus, we want the valueM that minimizes
∫

dx p(x) (x − M)2. Does that look
familiar? It’s essentially the formula for the variance of the distribution, in Equation 3.8,
but here thought of as a function ofM. Here’s the punch line: The value ofM that mini-
mizes

∫

dx p(x) (x−M)2 is, it turns out,E[x]. In other words, the mean of the distribution is
the value that minimizes the expected squared deviation. Inthis way, the mean is a central
tendency of the distribution.

As an aside, if the distance betweenM andx is defined instead as|x−M|, then the value
that minimizes the expected distance is called themedianof the distribution. An analogous
statement applies to themodesof a distribution, with distance defined as zero for any exact
match, and one for any mismatch.

3.3.4 Variance as uncertainty in beliefs

If p(θ) represents degrees of belief in values ofθ, instead of the probability of sampling
θ, then the mean ofp(θ) can be thought of as the value ofθ that represents our typical or
central belief. The variance ofθ, which measures how spread out the distribution is, can
be thought of as our uncertainty about possible beliefs. If the variance is small, then we
believe strongly in values ofθ near the mean. If the variance is large, then we are not very
certain about what value ofθ to believe in. This notion of variance (or standard deviation)
as representing uncertainty will re-appear often.

3.3.5 Highest density interval (HDI)

Another way of summarizing a belief distribution, which we will use often, is the highest
density interval, abbreviated HDI.2 The HDI indicates which points of a distribution we be-
lieve in most strongly, and which cover most of the distribution. Thus, the HDI summarizes
the distribution by specifying an interval that spans most of the distribution, say 95% of it,
such that every point inside the interval has higher believability than any point outside the
interval.

If you think of the probability distribution as the profile ofan island rising out the
water, then the 95% HDI marks the waterline on the beach such that 95% of the island’s
mass is within the waterline. All the points within the waterline (above water) have higher
believability than any point outside the waterline (below water). Figure 3.4 shows examples
of HDIs; take a look now.

The formal definition of an HDI is just a mathematical expression of the waterline idea.
What we want in the HDI is all those values ofx for which we have a belief density at least
as big as some valueW (which is the depth of water), such that the integral over allthosex
values is 95% (or 99%, or whatever). Formally, the values ofx in the 95% HDI are those
such thatp(x) > W whereW satisfies

∫

xs.t.p(x)>W
dx p(x) = .95.

The width of the HDI is another way of measuring uncertainty of beliefs. If the HDI
is wide, then beliefs are uncertain. If the HDI is narrow, then beliefs are fairly certain.
Sometimes the goal of research is to obtain data the achieve areasonably high degree of

2Some authors refer to the HDI as the HDR, which stands for highest densityregion, because a region
can refer to multiple dimensions, but an interval refers to asingle dimension. Because we will almost always
consider the HDI of one parameter at a time, I will use “HDI” inan effort to reduce confusion. Some authors
refer to the HDI as the HPD, to stand for highest probability density, but which I prefer not to use because it
takes more space to write “HPD interval” than “HDI”. Some authors refer to the HDI as the HPD, to stand for
highestposteriordensity, but which I prefer not to use becauseprior distributions also have HDIs.

3.4. TWO-WAY DISTRIBUTIONS 35

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

p(
x)

95% HDI
−1.96 1.96

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

x

p(
x)

95% HDI
0.517 0.932

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

x

p(
x)

95% HDI
0.239 23.686

Figure 3.4: Examples of
95% highest density in-
tervals (HDIs). For each
example, all thex values
inside the interval have
higher density than any
x value outside the inter-
val, and the total mass of
the points inside the in-
terval is 95%. The ends
of the HDIs are marked
with their x values. The
top panel shows a normal
distribution with mean
zero and standard devi-
ation one. The middle
panel shows a beta distri-
bution (defined in Chap-
ter 5), and the lower panel
shows a gamma distri-
bution (defined in Chap-
ter 9). Don’t fret over the
definitions of the density
functions; the point here
is to get a visual intuition
for HDIs in differently
shaped distributions.

certainty about a particular valuex. The desired degree of certainty can be measured as
the width of the 95% HDI. For example, ifx is a measure of how much a drug decreases
blood pressure, the researcher may want to have an estimate with a 95% HDI no larger than
5 units on the blood pressure scale. As another example, ifx is a measure of a population’s
preference for candidate A over candidate B, the researchermay want to have an estimate
with a 95% HDI no larger than 10 percentage points.

3.4 Two-way distributions

There are many situations in which we are interested in the conjunction of two outcomes.
What is the probability of being dealt a card that is both a queenand a heart? What is the
probability of meeting a person with both red hairand green eyes? When playing a board
game involving a die and a spinner, we have degrees of belief about both the dieand the
spinner being fair.

As a specific example for developing these ideas, imagine tossing a coin three times
in a row. The sequence of flips might be TTT, or TTH, etc. Table 3.1 shows all possible
sequences of three outcomes in its left column. As you can tell by counting the rows of

36 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

the table, there are 8 possible sequences. Because the coin is assumed to be fair, each row
is equally likely, and so each row has probability 1/8, which is indicated in the far right
column.

Table 3.1: Sample space for tossing a coin three times.
Outcome # Heads # Switches Probability

TTT 0 0 1/8
TTH 1 1 1/8
THT 1 2 1/8
THH 2 1 1/8
HTT 1 1 1/8
HTH 2 2 1/8
HHT 2 1 1/8
HHH 3 0 1/8

For each sequence of three tosses, we can count the number of heads in the sequence,
and the number of times that the outcome switched between heads or tails. Table 3.1 also
lists the number of heads and the number of switches in each sequence. We can list the
combinations of head counts and switches in atwo-waytable, as shown in Table 3.2. This
two-way table shows the probability of getting a particularcombination of number of heads
and number of switches. The probability of two things happeningtogether is called their
conjointprobability.

Table 3.2: Conjoint probabilities for tossing a coin three times, compiled from
Table 3.1.

Heads
Switches 0 1 2 3

0 1/8 0 0 1/8
1 0 2/8 2/8 0
2 0 1/8 1/8 0

One of the interesting characteristics revealed by Table 3.2 is that not all combinations
of events are equally likely, and some combinations don’t happen at all. For example, the
probability of getting a sequence with 1 head and 1 switch is 2/8, i.e., this combination
happens 25% of the time in the long run. On the other hand, it never happens that there is a
sequence with 1 head and 0 switches. We will be using this table of conjoint probabilities
to develop other concepts.

3.4.1 Marginal probability

When we flip the coin three times, we can count the number of heads and the number of
switches, but we might be interested only in one or the other type of outcome. We can
ask, what’s the probability of getting 2 heads in 3 flips, without worrying about the number
of switches involved. One way to determine the probabilities of these different classes of
outcomes is to sum across the conjoint probabilities we’ve already compiled. For example,
if we want to determine the probability of getting 0 heads, regardless of the number of
switches in the sequence, we simply sum the probability of getting 0 heads with 0 switches
and the probability of getting 0 heads with 1 switch and the probability of getting 0 heads

3.4. TWO-WAY DISTRIBUTIONS 37

with 2 switches. In other words, we simply sum across rows in Table 3.2. We can do this
for every number of heads, and write the sums in the lower margin of the table, as shown in
Table 3.3. These summed probabilities are called themarginal probabilities. We can also
compute the probability of each number of switches, regardless of the number of heads,
by summing across the number of heads. Table 3.3 also shows these probabilities in the
righthand margin.

Table 3.3: Marginal probabilities when tossing a coin threetimes. (This table
extends Table 3.2.)

Heads Marginal
Switches 0 1 2 3 (# Switches)

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

Marginal (# Heads): 1/8 3/8 3/8 1/8

Let’s now establish some general notation for the type of example we’ve been consider-
ing. We suppose that we have a sample space in which every outcome has two attributes,x
andy. In the previous example, the outcomes in the sample space were sequences of three
flips, and the two attributes were number of heads (x) and number of switches (y). The
conjoint probability of a particular combination ofx andy values is denotedp(x, y). For
example, the conjoint probability of 2 heads and 1 switch isp(x= 2, y= 1) = 2/8. Notice
that conjoint probabilities are symmetric:p(x, y) = p(y, x).

To compute the probability distribution forx by itself, we sump(x, y) across all values
of y:

p(x) =
∑

y

p(x, y) (3.9)

When thex andy variables are continuous, thenp(x, y) is a probability density, and the
summation becomes an integral:

p(x) =
∫

dy p(x, y) (3.10)

where the resulting marginal distribution,p(x), is also a density. This summation process
is calledmarginalizing over yor integrating outthe variabley. Of course, we can also
determine the probability ofy by marginalizing overx.

These notions of conjoint and marginal probabilities also apply to beliefs. Consider,
for example, two coins: a nickel and a dime. Suppose that we believe that they might be
fair, or that they are trick coins with heads on both sides or with tails on both sides. We
believe most strongly that they are both fair, but that thereis a small chance that they are
trick coins. Moreover, we believe that if one is a trick coin,then the other is a trick coin
too. These beliefs can be captured by a joint probability table, as shown in Table 3.4.

Table 3.4 indicates that our belief that both coins are fair is 60%, and that we believe
there is a 10% chance that both coins are two-tailed, and thatwe believe it is impossible
for one coin to be fair while the other is a trick coin. Table 3.4 also shows the marginal
distributions of our beliefs. The point of this example is merely to illustrate that we can
talk about conjoint and marginal structure of belief distributions just as we do about data
distributions.

38 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

Table 3.4: Beliefs regarding two coins.
Nickel Marginal

Dime Two Tails Fair Two Heads (Dime)
Two Tails .1 0 .1 .2

Fair 0 .6 0 .6
Two Heads .1 0 .1 .2

Marginal (Nickel): .2 .6 .2

3.4.2 Conditional probability

We often want to know the probability of one event, given thatwe know another event is
true. For example, what is the probability that it will rain in the next 24 hours given that
there is a thunder storm 400 miles due west of you? What is the probability that you will
pass the statistics class given that you scored 88/100 on the first assignment? What is the
probability that a sequence of three coin flips has 1 switch given that it has 1 head?

Let’s think about that last question in detail. Refer back toTable 3.3. We want to
know the probability that a sequence of three flips has 1 switch, given that it has 1 head.
This means that we are only considering sequences that we know to have 1 head, which
means only the column in Table 3.3 labeled “1” under “# Heads.” The question is, of the
probability within that column, how much of it occurs for 1 switch? We can see that the
conjoint probability of 1 switch and 1 head is 2/8, and the total probability of 1-head column
is 0+2/8+1/8 = 3/8. Therefore the probability of getting 1 switch, given thatthe sequence
has 1 head, is (2/8)/(3/8) = 2/3.

Notice the conditional probability of getting 1 switch, given that there is 1 head, is dif-
ferent from the marginal probability of getting 1 switch. The marginal probability indicates
the probability of getting 1 switch on average across all numbers of heads, whereas the
conditional probability restricts consideration to a particular number of heads.

Conditional probabilities have their own notation. The probability of a value ofy given
a value ofx is denotedp(y|x). For the previous example, with number of heads denotedx
and number of switches denotedy, we writep(y=1|x=1) = 2/3.

Now that we have some general notation, we can generalize ourcomputations from the
example. Recall that to compute the conditional probability p(y = 1|x = 1), we divided
the conjoint probabilityp(y = 1, x = 1) by the sum of conjoint probabilities for the given
value,

∑

y p(y, x= 1). Notice also that the sum of the conjoint probabilities isthe marginal
probability. So, in general, the conditional probability is

p(y|x) =
p(y, x)

∑

y p(y, x)
=

p(y, x)
p(x)

. (3.11)

(Notice that the equality of the denominators in Equation 3.11 was already discussed in
Equation 3.9.) Wheny is continuous, the sum becomes an integral over the conjointdensity:

p(y|x) =
p(y, x)

∫

y
dy p(y, x)

=
p(y, x)
p(x)

. (3.12)

(Notice that the equality of the denominators in Equation 3.12 was already discussed in
Equation 3.10.)

Of course, we can conditionalize on the other variable, instead. That is, we can consider
p(x|y) instead ofp(y|x). It is important to recognize that, in general,p(x|y) , p(y|x). For

3.4. TWO-WAY DISTRIBUTIONS 39

example, the probability that the ground is wet, given that it’s raining, is different than
the probability that it’s raining, given that the ground is wet. The next chapter provides an
extended discussion of the relationship betweenp(x|y) andp(y|x). The relationship is called
Bayes’ rule.

It is also important to recognize that there is no temporal order in conditional proba-
bilities. When we say “the probability ofx given y” we do not mean thaty has already
happened andx has yet to happen. All we mean is that we are restricting our calculations
of probability to a particular subset of possible events. A better gloss ofp(x|y) is, “among
all events with valuey, this proportion of them also have valuex.” So, for example, we can
talk about the probability that it rained last night given that there are clouds this morning.
This is simply referring to the proportion of all cloudy mornings like this one that had rain
the night before.

Finally, as I have repeatedly emphasized, the notions of conditional probability apply
to belief distributions, just as they apply to data distributions. Refer back to Table 3.4,
regarding beliefs about the fairness of a nickel and a dime. Consider the probability that the
dime is fair given that the nickel is fair. Using Equation 3.11, we find that the conditional
probability is 1. This simply means that of all our beliefs for which the nickel is fair, 100%
of them have the dime being fair.

3.4.3 Independence of attributes

Suppose I have a six-sided die and a spinner. Suppose they arefair. I flick the spinner and
it points to 0.123. Given this result on the spinner, what is the probability that the rolled
die will come up 3? In answering this question, you probably thought, “the spinner has no
influence on the die, so the probability of the die coming up 3 is 1/6 regardless of what the
spinner is pointing at.” If that’s what you thought, you wereassuming that the spinner and
the die areindependent.

In general, when the value ofy has no influence on the value ofx, we know that
p(x|y) = p(x), for all values ofx andy. Let’s think a moment about what that implies.
We know from the definition of conditional probability, in Equations 3.11 or 3.12, that
p(x|y) = p(x, y)/p(y). Combining those equations implies thatp(x) = p(x, y)/p(y) for
all values ofx and y. After multiplying both sides byp(y), we get the implication that
p(x, y) = p(x)p(y) for all values ofx andy. The implication goes the other way, too: When
p(x, y) = p(x)p(y) for all values ofx and y, then p(x|y) = p(x) for all values ofx and
y. Therefore either of these conditions is our mathematical definition of independence of
attributes.

Consider the example back in Table 3.3 (page 37), regarding sequences of three flips of
a coin. Are the attributes of number of heads and number of switches independent? You can
quickly see that the answer is no. Consider, for example, thetop left cell, which contains
the conjoint probability of 0 heads and 0 switches (namely, 1/8). Does it equal the product
of the marginal probability of 0 heads and the marginal probability of 0 switches (namely,
1/8 × 2/8)? No, clearly not.

As a second case, consider the example in Table 3.4 (page 38),regarding beliefs about
two coins. The beliefs in that scenario were explicitly thatthe coins werenot independent:
If one coin was fair, then so was the other one, but if one coin was a trick coin, so was the
other one. The lack of independence can be verified mathematically in Table 3.4. Consider
the top left cell: Is our conjoint belief probability that both coins are two-tailed (namely, .1)
equal to the product of our marginal belief probabilities that the nickel is two tailed and the

40 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

dime is two-tailed (namely, .2× .2)?
As a simple example of two attributes thatare independent, consider the suit and value

of cards in a standard deck. There are four suits, and thirteen values of each suit, making 52
cards altogether. Consider a randomly dealt card. What is the probability that it is a heart?
(Answer: 13/52= 1/4.) Suppose I look at the card without letting you see it, and Itell you
that it is a Queen. Now what is the probability that it is a heart? (Answer: 1/4.) Telling
you the card’s value does not change the probabilities of thesuits, so value and suit are
independent. We can verify this in terms of cross multiplying marginal probabilities, too:
Each combination of value and suit has a 1/52 chance of being dealt (in a fairly shuffled
deck). Notice that 1/52 is exactly the marginal probability of any one suit (1/4) times the
marginal probability of any one value (1/13).

Among other contexts, independence will come up again when we are constructing
mathematical descriptions of our beliefs about more than one attribute. We will create
a mathematical description of our beliefs about one attribute, and another mathematical
description of our beliefs about the other attribute. Then,to describe what we believe about
combinations of attributes, we will often assume independence, and simply multiply the
separate beliefs to specify the conjoint beliefs.

3.5 R code

3.5.1 R code for Figure 3.1

(RunningProportion.R)

1 # Goal: Toss a coin N times and compute the running proportion of heads.

2 N = 500 # Specify the total number of flips, denoted N.

3 # Generate a random sample of N flips for a fair coin (heads=1, tails=0);

4 # the function "sample" is part of R:

5 #set.seed(47405) # Uncomment to set the "seed" for the random number generator.

6 flipsequence = sample(x=c(0,1) , prob=c(.5,.5) , size=N , replace=TRUE)

7 # Compute the running proportion of heads:

8 r = cumsum(flipsequence) # The function "cumsum" is built in to R.

9 n = 1:N # n is a vector.

10 runprop = r / n # component by component division.

11 # Graph the running proportion:

12 # To learn about the parameters of the plot function,

13 # type help(’par’) at the R command prompt.

14 # Note that "c" is a function in R.

15 plot(n , runprop , type="o" , log="x" ,

16 xlim=c(1,N) , ylim=c(0.0,1.0) , cex.axis=1.5 ,

17 xlab="Flip Number" , ylab="Proportion Heads" , cex.lab=1.5 ,

18 main="Running Proportion of Heads" , cex.main=1.5)

19 # Plot a dotted horizontal line at y=.5, just as a reference line:

20 lines(c(1,N) , c(.5,.5) , lty=3)

21 # Display the beginning of the flip sequence. These string and character

22 # manipulations may seem mysterious, but you can de-mystify by unpacking

23 # the commands starting with the innermost parentheses or brackets and

24 # moving to the outermost.

25 flipletters = paste(c("T","H")[flipsequence[1:10] + 1] , collapse="")

26 displaystring = paste("Flip Sequence = " , flipletters , "..." , sep="")

27 text(5 , .9 , displaystring , adj=c(0,1) , cex=1.3)

28 # Display the relative frequency at the end of the sequence.

29 text(N , .3 , paste("End Proportion =",runprop[N]) , adj=c(1,0) , cex=1.3)

3.6. EXERCISES 41

30 # Save the plot to an EPS file.

31 dev.copy2eps(file = "RunningProportion.eps")

3.5.2 R code for Figure 3.3

(IntegralOfDensity.R)
1 # Graph of normal probability density function, with comb of intervals.

2 meanval = 0.0 # Specify mean of distribution.

3 sdval = 0.2 # Specify standard deviation of distribution.

4 xlow = meanval - 3*sdval # Specify low end of x-axis.

5 xhigh = meanval + 3*sdval # Specify high end of x-axis.

6 dx = 0.02 # Specify interval width on x-axis

7 # Specify comb points along the x axis:

8 x = seq(from = xlow , to = xhigh , by = dx)

9 # Compute y values, i.e., probability density at each value of x:

10 y = (1/(sdval*sqrt(2*pi))) * exp(-.5 * ((x-meanval)/sdval)ˆ2)

11 # Plot the function. "plot" draws the intervals. "lines" draws the bell curve.

12 plot(x , y , type="h" , lwd=1 , cex.axis=1.5

13 , xlab="x" , ylab="p(x)" , cex.lab=1.5

14 , main="Normal Probability Density" , cex.main=1.5)

15 lines(x , y)

16 # Approximate the integral as the sum of width * height for each interval.

17 area = sum(dx * y)

18 # Display info in the graph.

19 text(-sdval , .9*max(y) , bquote(paste(mu ," = " ,.(meanval)))

20 , adj=c(1,.5))

21 text(-sdval , .8*max(y) , bquote(paste(sigma ," = " ,.(sdval)))

22 , adj=c(1,.5))

23 text(sdval , .9*max(y) , bquote(paste(Delta , "x = " ,.(dx)))

24 , adj=c(0,.5))

25 text(sdval , .8*max(y) ,

26 bquote(

27 paste(sum(,x,) , " " , Delta , "x p(x) = " , .(signif(area,3)))

28) , adj=c(0,.5))

29 # Save the plot to an EPS file.

30 dev.copy2eps(file = "IntegralOfDensity.eps")

3.6 Exercises

Exercise 3.1.[Purpose: To give you some experience with random number generation in R.] Modify
the coin flipping program in Section 3.5.1 (RunningProportion.R) to simulate a biased coin
that hasp(H) = .8. Change the height of the reference line in the plot to matchp(H).
Comment your code. Hint: Read the help forsample.

Exercise 3.2.[Purpose: To have you work through an example of the logic presented in Section 3.2.1.2.]

Determine the exact probability of drawing a 10 from a shuffled pinochle deck. (In a
pinochle deck, there are 48 cards. There are six values: 9, 10, Jack, Queen, King, Ace.
There are two copies of each value in each of the standard foursuits: hearts, diamonds,
clubs, spades.)

(A) What is the probability of getting a 10?
(B) What is the probability of getting a10 or Jack?

Exercise 3.3.[Purpose: To give you hands-on experience with a simple probability density function, in

R and in calculus, and to re-emphasize that density functions can have values larger than 1.] Consider

42 CHAPTER 3. WHAT IS THIS STUFF CALLED PROBABILITY?

a spinner with a [0,1] scale on its circumference. Suppose that the spinner is slanted or
magnetized or bent in some way such that it is biased, and its probability density function
is p(x) = 6x(1− x) over the intervalx ∈ [0, 1].

(A) Adapt the code from Section 3.5.2 (IntegralOfDensity.R) to plot this density func-
tion and approximate its integral. Comment your code. Be careful to consider values of
x only in the interval [0, 1]. Hint: You can omit the first couple lines regardingmeanval
andsdval, because those parameter values pertain only to the normal distribution. Then set
xlow=0 andxhigh=1.

(B) Derive the exact integral using calculus. Hint: See the example, Equation 3.7.
(C) Does this function satisfy Equation 3.3?
(D) From inspecting the graph, what is the maximal value ofp(x)?

Exercise 3.4.[Purpose: To have you use a normal curve to describe beliefs.It’s also handy to know

the area under the normal curve betweenµ andσ.]

(A) Adapt the code from Section 3.5.2 (IntegralOfDensity.R) to determine (approxi-
mately) the probability mass under the normal curve fromx = µ−σ to x = µ+σ. Comment
your code. Hint: Just changexlow andxhigh appropriately, and change thetext location so
that thearea still appears within the plot.

(B) Now use the normal curve to describe the following belief. Suppose you believe that
women’s heights follow a bell-shaped distribution, centered at 162cm with about two-thirds
of all women having heights between 147cm and 177cm.

Exercise 3.5. [Purpose: Recognize and work with the fact that Equation 3.11 can be solved for the

conjoint probability, which will be crucial for developing Bayes’ theorem.] School children were
surveyed regarding their favorite foods. Of the total sample, 20% were 1st graders, 20%
were 6th graders, and 60% were 11th graders. For each grade, the following table shows
the proportion of respondents that chose each of three foodsas their favorite:

Ice Cream Fruit French Fries
1st Graders .3 .6 .1
6th Graders .6 .3 .1
11th Graders .3 .1 .6

From that information, construct a table of conjoint probabilities of grade and favorite food.
Also, say whether grade and favorite food are independent ornot, and how you ascer-
tained the answer. Hint: You are given p(grade) and p(food|grade). You need to determine
p(grade,food).

Chapter 4

Bayes’ Rule
Contents

4.1 Bayes’ rule . 44
4.1.1 Derived from definitions of conditional probability 44
4.1.2 Intuited from a two-way discrete table 45
4.1.3 The denominator as an integral over continuous values. 47

4.2 Applied to models and data . 47
4.2.1 Data order invariance . 49
4.2.2 An example with coin flipping 50

4.2.2.1 p(D|θ) is notθ . 52
4.3 The three goals of inference . 52

4.3.1 Estimation of parameter values 52
4.3.2 Prediction of data values . 52
4.3.3 Model comparison . 53
4.3.4 Why Bayesian inference can be difficult 56
4.3.5 Bayesian reasoning in everyday life56

4.3.5.1 Holmesian deduction 56
4.3.5.2 Judicial exoneration 57

4.4 R code . 57
4.4.1 R code for Figure 4.1 . 57

4.5 Exercises . 59

I’ll love you forever in every respect
(I’ll marginalize all your glaring defects)
But if you could change some to be more like me
I’d love you today unconditionally.

If you see that there are clouds, what is the probability thatsoon there will be rain? If you
know that it is raining, by hearing it patter on the roof, whatis the probability that there are
clouds? Notice that p(clouds|rain) is not equal to p(rain|clouds). If someone smiles at you,
what is the probability that they love you? If someone loves you, what is the probability
that they will smile at you? Notice that p(smile|love) is not equal to p(love|smile).

Let’s consider an example for which we can determine specificnumbers. Suppose I
have a standard deck of playing cards, which has 52 cards altogether. There are four suits:
hearts, diamonds, clubs and spades. Within each suit, thereare thirteen values: ace, two,

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

43

44 CHAPTER 4. BAYES’ RULE

three, ..., ten, jack, queen, king. I shuffle the cards and draw one at random without showing
it to you. I look at the card, and tell you (truthfully) that itis a queen. Given that you know
it is a queen, what is the probability that it is a heart? Thinkabout it a moment: There are
4 queens in the deck, and only one of them is a heart. So the probability that the card is a
heart is 1/4. We can write this as a conditional probability:p(♥|Q) = 1

4.
Now I put the card back into the deck and reshuffle. I draw another card from the deck,

and this time I tell you that it is a heart. Given that you know it is a heart, what is the
probability that it is a queen? Think about it a moment: Thereare 13 hearts in the deck,
and only one of them is a queen. So the probability that the card is a queen is 1/13. We can
write this as a conditional probability:p(Q|♥) = 1

13.
Notice thatp(♥|Q) does not equalp(Q|♥). Despite the inequality, the reversed condi-

tional probabilities must be related somehow, right? Answer: Yes! What Bayes’ rule tells
us is the relationship between the two conditional probabilities.

4.1 Bayes’ rule

Thomas Bayes (1702-1761) was a reputable mathematician andPresbyterian minister in
England. His famous theorem was published posthumously in 1764. The simple rule that
relates conditional probabilities has vast ramifications for statistical inference, and therefore
as long as his name is attached to the rule, we’ll continue to see his name in textbooks.

A crucial application of Bayes’ rule is to determine the probability of a model when
given a set of data. What the model itself provides is the probability of the data, given
specific parameter values and the model structure. We use Bayes’ rule to get from the
probability of the data, given the model, to the probabilityof the model, given the data.
This process will all be explained during the course of this chapter, and, indeed, during the
rest of this book.

There is another branch of statistics, called null hypothesis significance testing (NHST),
which relies on the probability of data given the model and doesnot use Bayes’ rule. Chap-
ter 11 describes NHST and its perils. This approach is often identified with another tower-
ing figure from England who lived about 200 years later than Bayes, named Ronald Fisher
(1890-1962). His name, or at least the first letter of his lastname, is immortalized in the
most common statistic used in NHST, theF-ratio.1 It is curious and re-assuring that the
overwhelmingly dominant approach of the 20th century, i.e.NHST, is giving way in the
21st century to a Bayesian approach that had its genesis in the 18th century.

4.1.1 Derived from definitions of conditional probability

Recall from the definition of conditional probability, backin Equations 3.11 and 3.12 on
p. 38, thatp(y|x) = p(y, x)/p(x). In words, the definition simply says that the probability
of y given x is the probability that they happen together relative to theprobability thatx
happens at all. We used this definition quite naturally when computing the conditional
probabilities for the example, above, regarding hearts andqueens in a deck of cards.

Now we just do some very simple algebraic manipulations. First, multiply both sides of
p(y|x) = p(y, x)/p(x) by p(x) to getp(y|x)p(x) = p(y, x). Second, notice that we can do the
analogous manipulation starting withp(x|y) = p(y, x)/p(y) to getp(x|y)p(y) = p(y, x). Now

1But Fisher did not advocate the type of NHST ritual that contemporary social science performs; see
Gigerenzer, Krauss, and Vitouch (2004).

4.1. BAYES’ RULE 45

we have two different expressions equal top(y, x), so we know those expressions equal each
other: p(y|x)p(x) = p(x|y)p(y). Divide both sides of that last expression byp(x) to arrive at

p(y|x) =
p(x|y)p(y)

p(x)
. (4.1)

But we are not quite done yet, because we can re-write the denominator in terms ofp(x|y)
also. Toward that goal, recall thatp(x) =

∑

y p(x, y). That was Equation 3.9, p. 37, if you’re
keeping score. We also know thatp(x, y) = p(x|y)p(y). Combining those equations yields
p(x) =

∑

y p(x, y) =
∑

y p(x|y)p(y). Substitute that into the denominator of Equation 4.1 to
get

p(y|x) =
p(x|y)p(y)

∑

y p(x|y)p(y)
. (4.2)

In Equation 4.2, they in the numerator is a specific fixed value, whereas they in the denom-
inator is a variable that takes on all possible values ofy over the summation. Equations 4.1
or 4.2 are calledBayes’ rule. This simple relationship lies at the core of Bayesian inference.

4.1.2 Intuited from a two-way discrete table

It’s easy to derive Bayes’ rule (we just did!), but let’s now get an intuition for what it means
and how it works. First, let’s confirm that it works for the simple case of the queen of hearts.
Earlier we figured out thatp(Q|♥) = 1

13 andp(♥|Q) = 1
4. Do those conditional probabilities

satisfy Bayes’ rule? Let’s find out:p(♥|Q)p(Q)/p(♥) = 1
4

4
52/

13
52 =

1
13 = p(Q|♥). It works!

The suit and value on playing cards are independent. (The idea of independent attributes
was discussed in Section 3.4.3.) Let’s now confirm Bayes’ rule for two attributes that are
not independent. Recall the case of tossing a coin three times and counting the number of
heads and the number of switches between heads and tails, as tabulated back in Table 3.3
(p. 37), and repeated here for convenience:

Heads Marginal
Switches 0 1 2 3 (# Switches)

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

Marginal (# Heads): 1/8 3/8 3/8 1/8

Consider the probability of getting one switch given that there is one head, i.e.,p(1S|1H),
versus the probability of getting one head given that that there is one switch, i.e.,p(1H|1S).
From the table, we can determine thatp(1S|1H) = p(1S, 1H)/p(1H) = (2/8)/(3/8) =
2/3, and p(1H|1S) = p(1H, 1S)/p(1S) = (2/8)/(4/8) = 1/2. Notice thatp(1S|1H)
does not equalp(1H|1S). Then we can verify Bayes’ rule:p(1H|1S)p(1S)/p(1H) =
(1/2)(4/8)/(3/8) = 2/3 = p(1S|1H). It works! In going through that arithmetic, es-
sentially what we did was go through the motions of deriving Bayes’ rule, using specific
values instead of variables.

A valuable intuition, for understanding conditional probabilities and Bayes’ rule, comes
from restricting our spatial attention to a single row or column of the conjoint probability
table. Suppose someone tosses a coin three times, and tells us that the sequence contains
1 switch. Given that knowledge, we can restrict our attention the row of the table cor-
responding to 1 switch. We know that one of the conjoint events within that row must

46 CHAPTER 4. BAYES’ RULE

have happened, but we don’t know which one. The relative probabilities of events within
that row have not changed, but we know that the total probability within that row must
now sum to 1.0. To achieve that transformation mathematically, we simply divide the cell
probabilities in the 1-switch row by its original row total.This preserves the relative prob-
abilities within the row, but makes the total probability equal to 1.0. Dividing a set of
values by their sum is called “normalizing” the values. Whenwe normalize the cell prob-
abilities in theith row, we get the conditional probabilities of the columns, given the row
value. In particular, when we normalize the 1-switch row, weget the conditional proba-
bilities for number of heads:p(0H|1S) = 0/(4/8) = 0, p(1H|1S) = (2/8)/(4/8) = .5,
p(2H|1S) = (2/8)/(4/8) = .5, andp(3H|1S) = 0/(4/8) = 0.

The idea of restricting attention to a single column or row ofthe conjoint probability
table yields a way of intuiting Bayes’ rule in general. The key to Bayes’ rule is to notice,
from the definition of conditional probability (Equations 3.11 and 3.12 on p. 38), that the
conjoint probability of theith row (Ri) and thejth column (C j) can be re-expressed either as
p(Ri |C j)p(C j) or asp(C j |Ri)p(Ri). These alternative expressions of the conjoint probability
p(Ri ,C j) have been entered into thei, jth cell of Table 4.1.

Table 4.1: A table for making Bayes’ rule not merely special but spatial.
Column

Row . . . j . . . Marginal
...

...

i · · ·
p(Ri ,C j)
= p(Ri |C j)p(C j)
= p(C j |Ri)p(Ri)

· · · p(Ri)

...
...

Marginal: p(C j)

Suppose we know that eventRi has happened, but we don’t know the column value. In
this case, the remaining possibilities are the cells in rowRi, and therefore we can restrict
our attention to only theith row of Table 4.1. Because we know thatRi is true, our universe
of remaining possibilities has collapsed to that row, and therefore we know that the sum of
the probabilities in the row must be 1, instead ofp(Ri). This promotion ofp(Ri) to 1.0 is
mathematically like dividing everything in theith row by p(Ri). As mentioned before, this
operation is called normalizing the probabilities in theith row so they sum to 1.0. When we
normalize, the equation in thei, jth cell becomesp(Ri ,C j)/p(Ri) = p(Ri |C j)p(C j)/p(Ri) =
p(C j |Ri). This is Bayes’ rule.

In summary, the key idea is that conditionalizing on a known row value is like restricting
attention to only the row for which that known value is true, and then normalizing the prob-
abilities in that row by dividing by the row’s total probability. This act of spatial attention,
when expressed in algebra, yields Bayes’ rule.

Of course, the same relationship applies to columns insteadof rows. It is arbitrary
which attribute to place down the rows and which attribute toplace across the columns.
Thus, the analogous spatial relationship applies to columns: If we know the column value,
then we restrict attention to that column, and normalize thecell probabilities to yield Bayes’
rule again.

4.2. APPLIED TO MODELS AND DATA 47

4.1.3 The denominator as an integral over continuous values

Up to this point, Bayes’ rule has been presented only in the context of discrete-valued
variables. It also applies to continuous variables, but probability masses become probability
densities and sums become integrals. For continuous variables, Bayes’ rule (Equation 4.2)
becomes

p(y|x) =
p(x|y)p(y)

∫

dy p(x|y)p(y)
. (4.3)

In Equation 4.3, they in the numerator is a specific fixed value, whereas they in the de-
nominator is a variable that takes on all possible values ofy over the integral. It is this
continuous-variable version of Bayes’ rule that we will deal with most often.

4.2 Applied to models and data

One of the key applications that makes Bayes’ rule so useful is when the row and column
variables are data values and model parameter values, respectively. A model specifies the
probability of particular data values given the model’s structure and particular parameter
values. For example, our usual model of coin flips says thatp(datum= H|θ) = θ and
p(datum=T |θ) = 1− θ. More generally, a model specifies

p(data values| parameters values and model structure) .

We use Bayes’ rule to convert that to what we really want to know, which is how strongly
we should believe in the model, given the data:

p(parameters values and model structure| data values) .

When we have observed some data, we use Bayes’ rule to determine our beliefs across
competing parameter values in a model, and to determine our beliefs across competing
models.

It helps to think about the application of Bayes’ rule to dataand models in terms of
a two-way table, shown in Table 4.2. The columns of Table 4.2 correspond to specific
values of the model parameter, and the rows of Table 4.2 correspond to specific values of
the data. Each cell of the table holds the conjoint probability of the specific combination
of parameter valueθ and data valueD. That is, p(D, θ) is the probability of getting that
particular combination of data value and parameter value, across all possible combinations
of data values and parameter values.

Table 4.2: Applying Bayes’ rule to data and model parameter.
Model Parameter

Data θ value Marginal
...

D value · · ·
p(D, θ)
= p(D|θ)p(θ)
= p(θ|D)p(D)

· · · p(D)

...

Marginal: p(θ)

48 CHAPTER 4. BAYES’ RULE

The prior probability of the parameter values is the marginal distribution, p(θ), which
appears in the lower margin of Table 4.2. This is simply the probability of each possible
value ofθ, collapsed across all possible values of data.

When we observe a particular data value,D, so we know it is true, we are restricting our
attention to one specific row of Table 4.2, namely, the row corresponding to the observed
value,D. The posterior distribution onθ is obtained by dividing the conjoint probabilities in
that row by the row marginal,p(D). Thus, the posterior probability ofθ is just the conjoint
probabilities in that row, normalized byp(D) to sum to 1.

We need to define some notation and terms at this point. The factors of Bayes’ rule have
names as indicated below:

p(θ|D)
︸ ︷︷ ︸

posterior

= p(D|θ)
︸ ︷︷ ︸

likelihood

p(θ)
︸︷︷︸

prior

/ p(D)
︸︷︷︸

evidence

(4.4)

where the evidence is (from the denominator of Equation 4.3)

p(D) =
∫

dθ p(D|θ)p(θ). (4.5)

The “prior,” p(θ), is the strength of our belief inθ without the dataD. The “posterior,”
p(θ|D), is the strength of our belief inθ when the dataD have been taken into account.
The “likelihood,” p(D|θ), is the probability that the data could be generated by the model
with parameter valuesθ. The “evidence,”p(D), is the probability of the data according to
the model, determined by summing across all possible parameter values weighted by the
strength of belief in those parameter values.

We talk about parameter valuesθ only in the context of a particular model; it’s the
model that gives meaning to the parameter. In some applications it can help to make the
model explicit in Bayes’ rule. Let’s call the modelM. Then, because all the probabilities
are defined given that model, we can re-write Equation 4.4 as

p(θ|D,M)
︸ ︷︷ ︸

posterior

= p(D|θ,M)
︸ ︷︷ ︸

likelihood

p(θ|M)
︸ ︷︷ ︸

prior

/ p(D|M)
︸ ︷︷ ︸

evidence

(4.6)

where the evidence is

p(D|M) =
∫

dθ p(D|θ,M)p(θ|M). (4.7)

It’s especially handy to have the model explicitly annotated as in Equation 4.6 when you
have more than one model in mind and you’re using the data to help determine the strength
of belief in each model. Suppose we have two models, creatively namedM1 andM2. Then,
by Bayes’ rule,p(M1|D) = p(D|M1)p(M1)/p(D) and p(M2|D) = p(D|M2)p(M2)/p(D),
wherep(D) =

∑

i p(D|Mi)p(Mi). Taking the ratio of those equations, we get

p(M1|D)
p(M2|D)

=
p(D|M1)
p(D|M2)
︸ ︷︷ ︸

Bayes factor

p(M1)
p(M2)

. (4.8)

Equation 4.8 says that the ratio of the posterior beliefs is the ratio of the evidences (as
defined in Equation 4.7) times the ratio of the prior beliefs.The ratio of the evidences is
called theBayes factor. Examples of all these abstract terms will be provided soon.

4.2. APPLIED TO MODELS AND DATA 49

Terminological aside: The quantityp(D|M), which is called the “evidence” in this book,
is sometimes instead called the “marginal likelihood” or “prior predictive” by other au-
thors. The term “evidence” is common in the machine learningliterature (e.g., Bishop,
2006; MacKay, 2003). Whenever I refer to the “evidence” for amodel, I am referring to
p(D|M) as defined in Equation 4.7. This usage might be a little confusing in the context
of model comparison when considering the equationp(M1|D) = p(D|M1)p(M1)/p(D),
wherep(D|M1) plays therole of the likelihood, not the evidence. This apparent confusion
is cleared up when abbreviated terminology is expanded to its full specificity. The fac-
tor p(D|M) is not merely “the evidence”, it is “the evidence for modelM”. On the other
hand, the factorp(D), in the context of the equationp(M1|D) = p(D|M1)p(M1)/p(D),
is not the evidence fora model, but is the evidence for the entireset of models under
consideration:p(D) =

∑

i p(D|Mi)p(Mi). The term “likelihood” also deserves expansion.
In Equation 4.6, the likelihood is more fully stated as “the likelihood of parameter value
θ in model M for dataD”. That is, the likelihood is referring to the parameterθ. On
the other hand, in the context of model comparison, the factor p(D|M1), in the equation
p(M1|D) = p(D|M1)p(M1)/p(D), is the “likelihood of themodel M1 for the dataD”. To
re-iterate, the term “evidence” is merely a word to refer top(D|M). As we will see below,
its value does not have much meaning by itself. Instead,p(D|M) can only be interpreted in
the context of other models.

4.2.1 Data order invariance

One more nuance about Bayesian updating of beliefs. Bayes’ rule in Equation 4.4 gets us
from a prior belief,p(θ), to a posterior belief,p(θ|D), when we take into account some data.
Now suppose we observe somemoredata, which we’ll denoteD′. We can then update our
beliefs again, fromp(θ|D) to p(θ|D′,D). Here’s the question: Does our final belief depend
on whether we update withD first andD′ second, or update withD′ first andD second?

The answer is: It depends! In particular, it depends on the model function that defines
the likelihood,p(D|θ). In many models,p(D|θ) does not depend in any way on other data.
That is, the conjoint probabilityp(D,D′|θ) equalsp(D|θ)p(D′|θ). The data probabilities are
independent, according to this type of model. Moreover, in many models the probability
function does not change in time or depend on how many data values have been generated.
The probability function is stationary. Under these conditions, whenp(D|θ) andp(D′|θ) are
independent and identically distributed(commonly referred to as “i.i.d.”), then the order of
updating has no effect of the final posterior.

This invariance to ordering of the data makes sense intuitively: If the likelihood func-
tion has no dependence on time or data ordering, then the posterior shouldn’t have any
dependence on time or data ordering either! But it’s easy to prove mathematically, too.
First, we’ll unpackp(θ|D′,D) by applying Bayes’ rule onD′:

p(θ|D′,D) =
p(D′|θ,D) p(θ|D)

∫

dθ p(D′|θ,D) p(θ|D)

Now, notice thatp(D′|θ,D) = p(D′|θ), because the model asserts that the probability of
a data value depends only on the value ofθ and not on anything else, such as other data.
Therefore the equation above can be re-written as

p(θ|D′,D) =
p(D′|θ) p(θ|D)

∫

dθ p(D′|θ) p(θ|D)

50 CHAPTER 4. BAYES’ RULE

Now we use Bayes’ rule again, this time forp(θ|D), which converts the equation into

p(θ|D′,D) =
p(D′|θ) p(D|θ) p(θ)/p(D)

∫

dθ p(D′|θ) p(D|θ) p(θ)/p(D)

Notice thatp(D) in that equation is a constant, and cancels out. This last equation, above,
involves the product ofp(D′|θ) and p(D|θ). Because multiplication can be done in either
order (i.e., it is “commutative” in technical terminology), we arrive at the same formula if
we start with the data in the opposite order:p(θ|D,D′).

In all of the examples in this book, the likelihood functionsgenerate i.i.d. data. One
way of thinking about this assumption is as follows: We assume that every datum is equally
representative of the underlying process, regardless of when the datum was observed. Older
observations are just as valid and representative as more recent observations, and the un-
derlying process that generates the data has not changed during the course of making the
observations.

4.2.2 An example with coin flipping

With all the emphasis on coin flipping, by now you must be imagining flipping coins over
pasture fences as you try to fall asleep. Nevertheless, imagine flipping coins once again,
and try not to fall asleep. We will start with some prior beliefs about the possible bias of the
coin, then flip the coin a few times, and then update our beliefs based on the observed flips.

First, we specify our prior beliefs. We denote the bias asθ = p(H), the probability of
the coin coming up heads. To keep the example straightforward, suppose that we believe
there are only three possible values for the coin’s bias: Either the coin is fair, withθ = .50,
or the coin is biased withθ = .25 or θ = .75. We believe that the coin is probably fair,
but there’s some smaller chance it could be biased high or low. This prior probability is
graphed in the top panel of Figure 4.1. It shows three “spikes,” one over each value ofθ
that we think could be possible. The spike overθ = .5 is tallest, indicating that we believe
it to be most likely. Note that the heights of the spikes are probability masses, not densities,
because each spike indicates the probability of its specific, discrete value ofθ.

Next, we flip the coin to get some data,D, and determine the likelihood,p(D|θ). Sup-
pose we flip the coin 12 times, and it comes up heads 3 times. According to our model of
the coin, the probability of coming up heads isθ, and the probability of coming up tails is
1− θ. Moreover, the flips are independent of each other, and therefore we can multiply the
probabilities of the individual flips to get the probabilityof the combination of flips. Conse-
quently, the probability of a specific sequence of 3 heads and9 tails isp(D|θ) = θ3(1− θ)9.
The resulting likelihood for each value ofθ is plotted in the middle panel of Figure 4.1.
Notice that the likelihood is highest forθ = .25 and lowest forθ = .75. This peak atθ = .25
makes sense, because the data have 25% heads, and so they are more likely if θ = .25 than
if θ = .50 or θ = .75. The value ofθ that maximizes the likelihood is called themaximal
likelihood estimateof θ.

The lower panel of Figure 4.1 includes the value ofp(D|M), the evidence for the model.
Recall from Equation 4.7 that the evidence is the overall probability of the data, averaging
across the available parameter values weighted by the degree to which we believe in them:
p(D|M) =

∑

θ p(D|θ,M)p(θ,M). This is the normalizer for the posterior distribution, hence
it is displayed in the plot of the posterior distribution. The value is displayed asp(D) instead
of asp(D|M) because there is only one model in this context, and therefore theM notation
is suppressed. When you see the value ofp(D) in Figure 4.1, you might think thatp(D)

4.2. APPLIED TO MODELS AND DATA 51

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Prior

θ

p(
θ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Likelihood

θ

p(
D

|θ
)

D=3H,9T

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Posterior

θ

p(
θ|

D
)

p(D)=0.000416

Figure 4.1: Bayesian updating
of beliefs about the bias of a
coin. The prior and posterior
distributions indicate probabil-
ity masses at discrete candidate
values ofθ. (The R code that
generated this graph is in Sec-
tion 4.4.1 (BayesUpdate.R).)

is terribly small, until you remember that we are talking about the conjoint probability of
several things happening together, i.e., exactly the 12 flips we observed. The probability of
1 head isθ. The probability of 2 heads isθ2, which is smaller thanθ. The probability of 3
heads isθ3, which is smaller yet. As the set of dataD gets bigger, in terms of containing
more observations,p(D) gets smaller, regardless of how closely the modelθ matches the
true bias in the coin.

The bottom panel of Figure 4.1 displays the posterior beliefs for each value ofθ. Ac-
cording to Bayes’ rule, the posterior is proportional to theproduct of the prior and the
likelihood. So the shape of the posterior is influenced by both the prior and the likelihood.
You can see this dual influence in Figure 4.1 by inspecting therelative heights of the left
and middle spikes. In the prior, the middle spike is much taller than the left spike. In the
likelihood, the middle spike is much shorter than the left spike. In the posterior, there is a
compromise between the prior and the likelihood: The middlespike is shorter than the left
spike, but not so short as in the likelihood because it (i.e.,the middle spike) is buoyed up
by the prior. Notice how our beliefs have changed from prior to posterior. Initially we be-
lieved most strongly in a fair coin. After accounting for thedata, we believed most strongly
in a biased coin. The Bayesian mathematics let us compute exactly how much our beliefs
changed.

52 CHAPTER 4. BAYES’ RULE

4.2.2.1 p(D|θ) is not θ

In the examples involving coin flips, it is easy to lose sight of the important fact thatp(D|θ)
is different fromθ, even though they both are values between 0 and 1 for our current ex-
amples. The likelihoodp(D|θ) is a mathematical function ofθ. The value of the likelihood
function is always a probability (a probability mass ifθ has a finite number of values, and
a probability density otherwise). The value of the parameter, however, could be on any
scale, depending on the meaning of the parameter. In our examples so far, the meaning of
the parameter is itself a probability, so it is easy to confuse the parameter value with the
likelihood value. Adding to the confusability is the fact that, in our examples so far, the
function that mapsθ to p(D=H|θ) has been the identity function:

p(D=H|θ) = θ (4.9)

and, of course,p(D=T |θ) = 1.0− p(D=H|θ) = 1.0− θ. It is easy to confusep(D|θ) with θ
in our examples because the function that relates them is theidentity. Later in the book, we
will see many examples for which the likelihood function is not the identity function.

The point of this subsection has been to remind you thatθ is a parameter that has a scale
and meaning in the context of a model. The valuep(D|θ), on the other hand, is a probability,
and is a function of the parameterθ. Thus,p(D|θ) andθ are quite distinct entities, despite
the fact that in simple models of coin flipping,p(D=H|θ) = θ.

4.3 The three goals of inference

Back in Section 2.2 (p. 13), I introduced three goals of inference: Estimation of parameter
values, prediction of data values, and model comparison. Each of these goals will now be
given precise mathematical expressions.

4.3.1 Estimation of parameter values

Estimation of parameter values means determining the extent to which we believe in each
possible parameter value. This is precisely what Equation 4.6 tells us. The posterior distri-
bution over the parameter valuesθ is our estimate of those values.

The posterior distribution can be narrow, with most of the probability piled heavily over
a small range ofθ. In this case, we are fairly certain about the possible values of θ. On the
other hand, the posterior probability distribution could be wide, spread over a large range
of θ. In this case, we have high uncertainty about the possible values ofθ.

4.3.2 Prediction of data values

Using our current beliefs, we may want to predict the probability of future data values. To
avoid notational conflicts later, I’ll denote a data value asy. The predicted probability of
data valuey is determined by averaging the predicted data probabilities across all possible
parameter values, weighted by the belief in the parameter values:

p(y) =
∫

dθ p(y|θ)p(θ)

Notice that this is exactly the evidence, discussed after Equation 4.4, except that the evi-
dence refers to a specific observed value ofy, whereas here we are computing the probability
of any possible value ofy.

4.3. THE THREE GOALS OF INFERENCE 53

As an example, consider the prior beliefs in the top panel of Figure 4.1. For those
beliefs, the predicted probability of getting a head is

p(y=H) =
∑

θ

p(y=H|θ)p(θ)

= p(y=H|θ=0.25)p(θ=0.25)

+ p(y=H|θ=0.50)p(θ=0.50)

+ p(y=H|θ=0.75)p(θ=0.75)

= 0.25× 0.25+ 0.50× 0.50+ 0.75× 0.25

= 0.5

and the probability of getting a tail is computed analogously to be p(y= T) = 0.5. Notice
that the predictions are probabilities of each possible data value, given the current model
beliefs.

If we want to predict a particular point value for the next datum, instead of a distribution
across all possible data values, it is typical to use the mean, i.e., expected value, of the
predicted data distribution. Thus, the predicted value isy =

∫

dy y p(y). This integral only
makes sense ify is on a continuum. Ify is nominal, like the result of a coin flip, then the
most probable value can be used as “the” predicted value. Thedecision to use the mean
of the predicted values as our single best prediction, instead of, say, the mode or median,
relies implicitly on the costs of being wrong and the benefitsof being correct. These costs
and benefits, called the “utilities”, are considered in moreadvanced treatments of Bayesian
decision theory. For our purposes, we will default to the mean, purely for convenience.

4.3.3 Model comparison

You may recall from earlier discussion (page 48) that Bayes’rule is also useful for com-
paring models. Equation 4.8 indicated that the posterior beliefs in the models involve the
evidences of the models. Notice that in this third goal, i.e., model comparison, the evi-
dence term appears again, just as it appeared for the goals ofparameter estimation and data
prediction.

One of the nice features of Bayesian model comparison is thatthere is an automatic
accounting for model complexity when assessing the degree to which we should believe in
the model. This might be best explained with an example. Recall the coin-flipping example
discussed earlier, illustrated in Figure 4.1, and reproduced in the left side of Figure 4.2. In
that example, we supposed that the biasθ could take on only three possible values. This
restriction made the model rather simple. We could instead entertain a more complex model
that allows for many more possible values ofθ. One such model is illustrated in the right
side of Figure 4.2. This model has 63 possible values ofθ instead of only 3. The shape of
the prior beliefs in the complex model follows the same triangular shape as in the simple
model; there is highest belief inθ = .50, with lesser belief in more extreme values.

The complex model has many more available values forθ, and so it has much more
opportunity to fit arbitrary data sets. For example, if a sequence of coin flips has 37% heads,
the simple model does not have aθ value very close to that outcome, but the complex model
does. On the other hand, forθ values that are in both the simple and complex models, the
prior probability on those values in the simple model is muchhigher than in the complex
model. Because there are so many possibilities in the complex model, the prior beliefs have
to get spread out, very shallowly, over a larger range of possibilities. This can be seen in

54 CHAPTER 4. BAYES’ RULE

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Prior

θ

p(
θ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Likelihood

θ

p(
D

|θ
)

D=3H,9T

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Posterior

θ

p(
θ|

D
)

p(D)=0.000416

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

Prior

θ

p(
θ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Likelihood

θ

p(
D

|θ
)

D=3H,9T

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

Posterior

θ

p(
θ|

D
)

p(D)=0.000392

Figure 4.2: A simple in the left column and a complex model in the right column.
The prior and posterior distributions indicate probability masses at discrete can-
didate values ofθ. The same data are addressed by both models. The evidence
p(D|Msimple) for the simple model is displayed as p(D) in the lower left panel,
and the evidencep(D|Mcomplex) for the complex model is displayed as p(D) in the
lower right panel. In this case the data are such that the simple model is favored.
The R code that generated these graphs is in Section 4.4.1 (BayesUpdate.R).

Figure 4.2 by inspecting the numerical scales on the vertical axes of the prior beliefs. The
scale on the simple model is much larger than the scale on the complex model.

Therefore, if the actual data we observe happens to be well accommodated by aθ value
in the simple model, we will believe in the simple model more than the complex model,
because the prior on thatθ value in the simple model is so high. Figure 4.2 shows a case in
which this happens. The data have 25% heads, and so the evidence in the simple model is
larger than the evidence in the complex model. The complex model has its prior spread too
thin for us to believe in it as much as we believe in the simple model.

The complex model can be the winner if the data are not adequately fit by the simple
model. For example, consider a case in which the observed data have just 1 head and 11
tails. None of theθ values in the simple model is very close to this outcome. But the
complex model does have someθ values near the observed proportion, even though there is
not a strong belief in those values. Figure 4.3 shows that thesimple model has less evidence
in this situation, and we have stronger belief in the complexmodel.

The evidence for a model,p(D|M), is not particularly meaningful as an absolute magni-
tude for a single model. The evidence is most meaningful onlyin the context of the Bayes’
factor,p(D|M1)/p(D|M2), which is therelativeevidence for two models, when considering

4.3. THE THREE GOALS OF INFERENCE 55

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior

θ

p(
θ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
4

0.
00

8
0.

01
2 Likelihood

θ

p(
D

|θ
)

D=1H,11T

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior

θ

p(
θ|

D
)

p(D)=0.00276

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

Prior

θ

p(
θ)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Likelihood

θ
p(

D
|θ

)

D=1H,11T

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

Posterior

θ

p(
θ|

D
)

p(D)=0.00366

Figure 4.3: A simple in the left column and a complex model in the right column.
The prior and posterior distributions indicate probability masses at discrete can-
didate values ofθ. The same data are addressed by both models. The evidence
p(D|Msimple) for the simple model is displayed as p(D) in the lower left panel,
and the evidencep(D|Mcomplex) for the complex model is displayed as p(D) in the
lower right panel. In this case the data are such that the complex model is favored.
The R code that generated these graphs is in Section 4.4.1 (BayesUpdate.R).

an observed data setD.2 Regardless of which model wins, the winning model does not need
to be a good model of the data. The model comparison process merely tells us about the
relativeevidence for each model. The winning model is better than theother models in the
competition, but the winning model might merely be less bad than the horrible competitors.
In later chapters we will explore ways to assess whether the winning model is actually a
viable model of the data.

We will see in Chapter 10 that Bayesian model comparison is “really” just a case of
Bayesian parameter estimation, in which a parameter that indexes the models is estimated.
The individual model parameters depend on the indexical parameter, and thus the scheme
involves a hierarchy of dependencies. Hierarchial models are introduced in Chapter 9.
The fact that model comparison is a case of parameter estimation is mentioned here only
to fend off any mistaken impression that parameter estimation and model comparison are
fundamentally different.

2The Bayes’ factor,p(D|M1)/p(D|M2), is quite different than considering evidences of a single model for
different candidate data sets. Specifically,p(D1|M)/p(D2|M) is nota Bayes’ factor and is not further discussed.

56 CHAPTER 4. BAYES’ RULE

4.3.4 Why Bayesian inference can be difficult

All three goals involve the denominator of Bayes’ formula, i.e., the evidence, which usu-
ally means computing a difficult integral. There are a few ways out of this difficulty. The
traditional way is to use likelihood functions with “conjugate” prior functions. A prior
function that is conjugate to the likelihood function simply makes the posterior function
come out with the same functional form as the prior. That is, the math works out nicely. If
this method doesn’t work, an alternative is to approximate the actual functions with other
functions that are easier to work with, and then show that theapproximation is reasonably
good under typical conditions. But this method is still pure, analytical mathematics. Yet
another method is to numerically approximate the integral.When the parameter space is
small, then it can be covered with a comb or grid of points and the integral can be computed
by exhaustively summing across that grid. But when the parameter space gets even mod-
erately large, there are too many grid points, and thereforeother methods must be used. A
large class of random sampling methods have been developed,which can be referred to as
Markov chain Monte Carlo (MCMC) methods, that can numerically approximate probabil-
ity distributions even for large spaces. It is the development of these MCMC methods that
has allowed Bayesian statistical methods to gain practicaluse. The next major part of this
book explains these various methods in some detail. For applications to complex situations,
we will ultimately focus on MCMC methods.

Another potential difficulty of Bayesian inference is determining a reasonable prior.
What distribution of beliefs should we start with, over all possible parameter values or
over competing models? This question may seem daunting, butin practice it is typically
addressed in straightforward manner. As will be discussed more in Chapter 11, it is actu-
ally advantageous and rational to start with an explicit prior. Prior beliefsshouldinfluence
rational inference from data, because the role of new data isto modify our beliefs from
whatever they were without the new data. Prior beliefs arenot capricious and idiosyncratic
and unknowable, but instead are based on publicly agreed facts and theories. Prior beliefs
used in data analysis must be admissible by a skeptical scientific audience. When scien-
tists disagree about prior beliefs, the analysis can be conducted with both priors, to assess
the robustness of the posterior against changes in the prior. Or, the priors can be mixed to-
gether into a joint prior, with the posterior thereby incorporating the uncertainty in the prior.
In summary, for most applications, specification of the prior turns out to be technically
unproblematic, although it is conceptually very important tounderstand the consequences
of one’s assumptions about the prior. Thus, the main reason that Bayesian analysis can
be difficult is the computation of the evidence, and that computation is tractable in many
situations via MCMC methods.

4.3.5 Bayesian reasoning in everyday life

4.3.5.1 Holmesian deduction

Despite the difficulty of exact Bayesian inference in complex mathematical models, the
essence of Bayesian reasoning is frequently used in everyday life. One example has been
immortalized in the words of Sherlock Holmes to his friend Dr. Watson: “How often have
I said to you that when you have eliminated the impossible, whatever remains, however
improbable, must be the truth?” (Arthur Conan Doyle, The Sign of Four, 1890, Ch. 6).
This reasoning is actually a consequence of Bayesian beliefupdating, as expressed in Equa-
tion 4.4. Let me re-state it this way: “How often have I said toyou that whenp(D|θi) = 0 for

4.4. R CODE 57

all i , j, then, no matter how small the priorp(θ j) > 0 is, the posteriorp(θ j |D) must equal
one.” Somehow it sounds better the way Holmes said it. The intuition behind Holmes’
deduction is clear, though: When we reduce belief in some possibilities, we necessarily
increase our belief in the remaining possibilities (if our set of possibilities exhausts all
conceivable options). Thus, according to Holmesian deduction, when the data make some
options less believable, we increase belief in the other options.

4.3.5.2 Judicial exoneration

The reverse of Holmes’ logic is also commonplace. For example, when an object d’art is
found fallen from its shelf, our prior beliefs may indict thehouse cat, but when the visiting
toddler is seen dancing next to the shelf, then the cat is exonerated. This downgrading of a
hypothesis is sometimes called “explaining away” of a possibility by verifying a different
one. This sort of exoneration also follows from Bayesian belief updating: Whenp(D|θ j)
is higher, then, even ifp(D|θi) is unchanged for alli , j, p(θi |D) is lower. This logic of
exoneration is based on competition of mutually exclusive possibilities: If the culprit is
suspect A, then suspect B is exonerated.

Holmesian deduction and judicial exoneration are both expressions of the essence of
Bayesian reasoning: We have a space of beliefs that are mutually exclusive and exhaust
all possibilities. Therefore, if the data cause us to decrease belief in some possibilities,
we must increase belief in other possibilities (as said Holmes), or, if the data cause us to
increase belief in some possibilities, we must decrease belief in other possibilities (as in
exoneration). What Bayes’ rule tells us is exactly how much to shift our beliefs across the
available possibilities.

4.4 R code

4.4.1 R code for Figure 4.1

There are several new commands used in this program. When youencounter a puzzling
command in an R program, it usually helps to try the Rhelp command. For example, when
perusing this code, you’ll come across the commandmatrix. To find out about the syntax
and usage of this command, do this: At the R command line, typehelp("matrix") and you’ll
get some clues about how it works. Then experiment with the command at the interactive
command line until you’re confident about what its various arguments do. For example, try
typing at the command line:
matrix(1:6 , nrow=2 , ncol=3 , byrow=TRUE)

Then try
matrix(1:6 , nrow=2 , ncol=3 , byrow=FALSE)

The listing below includes line numbers in the margins, to facilitate tracking the code across
page splits, and to facilitate referring to specific lines ofthe code when you have enthusiastic
conversations about it at parties.

Mac users: If you are running R under MacOS instead of in a Windows emulator such
as WINE, you will need to change all thewindows() commands toquartz(). Later in the
book, when we use BUGS, there is no Mac equivalent and you mustrun the programs under
WINE.

(BayesUpdate.R)

58 CHAPTER 4. BAYES’ RULE

1 # Theta is the vector of candidate values for the parameter theta.

2 # nThetaVals is the number of candidate theta values.

3 # To produce the examples in the book, set nThetaVals to either 3 or 63.

4 nThetaVals = 3

5 # Now make the vector of theta values:

6 Theta = seq(from = 1/(nThetaVals+1) , to = nThetaVals/(nThetaVals+1) ,

7 by = 1/(nThetaVals+1))

8

9 # pTheta is the vector of prior probabilities on the theta values.

10 pTheta = pmin(Theta , 1-Theta) # Makes a triangular belief distribution.

11 pTheta = pTheta / sum(pTheta) # Makes sure that beliefs sum to 1.

12

13 # Specify the data. To produce the examples in the book, use either

14 # Data = c(1,1,1,0,0,0,0,0,0,0,0,0) or Data = c(1,0,0,0,0,0,0,0,0,0,0,0).

15 Data = c(1,1,1,0,0,0,0,0,0,0,0,0)

16 nHeads = sum(Data == 1)

17 nTails = sum(Data == 0)

18

19 # Compute the likelihood of the data for each value of theta:

20 pDataGivenTheta = ThetaˆnHeads * (1-Theta)ˆnTails

21

22 # Compute the posterior:

23 pData = sum(pDataGivenTheta * pTheta)

24 pThetaGivenData = pDataGivenTheta * pTheta / pData # This is Bayes’ rule!

25

26 # Plot the results.

27 windows(7,10) # create window of specified width,height inches.

28 layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels

29 par(mar=c(3,3,1,0)) # number of margin lines: bottom,left,top,right

30 par(mgp=c(2,1,0)) # which margin lines to use for labels

31 par(mai=c(0.5,0.5,0.3,0.1)) # margin size in inches: bottom,left,top,right

32

33 # Plot the prior:

34 plot(Theta , pTheta , type="h" , lwd=3 , main="Prior" ,

35 xlim=c(0,1) , xlab=bquote(theta) ,

36 ylim=c(0,1.1*max(pThetaGivenData)) , ylab=bquote(p(theta)) ,

37 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)

38

39 # Plot the likelihood:

40 plot(Theta , pDataGivenTheta , type="h" , lwd=3 , main="Likelihood" ,

41 xlim=c(0,1) , xlab=bquote(theta) ,

42 ylim=c(0,1.1*max(pDataGivenTheta)) , ylab=bquote(paste("p(D|",theta,")")),

43 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)

44 text(.55 , .85*max(pDataGivenTheta) , cex=2.0 ,

45 bquote("D=" * .(nHeads) * "H," * .(nTails) * "T") , adj=c(0,.5))

46

47 # Plot the posterior:

48 plot(Theta , pThetaGivenData , type="h" , lwd=3 , main="Posterior" ,

49 xlim=c(0,1) , xlab=bquote(theta) ,

50 ylim=c(0,1.1*max(pThetaGivenData)) , ylab=bquote(paste("p(",theta,"|D)")),

51 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)

52 text(.55 , .85*max(pThetaGivenData) , cex=2.0 ,

53 bquote("p(D)=" * .(signif(pData,3))) , adj=c(0,.5))

4.5. EXERCISES 59

4.5 Exercises

Exercise 4.1. [Purpose: Application of Bayes’ rule to disease diagnosis,to see the important role

of prior probabilities.] Suppose that in the general population, the probability of having a
particular rare disease is one in a thousand. We denote the true presence or absence of the
disease as the value of a parameter,θ, that can have the valueθ = ⌣̈ if disease is present,
or the valueθ = ⌢̈ if the disease is absent. The base rate of the disease is therefore denoted
p(θ=⌣̈) = .001. This is our prior belief that a person selected at randomhas the disease.

Suppose that there is a test for the disease that has a 99% hit rate, which means that
if a person has the disease, then the test result is positive 99% of the time. We denote a
positive test result asD = +, and a negative test result asD = −. The observed test result is
a bit of data that we will use to modify our belief about the value of the underlying disease
parameter. The hit rate is expressed asp(D=+ | θ=⌣̈) = .99. The test also has a false alarm
rate of 5%. This means that 5% of the time when the disease is not present, the test falsely
indicates that the disease is present. We denote the false alarm rate asp(D=+ | θ=⌢̈) = .05.

Suppose we sample a person at random from the population, administer the test, and
it comes up positive. What is the posterior probability thatthe person has the disease?
Mathematically expressed, we are asking, what isp(θ=⌣̈ |D=+)? Before determining the
answer from Bayes’ rule, generate an intuitive answer and see if your intuition matches the
Bayesian answer. Most people have an intuition that the probability of having the disease
is near the hit rate of the test (which in this case is .99).

Hint: The following table of conjoint probabilities might help you understand the pos-
sible combinations of events. (The table below is a specific case of Table 4.2, p. 47.) The
prior probabilities of the disease are on the bottom marginal. When we know that the test
result is positive, we restrict our attention the row markedD = +.

θ = ⌣̈ θ = ⌢̈

D = +
p(D=+, θ=⌣̈)
= p(D=+ | θ=⌣̈) p(θ=⌣̈)

p(D=+, θ=⌢̈)
= p(D=+ | θ=⌢̈) p(θ=⌢̈)

p(D=+)

D = − p(D=−, θ=⌣̈)
= p(D=− | θ=⌣̈) p(θ=⌣̈)

p(D=−, θ=⌢̈)
= p(D=− | θ=⌢̈) p(θ=⌢̈)

p(D=−)

p(θ = ⌣̈) p(θ = ⌢̈)

Caveat regarding interpreting the results: Remember that here we have assumed that
the person was selected at random from the population; therewere no other symptoms that
motivated getting the test.

Exercise 4.2. [Purpose: Iterative application of Bayes’ rule, and seeinghow posterior probabilities

change with inclusion of more data.] Continuing from the previous exercise, suppose that the
same randomly selected person as in the previous exercise gets re-tested after the first test
comes back positive, and on the re-test the result is negative. Now what is the probability
that the person has the disease?Hint: For the prior probability of the re-test, use the
posterior computed from the previous exercise.Also notice thatp(D=− | θ=⌣̈) = 1−p(D=
+ | θ=⌣̈) andp(D=− | θ=⌢̈) = 1− p(D=+ | θ=⌢̈).

Exercise 4.3.[Purpose: Getting an intuition for the previous results by using “natural frequency” and

“Markov” representations]

(A) Suppose that the population consists of 100,000 people. Compute how many people
should fall into each cell of the table in the Hint of Exercise4.1. To compute the expected

60 CHAPTER 4. BAYES’ RULE

frequency of people in a cell, just multiply the cell probability by the size of the population.
To get you started, a few of the cells of the frequency table are filled in here:

θ = ⌣̈ θ = ⌢̈

D = +

freq(D=+, θ=⌣̈)
= p(D=+, θ=⌣̈) N
= p(D=+ | θ=⌣̈) p(θ=⌣̈) N
= 99

freq(D=+, θ=⌢̈)
= p(D=+, θ=⌢̈) N
= p(D=+ | θ=⌢̈) p(θ=⌢̈) N
=

freq(D=+)
= p(D=+) N
=

D = −

freq(D=−, θ=⌣̈)
= p(D=−, θ=⌣̈) N
= p(D=− | θ=⌣̈) p(θ=⌣̈) N
= 1

freq(D=−, θ=⌢̈)
= p(D=−, θ=⌢̈) N
= p(D=− | θ=⌢̈) p(θ=⌢̈) N
=

freq(D=−)
= p(D=−) N
=

freq(θ = ⌣̈)
= p(θ = ⌣̈) N
= 100

freq(θ = ⌢̈)
= p(θ = ⌢̈) N
= 99, 900

N
= 100, 000

Notice the frequencies on the lower margin of the table. Theyindicate that out of 100,000
people, only 100 have the disease, while 99,900 do not have the disease. These marginal
frequencies instantiate the prior probability thatp(θ = ⌣̈) = .001. Notice also the cell
frequencies in the columnθ = ⌣̈ , which indicate that of 100 people with the disease, 99
have a positive test result and 1 has a negative test result. These cell frequencies instantiate
the hit rate of .99. Your job for this part of the exercise is tofill in the frequencies of the
remaining cells of the table.

(B) Take a good look at the frequencies in the table you just computed for the previous
part. These are the so-called “natural frequencies” of the events, as opposed to the some-
what unintuitive expression in terms of conditional probabilities (Gigerenzer & Hoffrage,
1995). From the cell frequencies alone, determine the proportion of people who have the
disease, given that their test result is positive. Before computing the exact answer arith-
metically, first give a rough intuitive answer merely by looking at the relative frequencies in
the rowD = +. Does your intuitive answer match the intuitive answer you provided back
in Exercise 4.1? Probably not. Your intuitive answer here isprobably much closer to the
correct answer. Now compute the exact answer arithmetically. It should match the result
from applying Bayes’ rule in Exercise 4.1.

(C) Now we’ll consider a related representation of the probabilities in terms of natural
frequencies, which is especially useful when we accumulatemore data. This type of repre-
sentation is called a “Markov” representation by Krauss, Martignon, and Hoffrage (1999).
Suppose now we start with a population ofN = 10, 000, 000 people. We expect 99.9%
of them (i.e., 9,990,000) not to have the disease, and just 0.1% (i.e., 10,000) to have the
disease. Now consider how many people we expect to test positive. Of the 10,000 people
who have the disease, 99%, i.e. 9,900, will be expected to test positive. Of the 9,990,000
people who do not have the disease, 5%, i.e. 499,500, will be expected to test positive. Now
consider re-testing everyone who has tested positive on thefirst test. How many of them are
expected to show a negative result on the retest? Use this diagram to compute your answer:

4.5. EXERCISES 61

N = 10, 000, 000

ւ × p(θ = ⌣̈) ց × p(θ = ⌢̈)

10,000 9,990,000

↓ × p(D=+ | θ=⌣̈) ↓ × p(D=+ | θ=⌢̈)

↓ × p(D=− | θ=⌣̈) ↓ × p(D=− | θ=⌢̈)

When computing the frequencies for the empty boxes above, becareful to use the proper
conditional probabilities!

(D) Use the diagram in the previous part to answer this: What proportion of people, who
test positive at first and then negative on retest, actually have the disease? In other words, of
the total number of people at the bottom of the diagram in the previous part (those are the
people who tested positive then negative), what proportionof them are in the left branch of
the tree?How does the result compare with your answer to Exercise 4.2?

Exercise 4.4.[Purpose: To see a hands-on example of data-order invariance.] Consider again the
disease and diagnostic test of the previous two exercises. Suppose that a person selected
at random from the population gets the test and it comes back negative. Compute the
probability that the person has the disease. The person thengets re-tested, and on the the
second test the result is positive. Compute the probabilitythat the person has the disease.
How does the result compare with your answer to Exercise 4.2?

Exercise 4.5. [Purpose: An application of Bayes’ rule to neuroscience: Inferring cognitive function

from brain activation.] Cognitive neuroscientists investigate which areas of the brain are
active during particular mental tasks. In many situations,researchers will observe that a
certain region of the brain is active, and infer that a particular cognitive function is therefore
being carried out. Poldrack (2006) cautioned that such inferences are not necessarily very
firm, and need to be made with Bayes’ rule in mind. Poldrack (2006) reported the following
frequency table of previous studies that involved any language-related task (specifically
phonological and semantic processing), and whether or not aparticular region of interest
(ROI) in the brain was activated:

Language Study Not Language Study

Activated 166 199
Not Activated 703 2154

Suppose that a new study is conducted and finds that the ROI is activated. If the prior
probability that the task involves language processing is .5, what is the posterior probability,
given that the ROI is activated? (Hint: Poldrack (2006) reports that it is 0.69. You job is to
derive this number.)

Exercise 4.6. [Purpose: To make sure you really understand what is being shown in Figure 4.1.]

Derive the posterior distribution in Figure 4.1 by hand. Theprior hasp(θ = .25) = .25,
p(θ= .50) = .50, andp(θ= .75) = .25. The data consist of a specific sequence of flips with
3 heads and 9 tails, sop(D|θ) = θ3 (1 − θ)9. Hint: Check that your posterior probabilities
sum to one.

62 CHAPTER 4. BAYES’ RULE

Exercise 4.7.[Purpose: For you to see, hands on, thatp(D) lives in the denominator of Bayes’ rule.]

Computep(D) in Figure 4.1 by hand. Hint: Did you notice that you already computedp(D)
in the previous exercise?

Part II

All the Fundamentals Applied to
Inferring a Binomial Proportion

63

Chapter 5

Inferring a Binomial Proportion via
Exact Mathematical Analysis
Contents

5.1 The likelihood function: Bernoulli distribution 66
5.2 A description of beliefs: The beta distribution 67

5.2.1 Specifying a beta prior . 68
5.2.2 The posterior beta . 70

5.3 Three inferential goals . 71
5.3.1 Estimating the binomial proportion71
5.3.2 Predicting data . 72
5.3.3 Model comparison . 73

5.3.3.1 Is the best model a good model? 75
5.4 Summary: How to do Bayesian inference 75
5.5 R code . 76

5.5.1 R code for Figure 5.2 . 76
5.6 Exercises . 79

I built up my courage to ask her to dance
By drinking too much before taking the chance.
I fell on my butt when she said see ya later;
Less priors might make my posterior beta.

This Part of the book addresses a simple scenario: Estimating the underlying probability
that a coin comes up heads. The methods don’t require that we are referring to a coin, of
course. All we require in this scenario is that the space of possibilities for each datum has
just two possible values that are mutually exclusive. Thesetwo values have no ordinal or
metric relationship with each other, they are just nominal values. Because there are two
nominal values, I refer to this sort of data as “binomial”, orsometimes as “dichotomous”.

We also assume that each datum is independent of the others and that the underlying
probability is stationary through time. Coin flipping is thestandard example of this situa-
tion: There are two possible outcomes (head or tail), the flips are (we assume) independent
of each other, and the probability of getting a head is stationary through time (again, by
assumption). Other examples include the proportion of freethrows hit by a player in bas-
ketball, the proportion of babies born that are girls, the proportion of heart surgery patients

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

65

66 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

who survive more than a year after surgery, the proportion ofpeople who agree with a
statement on a survey, the proportion of widgets on an assembly line that are faulty, and so
on. While we talk about heads and tails for coins, keep in mindthat the methods could be
applied to many other interesting real-world situations.

In a Bayesian analysis, we begin with some prior beliefs overpossible probabilities of
the coin coming up heads. Then we observe some data that consist of a set of results from
flipping the coin. Then we infer the posterior distribution of our beliefs using Bayes’ rule.
Bayes’ rule requires us to specify the likelihood function,and that is the topic of the next
section.

5.1 The likelihood function: Bernoulli distribution

When we flip a coin, the result can be a head or a tail. We will denote the result byy, with
y = 1 for head andy = 0 for tail. Giving the head or tail a numerical value (i.e., 1 or 0) is
helpful for mathematically expressing the probabilities.But do not be lulled into thinking
that somehow a head is “greater than” a tail because 1> 0, or that the “distance” between
a head and a tail is 1 because|1− 0| = 1. We will usey = 1 for head andy = 0 for tail only
for convenience, but we must remember that the data are trulynominal (i.e., categorical)
values without any metric or ordinal properties.

As discussed previously in Section 4.2.2.1, p. 52, the probability of the coin coming up
heads is a function of an underlying parameter:p(y=1|θ) = f (θ). We assume a particularly
simple function, namely the identity:p(y=1|θ) = θ. Consequently, the probability of tails
is the complement, i.e.,p(y= 0|θ) = 1 − θ. These two equations can be combined into a
single expression as follows:

p(y|θ) = θy (1− θ)(1−y) (5.1)

for y in the set{1, 0} andθ in the interval [0, 1]. Notice that wheny = 1, the righthand side
of Equation 5.1 reduces toθ, and wheny = 0, the righthand side of Equation 5.1 reduces to
1− θ.

The formula in Equation 5.1 expresses theBernoulli distribution. The Bernoulli distri-
bution is a probability distribution over the two discrete values ofy, for any fixed value ofθ.
In particular, the sum of the probabilities is 1, as must be true of a probability distribution:
∑

y p(y|θ) = p(y=1|θ) + p(y=0|θ) = θ + (1−θ) = 1.
Another perspective on Equation 5.1 is to think of the data valuey as fixed by an obser-

vation, and the value ofθ as variable. Equation 5.1 then specifies the probability of the fixed
y value if θ has some particular value. Different values ofθ yield different probabilities of
the datumy. When thought of in this way, Equation 5.1 is thelikelihood functionof θ.

Notice that the likelihood function is a function of a continuous valueθ, whereas the
Bernoulli distribution is a discrete distribution over thetwo values ofy. The likelihood
function, though it specifies a probability at each value ofθ, isnota probability distribution.

In particular, it does not integrate to 1. For example, suppose thaty = 1. Then
∫ 1
0 dθ θy (1−

θ)(1−y) =
∫ 1
0 dθ θ = 1

2 , 1.
In Bayesian inference, the functionp(y|θ) is usually thought of with the data,y, known

and fixed, and the parameter,θ, uncertain and variable. Therefore,p(y|θ) is usually called
the likelihood function forθ, and Equation 5.1 is called theBernoulli likelihood function.
Don’t forget, however, that the very same function is also the probability of the datum,y.

5.2. A DESCRIPTION OF BELIEFS: THE BETA DISTRIBUTION 67

When we flip the coinN times, we have a set of data,D = {y1, . . . , yN}, where eachyi

is 0 or 1. By assumption, each flip is independent of the others. (Recall the definition of
independence from Section 3.4.3, p. 39.) Therefore, the probability of getting the set ofN
flips D = {y1, . . . , yN} is the product of the individual outcome probabilities:

p({y1, . . . , yN}|θ) =
∏

i

p(yi |θ)

=
∏

i

θyi (1− θ)(1−yi) (5.2)

If the number of heads in the set of flips is denotedz =
∑N

i yi , then Equation 5.2 can be
written as

p(z,N|θ) = θz (1− θ)(N−z) (5.3)

I will often lapse terminologically sloppy and refer to Equation 5.3 as the Bernoulli likeli-
hood function for a set of flips, but please remember that the Bernoulli distribution is really
Equation 5.1 and refers to a single flip.1

5.2 A description of beliefs: The beta distribution

In this chapter, we use purely mathematical analysis, with no numerical approximation, to
derive the mathematical form of the posterior distributionof beliefs. To do this, we need a
mathematical description of our prior beliefs. That is, we need a mathematical formula that
describes the prior belief probability for each value of thebiasθ in the interval [0, 1].

In principle, we could use any probability density functionsupported on the interval
[0, 1]. When we intend to apply Bayes’ rule (Equation 4.4), however, there are two desider-
ata for mathematical tractability. First, it would be convenient if the product ofp(y|θ) and
p(θ), which is in the numerator of Bayes’ rule, results in a function of the same form asp(θ).
When this is the case, the prior and posterior beliefs are described using the same form of
function. This quality allows us to include subsequent additional data and derive another
posterior distribution, again of the same form as the prior.Therefore, no matter how much
data we include, we always get a posterior of the same functional form. Second, we desire
the denominator of Bayes’ rule, namely

∫

dθ p(y|θ)p(θ), to be solvable analytically. This
quality also depends on how the form of the functionp(θ) relates to the form of the function
p(y|θ). When the forms ofp(y|θ) andp(θ) combine so that the posterior distribution has the
same form as the prior distribution, thenp(θ) is called aconjugate priorfor p(y|θ). Notice
that the prior is conjugate only with respect to a particularlikelihood function.

In the present situation we are seeking a functional form fora prior density overθ that
is conjugate to the Bernoulli likelihood function in Equation 5.1. If you think about it a
minute, you’ll notice that if the prior is of the formθa(1− θ)b, then when you multiply the
Bernoulli likelihood with the prior, you’ll again get a function of the same form, namely

1 Some readers might be familiar with the binomial distribution, p(z|N, θ) =
(
N
z

)

θz (1 − θ)(N−z), and wonder
why it is not used here. The reason is that here we are considering each flip of the coin to be a distinct event,
whereby each observation has just two possible values,y ∈ {0,1}. The probability of thesetof events is then the
product of the individual event probabilities, as in Equation 5.2. If we instead considered a single “event” to be
the flipping ofN coins, then an observation of asingleevent could haveN + 1 possible values,z ∈ {0,1, ...,N},
and the probability of those values would be given by the binomial distribution. The binomial distribution is
explained in Section 11.1.1, p. 216.

68 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

θ(y+a)(1 − θ)(1−y+b). So, to express the prior beliefs overθ, we seek a probability density
function involvingθa(1− θ)b.

A probability density of that form is called abeta distribution. Formally, a beta distri-
bution has two parameters, calleda andb, and the density itself is defined as

p(θ|a, b) = beta(θ; a, b)

= θ(a−1) (1− θ)(b−1)/B(a, b) (5.4)

whereB(a, b) is simply a normalizing constant that ensures that the areaunder the beta
density integrates to 1.0, as all probability density functions must. In other words, the

normalizer for the beta distribution isB(a, b) =
∫ 1

0
dθ θ(a−1) (1− θ)(b−1).

Remember that the beta distribution is only defined for values of θ in the interval [0, 1].
The values ofa andb must be positive; zero and negative values don’t work. Notice that in
the definition of the beta distribution (Equation 5.4), the value ofθ is raised to the powera−
1, not the powera, and the value of (1− θ) is raised to the powerb− 1, not the powerb. Be
careful to distinguish the betafunction, B(a, b), from the betadistribution, beta(θ; a, b). The
beta function is not a function ofθ becauseθ has been “integrated out.” In the programming
language R, beta(θ; a, b) is dbeta(θ,a,b), andB(a, b) is beta(a,b).2

Examples of the beta distribution are shown in Figure 5.1. Each panel of Figure 5.1
shows the beta distribution for particular values ofa andb, as indicated inside each panel.
Notice that asa gets bigger, the bulk of the distribution moves rightward over higher values
of θ, but asb gets bigger, the bulk of the distribution moves leftward over lower values ofθ.
Notice that asa andb get bigger together, the beta distribution gets narrower.

5.2.1 Specifying a beta prior

We would like to specify a beta distribution that describes our prior beliefs. For this goal it
is useful to know the mean and variance (recall Equations 3.6, p. 32, and 3.8, p. 33) of the
beta distribution, so we can get a sense of whicha andb values correspond to reasonable
descriptions of our prior beliefs aboutθ. It turns out that the mean of the beta(θ; a, b)
distribution isθ = a/(a + b). Thus, whena = b, the mean is .5, and the biggera is
relative tob, the bigger the mean is. The standard deviation of the beta distribution is
√

θ(1− θ)/(a+ b+ 1). Notice that the standard deviation gets smaller whena + b gets
larger.

You can think ofa andb in the prior as if they were previously observed data, in which
there werea heads andb tails in a total ofa + b flips. For example, if we have no prior
knowledge other than the knowledge that the coin has a head side and a tail side, that’s
tantamount to having previously observed one head and one tail, which corresponds to
a = 1 andb = 1. You can see in Figure 5.1 that whena = 1 andb = 1 the beta distribution
is uniform: All values ofθ are equally probable. As another example, if we think that
the coin is probably fair but we’re not very sure, then we can imagine that the previously
observed data had, say,a = 4 heads andb = 4 tails. You can see in Figure 5.1 that when
a = 4 andb = 4 the beta distribution is peaked atθ = .5, but higher or lower values ofθ are
moderately probable too.

2Whereas it is true thatB(a,b) =
∫ 1

0
dθ θ(a−1) (1− θ)(b−1), the beta function can also be expressed asB(a,b) =

Γ(a)Γ(b)/Γ(a + b), whereΓ is theGamma function: Γ(a) =
∫ ∞

0
dt t(a−1) exp(−t). The Gamma function is a

generalization of the factorial function, because, for integer valueda, Γ(a) = (a− 1)!. In R,Γ(a) is gamma(a).
Many sources define the beta function this way, in terms of theGamma function.

5.2. A DESCRIPTION OF BELIEFS: THE BETA DISTRIBUTION 69

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 0.5, b = 0.5

0.0 0.4 0.8
0.

0
1.

0
2.

0
3.

0
θ

p(
θ)

a = 1, b = 0.5

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 2, b = 0.5

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 3, b = 0.5

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 4, b = 0.5

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 0.5, b = 1

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 1, b = 1

0.0 0.4 0.8
0.

0
1.

0
2.

0
3.

0
θ

p(
θ)

a = 2, b = 1

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 3, b = 1

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 4, b = 1

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 0.5, b = 2

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 1, b = 2

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 2, b = 2

0.0 0.4 0.8
0.

0
1.

0
2.

0
3.

0
θ

p(
θ)

a = 3, b = 2

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 4, b = 2

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 0.5, b = 3

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 1, b = 3

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 2, b = 3

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 3, b = 3

0.0 0.4 0.8
0.

0
1.

0
2.

0
3.

0
θ

p(
θ)

a = 4, b = 3

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 0.5, b = 4

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 1, b = 4

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 2, b = 4

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 3, b = 4

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

θ

p(
θ)

a = 4, b = 4

Figure 5.1: Examples of beta distributions.

Instead of thinking in terms ofa heads andb tails in the prior data, it’s easier to think
in terms of the mean proportion of heads in the prior data and its sample size. The mean
proportion of heads ism = a/(a + b) and the sample size isn = a + b. Solving those two
equations fora andb yields:

a = mn and b = (1−m)n (5.5)

wherem is our guess for the prior mean value of the proportionθ, andn is our guess for the
number of observations girding our prior belief. The value we choose for the priorn can be
thought of this way: It is the number of new flips of the coin that we would need to make
us teeter between the new data and the prior belief aboutm. If we would only need a few
new flips to sway our beliefs, then our prior beliefs should berepresented by a smalln. If
we would need a large number of new flips to sway us away from ourprior beliefs aboutm,
then our prior beliefs are worth a very largen. For example, suppose that I think the coin
is fair, som = .5, but I’m not highly confident about it, so maybe I imagine I’ve seen only
n = 8 previous flips. Thena = mn= 4 andb = (1−m)n = 4, which, as we saw before, is a
beta distribution peaked atθ = .5 and with higher or lower values less probable.

70 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

Another way of establishing the shape parameters is by starting with the mean and stan-
dard deviation of the desired beta distribution. You must becareful with this approach,
because the standard deviation must make sense in the context of a beta density. In par-
ticular, the standard deviation should typically be less than 0.289, which is the standard
deviation of a uniform density. For a beta density with meanm and standard deviations,
the shape parameters are:

a = m

(

m(1−m)

s2
− 1

)

and b = (1−m)

(

m(1−m)

s2
− 1

)

(5.6)

For example, ifm = .5 ands = 0.28867, Equation 5.6 implies thata = 1 andb = 1. As
another example, ifm= .5 ands= 0.1, thena = 12 andb = 12; i.e., a beta(θ,12,12) density
has a standard deviation of 0.1.

In most applications, we will deal with beta distributions for which a ≥ 1 andb ≥ 1,
i.e., n ≥ 2, which reflects prior knowledge that the coin has a head sideand a tail side.
There are some situations, however, in which it may be convenient to use beta distributions
in whicha < 1 and/or b < 1. For example, we might believe that the coin is a trick coin that
nearly always comes up heads or nearly always comes up tails,but we don’t know which.
In this case, the bimodal beta(θ; .5, .5) prior might be a useful description of our prior belief,
as shown in the top left panel of Figure 5.1. Exercise 5.4 has you explore this a bit more.

5.2.2 The posterior beta

Now that we have determined a convenient prior for the Bernoulli likelihood function, let’s
figure out exactly what the posterior distribution is when weapply Bayes’ rule (Equa-
tion 4.4, p. 48). Suppose we have a set of data comprisingN flips with zheads. Substituting
the Bernoulli likelihood (Equation 5.3) and the beta prior distribution (Equation 5.4) into
Bayes’ rule yields

p(θ|z,N) = p(z,N|θ)p(θ)/p(z,N)

= θz (1− θ)(N−z) θ(a−1) (1− θ)(b−1) / [

B(a, b)p(z,N)
]

= θ((z+a)−1) (1− θ)((N−z+b)−1)
/

[
B(a, b) p(z,N)

]

︸ ︷︷ ︸

B(z+ a,N − z+ b)

. (5.7)

In that sequence of equations, you probably followed the collection of powers ofθ and of
(1 − θ), but you may have balked at the transition, underbraced in the denominator, from
B(a, b)p(z,N) to B(z+a,N−z+b). This transition was not made via some elaborate analysis
of integrals. Instead, the transition was made by simply thinking about what the normalizing
factor for the numerator must be. The numerator isθ((z+a)−1) (1− θ)((N−z+b)−1), which is the
numerator of a beta(θ; z+ a,N − z+ b) distribution. For the function in Equation 5.7 to be
a probability distribution, as it must be, the denominator must be the normalizing factor for
the corresponding beta distribution.

In other words, Equation 5.7 says this: If the prior distribution is beta(θ; a, b), and the
data havez heads inN flips, then the posterior distribution is beta(θ; z + a,N − z + b).
The simplicity of that updating rule is one of the beauties ofthe mathematical approach to
Bayesian inference.

It is also revealing to think about the relationship betweenthe prior and posterior means.
The prior mean ofθ is a/(a + b). The posterior mean is (z+ a)/[(z+ a) + (N − z+ b)] =

5.3. THREE INFERENTIAL GOALS 71

(z+ a)/(N + a + b). The posterior mean can be algebraically re-arranged intoa weighted
average of the prior mean,a/(a+ b), and the data proportion,z/N:

z+ a
N + a+ b
︸ ︷︷ ︸

posterior

=
z
N

︸︷︷︸

data

N
N + a+ b
︸ ︷︷ ︸

weight

+
a

a+ b
︸︷︷︸

prior

a+ b
N + a+ b
︸ ︷︷ ︸

weight

. (5.8)

Equation 5.8 indicates that the posterior mean is always somewhere between the prior mean
and the proportion in the data. The mixing weight on the priormean hasN in its denomina-
tor, and so it decreases asN increases. The mixing weight on the data proportion increases
as N increases. So the more data we have, the less is the influence of the prior, and the
posterior mean gets closer to the proportion in the data. In particular, whenN = a + b,
the mixing weights are .5, which indicates that the prior mean and the data proportion have
equal influence in the posterior. This result echoes what wassaid earlier (Equation 5.5)
regarding how to seta andb to represent our prior beliefs: The choice of priorn (which
equalsa+b−2) should represent the size of the new data set that would sway us away from
our prior toward the data proportion.

5.3 Three inferential goals

5.3.1 Estimating the binomial proportion

The posterior distribution overθ tells us exactly how much we believe in each possible value
of θ. When the posterior is a beta distribution, we can make a graph of the distribution and
see in glorious detail what our new beliefs look like. We can extract numerical details of
the distribution by using handy functions in R.

Figure 5.2 shows examples of posterior beta distributions.Each column of graphs show
a prior beta distribution, a likelihood graph, and the resulting posterior distribution. Both
columns use the same data, and therefore have the same likelihood graphs. The columns
have different priors, however, hence different posteriors. The prior in the left column is
uniform, which represents a prior of tremendous uncertainty wherein any bias is equally
believable. The prior in the right column loads most belief over a bias ofθ = 0.5, indicating
a moderately strong prior belief that the coin is fair. As indicated in the graphs of the
likelihood, the coin is flipped 14 times and comes up heads 11 times. The posterior beta
distributions are graphed in the bottom row. You can see in the left column that when the
prior is uniform, then the posterior exactly mirrors the likelihood. When the prior is loaded
overθ = 0.5, however, the posterior is only slightly shifted away fromthe prior toward the
proportion of heads in the data. This small shift is a graphicdepiction of the relationship
expressed in Equation 5.8.

The posterior distribution indicates which values ofθ are relatively more credible than
others. One way of summarizing where the bulk of the posterior resides is with the highest
density interval (HDI), which was introduced in Section 3.3.5. The 95% HDI is an inter-
val that spans 95% of the distribution, such that every pointinside the interval has higher
believability than any point outside the interval. Figure 5.2 shows the 95% HDI in the two
posteriors. You can see that the 95% HDI is fairly wide when the prior is uncertain, but nar-
rower when the prior is more certain. Thus, in this case, the posterior inherits the relative
uncertainty of the prior, and the width of the 95% HDI is one measure of uncertainty.

The 95% HDI is also one way for declaring which values of the parameter are deemed
“credible”. Suppose we want to decide whether or not a value of interest forθ is credible,

72 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
Prior

θ

p(
θ)

beta(θ;1,1)

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
04

Likelihood

θ

p(
D

|θ
)

Data: z=11,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Posterior

θ

p(
θ|

D
)

beta(θ;12,4)

p(D)=0.000183

95% HDI
0.544 0.938

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Prior

θ

p(
θ)

beta(θ;100,100)

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
04

Likelihood

θ

p(
D

|θ
)

Data: z=11,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
Posterior

θ

p(
θ|

D
)

beta(θ;111,103)

p(D)=6.86e−05

95% HDI
0.452 0.585

Figure 5.2: Two different beta priors, updated using the same data. (The R code
that generated these graphs is in Section 5.5.1 (BernBeta.R).)

given the data. Consider, for example,θ = 0.5, which indicates that the coin is fair. We
first establish aregion of practical equivalence(ROPE) around the value of interest, which
means a small interval such that any value within the ROPE is equivalent to the value of
interest for all practical purposes. Suppose that we declare the ROPE forθ = 0.5 to be 0.48
to 0.52. We want to know if any values within the ROPE are reasonably credible, given
the data. How should we define “reasonably credible”? One wayis by saying that any
points within the 95% HDI are reasonably credible. Hence, weuse the following heuristic
decision rule: A value of interest, such asθ = 0.5, is declared to be incredible if no point in
its ROPE falls within the 95% HDI of the posterior.

It is important to distinguish the two roles for the HDI just mentioned. One role for the
HDI is acting as a summary of the distribution. A different role for the HDI is using it for
deciding whether a value of interest is or is not credible. This latter process, of converting
a rich posterior distribution to a discrete yes/no decision about credibility, involves many
extra assumptions that have nothing to do with the HDI. The HDI can be a useful summary
apart from whether or not it is used to decide the credibilityof a point. These issues will be
explored at length in Chapter 12.

5.3.2 Predicting data

As introduced back in Section 4.3.2 (p. 52), the predicted probability of a datum valuey
is determined by averaging that value’s probability acrossall possible parameter values,
weighted by the belief in the parameter values:p(y) =

∫

dθ p(y|θ)p(θ). The belief in the
parameter values,p(θ), is the current posterior belief, including the data observed so far,

5.3. THREE INFERENTIAL GOALS 73

which we can indicate explicitly asp(θ|z,N).
In the present application, the predicted probability of heads is particularly simple, be-

causep(y=1|θ) = θ, and therefore

p(y=1) =
∫

dθ p(y=1|θ) p(θ|z,N)

=

∫

dθ θ p(θ|z,N)

= θ|z,N
= (z+ a)/(N + a+ b) (5.9)

In other words, the predicted probability of heads is just the mean of the posterior distri-
bution overθ. Recall from Equation 5.8 that the posterior mean is a weighted mixture of
the prior mean and the data proportion. So the predicted probability of getting a head on
the next flip is somewhere between the prior mean and the proportion of heads in the flips
observed so far.

Let’s make that concrete by considering a particular prior and sequence of flips. Sup-
pose that we start with a uniform prior, i.e., beta(θ; 1, 1). We flip the coin once, and get
a head. The posterior is then beta(θ; 2, 1), which has a mean of 2/3. Thus, after the first
flip comes up heads, the predicted probability of heads on thenext flip is 2/3. Suppose we
flip the coin a second time, and again get a head. The posterioris then beta(θ; 3, 1), and
the predicted probability of heads on the next flip is 3/4. Notice that even though we have
flipped the coin twice and observed heads both times, we do notpredict that there is 100%
chance of coming up heads on the next flip, because the uncertainty of the prior beliefs is
mixed with the observed data.

Consider a variation of that example in which we start with a prior of beta(θ; 50, 50),
which expresses a fairly strong prior belief that the coin isfair (about 95% of the probability
mass lies betweenθ = .40 andθ = .60). Suppose we flip the coin twice and get heads both
times. The posterior is beta(θ; 52, 50), and hence the predicted probability of getting a head
on the next flip is 52/102 ≈ 51% (which is much different than what we predicted when
starting with a uniform prior). Because the priora+ b was so large, it will take a largeN to
overpower the prior belief.

5.3.3 Model comparison

You may recall from the previous chapter (particularly Equation 4.8 on page 48) that Bayes’
rule can be used to compare models. To do this, we compute the evidence,p(D|M), for each
model. The evidence is the weighted total probability of thenewly observed data across all
possible parameter values, where the total is computed by weighting each parameter value
by its prior probability. That is,p(D|M) =

∫

dθ p(D|θ,M) p(θ|M).
In the present scenario, the dataD are expressed by the valuesz andN. When using a

Bernoulli likelihood and a beta prior, then the evidencep(D|M) is p(z,N) and it is especially
easy to compute. In Equation 5.7, the denominator (i.e., thepart with the underbrace)
showed that

B(a, b) p(z,N) = B(z+ a,N − z+ b).

Solving for p(z,N) reveals that

p(z,N) = B(z+a,N−z+b) /B(a, b). (5.10)

74 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Prior

θ

p(
θ)

beta(θ;1,1)

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

−
05

4e
−

05
6e

−
05

Likelihood

θ

p(
D

|θ
)

Data: z=7,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Posterior

θ

p(
θ|

D
)

beta(θ;8,8)

p(D)=1.94e−05

95% HDI
0.266 0.734

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Prior

θ

p(
θ)

beta(θ;100,100)

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

−
05

4e
−

05
6e

−
05

Likelihood

θ

p(
D

|θ
)

Data: z=7,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
Posterior

θ

p(
θ|

D
)

beta(θ;107,107)

p(D)=5.9e−05

95% HDI
0.433 0.567

Figure 5.3: Two different beta priors, updated using the same data (z= 7,N = 14).
The evidences are denoted byp(D) (with M suppressed) in the lower panels of
each column, and they favor the prior that is peaked overθ = 0.5. Contrast with
Figure 5.2, for which the evidences favored the uniform prior.

Thus, we can determinep(z,N) using well-established beta functions, and we do not need
to do any difficult integral calculus.

The lower panels of Figure 5.2 show the values ofp(z,N) for two different priors, for a
fixed data setz= 11,N = 14. One prior is uniform, while the other prior is strongly peaked
over θ = .50. The data have a proportion of 1’s that is not very close to .5, and therefore
the prior that is peaked over 0.5 does not capture the data very well. The peaked prior has
very low belief in values ofθ near the data proportion, which means thatp(z,N) for the
peaked-prior model is relatively small. The uniform prior,on the other hand, has relatively
more belief in values ofθ near the data proportion, and so itsp(D|M) is relatively high.

Consider a data set in which half the flips were heads, e.g.,z = 7 andN = 14. Then
which prior would produce the largerp(z,N)? Figure 5.3 shows the answer: The prior
peaked overθ = 0.5 is now preferred.

When we are evaluating the veracity of a model, the prior distribution for its parame-
ters must be considered along with the likelihood function.In this chapter we are using a
Bernoulli likelihood function and a beta prior. We can not say whether the Bernoulli like-
lihood is a “good” model of the coin flips without also specifying the values ofθ that we
believe in. Some values ofθ may match the data well, but other values may not. If the
values ofθ that we believe in are not the values that match the data, thenthe model is not
very good.

Because the prior distributions are part of the model, we canthink of different prior
distributions as constituting different models. We already took this approach, back in Fig-

5.4. SUMMARY: HOW TO DO BAYESIAN INFERENCE 75

ures 4.2 (page 54) and 4.3 (page 55). The simple model had a prior with non-zero be-
lief on just a few values ofθ, while the complex model had a prior with non-zero belief
on many values ofθ. We compared the models by considering the relative magnitudes
of p(D|Msimple) and p(D|Mcomplex). We can do the same thing for the two priors in Fig-
ure 5.2. The peaked prior constitutes one model, and the uniform prior constitutes another
model. We evaluate their relative veracity by comparing their values ofp(D|Mpeaked) and
p(D|Muniform).

We prefer the model with the higher value ofp(D|M), but the preference is not absolute.
A tiny advantage inp(D|M) should not be translated into a strong preference for one model
over another. After all, the data themselves are just a random sample from the world, and
they could have been somewhat different. It is only when the relative magnitudes ofp(D|M)
are very different that we can feel confident in a preference of one model over another.

Moreover, we need to take into account our prior beliefs in the models,p(M1) and
p(M2), as indicated in Equation 4.8 (page 48). Typically we willgo into a model compar-
ison with equal prior probabilities on the models, and so theratio of the posterior proba-
bilities is just the ratio of evidences (a.k.a. the Bayes factor). But if the prior probabilities
of the models are not equal, then they must be factored into the posteriors. In particular,
if we have a strong prior belief in a model, it takes more evidence for the other model to
overcome our prior belief. For further applications of model comparison, see Exercises 5.6
and 5.7

5.3.3.1 Is the best model a good model?

Suppose we have two models, we collect some data, and find thatthe evidence for one
model is much larger than the evidence for the other model. Ifour prior beliefs were equal,
then the posterior beliefs strongly favor the winning model.

But is the winning model actually a good model of the data? Themodel comparison
process has merely told us the models’relative believabilities, not theirabsolutebeliev-
abilities. The winning model might merely be a less bad modelthan the horrible losing
model.

Exercise 5.8 explains one way to assess whether the winning model can actually account
for the data. The method used there is called aposterior predictive check.

5.4 Summary: How to do Bayesian inference

In this chapter, we’ve covered a lot of important conceptualpoints that are crucial for under-
standing what you are doing when you do Bayesian inference. But I don’t want the volume
of concepts to overwhelm the underlying simplicity of what you actually do. Here are the
steps:

1. For the methods of this chapter to apply to your situation,the data must have two
nominal values, like heads and tails. The two values must come up randomly, inde-
pendently across observations, and with a single and fixed (i.e., stationary through
time) probability. Denote the underlying probability of “heads” by the valueθ.

2. Establish a description of your prior beliefs regarding values of θ by using a
beta(θ; a, b) distribution. Decide what you think is the most probable value for θ;
call it m. Decide how strongly you believe inm by considering how many new data

76 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

points (e.g., flips of the coin) it would take to sway you away from your prior be-
lief. Call that numbern. (In real research, the prior is established by considering
previously published results and the audience to whom the analysis is addressed.)
Then convert them, n values toa, b values for the beta distribution by using Equa-
tion 5.5. You should check that the resulting beta distribution really captures your
beliefs by looking at its graph! This is easily done by using the program in Sec-
tion 5.5.1 (BernBeta.R). If you cannot express your prior beliefs as a beta distribution,
then the methods of this chapter do not apply.

3. Observe some data. Enter them as a vector of 1’s and 0’s intothe program of Sec-
tion 5.5.1 (BernBeta.R). ForN data points, e.g., flips of a coin, the vector should have
N elements. “Heads” are coded by the value 1, and “tails” are coded by the value 0.
The total number of 1’s (i.e., heads) is denotedz.

4. Determine the posterior distribution of beliefs regarding values ofθ. When the prior
is a beta distribution, the posterior is a beta distributiontoo. The program of Sec-
tion 5.5.1 (BernBeta.R) displays it graphically, along with a credible interval.

5. Make inferences from the posterior, depending on your goal. If your goal is to es-
timateθ, use the posterior distribution, perhaps as summarized by the 95% HDI. If
your goal is to predict new data, then your predicted probability of “heads” on the
next flip is the mean of the posterior, which is (z+ a)/(N + a + b). If your goal is
to compare models (i.e., priors), then usep(D) to decide which model’s prior better
accounts for the data. Use a posterior predictive check to get a sense of whether the
better model actually mimics the data well.

5.5 R code

5.5.1 R code for Figure 5.2

This program defines afunction in R instead of a script. A function takes input values,
called “arguments,” and does something with them. In general, a function in R in defined
by code of the form:
function name = function(arguments) { commands }

The commands inside the braces can extend over many lines of code. When the function is
called, it takes the values of the arguments in parentheses and uses them in the commands
in the braces. You invoke the function by commanding R thus:
function name(argument values)

As a simple example, consider this definition:
asqplusb = function(a , b) { aˆ2 + b }

We can then type
asqplusb(a=2 , b=1)

and R returns5. We can get the same result be typing
asqplusb(2 , 1)

because unlabeled arguments are assumed to be provided in the order they were listed in
the function definition. If you want to use some other ordering of arguments when calling
the function, that is okay as long as the arguments are explicitly labeled. So, for example,
we can get the same result by typing
asqplusb(b=1 , a=2)

5.5. R CODE 77

By default, a function in R returns the last value it computedin the list of commands. If
you want to be sure that the function returns the intended value, you should include an
explicit return command at the end of your function; for example:
asqplusb = function(a , b) {
c = aˆ2 + b

return(c)

}

A very useful feature of function definitions in R is that arguments can be given default
values. For example, in the following function definition, the argumentb is given a default
value of 1: asqplusb = function(a , b=1) { aˆ2 + b }
The function can then be calledwithout specifying a value forb, and the valueb=1 will be
assumed by default. For example, typingasqplusb(a=2) would return 5. A default value can
be overridden by explicitly specifying its value in the function call; e.g.,asqplusb(a=2,b=2)
would return 6.

To use a function, R must know that the function exists. To point out a function to R,
and make it ready to call, do the following. First, for this function BernBeta.R, save the
full text of the function in a file, named “BernBeta.R,” in a folder of your choice. Second,
you mustsource that file, which essentially just runs the code. Running the function file
simply defines the function for R, it does not call the function with arguments. Tosource the
file, you can type the commandsource("<pathtofile>/BernBeta.R"), or, in the R command
window (not an editing or graph window), click the File menu item, then the Source menu
item, and then browse to the file and select it.

See the comments at the top of the code listing for details of how to use this function.
When you examine the code, you may notice that the Bayesian computations constitute just
a few lines; the bulk of the code is devoted to all the details of displaying the distributions!
On line 57, a large window is opened. Line 58 specifies the layout of the subplots. The
layout command takes a matrix as an argument; the integers in the matrix indicate which
subpanels in the layout should be used for which plot. Thus, the first subplot is put into
the matrix cells that have a 1, the second subplot is put into the matrix cells that have a 2,
and so forth. Line 59 adjusts how the axis information is displayed. Thepar command has
arguments such asmar andmgp which adjust the margins of the plot; typehelp(par) in R
for details, and try varying the numbers in themar andmgp vectors to explore their effects
on the plot. Mathematical text in the plots uses theexpression andbquote functions, which
interpret their arguments as specifications for mathematical characters. For help with how
to plot math characters in R, at the command line typedemo(plotmath) andhelp(plotmath).

The function that computes the HDI uses some advanced techniques, and its explana-
tion is deferred to Section 23.3.3 (HDIofICDF.R). Nevertheless, the program that computes
the HDI, calledHDIofICDF.R, must be available for use by the program listed here, called
BernBeta.R. Therefore, be sure that the two programs are in the same folder.

(BernBeta.R)
1 BernBeta = function(priorShape , dataVec , credMass=0.95 , saveGraph=F) {

2 # Bayesian updating for Bernoulli likelihood and beta prior.

3 # Input arguments:

4 # priorShape

5 # vector of parameter values for the prior beta distribution.

6 # dataVec

7 # vector of 1’s and 0’s.

8 # credMass

78 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

9 # the probability mass of the equal tailed credible interval.

10 # Output:

11 # postShape

12 # vector of parameter values for the posterior beta distribution.

13 # Graphics:

14 # Creates a three-panel graph of prior, likelihood, and posterior

15 # with highest posterior density interval.

16 # Example of use:

17 # > postShape = BernBeta(priorShape=c(1,1) , dataVec=c(1,0,0,1,1))

18 # You will need to "source" this function before using it, so R knows

19 # that the function exists and how it is defined.

20

21 # Check for errors in input arguments:

22 if (length(priorShape) != 2) {

23 stop("priorShape must have two components.") }

24 if (any(priorShape <= 0)) {

25 stop("priorShape components must be positive.") }

26 if (any(dataVec != 1 & dataVec != 0)) {

27 stop("dataVec must be a vector of 1s and 0s.") }

28 if (credMass <= 0 | credMass >= 1.0) {

29 stop("credMass must be between 0 and 1.") }

30

31 # Rename the prior shape parameters, for convenience:

32 a = priorShape[1]

33 b = priorShape[2]

34 # Create summary values of the data:

35 z = sum(dataVec == 1) # number of 1’s in dataVec

36 N = length(dataVec) # number of flips in dataVec

37 # Compute the posterior shape parameters:

38 postShape = c(a+z , b+N-z)

39 # Compute the evidence, p(D):

40 pData = beta(z+a , N-z+b) / beta(a , b)

41 # Determine the limits of the highest density interval.

42 # This uses a home-grown function called HDIofICDF.

43 source("HDIofICDF.R")

44 hpdLim = HDIofICDF(qbeta , shape1=postShape[1] , shape2=postShape[2])

45

46 # Now plot everything:

47 # Construct grid of theta values, used for graphing.

48 binwidth = 0.005 # Arbitrary small value for comb on Theta.

49 Theta = seq(from = binwidth/2 , to = 1-(binwidth/2) , by = binwidth)

50 # Compute the prior at each value of theta.

51 pTheta = dbeta(Theta , a , b)

52 # Compute the likelihood of the data at each value of theta.

53 pDataGivenTheta = Thetaˆz * (1-Theta)ˆ(N-z)

54 # Compute the posterior at each value of theta.

55 pThetaGivenData = dbeta(Theta , a+z , b+N-z)

56 # Open a window with three panels.

57 windows(7,10)

58 layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels

59 par(mar=c(3,3,1,0) , mgp=c(2,1,0) , mai=c(0.5,0.5,0.3,0.1)) # margin specs

60 maxY = max(c(pTheta,pThetaGivenData)) # max y for plotting

61 # Plot the prior.

62 plot(Theta , pTheta , type="l" , lwd=3 ,

63 xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,

64 xlab=bquote(theta) , ylab=bquote(p(theta)) , cex.lab=1.5 ,

65 main="Prior" , cex.main=1.5)

66 if (a > b) { textx = 0 ; textadj = c(0,1) }

67 else { textx = 1 ; textadj = c(1,1) }

5.6. EXERCISES 79

68 text(textx , 1.0*max(pThetaGivenData) ,

69 bquote("beta(" * theta * "|" * .(a) * "," * .(b) * ")") ,

70 cex=2.0 ,adj=textadj)

71 # Plot the likelihood: p(data|theta)

72 plot(Theta , pDataGivenTheta , type="l" , lwd=3 ,

73 xlim=c(0,1) , cex.axis=1.2 , xlab=bquote(theta) ,

74 ylim=c(0,1.1*max(pDataGivenTheta)) ,

75 ylab=bquote("p(D|" * theta * ")") ,

76 cex.lab=1.5 , main="Likelihood" , cex.main=1.5)

77 if (z > .5*N) { textx = 0 ; textadj = c(0,1) }

78 else { textx = 1 ; textadj = c(1,1) }

79 text(textx , 1.0*max(pDataGivenTheta) , cex=2.0 ,

80 bquote("Data: z=" * .(z) * ",N=" * .(N)) ,adj=textadj)

81 # Plot the posterior.

82 plot(Theta , pThetaGivenData ,type="l" , lwd=3 ,

83 xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,

84 xlab=bquote(theta) , ylab=bquote("p(" * theta * "|D)") ,

85 cex.lab=1.5 , main="Posterior" , cex.main=1.5)

86 if (a+z > b+N-z) { textx = 0 ; textadj = c(0,1) }

87 else { textx = 1 ; textadj = c(1,1) }

88 text(textx , 1.00*max(pThetaGivenData) , cex=2.0 ,

89 bquote("beta(" * theta * "|" * .(a+z) * "," * .(b+N-z) * ")") ,

90 adj=textadj)

91 text(textx , 0.75*max(pThetaGivenData) , cex=2.0 ,

92 bquote("p(D)=" * .(signif(pData,3))) , adj=textadj)

93 # Mark the HDI in the posterior.

94 hpdHt = mean(c(dbeta(hpdLim[1],a+z,b+N-z) , dbeta(hpdLim[2],a+z,b+N-z)))

95 lines(c(hpdLim[1],hpdLim[1]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5)

96 lines(c(hpdLim[2],hpdLim[2]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5)

97 lines(hpdLim , c(hpdHt,hpdHt) , type="l" , lwd=2)

98 text(mean(hpdLim) , hpdHt , bquote(.(100*credMass) * "% HDI") ,

99 adj=c(0.5,-1.0) , cex=2.0)

100 text(hpdLim[1] , hpdHt , bquote(.(round(hpdLim[1],3))) ,

101 adj=c(1.1,-0.1) , cex=1.2)

102 text(hpdLim[2] , hpdHt , bquote(.(round(hpdLim[2],3))) ,

103 adj=c(-0.1,-0.1) , cex=1.2)

104 # Construct file name for saved graph, and save the graph.

105 if (saveGraph) {

106 filename = paste("BernBeta_",a,"_",b,"_",z,"_",N,".eps" ,sep="")

107 dev.copy2eps(file = filename)

108 }

109 return(postShape)

110 } # end of function

5.6 Exercises

Exercise 5.1. [Purpose: For you to see the influence of the prior in each successive flip, and for you

to see another demonstration that the posterior is invariant under re-orderings of the data.] For this
exercise, use the R function of Section 5.5.1 (BernBeta.R). (Read the comments at the top
of the code for an example of how to use it, and don’t forget tosource the function before
calling it.) Notice that the function returns the posteriorbeta values each time it is called,
so you can use the returned values as the prior values for the next function call.

(A) Start with a prior distribution that expresses some uncertainty that a coin is fair:
beta(θ, 4, 4). Flip the coin once; suppose we get a head. What is the posterior distribution?

(B) Use the posterior from the previous flip as the prior for the next flip. Suppose we flip

80 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

again and get a head. Now what is the new posterior? (Hint: If you typepost = BernBeta(
c(4,4) , c(1)) for the first part, then you can typepost = BernBeta(post , c(1)) for the
next part.)

(C) Using that posterior as the prior for the next flip, flip a thirdtime and get T. Now
what is the new posterior? (Hint: Typepost = BernBeta(post , c(0)).)

(D) Do the same three updates but in the order T, H, H instead of H, H, T. Is the final
posterior distribution the same for both orderings of the flip results?

Exercise 5.2. [Purpose: Connecting HDIs to the real world, with iterative data collection.] Sup-
pose an election is approaching, and you are interested in knowing whether the general
population prefers candidate A or candidate B. There is a just-published poll in the news-
paper, which states that of 100 randomly sampled people, 58 preferred candidate A and the
remainder preferred candidate B.

(A) Suppose that before the newspaper poll, your prior belief was a uniform distribution.
What is the 95% HDI on your beliefs after learning of the newspaper poll results?

(B) Based in the newspaper poll, is it credible to believe that the population is equally
divided in its preferences among candidates?

(C) You want to conduct a follow-up poll to narrow down your estimate of the popula-
tion’s preference. In your follow-up poll, you randomly sample 100 people and find that 57
prefer candidate A and the remainder prefer candidate B. Assuming that peoples’ opinions
have not changed between polls, what is the 95% HDI on the posterior?

(D) Based on your follow-up poll, is it credible to believe that the population is equally
divided in its preferences among candidates?

Exercise 5.3.[Purpose: Apply the Bayesian method to real data analysis. These data are representa-

tive of real data (Kruschke, 2009).] Suppose you train people in a simple learning experiment,
as follows. When people see the two words, “radio” and “ocean,” on the computer screen,
they should press the F key on the computer keyboard. They seeseveral repetitions and
learn the response well. Then you introduce another correspondence for them to learn:
Whenever the words “radio” and “mountain” appear, they should press the J key on the
computer keyboard. You keep training them until they know both correspondences well.
Now you probe what they’ve learned by asking them about two novel test items. For the
first test, you show them the word “radio” by itself and instruct them to make the best re-
sponse (F or J) based on what they learned before. For the second test, you show them the
two words “ocean” and ”mountain” and ask them to make the bestresponse. You do this
procedure with 50 people. Your data show that for “radio” by itself, 40 people chose F and
10 chose J. For the word combination “ocean” and “mountain,”15 chose F and 35 chose
J. Are people biased toward F or toward J for either of the two probe types? To answer
this question, assume a uniform prior, and use a 95% HDI to decide which biases can be
declared to be credible.

Exercise 5.4. [Purpose: To explore an unusual prior and learn about the beta distribution in the

process.] Suppose we have a coin that we know comes from a magic-trick store, and
therefore we believe that the coin is strongly biased eitherusually to come up heads or
usually to come up tails, but we don’t know which. Express this belief as a beta prior.
(Hint: See Figure 5.1, upper left panel.) Now we flip the coin 5times and it comes up heads
in 4 of the 5 flips. What is the posterior distribution? (Use the R function of Section 5.5.1
(BernBeta.R) to see graphs of the prior and posterior.)

Exercise 5.5.[Purpose: To get hands on experience with the goal of predicting the next datum, and to

5.6. EXERCISES 81

see how the prior influences that prediction.]

(A) Suppose you have a coin that you know is minted by the federal government and
has not been tampered with. Therefore you have a strong priorbelief that the coin is fair.
You flip the coin 10 times and get 9 heads. What is your predicted probability of heads for
the 11th flip? Explain your answer carefully; justify your choice of prior.

(B) Now you have a different coin, this one made of some strange material and marked
(in fine print) “Patent Pending, International Magic, Inc.”You flip the coin 10 times and get
9 heads. What is your predicted probability of heads for the 11th flip? Explain your answer
carefully; justify your choice of prior. Hint: Use the priorfrom Exercise 5.4.

Exercise 5.6.[Purpose: To get hands-on experience with the goal of model comparison.] Suppose
we have a coin, but we’re not sure whether it’s a fair coin or a trick coin. We flip it 20 times
and get 15 heads. Is it more likely to be fair or trick? To answer this question, consider
the value of the Bayes factor, i.e., the ratio of the evidences of the two models. When
answering this question, justify your choice of priors to express the two hypotheses. Use
the R function of Section 5.5.1 (BernBeta.R) to graph the priors and check that they reflect
your beliefs; the R function will also determine the evidences from Equation 5.10.

Exercise 5.7.[Purpose: To see how very small data sets can give strong leverage in model comparison

when the model predictions are very different.] Suppose we have a coin that we strongly believe
is a trick coin, so it almost always comes up heads or it almostalways comes up tails; we
just don’t know if the coin is the head-biased type or the tail-biased type. Thus, one model
is a beta prior heavily biased toward tails, beta(θ; 1, 100), and the other model is a beta
prior heavily biased toward heads, beta(θ; 100, 1). We flip the coin once and it comes up
head. Based on that single flip, what is the value of the Bayes factor, i.e., the ratio of the
evidences of the two models? Use the R function of Section 5.5.1 (BernBeta.R) to determine
the evidences from Equation 5.10.

Exercise 5.8.[Purpose: Hands-on learning about the method of posterior predictive checking.] Fol-
lowing the scenario of the previous exercise, suppose we flipthe coin a total ofN = 12
times and it comes up heads inz = 8 of those flips. Suppose we let a beta(θ; 100, 1) distri-
bution describe the head-biased trick coin, and we let a beta(θ; 1, 100) distribution describe
the tail-biased trick coin.

(A) What are the evidences for the two models, and, what is the value of the Bayes
factor?

Now for the new part, aposterior predictive check: Is the winning model actually a
good model of the data? In other words, one model can be whoppingly better than the
other, but that does not necessarily mean that the winning model is a good model; it might
mean merely that the winning model is less bad than the losingmodel. One way to examine
the veracity of the winning model is to simulate data sampledfrom the winning model and
see if the simulated data “look like” the actual data. To simulate data generated by the
winning model, we do the following: First, we will randomly generate a value ofθ from
the posterior distribution of the winning model. Second, using that value ofθ, we will
generate a sample of coin flips. Third, we will count the number of heads in the sample, as
a summary of the sample. Finally, we determine whether the number of heads in a typical
simulatedsample is close to the number of heads in ouractualsample. The program below
carries out these steps. Study it, run it, and answer the questions that follow.

The program uses afor loop to repeat an action. For example, if you tell R:for (
i in 1:5) { show(i) }, it replies with: 1 2 3 4 5. What for really does is execute the

82 CHAPTER 5. BINOMIAL PROPORTION VIA MATHEMATICAL ANALYSIS

commands within the braces for every element in the specifiedvector. For example, if you
tell R: for (i in c(7,-.2)) { show(i) }, it replies with: 7 -.2.

(BetaPosteriorPredictions.R)
1 # Specify known values of prior and actual data.

2 priorA = 100

3 priorB = 1

4 actualDataZ = 8

5 actualDataN = 12

6 # Compute posterior parameter values.

7 postA = priorA + actualDataZ

8 postB = priorB + actualDataN - actualDataZ

9 # Number of flips in a simulated sample should match the actual sample size:

10 simSampleSize = actualDataN

11 # Designate an arbitrarily large number of simulated samples.

12 nSimSamples = 10000

13 # Set aside a vector in which to store the simulation results.

14 simSampleZrecord = vector(length=nSimSamples)

15 # Now generate samples from the posterior.

16 for (sampleIdx in 1:nSimSamples) {

17 # Generate a theta value for the new sample from the posterior.

18 sampleTheta = rbeta(1 , postA , postB)

19 # Generate a sample, using sampleTheta.

20 sampleData = sample(x=c(0,1) , prob=c(1-sampleTheta , sampleTheta) ,

21 size=simSampleSize , replace=TRUE)

22 # Store the number of heads in sampleData.

23 simSampleZrecord[sampleIdx] = sum(sampleData)

24 }

25 # Make a histogram of the number of heads in the samples.

26 hist(simSampleZrecord)

(B) How many samples (each of sizeN) were simulated?
(C) Was the same value ofθ used for every simulated sample, or were different values

of θ used in different samples?Why?
(D) Based on the simulation results, does the winning model seemto be a good model,

and why or why not?

Chapter 6

Inferring a Binomial Proportion via
Grid Approximation
Contents

6.1 Bayes’ rule for discrete values ofθ 84
6.2 Discretizing a continuous prior density 84

6.2.1 Examples using discretized priors85
6.3 Estimation . 87
6.4 Prediction of subsequent data .88
6.5 Model comparison . 89
6.6 Summary . 89
6.7 R code . 90

6.7.1 R code for Figure 6.2 etc. 90
6.8 Exercises . 92

I’m kinda coarse while the lady’s refined,
I kinda stumble while she holds the line. But
both of us side-step and guess what what the answer is;
Both might feel better with (psycho-)analysis.

The previous chapter considered how to make inferences about a binomial proportion when
the prior could be specified as a beta distribution. Using thebeta distribution was very
convenient because it made the integrals work out easily by direct formal analysis. But
what if no beta distribution adequately expresses our priorbeliefs? For example, our beliefs
could be tri-modal: The coin might be heavily biased toward tails, or be approximately fair,
or be heavily biased toward heads. No beta distribution has three “humps” like that.

In this chapter we explore one technique for numerically approximating the posterior
distribution by defining the prior distribution over a fine grid of θ values. In this situation,
we do not need a mathematical function of the prior over theta; we can specify any prior
probability values we desire at each of the theta values. Moreover, we do not need to do
any analytical (i.e., formulas only) integration. The denominator of Bayes’ rule becomes a
sum over many discreteθ values instead of an integral.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

83

84 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

6.1 Bayes’ rule for discrete values ofθ

As in the previous chapter, the parameterθ denotes the value of a binomial proportion, such
as the underlying propensity for a coin to come up heads. Previously we assumed thatθ
was continuous over the interval [0, 1]. We assumed thatθ could have any value in that
continuous domain. The prior probability onθ was, therefore, a probabilitydensityat each
value ofθ, such as a beta distribution.

Instead, we could assume that there are only a finite number ofθ values in which we
have any non-zero belief. For example, we might believe thatθ can only have the values
.25, .50, or .75. We already saw an example like this back in Figure 4.1 (page 51). When
there are a finite number ofθ values, then our prior distribution expresses the probability
massat each value ofθ. In this situation, Bayes’ rule is expressed as

p(θ|D) =
p(D|θ) p(θ)

∑

θ p(D|θ) p(θ)
(6.1)

where the sum in the denominator is over the finite number of discrete values ofθ that we
are considering, andp(θ) denotes the probabilitymassat θ.

There are two niceties of dealing with the discrete version of Bayes’ rule in Equa-
tion 6.1. One attraction is that some prior beliefs are easier to express with discrete val-
ues than with continuous density functions. Another felicity is that some mathematical
functions, that are difficult to integrate analytically, can be approximated by evaluating the
function on a fine grid of discrete values.

6.2 Discretizing a continuous prior density

If we could approximate a continuous prior density with a grid of discrete prior masses, then
we could use the discrete form of Bayes’ rule (in Equation 6.1) instead of the continuous
form, which requires mathematically evaluating an integral. Fortunately, in some situations
we can, in fact, make such an approximation. Figure 6.1 illustrates how a continuous prior
density can be partitioned into a set of narrow rectangles that approximate the continuous
prior. This process of discretizing the prior is straight forward: Divide the domain into a
large number of narrow intervals. Draw a rectangle over eachnarrow interval, with height
equal to the value of the density at the middle of the narrow interval. Approximate the
area under the continuous density in each narrow interval bythe area in the corresponding
rectangle. This much of the process is illustrated in the toppanels of Figure 6.1. The
approximation gets better and better as the rectangles get narrower and narrower.

To discretize the density, we consider only the discreteθ values at the middles of each
interval, and set the probability mass at that value to be thearea of the corresponding rect-
angle. To make sure that the resulting discrete probabilities sum to exactly 1.0, we set each
discrete probability to the corresponding interval area, and then divide by the sum of those
probabilities. This discrete representation is shown in the lower panels of Figure 6.1. No-
tice that the scale on the y-axis has changed in going from upper to lower panels. In the
upper panels,p(θ) refers to probability density at continuous values. In thelower panels,
p(θ) refers to probability mass at discrete values.

When the prior density is discretized into a grid of masses, we can apply the discrete
version of Bayes’ rule (Equation 6.1). It is only an approximation to the true integral form,
but if the grid is dense enough, the approximation can be veryaccurate.

6.2. DISCRETIZING A CONTINUOUS PRIOR DENSITY 85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Interval width = 0.2

θ

p(
θ)

 d
en

si
ty

 ⇓

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ

p(
θ)

 m
as

s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Interval width = 0.05

θ

p(
θ)

 d
en

si
ty

 ⇓

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

θ

p(
θ)

 m
as

s

Figure 6.1: Approximation of a continuous density by a grid of discrete masses.
Upper panels show a continuous density and its partitioninginto rectangles. Lower
panels plot the area of each rectangle; i.e., the masses. Left side shows approxi-
mation with a coarse grid; right side shows approximation with a finer grid.

6.2.1 Examples using discretized priors

Figure 6.2 shows a uniform prior discretized. Notice that because the prior is only defined
at discrete points, the likelihood and posterior are only defined at those same points. The
prior distribution is not represented by some mathematicalfunction such as beta(θ, 1, 1);
it is merely a list of probability masses at each discrete value of θ. Likewise, the shape
of the posterior distribution is not stored as a mathematical function; it too is merely a
list of probability masses at each discrete value ofθ. The computations for the posterior
did not involve any finesse with functions that described shapes of distributions; instead,
the computations were just brute-force application of the discrete version of Bayes’ rule
(Equation 6.1).

The left and right sides of Figure 6.2 show the results for a coarse discretization and
a finer discretization (respectively). Compare the approximation in Figure 6.2 with the
exact beta-distribution updating in the left side of Figure5.2, page 72. You can see that

86 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

Prior

θ

p(
θ)

mean(θ)=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
04

Likelihood

θ

p(
D

|θ
)

Data: z=11,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.75

p(D)=0.000183

− − − − −

96.6% HDI
0.5 0.864

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4

Prior

θ

p(
θ)

mean(θ)=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
04

Likelihood

θ

p(
D

|θ
)

Data: z=11,N=14

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.75

p(D)=0.000183

−−−

95% HDI
0.544 0.938

Figure 6.2: Grid approximations to Bayesian updating. The left side usesθ values
at intervals of 1/11. The right side usesθ values at intervals of 1/1001. Com-
pare this with the left side of Figure 5.2, page 72. (R code forthis graph is in
Section 6.7.1 (BernGrid.R).)

the fine-grid approximation is very accurate. It turns out inthis case that even the coarse
discretization does a good job at estimatingp(D); i.e., the denominator of Bayes’ rule. The
HDI, on the other hand, does differ noticeably between the two approximations. This is
because the credible interval can only be specified to as fine aresolution as the sub-intervals
in the discretization.

Figure 6.3 shows an arbitrarily-shaped prior, discretized. Here we see the advantaged
gained by discretized priors, because no beta function could possibly imitate this prior
accurately. Nevertheless, application of Bayes’ rule yields the posterior distribution shown
in the figure, which is as accurate as the discretized prior allows. If we desired, we could
represent the prior beliefs on a finer comb of values over the parameterθ.

The joy of grid approximation is freedom from the siren song of beta priors. Eloquent
as they are, beta priors can only express a limited range of beliefs. No beta function ap-
proximates the prior used in Figure 6.3, for example. You might say that these are cases
for which beta ain’t better. Even if you could find some complex mathematical function of
θ that expressed the contours of your beliefs, such a functionwould probably be difficult
to integrate in the denominator of Bayes’ rule, and so you still couldn’t determine an exact
mathematical solution. Instead, you can express those beliefs approximately by specifying
your degree of belief for each value ofθ on a fine grid.

6.3. ESTIMATION 87

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

0.
08

0.
12

Prior

θ

p(
θ)

mean(θ)=0.423

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Likelihood

θ

p(
D

|θ
)

Data: z=6,N=10

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

0.
08

0.
12

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.51

p(D)=0.000531

− − − − − − − − − − − − −

95.1% HDI
0.293 0.707

Figure 6.3: Example of an arbitrarily-shaped
discretized prior. No beta function can accu-
rately imitate this prior. (I call this the “Little
Prince” prior, because it follows the profile of
one of the beliefs of the character in the book
by de Saint-Exupery (1943). For those of you
who know what this is a picture of, you’ll note
the irony that despite the data showing a ma-
jority of heads, the posterior is most peaked
at the elephant’s tail.)

6.3 Estimation

The full list of posterior probability masses provides a complete estimate of the parameter
values. Those masses can be summarized however is convenient and meaningful. Fig-
ures 6.2 and 6.3 provided two summary descriptors of the posterior, namely the mean value
of θ and the 95% HDI (highest density interval).

The mean ofθ is just the sum of the available parameter values weighted bythe proba-
bility that they occur. Formally, that is expressed by

θ|D =
∑

θ

θ p(θ|D) (6.2)

where the sum is over discrete values ofθ is its grid points, andp(θ|D) is the probability
mass at each grid point. The mean value is computed explicitly as this sum by the program
in Section 6.7.1 (BernGrid.R), and the value is displayed in the plots it produces, as in
Figures 6.2 and 6.3.

Recall that the HDI is defined such that the probability of anypoint inside the HDI is
greater than the probability of any point outside the HDI, and the total probability of points
in the 95% HDI is 95%. Because we are dealing with discrete masses, the sum of the masses
in an interval usually will not be exactly 95%, and thereforewe define the 95% HDI so it
has total mass as small as possible but greater than or equal to 95%. That is why the left
side of Figure 6.2 and Figure 6.3 show HDI masses slightly larger than 95%.

Figure 6.4 illustrates the 95% HDI for a bimodal posterior. The HDI is split into two
separate segments. This split makes good sense: We want the HDI to represent those values
of the parameter that are believable. For a bimodal posterior we should have a region of
believability in two pieces. One of the attractions of grid approximation is that multimodal
HDIs are easily determined.

88 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
Prior

θ

p(
θ)

mean(θ)=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

Likelihood

θ

p(
D

|θ
)

Data: z=2,N=3

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.622

p(D)=0.092

−−− −−

95% HDI
0.183 0.868

Figure 6.4: The 95% HDI of the
posterior issplit across more two
distinct subintervals. Only the ex-
treme left and right ends of the
HDIs are marked in the plot, but
the unmarked internal divisions
are also endpoints of the split HDI
region.

6.4 Prediction of subsequent data

A second typical goal of Bayesian inference is predicting subsequent data after incorporat-
ing an observed set of data. As has been our habit, let’s denote the observed set of data
asD, and the posterior distribution over parameterθ as p(θ|D). Our predicted probability
for the next value ofy is just the probability of that value happening for each value of θ,
weighted by the posterior believability of eachθ:

p(y|D) =
∫

dθ p(y|θ) p(θ|D)

≈
∑

θ

p(y|θ) p(θ|D) (6.3)

where p(θ|D) in the first line is a probability density, andp(θ|D) in the second line is a
probability mass at discrete values ofθ. In particular, fory = 1, Equation 6.3 becomes

p(y=1|D) ≈
∑

θ

p(y=1|θ) p(θ|D)

=
∑

θ

θ p(θ|D) (6.4)

which is just the average value ofθ in the posterior distribution ofθ. This fact is not news;
we’ve seen this idea before in Equation 5.9 (p. 73). What’s new is that we are not relying
on the posterior having the form of a beta distribution. For an example, see Exercise 6.6.

6.5. MODEL COMPARISON 89

6.5 Model comparison

A third typical goal of Bayesian inference is model comparison. Suppose we have two
models, denotedM1 andM2, with prior beliefsp(M1) andp(M2). We want to determine
the posterior beliefs,p(M1|D) andp(M2|D). Recall from Equation 4.8, p. 48, that

p(M1|D)
p(M2|D)

=
p(D|M1)
p(D|M2)

p(M1)
p(M2)

. (6.5)

where (as in Equation 4.7)

p(D|M) =
∫

dθ p(D|θ,M) p(θ|M).

is the “evidence” for modelM. The integral for the evidence becomes a sum when we have
a discrete grid approximation:

p(D|M) ≈
∑

θ

p(D|θ,M) p(θ|M) (6.6)

where the sum is over discrete values ofθ and p(θ|M) is a probability mass at each value
of θ.

In our current application, we are assuming a Bernoulli likelihood function for all mod-
els. In other words, we can drop the “M” from p(D|θ,M) in Equation 6.6. The only dif-
ferentiation among models is the specification of the prior beliefs overθ. For example, one
model might posit that the coin is head-biased, while the other model posits that the coin is
tail-biased. Therefore, combining Equations 6.5 and 6.6 yields

p(M1|D)
p(M2|D)

=

∑

θ p(D|θ) p(θ|M1)
∑

θ p(D|θ) p(θ|M2)
p(M1)
p(M2)

. (6.7)

The expression in Equation 6.7 is useful when the priors are not beta distributions. (If the
priors are beta distributions, then exact mathematical analysis yields the results described in
Section 5.3.3, p. 73.) Conveniently, the R function provided in Section 6.7.1 (BernGrid.R)
displays p(D|M) in its graphical output, computed by Equation 6.6. For examples, see
Exercises 6.7 and 6.8.

6.6 Summary

This chapter showed that Bayesian inference, regarding a continuous binomial proportion
θ, can be achieved by approximating the continuousθ with a dense grid of discrete values.
A disadvantage of this approach is that the approximation isonly as good as the density
of the grid. But there are several advantages of the approach. One advantage is that we
have great freedom in the type of prior distributions we can specify; we are not restricted to
beta distributions. Another advantage is that we can use thediscrete approximation to find
approximate HDI regions. We can also do posterior prediction and model comparison with
arbitrary priors. The program of Section 6.7.1 (BernGrid.R) is provided to help you conduct
these analyses.

90 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

6.7 R code

6.7.1 R code for Figure 6.2 etc.

For this function you need to set up a comb (i.e., grid) ofθ values and a prior on those
values. The extensive comments at the beginning of the function provide an example for
how to do this. See also Exercise 6.1 for a caveat regarding how not to do this.

The Bayesian computations form only a few lines of this function (namely, lines 30–
37). The bulk of the program is devoted to all the details of plotting the information!
Section 23.3.1 (HDIofGrid.R) explains how the HDI is approximated.

(BernGrid.R)
1 BernGrid = function(Theta , pTheta , Data ,

2 credib=.95 , nToPlot=length(Theta)) {

3 # Bayesian updating for Bernoulli likelihood and prior specified on a grid.

4 # Input arguments:

5 # Theta is a vector of theta values, all between 0 and 1.

6 # pTheta is a vector of corresponding probability _masses_.

7 # Data is a vector of 1’s and 0’s, where 1 corresponds to a and 0 to b.

8 # credib is the probability mass of the credible interval, default is 0.95.

9 # nToPlot is the number of grid points to plot; defaults to all of them.

10 # Output:

11 # pThetaGivenData is a vector of posterior probability masses over Theta.

12 # Also creates a three-panel graph of prior, likelihood, and posterior

13 # probability masses with credible interval.

14 # Example of use:

15 # # Create vector of theta values.

16 # > binwidth = 1/1000

17 # > thetagrid = seq(from=binwidth/2 , to=1-binwidth/2 , by=binwidth)

18 # # Specify probability mass at each theta value.

19 # > relprob = pmin(thetagrid,1-thetagrid) # relative prob at each theta

20 # > prior = relprob / sum(relprob) # probability mass at each theta

21 # # Specify the data vector.

22 # > datavec = c(rep(1,3) , rep(0,1)) # 3 heads, 1 tail

23 # # Call the function.

24 # > posterior = BernGrid(Theta=thetagrid , pTheta=prior , Data=datavec)

25 # Hints:

26 # You will need to "source" this function before calling it.

27 # You may want to define a tall narrow window before using it; e.g.,

28 # > windows(7,10)

29

30 # Create summary values of Data

31 z = sum(Data==1) # number of 1’s in Data

32 N = length(Data) # number of flips in Data

33 # Compute the likelihood of the Data for each value of Theta.

34 pDataGivenTheta = Thetaˆz * (1-Theta)ˆ(N-z)

35 # Compute the evidence and the posterior.

36 pData = sum(pDataGivenTheta * pTheta)

37 pThetaGivenData = pDataGivenTheta * pTheta / pData

38

39 # Plot the results.

40 layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels

41 par(mar=c(3,3,1,0) , mgp=c(2,1,0) , mai=c(0.5,0.5,0.3,0.1)) # margin settings

42 dotsize = 4 # how big to make the plotted dots

43 # If the comb has a zillion teeth, it’s too many to plot, so plot only a

44 # thinned out subset of the teeth.

45 nteeth = length(Theta)

46 if (nteeth > nToPlot) {

6.7. R CODE 91

47 thinIdx = seq(1, nteeth , round(nteeth / nToPlot))

48 if (length(thinIdx) < length(Theta)) {

49 thinIdx = c(thinIdx , nteeth) # makes sure last tooth is included

50 }

51 } else { thinIdx = 1:nteeth }

52 # Plot the prior.

53 meanTheta = sum(Theta * pTheta) # mean of prior, for plotting

54 plot(Theta[thinIdx] , pTheta[thinIdx] , type="p" , pch="." , cex=dotsize ,

55 xlim=c(0,1) , ylim=c(0,1.1*max(pThetaGivenData)) , cex.axis=1.2 ,

56 xlab=bquote(theta) , ylab=bquote(p(theta)) , cex.lab=1.5 ,

57 main="Prior" , cex.main=1.5)

58 if (meanTheta > .5) {

59 textx = 0 ; textadj = c(0,1)

60 } else {

61 textx = 1 ; textadj = c(1,1)

62 }

63 text(textx , 1.0*max(pThetaGivenData) ,

64 bquote("mean(" * theta * ")=" * .(signif(meanTheta,3))) ,

65 cex=2.0 , adj=textadj)

66 # Plot the likelihood: p(Data|Theta)

67 plot(Theta[thinIdx] ,pDataGivenTheta[thinIdx] ,type="p" ,pch="." ,cex=dotsize

68 ,xlim=c(0,1) ,cex.axis=1.2 ,xlab=bquote(theta)

69 ,ylim=c(0,1.1*max(pDataGivenTheta))

70 ,ylab=bquote("p(D|" * theta * ")")

71 ,cex.lab=1.5 ,main="Likelihood" ,cex.main=1.5)

72 if (z > .5*N) { textx = 0 ; textadj = c(0,1) }

73 else { textx = 1 ; textadj = c(1,1) }

74 text(textx ,1.0*max(pDataGivenTheta) ,cex=2.0

75 ,bquote("Data: z=" * .(z) * ",N=" * .(N)) ,adj=textadj)

76 # Plot the posterior.

77 meanThetaGivenData = sum(Theta * pThetaGivenData)

78 plot(Theta[thinIdx] ,pThetaGivenData[thinIdx] ,type="p" ,pch="." ,cex=dotsize

79 ,xlim=c(0,1) ,ylim=c(0,1.1*max(pThetaGivenData)) ,cex.axis=1.2

80 ,xlab=bquote(theta) ,ylab=bquote("p(" * theta * "|D)")

81 ,cex.lab=1.5 ,main="Posterior" ,cex.main=1.5)

82 if (meanThetaGivenData > .5) { textx = 0 ; textadj = c(0,1) }

83 else { textx = 1 ; textadj = c(1,1) }

84 text(textx ,1.00*max(pThetaGivenData) ,cex=2.0

85 ,bquote("mean(" * theta * "|D)=" * .(signif(meanThetaGivenData,3)))

86 ,adj=textadj)

87 text(textx ,0.75*max(pThetaGivenData) ,cex=2.0

88 ,bquote("p(D)=" * .(signif(pData,3))) ,adj=textadj)

89 # Mark the highest density interval. HDI points are not thinned in the plot.

90 source("HDIofGrid.R")

91 HDIinfo = HDIofGrid(pThetaGivenData)

92 points(Theta[HDIinfo$indices] ,

93 rep(HDIinfo$height , length(HDIinfo$indices)) , pch="-" , cex=1.0)

94 text(mean(Theta[HDIinfo$indices]) , HDIinfo$height ,

95 bquote(.(100*signif(HDIinfo$mass,3)) * "% HDI") ,

96 adj=c(0.5,-1.5) , cex=1.5)

97 # Mark the left and right ends of the waterline. This does not mark

98 # internal divisions of an HDI waterline for multi-modal distributions.

99 lowLim = Theta[min(HDIinfo$indices)]

100 highLim = Theta[max(HDIinfo$indices)]

101 lines(c(lowLim,lowLim) , c(-0.5,HDIinfo$height) , type="l" , lty=2 , lwd=1.5)

102 lines(c(highLim,highLim) , c(-0.5,HDIinfo$height) , type="l" , lty=2 , lwd=1.5)

103 text(lowLim , HDIinfo$height , bquote(.(round(lowLim,3))) ,

104 adj=c(1.1,-0.1) , cex=1.2)

105 text(highLim , HDIinfo$height , bquote(.(round(highLim,3))) ,

92 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

106 adj=c(-0.1,-0.1) , cex=1.2)

107

108 return(pThetaGivenData)

109 } # end of function

6.8 Exercises

Exercise 6.1. [Purpose: Understand the discretization used for the priors in the R functions of Sec-

tion 6.7.1 (BernGrid.R) and throughout this chapter.] Consider this R code for discretizing a
beta(θ, 8, 4) distribution:
nIntervals = 10

width = 1 / nIntervals

Theta = seq(from = width/2 , to = 1-width/2 , by = width)

approxMass = dbeta(Theta , 8 , 4) * width

pTheta = approxMass / sum(approxMass)

(A) What is the value ofsum(approxMass)? Why is it not exactly 1?
(B) Suppose we use instead the following code to define the grid ofpoints:

Theta = seq(from = 0 , to = 1 , by = width)

Why is this not appropriate? (Hint: Consider exactly what intervals are represented by
the first and last values inTheta. Do those first and last intervals have the same widths
as the other intervals, and if they do, do they fall entirely within the domain of the beta
distribution?)

Exercise 6.2. [Purpose: Practice specifying a non-beta prior.] Suppose we have a coin that
has a head on one side and a tail on the other. We think it might be fair, or it might be a
trick coin that is heavily biased toward heads or tails. We want to express this prior belief
with a single prior overθ. Therefore the prior needs to have three peaks: One near zero,
one around .5, and near 1.0. But these peaks are not just isolated spikes, because we have
uncertainty about the actual value ofθ.

(A) Express your prior belief as a list of probability masses over a fairly dense grid
of θ values. Remember to set a gradual decline around the three peaks. Briefly justify
your choice. Hint: You can specify the peaks however you want, but one simple way is
something like
pTheta = c(50:1 , rep(1,50) , 1:50 , 50:1 , ...

pTheta = pTheta / sum(pTheta)

width = 1 / length(pTheta)

Theta = seq(from = width/2 , to = 1-width/2 , by = width)

(B) Suppose you flip the coin 20 times and get 15 heads. Use the R function of Sec-
tion 6.7.1 (BernGrid.R) to display the posterior beliefs. Include the R code you used to
specify the prior values.

Exercise 6.3.[Purpose: Use the function of Section 6.7.1 (BernGrid.R) for sequential updating; i.e.,

use output of one function call as the prior for the next function call. Observe that data ordering does

not matter]

(A) Using the same prior that you used for the previous exercise,suppose you flip the
coin just 4 times and get 3 heads. Use the R function of Section6.7.1 (BernGrid.R) to display
the posterior.

(B) Suppose we flip the coin an additional 16 times and get 12 heads. Now what is the
posterior distribution? To answer this question, use the posterior distribution that is output

6.8. EXERCISES 93

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Prior

θ

p(
θ)

mean(θ)=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
04

0.
08

0.
12

Likelihood

θ

p(
D

|θ
)

Data: z=3,N=4

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.622

p(D)=0.0425

−− −−

95.1% HDI
0.375 0.992

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Prior

θ

p(
θ)

mean(θ)=0.622

0.0 0.2 0.4 0.6 0.8 1.00.
00

00
0

0.
00

00
6

0.
00

01
2

Likelihood

θ
p(

D
|θ

)

Data: z=12,N=16

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.648

p(D)=2.71e−05

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95.1% HDI
0.452 0.938

Figure 6.5: For Exercise 6.3. The posterior from the first four flips, in the left
column, is used as the prior for the next sixteen flips, in the right column. Your
original prior (top left panel) may look different from the original prior used here.

by the function in the previous part as the prior for this part. Show the R commands you used
to call the function. Hint: The final posterior should match the posterior of Exercise 6.2,
except that the graph of the prior should look like the posterior from the previous part.
Figure 6.5 shows an example.

Exercise 6.4. [Purpose: Connecting HDIs to the real world, with iterative data collection.] Sup-
pose an election is approaching, and you are interested in knowing whether the general
population prefers candidate A or candidate B. There is a just-published poll in the news-
paper, which states that of 100 randomly sampled people, 58 preferred candidate A and the
remainder preferred candidate B.

(A) Suppose that before the newspaper poll, your prior belief was a uniform distribution.
What is the 95% HDI on your beliefs after learning of the newspaper poll results? Use the
function of Section 6.7.1 (BernGrid.R) to determine your answer.

(B) Based in the newspaper poll, is it credible to believe that the population is equally
divided in its preferences among candidates?

(C) You want to conduct a follow-up poll to narrow down your estimate of the popula-
tion’s preference. In your follow-up poll, you randomly sample 100 people and find that 57
prefer candidate A and the remainder prefer candidate B. Assuming that peoples’ opinions
have not changed between polls, what is the 95% HDI on the posterior?

(D) Based on your follow-up poll, is it credible to believe that the population is equally
divided in its preferences among candidates? Hint: Compareyour answer here to your
answer for Exercise 5.2.

94 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

Exercise 6.5.[Purpose: HDIs in the (almost) real world.] Suppose that the newly-hired qual-
ity control manager at the Acme Widget factory is trying to convince the CEO that the
proportion of defective widgets coming off the assembly line is less than 10%. There are
no previous data available regarding the defect rate at the factory. The manager randomly
samples 500 widgets and she finds that 28 of them are defective. What do you conclude
about the defect rate? Justify your choice of prior. Includegraphs to explain/support your
conclusion.

Exercise 6.6. [Purpose: Using grid approximation for prediction of subsequent data.] Suppose
we believe that a coin is biased to come up heads, and we describe our prior belief as
quadratically increasing:p(θ) ∝ θ2. Suppose we flip the coin 4 times and observe 2 heads
and 2 tails. Based on the posterior distribution, what is thepredicted probability that the
next flip will yield a head? To answer this question, use the function of Section 6.7.1
(BernGrid.R). Definethetagrid as in the example in the comments at the beginning of the
function. Then definerelprob = thetagrid ˆ 2, and normalize it to specify the prior. The
function returns a vector of discrete posterior masses, which you might callposterior.
Apply Equation 6.4 by computingsum(thetagrid * posterior). Bonus hint: The answer
is also displayed in the output graphics.

Exercise 6.7.[Purpose: Using grid approximation to compare models.] Suppose we have com-
peting beliefs about the bias of a coin: One person believes the coin is head-biased, and
the second person believes the coin is tail-biased. To make this specific, suppose the head-
biased prior isp(θ|M1) ∝ θ2, and the tail-biased prior isp(θ|M2) ∝ (1− θ)2. Suppose that
we are equally willing to entertain the two models, sop(M1) = p(M2) = 0.5. We flip the
coin N = 8 times and observez= 6 heads. What is the ratio of posterior beliefs? To answer
this question, read the coding suggestion in Exercise 6.6 and look atp(D) in the graphical
output.

Exercise 6.8. [Purpose: Model comparison in the (almost) real world.] A pharmaceutical com-
pany claims that its new drug increases the probability thatcouples who take the drug will
conceive a boy. They have published no studies regarding this claim, so there is no public
knowledge regarding the efficacy of the drug. Suppose you conduct a study in which 50
couples, sampled at random from the general population, take the drug during a period of
time while trying to conceive a baby. Suppose that eventually all couples conceive; there
are 30 boys and 20 girls (no multiple births).

(A) You want to estimate the probability of conceiving a boy for couples who take the
drug. What is an appropriate prior belief distribution? It cannot be the general population
probability, because that is a highly peaked distribution near 0.5 that refers to non-drugged
couples. Instead, the prior needs to reflect our pre-experiment uncertainty in the effect of
the drug. Discuss your choice of prior with this in mind.

(B) Using your prior from the previous part, show a graph of the posterior and decide
whether it is credible that couples who take the drug have a 50% chance of conceiving a
boy.

(C) Suppose that the drug manufacturers make a strong claim thattheir drug sets the
probability of conceiving a boy to very nearly 60%, with highcertainty. Suppose you
represent that claim by a beta(60,40) prior. Compare that claim against the skeptic who
says there is no effect of the drug, and the probability of conceiving a boy is represented
by a beta(50,50) prior. What is the value ofp(D) for each prior? What is the posterior
belief in each claim? Hint: Careful when computing the posterior belief in each model,

6.8. EXERCISES 95

because you need to take into account the prior belief in eachmodel. Is the prior belief in
the manufacturer’s claim as strong as the prior belief in theskeptical claim?

96 CHAPTER 6. BINOMIAL PROPORTION VIA GRID APPROXIMATION

Chapter 7

Inferring a Binomial Proportion via
the Metropolis Algorithm
Contents

7.1 A simple case of the Metropolis algorithm 98
7.1.1 A politician stumbles upon the Metropolis algorithm 99
7.1.2 A random walk . 101
7.1.3 General properties of a random walk 101
7.1.4 Why we care . 104
7.1.5 Why it works . 104

7.2 The Metropolis algorithm more generally 107
7.2.1 “Burn-in,” efficiency, and convergence 108
7.2.2 Terminology: Markov chain Monte Carlo 109

7.3 From the sampled posterior to the three goals 110
7.3.1 Estimation . 111

7.3.1.1 Highest density intervals from random samples111
7.3.1.2 Using a sample to estimate an integral 112

7.3.2 Prediction . 113
7.3.3 Model comparison: Estimation ofp(D) 113

7.4 MCMC in BUGS . 115
7.4.1 Parameter estimation with BUGS 116
7.4.2 BUGS for prediction . 118
7.4.3 BUGS for model comparison 119

7.5 Conclusion . 120
7.6 R code . 121

7.6.1 R code for a home-grown Metropolis algorithm 121
7.7 Exercises . 123

You furtive posterior: coy distribution.
Alluring, curvaceous, evading solution.
Although I can see what you hint at is ample,
I’ll settle for one representative sample.

In this chapter we continue with the goal of inferring the underlying probabilityθ that a coin
comes up heads, given an observed set of flips. In Chapter 5, weconsidered the scenario

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

97

98 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

when the prior distribution is specified by a function that isconjugate to the likelihood
function, and thus yields an analytically solvable posterior distribution. In Chapter 6, we
considered the scenario when the prior is specified on a densegrid of points spanning the
range ofθ values, and thus the posterior is numerically generated by summing across the
discrete values.

But there are situations in which neither of those methods will work. We already recog-
nized the possibility that our prior beliefs aboutθ could not be adequately represented by a
beta distribution, or by any function that yields an analytically solvable posterior function.
The chapter on grid approximation was one approach to addressing such situations. When
we have just one parameter with a finite range, then approximation by a grid is a useful pro-
cedure. But what if we have several parameters? Although we have, so far, only been deal-
ing with models involving a single parameter, it is much moretypical, as we will see in later
chapters, to have models involving several parameters. In these situations, the parameter
space cannot be spanned by a grid with a reasonable number of points. Consider, for exam-
ple, a model with, say, six parameters. If we set up a grid on each parameter that has 1,000
values, then the six dimensional parameter space has 1,0006 = 1,000,000,000,000,000,000
combinations of parameter values, which is too many for any computer to evaluate. In
anticipation of those situations when grid approximation will not work, we explore a new
method in the simple context of estimating a single parameter. In real research you would
probably not want to apply this method for such simple one-parameter models, instead go-
ing with mathematical analysis or grid approximation. But it is very useful tolearn about
this new method in the one-parameter context.

The method described in this chapter assumes that the prior distribution is specified by
a function that is easily evaluated. This simply means that if you specify a value forθ, then
the value ofp(θ) is easily determined, especially by a computer. The methodalso assumes
that the value of the likelihood function,p(D|θ), can be computed for any specified values
of D andθ. Actually, all that the method really demands is that the product of the prior and
likelihood be easily computed for any given value ofθ, and then only up to a multiplicative
constant. What the method produces for us is an approximation of the posterior distribution,
p(θ|D), in the form of a large number ofθ values sampled from that distribution. This heap
of representativeθ values can be used to estimate the mean and median of the posterior, its
credible region, etc. The posterior distribution is estimated by randomly generating a lot of
values from it, and therefore, by analogy to the random events at games in a casino, this
approach is called a Monte Carlo method.

7.1 A simple case of the Metropolis algorithm

Our goal in Bayesian inference is to get a good handle on the posterior distribution over
the parameters. One way to do that is to sample a large number of representative points
from the posterior, and then, from those points, compute descriptive statistics about the
distribution. For example, consider a beta(θ|a, b) distribution. We learned earlier that the
mean and standard deviation of the distribution can be analytically derived, and expressed
exactly in terms ofa andb. We also learned earlier that the cumulative probability iseasily
computed, and is implemented by a command (qbeta) in R, so we can determine equal tailed
credible intervals.

But suppose we did not know the analytical formulas for the mean and standard de-
viation, and we did not have a direct way to calculate cumulative probabilities. Suppose,

7.1. A SIMPLE CASE OF THE METROPOLIS ALGORITHM 99

however, that we do have a way to generate representative values from the distribution. The
random values could be generated from a spinner. The spinneris marked on its circumfer-
ence with values from zero to one; these are the possibleθ values. Imagine that the spinner
is biased to point atθ values exactly according to a beta(θ|a, b) distribution. We spin the
spinner a few thousand times and record the values that are pointed at. These values are
representative of the underlying beta(θ|a, b) distribution, i.e., the population from which the
sample came. In particular, the mean of the sampled values should be a very close ap-
proximation to the true mean of the underlying distribution. The standard deviation of the
sampled values should be a very close approximation to the true standard deviation of the
distribution. And the percentiles in the sampled values should be a very close approxima-
tion to the true percentiles in the population. In other words, if we can get a large sample
of representative values from the distribution, then we canapproximate all sorts of useful
characteristics of the distribution.

The question then becomes, how can we sample a large number ofrepresentative values
from a distribution? For an answer, let’s ask a politician...

7.1.1 A politician stumbles upon the Metropolis algorithm

Suppose an elected politician lives on a long chain of islands. He is constantly traveling
from island to island, wanting to stay in the public eye. At the end of a grueling day of
photo opportunities and fundraising1, he has to decide whether to (i) stay on the current
island, (ii) move to the adjacent island to the west, or (iii)move to the adjacent island to the
east. His goal is to visit all the islands proportionally to their relative population, so that he
spends the most time on the most populated islands, and proportionally less time on the less
populated islands. Unfortunately, he holds his office despite having no idea what the total
population of the island chain is, and he doesn’t even know exactly how many islands there
are! His entourage of advisers is capable of some minimal information gathering abilities,
however. When they are not busy fundraising, they can ask themayor of the island they
are on how many people are on the island. And, when the politician proposes to visit an
adjacent island, they can ask the mayor of that adjacent island how many people are on that
island.

The politician has a simple heuristic for deciding whether to travel to the proposed
island: First, he flips a (fair) coin to decide whether to propose the adjacent island to the
east or the adjacent island to the west. If the proposed island has a larger population than
the current island, then he definitely goes to the proposed island. On the other hand, if
the proposed island has a smaller population than the current island, then he goes to the
proposed island only probabilistically, to the extent thatthe proposed island has a population
as big as the current island. In more detail, denote the population of the proposed island
asPproposed, and the population of the current island asPcurrent. Then he moves to the less
populated island with probabilitypmove = Pproposed/Pcurrent. The politician does this by
spinning a fair spinner marked on its circumference with uniform values from zero to one.
If the pointed-to value is between zero andpmove, then he moves. What’s amazing about
this heuristic is that it works: In the long run, the probability that the politician is on any
one of the islands in the chain exactly matches the relative population of the island!

1Maybe I shouldn’t blithely make cynical jokes about politicians, because I believe that most elected repre-
sentatives really do try to do some good for their constituencies. But saying so isn’t as entertaining as the cheap
joke.

100 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

θ

F
re

qu
en

cy

1 2 3 4 5 6 7

0
10

0
20

0
30

0
40

0

 ⇑

1 2 3 4 5 6 7

1
5

10
50

50
0

θ

T
im

e

 ⇑

1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

θ

P
(θ

)

Figure 7.1: Illustration of a simple Metropolis algorithm.The bottom panel shows
the values of the target distribution. The middle panel shows one random walk,
at each time step proposing to move either one unit right or one unit left, and
accepting the proposed move according the heuristic described in the main text.
The top panel shows the frequency distribution of the positions in the walk.

7.1. A SIMPLE CASE OF THE METROPOLIS ALGORITHM 101

7.1.2 A random walk

Let’s consider the island hopping heuristic in a bit more detail. Suppose that there are seven
islands in the chain, with relative populations as shown in the bottom panel of Figure 7.1.
The islands are indexed by the valueθ, whereby the leftmost, western island isθ = 1 and the
rightmost, eastern island isθ = 7. The relative populations of the islands increase linearly
such thatP(θ) = θ.

The middle panel of Figure 7.1 shows one possible trajectorytaken by the politician.
Each day corresponds to one time increment, indicated on thevertical axis. The plot of
the trajectory shows that on the first day (t = 1) the politician happens to be on the middle
island in the chain, i.e.,θcurrent = 4. To decide where to go on the second day, he flips a
coin to propose moving either one position left or one position right. In this case the coin
proposed moving right, i.e.,θproposed= 5. Because the relative population at the proposed
position is greater than the relative population at the current position, the proposed move is
accepted. The trajectory shows this move, because whent = 2, thenθ = 5.

Continue considering the middle panel. Count along the trajectory to the 4th position,
when t = 4 andθ = 7. At the end of this time step, the coin flip proposes moving tothe
left. The probability of accepting this proposal ispmove = P(θproposed)/P(θcurrent) = 6/7.
The politician then spins a fair spinner, which happens to come up with a value between 0
and 6/7, and therefore the politician makes the move. Hence the trajectory shows thatθ = 6
whent = 5.

The upper panel of Figure 7.1 shows a histogram of the frequencies with which each
position is visited during this junket. Notice that the sampled relative frequencies closely
mimic the actual relative populations in the bottom panel! In fact, a sequence generated this
way will converge, as the sequence gets longer, to an arbitrarily close approximation of the
actual relative probabilities.

7.1.3 General properties of a random walk

The trajectory shown in Figure 7.1 is just one possible sequence of positions when the
movement heuristic is applied. At each time step, the direction of the proposed move is
random, and, if the relative probability of the proposed position is less than that of the
current position, then acceptance of the proposed move is also random. Because of the
randomness, if the process were started over again, then thespecific trajectory would almost
certainly be different.

Figure 7.2 shows the probability of being in each position asa function of time. At time
t = 1, the politician starts atθ = 4. This starting position is indicated in the upper left panel
of Figure 7.2, labeledt = 1, by the fact that there is 100% probability of being atθ = 4.

We want to figure out the probability of ending up in each position at the next time
step. To determine the probabilities of positions for timet = 2, consider the possibilities
from the movement process. The process starts with the flip ofa fair coin to decide which
direction to propose moving. There is a 50% probability of proposing to move right, i.e.,
to θ = 5. By inspecting the target distribution of relative probabilities in the lower right
panel of Figure 7.2, you can see thatP(θ = 5) > P(θ = 4), and therefore a rightward move
is always accepted whenever it is proposed. Thus, at timet = 2, there is a .5 (i.e., 50%)
probability of ending up atθ = 5. The panel labeledt = 2 in Figure 7.2 plots this probability
as a bar of height .5 atθ = 5. The other 50% of the time, the proposed move is to the left,
i.e., θ = 3. By inspecting the target distribution of relative probabilities in the lower right

102 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t = 1

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t = 2

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

t = 3

1 2 3 4 5 6 7

0.
00

0.
10

0.
20

0.
30 t = 4

1 2 3 4 5 6 7

0.
00

0.
10

0.
20

t = 5

1 2 3 4 5 6 7

0.
00

0.
10

0.
20

t = 6

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20 t = 7

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

t = 8

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

t = 9

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20 t = 10

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20 t = 11

1 2 3 4 5 6 7

0.
00

0.
10

0.
20 t = 12

1 2 3 4 5 6 7

0.
00

0.
10

0.
20 t = 13

1 2 3 4 5 6 7

0.
00

0.
10

0.
20 t = 14

1 2 3 4 5 6 7

0.
00

0.
10

0.
20

t = 99

1 2 3 4 5 6 7

0
1

2
3

4
5

6
7 target

Figure 7.2: The probability of being at positionθ, as a function of timet, when a
simple Metropolis algorithm is applied to the target distribution in the lower right
panel. The time in each panel corresponds to the step in random walk, and example
of which is shown in Figure 7.1. The target distribution is shown in the lower right
panel.

panel of Figure 7.2, you can see thatP(θ = 3) = 3 whereasP(θ = 4) = 4, and therefore a
leftward move is accepted only 3/4 of the times it is proposed. Therefore, at timet = 2, the
probability of ending up atθ = 3 is 50%×3/4=.375. The panel labeledt = 2 in Figure 7.2
shows this as a bar of height .375 atθ = 3. Finally, if a leftward move is proposed but
not accepted, we just stay atθ = 5. The probability of this happening is only .125 (i.e.,
50%×(1− 3/4).

This process repeats for the next time step. I won’t go through the arithmetic details
for each value ofθ. But it is important to notice that after two proposed moves,i.e., when
t = 3, the politician could be at any of the positionsθ = 2 throughθ = 6, because he could
be at most two positions away from where he started.

The probabilities continue to be computed the same way at every time step. You can see
that in the early time steps, the probability distribution is not a straight incline like the target
distribution. Instead, the probability distribution has abulge over the starting position. This
influence of the arbitrary starting point is not desired, so we exclude the early steps from

7.1. A SIMPLE CASE OF THE METROPOLIS ALGORITHM 103

the positions that we will treat as representative of the target distribution. This early period
that we exclude is the “burn-in” period. As you can see in Figure 7.2, by timet = 99, the
position probability is virtually indistinguishable fromthe target distribution, at least for
this simple distribution. More complex distributions require a longer burn-in period.

The graphs of Figure 7.2 show theprobability that the moving politician is at each value
of θ. But remember, at any given time step, the politician is at just one particular position,
as shown in Figure 7.1. To approximate the target distribution, we let the politician meander
around for many time steps while we keep track of where he has been. The record of where
he has been is our approximation to the distribution. Moreover, we have to be careful not to
use the portion of the meandering that still has the influenceof the initial position. That is,
we have to exclude the burn-in period. But once we have a long record of where the traveler
has been, after the burn in period, then we can approximate the target probability at each
value ofθ by simply counting the relative number times that the traveler visited that value.

Here is a summary of our algorithm for moving from one position to another. We are
currently at positionθcurrent. We then propose to move one position right or one position left.
The specific proposal is determined by flipping a coin, which can result in 50% heads (move
right) or 50% tails (move left). The range of possible proposed moves, and the probability
of proposing each, is called theproposal distribution. In the present algorithm, the proposal
distribution is very simple: It has only two values with 50-50 probabilities.

Having proposed a move, we then decide whether or not to accept it. The acceptance de-
cision is based on the value of the target distribution at theproposed position, relative to the
value of the target distribution at our current position. Specifically, if the target distribution
is greater at the proposed position than at our current position, then we definitely accept the
proposed move: We always move higher if we can. On the other hand, if the target position
is less at the proposed position than at our current position, we accept the move probabilis-
tically: We move to the proposed position with probabilitypmove = P(θproposed)/P(θcurrent),
whereP(θ) is the value of the target distribution atθ. We can combine these two possi-
bilities, of the target distribution being higher or lower at the proposed position than at
our current position, into a single expression for the probability of moving to the proposed
position:

pmove= min

(
P(θproposed)

P(θcurrent)
, 1

)

(7.1)

Notice that Equation 7.1 says that whenP(θproposed) > P(θcurrent), thenpmove = 1. Notice
also that the target distribution,P(θ), does not need to be normalized, i.e., it does not need
to sum to 1 as a probability distribution must. This is because what matters for our choice is
theratio, P(θproposed)/P(θcurrent), not the absolute magnitude ofP(θ). This property was used
in the example of the island-hopping politician: The targetdistribution was the population
of each island, not a normalized probability.

Having proposed a move by sampling from the proposal distribution, and having then
determined theprobability of accepting the move according to Equation 7.1, we then ac-
tually accept or reject the proposed move by sampling a valuefrom a uniform distribution
over the interval [0, 1]. If the sampled value is between 0 andpmove], then we actually
make the move. Otherwise, we reject the move, and stay at our current position. The whole
process repeats at the next time step.

104 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

7.1.4 Why we care

Notice what we must be able to do in the random-walk process:

• We must be able to generate a random value from the proposal distribution (to create
θproposed).

• We must be able to evaluate the target distribution at any proposed position (to com-
puteP(θproposed)/P(θcurrent)).

• We must be able to generate a random value from a uniform distribution (to make a
move according topmove).

By being able to do those three things, we are able to doindirectly something we could
not necessarily do directly: We can generate random samplesfrom the target distribution.
Moreover, we can generate those random samples from the target distribution even when
the target distribution is not normalized.

This technique is profoundly useful when the target distribution P(θ) is a posterior pro-
portional top(D|θ)p(θ). Merely by evaluatingp(D|θ)p(θ), we can generate random repre-
sentative values from the posterior distribution. This result is wonderful because the method
obviates direct computation of the evidencep(D), which, as you’ll recall, is one of the most
difficult aspects of Bayesian inference. By using MCMC techniques, we can do Bayesian
inference in rich and complex models. It has only been with the development of MCMC
techniques that Bayesian inference is applicable to complex data analysis, and it has only
been with the production of fast and cheap computers that Bayesian inference is accessible
to a wide audience.

7.1.5 Why it works

In this section I’ll explain a bit of the mathematics behind why the algorithm works. My
goal in providing the mathematics for the simple case is to justify an intuitive leap, in the
next section, to the more general algorithm. If you get a goodrunning start in this section,
it can be easier to make the leap in the next section.

To get an intuition for why this algorithm works, consider two adjacent positions and
the probabilities of moving from one to the other. We’ll see that the relative transition
probabilities, between adjacent positions, exactly matchthe relative values of the target
distribution. Extrapolate that result across all the positions, and you can see that, in the
long run, each position will be visited proportionally to its target value. Now the details:
Suppose we are at positionθ. The probability of moving toθ+1, denotedp(θ → θ+1), is the
probability of proposing that move times the probability ofaccepting it if proposed, which is
p(θ → θ+1) = .5×min(P(θ + 1)/P(θ), 1). On the other hand, if we are presently at position
θ + 1, the probability of moving toθ is the probability of proposing that move times the
probability of accepting it if proposed, which isp(θ + 1→ θ) = .5×min(P(θ)/P(θ + 1), 1).
The ratio of the transition probabilities is

p(θ → θ+1)
p(θ+1→ θ)

=
.5 min(P(θ+1)/P(θ), 1)
.5 min(P(θ)/P(θ+1), 1)

=

1
P(θ)/P(θ+1) if P(θ + 1) > P(θ)

P(θ+1)/P(θ)
1 if P(θ + 1) < P(θ)

7.1. A SIMPLE CASE OF THE METROPOLIS ALGORITHM 105

=
P(θ+1)

P(θ)
(7.2)

Equation 7.2 tells us that during transitions back and forthbetween adjacent positions,
the relative probability of the transitions exactly matches the relative values of the target
distribution. That might be enough for you to get the intuition that, in the long run, adjacent
positions will be visited proportionally to their relativevalues in the target distribution. If
that’s true for adjacent positions, then, by extrapolatingfrom one position to the next, it
must be true for the whole range of positions.

To make that intuition more defensible, we have to fill in somemore details. To do
this, I’ll use matrix arithmetic. This is the only place in the book where matrix arithmetic
appears, so if the details here are unappealing, feel free toskip ahead to the next section
(Section 7.2, p. 107). What you’ll miss is an explanation of the mathematics underlying
Figure 7.2, which depicts the key idea that the target distribution isstable: If the current
probability of being in a position matches the target probabilities, then the Metropolis algo-
rithm keeps it that way.

Consider the probability of transitioning from positionθ to some other position. The
proposal distribution, in the present simple scenario, considers only positionsθ+1 andθ−1.
If the proposed position is not accepted, we stay at the current positionθ. The probability
of moving to positionθ − 1 is the probability of proposing that position times the prob-
ability of accepting the move if it is proposed:.5 min(P(θ − 1)/P(θ), 1). The probability
of moving to positionθ + 1 is the probability of proposing that position times the prob-
ability of accepting the move if it is proposed:.5 min(P(θ + 1)/P(θ), 1). The probability
of staying at positionθ is simply the complement of those two move-away probabilities:
.5 [1−min(P(θ − 1)/P(θ), 1)] + .5 [1−min(P(θ + 1)/P(θ), 1)].

We can put those transition probabilities into a matrix. Each row corresponds to the
current position, and each column corresponds to the candidate moved-to position. Below
is asubmatrix from the full transition matrixT, showing rowsθ − 2 to θ + 2, and columns
θ − 2 to θ + 2:

. . . p(θ−2→ θ−1) 0 0 0

. . . p(θ−1→ θ−1) p(θ−1→ θ) 0 0

0 p(θ → θ−1) p(θ → θ) p(θ → θ+1) 0

0 0 p(θ+1→ θ) p(θ+1→ θ+1)
. . .

0 0 0 p(θ+2→ θ+1)
. . .

106 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

which equals

. . . .5min
(

P(θ−1)
P(θ−2), 1

)

0 0 0

. . .
.5

[

1−min
(

P(θ−2)
P(θ−1), 1

)]

+.5
[

1−min
(

P(θ)
P(θ−1), 1

)] .5min
(

P(θ)
P(θ−1), 1

)

0 0

0 .5min
(

P(θ−1)
P(θ) , 1

) .5
[

1−min
(

P(θ−1)
P(θ) , 1

)]

+.5
[

1−min
(

P(θ+1)
P(θ) , 1

)] .5min
(

P(θ+1)
P(θ) , 1

)

0

0 0 .5min
(

P(θ)
P(θ+1), 1

) .5
[

1−min
(

P(θ)
P(θ+1), 1

)]

+.5
[

1−min
(

P(θ+2)
P(θ+1), 1

)]
. . .

0 0 0 .5min
(

P(θ+1)
P(θ+2), 1

) . . .

(7.3)

The usefulness of putting the transition probabilities into a matrix is that we can then
use matrix multiplication to get from any current location to the probability of the next
locations. Here’s a reminder of how matrix multiplication operates. Consider a matrixT.
The value in itsr th row andcth column is denotedTrc. We can multiply the matrix on itsleft
side by arow vectorw, which yields another row vector. Thecth component of the product
wT is

∑

r wrTrc. In other words, to compute thecth component of the result, take the row
vectorw and multiply its components by the corresponding components in thecth column
of W, and sum up those component products.2

To use the transition matrix in Equation 7.3, we put thecurrent location probabilities
into a row vector, which I will denotew because it indicateswhere we are. For example, if
at the current time we are definitely in locationθ, thenw has 1.0 in its θ component, and
zeros everywhere else:w = [. . . , 0, 1, 0, . . .]. To determine the probability of the locations
at the next time step, we simply multiplyw by T. Here’s a key example to think through:
Whenw = [. . . , 0, 1, 0, . . .] with a 1 only in theθ position, thenwT is simply the row ofT
corresponding toθ, because thecth component ofwT is

∑

r wrTrc = Tθc, where I’m using
the subscriptθ to stand for the index that corresponds to valueθ.

Matrix multiplication is a very useful procedure for keeping track of position proba-
bilities. At every time step, we just multiply the current position probability vectorw by
the transition probability matrixT to get the position probabilities for the next time step.
We keep multiplying byT over and over again to derive the long-run position probabilities.
This process is exactly what generated the graphs in Figure 7.2.

Here’s the climactic implication: When the vector of position probabilities is the target
distribution, it stays that way on the next time step! In other words, the position prob-
abilities are stable at the target distribution.We can actually prove this result without
much trouble. Suppose the current position probabilities are the target probabilities, i.e.,
w = [. . . ,P(θ−1),P(θ),P(θ+1), . . .]/Z, whereZ =

∑

θ P(θ) is the normalizer for the target
distribution. Consider theθ component ofwT. We will demonstrate that theθ component
of wT is the same as theθ component ofw, for any componentθ. Theθ component ofwT
is

∑

r wrTrθ. Look back at the transition matrix in Equation 7.3, and you can see then that

2Although we don’t do it here, we can also multiply a matrix on its right side by acolumnvector, which
yields another column vector. For a column vectorv, ther th component ofTv is

∑

c Trcvc.

7.2. THE METROPOLIS ALGORITHM MORE GENERALLY 107

theθ component ofwT is

∑

r

wrTrθ = P(θ−1)/Z × .5min

(

P(θ)
P(θ − 1)

, 1

)

+ P(θ)/Z ×
(

.5

[

1−min

(

P(θ − 1)
P(θ)

, 1

)]

+ .5

[

1−min

(

P(θ + 1)
P(θ)

, 1

)])

+ P(θ+1)/Z × .5min

(

P(θ)
P(θ + 1)

, 1

)

(7.4)

To simplify that equation, we can consider separately the four cases. Case 1:P(θ) > P(θ−1)
andP(θ) > P(θ+1). Case 2:P(θ) > P(θ−1) andP(θ) < P(θ+1). Case 3:P(θ) < P(θ−1)
andP(θ) > P(θ+1). Case 4:P(θ) < P(θ−1) andP(θ) < P(θ+1). In each case, Equation 7.4
simplifies toP(θ)/Z. For example, consider Case 1, whenP(θ) > P(θ−1) andP(θ) > P(θ+1).
Equation 7.4 becomes

∑

r

wrTrθ = P(θ−1)/Z × .5

+ P(θ)/Z ×
(

.5

[

1−
(

P(θ − 1)
P(θ)

)]

+ .5

[

1−
(

P(θ + 1)
P(θ)

)])

+ P(θ+1)/Z × .5

= .5P(θ−1)/Z

+ .5P(θ)/Z − .5P(θ)/Z
P(θ − 1)

P(θ)
+ .5P(θ)/Z − .5P(θ)/Z

P(θ + 1)
P(θ)

+ .5P(θ+1)/Z

= P(θ)/Z

If you work through the other cases, you’ll find that it alwaysreduces toP(θ)/Z. In conclu-
sion, when theθ component starts atP(θ)/Z, it stays atP(θ)/Z.

We have shown that the target distribution is stable under the Metropolis algorithm,
for our special case of island hopping. To prove that the Metropolis algorithm realizes the
target distribution, we would need to show that the process actually gets usto the target
distribution regardless of where we start. For this I’ll settle for intuition: You can see
that no matter where you start, the distribution will naturally diffuse and explore other
positions. Examples of this were shown in Figures 7.1 and 7.2. It’s reasonable to think
that the diffusion will settled into some stable state, and we’ve just shown that the target
distribution is a stable state. To really make the argument complete, we’d have to show that
there are no other stable states, and that the target distribution is actually an attractor into
which other states flow, rather than a state that is stable if it is ever obtained but impossible
to actually attain. This complete argument is far beyond what would be useful for the
purposes of this book, but if you’re interested you could take a look at the book by Robert
and Casella (2004).

7.2 The Metropolis algorithm more generally

The procedure described in the previous section was just a special case of a more general
procedure known as the Metropolis algorithm, named after the first author of a famous ar-
ticle (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). In the previous section,

108 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

we considered the simple case of (i) discrete positions (ii)on one dimension (iii) with moves
that proposed just one position left or right. That simple situation made it relatively easy
(believe it or not) to understand the procedure and how it works. The general algorithm
applies to (i) continuous values (ii) on any number of dimensions (iii) with more general
proposal distributions.

The essentials of the general method are the same as for the simple case. First, we have
some target distribution,P(θ), over a multi-dimensional continuous parameter space from
which we would like to generate representative sample values. We must be able to compute
the value ofP(θ) for any candidate value ofθ. The distribution,P(θ), does not have to be
normalized, however. It merely needs to be non-negative. Intypical applications,P(θ) is the
unnormalized posterior distribution onθ, which is to say, it is the product of the likelihood
and the prior.

Sample values from the target distribution are generated bytaking a random walk
through the parameter space. The walk starts at some arbitrary point, specified by the
user. The starting point should be someplace whereP(θ) is non-zero. The random walk
progresses at each time step by proposing a move to a new position in parameter space and
then deciding whether or not to accept the proposed move. Proposal distributions can take
on many different forms, with the goal being to use a proposal distribution that efficiently
explores the regions of the parameter space whereP(θ) has most of its mass. Of course, we
must use a proposal distribution for which we have a quick wayto generate random values!
For our purposes, we will consider the generic case in which the proposal distribution is
normal, centered at the current position. (Recall the discussion of the normal distribution
back in Section 3.3.2.2, p. 30.) The idea behind using a normal distribution is that the pro-
posed move will typically be near the current position, withthe probability of proposing
a more distant position dropping off according to the normal curve. Computer languages
such as R have built-in functions for generating pseudo-random values from a normal dis-
tribution. For example, if we want to generate a proposed jump from a normal distribution
that has a mean of zero and a standard deviation of 0.2, we could command R as follows:
proposedJump = rnorm(1 , mean=0 , sd=0.2), where the first argument, 1, indicates that
we want a single random value, not a vector of many random values.

Having generated a proposed new position, the algorithm then decides whether or not to
accept the proposal. The decision rule is exactly what was already specified in Equation 7.1.
In detail, this is accomplished by computing the ratiop(θmove) = P(θproposed)/P(θcurrent).
Then a random number from the uniform interval [0, 1] is generated; in R, this can be
accomplished with the commandrunif(1). If the random number is between 0 andp(θmove),
then the move is accepted. The process repeats and, in the long run, the positions visited by
the random walk will closely approximate the target distribution.

7.2.1 “Burn-in,” efficiency, and convergence

If the target distribution is very spread out, but the proposal distribution is very narrow, then
it will take a long time for the random walk to cover the distribution with representative
steps. This is like trying to make a geographical survey of anentire continent (many thou-
sands of kilometers wide) by repeatedly tossing a stone up inthe air (a few meters at best)
and occasionally moving to where the stone lands. Thus, whenthe proposal distribution is
too narrow, the Metropolis algorithm is not very efficient: it takes way too many steps to
accumulate a representative sample.

This problem can be especially evident if the initial position of the random walk happens

7.2. THE METROPOLIS ALGORITHM MORE GENERALLY 109

to be in a region of the target distribution that is very flat and low, in which case the random
walk moves only very slowly away from the starting position into regions where the target
distribution is denser. Even if the proposal distribution is not too narrow, an unrepresentative
initial position can leave its mark in the random walk for a long time. To alleviate this
problem, the early steps of the random walk are excluded fromthose steps considered to be
representative of the target distribution. These excludedinitial steps are referred to as the
“burn in” period.

Even after the random walk has meandered around for a long time, we cannot be sure
that it is really exploring the main regions of the target distribution, especially if the target
distribution is complex over many dimensions. There are various methods to try to assess
the convergence of the random walk, but we will not need to explore their nuances in this
chapter because the application is so simple. In future chapters, however, we will discuss
the idea of starting random walks from several different positions in the parameter space
and checking that they converge to similar distributions.

The previous considerations, pointing out the problems of aproposal distribution that is
too narrow, may cause you to think that it is best to make the proposal distribution very wide,
instead. But excessive width can also produce problems. Remember that the probability of
accepting a move isP(θproposed)/P(θcurrent). Suppose that the current position has a relatively
high P(θcurrent). In this case, when the proposed positions are far away, they will often fall
outside of the main mass of the target distribution, and thenP(θproposed) will usually be less
than P(θcurrent), and therefore the proposed move will rarely be accepted. Therefore the
random walk rejects many proposals before it accepts one, and the process again becomes
inefficient.

All in all, selecting a proposal distribution with a well-tuned variance, and excluding
the right amount of burn-in steps, and making sure the randomwalk has converged appro-
priately, can be a bit of a challenge. In the present chapter,however, the target distributions
are well-behaved enough that these issues will not be a big problem. Nevertheless, in Exer-
cise 7.1, you get to observe some of these infelicities of theMetropolis algorithm.

7.2.2 Terminology: Markov chain Monte Carlo

Assessing the properties of a target distribution by generating representative random values
is a case of a Monte Carlo simulation. Any simulation that samples a lot of random values
from a distribution is called a Monte Carlo simulation, named after the dice and spinners and
shufflings of the famous casino locale. This appellation is attributed to the mathematician
von Neumann, or sometimes to Metropolis (Gill, 2002, p. 239).

The Metropolis algorithm is a specific type of Monte Carlo process. It generates a
random walk such that each step in the walk is completely independent of the steps before
the current position. The proposed next step has no dependence on where the walk has been
before, and the decision to reject or accept the proposed step has no dependence on where
the walk has been before. Any such process in which each step has no memory for states
before the current one is called a (first order) Markov process, and a succession of such
steps is a Markov chain. The Metropolis algorithm is an example of aMarkov chain Monte
Carlo (MCMC)process.

110 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

7.3 From the sampled posterior to the three goals

Let’s regain perspective on the forest of Bayesian inference after focusing on the trees of
MCMC. In Bayesian inference, we need a good description of the posterior distribution. If
we cannot achieve that description through formal analysis, nor through dense-grid approx-
imation, then we can generate a lot of representative valuesfrom the posterior distribution
and use those values to approximate the posterior. So far in this chapter we have explored
one process for generating representative values from a distribution, namely, the Metropo-
lis algorithm. We have yet to consider the details of applying the Metropolis algorithm to
inference about a binomial proportion.

As you will fondly recall, in this part of the book we are restricting our attention to
the simple case of estimating the probability that a coin comes up heads. In other words,
we are trying to estimate our posterior beliefs regarding the underlying probabilityθ. We
start with a prior belief distribution,p(θ). In the present scenario,p(θ) is specified by a
mathematical function ofθ; it is not merely a list of probability masses at discrete values of
θ. The value of the mathematical functionp(θ) must be easily computable at any value of
θ. One example of such a mathematical function is the beta distribution; R easily computes
the value of the beta density with itsdbeta function.

We also have a mathematical likelihood function that specifiesp(D|θ), where the datum
D for any one flip isy = 1 for heads andy = 0 for tails. For a single flip, the likelihood func-
tion is the Bernoulli distribution,p(y|θ) = θy (1−θ)(1−y). When there are several independent
flips, the likelihood is the product of the probabilities of the individual flips. When there are
N flips with zheads, the likelihood (back in Equation 5.3, p. 67) isp(z,N|θ) = θz (1−θ)(N−z).
Notice that the value of the likelihood function is easily computable for any given value of
θ.

The posterior distributionp(θ|D) is, by Bayes’ rule, proportional top(D|θ)p(θ). We use
that product as the target distribution in a Metropolis algorithm. The Metropolis algorithm
only needs the relative posterior probabilities in the target distribution, not the absolute pos-
terior probabilities, so we could use an unnormalized priorand/or unnormalized posterior
when generating sample values ofθ. (Later, when we consider the goal of model compari-
son, we will want to estimatep(D), and for that we will want the actual, normalized values
of the posterior.)

We start the random walk of the Metropolis algorithm at some candidate value ofθ, such
asθ = 0.5, and then we propose a jump to a new position. The proposal distribution could
be a normal distribution, with some reasonable standard deviation such asσ = 0.2. Why is
that choice ofσ reasonable? One consideration is that the range ofθ in this application is
limited to [0, 1], so certainly we would like the proposal distribution to be narrower than the
range ofθ. Another consideration is that the proposal distribution should be “tuned” to the
width of the posterior, not too wide and not too narrow. When the sample size is small, the
posterior is typically not very narrow, and soσ = 0.2 can work. But remember, the proposal
function and its characteristics are chosen by you, the analyst. Choose wisely! Exercise 7.1
has you explore the consequences of different proposal distributions. Notice that when a
normal distribution is used as the proposal distribution, there can be proposed values less
than zero or greater than one, which are invalid values ofθ in the present situation. This is
okay as long as the prior and likelihood functions return values of zero when the proposed
θ is inappropriate.

Section 7.6.1 (BernMetropolisTemplate.R), p. 121, has R code that provides a detailed
template for the Metropolis algorithm. By inspecting the loquaciously commented code,

7.3. FROM THE SAMPLED POSTERIOR TO THE THREE GOALS 111

Parameter

0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.749

95% HDI
0.541 0.931

Npro=10000
Nacc

Npro

=0.71

p(D) = 0.000183

Figure 7.3: Graphical out-
put from the Metropolis
algorithm executed by the
program of Section 7.6.1
(BernMetropolisTemplate.R).
Compare this with the pos-
terior distributions shown
in Figure 5.2 (p. 72) and
Figure 6.2 (p. 86).

you can see that the code begins by defining three functions: The likelihood function, the
prior probability function, and the target distribution function. Typically the target distribu-
tion function is simply the product of the likelihood and prior, but the target distribution is
coded as a separate function because the target function fora Metropolis algorithm could
be anything, it doesn’t have to be a posterior from Bayes’ rule. After defining the target dis-
tribution, the next chunk of code generates the random walk.After meandering around the
parameter space a while, the code simply excludes an arbitrary burn-in portion, and saves
the remainder of the walk as its heap of representative values from the posterior distribution.

An example of the results of the Metropolis algorithm is shown in Figure 7.3. Theθ
values were generated from using a uniform prior, Bernoullilikelihood, and data in which
z = 11 andN = 14. This prior and data match examples used in previous chapters: Com-
pare Figure 7.3 with the posterior distributions shown in Figure 5.2 (p. 72), which was
determined from mathematical analysis, and Figure 6.2 (p. 86), which was computed by
grid approximation; you’ll notice that they are very similar.

7.3.1 Estimation

From the heap of representative values ofp(θ|D), we can estimate aspects of the actual
p(θ|D) distribution. For example, to summarize the central tendency of the representative
values, it is easy to compute their mean or their median. The mean of the distribution is
displayed in Figure 7.3.

7.3.1.1 Highest density intervals from random samples

Highest density intervals (HDIs) can also be estimated fromMCMC samples. One way
to do it relies on computing the (relative) posterior probability at each point in the sample
(Hyndman, 1996). Essentially, this method finds the water level such that 5% of the points
are under water. The remaining points above water representthe 95% HDI region. In more
detail: First, we compute the relative height at each point,i.e., the relative posterior density

112 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

p(θi |D) ∝ p(D|θi)p(θi) at eachθi in the sample. Letp.05 denote the 5th percentile of all
those posterior heights. This is the height of the waterlineat the edge of the HDI. The set of
all points above the waterline represents the HDI. Think of it this way: Certainly that set of
θ’s is 95% of the sampled values, because the only ones excluded are in the 5th percentile
or less. And certainly all theθ’s in the set have a posterior density greater than all the
ones excluded, by definition of membership in the set. Figure7.3 shows the HDI interval
estimated this way. It is nearly the same as the grid-based estimate in Figure 6.2 (p. 86) and
the function-based estimate in Figure 5.2 (p. 72).

If computing the relative posterior probability at each point is onerous or inconvenient
(it’s not in the present application, but will be in more complex situations), the HDI region
can be estimated by another method that uses only the parameter values themselves. The
method is limited, however, to treating one parameter at a time, and assumes that the dis-
tribution is unimodal. Fortunately these conditions are satisfied in most applications. The
method is based on the fact that the width of the HDI turns out to be thenarrowestof all
credible intervals of the same mass. Consider, for example,the 95% credible interval (CI)
that goes from the 1st percentile of theθ values to the 96th percentile. That CI has a certain
width. Consider instead the 95% CI that goes from the 2.5th percentile to the 97.5th per-
centile. That CI has some other width. Of all possible 95% CI’s, the narrowest one matches
the 95% HDI. The program listed in Section 23.3.2 (HDIofMCMC.R) implements this method.

7.3.1.2 Using a sample to estimate an integral

Suppose we have a large number of representative values froma distribution. What is a
good estimate of the mean of the distribution? Intuitive answer: The mean of the sample,
because the sample has a lot of values that represent the distribution. In other words, we
are approximating the true mean, which is an integral (recall Equation 3.6, p. 32), by a
summation over discrete values sampled from the distribution.

We can express that approximation formally. Letp(θ) be a distribution over parameterθ.
Let θi (notice the subscripti) be representative values sampled from the distributionp(θ).
We write θi ∼ p(θ) to indicate that theθi values are sampled according to the probability
distribution p(θ). Then the true mean, which is an integral, is approximated by the mean of
the sample:

∫

dθ θ p(θ) ≈
1
N

N∑

θi∼p(θ)

θi (7.5)

In Equation 7.5, the summation is over valuesθi sampled fromp(θ), andN is the number
of sampled values. The approximation gets better asN gets larger. My use of limits in the
summation notation in Equation 7.5 is unconventional, because the usual notation would
indicate

∑N
i instead of

∑N
θi∼p(θ). The unconventional notation is extremely helpful, in my

opinion, because it explicitly indicates the distributionof the discreteθi values, and shows
how the distributionp(θ) on the left side of the equation has an influence on the right side
of the equation.

Equation 7.5 is just a special case of a general principle. For any function f (θ), the
integral of that function, weighted by the probability distribution p(θ), is approximated by
the average of the function values at the sampled points. In math:

∫

dθ f (θ) p(θ) ≈
1
N

N∑

θi∼p(θ)

f (θi) (7.6)

7.3. FROM THE SAMPLED POSTERIOR TO THE THREE GOALS 113

The approximation of the mean in Equation 7.5 merely hasf (θ) = θ. Equation 7.6 is
a workhorse for the remainder of the chapter. You should think about it long enough to
convince yourself that it is correct, so I don’t have to figureout a way to explain it better.

Well, okay, I’ll give it a try. Consider discretizing the integral in the left side of Equa-
tion 7.6, so that it is approximated as a sum over many small intervals:

∫

dθ f (θ) p(θ) ≈
∑

j [∆θ p(θ j)] f (θ j), whereθ j is a representative value ofθ in the jth interval. The term in
brackets,∆θ p(θ j), is the probability mass of the small interval aroundθ j . That probabil-
ity mass is approximated by the relative number of times we happen to get aθ value from
that interval when sampling fromp(θ). Denote the number of times we get aθ value from
the jth interval asn j , and the total number of sampled values asN. With a large sample,
notice thatn j/N ≈ ∆θ p(θ j). Then

∫

dθ f (θ) p(θ) ≈
∑

j [∆θ p(θ j)] f (θ j) ≈
∑

j [n j/N] f (θ j) =
1
N

∑

j n j f (θ j). In other words, every time we sample aθ value from thejth interval, we add
into the summation another iteration of the interval’s representative value,f (θ j). But there
is no need to use the interval’s representative value; just use the value off (θ) at the sam-
pled value ofθ, because the sampledθ already is in thejth interval. So the approximation
becomes

∫

dθ f (θ) p(θ) ≈ 1
N

∑

j n j f (θ j) ≈ 1
N

∑N
θi∼p(θ) f (θi), which is Equation 7.6.

7.3.2 Prediction

The second typical goal for Bayesian inference is predicting subsequent data values. For a
given valuey ∈ {0, 1}, the predicted probability ofy is p(y|D) =

∫

dθ p(y|θ) p(θ|D). Notice
that this has the form of the left-hand side of Equation 7.6. Therefore, applying that equation
to the predicted probability that the nexty equals 1, we have

p(y=1|D) =
∫

dθ p(y=1|θ) p(θ|D)

=

∫

dθ θ p(θ|D)

≈
1
N

N∑

θi∼p(θ|D)

θi (7.7)

Notice that this happens to be the mean of the sample of posterior θ values (only because
p(y=1|θ) = θ in this case); the mean is displayed in Figure 7.3.

7.3.3 Model comparison: Estimation ofp(D)

This section is a little heavy on the math, and may be of less immediate value to readers
who wish to focus on applications in the latter part of the book. This section may be skipped
on a first reading, without loss of dignity.

For the goal of model comparison, we want to computep(D) =
∫

dθ p(D|θ) p(θ), where
p(θ) is the prior. In principle, we could just apply Equation 7.6directly:

p(D) =
∫

dθ p(D|θ) p(θ)

≈ 1
N

N∑

θi∼p(θ)

p(D|θi)

This means that we are getting samples from the prior,p(θ), perhaps by using a Metropolis
algorithm. But in practice, the prior is very diffuse, and for most of its sampled values,

114 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

p(D|θ) is tiny. Values ofp(D|θ) will contribute notably to the sum only in a relatively small
region ofθ. So we would need aginormousnumber of samples for the approximation to
converge to a stable value.

Instead of sampling from the prior, we will use our sample from the posterior distribu-
tion, in a clever way. First, consider Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)

We can rearrange it to get
1

p(D)
=

p(θ|D)
p(D|θ)p(θ)

Now a trick (due to Gelfand & Dey, 1994; summarized by Carlin &Louis, 2000): For
any probability density functionh(θ), it is the case that

∫

dθ h(θ) = 1. We will multiply the
re-arranged Bayes’ rule by 1:

1
p(D)

=
p(θ|D)

p(D|θ)p(θ)

=
p(θ|D)

p(D|θ)p(θ)

∫

dθ h(θ)

=

∫

dθ
h(θ)

p(D|θ)p(θ)
p(θ|D)

≈ 1
N

N∑

θi∼p(θ|D)

h(θi)
p(D|θi)p(θi)

(7.8)

In the derivation above, the transition from first to second lines was just the trick of multi-
plying by 1. The transition from second to third lines was just algebraic re-arrangement.3

Finally, the transition from third to last lines was application of Equation 7.6.
All there is yet to do is specify our choice for the functionh(θ). It would be good for

h(θ) to be similar top(D|θ)p(θ), so that their ratio, which appears in Equation 7.8, will not
get too extremely large or extremely small for different values ofθ. If their ratio did get too
big or small, that would upset the convergence of the sum asN grows.

When the likelihood function is the binomial distribution,it is reasonable thath(θ)
should be a beta distribution with mean and standard deviation corresponding to the mean
and standard deviation of the samples from the posterior. The idea is that the posterior will
tend to be beta-ish, especially asN gets larger, regardless of the shape of the prior, because
the Bernoulli likelihood will overwhelm the prior asN gets large. Therefore I wanth(θ) to
be a beta distribution with mean and standard deviation equal to the meanM and standard
deviationS of the θ values sampled from the posterior. Equation 5.6, p. 70, provides the
corresponding shape parameters for the beta distribution.To summarize: We approximate
p(D) by using Equation 7.8 withh(θ) being a beta distribution with itsa andb values set
as just described. Note that Equation 7.8 yields the reciprocal of p(D), so we have to invert

3Actually, there is a subtlety in the transition from second to third lines of Equation 7.8. Theθ in h(θ) varies
over the range of the integral, but theθ in p(D|θ), p(θ), andp(θ|D) is a specific value. Therefore it might seem
that we cannot “just re-arrange.” However, the ratiop(θ|D)

p(D|θ)p(θ) is the same value foranyvalue ofθ, because the
ratio always equals the constant 1/p(D), and therefore we can let the value ofθ in p(θ) etc.equalthe value of
θ in h(θ). In other words, although theθ in p(θ) etc. began as a single value, it transitioned into being a value
that varies along with theθ in h(θ). This transition preserves the equality of the expressions because the ratio

p(θ|D)
p(D|θ)p(θ) is the same for any value ofθ.

7.4. MCMC IN BUGS 115

the result to getp(D) itself. The R script in Section 7.6.1 (BernMetropolisTemplate.R) im-
plements this procedure, and the result is shown in Figure 7.3. Exercise 7.4 lets you explore
other choices forh(θ).

In general, there might not be strong theoretical motivations to select a particularh(θ)
density. No matter. All that’s needed is any density that reasonably mimics the posterior. In
many cases, this can be achieved by first generating a representative sample of the posterior,
and then finding an “off-the-shelf” density that describes it reasonably well. Forexample,
if the parameter is limited to the range [0, 1], we might be able to mimic its posterior with a
beta density that has the same mean and standard deviation asthe sampled posterior, even
if we have no reason to believe that the posterior really is exactly a beta distribution. If the
parameter is limited to the range [0,+∞), then we might be able to mimic its posterior with
a gamma density (see Figure 9.8, p. 170) that has the same meanand standard deviation
as the sampled posterior, even if we have no reason to believethat the posterior really is
exactly a gamma distribution.

7.4 MCMC in BUGS

Back in Section 7.2.1 we worried over the fact that the Metropolis algorithm needs to be
artfully tuned: The proposal distribution needs to be well matched to the posterior, the
initial samples during the burn-in period need to be excluded, and the sampling chain needs
to be run long enough to sample the whole distribution thoroughly. Wouldn’t it be nice if
some of those worries could be addressed automatically, or at least efficiently, in a software
package? Fortunately such a package of software has been developed and is available, free,
as a set of function calls in R. The original version of the software was called BUGS, for
Bayesian inference Using Gibbs Sampling (Gilks, Thomas, & Spiegelhalter, 1994). A later
chapter will define and explore Gibbs sampling; for now all you have to know is that it is
a type of Metropolis algorithm. We will use the OpenBUGS (Thomas, O’Hara, Ligges,
& Sturtz, 2006) version of BUGS, accessed from R via a packagecalled BRugs (Thomas,
2004). OpenBUGS is a system for specifying Bayesian models and generating MCMC
posterior samples.

What you need to keep in mind is that OpenBUGS is separate and distinct from R.
OpenBUGS has its own language that is a lot like R, but is not R.BRugs is a set of R
functions that lets R shuttle information to and from OpenBUGS. Thus, we will “live” in
R, and use BRugs to send information off to OpenBUGS and get information back from it.

Installing BRugs in R is extraordinarily simple. Just invoke R and type the following at
the command line:
install.packages("BRugs")

You must be connected to the internet for the BRugs package tobe retrieved from an internet
archive. Notice that the letters are uppercase “BR” and lowercase “ugs”. (If you are using
a Macintosh computer, you must be running R within a windows emulator such as WINE.)
You have to install BRugs on your computer only once; after that, BRugs should be locally
accessible by R on your computer.

Once BRugs is installed, type the following to load BRugs into R’s active list of li-
braries: library(BRugs) You’ll need to load BRugs into R’s active library every time you
re-start R, but once you’ve loaded it during a session, R knows all the functions in BRugs
for the rest of the session.

One way to get help for BRugs is by typinghelp(BRugs) It’s important to understand

116 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

that BRugs is a library of functions that call OpenBUGS from R. In the BRugs help pack-
age, you can see the long list of BRugs functions. But to get help about OpenBUGS itself,
see the OpenBUGS manual at
http://mathstat.helsinki.fi/openbugs/Manuals/Contents.html

Open the OpenBUGS User Manual and look at the Contents. Within the Contents, in the
Model Specification section, the last subsection is “Appendix II Function and Functionals”,
where you’ll find information about the various mathematical functions built into Open-
BUGS. For example, there you’ll find the function for raisingx to the powery. In R, we
would do this by typingx ˆ y. But OpenBUGS is not R. In OpenBUGS, the way to ask it to
raisex to the powery is by typingpow(x,y).

Henceforth, I’ll often say BUGS as an abbreviation for OpenBUGS. It is understood
that we’ll be using BRugs to access OpenBUGS from R, but I’ll just keep references short
by using the term BUGS.

7.4.1 Parameter estimation with BUGS

MCMC sampling of a posterior distribution is simple in BUGS.We merely need to specify
the prior, the likelihood, and the observed data. Sometimeswe also specify the starting point
for the random walk. We do not need to specify anything about the posterior distribution.
Nor do we need to specify anything about how to do the sampling. BUGS uses its own built-
in sampling algorithms to generate a chain of random values from the posterior distribution.

As an example, consider the situation in Figure 5.2 (p. 72) and Figure 6.2 (p. 86), which
involved a beta(1,1) prior distribution, a Bernoulli likelihood function, and data consisting
of 14 flips with 11 heads. The prior distribution and likelihood function are specified in the
BUGSmodel statement, like this: (BernBetaBugsFull.R)

9 model {

10 # Likelihood:

11 for (i in 1:nFlips) {

12 y[i] ˜ dbern(theta)

13 }

14 # Prior distribution:

15 theta ˜ dbeta(priorA , priorB)

16 priorA <- 1

17 priorB <- 1

18 }

The code in thefor loop says that every flip of the coin comes from a Bernoulli distribution
with parameter valuetheta, and the code at the end says that the value oftheta comes from
a prior distribution that is beta with shape parameterspriorA andpriorB.

The BUGS code may look like R language, but it is not R. It is merely a description
of the likelihood and prior that BUGS interprets using its own compiler, distinct from R.
Notice that the model statement begins with the wordmodel, followed by a specification
inside curly braces. The tilde (˜) notation means that a variable “is distributed as” the
indicated distribution function. Thedbern distribution is only known to BUGS, not to R.
And the functiondbeta in BUGS is different than the functiondbeta in R; the BUGS version
has two arguments but the R version has three arguments. The assignment operator, “<-”,
in BUGS works just like the “=” operator in R. When we type “x <- 2” it means “assign
the value 2 to the variable named x”. The equal sign is just a short-hand way of doing that
in R. R understands either<- or =, but BUGS understands only<-. Finally, the statements

7.4. MCMC IN BUGS 117

in the model specification are processed by BUGS as a batch andthen checked for overall
consistency. Therefore, we could specify the priorbeforethe likelihood if we wanted to.

What BRugs does for us is send the model specification to BUGS,and command BUGS
to check the model specification for syntactic consistency.We do this using some arcane
and convoluted commands, but the commands never change across applications, so they
are easy to get used to and then forget about. First, we express the model specification as
a string in R. Then, we store the string in a file. Finally, we use BRugs to send the file to
BUGS. The whole sequence looks like this: (BernBetaBugsFull.R)

6 # Specify the model in BUGS language, but save it as a string in R:

7 modelString = "

8 # BUGS model specification begins ...

9 model {

10 # Likelihood:

11 for (i in 1:nFlips) {

12 y[i] ˜ dbern(theta)

13 }

14 # Prior distribution:

15 theta ˜ dbeta(priorA , priorB)

16 priorA <- 1

17 priorB <- 1

18 }

19 # ... BUGS model specification ends.

20 " # close quote to end modelString

21

22 # Write the modelString to a file, using R commands:

23 writeLines(modelString,con="model.txt")

24 # Use BRugs to send the model.txt file to BUGS, which checks the model syntax:

25 modelCheck("model.txt")

Again, the R+BRugs “wrapper” around the model specification never changes, so all you
need to focus on is the model specification itself.

All the variables in the model specification need to have values specified either as con-
stants or as values generated by MCMC sampling after their initial values are specified. In
our example, the data determine the constant values ofy[i] andnFlips, and our prior be-
liefs specify the constant values ofpriorA andpriorB. We inform BUGS of these constants
via thedata section of the program: (BernBetaBugsFull.R)

31 dataList = list(

32 nFlips = 14 ,

33 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

34)

35

36 # Use BRugs commands to put the data into a file and ship the file to BUGS:

37 modelData(bugsData(dataList))

As the comments in the code indicate, the values are first specified in R, and then shipped
off to BUGS by BRugs commands.

The only variables remaining to be specified are the initial values of the MCMC chains.
Fortunately, we can ask BUGS to try to randomly generate someinitial values according to
the prior distribution. For BUGS to do this, it needs to first interpret the model and encode
the prior parameter values. BRugs tells BUGS to do the interpretation with themodelCompile
command. Then BRugs tells BUGS to generate some random initial values for the chains,
as follows: (BernBetaBugsFull.R)

118 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

42 modelCompile() # BRugs command tells BUGS to compile the model.

43 modelGenInits() # BRugs command tells BUGS to randomly initialize a chain.

BUGS now has everything it needs to generate MCMC chains. We merely have to tell
it how long of a chain to generate, and what variables to keep track of. By default, BUGS
records nothing, because complex models will involve numerous parameters, and recording
all their values for many thousands of steps could generate huge data files. The code for
these commands is as follows: (BernBetaBugsFull.R)

48 # BRugs tells BUGS to keep a record of the sampled "theta" values:

49 samplesSet("theta")

50 # R command defines a new variable that specifies an arbitrary chain length:

51 chainLength = 10000

52 # BRugs tells BUGS to generate a MCMC chain:

53 modelUpdate(chainLength)

In those commands we did not specify any burn-in period to exclude; future models will do
so.

BUGS will generate its MCMC chains while R “hangs” for an answer from BUGS.
When BUGS reports back to R that it is done, there is nothing overt that has happened. We
still need to extract the chains from BUGS. We can get the actually sampled values, or a
summary about the values. Here’s how: (BernBetaBugsFull.R)

58 thetaSample = samplesSample("theta") # BRugs asks BUGS for the sample values.

59 thetaSummary = samplesStats("theta") # BRugs asks BUGS for summary statistics.

The first line puts the sampled values oftheta into a vector in R calledthetaSample. We
can graph those values in R however we want; for example as shown in Figure 7.4. Notice
that BUGS does not determine HDI intervals for us, but we could use the R code previously
described (i.e., HDIofMCMC.R) for that purpose.

What BUGS has done is relieve us from figuring out the details of the sampling algo-
rithm. Unlike the homegrown Metropolis algorithm, we did not need to specify how the
MCMC chain is generated. In fact, BUGS is clever and doesn’t even use a Metropolis al-
gorithm for this case, opting instead for a more efficient algorithm we’ll learn about in the
next chapter.

7.4.2 BUGS for prediction

The goal for prediction is determining the probability of subsequent data values. As de-
scribed in Section 7.3.2 (p. 113), when the likelihood function is Bernoulli, then mathe-
matical derivation tells us thatp(y=1|D) is the mean of the posterior distribution ofθ. We
can forgo the mathematical analysis when we use MCMC sampling, however. Instead, we
can directly generate simulated values ofy from the posterior sampled values ofθ, and then
examine the distribution ofy.

To generate randomy values based on the posterior sampled values ofθ, we add a
few lines of R code at the end of the program. For each step in the MCMC chain, we
flip a coin using theθ value from that step in the chain. In R, the command that flips a
coin issample(). The arguments ofsample() arex=c(0,1), which indicates the values to be
sampled from,prob=c(1-pHead,pHead), which indicates the probability of each value, and
size=1, which indicates to flip the coin just once. Thesample() command lies inside a loop
that steps through the MCMC chain: (BernBetaBugsFull.R)

7.4. MCMC IN BUGS 119

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

BUGS Results

θ

P
os

iti
on

 in
 C

ha
in

Parameter

0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.75

95% HDI
0.548 0.936

Figure 7.4: Values oftheta sampled from the posterior by BUGS, using the pro-
gram BernBetaBugsFull.R. Compare the results with the home-grown Metropolis
sampler shown in Figure 7.3, p. 111 (they should appear to be very similar).

72 # For each step in the chain, use posterior theta to flip a coin:

73 chainLength = length(thetaSample)

74 yPred = rep(NULL , chainLength) # define placeholder for flip results

75 for (stepIdx in 1:chainLength) {

76 pHead = thetaSample[stepIdx]

77 yPred[stepIdx] = sample(x=c(0,1), prob=c(1-pHead,pHead), size=1)

78 }

Figure 7.5 shows the results of the posterior predicted values ofy. The actual values of
y are 1 or 0, but they have been jittered in the graph to make themmore visible. Each point
plotted in the graph corresponds to a step in the MCMC walk. Weknow from Equation 7.7,
p. 113, that the mean value ofy should approximately equal the mean value oftheta. The
graph shows that for this sample the approximation is very good.

7.4.3 BUGS for model comparison

BUGS provides no short cut for estimatingp(D) relative to the homegrown Metropolis
algorithm. If we use the method of Section 7.3.3 to estimatep(D), then we still have to
invent a posterior-mimicking distribution and compute thelikelihood times prior at every
point of the MCMC chain. The only advantage of using BUGS in this case is that the
sampling algorithm for generating the chain is done for us.

Later, in Section 10.2 we will explore a different method for using BUGS to compare
models. In that method (called transdimensional MCMC), we will not need to compute
p(D) for each model. Instead, the Markov chain will jump from onemodel to another
proportionally to how believable each model is. In the long run, the relative frequency of
visiting each model is the relative believability of each model, given the data.

120 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

posterior predictive sample

θ

y
(ji

tte
re

d)

+mean(y) = 0.75

m
ea

n(
θ)

=
0.

75

Figure 7.5: Posterior predic-
tion: For each step in the
MCMC chain, the value ofθ is
used as the bias to flip a simu-
lated coin. The resultingy val-
ues are jittered in the graph to
make them more visible. The
“+” marks the meanθ value
and the meany value; they are
equal in the long run, as sug-
gested by their falling on the
diagonal line.

7.5 Conclusion

This chapter explained the essence of the Metropolis algorithm. Perhaps unique to this text-
book, we applied the Metropolis algorithm to the simple caseof estimating the posterior
distribution of a single parameter. (Many other textbooks wait to introduce the Metropolis
algorithm until multi-parameter models are encountered.)I introduced the Metropolis algo-
rithm with a single parameter model for pedagogical reasons. It is easier to understand the
theory behind the Metropolis algorithm when its proposal distribution has just two options:
move one step up or move one step down. In particular, it is easy to show the transition
matrix concretely (Equation 7.3), and it is easy to show the exact evolution of position
probabilities (Figure 7.2) through time. The payoff is that a good intuition is established for
the simple case, so that more complex versions are easier to understand.

Another benefit of introducing the Metropolis algorithm here is that its results can be
directly compared with the results of other analyses, such as exact formal analysis and
grid approximation. For an example, see Exercise 7.3. If theMetropolis algorithm isn’t
introduced until it is needed for complex models that are intractable by other methods, then
the other techniques cannot be compared!

The cost of introducing the Metropolis algorithm in this simple one-parameter scenario
is that you may come away with the false belief that people would actually do this in real
data analysis. They would not. For a single parameter with a limited range, grid approxi-
mation can be more accurate than MCMC, and grid approximation allows you to estimate
p(D) easily. Exercise 7.3 shows you an example of this.

This chapter also introduced the BUGS system for MCMC computations. BUGS is
extremely useful, especially for the complicated models wewill explore later. But it is not
unbounded in its applicability; in particular, the prior distributions must be assembled from
density functions that BUGS knows how to sample from. Exercise 7.3 provides an example

7.6. R CODE 121

in which BUGS is not easily applicable.

7.6 R code

7.6.1 R code for a home-grown Metropolis algorithm

The code listed below gives a complete example and template for applying the Metropolis
algorithm to estimating a binomial proportion.

The code begins by defining three functions: The likelihood function, the prior prob-
ability function, and the target distribution for the Metropolis algorithm. These functions
come first in the script because they are called by later commands.

The prior beliefs overθ are specified by theprior function. You can enter any function
here that you want. The code supplies two possibilities as examples. The prior function
does not need to be a proper density for the Metropolis algorithm to work, but the prior
does need to be a proper density for the later computation ofp(D) to be meaningful.

The target distribution is defined in thetargetRelProb function, which computes the
(relative) probability in the target distribution. Typically this is just the unnormalized pos-
terior probability, i.e., the numerator from Bayes’ rule.

After those three functions are defined, the Metropolis algorithm itself is processed.
The algorithm takes only a few lines of code, embedded in manylines of comments.It is
worth studying the code for the random walk to be sure you understand the process.

The coding of the Metropolis algorithm, including the threeinitial functions and the
generation of the random walk, takes up relatively little ofthe script. The remaining bulk
of the script is devoted to extracting information from the random walk and displaying it
meaningfully. The last section of the script computesp(D) by implementing Equation 7.8.

(BernMetropolisTemplate.R)

1 # Use this program as a template for experimenting with the Metropolis

2 # algorithm applied to a single parameter called theta, defined on the

3 # interval [0,1].

4

5 # Specify the data, to be used in the likelihood function.

6 # This is a vector with one component per flip,

7 # in which 1 means a "head" and 0 means a "tail".

8 myData = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)

9

10 # Define the Bernoulli likelihood function, p(D|theta).

11 # The argument theta could be a vector, not just a scalar.

12 likelihood = function(theta , data) {

13 z = sum(data == 1)

14 N = length(data)

15 pDataGivenTheta = thetaˆz * (1-theta)ˆ(N-z)

16 # The theta values passed into this function are generated at random,

17 # and therefore might be inadvertently greater than 1 or less than 0.

18 # The likelihood for theta > 1 or for theta < 0 is zero:

19 pDataGivenTheta[theta > 1 | theta < 0] = 0

20 return(pDataGivenTheta)

21 }

22

23 # Define the prior density function. For purposes of computing p(D),

24 # at the end of this program, we want this prior to be a proper density.

25 # The argument theta could be a vector, not just a scalar.

26 prior = function(theta) {

122 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

27 prior = rep(1 , length(theta)) # uniform density over [0,1]

28 # For kicks, here’s a bimodal prior. To try it, uncomment the next line.

29 #prior = dbeta(pmin(2*theta,2*(1-theta)) ,2,2)

30 # The theta values passed into this function are generated at random,

31 # and therefore might be inadvertently greater than 1 or less than 0.

32 # The prior for theta > 1 or for theta < 0 is zero:

33 prior[theta > 1 | theta < 0] = 0

34 return(prior)

35 }

36

37 # Define the relative probability of the target distribution,

38 # as a function of vector theta. For our application, this

39 # target distribution is the unnormalized posterior distribution.

40 targetRelProb = function(theta , data) {

41 targetRelProb = likelihood(theta , data) * prior(theta)

42 return(targetRelProb)

43 }

44

45 # Specify the length of the trajectory, i.e., the number of jumps to try:

46 trajLength = 11112 # arbitrary large number

47 # Initialize the vector that will store the results:

48 trajectory = rep(0 , trajLength)

49 # Specify where to start the trajectory:

50 trajectory[1] = 0.50 # arbitrary value

51 # Specify the burn-in period:

52 burnIn = ceiling(.1 * trajLength) # arbitrary number, less than trajLength

53 # Initialize accepted, rejected counters, just to monitor performance:

54 nAccepted = 0

55 nRejected = 0

56 # Specify seed to reproduce same random walk:

57 set.seed(47405)

58

59 # Now generate the random walk. The ’t’ index is time or trial in the walk.

60 for (t in 1:(trajLength-1)) {

61 currentPosition = trajectory[t]

62 # Use the proposal distribution to generate a proposed jump.

63 # The shape and variance of the proposal distribution can be changed

64 # to whatever you think is appropriate for the target distribution.

65 proposedJump = rnorm(1 , mean = 0 , sd = 0.1)

66 # Compute the probability of accepting the proposed jump.

67 probAccept = min(1,

68 targetRelProb(currentPosition + proposedJump , myData)

69 / targetRelProb(currentPosition , myData))

70 # Generate a random uniform value from the interval [0,1] to

71 # decide whether or not to accept the proposed jump.

72 if (runif(1) < probAccept) {

73 # accept the proposed jump

74 trajectory[t+1] = currentPosition + proposedJump

75 # increment the accepted counter, just to monitor performance

76 if (t > burnIn) { nAccepted = nAccepted + 1 }

77 } else {

78 # reject the proposed jump, stay at current position

79 trajectory[t+1] = currentPosition

80 # increment the rejected counter, just to monitor performance

81 if (t > burnIn) { nRejected = nRejected + 1 }

82 }

83 }

84

85 # Extract the post-burnIn portion of the trajectory.

7.7. EXERCISES 123

86 acceptedTraj = trajectory[(burnIn+1) : length(trajectory)]

87

88 # End of Metropolis algorithm.

89

90 #---

91 # Display the posterior.

92

93 source("plotPost.R")

94 histInfo = plotPost(acceptedTraj , xlim=c(0,1) , breaks=30)

95

96 # Display rejected/accepted ratio in the plot.

97 # Get the highest point and mean of the plot for subsequent text positioning.

98 densMax = max(histInfo$density)

99 meanTraj = mean(acceptedTraj)

100 sdTraj = sd(acceptedTraj)

101 if (meanTraj > .5) {

102 xpos = 0.0 ; xadj = 0.0

103 } else {

104 xpos = 1.0 ; xadj = 1.0

105 }

106 text(xpos , 0.75*densMax ,

107 bquote(N[pro] * "=" * .(length(acceptedTraj)) * " " *

108 frac(N[acc],N[pro]) * "=" * .(signif(nAccepted/length(acceptedTraj) , 3))

109) , adj=c(xadj,0))

110

111 #--

112 # Evidence for model, p(D).

113

114 # Compute a,b parameters for beta distribution that has the same mean

115 # and stdev as the sample from the posterior. This is a useful choice

116 # when the likelihood function is Bernoulli.

117 a = meanTraj * ((meanTraj*(1-meanTraj)/sdTrajˆ2) - 1)

118 b = (1-meanTraj) * ((meanTraj*(1-meanTraj)/sdTrajˆ2) - 1)

119

120 # For every theta value in the posterior sample, compute

121 # dbeta(theta,a,b) / likelihood(theta)*prior(theta)

122 # This computation assumes that likelihood and prior are proper densities,

123 # i.e., not just relative probabilities. This computation also assumes that

124 # the likelihood and prior functions were defined to accept a vector argument,

125 # not just a single-component scalar argument.

126 wtdEvid = dbeta(acceptedTraj , a , b) / (

127 likelihood(acceptedTraj , myData) * prior(acceptedTraj))

128 pData = 1 / mean(wtdEvid)

129

130 # Display p(D) in the graph

131 if (meanTraj > .5) { xpos = 0.0 ; xadj = 0.0

132 } else { xpos = 1.0 ; xadj = 1.0 }

133 text(xpos , 0.9*densMax , bquote(p(D)==.(signif(pData,3))) ,

134 adj=c(xadj,0) , cex=1.5)

135

136 # Uncomment next line if you want to save the graph.

137 #dev.copy2eps(file="BernMetropolisTemplate.eps")

7.7 Exercises

Exercise 7.1. [Purpose: To see what happens in the Metropolis algorithm with different proposal

distributions, and to get a sense how the proposal distribution must be “tuned” to the target distri-

124 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

Parameter

0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.749

95% HDI
0.541 0.931

Npro=10000
Nacc

Npro

=0.71

p(D) = 0.000183

Parameter

0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.613

95% HDI
0.554 0.668

Npro=10000
Nacc

Npro

=0.996

p(D) = 3.17e−05

Parameter

0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.747

95% HDI
0.539 0.912

Npro=10000
Nacc

Npro

=0.0023

p(D) = 0.000163

Figure 7.6: Results from the Metropolis algorithm when different proposal distri-
butions are used. See Exercise 7.1. Left panel: sd=0.1. Middle panel: sd=0.001.
Right panel: sd=100.0.

bution.] Use the home-grown Metropolis algorithm in the R script of Section 7.6.1
(BernMetropolisTemplate.R) for this exercise. See Figure 7.6 for examples of what your
output might look like.

(A) The proposal distribution generates candidate jumps that are normally distributed
with mean zero. Set the standard deviation of the proposal distribution to 0.1 (if it isn’t
already) and run the script. Save/print the graph and annotate it with SD=0.1.

(B) Set the standard deviation of the proposal distribution to 0.001 and run the script.
Save/print the graph and annotate it with SD=0.001.

(C) Set the standard deviation of the proposal distribution to 100.0 and run the script.
Save/print the graph and annotate it with SD=100.0.

(D) Which proposal distribution gave the most accurate representation of the posterior?
Which proposal distribution had the fewest rejected proposals? Which proposal distribution
had the most rejected proposals?

(E) If we didn’t know from other techniques what the true posterior looked like, how
would we know which proposal distribution generated the most accurate representation of
the posterior? (This does not have a quick answer; it’s meantmostly as a question for
pondering and motivating techniques introduced in later chapters.)

Exercise 7.2. [Purpose: To understand the influence of the starting point of the random walk, and

why the walk doesn’t necessarily go back to that region.] Edit the home-grown Metropolis al-
gorithm of Section 7.6.1 (BernMetropolisTemplate.R) for this exercise. Best to save it as a
differently named script so you don’t mess up the original version. Settrajlength = 100
and setburnin = ceiling(0.01 *trajlength). Finally, settrajectory[1] = 0.001. Now run
the script and save the resulting histogram.

(A) How many jumps are proposed? How many steps are excluded as part of the burn-in
portion? At what value ofθ does the random walk start?

(B) Why does the histogram have somanypoints belowθ = 0.5? That is, why does the
chain stay belowθ = 0.5 as long as it does?

(C) Why does the histogram have sofewpoints belowθ = 0.5? That is, why does the
chain not go back below 0.5?

Exercise 7.3. [Purpose: To get some hands-on experience with applying theMetropolis algorithm,

and to compare its results with the other methods we’ve learned about.] Suppose you have a coin
that you believe is either fair, or biased to come up heads, orbiased to come up tails. As
an expression of your prior belief, you define your prior onθ (the probability of heads) to
be proportional to [cos(4πθ) + 1]2. In other words,p(θ) = [cos(4πθ) + 1]2/Z, whereZ is
the appropriate normalizing constant. We flip the coin 12 times and we get 8 heads. See

7.7. EXERCISES 125

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Prior

θ

p(
θ)

mean(θ)=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

−
04

4e
−

04

Likelihood

θ

p(
D

|θ
)

Data: z=8,N=12

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Posterior

θ

p(
θ|

D
)

mean(θ|D)=0.548

p(D)=0.00013

−− −−−−−−−−−−−−−−−−−

95% HDI
0.384 0.886

Figure 7.7: Example with
trimodal prior, for Exer-
cise 7.3.

Figure 7.7 to see the prior, likelihood, and posterior.
(A) Determine the formula for the posterior distribution exactly, using formal integra-

tion in Bayes’ rule. Just kidding. Instead, do the following: Explain the initial set up if you
wanted to try to determine the exact formula for the posterior. Show the explicit formulas
involving the likelihood and prior in Bayes’ rule. Do you think that the prior and likeli-
hood are conjugate, that is, would the formula for the posterior have the “same form” as the
formula for the prior?

(B) Use a fine grid overθ and approximate the posterior. Use the R function of Sec-
tion 6.7.1 (BernGrid.R), p. 90. (The R function also plots the prior distribution, so you can
see that it really is trimodal.)

(C) Use a Metropolis algorithm to approximate the posterior. Use the R script of Sec-
tion 7.6.1 (BernMetropolisTemplate.R), adapted appropriately for the prior function. You’ll
need to alter the definitions of the likelihood and prior functions in the R script; include that
portion of the code with what you hand in (but don’t include the rest of the code). Must you
normalize the prior to generate a sample from the posterior?Is the value ofp(D) displayed
in the graph correct?

(D) Could you apply BUGS to this situation? In particular, can you think of a way to
specify the prior density in terms of distributions that BUGS knows about?

126 CHAPTER 7. BINOMIAL PROPORTION VIA METROPOLIS

Exercise 7.4.[Purpose: For approximating p(D), explore other choices forh(θ) in Equation 7.8, and

note that the one used in the R script of Section 7.6.1 (BernMetropolisTemplate.R) is a good one.] Edit
the R script of Section 7.6.1 (BernMetropolisTemplate.R) for this exercise. Best to save it as
a differently named script so you don’t mess up the original version. At the very end of the
script, add this line:windows() ; plot(wtdEvid,type="l")

(A) Select (i.e., highlight with the cursor) that line in the R editor and run it. Save the
plot. Explain what the plot is plotting. That is, what iswtdEvid (on the y-axis) and what is
on the x-axis?

(B) Consider a different choice for theh(θ) in Equation 7.8. To do this, we’ll leave
it as a beta function, but change the choice of itsa andb values. Find wherea andb are
specified in the R program (near the end, just before wtdEvid is defined) and type ina=1 and
b=1 instead. Now select (i.e., highlight with the cursor) the portion of the program from the
new a and b definitions, through the computation of wtdEvid, and the new plot command.
Run the selection, and save the resulting plot.

(C) Repeat, but this time witha=10 andb=10.
(D) For which values of a and b are the values of wtdEvid most stable across the random

walk? Which values of a and b would produce the most stable estimate ofp(D)?

Exercise 7.5.[Purpose: Explore the use of BUGS, and consider model comparison.] Suppose there
are three people with different beliefs about a coin. One person (M1) believes that thecoin
is biased toward tails; we’ll model this person’s beliefs asa uniform distribution overθ
values between 0 and .4. The second person (M2) believes thatthe coin is approximately
fair; we’ll model this person’s beliefs as a uniform distribution between .4 and .6. The third
person (M3) believes that the coin is biased toward heads; we’ll model this person’s beliefs
as a uniform distribution overθ values between .6 and 1.0. We won’t favor any person
a priori, and therefore we start by assuming thatp(M1) = p(M2) = p(M3) = 1/3. We
now flip the coin 14 times and observe 11 heads. Use BUGS to determine the evidences
for the three models.Hints: For each person, computep(D) by adapting the program
BernBetaBugsFull.R of Section 7.4.1 in two steps. First, modify the model specification
so that the prior is uniform over the limited range, instead of beta. Appendix I of the
OpenBUGS User Manual (see Section 7.4) explains how to specify uniform distributions in
BUGS. Second, include a new section at the end of the BUGS program that will compute
p(D). Do this by copying the last section of the program BernMetropolisTemplate.R that
computesp(D), and pasting it onto the end of your BUGS program, and makingadditional
necessary changes so that the output of BUGS can be processedby the newly added code.
In particular, before the newly added code, you’ll have to include these lines:
acceptedTraj = thetaSample

meanTraj = mean(thetaSample)

sdTraj = sd(thetaSample)

Chapter 8

Inferring Two Binomial Proportions
via Gibbs Sampling
Contents

8.1 Prior, likelihood and posterior for two proportions 129
8.2 The posterior via exact formal analysis 130
8.3 The posterior via grid approximation 133
8.4 The posterior via Markov chain Monte Carlo 134

8.4.1 Metropolis algorithm . 135
8.4.2 Gibbs sampling . 136

8.4.2.1 Disadvantages of Gibbs sampling 139
8.5 Doing it with BUGS . 140

8.5.1 Sampling the prior in BUGS 141
8.6 How different are the underlying biases? 142
8.7 Summary . 143
8.8 R code . 144

8.8.1 R code for grid approximation (Figures 8.1 and 8.2) 144
8.8.2 R code for Metropolis sampler (Figure 8.3) 146
8.8.3 R code for BUGS sampler (Figure 8.6) 149
8.8.4 R code for plotting a posterior histogram 151

8.9 Exercises . 153

I’m hurtin’ from all these rejected proposals;
My feelings, like peelings, down garbage disposals.
S’pose you should go your way and I should go mine,
We’ll both be accepted somewhere down the line.

This chapter addresses the question of how to make inferences regarding two independent
binomial proportions. For example, suppose we have two coins and we want to decide how
different their biases are. This issue is about the relation between two proportions, not about
only the individual proportions.

This topic appears at this location in the sequence of chapters for specific reasons. First,
and obviously, because the topic involves inferences aboutproportions, it follows the pre-
ceding chapters that discussed inferences about single proportions. Second, and less ob-
viously, the topic acts as an easy stepping stone to the next chapter, which addresses hier-

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

127

128 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

archical models. Hierarchical models typically involve many parameters. Multi-parameter
models involve extra “administrative overhead” merely to annotate, graph, handle mathe-
matically, and program in R and BUGS. These administrivia are introduced in this chapter
in the context of a relatively simple two-parameter model. Subsequent chapters, involving
multi-parameter hierarchical models, can therefore focuson the concepts of hierarchical
structure without getting bogged down in the logistics of dealing with multiple parameters.

Importantly, in this chapter we also get our first exposure toGibbs sampling. This was
previously only mentioned as the words behind the acronym BUGS. In Gibbs sampling,
unlike the more general Metropolis algorithm, a proposed jump affects only one parameter
at a time, and the proposed jump is never rejected. Gibbs sampling is terrific when it can be
done; unfortunately it cannot always be done, as we will see.

Meanwhile, the issue of estimating the difference between two proportions is interesting
in its own right. All the methods of the previous chapters arebrought to bear on this issue,
and so this point in the sequence of topics is also a great opportunity for review and and
consolidation.

In many real-world situations we observe two proportions, which differ by some amount
in our specific random sample, but we want to infer what underlying difference is credible
for the broader population from which the sample came. Afterall, the sample is just a noisy
hint about the actual underlying proportions. For example,we may have a sample of 100
people suffering from a disease. We give a random half of them a promisingdrug, and the
other half a placebo. After one week, 12 people have gotten better in the drug treated group,
and 5 people have gotten better in the placebo group. Did the drug actually do better than the
placebo, and by how much? In other words, based on the observed difference in proportions,
12/50 versus 5/50, what underlying difference is actually credible? As another example,
suppose you want to find out if mood affects cognitive performance. You manipulate mood
by having 80 people sit through mood-inducing movies. A random half (i.e., 40) of your
participants is shown a bittersweet film about lovers separated by circumstances of war
but who never forget each other. The other random half of yourparticipants is shown a
light comedy about high school pranks. Immediately after seeing the film, all participants
are given some cognitive tasks, including an arithmetic problem involving long division.
Of the 40 people who saw the war movie, 32 correctly solved thelong division problem.
Of the 40 people who saw the comedy, 27 correctly solved the long division problem.
Did the induced mood actually affect cognitive performance? In other words, based on
the observed difference in proportions, 32/40 versus 27/40, what underlying difference is
actually credible?

In order to talk about the problem more generally and with mathematical precision, we
need to define some notation. We’ll use the same sort of notation that we’ve been using for
previous chapters, but with subscripts to indicate which ofthe two groups is being referred
to. Thus, the hypothesized proportion of “heads” in groupj (where j = 1 or j = 2) is
denotedθ j, and the actual number of heads observed in a sample ofN j “flips” is zj, and the
ith individual flip in group j is denotedy ji .

Throughout this chapter we assume that the data from the two groups areindependent.
The performance of one group has no influence on the performance of the other. Typi-
cally we design research to make sure that the assumption of independence holds. In the
examples above, we assumed independence in the disease treatment scenario because we
assumed that social interaction among the patients was minimal. We assumed independence
in the mood-induction experiment because the experiment was designed to enforce zero so-
cial interaction between participants after the movie. Theassumption of independence is

8.1. PRIOR, LIKELIHOOD AND POSTERIOR FOR TWO PROPORTIONS 129

crucial for all the mathematical analyses we will perform. If you have a situation in which
two proportions are not independent, the methods of the thischapter do not directly apply.
In situations where there are dependencies in the data, the model can try to formally express
the dependency, but we will not be pursuing those situations.

8.1 Prior, likelihood and posterior for two proportions

We are considering situations in which there aretwo underlying proportions, namelyθ1

andθ2 for the two groups. We are trying to determine what we should believe about these
proportions after we have observed some data from the two groups.

In a Bayesian framework, we must first specify what we believeabout the proportions
without the data. Our prior beliefs are aboutcombinationsof parameter values. To specify
a prior belief, we must specify our belief probability,p(θ1, θ2), for every combinationθ1, θ2.
If we were to make a graph ofp(θ1, θ2), it would be three dimensional, withθ1 and θ2

on the two horizontal axes, andp(θ1, θ2) on the vertical axis. Because the beliefs form a
probability density function, the integral of the beliefs across the parameter space must be
one, i.e.,

!

dθ1dθ2p(θ1, θ2) = 1.
In some of the applications in this chapter, we will assume that our beliefs aboutθ1 are

independent of our beliefs aboutθ2. This means that our belief aboutθ2 is uninfluenced
by our belief aboutθ1. For example, if I have a coin from Canada and a coin from India,
my belief about bias in the coin from Canada could be completely separate from my belief
about bias in the coin from India. Independence of attributes was discussed in Section 3.4.3,
p. 39. Mathematically, independence means thatp(θ1, θ2) = p(θ1)p(θ2) for every value of
θ1 andθ2, wherep(θ1) and p(θ2) are the marginal belief distributions. When beliefs about
two parameters are independent, the mathematical manipulations can be greatly simplified.
Beliefs about the two parameters do not need to be independent, however. For example,
perhaps I believe that coins are minted in similar ways across countries, and so if a Cana-
dian coin is biased, then an Indian coin should be similarly biased. At the extreme, if I
believe thatθ1 always exactly equalsθ2, then the two parameter values are completely de-
pendent upon each other. Dependence does not imply direct causal relationship, it merely
implies that knowing the value of one parameter narrows beliefs about the value of the other
parameter.

Along with the prior beliefs, we have some observed data. We assume that the flips
within a group are independent of each other, and that the flips across groups are indepen-
dent of each other. The veracity of this assumption depends on exactly how the observa-
tions are actually made, but, in properly designed experiments, we have reasons to trust this
assumption. Notice that we will always assume independenceof data within and across
groups, regardless of whether we assume independence in ourbeliefsabout the biases in
the groups. Formally, the assumption of independence in thedata means the following.
Denote the result of a flip of coin 1 asy1, where the result can bey1 = 1 (heads) ory1 = 0
(tails). Similarly, the result of a flip of coin 2 is denotedy2. Independence of the data from
the two coins means thatp(y1|θ1, θ2) = p(y1|θ1), i.e., the data from coin 1 depend only on
the bias in coin 1, andp(y2|θ1, θ2) = p(y2|θ2).

From one group we observe the dataD1 consisting ofz1 heads out ofN1 flips, and
from the other group we observe the dataD2 consisting ofz2 heads out ofN2 flips. In other
words,z1 =

∑N1
i=1 y1i wherey1i denotes theith flip of the first coin. Notice thatz1 ∈ {0, ...,N1}

andz2 ∈ {0, ...,N2}. We denote the whole set of data asD = {z1,N1, z2,N2}. Because of

130 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

independence of sampled flips, the probability ofD is just the product of the Bernoulli
distribution functions for the individual flips:

p(D|θ1, θ2) =
∏

y1i∈D1

p(y1i |θ1, θ2)
∏

yj∈D2

p(y j |θ1, θ2)

=
∏

y1i∈D1

θ
y1i
1 (1− θ1)(1−y1i)

∏

y2 j∈D2

θ
y2 j

2 (1− θ2)(1−y2 j)

= θ
z1
1 (1− θ1)(N1−z1) θ

z2
2 (1− θ2)(N2−z2) (8.1)

The posterior distribution of our beliefs about the underlying proportions is derived in
the usual way by applying Bayes’ rule, but now the functions involve two parameters:

p(θ1, θ2|D) = p(D|θ1, θ2)p(θ1, θ2) /p(D)

= p(D|θ1, θ2)p(θ1, θ2)

/"

dθ1dθ2p(D|θ1, θ2)p(θ1, θ2) (8.2)

Remember, as always in the expression of Bayes’ rule, theθi ’s in left side of the equation
and in the numerator of the right side are referring to specific values ofθi , but theθi ’s in the
integral in the denominator range over all possible values of θi .

What has just been described in the previous few paragraphs is the general Bayesian
framework for making inferences about two proportions, when the likelihood function con-
sists of independent Bernoulli distributions. What we haveto do now is determine the
details for specific prior distributions. After briefly considering formal analysis and grid
approximation, the chapter is most devoted to MCMC approximation. In particular, we’ll
get our first look at Gibbs sampling. The final section of the chapter explores the issue of
estimating the difference between two proportions.

8.2 The posterior via exact formal analysis

Suppose we want to pursue a solution to Bayes’ rule (Equation8.2 above) using formal anal-
ysis. What sort of prior probability function would make theanalysis especially tractable?
Perhaps you can guess the answer by recalling the discussionof Chapter 5. We learned
there that the beta distribution is conjugate to the Bernoulli likelihood function for single
proportions. This suggests that a product of beta distributions would be conjugate to a
product of Bernoulli functions.

This suggestion turns out to be true. We pursue the same logicas was used for
Equation 5.7 (p. 70). First, recall that a beta distributionhas the form beta(θ|a, b) =
θ(a−1)(1 − θ)(b−1)/B(a, b), whereB(a, b) is the beta normalizing function, which by defi-

nition is B(a, b) =
∫ 1
0 dθ θ(a−1)(1 − θ)(b−1). We assume a beta(θ1|a1, b1) prior onθ1, and an

independent beta(θ2|a2, b2) prior onθ2. Then

p(θ1, θ2|D) = p(D|θ1, θ2)p(θ1, θ2)/p(D)

=
θ

(z1+a1−1)
1 (1− θ1)(N1−z1+b1−1)θ

(z2+a2−1)
2 (1− θ2)(N2−z2+b2−1)

p(D)B(a1, b1)B(a2, b2)
(8.3)

We know that the left side of Equation 8.3 must be a probability density function, and we see
that the numerator of the right side has the form of a product of beta distributions, namely

8.2. THE POSTERIOR VIA EXACT FORMAL ANALYSIS 131

theta1

theta2

p(t1,t2)

Prior

θ1
θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta1

theta2

p(D
|t1,t2)

Likelihood

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z1=5,N1=7,z2=2,N2=7

theta1

theta2

p(t1,t2|D
)

Posterior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(D)=5.74e−05

95% HD region

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.1: Bayesian
updating of independent
beta(θ|3, 3) priors. Left
panels show perspective
surface plots; right panels
show contour plots of the
same distribution. The
posterior contour plot
(lower right) includes
the value of p(D), and
shows the 95% high-
est density region as a
darker contour line. R
code that generated this
graph is in Section 8.8.1
(BernTwoGrid.R).

beta(θ1|z1+a1,N1−z1+b1) times beta(θ2|z2+a2,N2−z2+b2). Therefore the denominator of
Equation 8.3 must be the corresponding normalizer for the product of beta distributions:

p(D)B(a1, b1)B(a2, b2) = B(z1+a1,N1−z1+b1) B(z2+a2,N2−z2+b2) (8.4)

By rearranging terms, a convenient consequence of Equation8.4 is that

p(D) =
B(z1+a1,N1−z1+b1) B(z2+a2,N2−z2+b2)

B(a1, b1)B(a2, b2)
(8.5)

This is exactly analogous to the result we found previously for one parameter, in Equa-
tion 5.10 (p. 73).

Recapitulation: When the prior is a product of independent beta distributions, the pos-
terior is also a product of independent beta distributions,with each beta obeying the update
rule we derived in Chapter 5. Explicitly, if the prior is beta(θ1|a1, b1) × beta(θ2|a2, b2), and
the data arez1,N1, z2,N2, then the posterior is beta(θ1|z1+a1,N1−z1+b1)×beta(θ2|z2+a2,N2−
z2+b2).

One way of understanding the posterior distribution is to visualize it. We want to plot
the probability densities as a function oftwoparameters,θ1 andθ2. One way to do this is by

132 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

placing the two parameters,θ1 andθ2, on two horizontal axes, and placing the probability
density,p(θ1, θ2), on a vertical axis. This three-dimensional surface can then be displayed
in a picture as if it were a landscape viewed in perspective. This sort of plot is called a “per-
spective” plot in R. Alternatively, we can place the two parameter axes flat on the drawing
paper, and indicate the probability density with level contours, such that any one contour
marks points that have the same specific level. An example of these plots is described next.

Figure 8.1 shows graphs for updating a product of beta distributions. In this example,
the prior begins with moderate beliefs that each proportionis about 0.50, using a beta(θ|3, 3)
distribution for both proportions. The upper panels show a perspective plot and a contour
plot for the prior distribution. Notice that it is gently peaked at the center of the parameter
space, which reflects the prior belief that the two proportions are probably around .5, but
without much certainty. The perspective plot shows vertical slices of the prior density
parallel toθ1 andθ2. Consider slices parallel to theθ1 axis, with different slices at different
values ofθ2. The profile of the density on every slice has the same shape, with merely
different heights. In particular, at every level ofθ2, the profile of the slice alongθ1 is a
beta(θ1|3, 3) shape, with merely an overall height that depends on the level of θ2. When
the shape of the profile on the slices does not change, as exemplified here, then the joint
distribution is constructed from the product of independent marginal distributions.

The contour plot in the upper right panel of Figure 8.1 shows the same distribution as
the upper left panel. Instead of showing vertical slices through the distribution, the contour
plot shows horizontal slices. Each contour corresponds to aslice at a particular height.
Contour plots can be challenging to interpret because it is not immediately obvious whether
two adjacent contours belong to different heights. Contours can be labeled with numerical
values to indicate their heights, but then the plot can become very cluttered. Therefore, if the
goal is a quick intuition about the general layout of the distribution, then a perspective plot
is preferred over a contour plot. If the goal is instead a moredetailed visual determination
of the parameter values for a particular peak in the distribution, then a contour plot may be
preferred.

The middle row of Figure 8.1 shows the likelihood functions for the specific data dis-
played in the panels. The plots show the likelihood for each possible combination ofθ1 and
θ2. Notice that the likelihood is maximized atθ values that match the proportions of heads
in the data.

The resulting posterior distribution is shown in the lowestrow of Figure 8.1. At each
point in theθ1, θ2 parameter space, the posterior is the product of the prior and likelihood
values at that point, divided by the normalizer,p(D). As has been emphasized before,
the posterior is a compromise between the prior and the likelihood. This can be seen in
Figure 8.1 by looking at the peaks of the functions: The peak of the posterior is located
between the peaks of the prior and likelihood in theθ1, θ2 parameter space.

The lower-right panel of Figure 8.1 also shows the 95% highest density region. This
region encloses 95% of the posterior mass, such that all points within the region have higher
believability than points outside the region. The highest density region can be difficult to
determine from analysis of formulas alone. The highest density region in Figure 8.1 was
instead estimated by a grid approximation, using the methoddescribed in Section 23.3.1
(HDIofGrid.R), p. 513.

Summary: The main point of this section was to graphically display themeaning of a
prior, likelihood, and posterior on a two-parameter space.An example was shown in Fig-
ure 8.1. In this section we emphasized the use of mathematical forms, with priors that are
conjugate to the likelihood. The particular mathematical form, involving beta distributions,

8.3. THE POSTERIOR VIA GRID APPROXIMATION 133

will be used again in a subsequent section that introduces Gibbs sampling, and that des-
tination is another motivation for including the mathematical formulation of this section.
Before getting to Gibbs sampling, however, we first considergrid approximation, to further
bolster intuitions about probability distributions over two dimensions.

8.3 The posterior via grid approximation

When the parameter space is small enough, we can approximatethe integral in the denom-
inator of Bayes’ rule by a sum over densely placed points in the parameter space. The
continuous form of Bayes’ rule in Equation 8.2 becomes

p(θ1, θ2|D) = p(D|θ1, θ2)p(θ1, θ2)

/"

dθ1dθ2p(D|θ1, θ2)p(θ1, θ2)

≈ p(D|θ1, θ2)p(θ1, θ2)

/
∑

θ1

∑

θ2

p(D|θ1, θ2)p(θ1, θ2) (8.6)

wherep(θ1, θ2) in the first row is a probability density, butp(θ1, θ2) in the second row is
a probability mass for the small area around the discrete point θ1, θ2. As always for these
expressions of Bayes’ rule, theθ1 andθ2 on the left side and in the numerator of the right
side are specific values, but theθ1 andθ2 in the summation of the denominator take on a
range of values over the interval [0, 1]. For convenience, we will choose discrete values
placed on a regular grid over the parameter space. The discrete probability masses must
sum to 1.0 when added across the entire parameter space.

One of the advantages of using a grid approximation is that wedo not rely on formal
analysis to derive a specification of the posterior distribution. Therefore we can specify
any prior distribution we like, and still come up with an approximation of the posterior
distribution. Figure 8.2 shows one such prior distributionthat would be difficult to analyze
formally. The particular prior in that figure would probablynever be used in real research,
but the purpose is to demonstrate that virtually any prior can be used.

Another advantage of grid approximation is that a highest density region can be approx-
imated for any posterior distribution. As was mentioned in the previous section, finding a
multi-dimensional highest density region by formal analysis can be challenging, to say the
least, but approximating one from a grid approximation is easy. Figure 8.2 shows the 95%
highest density region for a multimodal posterior. The program for approximating the high-
est density region is described in Section 23.3.1 (HDIofGrid.R), p. 513.

Summary: The main point of this section has been to illustrate Bayesian inference on
two parameters, using a grid approximation. Grid approximation can be useful when the
prior distribution cannot be expressed by a mathematical function that is conjugate to the
likelihood function, or when the prior is not expressed by a mathematical function at all.
Another benefit of grid approximation is that it makes all thecomputations explicit and
relatively easy to understand as point-by-point multiplication across the parameter space,
normalized by the simple sum. The main goal has been to enhance your intuition for how
Bayesian updating works on a two-dimensional parameter space, especially via the example
of the rippled prior in Figure 8.2.

134 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

theta1

theta2

p(t1,t2)

Prior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta1

theta2

p(D
|t1,t2)

Likelihood

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z1=5,N1=7,z2=2,N2=7

theta1

theta2

p(t1,t2|D
)

Posterior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(D)=3.49e−05

95% HD region

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.2: With grid
approximation, even
unusual prior distri-
butions can be used.
R code for this graph
is in Section 8.8.1
(BernTwoGrid.R).

8.4 The posterior via Markov chain Monte Carlo

Imagine that we have a likelihood function and a prior distribution function that cannot be
handled adequately by formal analysis, so we cannot determine the posterior distribution
via formal mathematics alone. Imagine also that the parameter space is too big to be ade-
quately spanned by a dense grid of points, so we cannot determine the posterior distribution
via dense grid approximation. As was described in the introduction of Chapter 7, when
there are more than a few parameters, each represented by a dense comb of discrete val-
ues, then the number of grid points in the multidimensional space can grow to be huge and
intractable. An alternative approach to approximating theposterior distribution, as intro-
duced in Chapter 7, is to generate a large number of representative values from the posterior
distribution, and estimate the posterior from those representative values. Even though our
present application, involving only two parameters on a limited domain, can be addressed
using grid approximation, it is highly instructive to applythe Metropolis algorithm also.
This will be our first application of the Metropolis algorithm to a two-dimensional parame-
ter space.

8.4. THE POSTERIOR VIA MARKOV CHAIN MONTE CARLO 135

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

θ 2

M=0.615,0.398; Npro=1000,
Nacc

Npro
=0.39

p(D) = 5.63e−05

Figure 8.3: Metropolis algorithm
applied to the prior and likelihood
shown in Figure 8.1, p. 131. Com-
pare this scatter plot with the lower
right contour plot of Figure 8.1.
Npro is the number of proposed
jumps (after burn in), andNacc
is the number of accepted propos-
als. R code is in Section 8.8.2
(BernTwoMetropolis.R).

8.4.1 Metropolis algorithm

Recall from Chapter 7 the essential process of the Metropolis algorithm. The random walk
starts at some arbitrary point in the parameter space, hopefully somewhere not too far from
the main bulk of the posterior distribution. We propose a jump to a new point in parameter
space. The proposed jump is randomly generated from aproposal distribution, from which
we assume it is easy to generate values. For our present purposes, the proposal distribution
is a bivariate normal. You can visualize a bivariate normal distribution by imagining a
one-dimensional normal (as in Figure 3.3, p. 31), sticking apin down vertically through
its peak, and spinning it around the pin, to form a bell-shaped distribution. The use of a
bivariate normal proposal distribution implies that the proposed jumps will usually be near
the current position, but more distant jumps could be proposed with lesser probability.1

The proposed jump is definitely accepted if the posterior is more dense at the proposed
position than at the current position, and the proposed jumpis probabilistically accepted if
the posterior is less dense at the proposed position than at the current position. The exact
probability of accepting the proposed jump, i.e., the probability of moving, is

pmove= min

(
P(θproposed)

P(θcurrent)
, 1

)

(8.7)

whereP(θ) is the (unnormalized) posterior probability atθ. (Equation 8.7 repeats Equa-
tion 7.1 from p. 103.) This probability of moving is turned into an actual discrete action
to move or stay by generating a random number from the uniformdensity on [0, 1]: If the
generated number lies between 0 andpmove, then the move is made, otherwise the current
position is retained.

The Metropolis algorithm is useful because it generates representative values from an
arbitrary posterior distribution with only a few simple tools. It needs to generate a random

1The proposal distribution does not have to be a rotationallysymmetric bivariate normal. For example, it
could be a bivariate normal with non-zero covariances, so that proposals are more likely to be made in some
diagonal directions more than others. The proposal distribution could even be non-normal. It is only for the
present illustrative purposes that we assume a simple symmetric proposal distribution.

136 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

value from a proposal distribution such as a bivariate normal, which is easy in R. It needs to
generate a random value from a uniform distribution, which again is easy in R. It needs to
compute the likelihood and the prior at any given values of the parameters. Conveniently,
the algorithm only needs the likelihood and prior up to a constant multiple. In other words,
the prior does not need to be normalized and the likelihood can have “nuisance” multipliers
dropped, if desired. (On the contrary, ifp(D) is being estimated, then the likelihood and
prior may need to be computed exactly.)

Figure 8.3 shows the Metropolis algorithm applied to a case in which the prior dis-
tribution is a product of beta distributions on each proportion. The specifics of the prior
distribution and the observed data match the ones used in Figure 8.1 (p. 131) so that you
can directly compare the results of the Metropolis algorithm with the results of formal anal-
ysis and grid approximation. The sampled points in Figure 8.3 are connected by lines so
that you can get a sense of the trajectory taken by the random walk. The ultimate estimates
regarding the posterior distribution do not care about the sequence in which the sampled
points appeared, and so the trajectory is irrelevant to anything but your understanding of the
Metropolis algorithm.

The trajectory shown in Figure 8.3 excludes an initial “burn-in” period, which may
have been unduly affected by the arbitrary starting position. The trajectory also depended
on the width of proposal distribution. In this case, the proposal distribution was a sym-
metric bivariate normal with standard deviations of 0.2. Exercise 8.4 has you explore the
consequences of using a proposal distribution that is too narrow or too wide.

8.4.2 Gibbs sampling

The Metropolis algorithm is very general and broadly applicable. One problem with it,
however, is that the proposal distribution must be properlytuned to the posterior distribu-
tion if the algorithm is to work well. If the proposal distribution is too narrow or too broad,
a large proportion of proposed jumps will be rejected and/or the trajectory will get bogged
down in a localized region of the parameter space. It would benice, therefore, if we had
another method of sample generation that did not demand artful tuning of a proposal dis-
tribution. Gibbs sampling (first proposed by Geman & Geman, 1984) is one such method,
and it will be described in this section.

Whereas Gibbs sampling obviates a separate proposal distribution, this different sam-
pling method makes other demands: We must be able to generatesamples from the posterior
distribution conditioned on each individual parameter. Inother words, Gibbs sampling will
allow us to generate a sample from thejoint posterior,p(θ1, θ2, θ3|D), if we are able to gener-
ate samples from all of theconditionalposterior distributions,p(θ1|θ2, θ3,D), p(θ2|θ1, θ3,D),
andp(θ3|θ1, θ2,D). Doing the formal analysis to determine the conditional posterior distri-
butions can be difficult or impossible. And even if we can derive the conditionalproba-
bilities, we might not be able to directly generate samples from them. Therefore, Gibbs
sampling has limited applicability. When it is applicable,however, Gibbs sampling can be
more efficient and reliable than the Metropolis algorithm.

The procedure for Gibbs sampling is a type of random walk through parameter space,
like the Metropolis algorithm. The walk starts at some arbitrary point, and at each point in
the walk, the next step depends only on the current position,and on no previous positions.
Therefore, Gibbs sampling is another example of a Markov chain Monte Carlo process.
What is different about Gibbs sampling, relative to the Metropolis algorithm, is how each
step is taken. At each point in the walk, one of the component parameters is selected. The

8.4. THE POSTERIOR VIA MARKOV CHAIN MONTE CARLO 137

theta1

theta2

p(t1,t2|D
)

Posterior

theta1

theta2

p(t1,t2|D
)

Posterior

Figure 8.4: Two steps in a Gibbs
sampling. The top panel shows
a random generation of a value
for θ1, conditional on a value for
θ2. The heavy lines show a slice
through the posterior at the con-
ditional value ofθ2, and the large
dot shows a random value ofθ1

sampled from the conditional den-
sity. The bottom panel shows
a random generation of a value
for θ2, conditional on the value
for θ1 determined by the previous
step. The heavy lines show a slice
through the posterior at the condi-
tional value ofθ1, and the large dot
shows a random value ofθ2 sam-
pled from the conditional density.

component parameter can be selected at random, but typically the parameters are cycled
through, in order:θ1, θ2, θ3, . . . , θ1, θ2, θ3, (The reason that parameters are cycled rather
than selected randomly is that for complex models with many dozens or hundreds of param-
eters, it would take too many steps to visit every parameter by random chance alone, even
though they would be visited about equally often in the long run.) Suppose that parameter
θi has been selected. Gibbs sampling then chooses a new value for that parameter, by gen-
erating a random value directly from the conditional probability p(θi |{θ j,i},D). The new
value forθi , combined with the unchanged values ofθ j,i , constitutes the new position in
the random walk. The process then repeats: Select a component parameter and select a new
value for that parameter from its conditional posterior distribution. Figure 8.4 illustrates
two steps in this process; please take a look at it now.

Gibbs sampling can be thought of as just a special case of the Metropolis algorithm, in
which the proposal distribution depends on the location in parameter space and the com-
ponent parameter selected. At any point, a component parameter is selected, and then the
proposal distribution for that parameter’s next valueis the conditional posterior probability

138 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

of that parameter.Because the proposal distribution exactly mirrors the posterior prob-
ability for that parameter, the proposed move is always accepted. A rigorous proof of
this idea requires development of a generalized form of the Metropolis algorithm, called
the Metropolis-Hastings algorithm. Details of the proof are described by Gelman, Carlin,
Stern, and Rubin (2004, p. 293).

Gibbs sampling is especially useful when the complete jointposterior,p(θi |D), cannot
be analytically determined and cannot be directly sampled,but all the conditional distri-
butions,p(θi |{θ j,i},D), can be determined and directly sampled. We will not encounter an
example of such a situation until later in the book, but the process of Gibbs sampling can
be illustrated now for a simpler situation.

Continuing the same scenario as started this chapter, suppose that we have two pro-
portions,θ1 andθ2, and the prior belief distribution is a product of beta distributions. The
posterior distribution is again a product of beta distributions, as was derived in Equation 8.3
(p. 130). This joint posterior is easily dealt with directly, and so there is no real need to apply
Gibbs sampling, but we will go ahead and do Gibbs sampling of this posterior distribution
for purposes of illustration and comparison with other methods.

To accomplish Gibbs sampling, we must determine the conditional posterior distribu-
tion for each parameter. By definition of conditional probability,

p(θ1|θ2,D) = p(θ1, θ2|D)/p(θ2|D)

= p(θ1, θ2|D)

/∫

dθ1 p(θ1, θ2|D)

For our current application, the joint posterior is a product of beta distributions as in Equa-
tion 8.3. Therefore

p(θ1|θ2,D) = p(θ1, θ2|D)

/∫

dθ1 p(θ1, θ2|D)

=
beta(θ1|z1+a1,N1−z1+b1) beta(θ2|z2+a2,N2−z2+b2)

∫

dθ1 beta(θ1|z1+a1,N1−z1+b1) beta(θ2|z2+a2,N2−z2+b2)

=
beta(θ1|z1+a1,N1−z1+b1) beta(θ2|z2+a2,N2−z2+b2)

beta(θ2|z2+a2,N2−z2+b2)

= beta(θ1|z1+a1,N1−z1+b1) (8.8)

We have just derived what may have already been intuitively clear: Because the posterior
is a product of independent beta distributions, it makes sense thatp(θ1|θ2,D) = p(θ1|D).
Nevertheless, the derivation illustrates the sort of analytical procedure needed in general.
From these considerations you can also see that the other conditional posterior probability
is p(θ2|θ1,D) = beta(θ2|z2+a2,N2−z2+b2).

Having successfully determined the conditional posteriorprobability distributions, we
now figure out whether we can directly sample from them. In this case the answer is yes, we
can, because the conditional probabilities are beta distributions, and our computer software
comes pre-packaged with generators of random beta values.

Figure 8.5 shows the result of applying Gibbs sampling to this scenario. Notice that each
step in the random walk is parallel to a parameter axis, because each step changes only one
component parameter. You can also see that at each point, thewalk direction changes to
the other parameter, rather than doubling back on itself or continuing in the same direction.
This is because the walk cycled through the component parameters,θ1, θ2, θ1, θ2, θ1, θ2, . . .,
rather than selecting them at random at each point.

8.4. THE POSTERIOR VIA MARKOV CHAIN MONTE CARLO 139

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

θ 2

M=0.623,0.385; N=1000

Figure 8.5: Gibbs sampling ap-
plied to the posterior shown in Fig-
ure 8.1, p. 131. Compare with the
results of the Metropolis algorithm
in Figure 8.3.

If you compare the results of Gibbs sampling in Figure 8.5 with the results of the
Metropolis algorithm in Figure 8.3 (p. 135), you will see that the estimates of the mean
and p(D) are nearly equal. However, what Figure 8.3 does not show is that most of the
points in the Metropolis-generated sample are multiply represented because the proposed
moves away from them were rejected. Thus, in a trajectory with T proposed jumps, the
Gibbs sample will haveT distinct points, but the Metropolis sample will typically have far
fewer thanT distinct points. In this sense, the Metropolis sample is “clumpier” than the
Gibbs sample, and might be a less effective estimator.

By helping us visualizehowGibbs sampling works, Figure 8.5 also helps us understand
betterwhy it works, as follows. Imagine that instead of changing the component parameter
at every step, we linger a while on a component. Suppose, for example, that we have a fixed
value ofθ1, and we keep generating new values ofθ2 for many steps. In terms of Figure 8.5,
this amounts to lingering on a vertical slice of the parameter space, lined up over the fixed
value ofθ1. As we continue sampling within that slice, we build up a goodrepresentation
of the posterior distribution for that value ofθ1. Now we jump to a different value ofθ1, and
again linger a while at the new value, filling in a new verticalslice of the posterior. If we do
that enough, we will have many vertical slices, each representing the posterior distribution
along that slice. We can use those vertical slices to represent the posterior,if we have also
lingered in each slice proportionally to the posterior probability of being in that slice! Not
all values ofθ1 are equally likely in the posterior, so we visit vertical slices according to the
conditional probability ofθ1. Gibbs sampling carries out this process, but lingers for only
one step before jumping to a new slice.

8.4.2.1 Disadvantages of Gibbs sampling

So far, I have emphasized the advantage of Gibbs sampling over the Metropolis algorithm,
namely, that there is no need to tune a proposal distributionand no inefficiency of rejected
proposals. I also mentioned a restriction: We must be able toderive the conditional proba-
bilities of each parameter on the other, and be able to generate samples from those condi-
tional probabilities.

140 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

But there is one other disadvantage of Gibbs sampling. Because it only changes one
parameter value at a time, its progress can be stalled by highly correlated parameters. We
will encounter applications later in which credible parameters can be very strongly corre-
lated; see, for example, the right panel of Figure 16.4, p. 347. Here I hope merely to plant
the seeds of an intuition for later development. Imagine a posterior distribution over two
parameters. Its shape is a narrow ridge along thediagonalof the parameter space, and you
are inside, within,this narrow ridge. Now imagine doing Gibbs sampling from this poste-
rior. You are in the ridge somewhere, and you are contemplating a step along a parameter
axis. Because the ridge is narrow and diagonal, a step along aparameter axis quickly en-
counters the wall of the ridge, and so your step size must be small. This is true no matter
which parameter axis you face along. Therefore you can take only small steps and only very
gradually explore the length of the diagonal ridge. On the other hand, if you were stepping
according to a Metropolis sampler, whereby your proposal distribution included changes of
both parameters at once, then you could jump in the diagonal direction and quickly explore
the length of the ridge.

8.5 Doing it with BUGS

The BUGS system for generating MCMC samples from a posteriordistribution was in-
troduced in Section 7.4 (p. 115). BUGS can easily be used for the present two-parameter
situation. The model section of the code, shown below in lines 8–15, specifies that each
flip of coin is distributed as a Bernoulli distribution, and the prior distribution for the bias
of each coin is beta(θ|3, 3): (BernTwoBugs.R)

8 model {

9 # Likelihood. Each flip is Bernoulli.

10 for (i in 1 : N1) { y1[i] ˜ dbern(theta1) }

11 for (i in 1 : N2) { y2[i] ˜ dbern(theta2) }

12 # Prior. Independent beta distributions.

13 theta1 ˜ dbeta(3 , 3)

14 theta2 ˜ dbeta(3 , 3)

15 }

The remainder of the code is very similar to the code already explained in detail back in
Section 7.4. For example, the data specification consists ofthis code: (BernTwoBugs.R)

27 datalist = list(

28 N1 = 7 ,

29 y1 = c(1,1,1,1,1,0,0) ,

30 N2 = 7 ,

31 y2 = c(1,1,0,0,0,0,0)

32)

33 # Get the data into BRugs:

34 modelData(bugsData(datalist))

The complete program is listed in Section 8.8.3 (BernTwoBugs.R).
Figure 8.6 shows the results, which can be seen to be very similar to the samples gener-

ated by the Metropolis algorithm in Figure 8.3 and by Gibbs sampling in Figure 8.5. BUGS
actually has several different sampling algorithms at its disposal. Even when it usesGibbs
sampling, a graph of its chain will not look like the square-cornered trajectory in Figure 8.5,
because BUGS does not consider a step to be complete until every parameter is sampled.
This updating of all parameters, before declaring a “step” to have been taken, is important

8.5. DOING IT WITH BUGS 141

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BUGS Result

θ1

θ 2

M=0.616,0.384

Figure 8.6: BUGS applied to the
posterior shown in Figure 8.1,
p. 131. Compare with the results
of the Metropolis algorithm in Fig-
ure 8.3 and Gibbs sampling in Fig-
ure 8.5.

for models that have many parameters. Consider, for instance, a model with 200 parame-
ters (as we will encounter later). If Gibbs sampling was usedon every parameter, and a step
was considered to be taken whenever a single parameter was changed, then every parameter
value would remain unchanged for 199 steps, and the chain would have to immensely long
for the sample to be relatively unclumpy.

8.5.1 Sampling the prior in BUGS

Up to now, we have used BUGS to generate a sample from the posterior distribution. We
have merely assumed that BUGS has properly generated the prior distribution, and we have
merely assumed that the prior we specified in BUGS language isthe prior that we intended
in our minds. But we know from everyday conversation that sometimes what we say is not
what we mean. Unfortunately, this disconnection between intention and expression also
applies to everyday programming. Therefore it can be usefulto have BUGS generate a
representative sample from the prior, so we can check that the programmed prior is actually
what we intended.

It is easy to sample the prior in BUGS simply by “detaching” the data from the model.
The model specification remains the same, the data specification omits mention of the data
(including only the values of non-data constants if there are any). For example, in the
program described in the previous section, all we have to do is comment out the two lines in
the model specification that refer to the data (and also comment out the unneeded comma):
(BernTwoBugsPriorOnly.R)

27 datalist = list(

28 N1 = 7 ,

29 # y1 = c(1,1,1,1,1,0,0) ,

30 N2 = 7 #,

31 # y2 = c(1,1,0,0,0,0,0)

32)

The result is shown in Figure 8.7. The sampled points are distributed as they were intended,
like the prior shown in Figure 8.1.

142 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BUGS Result

θ1

θ 2

M=0.503,0.501

Figure 8.7: The prior as sampled
by BUGS, when the data are de-
tached from the model. Compare
with the contour plot of the prior
in Figure 8.1, p. 131.

θ1 − θ2

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

mean = 0.232

10.6% <= 0 < 89.4%

95% HDI
−0.128 0.576

Figure 8.8: Histogram of theta dif-
ferences, derived from posterior
sample in Figure 8.6. R code for
the graphics is in Section 8.8.4
(plotPost.R).

8.6 How different are the underlying biases?

In real applications, when we estimate the underlying biases for two coins, we are usually
interested in determining how different the two biases are. One natural way to phrase this
question is:Given the observed data, how believable is each possible difference in the
underlying biases?This question is easily answered by examining the chain of credibleθ1

andθ2 values sampled from the posterior distribution. At each step in the chain, we compute
the difference of the two theta values at that step. We then examine the distribution of the
differences, collapsed across the steps of the chain.

As an example, let’s continue with the case in whichN1 = 7, z1 = 5, N2 = 7, andz2 = 2,
with a prior of two independent beta(θ|3, 3) distributions. The data suggest that coin 1 is
more biased toward heads than coin 2, but what exactly are thecredible differences in
underlying biases? The posterior distribution ofθ1 and θ2 is represented by the MCMC
chain plotted in Figure 8.6 (p. 141). The plot indicates thatbelievable values ofθ1 tend to
be larger than believable values ofθ2, but we would like a precise picture of the differences.
To get a representative sample of differences betweenθ1 andθ2, we compute the difference
between the sampledθ1 andθ2 values at each step in the chain. This is coded at the end of
the program: (BernTwoBugs.R)

76 thetaDiff = theta1Sample - theta2Sample

8.7. SUMMARY 143

77 source("plotPost.R")

78 windows(7,4)

79 plotPost(thetaDiff , xlab=expression(theta[1]-theta[2]) , compVal=0.0 ,

80 breaks=30)

The variabletheta1Sample contains the chain of sampled values forθ1, and the variable
theta2Sample contains the chain of sampled values forθ2. Therefore, the variablethetaDiff
contains the difference,θ1 − θ2, at each step in the chain. The differences are plotted as
a histogram by the functionplotPost, which is merely an enhanced histogram plot that I
created, described in Section 8.8.4 (plotPost.R).

Figure 8.8 shows the resulting histogram of credible differences in the underlying bi-
ases. You can see that while the mean difference is 0.232, there is considerable uncertainty
in that estimate because the 95% HDI goes from−0.128 to 0.576. In particular, a difference
of zero is among the credible differences, with 10.6% of the credible differences falling
below zero. (A different approach to deciding whether or not a “null” value is credible,
which involves model comparison, will be discussed in Chapter 12.) The histogram of Fig-
ure 8.8 is especially informative because it reveals very intuitively both the most credible
differences and the nature of the uncertainty in those differences.

8.7 Summary

This chapter has applied all the concepts of the previous chapters to a situation with two
parameters. One of the main goals of the chapter was to familiarize you with probabil-
ity distributions over two parameters, and to provide graphical examples to develop your
intuition for multi-dimensional distributions.

A second major goal was to introduce the concepts of Gibbs sampling. It is important
to understand that Gibbs sampling can often (but not always)be more efficient than generic
Metropolis sampling, because Gibbs sampling uses the exactconditional posterior for each
individual parameter, thereby never suffering rejected proposals. (And thereby inspiring the
quatrain at the beginning of the chapter.)

In our applications, we will not program samplers from scratch, because we will pro-
gram BUGS do the sampling for us. Nevertheless, to properly interpret the output of BUGS,
we need to understand how sampling works. In this chapter we saw how to get BUGS to
display a sample from the prior, by disconnecting the data from the model. Displaying the
prior can be helpful to check that BUGS is using the prior we intended, especially when the
prior is complicated.

This chapter also provided our first look at the issue of asking the question, Is an un-
derlying difference non-zero? We answered the question by examining the posterior distri-
bution of the credible differences. The posterior reveals the most credible differences and
the uncertainty in those differences. If a decision is required regarding the credibility of a
specific value (such as zero), then one approach is to declarethe value to be incredible if it
(or its ROPE) falls outside the 95% HDI. The topic of decidingwhether a value is incredible
will be revisited and expanded in Chapter 12.

This chapter has served as a place to review and consolidate the concepts of the previous
chapters. Importantly, it has also been an introduction to two-parameter models, without
introducing any new complexity to the model functions themselves. With the basic concepts
of multi-parameter models now established, we can move on tohierarchicalmodels in the
next chapter.

144 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

8.8 R code

8.8.1 R code for grid approximation (Figures 8.1 and 8.2)

This program is a script, not a function, so you can run it as is, rather than having tosource
it and then call it as a function with arguments that you have to specify.

The program uses some R commands that we have not previously used. One of the
new functions isouter(vec1,vec2,f) which creates the matrix outer product of vectorvec1
and vectorvec2, applying the functionf to each component combination. Suppose you’ve
already defined a functionf. Then you can apply that function to the pairwise components
of two vectors by using theouter command. The result is the matrix shown below:

outer(c(r1,r2,r3,r4) , c(c1,c2,c3) , f) =

f (r1, c1) f (r1, c2) f (r1, c3)
f (r2, c1) f (r2, c2) f (r2, c3)
f (r3, c1) f (r3, c2) f (r3, c3)
f (r4, c1) f (r4, c2) f (r4, c3)

You can leave the functionf unspecified, in which case it defaults to multiplication.
Also used for the first time are the plotting functionspersp andcontour. These func-

tions have many optional arguments that you can read about bytyping help(’persp’) and
help(’contour’). I will point out one caveat: Thepersp function uses an argument called
theta, which specifies the degree of rotation for the 3D plot. Do notconfuse thattheta with
theθ we have been using to specify the proportion of heads!

As usual, the Bayesian computations are accomplished in only a few lines of code, but
the plotting consumes many lines.

(BernTwoGrid.R)
1 # Specify the grid on theta1,theta2 parameter space.

2 nInt = 501 # arbitrary number of intervals for grid on theta.

3 theta1 = seq(from=((1/nInt)/2) ,to=(1-((1/nInt)/2)) ,by=(1/nInt))

4 theta2 = theta1

5

6 # Specify the prior probability _masses_ on the grid.

7 priorName = c("Beta","Ripples","Null","Alt")[1] # or define your own.

8 if (priorName == "Beta") {

9 a1 = 3 ; b1 = 3 ; a2 = 3 ; b2 = 3

10 prior1 = dbeta(theta1 , a1 , b1)

11 prior2 = dbeta(theta2 , a2 , b2)

12 prior = outer(prior1 , prior2) # density

13 prior = prior / sum(prior) # convert to normalized mass

14 }

15 if (priorName == "Ripples") {

16 rippleAtPoint = function(theta1 , theta2) {

17 m1 = 0 ; m2 = 1 ; k = 0.75*pi

18 sin((k*(theta1-m1))ˆ2 + (k*(theta2-m2))ˆ2)ˆ2 }

19 prior = outer(theta1 , theta2 , rippleAtPoint)

20 prior = prior / sum(prior) # convert to normalized mass

21 }

22 if (priorName == "Null") {

23 # 1’s at theta1=theta2, 0’s everywhere else:

24 prior = diag(1 , nrow=length(theta1) , ncol=length(theta1))

25 prior = prior / sum(prior) # convert to normalized mass

26 }

27 if (priorName == "Alt") {

28 # Uniform:

8.8. R CODE 145

29 prior = matrix(1 , nrow=length(theta1) , ncol=length(theta2))

30 prior = prior / sum(prior) # convert to normalized mass

31 }

32

33 # Specify likelihood

34 z1 = 5 ; N1 = 7 ; z2 = 2 ; N2 = 7 # data are specified here

35 likeAtPoint = function(t1 , t2) {

36 p = t1ˆz1 * (1-t1)ˆ(N1-z1) * t2ˆz2 * (1-t2)ˆ(N2-z2)

37 return(p)

38 }

39 likelihood = outer(theta1 , theta2 , likeAtPoint)

40

41 # Compute posterior from point-by-point multiplication and normalizing:

42 pData = sum(prior * likelihood)

43 posterior = (prior * likelihood) / pData

44

45 # ---

46 # Display plots.

47

48 # Specify the complete filename for saving the plot

49 plotFileName = paste("BernTwoGrid",priorName,".eps" ,sep="")

50

51 # Specify the probability mass for the HDI region

52 credib = .95

53

54 # Specify aspects of perspective and contour plots.

55 rotate = (-25)

56 tilt = 25

57 parallelness = 5.0

58 shadeval = 0.05

59 perspcex = 0.7

60 ncontours = 9

61 zmax = max(c(max(posterior) , max(prior)))

62

63 # Specify the indices to be used for plotting. The full arrays would be too

64 # dense for perspective plots, so we plot only a thinned-out set of them.

65 nteeth1 = length(theta1)

66 thindex1 = seq(1, nteeth1 , by = round(nteeth1 / 30))

67 thindex1 = c(thindex1 , nteeth1) # makes sure last index is included

68 thindex2 = thindex1

69

70 windows(7,10)

71 layout(matrix(c(1,2,3,4,5,6) ,nrow=3 ,ncol=2 ,byrow=TRUE))

72 par(mar=c(3,3,1,0)) # number of margin lines: bottom,left,top,right

73 par(mgp=c(2,1,0)) # which margin lines to use for labels

74 par(mai=c(0.4,0.4,0.2,0.05)) # margin size in inches: bottom,left,top,right

75 par(pty="s") # makes contour plots in square axes.

76

77 # prior

78 persp(theta1[thindex1] , theta2[thindex2] , prior[thindex1,thindex2] ,

79 xlab="theta1" , ylab="theta2" , main="Prior" , cex=perspcex , lwd=0.1 ,

80 xlim=c(0,1) , ylim=c(0,1) , zlim=c(0,zmax) , zlab="p(t1,t2)" ,

81 theta=rotate , phi=tilt , d=parallelness , shade=shadeval)

82 contour(theta1[thindex1] , theta2[thindex2] , prior[thindex1,thindex2] ,

83 main=bquote(" ") , levels=signif(seq(0,zmax,length=ncontours),3) ,

84 drawlabels=FALSE , xlab=bquote(theta[1]) , ylab=bquote(theta[2]))

85

86 # likelihood

87 persp(theta1[thindex1] , theta2[thindex2] , likelihood[thindex1,thindex2] ,

146 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

88 xlab="theta1" , ylab="theta2" , main="Likelihood" , lwd=0.1 ,

89 xlim=c(0,1) , ylim=c(0,1) , zlab="p(D|t1,t2)" , cex=perspcex ,

90 theta=rotate , phi=tilt , d=parallelness , shade=shadeval)

91 contour(theta1[thindex1] , theta2[thindex2] , likelihood[thindex1,thindex2] ,

92 main=bquote(" ") , nlevels=(ncontours-1) ,

93 xlab=bquote(theta[1]) , ylab=bquote(theta[2]) , drawlabels=FALSE)

94 # Include text for data

95 maxlike = which(likelihood==max(likelihood) , arr.ind=TRUE)

96 if (theta1[maxlike[1]] > 0.5) { textxpos = 0 ; xadj = 0

97 } else { textxpos = 1 ; xadj = 1 }

98 if (theta2[maxlike[2]] > 0.5) { textypos = 0 ; yadj = 0

99 } else { textypos = 1 ; yadj = 1 }

100 text(textxpos , textypos , cex=1.5 ,

101 bquote("z1="* .(z1) *",N1="* .(N1) *",z2="* .(z2) *",N2="* .(N2)) ,

102 adj=c(xadj,yadj))

103

104 # posterior

105 persp(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,

106 xlab="theta1" , ylab="theta2" , main="Posterior" , cex=perspcex ,

107 lwd=0.1 , xlim=c(0,1) , ylim=c(0,1) , zlim=c(0,zmax) ,

108 zlab="p(t1,t2|D)" , theta=rotate , phi=tilt , d=parallelness ,

109 shade=shadeval)

110 contour(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,

111 main=bquote(" ") , levels=signif(seq(0,zmax,length=ncontours),3) ,

112 drawlabels=FALSE , xlab=bquote(theta[1]) , ylab=bquote(theta[2]))

113 # Include text for p(D)

114 maxpost = which(posterior==max(posterior) , arr.ind=TRUE)

115 if (theta1[maxpost[1]] > 0.5) { textxpos = 0 ; xadj = 0

116 } else { textxpos = 1 ; xadj = 1 }

117 if (theta2[maxpost[2]] > 0.5) { textypos = 0 ; yadj = 0

118 } else { textypos = 1 ; yadj = 1 }

119 text(textxpos , textypos , cex=1.5 ,

120 bquote("p(D)=" * .(signif(pData,3))) , adj=c(xadj,yadj))

121

122 # Mark the highest posterior density region

123 source("HDIofGrid.R")

124 HDIheight = HDIofGrid(posterior)$height

125 par(new=TRUE) # don’t erase previous contour

126 contour(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,

127 main=bquote(.(100*credib)*"% HD region") ,

128 levels=signif(HDIheight,3) , lwd=3 , drawlabels=FALSE ,

129 xlab=bquote(theta[1]) , ylab=bquote(theta[2]))

130

131 ## Change next line if you want to save the graph.

132 wantSavedGraph = T # TRUE or FALSE

133 if (wantSavedGraph) { dev.copy2eps(file=plotFileName) }

8.8.2 R code for Metropolis sampler (Figure 8.3)

Important: This program relies on themvrnorm function in R, which is part of the MASS
package. The MASS package is part of the typical distribution of R, and is probably already
installed on your computer. Therefore thelibrary(MASS) command in this program will load
the MASS package without complaint. If, however, the program balks at that line, you must
install the MASS package. Just uncomment theinstall.packages command.

(BernTwoMetropolis.R)
1 # Use this program as a template for experimenting with the Metropolis

2 # algorithm applied to two parameters called theta1,theta2 defined on the

8.8. R CODE 147

3 # domain [0,1]x[0,1].

4

5 # Load the MASS package, which defines the mvrnorm function.

6 # If this "library" command balks, you must intall the MASS package:

7 #install.packages("MASS")

8 library(MASS)

9

10 # Define the likelihood function.

11 # The input argument is a vector: theta = c(theta1 , theta2)

12 likelihood = function(theta) {

13 # Data are constants, specified here:

14 z1 = 5 ; N1 = 7 ; z2 = 2 ; N2 = 7

15 likelihood = (theta[1]ˆz1 * (1-theta[1])ˆ(N1-z1)

16 * theta[2]ˆz2 * (1-theta[2])ˆ(N2-z2))

17 return(likelihood)

18 }

19

20 # Define the prior density function.

21 # The input argument is a vector: theta = c(theta1 , theta2)

22 prior = function(theta) {

23 # Here’s a beta-beta prior:

24 a1 = 3 ; b1 = 3 ; a2 = 3 ; b2 = 3

25 prior = dbeta(theta[1] , a1 , b1) * dbeta(theta[2] , a2 , b2)

26 return(prior)

27 }

28

29 # Define the relative probability of the target distribution, as a function

30 # of theta. The input argument is a vector: theta = c(theta1 , theta2).

31 # For our purposes, the value returned is the UNnormalized posterior prob.

32 targetRelProb = function(theta) {

33 if (all(theta >= 0.0) & all(theta <= 1.0)) {

34 targetRelProbVal = likelihood(theta) * prior(theta)

35 } else {

36 # This part is important so that the Metropolis algorithm

37 # never accepts a jump to an invalid parameter value.

38 targetRelProbVal = 0.0

39 }

40 return(targetRelProbVal)

41 }

42

43 # Specify the length of the trajectory, i.e., the number of jumps to try.

44 trajLength = ceiling(1000 / .9) # arbitrary large number

45 # Initialize the vector that will store the results.

46 trajectory = matrix(0 , nrow=trajLength , ncol=2)

47 # Specify where to start the trajectory

48 trajectory[1,] = c(0.50 , 0.50) # arbitrary start values of the two param’s

49 # Specify the burn-in period.

50 burnIn = ceiling(.1 * trajLength) # arbitrary number

51 # Initialize accepted, rejected counters, just to monitor performance.

52 nAccepted = 0

53 nRejected = 0

54 # Specify the seed, so the trajectory can be reproduced.

55 set.seed(47405)

56 # Specify the covariance matrix for multivariate normal proposal distribution.

57 nDim = 2 ; sd1 = 0.2 ; sd2 = 0.2

58 covarMat = matrix(c(sd1ˆ2 , 0.00 , 0.00 , sd2ˆ2) , nrow=nDim , ncol=nDim)

59

60 # Now generate the random walk. stepIdx is the step in the walk.

61 for (stepIdx in 1:(trajLength-1)) {

148 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

62 currentPosition = trajectory[stepIdx,]

63 # Use the proposal distribution to generate a proposed jump.

64 # The shape and variance of the proposal distribution can be changed

65 # to whatever you think is appropriate for the target distribution.

66 proposedJump = mvrnorm(n=1 , mu=rep(0,nDim), Sigma=covarMat)

67 # Compute the probability of accepting the proposed jump.

68 probAccept = min(1,

69 targetRelProb(currentPosition + proposedJump)

70 / targetRelProb(currentPosition))

71 # Generate a random uniform value from the interval [0,1] to

72 # decide whether or not to accept the proposed jump.

73 if (runif(1) < probAccept) {

74 # accept the proposed jump

75 trajectory[stepIdx+1 ,] = currentPosition + proposedJump

76 # increment the accepted counter, just to monitor performance

77 if (stepIdx > burnIn) { nAccepted = nAccepted + 1 }

78 } else {

79 # reject the proposed jump, stay at current position

80 trajectory[stepIdx+1 ,] = currentPosition

81 # increment the rejected counter, just to monitor performance

82 if (stepIdx > burnIn) { nRejected = nRejected + 1 }

83 }

84 }

85

86 # End of Metropolis algorithm.

87

88 #---

89 # Begin making inferences by using the sample generated by the

90 # Metropolis algorithm.

91

92 # Extract just the post-burnIn portion of the trajectory.

93 acceptedTraj = trajectory[(burnIn+1) : dim(trajectory)[1] ,]

94

95 # Compute the mean of the accepted points.

96 meanTraj = apply(acceptedTraj , 2 , mean)

97 # Compute the standard deviations of the accepted points.

98 sdTraj = apply(acceptedTraj , 2 , sd)

99

100 # Display the sampled points

101 par(pty="s") # makes plots in square axes.

102 plot(acceptedTraj , type = "o" , xlim = c(0,1) , xlab = bquote(theta[1]) ,

103 ylim = c(0,1) , ylab = bquote(theta[2]))

104 # Display means and rejected/accepted ratio in plot.

105 if (meanTraj[1] > .5) { xpos = 0.0 ; xadj = 0.0

106 } else { xpos = 1.0 ; xadj = 1.0 }

107 if (meanTraj[2] > .5) { ypos = 0.0 ; yadj = 0.0

108 } else { ypos = 1.0 ; yadj = 1.0 }

109 text(xpos , ypos , bquote(

110 "M=" * .(signif(meanTraj[1],3)) * "," * .(signif(meanTraj[2],3))

111 * "; " * N[pro] * "=" * .(dim(acceptedTraj)[1])

112 * ", " * frac(N[acc],N[pro]) * "="

113 * .(signif(nAccepted/dim(acceptedTraj)[1],3))

114) , adj=c(xadj,yadj) , cex=1.5)

115

116

117 # Evidence for model, p(D).

118 # Compute a,b parameters for beta distribution that has the same mean

119 # and stdev as the sample from the posterior. This is a useful choice

120 # when the likelihood function is binomial.

8.8. R CODE 149

121 a = meanTraj * ((meanTraj*(1-meanTraj)/sdTrajˆ2) - rep(1,nDim))

122 b = (1-meanTraj) * ((meanTraj*(1-meanTraj)/sdTrajˆ2) - rep(1,nDim))

123 # For every theta value in the posterior sample, compute

124 # dbeta(theta,a,b) / likelihood(theta)*prior(theta)

125 # This computation assumes that likelihood and prior are properly normalized,

126 # i.e., not just relative probabilities.

127 wtd_evid = rep(0 , dim(acceptedTraj)[1])

128 for (idx in 1 : dim(acceptedTraj)[1]) {

129 wtd_evid[idx] = (dbeta(acceptedTraj[idx,1],a[1],b[1])

130 * dbeta(acceptedTraj[idx,2],a[2],b[2]) /

131 (likelihood(acceptedTraj[idx,]) * prior(acceptedTraj[idx,])))

132 }

133 pdata = 1 / mean(wtd_evid)

134 # Display p(D) in the graph

135 text(xpos , ypos+(.12*(-1)ˆ(ypos)) , bquote("p(D) = " * .(signif(pdata,3))) ,

136 adj=c(xadj,yadj) , cex=1.5)

137

138 ## Change next line if you want to save the graph.

139 want_saved_graph = F # TRUE or FALSE

140 if (want_saved_graph) { dev.copy2eps(file="BernTwoMetropolis.eps") }

141

142 # Estimate highest density region by evaluating posterior at each point.

143 npts = dim(acceptedTraj)[1] ; postProb = rep(0 , npts)

144 for (ptIdx in 1:npts) {

145 postProb[ptIdx] = targetRelProb(acceptedTraj[ptIdx,])

146 }

147 # Determine the level at which credmass points are above:

148 credmass = 0.95

149 waterline = quantile(postProb , probs=c(1-credmass))

150 # Display highest density region in new graph

151 windows()

152 par(pty="s") # makes plots in square axes.

153 plot(acceptedTraj[postProb < waterline ,] , type="p" , pch="x" , col="grey" ,

154 xlim = c(0,1) , xlab = bquote(theta[1]) ,

155 ylim = c(0,1) , ylab = bquote(theta[2]) ,

156 main=paste(100*credmass,"% HD region",sep=""))

157 points(acceptedTraj[postProb >= waterline ,] , pch="o" , col="black")

158 ## Change next line if you want to save the graph.

159 want_saved_graph = F # TRUE or FALSE

160 if (want_saved_graph) { dev.copy2eps(file="BernTwoMetropolisHD.eps") }

8.8.3 R code for BUGS sampler (Figure 8.6)

Here is the complete program for generating an MCMC sample using BUGS.

(BernTwoBugs.R)

1 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

2 # A Tutorial with R and BUGS. Academic Press / Elsevier.

3 #--

4 # THE MODEL.

5

6 modelstring = "

7 # BUGS model specification begins here...

8 model {

9 # Likelihood. Each flip is Bernoulli.

10 for (i in 1 : N1) { y1[i] ˜ dbern(theta1) }

11 for (i in 1 : N2) { y2[i] ˜ dbern(theta2) }

12 # Prior. Independent beta distributions.

150 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

13 theta1 ˜ dbeta(3 , 3)

14 theta2 ˜ dbeta(3 , 3)

15 }

16 # ... end BUGS model specification

17 " # close quote for modelstring

18 # Write model to a file:

19 .temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)

20 # Load model file into BRugs and check its syntax:

21 modelCheck("model.txt")

22

23 #--

24 # THE DATA.

25

26 # Specify the data in a form that is compatible with BRugs model, as a list:

27 datalist = list(

28 N1 = 7 ,

29 y1 = c(1,1,1,1,1,0,0) ,

30 N2 = 7 ,

31 y2 = c(1,1,0,0,0,0,0)

32)

33 # Get the data into BRugs:

34 modelData(bugsData(datalist))

35

36 #--

37 # INTIALIZE THE CHAIN.

38

39 modelCompile()

40 modelGenInits()

41

42 #--

43 # RUN THE CHAINS.

44

45 samplesSet(c("theta1" , "theta2")) # Keep a record of sampled "theta" values

46 chainlength = 10000 # Arbitrary length of chain to generate.

47 modelUpdate(chainlength) # Actually generate the chain.

48

49 #--

50 # EXAMINE THE RESULTS.

51

52 theta1Sample = samplesSample("theta1") # Put sampled values in a vector.

53 theta2Sample = samplesSample("theta2") # Put sampled values in a vector.

54

55 # Plot the trajectory of the last 500 sampled values.

56 windows()

57 par(pty="s")

58 plot(theta1Sample[(chainlength-500):chainlength] ,

59 theta2Sample[(chainlength-500):chainlength] , type = "o" ,

60 xlim = c(0,1) , xlab = bquote(theta[1]) , ylim = c(0,1) ,

61 ylab = bquote(theta[2]) , main="BUGS Result")

62 # Display means in plot.

63 theta1mean = mean(theta1Sample)

64 theta2mean = mean(theta2Sample)

65 if (theta1mean > .5) { xpos = 0.0 ; xadj = 0.0

66 } else { xpos = 1.0 ; xadj = 1.0 }

67 if (theta2mean > .5) { ypos = 0.0 ; yadj = 0.0

68 } else { ypos = 1.0 ; yadj = 1.0 }

69 text(xpos , ypos ,

70 bquote(

71 "M=" * .(signif(theta1mean,3)) * "," * .(signif(theta2mean,3))

8.8. R CODE 151

72) ,adj=c(xadj,yadj) ,cex=1.5)

73 dev.copy2eps(file="BernTwoBugs.eps")

74

75 # Plot a histogram of the posterior differences of theta values.

76 thetaDiff = theta1Sample - theta2Sample

77 source("plotPost.R")

78 windows(7,4)

79 plotPost(thetaDiff , xlab=expression(theta[1]-theta[2]) , compVal=0.0 ,

80 breaks=30)

81 dev.copy2eps(file="BernTwoBugsDiff.eps")

8.8.4 R code for plotting a posterior histogram

TheplotPost.R program, listed below, merely plots a histogram of a sample,with various
useful annotations. It was used to generate Figure 8.8, for example. It is used often through-
out the remainder of the book. You need to “source” it in R before calling it, of course. Here
are the annotations that the program can add to the histogram:

• The mean (by default) or an estimate of the mode (if specified). To show the estimate
of the mode, instead of the mean, use the argumentshowMode=T.

• The estimated HDI of the sample, defaulting to 95% mass.To specify a different HDI
mass, e.g., 90%, use the argumentcredMass=0.90. The HDI limits are computed by
the function described in Section 23.3.2 (HDIofMCMC.R).

The HDI is marked by a horizontal line and the ends of the HDI are labeled nu-
merically, with the placement of the numerals with respect to the end points of the
line governed by a parameter calledHDItextPlace. The value ofHDItextPlace is the
proportion of the numeral that is plotted outside the limitsof the HDI. Thus, when
HDItextPlace=0.0, the labels fall entirely within the HDI, on both ends, and when
HDItextPlace=1.0, the labels fall entirely outside the HDI, on both ends.

• A comparison value, with the percentage of the distributionbelow and above that
value. For example, if the values being plotted are differences, a meaningful com-
parison value would be zero. No comparison value is plotted unless specified by the
user, e.g.,compVal=0.0

• The ROPE, with the percentage of the distribution that fallsinside it. The ROPE is
not plotted unless specified by the user, e.g.,ROPE=c(-.01,.01). Notice that the values
in the ROPE specification are the actual end points of the ROPE, not relative to the
compVal. In principle, therefore, you could specify something likeROPE=c(-5,0) and
compVal=1.

If the user does not specify a label for the x-axis, using the usualxlab argument, the pro-
gram defaults to the label “Parameter”. Other arguments specified by the user are passed
into the histogram function as usual. Because plotPost.R uses thehist() function, it re-
turns whathist() returns, namely, information about the histogram. IfplotPost() is called
without assigning the result to a variable, then the histogram information is displayed in the
command window.

(plotPost.R)
1 plotPost = function(paramSampleVec , credMass=0.95 , compVal=NULL ,

2 HDItextPlace=0.7 , ROPE=NULL , yaxt=NULL , ylab=NULL ,

152 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

3 xlab=NULL , cex.lab=NULL , cex=NULL , xlim=NULL , main=NULL ,

4 showMode=F , ...) {

5 # Override defaults of hist function, if not specified by user:

6 # (additional arguments "..." are passed to the hist function)

7 if (is.null(xlab)) xlab="Parameter"

8 if (is.null(cex.lab)) cex.lab=1.5

9 if (is.null(cex)) cex=1.4

10 if (is.null(xlim)) xlim=range(c(compVal , paramSampleVec))

11 if (is.null(main)) main=""

12 if (is.null(yaxt)) yaxt="n"

13 if (is.null(ylab)) ylab=""

14 # Plot histogram.

15 par(xpd=NA)

16 histinfo = hist(paramSampleVec , xlab=xlab , yaxt=yaxt , ylab=ylab ,

17 freq=F , col="lightgrey" , border="white" ,

18 xlim=xlim , main=main , cex=cex , cex.lab=cex.lab ,

19 ...)

20 # Display mean or mode:

21 if (showMode==F) {

22 meanParam = mean(paramSampleVec)

23 text(meanParam , .9*max(histinfo$density) ,

24 bquote(mean==.(signif(meanParam,3))) , adj=c(.5,0) , cex=cex)

25 } else {

26 dres = density(paramSampleVec)

27 modeParam = dres$x[which.max(dres$y)]

28 text(modeParam , .9*max(histinfo$density) ,

29 bquote(mode==.(signif(modeParam,3))) , adj=c(.5,0) , cex=cex)

30 }

31 # Display the comparison value.

32 if (!is.null(compVal)) {

33 pcgtCompVal = round(100 * sum(paramSampleVec > compVal)

34 / length(paramSampleVec) , 1)

35 pcltCompVal = 100 - pcgtCompVal

36 lines(c(compVal,compVal) , c(.5*max(histinfo$density),0) ,

37 lty="dashed" , lwd=2)

38 text(compVal , .5*max(histinfo$density) ,

39 bquote(.(pcltCompVal)*"% <= " *

40 .(signif(compVal,3)) * " < "*.(pcgtCompVal)*"%") ,

41 adj=c(pcltCompVal/100,-0.2) , cex=cex)

42 }

43 # Display the ROPE.

44 if (!is.null(ROPE)) {

45 pcInROPE = (sum(paramSampleVec > ROPE[1] & paramSampleVec < ROPE[2])

46 / length(paramSampleVec))

47 ROPEtextHt = .35*max(histinfo$density)

48 lines(c(ROPE[1],ROPE[1]) , c(ROPEtextHt,0) , lty="dotted" , lwd=2)

49 lines(c(ROPE[2],ROPE[2]) , c(ROPEtextHt,0) , lty="dotted" , lwd=2)

50 text(mean(ROPE) , ROPEtextHt ,

51 bquote(.(round(100*pcInROPE))*"% in ROPE") ,

52 adj=c(.5,-0.2) , cex=1)

53 }

54 # Display the HDI.

55 source("HDIofMCMC.R")

56 HDI = HDIofMCMC(paramSampleVec , credMass)

57 lines(HDI , c(0,0) , lwd=4)

58 text(mean(HDI) , 0 , bquote(.(100*credMass) * "% HDI") ,

59 adj=c(.5,-1.9) , cex=cex)

60 text(HDI[1] , 0 , bquote(.(signif(HDI[1],3))) ,

61 adj=c(HDItextPlace,-0.5) , cex=cex)

8.9. EXERCISES 153

62 text(HDI[2] , 0 , bquote(.(signif(HDI[2],3))) ,

63 adj=c(1.0-HDItextPlace,-0.5) , cex=cex)

64 par(xpd=F)

65 return(histinfo)

66 }

8.9 Exercises

Exercise 8.1.[Purpose: Exploring a real-world application about the difference of proportions.] Is
there a “hot hand” in basketball? This question has been addressed in a frequently cited
article by Gilovich, Vallone, and Tversky (1985). The idea of a “hot hand” is that the
success of a shot depends on the success of a previous shot, asopposed to each shot being
an independent flip of a coin (or toss of a ball). One way to address this idea is to consider
pairs of free throws taken after fouls. If the player has a hothand, then he should be more
likely to make the second shot after a successful first shot than after a failed first shot. If the
two shots are independent, however, then the probability ofmaking the second shot after a
successful first shot should equal the probability of makingthe second shot after failing the
first shot. Thus, there is a hot hand if the probability of success after a success is better than
the probability of success after failure.

During 1980-1982, Larry Bird of the Boston Celtics had 338 pairs of free throws. He
was successful on 285 first shots, and failed on the remaining53 first shots. After the
285 successful first shots, he was successful on 251 second shots (and failed on the other
34 second shots). After the 53 failed first shots, he was successful on 48 second shots
(and failed on the other 5 second shots). Thus, we want to knowif 251/285 (success after
success) is different than 48/53 (success after failure).

Let θ1 represent the proportion of success after a successful shot, and letθ2 represent
the proportion of success after a failed first shot. Suppose we have priors of beta(θ|30, 10)
on both, representing the belief that we think that professional players make about 75% of
their free throws, regardless of when they are made.

(A) Modify the BRugs program of Section 8.8.3 (BernTwoBugs.R) to generate a histogram
of credible differences between success-after-success and success-after-failure. Explain
what modifications you made to the R code. Hint: Your result should look like something
like Figure 12.2, p. 242.

(B) Based on your results from the previous part, does Larry Birdseem to have a hot
hand? In other words, are almost all of the credible differences between success-after-
success and success-after-failure well above zero, or is a difference of zero among the cred-
ible differences?

Exercise 8.2.[Purpose: Examining the prior in BUGS by omitting references to data.] Reproduce
and run the BUGS code that generated the chains in Figure 8.7.Show the sections of code
that you modified from the program in Section 8.8.3 (BernTwoBugs.R), and show the resulting
graphical output.

Exercise 8.3.[Purpose: Limitations of prior specification in BUGS.] In BUGS, all priors must be
specified in terms of probability distributions that BUGS knows about. These distributions
include the beta, gamma, normal, uniform, etc., as specifiedin the Appendix of the BUGS
User Manual. There are ways to program novel distributions into BUGS, but explaining
how would take us too far afield at this point. Instead, we’ll consider how unusual priors
can be constructed from the built-in distributions. The left panel of Figure 8.9 shows the

154 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BUGS Result

θ1

θ 2

M=0.391,0.498

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BUGS Result

θ1

θ 2

M=0.676,0.308

Figure 8.9: For Exercise 8.3: A bizarre prior, on the left, specified in BUGS, and
the resulting posterior distribution on the right, when using the data from examples
in this chapter.

prior that results from this model specification: (BernTwoFurrowsBugs.R)

10 model {

11 # Likelihood. Each flip is Bernoulli.

12 for (i in 1 : N1) { y1[i] ˜ dbern(theta1) }

13 for (i in 1 : N2) { y2[i] ˜ dbern(theta2) }

14 # Prior. Curved scallops!

15 x ˜ dunif(0,1)

16 y ˜ dunif(0,1)

17 N <- 4

18 xt <- sin(2*3.141593*N * x) / (2*3.141593*N) + x

19 yt <- 3 * y + (1/3)

20 xtt <- pow(xt , yt)

21 theta1 <- xtt

22 theta2 <- y

23 }

Adapt the program in Section 8.8.3 (BernTwoBugs.R) to use this prior, but withN set to 5
instead of 4. (Don’t confuseN with N1 or N2.) Produce a graph of the prior and of the
posterior, like those shown in Figure 8.9. This particular furrowed prior would never be
used in actual research that I’m aware of; the point is that you can specify unusual priors if
you need to.

Exercise 8.4.[Purpose: Metropolis sampling: See the importance of tuning the proposal distribution.]

For this exercise, assume the prior and data used in Figure 8.1.
(A) In the R code of Section 8.8.2 (BernTwoMetropolis.R), set the standard deviations

(both sd1 and sd2) of the proposal distribution to 0.005, and run the program.Does the
resulting distribution of sampled values resemble Figures8.1 or 8.3? What is wrong with
the choice of standard deviations?

(B) In the R code of Section 8.8.2 (BernTwoMetropolis.R), set the standard deviations
(bothsd1 andsd2) of the proposal distribution to 5.0, and run the program. Does the result-
ing distribution of sampled values resemble Figures 8.1 or 8.3? What is wrong with the
choice of standard deviations?

8.9. EXERCISES 155

Exercise 8.5.[Purpose: Reminder of how to do posterior prediction with BUGS.] For this exercise,
assume the prior and data used in Figure 8.1. From the posterior, what is the probability that
the next flip of the two coins will havey∗1= 1 and y∗2= 0? To answer this question, expand
the code of Section 8.5 so it includes posterior predictions. See the example in Section 7.4.2
(p. 118), and simply repeat the same structure for eachtheta andy value. Include your code
with your answer.

156 CHAPTER 8. BINOMIAL PROPORTIONS AND GIBBS SAMPLING

Chapter 9

Bernoulli Likelihood with
Hierarchical Prior
Contents

9.1 A single coin from a single mint . 158
9.1.1 Posterior via grid approximation160

9.2 Multiple coins from a single mint .164
9.2.1 Posterior via grid approximation166
9.2.2 Posterior via Monte Carlo sampling 169

9.2.2.1 Doing it with BUGS 171
9.2.3 Outliers and shrinkage of individual estimates 175
9.2.4 Case study: Therapeutic touch 177
9.2.5 Number of coins and flips per coin 178

9.3 Multiple coins from multiple mints 178
9.3.1 Independent mints . 178
9.3.2 Dependent mints . 182
9.3.3 Individual differences and meta-analysis 184

9.4 Summary . 185
9.5 R code . 185

9.5.1 Code for analysis of therapeutic-touch experiment 185
9.5.2 Code for analysis of filtration-condensation experiment 188

9.6 Exercises . 191

Oh darlin’, for love, it’s on you I depend.
Well, I s’pose Jack Daniels is also my friend.
But you keep him locked up in the ladies’ loo,
S’pose that means his spirits depend on you too.

In the previous chapter, we explored a case in which there were two parameters, and our goal
was to estimate each parameter. We had two coins and we wantedto estimate the bias in
each coin. The prior beliefs about each parameter were assumed to be independent of each
other, which meant that our prior belief about the bias in onecoin had no influence about our
prior belief regarding the bias in the other coin. This independence of the parameters meant
that the formal specification of the prior belief about either coin’s bias had no mention of
the other bias.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

157

158 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

In this chapter we explore situations in which there are two or more parameters that
do have meaningful dependencies. For example, we may believe that the bias of a coin
depends on the characteristics of the factory in which it wasminted. We have prior beliefs
about the parameter values of the mint, and we have prior beliefs about the dependence of
the coin’s bias on the minting parameters. Then we flip the coin a few times and observe
how many times it comes up heads. The data affect our beliefs about the coin’s bias. But,
importantly, the data also affect our beliefs about the dependence of the coin’s bias on the
minting parameters, and the data affect our belief about the minting parameters themselves.

The parameters that directly affect the data are called just that: parameters. But param-
eters that affect the data indirectly, by affecting beliefs about other parameters, are often
calledhyperparameters. In one respect, there is nothing different about parameters and hy-
perparameters: They co-exist in a multi-dimensional jointparameter space, and we apply
Bayes’ rule to the joint parameter space to update from priorto posterior beliefs over the
joint parameter space. But the dependencies among parameters become useful in at least
two respects. First, the dependencies are meaningful for the given application, and so it
can help to keep that structure intact as we interpret the posterior distribution. Second, the
dependencies can motivate relatively efficient Monte Carlo sampling from the posterior. In-
stead of using a Metropolis algorithm to sample from the joint parameter space, and face
the heartbreak of rejected proposals, we might use the dependencies to sample parameters
in turn, analogous to Gibbs sampling.

As usual, we consider the scenario of flipping coins. And, as usual, keep in mind that the
coin flip is just a surrogate for real-world data involving two outcomes, such as recovery
or non-recovery from a disease after treatment, recalling or not recalling a studied item,
choosing candidate A or candidate B in an election, etc.

9.1 A single coin from a single mint

We begin with a review of the likelihood and prior distribution for our single-coin scenario,
in order to build new ideas. The biasθ of a coin determines the probability of getting a
head, according to the Bernoulli distribution:

p(y|θ) = bern(y|θ)
= θy(1− θ)1−y (9.1)

wherey = 1 for the result “head” andy = 0 for the result “tail”. We assume independence
across flips, so the joint probability of the particularz =

∑N
i=1 yi heads out ofN flips is

∏N
i=1 p(yi |θ) = θz(1− θ)N−z.

The prior distribution over the biases is denotedp(θ). For the present example, we sup-
pose that the prior is a beta distribution. As was explained in Chapter 5, the beta distribution
has two parameters,a andb, and is defined as beta(θ, a, b) = θa−1(1−θ)b−1/B(a, b). To make
the parameters of the beta distribution more intuitive, we will express them in terms of
the corresponding meanµ and sample sizeK, as described in Section 5.2.1; specifically in
Equation 5.5, p. 69. If the mean of our prior belief isµ, and our confidence is reflected by a
prior sample size ofK, then the corresponding beta parameters area = µK andb = (1−µ)K.
For the purposes of the present example, we will treatK as a constant. Because the prior
distribution depends on our choice ofµ, the prior distribution is a function ofµ and can be
written

p(θ | µ) = beta(θ | µK , (1−µ)K) (9.2)

9.1. A SINGLE COIN FROM A SINGLE MINT 159

Figure 9.1: A model of hierarchical dependencies for data
from a single coin. At the bottom of the diagram, the da-
tum yi for the ith flip depends on the value of the bias pa-
rameterθ in a Bernoulli distribution. The arrow has a “∼”
symbol to indicate thatyi ∼ bern(yi |θ). The ellipsis next to
the arrow denotes the repeated dependency for every flip.
Moving up the diagram, we see that the value ofθ depends
on a beta distribution, which has shape parametersa andb.
The a, b values are reparameterized in terms ofµ andK.
The arrows impinging ona and b are labeled with “=”
signs to indicate that these variables have a deterministic
dependency, not a probabilistic one.K is a constant set
by prior beliefs, expressing how stronglyθ depends onµ.
The hyperparameterµ expresses the bias of the mint that
created the coin, andµ depends on a beta distribution with
parametersAµ andBµ, which are set by prior beliefs. We
simultaneously estimate the two parametersθ andµ.

Notice that the magnitude ofK is an expression of our prior certainty regarding the
dependence of the bias onµ. WhenK is large, the distribution ofθ is very narrowly loaded
overµ. WhenK is small, the distribution ofθ is very widely dispersed aroundµ. Thus, as
K gets large, we are more and more certain about the form of the dependency ofθ onµ.

Now we make the essential expansion of our scenario into the realm of hierarchical
models. Instead of specifying a single particular value forµ, we think ofµ as taking on
many possible values (from 0 to 1), and we specify a probability distribution over those
values. This distribution can be thought of as describing the uncertainty in our beliefs about
the construction of the mint that manufactured the coin. When µ is large, the mint tends to
produce coins with large biases, and whenµ is small, the mint tends to produce coins with
small biases. Our prior distribution overµ expresses what we believe about how mints are
constructed. For the sake of making the example concrete, wesuppose that the distribution
onµ is again a beta distribution,

p(µ) = beta(µ|Aµ, Bµ) (9.3)

whereAµ andBµ are constants. In this case, we believe thatµ is typically nearAµ/(Aµ+Bµ),
because that is the mean of the beta distribution, but we believe that the value ofµ could be
above or below that mean.

The scenario is summarized in Figure 9.1. The figure shows thedependency structure
among the variables. Downward pointing arrows denote how higher level variables generate
lower level variables. For example, because the coin biasθ governs the result of a coin flip,
we draw an arrow from theθ-parameterized Bernoulli distribution to the coin flip datum yi .
Thus, whenyi depends onθ, we draw an arrow toyi from the distribution involvingθ.
The caption describes the full chain of dependencies. This form of model is referred to as a
hierarchicalmodel because of the layers of dependencies. When we do Bayesian inference,

160 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

we are updating our beliefs about both of the parametersθ andµ. Please read the caption
of Figure 9.1 now.

Notice what happens to the dependency structure when our prior beliefs about the hy-
perparameterµ become narrowed to a single value. Suppose that we believe thatµ has just
one specific value, and no other value ofµ is possible. This can be visualized as the distribu-
tion of p(µ) being an infinitesimally narrow spike over the specific value ofµ that we posit,
as if Aµ andBµ were set to humongous values. Thus,µ is effectively aconstant, andp(θ)
is a function of two constants, namelyµ andK. In this case, the inclusion of a hyper-level
involving µ adds nothing to our inferential process, because we have nothing to infer about
µ because we already know the value ofµ. Therefore we do not have a hierarchical model
any more, instead we have a one-level model of the type we developed in previous chapters.
It is only when we have uncertainty about a value that we make inferences about it. When
other uncertain values depend on an uncertain value, then wehave a chain of dependent
uncertainties, formalized by a hierarchial model.

Notice also what happens to the dependency structure when our beliefs about the de-
pendence ofθ on µ narrow down to adeterministicrelationship without any uncertainty.
For example, suppose thatK becomes infinitely large, so that whenµ has a particular value,
thenθ also has exactly that same value. In this case, the only uncertainty in θ is the uncer-
tainty inµ; there is no additional uncertainty introduced in going from µ to θ. In this case,
the inclusion of an intermediate level forθ adds nothing to our inferential process, because
we have nothing to infer aboutθ; we already know that the value ofθ is exactly the value
of µ. Therefore we do not have a hierarchical model any more, instead we have a one-level
model of the type we developed in previous chapters.Refrain: It is only when we have
uncertainty about a value that we make inferences about it. When other uncertain values
depend on an uncertain value, then we have a chain of dependent uncertainties, formalized
by a hierarchial model.

Let’s now consider how Bayes’ rule applies to this situation. If we treat this situation as
simply a case of two parameters, then Bayes’ rule is merelyp(θ, µ|y) = p(y|θ, µ)p(θ, µ)/p(y).
There are two aspects that are “special” about our present situation. First, the likelihood
function does not involveµ, so p(y|θ, µ) can be re-written asp(y|θ). Second, because by
definition p(θ|µ) = p(θ, µ)/p(µ), the prior on the joint parameter space can be factored thus:
p(θ, µ) = p(θ|µ) p(µ). Therefore, Bayes’ rule for our current hierarchical model has the
form

p(θ, µ|y) = p(y|θ, µ)p(θ, µ)/p(y)

= p(y|θ)p(θ|µ)p(µ)/p(y) (9.4)

Notice that the three terms of the numerator are given specific expression by our particular
example; these specific formulas are summarized in Figure 9.1.

It turns out that direct formal analysis of Equation 9.4 doesnot yield a simple formula
for thenormalizedposterior. We can, nevertheless, use grid approximation toget a thorough
picture of what is going on in the present example.

9.1.1 Posterior via grid approximation

When the parameter(s) and hyperparameter(s) extend over a finite domain, and there are
not too many of them, then we can approximate the posterior via grid approximation. In
our present situation, we have the parameterθ and hyperparameterµ that both have finite

9.1. A SINGLE COIN FROM A SINGLE MINT 161

domains, namely the interval [0, 1]. Therefore a grid approximation is tractable and the
distributions can be readily graphed.

Figure 9.2 shows an example in which the hyperprior distribution has the form of a
beta distribution as in Equation 9.3, withAµ = 2 andBµ = 2, i.e., p(µ) = beta(µ|2, 2).
This hyperprior expresses the belief that the mint’sµ value is near .5, but there is large
uncertainty. This beta distribution is shown in the third panel of the upper row of Figure 9.2.
The graph is tipped on its side so that the vertical axis isµ; this orientation keeps all theµ
axes oriented the same direction in the figure, to facilitatecomparison across panels.

The prior distribution onθ, or more precisely, the prior distribution regarding the depen-
dency ofθ onµ, is expressed by another beta distribution, as in Equation 9.2 with K = 100,
wherebyp(θ|µ) = beta(θ, µ100, (1−µ)100). The prior expresses a high degree of certainty
that a mint with hyperparameterµ generates coins that have a biasθ close toµ. Two cases
of this conditional distribution are shown in the right panel of the second row of Figure 9.2.
The upper graph within that panel showsp(θ|µ = 0.75), and the lower graph in that panel
showsp(θ|µ=0.25). You can see that the conditional distributions are fairly tightly centered
on 0.75 and 0.25, respectively.

The left and middle panels of the top row of Figure 9.2 show thejoint prior distribution:
p(θ, µ) = p(θ|µ)p(µ). The contour plot in the middle panel shows a top-down view of the
perspective plot in the left panel. As this is a grid approximation, the joint priorp(θ, µ) was
computed by first multiplyingp(θ|µ) and p(µ) at every grid point, and then, to convert to
a discrete probability mass at each grid point, dividing by their sum across the entire grid.
The normalized probability masses were then converted to estimates of probability density
at each grid point by dividing each probability mass by the area of a grid cell.

The right panel of the top row, showingp(µ) tipped on its side, is themarginal distri-
bution of the prior: If you imagine collapsing (i.e., summing) the joint prior acrossθ, the
pressed flower you end up with is the graph ofp(µ). The scale on thep(µ) axis is density,
not mass, because the the mass at each point of the comb onµ was divided by the width of
a comb interval to approximate density.

The right panel of the second row, showingp(θ|µ), can be thought of as two “slices”
through the joint prior. One slice is at the grid valueµ = .75, and the other slice is at the
grid valueµ = 0.25. The slices are re-normalized, however, so that they are individually
proper probability densities that sum to 1.0 overθ.

The middle row of Figure 9.2 shows the likelihood distribution over the parameter
space. The data D comprise 9 heads and 3 tails. The likelihooddistribution is a prod-
uct of Bernoulli distributions,p(D|θ) = θ9(1−θ)3. Notice in the graph that all the contour
lines are parallel to theµ axis, and orthogonal to theθ axis. These parallel contours are the
graphical signature of the fact that the likelihood function depends only onθ and not onµ.

The posterior distribution in the fourth row of Figure 9.2 isdetermined by multiplying,
at each point of the grid onθ, µ space, the joint prior and the likelihood. The point-wise
products are normalized by dividing by the sum of those values across the parameter space.

When we take a slice through the joint posterior at a particular value ofµ, and re-
normalize by dividing by sum of the discrete probability masses in that slice, we get the
conditional distributionp(θ|µ,D). The bottom right panel of Figure 9.2 shows the condi-
tional for two values ofµ. Notice in Figure 9.2 that there is not much difference in the
graphs of the priorp(θ|µ) and the posteriorp(θ|µ,D). This is because the prior beliefs
regarding the dependency ofθ onµ had little uncertainty.

The distribution ofp(µ|D), shown in the right panel of the fourth row of Figure 9.2, is
determined by summing the joint posterior across all valuesof θ. This marginal distribution

162 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

theta

m
u

prior

Prior

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ)

µ

Prior
Aµ = 2, Bµ = 2

K = 100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

)

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

θ

p(
θ|

µ=
.7

5)

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

θ

p(
θ|

µ=
.2

5)

theta
m

u

likelihood

Likelihood

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Likelihood
D = 9 heads, 3 tails

theta

m
u

posterior

Posterior

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ|D)

µ

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

|D
)

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

θ

p(
θ|

µ=
.7

5,
D

)

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

θ

p(
θ|

µ=
.2

5,
D

)

Figure 9.2: The prior has low certainty regardingµ, but high certainty regarding the depen-
dence ofθ on µ. The posterior shows that the distribution ofµ has been altered noticeably
by the data (see sideways plots of marginalp(µ)), but the dependence ofθ onµ has not been
altered much (see small plots ofp(µ|θ)). Compare with Figure 9.3, which uses the same
data but a different prior.

9.1. A SINGLE COIN FROM A SINGLE MINT 163

theta

m
u

prior

Prior

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ)

µ

Prior
Aµ = 20, Bµ = 20

K = 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

p(
θ|

µ=
.7

5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

3.
0

θ

p(
θ|

µ=
.2

5)

theta
m

u

likelihood

Likelihood

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Likelihood
D = 9 heads, 3 tails

theta

m
u

posterior

Posterior

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ|D)

µ

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

|D
)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

p(
θ|

µ=
.7

5,
D

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

3.
0

θ

p(
θ|

µ=
.2

5,
D

)

Figure 9.3: The prior has high certainty regardingµ, but low certainty regarding the depen-
dence ofθ on µ. The posterior shows that the distribution ofµ has not been altered much
by the data (see sideways plots of marginalp(µ)), but the dependence ofθ on µ has been
altered noticeably (see small plots ofp(µ|θ)). Compare with Figure 9.2, which uses the
same data but a different prior.

164 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

can be imagined as collapsing the joint posterior along theθ axis, with the resulting pressed
flower being silhouetted in the third panel of the bottom row.Notice that the graphs of
the priorp(µ) and the posteriorp(µ|D) are rather different. The data have had a noticeable
impact on beliefs about howµ is distributed because the prior was very uncertain and was
therefore easily influenced by the data.

As a contrasting case, consider instead what happens when there is high certainty on the
prior regardingµ, but low certainty on the prior regarding the dependence ofθ on µ. Fig-
ure 9.3 illustrates such a case, wherep(µ) = beta(µ|20, 20) andp(θ|µ) = beta(θ|µ6, (1−µ)6).
The top row, right panel, shows thatp(µ) is sharply peaked overµ= .5, but the conditional
distributions p(θ|µ) are very broad (second row, right panel). The same data as for Fig-
ure 9.2 are used here, so the likelihood graphs look the same in the two figures. Notice
again that the contour lines of the likelihood function are parallel to theµ axis, indicating
thatµ has no influence on the likelihood. Compare now the prior and the posterior within
Figure 9.3. The distribution overµ hardly changes, because it began with high certainty.
The distributionsp(θ|µ,D) are very different from their priors, however. This is because
they began with low certainty, so the data can have a big impact on these distributions. In
this case, the data suggest thatθ depends onµ in a rather different way than we initially
suspected.

In summary, the data influence (i) our beliefs about the hyperparameter and (ii) our
beliefs about the dependence of the parameter on the hyperparameter. (The next couple
sentences are a challenge to parse, but hopefully are worth the effort.) When the prior on
the hyperparameter is uncertain, but the prior on the dependence-of-the-parameter-on-the-
hyperparameter is highly certain, then the data influence the beliefs about the hyperparam-
eter more than beliefs about the dependence-of-the-parameter-on-the-hyperparameter. This
case was illustrated in Figure 9.2. On the other hand, when the prior on the hyperparameter
is highly certain, but the prior on the dependence-of-the-parameter-on-the-hyperparameter
is uncertain, then the data influence the beliefs about the dependence-of-the-parameter-on-
the-hyperparameter more than beliefs about the hyperparameter. This case was illustrated
in Figure 9.3. In other words, for any aspect of the prior, themore uncertain it is, the more
it is affected by the data.

9.2 Multiple coins from a single mint

The previous sections considered a scenario in which we flip asinglecoin and make infer-
ences about the biasθ and the hyperparameterµ of the coin. Now we consider an interesting
extension: What if we collect data from more than one coin? Ifeach coin has its own dis-
tinct biasθ j, then we are estimating a distinct parameter value for each coin. For now, we
assume that all the coins have come from the same mint. This means that we have the same
prior belief aboutµ for all the coins. We also assume that each coin is minted independently
of the others. This means that each coin’s bias is independent of the others (conditional on
µ), in our prior belief distribution.

Okay, you’re thinking, I’m willing to entertain these assumptions, but why should I
care? What real-world situation (other than minting coins)does this represent? Answer:
Consider a treatment condition in an experiment, such as administering a certain drug. The
drug plays the role of the mint. The subject receiving the treatment plays the role of the
coin. The underlying reaction to the drug, by the subject, plays the role of the individual
bias. Different subjects will have different individual reactions induced by the drug, but

9.2. MULTIPLE COINS FROM A SINGLE MINT 165

Figure 9.4: A model of hierarchical dependencies for data
from J coins created independently from the same mint.
A datumy ji , from the ith flip of the jth coin, depends on
the value of the bias parameterθ j for the coin. The val-
ues ofθ j depend on the value of the hyperparameterµ for
the mint that created the coins. The ellipsis on the de-
pendency arrows denotes the repetition of the dependency
across flips (fory ji) or coins (forθ j). Theµ parameter has
a prior belief distributed as a beta distribution with shape
parametersAµ and Bµ. We simultaneously estimate the
J + 1 parameters:θ1, ..., θJ, andµ. This case is discussed
in Section 9.2.

the reactions will be dependent on the overall effect of the drug. We set up the experiment
so that subjects don’t interact with each other, and so we assume that individual biases are
independent of each other.1 We “flip the coin” by measuring Bernoulli responses from the
subject. For example, suppose that the drug is supposed to affect memory. We can test
memory by giving the subject a list of random words to study, and then checking how many
words can be recalled several minutes later. Each word is a flip of the coin, and recall or
non-recall corresponds to head or tail.

The scenario is summarized in Figure 9.4. It is very much likeFigure 9.1, but with one
subtle change. Instead of there being a singleθ value, there is now a differentθ value for
each coin, with the bias of thejth coin denotedθ j . Because the individual flips of the coins
come from different coins, the flip results are double-subscripted, such that theith flip of the
jth coin is denotedy ji . Notice that the model involvesJ+ 1 parameters,θ1, ..., θJ, andµ, all
of which are being estimated simultaneously.

Notice what happens to the dependency structure in Figure 9.4 when our beliefs about
the hyperparameterµ narrow down to a single value. This can be visualized as the distribu-
tion of p(µ) being an infinitesimally narrow spike over the specific value ofµ that we posit.
Thus,µ is effectively aconstant, andp(θ j) is a function of two constants, namelyµ andK.
In this case, the inclusion of a hyper-level forµ adds nothing to our inferential process,
because we have nothing to infer aboutµ; we already know the value ofµ. Therefore we

1The assumption that biases of coins are independent of each other is actually a bit stronger than the
Bayesian mathematics really requires. A weaker assumptiongoes by the name ofexchangeabilityof θ j values.
Exchangeability is a less stringent condition than independence. Exchangeability means that the probability of
a sequence of values is the same as the probability of any permutation of that sequence. Independence implies
exchangeability, but exchangeability does not imply independence. Just be aware that the Bayesian mathemat-
ics only requires exchangeability, but the math still worksif we make the stronger assumption of independence.
Just as we assume each single flipyj of the j th coin is independently representative of the coin’s biasθ j , we also
assume that each individual biasθ j is independently representative of the mint parameterµ.

166 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

do not have a hierarchical model any more, instead we have a set of J one-level models,
of the type we developed in previous chapters.Cue the choir: It is only when we have
uncertainty about a value that we make inferences about it. When other uncertain values
depend on an uncertain value, then we have a chain of dependent uncertainties, formalized
by a hierarchial model.

Notice also what happens to the dependency structure in Figure 9.4 when our beliefs
about the dependence ofθ j on µ narrow down to andeterministicrelationship without any
uncertainty. For example, suppose thatK → ∞, so that whenµ has a particular value, then
all θ j ’s also have exactly that value. In this case, the only uncertainty inθ j is the uncertainty
in µ; there is no additional uncertainty introduced in going from µ to θ j. In fact, in this case,
becauseθ j = µ and the sameµ is being used to model allJ coins, we are effectively treating
all the coins as if they have the same underlying bias, and thedata collapse into simply
∑

j
∑Nj

i=1 y ji heads out of
∑

j N j flips. Therefore we do not have a hierarchical model any
more, instead we have a one-level model of the type we developed in previous chapters.All
together now:It is only when we have uncertainty about a value that we make inferences
about it. When other uncertain values depend on an uncertainvalue, then we have a chain
of dependent uncertainties, formalized by a hierarchial model.

9.2.1 Posterior via grid approximation

As a concrete example, suppose we have two coins from the samemint. We want to estimate
the biasesθ1 andθ2 of the two coins, and simultaneously estimateµ of the mint that created
them. Figures 9.5 and 9.6 show grid approximations for two different priors.

In Figure 9.5, the prior onµ is gently peaked overµ = 0.5, in the form of a beta(µ|2, 2)
distribution; that is,Aµ = Bµ = 2 in the top-level formula of Figure 9.4. The biases of the
coins are only weakly dependent onµ according to the priorp(θ j |µ) = beta(θ j |µ ·5, (1−µ)·5);
that is, K = 5 in the middle-level formula of Figure 9.4. The full prior distribution is a
joint distribution over three parameters:µ, θ1, andθ2. In a grid approximation, the prior is
specified as a 3D array that holds the prior probability at various grid points in the 3D space.
The prior probability at point (µ, θ1, θ2) is p(µ) p(θ1|µ) p(θ2|µ), with exact normalization
enforced by summing across the entire grid and dividing by the total.

Because the prior is 3D, it cannot be easily displayed in its entirety. Instead, Figure 9.5
shows various marginal distributions. The top row shows twocontour plots, one of the
marginal distributionp(θ1, µ) which collapses acrossθ2, and the other of the marginal distri-
bution p(θ2, µ) which collapses acrossθ1. Also shown is the marginalp(µ), which collapses
acrossθ1 andθ2.

The middle row of Figure 9.5 shows the likelihood function for the data, which comprise
3 heads out of 15 flips of the first coin, and 4 heads out of 5 flips of the second coin. Notice
that the contours of the likelihood plot are parallel to theµ axis, indicating that the likelihood
does not depend onµ. Notice that the contours are more tightly grouped for the first coin
than for the second, which reflects the fact that we have more data from the first coin (i.e.,
15 flips versus 5 flips).

The lower two rows of Figure 9.5 show the posterior distribution. Notice that the pos-
terior onθ1 is centered not far from the proportion 3/15 = .2 in its coin’s data, and the
posterior onθ2 is centered not far from the proportion 4/5 = .8 in its coin’s data. The pos-
terior onθ1 has less uncertainty than the posterior onθ2, as indicated by the density of the
contours. Notice also that the posterior onµ has not tightened up much, relative to its prior.

That result should be contrasted with the result in Figure 9.6, which uses the same data

9.2. MULTIPLE COINS FROM A SINGLE MINT 167

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ1, µ)

θ2
µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ2, µ)

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

p(µ)

µ

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

θ1

p(
θ 1

)

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

θ2

p(
θ 2

)

Prior
Aµ = 2, Bµ = 2
K = 5

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Likelihood
D1: 3 heads, 12 tails
D2: 4 heads, 1 tail

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ1, µ|D)

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ2, µ|D)

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

p(µ|D)

µ

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

θ1

p(
θ 1

|D
)

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

θ2

p(
θ 2

|D
)

Posterior

Figure 9.5: The prior has only a weak dependency ofθ onµ, so the posteriors onθ1 andθ2

(bottom row) are weakly influenced by each other’s data. Compare with Figure 9.6, which
uses the same data but a prior with a strong dependency.

168 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ1, µ)

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ2, µ)

0.00 0.02 0.04 0.06 0.08

0.
0

0.
4

0.
8

p(µ)

µ

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

0.
08

θ1

p(
θ 1

)

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

0.
08

θ2

p(
θ 2

)
Prior
Aµ = 2, Bµ = 2
K = 75

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Likelihood
D1: 3 heads, 12 tails
D2: 4 heads, 1 tail

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ1, µ|D)

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p(θ2, µ|D)

0.00 0.02 0.04 0.06 0.08

0.
0

0.
4

0.
8

p(µ|D)

µ

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

0.
08

θ1

p(
θ 1

|D
)

0.0 0.2 0.4 0.6 0.8 1.00.
00

0.
04

0.
08

θ2

p(
θ 2

|D
)

Posterior

Figure 9.6: The prior has a strong dependency ofθ on µ, so the posteriors onθ1 and θ2

(bottom row) are strongly influenced by each other’s data, with θ2 being pulled towardθ1

becauseN1 > N2. Compare with Figure 9.5, which uses the same data but a priorwith a
weak dependency.

9.2. MULTIPLE COINS FROM A SINGLE MINT 169

with a different prior. In Figure 9.6, the prior onµ is the same gentle peak, but the prior
dependency ofθ j onµ is much stronger. The dependency can be seen graphically in the top
two panels of Figure 9.6, which show contour plots of the marginals p(θ j , µ). The contours
reveal that whenθ j is not very close toµ, away from the diagonal, then the probability
p(θ j , µ) is very small. You can imagine this 3D distribution as spindle-shaped or football-
shaped, tipped diagonally with its ends pointing into opposite corners of a box.

The plots of the posterior distribution, in the lower rows ofFigure 9.6, reveal some very
interesting results. Because the biases and the hyperparameter are being simultaneously
estimated, and the biases are strongly dependent on the hyperparameter, the posterior esti-
mates are fairly tightly constrained, especially in comparison with Figure 9.5. Essentially,
because the prior emphasizes a relatively narrow spindle within the 3D box, the posterior
is restricted to a zone within that spindle. Not only does this cause the posterior to be rela-
tively peaked on all the parameters, it also pulls all the estimates in toward the focal zone.
Notice, in particular, that the posterior onθ2 is peaked around.4, far from the proportion
4/5 = .8 in its coin’s data! This shift away from the data proportionis caused by the fact
that the other coin had a larger sample size, and so it has moreinfluence in deciding which
part of the prior spindle is focussed upon.

One of the desirable aspects of using grid approximation to determine the posterior is
that we do not rely on any formal analysis of the posterior. Instead, our computer simply
keeps track of the values of the prior and likelihood at a large number of grid points and
sums over them to determine the denominator of Bayes’ rule. Grid approximation can use
mathematical formulas for the prior as a convenience for determining the prior values at
all those thousands of grid points. What’s nice is that we canuse, for the prior, any (non-
negative) mathematical function we want, without knowing how to formally normalize it,
because it will be normalized by the grid approximation. My choice of the priors for this
example, summarized in Figure 9.4, was motivated merely by the pedagogical goal of using
functions that you are familiar with, not by any formal restriction.

The grid approximation displayed in Figures 9.5 and 9.6 usedcombs of only 50 points
on each parameter (µ, θ1, andθ2). This means that the 3D grid had 503 = 125, 000 points,
which is a size that can be handled easily on an ordinary desktop computer of the early
21st century. It is interesting to remind ourselves that thegrid approximation displayed in
Figures 9.5 and 9.6 would have been on the edge of computability 50 years ago, and would
have been impossible 100 years ago.

The number of points in a grid approximation can get rather hefty in a hurry. If we were
to expand the example by including a third coin, with its parameterθ3, then the grid would
have 504 = 6, 250, 000 points, which already strains small computers. Includea fourth coin,
and the grid contains over 312 million points. Grid approximation is not a viable approach
to even modestly large problems, which we encounter next.

9.2.2 Posterior via Monte Carlo sampling

The previous sections have used a simplified model (believe it or not) for the purpose of
being able to graphically display the parameter space and gain clear intuitions about how
Bayesian inference works. In this section, the first thing we’ll do is include one more
parameter in the model, to make it more realistic. The previous examples arbitrarily fixed
the degree of dependency ofθ on µ. The degree of dependency was specified as the value
of K, such that whenK was large, the individualθ j values stayed close toµ, but whenK
was small, the individualθ j values could spread quite far fromµ.

170 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

Figure 9.7: A model of hierarchical dependen-
cies for data fromJ coins created indepen-
dently from the same mint, with the uncer-
tainty of the mint parameterized byµ and κ.
The datumy ji from the ith flip of the jth coin
depends on the value of the coin’s bias param-
eterθ j. The values ofθ j depend on the value
of the hyperparametersµ and κ for the mint
that created the coins. Theµ parameter has
a prior belief distributed as a beta distribution
with shape parametersAµ and Bµ, while the
κ parameter has a prior belief distributed as
a gamma distribution with shape and rate pa-
rameters ofSκ andRκ. We simultaneously es-
timate theJ+2 parameters,θ1, ..., θJ, µ, andκ.
This case is discussed in Section 9.2.2.

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=0.5, rate=0.0044
m=114, sd=161

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=1, rate=0.1
m=10, sd=10

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=1, rate=1
m=1, sd=1

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=0.51, rate=0.01
m=50, sd=70

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=1.2, rate=0.025
m=50, sd=45

0 50 100 150

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

p(
x)

shape=6.2, rate=0.12
m=50, sd=20

Figure 9.8: Examples of the gamma density
distribution. The gamma(x|s, r) distribution
is a probability density forx ≥ 0, given by
gamma(x|s, r) = r s

Γ(s) xs−1e−rx, whereΓ(s) is

the gammafunction: Γ(s) =
∫ ∞
0

dt ts−1e−t.
The gamma function is a generalization of
the factorial, because for positive integers,
Γ(s) = (s− 1)!. In the specification of the
distribution, s is called the “shape” param-
eter andr is called the “rate” (or “inverse
scale”) parameter. The mean of the gamma
distribution ism= s/r, and the standard de-
viation of the gamma distribution issd =√

s/r. Hences = m2/sd2 and r = m/sd2.
In R, the gamma density is provided by
dgamma(x,shape=s,rate=r), and the gamma
function is provided bygamma(s). Conve-
niently, BUGS parameterizes the gamma
distribution the same way as R, i.e., with
shape and rate parameters in that order.

9.2. MULTIPLE COINS FROM A SINGLE MINT 171

In real situations, we don’t know the value ofK in advance, and instead we let the data
inform us regarding its credible values. Intuitively, whenthe proportions of heads in the
different coins are all very similar to each other, we have evidence thatK is high. But when
the proportions of heads in the different coins are very diverse, then we have evidence that
K is small. BecauseK will no longer be a constant, but will instead be a parameter that we
are estimating, we’ll call itκ.

Consider the hierarchical model shown in Figure 9.7. This isjust like the hierarchy
of Figure 9.4, except that what was a constantK is now a parameterκ with its own prior
distribution. Instead of specifying a single valueK for the dependency ofθ j onµ, we allow a
distribution of valuesκ. The prior distribution onκ is expressed mathematically by agamma
distribution, which is explained in Figure 9.8. We will be using gamma distributions a lot,
just as we’ve been using beta distributions a lot, so take a look at Figure 9.8 now.

9.2.2.1 Doing it with BUGS

Look again at the hierarchical diagram in Figure 9.7. The arrows in that diagram indicate the
dependencies between the variables. Some dependencies areprobabilistic; those arrows are
labeled with a “∼” symbol. Other dependencies are deterministic; those arrows are labeled
with a “=” symbol. The key thing to understand is that every arrow in the hierarchical
diagram has a corresponding statement in the BUGS model specification. The BUGS model
specification is merely a verbal code for the graphical diagram.

Here is a BUGS model specification that corresponds to Figure9.7:
(BernBetaMuKappaBugs.R)

11 model {

12 # Likelihood:

13 for (t in 1:nTrialTotal) {

14 y[t] ˜ dbern(theta[coin[t]])

15 }

16 # Prior:

17 for (j in 1:nCoins) {

18 theta[j] ˜ dbeta(a , b)I(0.0001,0.9999)

19 }

20 a <- mu * kappa

21 b <- (1.0 - mu) * kappa

22 mu ˜ dbeta(Amu , Bmu)

23 kappa ˜ dgamma(Skappa , Rkappa)

24 Amu <- 2.0

25 Bmu <- 2.0

26 Skappa <- pow(10,2)/pow(10,2)

27 Rkappa <- 10/pow(10,2)

28 }

Line 14 corresponds to the arrow toy ji from the Bernoulli distribution. Line 18 corresponds
to the arrow toθ j from the beta distribution.2 Lines 20 and 21 correspond to the arrows toa

2 The beta distribution in this BUGS model is specified withcensoring: theta[j] ∼
dbeta(a,b)I(0.0001,0.9999). The suffix “I(lower,upper)” means that the sampled value from the beta
distribution must lie between the lower and upper bounds specified. Censoring is only needed because some
of the data sets have extreme values that push the parameter values to degenerate extremes. In particular, the
data setz = c(1, 1, 1, 1, 5) with N = c(5, 5, 5, 5, 5), used for the example in Figure 9.13,
causes BUGS to crash when there is no censoring. Notice thatθ5 in Figure 9.13 loads heavily against 1.0.
Unfortunately, there are no certain signatures of when thiswill be a problem for BUGS, but data in which some
z= N or z= 0 seem to be especially pernicious.

172 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

andb from µ andκ. Finally, lines 22 and 23 correspond to the arrows toµ andκ from their
respective beta and gamma distributions.

The remaining lines of the model specification simply specify the values for the con-
stants in the top-level prior distributions, but these constants could be specified directly in
the statements of the of density distribution. For example,instead of the three statementsmu
∼ dbeta(Amu , Bmu), Amu <- 1.0, andBmu <- 1.0, we could just use the single statement
mu ∼ dbeta(1.0,1.0). The more verbose style is preferred because it explicitly indicates
where the hierarchical structure “tops out” at specific constants, and because the extra lines
more easily allow changing a constant into a stochastic variable if it is meaningful to do
so. For example, instead of specifying a constant value, as in Amu <- 1.0, we could instead
make it a stochastic variable, as inAmu ∼ dgamma(SA,RA).

What’s amazing is that BUGS figures out how to generate a sample from this model,
without requiring us to derive any conditional probabilities or proposal distributions. This
leap from model specification to automatic sampling from theposterior deserves highlight-
ing, because it is a huge leap indeed. Going through the effort of deriving a home-grown
sampling scheme for each model is arduous and time-consuming, even if you do have the
mathematical skill to derive it. Then programming its particulars consumes even more ef-
fort. Previous drafts of this book included an extensive section that included a mathematical
derivation of a hybrid Metropolis-Gibbs sampler for this model. Ultimately its only point
was to demonstrate how arduous it was, and how easy BUGS is by comparison. Therefore
the derivation has been excluded from this edition. Yeah!

The BUGS model specification usedfor loops that repeat the dependencies for each flip
of each coin. Thefor loops implement the ellipsis symbols next to the arrows in Figure 9.7.
The loop for theθ j values, in lines 17–19, is an obvious implementation of the diagram: The
for-loop has an indexj that goes from 1 to the number of coins,nCoins. The loop for the
y ji values, in lines 13–15, uses a technique callednested indexing. The index for the loop is
denotedt, for trial or time. On any given trial, a particular coin is flipped and it has a certain
outcome, and therefore the data must specify two things for each trial: First, which coin was
flipped, and second, what was the outcome. The identity of thecoin is specified in a vector
calledcoin, and the outcome is specified in a vector calledy. For example,coin = c(1, 1,
2, 2, 2) andy = c(1, 0, 0, 1, 1) means that the first flip was of coin 1 and it was a
head, the second flip was of coin 1 and it was a tail, the third flip was of coin 2 and it was a
tail, the fourth flip was of coin 2 and it was a head, and so on. The dependency specified in
line 14 of the code indicates thaty[t] is distributed as a Bernoulli distribution with aθ value
for the corresponding coin, i.e.,theta[coin[t]]. This is called nested indexing because the
value ofcoin[t] is used as an index into the vectortheta[].

Before showing more complex examples of this BUGS program inaction, we will first
reproduce the previous examples that were illustrated withgrid approximation. This will
reassure us that the BUGS sampler is operating correctly, and it will also help us transition
from the contour plots of the grid analysis to the scatter plots of MCMC chains.

Please refer back to Figure 9.5, p. 167. In that example, we assumed that the dependency
of θ on µ had a fixed value, namelyK = 5. We will capture that assumption in the present
BUGS program by making the prior onκ be a very narrow spike overκ = 5. This is achieved
by setting the mean of its gamma distribution to be 5.0, and the standard deviation of its
gamma distribution to be 0.01. The corresponding shape and rate parameter values can be
computed as described in the caption of Figure 9.8. The resulting posterior sample is shown
in Figure 9.9. Notice that the distribution ofκ is extremely narrow: The sampled values are
all extremely close to 5.0, as demanded by the spike prior. Now consider the results for the

9.2. MULTIPLE COINS FROM A SINGLE MINT 173

0.0 0.2 0.4 0.6 0.8 1.0

4.
98

4.
99

5.
00

5.
01

5.
02

µ

κ

mu
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.464

95% HDI
0.184 0.731

kappa
4.97 4.98 4.99 5.00 5.01 5.02 5.03

mean = 5

95% HDI
4.98 5.02

theta1
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.268

95% HDI
0.0868 0.47

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

4.
98

4.
99

5.
00

5.
01

5.
02

θ1

κ

theta2
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.632

95% HDI
0.332 0.927

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

4.
98

4.
99

5.
00

5.
01

5.
02

θ2

κ

Figure 9.9: Posterior
sample from BUGS,
for model of Fig-
ure 9.7, when prior has
µ ∼ beta(µ|2, 2) and
κ ≈ 5.0, and data consist
of N1 = 15, z1 = 3,
N2 = 5, and z2 = 4.
Compare with Figure 9.5.

0.0 0.2 0.4 0.6 0.8 1.0

74
.9

8
74

.9
9

75
.0

0
75

.0
1

75
.0

2

µ

κ

mu
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.387

95% HDI
0.201 0.6

kappa
74.96 74.98 75.00 75.02 75.04

mean = 75

95% HDI
75 75

theta1
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.357

95% HDI
0.178 0.557

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

74
.9

8
74

.9
9

75
.0

0
75

.0
1

75
.0

2

θ1

κ

theta2
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.413

95% HDI
0.206 0.631

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

74
.9

8
74

.9
9

75
.0

0
75

.0
1

75
.0

2

θ2

κ

Figure 9.10: Posterior
sample from BUGS,
for model of Fig-
ure 9.7, when prior has
µ ∼ beta(µ|2, 2) and
κ ≈ 75.0, and data consist
of N1 = 15, z1 = 3,
N2 = 5, and z2 = 4.
Compare with Figure 9.6.

µ andθ j values, and compare the results with the grid approximationin Figure 9.5, p. 167.
Clearly the BUGS-generated sample corresponds very closely to the grid approximation.

Figure 9.10, on the other hand, shows what happens when the prior on κ restricts it to
values extremely close to 75.0. Compare the result with the grid approximation in Fig-
ure 9.6, p. 168. Again we see that the BUGS-generated sample corresponds to the grid
approximation.

Now that we are convinced that BUGS is performing properly, we consider some new
cases. These continue to be “toy” examples, intended to train our intuition about how
Bayesian inference works for this hierarchical prior. But even these toy examples involve
too many parameters for grid approximation!

Consider a situation with three coins. We put a prior onκ that is fairly spread out,
with a mean of 10.0 and a standard deviation of 10.0, implyingshape and rate parameters
of 1.0 and 0.1, respectively. Suppose the data from the threecoins happen to indicate 5
heads out of 10 flips for every coin. Figure 9.11 shows the resulting posterior distribution.

174 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

µ

κ

mu
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.503

95% HDI
0.297 0.718

kappa
0 20 40 60 80 100

mean = 16.2

95% HDI
1.21 39.1

theta1
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.506

95% HDI
0.269 0.732

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

θ1

κ

theta2
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.5

95% HDI
0.271 0.737

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

θ2

κ

theta3
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.503

95% HDI
0.276 0.737

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ3

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

θ3

κ

Figure 9.11: Posterior
sample from BUGS,
for model of Fig-
ure 9.7, when prior has
µ ∼ beta(µ|2, 2) and
κ ∼ gamma(κ|1.0, 0.1),
and data consist of
N1 = 10, z1 = 5,
N2 = 10, z2 = 5,
N3 = 10, andz3 = 5.
The equality of outcome
proportions across coins
causes the estimate ofκ
to be high, and causes the
estimate ofµ to be rela-
tively certain. Compare
with Figure 9.12.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

µ

κ

mu
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.501

95% HDI
0.252 0.762

kappa
0 10 20 30 40 50 60

mean = 5.16

95% HDI
0.315 15.2

theta1
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.218

95% HDI
0.0111 0.459

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

θ1

κ

theta2
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.498

95% HDI
0.249 0.766

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

θ2

κ

theta3
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.785

95% HDI
0.538 0.989

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ3

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

θ3

κ

Figure 9.12: Posterior
sample from BUGS,
for model of Fig-
ure 9.7, when prior has
µ ∼ beta(µ|2, 2) and
κ ∼ gamma(κ|1.0, 0.1),
and data consist of
N1 = 10, z1 = 1,
N2 = 10, z2 = 5,
N3 = 10, andz3 = 9.
The variation of out-
come proportions across
coins causes the esti-
mate of κ to be low,
and causes the estimate
of µ to be relatively
uncertain. Compare with
Figure 9.11.

9.2. MULTIPLE COINS FROM A SINGLE MINT 175

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

µ

κ

mu
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.406

95% HDI
0.192 0.627

kappa
0 10 30 50 70

mean = 7.85

95% HDI
0.428 23.7

theta1
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.298

95% HDI
0.0266 0.574

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ1

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

θ1

κ

theta2
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.297

95% HDI
0.0279 0.562

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ2

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

θ2

κ

theta3
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.3

95% HDI
0.0247 0.579

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ3

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

θ3

κ

theta4
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.301

95% HDI
0.037 0.568

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ4

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

θ4

κ

theta5
0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.689

95% HDI
0.376 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

θ5

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

θ5

κ

Figure 9.13: Posterior
sample from BUGS,
for model of Fig-
ure 9.7, when prior has
µ ∼ beta(µ|2, 2) and
κ ∼ gamma(κ|1.0, 0.1),
and data consist of four
coins showing 1 head
in 5 flips, and one coin
showing 5 heads in 5
flips. The last coin is an
outlier, and the estimate
of its bias, θ5, shows
notable shrinkage toward
the group average, which
is dominated by the
mutual consistency of the
other coins. The bottom
right panel shows that
the shrinkage is stronger
when κ is larger. The
upper left panel shows
that the estimate ofµ
is more certain (less
variable) whenκ is larger.

Notice in particular that the posterior mean value ofκ is larger than its prior mean of 10.0.
The estimate ofκ has increased from the prior because the results from the three coins are
identical. In other words, the lack of variation between coins suggests that the coin biases,
θ j, are strongly dependent on the mint biasµ.

Suppose instead that the results were 1 head out of 10 flips in the first coin, 5 heads
out of 10 flips in the second coin, and and 9 heads out of 10 flips in the third coin. Then
the results are as shown in Figure 9.12. Notice that the posterior mean value ofκ is now
smallerthan its prior mean of 10.0. This estimate ofκ has decreased from the prior because
the three coins are so different from each other: The huge variation between coins suggests
that the coin biases are not strongly dependent on the mint bias.

9.2.3 Outliers and shrinkage of individual estimates

When estimating a bias in an individual coin, the estimate can be affected by the results of
the other coins, if there is a belief that the coins depend on ashared mint parameterµ. If

176 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

mu
0.30 0.35 0.40 0.45 0.50 0.55

mean = 0.442

95.2% <= 0.5 < 4.8%

95% HDI
0.37 0.507

kappa
20 40 60 80

mean = 22.8

95% HDI
5.17 44.6

theta1
0.1 0.2 0.3 0.4 0.5 0.6 0.7

mean = 0.327

97.4% <= 0.5 < 2.6%

95% HDI
0.152 0.499

theta28
0.3 0.4 0.5 0.6 0.7 0.8 0.9

mean = 0.562

27% <= 0.5 < 73%

95% HDI
0.373 0.765

Figure 9.14: Posterior distribution for data from Rosa et al. (1998). Prior assumes
µ ∼ beta(µ|1, 1) andκ ∼ gamma(κ|1.0, 0.1), i.e., a priorκ mean of 10.0 and priorκ
standard deviation of 10.0.

many coins yield similar data proportions, then the posterior estimate of the dependence,κ,
will tend to be high, and that dependence in turn will tend to yield estimates of the individual
biases that more closely resemble the mint parameterµ. This “shrinkage” of individual
estimates toward the hyperparameter value is especially evident for outliers. Figure 9.13
shows an example with five coins, four of which yield 1/5 heads and one of which yields
5/5 heads. The last coin is an outlier relative to the other fourcoins. Notice in the top
right panel that the mean of its posterior bias estimate is pulled down quite far from its data
proportion of 5/5. The other coins are pulled up from their data proportions of 1/5 relatively
less.

The bottom right panel of Figure 9.13 is a scatterplot of believable combinations of
values forθ5 andκ. The scatter reveals the influence ofκ on the estimate of the outlying
bias,θ5. Whenκ is close to zero, then the believable values ofθ5 tend to be high, close to
the actual data proportion. But whenκ is larger, then the estimate ofθ5 shrinks toward the
typical value ofµ.

This shrinkage of the estimates of the individual biases is not a problem with the anal-
ysis; in fact, the shrinkage accurately reflects our beliefs: If we believe that all the coins
have biases generated by the same mint, and that the biases depend on the mint, then the
flips from the different coinsshouldmutually inform each other’s estimated biases. The
hierarchical Bayesian analysis is especially nice becauseit tells us not only the estimates
of the biases (θ j) and the mint parameter (µ), but also the degree of dependence (κ) of the
biases on the mint parameter.

9.2. MULTIPLE COINS FROM A SINGLE MINT 177

9.2.4 Case study: Therapeutic touch

Rosa, Rosa, Sarner, and Barrett (1998) investigated therapeutic touch (TT) among medical
practitioners. TT is is a technique in which nurses sweep their hands 5–10 cm over a
patient’s body and (claim to) sense depleted or congested areas of the patient’s “energy
field”. The TT practitioners then sweep their hands to “re-pattern” and smooth the energy
field, resulting in healing of the patient. TT has had a notable range of proponents, including
some professional organizations (see Rosa et al., 1998, forreview).

The crucial prerequisite for TT is sensing of the patient’s energy field. Rosa et al.
(1998) wanted to test practitioners’ abilities to achieve this sensing. The testing method
was as follows: A practitioner held out her two hands, palm up. The tester put her right
hand 5-10 cm over one or the other of the practitioner’s hands, as determined by the flip
of a coin. There was a screen occluding the practitioner’s view of her own hands. The
practitioner had to guess which of her outstretched hands was being hovered over by the
experimenter’s hand. Each practitioner was tested for 10 trials.

There were 28 TT practitioners who volunteered to participate (7 were repeated with
a several-month separation, so these are counted as distinct subjects). Rosa et al. (1998)
suggest that the recruitment rate was aided by the fact that the experimenter was a 9-year
old girl (the second author of the article). Results showed that the mean number correct,
across practitioners, was 4.39, with the lowest being 1 and the highest being 8. Chance
performance is 5 out of 10 correct.

These data are precisely of the form that can be modeled by Figure 9.7. Each prac-
titioner corresponds to a “coin” being flipped 10 times, and the underlying ability of the
jth practitioner is denotedθ j. The practitioners are assumed to be randomly representa-
tive of the group of all practitioners, and the group has a mean ability denoted byµ. The
dependency of the individual abilities on the group mean is measured byκ.

The prior on the group meanµ was uniform,µ ∼ beta(µ|1, 1), thereby putting no prior
emphasis on chance. The prior onκ had a mean of 10 and a standard deviation of 10,
thereby allowing great variation among practitioners’ abilities (by allowing smallκ). Note
that the prior (and posterior) distribution is a joint distribution on a 30-dimensional space,
for parametersθ1, ..., θ28, µ, andκ.

Figure 9.14 shows various marginal distributions of the 30-dimensional joint posterior.
The posterior onµ (upper left panel) indicates that the chance value ofµ = .5 is among the
95% most believable values. The posterior indicates that the most believable group accu-
racies actually tend to be less than chance correct, meaningthat the therapists, if sensing
something from the experimenter’s hand, were systematically selecting the sideopposite
where the experimenter’s hand was.

Figure 9.14 also shows the marginal posterior forκ. The posterior meanκ is larger
than the prior mean, indicating that the individual accuracies were more similar to each
other than the prior assumed. The two lower panels of Figure 9.14 show the posterior
estimates of the individual accuracies for the lowest and highest performing practitioners.
In both cases, the 95% HDI spans 0.5, but this is not surprising given that there were only
10 trials per subject. The individual estimates are also affected by shrinkage, of course,
as can be discerned from the fact that the 95% HDIs do not even include the proportion-
correct actually yielded by the practitioners, which were 0.1 and 0.8, respectively. While
the shrinkage pulls the individual estimates toward the group average, the shrinkage also
increases the certainty of the estimate of the group average. In other words, whenκ is
larger, the distribution ofµ gets narrower. This effect on the spread ofµ can be seen in

178 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

the upper left panel of Figure 9.13, which shows a scatter plot of µ andσ for a similar
toy design. Thus, the consistency across subjects, which shrinks individual estimates, also
enhances the specificity of the group estimate.

9.2.5 Number of coins and flips per coin

When we collect more data, our estimate of the model parameters becomes more certain.
For example, in the previous section’s investigation of therapeutic touch (TT), we know
that the sensitivity of the experiment could have been larger if more data were collected.
Indeed, if enough data were collected, maybe we could conclude that TT practitioners can,
on average, sense the experimenter’s hand, albeit only weakly.

The new twist to this old theme is that here we have two ways to get more data: We
could include more flips per coin or include more coins. If we have a choice of including
more coins or including more flips per coin, which should we choose? If our goal is to es-
timate the hyperparameters, then the answer is: More coins.For example, suppose you can
run an experiment with 250 flips total. You can flip 5 coins 50 times each, or you can flip 50
coins 5 times each. Which should you do? If you want to estimate the minting parameters,
go with the 50 coins. The reason is that the larger number of coins puts more constraint on
the posterior estimate ofµ andκ than the fewer number of coins. The individual coins will
have estimates ofθ j that are less specific and more influenced by the other coins, but this is
appropriate for the premise of our model: We are presuming that each coin is an indepen-
dent representative of thesamemint. Our goal in this case is not so much to estimate the
individual coin biases as to estimate the overarching mint parameters. Exercise 9.1 has you
explore an example of this issue.

9.3 Multiple coins from multiple mints

9.3.1 Independent mints

American coins can usually be identified with which mint theycame from. For example,
recent 1-cent coins minted in Denver have a “D” under the yearon their obverse (“head”)
side, and 1-cent coins minted in Philadelphia have no letterunder the year. Suppose we
want to estimate the mint parametersµm of the different mints. We will assume that the
two mints’ parameters are independent of each other, and estimate them separately from
each other. This amounts to modeling each mint with a structure shown in Figure 9.7, and
estimatingµ andκ separately for each mint.

This situation arises in real research quite regularly. Forexample, give each participant
a 20-item test, and mark the answers correct or wrong, so eachsubject has a score in the
range 0–20. Randomly assign the subjects to one of two conditions for taking the test:
noisy environment and quiet environment. We would like to know whether the noise/quiet
affected test performance, so we compare the estimates ofµnoise andµquiet. We might also
be interested in the values ofκ andθ, but our primary interest for this situation is the typical
accuracy in the two conditions, as measured by the hyperparamterµ. As another example,
suppose we have a new drug for treating some disease. We run a study in which patients
at some randomly selected hospitals get the new drug, while patients at other randomly
selected hospitals get a placebo. At each hospital, we countthe number of patients who
have recovered. In this case the hospital has the role of the coin, and each patient at the

9.3. MULTIPLE COINS FROM MULTIPLE MINTS 179

hospital is a “flip” of the coin. We would like to compareµdrug andµplacebo; in other words,
we would like to estimate the magnitude of their differenceµ1 − µ2.

At this point we’ll analyze some real data, as a thorough example of this situation. To
understand the experiment, first consider a rectangle with asmall vertical segment inside

it, like this: | Different instances of this figure have rectangles of different heights, and
internal line segments at different lateral positions, like these:

| | | | ...
In a simple learning experiment, people are shown instancesof these rectangles, one at a
time, and the people must learn which of two category labels belong to each instance.

For example, it could be that all short rectangles are A’s, while all tall rectangles are
B’s. Or, it could be that all instances with a left-side line are A’s, while all instances with
right-side lines are B’s. These sorts of categorization rules are calledfiltration structures
because you can filter out one dimension (line position or rectangle height) but still get
the categorization correct. On the other hand, the categorization rule might be: Tallest
rectangles or rightmost lines are A’s, while shortest rectangles or leftmost lines are B’s. Or,
tallest rectangles or leftmost lines are A’s, while shortest rectangles or rightmost lines are
B’s. These sorts of categorization rules are calledcondensationstructures because you have
to condense information from both dimensions to get the categorization correct.

Different theories of learning predict different orderings for the relative difficulty of
these category structures. To test the theories, we need to assess how difficult it is to learn
the structures and, in particular, estimate differences in difficulties of different category
structures.

In an experiment involving these sorts of stimuli and structures, different groups of sub-
jects learned each of the four rules mentioned above (Kruschke, 1993). Group 1 learned a
filtration structure for which line-segment position was the relevant cue. Group 2 learned a
filtration structure for which rectangle height was the relevant cue. Groups 3 and 4 learned
condensation structures of the two types mentioned in the previous paragraphs. All four
groups saw the same stimuli; the only difference was the category labeling of the stimuli.
Each learning trial consisted of the presentation of the figure, the subject guessing the cor-
rect label, and then being shown the correct label for that figure. There were 64 learning
trials. On each trial, the subject’s response could be correct or wrong.

The abstract structure of this experiment can be mapped ontothe sort of hierarchical
dependencies we’ve been considering in this chapter. Figure 9.15 shows the dependencies
as a hierarchical diagram. We conceive of each trial’s response as the flip of a coin, with
correct= 1 and wrong= 0. Across theN = 64 trials, the subject getsz of them correct.
Each individual subject is a coin with a certain learned biasθ to get the answer correct.
(We arenot modeling thechangeof bias across trials; we are simplifying and modeling
each subject as a stationary propensity to be correct, a propensity that has been influenced
by the structure of the category labels.) An individual’s propensity is a random sample
from the group’s distribution of propensities, modeled as abeta distribution. The group’s
typical accuracy is denoted byµ, and the tightness of individual propensities around that
group average is denoted byκ. The idea is that the difficulty of the category structure
determines the group-average accuracyµ, and each individual is some random variation
from that group average. The amount by which individuals tend to deviate from the group
average is governed byκ. Whenκ is large, then the individuals tend to be close to the group
average, and whenκ is small, then individuals can be spread far from the group average.

180 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

Figure 9.15: Hierarchical diagram for model
of data from the filtration-condensation ex-
periment, with program in Section 9.5.2
(FilconBrugs.R). This diagram is much like
Figure 9.7, except for two changes. First,
the distribution at the bottom of the hierarchy
is binomial instead of Bernoulli, because the
data are sums across trials instead of individ-
ual trials. Second, the estimated parameters
all have a subscriptc that denotes the condi-
tion from which the data were drawn. In other
words, this structure is copied separately for
each condition.

Each category structure has its own average difficulty and spread of individual scores
around that average. The different groups are denoted by the subscriptc. The model as-
sumes that there is no higher level in the structure to express relations across conditions.
In other words, the data from one condition have no influence on the data from another
condition. This is merely an assumption of the model, which could be changed if it were
theoretically meaningful to do so. Our main interest is estimating differences inµc across
conditions.

The data from this experiment are structured by-subject: Each subject was assigned to a
particular condition, had a particular number of training trials, and got a particular number
of those trials correct. This way of organizing the data is very general, because it allows
there to be a different number of subjects in different conditions, and allows there to be a
different number of training trials for each subject. The filtration/condensation experiment
happened to use a balanced design wherein all subjects had the same number of trials and
all conditions had the same number of subjects, but it is not necessary for experiments to
be balanced in that way. The by-subject structuring of data allows for easy application to
unbalanced experiment designs. The data are specified as three vectors:cond[i] specifies
the condition, 1–4, of theith subject,N[i] specifies the number of training trials of theith

subject, andz[i] specifies the number of correct responses of theith subject.
The BUGS model specification has a line for each arrow in the hierarchical diagram of

Figure 9.15, as follows: (FilconBrugs.R)

11 model {

12 for (subjIdx in 1:nSubj) {

13 # Likelihood:

14 z[subjIdx] ˜ dbin(theta[subjIdx] , N[subjIdx])

15 # Prior on theta: Notice nested indexing.

16 theta[subjIdx] ˜ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)

17 }

9.3. MULTIPLE COINS FROM MULTIPLE MINTS 181

µ1 − µ2

0.00 0.05 0.10 0.15

mean = 0.0803

0.1% <= 0 < 99.9%

95% HDI
0.0352 0.125

µ3 − µ4

−0.10 −0.05 0.00 0.05 0.10

mean = 0.00403

44.2% <= 0 < 55.8%

95% HDI
−0.0474 0.061

(µ1 + µ2) 2 − (µ3 + µ4) 2

0.00 0.05 0.10 0.15 0.20

mean = 0.172

0% <= 0 < 100%

95% HDI
0.137 0.207

Figure 9.16: Histograms of differences in values of the mu parameters, generated
by the script FilconBrugs.R (p. 188).

18 for (condIdx in 1:nCond) {

19 a[condIdx] <- mu[condIdx] * kappa[condIdx]

20 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]

21 # Hyperprior on mu and kappa:

22 mu[condIdx] ˜ dbeta(Amu , Bmu)

23 kappa[condIdx] ˜ dgamma(Skappa , Rkappa)

24 }

25 # Constants for hyperprior:

26 Amu <- 1

27 Bmu <- 1

28 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)

29 Rkappa <- meanGamma/pow(sdGamma,2)

30 meanGamma <- 10

31 sdGamma <- 10

32 }

The model specification uses nested indexing (as we’ve seen in a previous section) in
line 16, which says that the underlying propensityθ for an individual subject is distributed
as a beta distribution that has shape parametersa[cond[subjIdx]] andb[cond[subjIdx]] spe-
cific to the condition of the that subject. (The beta density is censored with theI(,) suffix
to prevent degeneracy problems when the data are extreme; see Footnote 2, p. 171.) The
complete program is listed in Section 9.5.2 (FilconBrugs.R).

The BUGS model uses a binomial likelihood distribution for total correct, instead of
using the Bernoulli distribution for individual trials. (The binomial distribution was men-
tioned in Footnote 1, p. 67, and is explained on p. 217. Although BUGS specifies the bino-
mial density asdbin, R specifies it asdbinom.) This use of the binomial is just a convenience
for shortening the program. If the data were specified as trial-by-trial outcomes instead
of as total correct, then the model could include a trial-by-trial loop and use a Bernoulli
likelihood function.

When the program is run, the result is an MCMC chain that specifies a large sample
of jointly believable parameter values. Notice how many parameter values have been esti-
mated. In every condition, there are 40θ values for the individual learners, plus aµ value
expressing the group average, plus aκ value expressing how tightly the individuals cluster
around the group average. Therefore, across the four conditions, the program has estimated
168 parameters! These parameters exist in a joint space of 168 dimensions. Because of
this particular model structure, we know that each condition is independent of the others
(so the space can be thought of as 4 distinct 42-dimensional spaces), but in general all the
parameters exist in a conjoint space. In particular, believable values ofµc andκc are not
necessarily independent of each other, and believable values ofθc j are not independent of

182 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

the values ofκc, etc.
Because the parameter space is so big, we only examine perspectives of the posterior

distribution that are theoretically meaningful to consider. Our main interest in this experi-
ment falls at the group level: How big is the difference between groups? We address this
question by examining differences in believableµc values. Figure 9.16 shows histograms
of meaningful differences ofµc values. The left histogram shows the difference between
µ1, for filtration with line-segment relevant, andµ2, for filtration with height relevant. The
mean difference of posterior mu values is 0.0639, and the 95% HDI goes from 0.00937
to 0.120. Because a difference of zero is not among the 95% most credible values, but is in
the tail of credibility, we have a moderately strong belief that the two filtration conditions
have different difficulty. The middle histogram shows that there is no credible difference
between the two condensation conditions. The right histogram shows that there is over-
whelming strength in the belief that filtration, on average,is easier than condensation, on
average:all of the posterior is well above zero.

9.3.2 Dependent mints

In some experiment designs, we might assume that the different treatment conditions are
totally independent of each other. In the context of mintingcoins, this is assuming that the
parameter values of one mint are completely disconnected from the parameter values of
another mint. This assumption of total disconnection was used to analyze the data from the
filtration-condensation experiment in the previous section (e.g., Figure 9.16).

On the other hand, we could treat the mint parameters as beingmutually informa-
tive, perhaps because the same governmental agency oversees the creation of all the mints.
Therefore we can establish a prior distribution of beliefs regarding possible values of the
mint parameters, with themth mint’s µm andκm parameters being representative of the over-
arching distribution of governmentally constrained mint parameters.

To make these ideas more concrete, consider again the filtration-condensation exper-
iment. In the previous section’s analysis, we estimated each condition’s parameters com-
pletely separately from the other conditions. But this assumption of complete informational
insulation between conditions might be losing some useful information. In particular, con-
sider theκc parameters, which indicate how tightly the individual subjects’ accuracies clus-
ter around the group averageµc. If individual variation from the group mean is caused only
by random influences that are not affected by the group’s treatment (i.e., category structure),
then the variation seen in each group should be informative for the estimate ofκc in other
groups.

We could express this mutuality ofκc in different ways. One way is to assume that all
conditions have thesameκ value. The left side of Figure 9.17 shows a hierarchical diagram
for this assumption. The diagram is only subtly different from the one in Figure 9.15:
Occurrences ofκ have no subscriptc, and the dependency arrow pointing atκ has no ellipsis.
Again, what this means conceptually is that the random spread of individual accuracies
around the group mean accuracy is the same for all groups. In other words, the category
structure influences the mean accuracy for the group, but thecategory structure does not
influence the random variation of individuals around that mean accuracy.

So far, we have considered two extreme possibilities: Either the κc’s are completely
insulated from each other, or they are identical. There is a middle ground. We could have
prior beliefs that theκc’s might be influenced by the category structures, but the degree of
that influence is something we estimate from the data. We conceive of the theκc values

9.3. MULTIPLE COINS FROM MULTIPLE MINTS 183

Figure 9.17:Left: A hierarchical diagram for a model that constrains theκ of every con-
dition to be the same value. Notice that there is no subscriptc on κ, and no ellipsis on the
dependency arrow leading toκ. Right: A hierarchical diagram for a model that constrains
theκc values to come from the same overarching distribution, namely gamma(κc|sκ, rκ), but
the parameters of the overarching distribution are estimated by considering data from all the
conditions. BUGS code for this model is presented on p. 193. Compare with Figure 9.15,
for which theκc values come from the same overarching distribution, but theparameters of
which are fixed and uninfluenced by the data from the other conditions.

184 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

as coming from an overarching distribution, and the dispersion of that distribution is esti-
mated by considering how much the group variances actually differ from each other. The
right side of Figure 9.17 shows a hierarchical diagram for this assumption. Notice that the
gamma distribution for theκc values no longer has its shape and rate parameters as pre-set
constants. Instead, the shape of the gamma distribution is estimated from the data. The
diagram shows that the shape and rate parameters of the gammadistribution are first re-
expressed in terms of the meanµγ and the standard deviationσγ. The mean and standard
deviation, in turn, are given uniform prior distributions over a suitable (positive) range. Al-
though this diagram may seem confusing at first, the idea is actually simple: If the data
indicate that individual variation within each group is nearly identical across groups, then
the estimatedκc values should be near each other, and the distribution ofκc values should
be narrow. The narrowness in the distribution ofκc values is captured by the estimated
standard deviationσγ. In particular, the overarching distribution ofκc values will provide
shrinkage of their estimates to the extent that the data suggest it. For example, if three of
the four conditions have very similar within-group variation, but the fourth condition has a
somewhat outlying within-group variation, then the estimate of the fourth group’sκc will be
pulled toward the overall average within-group variation.On the other hand, if the groups
have very different within-group variations, then only large values ofσγ will be credible in
the posterior.

Because of the simplicity of the BRugs software, it is easy toprogram this sort of
hierarchy and generate samples from the posterior distribution. In Exercise 9.2 you will
modify the BUGS program for the filtration-condensation analysis, and implement these
variations of assumptions aboutκc. Importantly, you will examine the indirect effects on
estimates ofµc, which are of primary applied interest for the research. (Analogous higher-
level estimation will be simultaneously applied to theµc parameters in Exercise A, p. 283.)
Another benefit of implementing the more elaborate hierarchial model is that we see a clear
case in which extensive burn-in and thinning is required. InExercise 9.3, you will see this
graphically.

9.3.3 Individual differences and meta-analysis

In experiments with human participants, one of the strikingresults is vast variation be-
tween people. Seat ten people at a simple response-time task, and you will get ten different
mean response times. These various results across people are referred to asindividual
differences. We could estimate parameters for each individual completely insulated from
estimates of other individuals. Alternatively, we could believe that the individual results are
all taken from a common overarching distribution, because all the individuals were of the
same species. We could specify the dependence of individualperformance parameters on
the overarching distribution, and then our estimates of theindividual parameters would be
influenced by results from other individuals, via the co-dependence on the hyperparameter.
We’ve seen several examples of this mutual influence via higher-level dependencies, such
as so-called shrinkage.

So far in this book we’ve been focused on binary-scaled data (e.g., heads vs. tails). For
an example of modeling individual differences in this vein but when data are measured on
a continuous scale, see Rouder and Lu (2005). For an interesting approach that uses an in-
finite dimensional parameter space to entertain many possible groupings of individuals, see
Navarro, Griffiths, Steyvers, and Lee (2006). For a different approach, that uses Bayesian
model comparison to select groupings for individuals, see Lee and Webb (2005). The next

9.4. SUMMARY 185

chapter of this textbook explains how model comparison can be thought of as hierarchical
modeling.

Hierarchical models can also be used formeta-analysis. The idea is that different repli-
cations of an experiment are independent representatives of an overarching distribution of
effect magnitudes. Each experiment’s data informs a posteriordistribution regarding its
own first-level parameters, but the other experiments’ dataalso influence the estimates be-
cause of their dependency on the overarching parameter. Theestimate of the overarching
parameter indicates the result of meta-analysis. See Section 5.6 of Gelman et al. (2004) for
an example of Bayesian meta-analysis, but using normal priors on continuous data instead
of beta priors on binomial data as we’ve been using here.

9.4 Summary

This chapter introduced the notion of hierarchical dependency using a simple two-parameter
model, shown in Figures 9.2 and 9.3. This simple example showed quite graphically the
notion of parameterized dependency: One of the parameters explicitly described the degree
of dependency of the data on the other parameter. From that conceptual foundation, the
chapter introduced MCMC approximations, applying them to the simple cases first so that
you can see that the MCMC methods do in fact yield the same results as the grid based
methods.

The power and scope of MCMC methods applied to hierarchical models was demon-
strated in the analysis of data from the filtration-condensation experiment. In those anal-
yses, a parameter was estimated for every subject, plus two parameters for every condi-
tion, plus in some cases other overarching parameters. Despite the number of parameters,
MCMC methods yield very rapid and stable results.

9.5 R code

9.5.1 Code for analysis of therapeutic-touch experiment

This program was used to generate Figures 9.13 and 9.14, etc.

(BernBetaMuKappaBugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

4 # A Tutorial with R and BUGS. Academic Press / Elsevier.

5 #--

6 # THE MODEL.

7

8 # Specify the model in BUGS language, but save it as a string in R:

9 modelString = "

10 # BUGS model specification begins ...

11 model {

12 # Likelihood:

13 for (t in 1:nTrialTotal) {

14 y[t] ˜ dbern(theta[coin[t]])

15 }

16 # Prior:

17 for (j in 1:nCoins) {

18 theta[j] ˜ dbeta(a , b)I(0.0001,0.9999)

186 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

19 }

20 a <- mu * kappa

21 b <- (1.0 - mu) * kappa

22 mu ˜ dbeta(Amu , Bmu)

23 kappa ˜ dgamma(Skappa , Rkappa)

24 Amu <- 2.0

25 Bmu <- 2.0

26 Skappa <- pow(10,2)/pow(10,2)

27 Rkappa <- 10/pow(10,2)

28 }

29 # ... BUGS model specification ends.

30 " # close quote to end modelString

31

32 # Write the modelString to a file, using R commands:

33 .temp = file("model.txt","w") ; writeLines(modelString,con=.temp) ; close(.temp)

34 # Use BRugs to send the model.txt file to BUGS, which checks the model syntax:

35 modelCheck("model.txt")

36

37 #--

38 # THE DATA.

39

40 # Demo data for various figures in the book:

41 N = c(5, 5, 5, 5, 5) # c(10, 10, 10) # c(15, 5) # c(5, 5, 5, 5, 5)

42 z = c(1, 1, 1, 1, 5) # c(1, 5, 9) # c(3, 4) # c(1, 1, 1, 1, 5)

43 # Therapeutic touch data:

44 # z = c(1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,7,7,7,8)

45 # N = rep(10,length(z))

46 # Convert z,N to vectors of individual flips.

47 # coin vector is index of coin for each flip.

48 # y vector is head or tail for each flip.

49 # For example,

50 # coin = c(1, 1, 2, 2, 2)

51 # y = c(1, 0, 0, 0, 1)

52 # means that the first flip was of coin 1 and it was a head, the second flip

53 # was of coin 1 and it was a tail, the third flip was of coin 2 and it was a

54 # tail, etc.

55 coin = NULL ; y = NULL

56 for (coinIdx in 1:length(N)) {

57 coin = c(coin , rep(coinIdx,N[coinIdx]))

58 y = c(y , rep(1,z[coinIdx]) , rep(0,N[coinIdx]-z[coinIdx]))

59 }

60 nTrialTotal = length(y)

61 nCoins = length(unique(coin))

62 dataList = list(

63 y = y ,

64 coin = coin ,

65 nTrialTotal = nTrialTotal ,

66 nCoins = nCoins

67)

68

69 # Use BRugs commands to put the data into a file and ship the file to BUGS:

70 modelData(bugsData(dataList))

71

72 #--

73 # INTIALIZE THE CHAIN.

74

75 nChains = 3

76 modelCompile(numChains = nChains) # BRugs tells BUGS to compile the model.

77 modelGenInits() # BRugs tells BUGS to randomly initialize the chains.

9.5. R CODE 187

78

79 #--

80 # RUN THE CHAINS.

81

82 # Run some initial steps without recording them, to burn-in the chains:

83 burninSteps = 1000

84 modelUpdate(burninSteps)

85 # BRugs tells BUGS to keep a record of the sampled values:

86 samplesSet(c("mu" , "kappa" , "theta"))

87 nPerChain = 1000

88 modelUpdate(nPerChain , thin=10)

89

90 #--

91 # EXAMINE THE RESULTS.

92

93 # Check for mixing and autocorrelation:

94 source("plotChains.R")

95 plotChains("mu" , saveplots=F)

96 plotChains("kappa" , saveplots=F)

97 plotChains("theta[1]" , saveplots=F)

98

99 # Extract the posterior sample from BUGS:

100 muSample = samplesSample("mu") # BRugs gets sample from BUGS

101 kappaSample = samplesSample("kappa") # BRugs gets sample from BUGS

102 thetaSample = matrix(0 , nrow=nCoins , ncol=nChains*nPerChain)

103 for (coinIdx in 1:nCoins) {

104 nodeName = paste("theta[" , coinIdx , "]" , sep="")

105 thetaSample[coinIdx,] = samplesSample(nodeName)

106 }

107

108 # Make a graph using R commands:

109 source("plotPost.R")

110 if (nCoins <= 5) { # Only make this figure if there are not too many coins

111 windows(3.2*3,2.5*(1+nCoins))

112 layout(matrix(1:(3*(nCoins+1)) , nrow=(nCoins+1) , byrow=T))

113 par(mar=c(2.95,2.95,1.0,0),mgp=c(1.35,0.35,0),oma=c(0.1, 0.1, 0.1, 0.1))

114 nPtsToPlot = 500

115 plotIdx = floor(seq(1,length(muSample),length=nPtsToPlot))

116 kPltLim = signif(quantile(kappaSample , p=c(.01,.99)) , 4)

117 plot(muSample[plotIdx] , kappaSample[plotIdx] , type="p" , ylim=kPltLim ,

118 xlim=c(0,1) , xlab=expression(mu) , ylab=expression(kappa) , cex.lab=1.5)

119 plotPost(muSample , xlab="mu" , xlim=c(0,1) , main="" , breaks=20)

120 plotPost(kappaSample , xlab="kappa" , main="" , breaks=20 , HDItextPlace=.6)

121 for (coinIdx in 1:nCoins) {

122 plotPost(thetaSample[coinIdx,] , xlab=paste("theta",coinIdx,sep="") ,

123 xlim=c(0,1) , main="" , breaks=20 , HDItextPlace=.3)

124 plot(thetaSample[coinIdx,plotIdx] , muSample[plotIdx] , type="p" ,

125 xlim=c(0,1) , ylim=c(0,1) , cex.lab=1.5 ,

126 xlab=bquote(theta[.(coinIdx)]) , ylab=expression(mu))

127 plot(thetaSample[coinIdx,plotIdx] , kappaSample[plotIdx] , type="p" ,

128 xlim=c(0,1) , ylim=kPltLim , cex.lab=1.5 ,

129 xlab=bquote(theta[.(coinIdx)]) , ylab=expression(kappa))

130 }

131 dev.copy2eps(file=paste("BernBetaMuKappaBugs",paste(z,collapse=""),".eps",sep=""))

132 } # end if (nCoins <= ...

133

134 ## Uncomment the following if using therapeutic touch data:

135 #windows(7,5)

136 #layout(matrix(1:4 , nrow=2 , byrow=T))

188 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

137 #par(mar=c(2.95,2.95,1.0,0),mgp=c(1.35,0.35,0),oma=c(0.1, 0.1, 0.1, 0.1))

138 #plotPost(muSample , xlab="mu" , main="" , breaks=20 , compVal=0.5)

139 #plotPost(kappaSample , xlab="kappa" , main="" , breaks=20 , HDItextPlace=.1)

140 #plotPost(thetaSample[1,] , xlab="theta1" , main="" , breaks=20 , compVal=0.5)

141 #plotPost(thetaSample[28,] , xlab="theta28" , main="" , breaks=20 , compVal=0.5)

142 #dev.copy2eps(file="BernBetaMuKappaBugsTT.eps")

9.5.2 Code for analysis of filtration-condensation experiment

The beta density on line 16 is suffixed with “I(0.001,0.999)”, which means that the sampled
value is censored at 0.001 below and 0.999 above. This is necessary because the sampled
theta value is used as an argument in dbin on line 14, and when the theta value gets too
extreme, the dbin function crashes on some data points. Thisis especially a problem for
condition 1 of the experiment, in which the accuracies are very high and the sampled theta
values also tend to be close to 1.0. This issue was first mentioned in Footnote 2, p. 171.

The chain initialization uses the data to determine reasonable parameter values that may
be in the vicinity of posterior credible values. For example, themu values are initialized at
the means of each group. The group means are computed by usingtheaggregate(dataVec ,
list(groupVec) , mean) command in R, which cleverly extracts the data indataVec accord-
ing to the group codes ingroupVec and applies themean to each set of extracted data. The
initial kappa values are computed via Equation 5.6 from the standard deviation of each
group.

(FilconBrugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fileNameRoot="FilconBrugs" # for constructing output filenames

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for (subjIdx in 1:nSubj) {

13 # Likelihood:

14 z[subjIdx] ˜ dbin(theta[subjIdx] , N[subjIdx])

15 # Prior on theta: Notice nested indexing.

16 theta[subjIdx] ˜ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)

17 }

18 for (condIdx in 1:nCond) {

19 a[condIdx] <- mu[condIdx] * kappa[condIdx]

20 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]

21 # Hyperprior on mu and kappa:

22 mu[condIdx] ˜ dbeta(Amu , Bmu)

23 kappa[condIdx] ˜ dgamma(Skappa , Rkappa)

24 }

25 # Constants for hyperprior:

26 Amu <- 1

27 Bmu <- 1

28 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)

29 Rkappa <- meanGamma/pow(sdGamma,2)

30 meanGamma <- 10

31 sdGamma <- 10

9.5. R CODE 189

32 }

33 # ... end BUGS model specification

34 " # close quote for modelstring

35 # Write model to a file:

36 writeLines(modelstring,con="model.txt")

37 # Load model file into BRugs and check its syntax:

38 modelCheck("model.txt")

39

40 #--

41 # THE DATA.

42

43 # For each subject, specify the condition s/he was in,

44 # the number of trials s/he experienced, and the number correct.

45 # (These lines intentionally exceed the margins so that they don’t take up

46 # excessive space on the printed page.)

47 cond = c(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

48 N = c(64,6

49 z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,6

50 nSubj = length(cond)

51 nCond = length(unique(cond))

52

53 # Specify the data in a form that is compatible with BRugs model, as a list:

54 datalist = list(

55 nCond = nCond ,

56 nSubj = nSubj ,

57 cond = cond ,

58 N = N ,

59 z = z

60)

61

62 # Get the data into BRugs:

63 # Function bugsData stores the data file (default filename is data.txt).

64 # Function modelData loads data file into BRugs (default filename is data.txt).

65 modelData(bugsData(datalist))

66

67 #--

68 # INTIALIZE THE CHAINS.

69

70 nChain = 3

71 modelCompile(numChains=nChain)

72

73 if (F) {

74 modelGenInits() # often won’t work for diffuse prior

75 } else {

76 # initialization based on data

77 genInitList <- function() {

78 sqzData = .01+.98*datalist$z/datalist$N

79 mu = aggregate(sqzData , list(datalist$cond) , "mean")[,"x"]

80 sd = aggregate(sqzData , list(datalist$cond) , "sd")[,"x"]

81 kappa = mu*(1-mu)/sdˆ2 - 1

82 return(

83 list(

84 theta = sqzData ,

85 mu = mu ,

86 kappa = kappa

87)

88)

89 }

90 for (chainIdx in 1 : nChain) {

190 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

91 modelInits(bugsInits(genInitList))

92 }

93 }

94

95 #--

96 # RUN THE CHAINS.

97

98 burninSteps = 2000

99 modelUpdate(burninSteps)

100 samplesSet(c("mu","kappa","theta","a","b"))

101 nPerChain = ceiling(5000/nChain)

102 modelUpdate(nPerChain , thin=10)

103

104 #--

105 # EXAMINE THE RESULTS.

106

107 # Check for convergence, mixing and autocorrelation:

108 source("plotChains.R")

109 sumInfo = plotChains("mu" , saveplots=T , fileNameRoot)

110 sumInfo = plotChains("kappa" , saveplots=F)

111 sumInfo = plotChains("theta[1]" , saveplots=F)

112

113 # Extract parameter values and save them.

114 mu = NULL

115 kappa = NULL

116 for (condIdx in 1:nCond) {

117 mu = rbind(mu , samplesSample(paste("mu[",condIdx,"]",sep="")))

118 kappa = rbind(kappa , samplesSample(paste("kappa[",condIdx,"]",sep="")))

119 }

120 save(mu , kappa , file=paste(fileNameRoot,"MuKappa.Rdata",sep=""))

121 chainLength = NCOL(mu)

122

123 # Histograms of mu differences:

124 windows(10,2.75)

125 layout(matrix(1:3,nrow=1))

126 source("plotPost.R")

127 plotPost(mu[1,]-mu[2,] , xlab=expression(mu[1]-mu[2]) , main="" ,

128 breaks=20 , compVal=0)

129 plotPost(mu[3,]-mu[4,] , xlab=expression(mu[3]-mu[4]) , main="" ,

130 breaks=20 , compVal=0)

131 plotPost((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2 ,

132 xlab=expression((mu[1]+mu[2])/2 - (mu[3]+mu[4])/2) ,

133 main="" , breaks=20 , compVal=0)

134 dev.copy2eps(file=paste(fileNameRoot,"MuDiffs.eps",sep=""))

135

136 # Scatterplot of mu,kappa in each condition:

137 windows()

138 muLim = c(.60,1) ; kappaLim = c(4.0 , 40) ; mainLab="Posterior"

139 thindex = round(seq(1 , chainLength , len=300))

140 plot(mu[1,thindex] , kappa[1,thindex] , main=mainLab ,

141 xlab=expression(mu[c]) , ylab=expression(kappa[c]) , cex.lab=1.75 ,

142 xlim=muLim , ylim=kappaLim , log="y" , col="red" , pch="1")

143 points(mu[2,thindex] , kappa[2,thindex] , col="blue" , pch="2")

144 points(mu[3,thindex] , kappa[3,thindex] , col="green" , pch="3")

145 points(mu[4,thindex] , kappa[4,thindex] , col="black" , pch="4")

146 dev.copy2eps(file=paste(fileNameRoot,"Scatter.eps",sep=""))

9.6. EXERCISES 191

9.6 Exercises

Exercise 9.1.[Purpose: Research design — more coins versus more flips per coin.] In Section 9.2.5,
p. 178, it was argued that if the goal of the research is to get agood estimate of the group
averageµ, then it is better to collect data from more coins than to collect more flips per
coin. This exercise has you generate simulated data to bolster this conclusion.

(A) Use the R code of Section 9.5.1 (BernBetaMuKappaBugs.R) for this exercise. In the
data section of that program, comment out the lines that specify N and z. Insert the follow-
ing lines:

ncoins = 50 ; nflipspercoin = 5

muAct = .7 ; kappaAct = 20

thetaAct = rbeta(ncoins , muAct*kappaAct+1 , (1-muAct)*kappaAct+1)

z = rbinom(n=ncoins , size=nflipspercoin , prob=thetaAct)

N = rep(nflipspercoin , ncoins)

Explain in words what that code does. This is important; if you don’t understand this code,
the rest of the exercise will not make much sense. Hint: It’s generating random data, for
specific “actual” parameter values; explain in detail.

(B) At the bottom of the program, UNcomment the lines that plot the posteriors of
muSample, kappaSample, and thetaSample[1,]. (Don’t plot thetaSample[28,], because it
doesn’t exist.) You should also uncomment the windows() andlayout(...) command, so that
the plots don’t overwrite each other. Run the program a few times and include the graphs
of onetypical run in your write-up.

(C) Now change the data-generation code so that the number of coins is 5 (instead of
50) and the number of flips per coin is 50 (instead of 5). Run theprogram a few times and
include the graphs of onetypical run in your write-up.

(D) Is the posterior estimate ofµmore certain for 5 coins or for 50 coins? Is the posterior
estimate ofθ1 more certain for 5 coins (50 flips per coin) or for 50 coins (5 flips per coin)?
Is it better to use more coins or more flips per coin if the goal is to estimateµ?

Exercise 9.2. [Purpose: Examine effect of different assumptions about across-group constraints.

Specifically, different assumptions aboutκc in the analysis of data from the filtration-condensation ex-

periment.] For this exercise, we will perform alternative analyses of the data from the
filtration-condensation experiment described in Section 9.3.1. You will adapt the code listed
in Section 9.5.2 (FilconBrugs.R), which implements the hierarchical model diagramed in
Figure 9.7, in order to implement the alternative hierarchical models diagrammed in Fig-
ure 9.17.

(A) The left side of Figure 9.17 shows a model in which the sameκ value is used for
all groups simultaneously. The idea here is that accuraciesof individuals in each group
depend on the group mean accuracy, and we are going to estimate the magnitude of that
dependency of individuals on the group mean,but we assume that whatever the degree of
dependency is, it is the same in every group. This assumptioncan be thought of as saying
that the category structure (e.g., filtration or condensation) affects the mean accuracy of the
group, but individual variation from the mean accuracy is caused only by other factors that
are the same across groups, not by the category structure. Toimplement this assumption in
the program, do the following: In the model specification, becauseκ does not depend on the
group (i.e., the condition), move the line that specifies thedistribution ofκ outsidethefor-
loop that cycles through the conditions. Moreover, becausethere is only oneκ, remove the
index fromκ, i.e., changekappa[condIdx] to kappa. Then, in the initialization of the chains,

192 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

µ1 − µ2

0.00 0.05 0.10 0.15

mean = 0.0812

0% <= 0 < 100%

95% HDI
0.0437 0.118

µ3 − µ4

−0.10 −0.05 0.00 0.05 0.10

mean = 0.00462

43.4% <= 0 < 56.6%

95% HDI
−0.0548 0.0607

(µ1 + µ2) 2 − (µ3 + µ4) 2

0.00 0.05 0.10 0.15 0.20

mean = 0.18

0% <= 0 < 100%

95% HDI
0.148 0.218

µ1 − µ2

0.00 0.05 0.10 0.15

mean = 0.0815

0% <= 0 < 100%

95% HDI
0.0402 0.121

µ3 − µ4

−0.10 −0.05 0.00 0.05 0.10

mean = 0.0033

44.7% <= 0 < 55.3%

95% HDI
−0.0511 0.0589

(µ1 + µ2) 2 − (µ3 + µ4) 2

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.177

0% <= 0 < 100%

95% HDI
0.142 0.212

Figure 9.18:For Exercise 9.2.Upper row shows results whenκ is constrained to be
equal for all groups, as in the hierarchical diagram of theleft side of Figure 9.17.
Lower row shows results whenκ has its distribution across groups estimated, as
in the hierarchical diagram of theright side of Figure 9.17. Compare these results
with those in Figure 9.16.

11

1

1

1
1

11

1

1

1

11

1

1

1

1

1

1

1
1

1

1

1

1

1

11

1
1

1
1

1

1

1

1
1
1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

11

1

11
11
1

11

1

1

1

1

1

1

1
1

1
11

11

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
11

11

1

1

1

1

1
1

1

1

1

1

11

1
11

1

1

1

1
1

1

1
1

1

1

1

11

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1

1

1

11

1
1 1

1

1

1

1

1

1 1

1

111

1
1

1

1

1

1

1

1

1

1

1

1
1

11

1

11

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

11

11

1

1
1

1

1

1
1

1

1

1

1

1

1
1

1

1

1
1111

1

1

1

1

1

1

1

1

1

11
1

1

1

1

1

1

11

1

1

1

1

1

1
1

1

11

1

1 11

1

1

1

11

0.6 0.7 0.8 0.9 1.0

5
10

20

Posterior

µc

κ c

2

2

2

2

22

2 2

2

2

2

2

22

2

2 2

2

2

2

2

2

2
2

2
2

2 2

2
2

2

2

2

2

2

22

2

2

2
2

2

2

22 2

2

2

2

2
2

2

2
2

2

2

22

2

2

2
2

2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2
22

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2
2

2

2

2
2

2

2

2

2 2
2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

22
2

2

2

2
2

2

2 2

2
2

2

2

2

22
2

2

2

2 2
2

2

2

22

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2

22

2

2
2

2

2

2
2

2

2

2

2

2

2

2
2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

22

2

2

2

2

2

2
2

2

22

2

2

2

2

2

2
2

2 2

2

2

2

2

2

2

2

2
2

2
2 2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2 2

2 2
2

2

2
2

3

3
3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

33
3

3

3 3

3
3

3

3

3
3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

33
3

3
3

3

3

3
3

3 3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

33

3

33

3
3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

333

3

3

3
3

3

3

3

3

3

3

3

3

3

33 3

3

3 3
3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

33

3
3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3
3

3

3
3

3

3
3

3

3
3

3

3

3

3 3

3
3

3

3

3

3

3
3

3

33

3

3
3

3

3
3

3

3

3

3

3

3

3

3

3 3

3

3

3

3
3

3

3

3
3

3
3
3

3

3
3

3

3

3

3
3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3
33

3

33 3

3

3

3

3

3
3

3

3

3
3

3

3
3

3

3

3

3

33

3

3

3

4

4

44

4
44

4

4

4

4

4
4

4
4 44 4

4

4

4

4
4

4

4

4
44

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4
44

4

4

4

4

4

4
4

4

4

4

44

4

4

44

4

4
4

4

4

4

4

4

4

4

4 4

4

4

4

4 4

4

4
44

4

44

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4 4
4

444 4
4

4

4

4 4
4

4

4

4

4

4 4

4
4

4
4

4

4

4

4
4

4

4

4

4

4 4

4

4
4

4

4

4
4 4 4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

44

4

4

4

4

4 4

4
4

4

4

4 4

4

4

44

4

4
4

4

4

4

4

4
4

4

44

4

4
4

4

4
4 4

44

4

4

4

4

4

4
4

4

4

4

4 4

4

4

4

4

4

44

4

4

4
4

44
4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

44

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4
4

4

44

4

4

4

4

4

4

4

1
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1
1

1

1

1

1
1

1

1

1
1

1

11
1

1

1

1

11
1

1
1

1
1

1

11

1
1

1

1

1

1

1

11

1

1

1
1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1
1
1

1

1

1

1

1

1

1 1

1

1
1

1

1

1 1

1
1

1
1111

1
1

1

1

1

1

1

1

1
1

1

1

1

1

11

11

1

1

11
111

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1 1

1

11

1

1

1

1

11
1

1

1
1

1 11 1 1

11

1

1

1
1

1

1

1

1

1

11

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1
1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
11

1

1

1

1

1

1

1

11

1
1

1
1

1

1
1

1

1

1

1

1

1
1

1

1

1

11
1

1
1

1
1

1

1

1
1

1

1

11

1

1
111 11 1

1

1

1

11

1
1

1

1

1

1

0.6 0.7 0.8 0.9 1.0

5
10

20

Posterior

µc

κ c

2

2

2

2
2 22 2

2 2

2

2

2 2 2

2

2
2

2

2 2

2

2

2

2

2
2

2

2

2
2

2

2

22

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2
2

222 2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

22

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

22

2

2

2

2 2
2

2

2

2222
2

2

2

2

2
2

2
2

2 2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

2
2
2

2

2

2
2

2

2 2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2 222

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
2

2

2
2

22

2
2

2

2

2

2

2

2

2

2
22

2
2

2

2 22 2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
22

2

2
2

2 22 2

2

2

2

2

2

2 22 22

2

2
2

2

2

2

2

2

2

2

2
222 22
2

2

2

2
2

2

2
2

22

2

3

3

3

3

3

33
3 3

3

33

3

3

3

3
3

3

3
33

3

3

3

3

3

3
3

3
3

3
3 3

3

3

3

3

3

3 3
3

3

3
3

3
3

3
3

33

3

3

3

3

3

3

3
3

3

3
3

3

3

3 3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3
33

3

3

3

3

3

3

33

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3
3

33

3 333
3

3

3
3
3
3

3

3

3
3

3

3
33

3

3
3

3
3

3
3

3
3

3

3
33

3

33

3
3

3
3

3
3

3

3

3

3

3

3
3

3

3

3

3

3 3
333

3

3

3

3
3

3
3

3
3

3

3
3

3

3 33 3

3

3

3

3

3
3

3

3

3

3

33

3

3
3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

33 3

3

3
3

3

3

3

3 3

3

3

3
3 3 3

33
3

3
3

3

3

3

3

3

3

3

3

33

33

33 3

3

3
3

3

3

3
3 33 333

3 3
3

3

3
3

33
3

3

3

4

4

4

4

4

4
4

4

4

4

44

4

4

4

444

4

4
4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4
444

4

4

4

4

4
4

44

4

4

4

4 4 4

4

4

4
4

4

44

4

4

4 4

4

4

4

4

4

4

4

4

4
4

4

4 4

4

4

4

4

44
4

4

4

4
44

4

44

4

4
4

4

4

4

4

4
4

4

4
444

4444

4

4

4
4

44
4
4

4 4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

444

4

4

4

4
4

4

44

4

4

4

4
4

4

44
4 4

4

4
4 4

4

4

4

4

4

4

4

4

4

4
4

4

4
4

4
4444

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4
4 44

4

44

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4
4 4

4

4

4

4

4

4

4

4

4

4
4 4

4

4

4

4

4

4 4

4
4

4

4
44

4
4

4 4

4

4

44 4

4

4

4

4

4

4

4

4

44

44

4 44
44

4

4

4

4

4

4
4

4

4
4

4

1

1
1
1

11

1

1

1

1
1 11

1 1
11
11

1
1

1

1

1

1

1

1

1
11

1

1 1
1

1

1
1

1

1
1

1

11
1 1

1
1

1

1

1
1

1
11

1

1

1

1
1 1

1
11

1
1

11
1
1 11

1

1
1

11

1

1

1
1

11

1

1
1
11

1 1
1

1
1

1 1
1

1

1
11

1

1

1 11111

1

1
1

1

1 1
1

1

1
1
1

1

1
1

1
1

1

1

1
11

1

1

1
1

1

1
1

1

1

1

1

1

1

1 1

11

1

1

11

1
1

11

1
1

1
1

1

1

1

1
1
1

1 1
1

1

1
1

1

1
1

1

1
1

1 1
1

1
111

1

1
1

1

1
1

1

11

1
1

1

1
1

11
1

1

11

1

1

1

1

1

11

1
1

1
111

1

1

1 1
1

1

1

11

1
1 11

1

1

1

11

1

1

1

1

1

1

11

1

1
1

1

1

1 1
1

11 1
1

1

11

1
1

1
11

1

1

1

1
1

1

1
1
1

1

1

111

1

1
1

11

11

11
1

11

1

1

11
1

11
1

1
1
1

1

1

0.6 0.7 0.8 0.9 1.0

5
10

20

Posterior

µc

κ c

2

2
2

2
22

2

2

2

2
2 22
2 2

22
22

2
2

2

2

2

2

2

2

2
22

2

2 2
2

2

2
2

2

2
2

2

2 2
22

2
2

2

2

2
2

2
2 2

2

2

2

2
22

2
22
2

2

2 22
222

2

2
2

22

2

2

2
2

22

2

2
2

22
22

2

2
2
22
2

2

2
2 2

2

2

22 2
22 2

2

2
2

2

22
2

2

2
2

2

2

2
2

2
2

2

2

2
22

2

2

2
2

2

2
2

2

2

2

2

2

2

22

2 2

2

2

22

2
2

22

2
2

2
2

2

2

2

2
2

2
22

2
2

2
2

2

2
2

2

2
2

2 2
2

2
22 2

2

2
2
2

2
2

2

2 2

2
2

2

2
2

22
2

2

2 2

2

2

2

2

2

22

2
2

2
222

2

2

2 2
2

2

2

22

2
2 2 2

2

2

2

22

2

2

2

2

2

2

22

2

2
2

2

2

22
2

2 2 2
2

2

22

2
2

2
2 2

2

2

2

2
2

2

2
2

2

2

2

2 22

2

2
2

2 2

22

22
2
22

2

2

2 2
2

22
2

2
2

2

2

2

3

3
3

3
3 3

3

3

3

3
33 3

33
33

3 3
3

3

3

3

3

3

3

3

3
33

3

3 3
3

3

3
3

3

3
3

3

33
33

3
3

3

3

3
3

3
33

3

3

3

3
3 3
3

3 3
3

3

333
33 3

3

3
3
3 3

3

3

3
3

3 3

3

3
3

33
33

3

3
3

3 3
3

3

3
3 3

3

3

33333 3

3

3
3

3

33
3

3

3
3

3

3

3
3

3
3

3

3

3
3 3

3

3

3
3

3

3
3

3

3

3

3

3

3

3 3

3 3

3

3

3 3

3
3

3 3

3
3

3
3

3

3

3

3
3

3
33

3
3

3
3

3

3
3

3

3
3

33
3

3
333

3

3
3

3

3
3

3

33

3
3

3

3
3

33
3

3

3 3

3

3

3

3

3

33

3
3

3
33 3

3

3

33
3

3

3

33

3
333

3

3

3

33

3

3

3

3

3

3

3 3

3

3
3

3

3

33
3

3 33
3

3

3 3

3
3

3
3 3

3

3

3

3
3

3

3
3

3

3

3

333

3

3
3

33

3 3

3 3
3

33

3

3

33
3

3 3
3

3
3
3

3

3

4

4
4
4

4 4

4

4

4

4
4 4 4

44
44

4 4
4
4

4

4

4

4

4

4

4
44

4

44
4

4

4
4

4

4
4

4

44
4 4

4
4

4

4

4
4

4
44

4

4

4

4
44

4
4 4

4
4

444
44 4
4

4
4

44

4

4

4
4

44

4

4
4

44
44

4

4
4

44
4

4

4
4 4

4

4

4444 44

4

4
4

4

44
4

4

4
4

4

4

4
4

4
4

4

4

4
44

4

4

4
4

4

4
4

4

4

4

4

4

4

44

44

4

4

4 4

4
4

44

4
4

4
4

4

4

4

4
4

4
4 4

4
4

4
4

4

4
4

4

4
4

44
4

4
4 44

4

4
4

4

4
4

4

4 4

4
4

4

4
4

44
4

4

44

4

4

4

4

4

4 4

4
4

4
444

4

4

44
4

4

4

4 4

4
4 44

4

4

4

4 4

4

4

4

4

4

4

44

4

4
4

4

4

4 4
4

4 4 4
4

4

44

4
4

4
4 4

4

4

4

4
4

4

4
4
4

4

4

44 4

4

4
4

44

4 4

44
4

44

4

4

44
4

44
4

4
4

4

4

4

Figure 9.19:For Exercise 9.2.Scatterplots ofµc andκc values for the four con-
ditions of the filtration-condensation experiment. A plotted numeral indicates the
condition. Left panel: Allκc values separately estimated, as in model of Fig-
ure 9.15. Middle panel:κc values mutually informed by estimated overarching
distribution, as in model of right side of Figure 9.17. Rightpanel:κc values con-
strained to be the same, as in model of left side of Figure 9.17.

9.6. EXERCISES 193

make sure that kappa is initialized to a single value insteadof a vector of four values. To do
this, set kappa to the mean of the four condition kappa’s. Nowrun the modified program.
HINT: For an example of results, see Figure 9.18, and comparethe results with those in
Figure 9.16. In your answer: (i) Report the modified model-specification section of your
code. (ii) Show the graph of the estimatedµ differences. (iii) Answer this:Why is the
95% HDI of theµ1 − µ2 differences farther away from zero than in the original analysis?

(B) The right side of Figure 9.17 shows a model in which theκc values for the dif-
ferent groups come an overarching distribution, the parameters of which are estimated by
considering all the groups. The idea here is that accuraciesof individuals in each group
depend on the group mean accuracy, and we are going to estimate the magnitude of that
dependency of individuals on group mean,but we assume that whatever the degree of de-
pendency is, it will tend to be similar across groups, and we let the data inform our esti-
mate of that similarity. To implement this assumption in theprogram, do the following:
First, Starting with the original program, in the model specification, change the lines that
specify the mean and standard deviation of the gamma distribution, from constants to uni-
form distributions. Use ranges from 0.01 to 30. For example,changemeanGamma <- 10 to
meanGamma∼dunif(0.01,30), and do the same forsdGamma. The resulting model specification
could look like this: (FilconCoKappaBrugs.R)

11 model {

12 for (subjIdx in 1:nSubj) {

13 # Likelihood:

14 z[subjIdx] ˜ dbin(theta[subjIdx] , N[subjIdx])

15 # Prior on theta: Notice nested indexing.

16 theta[subjIdx] ˜ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)

17 }

18 for (condIdx in 1:nCond) {

19 a[condIdx] <- mu[condIdx] * kappa[condIdx]

20 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]

21 # Hyperprior on mu and kappa:

22 mu[condIdx] ˜ dbeta(Amu , Bmu)

23 kappa[condIdx] ˜ dgamma(Skappa , Rkappa)

24 }

25 # Constants for hyperprior:

26 Amu <- 1

27 Bmu <- 1

28 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)

29 Rkappa <- meanGamma/pow(sdGamma,2)

30 meanGamma ˜ dunif(0.01 , 30)

31 sdGamma ˜ dunif(0.01 , 30)

32 }

Second, be sure that the initialization of the chains give initial values tomeanGamma and
sdGamma; such as mean(kappa[]) and sd(kappa[]) respectively, where kappa[] are data-
derived kappa’s for the four groups. Now run the modified program. HINT: For an example
of results, see Figure 9.18, and compare the results with those in Figure 9.16. In your an-
swer: (i) Report the modified model-specification section ofyour code. (ii) Show the graph
of the estimatedµ differences. (iii) Answer this:Whyis the 95% HDI of theµ1 − µ2 differ-
ences farther away from zero than in the original analysis, but not as far away from zero as
when assuming the sameκ for all conditions?

Exercise 9.3.[Purpose: To see, graphically, the importance of burning-in the chains, and the meaning

of autocorrelation.] This exercise uses the BUGS program you created in the last part of the

194 CHAPTER 9. BINOMIAL LIKELIHOOD WITH HIERARCHICAL PRIOR

previous exercise, i.e., the model for the right side of Figure 9.17. You might find it useful
to refer to Section 23.2, p. 510, when doing this exercise.

Set the burn-in to zero and the thinning to zero. In other words, don’t burn-in at all,
and just remove the the thin argument. Have the model go for 800 steps. What do the
graphs of the chains look like, in particular for kappa? See,for example, Figure 9.20. Are
the chains thoroughly overlapping? Include a relevant graph and discuss both burn-in and
autocorrelation.

0 200 400 600 800

6
8

10
14

18

’kappa[1]’

iteration

0 200 400 600 800

5
10

15
20

’kappa[2]’

iteration

0 200 400 600 800

10
15

20
25

’kappa[3]’

iteration

0 200 400 600 800

10
15

20
25

30

’kappa[4]’

iteration

Figure 9.20: For Exercise 9.3. Markov chains for the kappa parameters of the four
conditions,during the initial burn-in trials, and with no thinning. Notice that it
takes a few hundred trials for the chains to migrate to their stable regions, which
is why burn-in is needed. Notice also that chains change onlygradually and are
auto-correlated (and can even get “stuck” as is seen here in trials 600–800) which
is why thinning is needed.

Chapter 10

Hierarchical modeling and model
comparison
Contents

10.1 Model comparison as hierarchical modeling 195
10.2 Model comparison in BUGS . 197

10.2.1 A simple example . 197
10.2.2 A realistic example with “pseudopriors” 199
10.2.3 Some practical advice when using transdimensional MCMC

with pseudopriors. 204
10.3 Model comparison and nested models206
10.4 Review of hierarchical framework for model comparison 208

10.4.1 Comparing methods for MCMC model comparison208
10.4.2 Summary and caveats . 209

10.5 Exercises . 210

The magazine model comparison game
Leaves all of us wishing that we looked like them.
But they have mere fantasy’s bogus appeal,
’Cause none obeys fact or respects what is real.1

10.1 Model comparison as hierarchical modeling

Consider again the simple hierarchical dependency in whicha single coin with biasθ de-
pends on a hyperparameterµ. This dependency was diagrammed in Figure 9.1 (p. 159). An
example of Bayesian updating for this structure, using specific prior constants, was plotted
in Figure 9.2 (p. 162). Please take a look at those figures now.

In that previous scenario, the hyperparameterµ was assumed to have any possible value
in the interval [0, 1]. Figure 10.1 shows a case in which the hyperparameterµ is instead
allowed onlytwo values:µ = .25 andµ = .75. We can think of this as being a prior with
two ridges, one ridge over each of the possible values. The hyperprior has put equal prior

1Did you notice “Bayes’ factor” sounded out in the verse?

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

195

196 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

theta

m
u

prior

Prior

θ
µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ)

µ

Prior
K = 12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

p(
θ|

µ=
.7

5)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

θ

p(
θ|

µ=
.2

5)

theta

m
u

likelihood

Likelihood

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Likelihood
D = 6 heads, 3 tails

theta

m
u

posterior

Posterior

θ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal p(µ|D)

µ

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

θ

M
ar

gi
na

l p
(θ

|D
)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

p(
θ|

µ=
.7

5,
D

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

θ

p(
θ|

µ=
.2

5,
D

)

Figure 10.1: A prior with only two values of the hyperparameter µ is tantamount to model
comparison at the level ofθ. The marginalp(µ|D) indicates the posterior beliefs in the two
values ofµ.

10.2. MODEL COMPARISON IN BUGS 197

probability on the two values ofµ, as can be seen by the equal heights of the spikes in the
marginal hyperprior distribution,p(µ), shown in the top right panel.

The dependence ofθ on µ is determined as before by Equation 9.2, in this case with
K = 12 (arbitrarily). Therefore, whenµ = .25, the prior distribution overθ is beta(θ, 3, 9),
and whenµ = .75, the prior distribution overθ is beta(θ, 9, 3). These distributions can be
seen as the profiles of the vertical ridges in the perspectiveplot of the prior in Figure 10.1,
and in the plots ofp(θ|µ) in the right panel of the second row.

In this example we flip a coinN = 9 times, and observez = 6 heads. The likelihood
is shown in the middle row of Figure 10.1, and the posterior isobtained, as always, by
multiplying the likelihood and the prior, point-by-point across the parameter space.

The posterior shows two ridges, like the prior, because anywhere the prior is zero, the
posterior must also be zero. The shape of each ridge is just the updated beta distributions:
Whenµ = .25, the posterior distribution overθ is beta(θ, 3 + 6, 9 + 3), and whenµ = .75,
the posterior distribution overθ is beta(θ, 9+ 6, 3+ 3). These can be seen in the conditional
distributions in the lower right panel.

The posterior also reveals how much we believe in each candidate value ofµ, as can be
seen in the graph ofp(µ|D) in the right panel of the fourth row of Figure 10.1. (The scale
on thep(µ) axis is not very meaningful in this case, because it is a grid-based estimate of
density, but in this casep(µ) is really a discrete probability mass at each of the two values
of µ.) Notice that the spike overµ = .75 has grown much taller, and the ratio ofp(µ= .75|D)
to p(µ= .25|D) is roughly 26 to 4, which is 6.5 to 1.

This comparison of beliefs in two values ofµ is tantamount to comparison of beliefs in
two models at the level ofθ, namely, the model beta(θ|3, 9) versus the model beta(θ|9, 3).
When summing the posterior distribution overθ, we are effectively computing, at each value
of µ = µ∗, the evidence for the modelµ = µ∗: p(D|µ) =

∫

dθ p(D|θ)p(θ|µ). Exercise 10.1
(p. 210) has you explore this in a little more detail, and it would be good for you to take a
look at it now.

10.2 Model comparison in BUGS

The example of Figure 10.1 showed a case in which two models were formed by two
discrete values of a continuous hyperparameter. More generally, different models can be
thought of as dependent on acategoricalhyperparameter, which merely indexes the models.
When the indexical hyperparameter has valuej, then thejth model, with its parameters and
priors, is used to estimate the data. With the models represented by values of the categorical
hyperparameter, the posterior probability of each model isjust the posterior probability of
each value of the categorical hyperparameter. This framework allows us to set up MCMC
chains that jump from model to model, as well as jump from parameter value to parame-
ter value within models. MCMC chains that jump between models are sometimes called
transdimensionalbecause different models can have different numbers of parameters, i.e.,
different dimensionality.

10.2.1 A simple example

We’ll continue with the example of Figure 10.1 to illustratethe basic idea in BUGS. What
we’ll do is define two possible priors fortheta, with the priors indexed by a hyperparameter
calledmodelIndex. The indexical hyperparameter is itself a random variable,estimated along

198 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

with the parametertheta.
A straightforward way to implement this scheme is shown by this BUGS model speci-

fication: (BernBetaModelCompBrugs.R)

8 model {

9 # Likelihood:

10 for (i in 1:nflips) {

11 y[i] ˜ dbern(theta) # y[i] distributed as Bernoulli

12 }

13 # Prior distribution:

14 theta ˜ dbeta(aTheta , bTheta) # theta distributed as beta density

15 aTheta <- muTheta * kappaTheta

16 bTheta <- (1-muTheta) * kappaTheta

17 # Hyperprior:

18 muTheta <- muThetaModel[modelIndex]

19 muThetaModel[1] <- .75

20 muThetaModel[2] <- .25

21 kappaTheta <- 12

22 # Hyperhyperprior:

23 modelIndex ˜ dcat(modelProb[])

24 modelProb[1] <- .5

25 modelProb[2] <- .5

26 }

The model specification starts with the likelihood, which isjust the familiar Bernoulli dis-
tribution usingtheta as the parameter. The prior ontheta is then specified as a beta density,
with the parameters of the beta density defined in terms of a hyperparameter calledmuTheta,
which is simply the mean of the beta distribution oftheta.

It’s at this point that the new stuff begins, at line 18, commented “Hyperprior”. The
hyperparametermuTheta has a different value depending on the model. If it’s model 1, then
muTheta has value .75, but if it’s model 2, thenmuTheta has value .25. This assignment is ac-
complished by specifying a vectormuThetaModel[] with two components having values .75
and .25. The parametermuTheta is assigned one of the values from the vectormuThetaModel[]

depending on the model index.
The next lines, 24–26, specify the prior on the model index itself. The model index is

namedmodelIndex. It is a random variable, distributed according to acategorical density
function dcat. The dcat distribution takes aJ-component vector as its argument, and
generates a value 1, 2, ...,J with the probability specified in the 1st, 2nd, ..., Jth component
of the vector. The code specifies the prior probabilities on the two model indices to be the
same: .5. This means that we believe each model is equally probable before we collect new
data.

Figure 10.2 shows the output of the program. Compare it with the posterior in the
lower-right panel of Figure 10.1. In particular, notice that the posterior probability that the
model index has value 1 is 0.868, which is roughly 6.5 times larger than the probability
it has value 2. This result matches the result shown in Figure10.1 (and computed exactly
in Exercise 10.1). It is important to notice that thetheta chain produced by the BRugs
code contains interspersed values for both models. At stepsin the chain whenmodelIndex
= 1, the theta value represents the posterior for model 1, but at steps in the chain when
modelIndex = 2, thetheta value represents the posterior for model 2.

The simple approach taken in this example is fine in principle, but works in practice
only for the most elementary cases like this one. One aspect that made this example simple
was that the same parameter (theta) was used for both models, and only the hyperprior

10.2. MODEL COMPARISON IN BUGS 199

Posterior Theta_1 when Model Index = 1

θ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
15

00
0

p(M1|D) = 0.868

Posterior Theta_2 when Model Index = 2

θ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00

p(M2|D) = 0.132

Figure 10.2: Output of BUGS model described in Section 10.2.1. Compare with the poste-
rior in the lower-right panel of Figure 10.1, p. 196.

constants differed between models. More generally, however, different models can have
different parameters altogether. In such situations, the approach taken above can run into
problems because BUGS can get stuck sampling from one model for a long time before it
jumps to the other model. The next section illustrates this situation and one way to address
the problem.

10.2.2 A realistic example with “pseudopriors”

Consider again the experiment that involved learning of filtration or condensation struc-
tures, introduced in Section 9.3.1 (p. 178). There were fourdifferent category structures,
a.k.a. conditions, for learning. In the initial BRugs code for that example, each condition
was allowed its own mean (µ) and certainty (κ) hyperparameter values for the beta distri-
bution from which individual participant biases were generated. The model therefore had
a differentθ parameter for each individual, fourµ parameters (one for each condition), and
four κ parameters (one for each condition). This model was diagrammed in Figure 9.15,
p. 180.

Alternatively, we also considered a model that assumed the same certainty value for all
four conditions. This model was diagrammed in the left side of Figure 9.17, p. 183. This
assumption says that all participants are equally dependent on their condition’sµ parameter,
even though theµ parameter may differ between groups. In terms of the learning task, the
assumption is that the category structure affects the mean difficulty of learning, but not
the variability of that difficulty across participants. This model has just oneκ0 parameter,
instead of four differentκ parameters. Importantly, this singleκ0 parameter is distinct from
any of the four conditionκ’s of the previous model, and therefore it is given a distinctive
subscript here and denotedkappa0 in the BUGS model specification:

200 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

(FilconModelCompBrugs.R)

10 model {

11 for (i in 1:nSubj) {

12 # Likelihood:

13 nCorrOfSubj[i] ˜ dbin(theta[i] , nTrlOfSubj[i])

14 # Prior on theta: Notice nested indexing.

15 theta[i] ˜ dbeta(aBeta[CondOfSubj[i]] ,

16 bBeta[CondOfSubj[i]])I(0.0001,0.9999)

17 }

18 # Hyperprior on mu and kappa:

19 kappa0 ˜ dgamma(shapeGamma , rateGamma)

20 for (j in 1:nCond) {

21 mu[j] ˜ dbeta(aHyperbeta , bHyperbeta)

22 kappa[j] ˜ dgamma(shapeGamma , rateGamma)

23 }

24 for (j in 1:nCond) {

25 aBeta[j] <- mu[j] * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))

26 bBeta[j] <- (1-mu[j]) * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))

27 # BUGS equals(,) won’t work here, for no apparent reason.

28 # Took me hours to isolate this problem (argh!). So, DO NOT use:

29 # aBeta[j] <- mu[j] * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))

30 # bBeta[j] <- (1-mu[j]) * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))

31 }

32 # Constants for hyperprior:

33 aHyperbeta <- 1

34 bHyperbeta <- 1

35 shapeGamma <- 1.0

36 rateGamma <- 0.1

37 # Hyperprior on model index:

38 mdlIdx ˜ dcat(modelProb[])

39 modelProb[1] <- .5

40 modelProb[2] <- .5

41 }

The model specification begins with the binomial likelihoodfor each individual’s data.
Then each individualtheta[i] value is distributed as a beta distribution with parameters
aBeta andbBeta. On lines 25–26 something new happens. TheaBeta andbBeta values de-
pend on the value of the model index,mdlIdx. For example, whenmdlIdx is 1, thenaBeta[j]
<- mu[j] * kappa[j], but whenmdlIdx is 2, thenaBeta[j] <- mu[j] * kappa0. The program
accomplishes this conditional assignment by a contorted algebraic manipulation because
the BUGS interpreter has limited abilities; see the commenton line 27.

Figure 10.3 illustrates the output. The top panel shows the MCMC chain for the model
index. The most obvious feature is that there is a much higherprobability for model 2
than model 1. In other words, despite the fact that model 1 hasdistinct certainties for each
condition, and can therefore fit the data better in terms of maximal likelihood, it isnot the
more believable model. The simpler model 2, with only one certainty for all conditions,
has noticeably higher posterior probability. The reason that model 1 suffers is that the
prior believability of its extra parameters gets diluted over a high-dimensional space. Even
though model 1 has particular parameter values with a higherlikelihood than model 2,
the prior believability of those parameter values is low. Ifthe data were different, such
that some conditions had huge variance and other conditionshad tiny variance, then the
more complex model 1 might have higher posterior probability because the simpler model
wouldn’t fit the data very well. For the actual data, the variances within the four conditions
are similar enough that the simpler model wins.

10.2. MODEL COMPARISON IN BUGS 201

0 2000 4000 6000 8000 10000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

p(M1|D)=0.102, p(M2|D)=0.898

Step in Markov chain

M
od

el
 In

de
x

(1
, 2

)

Post. kappa[1] for M = 1

κ1

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Post. kappa[2] for M = 1

κ2

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Post. kappa[3] for M = 1

κ3

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[4] for M = 1

κ4

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[1] for M = 2

κ1

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[2] for M = 2

κ2

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[3] for M = 2

κ3

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[4] for M = 2

κ4

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa0 for M = 1

κ0

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa0 for M = 2

κ0

0 5 10 15 20 25 30

0.
00

0.
10

0.
20

Figure 10.3: Output from model comparison without using pseudopriors. Compare with
Figure 10.4.

202 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

The middle rows of Figure 10.3 show distributions of theκ j parameter values, sampled
in the MCMC chain. There are two rows of histograms. The upperrow shows the fourκ j

parameters when the model index is1. The lower row shows the fourκ j parameters when
the model index is2. Even though theκ j are not used to model the data when the model
index is 2, BUGS goes ahead and generates values for them anyway; BUGS generates a
value for every parameter at every step in the chain. Notice that the distributions in the
two rows are quite different! When the model index is 1, the data are being modeled by
the fourκ j values, and so the sampled values are constrained by the data. But when the
model index is 2, theκ j values are not used in the model; they are floating unconstrained
by data. Therefore the sampled values can only reflect the prior distribution. The curves
superimposed on the histograms show the prior distributionthat was specified in the model;
notice that the sample histograms match the specified prior very closely.

The bottom section of Figure 10.3 shows the distribution ofkappa0 for the two model
indices. Thekappa0 parameter is used to model the data when the model index is 2, but
kappa0 is unconstrained by the data when the model index is 1. The histograms reflect this
situation: When the model index is 1, the histogram matches the prior distribution.

Look again at the MCMC chain for the model index in the top panel of Figure 10.3.
Although it might not be obvious, the model index doesn’t change back and forth as often
as it should if it were really sampling independently from the posterior probabilities of the
models. The model index tends to linger at one value or the other. This is, essentially, a
problem ofautocorrelationin the chain. This malingering can be problematic because it
implies that the chain must bevery long before we have a good estimate of the relative
probabilities of the models. In principle, all we have to do is wait a long time, but in
practice, we might not be able to wait long enough and we don’tknow in advance how long
is long enough. So we should try to fix this autocorrelation problem.

Why does the model index get stuck? Recall that the way the chain jumps away from
its current model is by considering a proposed set of parameter values in theother model.
What are the proposed parameters in the other model? For the model that is not currently
constrained by the data, BUGS has generated random values from the model’s prior. Such
random values are usually not very good fits to the data, and therefore the chain won’t often
jump to the other model.

How can the problem be solved? One approach is to define “pseudopriors” for the mod-
els, that are used when the models are not constrained by the data (Carlin & Chib, 1995).
These pseudopriors merely stand in for the real prior when the model is not being used
to actually fit the data. The pseudoprior merely keeps the MCMC chain “in the ballpark”
of the posterior, so that proposed parameter values are reasonable. The challenge then be-
comes how to specify the pseudoprior. A simple solution is tomake the pseudoprior mimic
the posterior. I did this in the code below by using gamma densities with the same mean
and standard deviation as the posterior kappa distributions simulated in Figure 10.3. The
code below shows details, discussed after the listing:

(FilconModelCompPseudoPriorBrugs.R)
10 model {

11 for (i in 1:nSubj) {

12 # Likelihood:

13 nCorrOfSubj[i] ˜ dbin(theta[i] , nTrlOfSubj[i])

14 # Prior on theta: Notice nested indexing.

15 theta[i] ˜ dbeta(aBeta[CondOfSubj[i]] ,

16 bBeta[CondOfSubj[i]])I(0.0001,0.9999)

17 }

10.2. MODEL COMPARISON IN BUGS 203

18 # Hyperprior on mu and kappa:

19 kappa0 ˜ dgamma(shk0[mdlIdx] , rak0[mdlIdx])

20 for (j in 1:nCond) {

21 mu[j] ˜ dbeta(aHyperbeta , bHyperbeta)

22 kappa[j] ˜ dgamma(shk[j,mdlIdx] , rak[j,mdlIdx])

23 }

24 for (j in 1:nCond) {

25 aBeta[j] <- mu[j] * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))

26 bBeta[j] <- (1-mu[j]) * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))

27 # BUGS equals(,) won’t work here, for no apparent reason.

28 # Took me hours to isolate this problem (argh!). So, DO NOT use:

29 # aBeta[j] <- mu[j] * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2)) + 1

30 # bBeta[j] <- (1-mu[j]) * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2)) + 1

31 }

32 # Constants for hyperprior:

33 aHyperbeta <- 1

34 bHyperbeta <- 1

35

36 # Actual priors:

37 shP <- 1.0 # shape for prior

38 raP <- 0.1 # rate for prior

39 # shape, rate kappa0[model]

40 shk0[2] <- shP

41 rak0[2] <- raP

42 # shape kappa[condition , model]

43 shk[1,1] <- shP

44 shk[2,1] <- shP

45 shk[3,1] <- shP

46 shk[4,1] <- shP

47 # rate kappa[condition , model]

48 rak[1,1] <- raP

49 rak[2,1] <- raP

50 rak[3,1] <- raP

51 rak[4,1] <- raP

52

53 # Pseudo priors:

54 # shape, rate kappa0[model]

55 shk0[1] <- 54.0

56 rak0[1] <- 4.35

57 # shape kappa[condition , model]

58 shk[1,2] <- 11.8

59 shk[2,2] <- 11.9

60 shk[3,2] <- 13.6

61 shk[4,2] <- 12.6

62 # rate kappa[condition , model]

63 rak[1,2] <- 1.34

64 rak[2,2] <- 1.11

65 rak[3,2] <- 0.903

66 rak[4,2] <- 0.748

67

68 # Hyperprior on model index:

69 mdlIdx ˜ dcat(modelProb[])

70 modelProb[1] <- .5

71 modelProb[2] <- .5

72 }

As before, thekappa parameters are distributed as gamma distributions. But theshape
and rate constants for those gamma distributions now dependon the model index. Line 19
of the code says that the gamma distribution has shape parameter shk0[mdlIdx], and rate

204 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

parametershk0[mdlIdx]. These values are assigned in lines 40–41 and 55–56. Those lines
state that when the model index is 2, use the real prior, but when the model index is 1, use
the pseudoprior.

The shape and rate constants for the gamma pseudopriors wereset so that the gamma
distributions had the same mean and standard deviation as the posterior sample of kappa
values. For example, consider the parameterkappa0. In the initial run without pseudopriors,
a reasonable posterior sample was obtained for model index 2, i.e., whenkappa0 is actually
constrained by the data, as shown in the bottom panel of Figure 10.3. That posterior sample
had a meanmand a standard deviations. The conversion from mean and standard deviation
to shape and rate parameters was explained in the caption of Figure 9.8. The conversion
yields shape and rate values specified in lines 55–56 of the code.

Figure 10.4 shows the results from the use of pseudopriors. The top panel shows that
the chain for the model index jumps back and forth much more often than before (compare
with Figure 10.3). Therefore the sampled relative probabilities of model indices is much
more trustworthy. This reduction of autocorrelation in thechain of model indices is the
primary advantage of using pseudopriors. If you compare theposterior that doesnot use
pseudopriors (Figure 10.3) with the posterior thatdoesuse pseudopriors (Figure 10.4), you
will see that the probability of model-index 2 is slightly different. Which probability is
more trustworthy? Answer: The one using pseudopriors, because its chain of model-index
values is less autocorrelated, i.e., less stagnant and clumpy.

The middle and lower panels of Figure 10.4 show the sampledκ values for each model
index. Notice in particular that the sampled values ofkappa[j], when the model index is2,
are distributed according to the pseudoprior, not according to the real prior indicated by the
superimposed curve. The pseudoprior histograms do, in fact, resemble the true posterior
historgrams, as intended. Analogous remarks apply to the histograms ofkappa0 in the lower
portion of Figure 10.4. To recapitulate: The pseudopriors are not being used to model the
data, they are used only to keep the MCMC chain of the unused parameters in the vicinity
of believable values until the chain jumps over and uses themagain, at which point the true
prior is invoked.

10.2.3 Some practical advice when using transdimensional MCMC with
pseudopriors.

When doing the first run without pseudopriors, do not bother programming a separate model
that uses only the real priors. All you need is the program that can accommodate the pseu-
dopriors, which you run iteratively with different specifications for the pseudopriors. The
first time you run it, the pseudopriors are specified as the real priors. This first run yields
estimates of the posteriors for the parameters when their model index applies. With those
estimates, pseudopriors can be calculated, and then the program can be run again with the
modified pseudopriors. You can do this repeatedly if needed,each time tuning the pseu-
doprior to better match the posterior that has been more accurately sampled because of the
most recent tuning of the pseudoprior.

When one model is much less believable than another, the unbelievable model rarely
gets visited in the chain, and so there are few points in the sample to represent its parameter
values. To compensate for this imbalance, you can arbitrarily set the the model-indexprior
probabilities to compensating values. For example, suppose you do an initial run with the
model-index priors set withmodelProb[1] <- .5 andmodelProb[2] <- .5, with which you
find that model 1 has a posterior probability of only .02. You can then re-run the sampler

10.2. MODEL COMPARISON IN BUGS 205

0 2000 4000 6000 8000 10000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

p(M1|D)=0.11, p(M2|D)=0.89

Step in Markov chain

M
od

el
 In

de
x

(1
, 2

)

Post. kappa[1] for M = 1

κ1

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Post. kappa[2] for M = 1

κ2

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Post. kappa[3] for M = 1

κ3

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[4] for M = 1

κ4

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[1] for M = 2

κ1

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Post. kappa[2] for M = 2

κ2

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

0.
12

Post. kappa[3] for M = 2

κ3

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa[4] for M = 2

κ4

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

Post. kappa0 for M = 1

κ0

0 5 10 15 20 25 30

0.
00

0.
10

0.
20

Post. kappa0 for M = 2

κ0

0 5 10 15 20 25 30

0.
00

0.
10

0.
20

Figure 10.4: Output from model comparisonwith using pseudopriors. Compare with Fig-
ure 10.3.

206 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

κ1 − κ2

−15 −10 −5 0 5 10

mean = −1.47

64.9% <= 0 < 35.1%

95% HDI
−8.18 6.41

κ1 − κ3

−25 −20 −15 −10 −5 0 5

mean = −6.13

90.4% <= 0 < 9.6%

95% HDI
−16.2 3.09

κ1 − κ4

−30 −20 −10 0

mean = −7.91

96% <= 0 < 4%

95% HDI
−18 1.1

κ2 − κ3

−20 −15 −10 −5 0 5 10

mean = −4.66

84.1% <= 0 < 15.9%

95% HDI
−14.9 4.22

κ2 − κ4

−20 −10 0 10

mean = −6.44

89% <= 0 < 11%

95% HDI
−16.3 4.21

κ3 − κ4

−20 −10 0 10 20

mean = −1.78

60.5% <= 0 < 39.5%

95% HDI
−14.6 10.9

Figure 10.5: Differences of posteriorκ values for the four groups.

with the model priors set tomodelProb[1] <- .98 andmodelProb[2] <- .02, so that model 1
gets visited a lot more frequently. This will give you a better sample of the posteriors for
creating reasonable pseudopriors. When you fiddle with the model priors, beware that the
relative posterior probabilities of the models is the Bayesfactor times the ratio of the prior
probabilities(see Equation 4.6, p. 48). The posterior probabilities of the model indices are
affected by the prior probabilities, although the Bayes factoris not. If you are interested in
the Bayes factor, convert the obtained posterior probabilities of the models by multiplying
by the reciprocal of the priors. Exercise 10.3 provides an example in which the different-
kappa model is strongly preferred.

10.3 Model comparison and nested models

The model comparison of the previous section indicated thata model with a singleκ0 pa-
rameter for all four groups was about 8 times more believablethan a model with distinctκ1,
κ2, κ3, andκ4 parameters for the four groups. Given this analysis, do we then believe that
the four groups really have exactly the sameκ value? Asked a different way, if we wanted
to estimate the kappa values of the four groups, what would that estimate look like? Some
people might answer that the singleκ0, shared by all four groups, is the best estimate. But
that is not my position. Instead, the best estimates of the distinct kappa parameters are the
separate estimates, as shown in Figure 10.4. The posterior distribution on the four distinct
parameters indicates a large degree of overlap, but that does not mean that the parameter
values are literally the same, it means merely that the differences are small compared to
our uncertainty about the values. Most likely, the parameter values for the groups really are
different, because the treatments received by the groups reallyare different, but the differ-
ences are small and our data are not sufficient to confidently detect the differences among
the values.

Instead of doing a model comparison between a model with fourdistinctκ values and a
model with one sharedκ value, we could just look at the posterior distribution of the four
distinct κ values. At every step in the chain, we compute the differences of the various
group’s κ values, and examine whether the differences tend to be near zero. Figure 10.5
shows the differences betweenκ values of the four groups. For every comparison, the HDI

10.3. MODEL COMPARISON AND NESTED MODELS 207

of the difference includes zero, which means that no twoκ values are credibly different.
Thus, by simply considering the posterior on the distinctκ values, we have arrived at a con-
clusion similar to the model comparison: Theκ values are not credibly different. However,
unlike the model comparison that favors the single sharedκ parameter, we have retained all
the information about posterior estimates of the distinctκ parameters.

The model involving a single sharedκ value is a restricted version of the full model
involving four distinctκ values. We get to the restricted model from the full model by
demanding that all the distinctκ values are equal:κ1 = κ2 = κ3 = κ4 = κ0. We say that
the restricted model isnestedwithin the full model, and that the model comparison of the
previous section was anested model comparison.

Consider nested model comparison in general. Suppose a particular nested model com-
parison favors a restricted model in which parameters that are distinct in the full model are
set equal in the restricted model. Does this mean that we should believe that the parameters
in the full model are truly not different? In general, no. The full model is still (usually)
the richer and more accurate description, but the posteriorbeliefs over the full model will
indicate that the distinct parameters are not credibly different, while also providing esti-
mates of the distinct parameters. When we are testing “generic” models and believe that
there really are distinct parameter values, and the restricted model is just a simplification of
convenience, then it is not advisable to use model comparison for the nested models. The
reason is that, even if the restricted model ends up having the higher posterior probability,
we do not actually believe the restriction. I used the nestedmodel comparison in the pre-
vious section for pedagogical purposes. For a clear exampleof how model comparison on
nested models can lead us astray, see Section 12.2.2, p. 249.There it is shown that nested
model comparison can strongly prefer the restricted model,even though estimates of the
different parameters show clear differences!

Is there ever a situation in which nested model comparison isappropriate? Yes: When
the restricted model is genuinely believable for theoretical reasons. In this case, when we
have a viable theory that asserts that a specific restrictionis true, then it makes sense to
test that restriction as a unique model. But if the restriction is merely a simplification of
convenience, without genuine theoretical motivation, then it is more meaningful to examine
the posterior distribution of the full model, rather than the restricted model that we do not
actually believe.

Another way of expressing this distinction is formally. Denote the full model asMF

and denote the restricted model asMR. We know from Bayes rule that

p(MR|D)
p(MF |D)

=
p(D|MR)
p(D|MF)
︸ ︷︷ ︸

BF

p(MR)
p(MF)

(10.1)

Essentially I am arguing that even if the Bayes factor (BF) strongly favors the restricted
model, our posterior belief in the restricted model is, nevertheless, very small if our prior
belief in the restricted model is very small. If the restricted model is merely a simplification
of convenience, then our prior belief in the restricted model is essentially nil, and so our
posterior belief in the restricted model remains small regardless of the BF. It is only when
the prior on the restricted model is non-trivial that the posterior on the restricted model can
be large. The prior on the restricted model is non-trivial only in situations when a viable
theory asserts it could be true.

In conclusion, model comparison for nested models should beundertaken only when
it is truly meaningful to do so; it should not be undertaken routinely and automatically as

208 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

“the” way to assess parameter values. And, when nested modelcomparison is conducted,
the parameter estimates in the unrestricted models should be examined for coherence with
the conclusion from the nested model comparison, because the unrestricted model might
show credible differences among parameters even if the restricted model “wins” a model
comparison.

10.4 Review of hierarchical framework for model comparison

The upper panel of Figure 10.6 shows the general hierarchical framework for model com-
parison. The data are denoted byy, at the bottom of the hierarchy. The data depend on
parametersθ in model 1, and depend on parametersφ in model 2. And the degree to which
each model space is used depends upon the model indexι (Greek letter “iota”). When es-
timating parameters, we are estimatingθ, φ, andι in a high-dimensional parameter space,
namely the conjoint space spanned by all combinations of those parameters, called the
“product space” of the parameters. In terms of an MCMC trajectory, this means that at
every step in the chain, there are values specified for all theparameters. In particular, at any
point in the chain whenι = 1, values for bothθ and φ are generated, and at any point in
the chain whenι = 2, values for bothφ and θ are generated. After the chain is generated,
we only use theθ values for steps whenι = 1, and we only use theφ values for steps when
ι = 2. In principle, it does not matter what theθ andφ values are when they are not being
used. But in practice, to make the MCMC steps efficient, we use pseudo-priors that keep
the unused values in the appropriate region of parameter space.

The lower panel of Figure 10.6 shows a special case of upper panel, for which the
models differ only in their priors on the model parameter. In other words, the two models
involve the same parameterθ and the same likelihood functionp(y|θ), and differ only in the
priors,p(θ|ι=1) andp(θ|ι=2). In this situation, we are estimatingθ andι. There is only one
θ to estimate, even though the lower panel of Figure 10.6 showstwo copies ofθ merely for
purposes of comparison with the upper panel. There is no extra dimensionality introduced
by the second model, because the second model does not have different parameters. When
generating steps in a MCMC trajectory through the parameterspace, every step generates
a usable value forθ; each step’sθ value is used for whichever model is specified byι on
that step. Thus, there is no need for pseudo-priors on unusedparameter samples, because
there are no unused parameter samples. We encountered this situation back in the simple
example accompanying Figure 10.2, p. 199.

10.4.1 Comparing methods for MCMC model comparison

Section 10.2.2 provided an example of model comparison using transdimensional MCMC
with pseudopriors. Notice that the method yielded the relative posterior probabilities of the
models without computing the individual values ofp(D|M1) and p(D|M2). If you want
the values of those evidences, you can use the method explained in Section 7.3.3. By
computingp(D|M1) and p(D|M2) explicitly, it is then easy to compute the Bayes factor
and the posterior probabilities of the models.

Both methods for model comparison (i.e., transdimensionalMCMC with pseudopriors
and approximatingp(D|M) directly) require us to find an approximation to the posteriors.
Is there an advantage of one method over the other? The directmethod yields values for
p(D|M), which cannot be obtained from transdimensional MCMC. Butwe rarely need the

10.4. REVIEW OF HIERARCHICAL FRAMEWORK FOR MODEL COMPARISON209

Dependency Math Form

ι p(ι) = dcat(.5, .5)
ւ ց

θ φ
p(θ|ι=1) = true prior
p(θ|ι=2) = pseudo prior

p(φ|ι=1) = pseudo prior
p(φ|ι=2) = true prior

ց ւ
y p(y|θ) = ... p(y|φ) = ...

Dependency Math Form

ι p(ι) = dcat(.5, .5)
ւ ց

θ θ p(θ|ι=1) = true prior 1 p(θ|ι=2) = true prior 2
ց ւ

y p(y|θ) = ...

Figure 10.6: Hierarchical framework for model comparison.Upper panel:When
the models involve different parameters, hence different likelihood functions.
Lower panel:When the models involve the same likelihood function, and differ
only in the prior on the parameter. The lower panel shows two copies of parameter
θ merely for the purpose of comparison with the upper panel. There is really only
oneθ parameter in this case. For both panels, the 50-50 constantsfor the prior on
the model index are arbitrary.

absolute magnitude ofp(D|M), because it is meaningful primarily only relative to the ev-
idence of another model. Transdimensional MCMC is perhaps more difficult to program,
because we must carefully index the models and get both models to peacefully coexist in the
same code. On the other hand, transdimensional MCMC is conceptually useful for thinking
about the models as alternatives in a broader space of possible models. For our purposes,
there is not a clear advantage of one method over the other. Ifyou do both, and the results
come out the same, you have increased confidence that you didn’t make a mistake in your
programming! For more in-depth comparisons, see, for example, Han and Carlin (2001).

10.4.2 Summary and caveats

This chapter’s main message regarding model comparison is that different models can be
thought of as varying on a higher-level categorical parameter that indexes the models. Es-
timates of this indexical parameter provide an estimate of the posterior believability of the
models. Thus, model comparison is “really” just estimationat a higher level. In BUGS,
the model index can be set up as a random variable, and its probability can be approxi-
mated like any other variable. To do it efficiently, however, we had to apply a trick of using
pseudopriors.

Bayesian model comparison is especially useful when comparing models that have gen-

210 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

uine prior believability. If we instead start with a model ormodels that have little if any prior
believability, then the Bayesian model comparison is an exercise in meaninglessness, as the
result will only reveal which of the unbelievable models is least unbelievable. In particular,
sometimes a mathematically convenient but otherwise arbitrary restriction on a full model,
such as setting distinct group parameters to a single sharedvalue, has essentially no prior
believability. In this situation, the different groups are believed in advance to have at least
slightly different parameter values, because they receive different treatments, by definition.
Even if we conduct a model comparison and the restricted model is favored by the Bayes
factor, we still do not believe the restricted model (as was discussed in the context of Equa-
tion 10.1, p. 207). Instead, the posterior parameter estimates on the full model reveal our
beliefs, including the fact that some of the parameters are not very different relative to the
uncertainty in those parameter values. As mentioned earlier, for a clear example of how
model comparison on nested models can lead us astray, see Section 12.2.2, p. 249. Only
sometimes does a restricted model have genuine prior believability. In these cases, Bayesian
model comparison on nested models makes sense.

Bayesian model comparison is especially useful for comparing non-nested models,
which involve distinct accounts of the data, using different parameters and different like-
lihood functions.The resulting Bayes factor can be very sensitive to the priors used within
each model, however(e.g., Liu & Aitkin, 2008). To see why the posterior probabilities of
the models can be so sensitive to the priors on the parameters, recall that the Bayes factor
is just the ratio of the evidences for the two models. And, recall that the evidence for a
model can be strongly affected by the prior chosen for the model. Indeed, we’ve considered
many cases of model comparison in which all we’ve done is use different priors for the
same likelihood function, and found radically different evidences emerge. Therefore, when
comparing two models that have different parameters, the priors for the two models must
be established using comparable criteria. One way to establish appropriate priors for the
two models is by using informed priors instead of uninformed, “automatic”, convenience
priors. One approach is to use a set of previous data, or plausible and audience-agreeable
fictitious data, that is small but large enough to overwhelm any vague, primordial prior. This
way, the priors for both models are at least “in the neighborhood” of appropriate parameter
values, instead of being diluted over vast regions of parameter space that are only consid-
ered because of mathematical form. In any case, an importantstep in model comparison
is checking the robustness of the conclusion when the priorsin the models are changed in
reasonable ways. For an example, see Exercise 10.2, which ishighly recommended.

10.5 Exercises

Exercise 10.1.[Purpose: Seeing how first-level model comparison is like hierarchical modeling with

just two values of a hyperparameter.]

(A) Use the R code of Section 5.5.1 (BernBeta.R) (p. 76) to compare the modelM1 :
beta(θ|3, 9) and the modelM2 : beta(θ|9, 3), when the observed data arez = 6 heads in
N = 9 flips. What is the Bayes factor for the two models?

(B) Verify the values ofp(D) by using Equation 5.10, p. 73.
(C) From the right panel of the fourth row of Figure 10.1 (p. 196),visually estimate

p(µ = .75|D) and p(µ = .25|D), and compute their ratio. Does that ratio nearly match the
Bayes factor that you computed in the first two parts? (It should.)

10.5. EXERCISES 211

Exercise 10.2.[Purpose: Seeing that the prior can strongly affect the outcome of a model comparison.]

In this exercise we consider a “toy” model comparison, to illustrate how the priors on the
parameters in two models can strongly affect the outcome of the comparison.

The models: Consider two models for the bias of a coin. For both models, the prob-
ability of getting a “head” is a Bernoulli distribution of the biasθ, but each model has a
different expression for determining the value ofθ in terms of a different parameter:
M1 : θ = 1/(1+ exp(−ν)), whereν is any real value (“ν” is Greek “nu”), and
M2 : θ = exp(−η), whereη is non-negative (“η” is Greek “eta”).
(You can easily graph those two function in R if you want to seewhat they look like. Fig-
ure 14.6, p. 305, shows variations of model M1.) For model 1, we put a normal prior onν,
and for model 2, we put a gamma prior onη.

The data: Suppose we flip the coin and find that we get 8 heads outof 30 flips.
(A) Suppose the prior onν is normal with mean 0 andprecision.1, while the prior on

η is gamma with shape .1 and rate .1. What are the resulting posterior probabilities of the
models (if the prior on the models is 50/50)? HINT: See Figure 10.7 for the posterior on
the parameters and the model probabilities. The following chunks of code may be helpful.
Notice that BUGS parameterizes the normal density in terms of mean andprecision, where
precision is defined as the reciprocal of variance, i.e., 1 over the squared standard deviation.
The motivation for using precision is explained in Section 15.1.1. Beware that while BUGS
parameterizesdnorm by mean and precision, R parameterizesdnorm by mean and standard
deviation. See lines 19 and 20 of the code below for the specification of the priors on the
parameters: (ToyModelComp.R)

10 model {

11 for (i in 1:nFlip) {

12 # Likelihood:

13 y[i] ˜ dbern(theta)

14 }

15 # Prior

16 theta <- ((2-mdlIdx) * 1/(1+exp(-nu)) # theta from model index 1

17 + (mdlIdx-1) * exp(-eta)) # theta from model index 2

18 nu ˜ dnorm(0,.1) # 0,.1 vs 1,1

19 eta ˜ dgamma(.1,.1) # .1,.1 vs 1,1

20 # Hyperprior on model index:

21 mdlIdx ˜ dcat(modelProb[])

22 modelProb[1] <- .5

23 modelProb[2] <- .5

24 }

(ToyModelComp.R)

36 N = 30

37 z = 8

38 datalist = list(

39 y = c(rep(1,z) , rep(0,N-z)) ,

40 nFlip = N

41)

(B) Suppose the prior onν is normal with mean 1 and precision 1, while the prior onη is
gamma with shape 1 and rate 1. What are the resulting posterior probabilities of the models
(if the prior on the models is 50/50)? Which model is preferred? HINT: See Figure 10.7 for
the posterior on the parameters and the model probabilities.

212 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

p(ν|D,M1), with p(M1|D)=0.502

ν

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
00

0.
04

0.
08

0.
12 mean = −0.0545

95% HDI

p(η|D,M2), with p(M2|D)=0.498

η

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

mean = 0.995

95% HDI
1.25e−35 5.82

p(ν|D,M1), with p(M1|D)=0.503

ν

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

mean = 1

95% HDI
−0.96 2.98

p(η|D,M2), with p(M2|D)=0.497

η

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
4

0.
8 mean = 0.999

95% HDI
0.000173 2.99

p(ν|D,M1), with p(M1|D)=0.767

ν

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
4

0.
8 mean = −1.04

95% HDI
−1.89 −0.25

p(η|D,M2), with p(M2|D)=0.233

η

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
4

0.
8

1.
2

mean = 1.33

95% HDI
0.751 1.95

p(ν|D,M1), with p(M1|D)=0.236

ν

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

mean = −0.745

95% HDI
−1.47−0.0281

p(η|D,M2), with p(M2|D)=0.764

η

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
4

0.
8

1.
2 mean = 1.3

95% HDI
0.796 1.9

Figure 10.7: For Exercise 10.2, which does model comparisonfor different priors within
each model. Upper row: Prior distributions as sampled from BUGS. Lower row: Posterior
distributions. Left column: Results for priors of Part A. Right column: Results for priors of
Part B. Notice that the probability of the models is displayed in the title of each distribution.

(C) Why does the choice of prior within each model (when the prioron p(M1) and
p(M2) remains unchanged) have such a big influence on the posterior of the model be-
lievabilities? HINT: Notice in Figure 10.7 that the posterior on the parameter values
is in roughly the same place regardless of the prior; i.e., the location of the posterior
on the parameter values is dominated by the data. But notice that the prior probabili-
ties at those posterior-favored values are rather different, and remember thatp(D|M) =
∫

dφ p(D|φ,M) p(φ|M).

(D) Discuss how we might decide which choice of priors onν andη would put the
priors on an equal playing field. (Technically, in this case,the priors can be reparameter-
ized to yield exact equivalence, but that’s not the answer being sought for this exercise.
In general, different models cannot be reparameterized into equivalence. Your discussion
should address what to do in the general case, when models cannot be reparameterized to
equivalence, but motivated by considering the present toy example.) Here’s one scheme
to consider: Suppose we have some modest pilot data, or even some audience-agreeable

10.5. EXERCISES 213

plausible fictitious data, that in 7 flips there were 2 heads. To generate a prior for the sub-
sequent new data, we start each model with an extremely vagueproto-prior and update it
with the modest pilot data. For example, suppose that the proto-prior onν is normal with
mean zero and precision of 0.0001 (i.e., standard deviationof 100), and the proto-prior on
η has rate=0.01 and shape=0.01. Notice that both of the resulting priors (i.e., the extremely
vague proto-priors updated with the modest pilot data) are now reasonably “in the ballpark”
of realistic data, and therefore the models are starting on amore equal playing field.

Exercise 10.3. [Purpose: Hands-on experience with the pseudopriors approach.] For this exer-
cise, we’ll consider a situation very similar to the filtration-condensation experiment that
has been used repeatedly in recent pages, and was introducedin Section 9.3.1. The new
experiment also involved people learning to categorize shapes. There were again four dif-
ferent groups, but this time the groups differed on the type of structuralshift from an initial
category structure to a new category structure (Kruschke, 1996). Theories of learning are
concerned with this type of situation because different theories predict different types of
transfer from one phase to the next. Our goal in this exerciseis to determine whether the
κ values for the four groups are equivalent, just as we asked this question of the filtration-
condensation data in Section 10.2.2, p. 199.

Modify the program FilconModelCompPseudoPriorBrugs.R for this exercise. Do the
following:

• In the data section of the program, delete the filtration-condensation data. At
that point in the program, load the relevance-shift data instead. Type in
load("Kruschke1996CSdatsum.Rdata"). You’ll have to have that data file in the same
folder as your program, of course.

• In the model-specification, change the prior probability ofmodel 1 to only 0.003,
and the prior probability of model 2 to 0.997. This is done because it turns out that
model 1 is far more believable than model 2, so to get any samples at all from model 2,
its prior probability must be set very high.

(A) Run the program. Notice that the pseudopriors are not very well matched to the
posterior distribution. Change the pseudopriors so that they have the same mean and stan-
dard deviation as the posterior. Show this section of your modified code (i.e., the lines that
set the shape and rate constants of the pseudopriors). HINT:Usemean(kappa1sampleM1) and
sd(kappa1sampleM1) to get the mean and standard deviation of the posterior. Thenuse the
identities described in Figure 9.8 to determine the shape and rate parameters of a gamma
distribution with that mean and standard deviation.

(B) Re-run the program with the better-tuned pseudopriors thatyou determined in the
previous part. Show histograms of the kappa distributions like those in Figure 10.4. HINT:
Your histograms in the top and bottoms rows should be very similar, because the pseudo-
prior is supposed to mimic the actual posterior. You will findthat the histogram forκ1 fall
largely above 30, i.e., exceeds the right limit of the x-axisas it is presently set.

(C) Are the kappa values of the four groups the same or different? Answer this question
two ways, as follows. First, what is the value of the Bayes factor in favor of the different-
kappa model? Be careful to take into account that the BUGS simulation used priors that
were not 50-50. (Hint: It’s about 600 to 1. Explain how to get that value.) Does the
Bayes factor alone tell us anything aboutwhichgroups are different? (The correct answer
to that last question is “no”. Briefly explain why.) Second, considering only the different-
kappa model, what are the distributions of the differences between kappa’s for model 1?

214 CHAPTER 10. HIERARCHICAL MODELING AND MODEL COMPARISON

κ1 − κ2

0 20 40 60 80 100

mean = 31.6

0% <= 0 < 100%

95% HDI
10.4 57.9

κ1 − κ3

0 20 40 60 80 100 120

mean = 32.3

0% <= 0 < 100%

95% HDI
10.5 57.4

κ1 − κ4

0 20 40 60 80 100

mean = 26.3

0.5% <= 0 < 99.5%

95% HDI
2.65 52.5

κ2 − κ3

−10 −5 0 5 10

mean = 0.708

39.7% <= 0 < 60.3%

95% HDI
−4.53 6.4

κ2 − κ4

−20 −10 0 10

mean = −5.26

90.7% <= 0 < 9.3%

95% HDI
−14.2 2.67

κ3 − κ4

−25 −20 −15 −10 −5 0 5

mean = −5.97

94.8% <= 0 < 5.2%

95% HDI
−14.3 1.7

Figure 10.8: For Exercise 10.3. The first group has larger kappa than the other groups,
which do not have credibly different kappa values.

Specifically, which kappa’s are different from which other kappa’s? Does the Bayes factor
tell us anything that the the kappa estimates do not? (The correct answer to that last question
is “no”. Briefly explain why.) HINT: Your histograms of kappadifferences should look
something like Figure 10.8.

Chapter 11

Null Hypothesis Significance Testing
Contents

11.1 NHST for the bias of a coin . 216
11.1.1 When the experimenter intends to fixN 216
11.1.2 When the experimenter intends to fixz 219
11.1.3 Soul searching . 220
11.1.4 Bayesian analysis . 222

11.2 Prior knowledge about the coin .222
11.2.1 NHST analysis . 223
11.2.2 Bayesian analysis . 223

11.2.2.1 Priors are overt and should influence 223
11.3 Confidence interval and highest density interval 224

11.3.1 NHST confidence interval . 224
11.3.2 Bayesian HDI . 227

11.4 Multiple comparisons . 227
11.4.1 NHST correction for experimentwise error 228
11.4.2 Just one Bayesian posterior no matter how you look at 230
11.4.3 How Bayesian analysis mitigates false alarms 231

11.5 What a sampling distribution is good for 231
11.5.1 Planning an experiment . 231
11.5.2 Exploring model predictions (posterior predictivecheck) 232

11.6 Exercises . 233

My baby don’t value what I really do.
She only imagines who else might come through.
She’ll only consider my worth to be high
If she can’t conceive of some much nicer guys.

In the previous chapters we have seen a thorough introduction to Bayesian inference involv-
ing a Bernoulli likelihood function. It is appropriate now to compare Bayesian inference
with 20th-centurynull hypothesis significance testing(NHST) of binomial (i.e., dichoto-
mous valued) data. In NHST, the goal of inference is to decidewhether a particular value
of a model parameter can be rejected. For example, we might want to know whether a coin
is fair, which in NHST becomes the question of whether we can reject the hypothesis that
the bias of the coin has the specific value .5.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

215

216 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

To make the logic of NHST concrete, suppose we have a coin thatwe want to test for
fairness. We decide that we will conduct an experiment wherein we flip the coinN = 26
times, and we observe how many times it comes up heads. If the coin is fair, it should
usually come up heads about 13 times out of 26 flips. Only rarely will it come up with far
fewer or far greater than 13 heads. Suppose we now conduct ourexperiment: We flip the
coin N = 26 times and we happen to observez = 8 heads. All we need to do is figure
out the probability of getting that few heads if the coin weretruly fair. If the probability of
getting so few heads is sufficiently tiny, then we doubt that the coin is truly fair.

Notice that this reasoning depends on the notion of repeating the intended experiment,
because we are computing the probability of getting 8 heads if we were to repeat an ex-
periment withN = 26. In other words, we are figuring out the probability of getting 8
heads relative to the space of all possible outcomes whenN = 26. Why do we restrict
consideration toN = 26? Because that was the intention of the experimenter.

The problem with NHST is that the interpretation of the observed outcome depends on
the space of possible outcomes when the experiment is repeated. Why is that a problem?
Because the definition of the space of possible outcomes depends on the intentions of the
experimenter. If the experimenter intended to flip the coin exactly N = 26 times, then the
space of possibilities is all samples withN = 26. But if the experimenter intended to flip
the coin for one minute (and merely happened to make 26 flips during that time) then the
space of possibilities is all samples that could occur when flipping the coin for one minute.
Some of those possibilities would haveN = 26, but some would haveN = 23, and some
would haveN = 32, etc. On the other hand, the experimenter might have intended to flip
the coin until observing 8 heads, and it just happened to take26 flips to get there. In this
case, the space of possibilities is all samples that have the8th head as the last flip.

Notice that for any of those intended experiments (fixedN, fixed time, or fixedz), the
actually-observed data are the same:z= 8 andN = 26. But the probability of the observed
data is different relative to each experiment space. The space of possibilities is determined
by what the experimenter had in mind while flipping the coin.

Do the observed data depend on what the experimenter had in mind? We certainly
hope not! A good experiment is founded on the principle that the data are insulated from
experimenter’s intentions. The coin “knows” only that it was flipped 26 times, regardless
of what the experimenter had in mind while doing the flipping.Therefore our conclusion
about the coin should not depend on what the experimenter hadin mind while flipping it.

This chapter explains some of the gory details of NHST, to bring mathematical rigor to
the above comments, and to bring rigor mortis to NHST. You’llsee how NHST is committed
to the notion that the covert intentions of the experimenterare crucial to interpreting the
data, even though the data are not supposed to be influenced bythe covert intentions of the
experimenter.

11.1 NHST for the bias of a coin

11.1.1 When the experimenter intends to fixN

Now for some of the mathematical details of NHST. Suppose we intend to flip a coinN = 26
times and we happen to observez = 8 heads. This result seems to suggest that the coin is
biased, because the result is less than the 13 heads that we would expect to get from a fair
coin. But someone who is skeptical about the claim that the coin is biased, i.e., a defender of
the null hypothesis that the coin is fair, would argue that the seemingly biased result could

11.1. NHST FOR THE BIAS OF A COIN 217

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.5

 ⇒
N = 26

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Implied Sampling Distribution

z
p(

z|
N

,θ
)

0.
00

0.
04

0.
08

0.
12

0.
00

0.
04

0.
08

0.
12

Figure 11.1: Binomial sampling distribution (Eqn. 11.1) when p(y= head)= θ =
.5 andN is fixed by the experimenter’s intention. The total probability of the dark
bars does not exceed 5%.

have happened merely by chance from a genuinely fair coin. Because a “false alarm”,
i.e., rejection of a null hypothesis when it is really true, is considered to be very costly in
scientific practice, we decide that we will only reject the null hypothesis if the probability
that it could generate the result is very small, conventionally less than 5%. In other words,
to reject the null hypothesis, we need to show that the probability of getting something as
extreme asz= 8, whenN = 26, is less than 5%.

What is the probability of getting a particular number of heads whenN is fixed? The
answer is provided by thebinomial probability distribution, which states that the probability
of gettingzheads out ofN flips is

p(z|N, θ) =
(

N
z

)

θz(1− θ)N−z (11.1)

where the notation
(
N
z

)

will be defined below. The binomial distribution is derived by the
following logic. Consider any specific sequence ofN flips with zheads. The probability of
that specific sequence is simply the product of the individual flips, which is the product of
Bernoulli probabilities

∏

i θ
yi (1 − θ)1−yi = θz(1 − θ)N−z, which we first saw in Section 5.1,

p. 66. But there are many different specific sequences withz heads. Let’s count how many
ways there are. Consider allocatingzheads toN flips in the sequence. The first head could
go in any one of theN slots. The second head could go in any one of the remainingN − 1
slots. The third head could go in any one of the remainingN − 2 slots. And so on, until the
zth head could go in any one of the remainingN−(z−1) slots. Multiplying those possibilities
together means that there areN · (N − 1) · . . . · (N − (z− 1)) ways of allocatingzheads toN
flips. As an algebraic convenience, notice thatN · (N − 1) · . . . · (N − (z− 1)) = N!/(N − z)!.
In this counting of the allocations, we’ve counted different orderings of the same allocation
separately. For example, putting the 1st head in the 1st slotand the 2nd head in the second
slot was counted as a different allocation than putting the 1st head in the 2nd slot andthe
2nd head in the 1st slot. In the space of possible outcomes, there is no meaningful difference
in these allocations, because they both have a head in the 1stand 2nd slots. Therefore we
get rid of this duplicate counting by dividing out by the number of ways of permuting the
z heads among theirz slots. The number of permutations ofz items isz!. Putting this

218 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

all together, the number of ways of allocatingz heads amongN flips, without duplicate
counting of equivalent allocations, isN!/[(N − z)!z!]. This factor is also called the number
of ways of choosingz items fromN possibilities, or “N choosez” for short, and is denoted
(
N
z

)

. Thus, the overall probability of gettingz heads inN flips is the probability of any
particular sequence ofzheads inN flips times the number of ways of choosingzslots from
among theN possible flips. The product appears in Equation 11.1. An illustration of a
binomial probability distribution is provided in the rightpanel of Figure 11.1, forN = 26
andθ = .5. Notice that the abscissa ranges fromz = 0 to z= 26, because inN = 26 flips it
is possible to get anywhere from no heads to all heads.

The binomial probability distribution in Figure 11.1 is also called asampling distribu-
tion. This terminology stems from the idea that any set ofN flips is a representative sample
of the behavior of the coin. If we were to repeatedly run experiments with a fair coin, such
that in every experiment we flip the coin exactlyN times, then, in the long run, the proba-
bility of getting each possiblezwould be the distribution shown in Figure 11.1. To describe
it carefully, we would call it “the probability distribution of the possible sample outcomes”,
but that’s usually just abbreviated as “the sampling distribution”.

The left side of Figure 11.1 shows the null hypothesis. It shows the probability distribu-
tion for the two states of the coin. According to the null hypothesis, the coin is fair, whereby
p(y = heads)= θ = .5. The two panels in the figure are connected by an implicationarrow
to denote that fact that when the sample sizeN is fixed, the sampling distribution on the
right is implied.

Our goal, as you’ll recall, is to determine whether the probability of getting the observed
result,z = 8, is tiny enough that we can reject the null hypothesis. By using the binomial
probability formula in Equation 11.1, we determine that theprobability of gettingexactly
z= 8 heads inN = 26 flips is 2.3%. Figure 11.1 shows this probability as the height of the
bar overz = 8. However, we do not want to determine the probability of only the actually-
observed result. After all, for largeN, any specific resultz can be very improbable. For
example, if we flip a fair coinN = 1000 times, the probability of getting exactlyz = 500
heads is only 2.5%, even thoughz= 500 is precisely what we would expect if the coin were
fair.

Therefore, instead of determining the probability of getting exactly the resultz from the
null hypothesis, we determine the probability of gettingz or a result even more extreme than
what we would expect. The reason for considering more extreme outcomes is this: If we
would reject the null hypothesis because the resultz is too far from what we would expect,
then any other potential result, that has an even more extreme value, would also cause us to
reject the null hypothesis. Therefore we want to know the probability of getting the actual
outcomeor an outcome more extremerelative to what we expect. This total probability is
referred to as “thep value”.1 If this p value is less than a critical amount, then we reject the
null hypothesis.

The critical probability is conventionally set to 5%. In other words, we will reject the
null hypothesis whenever the total probability of the observedzor an outcome more extreme
is less than 5%. Notice that this decision rule will cause us to reject the null hypothesis 5%
of the timewhen the null hypothesis is true, because the null hypothesis itself generates
those extreme values 5% of the time, just by chance. The critical probability, 5%, is the

1The p value defined at this point is the “one-tailed”p value, because it sums the extreme probabilities
in only one tail of the sampling distribution. In practice, the one-tailedp value is multiplied by 2, to get the
two-tailed p value. We consider both tails of the sampling distribution because the null hypothesis could be
rejected if the outcome were too extreme in either direction. This is explained later in the main text.

11.1. NHST FOR THE BIAS OF A COIN 219

proportion of false alarms that we are willing to tolerate inour decision process. We set the
critical zvalues such that the false alarm rate is no greater than 5%.

We also have to be careful to consider both directions of deviation from what we would
expect. If we flip a coin and it comes up heads almost all the time, we suspect that it is
biased. But if the coin comes up heads almost never, we also suspect that it is biased.
Therefore we have to establish the range of all possible extreme values, highor low, that
would cause us to reject the null hypothesis. We let half the false alarms be due to high
values, and half be due to low values. Because we want the total false alarm rate to be no
greater than 5%, we will reject the null hypothesis only whenz is sohigh that it would
reach or exceed that value less than 2.5% of the time by chancealone,or whenz is solow
that it would be that small or smaller by chance only 2.5% of the time. Figure 11.1 shows
these extreme values ofz as the darkly shaded bars in the tails of the distribution. The total
probability mass of these bars does not exceed 2.5% in eithertail. If the actually observed
z falls among any of these darkly shaded extreme values, we reject the null hypothesis. For
our specific situation, where the experimenter intendedN = 26, we need a value ofz that is
19 or greater, or 7 or less, to reject the hypothesis thatθ = .5.

Here’s the conclusion for our particular case. The actual observation hadz = 8, and
so we wouldnot reject the null hypothesis thatθ = .5. In NHST parlance, we would say
that the result “has failed to reach significance”. This doesnot mean weacceptthe null
hypothesis; we merely suspend judgment regarding rejection of this particular hypothesis.
Notice that we have not determined any degree of belief in thehypothesis thatθ = .5. The
hypothesis might be true or might be false; we suspend judgment.

It is worth reiterating how this conclusion was reached: We considered the space of
all possible outcomes if the intended experiment were repeated, and we determined the
probabilities of extreme outcomes in this space of possibilities. We then examined whether
the one actually observed outcome fell into the extreme zones of the space of possible
outcomes.

11.1.2 When the experimenter intends to fixz

Suppose that the experimenter did not intend to stop flippingwhenN flips were reached.
Instead, the intention was to stop whenz heads were reached. This scenario can happen
in many real-life situations; for example, widgets on an assembly line can be checked for
defects untilzdefective widgets are identified. In this situation,z is fixed in advance andN
is the random variable. We don’t talk about the probability of gettingzheads out ofN flips,
we instead talk about the probability of takingN flips to getzheads.

What is the probability of takingN flips to getz heads? To answer this question, con-
sider this: We know that theNth flip is the zth head, because that is what signalled us to
stop flipping. Therefore the previousN − 1 flips hadz− 1 heads in some random sequence.
The probability of gettingz− 1 heads inN − 1 flips is

(
N−1
z−1

)

θz−1(1− θ)N−z. The probability
that the last flip comes up heads isθ. Therefore, the probability that it takesN flips to getz
heads is

p(N|z, θ) =
(

N − 1
z− 1

)

θz−1(1− θ)N−z× θ

=

(

N − 1
z− 1

)

θz(1− θ)N−z

220 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.5

 ⇒
z = 8

8 11 14 17 20 23 26 29 32 35 38 41 44 47

Implied Sampling Distribution

N
p(

N
|z

,θ
)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 11.2: Sampling distribution ofN whenp(y=head)= θ = .5 andz is fixed
(Eqn. 11.2). The total probability of the dark bars does not exceed 5%.

=
z
N

(

N
z

)

θz(1− θ)N−z (11.2)

Figure 11.2 shows an example of this probability distribution. This distribution is some-
times called the “negative binomial”. Notice that values ofN start atz and rise to infinity,
because it takes at leastz flips to getz heads, and it might take a huge number of flips to
finally get thezth flip.

If the coin is biased to come up headsrarely, then it will take alarge number of flips
until we getz heads. If the coin is biased to come up headsfrequently, then it will take a
smallnumber of flips until we getz heads. Figure 11.2 shows the values of observedN for
which the probability of getting that result, or something more extreme, is less than 2.5%
in each tail. These extreme values are marked as dark bars in the sampling distribution.2 If
the observedN falls in either of these extreme tails, we reject the null hypothesis.

Here is the conclusion for our specific example: The actual observation isN = 26,
which falls in the extreme tail of the sampling distribution, and therefore wereject the null
hypothesis. In other words, in the space of possible outcomes, the null hypothesis predicts
that it is very rare for a fair coin to need 26 flips to get 8 heads; so rare, in fact, that we
reject the null hypothesis. Notice that while we have rejected the null hypothesis, we still
have no particular degree of disbelief in it, nor do we have any particular degree of belief in
any other hypothesis. All we know is that the actual observation lies in an extreme end of
the space of possibilities if the intended experiment were repeated.

11.1.3 Soul searching

Let’s summarize the situation. We watch the experimenter flip the coin. We see the same
results as the experimenter, and we observez = 8 heads out ofN = 26 flips. According to
NHST, if the intention of the experimenter was to stop whenN = 26, then we donot reject
the null hypothesis. If the intention of the experimenter was to stop whenz = 8, then we
do reject the null hypothesis. In other words, for us to draw a conclusion from the data,

2The total probability in the right tail of Figure 11.2 is an infinite sum. It is easily computed by considering
the finite complement to its left. In particular,

∑n→∞
n=26 p(n|z, θ) = 1−

∑n=26−1
n=z p(n|z, θ).

11.1. NHST FOR THE BIAS OF A COIN 221

we need to know the experimenter’s intentions. Exercise 11.1 shows you other examples of
this dependence of the decision on the experimenter’s intentions.

Notice that the actual observed events are the same regardless of how the experimenter
decided to stop flipping coins; In either case we observez heads inN flips. An outside
observer of the flipping experiment, who is not privy to the covert intentions of the flipper,
simply seesN flips, of whichz were heads. It could be that the flipper intended to flipN
times and then stop. Or it could be that the flipper intended tokeep flipping until gettingz
heads. Or it could be that the flipper intend to flip for one minute. Exercise 11.3 explores
this case of a fixed duration for an experiment. Or it could be that the flipper intended to
flip until some other number of flips, but was interrupted by some outside factor, such as
funding running out.

In real research, the actual reason for stopping is often neither because a pre-plannedN
was reached nor because a pre-plannedz was reached, nor because time ran out. Instead,
real researchers will sometimes monitor the data as they arecollected, and do “preliminary”
analyses on the data collected so far. If the currently collected data show significance, then
data collection stops. If the data are close to significance,then data collection continues.
With these intentions, the probability of getting significance is inflated because there is a
chance of rejecting the null at every step along the way. In particular, if the experimenter
intendedto allow additional data to be collected after the preliminary inspection,but did
not end up collecting additional data, the true probability of falsely rejecting the null is
still inflated because thepotentialdata space is larger, and there are more opportunities for
rejecting the null. Exercise 11.4 shows you the details.

The solution to this mess is simple. All we have to do, to determine whether or not to
reject the null hypothesis, is search the soul of the experimenter, to discover his/her true
intentions about the experiment. Thus, when an experimenter reports his or her results, s/he
can sign an Affidavit of Intent, or testify before Congress under oath. Or, perhaps advances
in fMRI will one day give us objective measures of subconscious intent. Then NHST will
be on solid ground. Right? Wrong.

In all of these scenarios,the coin itself has no idea what the flipper’s intention is, and
the propensity of the coin to come up heads does not depend on the intentions of the flipper.
Indeed, we carefully design experiments to insulate the coins from the intentions of the
experimenter. Therefore our inference about the coin should not depend on the intentions
of the experimenter.

A defender of NHST might be tempted to argue that I’m quibbling over trivial differ-
ences in the critical values. The critical values for the twocases I described above are very
similar. Unfortunately, different intentions do not always lead to small differences in critical
values. For example, when experimenters check their data after every flip of the coin to see
if the result so far is “significant” by fixed-N critical values, the false alarm rate sky rockets.
If you check at every flip to see if conventional 5% critical values have been exceeded, then
the actual false alarm rate with 10 flips is 5.5%, with 20 flips it’s 10.7%, with 30 flips it’s
14.9%, with 40 flips it’s 15.4%, and with 50 flips the true falsealarm rate is 17.1%. In other
words, if you are willing to flip the coin up to 50 times, and along the way you check at
every flip to see if you can reject the hypothesis that the coinis fair, using critical values
that are supposed to keep the false alarm rate down to 5% or less, then you actually have
a 17.1% chance of falsely rejecting the hypothesis even whenthe coin is truly fair. You
have to change the critical values quite a lot if you intend tocheck after every flip. An-
other situation in which critical values change dramatically is when experimenters intend
to make multiple comparisons across different conditions in an experiment, as will be dis-

222 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

cussed later. Thus, we are not quibbling over tiny differences in critical values. Depending
on the intentions, the critical values can change dramatically.

More fundamentally, the argument, that if any intention leads to nearly the same critical
values then it’s okay to use intentions, still fully admits that experimenter intentions influ-
ence the interpretation of data. It’s like arguing that we shouldn’t worry about the butchers
putting their fingers on the scale, because no matter which butcher does it, the cheating
is about the same. Admitting that experimenter intention influences the interpretation of
data contradicts a basic premise of the data collection, that experimenter intentions have no
influence on the data.

11.1.4 Bayesian analysis

The Bayesian interpretation of data does not depend on the covert intentions of the data col-
lector. In general, for data that are independent across trials, the probability of the conjoint
set of data is simply the product of the probabilities of the individual outcomes. Thus, for
z =

∑N
i=1 yi heads inN flips, the likelihood is

∏N
i=1 θ

yi (1− θ)1−yi = θz(1 − θ)N−z, regardless
of the experimenter’s private reasons for collecting thosedata. The likelihood function cap-
tures everything we assume to influence the data. In the case of the coin, we assume that
the bias of the coin is the only influence on its outcome, and that the flips are independent.
The Bernoulli likelihood function completely captures those assumptions.

In summary, the NHST analysis and conclusion depend on the covert intentions of the
experimenter, because those intentions define the space of all possible (unobserved) data.
This dependence of the analysis on the experimenter’s intentions conflicts with the opposite
assumption that the experimenter’s intentions have no effect on the observed data. The
Bayesian analysis does not depend on the space of possible unobserved data. The Bayesian
analysis operates only with the actual data obtained.

11.2 Prior knowledge about the coin

Suppose that we are not flipping a coin, but we are flipping a flat-headed

nail. In a social science setting, this is like asking a survey question about left or right
handedness of the respondent, which we know is far from 50/50, as opposed to asking a
survey question about male or female sex of the respondent, which we know is close to
50/50. When we flip the nail, it can land with its point touching the ground (which I’ll call
tails) or it can land balanced on its head with its point sticking up (which I’ll call heads).
We believe, just by looking at the nail and our previous experience with nails, that it will
not come up heads and tails equally often. Indeed, with its narrow head, the nail will very
probably come to rest with its point touching the ground, i.e., “tails”. In other words, we
have a strong prior belief that the nail is tail-biased. Suppose we flip the nail 26 times and
it comes up heads on 8 flips. Is the nail “fair”? Would we use it to determine who gets to
kick off at the Superbowl?

11.2. PRIOR KNOWLEDGE ABOUT THE COIN 223

11.2.1 NHST analysis

The NHST analysis does not care if we are flipping coins or nails. The analysis proceeds
the same way as before. To determine whether the nail is biased, we first declare the ex-
perimenter’s intentions and then compute the probability of getting 8 heads or more if the
nail were fair. As we saw in the previous section, if we declare that the intention was to
flip the nail 26 times, then an outcome of 8 heads means we donot reject the hypothesis
that the nail is fair. Let me say that again: We have a nail for which we have a strong prior
belief that it is tail biased. We flip the nail 26 times, and findit comes up heads 8 times.
We conclude, therefore, that we cannot reject the null hypothesis that the nail can come up
heads or tails 50/50. Huh? This is anail we’re talking about. How can you not reject the
null hypothesis?

11.2.2 Bayesian analysis

The Bayesian statistician starts the analysis with an expression of the prior knowledge.
We know from prior experience that the narrow-headed nail isbiased to show tails, so we
express that knowledge in a prior. In a scientific setting, the prior is established by appealing
to publicly accessible and reputable previous research. Inour present toy example involving
a nail, suppose that we represent our prior beliefs by a fictitious previous sample that had
95% tails in a sample size of 20. That translates into a beta(θ|2, 20) prior distribution. If we
wanted to go through the trouble, we could instead derive a prior from established theories
regarding the mechanics of such objects, after making physical measurements of the nail
such as its length, diameter, mass, rigidity, etc. In any case, to make the analysis convincing
to an audience of peers, the prior must be agreeable to that audience. Suppose that the
agreed prior for the nail is beta(θ|2, 20), then the posterior distribution is beta(θ|2+8, 20+18),
as shown in the right side of Figure 11.3. The posterior beliefs clearly do not include the
nail being fair.

The differing inferences for a coin and a nail make good intuitive sense. Our posterior
beliefs about the bias of the objectshoulddepend on our prior knowledge of the object: 8
heads in 26 flips of narrow-headed nailshouldleave us with a different opinion than 8 heads
in 26 flips of a coin. For additional details and a practical example, see Lindley and Phillips
(1976).

11.2.2.1 Priors are overt and should influence

Some people might assert that prior beliefs are just as mysterious as the experimenter’s
intentions. But this assertion is wrong. Prior beliefs are not capricious and idiosyncratic.
Prior beliefs are overt, explicitly debated, and consensual. A Bayesian analyst might have
personal priors that differ from what most people think, but if the analysis is supposed to
convince an audience, then the analysis must use priors thatthe audience finds palatable. It
is the job of the Bayesian analyst to make cogent arguments for the particular prior that is
used. The research will not get published if the reviewers and editors think that that prior
is untenable. Perhaps the researcher and the reviewers willhave to agree to disagree about
the prior, but even in that case the prior is an explicit part of the argument, and the analysis
should be run with both priors in order to assess the robustness of the posterior. Science
is a cumulative process, and new research is presented always in the context of previous
research. A Bayesian analysis acknowledges this obvious fact, but it is ignored by NHST.

224 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Prior

θ

p(
θ)

beta(θ|11,11)

0.0 0.2 0.4 0.6 0.8 1.00.
0e

+
00

4.
0e

−
08

8.
0e

−
08

1.
2e

−
07 Likelihood

θ

p(
D

|θ
)

Data: z=8,N=26

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Posterior

θ

p(
θ|

D
)

beta(θ|19,29)

p(D)=2.93e−08

95% HDI
0.261 0.533

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Prior

θ

p(
θ)

beta(θ|2,20)

0.0 0.2 0.4 0.6 0.8 1.00.
0e

+
00

4.
0e

−
08

8.
0e

−
08

1.
2e

−
07 Likelihood

θ

p(
D

|θ
)

Data: z=8,N=26

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
Posterior

θ

p(
θ|

D
)

beta(θ|10,38)

p(D)=8.11e−09

95% HDI
0.1 0.323

Figure 11.3: Posterior HDI for the bias of a Bernoulli process, when the prior
assumes a fair coin (left column) or tail-strong nail (rightcolumn).

Some people might wonder, if subjective priors are allowed for Bayesian analyses, then
why not allow subjective intentions for NHST? Because the subjective intentions in the data
collector’s mind do not influence the data and therefore should not influence the analysis.
Subjective prior beliefs, on the other hand, are not about how beliefs influence the data,
but about how the data influence beliefs: Prior beliefs are the starting point from which we
move in the light of new data.

Bayesian analysis tells us how much we should change our beliefs relative to our prior
beliefs. Bayesian analysis does not tell us what our prior beliefs should be. Nevertheless,
the priors are overt, public, and cumulative. Bayesian analysis provides an intellectually
coherent method for determining the degree to which beliefsshould change, and the con-
clusion is influenced by exactly what it should be influenced by, namely the priors and the
observed data. The conclusion is not influenced by what it should not be influenced by,
namely the experimenter’s covert intention while gathering the data.

11.3 Confidence interval and highest density interval

11.3.1 NHST confidence interval

The primary goal of NHST is determining whether a particular”null” value of a parameter
can be rejected. One can also ask whatrangeof parameter values would not be rejected.
This range of non-rejectable parameter values is called theconfidence interval. (There are
different ways of defining an NHST confidence interval; this one isconceptually the most
general and coherent with NHST precepts.) The 95% confidenceinterval consists of all

11.3. CONFIDENCE INTERVAL AND HIGHEST DENSITY INTERVAL 225

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.144

 ⇒
N = 26

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Implied Sampling Distribution

z
p(

z|
N

,θ
)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.517

 ⇒
N = 26

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Implied Sampling Distribution

z

p(
z|

N
,θ

)
0.

00
0.

05
0.

10
0.

15
0.

20
0.

00
0.

05
0.

10
0.

15
0.

20

Figure 11.4: Confidence interval whenz = 8 andN = 26, with N fixed by the
experimenter’s intention. Upper row showsθ = .144, which is the lowest for
which z = 8 is not in the rejection tail. Lower row showsθ = .517, which is the
highest for whichz = 8 is not in the rejection tail. The NHST confidence interval
is, therefore,θ ∈ [.144, .517].

values ofθ that would not be rejected by a (two-tailed) significance test that allows 5%
false alarms.

For example, in a previous section we found thatθ = .5 would not be rejected when
z= 8 andN = 26, for a flipper who intended to stop whenN = 26. The question is, which
other values ofθ would we not reject? Figure 11.4 shows the sampling distribution for
different values ofθ. The upper row shows the case ofθ = 0.144, for which the sampling
distribution hasz= 8 snug against the upper rejection tail. In fact, ifθ is nudged any smaller,
the rejection tail includesz = 8, which means that smaller values ofθ can be rejected. The
lower row of Figure 11.4 shows the case ofθ = 0.517, for which the sampling distribution
hasz = 8 snug against the lower rejection tail. Ifθ is nudged any larger, the rejection tail
includesz = 8, which means that larger values ofθ can be rejected. In summary, the range
of θ values we would not reject isθ ∈ [.144, .517]. This is the 95% confidence interval
whenz= 8 andN = 26, for a flipper who intended to stop whenN = 26. Exercise 11.2 has
you examine this “hands-on”.

We can also determine the confidence interval for the experimenter who intended to
stop whenz= 8. Figure 11.5 shows the sampling distribution for different values ofθ. The

226 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.144

 ⇒
z = 8

8 15 23 31 39 47 55 63 71 79 87 95 104 114

Implied Sampling Distribution

N
p(

N
|z

,θ
)

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ = 0.493 ⇒
z = 8

8 15 23 31 39 47 55 63 71 79 87 95 104 114

Implied Sampling Distribution

N

p(
N

|z
,θ

)
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Figure 11.5: Confidence interval whenz = 8 andN = 26, with z fixed by the
experimenter’s intention. Upper row showsθ = .144, which is the lowest for
which N = 26 is not in the rejection tail. Lower row showsθ = .493, which is
the highest for whichN = 26 is not in the rejection tail. The NHST confidence
interval is, therefore,θ ∈ [.144, .493].

upper row shows the case ofθ = 0.144, for which the sampling distribution hasN = 26
snug against the lower rejection tail. In fact, ifθ is nudged any smaller, the rejection tail
includesN = 26, which means that smaller values ofθ can be rejected. The lower row of
Figure 11.5 shows the case ofθ = 0.493, for which the sampling distribution hasN = 26
snug against the upper rejection tail. Ifθ is nudged any larger, the rejection tail includes
N = 26, which means that larger values ofθ can be rejected. In summary, the range ofθ

values we would not reject isθ ∈ [.144, .493]. This is the 95% confidence interval when
z= 8 andN = 26, for a flipper who intended to stop whenz= 8.

We have just seen that the NHST confidence interval depends onthe covert intentions
of the experimenter. When the intention was to stop whenN = 26, then the range of
biases that would not be rejected isθ ∈ [.144, .517]. But when the intention was to stop
whenz = 8, then the range of biases that would not be rejected isθ ∈ [.144, .493] (the
fact that the lower ends of the confidence intervals are the same is merely an accidental
coincidence for this case). The confidence interval dependson the experimenter’s intention
because those intentions dictate the space of possible unobserved data relative to which the
actually observed data are judged. If the experimenter had other intentions, such as flipping

11.4. MULTIPLE COMPARISONS 227

for a fixed duration, then the confidence interval would be yetsomething different. Thus,
the interpretation of the NHST confidence interval is as convoluted as the interpretation of
NHST itself, because the confidence interval is merely the significance test conducted at
every candidate value ofθ.

The confidence interval tells us something about the probability of extreme unobserved
data values that we might have gotten if we repeated the experiment according to the covert
intentions of the experimenter. But the confidence intervaltells us little about the believ-
ability of any particularθ value, which is what we want to know.

11.3.2 Bayesian HDI

A concept in Bayesian inference, that is somewhat analogousto the NHST confidence in-
terval, is the highest density interval (HDI), which was introduced in Section 3.3.5, p. 34.
The 95% HDI consists of those values ofθ that have at least some minimal level of posterior
believability, such that the total probability of all suchθ values is 95%.

Let’s consider the HDI when we flip a coin and observez= 8 andN = 26. Suppose we
have a prior informed by the fact that the coin appears to be authentic, which we express
here, for illustrative purposes, as a beta(θ|11, 11) distribution. The left side of Figure 11.3
shows that the 95% HDI goes fromθ = 0.261 toθ = 0.533. These limits span the 95% most
believable values of the bias. Moreover, the posterior density shows exactly how believable
each bias is. In particular, we can see thatθ = .5 is within the 95% HDI, which we might
use as a criterion if we are forced to categorically declare whether or not fairness is credible.

There are at least three advantages of the HDI over an NHST confidence interval. First,
the HDI has a direct interpretation in terms of the believabilities of values ofθ. The HDI
is explicitly aboutp(θ|D), which is exactly what we want to know. The NHST confidence
interval, on the other hand, has no direct relationship withwhat we want to know; there’s
no clear relationship between the probability of rejectingthe valueθ and the believability
of θ. Second, the HDI has no dependence on the intention of the experimenter during data
collection, because the likelihood has no dependence on theintention of the experimenter
during data collection. The NHST confidence interval, in contrast, tells us about proba-
bilities of data relative to what might have been if we replicated the experimenter’s covert
intentions. Third, the HDI is responsive to the analyst’s prior beliefs, as it should be. The
Bayesian analysis indicates how much the new data should alter our beliefs. The prior be-
liefs are overt and publicly decided. The NHST analysis, on the contrary, is ignorant of,
and unresponsive to, the accumulated prior knowledge of thescientific community.

11.4 Multiple comparisons

In most experiments there are multiple conditions or treatments. Recall, for example, the
experiment that investigated learning of four different category structures, two of which
were “filtration” structures and two of which were “condensation” structures (Section 9.3.1,
p. 178). Recall that the participants saw a rectangle with aninterior vertical line segment.
On different trials, the rectangle had different heights, and the interior vertical segment
had different lateral positions. People had to learn which figures indicated which of two
category labels. For example, some people were trained withlabels such that tall rectangle
indicated category A, while short rectangles indicated category B. This was a case of a
filtration condition because the lateral position could be filtered out of consideration; only

228 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

the height mattered for correct classification. Other people were trained with labels such
that tallest rectangles or rightmost line segments indicated category A, while other figures
indicated category B. This was a case of a condensation condition because both dimensions
of variation had to be considered and condensed into a singlecategorical response. These
conditions were studied because different theories of learning predict that some conditions
should be easier to learn than others. Therefore the goal of data analysis is to determine
how different the learning performance is across the four conditions.

When comparing multiple conditions, the constraint in NHSTis to keep the overall
false alarm rate down to the desired level, e.g. 5%. Abiding by this constraint depends on
the number of comparisons that are to be made, which in turn depends on the intentions of
the experimenter. In a Bayesian analysis, however, there isjust one posterior distribution
over the parameters that describe the conditions. That posterior distribution is unaffected
by the intentions of the experimenter, and the posterior distribution can be examined from
multiple perspectives however is suggested by insight and curiosity. The next two sections
expand on NHST and Bayesian approaches to multiple comparisons. I will often use the
terms “condition” and “group” interchangeably.

11.4.1 NHST correction for experimentwise error

When there are multiple groups, it often makes sense to compare each group to every other
group. With four groups, for example, there are six different pairwise comparisons we can
make; e.g., groups 1 vs 2, 2 vs 3, 1 vs 3, etc. In NHST, we have to take into account which
comparisons we intend to run for the whole experiment. The problem is that each com-
parison involves a decision with the potential for false alarm. Suppose we set a criterion
for rejecting the null such that each decision has a “per-comparison” (PC) false alarm rate
of αPC, e.g., 5%. Our goal is to determine the overall false alarm rate when we conduct
several comparisons. To get there, we do a little algebra. First, suppose the null hypothesis
is true, which means that the groups are identical, and we getapparent differences in the
samples by chance alone. This means that we get a false alarm on a proportionαPC of
replications of a comparison test. Therefore, we donot get a false alarm on the comple-
mentary proportion 1− αPC of replications. If we runc independent comparison tests, then
the probability of not getting a false alarm onanyof the tests is (1− αPC)c. Consequently,
the probability of getting at least one false alarm is 1− (1− αPC)c. We call that probability
of getting at least one false alarm, across all the comparisons in the experiment, the “exper-
imentwise” false alarm rate, denotedαEW. Here’s the rub:αEW is greater thanαPC. For
example, ifαPC = .05 andc = 6, thenαEW = 1 − (1 − αPC)c = .26. Thus, even when the
null hypothesis is true, and there are really no differences between groups, if we conduct
six independent comparisons, we have a 26% chance of rejecting the null hypothesis for at
least one of the comparisons. Usually not all comparisons are structurally independent of
each other, so the false alarm rate does not increase so rapidly, but it does increase whenever
additional comparison tests are conducted.

One way to keep the experimentwise false alarm rate down to 5%is by reducing the per-
mitted false alarm rate for the individual comparisons, i.e., setting a more stringent criterion
for rejecting the null hypothesis in individual comparisons. One often-used re-setting is the
Bonferonni correction, which setsαPC = α

desired
EW /c. For example, if the desired experiment-

wise false alarm rate is .05, and there are 6 comparisons planned, then we set each individual
comparison’s false alarm rate to .05/6. This is a conservative correction, because the actual
experiment-wise false alarm rate will usually be much less thanαdesired

EW .

11.4. MULTIPLE COMPARISONS 229

There are many different corrections available to the discerning NHST aficionado (e.g.,
Maxwell & Delaney, 2004, Ch. 5). Not only do the correction factors depend on the struc-
tural relationships of the comparisons, but the correctionfactors also depend on whether
the analyst intended to conduct the comparison before seeing the data, or was provoked
into conducting the comparison only after seeing the data. If the comparison was intended
in advance, it is called aplannedcomparison. If the comparison was thought of only after
seeing a trend in the data, it is called apost-hoccomparison. Why should it matter whether
a comparison is planned or post-hoc? Because even when the null hypothesis is true, and
there are no real differences between groups, there will always be a highest and lowest ran-
dom sample among the groups. If we don’t plan in advance whichgroups to compare, but
do compare which ever two groups happen to be farthest apart,we have an inflated chance
of declaring groups to be different that aren’t truly different.

The point, for our purposes, is not which correction to use. The point is that the NHST
analyst must make some correction, and the correction depends on the number and type of
comparisons that the analystintendsto make. This creates a problem because two analysts
can come to the same data but draw different conclusions because of the variety of compar-
isons that they find interesting enough to conduct, and what provoked their interest. The
creative and inquisitive analyst, who wants to conduct manycomparisons either because of
deep thinking about implications of theory, or because of provocative unexpected trends in
the data, is penalized for being thoughtful. A large set of comparisons can be conducted
only at the cost of using a more stringent threshold for each of the comparisons. The unin-
quisitive analyst is rewarded with an easier criterion for achieving significance. This seems
to be a counterproductive incentive structure: You have a higher chance of getting a “sig-
nificant” result, and getting your work published, if you feign narrow mindedness under the
pretense of protecting the world from false alarms.

To make this concrete, consider again the filtration/condensation experiment from Sec-
tion 9.3.1, p. 178. The theory relating category structure to learning difficulty predicts
that the filtration structures should be easier than the condensation structures, that the two
condensation structures should be approximately equally difficult, and that the two filtra-
tion structures might be somewhat different in difficulty. Theory implies, therefore, three
planned comparisons. But what if the analyst was less thoughtful, or took a more broad-
brush approach, and planned only one comparison: The average filtration versus the average
condensation. This single comparison would indeed addressthe primary theoretical issue,
without worrying about ancillary nuances. The broad-brusher would be rewarded with a
less stringent criterion for the test to achieve significance. On the other hand, suppose that
upon seeing the data, the detail-oriented analyst discovers that the slower of the two fil-
tration groups is not much faster than the faster of the two condensation groups. The two
groups should therefore be compared. The analyst can treat this as a post-hoc comparison,
or the analyst can realize that it would have made sense to plan to compare each of the
filtration groups individually against each of the condensation groups. After all, it’s just
as post-hoc to notice that the slower of the filtration groupsis clearly much faster than the
faster of the two condensation groups, and decide thereforenot to compare them. So, we
might as well be honest about it, and realize that the comparisons should have been planned
in the first place. All this leaves the NHST analyst walking onthe quicksand of soul search-
ing. Was the comparison truly planned or post-hoc? Did the analyst commit premeditated
exclusion of comparisons that should have been planned, or was the analyst merely super-
ficial, or was the exclusion post-hoc? This problem is not solved by picking a story and
sticking to it, because it still presumes that the analyst’sintentions should influence the data

230 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

interpretation.

11.4.2 Just one Bayesian posterior no matter how you look at

The data from an experiment, or from an observational study,are carefully collected so to be
totally insulated from the experimenter’s intentions regarding subsequent tests. Indeed, the
data should be uninfluenced by the presence or absence of any other condition or subject in
the experiment! For example, it doesn’t matter to an individual in a filtration group whether
or not the experiment includes the other filtration group, orthe condensation groups, or still
yet other conditions, or how many subjects there are in the groups. Moreover, the data are
uninfluenced by the experimenter’s intentions regarding the other groups and sample size.
So why should our interpretation of the data depend on the experimenter’s intentions if the
data themselves are not influenced by the experimenter’s intentions?

In a Bayesian analysis, the interpretation of the data is indeeduninfluenced by the ex-
perimenter’s intentions. A Bayesian analysis yields a posterior distribution over the param-
eters of the model. The posterior distribution is the complete implication of the data. The
posterior distribution can be examined in as many different ways as the analyst deems in-
teresting; various comparisons of groups are merely different perspectives on the posterior
distribution.

µ1 − µ2

0.00 0.05 0.10 0.15

mean = 0.0803

0.1% <= 0 < 99.9%

95% HDI
0.0352 0.125

µ3 − µ4

−0.10 −0.05 0.00 0.05 0.10

mean = 0.00403

44.2% <= 0 < 55.8%

95% HDI
−0.0474 0.061

(µ1 + µ2) 2 − (µ3 + µ4) 2

0.00 0.05 0.10 0.15 0.20

mean = 0.172

0% <= 0 < 100%

95% HDI
0.137 0.207

Figure 11.6: Histograms of differences in values of the mu parameters, generated
by the script FilconBrugs.R (p. 188). (This figure repeats Figure 9.16.)

For example, in the case of the filtration-condensation experiment, the Bayesian anal-
ysis (see BRugs code on p. 9.5.2) yields a posterior distribution over a high-dimensional
parameter space, which includes the fourµ j parameters that describe the learning accu-
racies of the four conditions. (The other parameters were the individual learning biases,
denotedθ ji , and the fourκ j parameters that described how strongly the individual accura-
cies depended on the condition’sµ j.) Let’s collapse across the other parameters and focus
on the four conditions’sµ j parameters. If we want to determine whether group 1 tends to
be more accurate than group 2, we determine how much of the posterior distribution has
µ1 > µ2. Figure 9.16 showed a histogram of that difference, and that figure is repeated as
Figure 11.6 for convenience. The left panel shows the posterior distribution ofµ1−µ2, from
which we can ascertain whether a difference of zero is credible. The posterior distribution
also tells us the believability of each candidate difference ofµ’s.

The other two panels of Figure 11.6 show other comparisons ofthe µ j parameters.
Those histograms merely summarize the posterior distribution from other perspectives. The
posterior distribution itself is unchanged by how we look atit. We can examine any other
comparison ofµ j parameters without worrying about what motivated us to consider it, be-

11.5. WHAT A SAMPLING DISTRIBUTION IS GOOD FOR 231

cause the posterior distribution is unchanged by those motivations.
In summary, the Bayesian posterior distribution is appropriately insensitive to the ex-

perimenter’s covert intentions to compare or not compare various groups. The Bayesian
posterior also directly tells us the believabilities of themagnitudes of differences, unlike
NHST which tells us only about whether a difference is extreme in a space of possibilities
determined by the experimenter’s intentions.

11.4.3 How Bayesian analysis mitigates false alarms

No analysis is immune to false alarms, because randomly sampled data will occasionally
contain accidental coincidences of outlying values. Bayesian analysis eschews the use ofp
values as a criterion for decision making, however, becausethe probability of false alarm
depends dramatically the experimenter’s intentions. Bayesian analysis instead accepts the
fact that the posterior is the best inference we can make, given the observed data and the
prior beliefs.

How, then, does a Bayesian analysis address the problem of false alarms? By incorpo-
rating prior knowledge into the structure of the model. Specifically, if we know that different
groups have some overarching commonality, even if their specific treatments are different,
we can nevertheless model the different group parameters as having been drawn from an
overarching distribution that expresses the commonality.An example of this was described
in the right side of Figure 9.17, p. 183, where the groupκc parameters were modeled by
an overarching distribution. If several of the groups yieldsimilar data, this similarity in-
forms the overarching distribution, which in turn implies that any outlying groups should
be estimated to be a little more similar than they would be otherwise. In other words, just
as there can be shrinkage of individual estimates toward thegroup central tendency (recall
Section 9.2.3, p. 175), there can be shrinkage of group estimates toward the overall central
tendency. The shrinkage protects against accidental outliers and false alarms (e.g., Berry
& Hochberg, 1999; Gelman, 2005; Gelman, Hill, & Yajima, 2009; Lindquist & Gelman,
2009; Meng & Dempster, 1987). This shrinkage is not an arbitrary “correction” like those
applied in NHST. The shrinkage is a rational consequence of the prior knowledge expressed
in the model structure. Section 18.2, p. 409, provides additions discussion and examples in
the context of metric variables, which in NHST are analyzed with t-tests and ANOVA.

11.5 What a sampling distribution is good for

I hope to have made it clear that sampling distributions aren’t as useful as posterior distribu-
tions for making inferences about hypotheses from a set of observed data. The reason is that
sampling distributions tell us the probabilities of possible data if we run an intended exper-
iment given a particular hypothesis, rather than the believabilities of possible hypotheses
given that we have a particular set of data. Nevertheless, sampling distributions are ap-
propriate and useful for other applications. Two of those applications are described in the
following sections.

11.5.1 Planning an experiment

Until this point in the book, I have emphasized analysis of data that have already been
obtained. But a crucial part of conducting research is planning the study before actually
obtaining the data. When planning research, we have some hypothesis about how the world

232 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

might be, and we want to gather data that will inform us about the viability of that hypoth-
esis. Typically we have some notion already about the experimental treatments or observa-
tional settings, and we want to plan how many observations we’ll probably need to make,
or how long we’ll need to run the study, in order to have reasonably reliable evidence one
way or the other.

For example, suppose that my theory suggests a coin should bebiased withθ = .60.
Perhaps the coin is a population of voters, hence flipping thecoin means polling a person in
the population, the outcome heads means preference for candidate A. The theory regarding
the bias may have come from previous polls regarding political attitudes. We would like
to plan a survey of the population that will give us precise posterior beliefs about the true
preference for candidate A. Suppose our intended survey will sample people until we ob-
tain z = 100 people in favor of candidate A. By simulating the experiment over and over,
using the hypothesizedθ = .60, we can generate expected data, and then derive a Bayesian
posterior distribution for every set of simulated data. Forevery posterior distribution, we
determine some measure of accuracy, such as the width of the 95% HDI. From many sim-
ulated experiments, we get a sampling distribution of HDI widths. From the sampling
distribution of HDI widths, we can decide whetherz = 100 typically yields high enough
accuracy for our purposes. If not, we repeat the simulation with a largerz. Once we know
how bigzneeds to be to get the accuracy we seek, we can decide whether or not it is feasible
to conduct such a study.

Notice that we used the intended experiment to generate a space of possible data in
order to anticipate what is likely to happenwhen the data are analyzed with Bayesian meth-
ods. For any single set of data (simulated or actual), we recognize that the individual data
points in the set are insulated from the intentions of the design, and we conduct a Bayesian
analysis of the data set. The use of a distribution of possible sample data, from an intended
experiment, is perfectly appropriate here because it is exactly the implications of this hypo-
thetical data distribution that we want to find out about.

The issues of research design will be explored in greater depth in Chapter 13, which is
entirely devoted to this topic.

11.5.2 Exploring model predictions (posterior predictivecheck)

A Bayesian analysis only indicates therelativeveracities of the various parameter values or
models under consideration. The posterior distribution only tells us which parameter values
are relatively less bad than the others. The posterior does not tell us whether the least bad
parameter values are actually any good.

For example, suppose we believe that a coin is a heavily biased trick coin, and either
comes up heads 99% of the time, or else comes up tails 99% of thetime; we just don’t know
which direction of bias it has. Now we flip the coin 40 times andit comes up heads 30 of
those flips. It turns out that the 99%-head model has a far bigger posterior probability than
the 99%-tail model. But it is also the case that the 99%-head model is a terrible model of a
coin that comes up heads 30 out of 40 flips!

One way to evaluate whether the least unbelievable parameter values are any good is
via a posterior predictive check. A posterior predictive check is an inspection of patterns
in simulated data that are generated by typical posterior parameters values. Back in Exer-
cise 5.8, p. 81, we explored an example of a posterior predictive check, and another example
appeared in Section 7.4.2, p. 118. The idea of a posterior predictive check as follows: If the
posterior parameter values really are good descriptions ofthe data, then the predicted data

11.6. EXERCISES 233

from the model should actually “look like” real data. If the patterns in the predicted data do
not mirror the patterns in the actual data, then we are motivated to invent models that can
produce the patterns of interest.

This use of the posterior predictive check is suspiciously like null hypothesis signifi-
cance testing: We start with a hypothesis (i.e., the least unbelievable parameter values), and
we generate simulated data as if we were repeating our intended experiment over and over.
Then we see if the actual data are typical or atypical in the space of simulated data. If we
were to go further, and determine critical values for false alarm rates and then reject the
model if the actual data fall in its extreme tails, then we would indeed be doing NHST. But
we don’t go that far. Instead, the goal of the posterior predictive check is to drive intuitions
about the qualitative manner in which the model succeeds or fails, and about what sort of
novel model formulation might better capture the trends in the data. Once we invent an-
other model, then we can use Bayesian methods to quantitatively compare it with the other
models.

11.6 Exercises

R Hint: For many of these exercises, you may find it helpful to use R’sdbinom(x,size,prob)

function, wherex corresponds toz (a vector from 0 toN) and size corresponds to
N (a constant) in Equation 11.2. R also has a function for the negative binomial,
dnbinom(x,size,prob). Be careful if you use the negative binomial density, because the ar-
gumentx corresponds toN−z (a vector starting with 0) and the argumentsize corresponds
to z (a constant) in Equation 11.2.

Exercise 11.1.[Purpose: Determine critical values for a two-tailed test,conduct the test, and notice

the dependence of the conclusion on the intended stopping rule.]

Suppose we flip a coinN = 17 times. Our goal is to determine what values for the
number of heads would be extreme enough to reject the hypothesis that the coin is fair.
We want the total probability of false alarm to be less than 5%. In other words, if the null
hypothesis is really true, we will mistakenly reject it lessthan 5% of the time. Therefore
we desire critical valueszlow andzhigh for the number of observed heads, such thatp(z ≤
zlow|N = 17, θ = .5) < .025 andp(z ≥ zhigh|N = 17, θ = .5) < .025. This is called a
two-tailed test, because extreme values in either tail of the distribution can reject the null
hypothesis.

(A) What is the value ofzlow? Explain how you got your answer. Hint: Try
cumsum(dbinom(0:17 , 17 , .5)) < .025

and carefully explain what that does!
(B) What is the value ofzhigh? Explain how you got your answer. Hint: Try

cumsum(dbinom(17:0 , 17 , .5)) < .025

and carefully explain what that does!
(C) Suppose we flip the coin 17 times and get 4 heads. How many headswould we

expect to get if the coin were fair? Can we reject the null hypothesis “at the .05 level”
(which means, with two-tailed false alarm rate less than .05)?

(D) New scenario:We have a six-sided die, and we want to know whether the prob-
ability that the six-dotted face comes up is fair. Thus, we are considering two possible
outcomes: six-dots or not six-dots. If the die is fair, the probability of the six-dots face is
1/6. Suppose we roll the dieN = 45 times, intending to stop at that number of rolls. What
are the values ofzlow andzhigh, using a two-tailed false alarm rate of 5%? Explain how you

234 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ⇒
N = 45

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Implied Sampling Distribution

z
p(

 z
 |

N
 ,

th
et

a
)

0.
00

0.
05

0.
10

0.
15

0.
00

0.
05

0.
10

0.
15

tail head

Hypothetical Population

y

p(
y)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ⇒
z = 3

3 6 9 12 16 20 24 28 32 36 40 44 48 52

Implied Sampling Distribution

N

p(
 N

 |
z

, t
he

ta
)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 11.7: For use with latter parts of Exercise 11.1.Upper panel: Binomial
sampling distribution (Eqn. 11.1) whenp(y=head)= θ = 1/6 andN is fixed at 45.
The domain ofz in the sampling distribution is integers from 0 toN. Lower panel:
Sampling distribution (Eqn. 11.2) whenp(y=head)= θ = 1/6 andz is fixed. The
domain ofz in the sampling distribution is integers fromz to∞.

got your answer. Suppose we get 3 six-dot rolls. Can we rejectthe null hypothesis that the
die is fair? (See the upper panel of Figure 11.7 for guidance.)

(E) Suppose we roll the die until we get 3 six-dot outcomes. It takes 45 rolls. (Notice
this is the same result as the previous part.) How many six-dot outcomes would we expect
to get if the coin were fair? Can we reject the null hypothesisthat the die is fair, at the .05
level? (See the lower panel of Figure 11.7 for guidance.)

Exercise 11.2.[Purpose: Determine NHST confidence intervals, and notice that they depend on the

experimenter’s intention.] Suppose we flip a coinN = 26 times and observez = 8 heads.
Assume that the intention was to stop whenN = 26.

(A) Show that whenθ = 0.144, the probability ofz≥ 8 is just over 2.5%, but for smaller
values ofθ, the probability ofz≥ 8 is less than 2.5%. Hint: Try
for(theta in seq(.140 , .150 , .001)) {
show(c(theta , sum(dbinom(8:26 , 26 , theta))))

}

11.6. EXERCISES 235

and explain carefully what that does.
(B) Show that whenθ = 0.517, the probability ofz ≤ 8 is just over 2.5%, but whenθ

exceeds 0.517, thenp(z≤ 8) drops below 2.5%.
(C) What is the 95% confidence interval forθ? (Just summarize the results of the

previous two parts.)
(D) Suppose that the intention was to stop whenz= 8 heads. Explain how to determine

the NHST confidence interval, and include R code as appropriate. (Cf. Figure 11.5.)

Exercise 11.3.[Purpose: Determine thep value if a coin is flipped for a fixed period of time instead of

for a fixed number of flips.]

An experimenter is investigating whether there are more conservatives or liberals in her
subject pool. She recruits 46 subjects and finds that 30 of them are liberal. We are interested
in testing the null hypothesis that the population is split 50-50; i.e.,θ = .5.

(A) If we assume that the experimenter intended to stop whenN = 46, what is the
probability of getting 30 or more liberals in a sample according to the null hypothesis? Do
we reject the null hypothesis? Hint:sum(dbinom(30:46 , 46 , .5)) < 0.025

(B) We ask the experimenter why she choseN = 46. She replies that she didn’t; in fact,
she chose to run the experiment for 1 week, and she just happened to get 46 subjects. (This
is typical in real-world research. There is nothing wrong with this procedure because we
are assuming that every person polled is independent of every other person polled, and un-
influenced by the poller’s intentions.) With these intentions regarding duration, we cannot
assume thatN is fixed at 46, and therefore the space of possible experimentoutcomes is
much larger.

We know that if we repeated the experiment, i.e., recruited subjects for 1 week, then
we would getN ≈ 46, but not necessarily exactlyN = 46. We will assume that the sample
size N is distributed as a Poisson variable:p(N|µ) = 1

N! e
−µµN. (Graphs of the Poisson

distribution appear in Figure 22.1, p. 492.) A Poisson process is often used to model the
arrival of customers in a queue (e.g., Sadiku & Tofighi, 1999). The Poisson distribution
has meanµ. The Poisson distribution indicates the probability of getting N events during
a unit time interval when the mean rate of events per unit timeinterval isµ. Because we
observed 46 subjects in 1 week, we will setµ = 46. The Poisson distributionp(N|µ=46)=
1
N! e
−4646N has highest probability around 46, indicating that usuallya week will yield 46

subjects, but sometimes more and sometimes less. In R, the Poisson probability is given by
dpois(N , mu).

We seek to determine the probability of getting aproportion of heads that is as large
or larger than the observed proportion 30/46 = .652, when recruiting subjects for a week,
if the null hypothesis were true. We will compute the answer in the following manner.
Suppose we obtainN subjects during the week. The probability of gettingN is the Poisson
probability p(N|µ = 46) = 1

N! e
−4646N. We use the binomial distribution to determine the

probability of gettingz ≥ 30
46N liberals from the null hypothesis, withp(z|N, θ = .5) =

(
N
z

)

.5z(1 − .5)N−z. Thus, the probability of the outcomez,N is p(N|µ = 46)p(z|N, θ = .5).

We accumulate this probability across all values ofN and all values ofz ≥ 30
46N. The

accumulation overN is an infinite sum, so we approximate it by summing over a large
range ofN, beyond which the contribution by larger values ofN is negligible. In R, we can
execute this computation as follows: (BinomNHSTpoissonrate.R)

1 z_obs = 30 ; N_obs = 46

2 nulltheta = .5

3 tail_prob = 0 # Zero initial value for accumulation over possible N.

236 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

4 for (N in 1 : (3*N_obs)) { # Start at 1 to avoid /0. 3*N_obs is arbitrary.

5 # Create vector of z values such that z/N >= z_obs/N_obs

6 zvec = (0:N)[(0:N)/N >= z_obs/N_obs]

7 tail_prob = tail_prob + (

8 dpois(N , N_obs) * sum(dbinom(zvec , N , nulltheta)))

9 }

10 show(tail_prob)

Is the probability of getting the observed proportion less than 2.5%? Do we reject the
null hypothesis? How does this compare with the conclusion from the previous part of the
exercise?

(C) Repeat the previous two parts, forz= 26 andN = 39.

Exercise 11.4.[Purpose: Determine the false alarm rate for a two-tiered data collection process (cf.

J. O. Berger & Berry, 1988).]

Suppose an experimenter plans to collect data based on a two-tier stopping criterion.
The experimenter will collect an initial batch of data withN = 30 and then do a NHST. If
the result is not significant, then an additional 15 subjects’ data will be collected, for a total
N of 45. Suppose the researcher intends to use the standard critical values for determining
significance at both theN = 30 andN = 45 stages. Our goal is determine the actual false-
alarm rate for this two-stage procedure, and to ponder what the mere intention of doing a
second phase implies for interpreting the first stage, even if data collection stops with the
first stage.

(A) For N = 30, what arezlow andzhigh, assuming a two-tailed false alarm rate of .05 or
less? (See Exercise 11.1.) Hint: The answer is 9 and 21; your job is to explain how to get
that answer.

(B) For N = 45, what arezlow andzhigh, assuming a two-tailed false alarm rate of .05 or
less? (See Exercise 11.1.) Hint: The answer is 15 and 30; yourjob is to explain how to get
that answer.

Table 11.1: Possible results for two-stage NHST.
Second First 30 Flips
15 Flips 0 . . . 9 10 . . . 15 16 . . . 20 21 . . . 30

0 †,‡ . . . †,‡ ‡ . . . ‡ - . . . - † . . . †,‡
1 †,‡ . . . †,‡ ‡ . . . - - . . . - † . . . †,‡
...

5 †,‡ . . . †,‡ ‡ . . . - - . . . - † . . . †,‡
6 †,‡ . . . †,‡ - . . . - - . . . - † . . . †,‡
7 †,‡ . . . † - . . . - - . . . - † . . . †,‡
8 †,‡ . . . † - . . . - - . . . - † . . . †,‡
9 †,‡ . . . † - . . . - - . . . - †,‡ . . . †,‡
10 †,‡ . . . † - . . . - - . . . ‡ †,‡ . . . †,‡
...

15 †,‡ . . . † - . . . ‡ ‡ . . . ‡ †,‡ . . . †,‡

For the next parts of the exercise, consider Table 11.1. Eachcell of Table 11.1 corre-
sponds to a certain outcome from the first 30 flips and a certainoutcome from the second
15 flips. A cell is marked by a dagger,†, if it has a result for the first 30 flips that would
reject the null hypothesis. A cell is marked by a double dagger, ‡, if it has a result for the
total of 45 flips that would reject the null hypothesis. For example, the cell with 10 heads

11.6. EXERCISES 237

from the first 30 flips and 1 head from the second 15 flips is marked with a‡ because the
total number of heads for that cell, 10+ 1 = 11, is less than 15 (which iszlow for N = 45).
That cell has no single dagger,†, because getting 10 heads in the first 30 flips is not extreme
enough to reject the null.

(C) Denote the number of heads in the first 30 flips asz1, and the number of heads in
the second 15 flips asz2. Explain why it it true that thez1, z2 cell of the table has conjoint
probability equal todbinom(z1,30,.5) * dbinom(z2,15,.5).

(D) What is the sum of the probabilities of all the cells that contain a†? (This includes
cells that contain both a† and a‡.) Explain how you got your answer! Hint: The answer is
not greater than .05. See also the HINT at the end of the exercise.

(E) What is the sum of the probabilities of all the cells that contain a‡? (This includes
cells that contain both a‡ and a†.) Explain how you got your answer! Hint: The answer is
not greater than .05. See also the HINT at the end of the exercise.

(F) What is the sum of the probabilities of all the cells that contain either a † or a ‡?
Note: This is the false alarm rate for the two-stage design, because these are all the ways
you would decide to reject the null even when it’s true.Explain how you got your answer!
Hint: The answeris greater than .05. See also the HINT at the end of the exercise.

(G) Suppose that the researcher intends to run an experiment using this two-stage stop-
ping criterion. She collects the first 30 flips and finds 8 heads. She therefore rejects the
null hypothesis, and reports thatp < .05. Is that correct? Explain.Hint: The answer is no,
it’s not correct, because the design of the experiment included a larger potential sampling
space.

(H) Whenever we run an experiment and get a result that trends away from the null
expectation, but isn’t quite significant, it’s natural to consider collecting more data. We
saw in the previous part that even intending to collect more data, but not actually doing it,
inflates the false-alarm rate. Doesn’t the fact that we always consider collecting more data
mean that we always have a much higher false-alarm risk than we pretend we do? Doesn’t
the actual false-alarm rate of an experiment depend on the maximal number of data points
we’d be willing to collect over the course of our lifetimes?

HINT: Here is some R code for solving the above. Notice you cantry other values of
N1 andN2, which produce even more dramatic results.

(NHSTtwoTierStoppingExercise.R)
1 # For NHST exercise regarding two-tier testing.

2

3 N1 = 30 # Number of flips for first test. Try 17.

4 N2 = 15 # Number of _additional_ flips for second test. Try 27 or 50.

5

6 theta = .5 # Hypothesized bias of coin.

7 FAmax = .05 # False Alarm maximum for a single test.

8 NT = N1 + N2 # Total number of flips.

9

10 # Determine critical values for N1:

11 # EXPLAIN what each function does and why, including

12 # dbinom, cumsum, which, max, and (0:N)[...]

13 loCritN1 = (0:N1)[max(which(cumsum(dbinom(0:N1,N1,theta)) <= FAmax/2))]

14 hiCritN1 = (N1:0)[max(which(cumsum(dbinom(N1:0,N1,theta)) <= FAmax/2))]

15 # Compute actual false alarm rate for those critical values.

16 # EXPLAIN what this does and why.

17 FA1 = sum((0:N1 <= loCritN1 | 0:N1 >= hiCritN1) * dbinom(0:N1,N1,theta))

18 cat("N1:",N1 , ", lo:",loCritN1 , ", hi:",hiCritN1 , ", FA:",FA1 , "\n")

19

238 CHAPTER 11. NULL HYPOTHESIS SIGNIFICANCE TESTING

20 # Determine critical values for NT:

21 # EXPLAIN what each function does and why, including

22 # dbinom, cumsum, which, max, and (0:N)[...]

23 loCritNT = (0:NT)[max(which(cumsum(dbinom(0:NT,NT,theta)) <= FAmax/2))]

24 hiCritNT = (NT:0)[max(which(cumsum(dbinom(NT:0,NT,theta)) <= FAmax/2))]

25 # Compute actual false alarm rate for those critical values.

26 # EXPLAIN what this does and why.

27 FAT = sum((0:NT <= loCritNT | 0:NT >= hiCritNT) * dbinom(0:NT,NT,theta))

28 cat("NT:",NT , ", lo:",loCritNT , ", hi:",hiCritNT , ", FA:",FAT , "\n")

29

30 # Determine actual false alarm rate for the two-tier test:

31 # EXPLAIN each of the matrices below --- what is in each one?

32 Z1mat = matrix(0:N1 , nrow=N2+1 , ncol=N1+1 , byrow=TRUE)

33 ZTmat = outer(0:N2 , 0:N1 , "+")

34 pZTmat = outer(dbinom(0:N2 , N2 , theta) , dbinom(0:N1 , N1 , theta))

35 # EXPLAIN the matrices in computation below.

36 FA1or2 = sum(((ZTmat <= loCritNT | ZTmat >= hiCritNT) # double dagger matrix

37 | (Z1mat <= loCritN1 | Z1mat >= hiCritN1) # single dagger matrix

38) * pZTmat)

39 cat("Two tier FA:" , FA1or2 , "\n")

Chapter 12

Bayesian Approaches to Testing a
Point (“Null”) Hypothesis
Contents

12.1 The estimation (single prior) approach 240
12.1.1 Is a null value of a parameter among the credible values? 240
12.1.2 Is a null value of a difference among the credible values? 241

12.1.2.1 Differences of correlated parameters 242
12.1.3 Region of Practical Equivalence (ROPE) 244

12.2 The model-comparison (two-prior) approach 245
12.2.1 Are the biases of two coins equal or not?246

12.2.1.1 Formal analytical solution 247
12.2.1.2 Example application 248

12.2.2 Are different groups equal or not? 249
12.3 Estimation or model comparison?251

12.3.1 What is the probability that the null value is true? 251
12.3.2 Recommendations . 251

12.4 R code . 252
12.4.1 R code for Figure 12.5 . 252

12.5 Exercises . 255

Tell me what character does he possess?
Is he a scoundrel who couldn’t care less?
Is he immaculate, squeaky and clean? I’d
Estimate that he’s somewhere in between.

Suppose that you have collected some data, and now you want toanswer the question, Is
the coin biased or not? Does the drug work or not? Is there a preference for candidate A or
candidate B? In the previous chapter, I argued that the 20th-century way of answering the
question, via null hypothesis significance testing (NHST),has deep problems. This chapter
describes Bayesian approaches to the question.

In the context of coin flipping, the question we are asking is whether the bias has some
particular value. For example, if we are asking whether the coin is fair, we are asking
whether a bias of 0.5 is credible. There are two different ways of formalizing this question
in a Bayesian framework. One way to pose the question is to askwhether the value of

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

239

240 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

interest falls among the credible values in the posterior. In particular, we can ascertain
whether the value of interest is within the 95% HDI of the posterior. A different way to
pose the question sets up a dichotomy between, on the one hand, a prior distribution that
allows only the value interest, and, on the other hand, a prior distribution that allows a
broad range of all possible values. The posterior believability of the two priors is assessed
via Bayesian model comparison.

The chapter will explore the two approaches in some detail. The conclusions drawn
by the two approaches do not yield the same information, so itis important to choose the
approach that is most appropriate to the situation and the question you want to ask of your
data.

A full treatment of this issue would involve Bayesiandecision theory, which takes into
account the costs of incorrect decisions and the benefits of correct decisions. For example,
we would have to specify the cost of declaring a drug to credibly better than a placebo when
in fact it was not, and the cost of declaring a drug to be no better than a placebo when it fact
it was. We would also have to specify the benefits of the complementary correct decisions.
Moreover, we would have to determine the probability of eachof those decision outcomes,
so that we could figure out the expected value of the decision rule. Unfortunately, in many
situations it is difficult to specify the costs and benefits with much accuracy, andtherefore
we will not study a full decision-theoretic treatment. See J. O. Berger (1985) for more
information about Bayesian decision theory. Instead of incorporating costs and benefits of
decisions, we will consider two methods that consider only posterior distributions.

12.1 The estimation (single prior) approach

This approach has been used several times already in this book, and is presented in many
other textbooks (e.g., Berry, 1996; Bolstad, 2007; Carlin &Louis, 2009; Gelman et al.,
2004; Gelman & Hill, 2007; Lynch, 2007). The decision rule goes roughly like this:

A parameter value is declared to benot credible if it lies outside the 95% HDI
of the posterior distribution of that parameter. If a parameter value lies within
the 95% HDI, it is said to be among the credible values.

This decision rule will be modified and expanded later, when we get to the notion of a region
of practical equivalence in Section 12.1.3. This approach is called theestimation (single-
prior) method because it addresses the question of credibility by considering the posterior
estimate of the parameter, derived from a single, often informed, prior distribution. Let’s
review this approach in several examples.

12.1.1 Is a null value of a parameter among the credible values?

Consider a couple of situations in which we wanted to know whether a “coin bias” of 0.5
was credible. First, recall Exercise 5.3, p. 80, which described a learning experiment in
which people learned to press different response keys for different cue-words that appeared
on a computer screen. After learning, there were some test cases in which conflicting cue-
words were displayed together. For each type of conflicting case, the researcher wanted to
know if people were responding randomly, or instead had a bias away from 50/50 respond-
ing. The (fictitious but realistic) data showed that of 50 respondents, 35 gave response A
whereas 15 gave response B. If the researcher begins with a uniform prior, then the poste-
rior is a beta(θ|36, 16) distribution, which has a 95% HDI from 0.567 to 0.813, as shown in

12.1. THE ESTIMATION (SINGLE PRIOR) APPROACH 241

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Prior

θ

p(
θ)

beta(θ|1,1)

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

−
14

4e
−

14
6e

−
14

Likelihood

θ

p(
D

|θ
)

Data: z=35,N=50

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Posterior

θ

p(
θ|

D
)

beta(θ|36,16)

p(D)=8.71e−15

95% HDI
0.567 0.813

Figure 12.1: If there are 35 heads in 50 flips,
is a bias ofθ = .5 among the credible values?
According to the 95% HDI, no. (Data from
Exercise 5.3, p. 80.)

Figure 12.1. Because 0.50 lies outside the 95% HDI, the researcher would conclude that
people are not responding randomly, i.e., the “null” bias of0.50 is not credible.

Another example, in which we considered whether a 50/50 bias was credible, was the
investigation of therapeutic touch, in which researchers tested whether therapists could de-
tect the presence of another person’s hand several centimeters away. Of primary interest in
the analysis was the estimate of the overall accuracy of the group of therapists. The overall
accuracy was denoted by the parameterµ (mu), and the posterior estimate of the parame-
ter is shown in the top left panel of Figure 9.14, p. 176. The 95% HDI goes from 0.356
to 0.515, which includes the chance value of 0.50. The researcher would conclude that the
therapists might well have been responding randomly, by 50/50 guessing, but other biases
within the HDI are also credible. Notice that the posterior distribution provides an explicit
description of our uncertainty in the posterior estimate.

12.1.2 Is a null value of a difference among the credible values?

We have also already seen situations in which we wanted to know whether a non-zerodif-
ferenceof parameter values was credible. Recall Exercise 8.1, p. 153, which asked whether
there is a “hot hand” in basketball, whereby there is a difference between (i) the probability
θA f terS uccessof successfully making a shot immediately after a previous success and (ii) the
probability θA f terFailure of successfully making a shot immediately after after a previous
failure. The posterior estimate of the difference in proportions is shown in Figure 12.2,
where it can be seen that the 95% HDI goes from−0.0551 to+0.109. The researcher would
conclude that there may well beno hot hand phenomenon, but non-zero differences within
the HDI are credible.

Another situation in which we wanted to know about a difference of parameter values
was the learning experiment involving category structurescalled filtration or condensation.

242 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

0.70 0.75 0.80 0.85 0.90 0.95

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

θAfterSuccess

θ A
fte

rF
ai

lu
re

θAfterSuccess − θAfterFailure

D
en

si
ty

−0.1 0.0 0.1 0.2

0
2

4
6

8
10

mean = 0.0254

28.2% < 0 < 71.8%

95% HDI
−0.0551 0.109

Figure 12.2: Posterior of biases from Exercise 8.1, p. 153. The posterior shows
that a difference of zero is among the credible values.

There were four different category structures, and the parameter describing the accuracy
of the jth group was denotedµ j. Figure 9.16, p. 181, showed the posterior estimate of
the differences of the parameters. The right panel of that figure shows that the difference
between the filtration groups and the condensation groups has a 95% HDI going from 0.176
to 0.265, which suggests that a difference of zero is not credible, i.e., there is highly credible
non-zero difference between the types of conditions.

12.1.2.1 Differences of correlated parameters

It is important to understand that marginal distributions of single parameters do not reveal
whether or not the two parameter values are different. Figure 12.3, in its upper four pan-
els, shows a case in which the posterior distribution for twoparameter values has a strong
positive correlation. Two of the panels show the marginal distributions of the single param-
eters. Those two marginal distributions suggest that thereis a lot of overlap between the
two parameters values. Does this overlap imply that we should not believe that they are
very different? No! The histogram of the differences shows that the true difference between
parameters is quite credibly greater than zero, with a difference of zero falling outside the
95% HDI. The upper left panel shows why: The two parameter values are highly correlated,
such that when we believe one parameter value is large, we believe that the other parameter
value is also large. Because of this high correlation, the points in the conjoint distribution
fall almost all on one side of the line of equality.

Figure 12.3 shows, in its lower four panels, a complementarycase. Here, the marginal
distributions of the single parameters are exactly the sameas before: Compare the his-
tograms of the marginal distributions, for the upper four panels and the lower four panels.
Despite the fact that the marginal distributions are the same as before, the bottom right panel
reveals that the difference of parameter values now straddles zero, with a difference of zero
firmly in the midst of the HDI. The plot of the conjoint distribution shows why: The two

12.1. THE ESTIMATION (SINGLE PRIOR) APPROACH 243

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(θ1,θ2|D)

θ1

θ 2

θ2

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

mean = 0.45

95% HDI
0.251 0.639

θ1

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

mean = 0.57

95% HDI
0.381 0.769

θ1 − θ2

D
en

si
ty

−0.6 −0.2 0.0 0.2 0.4 0.6 0.8

0
2

4
6

8 mean = 0.12

0.3% < 0 < 99.7%

95% HDI
0.0279 0.206

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(θ1,θ2|D)

θ1

θ 2

θ2

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

mean = 0.45

95% HDI
0.251 0.639

θ1

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

mean = 0.57

95% HDI
0.381 0.769

θ1 − θ2

D
en

si
ty

−0.6 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

mean = 0.12

26.7% < 0 < 73.3%

95% HDI
−0.26 0.494

Figure 12.3: When there is a positive correlation between parameters, as shown in
the upper four panels, the distribution of differences is narrower than when there
is a negative correlation, as shown in the lower four panels.

244 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

parameter values are negatively correlated, such that whenwe believe one parameter value
is large, we believe that the other parameter value is small.The negative correlation causes
the conjoint distribution to straddle the line of equality.

In summary, the marginal distributions of single parameters do not indicate the relation-
ship between the parameter values. The conjoint distribution of the two parameters might
have positive or negative correlation (or even a non-lineardependency), and therefore the
difference of the parameter values should be explicitly examined.

12.1.3 Region of Practical Equivalence (ROPE)

The estimation approach can be enhanced by including aregion of practical equivalence
(ROPE), which indicates a small range of values that are considered to be practically equiv-
alent to the null value for purposes of the particular application. For example, if we wonder
whether a coin is fair, for purposes of determining which team will kick off at a football
game, then we want to know if the underlying bias in the coin isreasonably close to 0.50,
and we don’t really care if the true bias is 0.51 or 0.49, because those values are close
enough for our application. As another example, if we are assessing the efficacy of a drug
versus a placebo, we might only consider using the drug if it improves the probability of
cure by at least three percentage points, and we would declare the drug to be counterpro-
ductive if it decreases the probability of cure at all, i.e.,the lower boundary of the ROPE
would be zero difference.

Once a ROPE is set, we make decisions according the followingrule:

A parameter value is declared to benot credible, or rejected, if its entire ROPE
lies outside the 95% HDI of the posterior distribution of that parameter.

For example, suppose that we want to know whether a coin is fair, and we establish a ROPE
that goes from .45 to .55. We flip the coin 500 times and observe325 heads. If the prior is
uniform, the posterior has a 95% HDI from .608 to .691, which falls completely outside the
ROPE. Therefore we declare that the null value of 0.5 is rejected for practical purposes.

Because the ROPE and HDI can overlap in different ways, there are different decisions
that can be made. In particular, we can decide to “accept” a null value:

A parameter value is declared to be accepted for practical purposes if that
value’s ROPE completely contains the 95% HDI of the posterior of that pa-
rameter.

For example, suppose that we want to know whether a coin is fair, and we establish a ROPE
that goes from .45 to .55. We flip the coin 1,000 times and observe 490 heads. If the prior is
uniform, the posterior has a 95% HDI from .459 to .521, which falls completely within the
ROPE. Therefore we declare that the null value of 0.5 is confirmed for practical purposes,
because all of the credible values are practically equivalent to the null value.

This use of a ROPE around the null value also implies that if the null value really is
true, we will eventually “accept” the null value as the sample size gets large enough. This
is because, as the sample size gets larger, the HDI tends to get narrower and closer to the
true value. When the sample size gets very large, the HDI is almost certain to be narrow
enough, and close enough to the true value, to fall entirely within the ROPE. If we did
not use a ROPE around the null value, and rejected the null value any time that it falls
outside the 95% HDI, then we would incorrectly reject the null in 5% of experiments even
if when null value is true. This 5% false alarm rate occurs because random samples of data,

12.2. THE MODEL-COMPARISON (TWO-PRIOR) APPROACH 245

when generated by the null value, will have coincidences of outliers, even for large N, that
produce a 95% HDI that does not include the null value. Although 5% of those 95% HDIs
exclude the null value, the HDIs do get narrower and closer tothe null value as N gets large.
Therefore the HDIs do eventually fall within the ROPE aroundthe null, even though 5%
of the 95% HDIs exclude the null value itself. As an example ofthis point: Suppose we
establish a ROPE that goes from .45 to .55. We flip the coin 10,000 times and observe 5200
heads. The 95% HDI goes from .510 to .530. Despite the fact that the HDI excludes the
null value, we accept the null for practical purposes because the HDI falls entirely within
the ROPE, which means that all of the credible values are practically equivalent to the null
value. We would say that we believe the true bias in the coin isvery nearly .52, but that’s
close enough to the null value of .50 for practical purposes.

How is the size of the ROPE determined? If the application is adomain in which costs
and benefits of decisions can be determined, then the full decision-theoretical machinery of
expected utility can be brought to bear. In some domains suchas medicine, expert clini-
cians can be interviewed, and their opinions can be translated into a reasonable consensus
regarding how big of an effect is useful or important for the application. Otherwise, the
ROPE might be established with somewhat arbitrary criteria, bearing in mind the key trade-
off: When the ROPE is wider, there is a lower probability of falsely rejecting the null value
(i.e., there is a smaller false alarm rate), but there is alsoa lower probability of rejecting
the null value when it is false (i.e., there is a smaller hit rate). For further discussion of the
ROPE, under somewhat different appellations of “range of equivalence” and “indifference
zone”, see e.g., Carlin and Louis (2009); Freedman, Lowe, and Macaskill (1984); Hobbs
and Carlin (2008); Spiegelhalter, Freedman, and Parmar (1994)

It is important to be clear that any discrete declaration about rejecting or accepting a
null value doesnot exhaustively capture our beliefs about the parameter values. Our beliefs
about the parameter value are described by the full posterior distribution. When making a
binary declaration, we have merely compressed all that richdetail into a single bit of infor-
mation. The broader goal of Bayesian analysis is conveying an informative summary of the
posterior, and where the value of interest falls within thatposterior. Reporting the limits of
an HDI region is more informative than reporting the declaration of a reject/accept decision.
By reporting the HDI and other summary information about theposterior, different read-
ers can apply different ROPEs to decide for themselves whether a parameter is practically
equivalent to a null value.

12.2 The model-comparison (two-prior) approach

The previous section posed the question, is the null value among the credible values, in
terms of parameter estimation. We started with an informed prior distribution on the pa-
rameters, and then examined the posterior distribution on the parameters.

Some researchers prefer instead to pose the question in terms of model comparison. In
this framing of the question, the focus is not on estimating the magnitude of the parameter.
Instead, the focus is on deciding which of two hypothetical priors is least unbelievable. One
hypothetical prior expresses the idea that the parameter value is exactly the null value. The
alternative hypothetical prior expresses the idea that theparameter could be anything (or
anything but the null value). Notice that neither of these hypothetical priors is informed
by prior knowledge. This lack of being informed is often taken as a desirable aspect of
the approach, not a defect, because the method is thereby “automatic” insofar as it obviates

246 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

theta1

theta2

p(t1,t2)

Prior

θ1
θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta1

theta2

p(D
|t1,t2)

Likelihood

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z1=5,N1=7,z2=2,N2=7

theta1

theta2

p(t1,t2|D
)

Posterior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(D)=1.94e−05

95% HD region

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta1

theta2

p(t1,t2)

Prior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta1

theta2

p(D
|t1,t2)

Likelihood

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z1=5,N1=7,z2=2,N2=7

theta1

theta2

p(t1,t2|D
)

Posterior

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(D)=3.54e−05

95% HD region

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 12.4: Two hypothetical priors for model comparison.The left columns
show a ridge-shaped prior that allows only points for whichθ1 = θ2. The right
columns show a uniform prior, in which any combination of theta values is enter-
tained. The top-right contour plot is empty because the surface is exactly horizon-
tal, without any height changes to mark by a contour.

disputes about prior knowledge. We will see, however, that the model-comparison method
can be extremely sensitive to the choice of “uninformed” prior for the alternative hypothesis
(cf. Figure 10.7, p. 212), and that model comparison is not necessarily meaningful unless
both models are viable in the first place.

12.2.1 Are the biases of two coins equal or not?

Consider a situation in which we have two coins, and we would like to infer whether their
biases are equal or not. We pose the question as a model comparison, such that one model
expresses the “null” hypothesis that the two biases are equal, and the other model expresses
the “alternative” hypothesis that the two biases could be any combination. The two mod-
els are distinguished by their priors (because the likelihood functions are the same in both
models): The null model has zero prior probability on all combinations of biases except
where they are equal, while the alternative model has uniform probability on all combina-
tions of biases. The uniform alternative is chosen because it is a convenient expression of
non-informed indifference.

Figure 12.4 shows an example of this approach. The “null” model, Mnull, is shown
in the left columns. Notice that this prior is shaped as a ridge along all values for which
θ1 = θ2. The prior gives zero probability to any point at whichθ1 , θ2. Notice also that the
height of the ridge is horizontal, meaning that it is not informed by any prior knowledge,

12.2. THE MODEL-COMPARISON (TWO-PRIOR) APPROACH 247

e.g., that the coins are probably fair. The “alternative” model, Malt, is shown in the right
columns of Figure 12.4. This prior puts equal probability onall possible combinations of
theta values. Notice that this hypothesis also is not informed by any prior knowledge, e.g.,
that the coins are probably fair.

The lower row of Figure 12.4 shows the posteriors resulting from two hypothetical
priors, for the same data that have been used in previous examples such as Figure 8.1,
p. 131. Notice that the posterior on the null model is a ridge like the prior, except that the
extreme ends of the ridge have been attenuated because they are inconsistent with the data.

To do model comparison, we use the implication of Bayes rule:

p(Malt |D)
p(Mnull |D)

=
p(D|Malt)
p(D|Mnull)
︸ ︷︷ ︸

BF

p(Malt)
p(Mnull)

(12.1)

where the ratio marked “BF” is the Bayes factor of the alternative model relative to the null
model. The prior beliefs in each model are typically assumedto be equal, i.e.,p(Mnull) =
p(Malt) = 0.5, in the spirit of non-informed priors. The posterior plotsin Figure 12.4 display
the values ofp(D|M) for each model. The evidence for the null model isp(D|Mnull) =
1.94× 10−5, while the evidence for the alternative model isp(D|Malt) = 3.54× 10−5. The
Bayes factor therefore slightly favors the alternative prior, but not by much. Because the
ratio of posterior probabilities is not very extreme, we would conclude that either model
remains reasonably credible, given the data. If the Bayes factor had turned out to be more
extreme, we might decide to declare one or the other prior to be less unbelievable than the
other prior.

12.2.1.1 Formal analytical solution

The Bayes factor for the null and alternative models can alsobe computed analytically
in this case. The alternative hypothesis has a uniform prior. It is uniform because the
alternative hypothesis in this approach is supposed to be an“automatic” conventional prior
that expresses a hypothesis complementary to the null hypothesis. A uniform prior onθ1, θ2

can be described as a product of beta distributions, namely,beta(θ1|1, 1) × beta(θ2|1, 1).
Therefore we can determine an exact value forp(D|Malt) from Equation 8.5 (p. 131), which
becomes

p(D|Malt) =
B(z1+1,N1−z1+1)B(z2+1,N2−z2+1)

B(1, 1)B(1, 1)

= B(z1+1,N1−z1+1)B(z2+1,N2−z2+1) (12.2)

becauseB(1, 1) = 1.
We can also derive a formal analytical expression for the evidence for the null hypoth-

esis,p(D|Mnull). First, notice this: Because the null hypothesis belief density at any point
off the ridge is zero, i.e.,p(θ1, θ2) = 0, the double integral for the evidence simplifies to a
single integral overθ = θ1 = θ2:

p(D|Mnull) =
"

dθ1dθ2 p(D|θ1, θ2)p(θ1, θ1)

=

∫

dθ p(D|θ)

248 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

We now plug in the Bernoulli likelihood function to get

p(D|Mnull) =
∫

dθ p(D|θ)

=

∫

dθ θ(z1)(1− θ)(N1−z1) θ(z2)(1− θ)(N2−z2)

=

∫

dθ θ(z1+z2)(1− θ)(N1−z1+N2−z2)

= B(z1+z2 + 1 , N1−z1+N2−z2 + 1) (12.3)

because, by definition,B(a, b) ≡
∫

dθ θ(a−1)(1− θ)(b−1).
The Bayes factor for the alternative hypothesis, relative to the null hypothesis, is then

the ratio of Equations 12.2 and 12.3:

p(D|Malt)
p(D|Mnull)

=
B(z1+1,N1−z1+1)B(z2+1,N2−z2+1)

B(z1+z2 + 1 , N1−z1+N2−z2 + 1)
(12.4)

As a concrete example, consider the case presented in Figure12.4, whereinz1 = 5, N1 = 7,
z2 = 2, andN2 = 7. Plugging those values into Equation 12.4 yieldsp(D|Halt)/p(D|Hnull) =
1.82. The grid approximation in Figure 12.4 displaysp(D|Halt) = 3.54 × 10−5 and
p(D|Hnull) = 1.94 × 10−5, yielding a ratio of 1.82, which is the same as the analytical
solution.

12.2.1.2 Example application

Consider again the question of the “hot hand” in basketball,from Exercise 8.1, p. 153,
which asked whether there are more successful shots after a preceding successful shot than
after a preceding failed shot. For the case of one famous professional player, there were
251 successes after 285 initial successes, and 48 successesafter 53 initial failures.

We can use model comparison to analyze this situation. UsingEquation 12.4, we obtain
a Bayes factor of 0.128, which, inverted, is a Bayes factor of7.81 in favor of the null prior.
If the priors on the models are 50/50, then the posterior probability of the null model is
p(Mnull|D) = 88.7%, and the posterior probability of the alternative model is p(Malt |D) =
11.3%.

The model comparison suggests that the null model is less unbelievable than the alter-
native model. But should we conclude, therefore, that thereis zero difference between the
conditions? Maybe, but not necessarily. Prior belief suggests that it is extremely unlikely
that there is literally zero correlation between the first and second shots of a pair of free
throws in basketball. Therefore, even though the model comparison suggests that the null
prior is less unbelievable than the alternative prior, whatwe might really want is an esti-
mate of the difference between success after success and success after failure. The model
comparison does not provide such an estimate.

On the other hand, the direct estimation of the underlying biases did provide an estimate
of the difference, as was shown in Figure 12.2, p. 242. There we saw that adifference of
zero was among the credible differences, but we also saw that the mean difference was a bit
larger than zero, and we also saw explicitly that there is moderately large uncertainty in the
estimate of the difference. This conclusion from the direct estimate is a more informative
inference from the data than the conclusion from model comparison, which states only that
the ridge prior is less inconsistent with the data than the uniform prior. It should be remem-
bered that the direct estimate of the difference began with a mildly informed prior, using

12.2. THE MODEL-COMPARISON (TWO-PRIOR) APPROACH 249

0 200 400 600 800 1000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

p(DiffMu|D)=0.049, p(SameMu|D)=0.951

Step in Markov chain

M
od

el
 In

de
x

(1
, 2

)

µ1 − µ2

−0.2 −0.1 0.0 0.1 0.2

mean = 0.0981

1.5% <= 0 < 98.5%

95% HDI
0.00581 0.192

µ1 − µ3

−0.2 −0.1 0.0 0.1 0.2

mean = 0.117

0.3% <= 0 < 99.7%

95% HDI
0.0143 0.2

µ1 − µ4

−0.2 −0.1 0.0 0.1 0.2

mean = 0.111

1.4% <= 0 < 98.6%

95% HDI
0.0142 0.199

µ2 − µ3

−0.2 −0.1 0.0 0.1 0.2

mean = 0.0192

35.1% <= 0 < 64.9%

95% HDI
−0.0749 0.104

µ2 − µ4

−0.2 −0.1 0.0 0.1 0.2

mean = 0.0125

40.2% <= 0 < 59.8%

95% HDI
−0.0816 0.102

µ3 − µ4

−0.2 −0.1 0.0 0.1 0.2

mean = −0.00667

54.5% <= 0 < 45.5%

95% HDI
−0.105 0.0758

Figure 12.5: Upper Panel: Results of model comparison showsthat the model
with a singlemu parameter (“SameMu”) ispreferredto a model with a separate
mu parameter for each group (“DiffMu”). Histograms: Differences of posterior
µ j values for the four groups in the different-mu model. Notice thatµ1 is credibly
different fromµ3 andµ4.

the knowledge that professional players tend to make about 75% of their free throws, unlike
the the alternative model’s uniform prior in the model comparison. Thus, the posterior from
the alternative model is not the same as the posterior from direct estimation.

12.2.2 Are different groups equal or not?

Suppose we conduct a study that has four conditions. Supposeevery participant in every
condition gets the same list of twenty words to try to memorize. The ability to recall a
word is modeled as a Bernoulli distribution, with probability θi j for the ith person in thejth

condition. The individual recall propensityθi j depends on hyperparameters,µ j andκ j , that
describe the overarching recall propensity in each condition, becauseθi j ∼ beta(θi j |µ jκ j +

1, (1−µ j)κ j + 1). (Abstractly, this is a design just like the four categorystructures of the
filtration-condensation experiment of Section 9.3.1).

The only difference between the conditions is the type of music being played dur-
ing learning and recall. For the four groups, the music comesfrom, respectively, the

250 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

death-metal band “Das Kruschke”1, Mozart, Bach, and Beethoven. For the four con-
ditions, the mean number of words recalled is 11.85, 9.85, 9.50, and 9.60. The ficti-
tious, randomly-generated data can be examined in detail byrunning the program in Sec-
tion 12.4.1 (OneOddGroupModelComp.R).

We would like to know whether there is an effect of the type of music on ability to
remember words. The most straight-forward way to find out is to estimate the parameters
and then examine the posterior differences of the parameter estimates. The histograms in
Figure 12.5 show the distributions of differences between theµ j parameters. It can be seen
thatµ1 is quite different thanµ3 andµ4; a difference of zero falls well outside the 95% HDI
intervals. From this we would conclude that Das Kruschke enhances memory better than
Bach and Beethoven, but perhaps not better than Mozart.

A model-comparison approach addresses the issue a different way. It compares the full
model, which has distinctµ j parameters for the four conditions, against a restricted model,
which has a sharedµ0 parameter to describe all the conditions simultaneously. The two
models have equal (50/50) prior probabilities. The upper panel of Figure 12.5 shows the
results of a model comparison, using transdimensional MCMCwith pseudopriors. The
shared-µ0 model is preferred, about 19 to 1 (0.951 to 0.049), over the distinctµ j model. In
other words, from this model comparison we would conclude that there isno difference in
memory between the groups.

Which analysis should we believe? Is condition 1 different from conditions 3 and 4,
or are all the conditions the same? Consider carefully what the model comparison actually
says: Given the choice between one shared parameter and fourdifferent group parameters,
the one-parameter model is less unbelievable. But that doesnot mean that the one-parameter
model is the best possible model. In fact, if a different model comparison is conducted, that
compares the one-parameter model against a different model that has one parameter for
group 1 and a second parameter that is shared for groups 2 through 4, then the comparison
favors the two-parameter model (see for yourself in Exercise 12.1).

In principle, we could consider all possible models formed by partitioning the four
groups. For 4 groups, there are 15 distinct partitions. We could, in principle, put a prior
belief on each of the 15 models, and then do a comparison of the15 models (Gopalan &
Berry, 1998). From the posterior probabilities of the models, we could ascertain which
partition was most believable, and decide whether it is morebelievable that other nearly-as-
believable partitions. (Other approaches have been described by Berry & Hochberg, 1999;
Mueller, Parmigiani, & Rice, 2007; Scott & Berger, 2006) Suppose that we conducted
such a large-scale model comparison, and found that the mostbelievable model partitioned
groups 2–4 together, separate from group 1. Does this mean that we should truly believe that
there is zero difference between groups 2, 3, and 4? Not necessarily. If the group treatments
are different, such as the four types of music in the present scenario, then there is almost
certainly at least some small difference between their outcomes. (In fact, the simulated data
do come from groups with all different means.) We may still want to estimate the magnitude
of those small differences. An explicit posterior estimate will reveal the magnitude and
uncertainty of those estimates. Thus, unless we have a viable reason to believe that different
group parameters may be literally identical, an estimationof distinct group parameters will
tell us what we want to know, without model comparison.

1To find information regarding Das Kruschke, search www.metal-archives.com. The author has no relation
to the band, other than, presumably, some unknown common ancestor many generations in the past. The author
was, however, in a garage band as a teenager. That band did notthink it was playing death metal, although the
music may have sounded that way to the critters fleeing the area.

12.3. ESTIMATION OR MODEL COMPARISON? 251

12.3 Estimation or model comparison?

12.3.1 What is the probability that the null value is true?

There may be situations in which we want to know the probability that the null value is true.
Proponents of the model-comparison approach may argue thatthe approach is especially ap-
plicable to these situations, because the model comparisonyields the posterior probability
of the null hypothesis. Unfortunately, the posterior probability of the null is only a relative
one, depending completely on the alternative hypothesis that is used in the model compari-
son. For example, as mentioned earlier for the fictitious memory experiment, a comparison
of the null hypothesis (single-parameter) model against the four-parameter model yielded a
strong preferencein favor of the null hypothesis, but a comparison of the null hypothesis
against a two-parameter model yielded a preferenceagainstthe null hypothesis.

The posterior probability of the null hypothesis also depends crucially on the prior dis-
tribution assumed in the alternative model (e.g., Liu & Aitkin, 2008). Much of the effort in
pursuing the model-comparison approach to null-hypothesis testing goes into justifying the
form of the alternative-hypothesis prior (e.g., Edwards, Lindman, & Savage, 1963; Gallis-
tel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers, 2007). Often
the goal is to establish an “automatic” vague prior for the alternative model that has useful
mathematical properties. The benefit of a conventionalizedvague prior is that possible dis-
putes regarding the best prior might be ignored by appealingto convention. Unfortunately,
none of the automatic vague priors is usually the prior that is most appropriate for model
comparison, which is an informed prior. A model comparison is useful if both models are
genuinely viable, and viability is enhanced by incorporating prior information. For exam-
ple, suppose a researcher is interested in investigating whether practitioners of therapeutic
touch can detect the presence of another person’s hand from adistance of a few centime-
ters (see Section 9.2.4, p. 177). The null hypothesis is thatdetection accuracy is at chance:
θ = 0.5. Should the alternative hypothesis, which entertains non-chance values, be set at
an “automatic” uniform distribution? Proponents of therapeutic touch would probably say
not; instead, the prior distribution should incorporate prior knowledge about how well the
practitioners might do in this unusual task. The practitioners might argue that accuracy
would typically be only a little above chance, perhaps atθ = 0.6, with fair uncertainty, as
expressed perhaps in a beta(θ|9, 6) distribution.

The estimation approach, when combined with a ROPE, provides a different measure
of the probability of the null. This probability is simply the proportion of the posterior
distribution that falls within the ROPE. This proportion ofthe HDI within the ROPE is
not the probability that the null value is true; instead, theproportion is the probability
that the parameter is practically equivalent to the null. Obviously, this probability depends
enormously on the limits of the ROPE, and it is meaningful only if the limits of the ROPE
are meaningful landmarks for the particular application. Finally, the proportion of the HDI
within the ROPE is most interpretable when it is large, because the proportion can be small
for the trivial reason that the posterior is broad and shallow due to a small data set.

12.3.2 Recommendations

In general, Bayesian model comparison is only useful when both models are genuinely
viable. If one or both models has little prior believability, then the Bayes factor and relative
posterior believabilities are of little use. For example, suppose that we observe that there are

252 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

many nicely wrapped gifts strewn across the lawn beside the house. We might hypothesize
two models for this observation: One hypothesis is that Santa Claus dropped them from the
roof. Another hypothesis is that the Grinch dumped them fromthe roof. A Bayesian model
comparison might prefer the Santa Claus hypothesis 50 to 1 over the Grinch hypothesis,
but that does not mean we should believe in Santa Claus. Modelcomparison requires both
models to have prior viability, not just one. To explain the gifts on the lawn, one hypothesis
is that Santa Claus lost his grip (i.e., a non-viable hypothesis) and the other hypothesis
is that a philosophically impressionable teenager in the household scattered the gifts in
a fanatical fit of anti-materialist divestment (i.e., a viable if also unlikely hypothesis). A
Bayesian model comparison might prefer the hypothesis of the anti-materialist teenager, 50
to 1, but only by virtue of the fact that the alternative hypothesis was not viable in the first
place. (Cf. Section 10.4.2.)

The premise that Bayesian model comparison is most meaningful when both models
are genuinely viable implies that “automatic” Bayesian null-hypothesis testing might not
be very meaningful, unless it is carefully applied only to situations in which both the null
hypothesis is theoretically viable and the viable alternative hypothesis uses a reasonably
informed prior. It is up to the user of the method to decide whether these conditions are
met, and to carefully interpret the results of the comparison.

In general, Bayesian model comparison is a very useful technique, outside its specific
application to null-hypothesis testing, as long as the models are viable, and as long as the
models have priors that are equivalently informed. Even if both models are theoretically
viable, if one model has a prior distribution on its parameters that is already close to the
posterior, but the other model has a prior distribution on its parameters that is far from the
posterior, then the models are not starting with priors thatare equivalently informed. These
general points about Bayesian model comparison apply especially strongly to the specific
case of Bayesian null-hypothesis testing.

There may be situations that specifically demand a dichotomous decision regarding
a null value. In these situations, Bayesian null-hypothesis testing may be called for, but
the alternative model and alternative prior should be carefully considered. Otherwise, the
estimation approach can be both more informative and easierto implement.

12.4 R code

12.4.1 R code for Figure 12.5

This code is a straight-forward modification of the code fromSection 10.2.2. Instead of
theκ values being either distinct or shared across groups, theµ values are either distinct or
shared across groups. In principle, theκ values could (or, indeed, should) simultaneously
be either distinct or shared, but here theκ values are always distinct, merely to keep the
code more readable. The only other difference from the code from Section 10.2.2 is that
fictitious data are generated, whereby the groups have true biases of .61, .50, .49, and .51,
respectively.

(OneOddGroupModelComp.R)

5 #--

6 # THE MODEL.

7

8 modelstring = "

9 # BUGS model specification begins here...

12.4. R CODE 253

10 model {

11 for (i in 1:nSubj) {

12 # Likelihood:

13 nCorrOfSubj[i] ˜ dbin(theta[i] , nTrlOfSubj[i])

14 # Prior on theta (notice nested indexing):

15 theta[i] ˜ dbeta(aBeta[CondOfSubj[i]] , bBeta[CondOfSubj[i]])I(0.0001,0.9999)

16 }

17 # Re-parameterization of aBeta[j],bBeta[j] in terms of mu and kappa:

18 for (j in 1:nCond) {

19 # Model 1: Distinct mu[j] each group. Model 2: Shared mu0 all groups.

20 aBeta[j] <- (mu[j]*(2-mdlIdx) + mu0*(mdlIdx-1)) * kappa[j]

21 bBeta[j] <- (1 - (mu[j]*(2-mdlIdx) + mu0*(mdlIdx-1))) * kappa[j]

22 }

23 # Hyperpriors for mu and kappa:

24 for (j in 1:nCond) {

25 mu[j] ˜ dbeta(a[j,mdlIdx] , b[j,mdlIdx])

26 }

27 for (j in 1:nCond) {

28 kappa[j] ˜ dgamma(shk , rak)

29 }

30 mu0 ˜ dbeta(a0[mdlIdx] , b0[mdlIdx])

31

32 # Constants for hyperprior:

33 # (There is no higher-level distribution of across-group relationships,

34 # merely to keep the focus here on model comparison.)

35 shk <- 1.0

36 rak <- 0.1

37 aP <- 1

38 bP <- 1

39

40 a0[1] <- .53*400 # pseudo

41 b0[1] <- (1-.53)*400 # pseudo

42

43 a0[2] <- aP # true

44 b0[2] <- bP # true

45

46 a[1,1] <- aP # true

47 a[2,1] <- aP # true

48 a[3,1] <- aP # true

49 a[4,1] <- aP # true

50 b[1,1] <- bP # true

51 b[2,1] <- bP # true

52 b[3,1] <- bP # true

53 b[4,1] <- bP # true

54

55 a[1,2] <- .61*100 # pseudo

56 a[2,2] <- .50*100 # pseudo

57 a[3,2] <- .49*100 # pseudo

58 a[4,2] <- .51*100 # pseudo

59 b[1,2] <- (1-.61)*100 # pseudo

60 b[2,2] <- (1-.50)*100 # pseudo

61 b[3,2] <- (1-.49)*100 # pseudo

62 b[4,2] <- (1-.51)*100 # pseudo

63

64 # Hyperprior on model index:

65 mdlIdx ˜ dcat(modelProb[])

66 modelProb[1] <- .5

67 modelProb[2] <- .5

68 }

254 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

69 # ... end BUGS model specification

70 " # close quote for modelstring

71 # Write model to a file:

72 writeLines(text=modelstring , con="model.txt")

73 # Load model file into BRugs and check its syntax:

74 modelCheck("model.txt")

75

76 #--

77 # THE DATA.

78

79 # For each subject, specify the condition s/he was in,

80 # the number of trials s/he experienced, and the number correct.

81 # (Randomly generated fictitious data.)

82 npg = 20 # number of subjects per group

83 ntrl = 20 # number of trials per subject

84 CondOfSubj = c(rep(1,npg) , rep(2,npg) , rep(3,npg) , rep(4,npg))

85 nTrlOfSubj = rep(ntrl , 4*npg)

86 set.seed(47401)

87 nCorrOfSubj = c(rbinom(npg,ntrl,.61) , rbinom(npg,ntrl,.50) ,

88 rbinom(npg,ntrl,.49) , rbinom(npg,ntrl,.51))

89 nSubj = length(CondOfSubj)

90 nCond = length(unique(CondOfSubj))

91 # Display mean number correct in each group:

92 for (condIdx in 1:nCond) {

93 show(mean(nCorrOfSubj[CondOfSubj==condIdx]))

94 }

95

96 # Specify the data in a form that is compatible with BRugs model, as a list:

97 datalist = list(

98 nCond = nCond ,

99 nSubj = nSubj ,

100 CondOfSubj = CondOfSubj ,

101 nTrlOfSubj = nTrlOfSubj ,

102 nCorrOfSubj = nCorrOfSubj

103)

104

105 # Get the data into BRugs:

106 modelData(bugsData(datalist))

107

108 #--

109 # INTIALIZE THE CHAINS.

110

111 nchain = 3

112 modelCompile(numChains=nchain)

113 modelGenInits()

114

115 #--

116 # RUN THE CHAINS.

117

118 burninSteps = 5000

119 modelUpdate(burninSteps)

120 samplesSet(c("mu","kappa","mu0","theta","mdlIdx"))

121 nPerChain = 5000 ; nThin = 10

122 modelUpdate(nPerChain , thin=nThin)

12.5. EXERCISES 255

12.5 Exercises

Exercise 12.1.[Purpose: Model comparison for different partitions of group means.]

The program in Section 12.4.1 (OneOddGroupModelComp.R) does a model comparison in
which M1 has different means for every group and M2 has the same mean for all groups.
In this exercise, we consider a different model comparison, with a different partition of the
conditions.

(A) Consider a comparison for which M1 has one mean for condition1 and a
second mean for conditions 2 through 4, and M2 has the same mean for all groups.
A quick-and-dirty way to program this is by changing the model specification to
(OneOddGroupModelCompEx12.1.R)

24 for (j in 1:2) {

25 mu[j] ˜ dbeta(a[j,mdlIdx] , b[j,mdlIdx])

26 }

27 mu[3] <- mu[2]

28 mu[4] <- mu[2]

Explain in English what the modified code does.
Unfortunately, the modified model structure is not amenableto automatic initialization

in BUGS. We can “manually” initialize it this way: (OneOddGroupModelCompEx12.1.R)

120 genInitList <- function() {

121 sqzData = .01+.98*datalist$nCorrOfSubj/datalist$nTrlOfSubj

122 mu = aggregate(sqzData , list(datalist$CondOfSubj) , "mean")[,"x"]

123 sd = aggregate(sqzData , list(datalist$CondOfSubj) , "sd")[,"x"]

124 kappa = mu*(1-mu)/sdˆ2 - 1

125 return(

126 list(

127 theta = sqzData ,

128 mu = c(mu[1] , mean(mu[2:4]) , NA , NA) ,

129 mu0 = mean(mu) ,

130 kappa = kappa ,

131 mdlIdx = 1

132)

133)

134 }

135 for (chainIdx in 1 : nchain) {

136 modelInits(bugsInits(genInitList))

137 }

The initialization uses the same technique introduced in Section 9.5.2 (FilconBrugs.R), with
only one novel nuance: The last two components ofmu are specified asNA because those
components arenot stochastic, but are instead fixed (in the model specification) to equal
mu[2].

Run the modified program, and show the resulting graphs analogous to those in Fig-
ure 12.5. Why are the upper histograms all the same, and why are the lower histograms
(e.g.,µ2 − µ3) so strange looking?

(B) What should we conclude from the model comparison of the previous part? (Be
careful to express your conclusion as a statement aboutrelativebelievabilities.) Should we
conclude that the means of conditions 2 through 4 are actually equal?

Exercise 12.2.[Purpose: Estimating a difference, including a ROPE (and the hot hand example with

a better prior).]

256 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

(A) Consider again the hot-hand example from Exercise 8.1, p. 153. In this part of the
exercise we establish a better prior: We know from general basketball statistics that pro-
fessional players tend to make about 75% of their free throws, with some players almost
as low as 50% and some players almost as high as 95%. A beta(θ|16, 6) distribution nicely
captures this prior knowledge. But what we do not know from prior statistics is the differ-
ence between success after success and success after failure in pairs of free throws. To be
as vague as possible about the difference, we’ll put a uniform distribution on the difference.
Notice that when the overall success rate is, say, 90%, the difference could be anything from
+20% (i.e., 100% vs. 80%) to−20% (i.e., 80% vs. 100%), but when the overall success rate
is, say, 70%, then the difference could be anything from+60% to−60%. The specification
of the prior needs to accommodate this range that depends on the overall success. Here is
one way to specify this in the BUGS model:
theta1 <- mu + deflect

theta2 <- mu - deflect

mu ∼ dbeta(16 , 6)
delta ∼ dbeta(1 , 1)
deflect <- (delta-.5)*2 * min(mu,1-mu)

The variablemu is the overall success rate. The variabledeflect is the deflection away from
mu created by a previous success or a previous failure. The value of deflect is just a linearly
transformed value of the random variabledelta, which has a uniform prior. Incorporate this
code into the model and run without the data, so you can see theprior. Show your complete
model specification and a graph of the MCMC sample, which should look much like the
upper row of Figure 12.6.

(B) Suppose we establish a ROPE on the difference of success-after-success and
success-after-failure. We will arbitrarily set it at±5%. Run the program with the data in-
cluded, and display the posterior. TheplotPost.R function allows specification of a ROPE,
with output as shown in Figure 12.6. Include your output graph, and say in English what
the ROPE indicates.

Exercise 12.3.[Purpose: Applying the approaches to a real-world example.] The thematic apper-
ception test (TAT) is a method for assessing personality andother aspects of interpersonal
attitudes. The subject is shown pictures of people in ambiguous scenes, and the subject is
asked to make up a story about what the pictured people are doing. In a study reported by
Werner, Stabenau, and Pollin (1970, Table 4)2, pictures showing parent-child interactions
were shown to women who had children. The stories invented bythe mothers were scored
for whether or not they expressed “personally involved, child-centered, flexible interac-
tions”. Twenty mothers of normal children and twenty mothers of schizophrenic children
were each shown 10 pictures. The number of stories, out of 10,that expressed a flexible
interaction, were as follows.
Mothers of normal children: 8, 4, 6, 3, 1, 4, 4, 6, 4, 2, 2, 1, 1, 4, 3 ,3 ,2 ,6, 3, 4.
Mothers of schizophrenic children: 2, 1, 1, 3, 2, 7, 2, 1, 3, 1,0, 2, 4, 2, 3, 3, 0, 1, 2, 2.
For purposes of this exercise, we will assume that the prior is informed from previous re-
search, which indicates that the typical number of stories that express flexible interactions
for this picture set is around 3 or 4, and can be well describedby a beta(3.5,6.5) distribution.
This is the distribution of flexible-narrative tendencies across mothers.

(A) Estimate the difference between TAT scores of the two groups of mothers. Be sure

2The author found these data by perusing the collection by Hand, Daly, Lunn, McConway, and Ostrowski
(1994).

12.5. EXERCISES 257

to use the prior knowledge. Is zero among the credible differences? If you assume that
the difference has a ROPE from−0.1 to +0.1, is the ROPE excluded from the 95% HDI?
HINTS: Set up a hierarchical model in BUGS, using the filtration-condensation example as
a guide. The prior applies to the distribution of individualtheta[i] values, and the data are
distributed as a binomial with bias theta[i].

(B) Using model comparison, determine the posterior probability of a model that uses
one hyperparameter to describe both groups, relative to a model that uses a different hy-
perparameter for each group. For this application, the prior on the hyperparameters should
notbe informed, but instead should be extremely vague and broad, because the model com-
parison is supposed to be “automatic”. What is the posteriorprobability of the different-
hyperparameter model? If it is the preferred model, can we use it to estimate the difference
between groups? (Answer: Not necessarily, because it does not use the prior knowledge.)

258 CHAPTER 12. BAYESIAN APPROACHES TO HYPOTHESIS TESTS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θAfterSuccess

θ A
fte

rF
ai

lu
re

θAfterSuccess − θAfterFailure

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 mean = 0.00451

49.1% <= 0 < 50.9%

11% in ROPE

95% HDI
−0.637 0.596

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

θAfterSuccess

θ A
fte

rF
ai

lu
re

θAfterSuccess − θAfterFailure

D
en

si
ty

−0.1 0.0 0.1 0.2

0
2

4
6

8

mean = 0.000823

51.7% <= 0 < 48.3%

71% in ROPE

95% HDI
−0.0878 0.0993

Figure 12.6: For Exercise 12.2.Upper row: The prior shows that the we believe
the overall success rate is between 50% and 95%, but the difference between the
two θ’s could be anything.Lower row: The posterior. Notice the ROPE on the
difference, from−.05 to+.05, along with the display of what percentage of the
posterior falls within the ROPE.

Chapter 13

Goals, Power, and Sample Size
Contents

13.1 The Will to Power . 260
13.1.1 Goals and Obstacles . 260
13.1.2 Power . 261
13.1.3 Sample Size . 262
13.1.4 Other Expressions of Goals 264

13.2 Sample size for a single coin .264
13.2.1 When the goal is to exclude a null value265
13.2.2 When the goal is precision . 266

13.3 Sample size for multiple mints .267
13.4 Power: prospective, retrospective, and replication 269

13.4.1 Power analysis requires verisimilitude of simulated data 270
13.5 The importance of planning . 271
13.6 R code . 272

13.6.1 Sample size for a single coin 272
13.6.2 Power and sample size for multiple mints 274

13.7 Exercises . 281

Just how many times must I show her I care,
Until she believes that I’ll always be there?
Well, while she denies that my value’s enough,
I’ll have to rely on the power of love.1

Researchers collect data in order to achieve a goal. Sometimes the goal is to show that a
suspected underlying state of the world is believable; other times the goal is to put a minimal
degree of precision on whatever trends are observed. The goal can only be probabilistically
achieved, as opposed to definitely achieved, because data are replete with random noise
that can obscure the underlying state of the world. Statistical power is the probability of
achieving the goal of an empirical study, when a suspected underlying state of the world
is true. Scientists don’t want to waste time and resources pursuing goals that have a small
probability of being achieved. In other words, scientists desire power in their experiments.

1The power of “luff”? Sailors know that there’s not much power in luffing.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

259

260 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

13.1 The Will to Power

In this section, a framework for research and data analysis will be described, which leads to
a more precise definition of power and how to compute it.2

13.1.1 Goals and Obstacles

There are many possible goals for an experiment or observational study. For example, we
might want to show that the rate of recovery for patients who take a drug is higher than
the rate of recovery for patients who take a placebo. We mightwant to show that a coin is
biased, i.e., that its tendency to show heads is not equal to .5. Goals such as those involve
showing that a suspected difference or value really is tenable, or, complementarily, showing
that a “null” value is not tenable. Other goals do not necessarily have a suspected value in
mind. Instead, the goal is merely to put a desired degree of precision on whatever tendencies
happen to be observed. For example, when polling a population for preferences of political
candidates, the goal is not necessarily to show that any particular candidate is ahead, but to
get a precise assessment of the populations’s preferences.

The various goals of research can be formally expressed in various ways. In this chapter
I will focus on two goals, formalized in terms of the HDI.

• Goal: Demonstrate that believable parameter values exclude a “null” value.

– Formal expression:Show that the 95% HDI excludes the “null” value, or its
ROPE.

• Goal: Achieve precision in the estimate of believable values.

– Formal expression:Show that the 95% HDI has some specified maximal width.

In some research, the goal may be to demonstrate that a “null”value is true, rather than
false. This goal can also be formalized in terms of precisionof the HDI: We want the entire
95% HDI to fall within the ROPE, as described in Section 12.1.3 (p. 244). There are other
mathematical formalizations of the various goals, and theywill be mentioned later. This
chapter focuses on the HDI because of its natural interpretation for purposes of parameter
estimation, as explained in the previous chapter.

If we knew the benefits of achieving our goal, and the costs of pursuing it, and if we
knew the penalties for making a mistake while interpreting the data, then we could express
the results of the research in terms of the long-run expectedpayoff. When we know the costs
and benefits, we can conduct a full decision-theoretic treatment of the situation, and plan
the research and data interpretation accordingly (e.g., Chaloner & Verdinelli, 1995; Lindley,
1997). In our applications we do not have access to those costs and benefits, unfortunately.
Therefore we rely on goals such as those outlined above.

The crucial obstacle to the goals of research is that a randomsample is only a proba-
bilistic representation of the population from which it came. Even if a coin is actually fair, a
random sample of flips will rarely show exactly 50% heads. Andeven if a coin is biased, it
might come up heads 5 times in 10 flips. Drugs that actually work no better than a placebo
might happen to cure more patients in a particular random sample. And drugs that truly are

2Regarding the title of this section: Other than the fact thatresearchers desire statistical power, the notion
of statistical power might have profound connections with concepts from Friedrich Nietzsche’s work,The Will
to Power. See Exercise 13.1.

13.1. THE WILL TO POWER 261

effective might happen to show little difference from a placebo in another particular random
sample of patients. Thus, a random sample is a fickle indicator of the true value in the un-
derlying world. Whether the goal is showing that a suspectedvalue is or isn’t believable, or
showing that a precise range of values is tenable, random variation is the researcher’s bane.
Noise is the nemesis.

13.1.2 Power

Because of random noise, the goal of a study can be achieved only probabilistically. The
probability of achieving the goal, given the (suspected) true state of the world, is called the
powerof the experiment.

Scientists go to great lengths to try to increase the power oftheir experiments or ob-
servational studies. There are three primary methods by which researchers can increase the
chances of detecting an effect. First, we reduce measurement noise as much as possible.For
example, if we are trying to determine the cure rate of a drug,we try to reduce other random
influences on the patients, such as other drugs they might be stopping or starting, changes
in diet or rest, etc. Reduction of noise and control of other influences is the primary reason
for conducting experiments in the lab instead of in the maelstrom of the real world. The
second method, by which we can increase the chance of detecting an effect, is to amplify
the underlying magnitude of the effect if we possibly can. For example, if we are trying to
show that a drug helps cure a disease, we will want to administer as large a dose as possi-
ble (assuming there are no negative side effects). In non-experimental research, in which
the researcher does not have the luxury of manipulating the objects being studied, this sec-
ond method is unfortunately unavailable. Sociologists, economists, and astronomers, for
example, are often restricted to observing events that theycannot control or manipulate.

Once we have done everything we can to reduce noise in our measurements, and to
amplify the effect we are trying to measure, the third way to increase power is to increase
the sample size. The intuition behind this method is simple:With more and more mea-
surements, random noises will tend to cancel themselves out, leaving on average a clear
signature of the underlying effect. In general, as sample size increases, power increases.
Increasing the sample size is an option in most experimentalresearch, and in a lot of obser-
vational research (e.g., more survey respondents can be polled), but not in some domains
where the population is finite, such as comparative studies of the states or provinces of a
nation. In this latter situation, we cannot create a larger sample size, but Bayesian inference
is still valid, and perhaps uniquely so (Western & Jackman, 1994).

What we accomplish in this chapter is precise calculations of power. We compute
the probability of achieving a specific goal, given (i) a suspected underlying distribution
of biases or effects in the population being measured, and (ii) a specified data-generating
process, such as collecting a fixed number of observations. Power calculations are very
useful for planning an experiment. To plan our research, we conduct “dress rehearsals”
before the actual performance. We repeatedly simulate datathat we suspect we might get,
and conduct Bayesian analyses on the simulated data sets. Ifthe goal is achieved for most
of the simulated data sets, then the planned experiment has high power. If the goal is rarely
achieved in the analyses of simulated data, then the plannedexperiment is likely to fail, and
we must do something to increase its power.

In general, power can be approximated in the following manner:

1. Generate a random sample of data points, using the data-generating hypothesis.The
sample should be generated according to how actual data willbe gathered in the

262 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

eventual real experiment. For example, typically it is assumed that the number of
data points is fixed atN. It might instead be assumed that data will be collected for a
fixed interval of timeT, during which data points appear randomly at a known mean
raten/T.

2. Compute the posterior estimate, using Bayesian analysis with skeptical-audience pri-
ors. The data analysis must be convincing to the audience, and therefore the analysis
must use priors that are agreeable to that skeptical audience.

3. From the posterior estimate, tally whether or not the goal was attained. The goal
could be any of those outlined previously, such as having the95% HDI exclude a
ROPE around the null value, or having the 95% HDI be narrower than a desired
width.

4. Repeat above steps many times, to approximate the power.Power is, by definition,
the proportion of times that the goal is attained.

The result of this process is the power, i.e., the probability of achieving the goal when using
the particular data-sampling procedure. Notice that if thedata-sampling procedure uses a
fixed sample of sizeN, then the process determines power as a function ofN. If the data-
sampling procedure uses a fixed sampling durationT, then the process determines power
as a function ofT.

Figure 13.1 illustrates the process of computing power. Theupper part of the figure
shows the flow of information in an actual analysis. The real world generates a single sam-
ple of observed data. We use Bayes’ rule, starting with a prior for the skeptical audience,
to derive an actual posterior distribution. The lower part of the figure shows the flow of
information in a power analysis. Instead of the real world, we have a hypothesis about
the world. The hypothesis is expressed as a belief distribution over the parameters of the
model. In many cases, this hypothesis is a posterior distribution derived from previous re-
search. From the hypothesis, a sample of data is generated. This simulated sample of data
is exemplary of data we anticipate if the the hypothesis is true. We then conduct a Bayesian
analysis on the anticipated data sample, thereby deriving an anticipated posterior distribu-
tion. For the anticipated posterior, we assess whether or not the goal was achieved. We
then repeat the simulated data generation process. The repetition is indicated in Figure 13.1
by the layers of anticipated data samples and anticipated posteriors. Across repetitions,
the proportion of times that the goal is achieved is the power. In some simple situations,
power can determined exactly, as is done, for example, in theprogram of Section 13.6.1
(minNforHDIpower.R). In more realistic situations, power is approximated through simula-
tion (Wang & Gelfand, 2002), as is done, for example in the program of Section 13.6.2
(FilconBrugsPower.R).

13.1.3 Sample Size

Power increases as sample size increases (usually). Because gathering data is costly, we
would like to know the minimal sample size, or sample duration, that is required to achieve
a desired power.

The goal of precision in estimation can always be attained with a large enough sample
size. This is because the likelihood of the data, thought of graphically as a function of the
parameter, tends to get narrower and narrower as sample sizeincreases. This narrowing

13.1. THE WILL TO POWER 263

Figure 13.1: Upper diagram illustrates the flow of information in an actual
Bayesian analysis. Lower diagram illustrates flow of information in a power anal-
ysis.

of the likelihood is also what causes the data to eventually overwhelm the prior beliefs
as sample size increases. As we collect more and more data, the likelihood function gets
narrower and narrower (on average), and therefore the posterior gets narrower and narrower.
Thus, with a large enough sample, we can make the posterior distribution as narrow, i.e.,
precise, as we like.

The goal of showing that a parameter value is different from a null value might not
be attainable with a high enough probability, however, no matter how big the sample size.
Whether or not this goal is attainable with high probabilitydepends on the data-generating
distribution. The best that a large sample can do is exactly reflect the data-generating
distribution. If the data-generating distribution has considerable massstraddling the null
value, then the best we can do is get estimates that include and straddle the null value. As
a simple example, suppose that we think that a coin may be biased, and the data-generating
hypothesis is thatp(θ = .5) = 25%, p(θ = .6) = 25%, p(θ = .7) = 25%, andp(θ = .8) =
25%. Because 25% of the simulated data come from a fair coin, the maximal probability of
excludingθ= .5, even with a huge sample, is 75%.

Therefore, when planning the sample size for an experiment,it is crucial to first decide
what a realistic goal is. If there are good reasons to posit a highly certain data-generating
hypothesis, perhaps because of extensive previous results, then a viable goal may be to
exclude a null value. On the other hand, if the data-generating hypothesis is somewhat
vague, then a more reasonable goal is to attain a desired degree of precision in the posterior.

264 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

13.1.4 Other Expressions of Goals

There are other ways to express mathematically the goal of precision in estimation. For
example, another way of using HDIs was described by Joseph, Wolfson, and du Berger
(1995a, 1995b). They considered an “average length criterion”, which requires that the
averageHDI width, across repeated simulated data, does not exceed some maximal valueL.
There is no explicit mention of power, i.e., the probabilityof achieving the goal, because the
sample size is chosen so that the goal is definitely achieved.The goal itself is probabilistic,
however, because it regards an average: While some data setswill have HDI width less than
L, many other data sets will not have an HDI width less thanL. Another goal considered by
Joseph et al. (1995a) was the “average coverage criterion”.This goal starts with a specified
width for the HDI, and requires its mass to exceed 95% (say) onaverage across simulated
data. The sample size is chosen to be large enough to achieve that goal. Again, power
is not explicitly mentioned, but the goal is probabilistic:Some data sets will have anL-
width HDI mass greater than 95%, and other data sets will not have anL-width HDI mass
greater than 95%. Other goals regarding precision are reviewed by Adcock (1997) and by
De Santis (2004, 2007). The methods emphasized in this chapter focus on limiting the
worst precision, instead of the average precision.

A rather different mathematical expression of precision isentropyof a distribution. En-
tropy describes how spread out a distribution is, so smallerentropy connotes a more precise
distribution. A distribution that consists of an infinitelydense spike, that has an infinites-
imally narrow width, has zero entropy. At the opposite extreme, a uniform distribution
has maximal entropy. The goal of high precision in the posterior distribution might be re-
expressed as a goal of small entropy in the posterior distribution. For an overview of this
approach, see, e.g., Chaloner and Verdinelli (1995). For anintroduction to how minimiza-
tion of expected entropy might be used spontaneously by people as they experiment with the
world, see Kruschke (2008). Entropy may be a better measure of posterior precision than
HDI width especially in cases of multimodal distributions,for which HDI width is more
challenging to determine. I will not further explicate the use of entropy because I think that
HDI width is a more intuitive quantity than entropy by which to express precision, at least
for most researchers in most contexts.

There are also other ways to express mathematically the goalof excluding a null value.
In particular, the goal could be expressed as wanting a largeBayes factor in a model compar-
ison between the spike-null prior and the automatic alternative prior (e.g., Wang & Gelfand,
2002; Weiss, 1997). For example, we might set the desired Bayes factor at a ratio of 19 to 1
(i.e., .95 to .05). Kass and Raftery (1995) provide some guidelines for choice of criterial
Bayes factor. I will not further address this approach, however, because the goal of a crite-
rial BF for untenable caricatured priors has problems as discussed in the previous chapter.
Instead, it will be assumed that the goal of the research is estimation of the parameter val-
ues, starting with a viable prior. The resulting posterior is then used to assess whether the
goal was achieved.

13.2 Sample size for a single coin

As our first worked-out example, consider the simplest case:Data from a single coin. Per-
haps we are polling a population and we want to know if there isa preference for candidate
A or candidate B. Or perhaps we want to know if a drug has more than a 50% cure rate. We
will go through the steps listed in Section 13.1.2 to computethe exact sample size needed

13.2. SAMPLE SIZE FOR A SINGLE COIN 265

Table 13.1: Minimal sample size required for 95% HDI to exclude
0.5, when flipping a single coin.

Generating Meanθ
Power .55 .60 .65 .70 .75 .80 .85

.7 642 148 64 33 18 13 7

.8 866 191 82 43 26 18 10

.9 1274 264 111 59 36 24 16

Note. The data-generating distribution is a beta density with mean
θ, as indicated by the column header, and with shape parameters
of θκ and (1− θ)κ, whereκ = 2000. The audience-agreeable prior
is uniform.

to achieve various degrees of power for different data-generating hypotheses.

13.2.1 When the goal is to exclude a null value

Suppose that our goal is to show that the coin is biased. In other words, we want to show
that .5 is not among the credible values. More specifically, we want to show that the 95%
HDI excludesθ = .50.

Because of previous research (or just a really strong hunch), we think that the true bias
of the coin is very close toθ = .65. It is a strong belief, so we’ll describe the data-generating
hypothesis as a beta distribution with mean.65 and certainty based on 2,000 fictitious flips
of the coin. This puts 95% of the data-generating biases between .63 and .67.

Next, we generate simulated data from hypothetical coins that have those biases, and
tally how often the HDI excludesθ = .50. One replication of the process goes like this:
First, select a value for the “true” bias in the coin, from thedata-generating distribution that
is narrowly centered onθ = .65. Suppose that the selected value is .638. Second, simulate
flipping a coin with that biasN times. The simulated data havezheads andN − z tails. The
proportion of heads,z/N, will tend to be around .638, but will be higher or lower because
of randomness in the flips. Third, using the audience-agreedprior for purposes of data
analysis, determine the posterior beliefs regardingθ if z heads inN flips were observed.
Tally whether or not the 95% HDI excludes the null value ofθ = .50. Notice that even
though the data were generated by a coin with bias of .638, thedata might, by chance, show
a low proportion of heads, and therefore the 95% HDI might notexcludeθ = .50. This
process is repeated many times to estimate the power of the experiment, i.e., the probability
that the null value will be excluded from the HDI. In fact, forthis simple situation, the exact
power can be computed analytically, as explained in Section13.6.1 (minNforHDIpower.R),
p. 272.

Table 13.1 shows the minimal sample size needed for the 95% HDI to excludeθ = .5
when flipping a single coin. As an example of how to read the table, suppose you have a
data-generating hypothesis that the coin has a bias very near θ = .65. This hypothesis is
implemented, for purposes of Table 13.1, as a beta distribution with shape parameters of
.65× 2000 and (1− .65)× 2000. The value of 2000 is arbitrary; it’s as if the generating
mean of .65 was based on fictitious previous data containing 2000 flips. The table indicates
that if we desire a 90% probability of obtaining a 95% HDI thatexcludesθ = .5, we need
a sample size ofN = 111, i.e., we need to flip the coin at least 111 times in order tohave a
90% chance thatθ = .5 falls outside the 95% HDI.

266 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

Notice, in Table 13.1, that as the generating mean increases, the required sample size
decreases. This makes sense intuitively: When the generating mean is large, the sample
proportion of heads will tend to be large, and so the HDI will tend to fall toward the high
end of the parameter domain. In other words, when the generating mean is large, it doesn’t
take a lot of data for the HDI to fall well aboveθ = .5. On the other hand, when the
generating mean is only slightly aboveθ = .5, then it takes a large sample for the sample
proportion of heads to be consistently above .5, and for the HDI to be consistently entirely
above .5.

Notice also, in Table 13.1, that as the desired power increases, the required sample size
increases quite dramatically. For example, if the data-generating mean is .6, then as the
desired power rises from .7 to .9, the minimal sample size rises from 148 to 266.

13.2.2 When the goal is precision

Not all research has as its goal the exclusion of a particularnull value. Sometimes the goal
is to establish a precise estimate of the parameter values. Other times, the research may have
a null value of interest, but the data-generating hypothesis is too vague for the null value to
be excluded most of the time, or, the goal may be to demonstrate that the HDI falls entirely
within the ROPE. In these cases, the goal becomes precision of parameter estimation.

Here is an example in which there is a null value of interest, but only a vague data-
generating distribution. Suppose you are interested in assessing the preferences of the gen-
eral population regarding political candidates A and B. In particular, you would like to
have high confidence in estimating whether the preference for candidate A exceedsθ = .5.
A recently conducted poll by a reputable organization foundthat of 10 randomly selected
voters, 6 preferred candidate A and 4 preferred candidate B.If we use a uniform pre-poll
prior, our post-poll estimate of the population bias is a beta(7,5) distribution. As this is
our best information about the population so far, we can use the beta(7,5) distribution as
a data-generating distribution for planning the follow-uppoll. Unfortunately, a beta(7,5)
distribution has a 95% HDI fromθ = .318 toθ = .841, which means thatθ = .5 is well
within the data-generating distribution. How many more people do we need to poll so that
80% of the time we would get a 95% HDI that fallsaboveθ = .5?

It turns out, in this case, that we can never have a sample sizelarge enough to achieve
the goal of 80% of the HDIs falling aboveθ = .5. To see why, consider what happens when
we sample a particular valueθ from the data-generating distribution, e.g.,θ = .4. We use
thatθ value to simulate a random sample of votes. SupposeN for the sample is huge, which
implies that the HDI will be very narrow. What value ofθ will the HDI focus on? Almost
certainly it will focus on the valueθ = .4 that was used to generate the data. To reiterate,
whenN is very large, the HDI essentially just reproduces theθ value that generated it. Now
recall the data-generating distribution of our example: The beta(θ, 7, 5) has only about 72%
of theθ values are above .5. Therefore, even with an extremely largesample size, we can
get at most 72% of the HDIs to fall above .5.

There is a viable alternative goal, however. Instead of trying to reject a particular value
of θ, we set as our goal a desired degree of precision in the posterior estimate. For example,
our goal might be that the 95% HDI has width less than 0.2, at least 80% of the time. This
goal implies that regardless of what values ofθ happen to be emphasized by the posterior
distribution, the width of the posterior is usually narrow,so that we have attained a suitably
high precision in the estimate.

Table 13.2 shows the minimal sample size needed for the 95% HDI to have maximal

13.3. SAMPLE SIZE FOR MULTIPLE MINTS 267

Table 13.2: Minimal sample size required for 95% HDI to have
maximal width of 0.2, when flipping a single coin.

Generating Meanθ
Power .55 .60 .65 .70 .75 .80 .85

.7 91 91 89 86 80 69 58

.8 92 92 91 90 86 79 67

.9 93 93 93 92 91 88 79

Note. The data-generating distribution is a beta density with mean
θ, as indicated by the column header, and with shape parameters
of θκ and (1− θ)κ, whereκ = 10. The audience-agreeable prior is
uniform.

width of 0.2. As an example of how to read the table, suppose you have a data-generating
hypothesis that the coin has a bias roughly aroundθ = .6. This hypothesis is implemented,
for purposes of Table 13.2, as a beta distribution with shapeparameters of.6 × 10 and
(1 − .6) × 10. The value of 10 is arbitrary; it’s as if the generating mean of .6 were based
on fictitious previous data containing only 10 flips. The table indicates that if we desire a
90% probability of obtaining an HDI with maximal width of .2,we need a sample size of
at least 93.

Notice in Table 13.2 that as the desired power increases, therequired sample size in-
creases only slightly. For example, if the data-generatingmean is .6, then as the desired
power rises from .7 to .9, the minimal sample size rises from 91 to 93. This is because
the distribution of HDI widths, for a given sample size, has avery shunted high tail, and
therefore small changes inN can quickly pull the high tail across a threshold such as .2. On
the other hand, as the desired HDI width decreases (not shownin the Table), the required
sample size increases rapidly. For example, if the data-generating mean is .6 withκ = 10,
and the desired HDI width is 0.1 (instead of 0.2), then the sample size needed for 80%
power is 377 (instead of 92).

The R code in Section 13.6.1 (minNforHDIpower.R), generated Tables 13.1 and 13.2. You
can use the R code to specify your own data-generating distribution, goal, and desired
power. You can also specify a ROPE. The R function will tell you the minimal sample size
required. Exercise 13.2 has you work through some examples.

13.3 Sample size for multiple mints

Consider again the filtration-condensation experiment, described in Section 9.3.1, p. 178,
in which people learned four different category structures. Two structures were “filtration”
structures in which one stimulus dimension could be ignoredbut perfect accuracy could
be achieved. Two other structures were “condensation” structures in which both stimulus
dimensions required processing to achieve perfect accuracy. Some theories of learning
predict that filtration should be easier to learn than condensation, and therefore one goal
of the experiment was to show that the mean accuracy of peoplein the filtration structure
differed from the mean accuracy of people in the condensation structure. This goal was
handily achieved: UsingN = 40 participants per condition, the 95% HDI on the difference
of µ parameters went from 0.173 to 0.259, with 100% of the MCMCµ differences falling
well above 0.0; see the right-most panel of Figure 9.16, p. 181.

268 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

µ1 − µ2

−0.4 −0.2 0.0 0.2

mean = 0.0235

28.7% <= 0 < 71.3%

95% HDI
−0.0985 0.137

µ3 − µ4

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

mean = −0.0485

95% HDI
−0.218 0.112

HDI width = 0.33

(µ1 + µ2) 2 − (µ3 + µ4) 2

0.0 0.1 0.2 0.3

mean = 0.164

0.2% <= 0 < 99.8%

95% HDI
0.0595 0.269

µ1 − µ2

−0.4 −0.2 0.0 0.2 0.4

mean = 0.0343

32.5% <= 0 < 67.5%

95% HDI
−0.156 0.205

µ3 − µ4

−0.4 −0.2 0.0 0.2 0.4

mean = 0.062

95% HDI
−0.0971 0.227

HDI width = 0.324

(µ1 + µ2) 2 − (µ3 + µ4) 2

−0.1 0.0 0.1 0.2 0.3 0.4

mean = 0.145

1.7% <= 0 < 98.3%

95% HDI
0.0177 0.258

Figure 13.2: Posterior distributions from two runs of simulated data, usingN =
6 per group. Upper row (right panel) shows a case in which the posterior for
(µ1 + µ2)/2− (µ3 + µ4)/2 excludes 0.0, as desired.Lower row(right panel) shows
a case in which that goal is not achieved. Across many simulated runs, over 80%
achieved the goal.

Is there a smaller sample size per group that could have been used to achieve high
power? And what was the power of detecting the more subtle difference between the two
filtration groups, shown in the left-most panel of Figure 9.16, p. 181? To answer these
questions, we pursue the simulation procedure outlined at the beginning of this chapter
(Section 13.1.2): Specify a data-generating hypothesis, simulate some data, do a Bayesian
data analysis, determine whether the goal is achieved, and repeat many times to estimate
the probability of achieving the goal. R code for computing power for this experiment is
listed in Section 13.6.2 (FilconBrugsPower.R).

Suppose the goal of the experimenter is to show that the mean of the filtration groups
exceeds the mean of the condensation groups. Specifically, we suppose that the goal is
achieved if the 95% HDI of (µ1 + µ2)/2− (µ3 + µ4)/2 excludes 0.0. It turns out that using
merelyN = 6 in each of the groups achieves over 80% power for this goal! Figure 13.2
shows examples of the posteriors for two runs of simulated data with N = 6 per group. The
upper row shows a case in which the posterior for (µ1 + µ2)/2 − (µ3 + µ4)/2 excludes 0.0,
as desired. The lower row shows a case in which that goal was not achieved. Across many
simulated runs usingN = 6, 80% achieved the goal. In other words, instead of using
N = 40, as in the actual experiment, the research could have beenconducted with only
N = 6, and had an 80% chance of inferring a believable difference between filtration and
condensation.

This power analysis stems from simulated data that have beengenerated from moder-
ately certain knowledge, based on results from 40 actual subjects per condition. If we did

13.4. POWER: PROSPECTIVE, RETROSPECTIVE, AND REPLICATION 269

Table 13.3: Types of power analysis, including replicationprobability.

Prior for
Analysis Data Data Bayesian

Type Generator Sample Analysis Posterior

Actual Real Observed Skeptical Actual
World Once Audience

Prospective Hypothesis Simulated Skeptical Anticipated
Power Repeatedly Audience

Retrospective Actual Simulated Skeptical Anticipated
Power Posterior Repeatedly Audience

Replication Actual Simulated Actual Anticipated
Power Posterior Repeatedly Posterior

not have data-generating priors with such high certainty, then our power predictions would
not be so high either. For example, if we had data-generatingpriors onµ j with the same
means as used here, but with wider (more uncertain) distributions, then the sample size
would have to be much bigger thanN = 6 to achieve the same power. This makes intuitive
sense: If we are not very certain about what the data will looklike, it takes a lot of data to
reliably reveal the underlying trends.

Suppose that the goal of the experimenter was, instead, to show that there was a differ-
ence between the two filtration groups. Specifically, we suppose that the goal is achieved
if the 95% HDI ofµ1 − µ2 excludes 0.0. Notice that this goal was not achieved in either
simulated run shown in Figure 13.2. It turns out that usingN = 6 in each of the groups
achieves a power of only 4% for this goal. What is the power forthis goal if N = 40, as
used in the actual experiment? It turns out that the power is only 43%! The fact that the
actualdata (Figure 9.16, p. 181) achieved the goal was merely a “lucky” happenstance.

Finally, suppose that the goal of the experimenter was to achieve a minimal precision
on the difference between the two condensation groups. The motivationfor this goal is
as follows: Theory suggests that the two condensations groups should not differ much.
Therefore the goal cannot be to show that the difference exceeds zero. Instead, the goal
should be to achieve some desired degree of precision regarding the difference. Suppose
we want the 95% HDI onµ3 − µ4 to have a width less than 0.20. To achieve this goal at
least 80% of the time, i.e., with a power of 80%, we would need asample size (per group)
of approximatelyN = 32. You can verify this by running the program in Section 13.6.2
(FilconBrugsPower.R).

13.4 Power: prospective, retrospective, and replication

There are different types of power analysis, as shown in Table 13.3. For reference, the top
row of the table shows an actual analysis, in which the data generator is the real world, the
data sample is observed once, the prior for the analysis is designed to be agreeable to a
skeptical audience, and the actual posterior distributionis computed.

The second row of Table 13.3 shows aprospective poweranalysis, for which the data
generator is a research hypothesis based on theory and/or results from previous experi-
ments that are not exactly the same as the present experiment. The research hypothesis is
expressed as a distribution over model parameters, with a central tendency and uncertainty

270 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

that captures the researcher’s beliefs about what would be the appropriate parameter values
if the data of the planned experiment were to appear as it is believed they would. The distri-
bution over the model parameters could be set directly, fromtheoretical considerations, by
the researcher setting the shape constants of the parameterdistribution. On the other hand,
the data-generating distribution could be set indirectly,by first positing data consistent with
the theory and then applying Bayesian updating to derive a distribution over parameters that
is consistent with the posited data. De Santis (2007) describes how to combine results of
previous experiments to construct a data-generating distribution.

Contrast a prospective power analysis with the next row of the table, which shows a
retrospective poweranalysis. This refers to a situation in which we have alreadycollected
data, and therefore we already have an actual posterior distribution. We want to determine
the power of the experiment we ran. To do this, we use the actual posterior as the data
generator. This is tantamount to using the data from a posterior predictive check. In other
words, at a step in the chain, the parameter values are used togenerate simulated data. The
simulated data are then analyzed with the same Bayesian model as the actual data, and
the posterior is examined for whether or not the goal is achieved. This process is readily
programmed in BRugs, as explained in Section 13.6.2 (FilconBrugsPower.R). The example
of the previous section, regarding the filtration-condensation experiment, was a case of
retrospective power analysis.

Finally, suppose that we have already collected some data and we have an actual pos-
terior distribution, and we want to know the probability that we would achieve our goal if
we replicated the experiment. In other words, if we were to simply re-collect a new sam-
ple of data, what is the probability that we would achieve ourgoal in the replicated study,
also taking into account the first set of data? The bottom row of Table 13.3 indicates how
we answer this question ofreplication power. We use the actual posterior derived from
the first sample of data as the data generator. But for the analysis prior, we again use the
actual posterior from first sample of data, because that is the best-informed prior for the
follow-up experiment. An easy way to execute this analysis in BUGS is as follows: Use the
actual set of data with a skeptical-audience prior to generate a sample from an actual pos-
terior. Use that actual-posterior sample to generate simulated new data, as if in a posterior
predictive check. Then,concatenate the original data with the novel simulated dataand
update the original skeptical-audience prior with the enlarged data set. This technique is
tantamount to using the posterior of the original data set asthe prior for the novel simulated
data. Section 13.6.2 (FilconBrugsPower.R) shows BRugs code for this type of analysis.

Computation of replication power is natural in a Bayesian setting, but is difficult or
impossible for traditional null-hypothesis significance testing (Miller, 2009). NHST has
trouble when addressing replication probability because it has no good way to model a data
generator: It has no access to the posterior distribution from the initial analysis.

13.4.1 Power analysis requires verisimilitude of simulated data

Power analysis is only useful when the simulated data imitate actual data. We generate
simulated data from a descriptive model that has uncertainty in its parameter values, but we
assume that the model is a reasonably good description of theactual data. If the model is
instead a poor description of the actual data, then the simulated data do not imitate actual
data, and inferences from the simulated data are not very meaningful. It is advisable, there-
fore, to perform a posterior predictive check that the simulated data accurately reflect the
actual data.

13.5. THE IMPORTANCE OF PLANNING 271

When simulated data differ from actual data, strange results can arise in power analysis.
Consider an analysis of replication probability in which the simulated data are quite differ-
ent than the actual data. The novel simulated data are combined with the original data to
conduct the replication analysis. The combined data set is abroad mixture of two different
trends (i.e., the actual trend and the different simulated trend), and therefore the estimates
of the parameters become moreuncertain than for the original data alone. It is only when
the simulated sample size becomes large, relative to the original sample size, that the sim-
ulated trend overwhelms the actual trend, and the replication uncertainty becomes smaller
again. If you find in your power analyses that parameter uncertainty initially gets larger as
the simulated sample size increases, then you may have a situation in which the model does
not faithfully mimic the actual data.

13.5 The importance of planning

In the real conduct of research, scientists do not always plan a specific sample size and then
stick to it. Nor should they have to. When experiments are setup such that the results from
one participant do not affect the next participant, or when observational studies aremade
such that the results of one observation are independent of any other observation —in other
words when the next coin flip is not influenced by previous flips— then the researcher’s
intentions do not influence the data production or the data interpretation.

In some situations, data are collected for a particular timeperiod, during which the ac-
tual number of participants (coin flips) is a random value that depends on the random rate
at which people happen to participate. For example, participants in a typical university psy-
chology experiment might be recruited for a certain number of weeks during a semester.
There may be a stable average rate of participation, but the number of participants in any
given week is a random number. In this situation, our goal is to determine how many weeks
we should plan on recruiting participants, so to have a high probability of achieving the goal
of the experiment. We can do the power analysis in a manner analogous to the methods of
the previous sections. As in those methods, we randomly generate parameter values from
our data-generating hypothesis, but the sample sizeN is a random value that depends on a
specified rate of participation and amount of time during which participants are recruited.
The sample size could be (but is not necessarily) modeled as aPoisson variable, as was done
in Exercise 11.3. We simulate incrementally longer durations until we find the minimal du-
ration that yields a sufficiently high power. Having thereby planned a duration for collecting
data (and corresponding approximate number of subjects), we can decide whether or not it
is feasible to actually conduct the research. If we do go ahead with the research, we are not
stuck with the exact planned duration. We can stop whenever we want, assuming that the
data are uninfluenced by our intentions to stop.

The point of the previous paragraphs is to say that sticking to a planned sample size or
duration is not crucial to the data analysis, after the data have been collected. Instead, the
planning is important for deciding whether or not the research has a reasonable chance of
success, before the data are collected.

Conducting a power analysis in advance of collecting data isvery important and valu-
able. Often in real research, a fascinating theory and clever experimental manipulation
imply a subtle effect. It can come as a shock to the researcher when power analysis reveals
that detecting the subtle effect would take several hundred subjects! But the shock of power
analysis is far less than the pain of running dozens of subjects and finding highly uncertain

272 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

estimates of the sought-after effect.
Power analysis can reduce research pain in other ways. Sometimes in real research,

an experiment or observational study is conducted merely toobjectively confirm what is
anecdotally known to be a strong effect. A researcher may be tempted to conduct a study
using the usual large sample size that is typical of related research. But a power analysis
may reveal that the strong effect can be easily detected with a much smaller sample size.

Power analysis is also important when proposing research tofunding agencies. Pro-
posals in basic research might have fascinating theories and clever experiments, but if the
predicted effects are subtle, then reviewers of the proposal may be justifiably dubious, and
want to be reassured by a power analysis. Proposals in applied research are even more re-
liant on power analysis, because the costs and benefits are more immediate and tangible.
For example, in clinical research (e.g., medicine, pharmacology, psychiatry, counseling), it
can be very costly to test patients, and therefore it is important to anticipate the probable
sample size or duration.

While it is important to plan sample size in advance, it can also be important, especially
in clinical applications, to monitor data as they are collected and to stop the research as
soon as possible. It behooves the researcher to discontinuean experiment as soon as the
data clearly indicate a positive or negative outcome: It would be unethical to slavishly
continue treating patients with an experimental treatmentthat is clearly detrimental, and it
would be unethical to slavishly continue running patients in a placebo condition when the
experimental treatment is clearly having positive effects. If the data are collected in such
a way that they are uninfluenced by the experimenter’s intentions, then the data collection
can be stopped at any time without influencing the interpretation of the data. The decision
regarding when to stop collecting data is a topic of much investigation, and goes under the
name ofBayesian sequential design. It will not be discussed further here, but the interested
reader is referred to books by J. O. Berger (1985) and DeGroot(2004), and various technical
articles, for example those cited by Roy, Ghosal, and Rosenberger (2009, p. 427).

13.6 R code

13.6.1 Sample size for a single coin

The program described in this section was used to generate Tables 13.1 and 13.2. The
program determines the minimal sample size needed to achieve a specified goal with a
specified power, when flipping a single coin.

In principle, we could simulate random samples ofθ from the generating distribution,
and then simulate random samples of coin flips based on the particular values ofθ. For
each repetition, we would tally whether the goal was achieved. With a large number of
repetitions, this procedure would provide a good approximation to the power.

In the present simple situation, however, we can determine mathematically the exact
probabilities of each possible outcome. The simulated dataare generated by sampling a
θ value according to our data-generating prior, and then generating N flips of the coin
according to the binomial distribution. Therefore the probability of gettingz heads, across
repeated sampling from the prior, is

p(z|N) =
∫ 1

0
dθ p(z|N, θ) p(θ)

13.6. R CODE 273

=

∫ 1

0
dθ binomial(z|N, θ) Bernoulli(θ|a, b)

=

∫ 1

0
dθ

(

N
z

)

θz(1− θ)(N−z) θ(a−1)(1− θ)(b−1)/B(a, b)

=

(

N
z

)

B(z+a,N−z+b)/B(a, b) (13.1)

(This probability of possible data is sometimes called the “preposterior marginal distribu-
tion of z”; cf. Eqn. 5 of Pham-Gia & Turkkan, 1992) For each possible outcome,z, we
update the audience-agreeable prior to render an audience-agreeable posterior distribution,
and then we decide whether the goal has been achieved for thatoutcome. Because the de-
cision is determined by the outcomez, the probability of the decisions is determined by the
probability of the outcomes. Equation 13.1 is implemented in the program on lines 20–22,
but in logarithmic form to prevent underflow errors.

The functionminNforHDIpower has several arguments, most of which have default values.
Two arguments without defaults are the mean,genPriorMean, and effective sample size,
genPriorN, of the data-generating hypothesis, which is assumed to be abeta density. For
example, suppose that the experimenter believes that the actual bias of a coin is very nearly
.65, and suppose that the belief is based on the equivalent of2000 fictitious flips of the coin;
thengenPriorMean = .65 andgenPriorN = 2000.

The next two arguments,HDImaxwid and nullVal, specify the goal of the experiment.
One and only one of the arguments must be non-NULL. For example, if the goal is for the
HDI to exclude the value of 0.5, thennullVal = .5 (andHDImaxwid = NULL). If the goal is
for the HDI to have a maximal width of .2, thenHDImaxwid = .2 (andnullVal = NULL). The
next argument specifies the limits of the ROPE, if relevant. The function in its present form
checks only if the HDI excludes the null value, or ROPE if specified. The function does not
check whether the ROPE fullycontainsthe HDI.

Finally, the function also has arguments for the audience-agreed prior that is used in
the Bayesian analysis. It defaults to a uniform prior, but a different audience-agreed prior
can be specified in terms of the mean (audPriorMean) and certainty (audPriorN) of a beta
distribution.

Here is an example of how to use the program:
source("minNforHDIpower.R")

minNforHDIpower(genPriorMean=.65 , genPriorN=2000 , nullVal=.5)

The program will compute power for increasing values of sample size, until stopping at
N=82 (as shown in Table 13.1).

(minNforHDIpower.R)
1 minNforHDIpower = function(genPriorMean , genPriorN ,

2 HDImaxwid=NULL , nullVal=NULL , ROPE=c(nullVal,nullVal) ,

3 desiredPower=0.8 , audPriorMean=0.5 , audPriorN=2 ,

4 HDImass=0.95 , initSampSize=20 , verbose=T) {

5 if (is.null(HDImaxwid) + is.null(nullVal) != 1) {

6 stop("One and only one of HDImaxwid and nullVal must be specified.")

7 }

8 # Convert prior mean and N to a,b parameter values of beta distribution.

9 genPriorA = genPriorMean * genPriorN

10 genPriorB = (1.0 - genPriorMean) * genPriorN

11 audPriorA = audPriorMean * audPriorN

12 audPriorB = (1.0 - audPriorMean) * audPriorN

13 # Initialize loop for incrementing sampleSize

274 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

14 sampleSize = initSampSize

15 notPowerfulEnough = TRUE

16 # Increment sampleSize until desired power is achieved.

17 while(notPowerfulEnough) {

18 zvec = 0:sampleSize # All possible z values for N flips.

19 # Compute probability of each z value for data-generating prior.

20 pzvec = exp(lchoose(sampleSize , zvec)

21 + lbeta(zvec + genPriorA , sampleSize-zvec + genPriorB)

22 - lbeta(genPriorA , genPriorB))

23 # For each z value, compute HDI. hdiMat is min, max of HDI for each z.

24 hdiMat = matrix(0 , nrow=length(zvec) , ncol=2)

25 for (zIdx in 1:length(zvec)) {

26 z = zvec[zIdx]

27 hdiMat[zIdx,] = HDIofICDF(qbeta , shape1 = z + audPriorA ,

28 shape2 = sampleSize - z + audPriorB)

29 }

30 hdiWid = hdiMat[,2] - hdiMat[,1]

31 if (!is.null(HDImaxwid)) {

32 powerHDI = sum(pzvec[hdiWid < HDImaxwid])

33 }

34 if (!is.null(nullVal)) {

35 powerHDI = sum(pzvec[hdiMat[,1] > ROPE[2] | hdiMat[,2] < ROPE[1]])

36 }

37 if (verbose) {

38 cat(" For sample size = ", sampleSize , ", power = " , powerHDI ,

39 "\n" , sep="") ; flush.console()

40 }

41 if (powerHDI > desiredPower) {

42 notPowerfulEnough = FALSE

43 } else {

44 sampleSize = sampleSize + 1

45 }

46 } # End while(notPowerfulEnough)

47 # Return the minimal sample size that achieved the desired power.

48 return(sampleSize)

49 } # end of function

13.6.2 Power and sample size for multiple mints

This section explains how to use a BUGS model to estimate power for a given sample
size. The first step is to create a working BRugs program for a single set of data, as if the
data were from an actual experiment. Make sure that the program has appropriate burn-
in and thinning so that the posterior sample is robust and useful. (For a reminder of the
issues of burn-in and thinning, see Section 23.2, p. 510.) Once a working BRugs program
is established, it is modified and wrapped in a function that gets called repeatedly with
different simulated sets of data.

The general scheme for estimating power with an BRugs program is outlined in Fig-
ure 13.3. At the top of the code is the BUGS model wrapped in a function called
GoalAchievedForSample. The function takes simulated data as input, and returns a true/false
value indicating whether or not the goal was achieved. As indicated in Figure 13.3, the
BUGS model specification remains unchanged. The data specification is modified, how-
ever, to accept the passed-in simulated data rather than theactual data. The MCMC chains
are then generated as in the original program, using the burn-in and thinning that is already
known to produce well-mixed chains. Finally, when the chains are examined, new com-
mands are included to test whether the goal has been achieved. For example, the code could

13.6. R CODE 275

GoalAchievedForSample = function(simulatedData) {
library(BRugs) # needed inside function to re-initialize.

#---

Model specification: Unchanged.

#---

Data: NEW COMMANDS for using simulatedData.

#---

Initialize and run chains: Unchanged.

#---

Examine chains: NEW COMMANDS for checking whether goal is achieved.

Denote result by true/false variable named goalAchieved.

return(goalAchieved)

}

nSimulatedExperiments = 500 # An arbitrary large number.

nSuccess = 0 # Initialize counter.

for (experimentIdx in 1:nSimulatedExperiments) {
simulatedData = ... # Create simulated data

nSuccess = nSuccess + GoalAchievedForSample(simulatedData)

estPower = nSuccess / experimentIdx

}

Figure 13.3: Outline of R code for computing power. This outline assumes that
there is already a working BRugs script for a single set of data. The working
BRugs script is wrapped in a function at the beginning of the code shown here.

check whether the 95% HDI excludes the ROPE. The result is a true/false value denoted by
the variablegoalAchieved, which gets returned by the function.

The lower section of code in Figure 13.3 calls the function defined in the upper section
of code. The idea is that we will call the function many times,each time with different
simulated data, and check whether the goal is achieved. The proportion of times that the
goal is achieved is the estimated power. The number of times we call the function is denoted
nSimulatedExperiments. Then afor loop tallies the number of successes. As the number of
simulated experiments increases, the estimate becomes more stable.

We can think of each time through the loop, with a new simulated data set, as the flip
of a coin that has a probability of heads equal to the true power of the experiment. We
are estimating the bias in that coin, i.e., the power of the experiment, by the observed
number of successes. If our prior belief about the power is uniform, then the posterior
belief is distributed as beta(nSuccess+1 , nSimExperiments-nSuccess+1). The HDI of
the estimated power can be computed by calling the functionHDIofICDF(qbeta , shape1 =

nSuccess+1 , shape2 = nSimExperiments-nSuccess+1).
A complete instantiation of the scheme is shown in the program listing below. It was

used to generate Figure 13.2 and the other results mentionedin Section 13.3. The code is
modified from the program used to analyze the real data, listed on p. 188. The program has
many embellishments beyond the skeleton outlined in Figure13.3.

The function, that takes a set of data as input and returns whether or not the goal was
achieved, spans lines 5–147 of the program. The function hasa couple extra arguments

276 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

that help with plotting graphs of the results, which we mightwant to see for at least a few
sets of data to be sure that the simulations are behaving properly. One extra argument is
plotResults, which is simply a true/false flag indicating whether or not to plot the results.
Another extra argument is the filename to be used for saving the plots.

The data section, lines 44–49, is simpler than in the original program, because the
completedataList is provided from outside the function. The data section merely sends the
dataList to BUGS.

In the results sections, beginning at line 89, there are three main changes. First, the
chains are not checked for convergence and mixing, because it is assumed that the burn-in
and thinning have already been checked for adequacy. (For a reminder of the issues of burn-
in and thinning, see Section 23.2, p. 510.) Second, the plot-producing code (lines 104–132)
is wrapped in anif statement, which causes plots to be produced and saved only if the
argumentplotResults is true.

The third main change is checking for whether the goal was achieved, as computed in
lines 134–144. The code checks forthreegoals regarding theµc values: (i) Does the HDI
on filtration minus condensation exceed zero? (ii) Does the HDI on the difference between
the two filtration conditions exceed zero? (iii) Is the HDI onthe difference of condensation
condensations of width less than 0.2? The true/false values of these three goals are returned
as a vector.

The function is called by code starting at line 150. The code includes the option for
computing eitherretrospectiveor replication power, which is specified on line 152. The
program then loads the original data, which are used for computing replication power, and
the actual posterior sample, which is used for either type ofpower.

Various constants are specified in lines 170–176. In particular, thesimulatednumber
of subjects per condition is specified in line 170. Also notice that the number of goals
computed by the function is specified in line 176. The number of goals is used only to
initialize the success counter in line 188.

Because we are simulating results from randomly generated sets of data, and each data
set may take a few minutes to run, the complete batch of hundreds of data sets may take
many hours to complete. Therefore we may want to run only a fewsimulated experiments
at a time, or interrupt a run, and save the interim results forfuture continuation. Also,
be warned that BUGS often decides to crash for no apparent reason on some simulated
data sets, and you will find yourself with interrupted runs whether youintended it or not.
For these reasons, the program saves the interim results after every simulated data set, on
lines 241–242. When the program is invoked, it checks whether there is a previously saved
interim result, on lines 178–190, and restores those results if they exist.

The loop that repeatedly generates simulated data sets and calls the Bayesian analysis
begins on line 193. The simulated data are generated in lines195–209. It uses themu
and kappa values from the actual posterior to generate simulated datain each condition.
The simulated data are assembled into adataList in lines 211–229. If retrospective power
is being computed, then only the newly simulated data are included in thedataList. If
replication power is being computed, then the original, actual data are concatenated onto
the simulated data. By including the actual data, the model is effectively using the actual
posterior as the prior for the new simulated data.

(FilconBrugsPower.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3

13.6. R CODE 277

4

5 GoalAchievedForSample = function(datalist , plotResults=F ,

6 fileNameRoot="DeleteMe") {

7

8 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

9 # A Tutorial with R and BUGS. Academic Press / Elsevier.

10 #--

11 # THE MODEL.

12

13 modelstring = "

14 # BUGS model specification begins here...

15 model {

16 for (subjIdx in 1:nSubj) {

17 # Likelihood:

18 z[subjIdx] ˜ dbin(theta[subjIdx] , N[subjIdx])

19 # Prior on theta: Notice nested indexing.

20 theta[subjIdx] ˜ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)

21 }

22 for (condIdx in 1:nCond) {

23 a[condIdx] <- mu[condIdx] * kappa[condIdx]

24 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]

25 # Hyperprior on mu and kappa:

26 mu[condIdx] ˜ dbeta(Amu , Bmu)

27 kappa[condIdx] ˜ dgamma(Skappa , Rkappa)

28 }

29 # Constants for hyperprior:

30 Amu <- 1

31 Bmu <- 1

32 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)

33 Rkappa <- meanGamma/pow(sdGamma,2)

34 meanGamma <- 10

35 sdGamma <- 10

36 }

37 # ... end BUGS model specification

38 " # close quote for modelstring

39 # Write model to a file:

40 writeLines(modelstring,con="model.txt")

41 # Load model file into BRugs and check its syntax:

42 modelCheck("model.txt")

43

44 #--

45 # THE DATA.

46

47 # datalist supplied from outside the function.

48 # Get the data into BRugs:

49 modelData(bugsData(datalist))

50

51 #--

52 # INTIALIZE THE CHAINS.

53

54 nChain = 3

55 modelCompile(numChains=nChain)

56

57 if (F) {

58 modelGenInits() # often won’t work for diffuse prior

59 } else {

60 # initialization based on data

61 genInitList <- function() {

62 sqzData = .01+.98*datalist$z/datalist$N

278 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

63 mu = aggregate(sqzData , list(datalist$cond) , mean)[,"x"]

64 sd = aggregate(sqzData , list(datalist$cond) , sd)[,"x"]

65 kappa = mu*(1-mu)/sdˆ2 - 1

66 return(

67 list(

68 theta = sqzData ,

69 mu = mu ,

70 kappa = kappa

71)

72)

73 }

74 for (chainIdx in 1 : nChain) {

75 modelInits(bugsInits(genInitList))

76 }

77 }

78

79 #--

80 # RUN THE CHAINS.

81

82 burninSteps = 1000

83 modelUpdate(burninSteps)

84 cat("Got through burn in...");flush.console()

85 samplesSet(c("mu","kappa","theta","a","b"))

86 nPerChain = ceiling(3000/nChain)

87 modelUpdate(nPerChain , thin=5)

88

89 #--

90 # EXAMINE THE RESULTS.

91

92 # Extract chain values from BUGS:

93 mu = NULL

94 kappa = NULL

95 for (condIdx in 1:nCond) {

96 nodeName = paste("mu[" , condIdx , "]" , sep="")

97 mu = rbind(mu , samplesSample(nodeName))

98 nodeName = paste("kappa[" , condIdx , "]" , sep="")

99 kappa = rbind(kappa , samplesSample(nodeName))

100 }

101 chainLength = NCOL(mu)

102

103 # Display results if desired:

104 if (plotResults) {

105 # Histograms of condition (i.e. group) mu differences:

106 windows(12,4)

107 layout(matrix(1:3,nrow=1))

108 source("plotPost.R")

109 histInfo = plotPost(mu[1,]-mu[2,] , xlab=expression(mu[1]-mu[2]) ,

110 compVal=0.0 , breaks=30 , main="")

111 histInfo = plotPost(mu[3,]-mu[4,] , xlab=expression(mu[3]-mu[4]) ,

112 breaks=30 , main="")

113 HDIlim = HDIofMCMC(mu[3,]-mu[4,])

114 text(mean(HDIlim) , .25*max(histInfo$density) , adj=c(.5,0) , cex=1.25 ,

115 bquote("HDI width = " * .(signif(HDIlim[2]-HDIlim[1],3))))

116 nSubjPerCond = round(datalist$nSubj / datalist$nCond)

117 histInfo = plotPost((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2 , compVal=0.0 ,

118 xlab=expression((mu[1]+mu[2])/2 - (mu[3]+mu[4])/2) ,

119 breaks=30 , main="")

120 dev.copy2eps(file = paste(fileNameRoot,"N",nSubjPerCond,"_",expIdx,".eps" ,

121 sep=""))

13.6. R CODE 279

122 # Scatterplot of mu, kappa:

123 windows()

124 muLim = c(.60,1) ; kappaLim = c(2.0 , 50) ; mainLab="Posterior"

125 thindex = round(seq(1 , chainLength , len=300))

126 plot(mu[1,thindex] , kappa[1,thindex] , main=mainLab ,

127 xlab=expression(mu[c]) , ylab=expression(kappa[c]) , cex.lab=1.75 ,

128 xlim=muLim , ylim=kappaLim , log="y" , col="red" , pch="1")

129 points(mu[2,thindex] , kappa[2,thindex] , col="blue" , pch="2")

130 points(mu[3,thindex] , kappa[3,thindex] , col="green" , pch="3")

131 points(mu[4,thindex] , kappa[4,thindex] , col="black" , pch="4")

132 } # end if plotResults

133

134 # Specify goals and check whether they are achieved:

135 source("HDIofMCMC.R")

136 # Goal is filtration vs condensation 95% HDI exceeds zero:

137 goal1Ach = (HDIofMCMC((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2)[1] > 0.0)

138 # Goal is filtration1 vs filtration2 95% HDI exceeds zero:

139 goal2Ach = (HDIofMCMC(mu[1,]-mu[2,])[1] > 0.0)

140 # Goal is condensation1 vs condensation2 95% HDI has width less than 0.2:

141 HDIlim = HDIofMCMC(mu[3,]-mu[4,])

142 HDIwidth = HDIlim[2] - HDIlim[1]

143 goal3Ach = (HDIwidth < 0.2)

144 goalAchieved = c(goal1Ach , goal2Ach , goal3Ach)

145

146 return(goalAchieved)

147 } # end of function GoalAchievedForSample

148

149 #==

150 # Now call the function defined above, using simulated data.

151

152 analysisType = c("Retro","Repli")[1] # specify [1] or [2]

153 fileNameRoot = paste("FilconBrugsPower",analysisType,sep="")

154

155 # Load original data, for use in replication probability analysis:

156 # (These lines intentionally exceed the margins so that they don’t take up

157 # excessive space on the printed page.)

158 CondOfSubjOrig = c(1,2,2,2,2,2,2,2,2,2,2,2,

159 nTrlOfSubjOrig = c(64,

160 nCorrOfSubjOrig = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52

161 nSubjOrig = length(CondOfSubjOrig)

162 nCondOrig = length(unique(CondOfSubjOrig))

163

164 # Load previously computed posterior mu[cond,step], kappa[cond,step] chains.

165 load(file="FilconBrugsMuKappa.Rdata")

166 chainLength = NCOL(mu)

167 nCond = NROW(mu) # should be 4, of course

168

169 # SPECIFY NUMBER OF SUBJECTS PER GROUP FOR SIMULATED DATA:

170 nSubjPerCond = 15

171

172 # Specify number of simulated experiments:

173 nSimExperiments = min(200,chainLength)

174 nSubj = nSubjPerCond * nCond # Number of subjects total.

175 nTrlPerSubj = 64 # Number of trials per subject; fixed by design at 64.

176 nGoal=3 # Determined in function above.

177

178 # If previous record of power estimation exists, load it and continue the runs.

179 filelist = dir(pattern=paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))

180 if (length(filelist) > 0) { # if the file already exists...

280 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

181 # load previous expIdx, nSuccess

182 load(paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))

183 prevExpIdx = expIdx

184 # Use just some of the MCMC steps, distributed among the whole chain:

185 chainIdxVec = round(seq(1,chainLength,len=(prevExpIdx+nSimExperiments)))

186 } else { # ... otherwise, start a new record

187 prevExpIdx = 0

188 nSuccess = rep(0,nGoal) # Initialize success counter.

189 chainIdxVec = round(seq(1,chainLength,len=nSimExperiments))

190 }

191

192 # Simulated experiment loop begins here:

193 for (expIdx in (1+prevExpIdx):(nSimExperiments+prevExpIdx)) {

194

195 # Generate random data from posterior parameters

196 chainIdx=chainIdxVec[expIdx]

197 CondOfSubj = sort(rep(1:nCond , nSubjPerCond))

198 nTrlOfSubj = rep(nTrlPerSubj , nSubj)

199 nCorrOfSubj = rep(0 , nSubj)

200 for (condIdx in 1:nCond) {

201 m = mu[condIdx,chainIdx]

202 k = kappa[condIdx,chainIdx]

203 a = m*k

204 b = (1-m)*k

205 # Generate random theta and z values for simulated subjects:

206 thetaVec = rbeta(nSubjPerCond , a , b)

207 zVec = rbinom(n=nSubjPerCond , size=nTrlPerSubj , prob=thetaVec)

208 nCorrOfSubj[CondOfSubj==condIdx] = zVec

209 }

210

211 # Put data into list for BUGS program

212 if (analysisType == "Retro") { # retrospective power

213 datalist = list(

214 nCond = nCond ,

215 nSubj = nSubj ,

216 cond = CondOfSubj ,

217 N = nTrlOfSubj ,

218 z = nCorrOfSubj

219)

220 }

221 if (analysisType == "Repli") { # replication probability

222 datalist = list(

223 nCond = nCond ,

224 nSubj = nSubj + nSubjOrig ,

225 cond = c(CondOfSubj , CondOfSubjOrig) ,

226 N = c(nTrlOfSubj , nTrlOfSubjOrig) ,

227 z = c(nCorrOfSubj , nCorrOfSubjOrig)

228)

229 }

230

231 # Make plots for first 10 simulated experiments:

232 if (expIdx <= 10) { plotRes = T } else { plotRes = F }

233

234 # Call BUGS program and tally number of successes:

235 nSuccess = nSuccess + GoalAchievedForSample(datalist ,

236 plotRes , fileNameRoot)

237 estPower = nSuccess / expIdx

238 cat("\n*** nSubjPerCond:",nSubjPerCond, ", nSimExp:",expIdx,

239 " , nSuccess:",nSuccess, ", estPower:",round(estPower,2), "\n\n")

13.7. EXERCISES 281

240 flush.console()

241 save(nSuccess , expIdx , estPower ,

242 file=paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))

243

244 } # end of simulated experiment loop.

13.7 Exercises

Exercise 13.1. [Purpose: Comic relief.] Read the complete oeuvre of Friedrich Nietzsche,
with special attention to his posthumous work,The Will to Power(Nietzsche, 1967). Pro-
vide a mathematical formalization of the Nietzschian concepts of will and power, using
Bayesian probability theory. Show that the notion of statistical power is a special case of
formalized Nietzschian power,and vice versa. Write your answer in both English and Ger-
man. Do not submit your answer to the instructor; do post youranswer on your personal
web blog.

Exercise 13.2. [Purpose: Understanding power for flipping a single coin, inTables 13.1 and 13.2.]

For this exercise, consider flipping a single coin and inferring its bias.

(A) Table 13.2 indicates that when the data-generating distribution is vague, withκ = 10
andθ = .80, then 85 flips are needed for an 80% chance of getting the 95%HDI width to
be less than .2. What is the minimalN needed if the data-generating distribution is very
certain, withκ = 2000? Show the command you used, and report the exact power for the
smallestN that has power greater than .8.

(B) Regarding the previous part, why might a researcher pursue agoal of precision if
the data-generating hypothesis is already very precise? (Hint: The audience prior may be
different than the data-generating hypothesis. Discuss briefly, perhaps with an example.)

(C) Table 13.1 indicates that when the data-generating distribution is highly certain,
with κ = 2000 andθ = .80, then 18 flips are needed for an 80% chance of getting the
95% HDI to excludeθ = .5. What is the minimalN needed if the data-generating distribu-
tion is vague, withκ = 2? Show the command you used, and report the exact power for the
smallestN that has power greater than .8.

(D) For the previous part, the goal was for the HDI to exclude the null value (i.e., 0.5).
Notice that the goal can be satisfied if the the HDI is above thenull valueor if the HDI is
below the null value. (i) When the data-generating prior is abeta distribution withµ = 0.8
andκ = 2, as in the previous part, what proportion of the data-generating biases are greater
than the null value? (ii) If the goal is for the HDI to fall entirely abovethe null value,
what sample size is needed to achieve a power of .8? Hint: UseminNforHDIpower.R with the
argumentROPE=c(0,.5). Watch the sample size increase and increase and increase, with the
power creeping toward an asymptote. Why does the power neverexceed the proportion you
computed for (i)?

Exercise 13.3.[Purpose: Power determination for groups of coins, when goal is precision.] Consider
the filtration-condensation experiment summarized in Section 13.3. Suppose we want the
95% HDI on the difference,µ3 − µ4, to have a width less than 0.20. What sample size
(N per group) is needed to achieve this goal at least 80% of the time? Determine the
answer by running the program in Section 13.6.2 (FilconBrugsPower.R) with various values

282 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

for nPerGroup. Hint: N ≈ 17; your job is to find the minimalN and discuss how you did it.

Exercise 13.4.[Purpose: This is acapstone exercise that uses real data to review many techniques of

the previous chapters, including generating priors in BUGS, checking credibility of null values, estimat-

ing retrospective power, and conducting a posterior predictive check.]

This exercise examines a learning experiment that investigated how easy it is for peo-
ple to learn new category structures after having previously learned an initial structure
(Kruschke, 1996). Some new structures had relevant stimulus dimensions that were also
previously relevant in the initial structure, while other new structures had relevant stimulus
dimensions that were previouslyir relevant in the initial structure. The initial structure, and
the subsequently learned structures, are outlined in Table13.4.

Table 13.4: Design of relevance shift experiment reported by Kruschke (1996).
Cells indicate category assignment (X or O) of each stimulus. Learners were
trained in the Initial Phase, and then seamlessly continuedinto one of the Reversal,
Relevant, Irrelevant or Compound Phases.

Stimulus

Phase
◦
|
◦ ◦

|
◦ ◦

|
◦ ◦

|
◦ •

|
• •

|
• •

|
• •

|
•

Initial X O O X X O O X
Reversal O X X O O X X O
Relevant X X O O X X O O
Irrelevant X X X X O O O O
Compound X O X O O X O X

Note. The actual stimuli had somewhat different proportions than the ones dis-
played here. The assignment of physical stimuli to abstractstructural items was
randomly permuted for each subject.

The stimuli were simple pictures of freight-train box cars,that had three dimensions:
position of “door” (left or right), height of box (short or tall), and color of “wheels” (blank
or filled). The initial phase involved a structure in which two dimensions are relevant. For
example, in Table 13.4, the initial phase can be described as“If it is short and left-doored,
or tall and right-doored, then it’s an X”. Notice that wheel color is irrelevant in the initial
phase. After learning that classification accurately, people would be trained on one of the
four shifts listed in Table 13.4. The Reversal shift reverses all the labels. The Relevant
shift uses just one of the previously relevant dimensions. The example in Table 13.4 can
be described as “If it’s short, then it’s an X”. The Irrelevant shift uses the one previously
irrelevant dimension; the example in Table 13.4 can be described as “If it’s blank-wheeled,
then it’s an X”. Finally, the Compound shift requires attention to two dimensions, one of
which was previously relevant and one of which was previously irrelevant. The example in
Table 13.4 can be described as “If it’s blank-wheeled and left-doored, or filled-wheeled and
right-doored, then it’s an X”.

Various theories of learning predict different degrees of difficulty in learning the new
structures after the old structures (see p. 230 of Kruschke,1996). For example, if learn-

13.7. EXERCISES 283

ers simply memorize the eight stimuli and their assignments, then the Reversal requires
all eight associations to be changed, whereas Relevant, Irrelevant, and Compound shifts
all require only four assignments to be changed. Therefore,the reversal should be most
difficult to learn, and the other three changes should be equally easy to learn. One of the
novel contributions of the experiment was the shift design that allowed direct comparison of
“reversal” shift with “intradimensional” and “extradimensional” shifts, which had not been
done previously. Another novel contribution was that the initial phase had dimensions that
were relevant to the outcome without being individually correlated with the outcome. Vari-
ations of the design have subsequently been used by other researchers (e.g., D. N. George
& Pearce, 1999; Oswald et al., 2001).

For each shift, the number of correct responses in the first 32trials was recorded for each
learner. These data are shown in the left column of Figure 13.5, p. 286, and are included in
the fileKruschke1996CSdatsum.Rdata. It appears that Reversal shift is easiest (i.e., has highest
accuracy), followed by Relevant, Irrelevant, and Compoundshifts. The Bayesian analysis
will tell us the credibility of those apparent differences between conditions.

(A) [Purpose: Create a BUGS model that has an estimated hyperprior on µc and on κc.] In the
hierarchical diagram on the right side of Figure 9.17, p. 183, theκc parameters are drawn
from a gamma distribution that has its parameters estimatedrather than fixed. For our new
model, we want to do the analogous estimation for theµc parameters also. Instead of setting
Aµ andBµ as constants, they will be estimated hyperparameters, denoted asaµ = mµ ∗kµ+1
andbµ = (1−mµ) ∗ kµ + 1, with mµ ∼ dunif(0, 1) andkµ ∼ dgamma(1, .1). Here is one way
to specify the model: (Kruschke1996CSbugs.R)

11 model {

12 for (i in 1:nSubj) {

13 nCorrOfSubj[i] ˜ dbin(theta[i] , nTrlOfSubj[i])

14 theta[i] ˜ dbeta(a[CondOfSubj[i]] , b[CondOfSubj[i]])I(0.0001,0.9999)

15 }

16 for (cond in 1:nCond) {

17 a[cond] <- mu[cond] * kappa[cond]

18 b[cond] <- (1-mu[cond]) * kappa[cond]

19 mu[cond] ˜ dbeta(aMu , bMu)

20 kappa[cond] ˜ dgamma(sGamma , rGamma)

21 }

22 aMu <- max(.01 , mMu * kMu)

23 bMu <- max(.01 , (1-mMu) * kMu)

24 mMu ˜ dunif(0,1)

25 kMu ˜ dgamma(1,.1)

26 sGamma <- max(.005 , pow(muGamma,2)/pow(sigmaGamma,2))

27 rGamma <- max(.005 , muGamma/pow(sigmaGamma,2))

28 muGamma ˜ dgamma(1,.1)

29 sigmaGamma ˜ dgamma(1,.1)

30 }

Discuss why we would want to estimate higher-level distributions across theµc andκc. You
may want to mention commonalities across conditions, such as all the learners being the
same species, and all learners experiencing the same sort ofstimuli on the same computer
display. It is also important to discussshrinkageof estimates. Finally, discuss why the
particular higher-level distribution mightnot be appropriate.

(B) [Purpose: Check for convergence, mixing, and autocorrelation.] With the data included,
run the BUGS model and check for convergence, mixing, and autocorrelation. The model
can be initialized automatically, usingmodelGenInits(), but unfortunately takes forever for

284 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

the chains to converge, because some are initialized too faraway from the mode of the
posterior. Instead, manually initialize the chains at reasonable values, as indicated by the
data. The same method as was used in Section 9.5.2 (FilconBrugs.R) is used and extended
here: (Kruschke1996CSbugs.R)

77 genInitList <- function() {

78 sqzData = .01+.98*datalist$nCorrOfSubj/datalist$nTrlOfSubj

79 mu = aggregate(sqzData , list(datalist$CondOfSubj) , "mean")[,"x"]

80 sd = aggregate(sqzData , list(datalist$CondOfSubj) , "sd")[,"x"]

81 kappa = mu*(1-mu)/sdˆ2 - 1

82 mMu = mean(mu)

83 kMu = mMu * (1-mMu) / sd(mu)ˆ2

84 muGamma = mean(kappa)

85 sigmaGamma = sd(kappa)

86 return(list(theta = sqzData ,

87 mu = mu ,

88 kappa = kappa ,

89 mMu = mMu ,

90 kMu = kMu ,

91 muGamma = muGamma ,

92 sigmaGamma = sigmaGamma))

93 }

94 for (chainIdx in 1 : nchain) {

95 modelInits(bugsInits(genInitList))

96 }

Run the model and determine reasonable burn-in and thinning. Show the autocorrelation
and chain plots forµc andκc. You may find it useful to refer to Section 23.2, p. 510.

(C) [Purpose: Examine and interpret the posterior distribution of differences.] Which groups
are different from each other, on which parameters? Hint: See Figure13.4.

(D) [Purpose: Check the robustness of the posterior when the prior is changed in reasonable

ways.] Do the posterior differences change much if the prior changes? (i) Specifically, try
this alternative vague prior: Wherever the top-level priorspecifiesdgamma(1,.1), change it
to dgamma(0.1,.1). (ii) Also, try this prior that forces allκc to be close to 15:
muGamma ∼ dgamma(22500,1500)
sigmaGamma ∼ dgamma(25,250)
Show your results. Which prior is more reasonable, and why?

(E) [Purpose: Conduct a posterior predictive check.] For this part, use the plausible
dgamma(1,.1) prior, not the less-plausible other priors explored in the previous part. Con-
duct a posterior predictive check by generating simulated data from the sampled posterior
parameter values. This can be done in R as follows: (Kruschke1996CSbugs.R)

203 nSimExps = min(500,chainLength) # number of simulated experiments

204 nSubjPerCond = sum(CondOfSubj == 1) # number of subjects per condition

205 nTrlPerSubj = nTrlOfSubj[1] # number of trials per subject

206 nCorrOfSubjPredMat = matrix(0 , nrow=nSimExps , ncol=nSubjPerCond*nCond)

207 CondOfSubjPredMat = matrix(0 , nrow=nSimExps , ncol=nSubjPerCond*nCond)

208 nTrlOfSubjPredMat = matrix(0 , nrow=nSimExps , ncol=nSubjPerCond*nCond)

209 for (stepIdx in 1:nSimExps) {

210 for (condIdx in 1:nCond) {

211 m = mu[condIdx,stepIdx]

212 k = kappa[condIdx,stepIdx]

213 a = m*k + 1

214 b = (1-m)*k + 1

215 for (subjIdx in 1:nSubjPerCond) {

13.7. EXERCISES 285

1
1

1

1

1
1

1

1

1
1

1
1

1

11

1
11 1
1

1

11
11
1

1

1

11

1

1
1

11

1
1

1

1

1
1

1

11

11

1

1

1

11

1
11
1
1

1
11
1
1

1
1

11

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

11
1

111

1

1

1
1

11

1

1
1
1

1
1

1

1

1
1

1
1

1
1

1

11

1
1

1
1
1

1
1

1

1

11

1

11
1

1
1

1

1
111

1

1

1

1

1
11

1
1

1

1

1
1

1

11
1

1
1
1

1

1
1

1

11

1

1
1

1

1
11

1

1

1

1
1

1
1

1

1
1

1

1

1

1

1
11

1
1

11

1

1
1

1 1

1

1

1

1

1

1

1

1

11

1

11

1
11

1

1

1
1

1

1
1

1
1
1

111

1

1

1

1 1
11

1

1

1

1

111
1 1

1

1
1
1

0.5 0.6 0.7 0.8 0.9

5
10

20
50

10
0

20
0

Posterior

µc

κ c

2

2

2
2

2

2

22

22

2

2
2

22

2

2

2 2

2
22 2

2
2

222

2
22
22

2 2

2
22 2
2

2

22
2
2

2
2

2
22

2
2

2
2

2
222

2 22 222
2
22
22

2

2
2

22

2

2
22 2

2
2
22

22

2

2
2 222

2
2 2

2
22 22

2

2
2

2

2
2

22
22 22

22 2
2

2

2

22
2 2

22

2

2
2

22 22 2

2
2

2
2

22

2
22
2

2
22

2

2

2
2

22

2
22

2

2

2
22

2
2 2

2

2

2
2

2
2

22
2

2

2

2

2
2

22
2

2

22

2

2
2
2

2

2

2 2
2

2
2

2
2

2
2
2
2

2 2
2

2
2

2
2

2
2 2

2
2

2

2

2
2

2
2
2

2 2
2

2

2

2
222

2
2

22 2
2
2

2

2

22

2

2

22

2
2

2 22
2

22
2

33
3

3
3

3

3

3
3

3

33

3
3

33
3

3
333 3
3

3

3

33
3

33 3
33

3
3 3
33 3

3
3
33 33

3

333
3

3

3 3
3

3

3
3
3 33 3

3

3
3

3
33

3

3

3 333
3

3 333
3

3
3

3

3
3333

3

3

3
3
333
3

3
3
3 3

3
3

3

3

3

3

33
3

3

3

3 33

3
3

3

3

3
3

3
3 33

33
3

33

3

3
33333

3 33 33 333 33
3

3

3
3

3
3

3 33 3 3 3
3

3

3

333

3 33

3
3
3

3

3
3

3

3
3

3
33

3
33 3

3
3 3

33

3
3
3

33 333
3

3
3 3

3

3

3

3

3

33 3
3
3

33
33

333
3

3
3

3 3
3

3
3
333

3

3 3

33
3

3
3

3
3

3
3
333

3
33

3 3
33

3

44

4 4

4
4

44

4

4
4
4 44 44
4
44

44

4
4
44

4
4

4

4

444
4 4

4 4

4
44 44

4

4
4

4 44 4
44

4
4
4

44

44

4

4

4

4

4
4

4

4
44
4

4
44 444

4

4
4

4

4
4
4
4

4
4

4
4

4
4

4

4

4

4
44 4

4
44

4
4 44 44
4

4

4
4
4

4

4

4 4

4
4

4
4

4
4

4

4 4
4

44
444
4

4
4

44 4
44444

4

4

4
4

4 4

4
4 4444

4
4 4

44
4

4
4
44 4

4

4

44 4
4

4
44

4

4
4

4 4

4
4

4

4444 4
4

4

4 4
4
4

4

4
4

44
4

4
4

4

4
4

4

4 4
4

44
4 444 4

4

4

4
4

44

4

4

4

4

4

4 4
4

4

4
4

4
4

44
44 4

4

44
4

44
4

4

4

4

4

4

4 4

µ contrast

1 Rev + −1 Rel
0.00 0.05 0.10 0.15

mode = 0.0933

0% <= 0 < 100%

95% HDI
0.0567 0.141

µ contrast

1 Rel + −1 Irr
0.00 0.05 0.10 0.15 0.20

mode = 0.123

0% <= 0 < 100%

95% HDI
0.065 0.178

µ contrast

1 Irr + −1 Cmp
−0.05 0.00 0.05 0.10 0.15

mode = 0.0675

1% <= 0 < 99%

95% HDI
0.0137 0.128

µ contrast

−0.5 Rel + −0.5 Irr + 1 Cmp
−0.20 −0.15 −0.10 −0.05 0.00

mode = −0.131

100% <= 0 < 0%

95% HDI
−0.176 −0.0811

µ contrast

−1 Rev + 0.33 Rel + 0.33 Irr + 0.33 Cmp
−0.25 −0.20 −0.15 −0.10 −0.05 0.00

mode = −0.201

100% <= 0 < 0%

95% HDI
−0.231 −0.171

µ contrast

−0.5 Rev + 0.5 Rel + 0.5 Irr + −0.5 Cmp
−0.05 0.00 0.05

mode = −0.0138

78% <= 0 < 22%

95% HDI
−0.0502 0.0202

log(κ) contrast

1 Rev + −1 Rel
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

mode = 1.36

0.1% <= 0 < 99.9%

95% HDI
0.517 2.35

log(κ) contrast

1 Rel + −1 Irr
−1.0 −0.5 0.0 0.5 1.0

mode = 0.108

38.8% <= 0 < 61.2%

95% HDI
−0.519 0.676

log(κ) contrast

1 Irr + −1 Cmp
−1.5 −1.0 −0.5 0.0 0.5 1.0

mode = −0.482

94.5% <= 0 < 5.5%

95% HDI
−1.15 0.146

log(κ) contrast

−0.5 Rel + −0.5 Irr + 1 Cmp
−0.5 0.0 0.5 1.0 1.5

mode = 0.52

4.7% <= 0 < 95.3%

95% HDI
−0.1 1.05

log(κ) contrast

−1 Rev + 0.33 Rel + 0.33 Irr + 0.33 Cmp
−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

mode = −1.29

100% <= 0 < 0%

95% HDI
−2.17 −0.516

log(κ) contrast

−0.5 Rev + 0.5 Rel + 0.5 Irr + −0.5 Cmp
−2.0 −1.5 −1.0 −0.5 0.0

mode = −0.937

99.9% <= 0 < 0.1%

95% HDI
−1.57 −0.399

Figure 13.4: For Exercise 13.4, Part C. Posteriorµc andκc values, and their differences. In
the scatterplot, numerals represent a step in the chain for that condition.

286 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

DATA Cond:1, Median Acc:0.906

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
5

10
15

DATA Cond:2, Median Acc:0.844

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
4

8
12

DATA Cond:3, Median Acc:0.703

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

DATA Cond:4, Median Acc:0.531

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

POST. PRED. Cond:1, Median Acc:0.875

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
4

8
12

POST. PRED. Cond:2, Median Acc:0.75

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

POST. PRED. Cond:3, Median Acc:0.609

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:4, Median Acc:0.562

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

POST. PRED. Cond:1, Median Acc:0.875

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
4

8
12

POST. PRED. Cond:2, Median Acc:0.75

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

POST. PRED. Cond:3, Median Acc:0.656

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:4, Median Acc:0.594

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

POST. PRED. Cond:1, Median Acc:0.875

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
4

8
12

POST. PRED. Cond:2, Median Acc:0.781

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:3, Median Acc:0.656

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:4, Median Acc:0.609

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:1, Median Acc:0.844

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
4

8

POST. PRED. Cond:2, Median Acc:0.688

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:3, Median Acc:0.672

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

POST. PRED. Cond:4, Median Acc:0.594

Number Correct

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

Figure 13.5: For Exercise 13.4, Part E. Actual data in left column, with examples
of posterior-predicted data in other columns. Top row is Reversal shift, second row
is Relevant, third row is Irrelevant, and fourth row is Compound. There is a sug-
gestion of bimodality in the data from the Compound Shift (lower-left histogram)
that is not often generated by simulated posterior-predicted data. Follow-up mod-
eling and empirical work might want to investigate that bimodality if it is deemed
theoretically interesting.

216 colIdx = (condIdx-1)*nSubjPerCond + subjIdx

217 theta = rbeta(1 , a , b)

218 nCorrOfSubjPredMat[stepIdx,colIdx] = rbinom(1 ,

219 size=nTrlPerSubj , prob=theta)

220 CondOfSubjPredMat[stepIdx,colIdx] = condIdx

221 nTrlOfSubjPredMat[stepIdx,colIdx] = nTrlPerSubj

222 }

223 }

224 }

This code, above, puts each randomly generated sample of data into a row of the ma-
trix nCorrOfSubjPredMat. Figure 13.5 shows histograms of simulated data. The above
code relied on previously extracting the parameter chains from BUGS, as follows:
(Kruschke1996CSbugs.R)

127 mu = NULL

128 kappa = NULL

129 for (condIdx in 1:nCond) {

130 nodeName = paste("mu[" , condIdx , "]" , sep="")

131 mu = rbind(mu , samplesSample(nodeName))

132 nodeName = paste("kappa[" , condIdx , "]" , sep="")

133 kappa = rbind(kappa , samplesSample(nodeName))

134 }

(F) [Purpose: Do a retrospective power analysis.] Using the method of Figure 13.3, which
is exemplified by the code explained in Section 13.6.2 (FilconBrugsPower.R), conduct a
retrospective power analysis, and estimate the power of four goals:µRev− µRel > 0, µRel−
µIrr > 0,µIrr −µCom> 0, andκRev−κRel > 0 (condition 1 is Reversal, condition 2 is Relevant,
condition 3 is Irrelevant, and condition 4 is Compound). To do this, first analyze the actual

13.7. EXERCISES 287

data, and get a posterior sample ofµc andκc values. Then, wrap the BUGS program into
a function, into which you can pass data and from which you check whether each goal
is achieved. Then make a loop that goes stepwise through theµc, κc chain and generates
simulated data from those credible parameter values. At each step, pass the simulated data
into the BUGS analysis function. Run at least 100 simulated data sets, and report your tally
for how many times the goals were achieved.Cautions and hints:If each BUGS analysis
takes two minutes to run, a batch of a few hundred simulated data sets will take hours.
Plan accordingly. Sometimes BUGS will run fine for dozens of simulated data sets, and
then inexplicably crash on the next random data set. Therefore be sure that your results
regarding power estimation are saved at the end of each data set. The goal of showing
µRev− µRel > 0 has a retrospective power of about 100%, but at least one of the other goals
involving µc has retrospective power under 50%, which indicates that even with 60 subjects
per condition, this experiment might have been underpowered. Bayesian analysis does not
care whether there are equal numbers of subjects in each condition, so follow-up work could
use more subjects in some conditions and fewer subjects in other condtions. The goal of
showingκRev− κRel > 0 has a retrospective power of only 20%, which is caused largely by
shrinkage ofκc estimates.

(G) [Purpose: Do a replication power analysis.] Suppose you repeat the experiment, using
the posterior of the first experiment as the prior for the second experiment. Estimate the
probability of achieving these four goals:µRev− µRel > 0, µRel− µIrr > 0, µIrr − µCom >

0, andκRev− κRel > 0 (condition 1 is Reversal, condition 2 is Relevant, condition 3 is
Irrelevant, and condition 4 is Compound). In other words, conduct an analysis of replication
probability, regarding the same goals as the previous part.This task is easy to do if you
successfully accomplished the previous part. In each step of the chain, instead of using
only the simulated data, concatenate the simulated data to the actual data.Cautions and
hints: The runs will take even longer than in the previous part because of the larger data
sets.

288 CHAPTER 13. GOALS, POWER, AND SAMPLE SIZE

Part III

The Generalized Linear Model

289

Chapter 14

Overview of the Generalized Linear
Model
Contents

14.1 The generalized linear model (GLM)292
14.1.1 Predictor and predicted variables 292
14.1.2 Scale types: metric, ordinal, nominal 293
14.1.3 Linear function of a single metric predictor 294

14.1.3.1 Reparameterization tox threshold form 296
14.1.4 Additive combination of metric predictors 296

14.1.4.1 Reparameterization tox threshold form 298
14.1.5 Nonadditive interaction of metric predictors 298
14.1.6 Nominal predictors . 300

14.1.6.1 Linear model for a single nominal predictor 300
14.1.6.2 Additive combination of nominal predictors302
14.1.6.3 Nonadditive interaction of nominal predictors 303

14.1.7 Linking combined predictors to the predicted 304
14.1.7.1 The sigmoid (a.k.a. logistic) function305
14.1.7.2 The cumulative normal (a.k.a. Phi) function307

14.1.8 Probabilistic prediction .308
14.1.9 Formal expression of the GLM 308

14.2 Cases of the GLM . 311
14.2.1 Two or more nominal variables predicting frequency 313

14.3 Exercises . 315

Straight and proportionate, deep in your core
All is orthogonal, ceiling to floor.
But on the outside the vines creep and twist
’round all the parapets shrouded in mist.

The previous part of the book explored all the basic conceptsof Bayesian analysis ap-
plied to a simple likelihood function, namely the Bernoullidistribution. The focus on a
simple likelihood function allowed the complex concepts ofBayesian analysis, such as
MCMC methods and hierarchical priors, to be developed without interference from addi-
tional complications of elaborate likelihood functions with multiple parameters.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

291

292 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

In this new part of the book, we apply all the concepts to a morecomplex but versatile
model known as thegeneralized linear model(GLM; McCullagh & Nelder, 1989; Nelder
& Wedderburn, 1972). This model comprises the traditional “off the shelf” analyses such
ast-tests, analysis of variance (ANOVA), multiple linear regression, logistic regression, etc.
Because we now know from previous chapters the concepts and mechanisms of Bayesian
analysis, we can focus on applications of this versatile model. The present chapter is im-
portant for understanding subsequent chapters because it lays out the framework for all the
models in the remainder of the book.

14.1 The generalized linear model (GLM)

To understand the generalized linear model and its many specific cases, we must build up a
variety of component concepts regarding relationships between variables and how variables
are measured in the first place.

14.1.1 Predictor and predicted variables

Suppose we want to predict someone’s weight from their height. In this case, weight is the
predicted variable and height is the predictor. Or, supposewe want to predict high school
grade point average (GPA) from Scholastic Aptitude Test (SAT) score and family income.
In this case, GPA is the predicted variable, while SAT and income are predictor variables.
Or, suppose we want to predict the blood pressure of patientswho either take drug A, or
take drug B, or take a placebo, or merely wait. In this case, the predicted variable is blood
pressure, and treatment-group membership is the predictor.

The key mathematical difference between predictor and predicted variables is that the
likelihood function expresses the probability of values ofthe predicted variable as a function
of values of the predictor variable. The likelihood function does not describe the probabil-
ities of values of the predictor variable. The value of the predictor variable comes from
“outside” the system being modeled, whereas the value of thepredicted variable depends
on the value of the predictor variable.

Because the predicted variable depends on the predictor variable, at least mathemati-
cally in the likelihood function if not causally in the real world, the predicted variable can
also be called the “dependent” variable. The predictor variables are sometimes called “in-
dependent” variables. The key conceptual difference between independent and dependent
variable is that the value of the dependent variable dependson the value of the indepen-
dent variable. The term “independent” can be confusing because it can be used strictly or
loosely. In experimental settings, the variables that are actually manipulated and set by the
experimenter are the independent variables. In this context of experimental manipulation,
the values of the independent variables truly are (in principle, at least) independent of the
values of other variables, because the experimenter has intervened to arbitrarily set the val-
ues of the independent variables. But sometimes a non-manipulated variable is also referred
to as “independent”, merely as a way to indicate that it is being used as a predictor variable.

Among non-manipulated variables, the roles of predicted and predictor are arbitrary, de-
termined only by the interpretation of the analysis. Consider, for example, people’s weights
and heights. We could be interested in predicting a person’sweight from his/her height,
or we could be interested in predicting a person’s height from his/her weight. Prediction
is merely a mathematical dependency, not necessarily a description of underlying causal

14.1. THE GENERALIZED LINEAR MODEL (GLM) 293

relationship. Although height and weight tend to co-vary across people, the two variables
are not directly causally related. When a person slouches, thereby getting shorter, s/he does
not lose weight. And when a person drinks a glass of water, thereby weighing more, s/he
does not get taller.

Just as “prediction” does not imply causation, “prediction” also does not imply any
temporal relation between the variables. For example, we may want to predict a person’s
sex, male or female, from his/her height. Because males tend to be taller than females, this
prediction can be made with better than chance accuracy. Buta person’s sex is not caused
by his/her height, nor does a person’s sex occur only after their height is measured. Thus,
we can “predict” a person’s sex from his/her height, but this does not mean that the person’s
sex occurred later in time than his/her height.

In summary: All manipulated independent variables are predictor variables, not pre-
dicted. Some dependent variables can take on the role of predictor variables, if desired. All
predicted variables are dependent variables. The likelihood function specifies the probabil-
ity of values of the predicted variables as a function of the values of the predictor variables.

Why we care. We care about these distinctions between predicted and predictor vari-
ables because the likelihood function is a mathematical description of the dependency of
the predicted variable on the predictor variable. The first thing we have to do in statistical
inference is identify what variables we are interested in predicting, on the basis of what
predictors.

14.1.2 Scale types: metric, ordinal, nominal

Items can be measured on different scales. For example, the participants in a foot race can
be measured either by the time they took to run the race, or by their placing in the race (1st,
2nd, 3rd, etc.), or by the name of the team they represent. These three measurements are
examples of metric, ordinal, and nominal scales, respectively (Stevens, 1946).

Examples ofmetricscales include response time (i.e., latency or duration), temperature,
height, and weight. Those are actually cases of a specific type of metric scale, called aratio
scale, because they have a natural zero point on the scale. The zero point on the scale
corresponds to there being a complete absence of the stuff being measured. For example,
when the duration is zero, there has been no time elapsed, andwhen the weight is zero,
there is no downward force. Because these scales have a natural zero point, it is meaningful
to talk about ratios of amounts being measured, and that is why they are called ratio scales.
For example, it is meaningful to say that taking 2 minutes to solve a problem is twice as
long as taking 1 minute to solve the problem. On the other hand, the scale of historical
time has no known absolute zero. We cannot say, for example, that there is twice as much
time in January 2nd as there is time in January 1st. We can refer to the duration since some
arbitrary reference point, but we cannot talk about the absolute amount of time in any given
moment. Scales that have no natural zero are calledinterval scales because all we know
about them is the amount of stuff in an interval on the scale, not the amount of stuff at a
point on the scale. Despite the conceptual difference between ratio and interval scales, we
will lump them together into the category of metric scales.

A special case of metric-scaled data iscountdata, also calledfrequencydata. For ex-
ample, the number of cars that pass through an intersection during an hour is a count. The
number of poll respondents who say they belong to a particular political party is a count.
Count data can only have values that are non-negative integers. Distances between counts
have meaning, and therefore the data are metric, but becausethe data cannot be negative

294 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

and are not continuous, they are treated with different mathematical forms than continuous,
real-valued metric data.

Examples ofordinal scales include placing in a race, or rating of degree of agreement.
When we are told that, in a race, Jane came in first, Jill came insecond, and Jasmine came
in third, we only know the order. We do not know whether Jane beat Jill by a nose or by a
mile. There is no distance or metric information in an ordinal scale. As another example,
many polls have ordinal response scales: Indicate how much you agree with this statement:
“Bayesian statistical inference is better than null hypothesis significance testing”, with 5=
strongly agree, 4= mildly agree, 3= neither agree nor disagree, 2= mildly disagree, and
1 = strongly disagree. Notice that there is no metric information in the response scale,
because we cannot say the difference between ratings of 5 and 4 is the same amount of
difference as between ratings of 4 and 3.

Examples ofnominal, a.k.a. categorical, scales include political party affiliation, the
face of a rolled die, and the result of a flipped coin. For nominal scales, there is neither
distance between categories nor order between categories.For example, suppose we mea-
sure the political party affiliation of a person. The categories of the scale might be Green,
Democrat, Republican, Libertarian, and Other. While some political theories might infer
that the parties fall on some underlying liberal-conservative scale, there is no such scale
in the actual categorical values themselves. In the actual categorical labels there is neither
distance nor ordering.

In summary, if two items have different nominal values, all we know is that the two
items are different (and what categories they are in). On the other hand, iftwo items have
different ordinal values, we know that the two items are different and we know which one is
“larger” than the other, but not how much larger. If two itemshave different metric values,
then we know that they are different, which one is larger, and how much larger.

Why we care.We care about the scale type because the likelihood functionmust spec-
ify a probability distribution on the appropriate scale. Ifthe scale has two nominal values,
then a Bernoulli likelihood function may be appropriate. Ifthe scale is metric, then a nor-
mal distribution may be appropriate as a likelihood function. Whenever we a choosing a
model for data, we must answer the question, What kind of scale are we dealing with?

In the following sections, we will first consider the case of ametric predicted variable
with metric predictors. In that context of all metric variables, we will develop the con-
cepts of linear functions and interactions. Once those concepts are established for metric
predictors, the notions will be extended to nominal predictors.

14.1.3 Linear function of a single metric predictor

Suppose we have identified one variable to be predicted, which we’ll call y, and one variable
to be the predictor, which we’ll callx. Suppose we have determined that both variables are
metric. The next issue we need to address is how to model a relationship betweenx andy.
There are many possible dependencies ofy on x, and the particular form of the dependency
is determined by the specific meanings and nature of the variables. But in general, across all
possible domains, what is the most basic or simplistic dependency ofy on x that we might
consider? The usual answer to this question is, a linear relationship. A linear function is the
generic, “vanilla”, off-the-shelf dependency that is used in statistical models. The methods
can be generalized to other models when needed.

Linear functions preserve proportionality. If you double the input, then you double the
output. If cost of a book is a linear function of the number of pages, then when the number

14.1. THE GENERALIZED LINEAR MODEL (GLM) 295

−2 0 2 4 6

−
10

−
5

0
5

10
15

20
25

Different Intercepts

x

y

y = 10 + 2x

y = −5 + 2x

−2 0 2 4 6
0

5
10

15
20

Different Slopes

x

y

y = 10 + 2x

y = 10 + −0.5x

Figure 14.1: Examples of linear functions of a singlex variable. The left panel
shows examples of two lines with the same slope but different intercepts. The right
panel shows examples of two lines with the same intercept butdifferent slopes.

of pages is reduced 10%, the cost should be reduced 10%. If automobile speed is a linear
function of gas delivery to the engine, then when you press the pedal 20% further, the car
should go 20% faster. Non-linear functions do not preserve proportionality. For example,
in actuality, car speed is not a linear function of gas delivery. At higher and higher speeds,
it takes proportionally more and more gas to make the car go faster. Despite the fact that
many real-world dependencies are non-linear, most are at least approximately linear over
moderate ranges of the variables. For example, if you have twice the wall area, it takes
approximately twice the amount of paint. It is also the case that linear relationships are
intuitively prominent (Brehmer, 1974; Hoffman, Earle, & Slovic, 1981; Kalish, Griffiths, &
Lewandowsky, 2007). Linear relationships are the easiest to think about: Turn the steering
wheel twice as far, and the car should turn twice as sharp. Turn the volume knob 50%
higher, the loudness should increase 50%.

The general mathematical form for a linear function of a single variable is

y = β0 + β1x (14.1)

When values ofx andy that satisfy Equation 14.1 are plotted, they form a line. Examples
are shown in Figure 14.1. The value of parameterβ0 is called they-intercept because it is
the where the line intersects they-axis whenx = 0. The left panel of Figure 14.1 shows two
lines with differenty-intercepts. The value of parameterβ1 is called the slope because it
indicates how muchy increases whenx increase by 1. The right panel of Figure 14.1 shows
two lines with the same intercept but different slopes.

In strict mathematical terminology, the type of transformation in Equation 14.1 is called
affine. Whenβ0 , 0, the transformation does not preserve proportionality. For example,
considery = 10+ 2x. Whenx is doubled fromx = 1 to x = 2, y increases fromy = 12 to

296 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

y = 14, which is not doublingy. Nevertheless, the rate of increase iny is the same for all
values ofx: Wheneverx increases by 1,y increases by 2. Equation 14.1 can be algebraically
re-arranged so that it does preserve proportionality, as will be shown next.

14.1.3.1 Reparameterization tox threshold form

Equation 14.1 can be algebraically re-arranged as follows:

y = β0 + β1x

= β1

(

x−
(

−β0/β1
︸ ︷︷ ︸

θ

)
)

(14.2)

This form of the equation is useful because it explicitly shows the value of thex-intercept,
a.k.a. threshold, denotedθ. (Do not confuse this use of the symbolθ with different uses in
previous chapters.) The threshold is the value ofx wheny is zero. This is sometimes also
called thex intercept.

Thex-threshold form preserves proportionality forx−θ. As an example, consider again
the case ofy = 10+ 2x. When changed tox-threshold form, it becomesy = 2(x+ 5). When
x changes from 1 to 2,x+ 5 changes from 6 to 7, which is an increase of (7− 6)/6 = 1/6.
The resulting change iny is from 12 to 14, which is an increase of (14− 12)/12 = 1/6.
Thus, a 1/6 increase inx− θ results in a 1/6 increase iny.

The threshold (i.e.,x intercept) is often more meaningful than they-intercept. For
example, suppose we are piloting a tugboat upstream on the Mississippi river, and we want
to predict how much headwayy we will gain against the current for a given setting of the
throttle x. Suppose it is the case thaty = −2 + 4x. This form of the equation indicates
that when we apply zero engine power, that is whenx = 0, then we lose 2 miles an hour,
i.e., y = −2. In other words, they intercept tells us the baseline speed of the river current
that we are trying to overcome. What may be more useful to know, however, is the amount
of engine power we need to apply in order to overcome the current: How big mustx be
so that we are just matching the downstream pressure? The answer to this question is the
threshold, i.e., the value ofx that makesy = 0. In our example, whereiny = −2 + 4x, the
threshold isθ = −(−2/4) = 0.5. In other words, when the throttle is set above the threshold
of 0.5, then we make progress upstream becausey > 0, but when the throttle is set below
the threshold of 0.5, the we drift downstream becausey < 0. Thus, the more intuitive form
of the “headway” equation is thex intercept form,y = 4(x−0.5), because it shows explicitly
that our headway is proportional to how much the throttle exceeds 0.5.

Summary of why we care. The likelihood function specifies the form of the depen-
dency ofy on x. Wheny andx are metric variables, the simplest form of dependency, both
mathematically and intuitively, is one that preserves proportionality. The mathematical ex-
pression of this relation is a so-called linear function. The usual mathematical expression of
a line is they intercept form, but often a more intuitive expression is thex threshold form.
Linear functions form the core of most statistical models, so it is important to become facile
with their algebraic forms and graphical representations.

14.1.4 Additive combination of metric predictors

If we have more than one predictor variable, what function should we use to combine the
influences of all the predictor variables? If we want the combination to be linear in each

14.1. THE GENERALIZED LINEAR MODEL (GLM) 297

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 0 + 1x1 + 0x2

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 0 + 0x1 + 2x2

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 0 + 1x1 + 2x2

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 10 + 1x1 + 2x2

Figure 14.2: Examples of linear functions of two variables,x1 andx2. Upper left:
Only x1 has an influence ony. Upper right: Onlyx2 has an influence ony. Lower
left: x1 andx2 have an additive influence ony; compare with upper panels. Lower
right: Non-zero intercept is added; compare with lower leftpanel.

of the predictor variables, then there is just one answer: Addition. In other words, if we
want an increase in one predictor variable to predict thesameproportional increase in the
predicted variablefor any value of the other predictor variables, then the predictions of the
individual predictor variables must be added.

In general, a linear combination ofK predictor variables has the form

y = β0 + β1x1 + . . . + βK xK

= β0 +

K∑

k=1

βkxk (14.3)

Figure 14.2 shows examples of linear functions oftwo variables,x1 and x2. The graphs
showy plotted only over a the domain with 0≤ x1 ≤ 10 and 0≤ x2 ≤ 10. It is important to
realize that the plane extends from minus to plus infinity, and the graphs only show a small
region. Notice in the upper left panel, wherey = 0 + 1x1 + 0x2, that whenx1 = 10, then
y = 10, regardless of the value ofx2. The plane tilts upward in thex1 direction, but the plane
is horizontal in thex2 direction. The opposite is true in the upper-right panel: The plane
tilts upward in thex2 direction, but the plane is horizontal in thex1 direction, because there
y = 0+ 0x1 + 2x2. The lower-left panel shows the two influences added:y = 0+ 1x1 + 2x2.
Notice that the slope in thex2 direction is steeper than in thex1 direction. Most importantly,

298 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

notice that the slope in thex2 direction is the same at any specific value ofx1. For example,
whenx1 = 0, y rises fromy = 0 toy = 20, i.e. an increase of 20, whenx2 goes fromx2 = 0
to x2 = 10. And whenx1 = 10,y rises fromy = 10 toy = 30, again an increase of 20, when
x2 goes fromx2 = 0 to x2 = 10.

14.1.4.1 Reparameterization tox threshold form

For notational convenience, define the length of a vector
−→
β = 〈β1, ..., βK〉 to be

∥
∥
∥
∥

−→
β

∥
∥
∥
∥ =

(∑

k β
2
k

)1/2
. This may look complicated, but it’s merely the everyday formula for distance

from the Pythagorean theorem. Carpenters all memorize a handy special case of this rela-
tionship, known as the “3-4-5 rule”: When the lengths of the short edges of a right-angled
triangle are 3 and 4, then the length of the long edge is exactly 5, because 5= (32 + 42)1/2.
(Carpenters actually use the 3-4-5 rule to infer an angle from lengths, rather than infer a
third length from two lengths and an angle. Carpenters know that if a triangle has edge
lengths of 3, 4, and 5, then the angle between the short edges is exactly 90 degrees.) With
this new notation for length, Equation 14.3 can be algebraically re-expressed as

y = β0 +

K∑

k=1

βkxk

= β0 +

∥
∥
∥
∥

−→
β

∥
∥
∥
∥

K∑

k=1

βk
∥
∥
∥
∥

−→
β

∥
∥
∥
∥

xk

=

∥
∥
∥
∥

−→
β

∥
∥
∥
∥

K∑

k=1

βk
∥
∥
∥
∥

−→
β

∥
∥
∥
∥

xk −
(

−β0

/ ∥
∥
∥
∥

−→
β

∥
∥
∥
∥

)

︸ ︷︷ ︸

θ

(14.4)

Notice that when there is only a single predictor variable, i.e., whenK = 1, then
∥
∥
∥
∥

−→
β

∥
∥
∥
∥ = |β1|

and Equation 14.4 reduces to Equation 14.2.
In Equation 14.4, the value ofθ is the (Euclidean) length ofx wheny = 0 and whenx

is in the direction of vector〈β1, ..., βK〉. In other words, when−→x = θ−→β
/∥
∥
∥
∥

−→
β

∥
∥
∥
∥ , theny = 0.

When the length of−→x (in that direction) exceeds the thresholdθ, theny > 0. Thex threshold
form in Equation 14.4 becomes especially useful when we consider logistic regression in
future chapters.

Summary of section: When the influence of every individual predictor is unchanged
by changing the values of other predictors, then the influences are additive. The combined
influence of two or more predictors can be additive even if theindividual influences are
nonlinear. But if the individual influences are linear, and the combined influence is additive,
then the overall combined influence is also linear. The formula of Equation 14.3, or its
reparameterization in Equation 14.4, is known as the linearmodel. It forms the core of
many statistical models.

14.1.5 Nonadditive interaction of metric predictors

The combined influence of two predictors does not have to be additive. Consider, for ex-
ample, a person’s self-rating of happiness, predicted fromhis/her overall health and annual

14.1. THE GENERALIZED LINEAR MODEL (GLM) 299

x1
0 2 4 6 8 10

x2
0

2
4

6
8
10

y

0

5

10

15

20

y = 0 + 0x1 + 0x2 + 0.2x1x2

x1
0 2 4 6 8 10

x2
0

2
4

6
8
10

y

0

5

10

15

20

y = 0 + 1x1 + 1x2 + 0x1x2

x1
0 2 4 6 8 10

x2
0

2
4

6
8
10

y

−10

−5

0

5

10

y = 0 + 1x1 + 1x2 + −0.3x1x2

x1
0 2 4 6 8 10

x2
0

2
4

6
8
10

y

−10

−5

0

5

10

15

20

y = 0 + −1x1 + 1x2 + 0.2x1x2

Figure 14.3: Multiplicative interaction of two variables,x1 and x2. Upper right
panel shows zero interaction, for comparison. Figure 17.8,p. 384, provides addi-
tional perspective and insight.

income. It’s likely that if a person’s health is very poor, then the person is not happy, re-
gardless of his/her income. And if the person has zero income, then the personis probably
not happy, regardless of his/her health. But if the person is both healthy and rich, then the
person is probably happy (despite celebrated counter-examples in the popular media).

A graph of this sort of non-additive interaction between predictors appears in the upper
left panel of Figure 14.3. The vertical axis, labeledy, is happiness. The horizontal axes,
x1 and x2, are health and income. Notice that if eitherx1 = 0 or x2 = 0, theny = 0.
But if both x1 > 0 andx2 > 0, theny > 0. The specific form of interaction plotted here
is multiplicative: y = 0 + 0x1 + 0x2 + .2x1x2. For comparison, the upper-right panel of
Figure 14.3 shows a non-interactive (i.e., additive) combination of x1 and x2. Notice that
the graph of the interaction has a twist in it, but the graph ofthe additive combination is flat.

The lower-left panel of Figure 14.3 shows a multiplicative interaction in which the in-
dividual predictors increase the outcome, but the combinedvariables decrease the outcome.
A real-world example of this occurs with some drugs: Individually, each of two drugs might
improve symptoms, but when taken together, the two drugs might interact and cause a de-
cline in health. As another example, consider lighter-than-air travel, i.e., ballooning. The
levity of a balloon is increased by fire, as in hot air balloons. And the levity of a balloon is
increased by hydrogen, as in many early-20th century blimpsand dirigibles. But the levity
of a balloon is dramatically decreased by the combination offire and hydrogen.

300 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

The lower-right panel of Figure 14.3 shows a multiplicativeinteraction in which the
direction of influence of one variable depends on the magnitude of the other variable. Notice
that whenx2 = 0, then an increase in thex1 variable leads to a decline iny. But when
x2 = 10, then an increase in thex1 variable leads to an increase iny. Again, the graph of
the interaction shows a twist and is not flat.

A non-additive interaction of predictors does not have to bemultiplicative. Other types
of interaction are possible. The type of interaction is motivated by idiosyncratic theories
in different variables in different application domains. Consider, for example, predicting
the magnitude of gravitational force between two objects, from three predictor variables:
mass of object one, mass of object two, and the distance between the objects. The force
is proportional to the product (i.e., multiplication) of their two masses. But the force is
proportional to the massesdivided bythe squared distance between them.1

14.1.6 Nominal predictors

14.1.6.1 Linear model for a single nominal predictor

The previous sections assumed that the predictor was metric. But what if the predictor is
nominal, such as political party affiliation or gender? What is the simplest generic model
for a metric variable predicted from a nominal variable? Answer: The “natural” model
has each value ofx generate a particular deflection ofy away from its baseline level. For
example, consider predicting height from sex (male or female). We can consider the overall
average height across both sexes as the baseline height. When an individual has the value
“male”, that adds an upward deflection to the predicted height. When an individual has the
value “female”, that adds a downward deflection to the predicted height.

Expressing that idea in mathematical notation can get a little tricky. First consider the
nominal predictor. We can’t represent it appropriately as asingle scalar value, such as 1
through 5, because that would mean that level 1 is closer to level 2 than it is to level 5,
which is not true of nominal values. Therefore, instead of representing the value of the
nominal predictor by a single scalar valuex, we will represent the nominal predictor by a
vector−→x = 〈x1, . . . , xJ〉, whereJ is the number of categories that the predictor has. When
an individual has levelj of the nominal predictor, this is represented by settingx j = 1
andxi, j = 0. For example, supposex is sex, with level 1 being “male” and level 2 being

female (soJ = 2). Then “male” is represented as−→x = 〈1, 0〉 and “female” is represented
as−→x = 〈0, 1〉. As another example, suppose that the predictor is political party affiliation,
with Green as level 1, Democrat as level 2, Republican as level 3, Libertarian as level 4,
and Other as level 5. Then Democrat is represented as−→x = 〈0, 1, 0, 0, 0〉, and Libertarian
is represented as−→x = 〈0, 0, 0, 1, 0〉. Political party affiliation is being treated here as a
categorical label only, with no ordering along a liberal-conservative scale.

Now that we have a formal representation for the nominal predictor variable, we can
create a formal representation for the generic model of how the predictor influences the
predicted variable. As mentioned above, the idea is that there is a baseline level of the
predicted variable, and each category of the predictor indicates a deflection above or below
that baseline level. We will denote the baseline value of theprediction asβ0. The deflection

1Division by squared distance can be thought of as multiplication by the reciprocal of squared distance, but
that amounts to re-parameterizing the model.

14.1. THE GENERALIZED LINEAR MODEL (GLM) 301

60
62

64
66

68
70

x

y

<0,0> <1,0> <0,1>

β0 = 67

β1 = 3

β2 = −3

90
95

10
0

10
5

x

y

<0,0,0,0,0> <1,0,0,0,0> <0,1,0,0,0> <0,0,1,0,0> <0,0,0,1,0> <0,0,0,0,1>

β0 = 101

β1 = 4

β2 = −3
β3 = −2

β4 = 6

β5 = −5

Figure 14.4: Examples of a nominal predictor (Equations 14.5 and 14.6). Left
panel shows a case withJ = 2, right panel shows a case withJ = 5. In each
panel, the baseline value ofy is on the far left, when all thex components are zero.
Notice that the deflections from baseline sum to zero.

for the jth level of the predictor is denotedβ j . Then the predicted value is

y = β0 + β1x1 + . . . + βJxJ

= β0 +
−→
β · −→x (14.5)

where the notation
−→
β · −→x is sometimes called the “dot product” of the vectors.

Notice that Equation 14.5 has a form very similar to the basiclinear form of Equa-
tion 14.1. The conceptual analogy is this: In Equation 14.1 for a metric predictor, the slope
β1 indicates how muchy changes whenx changes from 0 to 1. In Equation 14.5 for a nomi-
nal predictor, the coefficientβ j indicates how muchy changes whenx changes from neutral
to categoryj.

There is one more consideration when expressing the influence of a nominal predictor as
in Equation 14.5: How should the baseline value be set? Consider, for example, predicting
height from sex. We could set the baseline height to be zero. Then the deflection from
baseline for male might be 5’10” (say), and the deflection from baseline for female might
be 5’4” (say). On the other hand, we could set the baseline height to be 5’7”. Then the
deflection from baseline for male would be+3”, and the deflection from baseline for female
would be−3”. The second way of setting the baseline is the typical way it is done in generic
statistical modeling. In other words, the baseline is constrained so that the deflections sum
to zero across the categories:

J∑

j=1

β j = 0 (14.6)

The expression of the model in Equation 14.5 is not complete without the constraint in
14.6.

Figure 14.4 shows examples of a nominal predictor, expressed in terms of Equa-
tions 14.5 and 14.6). The left panel shows a case for whichJ = 2, and the right panel

302 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

x2 = <1,0,0> x2 = <0,1,0> x2 = <0,0,1>

x1 = <1,0>
x1 = <0,1>

Additive (no interaction)

x2

y

0
2

4
6

8
10

x2 = <1,0,0> x2 = <0,1,0> x2 = <0,0,1>

x1 = <1,0>
x1 = <0,1>

Non−Additive Interaction

x2
y

0
2

4
6

8
10

Figure 14.5: Combinations of two nominal variables.Left: Additive combination.
Notice that the difference between adjacent dark-grey and light-grey bars is the
same for every level ofx2. Right: Non-additive interaction. Notice that the dif-
ference between adjacent dark-grey and light-grey bars isnot the same for every
level of x2. Figure 19.1, p. 423, provides additional perspective and insight.

shows a case in whichJ = 5. Notice that the deflections from baseline sum to zero, as
demanded by the constraint in Equation 14.6.

14.1.6.2 Additive combination of nominal predictors

Suppose we have two (or more) nominal predictors of a metric value. For example, we
might be interested in predicting income as a function of political party affiliation and gen-
der. Figure 14.4 showed examples of each of those predictorsindividually. What we do
now is consider the joint influence of those predictors. If the two influences are merely
additive, then the model from Equation 14.5 becomes

y = β0 +
−→
β 1
−→x1 +

−→
β 2
−→x2 (14.7)

= β0 +

J1∑

j=1

β1, j x1, j +

J2∑

j=1

β2, j x2, j

with the constraints
J1∑

j=1

β1, j = 0 and
J2∑

j=1

β2, j = 0 (14.8)

The left panel of Figure 14.5 shows an example of two nominal predictors that have
additive effects on the predicted variable. In this case, the overall baseline isy = 6. When
x1 = 〈1, 0〉, there is a deflection iny of −1, and whenx1 = 〈0, 1〉, there is a deflection iny
of +1. This deflection byx1 is the same at every level ofx2. The deflections for the three
levels ofx2 are+3,−2, and−1. These deflections are the same at all levels ofx1. Formally,
the left panel of Figure 14.5 is expressed mathematically bythe additive combination:

y = 6+ 〈−1, 1〉−→x1 + 〈3,−2,−1〉−→x2

14.1. THE GENERALIZED LINEAR MODEL (GLM) 303

14.1.6.3 Nonadditive interaction of nominal predictors

When the predictor variables are non-metric, it does not even make sense to talk about a
multiplicative interaction, because there are no numerical values to multiply. For example,
consider predicting annual income from political party affiliation and gender. Both pre-
dictors are nominal, so it makes no sense to “multiply” them.But it does make sense to
consider non-additive combination of their influences.2

For example, the overall influence of gender is that men, on average, have a higher
income than women. The overall influence of political party affiliation is that Republicans,
on average, have higher income than Democrats. But it may be that the influences combine
non-additively: Perhaps people who are both Republican andmale have a higher average
income than would be predicted by merely adding the average income boosts for being
Republican and for being male. (This interaction is not claimed to be true; it is being used
only as a hypothetical example.)

We need new notation to formalize the non-additive influenceof a combination of nom-
inal values. Just as−→x1 refers to the value of predictor 1, and−→x2 refers to the value of
predictor 2, the notation−→x1×2 will refer to a particularcombinationof values of predic-
tors 1 and 2. If there areJ1 levels of predictor 1 andJ2 levels of predictor 2, then there are
J1 × J2 combinations of the two predictors.

A non-additive interaction of predictors is formally represented by including a term
for the influence of combinations of predictors, beyond the additive influences, as follows:

y = β0+
−→
β 1
−→x1+

−→
β 2
−→x2+

−→
β 1×2
−→x1×2. Whenever the interaction coefficient

−→
β 1×2 is non-zero,

the predicted value ofy is not a mere addition of the separate influences of the predictors.

The right panel of Figure 14.5 shows a graphical example of two nominal predictors
that have interactive (i.e., non-additive) effects on the predicted variable. Notice, in the left
pair of bars (x2 = 〈1, 0, 0〉), that a change fromx1 = 〈1, 0〉 to x1 = 〈0, 1〉 produces an
increase of+2 in y, from y = 8 to y = 10. But for the middle pair of bars (x2 = 〈0, 1, 0〉), a
change fromx1 = 〈1, 0〉 to x1 = 〈0, 1〉 produces an increase of−2 in y, from y = 5 toy = 3.
Thus, the influence ofx1 is not the same at all levels ofx2.

An interesting aspect of the pattern in the right panel of Figure 14.5 is that theaverage
influences ofx1 andx2 are the same as in the left panel. Overall, on average, going from
x1 = 〈1, 0〉 to x1 = 〈0, 1〉 produces a change of+2 in y, in both the left and right panels. And
overall, on average, for both panels it is the case thatx2 = 〈1, 0, 0〉 is +3 above baseline,
x2 = 〈0, 1, 0〉 is −2 below baseline, andx2 = 〈0, 0, 1〉 is −1 below baseline. The only
difference between the two panels is that the combined influence of the two predictors
equals the sum of the individual influences in the left panel,but the combined influence of
the two predictors does not equal the sum of the individual influences in the right panel.

An interaction between nominal predictors consists of a distinct deflection, for each
specific combination of categorical values, away from the additive combination. The mag-
nitude of the interactive deflection is whatever is left overafter the additive effects have
been applied to the baseline. The model that includes an interaction term can be written as

y = β0 +
−→
β 1
−→x1 +

−→
β 2
−→x2 +

−→
β 1×2
−→x1×2 (14.9)

2Actually, there is a sense in which nominal predictors can bemultiplied to generate a predictor for inter-
action. Instead of ordinary multiplication of two scalars,we use the outer product of two vectors. The outer
product was defined in Section 8.8.1, p. 144.

304 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

= β0 +

J1∑

j=1

β1, j x1, j +

J2∑

k=1

β2,kx2,k +

J1∑

j=1

J2∑

k=1

β1×2, j,kx1×2, j,k

with the constraints

J1∑

j=1

β1, j = 0 and
J2∑

k=1

β2,k = 0 and
J1∑

j=1

β1×2, j,k = 0 ∀k and
J2∑

k=1

β1×2, j,k = 0 ∀ j (14.10)

In these equations, the term−→x1×2 hasJ1 timesJ2 components, all of which are zero except
for a 1 at the particular combination of levels ofx1 and x2. This mysterious and arcane
notation will be revealed in all its majestic grandeur in Chapter 19. For now, the main
point is to understand that the term “interaction” refers toa non-additive influence of the
predictors on the predicted, regardless of whether the predictors are measured on a nominal
scale or a metric scale.

14.1.7 Linking combined predictors to the predicted

Once the predictor variables are combined, they need to be mapped to the predicted vari-
able. This mathematical mapping is called the(inverse) linkfunction, denoted byf () in the
following equation:

y = f
(

β0 + β1x1 + β2x2 + β1×2x1×2

)

(14.11)

Until now, we have been assuming that the link function is merely the identity function,
f (x) = x. For example, in Equation 14.9,y equalsthe linear combination of the predictors;
there is no transformation of the linear combination beforemapping the result toy.

Before describing different link functions, it is important to make some clarifications
of terminology and corresponding concepts. First, the function f () in Equation 14.11 is
usually called theinverselink function, because the link function itself is thought of as
transforming the valuey into a form that can be linked to the linear model. I will abuse
convention and simply refer to eitherf () or f −1() as “the” link function, and rely on context
to disambiguate which direction of linkage is intended. Thereason for this terminological
sadism is that the arrows in hierarchical diagrams of Bayesian models will flow from the
linear model toward the data, and therefore it is natural forthe functions to map toward the
data, as in Equation 14.11. But repeatedly referring to thisfunction as the “inverse” link
would strain my patience and violate my aesthetic sensibilities. Second, the valuey that
results from the link functionf (x) is not a data valueper se. Instead,f (x) is the value of
a parameter that expresses some characteristic of the data,usually their mean. Therefore
the function f () in Equation 14.11 is sometimes called themeanfunction, and is written
µ = f () instead ofy = f (). I will not use this terminology because most students already
think that “mean” means something else, namely the sum divided by N. The fact thaty in
Equation 14.11 is a parameter value and not a data value will become clear in subsequent
sections as we encounter specific cases and examples.

There are situations in which a non-identity link function is appropriate. Consider,
for example, predicting response time as a function of amount of caffeine consumed. Re-
sponse time declines as caffeine dosage increases, and therefore a linear prediction ofRT
from dosage would have a negative slope. This negative slopeimplies that for a very large
dosage of caffeine, response time would become negative, which is impossible unless caf-
feine causes precognition (i.e., foreseeing events beforethey occur). Therefore a direct

14.1. THE GENERALIZED LINEAR MODEL (GLM) 305

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Different Thresholds

x

y

y=sig(x;g=0.5,t=−1)

y=sig(x;g=0.5,t=3)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Different Gains

x
y

y=sig(x;g=2,t=4)

y=sig(x;g=0.2,t=4)

Figure 14.6: Examples of sigmoid functions of a single variables. The left panel
shows sigmoids with the same gain but different thresholds. The right panel shows
sigmoids with the same threshold but different gains.

linear function cannot be used for extrapolation to large doses, and we might instead want
to use an exponential link function such asy = exp

(

β0 + β1x
)

.

14.1.7.1 The sigmoid (a.k.a. logistic) function

A frequently used link function is thesigmoid, also known as thelogistic:

y = sig(x) = 1
/(

1+ exp(−x)
)

(14.12)

Notice the negative sign in front of thex. The sigmoid function ranges between 0 and 1.
The sigmoid is nearly 0 whenx is large negative, and is nearly 1 whenx is large positive.

For linear combinations of predictors, the sigmoid link function is most conveniently
parameterized inx threshold form. For a single predictor variable, the sigmoid link function
applied to the linear function of the predictor yields

y = sig(x; γ, θ) = 1
/(

1+ exp(−γ (x− θ))
)

(14.13)

whereγ, called thegain, corresponds toβ1 in Equation 14.2, and whereθ, called thethresh-
old, corresponds to−β0/β1 in Equation 14.2.

Examples of Equation 14.13, i.e., the sigmoid of a single predictor, are shown in Fig-
ure 14.6. Notice that the threshold is the point on thex axis for whichy = 0.5. The gain
indicates how steeply the sigmoid rises through that point.

Figure 14.7 shows examples of a sigmoid of two predictor variables. Above each panel
is the equation for the corresponding graph. The equations are parameterized inx threshold

form, as in Equation 14.4. In other words,y = sig
(

γ
(∑

k wkxk − θ
))

, with
(∑

k w2
k

)1/2
= 1.

Notice, in particular, that the coefficients ofx1 andx2 in the plotted equations do indeed have

Euclidean length of 1.0. For example, in the upper-right panel,
(

0.712 + 0.712
)1/2
= 1.0,

except for rounding error.
The coefficients of thexvariables determine theorientationof the sigmoidal “cliff”. For

example, compare the two top panels in Figure 14.7, which differ only in the coefficients,

306 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

x1

−6
−4

−2
0

2
4

6
x2

−6
−4

−2
0

2
4

6

y

0.0

0.2

0.4

0.6

0.8

1.0

y = sig(1(0x1 + 1x2 − 0))

x1

−6
−4

−2
0

2
4

6
x2

−6
−4

−2
0

2
4

6

y

0.0

0.2

0.4

0.6

0.8

1.0

y = sig(1(0.71x1 + 0.71x2 − 0))

x1

−6
−4

−2
0

2
4

6
x2

−6
−4

−2
0

2
4

6

y

0.0

0.2

0.4

0.6

0.8

1.0

y = sig(2(0x1 + 1x2 − −3))

x1

−6
−4

−2
0

2
4

6
x2

−6
−4

−2
0

2
4

6

y

0.0

0.2

0.4

0.6

0.8

1.0

y = sig(2(−0.71x1 + 0.71x2 − 3))

Figure 14.7: Examples of sigmoid functions of two variables. Top two panels
show sigmoids with the same gain and threshold, but different coefficients on the
predictors. The left two panels show sigmoids with the same coefficients on the
predictors, but different gains and thresholds. The lower right panel shows a case
with a negative coefficient on the first predictor.

not in gain or threshold. In the top left panel, the coefficients arew1 = 0 andw2 = 1, and
the cliff rises in thex2 direction. In the top right panel, the coefficients arew1 = 0.71 and
w2 = 0.71, and the cliff rises in the positive diagonal direction.

The threshold determines thepositionof the sigmoidal cliff. In other words, the thresh-
old determines thex values for whichy = 0.5. For example, compare the two left panels
of Figure 14.7. The coefficients are the same, but the thresholds (and gains) are different.
In the upper left panel, the threshold is zero, and thereforethe mid-level of the cliff is over
x2 = 0. In the lower left panel, the threshold is−3, and therefore the mid-level of the cliff
is overx2 = −3.

The gain determines thesteepnessof the sigmoidal cliff. Again compare the two left
panels of Figure 14.7. The gain of the upper left is 1, whereasthe gain of the lower left is 2.

Terminology: Thelogit function. The inverse of the logistic function is called the
logit function. For 0< p < 1, logit(p) = log(p/(1− p)). It is easy to show (try it!)
that logit(sig(x)) = x, which is to say that the logit is indeed the inverse of the sigmoid.
Some authors, and programmers, prefer to express the connection between predictors and
predicted in the opposite direction, by first transforming the predicted variable to match the

14.1. THE GENERALIZED LINEAR MODEL (GLM) 307

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

Normal Density

x

p(
x)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Normal

x

Φ
(x

)

Figure 14.8: Top: A normal density
with mean zero and precision one.
Bottom: The corresponding cumula-
tive normal function.

linear model. In other words, you may see the link expressed either of these ways:

y = logistic
(

β0 + β1x1 + . . .
)

logit(y) = β0 + β1x1 + . . .

The two expressions achieve the same result, mathematically. The difference between them
is merely a matter of emphasis. In the first expression, the combination of predictors is
transformed so it maps ontoy expressed in its original scale. In the second expression,y is
transformed onto a new scale, and that transformed value is modeled as a combination of
predictors.

14.1.7.2 The cumulative normal (a.k.a. Phi) function

Another frequently used link function is the cumulative normal distribution. It is qualita-
tively very similar to the sigmoid or logistic function. Modelers will use the logistic or
the cumulative normal depending on mathematical convenience or ease of interpretation.
For example, when we consider ordinal predicted variables (in Chapter 21), it will be nat-
ural to model the responses in terms of a continuous underlying variable that has normally
distributed variability, which leads to using the cumulative normal as a model of response
probabilities.

The cumulative normal is denotedΦ(x, µ, τ), wherex is a real number and whereµ
andτ are parameter values, called the mean and precision of the normal distribution. The
parameterµ governs the point at which the cumulative normal,Φ(x), equals 0.5. In other
words, µ plays the same role as the threshold in the logistic sigmoid.The parameterτ
governs the steepness of the cumulative normal function atx = µ. Theτ parameter plays

308 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

the same role as the gain parameter in the logistic sigmoid. Agraph of a cumulative normal
appears in Figure 14.8. For this example,µ = 0, and notice thatΦ(0) = 0.5. This means
that the area under the normal density to the left of 0 is 0.5.

Terminology: Theprobit function. The inverse of the cumulative normal is called the
probit function. (“Probit” stands for “probability unit”;Bliss, 1934). The probit function
maps a valuep, for 0.0 ≤ p ≤ 1.0, onto the infinite real line, and a graph of the probit
function looks very much like the logit function. You may seethe link expressed either of
these ways:

y = Φ
(

β0 + β1x1 + . . .
)

probit(y) = β0 + β1x1 + . . .

Traditionally, the transformation ofy (in this case, the probit function) is called the link
function, and the transformation of the linear combinationof x (in this case, theΦ function)
is called the inverse link function. As mentioned before, I abuse the traditional terminology
and call either one a link function, relying on context to disambiguate.

14.1.8 Probabilistic prediction

In the real world, there is always variation iny that we cannot predict fromx. This unpre-
dictable “noise” iny might be deterministically caused by sundry factors we haveneither
measured nor controlled, or the noise might be caused by inherent non-determinism iny. It
does not matter either way because in practice the best we cando is predict theprobability
thaty will have any particular value, dependent uponx. Therefore we use the deterministic
value predicted by Equation 14.11 as the predictedtendencyof y as a function of the predic-
tors. We do not predict thaty is exactly f

(

β0 + β1x1 + β2x2 + β1×2x1×2

)

because we would

surely be wrong. Instead, we predict thaty tends to be nearf
(

β0 + β1x1 + β2x2 + β1×2x1×2

)

.
To make this notion of probabilistic tendency precise, we need to specify a probability

distribution for y that depends onf
(

β0 + β1x1 + β2x2 + β1×2x1×2

)

. To keep the notation

tractable, first defineµ = f
(

β0 + β1x1 + β2x2 + β1×2x1×2

)

. Do not confuse this use ofµ
with the unrelatedµ mentioned in the cumulative normal function. With this notation, we
then denote the probability distribution ofy as some to-be-specified probability density
function, abbreviated as “pdf”:

y ∼ pdf (µ [, τ, ...])

The pdf might have various additional parameters, denoted by τ, ..., to specify its shape.
Examples are provided in the next section, where all these ideas are brought together.

14.1.9 Formal expression of the GLM

In general, the likelihood function specifies the probability of each possible predicted value
y as a function of the predictor valuesx j and various parameter valuesβ, τ etc. The gener-
alized linear model can be written:

µ = f
(

β0 + β1x1 + β2x2 + β1×2x1×2 + . . .
)

(14.14)

y ∼ pdf (µ [, τ, ...]) (14.15)

14.1. THE GENERALIZED LINEAR MODEL (GLM) 309

−10 −5 0 5 10

−
10

0
10

20
30

Normal PDF Around Linear Function

x

y

m = 10 + 2x
y ~ N(m, sd = 2)

x1

0
2

4
6

8
10

x2

0

2

4

6

8

10

y

0

10

20

30

40

50

y ~ N(m, sd = 4), m = 10 + 1x1 + 2x2

Figure 14.9: Examples of points normally distributed around a linear function.

310 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

x1

−6
−4

−2

0

2

4

6

x2

−6

−4
−2

0
2

4
6

y

0.0

0.2

0.4

0.6

0.8

1.0

y ~ dbern(m), m = sig(1(0.71x1 + 0.71x2 − 0))

Figure 14.10: Examples of points Bernoulli distributed around a sigmoid function
of two predictors. All the points are either aty = 1 or y = 0 (intermediate values
such asy = .6 cannot occur).

The function f in Equation 14.14 is called the “link” function, because it links the com-
bination of predictors to the predicted tendency. The optional parameters [, τ, ...] in Equa-
tion 14.15 may be needed for various types of the probabilitydensity function (pdf) that
describe the probability distribution ofy around the tendencyµ.

Figure 14.9 shows a random sample of points normally distributed around a line or
plane. The upper panel illustrates a case of the generalizedlinear model of Equations 14.14
and 14.15 in which there is a single predictorx, with β0 = 10 andβ1 = 2. The link function
is simply the identity function,f (β0 + β1x) = β0 + β1x. The probability density function is
normal with a standard deviation of 2.0. Profiles of this normal density are superimposed
on the graph to make it explicit. Notice that the normal density is always centered on the
line that marks the predicted tendency as a function of the predictor.

The lower panel of Figure 14.9 shows a case with two predictorvariables. The pre-
dictors are combined linearly, with no interaction. The link function is the identity. The
probability function is normal with a standard deviation of4. Each randomly generated
point is connected to the underlying linear core by a vertical dotted line, to explicitly in-
dicate the random variation of the point from the plane. The plane marks the predicted
tendency as a function of the predictors, and the data valuesare normally distributed above
and below that tendency.

Figure 14.10 shows another case of the GLM. In this case, the points are Bernoulli
distributed around a sigmoid function of two predictors, asannotated at the top of the graph.
There is a linear combination of predictors, with a sigmoid link function, and a Bernoulli
probability function that defines the probability thaty = 1. The graph shows that values ofy
can only be 0 or 1, and the sigmoid function defines the probability that y is 1 for particular

14.2. CASES OF THE GLM 311

predictor values. The sigmoidal surface plots the tendencythat y = 1 as a function of the
predictors.

14.2 Cases of the GLM

Table 14.1, p. 312, displays the various cases of the generalized linear model that are con-
sidered in this book. Subsequent chapters of the book progress through the table in reading
order: left to right within rows, then top to bottom across rows.

The first row of Table 14.1 lists cases for which the predictedvariable is metric. Moving
from left to right within this row, the first column indicatesa situation in which there is only
a single group, and the predicted value for the group is simply the mean of the group. In
this situation, there is no need to explicitly denote a predictor variable, and instead the mean
of the group can be denoted by a single parameter,β0. This situation corresponds to what
classical null hypothesis significance testing (NHST) calls a single-groupt-test. This case
is described in its Bayesian setting in Chapter 15.

Moving to the next column, there is a single metric predictor. This corresponds to so-
called “simple linear regression”, and is explored in Chapter 16. By inspecting the equation
for the GLM in the cell, you can see that the only difference from the previous cell is the
inclusion of the predictorx1 and its coefficientβ1.

Moving rightward to the next column, we come to the scenario involving two or more
metric predictors, which corresponds to “multiple regression”, and is explored in Chap-
ter 17. By examining the equations for the GLM in the cell, youcan see that the basic form
is the same, but merely with extra terms added for the additional predictors.

The next two columns involve nominal predictors, instead ofmetric predictors, with the
penultimate column devoted to a single predictor and the final column devoted to two or
more predictors. The last two columns correspond to what NHST calls “oneway ANOVA”
and “multifactor ANOVA”. If that terminology is unfamiliarto you, don’t worry, it will be
explained in Chapters 18 and 19.

In all the cases in the first row, the link function is the identity, and the probability dis-
tribution for the metric predicted values in assumed to be normal. When we move to the
second row, however, the predicted variable is dichotomous, and therefore the probability
distribution fory is a Bernoulli distribution. The link function, which connects the predic-
tors to the probability thaty = 1, is assumed to be the sigmoid, i.e., logistic function. When
the predictors are metric, this situation is generically referred to as “logistic regression” and
is discussed in Chapter 20. The case of nominal predictors isalso discussed.

Finally, the bottom row of Table 14.1 lists cases for which the predicted variable is
ordinal. These cases are considered in Chapter 21. Notice that the link function is the
cumulative normal instead of the sigmoid, and the ordinal values are generated by multiple-
category generalization of the Bernoulli function, denoted by dcat. Again, this will be
explained at length in the forthcoming chapters. The point here is for you to see the overall
organization of topics, and to see how all these cases are variations of the same underlying
structure.

The table can be expanded with additional rows and columns, but then it gets too big
to display easily. Additional columns would include combinations of metric and nominal
predictors. But it turns out that it is easy in Bayesian models to combine metric and nom-
inal predictors, once you know how to handle metric and nominal predictors individually.
Additional rows would involve different types of predicted variables. In particular, a fourth

31
2

C
H

A
P

T
E

R
14

.
O

V
E

R
V

IE
W

O
F

T
H

E
G

E
N

E
R

A
LI

Z
E

D
LI

N
E

A
R

M
O

D
E

L

Table 14.1: Cases of the generalized linear model (single predicted variable).

Predictor Variable(s) x
Predicted Metric Nominal
Variable y Single Group Single x Factor Two or More x Factors Single x Factor Two or More x Factors

Metric
µ = β0
y ∼ N(µ, τ)

µ = β0 + β1x1
y ∼ N(µ, τ)

µ = β0 + β1x1
+ β2x2
+ β1×2x1x2

y ∼ N(µ, τ)

µ = β0 +
−→
β 1
−→x1

y ∼ N(µ, τ)

µ = β0 +
−→
β 1
−→x1

+
−→
β 2
−→x2

+
−→
β 1×2
−→x1×2

y ∼ N(µ, τ)

Dichotomous
µ = β0
y ∼ dbern(µ)

µ = sig
(

β0 + β1x1

)

y ∼ dbern(µ)

µ = sig
(

β0 + β1x1

+ β2x2

+ β1×2x1x2

)

y ∼ dbern(µ)

µ = sig
(

β0 +
−→
β 1
−→x1

)

y ∼ dbern(µ)

µ = sig
(

β0 +
−→
β 1
−→x1

+
−→
β 2
−→x2

+
−→
β 1×2
−→x1×2

)

y ∼ dbern(µ)

Ordinal
µ = Φ

(

β0 + β1x1

)

πk = threshk(µ)
y ∼ dcat(..., πk , ...)

µ = Φ

(

β0 + β1x1

+ β2x2

+ β1×2x1x2

)

πk = threshk(µ)
y ∼ dcat(..., πk , ...)

14.2. CASES OF THE GLM 313

row would includecount data for the predicted values. We will, in fact, cover one such
case, as described in the next section. When the predicted data are count values, a natural
link function is the exponential, and a natural pdf is the Poisson distribution, which will
be defined later in the book (Section 22.1.3). In summary, therows of the table refer to
differently scaled predicted values, with their correspondinglink functions and pdf’s:

y Scale Type (Inverse) Link Function pdf

metric identity normal
dichotomous sigmoid (a.k.a. logistic) Bernoulli

ordinal thresholded cumulative normalcategorical
count exponential Poisson

14.2.1 Two or more nominal variables predicting frequency

Finally, we will also consider the situation in which there are two or more nominal variables
used as predictors of afrequency count. A frequency count, i.e., how many times something
happened, is a special case of a metric scale, but because itsvalues fall at discrete levels,
namely non-negative integers, this situation will have a different sort of likelihood distribu-
tion. This type of situation, with nominal predictors and frequency-count predicted values,
is often called “contingency table analysis” and a typical NHST analysis conducts a “chi-
square test of independence of attributes”. We explore Bayesian analysis of this situation in
Chapter 22.

Here is a brief summary of how contingency tables are analyzed using a model much
like those in Table 14.1. In fact, a fourth row could be added to Table 14.1, with the pre-
dicted type labeled frequency count, and the model falling in the final column, under two
nominal predictors. As a concrete example, suppose we measure political affiliation and
religious affiliation of a set of people, and for a sample of people we count how many
occurrences there are of each combination. We are interested in analyzing possible rela-
tionships between political and religious affiliations. Suppose we conduct a poll for one
week. We happen to record 27 people who are Democrats and Unitarians. This observed
frequency reflects an underlying rate at which that combination is generated by this sort
of poll, i.e., the underlying rate for Unitarian Democrats is roughly 27 people per week.
The observed rate (i.e., frequency per unit time) for each combination of nominal values
is thought to reflect the true underlying rate at which that combination is generated by the
world. We conceive of the observed rate as being a random sample from a true underlying
rate denoted byλ. The probability of any particular observed rate, given an underlying
rate ofλ, is modeled by a Poisson distribution, which is denoted as freq ∼ dpois(λ). The
Poisson distribution was smuggled into the text back in Exercise 11.3, p. 235, which I’m
sure is still as fresh in your memory as a beached fish. Don’t worry, the Poisson will be
explained again later (Section 22.1.3). The Poisson distribution specifies a probability for
each possible observed rate. The Poisson puts highest probabilities on rates nearλ.

Our goal is to estimate the underlying rates at which each nominal combination is pro-
duced. But more than that, we would like to know if the attributes occur independently of
each other, or instead covary in some way. For example, if political and religious affiliation
are independent, then there should be the same proportion ofUnitarians among Democrats
as among Republicans. Mathematically, independence meansp(Unitarian&Democrat)=
p(Unitarian)× p(Democrat) andp(Unitarian&Republican)= p(Unitarian)× p(Republican)
and so on for every combination of attribute values. To shorten the expressions, I’ll substi-

314 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

tuteU for Unitarian andD for Democrat, whereby independence means

p(U&D) = p(U) × p(D)

and so on for every combination of attributes. That expression for probabilities corresponds
to the following expression in terms of frequencies:

freq(U&D)/N = freq(U)/N × freq(D)/N

which can be re-arranged as

freq(U&D) = freq(U) × freq(D) × 1/N.

Notice that independence is expressed as a multiplicativeproduct of attribute influences.
But all the models we’ve considered in this chapter used an additive sumof predictor influ-
ences. To be able to use our familiar additive models, we’ll transform the frequencies by a
logarithm, because the logarithm of the product of values equals the sum of the logarithms
of the values. In other words,

log(freq(U&D)) = log(freq(U)) + log(freq(D)) + log(1/N).

The notation “log(freq(value))” gets cumbersome, so we’llsubstitute the notationβv. Thus,

log(freq(U&D)) = βU + βD + β0,

whereβ0 stands in for the constant log(1/N). Finally, it’s unintuitive to talk about the
logarithms of frequencies, so we’ll exponentiate to get ridof the leading logarithm, yielding:

freq(U&D) = exp(βU + βD + β0) .

To summarize, if independence is true, then the expression above should be true, for every
combination of attribute values.

But of course the attributes are usually not independent, and we would like some mea-
sure of lack of independence. We already have such a measure in the context of linear
models, namely, the interaction term. Thus, we will includean interaction term that esti-
mates deviation from independence. Thus, our model ends up being as follows. For two
nominal attributes, we put the observed frequencies in a table, with one attribute’s values
listed down the rows, and the other attribute’s values listed across the columns. The fre-
quency in ther th row andcth column is denoted freqrc, and the underlying rate for that cell
is denotedλrc. The model looks like this:

λrc = exp(β0 + βr + βc + βr×c)

freqrc ∼ dpois(λrc) (14.16)

with the usual constraints (from Equation 14.10)
∑

r

βr = 0 and
∑

c

βc = 0 and
∑

r

βr×c,r,c = 0 ∀c and
∑

c

βr×c,r,c = 0 ∀r

The point of this over-fast prelude to contingency table analysis is merely to demon-
strate that the core of the model we’ll be using is the same as the linear model that was
mentioned for multifactor ANOVA in Table 14.1. Thus, all theapplied analyses we’ll see
in the remainder of the book are based on the GLM.

14.3. EXERCISES 315

14.3 Exercises

Exercise 14.1. [Purpose: For real-world examples of research, identify which statistical model is

relevant.] For each of the examples below, identify the predicted variable and its scale type,
identify the predictor variable(s) and its scale type, and identify the cell of Table 14.1 to
which the example belongs.

(A) Guber (1999) examined average performance by public high school students on the
Scholastic Aptitude Test (SAT) as a function of how much money was spent per pupil by
the state, and what percentage of eligible students actually took the exam.

(B) Hahn, Chater, and Richardson (2003) were interested in perceived similarity of
simple geometric patterns. Human observers rated pairs of patterns for how similar the
patterns appeared, by circling one of the digits 1–7 printedon the page, where 1 meant
“very dissimilar” and 7 meant “very similar”. The authors presented a theory of perceived
similarity, in which patterns are perceived to be dissimilar to the extent that it takes more
geometric transformations to produce one pattern from the other. The theory specified the
exact number of transformations needed to get from one pattern to the other.

(C) R. L. Berger, Boos, and Guess (1988) were interested in the longevity of rats, mea-
sured in days, as a function of the rat’s diet. One group of rats fed freely, another group of
rats had a very low calorie diet.

(D) McIntyre (1994) was interested in predicting the tar content of a cigarette (measured
in milligrams) from the weight of the cigarette.

(E) You are interested in predicting the gender of a person, based on the person’s height
and weight.

(F) You are interested in predicting the whether a respondent will agree or disagree with
the statement, “The United States needs a federal health care plan with a public option”, on
the basis of the respondent’s political party affiliation.

Exercise 14.2. [Purpose: Find student-relevant real-world examples of each type of situation in ta-

ble 14.1.] For each of the twelve cells of Table 14.1 that is filled with equations, provide
an example of research involving that cell’s model structure. Do this by finding published
articles that describe research with the corresponding structure. The articles donot need
to have Bayesian data analysis; the articlesdo need to report research that involves the
corresponding types of predictor and predicted variables.Because it might be overly time
consuming to find published examples of all twelve types, please find published articles of
at least six types. For each example, specify the following:

• The full citation to the published article (see the references of this book for examples
of how to cite articles),

• The predictor and predicted variables. Describe their meaning and the type of scale
they are. Briefly describe the meaningful context for the varables, i.e., what is the
goal of the research.

316 CHAPTER 14. OVERVIEW OF THE GENERALIZED LINEAR MODEL

Chapter 15

Metric Predicted Variable on a Single
Group
Contents

15.1 Estimating the mean and precision of a normal likelihood 318
15.1.1 Solution by mathematical analysis 318
15.1.2 Approximation by MCMC in BUGS 322
15.1.3 Outliers and robust estimation: Thet distribution 323
15.1.4 When the data are non-normal: Transformations 326

15.2 Repeated measures and individual differences 328
15.2.1 Hierarchical model . 330
15.2.2 Implementation in BUGS . 331

15.3 Summary . 333
15.4 R code . 333

15.4.1 Estimating the mean and precision of a normal likelihood 333
15.4.2 Repeated measures: Normal across and normal within 335

15.5 Exercises . 338

It’s normal to want to fit in with your friends,
Behave by their means and believe all their ends.
But I’ll be high tailing it, fast and askew,
Precisely ’cause I can’t abide what you do.

In this chapter, we consider a situation in which we have a metric predicted variable
that is observed for items from a single group. For example, we could measure the blood
pressure (i.e., a metric variable) for people randomly sampled from first-year university
students (i.e., a single group). In this case we might be interested in whether the group’s
typical blood pressure differs from the recommended value for people of that age as pub-
lished by a federal agency. As another example, we could measure the IQ (i.e., a metric
variable) of people randomly sampled from everyone self-described as vegetarian (i.e., a
single group). In this case we could be interested in whetherthis group’s IQ differs from
the general population’s average IQ of 100.

In the context of the generalized linear model (GLM) introduced in the previous chapter,
this chapter’s situation involves the most trivial case of the linear core of the GLM, namely

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

317

318 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

µ = β0, as indicated in the top-left cell of Table 14.1 (p. 312). The“news” of the present
chapter is a detailed look at a particular probability density function, namely the normal
distribution, denoted byy ∼ N(µ, τ) in the top-left cell of Table 14.1. We will explore
particular prior distributions for the parameters of the normal distribution, and see how those
same density functions can be used in extended hierarchicalmodels for research designs
involving repeated measures. We will also provide examplesof transforming data so they
are approximately normal, so that “off the shelf” normal-likelihood models can be used to
describe the data.

15.1 Estimating the mean and precision of a normal likelihood

The workhorse for the remainder of the book is the normal likelihood function, just as the
Bernoulli likelihood was the focus for the previous part of the book. The normal probability
density function was introduced in Section 3.3.2.2, p. 30. Please review that section now.
The normal distribution specifies the probability density of a valuey, given the values of
two parameters, the meanµ and standard deviationσ:

p(y|µ, σ) =
1
Z

exp

(

−1
2

(y− µ)2

σ2

)

(15.1)

whereZ is the normalizer, i.e., a constant that makes the probability density integrate to 1.
It turns out thatZ = σ

√
2π, but we won’t need to use this fact.

To get an intuition for the normal likelihood function, consider three data valuesy1 =

85,y2 = 100, andy3 = 115, as plotted by large dots in Figure 15.1. The probability(density)
of any single datum, given parameter values, isp(y|µ, σ) as specified in Equation 15.1. The
probability of the whole set of independent data values is

∏

i p(yi |µ, σ) = p(D|µ, σ), where
D = {y1, y2, y3}. Figure 15.1 showsp(D|µ, σ) for different values ofµ andσ. As you can
see, there are values ofµ andσ that make the data most probable, but other nearby values
also accommodate the data reasonably well.

Given a set of data,D, we estimate the parameters with Bayes’ rule:

p(µ, σ|D) =
p(D|µ, σ)p(µ, σ)

!

dµ dσ p(D|µ, σ)p(µ, σ)
(15.2)

Figure 15.1 showed examples ofp(D|µ, σ) for a particular data set at different values ofµ
andσ. The prior,p(µ, σ), specifies the believability of each combination ofµ, σ values in
the two-dimensional conjoint parameter space, without thedata. Bayes’ rule says that the
posterior believability of each combination ofµ, σ values is the prior believability times
the likelihood, normalized by the evidence. We saw our first examples of Bayes’ rule on a
two-dimensional parameter space back in Chapter 8, for example in Figure 8.2, p. 134. Our
goal now is to evaluate Equation 15.2, using a normal-density likelihood, for reasonable
choices of the prior distribution,p(µ, σ).

15.1.1 Solution by mathematical analysis

Purely for the sake of mathematical elucidation, it is convenient to consider the case in
which the standard deviation of the likelihood function is fixed at a specific value. In other
words, the prior distribution onσ is a spike over that specific value. We’ll denote the value

15.1. ESTIMATING THE MEAN AND PRECISION OF A NORMAL LIKELIHOOD319

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 87.8, σ = 7.35

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 3.85e−08

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 87.8, σ = 12.2

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 1.72e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 87.8, σ = 18.4

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 2.7e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 100, σ = 7.35

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 2.48e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 100, σ = 12.2

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 7.71e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 100, σ = 18.4

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 5.26e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 112, σ = 7.35

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 3.84e−08

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 112, σ = 12.2

y

p(
y

| µ
, σ

)

p(D|µ,σ) = 1.72e−06

60 80 100 120 140

0.
00

0.
04

0.
08

µ = 112, σ = 18.4

y

p(
y

| µ
, σ

)
p(D|µ,σ) = 2.7e−06

Figure 15.1: The likelihoodp(D|µ, σ) for three data points,D = {85, 100, 115},
according to a normal likelihood function with different values ofµ andσ. The
probability density of an individual datum is the height of the dotted line over the
point. The probability of the set of data is the product of theindividual probabili-
ties. The middle panel shows shows theµ andσ that maximize the probability of
the data.

asσ = Sy. With this simplifying assumption, we are only estimatingµ because we are
assuming perfectly certain prior knowledge aboutσ.

Whenσ is fixed, then the prior distribution onµ in Equation 15.2 can be easily cho-
sen to be conjugate to the normal likelihood. (The term “conjugate prior” was defined in
Section 5.2, p. 67). It turns out that the product of normal distributions is again a normal
distribution; in other words, if the prior onµ is normal, then the posterior onµ is normal. It
is easy to derive this fact, as we do next.

Let the prior distribution onµ be normal with meanMµ and standard deviationSµ. Then
the likelihood times the prior is

p(y|µ, σ)p(µ, σ) = p(y|µ,Sy)p(µ)

∝ exp

−
1
2

(y− µ)2

S2
y

 exp

−1

2

(

µ − Mµ

)2

S2
µ

320 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

= exp

−1

2

(y− µ)2

S2
y
+

(

µ − Mµ

)2

S2
µ

= exp

−

1
2

S2
µ (y− µ)2 + S2

y

(

µ − Mµ

)2

S2
yS2

µ

= exp

−
1
2

S2
y + S2

µ

S2
yS2

µ

µ
2 − 2

S2
yMu + S2

µy

S2
y + S2

µ

µ +
S2

yM2
u + S2

µy
2

S2
y + S2

µ

= exp

−
1
2

S2
y + S2

µ

S2
yS2

µ

µ
2 − 2

S2
yMu + S2

µy

S2
y + S2

µ

µ

× exp

−
1
2

S2
y + S2

µ

S2
yS2

µ

+
S2

yM2
u + S2

µy
2

S2
y + S2

µ

∝ exp

−
1
2

S2
y + S2

µ

S2
yS2

µ

µ
2 − 2

S2
yMu + S2

µy

S2
y + S2

µ

µ

 (15.3)

where the transition to the last line was valid because the term that was dropped was merely
a constant. This result, believe it or not, is progress. Why?Because we ended up, in the
innermost parentheses, with a quadratic expression inµ. Notice that the normal prior is
also a quadratic expression inµ. All we have to do is “complete the square” inside the
parentheses, and do the same trick that got us to the last lineof Equation 15.3:

p(y|µ,Sy)p(µ) ∝ exp

−1

2

S2
y + S2

µ

S2
yS2

µ

µ2 − 2

S2
yMu + S2

µy

S2
y + S2

µ

µ +

S2
yMµ + S2

µy

S2
y + S2

µ

2

= exp

−1

2

S2
y + S2

µ

S2
yS2

µ

µ −
S2

yMµ + S2
µy

S2
y + S2

µ

2

(15.4)

Equation 15.4 is the numerator of Bayes’ rule. When it is normalized by the evidence in the
denominator, it becomes a probability density function. What is the shape of the function?
You can see that Equation 15.4 has the same form as a normal distribution onµ, such that

the mean is
S2

y Mµ+S2
µy

S2
y+S2

µ
and the standard deviation is

√

S2
yS2

µ

S2
y+S2

µ
.

That formula is rather unwieldy! It becomes more compact if the normal density is re-
expressed in terms of 1/σ2 instead ofσ. The reciprocal of the squared standard deviation
is called theprecisionof the normal. When the standard deviation goes down, the precision
goes up. A very narrow distribution is highly precise. A widedistribution has low precision.

Because the posterior standard deviation is

√

S2
yS2

µ

S2
y+S2

µ
, the posterior precision is

S2
y + S2

µ

S2
yS2

µ

=
1

S2
µ

+
1

S2
y
.

In other words —and this is the punch line— the posterior precision is the sum of the prior
precision and the likelihood precision.

The posterior mean can also be re-expressed in terms of precisions. The posterior mean

15.1. ESTIMATING THE MEAN AND PRECISION OF A NORMAL LIKELIHOOD321

is
S2

y Mµ+S2
µy

S2
y+S2

µ
, which becomes

1/S2
µ

1/S2
y + 1/S2

µ

Mµ +
1/S2

y

1/S2
y + 1/S2

µ

y.

In other words, the posterior mean is a weighted average of the prior mean and the datum,
with the weighting corresponding to the relative precisions of the prior and the likelihood.
When the prior is highly precise compared to the likelihood,i.e., when 1/S2

µ is large com-
pared to 1/S2

y, then the prior is weighted heavily and the posterior mean isnear the prior
mean. But when the prior is imprecise, i.e., very uncertain,then the prior does not get much
weight and the posterior mean is close to the datum. We have previously seen this sort of
relative weighting of prior and data in the posterior. It showed up in the case of updating a
beta prior, back in Equation 5.8, p. 71.

The formulas for the mean and precision of the posterior normal can be naturally ex-
tended when there areN values ofy in a sample, instead of only a single value ofy. The
formulas can be derived from the defining formulas, as was done above, but a short cut
can be taken. It is known from mathematical statistics that when a set of valuesyi are gen-
erated from a normal likelihood function, the mean of those values,y, is also distributed
normally, with the same mean as the the generating mean, and with a standard deviation
of σ/

√
N. Thus, instead of conceiving of this situation asN scoresyi sampled from the

likelihood N(yi |µ, σ), we conceive of this as a single score,y, sampled from the likeli-
hood N(y|µ, σ/

√
N). Then we just apply the updating formulas we previously derived.

Thus, forN scoresyi generated from a normal likelihoodN(yi |µ,Sy) and prior distribution
N(µ|Mµ,Sµ) onµ, the posterior distribution onµ is also normal with mean

1/S2
µ

N/S2
y + 1/S2

µ

Mµ +
N/S2

y

N/S2
y + 1/S2

µ

y

and precision
1

S2
µ

+
N

S2
y
.

Notice that as the sample sizeN increases, the posterior mean is dominated by the data
mean.

Instead of estimating theµ parameter in the likelihood whenσ is fixed, we can estimate
theσ parameter whenµ is fixed. The situation is also more conveniently expressed in terms
of precision: We want to estimate the precision, 1/σ2, whenµ is fixed. It turns out that
whenµ is fixed, a conjugate prior for the precision is the gamma distribution (e.g., Gelman
et al., 2004, p. 50). The gamma distribution was described inFigure 9.8, p. 170. For our
purposes, it is not important to review the updating formulas for the gamma distribution in
this situation. But it is important to gain an intuition for what a gamma prior on precision
means, in terms of the beliefs represented. Consider a gammadistribution that is loaded
heavily over very small values, but has a long shallow tail extending over large values. This
sort of gamma distribution on precision indicates that we believe most strongly in small
precisions, but we admit that large precisions are possible. If this is a belief about the
precision of a normal likelihood function, then this sort ofgamma distribution expresses a
belief that the data will be very spread out, because small precisions imply large standard
deviations. If the gamma distribution is loaded over large values of precision, it expresses a
belief that the data will be tightly clustered.

322 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

Summary. We have assumed that the data are generated by a normal likelihood func-
tion, parameterized by a meanµ and standard deviationσ, and denotedy ∼ N(y|µ, σ).
For purposes of mathematical derivation, we made unrealistic assumptions that the prior
distribution is either a spike onσ or a spike onµ, in order to make three main points:

1. A natural way to express a prior onµ is with a normal distribution, because this is
conjugate with the normal likelihood when its precision is fixed.

2. A natural way to express a prior on the precision 1/σ2 is with a gamma distribution,
because this is conjugate with the normal likelihood when its mean is fixed.

3. The formulas for Bayesian updating of the parameter distribution are more conve-
niently expressed in terms of precision than standard deviation. Normal distributions
will be described sometimes in terms of standard deviation and sometimes in terms
of precision, so it is important to glean from context which is being referred to.

A joint prior, on the combination ofµ andσ parameter values, can also be specified,
in such a way that the posterior has the same form as the prior.We will not pursue these
mathematical analyses here, because our purpose is merely to justify and motivate typical
expressions for the prior distributions on the parameters,so that they can then be used in
MCMC sampling in BUGS. Various other sources describe conjugate priors for the joint
parameter space (e.g., Gelman et al., 2004, pp. 78–83).

Figure 15.2: A model of dependencies for several metric scores drawn from a
single group. The normal distributions are parameterized by mean and precision
(not standard deviation).

15.1.2 Approximation by MCMC in BUGS

It is easy to estimate the mean and precision of a set of data inBUGS. Figure 15.2 illustrates
the model. The data,yi , are assumed to be generated by a normal likelihood function
with meanµ and precisionτ. The prior onµ is assumed to be normal with meanM and
precisionT. The prior onτ is assumed to be gamma with shape and rate parameters ofS
andR. We are estimating two parameters, and the prior is over the two-dimensional conjoint
parameter space. The prior we have specified assumes thatµ andτ are independent.

15.1. ESTIMATING THE MEAN AND PRECISION OF A NORMAL LIKELIHOOD323

The model of Figure 15.2 is expressed in BUGS as follows: (YmetricXsingleBrugs.R)

9 model {

10 # Likelihood:

11 for(i in 1 : N) {

12 y[i] ˜ dnorm(mu , tau) # tau is precision, not SD

13 }

14 # Prior:

15 tau ˜ dgamma(0.01 , 0.01)

16 mu ˜ dnorm(0 , 1.0E-10)

17 }

Notice that each arrow in Figure 15.2 has a corresponding specification in the BUGS code.
Notice that BUGS parameterizesdnorm by mean and precision, not by mean and standard
deviation. The hyperprior constants in this particular BUGS model are generic and unin-
formed; they should be knowledgably specified in real applications.

Posterior

mu

98 99 100 101 102

mean = 100

95% HDI
98.7 101

98 99 100 101 102

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

16
.5

Posterior

mu

si
gm

a

+100.1 14.9

Figure 15.3: Posterior distribution from program in Section 15.4.1
(YmetricXsingleBrugs.R).

When learning about or debugging a model, it can be useful to generate fictitious data
from known parameter values, and then see how well those parameter values are estimated
by the model’s posterior distribution. For this purpose, the program in Section 15.4.1
(YmetricXsingleBrugs.R) generates some random data from a normal distribution whose
true mean is 100 and standard deviation is 15 (just like IQ scores). The random data them-
selves have a sample mean and standard deviation somewhere near those generating values.
The result of running the BRugs program is shown in Figure 15.3. The posterior precision
(i.e.,tau) sampled by the BUGS program has been converted to standard deviation (denoted
“sigma”) via the identityσ = 1/

√
τ. The estimated mean and standard deviation are not far

from the generating mean. This reassures us that the programis operating properly.

15.1.3 Outliers and robust estimation: Thet distribution

Figure 15.4 shows examples of thet distribution. Thet distribution was originally invented
by Gosset (1908), who used the pseudonym “Student” because his employer (Guinness

324 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x

p(
x)

tdf=1

tdf=2

tdf=4

normal (tdf=∞)

Figure 15.4:t distributions, with a normal distribution superimposed for compar-
ison. Thet distribution has tall tails relative to the normal. Thedf parameter
(“degrees of freedom”) controls the relative height of the tails.

Brewery) prohibited publication of any research that mightbe proprietary or imply prob-
lems with their product (such as variability in quality). Therefore the distribution is often
referred to as theStudent tdistribution.

In R, the t density atx is specified bydt(x,df), wheredf is a parameter called the
degrees of freedom. (The R functiondt also has an optional argument calledncp, the non-
centrality parameter. This option is not implemented in theBUGSdt function.) The effect
of thedf argument is shown in the Figure 15.4. Whendf is small, thet distribution has tails
that are taller than normal. Asdf approaches infinity, thet distribution becomes normal.
The df parameter is a continuous value greater than or equal to 1. (Some readers might
be familiar with thedf parameter as related to sample size whent is a sampling distribu-
tion, but thet distribution is not used as a sampling distribution here, and thereforedf is
not restricted to being an integer.) In BUGS, thet density is specified bydt(mu,tau,df).
Themu andtau arguments in BUGS have no equivalent arguments in R. All theydo is lin-
early shift thet distribution, such thatdt(mu,tau,df) in BUGS corresponds tosqrt(tau) *
dt((x-mu)*sqrt(tau) , df) in R.

Although the t distribution was originally conceived as a sampling distribution for
NHST, we will use it instead as a convenient model of data withoutliers (as is often done;
e.g., Damgaard, 2007; Meyer & Yu, 2000; Tsionas, 2002). Outliers are simply data values
that fall unusually far from the model’s expected value. Real data often contain outliers,
presumably because some extraneous influences have sporadically perturbed the data val-
ues. Sometimes these extraneous influences can be identified, and the affected data values
can be corrected. But usually we have no way of knowing whether a suspected outlying
value was caused by an extraneous influence, or is a genuine reflection of the target being
measured. Instead of deleting suspected outliers from the data according to some arbitrary
criterion, we retain all the data but use a likelihood function that is less affected by outliers
than is the normal distribution.

Figure 15.5 shows examples of how thet distribution is robust against outliers. The
curves show the maximum likelihood estimates (MLEs) of the parameters for thet and

15.1. ESTIMATING THE MEAN AND PRECISION OF A NORMAL LIKELIHOOD325

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

Maximum Likelihood Estimates

x

p(
x)

t1.14

normal

Maximum Likelihood Estimates

x

p(
x)

−2 0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t2.63

normal

Figure 15.5: The maximum likelihood estimates of normal andt distributions fit
to the data shown. Upper panel shows “toy” data to illustratethat the normal
accommodates an outlier only by enlarging its standard deviation and, in this case,
by shifting its mean. Lower panel shows actual data to illustrate realistic effect of
outliers on estimates of the normal.

normal distributions. More formally, for the given dataD = {xi}, parameter values were
found for the normal that maximizedp(D|µ, τ), and parameter values were found for the
t distribution that maximizedp(D|µ, τ, df), and the curves of those MLEs are plotted with
the data. The upper panel of Figure 15.5 shows “toy” data to illustrate that the normal is
strongly influenced by an outlier, while thet distribution remains centered over the bulk
of the data. The lower panel of Figure 15.5 uses realistic data that indicates levels of in-
organic phosphorous, measured in milligrams per deciliter, in 177 human subjects aged
65 or older. The authors of the data (Holcomb & Spalsbury, 2005) intentionally altered a
few data points to reflect typical transcription errors and to illustrate methods for detecting
and correcting such errors. We instead assume that we no longer have access to records
of the original individual measurements, and must model theuncorrected data set. Thet
distribution accommodates the outliers and fits the distribution of data much better than the
normal.

The t distribution is useful as a likelihood function, for modeling outliers at the level
of observed data, but it is also useful for modeling outliersat higher levels in a hierarchi-
cal prior. We will encounter such applications when we modelindividual differences or
multiple predictors, e.g., in Section 16.2.

326 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

Data

y

F
re

qu
en

cy

0 50000 150000 250000 350000

0
20

40
60

80

Posterior

mu

34650 34750 34850

mean = 34800

95% HDI
34700 34800

Data

y

F
re

qu
en

cy

8 9 10 11 12 13

0
10

20
30

40

Posterior

mu

9.8 9.9 10.0 10.1 10.2 10.3

mean = 10

95% HDI
9.89 10.2

Figure 15.6: Upper left shows skewed, non-normal data. Upper right shows the
posterior distribution ofµ when the data are modeled (inappropriately!) with a
normal likelihood. Bottom left shows the same data transformed, via a logarithm.
Bottom right shows the posterior distribution ofµ when the transformed data are
modeled (appropriately) with a normal likelihood.

15.1.4 When the data are non-normal: Transformations

Suppose there has been discovered a new species of insect that lives in dark caves, and the
insects make ultra high frequency sound bursts. One theory posits that the sounds should
have an average frequency of 22,000 Hz (cycles per second). An entomologist has measured
the frequencies of 200 sound bursts from these insects, and would like to know if a mean of
22,000 Hz is credible.

The upper left panel of Figure 15.6 shows a histogram of the data, and the upper right
panel shows the posterior distribution ofµ from the normal-likelihood model of Figure 15.3.
(Assume that the prior was uncontroversial.) According to this posterior, the dataexclude
aµ value of 22,000. Therefore the entomologist concludes thatthe 22,000 Hz theory is not
credible.

The proponent of the theory says that the theory was mis-construed. Instead of scaling
the insect sounds by their raw frequency, they should be scaled by their perceived pitch,
which is merely the logarithm of frequency. The natural logarithm of 22,000 is 10. Thus,
the theory claims that the sound bursts should have an average log(frequency) of 10. The
lower left panel of Figure 15.6 shows the logarithm of the same data as the upper left panel.
When the normal-likelihood model is applied to these data, the resulting posterior onµ

15.1. ESTIMATING THE MEAN AND PRECISION OF A NORMAL LIKELIHOOD327

is shown in the lower right of Figure 15.6. (Assume that the prior was uncontroversial.)
According to this posterior, the data donot exclude aµ value of 10. Indeed, the value of 10
is very near the mode of the posterior distribution.

Which analysis do we trust? Is the theory disconfirmed or upheld? In this case, the
theory is clearly upheld, because the analysis based on raw frequency is not appropriate.
The problem with the analysis based on raw frequency is that the normal-likelihood model
assumes that the data are normally distributed, but the raw frequencies are obviously ex-
tremely skewed and non-normal. Graphically, the normal-likelihood model in Figure 15.2
shows that the data,yi , are generated by a normal distribution. The parametersµ andτ are
only meaningful to the extent that the normal likelihood actually describes the distribution
of the data. Because of the severe skew in the raw-frequency data, the central-tendency
parameterµ is being pulled far to the right by the extreme values far above 22,000, for
which there are no symmetrically distributed values below 22,000, as is assumed by a sym-
metric normal distribution. The logarithmically transformed data, on the other hand, are
apparently much more normally distributed, and therefore the normal-likelihood model is a
viable description of the data.

The moral of the story is this: When using a normal-likelihood model, the data should
be at least roughly normally distributed, otherwise the model is a poor description of the
data and the model’s parameter values may be meaningless. When there is only moderate
non-normality in the data, the misrepresentation by the model parameteres is often hardly
noticeable, but when there is severe non-normality in the data, then the misrepresentation
may be substantial.

There are many real-world situations in which data are non-normally distributed. A
prominent example is response times: Ask a person to press a button a quickly as possible
after a light comes on. Repeat this many times. The person’s response times will be strongly
skewed toward higher values. This skew makes intuitive sense, because the response time
can’t be much faster than one or two hundred milliseconds, but there are many reasons to
be slow on some trials. Another example is shown in Figure 15.10, which reveals that the
longevity of lab rats on a restricted diet is skewed to the left.

How should we analyze non-normal data? There are two possible solutions. One
method perseveres with a normal-likelihood function, but transforms the data so that they
are very nearly normal. There is nothing wrong with transforming data, as long asall the
data are transformed the same way, and the transformation preserves order. A transforma-
tion that preserves order is called “monotonic”. Examples of monotonic transformations
include the exponential function, the logarithm (for positive-valued data), and the cubic
(i.e., y3). An example of a non-monotonic transformation is a sine wave function, when
the original data span several cycles of the sine wave. Monotonic transformations merely
re-scale the data. The measurement scale is arbitrary. Earth quake intensities could be mea-
sured in terms of raw energy, or in terms of the base-10 logarithm of energy, which is the
Richter scale. Temperatures can be measured in terms of the Fahrenheit or Celsius scales.
Distances can be measured in terms of the English or Metric systems. Acoustic vibrations
can be measured by frequency or by perceived pitch, which is,essentially, the logarithm of
frequency. The analysis should use whatever transformation makes the data normally dis-
tributed, so that the data respect the assumption of the normal-likelihood model and thereby
make the parameter estimates meaningful.

The second approach to analyzing non-normal data is to jettison the normal likelihood
function, and use a more appropriate likelihood function instead. For example, Rouder,
Lu, Speckman, Sun, and Jiang (2005) used a Weibull distribution as the likelihood function

328 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

for modeling skewed response time distributions. This approach requires familiarity with
various non-normal probability distributions. Moreover,for use in BUGS, this method also
requires that the desired likelihood function can be specified in BUGS. Because of these
extra complications, people usually first try the method of transforming data to normal. But
a non-normal likelihood function may be preferred when no reasonable data transformation
suffices, or when transformed scales are too awkward to work with,or when a theory posits
a specific non-normal distribution for generating data.

There is one more important caveat when transforming data (or changing likelihood
functions):The prior must be appropriate to the transformed data.For example, when the
insect sounds were measured in terms of raw frequency, then the prior should be appropriate
for data in the broad vicinity of 22,000. But when the insect sounds were measured by
log(frequency), then the prior should be appropriate for data in the general vicinity of 10.

Exercise 15.2 provides a realistic example in which we are interested in estimating the
underlying mean that generated a set of scores. It also asks you to consider the choice
of prior, the robustness of the posterior, and whether a normal likelihood seems to be an
appropriate model of the data. Exercise 15.3 gives another realistic example in which the
data are skewed.

The section previous to this one discussed outliers. Can outliers be “transformed away”?
In simple, one-group data sets, the answer, in principle, isyes: We merely fashion a trans-
formation that arbitrarily compresses the extreme tails ofthe distribution in just the right
way. But then the prior should take into account the transformation. Unfortunately, for
more typical complex situations, it is difficult to invent a transformation that appropriately
compresses all outliers simultaneously. Therefore, transformations are typically used to
adjust large-scale skew in the data, and not for outliers. Outliers, on the other hand, are
typically addressed by using tall-tail distributions, such as thet distribution.

15.2 Repeated measures and individual differences

In many real-world applications, we have repeated measuresfrom the same individual, al-
though we are mainly interested in the central tendency of the group. For example,we might
be interested in the typical blood pressure of employees at acompany. We can repeatedly
measure the blood pressure of each employee at random different times of day and on ran-
dom different days. Our overall goal is to estimate the typical bloodpressure of the group
as a whole, but now we have repeated measurements from the individual subjects.

We assume that the individual subjects have been randomly sampled from the pool
of all possible subjects in the population of interest (e.g., the pool of all employees in
the company). We also assume that the repeated measurementswithin each subject are
mutually independent. This is sometimes a perilous assumption, because it is probably
only approximately true even if we are careful to design the measurement procedure with
the assumption in mind. For example, suppose we are measuring someone’s blood pressure,
with the goal of getting measurements that represent that person’s typical blood pressure.
We could measure the blood pressure several times in rapid succession, but presumably
those measurements would be highly correlated because the person’s blood pressure would
not change much in only a few seconds duration. Instead, we should measure blood pressure
at random times across hours and days. The goal is to make the repeated measurements far
enough apart in time so that we can reasonably assume that therepeated measurements are
independent of each other. But we don’t want the repeated measurements to be so far apart

15.2. REPEATED MEASURES AND INDIVIDUAL DIFFERENCES 329

All Data Combined

Days^(1/5)

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5

0
5

10
15

20

Means of each Aircraft

Days^(1/5)

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

6

Precisions of each Aircraft

1/(Days^(1/5))^2

F
re

qu
en

cy

1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

Aircraft 1

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.25

Aircraft 2

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.48

Aircraft 3

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.23

Aircraft 4

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.29

Aircraft 5

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.63

Aircraft 6

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.02

Aircraft 7

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.22

Aircraft 8

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.12

Aircraft 9

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.38

Aircraft 10

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.23

Aircraft 11

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.25

Aircraft 12

Days^(1/5)

F
re

qu
en

cy

1.0 2.0 3.0

0
1

2
3

4
5

6
7 m = 2.3

Figure 15.7: Number of days between failures of air-conditioning systems in air-
craft. Notice the scale on thex-axis. The lower 12 panels show data from in-
dividual aircraft. The upper-left panel shows all those data combined into one
histogram. The upper-middle panel shows a histogram of the 12 aircraft means.

in time that the person’s underlying typical value has changed, e.g., from dramatic change
in body fat. Thus, we want the measurements to be far enough apart that they have minimal
correlation, but we want the measurements to be close enoughtogether that they represent a
stationary underlying propensity. There is no single correct sampling procedure; it depends
on theoretical considerations for the specific applicationdomain.

As another example with real data, consider the time betweensuccessive failures of the
air conditioning system in each aircraft in a fleet of Boeing 720 jet airplanes (Proschan,
1963). The time between successive failures is of interest so that managers can appropri-
ately schedule preventative maintenance and maintain an inventory of spare parts. Thus,
the emphasis in this situation is estimation of inter-failure duration. We will assume that
successive failures of the same air conditioner are independent of each other. One ratio-
nale for this assumption is that the repair of a failed systemresets the system so that it has
no memory for the previous failure. The next failure dependsonly on other factors, such
as the basic design of the air conditioner and the typical weather conditions in which the
individual aircraft flies.

The data from 12 aircraft are displayed in Figure 15.7 (thesedata omit one aircraft that
had only two observations, as was done by Hand et al., 1994, set #480). Notice that the
data have been transformed from their original scale of daysto days1/5, i.e., the fifth root of
days. This transformation was necessary because the raw data were extremely skewed and I
wanted to use a normal likelihood function, for illustrative purposes (Proschan, 1963, used a
more theoretically informed model). A different transformation, such as a logarithm, could
have been used instead, but the fifth root yielded nicely symmetric data distributions. Notice
that all the data were transformed the same way; there were not different transformations
applied to different aircraft. As will be explained when the full model is described, the goal
of the transformation was to make the data from each individual aircraft be approximately

330 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

Figure 15.8: A model of hierarchical dependencies for repeated measures from
each of several subjects drawn from the same group. Theith datum from thejth

subject is denotedyi j . It is generated by a normal distribution that has a subject
mean ofµ j and subject precision ofτ j . The subject means are generated by a nor-
mal distribution centered on the overall mean ofµG with a precision ofτG. These
group-descriptive parameters,µG andτG, are themselves being estimated from the
data, hence they have prior distributions as shown at the topleft of the hierarchy.
The subject precisions,τ j , are generated by a gamma distribution which has pa-
rameterssG andrG. These parameters are themselves being estimated, therefore
they have prior distributions as shown in the top right of thediagram.

normal, and to simultaneously make the distribution of aircraft means be approximately
normal.

15.2.1 Hierarchical model

To model this situation, we will assume that data from thejth individual are normally dis-
tributed around an underlying individual mean, denotedµ j. The dispersion of repeated
measurements from that individual is described by the precisionτ j . We will further assume
that the individual propensities,µ j, are normally distributed around a group meanµG. The
dispersion of the individual means around the group mean is described by the precisionτG.
It is these group-level parameters in which we are primarilyinterested. Because we want to
estimateµG andτG, we need to specify their prior-belief distributions.

Just as the individual propensitiesµ j are generated by group-level distributions, the
individual precisionsτ j are also generated by group-level distributions. The idea is that the
variability of repeated measurements in an individual is dependent on the group they are in.
For example, a company might engender employees with relatively stable blood pressures,
i.e., all the employees tend to have high precisions in theirindividual distributions of blood
pressure. As another example, an air-conditioner manufacturer might build systems that
fail very erratically, i.e., all the systems tend to have lowprecisions in their individual
distributions of inter-failure duration. Therefore the individual τ j come from a group-level
gamma distribution which has shape and rate parameters we want to estimate from the

15.2. REPEATED MEASURES AND INDIVIDUAL DIFFERENCES 331

data. Therefore the shape and rate parameters of the group-level gamma distribution must
themselves be given higher level prior distributions.

The entire model is illustrated in Figure 15.8. It shows the hierarchical dependency
of individual parametersµ j on the group-level parametersµG, τG, and the dependency of
the individual parametersτ j on the group-level parameterssG, rG. The group-level param-
eters themselves have higher-level distributions as shown. The higher level distributions
are necessary because it is the group-level parameters we want to estimate, and therefore
we must express our prior uncertainty in those group-level parameters by the higher-level
distributions. The higher-level distributions forsG, rG are re-parameterized in terms of the
mean (m) and standard deviation (s) of the gamma density forτ j . This reparameterization
is performed merely for convenience in interpreting the values ofsG, rG.

At the top level, the constants for the hyper-priors must be given specific values. These
values must be appropriate for the domain and data at hand. Inother words, the hyper-prior
constants should be at least mildly informed by the situation (or richly informed if audience-
agreeable prior information is available). For example, weknow from common sense that
air conditioners will be manufactured to operate without failure for a duration on the order
of 102 days, with a range of perhaps 100 to 104 days. Therefore the hyperprior onµG should
reasonably specify a distribution in this range (and not milliseconds or eons!). Moreover, it
is important to remember that the air-conditioner data weretransformed to a different scale,
and therefore the hyperprior constants need to be appropriate to the transformed scale.

Before proceeding with parameter estimation, it is important to verify that the basic
distributional assumptions of the model are not being blatantly violated. At the lowest
level of the model, the normal likelihood function assumes that the data generated by each
individual aircraft are normally distributed. A quick lookat Figure 15.7 shows that the
twelve individual aircraft have data that are reasonably unimodal and symmetric (unlike the
raw, untransformed data). At the next higher level in the model, the normal distribution that
generatesµ j assumes that the central tendencies of the aircraft are normally distributed.
Inspection of the top-middle graph of Figure 15.7 verifies that the 12 aircraft means are
unimodal and symmetric. Finally, the gamma distribution that generates theτ j assumes that
the precisions of the 12 aircraft can be described by a gamma distribution. Inspection of
the top-right graph of Figure 15.7 verifies that the 12 aircraft precisions may be reasonably
described this way.

If there appear to be prominent outliers in the data, then thedata might be better modeled
by a t distribution than by a normal distribution. As was discussed in connection with
Figure 15.5, thet distribution is far less sensitive to outliers than the normal. The novel point
here is that outliers might occur at different levels. There might be outliers of interfailure
durations within each individual aircraft. These would be visible in the plots of individual
aircraft data. Additionally, there might be outliers at thehigher level of means for each
aircraft. These outliers would be visible in the plot of aircraft means. In the hierarchical
model of Figure 15.8, these considerations imply that either or both of the two lower normal
distributions, involvingµ j or µG, might be replaced with at distribution.

15.2.2 Implementation in BUGS

It is straightforward to implement the model in BUGS. Every arrow in the depen-
dency diagram of Figure 15.8 has a corresponding specification in the BUGS model:
(SystemsBrugs.R)

332 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

µG

2.0 2.2 2.4 2.6 2.8

mean = 2.28

95% HDI
2.06 2.5

τG

5 10 15 20 25 30

mean = 9.28

95% HDI
2.75 16.8

m

2 3 4 5 6 7 8

mean = 3.83

95% HDI
2.7 5

d

0 1 2 3 4 5

mean = 1.25

95% HDI
0.0218 2.51

Figure 15.9: Posterior distribution for the top-level hyperparameters in Fig-
ure 15.8, for the data in Figure 15.7.

9 model {

10 for(i in 1 : Ndata) {

11 y[i] ˜ dnorm(mu[subj[i]] , tau[subj[i]])

12 }

13 for (j in 1 : Nsubj) {

14 mu[j] ˜ dnorm(muG , tauG)

15 tau[j] ˜ dgamma(sG , rG)

16 }

17 muG ˜ dnorm(2.3 , 0.1)

18 tauG ˜ dgamma(1 , .5)

19 sG <- pow(m,2) / pow(d,2)

20 rG <- m / pow(d,2)

21 m ˜ dgamma(1 , .25)

22 d ˜ dgamma(1 , .5)

23 }

Notice the use of nested indexing in line 11. In the BUGS modelspecification, the indexi
is the overall row of the data matrix, not theith measure within a subject. Nested indexing
is used because the data matrix is structured with each row containing a datumy and the
subject number (i.e., aircraft)j from which the datum was obtained. This data structure
accommodates the fact that different aircraft contributed different numbers of data points.
The complete program is listed in Section 15.4.2 (SystemsBrugs.R).

Aspects of the resulting posterior distribution are shown in Figure 15.9. The left panel
shows the marginal distribution on the group-level parameter µG, which has a posterior
mean of 2.28 days1/5, which corresponds to 61.6 days. In other words, on average,about
two months elapsed between failures of the the air conditioning system on these airplanes.
In the second panel, the value of 1/

√
τG indicates the standard deviation across aircraft

of the average inter-failure duration. The posterior meanτG is 9.32, corresponding to a
standard deviation of 1/

√
9.32= 0.33 days1/5. The parametersµG andτG describe the dis-

tribution of aircraft meansµ j, and thus the posterior is saying that among the most credible
descriptions of the data distribution in the top-middle panel of Figure 15.7 is a normal dis-
tribution with mean 2.28 and standard deviation of 0.33. Theremaining posterior marginals
in Figure 15.9 show credible values ofm andd, for the gamma distribution that describes
the how the precisions vary across aircraft. The posterior meanm is 3.83 and the posterior
meand is 1.27, which says that among the most credible descriptions of the data distribu-
tion in the top-right panel of Figure 15.7 is a gamma distribution with mean of 3.83 and
standard deviation of 1.27.

15.3. SUMMARY 333

15.3 Summary

This chapter was intended to explore the normal likelihood function. The purpose was to
explore concepts focused on the normal likelihood when its mean is simply a constant, not
involving additional predictors and parameters. With thisfoundation in place, subsequent
chapters can focus on concepts regarding additional predictors. This chapter made several
main points:

• When the precision of the normal likelihood function is fixed(not estimated), then
the “update rules” for the mean and precision of a normal prior are analytically sim-
ple. These formulas also reveal why it is convenient for Bayesians to parameterize a
normal distribution by its precision instead of by its standard deviation.

• It is typical to put a normal prior on the mean of a normal likelihood, and a gamma
prior on the precision of a normal likelihood, because of considerations of conjugacy
for simple situations. Use of these priors is not necessary,however. It is especially
easy to program arbitrary priors is BUGS (although not all priors will work equally
efficiently for sampling).

• When there are repeated measures within individuals, either the repeated measures
within individuals and/or the means across individuals might be modeled as normal
distributions. Again, this hierarchical model can be easily programmed in BUGS.

• Whenever applying a normal likelihood function, it is important to check that the
data are reasonably normally distributed, i.e., at least roughly unimodal and sym-
metric. Otherwise the parameter values may be misleading. If the data are severely
non-normal, they might be transformed to normal, or else a non-normal likelihood
function could be used instead.

• Data that have prominent outliers might be better modeled with a t distribution than
a normal distribution. This idea was introduced in this chapter, but examples of
applying it in BUGS wait until subsequent chapters.

15.4 R code

15.4.1 Estimating the mean and precision of a normal likelihood

Notice that the data in this program are randomly generated from a normal distribution in
R, on line 30. In R,dnorm andrnorm are parameterized by mean and standard deviation,
unlike BUGS, in whichdnorm is parameterized by mean and precision.

The program also initializes the chains intelligently so that they start amidst the poste-
rior, instead of starting randomly according to the prior. This method of initializing chains
was introduced in Section 9.5.2 (FilconBrugs.R). Lines 51–52 show that the initial value of
µ is the mean of the data, and the initial value ofτ is the precision of the data. If the prior
is fairly vague, and the data are numerous, then the posterior will be near the parameter
values that maximize the likelihood of the data. Therefore we start the chains near those
maximum-likelihood values. We still need to allocate a burn-in period, however, because
the chains needs to independently diverge from each other and settle in to the true posterior.

(YmetricXsingleBrugs.R)

334 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

4 # A Tutorial with R and BUGS. Academic Press / Elsevier.

5 #--

6 # THE MODEL.

7 modelstring = "

8 # BUGS model specification begins here...

9 model {

10 # Likelihood:

11 for(i in 1 : N) {

12 y[i] ˜ dnorm(mu , tau) # tau is precision, not SD

13 }

14 # Prior:

15 tau ˜ dgamma(0.01 , 0.01)

16 mu ˜ dnorm(0 , 1.0E-10)

17 }

18 # ... end BUGS model specification

19 " # close quote for modelstring

20 writeLines(modelstring,con="model.txt")

21 modelCheck("model.txt")

22

23 #--

24 # THE DATA.

25

26 # Generate random data from known parameter values:

27 set.seed(47405)

28 trueM = 100

29 trueSD = 15

30 y = round(rnorm(n=500 , mean=trueM , sd=trueSD)) # R dnorm uses mean and SD

31

32 datalist = list(

33 y = y ,

34 N = length(y)

35)

36

37 # Get the data into BRugs: (default filename is data.txt).

38 modelData(bugsData(datalist))

39

40 #--

41 # INTIALIZE THE CHAINS.

42

43 nchain = 3

44 modelCompile(numChains = nchain)

45

46 automaticInit = F # TRUE or FALSE

47 if (automaticInit) {

48 modelGenInits() # automatically initialize chains from prior

49 } else {

50 genInitList <- function() { # manually initialize chains near the data

51 list(mu = mean(datalist$y) ,

52 tau = 1 / sd(datalist$y)ˆ2)

53 }

54 for (chainIdx in 1 : nchain) {

55 modelInits(bugsInits(genInitList))

56 }

57 }

58

59 #--

15.4. R CODE 335

60 # RUN THE CHAINS

61

62 # burn in

63 BurnInSteps = 500

64 modelUpdate(BurnInSteps)

65 # actual samples

66 samplesSet(c("mu" , "tau"))

67 stepsPerChain = 2000

68 thinStep = 1

69 modelUpdate(stepsPerChain , thin=thinStep)

70

71 #--

72 # EXAMINE THE RESULTS

73

74 filenamert = "YmetricXsingleBrugs"

75

76 source("plotChains.R")

77 muSum = plotChains("mu" , saveplots=F , filenamert)

78 sigmaSum = plotChains("tau" , saveplots=F , filenamert)

79

80 muSample = samplesSample("mu")

81 tauSample = samplesSample("tau")

82 sigmaSample <- 1 / sqrt(tauSample) # Convert precision to SD

83

84 source("plotPost.R")

85 windows()

86 plotPost(muSample , xlab="mu" , breaks=30 , main="Posterior")

87 dev.copy2eps(file=paste(filenamert,"PostMu.eps",sep=""))

88

89 nPts = length(muSample) ; nPtsForDisplay = min(nPts , 2000)

90 thinIdx = seq(1 , nPts , nPts / nPtsForDisplay)

91 windows()

92 plot(muSample[thinIdx] , sigmaSample[thinIdx] , col="gray" ,

93 xlab="mu" , ylab="sigma" , cex.lab=1.5 , main="Posterior" , log="y")

94 points(mean(muSample) , mean(sigmaSample) , pch="+" , cex=2)

95 text(mean(muSample) , mean(sigmaSample) ,

96 bquote(.(round(mean(muSample),1)) *" "* .(round(mean(sigmaSample),1))),

97 adj=c(.5,-0.5))

98 dev.copy2eps(file=paste(filenamert,"PostMuSigma.eps",sep=""))

99

100 #--

15.4.2 Repeated measures: Normal across and normal within

Below is the complete program for analyzing the data from Figure 15.7, regarding inter-
failure durations of aircraft air conditioners. A glimpse of the posterior was shown in Fig-
ure 15.9.

(SystemsBrugs.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

4 # A Tutorial with R and BUGS. Academic Press / Elsevier.

5 #--

6 # THE MODEL.

7 modelstring = "

8 # BUGS model specification begins here...

9 model {

336 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

10 for(i in 1 : Ndata) {

11 y[i] ˜ dnorm(mu[subj[i]] , tau[subj[i]])

12 }

13 for (j in 1 : Nsubj) {

14 mu[j] ˜ dnorm(muG , tauG)

15 tau[j] ˜ dgamma(sG , rG)

16 }

17 muG ˜ dnorm(2.3 , 0.1)

18 tauG ˜ dgamma(1 , .5)

19 sG <- pow(m,2) / pow(d,2)

20 rG <- m / pow(d,2)

21 m ˜ dgamma(1 , .25)

22 d ˜ dgamma(1 , .5)

23 }

24 # ... end BUGS model specification

25 " # close quote for modelstring

26 writeLines(modelstring,con="model.txt")

27 modelCheck("model.txt")

28

29 #--

30 # THE DATA.

31

32 # Load the aircraft data:

33 load("Systems.Rdata") # loads dataMat

34 nSubj = length(unique(dataMat[,"Aircraft"]))

35 # Transform the data:

36 DaysTransf = dataMat[,"Days"]ˆ(1/5)

37 dataMat = cbind(dataMat , DaysTransf)

38 colnames(dataMat) = c(colnames(dataMat)[1:3] , "DaysTransf")

39

40 # Specify data, as a list.

41 datalist = list(

42 y = dataMat[,"DaysTransf"] ,

43 subj = dataMat[,"Aircraft"] ,

44 Ndata = NROW(dataMat) ,

45 Nsubj = nSubj

46)

47 # Get the data into BRugs: (default filename is data.txt).

48 modelData(bugsData(datalist))

49

50 #--

51 # INTIALIZE THE CHAINS.

52

53 # First, compile the model:

54 nchain = 10

55 modelCompile(numChains = nchain)

56

57 modelGenInits() # works when the priors are not too flat

58

59 #--

60 # RUN THE CHAINS

61

62 # burn in

63 BurnInSteps = 1000

64 modelUpdate(BurnInSteps)

65 # actual samples

66 samplesSet(c("muG" , "tauG" , "mu" , "tau" , "m" , "d"))

67 stepsPerChain = ceiling(10000/nchain)

68 thinStep = 100

15.4. R CODE 337

69 modelUpdate(stepsPerChain , thin=thinStep)

70

71 #--

72 # EXAMINE THE RESULTS

73

74 source("plotChains.R")

75 source("plotPost.R")

76 filenamert = "SystemsBrugs"

77

78 # Examine chains for convergence and autocorrelation:

79 muSum = plotChains("muG" , saveplots=F , filenameroot=filenamert)

80 tauSum = plotChains("tauG" , saveplots=F , filenameroot=filenamert)

81 mSum = plotChains("m" , saveplots=F , filenameroot=filenamert)

82 dSum = plotChains("d" , saveplots=F , filenameroot=filenamert)

83 mu1Sum = plotChains("mu[1]" , saveplots=F , filenameroot=filenamert)

84 tau1Sum = plotChains("tau[1]" , saveplots=F , filenameroot=filenamert)

85

86 # Extract chains from BUGS into R:

87 muGsample = samplesSample("muG")

88 tauGsample = samplesSample("tauG")

89 mSample = samplesSample("m")

90 dSample = samplesSample("d")

91 muSample = NULL

92 tauSample = NULL

93 for (sIdx in 1:nSubj) {

94 muSample = rbind(muSample , samplesSample(paste("mu[",sIdx,"]",sep="")))

95 tauSample = rbind(tauSample , samplesSample(paste("tau[",sIdx,"]",sep="")))

96 }

97

98 # Plot the aircraft mu:

99 windows(15,6)

100 layout(matrix(1:nSubj , nrow=2 , byrow=T))

101 for (sIdx in 1:nSubj) {

102 plotPost(muSample[sIdx,] , xlab=bquote(mu[.(sIdx)]))

103 }

104 dev.copy2eps(file=paste(filenamert,"PostMu.eps",sep=""))

105

106 # Plot the aircraft tau:

107 windows(15,6)

108 layout(matrix(1:nSubj , nrow=2 , byrow=T))

109 for (sIdx in 1:nSubj) {

110 plotPost(tauSample[sIdx,] , xlab=bquote(tau[.(sIdx)]) , HDItextPlace=.3)

111 }

112 dev.copy2eps(file=paste(filenamert,"PostTau.eps",sep=""))

113

114 # Plot the hyperdistributions:

115 windows(15,3)

116 layout(matrix(1:4,ncol=4))

117 plotPost(muGsample , xlab=expression(mu[G]) , breaks=30)

118 plotPost(tauGsample , xlab=expression(tau[G]) , breaks=30)

119 plotPost(mSample , xlab=expression(m) , breaks=30)

120 plotPost(dSample , xlab=expression(d) , breaks=30 , HDItextPlace=.1)

121 dev.copy2eps(file=paste(filenamert,"PostHyper.eps",sep=""))

122

123 #--

338 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

Restricted Diet

Longevity in Days
F

re
qu

en
cy

200 400 600 800 1000 1200 1400

0
5

10
15 mean = 969

Ad Lib. Diet

Longevity in Days

F
re

qu
en

cy

200 400 600 800 1000 1200 1400

0
5

10
20

mean = 684

Figure 15.10: For Exercise 15.3.

15.5 Exercises

Exercise 15.1. [Purpose: View the prior from BUGS.] For the program in Section 15.4.1
(YmetricXsingleBrugs.R), generate graphs of prior distribution, analogous to Figure 15.3.
To do this, comment out the data in the data specification, as explained in Section 8.5.1,
p. 141. But also beware of the following: Automatically initialize the chains from the prior,
and, when plotting the results, comment out theplotChains commands because the MCMC
sigma values are too extreme for some of the BUGS graphics routines.

Exercise 15.2.[Purpose: A realistic example of estimating a single mean, with consideration of pri-

ors.] University students who agreed to participate in a problem-solving experiment were
also tested for their vocabulary level, using the Wechsler Adult Intelligence Scale Revised
(WAIS-R), which is normed to have a general-population meanof 10 and standard devia-
tion of 3. Here are the data from the university students (data from Hand et al., 1994, set
#392, p. 322):

14 11 13 13 13 15 11 16 10 13 14 11 13 12 10 14 10 14 16 14 14 11 11 11 13
12 13 11 11 15 14 16 12 17 9 16 11 19 14 12 12 10 11 12 13 13 14 11 11 15
12 16 15 11

(A) Are the data roughly normal, i.e., essentially unimodal andsymmetrically dis-
tributed? (No formal analysis is required here; only an “eyeball” assessment is expected.)
Therefore, can a normal likelihood function be applied?

(B) Discuss the rationale for a prior distribution. Justify theconstants you choose for
the hyperprior. Hint: The results of the analysis will be presented to a skeptical audience,
who may doubt any claims about how prior knowledge of the general population informs
an analysis of university students. Therefore your prior should be very vague and widely
dispersed around the general population values.

(C) Is the mean vocabulary score of the university students credibly different from the
general population mean of 10? Report the 95% HDI onµ for the various priors you con-
sidered in the previous part.

15.5. EXERCISES 339

Exercise 15.3.[Purpose: A realistic example of estimating a mean, with consideration of whether a

normal likelihood distribution is appropriate.] Suppose we know that the mean life of a rat that
eatsad lib is 700 days. This value is, in fact, about right for lab rats; see Figure 15.10, which
shows data from R. L. Berger et al. (1988), as reported in Handet al. (1994, data set #242),
and which are available in the fileRatLives.Rdata. This is anRdata file, which stores values
in compressed format, not text format. To get the data into R,typeload("RatLives.Rdata").
It will look like nothing happens when you type that command,but the variables are now
loaded into R; you can see the variables that R knows about by typing ls(). You will see
listed the two vectorsadlibDiet andrestrictedDiet. When rats are placed on a restricted
diet, their longevity can be affected. Figure 15.10 shows the results.

(A) Using the raw data from the restricted-diet longevities, estimateµ and its 95% HDI.
Be sure to report the prior you used. Hint: The HDI extends from about 917 to 1020 days.

(B) Is it appropriate to apply a normal likelihood function to these data? Transform the
data by squaring the longevities. Estimateµ and its 95% HDI (now in days squared). Be
careful to use an appropriate prior! Hint: The HDI extends from about 9672 to 10532 days
squared.

(C) Why is the first estimate lower than the second estimate? Which estimate is more
appropriate and why?

Exercise 15.4. [Purpose: Think about specifying an informed prior, and non-normal, non-gamma

priors.] In the program of Section 15.4.1 (YmetricXsingleBrugs.R), the prior on the group
mean uses an extremely small precision. This diffuse prior is silly, because we know that
individual IQ scores from the general population should be near 100, with a standard de-
viation of about 15. Special populations might have IQ scores consistently above or below
100, but almost certainly within, say, 100 points above or below 100. Consider the follow-
ing expressions of the prior belief onµ:
(i) mu ∼ dnorm(100 , sd=50) # that’s sd=50, so tau=pow(50,-2)
(ii) mu ∼ dgamma(4 , 0.04)
(iii) mu ∼ dunif(0 , 200)
(iv) mu ∼ dgamma(3 , 0.03)

(A) Plot the densities of (i) and (ii) on the same graph, superimposed. Hint:
mu = seq(-50 , 300 , length=501)

plot(mu , dnorm(mu , 100 , 50) , type="l" , ylim=c(0,0.01))

lines(mu , dgamma(mu , 4 , 0.04))

What do the densities of (i) and (ii) have in common? (Hint: Compute the mean and sd
of the gamma distribution.) Should either of (i) or (ii) be preferred over the other? (Hint:
Consider negative IQ scores, which should not be allowed.)

(B) Plot the densities of (iii) and (iv) on the same graph, superimposed. What do the
densities of (iii) and (iv) have in common? Should one of (iii) or (iv) be preferred over the
other? (Hint: Consider IQ scores greater than 200, which should be allowed.)

In the program of Section 15.4.1 (YmetricXsingleBrugs.R), the prior on the group pre-
cision is a general diffuse distribution. This diffuse prior is silly, because we know that
individual IQ scores have a standard deviation around 15 (i.e., a precision of 1/152 =

0.00444...) in the general population. The SD might be a bit smaller within special pop-
ulations.

(C) Suppose we believe that the smallest SD we would find in a specialized population
is 5. What is the corresponding precision? (Notice that it islarger than 1/152.)

(D) We want to create a gamma distribution for precision that hasa mean corresponding

340 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

to 1/152, such that most of the gamma distribution is less than the precision corresponding
to an IQ precision of 1/52, because, as mentioned in the previous part, we don’t think
that precisions much greater than 1/52 are tenable. Therefore, to be sure that our prior
encompasses that maximum but still allows for considerableuncertainty, we will set the
standard deviation of the gamma distribution tohalf of the difference between the precisions
determined in the previous two parts. What is the value of half of the difference between the
precisions determined in the previous two parts? (Hint: Theanswer is 0.01777... Explain.)

(E) What are the values of the shape and rate parameters for a gamma distribution that
has mean of 0.00444 and standard deviation of 0.01777?

(F) Re-run the program of Section 15.4.1 (YmetricXsingleBrugs.R) using a prior for
tau from the previous part, and a prior for mu that is the most appropriate from (i)–(iv)
above. Include the posterior histogram of mu with your answer. Does the conclusion differ
noticeably from the diffuse priors?

Exercise 15.5.[Purpose: With repeated measures, the group estimate and individual estimates reflect

different sources of variation in the data.]

Consider the data,y, with different assignments to subjects,s, as follows:

y values: 1 2 3 21 22 23 41 42 43
s, large between subj. var.: 1 1 1 2 2 2 3 3 3
s, small between subj. var.: 1 2 3 1 2 3 1 2 3

The first row shows nine data values. The second row indicatesa situation in which the first
three data points come from subject 1, the second three data points come from subject 2,
and so on. The third row indicates a different situation, in which the first, fourth, and
seventh data points come from subject 1, as so forth. The assignment of data to subjects in
the second row produces large between-subject variance, whereas the assignment of data
to subjects in the third row produces small between-subjectvariance.Notice that for both
situations, however, the overall mean is the same because the data are the same. We are
interested in which situation gives a more precise estimateof the group-level mean.

Modify the program of Section 15.4.2 (SystemsBrugs.R) for use with these data. (No
need to be too fancy. For example, in thedatalist, just type iny = c(1, 2, 3, 21, 22,
23, 41, 42, 43) andsubj = c(1,1,1, 2,2,2, 3,3,3).) Be sure to make the prior appro-
priate for these data. Run the program twice, once for each assignment of data to subjects
(using the same prior for both runs). Hint: Your results should look something like those
in Figure 15.11.Notice that the mean of the posterior ofµG is essentially the same for both
runs, but the HDI widths are quite different. Explain why.

15.5. EXERCISES 341

µ1

0 1 2 3 4

mean = 2.05

95% HDI
0.801 3.43

µ2

20 21 22 23 24

mean = 22

95% HDI
20.6 23.3

µ3

40 41 42 43 44

mean = 41.9

95% HDI
40.6 43.3

µG

−10 0 10 20 30 40 50

mean = 22.2

2.5% <= 0 < 97.5%

95% HDI
−0.74 44.6

µ1

10 20 30 40

mean = 22.1

95% HDI
9.26 33.9

µ2

10 20 30 40

mean = 22

95% HDI
9.75 34.3

µ3

10 20 30 40

mean = 22.1

95% HDI
9.57 34.2

µG

0 10 20 30 40

mean = 22.1

0.1% <= 0 < 99.9%

95% HDI
9.85 34.2

Figure 15.11: For Exercise 15.5, involving the same data re-arranged across sub-
jects. Top row: Large between-subject variance. Bottom row: Small between-
subject variance. Notice the width of the HDI on the group-level parameter,µG.

342 CHAPTER 15. METRIC PREDICTED, SINGLE GROUP

Chapter 16

Metric Predicted Variable with One
Metric Predictor
Contents

16.1 Simple linear regression .344
16.1.1 The hierarchical model and BUGS code 346

16.1.1.1 Standardizing the data for MCMC sampling 347
16.1.1.2 Initializing the chains 348

16.1.2 The posterior: How big is the slope?349
16.1.3 Posterior prediction . 350

16.2 Outliers and robust regression .. 352
16.3 Simple linear regression with repeated measures 354
16.4 Summary . 357
16.5 R code . 358

16.5.1 Data generator for height and weight 358
16.5.2 BRugs: Robust linear regression359
16.5.3 BRugs: Simple linear regression with repeated measures 362

16.6 Exercises . 366

The agri-bank’s threatnin’ to revoke my lease
If my field’s production don’t rapid increase.
Oh Lord how I wish I could divine the trend,
Will my furrows deepen? and Will my line end?

In this chapter we consider situations such as predicting a person’s weight from their
height, or predicting their blood pressure from their weight, or predicting their income
from years of education. In these situations, the predictedvariable is metric and the single
predictor is also metric. We will describe the relationshipbetween the predicted variable,y,
and predictor,x, with a simple linear model and normally distributed residual randomness
in y. In terms of the generalized linear model (GLM), the model assumes thaty ∼ N(µ, τ)
with µ = β0 + β1x. This model appears in Table 14.1 (p. 312) in the first row and second
column. This model is often referred to as “simple linear regression”.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

343

344 CHAPTER 16. METRIC Y, ONE METRIC X

−10 −5 0 5 10

−
10

0
10

20
30

Normal PDF Around Linear Function

x

y

m = 10 + 2x
y ~ N(m, sd = 2)

−10 −5 0 5 10

−
10

0
10

20
30

Normal PDF Around Linear Function

x
y

m = 10 + 2x
y ~ N(m, sd = 2)

Figure 16.1: Examples of points normally distributed around a linear function.
(The left panel repeats Figure 14.9, p. 309.) The model assumes that the datay are
normally distributed vertically around the line, as shown.Moreover, the variance
of y is the same at all values ofx. The model puts no constraints on the distribution
of x. The right panel shows a case in whichx are distributed bimodally, whereas in
the left panel thex are distributed uniformly. In both panels, there is homogeneity
of variance.

16.1 Simple linear regression

Figure 16.1 shows an example of simulated data generated from the assumed model, with
parameters displayed in the Figure. At any value ofx, the mean predicted value isµ =
β0 + β1x, and the data valuesy are normally distributed around that mean. For a review of
how to interpret the slope,β1, and intercept,β0, see Figure 14.1, p. 295.

Note that the model only specifies the dependency ofy on x. The model does not
say anything about what generatesx, and there is no probability distribution assumed for
describingx. The x values in the left panel of Figure 16.1 were sampled randomlyfrom a
uniform distribution, merely for purposes of illustration, whereas thex values in the right
panel of Figure 16.1 were sampled randomly from a bimodal distribution. Both panels show
data from the same model of the dependency ofy on x.

It is important to emphasize that the model assumeshomogeneity of variance: At every
value of x, the variance ofy is the same! This homogeneity of variance is easy to see in
the left panel of Figure 16.1 because thex values are uniformly distributed: The smattering
of data points in the vertical,y, direction appears visually to be the same at all values ofx.
Homogeneity of variance is less easy to identify visually when thex values of not uniformly
distributed. For example, the right panel of Figure 16.1 also displays data that may appear
to violate homogeneity of variance, because the apparent vertical spread of the data seems
to be larger forx = 2.5 than forx = 7.5. Despite this deceiving appearance, the data do
respect homogeneity of variance. The reason for the apparent violation is that for regions
in which x is sparse, there is far less opportunity for the sampledy values to come from the
tails of the normal distribution. In regions wherex is dense, there are many opportunities
for y to come from the tails.

In applications, thex and y values are provided by some real-world process. In the

16.1. SIMPLE LINEAR REGRESSION 345

60 65 70 75

10
0

15
0

20
0

25
0

Data with credible regression lines

X (height in inches)

Y
 (

w
ei

gh
t i

n
po

un
ds

)

Figure 16.2: Data points, with a smattering of believable regression lines superim-
posed.

real-world process, there might or might not be any direct causal connection betweenx and
y. It might be thatx causesy, or y causesx, or some third factor causes bothx andy, or x
andy have no causal connection, or some combination of any or all of those! The simple
linear model makes no claims about causal connections betweenx andy. The simple linear
model merely describes a tendency fory values to be linearly related tox values, hence
“predictable” from thex values.

As an example, suppose we have measurements of height, in inches, and weight, in
pounds, for some randomly selected people. Figure 16.2 shows the height and weight
values of the people. The data were generated from the program listed in Section 16.5.1
(HtWtDataGenerator.R), which uses realistic population parameters. The data points in Fig-
ure 16.2 do appear to indicate that as height increases, weight also tends to increase. This
covariation between height and weight does not imply that one attribute causes the other.
When an adult eats a lot of sugary foods, or goes on a diet, thereby changing his or her
weight, his or her height does not change. Despite the lack ofdirect causal relationship, the
two values do covary, and one can be (imperfectly) predictedfrom the other.

Our goal is to determine what regression lines are most believable, given the data. In
other words, we want to infer what combinations ofβ0, β1, andτ are most believable, given
the data. We use Bayes’ rule:

p(β0, β1, τ|y) = p(y|β0, β1, τ) p(β0, β1, τ)

/$

dβ0 dβ1 dτ p(y|β0, β1, τ) p(β0, β1, τ)

346 CHAPTER 16. METRIC Y, ONE METRIC X

Figure 16.3: A model of dependencies for simple linear regression. The parameter
β1 is of primary interest; it describes the slope of the line relating x to y.

Analytical forms for the posterior can be obtained for appropriate priors. For example,
analogous to the derivation in the previous chapter, if the precisionτ is fixed, i.e., if the
prior onτ is a spike over a certain value, then normal priors on the slope and intercept yield
normal posteriors (e.g., Bolstad, 2007). Fortunately, we do not have to worry much about
mathematical derivations because we can let BUGS approximate the posterior. Our job,
therefore, is to specify sensible priors and to make sure that BUGS generates a trustworthy
posterior sample that is converged and well-mixed.

16.1.1 The hierarchical model and BUGS code

There are three parameters in the model, and therefore we need to establish a prior distribu-
tion on the joint three-dimensional parameter space. To keep things simple, we will assume
that the three parameters are independent in our prior beliefs. They would not need to be;
for example, we might have a prior belief that the slope and intercept are (anti-)correlated,
or we might have a prior belief that the precision and the intercept are correlated. For now,
however, we assume independence in the prior, and thereforewe can express the prior as
three marginal distributions on the separate parameters.

Figure 16.3 shows the hierarchy of dependencies that we willassume. At the bottom
of the figure, we see that the data depend on the parametersµ andτ, which describe the
mean and precision of a normal distribution. In other words,the data are modeled by a
normal likelihood function, as was emphasized in the previous chapter. The value of the
precision,τ, depends on our prior belief distribution, shown in the upper-right of the figure
as a gamma distribution with two shape parameters. The shapeparameters are constants
that express what we think the precision is likely to be and how uncertain we are in that
prior belief.

The mean,µ, of the likelihood function is a linear function ofx, as shown in the middle
of Figure 16.3. The linear function has two parameters, the interceptβ0 and the slopeβ1.
The slope parameter is what we are usually most interested in, because it describes the
relation betweenx andy. The values of the slope and intercept depend on the prior beliefs
shown in the upper layer of the figure. Both the slope and the intercept here have prior

16.1. SIMPLE LINEAR REGRESSION 347

beliefs modeled as normal distributions.
It is useful to compare Figure 16.3 with Figure 15.2, p. 322. The underlying approach

is the same for both scenarios, in that there is a normal likelihood for the data, and we
set priors on the mean and the precision. The only difference is that Figure 16.3 has one
additional prior for theβ1 parameter. Otherwise, the models are identical.

Every arrow in Figure 16.3 has a corresponding line in the BUGS model specification:
(SimpleLinearRegressionBrugs.R)

9 model {

10 for(i in 1 : Ndata) {

11 y[i] ˜ dnorm(mu[i] , tau)

12 mu[i] <- beta0 + beta1 * x[i]

13 }

14 beta0 ˜ dnorm(0 , 1.0E-12)

15 beta1 ˜ dnorm(0 , 1.0E-12)

16 tau ˜ dgamma(0.001 , 0.001)

17 }

Notice that the constants in the hyperpriors are generic values for a diffuse prior. In real
applications, you would probably want to use better informed constants.

16.1.1.1 Standardizing the data for MCMC sampling

In principle, we could run the BRugs code on theraw x, y data. In practice, however, the
attempt often fails. There’s nothing wrong with the mathematics or logic, the problem is
that believable values of the slope and intercept parameters tend to be tightly correlated, and
this narrow diagonal zone of believability is difficult for sampling algorithms to explore.

The right panel of Figure 16.4 shows an example of this type ofcorrelation in believable
values. The believable slopes and intercepts are extremelycorrelated. Sampling from such
a tightly correlated distribution is typically very difficult to do directly. It is difficult to
discover a point in the narrow zone in the first place. Then, having discovered a viable point,
the chain does not move efficiently. Gibbs sampling gets stuck because it keeps “bumping
into the walls” (recall discussion of Section 8.4.2.1, p. 139). Metropolis algorithms often
are not clever enough to automatically tune a proposal distribution to match a diagonal
posterior.

0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Standardized Slope

S
ta

nd
ar

di
ze

d
In

te
rc

ep
t

2 4 6 8 10

−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

Slope (pounds per inch)

In
te

rc
ep

t (
ht

 w
he

n
w

t=
0)

Figure 16.4: Slope and intercept values of believable regression lines, in standard-
ized and raw scales.

348 CHAPTER 16. METRIC Y, ONE METRIC X

The reason for the correlation of slope and intercept is evident by examining Fig-
ure 16.2. There you can see various believable lines that go through the scatter of points.
Notice that if a line has a steep slope, its intercept must be low, but if a line has a smaller
slope, its intercept must be higher. Thus, there is a trade-off in slope and intercept for the
believable lines.

One of the main tricks used for successful execution of the MCMC sampling is stan-
dardizing the data. Standardizing simply means re-scalingthe data relative to their mean
and standard deviation:

z(x) =
(x− Mx)

SDx
and z(y) =

(

y− My

)

SDy
(16.1)

whereMx is the mean of the datax values andSDx is the standard deviation of the datax
values. (Do not confuseMx andMy with the constants used in the specification of the priors
in the hierarchical diagram.) It is easy to prove, using simple algebra, that the mean of the
resultingz(x) values is zero, and the standard deviation of the resultingz(x) values is one,
for any initial data set.

Having used BUGS to find slope and intercept values for the standardized data, we then
need to convert the parameter values back to the original rawscales. Denote the intercept
and slope for standardized data asζ0 andζ1 (Greek letter “zeta”), and denote the predicted
value ofy asŷ. Then:

zŷ = ζ0 + ζ1zx by definition of the model
(

ŷ− My

)

SDy
= ζ0 + ζ1

(x− Mx)
SDx

from Eqn. 16.1

ŷ = ζ0SDy + My − ζ1SDyMx/SDx
︸ ︷︷ ︸

β0

+ ζ1SDy/SDx
︸ ︷︷ ︸

β1

x (16.2)

Thus, for every believable combination ofζ0, ζ1 values, there is a corresponding believable
combination ofβ0, β1 values specified by Equation 16.2.

The sampled points in Figure 16.4 were generated by running BUGS on the standard-
ized data, then transforming the results according to Equation 16.2. Notice that the stan-
dardized slope and intercept, in the left panel of Figure 16.4, show no noticeable correlation.
This is because the believable intercepts tend to be near zero, and that’s because the stan-
dardized data have means of zero. Thus, even when the slopes of two believable lines differ,
the intercepts still hover around zero.

16.1.1.2 Initializing the chains

Figure 16.4 showed an example of how the believable values ina posterior distribution
can occupy a fairly narrow region of parameter space. For theMCMC chain to randomly
sample from the posterior, the random walk must first get intothe modal region of the
posterior in the first place. We might simply start the chain at any point in parameter space,
randomly selected from the prior distribution, and wait through the burn-in period until the
chain randomly wanders into the bulk of the posterior. Unfortunately, for many real-world
situations, this burn-in period can be avery long time. Therefore it helps to initialize the
chains near the bulk of the posterior if we can.

16.1. SIMPLE LINEAR REGRESSION 349

If the data set is large and dominates the prior, or if the prior is diffuse, or if the prior
is informed from previous results and is reasonably consistent with the new data, then the
peak of the likelihood function will be reasonably near the peak of the posterior distribu-
tion. Therefore, a reasonable candidate for the initial point of the chain is the maximum-
likelihood estimate of the parameters. This heuristic is only useful if we have a simple way
of determining the maximum-likelihood estimate. Fortunately, for simple linear regression,
we do. When the data are standardized, the maximum-likelihood estimate (MLE) ofβ0 is
zero, the MLE ofβ1 is the correlation (denotedr) of x andy, and the MLE of the precision,
τ, is 1

/(

1− r2
)

. To get an intuition for the statement about precision, consider what hap-
pens when the correlationr approaches 1 (its maximum possible value). Asr approaches 1,
the x, y data fall very close to a straight line, which implies that the deviation of the data
away from the line is very small (recall Figure 16.1). Hence whenr is large,σ is small, and
henceτ is large, as reflected by the formula 1

/(

1− r2
)

.

16.1.2 The posterior: How big is the slope?

Figure 16.5 shows the posterior distribution of slope values. The standardized and original-
scale slopes indicate the same relationship on different scales, and therefore the posterior
distributions are identical except for a change of scale. The posterior distribution tells us
exactly what we want to know: The believable slopes. We see that weight increases by
about 5 or 6 pounds for every 1-inch increase in height. The 95% HDI provides a useful
summary of the range of believable slopes.

Standardized slope

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 mean = 0.641

0% <= 0 < 100%

95% HDI
0.346 0.942

Slope (pounds per inch)

D
en

si
ty

0 2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

mean = 5.8

0% <= 0 < 100%

95% HDI
3.13 8.52

Figure 16.5: Posterior distribution of slopes.

If we were interested is determining whether the predictor had a non-zero influence on
the predicted variable, we might use the decision rules discussed in Section 12.1.3 (p. 244).
We may want to establish a ROPE around zero for the predictor,and then check whether
the entire 95% HDI excludes the ROPE. (Usually, if the true value is zero, the HDI will
overlap the ROPE, thereby reducing false alarms.)

It would be possible to “test” whether the slope is non-zero by doing a Bayesian compar-
ison of two models: One model would have an arbitrarily diffuse prior on the slope param-
eter; the other model would have an arbitrarily peaked priorat zero. It would be straight-
forward, in principle, to set up the model comparison using transdimensional MCMC as
described in Section according to the method explained in Section 10.2 (p. 197). But, as
argued in Section 12.2.2 (p. 249) and elsewhere, all that this model comparison tells us

350 CHAPTER 16. METRIC Y, ONE METRIC X

60 65 70 75

50
10

0
15

0
20

0
25

0
30

0

Data with 95% HDI & Mean of Posterior Predictions

X (height in inches)

Y
 (

w
ei

gh
t i

n
po

un
ds

)

+ +

Figure 16.6: Data points, with 95% HDIs and means of posterior predictions iny,
at selectedx values. The HDIs are wider (i.e., taller) for extrapolatedx values than
for x values in the middle of the observed data.

is which of two unbelievable models is less unbelievable. Inthe present application, the
model comparison would favor the model that allows non-zeroslopes. But that is not all
we want to know, because usually we also want to know what slope valuesare credible.
That information is provided by the posterior distributionon the parameter values, often
starting with an (mildly) informed prior distribution instead of an arbitrarily diffuse prior of
mathematical convenience. Thus, in the present application, there is little to be gained by
doing a Bayesian model comparison of null prior against arbitrary diffuse prior.

16.1.3 Posterior prediction

Linear regression is often used for predictingy values fromx values. For example, we can
use the results of the regression to answer the question, If aperson were 75 inches tall, what
is the probable weight of the person? The Bayesian answer provides the probability of every
possible weighty, given the heightx and the previous data:p(y|x,D). This distribution ofy
values has uncertainty stemming from the inherent noiseτ and also from uncertainty in the
estimated values of the regression coefficients.

A simple way to get a good approximation ofp(y|x,D) is by generating random values
of y for every step in the MCMC sample of credible parameter values. Thus, at any step in
the chain, there are particular values ofβ0, β1, andτ, which we use to generate representa-
tive predicted values ofy according toy ∼ N(µ = β0 + β1x, σ = 1/

√
(τ)). We do that at all

16.1. SIMPLE LINEAR REGRESSION 351

60 65 70 75

0
10

0
20

0
30

0
40

0

Data with 95% HDI & Mean of Posterior Predictions

X (height in inches)

Y
 (

w
ei

gh
t i

n
po

un
ds

)

+ +

Figure 16.7: Data points, with 95% HDIs and
means of posterior predictions iny, at selected
x values. The data show systematic discrep-
ancy from the linear-model predictions.

the steps in the chain, and thereby create a large set of predictedy values. From this set, we
can compute the mean predictedy value, the HDI of the predictedy values, etc.

A summary of the posterior predictions is displayed in Figure 16.6. Each vertical grey
segment, over a particularx value, indicates the extent of the 95% HDI for the distribution
of randomly generatedy values at thatx value. The dash across the middle of the grey
segment indicates the mean of the posterior predictedy values.

Consider the limits of the HDIs at each value ofx. Notice that the length of the HDIs is
larger for high and lowx values than for middlingx values. To verify this fact, hold a ruler
against the HDIs for small, middling, and large values ofx. This variation in the length of
the HDIs makes sense intuitively: As thex value goes farther from the observed data, the
predictedy value should become less certain. Another way of understanding the variation
in HDI lengths is by considering the credible regression lines in Figure 16.2. All of those
differently sloped lines go near the bulk of the data in the middle, but the different slopes
extend higher or lower at extrapolative values ofx. We average across all those lines to
generate predictedy values. Therefore the predictedy values will be more widespread at
extrapolative values ofx.

If the model of the data is a good model of the data, then believable parameter values
for the model ought to generate simulated data that “look like” the real data. What it means
for simulated data to “look like” the real data is defined by the analyst, and may be anything
that is useful for the application at hand. Loosely speaking, a model is a good model if
(1) the data fall mostly within the predicted zone, (2) the data are distributed approximately
the way the model says they should be, e.g., normally, and (3)the discrepancies of data
from predictions are random and not “systematic”.

Posterior prediction is also useful for alerting us to non-linear trends in data. Figure 16.7
shows a set of data for which they values have a clear quadratic (i.e., parabolic) relationship
with x, in addition to a linear trend. These data can be entered intothe linear regression pro-
gram, and the resulting posterior prediction HDIs are shownby the vertical grey segments
in Figure 16.7. We see that the data do fall mostly within the range of the posterior pre-
dictions, but the distribution of the data issystematicallydiscrepant from the linear spine
of the model: At high and low values ofx, the data fall well above the linear spine, but
at middling values ofx, the data fall well below the linear spine. This sort of systematic
discrepancy from the posterior predictions is a clue that the model could be improved.

352 CHAPTER 16. METRIC Y, ONE METRIC X

Mean tdf = 104

Slope (∆Tar ∆Weight)

D
en

si
ty

−20 0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0
0.

03
0 mean = 30.3

1.1% <= 0 < 98.9%

95% HDI
5.25 55.3

Mean tdf = 2.97

Slope (∆Tar ∆Weight)

D
en

si
ty

−40 −20 0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0

mean = 16

16% <= 0 < 84%

95% HDI
−14.1 47.1

0.7 0.8 0.9 1.0 1.1 1.2

−
10

0
10

20
30

Data with 95% HDI & Mean of Posterior Predictions

Weight

T
ar

+ + + + + + + + + + + + + + + + + + + +

0.7 0.8 0.9 1.0 1.1 1.2

−
10

0
10

20
30

Data with 95% HDI & Mean of Posterior Predictions

Weight

T
ar

+ + + + + + + + + + + + + + + + + + + +

Figure 16.8: Data fit with different priors on thedf parameter of thet likelihood
function. Left column shows results from prior bias on highdf values, such that
a virtually normal likelihood function is assumed. Right column shows “robust”
regression resulting from a strong prior bias on lowdf values.

16.2 Outliers and robust regression

Recall from Figure 15.5, p. 325, that the estimated parameter values for a normal likelihood
function can be greatly distorted by outliers in the data. This sensitivity also occurs when
the normal distribution is used in linear regression. The normal likelihood function demands
that the regression line is vertically close to all the data points, because the likelihood value
is tiny for points more than about three standard deviationsfrom the line. Consequently,
outlying data points can have disproportionate leverage inthe estimate of the regression
coefficients.

As an example, consider some data regarding 25 brands of cigarette (McIntyre, 1994).
For each brand, a cigarette was assessed for its weight, amount of nicotine, amount of
tar, and amount of carbon monoxide produced when burned. Many different relationships
among these variables might be investigated, but consider in particular predicting the tar
content from the weight of the cigarette. These data are plotted in the lower panels of
Figure 16.8. The points are rather diversely scattered, anddo not show an overwhelmingly
strong covariation. There is, however, an outlying point that has the heaviest weight and
highest tar content (in the upper right of the scatterplot).This outlying point can have a
disproportionate influence on the estimated slope (β1) in the regression model.

The left column of Figure 16.8 shows the results when a normallikelihood function is
used (actually, when the likelihood function is at distribution with largedf). The histogram
in the upper panel shows that the slope is credibly larger than zero. The plot of posterior

16.2. OUTLIERS AND ROBUST REGRESSION 353

predictive HDIs in the lower panel shows that the estimated regression line has been tilted
up toward the outlier. The attraction to the outlier is caused by the small tails of the nor-
mal likelihood function: For the outlying datum to be “underthe umbrella” of the normal
likelihood, the line must get fairly close.

The right column of Figure 16.8 shows the results when at distribution is used as the
likelihood function, with a prior on thedf parameter that strongly favors small values. This
prior implies that the likelihood function has the tall tails of a low-df t distribution, unless
the data strongly suggest otherwise. As can be seen in the figure, the 95% HDI of the pos-
terior on the slope contains zero. The lower right panel shows that the estimated regression
line is not slanted as far toward the outlier, because the long tail of thet distribution gives
the outlier some modest non-zero probability despite beingso far from the mean of thet
distribution. The posterior slope estimate here better reflects the bulk of the points in the
scatterplot, and is not so strongly dominated by the outlier.

The BUGS model for robust regression is a simple extension ofthe model for the nor-
mal likelihood. We simply replace the normal distribution with a t distribution, and include
the necessary prior specification. Whereas the normal distribution has two parameters,
namely the meanµ and the precisionτ, the t distribution has those two plus a third pa-
rameter, namely the degrees of freedomdf, which can take on real values of 1 or greater
(for a reminder of how thedf parameter works, see Figure 15.4, p. 324). One way to
put a prior on thedf parameter is by sampling a value, denotedudf, from a uniform dis-
tribution, and then transforming that value into the range allowed for df, which extends
from 1 to infinity. One such transformation appears on line 18of this model specification:
(SimpleRobustLinearRegressionBrugs.R)

9 model {

10 for(i in 1 : Ndata) {

11 y[i] ˜ dt(mu[i] , tau , tdf)

12 mu[i] <- beta0 + beta1 * x[i]

13 }

14 beta0 ˜ dnorm(0 , 1.0E-12)

15 beta1 ˜ dnorm(0 , 1.0E-12)

16 tau ˜ dgamma(0.001 , 0.001)

17 udf ˜ dunif(0,1)

18 tdf <- 1 - tdfGain * log(1-udf) # tdf in [1,Inf).

19 # tdfGain specified in data section

20 }

Notice thattdf is used as thedf parameter in thet likelihood function specified on line 11.
The value oftdf is determined fromudf by the transformationtdf <- 1 - tdfGain * log(

1 - udf), wheretdfGain is a constant that expresses the prior belief in large valuesof df.
Figure 16.9 shows a graph of the transformation. You can see from the graph that when
tdfGain is small, thetdf values are close to 1 across almost the entire range ofudf. But
whentdfGain is large, then thetdf values are large across most of the range ofudf.

The prior on thedf parameter expresses how much we believe there are not outliers in
the data. For example, the left column of Figure 16.8 was created by settingtdfGain=100,
and the right column of Figure 16.8 was created by settingtdfGain=1. The resulting poste-
riors are noticeably different.

So, you may ask, which conclusion from Figure 16.8 is correct? Does the tar content
of cigarettes increase by about 30 units for every unit increase in weight, as indicated by
the nearly-normal likelihood, or does the tar content increase by about only about half that
much, as indicated by the low-df t distribution? The answer is, in this case, that it depends

354 CHAPTER 16. METRIC Y, ONE METRIC X

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
tdf = 1 − tdfGain * log(1 − udf)

udf

td
f

tdfGain = 1

tdfGain = 10

tdfGain = 100

Figure 16.9: Transformation fromudf to
tdf, used to set the prior of thedf param-
eter in robust regression.

on your prior beliefs. If you have some very good reason to believe that tar content should be
normally distributed (with the same variance) at every level of weight, then the left column
of Figure 16.8 describes your posterior beliefs. But the assumption of normality virtually
disavows the possibility of outliers in the data, and therefore seems untenable, at least for
this application. Therefore the prior should allow low values ofdf. The dependency of the
posterior on the prior suggests that either more specific prior knowledge should be brought
to bear, or additional predictors should be included if available, or more data need to be
collected.

16.3 Simple linear regression with repeated measures

Suppose that for every individual,j, we have multiple observations ofxi j , yi j pairs. With
these data, we can estimate a linear model for every individual. If we also assume that the
individuals are mutually representative of a common group,then we can use the estimates
from the individuals to inform estimates of group-level parameters.

One example of this scenario comes from Walker, Gustafson, and Frimer (2007), who
measured reading ability scores of children across severalyears. Thus each child con-
tributed several age and reading-score pairs. A regressionline can describe each child’s
reading ability through time, and higher-level distributions describe the distribution of inter-
cepts and slopes across individuals. By virtue of being linked indirectly through the higher
level distribution, estimates of individuals are mutuallyinformed by other individual.

As another concrete example of this situation, consider an experiment in which the
investigators were interested in how quickly different organs clear themselves of contami-
nants (Feldman, 1988, who reported data from an unpublishedexperiment by S. B. Wein-
stock and J. D. Brain). The researchers administered iron oxide particles to rats, because
the iron oxide remaining in the body could be assayed noninvasively via magnetometry.
Four rats were given intravenous injection of iron oxide, the particles of which are taken up
by liver endothelial cells. Four other rats were given the iron oxide by tracheal instillation,
so that the particles were taken up by lung macrophages. Although the researchers were

16.3. SIMPLE LINEAR REGRESSION WITH REPEATED MEASURES 355

0 5 10 15 20 25 30

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

Subject 1

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

Subject 2

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

Subject 3

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

Subject 4

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

All Subjects

Day

lo
g1

0
R

et
en

tio
n

Slope
−0.025 −0.015 −0.005

mean = −0.0167

100% <= 0 < 0%

95% HDI
−0.0206 −0.013

Slope
−0.020 −0.010 0.000

mean = −0.0137

100% <= 0 < 0%

95% HDI
−0.018 −0.00997

Slope
−0.030 −0.020 −0.010 0.000

mean = −0.0176

100% <= 0 < 0%

95% HDI
−0.0221 −0.0133

Slope
−0.030 −0.020 −0.010 0.000

mean = −0.0209

100% <= 0 < 0%

95% HDI
−0.0256 −0.0164

Slope, Group Level
−0.06 −0.02 0.02 0.06

mean = −0.0172

99.8% <= 0 < 0.2%

95% HDI
−0.0266 −0.00839

Figure 16.10: Upper row shows data from Feldman (1988). Lower row shows believable
values of the slopes.

specifically interested in comparing the clearance rates ofthe two groups, we will consider
only the “lung” group.

The amount of iron oxide retained in the body, as a percentageof the initially assayed
amount, was measured at various times during the following 30 days. The data for the lung
group are shown in the top row of Figure 16.10. The retention amount is plotted on a loga-
rithmic scale, so that the retention curves are approximately linear. Notice that all the curves
start at ay value of 2.0, because the first measurement establishes the baseline that defines
100%, and log10(100) = 2.0. Some curves rise above the initial value, which presumably
does not indicate spontaneous creation of iron, but insteadindicates measurement noise,
either at the initial or subsequent times. The graphs indicate a reduction through time. The
goal of our analysis is to determine what the believable rates of reduction are, given the
data. We may also want to know if the apparent reduction really is believably non-zero.

To model this situation, each subject’s data set is described by an individual linear
regression, and the regression coefficients of the individuals are, in turn, modeled by group-
level distributions. The group-level distributions are controlled by parameters that describe
the central tendency and variability of the group, and it is these group-level parameters in
which we are primarily interested.

Figure 16.11 shows the hierarchy of dependencies. At the lowest level, we just see a
simple linear regression for each individual, with the samecomponents as Figure 16.3. The
regression coefficients for thejth individual, namelyβ0 j , β1 j , andτ j , in turn come from
distributions that describe the group. For example, the individual slope coefficients,β1 j ,
are assumed to come from a normal distribution, with meanµ1G and precisionτ1G. We are
interested in estimating those group-level parameters, and therefore each is given a prior
distribution at the top level of the diagram.

Every arrow in Figure 16.11 has a corresponding line in the BUGS model specification:
(SimpleLinearRegressionRepeatedBrugs.R)

8 model {

9 for(r in 1 : Ndata) {

356 CHAPTER 16. METRIC Y, ONE METRIC X

Figure 16.11: A model of dependencies for repeated scores fromN subjects drawn
independently from the same group. The slope for thejth subject isβ1 j . Across
subjects, it is distributed normally, with meanµ1G and precisionτ1G, i.e., across
subjects the variance of the slopes is 1/τ1G.

10 y[r] ˜ dnorm(mu[r] , tau[subj[r]])

11 mu[r] <- b0[subj[r]] + b1[subj[r]] * x[r]

12 }

13 for (s in 1 : Nsubj) {

14 b0[s] ˜ dnorm(mu0G , tau0G)

15 b1[s] ˜ dnorm(mu1G , tau1G)

16 tau[s] ˜ dgamma(sG , rG)

17 }

18 mu0G ˜ dnorm(0,.01)

19 tau0G ˜ dgamma(.1,.1)

20 mu1G ˜ dnorm(0,.01)

21 tau1G ˜ dgamma(.1,.1)

22 sG <- pow(m,2)/pow(d,2)

23 rG <- m/pow(d,2)

24 m ˜ dgamma(1,.1)

25 d ˜ dgamma(1,.1)

26 }

The constants in the top-level priors are generically vaguebecause of laziness during pro-
gramming. More thoughtful priors may be desirable.

The results of running the program are shown in the lower row of Figure 16.10. The
results match closely those reported in the non-Bayesian analysis of Feldman (1988), who
reported−0.0173 for the group slope. The results also show that every individual slope is

16.4. SUMMARY 357

believably different from zero, as is the estimate of the group average slope.
The four rats in this experiment had remarkably similar clearance rates. In many realms

of research, there is much more variation between subjects.Suppose that different rats
had very different clearance rates, with some faster and some slower thanthe rats reported
here, such that the group-average clearance rate was about the same. What aspects of the
posterior would be most affected by the increase in variability of individual slopes? Would
the certainty of individual slope estimates be much affected? Would the certainty of the
group-average slope be much affected? Exercise 16.1 has you systematically alter the data,
to answer these questions. It is also a good intuition-stretching exercise to consider the
influence of differing individual intercepts. In particular, without changing the individual
slopes, but merely by changing the individual intercepts, the estimate of the group-average
slope can be affected. See Exercise 16.2.

The data in this example were very well behaved, insofar as there were no blatantly
outlying data points. Specifically, within each individual, all the values descended in a
reasonably linear trend. And, across subjects, all the individual slopes were reasonably
similar to each other, with no subjects who had clearance rates much faster or much slower
than the others. With a larger sample, however, outlying subjects might be encountered.
And there is always the chance that device malfunctions or transcription errors could be
inadvertently introduced into individual data points. Whenever there is reason to believe
that outliers may be lurking in the data,t distributions can be substituted for the normal
distributions at the appropriate level. Exercise 16.3 shows an example of outlying slopes
and intercepts, involving income and family size.

16.4 Summary

This chapter explained Bayesian simple linear regression,where “simple” means it involves
a single predictor. There were several main points:

• Prediction ofy from x does not imply or assume any particular causal or temporal
relation betweeny andx.

• The usual model for linear regression assumes homogeneity of variance: The vari-
ance ofy is the same at all values ofx.

• It is typical, but not necessary, to put normal priors on the intercept and slope param-
eters in the linear regression model.

• To make MCMC sampling efficient, it is helpful to standardize they andx data, and
to initialize the chains at the MLE values.

• Posterior predictions are useful for predictingy values fromx values, especially when
extrapolating or interpolating to novelx values. Posterior predictions are also useful
for checking whether there are systematic discrepancies ofthe data from the predic-
tions of the model.

• It is straightforward to extend the model to situations withrepeated measures, in
which every individual has data estimated by simple linear regression, and overarch-
ing parameters describe the distribution of slope, intercept, and precision parameters
of the group.

358 CHAPTER 16. METRIC Y, ONE METRIC X

• When there are outliers in repeated measures from an individual, or in the distribution
of parameters across individuals, at distribution may be used instead of a normal
distribution.

In the next chapter, we introduce additional predictors into the model, and explore the
concept of interaction across predictors.

16.5 R code

16.5.1 Data generator for height and weight

(HtWtDataGenerator.R)

1 HtWtDataGenerator = function(nSubj , rndsd=NULL) {

2 # Random height, weight generator for males and females. Uses parameters from

3 # Brainard, J. & Burmaster, D. E. (1992). Bivariate distributions for height and

4 # weight of men and women in the United States. Risk Analysis, 12(2), 267-275.

5 # John K. Kruschke, January 2008.

6

7 require(MASS)

8

9 # Specify parameters of multivariate normal (MVN) distributions.

10 # Men:

11 HtMmu = 69.18

12 HtMsd = 2.87

13 lnWtMmu = 5.14

14 lnWtMsd = 0.17

15 Mrho = 0.42

16 Mmean = c(HtMmu , lnWtMmu)

17 Msigma = matrix(c(HtMsdˆ2 , Mrho * HtMsd * lnWtMsd ,

18 Mrho * HtMsd * lnWtMsd , lnWtMsdˆ2) , nrow=2)

19 # Women cluster 1:

20 HtFmu1 = 63.11

21 HtFsd1 = 2.76

22 lnWtFmu1 = 5.06

23 lnWtFsd1 = 0.24

24 Frho1 = 0.41

25 prop1 = 0.46

26 Fmean1 = c(HtFmu1 , lnWtFmu1)

27 Fsigma1 = matrix(c(HtFsd1ˆ2 , Frho1 * HtFsd1 * lnWtFsd1 ,

28 Frho1 * HtFsd1 * lnWtFsd1 , lnWtFsd1ˆ2) , nrow=2)

29 # Women cluster 2:

30 HtFmu2 = 64.36

31 HtFsd2 = 2.49

32 lnWtFmu2 = 4.86

33 lnWtFsd2 = 0.14

34 Frho2 = 0.44

35 prop2 = 1 - prop1

36 Fmean2 = c(HtFmu2 , lnWtFmu2)

37 Fsigma2 = matrix(c(HtFsd2ˆ2 , Frho2 * HtFsd2 * lnWtFsd2 ,

38 Frho2 * HtFsd2 * lnWtFsd2 , lnWtFsd2ˆ2) , nrow=2)

39

40 # Randomly generate data values from those MVN distributions.

41 if (!is.null(rndsd)) { set.seed(rndsd) }

42 datamatrix = matrix(0 , nrow=nSubj , ncol=3)

43 colnames(datamatrix) = c("male" , "height" , "weight")

44 maleval = 1 ; femaleval = 0 # arbitrary coding values

16.5. R CODE 359

45 for (i in 1:nSubj) {

46 # Flip coin to decide sex

47 sex = sample(c(maleval,femaleval) , size=1 , replace=TRUE , prob=c(.5,.5))

48 if (sex == maleval) {

49 datum = mvrnorm(n = 1, mu=Mmean, Sigma=Msigma) }

50 if (sex == femaleval) {

51 Fclust = sample(c(1,2) , size=1 , replace=TRUE , prob=c(prop1,prop2))

52 if (Fclust == 1) {

53 datum = mvrnorm(n = 1, mu=Fmean1, Sigma=Fsigma1) }

54 if (Fclust == 2) {

55 datum = mvrnorm(n = 1, mu=Fmean2, Sigma=Fsigma2) }

56 }

57 datamatrix[i ,] = c(sex , round(c(datum[1] , exp(datum[2])) , 1))

58 }

59

60 return(datamatrix)

61 } # end function

16.5.2 BRugs: Robust linear regression

(SimpleRobustLinearRegressionBrugs.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

4 # A Tutorial with R and BUGS. Academic Press / Elsevier.

5 #--

6 # THE MODEL.

7 modelstring = "

8 # BUGS model specification begins here...

9 model {

10 for(i in 1 : Ndata) {

11 y[i] ˜ dt(mu[i] , tau , tdf)

12 mu[i] <- beta0 + beta1 * x[i]

13 }

14 beta0 ˜ dnorm(0 , 1.0E-12)

15 beta1 ˜ dnorm(0 , 1.0E-12)

16 tau ˜ dgamma(0.001 , 0.001)

17 udf ˜ dunif(0,1)

18 tdf <- 1 - tdfGain * log(1-udf) # tdf in [1,Inf).

19 # tdfGain specified in data section

20 }

21 # ... end BUGS model specification

22 " # close quote for modelstring

23 writeLines(modelstring,con="model.txt")

24 modelCheck("model.txt")

25

26 #--

27 # THE DATA.

28

29 cigData = read.csv(file="McIntyre1994data.csv")

30 nSubj = NROW(cigData)

31 x = cigData[,"Wt"]

32 xName="Weight"

33 y = cigData[,"Tar"]

34 yName="Tar"

35

36 # Re-center data at mean, to reduce autocorrelation in MCMC sampling.

37 # Standardize (divide by SD) to make initialization easier.

360 CHAPTER 16. METRIC Y, ONE METRIC X

38 xM = mean(x) ; xSD = sd(x)

39 yM = mean(y) ; ySD = sd(y)

40 zx = (x - xM) / xSD

41 zy = (y - yM) / ySD

42

43 # Specify data, as a list.

44 tdfGain = 1 # 1 for low-baised tdf, 100 for high-biased tdf

45 datalist = list(

46 x = zx ,

47 y = zy ,

48 Ndata = nSubj ,

49 tdfGain = tdfGain

50)

51 # Get the data into BRugs:

52 modelData(bugsData(datalist))

53

54 #--

55 # INTIALIZE THE CHAINS.

56

57 nchain = 3

58 modelCompile(numChains = nchain)

59

60 genInitList <- function() {

61 r = cor(x,y)

62 list(

63 beta0 = 0 , # because data are standardized

64 beta1 = r , # because data are standardized

65 tau = 1 / (1-rˆ2) , # because data are standardized

66 udf = 0.95 # tdf = 4

67)

68 }

69 for (chainIdx in 1 : nchain) {

70 modelInits(bugsInits(genInitList))

71 }

72

73 #--

74 # RUN THE CHAINS

75

76 # burn in

77 BurnInSteps = 100

78 modelUpdate(BurnInSteps)

79 # actual samples

80 samplesSet(c("beta0" , "beta1" , "tau" , "tdf"))

81 stepsPerChain = ceiling(10000/nchain)

82 thinStep = 10

83 modelUpdate(stepsPerChain , thin=thinStep)

84

85 #--

86 # EXAMINE THE RESULTS

87

88 source("plotChains.R")

89

90 fname = paste("SimpleRobustLinearRegressionBrugsTdfGain",tdfGain,

91 sep="")

92 #beta0Sum = plotChains("beta0" , saveplots=F , filenameroot=fname)

93 #beta1Sum = plotChains("beta1" , saveplots=F , filenameroot=fname)

94 #tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)

95 #tdfSum = plotChains("tdf" , saveplots=F , filenameroot=fname)

96

16.5. R CODE 361

97 # Extract chain values:

98 tdfSamp = samplesSample("tdf")

99 tdfM = mean(tdfSamp)

100 z0 = samplesSample("beta0")

101 z1 = samplesSample("beta1")

102 zTau = samplesSample("tau")

103 zSigma = 1 / sqrt(zTau) # Convert precision to SD

104

105 # Convert to original scale:

106 b1 = z1 * ySD / xSD

107 b0 = (z0 * ySD + yM - z1 * ySD * xM / xSD)

108 sigma = zSigma * ySD

109

110 # Posterior prediction:

111 # Specify x values for which predicted y’s are needed:

112 xRang = max(x)-min(x)

113 yRang = max(y)-min(y)

114 limMult = 0.25

115 xLim= c(min(x)-limMult*xRang , max(x)+limMult*xRang)

116 yLim= c(min(y)-limMult*yRang , max(y)+limMult*yRang)

117 yLim = c(-10,35)

118 xPostPred = seq(xLim[1] , xLim[2] , length=20)

119 # Define matrix for recording posterior predicted y values at each x value.

120 # One row per x value, with each row holding random predicted y values.

121 postSampSize = length(b1)

122 yPostPred = matrix(0 , nrow=length(xPostPred) , ncol=postSampSize)

123 # Define matrix for recording HDI limits of posterior predicted y values:

124 yHDIlim = matrix(0 , nrow=length(xPostPred) , ncol=2)

125 # Generate posterior predicted y values.

126 # This gets only one y value, at each x, for each step in the chain.

127 for (chainIdx in 1:postSampSize) {

128 yPostPred[,chainIdx] = rnorm(length(xPostPred) ,

129 mean = b0[chainIdx] + b1[chainIdx] * xPostPred ,

130 sd = rep(sigma[chainIdx] , length(xPostPred)))

131 }

132 source("HDIofMCMC.R")

133 for (xIdx in 1:length(xPostPred)) {

134 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])

135 }

136

137 # Display believable beta0 and b1 values

138 windows()

139 par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))

140 #layout(matrix(1:2,nrow=1))

141 thinIdx = seq(1,length(b0),length=700)

142 #plot(z1[thinIdx] , z0[thinIdx] , cex.lab=1.75 ,

143 # ylab="Standardized Intercept" , xlab="Standardized Slope")

144 plot(b1[thinIdx] , b0[thinIdx] , cex.lab=1.75 ,

145 ylab="Intercept" , xlab="Slope")

146 dev.copy2eps(file=paste(fname,"SlopeIntercept.eps",sep=""))

147

148 # Display the posterior of the b1:

149 source("plotPost.R")

150 windows(7,4)

151 par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))

152 #layout(matrix(1:2,nrow=1))

153 #histInfo = plotPost(z1 , xlab="Standardized slope" , compVal=0.0 ,

154 # breaks=30)

155 histInfo = plotPost(b1 , main=bquote("Mean tdf"==.(signif(tdfM,3))) , cex.main=2 ,

362 CHAPTER 16. METRIC Y, ONE METRIC X

156 xlab=bquote("Slope (" * Delta * .(yName) / Delta * .(xName)

157 * ")") , compVal=0.0 , breaks=30)

158 dev.copy2eps(file=paste(fname,"PostSlope.eps",sep=""))

159

160 # Display data with believable regression lines and posterior predictions.

161 windows()

162 par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))

163 # Plot data values:

164 plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,

165 xlab=xName , ylab=yName , cex.lab=1.5 ,

166 main="Data with credible regression lines" , cex.main=1.33)

167 # Superimpose a smattering of believable regression lines:

168 for (i in seq(from=1,to=length(b0),length=50)) {

169 abline(b0[i] , b1[i] , col="grey")

170 }

171 dev.copy2eps(file=paste(fname,"DataLines.eps",sep=""))

172

173 # Display data with HDIs of posterior predictions.

174 windows()

175 par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))

176 # Plot data values:

177 #yLim= c(min(c(yHDIlim,y)) , max(c(yHDIlim,y)))

178 plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,

179 xlab=xName , ylab=yName , cex.lab=1.5 ,

180 main="Data with 95% HDI & Mean of Posterior Predictions" , cex.main=1.33)

181 # Superimpose posterior predicted 95% HDIs:

182 segments(xPostPred, yHDIlim[,1] , xPostPred, yHDIlim[,2] , lwd=3, col="grey")

183 points(xPostPred , rowMeans(yPostPred) , pch="+" , cex=2 , col="grey")

184 dev.copy2eps(file=paste(fname,"DataPred.eps",sep=""))

185

186 #--

16.5.3 BRugs: Simple linear regression with repeated measures

(SimpleLinearRegressionRepeatedBrugs.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

4 # A Tutorial with R and BUGS. Academic Press / Elsevier.

5 #--

6 # THE MODEL.

7 modelstring = "

8 model {

9 for(r in 1 : Ndata) {

10 y[r] ˜ dnorm(mu[r] , tau[subj[r]])

11 mu[r] <- b0[subj[r]] + b1[subj[r]] * x[r]

12 }

13 for (s in 1 : Nsubj) {

14 b0[s] ˜ dnorm(mu0G , tau0G)

15 b1[s] ˜ dnorm(mu1G , tau1G)

16 tau[s] ˜ dgamma(sG , rG)

17 }

18 mu0G ˜ dnorm(0,.01)

19 tau0G ˜ dgamma(.1,.1)

20 mu1G ˜ dnorm(0,.01)

21 tau1G ˜ dgamma(.1,.1)

22 sG <- pow(m,2)/pow(d,2)

23 rG <- m/pow(d,2)

16.5. R CODE 363

24 m ˜ dgamma(1,.1)

25 d ˜ dgamma(1,.1)

26 }

27 " # close quote for modelstring

28 writeLines(modelstring,con="model.txt")

29 modelCheck("model.txt")

30

31 #--

32 # THE DATA.

33

34 # Data from H. A. Feldman, 1988, Table 4, p. 1731.

35 # Columns are "group" , "subjID" , "time" , "retention"

36 source("Feldman1988Table4data.R")

37 # Remove missing data:

38 includeRowVec = is.finite(Feldman1988Table4data[,"retention"])

39 dataMat = Feldman1988Table4data[includeRowVec ,]

40 # Retain only the Group 1 (lung) data:

41 dataMat = dataMat[dataMat[,"group"]==1 ,]

42 # Convert to log10(retention):

43 dataMat[,"retention"] = log10(dataMat[,"retention"])

44 # Column names and plot labels

45 yColName = "retention" ; yPlotLab = "log10 Retention"

46 xColName = "time" ; xPlotLab = "Day"

47 subjColName = "subjID" ; subjPlotLab = "Subject"

48 fname = "SimpleLinearRegressionRepeatedBrugs"

49

50 if (F) { # change to T to use income data instead of contam.retention data.

51 # Data from http://www.census.gov/hhes/www/income/statemedfaminc.html

52 # Downloaded Dec. 06, 2009.

53 load("IncomeFamszState.Rdata") # loads IncomeFamszState

54 dataMat = IncomeFamszState

55 yColName="Income" ; yPlotLab = "Income"

56 xColName="Famsz" ; xPlotLab="Family Size"

57 subjColName="State" ; subjPlotLab="State"

58 fname = "IncomeFamszState"

59 }

60

61 # Extract data info to pass to BUGS:

62 Ndata = NROW(dataMat)

63 subj = as.integer(factor(dataMat[,subjColName]))

64 Nsubj = length(unique(subj))

65 x = as.numeric(dataMat[,xColName])

66 y = as.numeric(dataMat[,yColName])

67

68 # Re-center data at mean, to reduce autocorrelation in MCMC sampling.

69 # Standardize (divide by SD) to make initialization easier.

70 xM = mean(x) ; xSD = sd(x)

71 yM = mean(y) ; ySD = sd(y)

72 zx = (x - xM) / xSD

73 zy = (y - yM) / ySD

74

75 # Specify data, as a list.

76 datalist = list(

77 Ndata = Ndata ,

78 Nsubj = Nsubj ,

79 subj = subj ,

80 x = zx ,

81 y = zy

82)

364 CHAPTER 16. METRIC Y, ONE METRIC X

83 # Get the data into BRugs:

84 modelData(bugsData(datalist))

85

86 #--

87 # INTIALIZE THE CHAINS.

88

89 nchain = 3

90 modelCompile(numChains = nchain)

91

92 genInitList <- function() {

93 b0 = b1 = tau = rep(0,length=Nsubj)

94 for (sIdx in 1:Nsubj) {

95 yVec = datalist$y[datalist$subj==sIdx]

96 xVec = datalist$x[datalist$subj==sIdx]

97 lmInfo = lm(yVec ˜ xVec)

98 b0[sIdx] = lmInfo$coef[1]

99 b1[sIdx] = lmInfo$coef[2]

100 tau[sIdx] = length(yVec) / sum(lmInfo$resˆ2)

101 }

102 mu0G = mean(b0)

103 tau0G = 1/sd(b0)ˆ2

104 mu1G = mean(b1)

105 tau1G = 1/sd(b1)ˆ2

106 m = mean(tau)

107 d = sd(tau)

108 list(b0=b0 , b1=b1 , tau=tau ,

109 mu0G=mu0G , tau0G=tau0G ,

110 mu1G=mu1G , tau1G=tau1G ,

111 m=m , d=d)

112 }

113 for (chainIdx in 1 : nchain) {

114 modelInits(bugsInits(genInitList))

115 }

116

117 #--

118 # RUN THE CHAINS

119

120 # burn in

121 BurnInSteps = 500

122 modelUpdate(BurnInSteps)

123 # actual samples

124 samplesSet(c("b0","b1","tau" , "mu0G","tau0G", "mu1G","tau1G", "m","d"))

125 stepsPerChain = ceiling(5000/nchain)

126 thinStep = 100 # 40 or more

127 modelUpdate(stepsPerChain , thin=thinStep)

128

129 #--

130 # EXAMINE THE RESULTS

131

132 source("plotChains.R")

133 source("plotPost.R")

134

135 # Check convergence and autocorrelation:

136 checkConvergence = T # check this first time through, examine m,d,tau0G,tau1G

137 if (checkConvergence) {

138 # check a few selected chains

139 b01Sum = plotChains("b0[1]" , saveplots=F , filenameroot=fname)

140 b11Sum = plotChains("b1[1]" , saveplots=F , filenameroot=fname)

141 tau1Sum = plotChains("tau[1]" , saveplots=F , filenameroot=fname)

16.5. R CODE 365

142 mu0GSum = plotChains("mu0G" , saveplots=F , filenameroot=fname)

143 tau0GSum = plotChains("tau0G" , saveplots=F , filenameroot=fname)

144 mu1GSum = plotChains("mu1G" , saveplots=F , filenameroot=fname)

145 tau1GSum = plotChains("tau1G" , saveplots=F , filenameroot=fname)

146 mSum = plotChains("m" , saveplots=F , filenameroot=fname)

147 dSum = plotChains("d" , saveplots=F , filenameroot=fname)

148 }

149

150 # Extract chain values for subsequent examination:

151 zmu0Gsamp = samplesSample("mu0G")

152 zmu1Gsamp = samplesSample("mu1G")

153 zb0samp = NULL

154 zb1samp = NULL

155 for (subjIdx in 1:Nsubj) {

156 zb0samp = rbind(zb0samp , samplesSample(paste("b0[",subjIdx,"]",sep="")))

157 zb1samp = rbind(zb1samp , samplesSample(paste("b1[",subjIdx,"]",sep="")))

158 }

159

160 # Convert to original scale:

161 mu0Gsamp = zmu0Gsamp * ySD + yM - zmu1Gsamp * ySD * xM / xSD

162 mu1Gsamp = zmu1Gsamp * ySD / xSD

163 b1samp = zb1samp * ySD / xSD

164

165 # Display believable intercept and slope values

166 windows(10,5.5)

167 par(mar=c(4,4,1.75,1)+0.1 , mgp=c(2.5,0.8,0))

168 layout(matrix(1:2,nrow=1))

169 thinIdx = round(seq(1,length(mu0Gsamp),length=700))

170 plot(zmu1Gsamp[thinIdx] , zmu0Gsamp[thinIdx] , cex.lab=1.75 ,

171 ylab="Standardized Intercept" , xlab="Standardized Slope")

172 plot(mu1Gsamp[thinIdx] , mu0Gsamp[thinIdx] , cex.lab=1.0 ,

173 ylab=paste("Intercept (",yPlotLab," when ",xPlotLab," =0)",sep="") ,

174 xlab=paste("Slope (change in",yPlotLab,"per unit",xPlotLab,")"))

175 dev.copy2eps(file=paste(fname,"SlopeIntercept.eps",sep=""))

176

177 # Make graphs of data and corresponding believable slopes:

178 windows(12,6)

179 par(mar=c(4,4,1.75,1)+0.1 , mgp=c(2.5,0.8,0))

180 layout(matrix(c(1:5,1:5,6:10),nrow=3,byrow=T))

181 xlims = c(min(dataMat[,xColName]) , max(dataMat[,xColName]))

182 ylims = c(min(dataMat[,yColName]) , max(dataMat[,yColName]))

183 sIdVec = unique(dataMat[,subjColName])

184 # Plot data of individual subjects:

185 nSubjPlots = 4 # number of representative subject plots to make

186 subjIdxVec = round(seq(1,length(sIdVec),length=nSubjPlots))

187 for (sIdx in subjIdxVec) {

188 rVec = (dataMat[,subjColName] == sIdVec[sIdx])

189 plot(dataMat[rVec,xColName] , dataMat[rVec,yColName] , type="o" ,

190 ylim=ylims , ylab=yPlotLab , xlab=xPlotLab , cex.lab=1.5 ,

191 pch=sIdx%%26 , lty=sIdx , main=bquote(.(subjPlotLab) *" "* .(sIdx)) ,

192 cex.main=1.75)

193 }

194 # Plot data of all subjects superimposed

195 plot(NULL,NULL, xlab=xPlotLab,xlim=xlims , ylab=yPlotLab,ylim=ylims ,

196 cex.lab=1.5 , main=paste("All ",subjPlotLab,"s",sep="") , cex.main=1.75)

197 for (sIdx in 1:length(sIdVec)) {

198 rVec = (dataMat[,subjColName] == sIdVec[sIdx])

199 lines(dataMat[rVec,xColName] , dataMat[rVec,yColName] ,

200 lty=sIdx , pch=sIdx%%26 , type="o")

366 CHAPTER 16. METRIC Y, ONE METRIC X

201 }

202 # Plot histograms of corresponding posterior slopes:

203 for (sIdx in subjIdxVec) {

204 histInfo = plotPost(b1samp[sIdx,] , xlab="Slope" , compVal=0.0 , breaks=30 ,

205 HDItextPlace=0.9)

206 }

207 histInfo = plotPost(mu1Gsamp , xlab="Slope, Group Level" , compVal=0.0 ,

208 breaks=30 , HDItextPlace=0.9)

209 dev.copy2eps(file=paste(fname,"Data.eps",sep=""))

210

211 #--

16.6 Exercises

Exercise 16.1.[Purpose: See the influence of individual slope differences on the estimate of the group-

average slope.]

The data shown in Figure 16.10 indicate that all subjects hadsimilar rates of decline in
retention, and therefore the estimate of the group average is fairly certain. In this exercise
we change the data so that the individual slopes differ more dramatically, and examine the
effect on the estimate of the group average.

(A) Alter the data as follows: In the program listed in Section 16.5.3
(SimpleLinearRegressionRepeatedBrugs.R), just before the data are renamed fromdataMat
to x andy (at about line 65), subtract.030x from subject 1, subtract.015x from subject 2,
do nothing to subject 3, and add.015x to subject 4. Here is an example of code for subject
1:
subjRowVec = (dataMat[,subjColName] == 1)

dataMat[subjRowVec , yColName] = (dataMat[subjRowVec , yColName]

- .030 * dataMat[subjRowVec , xColName])

Just repeat and modify for the remaining subjects. Run the program and include the plot of
the data. (See Figure 16.12.) The data curves for the four subjects should have four very
different slopes.

(B) Relative to the original data, has the posterior mean of the group slopes gotten far-
ther away from zero or closer to zero? Include the histogram of the posterior in your write-
up. Are all the individual slopes believably different from zero (according to the 95% HDI)?
Is the group slope believably different from zero (according to the 95% HDI)?Why is the
group-level slope, which is now farther away from zero on average, less believably different
from zero than in the original data?

Exercise 16.2. [Purpose: See the influence of differences inindividual intercepts on the estimate of

group-average slope.]

The data shown in Figure 16.10 all start at 2.0 because that islog10(100), and the data
were measured aspercentageof original value. Suppose that the data were kept in their
raw magnitudes, instead of converted to percentage of first magnitude. This would merely
change the intercepts of the individual data curves, without changing their slopes, because
log(ky) = log(k) + log(y). In this exercise we find out whether this change would have any
effect on the estimate of the group slope.

(A) Alter the data as follows: In the program listed in Section 16.5.3
(SimpleLinearRegressionRepeatedBrugs.R), right beforethe data are converted to log10 on
line 42, insert this code:

16.6. EXERCISES 367

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

Subject 1

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

Subject 2

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

Subject 3

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

Subject 4

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
0

1.
5

2.
0

All Subjects

Day

lo
g1

0
R

et
en

tio
n

Slope
−0.05 −0.03 −0.01

mean = −0.0464

100% <= 0 < 0%

95% HDI
−0.051 −0.0419

Slope
−0.04 −0.03 −0.02 −0.01 0.00

mean = −0.0281

100% <= 0 < 0%

95% HDI
−0.0327 −0.0233

Slope
−0.025 −0.015 −0.005

mean = −0.0178

100% <= 0 < 0%

95% HDI
−0.0227 −0.0127

Slope
−0.015 −0.005

mean = −0.00686

99.5% <= 0 < 0.5%

95% HDI
−0.0121 −0.00154

Slope, Group Level
−0.25 −0.15 −0.05 0.05

mean = −0.0246

96.2% <= 0 < 3.8%

95% HDI
−0.0537 0.0027

Figure 16.12: For exercise 16.1. Contaminant-retention data with greater varia-
tion of individual slopes. Notice the posterior on the group-level slope parameter.
Compare with Figure 16.10.

for (subjIdx in 1:4) {
rowIdx = (dataMat[,"subjID"] == subjIdx)

dataMat[rowIdx,"retention"] = dataMat[rowIdx,"retention"] * 10ˆ(subjIdx-1)

}
Run the program and include the plot of the data. (See Figure 16.13.) The data curves for
the four subjects should have four very different intercepts.

(B) Relative to the original data, are the estimates of the individual slopes different?
Relative to the original data, is the posterior mean of the estimatedgroup slope different?
Include the histogram of the posterior of the group slope. Isthe group slope believably
different from zero (according to the 95% HDI)?Why is the group-level slope less believably
different from zero, compared to the original data?(Hint: The individual intercepts affect
the certainty of the group-average intercept. The group-average intercept trades off with the
group-average slope; consider scatterplots ofmu0G andmu1G.)

Exercise 16.3.[Purpose: Real data for repeated measures of individual regression, with an outlying

individual and non-linear trend.] Suppose we are interested in whether families with more
members have higher incomes. The U.S. Census Bureau has published data that indicate
the median family income as a function of number of persons inthe family, for all 50 states
and the District of Columbia and Puerto Rico. The data are plotted in Figure 16.14, p. 369.

(A) Run the program of Section 16.5.3 (SimpleLinearRegressionRepeatedBrugs.R) with
the income data. Examine the data section of the program, andyou will find that the nec-
essary lines of code are already available. The program should generate a figure much like
Figure 16.14, p. 369.

(B) There is suggestion of outliers in these data. One curve (forPuerto Rico), falls
barely above 20,000, which is far lower than all the others. This suggests a outlier for the
distribution of intercepts. Some single data points fall far from the individual linear trends.
For example, the 6-person family in the District of Columbiahas an income of only about

368 CHAPTER 16. METRIC Y, ONE METRIC X

0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Subject 1

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Subject 2

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Subject 3

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Subject 4

Day

lo
g1

0
R

et
en

tio
n

0 5 10 15 20 25 30

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

All Subjects

Day

lo
g1

0
R

et
en

tio
n

Slope
−0.04 −0.03 −0.02 −0.01 0.00

mean = −0.0167

100% <= 0 < 0%

95% HDI
−0.025 −0.00875

Slope
−0.03 −0.02 −0.01 0.00

mean = −0.0133

100% <= 0 < 0%

95% HDI
−0.0213 −0.00526

Slope
−0.03 −0.02 −0.01 0.00

mean = −0.0177

100% <= 0 < 0%

95% HDI
−0.0258 −0.00954

Slope
−0.04 −0.02 0.00

mean = −0.0215

100% <= 0 < 0%

95% HDI
−0.0306 −0.0132

Slope, Group Level
−0.3 −0.1 0.0 0.1 0.2

mean = −0.0172

85.3% <= 0 < 14.7%

95% HDI
−0.0596 0.0254

Figure 16.13: For exercise 16.2. Contaminant-retention data with greater variation
of individual intercepts. Notice the posterior on the group-level slope parameter.
Compare with Figure 16.10.

30,000, whereas the 5-person family has an income of over 80,000. This suggests an outlier
for points around linear trends. Finally, some individual slopes seem might be quite steep
compared to others. For example, the income in Hawaii rises about $50,000 from 2-person
to 7-person families. This increase might or might not be an outlier relative to other states.
Which distributions in the hierarchical model of Figure 16.11 should be changed tot distri-
butions to address these outliers? Change the model specification to accommodate theset
distributions. Use the example in Section 16.5.2 (SimpleRobustLinearRegressionBrugs.R) as
a guide. Report your model specification in your write-up. Show the posterior estimate of
the intercept of Puerto Rico for small-df t bias and for large-df t bias. Show the posterior
estimate of the slope of Hawaii for small-df t bias and for large-df t bias.

(C) The data also suggest a non-linear trend in the data. Incomesappear to rise for 2,
3, and 4-person families, but then level off and decline as family size gets larger. Include
in the original (non-t) model another term that can capture “quadratic curvature”in the
income level:µ = β0 + β1x+ β2x2. The prior onβ2 is analogous to the prior onβ1. Is the
group-average estimate of curvature credibly non-zero?

16.6. EXERCISES 369

2 3 4 5 6 7

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00 State 1

Family Size

In
co

m
e

2 3 4 5 6 7

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00 State 18

Family Size

In
co

m
e

2 3 4 5 6 7

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00 State 35

Family Size

In
co

m
e

2 3 4 5 6 7

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00 State 52

Family Size

In
co

m
e

2 3 4 5 6 7

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00 All States

Family Size
In

co
m

e

Slope
−2000 0 2000 4000

mean = 1110

17.1% <= 0 < 82.9%

95% HDI
−1080 3420

Slope
−2000 0 2000 4000 6000

mean = 2050

2.9% <= 0 < 97.1%

95% HDI
36.1 4360

Slope
−4000 0 2000 4000

mean = 833

24.3% <= 0 < 75.7%

95% HDI
−1670 3270

Slope
0 2000 4000 6000

mean = 2800

0.9% <= 0 < 99.1%

95% HDI
538 5200

Slope, Group Level
0 500 1500 2500

mean = 1760

0% <= 0 < 100%

95% HDI
1120 2360

Figure 16.14: For exercise 16.3. The top right graph shows data from 50 states plus
Puerto Rico and the District of Columbia, and the first four panels show data from
four randomly selected individual states. Lower row shows marginal posterior
distribution on the slope parameters.

370 CHAPTER 16. METRIC Y, ONE METRIC X

Chapter 17

Metric Predicted Variable with
Multiple Metric Predictors
Contents

17.1 Multiple linear regression .. 372
17.1.1 The perils of correlated predictors 372
17.1.2 The model and BUGS program 375

17.1.2.1 MCMC efficiency: Standardizing and initializing . . . 376
17.1.3 The posterior: How big are the slopes?376
17.1.4 Posterior prediction . 378

17.2 Hyperpriors and shrinkage of regression coefficients 378
17.2.1 Informative priors, sparse data, and correlated predictors 382

17.3 Multiplicative interaction of metric predictors 383
17.3.1 The hierarchical model and BUGS code 384

17.3.1.1 Standardizing the data and initializing the chains . . . 385
17.3.2 Interpreting the posterior .385

17.4 Which predictors should be included? 388
17.5 R code . 390

17.5.1 Multiple linear regression . 390
17.5.2 Multiple linear regression with hyperprior on coefficients 394

17.6 Exercises . 399

When I was young two plus two equaled four, but
Since I met you things don’t add up no more.
My keel was even before I was kissed, but
Now my predictions all come with a twist.

In this chapter we are concerned with situations such as predicting a person’s college
grade point average (GPA) from his or her high school GPA and scholastic aptitude test
(SAT) score. Another such situation is predicting a person’s blood pressure from his or her
height and weight. In these situations, the value to be predicted is on a metric scale, and
there is more than one predictor, each of which is also on a metric scale.

We will consider models in which the predicted variable is anadditive combination of
predictors, all of which have proportional influence on the prediction. This kind of model
is called “multiple linear regression”, and is listed in Table 14.1 in its first row and third

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

371

372 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

x1
0 2 4 6 8 10

x2

0
2

4
6

8
10

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

x1
0 2 4 6 8 100246810

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

0246810
x2

0 2 4 6 8 10

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

x1
0 2 4 6 8 10

x2

0

2

4

6

8

10

01020304050

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

Figure 17.1: Data,y, that are normally distributed around the values in the plane.
Thex1, x2 values are sampled uniformly and independently of each other, as shown
in the lower-right panel. The panels show different perspectives on the same plane
and data. Notice that when the data are plotted againstx1 (marginalized across
x2), the points appear to rise along with the linear function that generated them.
Compare with Figure 17.2.

column. We will also consider non-additive combinations ofpredictors, which are called
“interactions”.

17.1 Multiple linear regression

Figures 17.1 and 17.2 shows examples of data generated by a model for multiple linear
regression. The model specifies the dependency ofy on x1, x2, but does not specify the
distribution ofx1, x2. At any position,x1, x2, the values ofy are normally distributed in a
vertical direction, centered on the height of the plane at that position. The height of the plane
is a linear combination of thex1, x2 values. Formally,y ∼ N(µ, τ), andµ = β0+β1x1+β2x2.
For a review of how to interpret the coefficients,β0, β1, andβ2, see Figure 14.2, p. 297. The
model assumes homogeneity of variance: At all values ofx1, x2, the variance ofy is the
same.

17.1.1 The perils of correlated predictors

Figures 17.1 and 17.2 show data generated from the same model. All that differs between
them is the distribution ofx1, x2, which is not specified by the model. In Figure 17.1,
the x1, x2 values are distributed uniformly. In Figure 17.2, thex1, x2 values are negatively

17.1. MULTIPLE LINEAR REGRESSION 373

x1
0 2 4 6 8 10

x2

0
2

4
6

8
10

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

x1
0 2 4 6 8 100246810

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

0246810
x2

0 2 4 6 8 10

y

0

10

20

30

40

50

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

x1
0 2 4 6 8 10

x2

0

2

4

6

8

10

01020304050

y ~ N(m,sd=2), m = 10 + 1x1 + 2x2

Figure 17.2: Data,y, that are normally distributed around the values in the plane.
The x1, x2 values are correlated, as shown in the lower-right panel. The panels
show different perspectives on the same plane and data. Notice that when the data
are plotted againstx1 (marginalized acrossx2), the points appear to drop, contrary
to the linear function that generated them. Compare with Figure 17.1.

correlated: Whenx1 is small,x2 tends to be large, and whenx1 is large,x2 tends to be small.
The correlation ofx1 and x2 can lead to misinterpretations of their individual influences
on y. For instance, notice in Figure 17.2 that whenx1 is near zero, then the datay values
are near 30, but whenx1 is near 10, then the datay values are near 20. This observation
that y declines from 30 to 20 might leave them impression that an increase inx1 predicts
a decreasein y. But such an impression is wrong, because the data were generated by a
function thatincreases yasx1 increases; i.e., the coefficientβ1 on x1 is +1. The reason that
they values appear to decline asx1 increases is thatx2 decreases whenx1 decreases, andx2

has an even bigger influence ony thanx1 does.

It is not unusual for predictors to be correlated in real data. For example, consider trying
to predict a state’s average high school SAT scores on the basis of the amount of money the
state spends per pupil. If you plot only mean SAT against money spent, there is actually a
decreasingtrend, as can be seen in the lower left panel of Figure 17.3 (data from Guber,
1999). In other words, SAT scores tend to go down as spending goes up. Guber (1999)
explains how some political commentators have used this sort of evidence to argue against
funding public education.

This negative influence of spending on SAT scores seems quitecounter-intuitive. It
turns out that the trend is an illusion caused by the influenceof another factor, along with
the correlation of spending with that other factor. The other factor is the proportion of
students who take the SAT. Not all students at a high school take the SAT, because the test

374 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

Spend

4

6

8

10

%Take

20

40

60

80

S
A

T
T

800

900

1000

1100

SATT ~ N(m,sd=33.1), m = 994 + 12.4 Spend + −2.86 %Take

Spend
4 6 8 1020406080

S
A

T
T

800

900

1000

1100

46810
%Take

20 40 60 80

S
A

T
T

800

900

1000

1100

Spend
4 6 8 10

%
T

ake

20

40

60

80

80090010001100

Figure 17.3: An example of multiple linear regression with real data. The data
are plotted as dots, and the gridded plane shows the mean of the posterior slopes
and intercept. The four panels show different perspectives on the same data and
plane. “SATT” is the average total SAT score in a state. “%Take” is the percentage
of students in the state who take the SAT. “Spend” is the spending per pupil, in
thousands of dollars.

is used primarily for college entrance applications, and therefore it is primarily students
who intend to apply to college who take the SAT. Most of the topstudents at a high school
will take the SAT, because most of the top students will applyto college. But students who
are weaker academically may be less likely to take the SAT, because they are less likely to
apply to college. Therefore, the more that a high school encourages mediocre students to
take the SAT, lower will be its average SAT score. It turns outthat high schools that spend
more money per pupil also have a much higher proportion of students who take the SAT.
This correlation can be in the lower-right panel of Figure 17.3.

When both predictors, i.e., spending per pupil and percentage of students taking the
SAT, are taken into account, the influence of spending on SAT score is seen to be positive,
not negative. This positive influence of spending can be seenas the positive slope of the
plane along the “Spend” direction in Figure 17.3. The negative influence, of percentage of
students taking the SAT, is also clearly shown. To reiteratethe main point of this example:
It seems that the apparent drop in SAT due to spending is an artifact of spending being cor-
related with the percentage of students taking the SAT, withthe latter having a whoppingly
negative influence on SAT scores.

The separate influences of the two predictors could be assessed in this example because
the predictors had only mild correlation with each other. There was enough independent
variation of the two predictors that their distinct relationships to the outcome variable could

17.1. MULTIPLE LINEAR REGRESSION 375

Figure 17.4: Hierarchical diagram for multiple linear regression. (In general, the
slope parameters,β j , may have different priors, instead of the same prior repeated
for every j as is shown here for simplicity.)

be detected. In some situations, however, the predictors are so tightly correlated that their
distinct effects are difficult to tease apart. Correlation of predictors causes the estimates of
their regression coefficients to trade off, as we will see when examine the model and its
posterior estimates.

17.1.2 The model and BUGS program

The hierarchical diagram for multiple linear regression isshown in Figure 17.4. It is merely
a direct expansion of the one for simple linear regression (which appeared in Figure 16.3,
p. 346). Instead of just one slope coefficient for a single predictor, there is another slope
coefficient for every one of the multiple regressors. For every coefficient, the prior is normal,
just as shown in Figure 16.3.

As usual, the BUGS model specification has a line of code for every ar-
row in the hierarchical diagram. The model specification looks like this:
(MultipleLinearRegressionBrugs.R)

11 model {

12 for(i in 1 : nData) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- b0 + inprod(b[] , x[i,])

15 }

16 tau ˜ dgamma(.01,.01)

17 b0 ˜ dnorm(0,1.0E-12)

18 for (j in 1:nPredictors) {

19 b[j] ˜ dnorm(0,1.0E-12)

20 }

21 }

Notice that what is written in mathematical notation asµi = β0 +
∑

j β j xi j is expressed
in BUGS on line 14 by using the BUGSinprod function. Theinprod function is named
for the mathematical “inner product” of two vectors. The function takes two vectors and
returns the sum of their component-by-component products.Thus, for two vectors,v
and w, the inner productinprod(v[1:n],w[1:n]) is

∑ j=n
j=1 v jw j . In BUGS, we do not need

376 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

to specify the range of indices for the vector when it is on theright side of an assign-
ment operator, and we intend to use all components of the vector. But in BUGS we do
need to include the square brackets so that BUGS knows that the variable is a vector.
If we wanted to be completely explicit, we could write the inner product in line 14 as
inprod(b[1:nPredictors] , x[i,1:nPredictors]). The complete program is listed in Sec-
tion 17.5.1 (MultipleLinearRegressionBrugs.R).

The BUGS model specification happens to put the same prior on every slope parameter.
This equivalence is applied as a generic convenience, but itis not required. Indeed, if
there is prior information that suggests different priors on different predictors, then the prior
knowledge should be respected.

17.1.2.1 MCMC efficiency: Standardizing and initializing

As described previously in Section 16.1.1.1 (p. 347), the MCMC sampling can be made
much more efficient if the data are standardized. Standardizing each variable is straight
forward. The MCMC sampling then finds regression coefficients that are appropriate for
the standardized data. We would like to transform the parameters to the corresponding
values that are appropriate to the original, nonstandardized scores. This can be done by
generalizing Equation 16.2 to multiple predictors:

zŷ = ζ0 +
∑

j

ζ jzxj

(

ŷ− My

)

SDy
= ζ0 +

∑

j

ζ j

(

x j − Mxj

)

SDxj

ŷ = ζ0SDy + My −
∑

j

ζ jSDyMxj/SDxj

︸ ︷︷ ︸

β0

+
∑

j

ζ jSDy/SDxj
︸ ︷︷ ︸

β j

x j (17.1)

The estimate ofσy is merelyσzySDy.
Even after standardizing, it can also help to start the chains near their posterior credible

values. To do this, we use the built in linear model function of R, calledlm. There is no
need to delve into the inner workings oflm, but suffice it to say that it returns the maximum-
likelihood estimate (MLE) of the intercept and slope coefficients, in raw scales. These raw-
scale slope coefficients can be easily converted to standardized scales, and used to initialize
the chains. In conclusion, the standardization of the data makes the chain efficient and less
autocorrelated once it reaches the modal region of the posterior, and the initialization at the
MLE implies that the burn-in period is minimal.

17.1.3 The posterior: How big are the slopes?

Figure 17.5 shows the posterior distribution the results from the SAT data in Figure 17.3
and model in Figure 17.4. You can see that the slope on Spending is credibly well above
zero, with a mean slope of about 12.3, which suggests that SATscores rise by about 12.3
points for every extra $1,000 spent per pupil. The slope on Percentage taking the SAT is
also credibly non-zero, with a mean of -2.85, which suggeststhat SAT scores fall by about
2.85 points for every additional 1% of students who take the test.

The scatter plots in the bottom of Figure 17.5 show correlations among the credible
parameter values. In particular, the lower-right scatter plots show that the coefficient for

17.1. MULTIPLE LINEAR REGRESSION 377

σy

Sigma Value
25 30 35 40 45

mean = 33

95% HDI
26.9 40.3

SATT at x = 0

Intercept Value
900 950 1000 1050

mean = 994

95% HDI
951 1040

∆SATT ∆Spend

Slope Value
0 5 10 15 20 25 30

mean = 12.3

0.3% <= 0 < 99.7%

95% HDI
3.69 20.7

∆SATT ∆PrcntTake

Slope Value
−3 −2 −1 0

mean = −2.85

100% <= 0 < 0%

95% HDI
−3.28 −2.41

Sigma y

950 1000 1050 −3.4 −3.0 −2.6 −2.2

25
30

35
40

45

95
0

10
00

10
50

Intercept

SlopeSpend

0
5

10
15

20
25

25 30 35 40 45

−
3.

4
−

3.
0

−
2.

6
−

2.
2

0 5 10 15 20 25

SlopePrcntTake

Figure 17.5: Posterior distribution for data in Figure 17.3and model in Fig-
ure 17.4. Upper row indicates HDI’s on regression coefficients. Scatterplots re-
veal correlations among credible parameter values; in particular, the coefficient on
Spending (“SlopeSpend”) trades off with the coefficient on Percentage taking the
SAT (“SlopePrcntTake”), because those predictors are correlated in the data.

Spending trades off with the coefficient on Percentage taking the SAT. The correlation
means that if we believe that the influence of Spending is larger, then we must believe
that the influence of Percentage Taking is smaller, to stay consistent with the data. Con-
versely, if we believe that the influence of Spending is smaller, then we must believe that
the influence of Percentage Taking is larger. This makes sense because those two predictors
are correlated in the data, and therefore the two predictorsare not differentially constraining
the regression coefficients. Think of this simple example for two data points: Supposey = 1
for x1 = 1 andx2 = 1, andy = 2 for x1 = 2 andx2 = 2. The linear model,y = β1x1 + β2x2,
is supposed to satisfy both data points, which implies that 1= β1+ β2. Therefore, to satisfy
the data, it could be thatβ1 = 2 andβ2 = −1, or β1 = 0.5 andβ2 = 0.5, or β1 = 0 and
β2 = 1, etc. In other words, the credible values ofβ1 andβ2 are (anti-)correlated.

One of the benefits of Bayesian analysis is that correlationsof credible parameter val-
ues are explicit in the posterior distribution. Traditional statistical methods provide only a
single “best” (e.g., MLE) parameter value, without indicating the trade offs among param-
eter values. The Bayesian posterior, however, naturally reveals tradeoffs and redundancies
among parameters. It is up to the user to actually look for andinterpret the correlations of

378 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

parameters, of course. Another benefit of Bayesian analysisis that the model doesn’t “ex-
plode” when predictors are correlated. If predictors are correlated, the joint uncertainty in
the regression coefficients is evident in the posterior, but the model happily generates a pos-
terior regardless of correlations in the predictors. The classical, one-best-solution method
is much less robust in the presence of strongly correlated predictors.

17.1.4 Posterior prediction

Often we are interested in using the linear model to predicty values for variousx values.
It is straight forward to generate a large sample of credibley values for specifiedx values.
From the distribution ofy values we can compute the mean and HDI to summarize the
centrally predictedy value and the uncertainty of the prediction. As was the case for simple
linear regression, illustrated back in Figure 16.6, the uncertainty in predictedy is greater for
x values outside the bulk of the data. In other words, extrapolation is more uncertain than
interpolation.

The last part of the code in Section 17.5.1 (MultipleLinearRegressionBrugs.R) carries
out these computations. At every step in the MCMC chain of posterior parameter values,
the program randomly generates ay value based on the linear model. Thex values, for
which posterior predictions are desired, are stored in the matrix xPostPred, one row per
point to be predicted. Thus,xPostPred has as many columns as there are predictors. The
matrix yPostPred also has one row per point to be predicted, with each row containing
randomly generatedy values for the corresponding point. The program generates one y
value per step in the MCMC chain, henceyPostPred has as many columns as the are steps
in the chain. The vectorb0Samp contains posterior values of the intercept,β0, as each step in
the MCMC chain. The vectorbSamp[chainIdx,] contains the slope coefficients,β j , for the
predictors, at one step in the chain. The slope coefficients are forced to be a column vector
by passing them through thecbind function in R. Then the slopes can be multiplied by
the correspondingx values and summed together, simultaneously for all the points, in one
matrix operation:xPostPred %*% cbind(bSamp[chainIdx,]). This matrix operation appears
on line 235 in the following code: (MultipleLinearRegressionBrugs.R)

232 for (chainIdx in 1:chainLength) {

233 yPostPred[,chainIdx] = rnorm(NROW(xPostPred) ,

234 mean = b0Samp[chainIdx]

235 + xPostPred %*% cbind(bSamp[chainIdx,]) ,

236 sd = rep(sigmaSamp[chainIdx] , NROW(xPostPred)))

237 }

Notice that the code loops through every step in the MCMC chain, filling in the yPostPred
matrix one column at a time. The values are generated randomly from a normal distribution,
using thernorm function, with a standard deviation ofsigmaSamp[chainIdx].

17.2 Hyperpriors and shrinkage of regression coefficients

In some research, there are many candidate predictors whichwe suspect could possibly
be informative about the predicted variable. For example, when predicting college GPA,
we might include high school SAT, high school GPA, income of student, income of par-
ents, years of education of the parents, spending per pupil at the student’s high school,
student IQ, student height, weight, shoe size, hours of sleep per night, distance from home

17.2. HYPERPRIORS AND SHRINKAGE OF REGRESSION COEFFICIENTS 379

Figure 17.6: Hierarchical diagram for multiple linear regression, with hyperprior
on slope coefficients across predictors. Compare with Figure 17.4.

to school, amount of caffeine consumed, hours spent studying, hours spend earning a wage,
etc. We can include all the candidate predictors in the model, with a regression coefficient
for every predictor. Should all those regression coefficients be estimatedin isolation from
the others, as in the model of Figure 17.4? Probably not, because we probably have some
prior knowledge that relates the influences of the predictors to each other. If nothing else,
we can at least say that the candidate predictors all come from the set of remotely plausible
predictors. What do we know about this set of remotely plausible predictors? Most can-
didate predictors probably have a very small relationship with the predicted variable, but a
few candidate predictors may have sizable covariation withthe predicted variable. In other
words, the regression coefficients are probably distributed something like at distribution,
with lots near a mean of zero, but with a few off in the extended tails. We therefore put
this prior knowledge into the model structure, as shown in Figure 17.6. (This method is
mentioned in passing by Gelman et al., 2004, p. 405)

Figure 17.6 indicates that the regression coefficients,β j, are distributed as at distribu-
tion. The parameters of thet distribution are estimated from the data. Presumably, many
of the credible regression coefficients will be near zero, but a few will depart a lot from
zero, and thet distribution will have credibleτ anddf values that reflect the distribution of
regression coefficients in the data. Exercise 17.1 has you generate the prior from BUGS, so
you get a better intuition for how the constants in the hyperdistribution affect the implied
prior on the regression coefficients.

A desirable side-effect of incorporating this prior structure is that the estimates of the
regression coefficients experience shrinkage. If many regression coefficients are near zero,
then thet distribution will have a high precision (τ parameter), which in turn will shrink
the estimates of the regression coefficients. The regression coefficients are mutually in-
forming each other, via the prior knowledge that they shouldbe distributed according to at
distribution.

The shrinkage is desirable not only because it expresses ourprior knowledge, but also

380 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

σy

Sigma Value
1.4 1.6 1.8 2.0 2.2 2.4

mean = 1.83

95% HDI
1.56 2.14

Y at x = 0

Intercept Value
90 95 100 105

mean = 98

95% HDI
93.7 102

∆Y ∆X1

Slope Value
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

mean = 0.982

0% <= 0 < 100%
95% HDI

0.75 1.22

∆Y ∆X2

Slope Value
0.0 0.5 1.0 1.5 2.0 2.5

mean = 2.13

0% <= 0 < 100%
95% HDI

1.93 2.34

∆Y ∆X3

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.0849

81.5% <= 0 < 18.5%
95% HDI

−0.287 0.101

∆Y ∆X4

Slope Value
−0.2 0.0 0.2 0.4 0.6

mean = 0.156

9.3% <= 0 < 90.7%
95% HDI

−0.071 0.389

∆Y ∆X5

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.00669

46.7% <= 0 < 53.3%
95% HDI

−0.17 0.19

∆Y ∆X6

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.109

14.2% <= 0 < 85.8%
95% HDI

−0.0846 0.31

∆Y ∆X7

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.0706

73.3% <= 0 < 26.7%
95% HDI

−0.295 0.155

∆Y ∆X8

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = −0.0451

68.9% <= 0 < 31.1%
95% HDI

−0.221 0.135

∆Y ∆X9

Slope Value
−0.6 −0.4 −0.2 0.0 0.2 0.4

mean = −0.0993

79.9% <= 0 < 20.1%
95% HDI

−0.339 0.129

∆Y ∆X10

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.0894

18.8% <= 0 < 81.2%
95% HDI

−0.114 0.286

∆Y ∆X11

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = −0.0615

71.4% <= 0 < 28.6%
95% HDI

−0.276 0.154

∆Y ∆X12

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.0962

84.3% <= 0 < 15.7%
95% HDI

−0.283 0.0943

∆Y ∆X13

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.107

13.8% <= 0 < 86.2%
95% HDI

−0.0894 0.299

∆Y ∆X14

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.106

14.2% <= 0 < 85.8%
95% HDI

−0.0849 0.295

∆Y ∆X15

Slope Value
−0.2 0.0 0.2 0.4 0.6

mean = 0.226

1.8% <= 0 < 98.2%
95% HDI

0.0151 0.437

∆Y ∆X16

Slope Value
−0.3 −0.1 0.0 0.1 0.2 0.3 0.4

mean = 0.0544

28.7% <= 0 < 71.3%
95% HDI

−0.137 0.251

∆Y ∆X17

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = −0.0549

70.7% <= 0 < 29.3%
95% HDI

−0.263 0.14

∆Y ∆X18

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = 0.047

32% <= 0 < 68%
95% HDI

−0.159 0.24

∆Y ∆X19

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.134

87.5% <= 0 < 12.5%
95% HDI

−0.363 0.0906

∆Y ∆X20

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.109

84.7% <= 0 < 15.3%
95% HDI

−0.319 0.102

∆Y ∆X21

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = 0.0218

41.4% <= 0 < 58.6%
95% HDI

−0.176 0.223

∆Y ∆X22

Slope Value
−0.4 −0.2 0.0 0.2 0.4

mean = 0.0234

40.6% <= 0 < 59.4%
95% HDI

−0.171 0.224

∆Y ∆X23

Slope Value
−0.2 0.0 0.2 0.4 0.6

mean = 0.103

16.2% <= 0 < 83.8%
95% HDI

−0.111 0.304

σy

Sigma Value
1.4 1.6 1.8 2.0 2.2 2.4 2.6

mean = 1.79

95% HDI
1.52 2.07

Y at x = 0

Intercept Value
90 95 100 105

mean = 97.6

95% HDI
93.5 102

∆Y ∆X1

Slope Value
0.0 0.2 0.4 0.6 0.8 1.0 1.2

mean = 0.92

0% <= 0 < 100%
95% HDI

0.699 1.14

∆Y ∆X2

Slope Value
0.0 0.5 1.0 1.5 2.0 2.5

mean = 2.13

0% <= 0 < 100%
95% HDI

1.93 2.32

∆Y ∆X3

Slope Value
−0.3 −0.2 −0.1 0.0 0.1 0.2

mean = −0.0465

72.4% <= 0 < 27.6%
95% HDI

−0.202 0.1

∆Y ∆X4

Slope Value
−0.2 0.0 0.2 0.4

mean = 0.106

11.4% <= 0 < 88.6%
95% HDI

−0.065 0.295

∆Y ∆X5

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3

mean = 0.0151

40.9% <= 0 < 59.1%
95% HDI

−0.126 0.154

∆Y ∆X6

Slope Value
−0.2 0.0 0.1 0.2 0.3 0.4

mean = 0.0677

18.9% <= 0 < 81.1%
95% HDI

−0.0861 0.221

∆Y ∆X7

Slope Value
−0.4 −0.2 0.0 0.1 0.2

mean = −0.0512

70.7% <= 0 < 29.3%
95% HDI

−0.236 0.131

∆Y ∆X8

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3

mean = −0.0194

60.4% <= 0 < 39.6%
95% HDI

−0.166 0.119

∆Y ∆X9

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.0661

75.7% <= 0 < 24.3%
95% HDI

−0.249 0.126

∆Y ∆X10

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

mean = 0.0655

20.9% <= 0 < 79.1%
95% HDI

−0.0906 0.227

∆Y ∆X11

Slope Value
−0.4 −0.2 0.0 0.2

mean = −0.0189

57.9% <= 0 < 42.1%
95% HDI

−0.195 0.152

∆Y ∆X12

Slope Value
−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

mean = −0.0328

65.8% <= 0 < 34.2%
95% HDI

−0.187 0.122

∆Y ∆X13

Slope Value
−0.2 0.0 0.1 0.2 0.3 0.4

mean = 0.0749

17% <= 0 < 83%
95% HDI

−0.0783 0.238

∆Y ∆X14

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

mean = 0.0809

15.4% <= 0 < 84.6%
95% HDI

−0.0777 0.239

∆Y ∆X15

Slope Value
−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

mean = 0.156

3.9% <= 0 < 96.1%
95% HDI

−0.0159 0.348

∆Y ∆X16

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3

mean = 0.0538

24.3% <= 0 < 75.7%
95% HDI

−0.107 0.203

∆Y ∆X17

Slope Value
−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

mean = −0.00117

50.6% <= 0 < 49.4%
95% HDI

−0.159 0.154

∆Y ∆X18

Slope Value
−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

mean = 0.0344

33.5% <= 0 < 66.5%
95% HDI

−0.127 0.194

∆Y ∆X19

Slope Value
−0.4 −0.2 0.0 0.1 0.2

mean = −0.0548

72.7% <= 0 < 27.3%
95% HDI

−0.237 0.118

∆Y ∆X20

Slope Value
−0.4 −0.2 0.0 0.1 0.2

mean = −0.0449

68.9% <= 0 < 31.1%
95% HDI

−0.214 0.132

∆Y ∆X21

Slope Value
−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

mean = 0.032

33.6% <= 0 < 66.4%
95% HDI

−0.117 0.188

∆Y ∆X22

Slope Value
−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

mean = 0.0254

36.9% <= 0 < 63.1%
95% HDI

−0.128 0.18

∆Y ∆X23

Slope Value
−0.2 0.0 0.1 0.2 0.3 0.4

mean = 0.0728

19% <= 0 < 81%
95% HDI

−0.0902 0.238

Figure 17.7: Posterior distribution for 100 data points randomly generated with
true parameter values ofσy = 2, β0 = 100,β1 = 1, β2 = 2, and all otherβ j = 0.
Upper half: Model is from Figure 17.4, wherein each slope coefficient is insu-
lated from the other. Notice the “false alarm” forβ15. Lower half: The model is
shown in Figure 17.6, wherein the slope coefficients mutually inform each other.
Shrinkage prevents the “false alarm” forβ15.

17.2. HYPERPRIORS AND SHRINKAGE OF REGRESSION COEFFICIENTS 381

because it rationally helps control for “false alarms” in declaring that a predictor has a
non-zero regression coefficient. When there are many candidate predictors, some of them
may spuriously appear to have credibly non-zero regressioncoefficients, even when the
true coefficient is zero. This sort of false alarm is unavoidable because data are randomly
sampled, and there will be occasional coincidences of data that are unrepresentative. By
letting the regression coefficients be mutually informed by other predictors, and not only
by the data of the single predictor each multiplies, the coefficients are less likely to be
spuriously distorted by a rogue sample.

As an example in which we can specify the true regression coefficients, let’s randomly
generate 100 data points from a linear regression model thathas parameter values ofσy = 2,
β0 = 100,β1 = 1,β2 = 2, and all otherβ j = 0 for 21 other predictors. When using insulated
regression coefficients for each predictor, as in the hierarchical diagram ofFigure 17.4,
the resulting posterior estimates are shown in the upper half of Figure 17.7. Notice that
the estimate ofβ15 (denoted∆Y/∆X15) suggests that this predictor may have a non-zero
regression coefficient. (If we could specify a ROPE of some non-zero width, we might not
decide thatβ15 is non-zero, but ROPEs are best defined in meaningful contexts, not in a
generic example like this.) In other words, this apparent non-zero value ofβ15 is a “false
alarm”, produced by quirks in the random sample of data.

The estimates in the upper half of Figure 17.7 did not use any prior knowledge about
how the regression coefficients might be related. If we instead use the model of Figure17.6,
with the same data, the resulting posterior is shown in the lower half of Figure 17.7. Notice
that the estimate ofβ15 now includes zero inside the HDI. All the estimates of the regression
coefficients are reduced a little, relative to the upper half of thefigure. The reason for this
shrinkage is that the many regression coefficients near zero mutually inform each other via
the overarchingt distribution.

When using the model of Figure 17.6, the shrinkage of the regression coefficients is
toward their mean,µβ, not necessarily toward zero. If your prior knowledge suggests that
the true mean of the regression coefficients is very close to zero, then that knowledge should
be expressed in the model of Figure 17.6 by setting the meanMβ to zero and setting the
precisionTβ to a very large value such as 10,000. This setting implies that µβ is already
fairly certain, and the real prior uncertainty is in the variability of regression coefficients
across predictors.

The hyperprior over regression coefficients, shown in Figure 17.6, is meant to express
a genuine belief, namely, that all the regression coefficients can be reasonably described
by a t distribution. This assumption may be more or less tenable indifferent situations.
For example, a region’s agricultural crop yield might be predicted from rainfall amounts
measured at 39 randomly selected locations. The predictabilities from each of these mea-
suring locations are probably fairly similar, except for perhaps a few outliers, and therefore
it seems quite reasonable to model the regression coefficients by at distribution. In other
situations, it may be less reasonable to treat all the regression coefficients as coming from
a sharedt distribution. At the least, the predictors were selected from some implicit set of
reasonably likely predictors, and we can think of the overarching distribution as reflecting
that set. We might still use the hyperprior model, but only asa convenience to impose
some degree of shrinkage on the regression coefficients. It should be interpreted carefully.
Beware of convenience priors that are used in routinized ways.

382 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

17.2.1 Informative priors, sparse data, and correlated predictors

This book has emphasized the use of mildly informed priors, as opposed to convention-
alized noninformed priors or strongly informed priors. On the other hand, this book has
also mentioned that a benefit of Bayesian analysis is the potential for cumulative scientific
progress through the use of priors that have been informed byprevious research. Informed
priors should be used whenever the skeptical scientific audience of the analysis deems it
appropriate, especially if the analysis is accompanied by acheck of posterior robustness.
If the conclusion from the posterior is strong, even with a mildly informed prior, then the
mildly informed prior should be used, because a broader audience may find the analysis to
be convincing. But there are situations in which the use of a more strongly informed prior
is appropriate.

In general, when the data are sparse (i.e., when the sample issmall), the posterior will
be imprecise if the prior is imprecise. But if the prior is more tightly constrained, then a
small amount of data can lead to a more decisive posterior. Anexample of this phenomenon
appeared in Exercise 5.7, p. 81, in which the prior allowed only two very different interpre-
tations of the data. In this case, even a small amount of data shifted the posterior toward
one or the other interpretation.

Sparse data can also lead to usefully precise posteriors in the context of multiple linear
regression, if some of the regression coefficients use informed priors, and the predictors
are correlated. To develop this idea, it is important to remember that when predictors are
correlated, their regression coefficients are also (anti-)correlated. For example, recall the
SAT data from Figure 17.3, p. 374, in which the predictors arecorrelated in the data, i.e.,
spending-per-pupil and percent-taking-the-exam are correlated. Consequently, the posterior
estimates of the regression coefficients had a negative correlation, as shown in Figure 17.5,
p. 377. The correlation of credible regression coefficients implies that a strong belief about
the value of one regression coefficient constrains the value of the other coefficient. Look
carefully at the scatterplot of the two slopes shown in Figure 17.5. It can be seen that if we
believe that the slope on percent-taking-the-exam is−3.2, then credible values of the slope
on spending-per-pupil are around 18, with an HDI of roughly 13 to 22. Notice that this HDI
is much smaller than the marginal HDI on spending-per-pupil, which goes from 3.7 to 20.7.
Thus, constraining the beliefs about one slope also constrains beliefs about the other slope,
because estimates of the slopes are correlated.

That influence of one slope estimate on another can be used forinferential advantage
when we have prior knowledge about one of the slopes. If some previous or auxiliary
research informs the prior of one regression coefficient, that constraint can propagate to
the estimates of regression coefficients on other predictors that are correlated with the first.
This is especially useful when the sample size is small, and amerely mildly informed
prior would not yield a very precise posterior. Of course, the informed prior on the first
coefficient must be cogently justified for the skeptical audience.A robustness check also
may be useful, to show how strong the prior must be to draw strong conclusions. If the
information used for the prior is compelling, then this technique can be very useful for
leveraging novel implications from small samples. An accessible discussion and example
from political science is provided by Western and Jackman (1994), and a mathematical
discussion is provided by Learner (1978, p. 175+).

17.3. MULTIPLICATIVE INTERACTION OF METRIC PREDICTORS 383

17.3 Multiplicative interaction of metric predictors

In some situations, the predicted value is not merely an additive combination of the predic-
tors. For example, the effects of drugs are often non-additive. As the dosage of one drug
increases, there might be a moderate increasing effectiveness. And as the dosage of another
drug increases (when administered by itself), there may be amoderate increase in effective-
ness. But when the two drugs are administered together, whenthe dosages of both drugs
are high, they might interact to greatly enhance or greatly decrease effectiveness, beyond a
mere addition of the two separate effects. As another example, consider trying to predict
subjective happiness from income and health. If either income or health is low, subjective
happiness is probably also fairly low. But if both income andhealth are high, then happi-
ness is more likely to be high. In other words, happiness might not increase additively with
both income and health; instead, it happiness may be better predicted by an interaction of
income and health. In general, interaction means that the influence of one predictor varies,
depending on the value of the other predictor.

Formally, interaction can be expressed different ways. We will considermultiplicative
interaction. For two metric predictors, regression with multiplicative interaction has these
algebraically-equivalent expressions:

y = β0 + β1x1 + β2x2 + β1×2x1x2 (17.2)

= β0 +
(

β1 + β1×2x2

)

︸ ︷︷ ︸

slope ofx1

x1 + β2x2 (17.3)

= β0 + β1x1 +
(

β2 + β1×2x1

)

︸ ︷︷ ︸

slope ofx2

x2 (17.4)

These three expressions emphasize different interpretations of interaction, as illustrated in
Figure 17.8.

The form of Equation 17.2 is illustrated in the left panel of Figure 17.8. The vertical
arrows show that the curved-surface interaction is createdby adding the product,β1×2x1x2,
to the planar linear combination.

The form of Equation 17.3 is illustrated in the middle panel of Figure 17.8. Its dark
lines show that the slope in thex1 direction depends on the value ofx2. In particular, when
x2 = 0, then the slope alongx1 is β1, which in the graphed example is−1. But when
x2 = 10, then the slope alongx1 is β1+ β1×2x2, which in the graphed example is+1. Again,
the slope in thex1 direction changes whenx2 changes, andβ1 only indicates the slope along
x1 whenx2 = 0.

The form of Equation 17.4 is illustrated in the right panel ofFigure 17.8. It shows that
the interaction can be expressed as the slope in thex2 direction changing whenx1 changes.
This is exactly analogous to the middle panel of Figure 17.8,but it is important to realize,
and visualize, that the interaction can be expressed in terms of the slopes on either predictor.

Great care must be taken when interpreting the coefficients of a model that includes
interaction terms (Braumoeller, 2004). In particular, low-order terms are especially difficult
to interpret when higher-order interactions are present. In the simple two-predictor case,
the coefficientβ1 describes the influence of predictorx1 only at x2 = 0, because the slope
on x1 is β1 + β1×2x2, as was shown in Equation 17.3 and graphed in the middle panelof
Figure 17.8. In other words, it is not appropriate to say thatβ1 indicates theoverall influence
of x1 on y1. Indeed, in many applications, the value ofx2 never realistically gets close to

384 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 10 + −1x1 + 2x2 + (0.2)x1x2

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10

y

0

10

20

30

40

y = 10 + (−1 + 0.2x2)x1 + 2x2

x1

0
2

4
6

8
10

x2
0

2
4

6
8

10
y

0

10

20

30

40

y = 10 + −1x1 + (2 + 0.2x1)x2

Figure 17.8: A multiplicative interaction ofx1 and x2, parsed three ways. The
left panel emphasizes that the interaction involves a multiplicative component that
adds a vertical amount to the planar additive model, as indicated by the arrows.
The middle panel shows the same function, but with the terms algebraically re-
grouped to emphasize that the slope in thex1 direction depends on the value ofx2,
as shown by the darkened lines. The right panel again shows the same function,
but with the terms algebraically re-grouped to emphasize that the slope in thex2

direction depends on the value ofx1, as shown by the darkened lines.

zero, and thereforeβ1 has no realistic interpretation at all. For example, suppose we are
predicting college GPA (y) from parental income (x1) and high school GPA (x2). If there is
interaction, then the regression coefficient,β1, on parental income, only indicates the slope
on x1 when x2 (GPA) is zero. Of course, there are no GPAs of zero, and thereforeβ1 by
itself is not very informative.

17.3.1 The hierarchical model and BUGS code

The model for regression with multiplicative interaction is the same as for linear regression
but with an added term for the interaction. Because we are estimating the coefficient on the
multiplication of the predictors, that coefficient must have a prior, analogous to the priors
on the linear coefficients. For the case of two predictors, with an interaction,the BUGS
model specification looks like this: (MultiLinRegressInterBrugs.R)

11 model {

12 for(i in 1 : nData) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- b0 + b1 * x[i,1] + b2 * x[i,2] + b12 * x[i,1] * x[i,2]

15 }

16 tau ˜ dgamma(.001,.001)

17 b0 ˜ dnorm(0,1.0E-12)

18 b1 ˜ dnorm(0,1.0E-12)

19 b2 ˜ dnorm(0,1.0E-12)

20 b12 ˜ dnorm(0,1.0E-12)

21 }

Notice that the interaction coefficient,b12, has a normal prior analogous to the priors on the
slope coefficients.

In models that involve many predictors, there can be many possible interaction terms.
Just as we can put a hyperprior on the slopes, we can also put a hyperprior on the interaction
coefficients. The idea is that most interaction terms are near zero, but a few might depart

17.3. MULTIPLICATIVE INTERACTION OF METRIC PREDICTORS 385

from zero. This distribution over interaction terms could be modeled as at distribution. We
will not pursue examples that involve numerous interactions.

17.3.1.1 Standardizing the data and initializing the chains

We will, as before, standardize the data before entering them into the BUGS model. This
helps reduce correlations in the parameters, but does not eliminate correlations. When
initializing the chains, it may suffice to set the interaction coefficient(s) to zero, and start
the slopes at their MLE values for a non-interactive model, especially when the interactions
are small, as is often the case.

Transforming the standardized estimates back to the original scales is conceptually sim-
ple but algebraically much messier when interaction terms are involved. The expression,
when there are merely two predictors, turns into this unwieldy form:

z(y) = ζ0 + ζ1 z(x1) + ζ2 z(x2) + ζ1×2 z(x1) z(x2)
y−my

sy
= ζ0 + ζ1

x1 −m1

s1
+ ζ2

x2 −m2

s2
+ ζ1×2

x1 −m1

s1

x2 −m2

s2

y =

(

my + syζ0 − ζ1sy
m1

s1
− ζ2sy

m2

s2
+ ζ1×2sy

m1

s1

m2

s2

)

︸ ︷︷ ︸

β0

+

(

ζ1sy
1
s1
− ζ1×2sy

m1

s1

1
s2

)

︸ ︷︷ ︸

β1

x1

+

(

ζ2sy
1
s2
− ζ1×2sy

1
s1

m2

s2

)

︸ ︷︷ ︸

β2

x2

+

(

ζ1×2sy
1
s1

1
s2

)

︸ ︷︷ ︸

β1×2

x1x2 (17.5)

When there are more predictors involved, with their interactions, the expression becomes
quite protracted. In those situations, there is no avoidingmatrix notation and matrix algebra,
which greatly facilitates manipulating the forms. We will not venture into matrix expres-
sions for the GLM in this book (although we did splurge a bit onmatrices in Section 7.1.5,
p. 104). Matrix operations are not easily expressed in BUGS,unfortunately.

17.3.2 Interpreting the posterior

To illustrate some of the issues involved in interpreting the parameters of a model with
interaction, consider again the SAT data from Figure 17.3. Recall that the mean SAT score
in a state was predicted from the spending per pupil and the percentage of students who
took the test. When no interaction term was included in the model, the posterior looked like
Figure 17.5, which indicated a positive influence of spending and a negative influence of
percentage of students.

Would we want to include an interaction term in the model? Themeaning of interaction
is that the effect of one predictor changes when the level of the other predictor changes.

386 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

σy

Sigma Value
25 30 35 40 45 50 55

mean = 32.3

95% HDI
25.8 39

SATT at all x = 0

Intercept Value
900 1000 1100 1200

mean = 1060

95% HDI
973 1140

∆SATT ∆Spend

 at PrcntTake= 0

Beta Value
−10 0 10 20 30

mean = 7.59

95% HDI
−2.09 17.7

∆SATT ∆PrcntTake

 at Spend = 0

Beta Value
−30 −20 −10 0 10

mean = −11.2

95% HDI
−20.7 −1.53

Spend x PrcntTake

Interaction Value
−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

mean = 0.236

95% HDI
−0.0465 0.497

Sigma y

950 1050 1150 −20 −10 0 5

25
30

35
40

95
0

10
50

11
50

Intercept

BetaSpend

−
5

5
15

−
20

−
10

0
5

BetaPrcntTake

25 30 35 40 −5 5 15 −0.2 0.2 0.4

−
0.

2
0.

2
0.

4

Interaction

Figure 17.9: Posterior for SAT data in Figure 17.3. Compare this posterior, which
includes an interaction term, with the posterior that excluded an interaction, shown
in Figure 17.5.

Does it make sense in this application that the effect of spending would depend on the
percentage of students taking the test? Perhaps yes, because if very few students are taking
the test, they are probably already at the top of the class andtherefore might not have as
much head-room for increasing their scores. In other words,it is plausible that the effect of
spending is larger when the percentage of students taking the test is larger, and we would
not be surprised if there were a positive interaction between those predictors. Therefore, it
is theoretically meaningful to include an interaction termin the model.

When we incorporate a multiplicative interaction into the model, the posterior looks like
Figure 17.9. The top right histogram indicates that the meanof the believable interaction
coefficients is indeed positive, as we anticipated it could be. The95% HDI includes zero,
however, which indicates that we do not have very strong precision in our estimate of the
magnitude of the interaction. The scatterplots in the lowerpart of Figure 17.9 indicate that
the interaction coefficient is very strongly correlated with the beta coefficient on percentage
of students taking the test. If the MCMC sampling were takingplace in these original
scales, it would be very inefficient.

A cursory look at the middle histogram of Figure 17.9 might lead a person, inappropri-
ately, to conclude that there is not a credible influence of spending on SAT scores, because
zero is among the credible values ofβspend. This conclusion is inappropriate becauseβspend

17.3. MULTIPLICATIVE INTERACTION OF METRIC PREDICTORS 387

+ + + + + + + + + + + + + + + + + + + +

0 20 40 60 80

0
10

20
30

40
50

Posterior mean and 95% HDI of slope

Value of PrcntTake

S
lo

pe
 a

lo
ng

 S
pe

nd

Figure 17.10: The slope in thexspenddirection isβspend+βspend×%takex%take. Shown
here are the means and 95% HDIs for the slope in thexspenddirection, for various
values ofx%take.

only indicates the slope on spendingwhen the percentage of students taking the test is
zero. The slope changes when the percentage of students changes because of the interac-
tion. Because the interaction tends to be positive, the slope of spending increases when the
percentage of students taking the test increases.

Figure 17.10 shows the increase in slope along spending, as the percentage taking the
test increases. Also plotted is the extent of the 95% HDI of the estimated slope. Notice that
the HDI at PrcntTake=0 matches the HDI shown in the middle histogram of Figure 17.9.

Interestingly and importantly, the extent of the HDI is not constant, but also depends
on the percentage of students taking the test. Mathematically, the change in extent of the
HDI stems for two sources. First, the slope alongx1 is β1 + β1×2x2, which means that
the uncertainty inβ1×2 is being multiplied byx2, and therefore the uncertainty in the slope
depends onx2. But the uncertainty in the slope does not necessarily always increase when
x2 increases becauseβspend andβspend×%take are negatively correlated (see the scatterplot
in Figure 17.9): Whenxspendhas a modest size, its negative correlation removes a bit of
uncertainty in the slope. This relationship can be seen graphically in Figure 17.11, which
shows an idealized subset of credible values forβ1 andβ1×2. The left panel shows that
when x2 = 0, the credible parameters (i.e., the dots) span a range of x1slopes from 0
to 15. The middle panel shows that whenx2 = 25, the parameters span a range of x1 slopes
from 10 to 15, i.e., a much smaller range. The right panel shows that whenx2 = 50, the
parameters span a range of x1 slopes from 10 to 25, again a large range. Thus, because of
the negative correlation of credible values ofβ1 andβ1×2, the narrowest range of x1 slopes
is at an intermediate value of x2.

In summary, when there is interaction, then the influence of the individual predictors
cannot be summarized by their individual regression coefficients alone, because those co-
efficients only describe the influence when the other variables are at zero. A careful an-
alyst considers credible slopes across a variety of values for the other predictors, as in
Figure 17.10. Notice that this is true even when the interaction coefficient did not exclude
zero from its 95% HDI: Even though the estimate of the interaction was not very precise,

388 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

0.0 0.1 0.2 0.3 0.4

0
5

10
15

Contours: slope1 = b1 + x2 * b12 = const.

b12 (interaction param. val.)

b1
 (

sl
op

e
on

 x
1

w
he

n
x2

=
0)

x2 = 0

2.5

5

7.5

10

12.5

0.0 0.1 0.2 0.3 0.4

0
5

10
15

Contours: slope1 = b1 + x2 * b12 = const.

b12 (interaction param. val.)

b1
 (

sl
op

e
on

 x
1

w
he

n
x2

=
0)

x2 = 25

7.5

10

12.5

15

17.5

0.0 0.1 0.2 0.3 0.4

0
5

10
15

Contours: slope1 = b1 + x2 * b12 = const.

b12 (interaction param. val.)

b1
 (

sl
op

e
on

 x
1

w
he

n
x2

=
0)

x2 = 50
12.5

15
17.5

20
22.5

Figure 17.11: Dots show idealized parameter-value combinations, the same in all
three panels. Contour lines mark parameter value combinations for slopes in the
x1 direction when x2 has that value indicated in the panel.

the interaction did have a considerable influence on the interpretation of the predictors.

17.4 Which predictors should be included?

In many research projects, there are specific theoretical motivations for measuring partic-
ular predictors and the predicted variable. In these situations, we know in advance which
predictors and interactions we are interested in modeling.But in other situations, we come
to a pre-existing database that has many variables measuredfor other purposes, and we are
curious to know which of the variables might be good predictors of a particular variable of
interest. Or, we might have some hybrid situation, in which we have particular predictors
that we think may be relevant, but we measure several other variables on the off chance that
they might be relevant, or because they are needed for some other study, or because they
are trivial to measure so we go ahead and measure them.

When there are many potential predictors, which ones shouldbe included in our model?
And which interactions? A reasonable answer is to include all the predictors and interac-
tions that you think would have any chance of providing useful predictive information. If
you do not include them, then you have essentially set the prior on those variable’s regres-
sion coefficients to zero with complete certainty.

Whether or not to include candidate predictors depends on the purpose of the regression
analysis. If the goal is topredict the outcome as accurately as possible, using any predictors
at all, regardless of how those predictors might be causallyrelated to the predicted variable,
then all reasonable predictors could be included. On the other hand, if the purpose of the
analysis is toexplain the outcome on the basis of the predictors, then only the predictors
that can be meaningfully related to the outcome should be included (see, e.g., Keith, 2005,
p. 70).

There are several costs of including a lot of candidate predictors. One cost is unwieldy
interpretation of the results. With too many predictors andinteractions, the complexity of
the mathematical description may provide little meaningful insight into the data. Unless you
really believe that the effect of income on happiness depends on shoe size, and that suchan
interaction of income with shoe size would be theoreticallymeaningful, don’t include shoe

17.4. WHICH PREDICTORS SHOULD BE INCLUDED? 389

size among the predictors. But, if you think there is some chance that a variable would be
informative, include it.

Another cost of including numerous predictors is that “false alarms” may occur more
often, such that predictors that really have no predictive value spuriously appear to have
credibly non-zero regression coefficients. This problem can be addressed by using prior
knowledge about relations among regression coefficients, as described in Section 17.2. By
letting the predictors inform a hyperprior, they constraineach other’s estimates, thereby
producing shrinkage and attenuation of false alarms. If youhave prior knowledge about the
particular predictors, that your skeptical audience wouldassent to, then try to express it in
the mathematical form of the prior.

Another cost of including numerous candidate predictors isthat the noise and parameter
flexibility introduced by the extra predictors can produce aloss of precision in the estima-
tion of the coefficients. Even when the true regression coefficients on additional predictors
are all zero, the uncertainty in their values can introduce uncertainty in the estimates of the
original predictors. This bleeding of uncertainty is not always large, especially when the
predictors are uncorrelated and there are many data points,but it does occur. You can exper-
iment with this issue by using the random data generator in the program of Section 17.5.1
(MultipleLinearRegressionBrugs.R), and including different numbers of predictors with zero
coefficients.

All of these issues are distinct from the peril of correlatedpredictors discussed at the
beginning of the chapter. To reiterate, a predictor may appear to have a particular relation
with the predicted variable, when other candidate predictors are left out of the analysis. But
the apparent relation between the predictor and the outcomemight be an illusory artifact,
produced instead by the predictor being correlated with some other efficacious factor, while
the putative predictor itself has zero or opposite influenceon the outcome. Therefore it
is important to include all reasonable predictors in the analysis, so that each has a better
opportunity for being correctly interpreted, while also keeping in mind the costs mentioned
in preceding paragraphs.

When considering the inclusion ofinteractionterms, and the goal of the analysis is ex-
planation, then the main criterion is whether it is theoretically meaningful that the effect of
one predictor should depend on the level of another predictor. Inclusion of an interaction
term can also cause loss of precision in the estimates of the lower-order terms. More-
over, interpretation of interactions and their lower-order terms can be subtle, as we saw,
for example, in Figure 17.10. If the goal of the analysis is prediction, without emphasis
on explanation, then interaction terms may be included to the extent that they enhance pre-
dictability without loss of parsimony. Bayesian model comparison can be useful in this case
(see references cited at the end of this section).

Whenever an interaction term is included in a model, it is important to also include all
lower-order terms. For example, if anxi × x j interaction is included, then bothxi and x j

should also be included in the model. Although we did not discuss them, it is also possible
to include three-way interactions such asxi × x j × xk, if it is theoretically meaningful to do
so. When this is done, it is important to include all the lower-order interactions and single
predictors, includingxi × x j, xi × xk, x j × xk, xi , x j, andxk. When the lower-order terms
are omitted, this is artificially setting their regression coefficients to zero, and distorting the
posterior estimates on the other terms. For clear discussion and examples of this issue, see
Braumoeller (2004) and Brambor, Clark, and Golder (2006).

In some situations, it may be theoretically tenable to suppose that the candidate pre-
dictors have exactly zero influence on the variable to be predicted, and our goal is to iden-

390 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

tify which predictors have exactly zero influence. In this case, we can establish a model-
comparison framework in which different models have different regression coefficients fixed
at zero. A large-scale Bayesian model comparison then reveals which combinations of zero
coefficients are most credible. There are numerous variations on this approach, and it is an
active area of research (e.g., Casella & Moreno, 2006; Clyde& George, 2004; E. I. George,
2000; Greenland, 2008; Liang, Paulo, Molina, Clyde, & Berger, 2008; Scott & Berger,
2006).

17.5 R code

17.5.1 Multiple linear regression

This program was used to Figure 17.5, among others. Its data section includes three differ-
ent data sets. The rest of the program is designed to be generically applicable, so that the
user can substitute other data sets without modifying the remainder of the program.

The use of the BUGS functioninprod() allows the model specification to remain un-
changed when the number of predictors changes. Unfortunately, inprod() is processed
slowly by BUGS. If you adapt this program for a large application and it is running too
slowly, try changinginprod(b[],x[i,]) to an explicit sum of products:b[1]*x[i,1] +
b[2]*x[i,2] +

(MultipleLinearRegressionBrugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fname = "MultipleLinearRegressionBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for(i in 1 : nData) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- b0 + inprod(b[] , x[i,])

15 }

16 tau ˜ dgamma(.01,.01)

17 b0 ˜ dnorm(0,1.0E-12)

18 for (j in 1:nPredictors) {

19 b[j] ˜ dnorm(0,1.0E-12)

20 }

21 }

22 # ... end BUGS model specification

23 " # close quote for modelstring

24 writeLines(modelstring,con="model.txt")

25 modelCheck("model.txt")

26

27 #--

28 # THE DATA.

29

30 dataSource = c("Guber1999","McIntyre1994","random")[1]

31

32 if (dataSource=="Guber1999") {

17.5. R CODE 391

33 fname = "Guber1999" # file name for saved graphs

34 dataMat = read.table(file="Guber1999data.txt" ,

35 col.names = c("State","Spend","StuTchRat","Salary",

36 "PrcntTake","SATV","SATM","SATT"))

37 # Specify variables to be used in BUGS analysis:

38 predictedName = "SATT"

39 predictorNames = c("Spend" , "PrcntTake")

40 #predictorNames = c("Spend" , "PrcntTake" , "Salary" , "StuTchRat")

41 nData = NROW(dataMat)

42 y = as.matrix(dataMat[,predictedName])

43 x = as.matrix(dataMat[,predictorNames])

44 nPredictors = NCOL(x)

45 }

46

47 if (dataSource=="McIntyre1994") {

48 fname = "McIntyre1994" # file name for saved graphs

49 dataMat = read.csv(file="McIntyre1994data.csv")

50 predictedName = "CO"

51 predictorNames = c("Tar","Nic","Wt")

52 nData = NROW(dataMat)

53 y = as.matrix(dataMat[,predictedName])

54 x = as.matrix(dataMat[,predictorNames])

55 nPredictors = NCOL(x)

56 }

57

58 if (dataSource=="random") {

59 fname = "Random" # file name for saved graphs

60 # Generate random data.

61 # True parameter values:

62 betaTrue = c(100 , 1 , 2 , rep(0,21)) # beta0 is first component

63 nPredictors = length(betaTrue) - 1

64 sdTrue = 2

65 tauTrue = 1/sdTrueˆ2

66 # Random X values:

67 set.seed(47405)

68 xM = 5 ; xSD = 2

69 nData = 100

70 x = matrix(rnorm(nPredictors*nData , xM , xSD) , nrow=nData)

71 predictorNames = colnames(x) = paste("X",1:nPredictors,sep="")

72 # Random Y values generated from linear model with true parameter values:

73 y = x %*% matrix(betaTrue[-1],ncol=1) + betaTrue[1] + rnorm(nData,0,sdTrue)

74 predictedName = "Y"

75 # Select which predictors to include

76 includeOnly = 1:nPredictors # default is to include all

77 #includeOnly = 1:10 # subset of predictors overwrites default

78 x = x[,includeOnly]

79 predictorNames = predictorNames[includeOnly]

80 nPredictors = NCOL(x)

81 }

82

83 # Prepare data for BUGS:

84 # Re-center data at mean, to reduce autocorrelation in MCMC sampling.

85 # Standardize (divide by SD) to make prior specification easier.

86 standardizeCols = function(dataMat) {

87 zDataMat = dataMat

88 for (colIdx in 1:NCOL(dataMat)) {

89 mCol = mean(dataMat[,colIdx])

90 sdCol = sd(dataMat[,colIdx])

91 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol

392 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

92 }

93 return(zDataMat)

94 }

95 zx = standardizeCols(x)

96 zy = standardizeCols(y)

97

98 # Get the data into BUGS:

99 datalist = list(

100 x = zx ,

101 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector

102 nPredictors = nPredictors ,

103 nData = nData

104)

105 modelData(bugsData(datalist))

106

107 #--

108 # INTIALIZE THE CHAINS.

109

110 nChain = 3

111 modelCompile(numChains = nChain)

112

113 genInitList <- function(nPred=nPredictors) {

114 lmInfo = lm(datalist$y ˜ datalist$x) # R function returns MLE

115 bInit = lmInfo$coef[-1]

116 tauInit = length(datalist$y) / sum(lmInfo$resˆ2)

117 list(

118 b0 = 0 ,

119 b = bInit ,

120 tau = tauInit

121)

122 }

123 for (chainIdx in 1 : nChain) {

124 modelInits(bugsInits(genInitList))

125 }

126

127 #--

128 # RUN THE CHAINS

129

130 # burn in

131 BurnInSteps = 100

132 modelUpdate(BurnInSteps)

133 # actual samples

134 samplesSet(c("b0" , "b" , "tau"))

135 stepsPerChain = ceiling(10000/nChain)

136 thinStep = 2

137 modelUpdate(stepsPerChain , thin=thinStep)

138

139 #--

140 # EXAMINE THE RESULTS

141

142 source("plotChains.R")

143 source("plotPost.R")

144

145 checkConvergence = F

146 if (checkConvergence) {

147 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)

148 bSum = plotChains("b" , saveplots=F , filenameroot=fname)

149 tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)

150 }

17.5. R CODE 393

151

152 # Extract chain values:

153 zb0Samp = matrix(samplesSample("b0"))

154 zbSamp = NULL

155 for (j in 1:nPredictors) {

156 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))

157 }

158 zTauSamp = matrix(samplesSample("tau"))

159 zSigmaSamp = 1 / sqrt(zTauSamp) # Convert precision to SD

160 chainLength = length(zTauSamp)

161

162 # Convert to original scale:

163 bSamp = zbSamp * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,

164 ncol=nPredictors , nrow=NROW(zbSamp))

165 b0Samp = (zb0Samp * sd(y)

166 + mean(y)

167 - rowSums(zbSamp

168 * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,

169 ncol=nPredictors , nrow=NROW(zbSamp))

170 * matrix(apply(x,2,mean) , byrow=TRUE ,

171 ncol=nPredictors , nrow=NROW(zbSamp))))

172 sigmaSamp = zSigmaSamp * sd(y)

173

174 # Save MCMC sample:

175 save(b0Samp , bSamp , sigmaSamp ,

176 file="MultipleLinearRegressionBrugsGuber1999.Rdata")

177

178 # Scatter plots of parameter values, pairwise:

179 if (nPredictors <= 6) { # don’t display if too many predictors

180 windows()

181 thinIdx = round(seq(1,length(zb0Samp),length=200))

182 pairs(cbind(zSigmaSamp[thinIdx] , zb0Samp[thinIdx] , zbSamp[thinIdx,]) ,

183 labels=c("Sigma zy","zIntercept",paste("zSlope",predictorNames,sep="")))

184 windows()

185 thinIdx = seq(1,length(b0Samp),length=700)

186 pairs(cbind(sigmaSamp[thinIdx] , b0Samp[thinIdx] , bSamp[thinIdx,]) ,

187 labels=c("Sigma y" , "Intercept", paste("Slope",predictorNames,sep="")))

188 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

189 }

190 # Show correlation matrix on console:

191 cat("\nCorrlations of posterior sigma, b0, and bs:\n")

192 show(cor(cbind(sigmaSamp , b0Samp , bSamp)))

193

194 # Display the posterior:

195 nPlotPerRow = 5

196 nPlotRow = ceiling((2+nPredictors)/nPlotPerRow)

197 nPlotCol = ceiling((2+nPredictors)/nPlotRow)

198 windows(3.5*nPlotCol,2.25*nPlotRow)

199 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

200 par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))

201 histInfo = plotPost(sigmaSamp , xlab="Sigma Value" , compVal=NULL ,

202 breaks=30 , main=bquote(sigma[y]) ,

203 cex.main=1.67 , cex.lab=1.33)

204 histInfo = plotPost(b0Samp , xlab="Intercept Value" , compVal=NULL ,

205 breaks=30 , main=bquote(.(predictedName) *" at "* x==0) ,

206 cex.main=1.67 , cex.lab=1.33)

207 for (sIdx in 1:nPredictors) {

208 histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,

209 breaks=30 ,

394 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

210 main=bquote(Delta * .(predictedName) /

211 Delta * .(predictorNames[sIdx])) ,

212 cex.main=1.67 , cex.lab=1.33)

213 }

214 dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

215

216 # Posterior prediction:

217 # Specify x values for which predicted y’s are needed.

218 # xPostPred is a matrix such that ncol=nPredictors and nrow=nPostPredPts.

219 xPostPred = rbind(

220 apply(x,2,mean)-3*apply(x,2,sd) , # mean of data x minus thrice SD of data x

221 apply(x,2,mean) , # mean of data x

222 apply(x,2,mean)+3*apply(x,2,sd) # mean of data x plus thrice SD of data x

223)

224 # Define matrix for recording posterior predicted y values for each xPostPred.

225 # One row per xPostPred value, with each row holding random predicted y values.

226 postSampSize = chainLength

227 yPostPred = matrix(0 , nrow=NROW(xPostPred) , ncol=postSampSize)

228 # Define matrix for recording HDI limits of posterior predicted y values:

229 yHDIlim = matrix(0 , nrow=NROW(xPostPred) , ncol=2)

230 # Generate posterior predicted y values.

231 # This gets only one y value, at each x, for each step in the chain.

232 for (chainIdx in 1:chainLength) {

233 yPostPred[,chainIdx] = rnorm(NROW(xPostPred) ,

234 mean = b0Samp[chainIdx]

235 + xPostPred %*% cbind(bSamp[chainIdx,]) ,

236 sd = rep(sigmaSamp[chainIdx] , NROW(xPostPred)))

237 }

238 source("HDIofMCMC.R")

239 for (xIdx in 1:NROW(xPostPred)) {

240 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])

241 }

242 cat("\nPosterior predicted y for selected x:\n")

243 show(cbind(xPostPred , yPostPredMean=rowMeans(yPostPred) , yHDIlim))

244

245 #--

17.5.2 Multiple linear regression with hyperprior on coefficients

This program was used to create Figure 17.7, among others. See the comments regarding
inprod() before the previous program.

(MultiLinRegressHyperBrugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fname = "MultiLinRegressHyper"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for(i in 1 : nData) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- b0 + inprod(b[] , x[i,])

15 }

17.5. R CODE 395

16 tau ˜ dgamma(.01,.01)

17 b0 ˜ dnorm(0,1.0E-12)

18 for (j in 1:nPredictors) {

19 b[j] ˜ dt(muB , tauB , tdfB)

20 }

21 muB ˜ dnorm(0 , .100)

22 tauB ˜ dgamma(.01,.01)

23 udfB ˜ dunif(0,1)

24 tdfB <- 1 + tdfBgain * (-log(1 - udfB))

25 }

26 # ... end BUGS model specification

27 " # close quote for modelstring

28 writeLines(modelstring,con="model.txt")

29 modelCheck("model.txt")

30

31 #--

32 # THE DATA.

33

34 tdfBgain = 1

35

36 dataSource = c("Guber1999","McIntyre1994","random")[3]

37

38 if (dataSource=="Guber1999") {

39 fname = paste("Guber1999Brugs","tdf",tdfBgain,sep="")

40 dataMat = read.table(file="Guber1999data.txt" ,

41 col.names = c("State","Spend","StuTchRat","Salary",

42 "PrcntTake","SATV","SATM","SATT"))

43 # Specify variables to be used in BUGS analysis:

44 predictedName = "SATT"

45 predictorNames = c("Spend" , "PrcntTake")

46 #predictorNames = c("Spend" , "PrcntTake" , "Salary" , "StuTchRat")

47 nData = NROW(dataMat)

48 y = as.matrix(dataMat[,predictedName])

49 x = as.matrix(dataMat[,predictorNames])

50 nPredictors = NCOL(x)

51 }

52

53 if (dataSource=="McIntyre1994Hyper") {

54 fname = paste("McIntyre1994Brugs","tdf",tdfBgain,sep="")

55 dataMat = read.csv(file="McIntyre1994data.csv")

56 predictedName = "CO"

57 predictorNames = c("Tar","Nic","Wt")

58 nData = NROW(dataMat)

59 y = as.matrix(dataMat[,predictedName])

60 x = as.matrix(dataMat[,predictorNames])

61 nPredictors = NCOL(x)

62 }

63

64 if (dataSource=="random") {

65 fname = paste("RandomHyper","tdf",tdfBgain,sep="")

66 # Generate random data.

67 # True parameter values:

68 betaTrue = c(100 , 1 , 2 , rep(0,21)) # beta0 is first component

69 nPredictors = length(betaTrue) - 1

70 sdTrue = 2

71 tauTrue = 1/sdTrueˆ2

72 # Random X values:

73 set.seed(47405)

74 xM = 5 ; xSD = 2

396 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

75 nData = 100

76 x = matrix(rnorm(nPredictors*nData , xM , xSD) , nrow=nData)

77 predictorNames = colnames(x) = paste("X",1:nPredictors,sep="")

78 # Random Y values generated from linear model with true parameter values:

79 y = x %*% matrix(betaTrue[-1],ncol=1) + betaTrue[1] + rnorm(nData,0,sdTrue)

80 predictedName = "Y"

81 # Select which predictors to include

82 includeOnly = 1:nPredictors # default is to include all

83 #includeOnly = 1:6 # subset of predictors overwrites default

84 x = x[,includeOnly]

85 predictorNames = predictorNames[includeOnly]

86 nPredictors = NCOL(x)

87 }

88

89 # Prepare data for BUGS:

90 # Re-center data at mean, to reduce autocorrelation in MCMC sampling.

91 # Standardize (divide by SD) to make initialization easier.

92 standardizeCols = function(dataMat) {

93 zDataMat = dataMat

94 for (colIdx in 1:NCOL(dataMat)) {

95 mCol = mean(dataMat[,colIdx])

96 sdCol = sd(dataMat[,colIdx])

97 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol

98 }

99 return(zDataMat)

100 }

101 zx = standardizeCols(x)

102 zy = standardizeCols(y)

103

104 # Get the data into BUGS:

105 datalist = list(

106 x = zx ,

107 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector

108 nPredictors = nPredictors ,

109 nData = nData ,

110 tdfBgain = tdfBgain

111)

112 modelData(bugsData(datalist))

113

114 #--

115 # INTIALIZE THE CHAINS.

116

117 nChain = 3

118 modelCompile(numChains = nChain)

119

120 genInitList <- function(nPred=nPredictors) {

121 lmInfo = lm(y ˜ x) # R function returns least-squares (normal MLE) fit.

122 bInit = lmInfo$coef[-1] * apply(x,2,sd) / sd(y)

123 tauInit = (length(y)*sd(y)ˆ2)/sum(lmInfo$resˆ2)

124 list(

125 b0 = 0 ,

126 b = bInit ,

127 tau = tauInit ,

128 muB = mean(bInit) ,

129 tauB = 1 / sd(bInit)ˆ2 ,

130 udfB = 0.95 # tdfB = 4

131)

132 }

133 for (chainIdx in 1 : nChain) {

17.5. R CODE 397

134 modelInits(bugsInits(genInitList))

135 }

136

137 #--

138 # RUN THE CHAINS

139

140 # burn in

141 BurnInSteps = 100

142 modelUpdate(BurnInSteps)

143 # actual samples

144 samplesSet(c("b0" , "b" , "tau" , "muB" , "tauB" , "tdfB"))

145 stepsPerChain = ceiling(10000/nChain)

146 thinStep = 2

147 modelUpdate(stepsPerChain , thin=thinStep)

148

149 #--

150 # EXAMINE THE RESULTS

151

152 source("plotChains.R")

153 source("plotPost.R")

154

155 checkConvergence = F

156 if (checkConvergence) {

157 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)

158 bSum = plotChains("b" , saveplots=F , filenameroot=fname)

159 tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)

160 muBSum = plotChains("muB" , saveplots=F , filenameroot=fname)

161 tauBSum = plotChains("tauB" , saveplots=F , filenameroot=fname)

162 tdfBSum = plotChains("tdfB" , saveplots=F , filenameroot=fname)

163 }

164

165 # Extract chain values:

166 zb0Samp = matrix(samplesSample("b0"))

167 zbSamp = NULL

168 for (j in 1:nPredictors) {

169 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))

170 }

171 zTauSamp = matrix(samplesSample("tau"))

172 zSigmaSamp = 1 / sqrt(zTauSamp) # Convert precision to SD

173 chainLength = length(zTauSamp)

174

175 # Convert to original scale:

176 bSamp = zbSamp * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,

177 ncol=nPredictors , nrow=NROW(zbSamp))

178 b0Samp = (zb0Samp * sd(y)

179 + mean(y)

180 - rowSums(zbSamp

181 * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,

182 ncol=nPredictors , nrow=NROW(zbSamp))

183 * matrix(apply(x,2,mean) , byrow=TRUE ,

184 ncol=nPredictors , nrow=NROW(zbSamp))))

185 sigmaSamp = zSigmaSamp * sd(y)

186

187 # Scatter plots of parameter values, pairwise:

188 if (nPredictors <= 6) { # don’t display if too many predictors

189 windows()

190 thinIdx = round(seq(1,length(zb0Samp),length=200))

191 pairs(cbind(zSigmaSamp[thinIdx] , zb0Samp[thinIdx] , zbSamp[thinIdx,]) ,

192 labels=c("Sigma zy","zIntercept",paste("zSlope",predictorNames,sep="")))

398 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

193 windows()

194 thinIdx = seq(1,length(b0Samp),length=700)

195 pairs(cbind(sigmaSamp[thinIdx] , b0Samp[thinIdx] , bSamp[thinIdx,]) ,

196 labels=c("Sigma y" , "Intercept", paste("Slope",predictorNames,sep="")))

197 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

198 }

199 # Show correlation matrix on console:

200 cat("\nCorrlations of posterior sigma, b0, and bs:\n")

201 show(cor(cbind(sigmaSamp , b0Samp , bSamp)))

202

203 # Display the posterior:

204 nPlotPerRow = 5

205 nPlotRow = ceiling((2+nPredictors)/nPlotPerRow)

206 nPlotCol = ceiling((2+nPredictors)/nPlotRow)

207 windows(3.5*nPlotCol,2.25*nPlotRow)

208 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

209 par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))

210 histInfo = plotPost(sigmaSamp , xlab="Sigma Value" , compVal=NULL ,

211 breaks=30 , main=bquote(sigma[y]) ,

212 cex.main=1.67 , cex.lab=1.33)

213 histInfo = plotPost(b0Samp , xlab="Intercept Value" , compVal=NULL ,

214 breaks=30 , main=bquote(.(predictedName) *" at "* x==0) ,

215 cex.main=1.67 , cex.lab=1.33)

216 for (sIdx in 1:nPredictors) {

217 histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,

218 breaks=30 ,

219 main=bquote(Delta * .(predictedName) /

220 Delta * .(predictorNames[sIdx])) ,

221 cex.main=1.67 , cex.lab=1.33)

222 }

223 dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

224

225 # Posterior prediction:

226 # Specify x values for which predicted y’s are needed.

227 # xPostPred is a matrix such that ncol=nPredictors and nrow=nPostPredPts.

228 xPostPred = rbind(

229 apply(x,2,mean)-3*apply(x,2,sd) , # mean of data x minus thrice SD of data x

230 apply(x,2,mean) , # mean of data x

231 apply(x,2,mean)+3*apply(x,2,sd) # mean of data x plus thrice SD of data x

232)

233 # Define matrix for recording posterior predicted y values for each xPostPred.

234 # One row per xPostPred value, with each row holding random predicted y values.

235 postSampSize = chainLength

236 yPostPred = matrix(0 , nrow=NROW(xPostPred) , ncol=postSampSize)

237 # Define matrix for recording HDI limits of posterior predicted y values:

238 yHDIlim = matrix(0 , nrow=NROW(xPostPred) , ncol=2)

239 # Generate posterior predicted y values.

240 # This gets only one y value, at each x, for each step in the chain.

241 for (chainIdx in 1:chainLength) {

242 yPostPred[,chainIdx] = rnorm(NROW(xPostPred) ,

243 mean = b0Samp[chainIdx]

244 + xPostPred %*% cbind(bSamp[chainIdx,]) ,

245 sd = rep(sigmaSamp[chainIdx] , NROW(xPostPred)))

246 }

247 source("HDIofMCMC.R")

248 for (xIdx in 1:NROW(xPostPred)) {

249 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])

250 }

251 cat("\nPosterior predicted y for selected x:\n")

17.6. EXERCISES 399

252 show(cbind(xPostPred , yPostPredMean=rowMeans(yPostPred) , yHDIlim))

253

254 #--

17.6 Exercises

Exercise 17.1. [Purpose: View the prior on the regression coefficients, when there is a hyperprior.]

The hyperprior on regression coefficients in Figure 17.6 may be difficult to intuit. There-
fore, generate graphs ofprior distribution on the regression coefficients for the program
in Section 17.5.2 (MultiLinRegressHyperBrugs.R), whentdf is set at different values. To
accomplish this, do the following:

1. Because BUGS balks at extreme values of tau, and extreme values can be sampled
under the vague prior, the gamma distributions for tau need to be censored. Therefore,
change the tau specifications to
tau ∼ dgamma(.01,.01)I(0.0001,10000)
tauB ∼ dgamma(.01,.01)I(0.0001,10000)

2. In thedatalist, comment out only the single line that specifies they values. The other
lines, that specify thex values and the number of predictors, etc., must remain, because they
specify the structure of the model. The model only predictsy as a function ofx; the model
does not predictx.

3. In the initialization of the chains, comment out the data-based initialization, and
instead usemodelGenInits().

4. Do not use theplotChains() command, because some of the MCMC values may be
too extreme for some of the BUGS graphics routines that are called by plotChains(), and
BUGS will crash.

5. When plotting the slope values in the last part of the code,manually specify the axis
limits so that you can see the central parts of the distributions, perhaps like this:
histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,

breaks=c(-1000000,seq(-400,400,21),1000000) , xlim=c(-400,400) , ...)

Run the program and display the prior for tdfBgain=1 and for tdfBgain=100. Point out
and discuss any differences in the priors for those different hyperprior constants.

Exercise 17.2.[Purpose: Power analysis for multiple regression.] Consider the SAT data shown
in Figure 17.3, p. 374, and the posterior for a linear regression model (with no interaction),
shown in Figure 17.5, p. 377. The marginal posterior distribution for the slope on spending-
per-pupil has a 95% HDI that excludes zero, and that has a width of very nearly 17. Consider
two different goals for the research: One goal is to show that the 95% HDI on spending-
per-pupil excludes a ROPE of [−1,+1], and the second goal is to show that the width of the
95% HDI is less than 10. How can we assess the probability of achieving these goals?

To address the question, we think of they values as being randomly generated according
to the linear regression model, at thex values that are provided by the world. The model
only describes the dependency ofy on x; the model does not describe the distribution of
the x values. In different applications thex values have different actual generators. In
experiments, thexvalues are selected by the experimenter, and power analysiscan explicitly
manipulate the values of thex’s and the frequencies of each. In observational studies, the x
values are generated by the world, not by the experimenter. In some observational studies,
we can think of thex values as randomly drawn from some underlying distribution; e.g.,
x could be a person’s height, and we can easily randomly sampleanother person to get

400 CHAPTER 17. METRIC Y, MULTIPLE METRIC X

anotherx value. In other observational studies, it is a conceptual stretch to think ofx as
being a random value that is sampled from some underlying population; e.g., spending-per-
pupil in each of the 50 states. But even in that last case, we can think of each state as being
representative of some universe of possible states, from which 50 were drawn.

In the present non-experimental, observational study (i.e., the SAT data for 50 states),
the x values are not selected by researcher. Moreover, we have no model of thex values.
Therefore, we use the actualx values themselves as the best available description of the
underlying distribution ofx values. When we simulate a new datum, we first randomly
select one of the points from the actualx values, and then we randomly generate ay value
according the credible parameter values in the model.

In our specific situation there are only 50 states altogether, and therefore we can do a
retrospective power analysis using a sample size of 50. But we can also imagine increasing
the sample size if, instead of using state-average data, we imagine that the data are from
individual school districts within states. Under this interpretation, the posterior from the
state-average data, and the range ofx values, might not be fully representative of district
data, but at least it’s better than nothing.

Answer these questions: What is the retrospective power foreach of the two goals?
(Hint: It’s about .67 and .00, when thex points are randomly sampled with replacement
from the 50 actual points.) What is the power for each of the two goals whenN = 130?
(Hint: It’s about .85 and .30.) What’s the minimalN needed to achieve a power of .80 for
the second goal?

Programming hints: Use the power-analysis program of Section 13.6.2
(FilconBrugsPower.R) as a template for adapting the linear regression program Sec-
tion 17.5.1 (MultipleLinearRegressionBrugs.R). You’ll want to pass the raw data into the
GoalAchievedForSample() function because that way the data can be standardized for BUGS
but the resulting parameter values can be converted back to the original scale (using
information from the original data).

Chapter 18

Metric Predicted Variable with One
Nominal Predictor
Contents

18.1 Bayesian oneway ANOVA . 402
18.1.1 The hierarchical prior . 403

18.1.1.1 Homogeneity of variance 404
18.1.2 Doing it with R and BUGS . 404
18.1.3 A worked example . 406

18.1.3.1 Contrasts and complex comparisons 407
18.1.3.2 Is there a difference? 408

18.2 Multiple comparisons . 409
18.3 Two group Bayesian ANOVA and the NHSTt test 412
18.4 R code . 413

18.4.1 Bayesian oneway ANOVA . 413
18.5 Exercises . 417

Familywise error rates breed rumors of incest,
Hounding for quarry in multiple t tests.
Barking at research, poor dog got run over;
Should have done Bayesian oneway ANOVA.

In this chapter we consider situations with a metric predicted variable and a nominally-
scaled predictor variable. There are many cases of these situations in real-world research.
For example, we may want to predict weight loss (a metric variable) as a function of which
diet the person follows (e.g., low-carb, vegetarian, or low-fat). As another example, we may
want to predict severity of psychosis (measured on a metric scale) as a function of which
anti-psychotic drug the person takes. Or we may want to predict income as a function of
political party affiliation. This combination of predicted and predictor scaletypes occurs in
the first row, fourth cell, of Table 14.1 (p. 312).

In traditional NHST analyses, these situations are addressed by “oneway analysis of
variance” (ANOVA). The term “oneway” refers to the fact thata single nominal variable
is being used as the predictor. The phrase “analysis of variance” refers to the fact that the
overall variance among all the values is decomposed, i.e., analyzed, into two parts: variance
within the levels of the nominal predictors, and variance between the levels of the nominal

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

401

402 CHAPTER 18. METRIC Y, ONE NOMINAL X

predictors. The variance within levels of the nominal predictor is called noise or error, i.e.,
variability that cannot be predicted by the predictor. The complementary variance between
the levels of the nominal predictor is called the effect of the predictor. Usually we do the
research with the goal of detecting an effect, which means that we would like the magnitude
of the variance between levels to be large compared to the noise within levels. The ratio,
of variance between to variance within, is called theF-ratio. In the Bayesian approach,
we rarely if ever refer to theF-ratio. But because the model we use is based on the model
of traditional ANOVA, we will refer to our analysis as Bayesian ANOVA, or sometimes
BANOVA.

18.1 Bayesian oneway ANOVA

The basic idea of oneway ANOVA was introduced in Section 14.1.6.1, p. 300. The predictor
is a variable measured on a nominal scale. For example, if income is predicted as a function
of political party affiliation, notice that the predictor has nominal levels such as libertarian,
green, democratic, republican, and so on. We denote the predictor variable as−→x , which is
a vector with one component per nominal level. For example, suppose that the predictor
is political party affiliation, with Green as level 1, Democrat as level 2, Republican as
level 3, Libertarian as level 4, and Other as level 5. Then Democrat is represented as
−→x = 〈0, 1, 0, 0, 0〉, and Libertarian is represented as−→x = 〈0, 0, 0, 1, 0〉. Political party
affiliation is being treated here as a categorical label only, with no ordering along a liberal-
conservative scale.

The formal model indicates how to derive the predicted valuefrom the predictor. The
idea is that there is a baseline quantity of the predicted variable, and each level of the
predictor indicates a deflection above or below that baseline. We will denote the baseline
value of the prediction asβ0. The deflection for thejth level of the predictor is denotedβ j.

When the predictor has value−→x i = 〈. . . , x ji , . . .〉, then the predicted value is

µi = β0 +
∑

j

β j x ji

= β0 +
−→
β · −→x i (18.1)

where the notation
−→
β · −→x denotes the “dot product” of the vectors. In Equation 18.1, the

coefficient β j indicates how muchµ changes when−→x changes from neutral to levelj. In

other words,β j indicates how muchµ changes when−→x changes from allx j = 0 to x j = 1.

The baseline is constrained such that the deflections sum to zero across the levels of−→x :
∑

j=1

β j = 0 (18.2)

The expression of the model in Equation 18.1 is not complete without the constraint in
18.2. Examples were shown in Figure 14.4, p. 301, and it is worth the effort to go now to
that Figure for a quick review.

The predicted value,µi, in Equation 18.1 is of the central tendency in the data. The data
themselves are assumed to be randomly generated around thatcentral tendency. As usual,
we will assume a normal distribution,yi ∼ N(µi , τ), whereτ is the precision of the normal
distribution. As discussed in previous chapters, if the data have outliers, at distribution may
be used instead.

18.1. BAYESIAN ONEWAY ANOVA 403

Figure 18.1: Hierarchical dependencies for model of onewayBayesian ANOVA.
The baseline isβ0, and the deflection away from that baseline for thejth level
of x is β j . The standard deviation of theβ j ’s has a folded-t prior. The variance
within levels of x is estimated by the precisionτy, which is here assumed to be
homogeneous across groups, although it need not be in general.

18.1.1 The hierarchical prior

Our primary interest is in estimating the deflection parameters,β j , for each level of−→x . We
could just put a separate prior on each parameter and estimate them separately from each
other. It is typical, however, that the levels of−→x are not utterly unrelated to each other,
and therefore data from one level may inform estimates in another level. For example, the
deflections for republicans, libertarians, and greens can inform an estimate of the deflection
for democrats. Thus, if the deflection for libertarians is+1.0, for republicans is+0.5, and for
greens is−1.0, then the deflection for democrats should be somewhere in that general range,
and not out at, say,−12.0. At the least, we might have prior beliefs that the deflections for
most levels of−→x may be small, with only a few deflections being large, and therefore we
can let the various levels mutually inform each other’s estimates based on this structural
assumption.

The form of the hierarchical model for oneway BANOVA is displayed in Figure 18.1
(Gelman, 2005, 2006). In the upper middle of the diagram is the normal distribution that
describes the distribution of deflections,β j, across levels of−→x . This normal distribution
has a mean at zero, reflecting the fact that the deflections areconstrained to fall both above
and below the baseline, because they must sum to zero. Importantly, the precision of this
normal distribution,τ

β
, is estimated, not pre-set at a constant. Thus, if many of thelevels

of −→x have a small deflection in the data, then the precisionτ
β

is estimated to be high, and
this in turn shrinks the estimates of otherβ j .

The prior forτ
β

derives from the recommendation of Gelman (2006). First, the preci-

404 CHAPTER 18. METRIC Y, ONE NOMINAL X

sion is converted to standard deviation:τ
β
= 1/σ2

β
. Then a folded-t distribution is used as a

prior onσ
β
. The folded-t is just the positive side of the usualt distribution. Notice that it is

defined only over non-zero values, as is required forσ
β
, and it extends to positive infinity.

Unlike the gamma(ǫ, ǫ) distribution that is often used for precisions, however, the folded-t
does not have infinite density near zero. Because noisy data can never rule out deflections of
all zero, there can cause unintended distortions in the estimates if the prior places extreme
densities at either end of the scale (see Gelman, 2006, for details).

A folded-t prior could also be used for the noiseσy, but we will use a uniform, again
as recommended by Gelman (2006). One motivation is that a uniform may have a more
intuitive form than a folded-t when expressing a prior belief. A second reason is that the
infelicities of estimation that affectσ

β
are not present so prominently at this level in the

model, because the within-level noise is typically not nearzero, and there are enough data
points to overwhelm any mildly informed prior.

18.1.1.1 Homogeneity of variance

The model described here assumes equal variances across alllevels of−→x . As a concrete
example, the model assumes that the variance of income is thesame for republicans as for
democrats as for libertarians as for greens. This assumption of homogeneous variances is
vestigial from two precursors. First, the analogous assumption is made in linear regression,
and ANOVA may be construed, mathematically, as a special case of linear regression. Sec-
ond, homogeneity of variance is assumed in NHST ANOVA to simplify derivation of F
distributions. Neither of these precursors actually demands that we make the assumption of
equal variances in BANOVA.

The model described here assumes homogeneity of variance merely for simplicity in
presentation. By assuming equal variances for all levels ofx, the focus could be on the
estimation of the group deflection parameters,β j . Also, by assuming equal variances, the
results of BANOVA can be more directly compared to the results of NHST ANOVA, if such
a comparison desired.

In principle, the BANOVA model can (and should) estimate difference variances for
each level of−→x . The model in Figure 18.1 can be expanded analogously to the model in
Figure 16.11, p. 356. Instead of a single precision,τy, used for all levels of−→x , a separate
precisionτ j is estimated for each level of−→x , as in the lower-right of Figure 16.11. A higher-
level distribution describes the spread of theτ j across levels of−→x . This structure provides
shrinkage of the estimates of theτ j , to the extent that the data suggest homogeneity of
variance. Exercise 18.3 has you give this scheme a test drive.

18.1.2 Doing it with R and BUGS

As usual, every arrow in the hierarchical diagram of Figure 18.1 has a corresponding line
in the BUGS model specification. The parameters that appear as “β j” in Figure 18.1 are
denoted by “a[j]” in the model specification.

To understand the way that the model is specified in the BUGS code, it is important to
understand how the data are formatted. The−→x values in the program are coded as integer
indices 1, 2, 3, ..., andnot as vectors〈1, 0, 0, . . .〉, 〈0, 1, 0, . . .〉, 〈0, 0, 1, . . .〉, By coding
−→x as integers, then nested indexing can be used instead of dot products of vectors. Thus,
−→
β · −→x becomes coded asa[x], not inprod(a[],x[]). For theith observation, the value ofx

18.1. BAYESIAN ONEWAY ANOVA 405

is coded asx[i]. Thus,x[i]∈ {1, 2, 3, . . . ,NxLvl} for i ∈ {1, . . . ,Ntotal}, whereNxLvl is the
number of levels of−→x andNtotal is the total number of observations.

Here is the BUGS model specification: (ANOVAonewayBRugs.R)

11 model {

12 for (i in 1:Ntotal) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- a0 + a[x[i]]

15 }

16 #

17 tau <- pow(sigma , -2)

18 sigma ˜ dunif(0,10) # y values are assumed to be standardized

19 #

20 a0 ˜ dnorm(0,0.001) # y values are assumed to be standardized

21 #

22 for (j in 1:NxLvl) { a[j] ˜ dnorm(0.0 , atau) }

23 atau <- 1 / pow(aSD , 2)

24 aSD <- abs(aSDunabs) + .1

25 aSDunabs ˜ dt(0 , 0.001 , 2)

26 }

The constraint, that the deflections sum to zero, does not appear in the model specifica-
tion. The BUGS code estimates the baseline and deflections without the constraint, but the
MCMC estimates are re-centered at zero by subsequent R code.The non-centered baseline
is denoted in the BUGS model asa0, and the non-centered deflections are denoteda[j].
Those non-centered estimates are transformed to respect the sum-to-zero constraint merely
by subtracting the mean of thea[j]’s from eacha[j], and adding the mean to the baseline.
Thus,b[j] = a[j] - mean(a) andb0 = a0 + mean(a).

The constants for the top-level priors are set with the assumption that the data values,
y, have been standardized. according to Equation 16.1, p. 348. (Of course, thex values
cannot be standardized because they are nominal.) This standardization makes it easier to
establish reasonable default priors for a range of applications, without having to change
the prior constants when the application changes, for example, from income, on the order
of 105 dollars, to width of hairs, on the order of 10−1 millimeters. Nevertheless, when
there is strong prior information, it should be incorporated. Exercise 18.2 has you explore
robustness of the results when you use different priors.

There is one other trick in the BUGS model specification that is not in the hierarchical
diagram of Figure 18.1. One line of the BUGS model specifies that the standard deviation of
the group effects, denotedaSDunabs, comes from at distribution:aSDunabs ∼ dt(0,0.001,2).
Another line takes the absolute value to “fold” thet distribution onto the non-negative num-
bers, yielding the valueaSD: aSD <- abs(aSDunabs) + .1. But that line also mysteriously
adds a small constant, namely 0.1. This constant keepsaSD from venturing extremely close
to zero. The reason for keepingaSD away from zero is that shrinkage can become over-
whelmingly strong when there are many groups with few data points per group. This be-
comes especially problematic in the next chapter when we consider interaction of factors.

It turns out that MCMC sampling for this model can be extremely inefficient. One
important way to reduce burn-in time is to start the chain at reasonable positions. We
start the overall baseline at the grand mean of the data, and start the deflections at the level
means minus the grand mean. The variances are also initialized near the corresponding data
variances. The full code, including initialization of chains, is presented in Section 18.4.1
(ANOVAonewayBRugs.R).

406 CHAPTER 18. METRIC Y, ONE NOMINAL X

x: 1

β11

−0.020 −0.010 0.000 0.005 0.010

mean = −0.0055

95% HDI
−0.0132 0.00141

x: 2

β12

−0.025 −0.015 −0.005 0.005

mean = −0.0103

95% HDI
−0.018 −0.0016

x: 3

β13

0.000 0.010 0.020 0.030

mean = 0.0151

95% HDI
0.00627 0.0236

x: 4

β14

−0.025 −0.015 −0.005 0.005

mean = −0.0073

95% HDI
−0.0153 0.000587

x: 5

β15

−0.010 0.000 0.010 0.020

mean = 0.008

95% HDI
−0.00102 0.0163

X Contrast: BIGvSMALL

−0.33 1 + −0.33 2 + 0.5 3 + −0.33 4 + 0.5 5

0.00 0.01 0.02 0.03

mean = 0.0192

0% <= 0 < 100%

95% HDI
0.0101 0.0291

X Contrast: ORE1vORE2

1 1 + −1 2

−0.01 0.00 0.01 0.02

mean = 0.00476

20.4% <= 0 < 79.6%

95% HDI
−0.00648 0.0166

X Contrast: ALAvORE

−0.5 1 + −0.5 2 + 1 3

0.00 0.01 0.02 0.03 0.04

mean = 0.023

0% <= 0 < 100%

95% HDI
0.0111 0.0351

X Contrast: NPACvORE

−0.5 1 + −0.5 2 + 0.5 3 + 0.5 4

−0.005 0.000 0.005 0.010 0.015 0.020 0.025

mean = 0.0118

0.4% <= 0 < 99.6%

95% HDI
0.00273 0.0205

X Contrast: USAvRUS

0.33 1 + 0.33 2 + 0.33 3 + −1 4

−0.01 0.00 0.01 0.02 0.03

mean = 0.00707

7.8% <= 0 < 92.2%

95% HDI
−0.00326 0.0171

X Contrast: FINvPAC

−0.25 1 + −0.25 2 + −0.25 3 + −0.25 4 + 1 5

−0.01 0.00 0.01 0.02 0.03

mean = 0.01

3.6% <= 0 < 96.4%

95% HDI
−0.00127 0.0204

X Contrast: ENGvOTH

0.33 1 + 0.33 2 + 0.33 3 + −0.5 4 + −0.5 5

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015

mean = −0.000579

55.5% <= 0 < 44.5%

95% HDI
−0.00868 0.00763

X Contrast: FINvRUS

−1 4 + 1 5

−0.01 0.00 0.01 0.02 0.03 0.04

mean = 0.0153

1.4% <= 0 < 98.6%

95% HDI
0.00232 0.029

Figure 18.2: Upper row: Posterior estimates ofβ j values for data from McDon-
ald (2009; McDonald et al., 1991). The values indicate deflections by each group
away from the overall central tendency. Middle and bottom rows: Various com-
plex comparisons ofβ j values. For example, the bottom row, third panel, com-
pares the three English-speaking sites against the two non-English speaking sites
(where they might say “midiya myshtsy” or “simpukka lihas” instead of “mussel
muscle”).

Because the chains can be highly autocorrelated, extensivethinning is needed, keeping
a step only once out of several hundred. Running such long chains can take a long time,
and become boring for your computer, which would rather be searching the web for exciting
software updates. In the examples presented here, we simplytolerate the modest waiting
times. But there are various methods for re-parameterizingthe models so that the chains
are sampled with less auto-correlation (e.g., Gelman, 2006; Gelman & Hill, 2007, Ch. 19).

18.1.3 A worked example

With all the emphasis these days on physical fitness and muscle building, it’s only appropri-
ate to consider an example about muscles. In particular, we’d like to know if geographical
location influences muscle size, which might be affected by the weather or amount of day-
light. Consider some data regarding muscles from five geographic locations: (1) Tillamook,
Oregon; (2) Newport, Oregon; (3) Petersburg, Alaska; (4) Magadan, Russia (Pacific coast);
and (5) Tvarminne, Finland. The values in the data set are thelength of the anterior ad-
ductor muscle scar divided by total muscle length, in the mussel species Mytilus trossulus.
These ratios of scar length to total length tend to be between5% and 15% (McDonald,
2009; McDonald, Seed, & Koehn, 1991).

Results of the BRugs program listed in Section 18.4.1 (ANOVAonewayBRugs.R) are shown
in Figure 18.2. The histograms in the upper row show the (marginal) posterior distributions
of the β j values for the five geographical locations. Theseβ j values are deflections away
from the baselineβ0, which is not shown. Some things to keep in mind when interpreting
the results: First, the estimates of deflection are subject to “shrinkage”, because the model
incorporates the prior structural assumption that all the deflections come from the same

18.1. BAYESIAN ONEWAY ANOVA 407

overarching distribution. The mean deflections shown in Figure 18.2 are, in fact, a little
smaller than the deflections of the actual sample means. Second, the model assumes that
the precision is the same for all groups; i.e., there is homogeneity of variance. The posterior
β j values are the ones that are believable when also assuming homogeneous variances. If the
groups actually have wildly different variances, then the estimates forβ j may be distorted.
Third, the marginal distributions on theβ j cannot be used to directly infer differences be-
tween groups, because the parameters might be correlated. Indeed, the deflections tend to
be negatively correlated, because increasing the estimated deflection for one group suggests
decreasing the estimated deflection for another, if they areto remain symmetric around the
baseline. To judge differences between groups, the differences must be computed directly.

18.1.3.1 Contrasts and complex comparisons

The middle and bottom rows of Figure 18.2 shows several comparisons for the mussel
muscle results. A comparison amounts to a difference between an average of some groups
and an average of other groups. For example, to compare the four Pacific Ocean mussels
against the one non-Pacific (Baltic Sea) mussel, we multiplythe deflections (β j ’s) of the
first four groups by 1/4 to get their average, and subtract it from the deflection (β5) of
the fifth group to get the difference. The difference is called acontrast, and when the
comparison involves a contrast of averages, instead of a contrast of two specific groups, it is
sometimes called acomplexcomparison. The contrast is fully specified by the coefficients
on the groups, which can be placed into a vector ofcontrast coefficients. For example,
the contrast coefficients for comparing Pacific Ocean mussels against Baltic Sea mussels
are−1/4,−1/4,−1/4,−1/4,+1. Notice that the coefficients sum to zero. We compute
the difference at every step in the MCMC chain, and examine the resulting distribution of
believable differences. The distribution for this particular example is shown in the bottom
row, second panel, of Figure 18.2, where it can be seen that just over 96% of the believable
differences lie on one side of zero, and the 95% HDI just spans zero. From these results
we may not want to declare categorically that there is a credible difference between Finland
and the other sites; the decision depends on how you set your HDI and ROPE. Regardless
of your decision rule, the posterior does tells us the most believable difference and the
uncertainty in that difference.

Figure 18.2 shows a variety of comparisons that might be of interest. For example, the
first panel of the middle row compares the two sites with the biggest muscles against the
three other sites. This sort of comparison would be labeled “post hoc” by traditional analy-
ses, because we might not have specified which sites would be biggest before collecting the
data. The second panel in the middle row contrasts the two sites in Oregon. The third panel
in the middle row compares the Alaska site against the average of the two Oregon sites.

We can make all the comparisons shown in Figure 18.2, and as many others as we
like, without worrying about inflated false alarm rates, because the posterior distribution
does not change when we consider additional comparisons. The posterior distribution is
the best inference we can make based on the data we have and theprior beliefs we started
with. It is possible that the random data in our sample are spuriously unrepresentative of
the underlying population, but we cannot know. Fortunately, because of the incorporation
of our prior knowledge about how estimates in the different locations can mutually inform
each other, the estimates undergo shrinkage, which helps tomitigate the effect of rogue
data. In many applications, the shrinkage yields decisionssimilar to those that would result
from NHST “corrections” for multiple comparisons. But unlike NHST corrections, the

408 CHAPTER 18. METRIC Y, ONE NOMINAL X

X Contrast: G3vOTHER

−0.12 1 + −0.12 2 + 1 3 + −0.12 4 + −0.12 5 + −0.12 6 + −0.12 7 + −0.12 8 + −0.12 9

0.0 0.5 1.0 1.5 2.0 2.5 3.0

mean = 1.48

0.2% <= 0 < 99.8%
95% HDI

0.446 2.48

Figure 18.3: A comparison of Group 3 versus
the average of other groups, for the data in So-
lari et al. (2008, Table 3, p. 495). (The specifi-
cation of contrast coefficients on thex-axis over-
flows the margins of the figure because there are
so many groups. The contrast coefficients on the
nine groups are−1/8,−1/8,+1,−1/8, . . ., which,
when rounded to two decimal places, appear as
−0.12,−0.12,+1,−0.12,)

shrinkage in the Bayesian approach is based on explicit structural prior knowledge, and is
not affected by which or how many comparisons are intended. (For previous discussion of
these issues, see Section 17.2, regarding decisions about multiple regression coefficients,
and Section 11.4, regarding multiple comparisons of groups.)

18.1.3.2 Is there a difference?

The contrasts and complex comparisons in Figure 18.2 were judged to be credibly non-
zero if the 95% HDI excluded (a ROPE around) zero. A difference would be deemed to be
practically equivalent to zero if its HDI fell entirely within a ROPE. This decision procedure
is attractive because all the groupβ j ’s are simultaneously estimated, with mutually informed
shrinkage, and from priors that are also appropriately informed (which entails also being
agreeable to a skeptical audience).

Some researchers prefer to pose the question, “Is there a difference?”, as a model com-
parison on two priors. One prior expresses the null hypothesis that the contrast has zero
magnitude, while the other prior expresses a complementaryhypothesis that any magnitude
contrast is possible. This approach was discussed extensively in Section 12.2, beginning on
p. 245.

There are two attractions to the two-prior, model-comparison approach. One attraction
is that the model comparison can yield posterior odds in favor of the null, unlike NHST,
which can only reject a null hypothesis but never accept it. Another attraction is that the
complementary hypothesis is usually intended to be an “automatic” uninformed prior that is
chosen for mathematical felicity. The hope is that an automatic prior obviates debate about
how prior information should be expressed.

As was argued in Section 12.2, the two-prior approach shouldbe applied cautiously.
First, it is important to emphasize that the two-prior approach only indicates which prior is
relatively less unbelievable. If either prior is theoretically untenable in the first place, then
the “automatic” model comparison is automatically uninformative. Thus, the two-prior
approach should only be applied to situations in which (i) itis theoretically appropriate
to posit that a particular contrast really can be exactly zero, and (ii) the alternative prior
incorporates prior knowledge about the plausible magnitude of the difference.

As an example, consider a situation presented by Solari, Liseo, and Sun (2008, Table 3,
p. 495). There were nine groups, with a metric dependent variable. The dependent vari-
able was the acetic acid content of tomatoes, and the nine groups were different types of
manuring during growth of the tomatoes. The mean of Group 3 appeared to be different
than other groups. To test whether Group 3 was different, the authors conducted a Bayesian
model comparison of two priors: The null-hypothesis prior had all nine groups with iden-

18.2. MULTIPLE COMPARISONS 409

tical means. The alternative prior had Group 3 with a separately estimated mean while the
other eight groups had identical means. The resulting Bayesfactor (BF) strongly favored
the alternative prior. Does this result suggest that the alternative prior is what we should
believe? Unfortunately, no. The BF tells us that the prior with eight equal means and one
different mean for Group 3 is more believable than the prior with nine equal means (assum-
ing that the priors on the two hypotheses were 50-50). But theprior with eight equal means,
on groups other than Group 3, is already untenable because wedo not believe that the eight
groups have identical means. Moreover, the estimate of difference, between Group 3 and
the other groups, is not what we want, because the estimate does not take into account
variation among the eight other groups.

When instead we conduct a Bayesian analysis using the BANOVAmodel, we obtain a
posterior that simultaneously estimates all the separate group deflections, with shrinkage,
from a plausibly informed prior. The complex comparison of Group 3 against the other eight
groups is shown in Figure 18.3, where it can be seen that the magnitude of the contrast is
credibly greater than zero. In this application, there is noneed to pursue a BF approach to
group comparisons.

It is also worth reiterating that the two-prior, model-comparison approach can arrive
at a conclusion opposite that of the one-prior, estimation approach. Recall Figure 12.5,
p. 249, which showed that a model comparison preferred the null hypothesis of identical
groups to the alternative hypothesis of all different groups, even though an estimation of
effects in the alternative hypothesis showed a credible difference among groups. The point
in that case was that the null model, even though it was a poor model, was less bad than
the alternative model. Follow-up model comparisons would be required to narrow down
which combination of group equivalences was least implausible. And even after that, we
would not necessarily want to believe that any of the groups are truly equivalent, because
we know in advance that they were treated differently. Instead, we desire an estimate of
the differences and the precision of the estimate. That situation involved a dichotomous
dependent variable, but the analogous situation can arise for metric dependent variables.

The two-prior, model-comparison approach can be appropriate in situations where ac-
tual equivalence is tenable and the goal is to identify whichconditions are plausibly equiv-
alent, or situations in which zero-magnitude effects are tenable and the goal is to identify
which conditions have zero effect. In those situations, it behooves the researcher to pursue
the model-comparison or related approaches (see, e.g., Berry & Hochberg, 1999; Gopalan
& Berry, 1998; Mueller et al., 2007; Scott & Berger, 2006). Moreover, Bayesian model
comparison is highly advisable when the two models are genuinely viable competitors that
express different explanations of the data. In these situations, it is important that the pri-
ors in the two models are equivalently informed, so that neither model is at a disadvantage
because of an infelicity in an arbitrary, automatic prior.

18.2 Multiple comparisons

In twentieth century null-hypothesis significance testing(NHST), there is an immense lit-
erature regarding how to compute the “true” significance (i.e., probability of false alarm)
of an apparent difference between groups, when the analyst is conducting comparisons of
multiple groups. The problem is that when more comparisons are conducted, there are more
opportunities for a spuriously large difference to appear by accident. In other words, there
are more opportunities for false alarms. Notice that this problem of inflated false alarm

410 CHAPTER 18. METRIC Y, ONE NOMINAL X

2.0 2.5 3.0 3.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

tcrit

p(
F

A
)

All PairwiseGrp 1 vs OtherGrp 1 vs Grp 2

Figure 18.4: The probability of false alarm
as a function of criticalt value, with sep-
arate curves for different sets of compar-
isons. All groups haveN = 6 fixed by in-
tention. The curve labeled “Grp 1 vs Grp 2”
is for a single comparison of two groups,
and corresponds with the usual two-groupt
distribution. The curve labeled “Grp 1 vs
Other” refers to four paired comparisons,
of Group 1 versus each of the other four
groups. The last curve is for the set of all
10 paired comparisons.

rates arises because NHST is based on the intentions of the analyst. If the analyst intends
to make lots of comparisons between various combinations ofgroups, then there is greater
opportunity for false alarms. If the analyst intends to makeonly a few comparisons between
groups, then there is less opportunity for false alarms.

For example, consider again the sea mussel data. Group 4 (Pacific coast Russia) and
Group 5 (Finland) seem to be different, and it is meaningful to plan a comparison be-
tween them because of their geographical difference. If we run a two-groupt-test, we get
t = 2.53, p = 0.028, which denotes a significant difference. On the other hand, if we
run a post-hoc test of all pairwise comparisons, using Tukey’s “Honest Significant Differ-
ence” correction, then we find thatp = 0.093, and the difference isnot significant. So,
do Russia and Finland really differ or not? According to NHST, the answer depends on
your intentions: If you intended to compare only those two locales, then they are signif-
icantly different, but if you intended to make all pairwise comparisons,then they are not
significantly different.

Section 11.4, p. 227, discussed multiple comparisons in NHST, in the context of a
dichotomous dependent variable. Here we reiterate those ideas in the context of a metric
dependent variable.

Suppose that we have two groups: One group is patients treated with a placebo and a
second group is patients treated with a totally ineffective drug. We measure a metric vari-
able, e.g., body temperature. Because there is no actual difference between the treatments,
the underlying distributions of body temperatures are identical for the two groups; we will
suppose that they are normally distributed with equal meansand equal variances. When
we run an experiment, we are collecting a random sample of data from each of the groups.
The random samples might show a spuriously large difference between their means, just by
chance, despite the fact that on average, in the long run, thegroups are identical.

To determine how often the spuriously large differences occur, we can simulate con-
ducting the experiment over and over. For every simulated experiment, we compute the
difference of means between the samples from the groups. The difference of sample means
is in units of the original measurement scale, e.g., degreesFahrenheit or degrees Celsius.
To get rid of the arbitrary influence of the measurement scale, we standardize the difference
of means and call the result thet statistic. Because the true difference between groups is
zero, thet value typically will be near zero. Occasionally, by chance,the t value will be

18.2. MULTIPLE COMPARISONS 411

far above or far below zero. The lowest curve in Figure 18.4 shows the probability that the
sampledt value falls above the criticalt value on the abscissa. For example, the probability
that the sampledt value falls abovetcrit = 2.23 isp(FA) = 0.05; this is marked by an arrow.
In NHST, the decision rule is to reject the null hypothesis ifthe samplet exceeds a critical
value that is selected to keep false alarms to only 5%. Thus, when comparing Group 1 with
Group 2, we would reject the null hypothesis ift > 2.23, because that would happen only
5% of the time by chance alone.

Now consider an expanded experiment, in which there is a placebo treatment and four
distinct drugs, for a total of five treatment groups. According to the null hypothesis, the five
treatment groups have identical distributions of body temperatures (normally distributed
with equal means and variances). However, because of randomsampling in any particular
experiment, some treatment samples will have higher or lower mean temperatures than
other treatment samples. Suppose that before we collect anyreal data, we plan to compare
the placebo group (Group 1) with each of the four drug groups,i.e., we plan four pairwise
comparisons. Each of these comparisons might yield a fairlylarge difference merely by
chance, even when there is truly no difference in the underlying distributions. We can
determine how often these chance extremes happen by runninga Monte Carlo simulation.
For a simulated experiment, we randomly sample 6 scores fromeach of the 5 groups, and
compute thet values of each of the 4 comparisons. The simulated experiment is repeated
many times. For each candidatetcrit , we see what proportion of simulated experiments had
a comparison that exceeded that critical value. The middle curve of Figure 18.4 shows the
result. Notice that at any given value oftcrit , there is now a much higher probability that the
simulated experiment will have at least one comparison withlargert. In particular, to keep
the false alarm rate down to 5%,tcrit must be about 2.95 instead of 2.33.

If we did not plan only four tests, but instead decided to compare every group with every
other group, then we would have even more opportunity for false alarms. With 5 groups,
there are 10 pairwise comparisons. If we simulate experiments from equal distributions as
before, but this time consider all 10t values, the probability of false alarm is higher yet,
as shown in the right curve of Figure 18.4. The critical valuehas risen even higher, to
approximately 3.43.1

Now, suppose we actually run the experiment. We randomly assign 30 people to the
5 groups, 6 people per group. The first group gets the placebo,and the other four groups
get the corresponding four drugs.We are careful to make this a double-blind experiment:
Neither the subjects nor experimenters know who is getting which treatment. Moreover, no
one knows whether any other person is even in the experiment.We collect the data. Our
first question is to compare the placebo and the first drug, i.e., group 1 versus group 2. We
compute thet statistic for the data from the two groups and find thatt = 2.95. Do we decide
that the two treatments had significantly different effects?

The answer, bizarrely, depends on the intentions of the person we ask. Suppose, for
instance, that we handed the data from the first two groups to aresearch assistant, who is
asked to test for a difference between groups. The assistant runs at-test and findst = 2.95,
declaring it to behighly significantbecause it greatly exceeds the critical value of 2.23 for
a two-groupt-test. Suppose, on the other hand, that we handed the data from all five groups
to a different research assistant, who is asked to compare the first group against each of
the other four. This assistant runs at-test of group 1 versus group 2 and findst = 2.95,

1For a discussion of various correction procedures and when to use them, see Figure 5.1 of Maxwell and
Delaney (2004). If you must learn NHST methods, this is an excellent resource.

412 CHAPTER 18. METRIC Y, ONE NOMINAL X

declaring it to bemarginally significantbecause it just squeezes past the critical value of
2.95 for these four planned comparisons. Suppose, on yet another hand, that we handed the
data from all five groups to a different research assistant, who is told to conduct all pairwise
comparisons post-hoc because we have no strong hypotheses about which treatments will
have beneficial or detrimental or neutral effects. This assistant runs at-test of group 1 versus
group 2 and findst = 2.95, declaring it to benot significantbecause it fails to exceed the
critical value of 3.43 that is used for post-hoc pairwise comparisons. Notice that regardless
of which assistant analyzed the data, thet-value for the two groups stayed the same because
the data of the two groups stayed the same. Indeed, the data were completely uninfluenced
by the intentions of the analyst. So why should the interpretation of the data be influenced
by the intentions of the analyst? It shouldn’t.

And if you believe that the interpretation should be influenced by the intention of the
analyst, how do you determine the intention of the analyst? Did the analyst truly plan only
those particular comparisons, or did the analyst really plan others but jettison them once
the data were in? Or, did the analyst actually plan fewer comparisons, but realize later
that additional comparisons should be made to address othertheoretical issues? Or, did the
analyst actually plan to include two other treatment groupsin the study, but then not actually
include those groups in the analysis because of administrative errors committed during the
data collection? Or what if the experiment was planned by a team of people, some of whom
planned some comparisons, and others of whom planned other comparisons? Conclusion:
Establishing the true intention of the analyst is not only pointless, it is also impossible.

Multiple comparisons are not a problem in a Bayesian analysis (e.g., Gelman et al.,
2009). The posterior distribution is a fixed entity in high-dimensional parameter space, and
making comparisons between groups is simply examining thatposterior distribution from
different perspectives or margins. The posterior does not change when new comparisons
come to mind.

The posterior is not immune to spurious coincidences of rogue data, of course. False
alarms are mitigated, however, by incorporating prior knowledge into the structure of the
model. The estimates of the groups are mutually informativevia estimation of higher-level
structure, and shrinkage of estimates across groups attenuates false alarms. The attenuation
of false alarms is governed by the data, not by unknowable intentions.

18.3 Two group Bayesian ANOVA and the NHSTt test

The idea behind a NSHTt test is simple: We have two groups, each with a mean. We
compute the difference of the means, and standardize that difference relative to the standard
deviation of the scores within the groups. The resulting standardized difference is called
the t value. We want to know whether the observedt value is significantly different from
zero, so we compare thet value to a sampling distribution oft values (Gosset, 1908). The
sampling distribution assumes that the intention of the researcher was to stop when there
were exactlyN1 values observed for the first group, and exactlyN2 values observed for the
second group.

The t test is a special case of NHST ANOVA when there are only two groups. More
specifically, when the two groups are assumed to have equal variances in the underlying
population, then thet value squared equals theF value in two-group ANOVA. (And what’s
anF value, you may ask? TheF value is the summary statistic used in NHST ANOVA to
express how much the groups differ from each other. It’s the ratio of the variance between

18.4. R CODE 413

group means, relative to the variance within groups.)
In typical applications of BANOVA, the prior on the between-group variance is only

mildly informed. In this case, a BANOVA on two groups imposeslittle shrinkage on the
group estimates because there are so few groups. It is only when several groups “gang
up” that they strongly inform the estimate of the variation between groups, and therefore
constrain the estimates of other groups. When the prior on the variance within groups is
also vague, the results of a two-group BANOVA closely agree with the results of an NHST
t-test. Exercise 18.1 has you explore this correspondence.

18.4 R code

18.4.1 Bayesian oneway ANOVA

(ANOVAonewayBRugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fnroot = "ANOVAonewayBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for (i in 1:Ntotal) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- a0 + a[x[i]]

15 }

16 #

17 tau <- pow(sigma , -2)

18 sigma ˜ dunif(0,10) # y values are assumed to be standardized

19 #

20 a0 ˜ dnorm(0,0.001) # y values are assumed to be standardized

21 #

22 for (j in 1:NxLvl) { a[j] ˜ dnorm(0.0 , atau) }

23 atau <- 1 / pow(aSD , 2)

24 aSD <- abs(aSDunabs) + .1

25 aSDunabs ˜ dt(0 , 0.001 , 2)

26 }

27 # ... end BUGS model specification

28 " # close quote for modelstring

29 # Write model to a file, and send to BUGS:

30 writeLines(modelstring,con="model.txt")

31 modelCheck("model.txt")

32

33 #--

34 # THE DATA.

35

36 # Specify data source:

37 dataSource = c("McDonaldSK1991" , "SolariLS2008" , "Random")[1]

38 # Load the data:

39

40 if (dataSource == "McDonaldSK1991") {

41 fnroot = paste(fnroot , dataSource , sep="")

414 CHAPTER 18. METRIC Y, ONE NOMINAL X

42 datarecord = read.table("McDonaldSK1991data.txt", header=T ,

43 colClasses=c("factor","numeric"))

44 y = as.numeric(datarecord$Size)

45 Ntotal = length(datarecord$Size)

46 x = as.numeric(datarecord$Group)

47 xnames = levels(datarecord$Group)

48 NxLvl = length(unique(datarecord$Group))

49 contrastList = list(BIGvSMALL = c(-1/3,-1/3,1/2,-1/3,1/2) ,

50 ORE1vORE2 = c(1,-1,0,0,0) ,

51 ALAvORE = c(-1/2,-1/2,1,0,0) ,

52 NPACvORE = c(-1/2,-1/2,1/2,1/2,0) ,

53 USAvRUS = c(1/3,1/3,1/3,-1,0) ,

54 FINvPAC = c(-1/4,-1/4,-1/4,-1/4,1) ,

55 ENGvOTH = c(1/3,1/3,1/3,-1/2,-1/2) ,

56 FINvRUS = c(0,0,0,-1,1))

57 }

58

59 if (dataSource == "SolariLS2008") {

60 fnroot = paste(fnroot , dataSource , sep="")

61 datarecord = read.table("SolariLS2008data.txt", header=T ,

62 colClasses=c("factor","numeric"))

63 y = as.numeric(datarecord$Acid)

64 Ntotal = length(datarecord$Acid)

65 x = as.numeric(datarecord$Type)

66 xnames = levels(datarecord$Type)

67 NxLvl = length(unique(datarecord$Type))

68 contrastList = list(G3vOTHER = c(-1/8,-1/8,1,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8))

69 }

70

71 if (dataSource == "Random") {

72 fnroot = paste(fnroot , dataSource , sep="")

73 #set.seed(47405)

74 ysdtrue = 4.0

75 a0true = 100

76 atrue = c(2 , -2) # sum to zero

77 npercell = 8

78 datarecord = matrix(0, ncol=2 , nrow=length(atrue)*npercell)

79 colnames(datarecord) = c("y","x")

80 rowidx = 0

81 for (xidx in 1:length(atrue)) {

82 for (subjidx in 1:npercell) {

83 rowidx = rowidx + 1

84 datarecord[rowidx,"x"] = xidx

85 datarecord[rowidx,"y"] = (a0true + atrue[xidx] + rnorm(1,0,ysdtrue))

86 }

87 }

88 datarecord = data.frame(y=datarecord[,"y"] , x=as.factor(datarecord[,"x"]))

89 y = as.numeric(datarecord$y)

90 Ntotal = length(y)

91 x = as.numeric(datarecord$x)

92 xnames = levels(datarecord$x)

93 NxLvl = length(unique(x))

94 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:

95 contrastList = NULL

96 for (g1idx in 1:(NxLvl-1)) {

97 for (g2idx in (g1idx+1):NxLvl) {

98 cmpVec = rep(0,NxLvl)

99 cmpVec[g1idx] = -1

100 cmpVec[g2idx] = 1

18.4. R CODE 415

101 contrastList = c(contrastList , list(cmpVec))

102 }

103 }

104 }

105

106 # Specify the data in a form that is compatible with BRugs model, as a list:

107 ySDorig = sd(y)

108 yMorig = mean(y)

109 z = (y - yMorig) / ySDorig

110 datalist = list(

111 y = z ,

112 x = x ,

113 Ntotal = Ntotal ,

114 NxLvl = NxLvl

115)

116 # Get the data into BRugs:

117 modelData(bugsData(datalist))

118

119 #--

120 # INTIALIZE THE CHAINS.

121

122 # Autocorrelation within chains is large, so use several chains to reduce

123 # degree of thinning. But we still have to burn-in all the chains, which takes

124 # more time with more chains (on serial CPUs).

125 nchain = 5

126 modelCompile(numChains = nchain)

127

128 if (F) {

129 modelGenInits() # often won’t work for diffuse prior

130 } else {

131 # initialization based on data

132 theData = data.frame(y=datalist$y , x=factor(x,labels=xnames))

133 a0 = mean(theData$y)

134 a = aggregate(theData$y , list(theData$x) , mean)[,2] - a0

135 ssw = aggregate(theData$y , list(theData$x) ,

136 function(x){var(x)*(length(x)-1)})[,2]

137 sp = sqrt(sum(ssw) / length(theData$y))

138 genInitList <- function() {

139 return(

140 list(

141 a0 = a0 ,

142 a = a ,

143 sigma = sp ,

144 aSDunabs = sd(a)

145)

146)

147 }

148 for (chainIdx in 1 : nchain) {

149 modelInits(bugsInits(genInitList))

150 }

151 }

152

153 #--

154 # RUN THE CHAINS

155

156 # burn in

157 BurnInSteps = 10000

158 modelUpdate(BurnInSteps)

159 # actual samples

416 CHAPTER 18. METRIC Y, ONE NOMINAL X

160 samplesSet(c("a0" , "a" , "sigma" , "aSD"))

161 stepsPerChain = ceiling(5000/nchain)

162 thinStep = 750

163 modelUpdate(stepsPerChain , thin=thinStep)

164

165 #--

166 # EXAMINE THE RESULTS

167

168 source("plotChains.R")

169 source("plotPost.R")

170

171 checkConvergence = T

172 if (checkConvergence) {

173 sumInfo = plotChains("a0" , saveplots=T , filenameroot=fnroot)

174 sumInfo = plotChains("a" , saveplots=T , filenameroot=fnroot)

175 sumInfo = plotChains("sigma" , saveplots=T , filenameroot=fnroot)

176 sumInfo = plotChains("aSD" , saveplots=T , filenameroot=fnroot)

177 }

178

179 # Extract and plot the SDs:

180 sigmaSample = samplesSample("sigma")

181 aSDSample = samplesSample("aSD")

182 windows()

183 layout(matrix(1:2,nrow=2))

184 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

185 plotPost(sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30)

186 plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)

187 dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

188

189 # Extract a values:

190 a0Sample = samplesSample("a0")

191 chainLength = length(a0Sample)

192 aSample = array(0 , dim=c(datalist$NxLvl , chainLength))

193 for (xidx in 1:datalist$NxLvl) {

194 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))

195 }

196

197 # Convert to zero-centered b values:

198 mSample = array(0, dim=c(datalist$NxLvl , chainLength))

199 for (stepIdx in 1:chainLength) {

200 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])

201 }

202 b0Sample = apply(mSample , 2 , mean)

203 bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)

204 # Convert from standardized b values to original scale b values:

205 b0Sample = b0Sample * ySDorig + yMorig

206 bSample = bSample * ySDorig

207

208 # Plot b values:

209 windows(datalist$NxLvl*2.75,2.5)

210 layout(matrix(1:datalist$NxLvl , nrow=1))

211 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

212 for (xidx in 1:datalist$NxLvl) {

213 plotPost(bSample[xidx,] , breaks=30 ,

214 xlab=bquote(beta*1[.(xidx)]) ,

215 main=paste("x:",xnames[xidx]))

216 }

217 dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

218

18.5. EXERCISES 417

219 # Display contrast analyses

220 nContrasts = length(contrastList)

221 if (nContrasts > 0) {

222 nPlotPerRow = 5

223 nPlotRow = ceiling(nContrasts/nPlotPerRow)

224 nPlotCol = ceiling(nContrasts/nPlotRow)

225 windows(3.75*nPlotCol,2.5*nPlotRow)

226 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

227 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

228 for (cIdx in 1:nContrasts) {

229 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix

230 incIdx = contrast!=0

231 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,

232 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,

233 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

234 cex.lab = 1.0 ,

235 main=paste("X Contrast:", names(contrastList)[cIdx]))

236 }

237 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))

238 }

239

240 #==

241 # Do NHST ANOVA and t tests:

242

243 theData = data.frame(y=y , x=factor(x,labels=xnames))

244 aovresult = aov(y ˜ x , data = theData) # NHST ANOVA

245 cat("\n--\n\n")

246 print(summary(aovresult))

247 cat("\n--\n\n")

248 print(model.tables(aovresult , "means") , digits=4)

249 windows()

250 boxplot(y ˜ x , data = theData)

251 cat("\n--\n\n")

252 print(TukeyHSD(aovresult , "x" , ordered = FALSE))

253 windows()

254 plot(TukeyHSD(aovresult , "x"))

255 if (T) {

256 for (xIdx1 in 1:(NxLvl-1)) {

257 for (xIdx2 in (xIdx1+1):NxLvl) {

258 cat("\n--\n\n")

259 cat("xIdx1 = " , xIdx1 , ", xIdx2 = " , xIdx2 ,

260 ", M2-M1 = " , mean(y[x==xIdx2])-mean(y[x==xIdx1]) , "\n")

261 print(t.test(y[x==xIdx2] , y[x==xIdx1] , var.equal=T)) # t test

262 }

263 }

264 }

265 cat("\n--\n\n")

266

267 #==

18.5 Exercises

Exercise 18.1.[Purpose: Notice that Bayesian ANOVA with two groups tends to agree with an NHST

t test.] The BRugs program of Section 18.4.1 (ANOVAonewayBRugs.R) allows you to specify
random data. It executes a Bayesian ANOVA, and at the end of the program it also con-
ducts an NHST ANOVA andt tests (using R’saov andt.test functions). Run the program

418 CHAPTER 18. METRIC Y, ONE NOMINAL X

ten times with different random data by commenting out theset.seed command. Specify
ysdtrue = 4.0, atrue = c(2,-2) (which implies two groups because there are two deflec-
tions), andnpercell = 8. For each run, record, by hand, (i) how much of the posterior dif-
ference between means falls on one side of zero (see the posterior histogram with the main
title “X Contrast” andx-axis labeled “−1 1+ 1 2”), (ii) whether the 95% HDI excludes
zero, and (iii) the confidence interval andp value of the NHSTt-test. Do thet-test and the
BANOVA usually agree in their decisions about whether the group means are different?

Exercise 18.2.[Purpose: Influence of the prior in Bayesian ANOVA.] In the model section of the
BRugs program of Section 18.4.1 (ANOVAonewayBRugs.R), and correspondingly in the diagram
of Figure 18.1, there are several constants that determine the prior. These constants include
the mean value of the baseline (M0 in the diagram), the precision on the baseline (T0 in the
diagram), the precision of the folded-t distribution (Tt in the diagram), and the upper value
of the uniform distribution onσy (Hσy in the diagram). Because the data are standardized,
M0 should be set at zero, andT0 can be modest (not terribly small).Hσy also can be set
to a modest value because the data are standardized. But whatabout the precision of the
folded t distribution,Tt? This constant modulates the degree of shrinkage: A large value of
Tt indicates prior knowledge that the groups do not differ much, and imposes a high degree
of shrinkage that must be overcome by the data.

Run the program on the mussel data using a small value ofTt, such as 1.0E-6, and a
large value ofTt, such as 1000. Are the results very different? Discuss which prior value
might be appropriate.

Exercise 18.3.[Purpose: Bayesian ANOVA without assuming equal variances.] Modify the pro-
gram in Section 18.4.1 (ANOVAonewayBRugs.R) so that it allows a different variance for each
group, with the different variances coming from a hyperdistribution that has its precision
informed by the data. In other words, instead of assuming thesameτy (= 1/σ2

y) for all
the levels ofx, we allow each group to have its own variance. Denote the precision of jth

group asτ j , analogous to the deflectionβ j . Just as the group deflections are assumed to
come from a higher-level distribution, we will assume that the group SD’s come from a
higher-level distribution. Because SD’s must be non-negative, use a gamma density for the
higher-level distribution. The gamma distribution has twoparameters for which you need
to establish a prior.See the right side of Figure 16.11, p. 356, for guidance.Corresponding
code is offered in a hint, below. Run the program on the mussel muscle data. Are the con-
clusions about the group means any different than when assuming equal variances across
groups?

Hint regarding the conclusion: The posteriors on the group means are only a little dif-
ferent in this case, because the groups variances are roughly the same. But, because the
group variances are less constrained when they are all allowed to be different, they are less
certain. Therefore the group means are a little less certain, and therefore the differences of
means are a little less certain.

Programming hints: Here are some code snippets, showing themodel specification and
chain initialization. (ANOVAonewayNonhomogvarBrugs.R)

11 model {

12 for (i in 1:Ntotal) {

13 y[i] ˜ dnorm(mu[i] , tau[x[i]])

14 mu[i] <- a0 + a[x[i]]

15 }

16 a0 ˜ dnorm(0,0.001)

17 for (j in 1:NxLvl) {

18.5. EXERCISES 419

18 a[j] ˜ dnorm(0.0 , atau)

19 tau[j] ˜ dgamma(sG , rG)

20 }

21 sG <- pow(m,2)/pow(d,2)

22 rG <- m/pow(d,2)

23 m ˜ dgamma(1,1)

24 d ˜ dgamma(1,1)

25 atau <- 1 / pow(aSD , 2)

26 aSD <- abs(aSDunabs) + .1

27 aSDunabs ˜ dt(0 , 0.001 , 2)

28 }

(ANOVAonewayNonhomogvarBrugs.R)
133 # initialization based on data

134 theData = data.frame(y=datalist$y , x=factor(x,labels=xnames))

135 a0 = mean(theData$y)

136 a = aggregate(theData$y , list(theData$x) , mean)[,2] - a0

137 tau = 1/(aggregate(theData$y , list(theData$x) , sd)[,2])ˆ2

138 genInitList <- function() {

139 return(

140 list(

141 a0 = a0 ,

142 a = a ,

143 tau = tau ,

144 m = mean(tau) ,

145 d = sd(tau) ,

146 aSDunabs = sd(a)

147)

148)

149 }

150 for (chainIdx in 1 : nchain) {

151 modelInits(bugsInits(genInitList))

152 }

420 CHAPTER 18. METRIC Y, ONE NOMINAL X

Chapter 19

Metric Predicted Variable with
Multiple Nominal Predictors
Contents

19.1 Bayesian multi-factor ANOVA . 422
19.1.1 Interaction of nominal predictors 422
19.1.2 The hierarchical prior . 424
19.1.3 An example in R and BUGS 425
19.1.4 Interpreting the posterior .428

19.1.4.1 Metric predictors and ANCOVA 428
19.1.4.2 Interaction contrasts 429

19.1.5 Non-crossover interactions, rescaling, and homogeneous variances430
19.2 Repeated measures, a.k.a. within-subject designs 432

19.2.1 Why use a within-subject design? And why not? 434
19.3 R code . 435

19.3.1 Bayesian two-factor ANOVA 435
19.4 Exercises . 444

Sometimes I wonder just how it could be, that
Factors aligned so you’d end up with me.
All of the priors made everyone think, that
Our interaction was destined to shrink.

In this chapter we consider situations with a metric predicted variable and multiple nom-
inal predictor variables. For example, we might want to predict income (a metric variable)
on the basis of political party affiliation (a nominal variable) and ethnicity (another nominal
variable). Or, we may want to predict response time (a metricvariable) on the basis of
hand used for the response (a nominal value: dominant hand ornon-dominant hand) and
modality of stimulus (another nominal value: visual, auditory, or tactile). These situations
are modeled by the cell in the first row and last column of Table14.1, p. 312.

In traditional NHST, this situation is known as multifactorANOVA. We use the same
underlying model, but without reference toF sampling distributions, and instead with hi-
erarchical priors that provide additional structural constraints. Multifactor ANOVA is a
straightforward extension of the model in the previous chapter, but including the a new

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

421

422 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

concept of interaction between nominal variables. Just as multiple regression considered
interaction of metric predictors, multifactor ANOVA considers interaction of nominal pre-
dictors.

19.1 Bayesian multi-factor ANOVA

Recall from the previous chapter that in oneway ANOVA we describe the effect of each
level of the predictor as a deflection away from an overall baseline, where the baseline is
the central tendency across all levels of the predictor. In multifactor ANOVA, the same
idea applies to two or more predictors, and the deflections due to each predictor areadded.
We’ll use notation analogous to the previous chapter, but with extra subscripts to indicate
the different predictors, just as we used in multiple regression on continuous predictors.

The mathematical notation was introduced as a case of the generalized linear model in
Section 14.1.6.2, p. 302. Suppose we have two nominal predictors, cleverly denoted−→x1

and−→x2. These predictor vectors can only take on values of〈1, 0, 0, . . .〉, 〈0, 1, 0, . . .〉, and so
on, with the jth component having the value 1 when the predictor has itsjth nominal level.

When the effects of the two predictors are additive, the predicted tendency is as follows:

y = β0 +
−→
β 1
−→x1 +

−→
β 2
−→x2

= β0 +

J1∑

j=1

β1, j x1, j +

J2∑

k=1

β2,kx2,k

To make the parameter values unique, we include the constraints

J1∑

j=1

β1, j = 0 and
J2∑

j=k

β2,k = 0

Those equations repeat Equations 14.7 and 14.8. In words, the valueβ0 establishes the
overall baseline from which the predictors indicate deflections. When predictorx1 has
valuex1, j, a deflection ofβ1, j is added to the baseline, and when predictorx2 has valuex2,k,
a deflection ofβ2,k is also added to the baseline. The deflections may be negative. Indeed,
across all levels of the predictors, the constraints demandas much negative deflection as
positive deflection, so that the deflections sum to zero for each predictor.

19.1.1 Interaction of nominal predictors

The effect of two predictors may be non-additive, in which case we say that there is an
“interaction” of the predictors. For example, if a flame is put under a hot-air balloon, its
levity will increase. And if hydrogen is added to a balloon, its levity will increase. But if
hydrogen and flame are added to a balloon, there is a non-additive interaction, such that
levity is not increased.

Figure 19.1 displays a simple interaction. Both predictorshave only two levels. The
abscissa groups the two levels of predictor−→x1, and the shading of the bars indicates the two
levels of predictor−→x2. All three panels of Figure 19.1 show the same data, but the nature
of the interaction is highlighted differently in each panel.

In the left panel of Figure 19.1, the dashed parallelogram indicates the bestadditive
model for the data. The dashed lines indicate the average change when the levels of the

19.1. BAYESIAN MULTI-FACTOR ANOVA 423

x1 = <1,0> x1 = <0,1>

x2 = <1,0>
x2 = <0,1>

Deflection from additive

x1

y

0
2

4
6

8
10

x1 = <1,0> x1 = <0,1>

x2 = <1,0>
x2 = <0,1>

Effect of x1 depends on x2

x1

y

0
2

4
6

8
10

x1 = <1,0> x1 = <0,1>

x2 = <1,0>
x2 = <0,1>

Effect of x2 depends on x1

x1

y

0
2

4
6

8
10

Figure 19.1: An interaction of nominal variables−→x1 and−→x2, parsed three ways.
The left panel emphasizes that the interaction involves a non-additive, torsion-like
deflection away from the additive model, as indicated by the arrows. The middle
panel shows the same data, with lines that emphasize that theeffect of−→x1 depends
on the value of−→x2. The right panel again shows the same data, but with lines that
emphasize that the effect of−→x2 depends on the value of−→x1.

predictors change.The vertical arrows highlight the non-additive deflections, away from
the additive average, that constitute the interaction. Notice that the arrows sum to zero
across each edge of the parallelogram. Thus, the interaction components do not change the
average deflections of each predictor.

The middle and right panels of Figure 19.1 highlight different interpretations of the
interaction. The middle panel shows that the effect of−→x1, i.e., the amount thaty changes
when−→x1 changes, depends on the level of−→x2: When−→x2 = 〈1, 0〉, there is only a small
change iny when−→x1 changes, but when−→x2 = 〈0, 1〉, there is only a larger change iny
when−→x1 changes. The right panel makes the same point but with the roles of the predictors
reversed: When−→x1 = 〈1, 0〉, the effect of−→x2 is to decreasey, but when−→x1 = 〈0, 1〉, the
effect of−→x2 is to increasey.

The average deflection from baseline due to a predictor is called themain effect of the
predictor. The main effects of the predictors correspond to the dashed lines in the left panel
of Figure 19.1. When there is non-additive interaction between predictors, the effect of one
predictor depends on the level of the other predictor. The deflection from baseline for a
predictor, at a fixed level of the other predictor, is called thesimple effect of the predictor
at the level of the other predictor. When there is interaction, the simple effects do not equal
the main effect.

It may be edifying to compare Figure 19.1, which shows interaction ofnominalpredic-
tors, with Figure 17.8, p. 384, which shows interaction ofmetricpredictors. The essential
notion of interaction is the same in both cases: Interactionis the non-additive portion of the
prediction, and interaction means that the effect of one predictor depends on the level of the
other predictor.

The mathematical formalism for non-additive interactionswas introduced in Sec-
tion 14.1.6.3, p. 303, as is repeated here. The non-additivecomponents, indicated by the
vertical arrows in Figure 19.1, are denotedβ1×2, j,k, which means the interaction of predic-
tors 1 and 2 (denoted 1× 2) at level j of predictor 1 and levelk of predictor 2. The formal

424 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

Figure 19.2: Hierarchical dependencies for model of two-way Bayesian ANOVA.
Compare with Figure 18.1.

expression merely expands the additive model with by including the interaction. Recall
from Equations 14.9 and 14.10 that the model with interaction term can be written as

y = β0 +
−→
β 1
−→x1 +

−→
β 2
−→x2 +

−→
β 1×2
−→x1×2

= β0 +

J1∑

j=1

β1, j x1, j +

J2∑

k=1

β2,kx2,k +

J1∑

j=1

J2∑

k=1

β1×2, j,kx1×2, j,k

with the constraints

J1∑

j=1

β1, j = 0 and
J2∑

k=1

β2,k = 0 and
J1∑

j=1

β1×2, j,k = 0 ∀k and
J2∑

k=1

β1×2, j,k = 0 ∀ j

In those last equations, the symbol “∀” means “for all”. In words, the last two equations
simply mean that the interaction deflections sum to zero along every level of the two pre-
dictors. A graphic example of this was shown in the left panelof Figure 19.1, where it can
be seen that the heights of the arrows sum to zero along every edge of the parallelogram.

Our goal is to estimate the additive and interactive deflections, based on the observed
data. It is important to understand that the observed data are not the bars in Figure 19.1;
instead, the data are swarms of points at various heights near the heights of the bars. The
bars represent the central tendency of the data at each combination of the predictors. Thus,
what the equations above actually predict is the central tendencyµ at each combination of
predictors, and the data are typically modeled as being normally distributed aroundµ.

19.1.2 The hierarchical prior

The complete generative model of the data is shown in Figure 19.2. It might look daunting,
but it really is merely the diagram for oneway ANOVA, in Figure 18.1, with the hyperprior
replicated for each predictor and interaction.

19.1. BAYESIAN MULTI-FACTOR ANOVA 425

The lowest level of Figure 19.2 indicates that the observed data points,yi , are distributed
normally around the predicted valueµi. Moving upward in the diagram, the arrow imping-
ing uponµi indicates that the predicted value is baseline plus additive deflection due to each
predictor plus interactive deflection due to the combination of predictors. The upper levels
of the diagram indicate prior structural assumptions aboutthe deflections. We assume that
the deflections produced by a predictor are centered at zero,and we allow the variance (i.e.,
precision) of the deflections to be estimated from the data. Thus, if most of the deflections
are small, the estimated variance is small, and the hyperdistribution creates shrinkage in the
estimates of other deflections.

A key conceptual aspect of the hyperdistributions is that they apply separately to the
different predictors and interactions. In other words, there isnot just one hyperdistribution
that governs all deflections for all predictors and interactions. This division of generative
structure reflects a prior assumption that the magnitude of the effect of one predictor might
not be very informative regarding the magnitude of the effect of a different predictor. But,
within a predictor, the magnitude of deflection produced by one level may inform the mag-
nitude of deflection produced by other levels of that same predictor.1

As was assumed in the case of oneway ANOVA, we will assume homogeneity of vari-
ance: The variability of the observed data is the same withineach combination of predic-
tors. This is indicated in Figure 19.2 by thesingleparameterσy that is used in likelihood
function, regardless of the values of the predictors. As before, there are two reasons for this
assumption. First, the assumption is a natural simplification in multiple regression on metric
predictors, and ANOVA can be construed as a special case of multiple regression. Second,
the assumption of equal variances is made in NHST ANOVA, and we will also make it here
in BANOVA to facilitate comparing across the techniques. But there is no requirement in
BANOVA to assume equal variances. If the the situation suggests that different levels of the
predictors produce radically different variances in the data, then the hierarchical prior can
allow different variances.

19.1.3 An example in R and BUGS

Figure 19.3 shows the mean annual salaries of faculty in fourdepartments at three levels
of seniority. The four departments are business finance, counseling and educational psy-
chology, chemistry, and theater. These departments are thenominal levels of a predictor
denoted−→x1. The three levels of seniority are full professor, associate professor, and assis-
tant professor. Assistant professors are usually within seven years after completing their
doctoral or post-doctoral studies. Associate professors are usually within about ten years
of their doctoral or post-doctoral studies. Full professors are anywhere from 10 to 40 years
post graduate school. Although seniority could, and perhaps should, be treated as an ordinal
variable, we will treat it as a nominal predictor, denoted−→x2. A glance at the means suggests
that there are effects of department and of seniority. There appears also to bean interaction,
meaning that the change in salary due to seniority depends onthe department. Our goal is
to estimate the baseline salary, the main effect of department membership, the main effect
of seniority, and the interaction of department and seniority.

The display of the means in Figure 19.3 obscures the fact thatdifferent combinations of

1By analogy to multiple regression, if there are many predictors included in a model, it is reasonable in prin-
ciple to include a higher-level distributionacross predictorssuch that the estimated variance of one predictor
informs the estimated variance of another predictor. This would be especially useful if the application includes
many nominal predictors, each with many levels. Such applications are rare.

426 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

1

1

1

1

50
00

0
10

00
00

15
00

00
20

00
00

theData$x1

m
ea

n
of

 t
he

D
at

a$
y

2

2

2

2

3

3

3

3

BFIN CEDP CHEM THTR

 theData$x2

1
2
3

FT1
FT2
FT3

Figure 19.3: Mean annual salaries of faculty in four departments at three levels of
seniority.

department and seniority had different numbers of data points. In other words, the number
of associate professors in business finance was not necessarily equal to the number of full
professors in theater. In traditional NHST ANOVA, this sortof “unbalanced” design can
cause serious computational difficulties (e.g., Maxwell & Delaney, 2004, pp. 320–343). But
Bayesian ANOVA has no problem with unbalanced designs.

The model of Figure 19.2 was implemented in R and BRugs and is listed in Sec-
tion 19.3.1 (ANOVAtwowayBRugs.R). Several tricks for running the model in BUGS are de-
scribed in that section, before the program listing. The essentials, however, are much like
the oneway ANOVA model of the previous chapter.

The results are shown in Figure 19.4. (The means and HDI limits are displayed with
only three significant digits, but more precise values can beobtained directly from the
program.) The top left histogram shows that the baseline forthese four departments is
111,381. Notice, however, that most of the data fall below this baseline because the over-
all data are skewed by the much higher salaries in one department. For salaries in the
department of chemistry, the fourth histogram in the top rowindicates that 2,164 should
be subtracted from the baseline. For salaries of assistant professors, the first histogram
in the bottom row indicates that 20,100 should be subtractedfrom the baseline. Thus,
for assistant professors in the department of chemistry, the linearly-predicted salary is
111, 381− 2, 164− 20, 100= 89, 117. But there is a notable non-linear interaction compo-
nent for that combination: The fourth histogram of the bottom row shows that 10,938 must
be subtracted from the linear combination to get the mean estimate for that combination,
namely, 78,179.

19.1. BAYESIAN MULTI-FACTOR ANOVA 427

Baseline

β0
106000 110000 114000 118000

mean = 111000

95% HDI
108000 115000

x1: BFIN

β11

70000 75000 80000 85000 90000 95000

mean = 84600

95% HDI
77800 91100

x1: CEDP

β12

−50000 −45000 −40000 −35000 −30000 −25000

mean = −37400

95% HDI
−43000 −32100

x1: CHEM

β13

−10000 −5000 0 5000

mean = −2160

95% HDI
−8440 2910

x1: THTR

β14

−55000 −50000 −45000 −40000 −35000

mean = −45100

95% HDI
−51700 −39000

x2: FT1

β21

20000 25000 30000 35000

mean = 26400

95% HDI
21100 32200

x2: FT2

β22

−10000 −5000 0

mean = −6310

95% HDI
−10800 −1760

x2: FT3

β23

−30000 −25000 −20000 −15000

mean = −20100

95% HDI
−24700 −15300

x1: BFIN , x2: FT1

β121,1

−10000 0 10000 20000

mean = 6640

95% HDI
−3430 17000

x1: CEDP , x2: FT1

β122,1

−20000 −15000 −10000 −5000 0 5000

mean = −6310

95% HDI
−14100 579

x1: CHEM , x2: FT1

β123,1

−5000 0 5000 10000 15000 20000 25000

mean = 8730

95% HDI
886 17500

x1: THTR , x2: FT1

β124,1

−25000 −15000 −5000 0 5000

mean = −9060

95% HDI
−17900 240

x1: BFIN , x2: FT2

β121,2

−20000 −10000 0 5000

mean = −8350

95% HDI
−16600 −681

x1: CEDP , x2: FT2

β122,2

−10000 −5000 0 5000 10000 15000

mean = 2920

95% HDI
−4500 9590

x1: CHEM , x2: FT2

β123,2

−10000 −5000 0 5000 10000 15000

mean = 2210

95% HDI
−4900 8560

x1: THTR , x2: FT2

β124,2

−10000 0 5000 15000

mean = 3220

95% HDI
−3900 11100

x1: BFIN , x2: FT3

β121,3

−10000 −5000 0 5000 10000 15000

mean = 1710

95% HDI
−6370 8270

x1: CEDP , x2: FT3

β122,3

−5000 0 5000 10000 15000

mean = 3390

95% HDI
−3600 10200

x1: CHEM , x2: FT3

β123,3

−20000 −10000 −5000 0

mean = −10900

95% HDI
−18200 −4230

x1: THTR , x2: FT3

β124,3

−5000 0 5000 10000 15000 20000

mean = 5830

95% HDI
−1610 13700

Figure 19.4: Posterior distribution for data in Figure 19.3. Baseline (β0) is shown
in upper left. Remainder of top row is main effect of−→x1 (department). Remainder
of left column is main effect of−→x2 (seniority). Remaining cells show the interac-
tion effects.

X1 Contrast: BFINvCEDP

1 BFIN + −1 CEDP

0 20000 60000 100000 140000

mean = 122000

0% <= 0 < 100%
95% HDI

112000132000

X1 Contrast: CEDPvTHTR

1 CEDP + −1 THTR

−10000 0 10000 20000

mean = 7780

5.7% <= 0 < 94.3%
95% HDI

−1700 17300

X2 Contrast: FT1vFT2

1 FT1 + −1 FT2

0 10000 20000 30000 40000 50000

mean = 32700

0% <= 0 < 100%
95% HDI

23100 41500

X2 Contrast: FT2vFT3

1 FT2 + −1 FT3

0 5000 15000 25000

mean = 13800

0% <= 0 < 100%
95% HDI

6870 22000

CHEMvTHTRxFT1vFT3

 + 1 CHEM FT1 + −1 CHEM FT3 + −1 THTR FT1 + 1 THTR FT3

0 20000 40000 60000

mean = 34600

0.3% <= 0 < 99.7%
95% HDI

11000 59200

BFINvOTHxFT1vOTH

 + 1 BFIN FT1 + −0.5 BFIN FT2 + −0.5 BFIN FT3 + −0.33 CEDP FT1 + 0.17 CEDP FT2 + 0.17 CEDP FT3 + −0.33 CHEM FT1 + 0.17 CHEM FT2 + 0.17 CHEM FT3 + −0.33 THTR FT1 + 0.17 THTR FT2 + 0.17 THTR FT3

−20000 0 20000 40000

mean = 13300

9% <= 0 < 91%
95% HDI

−6870 34100

Figure 19.5: Selected contrasts for posterior in Figure 19.4.

428 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

19.1.4 Interpreting the posterior

In most applications, we are interested not only in estimation of effects for each group, but
we are also interested in deciding whether two groups are credibly different. Just as we
compared groups in oneway ANOVA in the previous chapter, we can compare groups in
multifactor ANOVA.

The top and middle rows of Figure 19.5 show selected contrasts of levels of the main
effects. We may ask whether there is a credible difference in salaries, on average, between
business finance (BFIN) and counseling and educational psychology (CEDP). The top left
histogram indicates that the average difference is about $122,000, and the 95% HDI falls far
from zero. We may also ask whether there is a credible difference in salaries, on average,
between CEDP and theater (THTR). The top right histogram indicates that the average
difference is about $7,780, but the 95% HDI spans zero, which indicates that the uncertainty
in the estimated difference is fairly large relative to the estimated difference itself. The
middle row of Figure 19.5 shows contrasts regarding levels of seniority: There is a credible
difference between full professors (FT1) and associate professors (FT2), and between FT2
and assistant professors (FT3).

It is important to understand that the main effects of department and seniority areaver-
ageeffects, when the other factors are collapsed. For example, thecontrast between FT2
and FT3 (middle row, right panel of Figure 19.5) is the average difference between FT2 and
FT3, collapsed across all departments. But if you look at thedata in Figure 19.3, you can
see that the difference between FT2 and FT3 is not the same in every department: There is a
fairly large difference in CHEM, but a very small difference in BFIN. The effect of changing
from FT2 to FT3 depends on the department, which means that there is interaction.

Main effects must be interpreted and described cautiously when there are interactions.
It would be a mistake to say that “the” difference between FT2 and FT3 is 13,800. Instead,
that is the average difference across departments. The actual difference within any particular
department might be quite different. Similarly, it would be a mistake to say that “the” effect
of FT3 is to subtract 20,100 from baseline, because the effect of seniority interacts with
department.

19.1.4.1 Metric predictors and ANCOVA

Consider again the salary data in Figure 19.3. You can see that the mean salary for FT1’s
in Chemistry is much higher than in Theater. This difference might be attributable solely
to being in one department or the other. But the difference might also be attributable to
some other factor, such as years on the job. In other words, the FT1’s in Chemistry might
happen to have been employed for decades, while the FT1’s in Theater might happen to be
relatively young. If we had the age of each employee, or, better yet, the number of years
that the employee had been at the current level of seniority,then we could include that
information as an additional predictor of salary. We could then assess whether department
membership contributed any predictiveness beyond number of years on the job.

When a nominal predictor, such as department membership, iscombined with a met-
ric predictor, such as years on the job, the model is sometimes referred to as analysis of
covariance, or ANCOVA. The metric predictor is the “covariate”.

Programming ANCOVA in BUGS is a trivial combination of the models we’ve used
for linear regression and ANOVA. Denote the nominal group membership for individuali
asxNom[i], and denote the metric covariate value asxMet[i]. Then the core of the BUGS

19.1. BAYESIAN MULTI-FACTOR ANOVA 429

model specification is
mu[i] <- a0 + a[xNom[i]] + bMet * xMet[i]

y[i] ∼ dnorm(mu[i] , tau)
wherea[] is the deflection of each group from baseline, andbMet is the regression coefficient
on the covariate.

19.1.4.2 Interaction contrasts

Just as we can ask whether differences among particular levels of predictors are credible, we
can ask whether interactions among particular combinations of predictors are credible. Con-
sider again the data in Figure 19.3. The difference between full professors (FT1) and assis-
tant professors (FT3) appears to be large in the chemistry department (CHEM) but smaller
in the theater department (THTR). Is the simple effect of seniority bigger in chemistry than
it is in theater? In other words, is (CHEM.FT1−CHEM.FT3)−(THTR.FT1−THTR.FT3)
credibly non-zero?

This sort of difference of differences is called aninteraction contrast. In general, an
interaction contrast is constructed by taking any set of contrast coefficients on−→x1, and any
set of contrast coefficients on−→x2, and computing their outer product. The outer prod-
uct was described in Section 8.8.1 (BernTwoGrid.R), p. 144. Formally, the outer prod-
uct of two vectors is denoted by the symbol “⊗”. To provide an example of an inter-
action contrast as an outer product of main-effect contrasts, we will re-cast the one we
are presently considering, namely (CHEM.FT1−CHEM.FT3)−(THTR.FT1−THTR.FT3),
in generic notation. Notice that CHEM is level 3 of predictor1, hence can be written
as−→x1,3. Writing the other components in the same fashion, the interaction contrast is
(−→x1,3.

−→x2,1 − −→x1,3.
−→x2,3) − (−→x1,4.

−→x2,1 − −→x1,4.
−→x2,3). That can be algebraically re-arranged

to highlight the coefficients on the particular combinations:

(+1)−→x1,3.
−→x2,1 + (−1)−→x1,3.

−→x2,3 + (−1)−→x1,4.
−→x2,1 + (+1)−→x1,4.

−→x2,3

Those highlighted coefficients can be obtained as the outer product of main-effect contrasts,
namely the contrast−→c 1 = 〈0, 0,+1,−1〉, which expresses CHEM minus THTR, and the
contrast−→c 2 = 〈+1, 0,−1〉, which expresses FT1 minus FT3:

−→c 1 ⊗ −→c 2 =
−→x1,1

−→x1,2
−→x1,3

−→x1,4
−→x2,1

−→x2,2
−→x2,3

〈 0 0 +1 −1 〉
⊗

〈 +1 0 −1 〉

=

−→x2,1
−→x2,2

−→x2,3
−→x1,1
−→x1,2
−→x1,3
−→x1,4

0 0 0
0 0 0
+1 0 −1
−1 0 +1

Notice that the coefficients in the matrix match the highlighted coefficients in the difference
of differences that was expressed a few sentences previously. The posterior of this inter-
action contrast is shown in the bottom left histogram of Figure 19.5. The mean of 34,600
indicates that the difference between FT1 and FT2 is about 34,600 greater for CHEM than
for THTR. The 95% HDI clearly excludes zero, indicating thatthis interaction contrast is
credibly non-zero.

Interaction contrasts can involve “complex” comparisons just as simply as pairwise
comparisons. For example, suppose we are interested in comparing BFIN against the

430 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

1

1

10
20

30
40

50

Non−crossover Interaction

x1

y

2

2

1 2

 x2

2
1

1

1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

⇓ log transformed

x1

lo
g(

y)

2

2

1 2

 x2

2
1

1

1

10
20

30
40

50

Crossover Interaction

x1

y

2

2

1 2

 x2

2
1

1

1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

⇓ log transformed

x1

lo
g(

y)

2

2

1 2

 x2

2
1

1
1

10
20

30
40

50

Crossover Interaction

x2

y

2

2

1 2

 x1

2
1

1

1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

⇓ log transformed

x2

lo
g(

y)

2

2

1 2

 x1

2
1

Figure 19.6: Top row shows means of original data; bottom rowshows means of
logarithmically transformed data. Left column shows a non-crossover interaction;
middle and right columns show the same crossover interaction plotted against x1
or x2.

average of the other, non-business departments, specifically for a contrast between FT1
and lesser ranks. This interaction contrast is expressed as〈+1,−1/3,−1/3,−1/3〉 ⊗
〈+1,−1/2,−1/2〉. The posterior of this contrast is shown in the bottom right histogram
of Figure 19.5. (The label on the x-axis exceeds the margins of the figure because there are
twelve combinations of levels involved in the contrast specification.) The result suggests
that the larger difference, between FT1 and other ranks, in BFIN than in other departments
has substantial uncertainty. Therefore we would not want toconclude that the interaction
contrast is credibly non-zero. Exercise 19.2 gives you hands-on practice with specification
of interaction contrasts.

19.1.5 Non-crossover interactions, rescaling, and homogeneous variances

When interpreting interactions, it can be important to consider the scale on which the data
are measured. This is because an interaction means non-additive effects when measured
in the current scale. If the data are non=linearly transformed to a different scale, then the
non-additivity can also change.

Consider an example, using utterly fictional numbers merelyfor illustration. Suppose
the average salary of Democratic women is 10 monetary units,for Democratic men it’s 12
units, for Republican women it’s 15 units, and for Republican men it’s 18 units. These data
indicate that there is a non-additive interaction of political party and gender, because the

19.1. BAYESIAN MULTI-FACTOR ANOVA 431

change in pay from women to men is 2 units for Democrats, but 3 units for Republicans.
Another way of describing the interaction is to notice that the change in pay from Democrats
to Republicans is 5 units for women but 6 units for men. A researcher might be tempted to
interpret the interaction as indicating some extra advantage attained by Republican men, or
some special disadvantage suffered by Democratic women. But such an interpretation may
be inappropriate, because a mere rescaling of the data makesthe interaction disappear, as
will be described next.

Salary increases and comparisons are often measured by percentages and ratios, not be
additive or subtractive differences. Consider the salary data in percentage terms. Among
Democrats, men make 20% more than women. Among Republicans,the men again make
20% more than the women. Among women, Republicans make 50% more than Democrats.
Among men, Republicans again make 50% more than Democrats. In these ratio terms, there
is no interaction of gender and political party: Change fromfemale to male predicts a 20%
increase in salary regardless of party, and change from Democrat to Republican predicts a
50% increase in salary regardless of gender.

Equal ratios are transformed to equal distances by a logarithmic transformation. If we
measure salary in terms of the logarithm of monetary units, then the salary of Democratic
women is log10(10) = 1.000, the salary of Democratic men is log10(12) = 1.079, the
salary of Republican women is log10(15) = 1.176, and the salary of Republican men is
log10(18) = 1.255. With this logarithmic scaling, the increase in salary from women to
men is 0.079 for both parties, and the increase from Democratto Republican in 0.176 for
both genders. In other words, when salary is measured on a logarithmic scale, there is no
interaction of gender and political party.

It may seem strange to measure salary on a logarithmic scale,but there are many sit-
uations for which the scale is arbitrary. The pitch of a soundcan be measured in terms of
frequency (i.e., cycles per second), or in terms of perceived pitch, which is essentially the
logarithm of the frequency. The magnitude of an earthquake can be measured by its energy,
or by its value on the Richter scale, which is the logarithm ofenergy. The pace of a dragster
on a race track can be measured by the average speed during therun, or by the duration
from start to finish (which is the reciprocal of average speed). Thus, measurement scales
are not unique, and are instead determined by convention.

The general issue is illustrated in Figure 19.6. Suppose that predictorx1 has two levels,
as does predictorx2. Suppose we have three data points at each combination of levels,
yielding twelve data points altogether. The means at each combination of levels are shown
in the top-left graph of Figure 19.6. You can see that there isan interaction, with the effect
of x1 being bigger whenx2 = 2 than whenx2 = 1. But this interaction goes away when
the data are transformed by taking the logarithm, as shown inthe lower left graph. Each
individual data point was transformed, and then the means ineach cell were computed. Of
course, the transformation can go the other way: Data with nointeraction, as in the lower-
left plot, can be made to have an interaction when they are rescaled as in the upper-left plot,
via an exponential transformation.

The transformability from interaction to non-interactionis only possible fornon-
crossoverinteractions. This terminology is merely a description of the graph: The lines
do not cross over each other (and they have the same sign slope). In this situation, they-
axis can have different portions stretched or shrunken so that the lines become parallel. If,
however, the lines cross, as in the middle column of Figure 19.6, then there is no way to
uncross the lines merely by stretching or shrinking intervals of they-axis. The right column
of Figure 19.6 shows the same data as the middle column, but plotted with the roles ofx1

432 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

andx2 exchanged. When plotted this way, the lines do not cross, butthey do haveopposite-
sign slopes(i.e., one slope is positive and the other slope is negative). There is no way that
stretching or shrinking they-axis can change the signs of the slopes, hence the interaction
cannot be removed merely by transforming the data. Because these data have crossing lines
when plotted as in the middle column, they are said to have a crossover interaction even
when they are plotted as in the right column. (Test your understanding: Is the interaction in
Figure 19.1 a crossover interaction?)

It is important to note that the transformation applies to individual raw data values,
not to the means of the conditions. A consequence of transforming the data, therefore,
is changes in the variances of the data within each condition. For example, suppose one
condition has data values of 100, 110, and 120, while a secondcondition has data values of
1100, 1110, and 1120. For both conditions, the variance is 66.7, i.e., there is homogeneity
of variance. When the data are logarithmically transformed, the variance of the first group
becomes 1.05e−3, but the variance of the second group becomes two orders of magnitude
smaller, namely 1.02e−5; i.e., there isnot homogeneity of variance.

Therefore, when applying the hierarchical model of Figure 19.2, we must be aware that
it assumes homogeneity of variance. If we transform the data, we are changing the variances
within the levels of the predictors. The transformed variances might or might not be fairly
homogeneous. If they are not, then either the data should be transformed in such a way
as to respect homogeneity of variance, or the model should bechanged to allow unequal
variances.

The models we have been using also assume a normal likelihoodfunction, which means
that the data at any level of the predictors should be normally distributed. When the data
are transformed to a different scale, the shape of their distribution also changes. If the
distributions become radically non-normal, it may be misleading to use a model with a
normal likelihood function. For a discussion of these issues, review Section 15.1.4, p. 326.

In summary, this section has made two main points. First, if you have a non-crossover
interaction, be careful what you claim about it. A non-crossover interaction merely means
non-additivity in the scale you are using. If this scale is the only meaningful scale, or if
the this scale is the overwhelmingly dominant scale used in that field of research, then you
can cautiously interpret the non-additive interaction with respect to that scale. But if trans-
formed scales are reasonable, then keep in mind that non-additivity is scale-specific, and
there might be no interaction in a different scale. With a crossover interaction, however, no
rescaling can undo the interaction. Second, non-linear transformations change the within-
cell variances and the shapes of the within-cell distributions. Be sure that the model you are
using is appropriate to the homogeneity or non-homogeneityof variances in the data, and
to the shapes of the distributions, on whatever scale you areusing. Exercise 19.1 has you
consider these issues “hands on”.

19.2 Repeated measures, a.k.a. within-subject designs

In many situations, a single “subject” contributes data to multiple levels of the predictors.
For example, suppose we are interested in how quickly peoplecan press a button in response
to a stimulus onset. The stimulus could appear in the visual modality as a light, or in the
auditory modality as a tone. The subject could respond with his/her dominant hand, or
with his/her non-dominant hand. Thus, there are two nominal predictors, namely modality
and hand. The new aspect is that a single subject contributesdata to all combinations

19.2. REPEATED MEASURES, A.K.A. WITHIN-SUBJECT DESIGNS 433

of the predictors. On many successive trials, the subject gets either a tone or light, and
is instructed to respond with either the dominant or non-dominant hand. Because every
subject is measured many times, this situation is sometimescalled a “repeated measures”
design. Because the levels of the predictors change within subjects, this situation is also
called a “within subject” design. I favor the latter terminology because it more explicitly
connotes the essential aspect of the design, that the same subject contributes data in more
than one condition. Within-subject designs are contrastedwith “between-subject” designs,
in which different subjects contribute data to different levels of the predictors.

When every subject contributes many data points to every combination of predictors,
then the model of the situation is a straight forward extension of the models we’ve already
considered. We merely add “subject” as another predictor inthe model, with each individual
subject being a level of the predictor. If there is one predictor other than subject, the model
becomes

y = β0 +
−→
β 1
−→x1 +

−→
β S
−→xS +

−→
β 1×S

−→x1×S

This is exactly the two-predictor model we have already considered, with the second pre-
dictor being subject. When there are two predictors other than subject, the model becomes

y = β0 +
−→
β 1
−→x1 +

−→
β 2
−→x2 +

−→
β S
−→xS +

−→
β 1×2
−→x1×2 +

−→
β 1×S

−→x1×S +
−→
β 2×S

−→x2×S +
−→
β 1×2×S

−→x1×2×S

This model includes all the two-way interactions of the factors, plus the three-way interac-
tion. Again, subject merely plays the role of the third predictor.

The model above, that includes all the high-order interactions with subject, is fine in
principle but may be overkill in practice. Unless you have specific theoretical motivations
to seek out and interpret high-order interactions of subject with other predictors, there is
little reason to model them, and difficulty making sense of them even if you did model
them. Instead, if you have many data points from each subjectin every cell, an alternative
approach is to apply a Bayesian ANOVA model to each subject’sdata, and then put a higher-
order prior across the subject parameter estimates, so thatdifferent subjects mutually inform
each other’s estimates and provide a stable group-level estimate. Thus, every subject has a
baseline,β0s, and there is a higher-order, group-level prior on the distribution of β0s across
subjects. Each predictor also has subject-specific estimates, with the effect of thejth level of
predictor 1 denotedβ1s, j. Each of these effect parameters has a higher, group-level prior
across subjects. (This was the modeling approach taken for repeated measures in simple
linear regression in Section 16.3, p. 354.) Finally, the group-level effects have a hyperprior
that provides shrinkage on the effects of a predictor. In other words, the shrinkage prior, on
effects of a predictor, is set at the group level, not at the subject level.

There are other situations, however, in which each subject contributes only one datum
to a combination of the other predictors. For example, in thecase of the response-time
study described above, perhaps we have only the median response time of the subject in
each combination of hand and modality. As another example, suppose the value to be
predicted is IQ, as measured by a lengthy exam, with one predictor being noisy versus quiet
exam environment, and the other predictor being paper versus computerized exam format.
Although it is conceivable that subjects could be repeatedly tested in each condition, it
would be challenging enough to get people to sit through all four combinations even once.
Thus, each subject would contribute one value to each condition.

In the situation when each subject contributes only one datum per condition, the models
described above, with all the interaction terms, are not “identifiable”, meaning that there are

434 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

more parameters than data points. The simplest case of this situation is trying to estimate
the mean and variance of a normal distribution from a single data point. A Bayesian anal-
ysis can still be conducted, but there will be high uncertainty in the parameter estimates,
governed largely by the priors. Therefore, instead of attempting to estimate all the inter-
actions of subjects with other predictors, we assume a simpler model in which the only
influence of subjects is on the baseline:

y = β0 +
−→
β S
−→xS +

−→
β 1
−→x1 +

−→
β 2
−→x2 +

−→
β 1×2
−→x1×2

In other words, we assume a main effect of subject, but no interaction of subject with
other predictors. In this model, the subject effect (deflection) is constant across treatments,
and the treatment effects (deflections) are constant across subjects. Notice that the model
makes no requirement that every subject contributes a datumto every condition. Indeed,
the model allows zero or more than one datum per subject per condition. As mentioned
earlier, the computations in Bayesian ANOVA make no assumptions or requirements that
the design is “balanced”. If you do have many observations per subject in every combination
of predictors, then one of the previously described models may be considered.

19.2.1 Why use a within-subject design? And why not?

The primary reason to use a within-subject design is that youcan achieve much greater
precision in the estimates of the effects than in a between-subject design. For example,
suppose you are interested in measuring the effect on response time of using the dominant
versus non-dominant hand. Suppose there is a population of four subjects from whom
you could measure data. If we could measure every subject in every condition, we would
know that for the first subject, his or her response times for dominant and non-dominant
hands are 300 and 320 msec. For the second subject, the response times are 350 and 370.
For the third subject, the response times are 400 and 420, andfor the fourth subject, the
response times are 450 and 470. Thus, for every subject, the difference between dominant
and non-dominant hands is 20 msec. Suppose we have the resources to measure only two
data points in each condition. We measure response times from the dominant hands of two
subjects. Should we measure response times from the non-dominant hands of thesame
two subjects, or the non-dominant hands of twoother subjects? If we measure from the
same two subjects, then the estimated effect for each subject is 20 msec, and we have
high certainty in the magnitude of the effect. If we measure from two other subjects, then
the estimated effect of dominant versus non-dominant hand is the average of the first two
subjects versus the average of the second two subjects, and the difference is badly affected
by random sampling. The between-subject design yields lower precision in the estimate
of the effect. Exercise 19.3 has you examine, hands on, a case of this improvement in
precision.

Because of the gain in precision, it is desirable to use within-subject designs. But
there are many dangers of within-subject designs that need to be considered before they
are applied in any particular situation. The key problem is that, in most situations, when
you measure the subject you change the subject, and therefore subsequent measurements
are not measuring the same subject. The simplest examples ofthis are mere fatigue or
generic practice effects. In measures of response time, if you measure repeatedly from
the same subject, you will find improvement over the first several trials because of the
subject gaining practice with the task, but after a while, asthe subject tires, there will be a

19.3. R CODE 435

decline in performance. The problem is that if you measure the dominant hand in the early
trials, and the nondominant hand in the later trials, then the effect of practice or fatigue
will contaminate the effect of handedness. The repeated measurement process affects and
contaminates the measure that is supposed to be a signature of the predictor.

Practice and fatigue effects can be overcome by randomly distributing and repeating
the conditions throughout the repeated measures,if the practice and fatigue effects influ-
ence all conditions equally. Thus, if practice improves both the dominant and nondominant
hand by 50 msec, then the difference between dominant and nondominant hands is unaf-
fected by practice. But practice might affect the nondominant hand much more than the
dominant hand. You can imagine that in complex designs with many predictors, each with
many levels, in can become difficult to justify an assumption that repeated measures have
comparable effects on all conditions.

Worse yet, in some situations there can bedifferential carryover effectsfrom one con-
dition to the next. For example, having just experienced practice in the visual modality
with the nondominant hand might improve subsequent performance in the auditory modal-
ity with the nondominant hand, but might not improve subsequent performance in the visual
modality with the dominant hand. Thus, the carryover effect is different for different subse-
quent conditions.

When you suspect strong differential carryover effects, you may be able to explicitly
manipulate the ordering of the conditions and measure the carryover effects, but this might
be impossible mathematically and impractical, depending on the specifics of your situation.
In this case, you must revert to a between subjects design, and simply include many subjects
to attenuate between-subject noise.

In general, all the models we have been using assume independence of observations.
The probability of the collection of data is the product of the probabilities of the individual
data points. When we use repeated measures, this assumptionis much less easy to justify.
On the one hand, when we repeatedly flip a coin, we might be safeto assume that its
underlying bias does not change much from one flip to the next.But, on the other hand,
when we repeatedly test the response time of a human subject,it is less easy to justify
an assumption that the underlying response time remains unaffected by the previous trial.
Researchers will often make the assumption of independencemerely as an approximation of
convenience, hoping that by arranging conditions randomlyacross many repeated measures,
the differential carryover effects will be minimized.

19.3 R code

19.3.1 Bayesian two-factor ANOVA

Several implementation details of the program are the same as the oneway ANOVA program
of the previous chapter:

• Data are normalized so that prior constants can be more generic.

• Initialization of chains is based on the data. It is important to do this, otherwise
burn-in can take forever.

• Because there is nasty autocorrelation, we use a large thinning constant and we also
use multiple chains. For a reminder of the issues of burn-in and thinning, see Sec-
tion 23.2, p. 510.

436 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

A new detail arises in how the uncentered parameter estimates are recentered to respect
the sum-to-zero constraints. The uncentered estimates from BUGS area0, a1[], a2[], and
a1a2[,]. By definition of the ANOVA model, the predicted mean of celli, j is

m[i,j] = a0 + a1[i] + a2[j] + a1a2[i,j]

We use these predicted means to construct the zero-centeredparameters. First,b0 is the
mean across all the predicted means:

b0 = mean(m[,])

Then the main effect deflections are the marginal means minus the overall mean:

b1[i] = mean(m[i,]) - b0

b2[j] = mean(m[,j]) - b0

It is easy (honest!) to check that the those deflections do indeed sum to zero; i.e.,sum(b1[]
) = 0 andsum(b2[]) = 0. Finally, the interaction deflections are the residuals after the
additive effect of b1 and b2 is taken into account:

b1b2[i,j] = m[i,j] - (b0 + b1[i] + b2[j])

Again, it is easy to check that the rows and columns ofb1b2[,] all sum to zero.
In the data section of the program, one option is to load data from the article of Qian

and Shen (2007). The program here uses a hierarchical structure similar to that used by
Qian and Shen (2007), but their program did not re-center theparameters as is done here. It
may be instructive to compare the results of the program herewith the results reported by
Qian and Shen (2007).

BUGS for many factors.The program below applies only for cases of two nominal
predictors. If you have many nominal predictors, along withtheir two-way, three-way,
and higher-order interactions, it becomes unwieldy to explicitly and separately name all
the deflection parameters. Instead, it can be more elegant touse a technique of “dummy
coding”, whereby we essentially revert back to using vectors for coding the values of the
predictors instead of integer indices. That is,−→x1 = level2 is coded by the “dummy” vector
〈0, 1, 0, . . .〉 instead of by the integer index 2. Interactions are represented by matrices of
dummy codes that have been flattened into vectors. For an example of programming this
technique in BUGS, see Ntzoufras (2009, Ch. 6). Unfortunately, those examples do not
incorporate the higher-level prior structure emphasized in Figure 19.2.

(ANOVAtwowayBRugs.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fnroot = "ANOVAtwowayBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for (i in 1:Ntotal) {

13 y[i] ˜ dnorm(mu[i] , tau)

14 mu[i] <- a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]]

19.3. R CODE 437

15 }

16 #

17 tau <- pow(sigma , -2)

18 sigma ˜ dunif(0,10) # y values are assumed to be standardized

19 #

20 a0 ˜ dnorm(0,0.001) # y values are assumed to be standardized

21 #

22 for (j1 in 1:Nx1Lvl) { a1[j1] ˜ dnorm(0.0 , a1tau) }

23 a1tau <- 1 / pow(a1SD , 2)

24 a1SD <- abs(a1SDunabs) + .1

25 a1SDunabs ˜ dt(0 , 0.001 , 2)

26 #

27 for (j2 in 1:Nx2Lvl) { a2[j2] ˜ dnorm(0.0 , a2tau) }

28 a2tau <- 1 / pow(a2SD , 2)

29 a2SD <- abs(a2SDunabs) + .1

30 a2SDunabs ˜ dt(0 , 0.001 , 2)

31 #

32 for (j1 in 1:Nx1Lvl) { for (j2 in 1:Nx2Lvl) {

33 a1a2[j1,j2] ˜ dnorm(0.0 , a1a2tau)

34 } }

35 a1a2tau <- 1 / pow(a1a2SD , 2)

36 a1a2SD <- abs(a1a2SDunabs) + .1

37 a1a2SDunabs ˜ dt(0 , 0.001 , 2)

38 }

39 # ... end BUGS model specification

40 " # close quote for modelstring

41 # Write model to a file, and send to BUGS:

42 writeLines(modelstring,con="model.txt")

43 modelCheck("model.txt")

44

45 #--

46 # THE DATA.

47 # Specify data source:

48 dataSource = c("QianS2007" , "Salary" , "Random" , "Ex19.3")[4]

49

50 # Load the data:

51 if (dataSource == "QianS2007") {

52 fnroot = paste(fnroot , dataSource , sep="")

53 datarecord = read.table("QianS2007SeaweedData.txt" , header=TRUE , sep=",")

54 # Logistic transform the COVER value:

55 # Used by Appendix 3 of QianS2007 to replicate Ramsey and Schafer (2002).

56 datarecord$COVER = -log((100 / datarecord$COVER) - 1)

57 y = as.numeric(datarecord$COVER)

58 x1 = as.numeric(datarecord$TREAT)

59 x1names = levels(datarecord$TREAT)

60 x2 = as.numeric(datarecord$BLOCK)

61 x2names = levels(datarecord$BLOCK)

62 Ntotal = length(y)

63 Nx1Lvl = length(unique(x1))

64 Nx2Lvl = length(unique(x2))

65 x1contrastList = list(f_Effect=c(1/2 , -1/2 , 0 , 1/2 , -1/2 , 0) ,

66 F_Effect=c(0 , 1/2 , -1/2 , 0 , 1/2 , -1/2) ,

67 L_Effect=c(1/3 , 1/3 , 1/3 , -1/3 , -1/3 , -1/3))

68 x2contrastList = NULL # list(vector(length=Nx2Lvl))

69 x1x2contrastList = NULL # list(matrix(1:(Nx1Lvl*Nx2Lvl) , nrow=Nx1Lvl))

70 }

71

72 if (dataSource == "Salary") {

73 fnroot = paste(fnroot , dataSource , sep="")

438 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

74 datarecord = read.table("Salary.csv" , header=TRUE , sep=",")

75 y = as.numeric(datarecord$Salary)

76 if (F) { # take log10 of salary

77 y = log10(y)

78 fnroot = paste(fnroot , "Log10" , sep="")

79 }

80 x1 = as.numeric(datarecord$Org)

81 x1names = levels(datarecord$Org)

82 x2 = as.numeric(datarecord$Post)

83 x2names = levels(datarecord$Post)

84 Ntotal = length(y)

85 Nx1Lvl = length(unique(x1))

86 Nx2Lvl = length(unique(x2))

87 x1contrastList = list(BFINvCEDP = c(1 , -1 , 0 , 0) ,

88 CEDPvTHTR = c(0 , 1 , 0 , -1))

89 x2contrastList = list(FT1vFT2 = c(1 , -1 , 0) , FT2vFT3 = c(0,1,-1))

90 x1x2contrastList = list(

91 CHEMvTHTRxFT1vFT3 = outer(c(0,0,+1,-1) , c(+1,0,-1)) ,

92 BFINvOTHxFT1vOTH = outer(c(+1,-1/3,-1/3,-1/3) , c(+1,-1/2,-1/2)))

93 }

94

95 if (dataSource == "Random") {

96 fnroot = paste(fnroot , dataSource , sep="")

97 set.seed(47405)

98 ysdtrue = 3.0

99 a0true = 100

100 a1true = c(2 , 0 , -2) # sum to zero

101 a2true = c(3 , 1 , -1 , -3) # sum to zero

102 a1a2true = matrix(c(1,-1,0, -1,1,0, 0,0,0, 0,0,0),# row and col sum to zero

103 nrow=length(a1true) , ncol=length(a2true) , byrow=F)

104 npercell = 8

105 datarecord = matrix(0, ncol=3 , nrow=length(a1true)*length(a2true)*npercell)

106 colnames(datarecord) = c("y","x1","x2")

107 rowidx = 0

108 for (x1idx in 1:length(a1true)) {

109 for (x2idx in 1:length(a2true)) {

110 for (subjidx in 1:npercell) {

111 rowidx = rowidx + 1

112 datarecord[rowidx,"x1"] = x1idx

113 datarecord[rowidx,"x2"] = x2idx

114 datarecord[rowidx,"y"] = (a0true + a1true[x1idx] + a2true[x2idx]

115 + a1a2true[x1idx,x2idx] + rnorm(1,0,ysdtrue))

116 }

117 }

118 }

119 datarecord = data.frame(y=datarecord[,"y"] ,

120 x1=as.factor(datarecord[,"x1"]) ,

121 x2=as.factor(datarecord[,"x2"]))

122 y = as.numeric(datarecord$y)

123 x1 = as.numeric(datarecord$x1)

124 x1names = levels(datarecord$x1)

125 x2 = as.numeric(datarecord$x2)

126 x2names = levels(datarecord$x2)

127 Ntotal = length(y)

128 Nx1Lvl = length(unique(x1))

129 Nx2Lvl = length(unique(x2))

130 x1contrastList = list(X1_1v3 = c(1 , 0 , -1)) #

131 x2contrastList = list(X2_12v34 = c(1/2 , 1/2 , -1/2 , -1/2)) #

132 x1x2contrastList = list(

19.3. R CODE 439

133 IC_11v22 = outer(c(1,-1,0) , c(1,-1,0,0)) ,

134 IC_23v34 = outer(c(0,1,-1) , c(0,0,1,-1))

135)

136 }

137

138 # Load the data:

139 if (dataSource == "Ex19.3") {

140 fnroot = paste(fnroot , dataSource , sep="")

141 y = c(101,102,103,105,104, 104,105,107,106,108, 105,107,106,108,109, 109,108,110,111,112)

142 x1 = c(1,1,1,1,1, 1,1,1,1,1, 2,2,2,2,2, 2,2,2,2,2)

143 x2 = c(1,1,1,1,1, 2,2,2,2,2, 1,1,1,1,1, 2,2,2,2,2)

144 # S = c(1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5)

145 x1names = c("x1.1","x1.2")

146 x2names = c("x2.1","x2.2")

147 # Snames = c("S1","S2","S3","S4","S5")

148 Ntotal = length(y)

149 Nx1Lvl = length(unique(x1))

150 Nx2Lvl = length(unique(x2))

151 # NSLvl = length(unique(S))

152 x1contrastList = list(X1.2vX1.1 = c(-1 , 1))

153 x2contrastList = list(X2.2vX2.1 = c(-1 , 1))

154 x1x2contrastList = NULL # list(matrix(1:(Nx1Lvl*Nx2Lvl) , nrow=Nx1Lvl))

155 }

156

157 # Specify the data in a form that is compatible with BRugs model, as a list:

158 ySDorig = sd(y)

159 yMorig = mean(y)

160 z = (y - yMorig) / ySDorig

161 datalist = list(

162 y = z ,

163 x1 = x1 ,

164 x2 = x2 ,

165 Ntotal = Ntotal ,

166 Nx1Lvl = Nx1Lvl ,

167 Nx2Lvl = Nx2Lvl

168)

169 # Get the data into BRugs:

170 modelData(bugsData(datalist))

171

172 #--

173 # INTIALIZE THE CHAINS.

174

175 # Autocorrelation within chains is large, so use several chains to reduce

176 # degree of thinning. But we still have to burn-in all the chains, which takes

177 # more time with more chains.

178 nchain = 10

179 modelCompile(numChains = nchain)

180

181 if (F) {

182 modelGenInits() # often won’t work for diffuse prior

183 } else {

184 # initialization based on data

185 theData = data.frame(y=datalist$y , x1=factor(x1,labels=x1names) ,

186 x2=factor(x2,labels=x2names))

187 a0 = mean(theData$y)

188 a1 = aggregate(theData$y , list(theData$x1) , mean)[,2] - a0

189 a2 = aggregate(theData$y , list(theData$x2) , mean)[,2] - a0

190 linpred = as.vector(outer(a1 , a2 , "+") + a0)

191 a1a2 = aggregate(theData$y, list(theData$x1,theData$x2), mean)[,3] - linpred

440 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

192 genInitList <- function() {

193 return(

194 list(

195 a0 = a0 ,

196 a1 = a1 ,

197 a2 = a2 ,

198 a1a2 = matrix(a1a2 , nrow=Nx1Lvl , ncol=Nx2Lvl) ,

199 sigma = sd(theData$y)/2 , # lazy

200 a1SDunabs = sd(a1) ,

201 a2SDunabs = sd(a2) ,

202 a1a2SDunabs = sd(a1a2)

203)

204)

205 }

206 for (chainIdx in 1 : nchain) {

207 modelInits(bugsInits(genInitList))

208 }

209 }

210

211 #--

212 # RUN THE CHAINS

213

214 # burn in

215 BurnInSteps = 10000

216 modelUpdate(BurnInSteps)

217 # actual samples

218 samplesSet(c("a0" , "a1" , "a2" , "a1a2" ,

219 "sigma" , "a1SD" , "a2SD" , "a1a2SD"))

220 stepsPerChain = ceiling(2000/nchain)

221 thinStep = 500 # 750

222 modelUpdate(stepsPerChain , thin=thinStep)

223

224 #--

225 # EXAMINE THE RESULTS

226

227 source("plotChains.R")

228 source("plotPost.R")

229

230 checkConvergence = F

231 if (checkConvergence) {

232 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)

233 sumInfo = plotChains("a1" , saveplots=F , filenameroot=fnroot)

234 sumInfo = plotChains("a2" , saveplots=F , filenameroot=fnroot)

235 sumInfo = plotChains("a1a2" , saveplots=F , filenameroot=fnroot)

236 readline("Press any key to clear graphics and continue")

237 graphics.off()

238 sumInfo = plotChains("sigma" , saveplots=F , filenameroot=fnroot)

239 sumInfo = plotChains("a1SD" , saveplots=F , filenameroot=fnroot)

240 sumInfo = plotChains("a2SD" , saveplots=F , filenameroot=fnroot)

241 sumInfo = plotChains("a1a2SD" , saveplots=F , filenameroot=fnroot)

242 readline("Press any key to clear graphics and continue")

243 graphics.off()

244 }

245

246 # Extract and plot the SDs:

247 sigmaSample = samplesSample("sigma")

248 a1SDSample = samplesSample("a1SD")

249 a2SDSample = samplesSample("a2SD")

250 a1a2SDSample = samplesSample("a1a2SD")

19.3. R CODE 441

251 windows()

252 layout(matrix(1:4,nrow=2))

253 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

254 plotPost(sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30)

255 plotPost(a1SDSample , xlab="a1SD" , main="a1 SD" , breaks=30)

256 plotPost(a2SDSample , xlab="a2SD" , main="a2 SD" , breaks=30)

257 plotPost(a1a2SDSample , xlab="a1a2SD" , main="Interaction SD" , breaks=30)

258 dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

259

260 # Extract a values:

261 a0Sample = samplesSample("a0")

262 chainLength = length(a0Sample)

263 a1Sample = array(0 , dim=c(datalist$Nx1Lvl , chainLength))

264 for (x1idx in 1:datalist$Nx1Lvl) {

265 a1Sample[x1idx,] = samplesSample(paste("a1[",x1idx,"]",sep=""))

266 }

267 a2Sample = array(0 , dim=c(datalist$Nx2Lvl , chainLength))

268 for (x2idx in 1:datalist$Nx2Lvl) {

269 a2Sample[x2idx,] = samplesSample(paste("a2[",x2idx,"]",sep=""))

270 }

271 a1a2Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))

272 for (x1idx in 1:datalist$Nx1Lvl) {

273 for (x2idx in 1:datalist$Nx2Lvl) {

274 a1a2Sample[x1idx,x2idx,] = samplesSample(paste("a1a2[",x1idx,",",x2idx,"]",

275 sep=""))

276 }

277 }

278

279 # Convert to zero-centered b values:

280 m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))

281 for (stepIdx in 1:chainLength) {

282 m12Sample[,,stepIdx] = (a0Sample[stepIdx]

283 + outer(a1Sample[,stepIdx] ,

284 a2Sample[,stepIdx] , "+")

285 + a1a2Sample[,,stepIdx])

286 }

287 b0Sample = apply(m12Sample , 3 , mean)

288 b1Sample = (apply(m12Sample , c(1,3) , mean)

289 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))

290 b2Sample = (apply(m12Sample , c(2,3) , mean)

291 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))

292 linpredSample = array(0,dim=c(datalist$Nx1Lvl,datalist$Nx2Lvl,chainLength))

293 for (stepIdx in 1:chainLength) {

294 linpredSample[,,stepIdx] = (b0Sample[stepIdx]

295 + outer(b1Sample[,stepIdx] ,

296 b2Sample[,stepIdx] , "+"))

297 }

298 b1b2Sample = m12Sample - linpredSample

299 # Convert from standardized b values to original scale b values:

300 b0Sample = b0Sample * ySDorig + yMorig

301 b1Sample = b1Sample * ySDorig

302 b2Sample = b2Sample * ySDorig

303 b1b2Sample = b1b2Sample * ySDorig

304

305 # Plot b values:

306 windows((datalist$Nx1Lvl+1)*2.75,(datalist$Nx2Lvl+1)*2.0)

307 layoutMat = matrix(0 , nrow=(datalist$Nx2Lvl+1) , ncol=(datalist$Nx1Lvl+1))

308 layoutMat[1,1] = 1

309 layoutMat[1,2:(datalist$Nx1Lvl+1)] = 1:datalist$Nx1Lvl + 1

442 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

310 layoutMat[2:(datalist$Nx2Lvl+1),1] = 1:datalist$Nx2Lvl + (datalist$Nx1Lvl + 1)

311 layoutMat[2:(datalist$Nx2Lvl+1),2:(datalist$Nx1Lvl+1)] = matrix(

312 1:(datalist$Nx1Lvl*datalist$Nx2Lvl) + (datalist$Nx2Lvl+datalist$Nx1Lvl+1) ,

313 ncol=datalist$Nx1Lvl , byrow=T)

314 layout(layoutMat)

315 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

316 histinfo = plotPost(b0Sample , xlab=expression(beta * 0) , main="Baseline" ,

317 breaks=30)

318 for (x1idx in 1:datalist$Nx1Lvl) {

319 histinfo = plotPost(b1Sample[x1idx,] , xlab=bquote(beta*1[.(x1idx)]) ,

320 main=paste("x1:",x1names[x1idx]) , breaks=30)

321 }

322 for (x2idx in 1:datalist$Nx2Lvl) {

323 histinfo = plotPost(b2Sample[x2idx,] , xlab=bquote(beta*2[.(x2idx)]) ,

324 main=paste("x2:",x2names[x2idx]) , breaks=30)

325 }

326 for (x2idx in 1:datalist$Nx2Lvl) {

327 for (x1idx in 1:datalist$Nx1Lvl) {

328 histinfo = plotPost(b1b2Sample[x1idx,x2idx,] , breaks=30 ,

329 xlab=bquote(beta*12[.(x1idx)*","*.(x2idx)]) ,

330 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]))

331 }

332 }

333 dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

334

335 # Display contrast analyses

336 nContrasts = length(x1contrastList)

337 if (nContrasts > 0) {

338 nPlotPerRow = 5

339 nPlotRow = ceiling(nContrasts/nPlotPerRow)

340 nPlotCol = ceiling(nContrasts/nPlotRow)

341 windows(3.75*nPlotCol,2.5*nPlotRow)

342 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

343 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

344 for (cIdx in 1:nContrasts) {

345 contrast = matrix(x1contrastList[[cIdx]],nrow=1) # make it a row matrix

346 incIdx = contrast!=0

347 histInfo = plotPost(contrast %*% b1Sample , compVal=0 , breaks=30 ,

348 xlab=paste(round(contrast[incIdx],2) , x1names[incIdx] ,

349 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

350 cex.lab = 1.0 ,

351 main=paste("X1 Contrast:", names(x1contrastList)[cIdx]))

352 }

353 dev.copy2eps(file=paste(fnroot,"x1Contrasts.eps",sep=""))

354 }

355 #

356 nContrasts = length(x2contrastList)

357 if (nContrasts > 0) {

358 nPlotPerRow = 5

359 nPlotRow = ceiling(nContrasts/nPlotPerRow)

360 nPlotCol = ceiling(nContrasts/nPlotRow)

361 windows(3.75*nPlotCol,2.5*nPlotRow)

362 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

363 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

364 for (cIdx in 1:nContrasts) {

365 contrast = matrix(x2contrastList[[cIdx]],nrow=1) # make it a row matrix

366 incIdx = contrast!=0

367 histInfo = plotPost(contrast %*% b2Sample , compVal=0 , breaks=30 ,

368 xlab=paste(round(contrast[incIdx],2) , x2names[incIdx] ,

19.3. R CODE 443

369 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

370 cex.lab = 1.0 ,

371 main=paste("X2 Contrast:", names(x2contrastList)[cIdx]))

372 }

373 dev.copy2eps(file=paste(fnroot,"x2Contrasts.eps",sep=""))

374 }

375 #

376 nContrasts = length(x1x2contrastList)

377 if (nContrasts > 0) {

378 nPlotPerRow = 5

379 nPlotRow = ceiling(nContrasts/nPlotPerRow)

380 nPlotCol = ceiling(nContrasts/nPlotRow)

381 windows(3.75*nPlotCol,2.5*nPlotRow)

382 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

383 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

384 for (cIdx in 1:nContrasts) {

385 contrast = x1x2contrastList[[cIdx]]

386 contrastArr = array(rep(contrast,chainLength) ,

387 dim=c(NROW(contrast),NCOL(contrast),chainLength))

388 contrastLab = ""

389 for (x1idx in 1:Nx1Lvl) {

390 for (x2idx in 1:Nx2Lvl) {

391 if (contrast[x1idx,x2idx] != 0) {

392 contrastLab = paste(contrastLab , "+" ,

393 signif(contrast[x1idx,x2idx],2) ,

394 x1names[x1idx] , x2names[x2idx])

395 }

396 }

397 }

398 histInfo = plotPost(apply(contrastArr * b1b2Sample , 3 , sum) ,

399 compVal=0 , breaks=30 , xlab=contrastLab , cex.lab = 0.75 ,

400 main=paste(names(x1x2contrastList)[cIdx]))

401 }

402 dev.copy2eps(file=paste(fnroot,"x1x2Contrasts.eps",sep=""))

403 }

404

405 #==

406 # Do NHST ANOVA:

407

408 theData = data.frame(y=y , x1=factor(x1,labels=x1names) ,

409 x2=factor(x2,labels=x2names))

410 windows()

411 interaction.plot(theData$x1 , theData$x2 , theData$y , type="b")

412 dev.copy2eps(file=paste(fnroot,"DataPlot.eps",sep=""))

413 aovresult = aov(y ˜ x1 * x2 , data = theData)

414 cat("\n--\n\n")

415 print(summary(aovresult))

416 cat("\n--\n\n")

417 print(model.tables(aovresult , type = "effects", se = TRUE) , digits=3)

418 cat("\n--\n\n")

419

420 #==

444 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

19.4 Exercises

Exercise 19.1. [Purpose: Inspecting an interaction for transformed data.] Consider the data
plotted in Figure 19.3, p. 426.

(A) Is the interaction a crossover interaction or not? Briefly explain your answer.
(B) Suppose we are interested in salaries thought of in terms ofpercentage(i.e., ratio)

differences rather than additive differences. Therefore we take the logarithm, base 10, of
the individual salaries (the R code has this option built into to the data section, where the
salary data are loaded). Run the analysis on the transformeddata, producing the results and
contrasts analogous to those in Figures 19.4 and 19.5. Do anyof the conclusions change?

(C) Examine the within-cell variances in the original and in thetransformed data. (Hint:
Try using theaggregate function on the data. As a guide, see how the function is used to
initialize a1a2. Instead of applying themean to the aggregated data, apply the standard de-
viation. The result is the within-cell standard deviations. Are they all roughly the same?)
Do the original or the transformed data better respect the assumption of homogeneous vari-
ances?

Exercise 19.2.[Purpose: Investigating a case of two factor Bayesian ANOVA.] In the data specifi-
cation of the program in Section 19.3.1 (ANOVAtwowayBRugs.R) you can load data from Qian
and Shen (2007), regarding how quickly seaweed regenerateswhen in the presence of dif-
ferent types of grazers. Data were collected from eight different tidal areas of the Oregon
coast; this predictor (−→x2) is referred to as the “Block”. In each of the eight Blocks, there
were six different combinations of seaweed grazers established by the researchers. This
predictor (−→x1) had six levels: Control, with no grazers allowed; only small fish allowed;
small and large fish allowed; only limpets allowed; limpets and small fish allowed; and,
all three grazers allowed. The predicted variable was the percentage of the plot covered by
regenerated seaweed, logarithmically transformed.

(A) Load the data and run the program. You will find that there are too many levels
of the two predictors to fit all the posterior histograms intoa single multi-panel display.
Therefore, modify the plotPost.R program so that it produces only the mean and HDI limits,
marked by a horizontal bar with a circle at the mean (without ahistogram), and perhaps
without amain title. Name your program something other than plotPost.R, and use it in the
plotting section at the end of the program instead of plotPost.R. Show your results. (An
secondary goal of this part of the exercise is to give you experience modifying graphics
in R to suit your own purposes.) Hints: There are many ways to do this, but here are
some options. To suppress plotting of the histogram, just put this argument in thehist
function: plot=F. To suppress a title on a plot, just use the argumentmain="". To adjust
the font size, specify the “character expansion”:cex for text, cex.lab for axis labels, and
so forth. To reduce the margins around a plot, so there is moreroom for the plot itself, try
variations of these margin specifications:par(mar=c(2,0.5,1,0.5), mgp=c(0.5,0,0)). The
par command needs to be called before the plots are made.

(B) The program already includes contrasts that consider whether there is an effect of
small fish, and effect of large fish, and an effect of limpets. What conclusions do you reach
from the posteriors of these contrasts?

(C) Construct a contrast of the average of Blocks 3 and 4 versus the average of Blocks 1
and 2. Show your specification, the graph of the posterior on the contrast, and state your
conclusion.

(D) Is the effect of limpets different in Block 6 than in Block 7? To answer this question,

19.4. EXERCISES 445

construct an interaction contrast using an outer product (hint: refer to the already-coded
L effect for the contrast that specifies the effect of limpets). Is the effect of small fish differ-
ent in Blocks 1 and 7 than in Blocks 3 and 5? For both questions,show the contrasts vectors
that you constructed and show the posterior of the contrast,and state your conclusion.

Exercise 19.3.[Purpose: Notice that within-subject designs can be more sensitive (hence more power-

ful) than between-subject designs.]Consider these data:

−→x1
−→x2 y S

1 1 101 1
1 1 102 2
1 1 103 3
1 1 105 4
1 1 104 5
1 2 104 1
1 2 105 2
1 2 107 3
1 2 106 4
1 2 108 5
2 1 105 1
2 1 107 2
2 1 106 3
2 1 108 4
2 1 109 5
2 2 109 1
2 2 108 2
2 2 110 3
2 2 111 4
2 2 112 5

(A) Ignoring the last column, which indicates the subject who generated the data, con-
duct a Bayesian ANOVA using−→x1 and−→x2 as predictors ofy. Show the code you used to
load the data, and show the resulting posterior histograms of β0, β1, j , β2,k, andβ1×2, jk. Also
show the posterior of the contrastβ1,2 − β1,1 (i.e., the marginal difference between levels 1
and 2 of factor 1, also called the main effect of factor 1), and the posterior of the contrast
β2,2 − β2,1 (i.e., the marginal difference between levels 1 and 2 of factor 2, also called the
main effect of factor 2).

(B) Now include the subject as a predictor, by expanding the model to include a deflec-
tion from baseline due to subject. (Do not include any subject interaction terms.) Again
show the posteriors of theβ’s requested in the previous part. Are the certainties on the
estimates and contrasts different than in the previous part? In what way, and why?

Hint regarding the answer: Figure 19.7 shows posterior histograms for the main effect
of factor 2, when the data are considered to be between-subject or within-subject. Notice
that the means are (essentially) the same in both histograms, but the uncertainties are very
different!

Programming hints: The model specification without a subject factor is
mu[i] <- a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]]

but with a subject factor becomes
mu[i] <- a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]] + aS[S[i]]

446 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

X2 Contrast: X2.2vX2.1

−1 x2.1 + 1 x2.2

0 1 2 3 4 5

mean = 2.95

0% <= 0 < 100%
95% HDI

1.45 4.43

X2 Contrast: X2.2vX2.1

−1 x2.1 + 1 x2.2

0 1 2 3 4

mean = 2.98

0% <= 0 < 100%
95% HDI

2.22 3.84

Figure 19.7: For Exercise 19.3. Left: Posterior for difference between levels of
factor 2 when data are considered to be between-subject. Right: Posterior for dif-
ference between levels of factor 2 when data are considered to be within-subject.
Notice that the means are (essentially) the same in both histograms, but the uncer-
tainties are very different!

whereS[i] is the subject number for theith datum, andaS[] are the deflections from base-
line for each subject. You must, of course, specify a prior onaS[] analogous to the prior on
a1[].

The conversion of thea[] values to zero-centeredb[] values proceeds analogously to
what was explained at the beginning of Section 19.3.1 (ANOVAtwowayBRugs.R). The code
merely needs to be expanded to include the additional subject factor. Here is a guide:
(ANOVAtwowayBRugsWithinSubj.R)

209 # Convert the a values to zero-centered b values.

210 # m12Sample is predicted cell means at every step in MCMC chain:

211 m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl ,

212 datalist$NSLvl , chainLength))

213 for (stepIdx in 1:chainLength) {

214 for (a1idx in 1:Nx1Lvl) {

215 for (a2idx in 1:Nx2Lvl) {

216 for (aSidx in 1:NSLvl) {

217 m12Sample[a1idx , a2idx , aSidx , stepIdx] = (

218 a0Sample[stepIdx]

219 + a1Sample[a1idx,stepIdx]

220 + a2Sample[a2idx,stepIdx]

221 + a1a2Sample[a1idx,a2idx,stepIdx]

222 + aSSample[aSidx,stepIdx])

223 }

224 }

225 }

226 }

227

228 # b0Sample is mean of the cell means at every step in chain:

229 b0Sample = apply(m12Sample , 4 , mean)

230 # b1Sample is deflections of factor 1 marginal means from b0Sample:

231 b1Sample = (apply(m12Sample , c(1,4) , mean)

232 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))

233 # b2Sample is deflections of factor 2 marginal means from b0Sample:

234 b2Sample = (apply(m12Sample , c(2,4) , mean)

235 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))

236 # bSSample is deflections of factor S marginal means from b0Sample:

237 bSSample = (apply(m12Sample , c(3,4) , mean)

238 - matrix(rep(b0Sample ,NSLvl),nrow=NSLvl,byrow=T))

239 # linpredSample is linear combination of the marginal effects:

240 linpredSample = 0*m12Sample

19.4. EXERCISES 447

241 for (stepIdx in 1:chainLength) {

242 for (a1idx in 1:Nx1Lvl) {

243 for (a2idx in 1:Nx2Lvl) {

244 for (aSidx in 1:NSLvl) {

245 linpredSample[a1idx,a2idx,aSidx,stepIdx] = (

246 b0Sample[stepIdx]

247 + b1Sample[a1idx,stepIdx]

248 + b2Sample[a2idx,stepIdx]

249 + bSSample[aSidx,stepIdx])

250 }

251 }

252 }

253 }

254 # b1b2Sample is the interaction deflection, i.e., the difference

255 # between the cell means and the linear combination:

256 b1b2Sample = apply(m12Sample - linpredSample , c(1,2,4) , mean)

257

258 # Convert from standardized b values to original scale b values:

259 b0Sample = b0Sample * ySDorig + yMorig

260 b1Sample = b1Sample * ySDorig

261 b2Sample = b2Sample * ySDorig

262 bSSample = bSSample * ySDorig

263 b1b2Sample = b1b2Sample * ySDorig

Exercise 19.4. [Purpose: Power analysis for Bayesian ANOVA, for within-subject versus between-

subject designs.] Conduct power analyses for the between-subject and within-subject ver-
sions of the previous exercise. Specifically, suppose the goal is for the 95% HDI of the
contrast on factor 2 to have a width of 2.0 or less. Conduct a retrospective power analysis
for this goal, for the within-subject version and the between-subject version. Caution: This
exercise demands a lot of programming and could be time consuming, but the results drive
home the point that within-subject designs can be more powerful than between-subject de-
signs.

448 CHAPTER 19. METRIC Y, MULTIPLE NOMINAL X

Chapter 20

Dichotomous Predicted Variable
Contents

20.1 Logistic regression . 450
20.1.1 The model . 451
20.1.2 Doing it in R and BUGS . 451
20.1.3 Interpreting the posterior .452
20.1.4 Perils of correlated predictors 454
20.1.5 When there are few 1’s in the data 454
20.1.6 Hyperprior across regression coefficients 454

20.2 Interaction of predictors in logistic regression 455
20.3 Logistic ANOVA . 456

20.3.1 Within-subject designs . 458
20.4 Summary . 458
20.5 R code . 459

20.5.1 Logistic regression code . 459
20.5.2 Logistic ANOVA code . 463

20.6 Exercises . 468

Fortune and Favor make fickle decrees, it’s
Heads or it’s tails with no middle degrees.
Flippant commandments decreed by law gods, have
Reasons so rare they have minus log odds.

There are many situations in which the value to be predicted is dichotomous (instead
of metric). For example, we might want to predict whether a patient is cured or not (a
dichotomous outcome), on the basis of the dosage of drug administered and age of the
patient (two metric predictors). What the model does, in this case, is generate a prediction of
theprobability that a patient is cured, given the specified dosage and age. Inother situations,
the predictors might be nominal. For example, we could predict cured versus not-cured on
the basis of type of drug and gender of patient. The model specifies the probability that
a patient is cured, given the drug and the gender. We will consider such situations in this
chapter.

The formal framework for this situation was presented in thesecond row of Table 14.1
on p. 312. As you may recall, the link function, which maps a linear combination of pre-
dictors to an outcome tendency, is a logistic function. Therefore the models we use in this
chapter are referred to as cases of logistic regression or logistic ANOVA.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

449

450 CHAPTER 20. DICHOTOMOUS Y

x1 (Height)60
65

70
75

x2 (W
eight)

100

150

200

250

y (G
ender: M

ale=
1)

0.0

0.2

0.4

0.6

0.8

1.0

y ~ dbern(m), m = sig(1(0.66x1 + 0.0096x2 − 45))

0 00

0

111

0

1

0

1
11

1
1 1

0

1

0

1

0

1

0

1

0

1

0

1

0 0

1

111 1

0

1

0

0 0

0

0

0

1

00 0

1

0

1 1

0

11

0

11

0

1

0

1 1

0

0

1

0

1

0
0

1

60 65 70 75

10
0

15
0

20
0

25
0

male

height
w

ei
gh

t

0 0
0

0

0
0

0

0
0

0

0 0

0

0

0

0

0

0

0

0

0

0
0 00

0

0
0

0

0

0

0 0

0

1
1
1

1
1

1

1

1

1
1

1

1
1

11

1

1

1

1

1

1

1

1

1
1

1
1

1

1
1

1

1

1
1

1

1

Figure 20.1: Gender (male=1, female=0), height, and weight. Left panel shows
data in perspective, with the MLE logistic surface, and thep(y = 1) = .5 level
contour marked as a dark line. The data points are all aty = 1 or y = 0, not on the
logistic surface. Right panel shows the data “from above” with several grey lines
that indicate a smattering of crediblep(y = 1) = .5 level contours derived from
Bayesian logistic regression.

20.1 Logistic regression

Suppose we have metric predictors and a dichotomous predicted variable. As a concrete ex-
ample, suppose we want to predict the gender of a person (coded by male=1 and female=0)
on the basis of the person’s height and weight. Figure 20.1 shows realistic data from 70
people. Males are plotted as numeral 1’s, and females are plotted as numeral 0’s. You can
see that there is notable variation of heights and weights across people, and, importantly,
there is considerable overlap in the distributions of malesand females. Thus, at any specific
combination of height and weight, the best we can do is predict theprobability that a person
with that height and weight is male.

The model we will use to formulate the probability thaty = 1, as a function of the two
predictors, is the logistic transform of a linear combination of the predictors. Formal details
will be reviewed below, but a graphical preview is provided in the left panel of Figure 20.1.
The smoothly ascending surface plots the probability thaty = 1 as a function ofx1 andx2.
The parameters of the model control the “cliff face”, specifically its orientation, location,
and steepness.

The maximum likelihood estimate (MLE) of the model parameters provides a single
logistic surface that summarizes the distribution of the data. The MLE surface is shown
in the left panel of Figure 20.1. Also plotted on the surface,as a dark line, is the level
contour at whichp(y=1) = 0.5. This level contour marks the points that are halfway up the
logistic cliff. The level contour is a convenient summary of the orientation and location of
the logistic surface, but the level contour loses information about the steepness of the cliff.

The right panel of Figure 20.1 shows the same data viewed fromabove. Also plotted are
several crediblep(y= 1) = 0.5 level contours, from a Bayesian analysis. Unlike the single
MLE contour in the left panel, the distribution of credible contours reveals our uncertainty

20.1. LOGISTIC REGRESSION 451

in the parameter estimates of the logistic-regression model. The mechanics of the Bayesian
analysis are described in the next sections.

20.1.1 The model

Recall that for multiplelinear regression, the central tendency of the predicted value is a
linear combination of the predictors, as in Equation 14.3 (p. 297), and as explained at length
in Chapter 17. In multiplelogistic regression, the linear combination is transformed by a
logistic squashing function, and the resulting value, between zero and one, is used as the
probability that the predicted value is one. Formally, as inthe second row of Table 14.1 on
p. 312, logistic regression can be written as

µ = sig
(

β0 + β1x1 + β2x2 + . . .

)

y ∼ dbern(µ)

where sig refers to the sigmoid function, which is merely another name for the logistic
function:

sig(x) = 1
/(

1+ exp(−x)
)

(20.1)

Graphs of the logistic (a.k.a. sigmoid) function were shownin Figure 14.6 (p. 305) for a
single predictor, Figure 14.7 (p. 306) for two predictors, and Figure 14.10 (p. 310) for two
predictors with dichotomous predicted values superimposed. Please do review those figures
now!

The logit function is the inverse of the logistic function. Formally, for 0 < p < 1,
logit(p) = log(p/(1− p)). In applications to logistic regression, the “p” is the probability
that y = 1, and therefore we can write logit(p(y=1)) = log(p(y=1)/p(y=0)), where the
logarithm is the natural logarithm, i.e., the inverse of theexponential function. The ratio,
p(y = 1)/p(y = 0), is called the odds of outcome 1 to outcome 0. The logistic regression
model can be written in terms of the logit function, also called the log-odds form, like this:

logit(µ) = β0 + β1x1 + β2x2 + . . . (20.2)

y ∼ dbern(µ)

I prefer the expression in terms of the logistic (i.e., sigmoid) in Equation 20.1 because it
provides an explicit specification ofµ that is natural to depict in hierarchical diagrams. But
the logit form in Equation 20.2 is useful for interpreting the regression coefficients, as will
be described in Section 20.1.3.

The hierarchical diagram for the model is shown in Figure 20.2. It is just like the one
for multiple linear regression in Figure 17.4, p. 375, except for inclusion of a sigmoid and a
change in the likelihood function at the bottom of the diagram, from a normal distribution
to a Bernoulli distribution.

To reiterate, what the model does is take theith individual’s predictor values,x ji , and
generate the probabilityµi that y = 1 for that individual. The Bayesian estimation yields
values of the parameters,β0 andβ j, that respect the data and the prior.

20.1.2 Doing it in R and BUGS

The implementation of logistic regression in R, BRugs, and BUGS is straight for-
ward, with only a few modifications of the linear regression program presented ear-
lier in the book. The full logistic regression program is listed in Section 20.5.1

452 CHAPTER 20. DICHOTOMOUS Y

Figure 20.2: Hierarchical model for logistic regression, analogous to the hierar-
chical model for linear regression in Figure 17.4, p. 375. A hyperprior across
regression coefficients can be added, as in Figure 17.6, p. 379.

(MultipleLogisticRegressionBrugs.R). The only notable changes, other than the model, are
(i) the use of R’sglm function to initialize the chains at the MLE, and (ii) a simpler formula
for conversion of standardized data to original-scale data. A more thorough explanation is
provided before the listing in Section 20.5.1 (MultipleLogisticRegressionBrugs.R).

20.1.3 Interpreting the posterior

Consider again the height, weight, and gender data in Figure20.1. Aspects of the posterior
distribution are shown in Figure 20.3. Often we are primarily interested in knowing how big
an influence a predictor has on the predicted value, and, specifically, whether that influence
is credibly non-zero.

The middle panel of Figure 20.3 indicates that height provides a credibly non-zero
predictiveness for gender. The mean value of the coefficient on height is 0.721, which
means that the log odds, log(p(male)/p(female)), increases by 0.721 when height increases
by one inch.

This notion of constant increase in log odds is not instantlyintuitive. Recall from Equa-
tion 20.2 that the regression equation can be expressed in log-odds form as

logit(µ) = log

(

p(y=1)
p(y=0)

)

= β0 + β1x1 + β2x2 + . . .

Therefore, whenxi increases one unit, the log-odds increaseβi units. Some numerical
examples might help. Consider a hypothetical person who weighs 160 pounds. We will
compute what happens to the log-odds when the person’s height increases by 1 inch. First,
consider an increase from 63 inches tall to 64 inches tall. According to the logistic function
with parameters set at the mean of the posterior, if the 160-pound person were 63 inches
tall, then the probability of being male is 0.0728, and if theperson were 64 inches tall, the
probability of being male is 0.1390. That increase of 6.62 percentage points corresponds
to a change in log odds of log(0.1390/(1 − 0.1390)) − log (0.0728/(1 − 0.0728)), which
equals 0.721. Next, consider an increase from 66 inches tallto 67 inches tall. If the person

20.1. LOGISTIC REGRESSION 453

logit(p(male=1)) when predictors = zero

b0 Value

−120 −100 −80 −60 −40 −20

mean = −49.4

95% HDI
−71.5 −27.3

height

b1 Value

0.0 0.5 1.0 1.5

mean = 0.718

0% <= 0 < 100%

95% HDI
0.379 1.04

weight

b2 Value

−0.02 0.00 0.02 0.04

mean = 0.0106

17.3% <= 0 < 82.7%

95% HDI
−0.0113 0.0319

b0

0.4 0.6 0.8 1.0 1.2

−
80

−
60

−
40

−
20

0.
4

0.
6

0.
8

1.
0

1.
2

b_height

−80 −60 −40 −20 −0.02 0.00 0.02 0.04

−
0.

02
0.

00
0.

02
0.

04

b_weight

Figure 20.3: Posterior distribution of Bayesian logistic regression of gender on
height and weight.

were 66 inches tall, the probability of being male is 0.4056,and if the person were one
inch taller, at 67 inches, then the probability of being maleis 0.5839. The increase of
17.83 percentage points corresponds to a change in log odds of log (0.5839/(1 − 0.5839))−
log(0.4056/(1 − 0.4056)), whichagainequals 0.721. Thus, for any increase of one inch in
height, the increase in predicted log-odds of being male is the same, namely 0.721.

The right panel of Figure 20.3 indicates that weight does notprovide a credibly non-zero
predictiveness for gender, because zero is well among the credible values in the posterior.
The mean value of the coefficient on weight is 0.0106, which means that the log odds,
log(p(male)/p(female)), increases by only 0.0106 when weight increases by one pound.

The lower part of Figure 20.3 shows pairwise scatterplots ofthe 3-dimensional poste-
rior. Notice that the intercept and the coefficient on height are strongly negatively correlated.
This correlation results from two properties of the data. First, height is predictive of gender,
and therefore the intercept is constrained by height. Second, these original-scale data are
not standardized at heights of zero, so if the coefficient on height is increased, the intercept

454 CHAPTER 20. DICHOTOMOUS Y

must be decreased to keep the logistic cliff at the appropriate position.

20.1.4 Perils of correlated predictors

When predictors are correlated, care must be taken in interpreting their regression coef-
ficients. This issue was emphasized in Section 17.1.1 in the context of multiplelinear
regression, but analogous perils arise inlogistic regression.

Consider a situation with two predictors. When the predictors areuncorrelated, the
posterior will have relatively high certainty regarding the regression coefficients. But when
the predictors are strongly correlated, the posterior willhave relatively low certainty about
the regression coefficients, because many different logistic surfaces can fit the data fairly
well. Figure 20.7 in Exercise 20.1 provides an example.

Another peril arising from correlated predictors arises when one of the correlated pre-
dictors is not included in the model. Suppose that one predictor is included in the model, but
another predictor is not included, perhaps because the datafor the excluded predictor were
lost or unobtainable or not even considered in the first place. Suppose further that the true
regression coefficient on the included predictor iszero, but the true regression coefficient
on the excluded predictor islarge positive. The posterior estimate of the included regres-
sion coefficient will be non-zero if the included predictor is correlated with the excluded
predictor. The reason is intuitively straight forward: As the included predictor increases,
the excluded predictor changes (because it is correlated with the included predictor), and
therefore the outcome changes, even though the included predictor has no direct predictive
value for the outcome. Exercise 20.1 provides an example of this situation.

20.1.5 When there are few 1’s in the data

In linear regression, the predicted variable is on a metric scale. Usually the data are dis-
tributed over a range of values, without being severely clumped over a single value. In
logistic regression, however, the predicted variable is dichotomous, and the data can some-
times consist of mostly 1’s or mostly 0’s. For example, if thepredicted variable is the
occurrence of a rare disease, then, by definition, there are few 1’s. As another example, the
predicted variable might be the occurrence of a defect on a factory assembly line, which is
expected to be rare.

The problem with data that have only a few 1’s or a few 0’s is that the estimate of the
regression coefficients is usually relatively uncertain. This makes intuitive sense, because it
is only the transition from 0’s to 1’s that constrains the regression coefficients. Exercise 20.2
provides an example.

20.1.6 Hyperprior across regression coefficients

When there are many candidate predictors, we can use prior knowledge to mutually con-
strain the estimates of the coefficients. Because all the predictors come from a pool of
factors that might have some remotely plausible predictiverelation with the dichotomous
value, we could reasonably put a hyperprior on the regression coefficients that expresses
the assumption that most coefficients are near zero, but some may be notably farther from
zero. A distribution that captures this prior knowledge is at distribution, with a precision
that is estimated from the data. This scheme was described inthe context of multiple lin-
ear regression in Section 17.2, p. 378. A diagram of the hierarchical prior was displayed

20.2. INTERACTION OF PREDICTORS IN LOGISTIC REGRESSION 455

x1

−2
−1

0
1

2

x2
−2

−1

0

1

2

m

0.0

0.2

0.4

0.6

0.8

1.0

m = sig(4(0x1 + 0x2 + 0x1x2 − 0))

x1

−2
−1

0
1

2

x2

−2

−1

0

1

2

m

0.0

0.2

0.4

0.6

0.8

1.0

m = sig(4(0x1 + 0x2 + −1x1x2 − 0))

x1

0.0
0.5

1.0
1.5

2.0

x2

0.0

0.5

1.0

1.5

2.0

m

0.0

0.2

0.4

0.6

0.8

1.0

m = sig(4(1x1 + 1x2 + 0x1x2 − 2))

x1

0.0
0.5

1.0
1.5

2.0

x2
0.0

0.5

1.0

1.5

2.0

m

0.0

0.2

0.4

0.6

0.8

1.0

m = sig(4(1x1 + 1x2 + 1x1x2 − 3))

Figure 20.4: Right panels: Logistic regressionwith interaction. Left panels show
corresponding function without any interaction component. Notice that the upper
panels include negative values of the predictors, whereas the lower panels do not.
In the lower-right graph, when bothx1 andx2 are sufficiently large negative values
(not shown), then the surface rises up towardm= 1.

in Figure 17.6, p. 379. The same scheme can be applied to logistic regression, merely by
substituting the Bernoulli likelihood function, as in Figure 20.2.

The knowledge expressed in the hyperprior provides shrinkage on the coefficients in
logistic regression. When several predictors have estimated coefficients near zero, they
drive plausible values of the precision of the overarchingt toward higher values, thereby
shrinking estimates of other predictor’s coefficients. The shrinkage attenuates false alarms,
as discussed at length in Section 17.2.

20.2 Interaction of predictors in logistic regression

Logistic regression can include a multiplicative interaction, just as when the predicted vari-
able is metric (recall Figures 14.3 and 17.8). The interpretation of such an interaction
requires care.

Suppose that the predicted variable is a two-valued self-report of happiness: The respon-

456 CHAPTER 20. DICHOTOMOUS Y

dent says s/he is happy or not happy. The two predictors are annual incomeand healthiness
assayed on a metric scale. Intuitively, we can imagine that happiness depends on thecon-
junctionof good health and high income; either one alone may be insufficient for happiness.
To put it another way, a person can beunhappy either because of poor health or because
of poverty. Thus, the probability of being happy in a conjunctive interaction of health and
wealth.

As another example, consider predicting the success of a lighter-than-air vehicle. One
predictor is the intensity of heat under the balloon. A second predictor is the amount of
hydrogen in the balloon. Intuitively, the balloon will riseonly if there is sufficient heat or
sufficient hydrogen but not both. This is called anexclusive-ORinteraction between the
predictors.

Figure 20.4 shows graphs of multiplicative interactions ofpredictors in a logistic func-
tion. The top-right panel shows an exclusive-OR: The predicted probability,m, is high only
if x1 is large orx2 is large but not both. The top-left panel shows absence of alleffects as a
comparison and reminder that the baseline for a logistic is 0.5.

The lower-right panel of Figure 20.4 shows a conjunctive interaction: The predicted
probability is high only ifx1 and x2 are large. The lower-left panel shows a comparison
that has zero interaction. The two lower panels are subtly different: Level contours (not
shown) on the zero-interaction cliff are straight lines, but level contours (not shown) on the
interactive cliff are curved, resembling hyperbolas.

Multiplicative interactions can be incorporated into logistic regression models in the
same way they are incorporated into metric-predictor models. As was emphasized in the
chapter on multiple linear regression, the coefficients on the predictors must be interpreted
with care, especially when interactions are involved.

20.3 Logistic ANOVA

There are many situations in which the variable to be predicted is dichotomous, and the
predictors are nominal. As an example, recall the filtation/condensation experiment intro-
duced in Section 9.3.1, p. 178, and used many times thereafter. The predicted variable was
accuracy on each trial, i.e., correct or incorrect. The predictor was a nominal variable that
indicated which of four category structures the learner experienced. As another example,
recall the relevance-shift experiment of Exercise 13.4, p.282. Again the predicted variable
was accuracy on each trial, and the predictor was a nominal variable indicating which of
four relevance shifts the learner experienced. If the predicted variable were metric instead
of dichotomous, then these cases could be analyzed with oneway ANOVA as in Chapter 18.

The logistic function can be used to adapt ANOVA models to dichotomous outcomes.
We start with the ANOVA model to generate a predicted tendency for each condition, then
pass that value through a sigmoid so it becomes the predictedprobability thaty = 1 for
that condition. We also assume that subjects can vary aroundthe condition’s predicted
probability, just as in the ANOVA model. Figure 20.5 shows the logistic ANOVA model for
a single factor, i.e., “oneway” logistic ANOVA. The basic ANOVA model comes directly
from the top part of Figure 18.1, p. 403. The beta distribution for subjects within conditions
comes directly from the left side of Figure 9.17, p. 183. Notice that this model assumes
equal variances for all conditions, like traditional ANOVA, insofar as the sameκ value is
used for all groups simultaneously.

Figure 20.6 shows the results of running logistic oneway ANOVA on the filtra-

20.3. LOGISTIC ANOVA 457

Figure 20.5: Bayesian logistic ANOVA. The ANOVA model, in the upper parts,
generates theµ j for the groups through the sigmoidal transform. The beta distribu-
tion, in the lower part of the diagram, describes the within-group variability across
subjects. The sameκ is assumed for all groups, which is analogous to homogeneity
of variance in metric ANOVA.

Contrast: FiltLRvFiltHt

1 FiltLR + −1 FiltHt
0.0 0.5 1.0 1.5

mean = 0.847

0% <= 0 < 100%

95% HDI
0.446 1.21

Contrast: Cond1vCond2

1 Condns1 + −1 Condns2
−0.4 −0.2 0.0 0.2 0.4

mean = 0.024

42.2% <= 0 < 57.8%

95% HDI
−0.266 0.285

Contrast: FiltvCond

0.5 FiltLR + 0.5 FiltHt + −0.5 Condns1 + −0.5 Condns2
0.0 0.5 1.0 1.5

mean = 1.26

0% <= 0 < 100%

95% HDI
1.05 1.53

Figure 20.6: Results of logistic ANOVA applied to filtration/condensation exper-
iment. Compare with Figure 9.16, p. 181, which did not use an ANOVA model
for these data. The scale on these histograms is difference of ANOVA-modelβ j

values, not difference ofµc values as in Figure 9.16.

458 CHAPTER 20. DICHOTOMOUS Y

tion/condensation data. The comparisons are differences of theβ parameters in the ANOVA
model. Theβ parameters are not probabilities, but theβ parameters can be mapped to prob-
abilities via the logistic function. The comparisons of theβ parameters from different con-
ditions yield the same conclusions as the analysis from earlier chapters, as in Figure 9.16,
p. 181, which did not use an ANOVA model for these data.

If the ANOVA model leads to the same conclusions as the non-ANOVA approach, what
are the advantages or disadvantages of the two models? A disadvantage of the logistic
ANOVA model is that it tends to have larger autocorrelation in its parameters, and therefore
takes longer to run because more thinning is needed. Anotherdisadvantage of the logistic
ANOVA model is that the parameters are not instantly interpretable as probabilities, but
must be converted through the logistic. But the ANOVA approach has great advantages
when the situation to be modeled becomes more complex. In particular, when there are two
or more predictors, the ANOVA model provides a natural representation for the main effects
and interactions of the predictors. This generalizabilityof the logistic ANOVA model is its
trump card.

Some analysts of dichotomous data will treatzi/Ni as if it were a metric value, and ap-
ply standard ANOVA. Because standard ANOVA assumes that thedata come from normal
distributions, the analyst will transform the values to 2 arcsin

√
zi/Ni (e.g., Winer, Brown,

& Michels, 1991, p. 356), to approximate normality. Unfortunately the approximation is
not very good for smallN or for values ofzi/Ni that are very close to 0 or 1. Most impor-
tantly, the ratiozi/Ni loses information about the magnitude ofNi: If all we know is that
zi/Ni = 0.75, we don’t know whetherzi = 3 andNi = 4, orzi = 3000 andNi = 4000. This
matters because a proportion based on a large sample should influence our beliefs more
than a proportion based on a small sample. Therefore, converting to proportions fails in
unbalanced designs, i.e., when there are different sample sizes for different subjects. In the
Bayesian approach used here, every individual observationhas an equal influence, and the
Bayesian analysis automatically handles unbalanced designs appropriately.

20.3.1 Within-subject designs

Fortunately, there is no news when it comes to repeated measures in within-subject designs.
All the concepts of Section 19.2, p. 432, apply the same way tologistic ANOVA. There
were two main messages of that section. First, in terms of model structure, if every subject
contributes many observations to every combinations of conditions, then it makes sense to
apply a logistic ANOVA model to every individual subject, with hyperdistributions on the
ANOVA coefficients to allow mutually informed estimation across subjects. If every subject
contributes only one observation to any combination of conditions, then it makes sense to
include a subject factor in the model, with no interactions of that subject factor with the
other factors. Second, in terms of whether to use a repeated measures design at all, there
must be a good rationale for assuming that repeated measuresfrom the same subject are
reasonably independent of each other, so that any of these models can be applied.

20.4 Summary

The extension of linear regression and ANOVA to logistic regression and logistic ANOVA
is straight forward. The hierarchical models of Figures 20.2 and 20.5 illustrated how the
core linear model of regression or ANOVA is passed through a logistic function, and the

20.5. R CODE 459

resulting value is used as the mean for a Bernoulli (or binomial) likelihood function. All
the basic structural concepts of linear regression and ANOVA applied to logistic regression
and ANOVA.

Only a few new technical concepts introduced in this chapter. One was the notion of
level contour on the logistic surface. The contour at level .5 was useful for marking the
boundary between−→x values for whichp(y=1) < .5 and−→x values for whichp(y=1) > .5.

Another new technical concept was interpreting a coefficient in logistic regression in
terms of the increase in log-odds of the outcome when the predictor increases by one unit.
Although it was not previously mentioned, the same idea applies to logistic ANOVA: Theβ j

value indicates the increase in log-odds of the outcome relative to the baseline,β0. This in-
terpretation must be qualified, however, when the model includes interaction terms, whether
it is regression or ANOVA.

The remaining technical issues arise only in the mechanics of computing the analyses.
The next section, which includes the R code, explains these details. There are two main
issues, one regarding standardizing the predictors (for regression only) and transforming
the parameters back to the original scales, and the other regarding how to initialize the
chains by starting with the maximum likelihood estimate (MLE).

20.5 R code

20.5.1 Logistic regression code

The program for logistic regression is much like the analogous program for linear regres-
sion, with only a few changes. One obvious change is that the likelihood function is
Bernoulli, not normal. Beyond the model specification, it isimportant to understand the
following details.

The predictor values are standardized, to reduce autocorrelation in MCMC sampling.
Notice, for example, the highly correlated original-scaleparameter values in Figure 20.3,
which would be difficult to navigate by most MCMC sampling algorithms. Unlike linear
regression, however, the predictedvalues are not standardized, because the predicted values
must by zero or one. Because the predicted values are not standardized, the conversion of
the standardized parameter values to original-scale parameter values is less complicated:

logit(µi) = ζ0 +
∑

j

ζ jzji

= ζ0 +
∑

j

ζ j
x ji − E[x] j

σxj

= ζ0 −
∑

j

ζ jE[x] j

σxj

︸ ︷︷ ︸

β0

+
∑

j

ζ j

σxj
︸︷︷︸

β j

x ji

This conversion is executed at every step in the MCMC chain, and is performed at the end
of the program.

Initialization of the chains is based on parameter values that are plausible given the data.
Specifically, the values of the MLE are used, because R has a built-in function for deter-
mining the MLE of logistic regression, namely theglm function with thefamily argument
specified asbinomial(logit).

460 CHAPTER 20. DICHOTOMOUS Y

The final lines of the program perform an MLE of the logistic regression, just for com-
parison with the Bayesian results. The MLE is typically among the most credible values in
the Bayesian posterior. But the posterior provides more information about correlations of
parameters and the range of uncertainty in each parameter.

(MultipleLogisticRegressionBrugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fname = "MultipleLogisticRegressionBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8 modelstring = "

9 # BUGS model specification begins here...

10 model {

11 for(i in 1 : nData) {

12 y[i] ˜ dbern(mu[i])

13 mu[i] <- 1/(1+exp(-(b0 + inprod(b[] , x[i,]))))

14 }

15 b0 ˜ dnorm(0 , 1.0E-12)

16 for (j in 1 : nPredictors) {

17 b[j] ˜ dnorm(0 , 1.0E-12)

18 }

19 }

20 # ... end BUGS model specification

21 " # close quote for modelstring

22 # Write model to a file:

23 writeLines(modelstring,con="model.txt")

24 modelCheck("model.txt")

25

26 #--

27 # THE DATA.

28

29 dataSource = c("HtWt" , "Cars" , "HeartAttack")[3]

30

31 if (dataSource == "HtWt") {

32 fname = paste(fname , dataSource , sep="")

33 # Generate random but realistic data:

34 source("HtWtDataGenerator.R")

35 dataMat = HtWtDataGenerator(nSubj = 70 , rndsd=474)

36 predictedName = "male"

37 predictorNames = c("height" , "weight")

38 nData = NROW(dataMat)

39 y = as.matrix(dataMat[,predictedName])

40 x = as.matrix(dataMat[,predictorNames])

41 nPredictors = NCOL(x)

42 }

43

44 if (dataSource == "Cars") {

45 fname = paste(fname , dataSource , sep="")

46 dataMat = read.table(file="Lock1993data.txt",header=T,sep=" ")

47 predictedName = "AirBag"

48 predictorNames = c("MidPrice" , "RPM" , "Uturn")

49 nData = NROW(dataMat)

50 y = as.matrix(as.numeric(dataMat[,predictedName] > 0)) # 0,1,2 to 0,1

51 x = as.matrix(dataMat[,predictorNames])

52 nPredictors = NCOL(x)

20.5. R CODE 461

53 }

54

55 if (dataSource == "HeartAttack") {

56 fname = paste(fname , dataSource , sep="")

57 dataMat = read.table(file="BloodDataGeneratorOutput.txt",header=T,sep=" ")

58 predictedName = "HeartAttack"

59 predictorNames = c("Systolic", "Diastolic", "Weight", "Cholesterol",

60 "Height", "Age")

61 # predictorNames = c("Systolic", "Diastolic")

62 nData = NROW(dataMat)

63 y = as.matrix(dataMat[,predictedName])

64 x = as.matrix(dataMat[,predictorNames])

65 nPredictors = NCOL(x)

66 }

67

68 # Prepare data for BUGS:

69 # Re-center data at mean, to reduce autocorrelation in MCMC sampling.

70 # Standardize (divide by SD) to make initialization easier.

71 standardizeCols = function(dataMat) {

72 zDataMat = dataMat

73 for (colIdx in 1:NCOL(dataMat)) {

74 mCol = mean(dataMat[,colIdx])

75 sdCol = sd(dataMat[,colIdx])

76 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol

77 }

78 return(zDataMat)

79 }

80 zx = standardizeCols(x)

81 zy = y # y is not standardized; must be 0,1

82

83 # Get the data into BUGS:

84 datalist = list(

85 x = zx ,

86 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector

87 nPredictors = nPredictors ,

88 nData = nData

89)

90 modelData(bugsData(datalist))

91

92

93 #--

94 # INTIALIZE THE CHAINS.

95

96 nchain = 3

97 modelCompile(numChains = nchain)

98

99 genInitList <- function() {

100 glmInfo = glm(datalist$y ˜ datalist$x , family=binomial(logit)) # R func.

101 show(glmInfo) ; flush.console() # display in case glm() has troubles

102 b0Init = glmInfo$coef[1]

103 bInit = glmInfo$coef[-1]

104 return(list(

105 b0 = b0Init ,

106 b = bInit

107))

108 }

109 for (chainIdx in 1 : nchain) {

110 modelInits(bugsInits(genInitList))

111 }

462 CHAPTER 20. DICHOTOMOUS Y

112

113 #--

114 # RUN THE CHAINS

115

116 # burn in

117 BurnInSteps = 1000

118 modelUpdate(BurnInSteps)

119 # actual samples

120 samplesSet(c("b0" , "b"))

121 stepsPerChain = ceiling(5000/nchain)

122 thinStep = 50 # check autocorrelation and increase as needed

123 modelUpdate(stepsPerChain , thin=thinStep)

124

125 #--

126 # EXAMINE THE RESULTS

127

128 source("plotChains.R")

129 source("plotPost.R")

130

131 # Check chains for mixing

132 checkConvergence = T

133 if (checkConvergence) {

134 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)

135 bSum = plotChains("b" , saveplots=F , filenameroot=fname)

136 }

137

138 # Extract chain values:

139 zb0Sample = matrix(samplesSample("b0"))

140 chainLength = length(zb0Sample)

141 zbSample = NULL

142 for (j in 1:nPredictors) {

143 zbSample = cbind(zbSample , samplesSample(paste("b[",j,"]",sep="")))

144 }

145

146 # Convert to original scale:

147 x = dataMat[,predictorNames]

148 y = dataMat[,predictedName]

149 My = mean(y)

150 SDy = sd(y)

151 Mx = apply(x,2,mean)

152 SDx = apply(x,2,sd)

153 b0Sample = 0 * zb0Sample

154 bSample = 0 * zbSample

155 for (stepIdx in 1:chainLength) {

156 b0Sample[stepIdx] = (zb0Sample[stepIdx]

157 - sum(Mx / SDx * zbSample[stepIdx,]))

158 for (j in 1:nPredictors) {

159 bSample[stepIdx,j] = zbSample[stepIdx,j] / SDx[j]

160 }

161 }

162

163 # Examine sampled values, z scale:

164 windows()

165 thinIdx = ceiling(seq(1,chainLength,length=700))

166 pairs(cbind(zb0Sample[thinIdx] , zbSample[thinIdx,]) ,

167 labels=c("zb0", paste("zb",predictorNames,sep="")))

168 # Examine sampled values, original scale:

169 windows()

170 pairs(cbind(b0Sample[thinIdx] , bSample[thinIdx,]) ,

20.5. R CODE 463

171 labels=c("b0", paste("b_",predictorNames,sep="")))

172 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

173

174 # Display the posterior :

175 windows(3.5*(1+nPredictors),2.75)

176 layout(matrix(1:(1+nPredictors),nrow=1))

177 histInfo = plotPost(b0Sample , xlab="b0 Value" , compVal=NULL , breaks=30 ,

178 main=paste("logit(p(", predictedName ,

179 "=1)) when predictors = zero" , sep=""))

180 for (bIdx in 1:nPredictors) {

181 histInfo = plotPost(bSample[,bIdx] , xlab=paste("b",bIdx," Value",sep="") ,

182 compVal=0.0 , breaks=30 ,

183 main=paste(predictorNames[bIdx]))

184 }

185 dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

186

187 # Plot data with .5 level contours of believable logistic surfaces.

188 # The contour lines are best interpreted when there are only two predictors.

189 for (p1idx in 1:(nPredictors-1)) {

190 for (p2idx in (p1idx+1):nPredictors) {

191 windows()

192 xRange = range(x[,p1idx])

193 yRange = range(x[,p2idx])

194 # make empty plot

195 plot(NULL , NULL , main=predictedName , xlim=xRange , ylim=yRange ,

196 xlab=predictorNames[p1idx] , ylab=predictorNames[p2idx])

197 # Some of the 50% level contours from the posterior sample.

198 for (chainIdx in ceiling(seq(1 , chainLength , length=20))) {

199 abline(-(b0Sample[chainIdx]

200 + if (nPredictors>2) {

201 bSample[chainIdx,c(-p1idx,-p2idx)]*Mx[c(-p1idx,-p2idx)]

202 } else { 0 })

203 / bSample[chainIdx,p2idx] ,

204 -bSample[chainIdx,p1idx]/bSample[chainIdx,p2idx] ,

205 col="grey" , lwd = 2)

206 }

207 # The data points:

208 for (yVal in 0:1) {

209 rowIdx = (y == yVal)

210 points(x[rowIdx,p1idx] , x[rowIdx,p2idx] , pch=as.character(yVal) ,

211 cex=1.75)

212 }

213 dev.copy2eps(file=paste(fname,"PostContours",p1idx,p2idx,".eps",sep=""))

214 }

215 }

216

217 #--

218

219 # MLE logistic regression:

220 glmRes = glm(datalist$y ˜ as.matrix(x) , family=binomial(logit))

221 show(glmRes)

20.5.2 Logistic ANOVA code

This program implements the model shown in Figure 20.5.

(LogisticOnewayAnovaBrugs.R)

1 graphics.off()

464 CHAPTER 20. DICHOTOMOUS Y

2 rm(list=ls(all=TRUE))

3 fnroot = "LogisticOnewayAnovaBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for (i in 1:Ntotal) {

13 z[i] ˜ dbin(theta[i] , n[i])

14 theta[i] ˜ dbeta(aBeta[x[i]] , bBeta[x[i]])I(0.001,0.999)

15 }

16 for (j in 1:NxLvl) {

17 aBeta[j] <- mu[j] * k

18 bBeta[j] <- (1-mu[j]) * k

19 mu[j] <- 1 / (1 + exp(-(a0 + a[j])))

20 a[j] ˜ dnorm(0.0 , atau)

21 }

22 k ˜ dgamma(1.0 , 0.01)

23 a0 ˜ dnorm(0 , 0.001)

24 atau <- 1 / pow(aSD , 2)

25 aSD <- abs(aSDunabs) + .1

26 aSDunabs ˜ dt(0 , 0.001 , 2)

27 }

28 # ... end BUGS model specification

29 " # close quote for modelstring

30 # Write model to a file, and send to BUGS:

31 writeLines(modelstring,con="model.txt")

32 modelCheck("model.txt")

33

34 #--

35 # THE DATA.

36

37 # Specify data source:

38 dataSource = c("Filcon" , "Relshift" , "Random")[1]

39 # Load the data:

40

41 sigmoid = function(x) { return(1 / (1 + exp(-x))) }

42 logit = function(y) { return(log(y / (1-y))) }

43

44 if (dataSource == "Filcon") {

45 fnroot = paste(fnroot , dataSource , sep="")

46 x = c(1,2,2,2,2,2,2

47 n = c(64,6

48 z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,6

49 Ntotal = length(z)

50 xnames = c("FiltLR","FiltHt","Condns1","Condns2")

51 NxLvl = length(unique(x))

52 contrastList = list(FiltLRvFiltHt = c(1,-1,0,0) ,

53 Cond1vCond2 = c(0,0,1,-1) ,

54 FiltvCond = c(1/2,1/2,-1/2,-1/2))

55 }

56

57 if (dataSource == "Relshift") {

58 fnroot = paste(fnroot , dataSource , sep="")

59 #source("Kruschke1996CSdata.R") # if it has not yet been run

60 load("Kruschke1996CSdatsum.Rdata") # loads CondOfSubj, nCorrOfSubj, nTrlOfSubj

20.5. R CODE 465

61 x = CondOfSubj

62 n = nTrlOfSubj

63 z = nCorrOfSubj

64 Ntotal = length(z)

65 xnames = c("Rev","Rel","Irr","Cmp")

66 NxLvl = length(unique(x))

67 contrastList = list(REVvREL = c(1,-1,0,0) , RELvIRR = c(0,1,-1,0) ,

68 IRRvCMP = c(0,0,1,-1) , CMPvOneRel = c(0,-1/2,-1/2,1) ,

69 FourExvEightEx = c(-1,1/3,1/3,1/3) ,

70 OneRelvTwoRel = c(-1/2,1/2,1/2,-1/2))

71 }

72

73 if (dataSource == "Random") {

74 fnroot = paste(fnroot , dataSource , sep="")

75 #set.seed(47405)

76 a0true = -0.5

77 atrue = c(0.8 , -0.3 , -0.5) # sum to zero

78 ktrue = 100

79 subjPerCell = 50

80 nPerSubj = 100

81 datarecord = matrix(0, ncol=3 , nrow=length(atrue)*subjPerCell)

82 colnames(datarecord) = c("x","z","n")

83 rowidx = 0

84 for (xidx in 1:length(atrue)) {

85 for (subjidx in 1:subjPerCell) {

86 rowidx = rowidx + 1

87 datarecord[rowidx,"x"] = xidx

88 mu = sigmoid(a0true+atrue[xidx])

89 theta = rbeta(1 , mu*ktrue , (1-mu)*ktrue)

90 datarecord[rowidx,"z"] = rbinom(1 , prob=theta , size=nPerSubj)

91 datarecord[rowidx,"n"] = nPerSubj

92 }

93 }

94 datarecord = data.frame(x=as.factor(datarecord[,"x"]) , z=datarecord[,"z"] ,

95 n=datarecord[,"n"])

96 z = as.numeric(datarecord$z)

97 Ntotal = length(z)

98 n = as.numeric(datarecord$n)

99 x = as.numeric(datarecord$x)

100 xnames = levels(datarecord$x)

101 NxLvl = length(unique(x))

102 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:

103 contrastList = NULL

104 for (g1idx in 1:(NxLvl-1)) {

105 for (g2idx in (g1idx+1):NxLvl) {

106 cmpVec = rep(0,NxLvl)

107 cmpVec[g1idx] = -1

108 cmpVec[g2idx] = 1

109 contrastList = c(contrastList , list(cmpVec))

110 }

111 }

112 }

113

114 # Specify the data in a form that is compatible with BRugs model, as a list:

115 datalist = list(

116 z = z ,

117 n = n ,

118 x = x ,

119 Ntotal = Ntotal ,

466 CHAPTER 20. DICHOTOMOUS Y

120 NxLvl = NxLvl

121)

122 # Get the data into BRugs:

123 modelData(bugsData(datalist))

124

125 #--

126 # INTIALIZE THE CHAINS.

127

128 # Autocorrelation within chains is large, so use several chains to reduce

129 # degree of thinning. But we still have to burn-in all the chains, which takes

130 # more time with more chains.

131 nchain = 10

132 modelCompile(numChains = nchain)

133

134 if (F) {

135 modelGenInits() # often won’t work for diffuse prior

136 } else {

137 # initialization based on data

138 theData = data.frame(pr=.01+.98*datalist$z/datalist$n ,

139 x=factor(x,labels=xnames))

140 a0 = mean(logit(theData$pr))

141 a = aggregate(logit(theData$pr) , list(theData$x) , mean)[,2] - a0

142 mGrp = aggregate(theData$pr , list(theData$x) , mean)[,2]

143 sdGrp = aggregate(theData$pr , list(theData$x) , sd)[,2]

144 kGrp = mGrp*(1-mGrp)/sdGrpˆ2 - 1

145 k = mean(kGrp)

146 genInitList <- function() {

147 return(

148 list(

149 a0 = a0 ,

150 a = a ,

151 aSDunabs = sd(a) ,

152 theta = theData$pr ,

153 k = k

154)

155)

156 }

157 for (chainIdx in 1 : nchain) {

158 modelInits(bugsInits(genInitList))

159 }

160 }

161

162 #--

163 # RUN THE CHAINS

164

165 # burn in

166 BurnInSteps = 10000

167 modelUpdate(BurnInSteps)

168 # actual samples

169 samplesSet(c("a0" , "a" , "aSD" , "k"))

170 stepsPerChain = ceiling(2000/nchain)

171 thinStep = 750

172 modelUpdate(stepsPerChain , thin=thinStep)

173

174 #--

175 # EXAMINE THE RESULTS

176

177 source("plotChains.R")

178 source("plotPost.R")

20.5. R CODE 467

179

180 checkConvergence = T

181 if (checkConvergence) {

182 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)

183 sumInfo = plotChains("a" , saveplots=F , filenameroot=fnroot)

184 sumInfo = plotChains("aSD" , saveplots=F , filenameroot=fnroot)

185 sumInfo = plotChains("k" , saveplots=F , filenameroot=fnroot)

186 }

187

188 # Extract and plot the SDs:

189 aSDSample = samplesSample("aSD")

190 windows()

191 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

192 histInfo = plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)

193 dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

194

195 # Extract a values:

196 a0Sample = samplesSample("a0")

197 chainLength = length(a0Sample)

198 aSample = array(0 , dim=c(datalist$NxLvl , chainLength))

199 for (xidx in 1:datalist$NxLvl) {

200 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))

201 }

202

203 # Convert to zero-centered b values:

204 mSample = array(0, dim=c(datalist$NxLvl , chainLength))

205 for (stepIdx in 1:chainLength) {

206 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])

207 }

208 b0Sample = apply(mSample , 2 , mean)

209 bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)

210

211 # Plot b values:

212 windows(datalist$NxLvl*2.75,2.5)

213 layout(matrix(1:datalist$NxLvl , nrow=1))

214 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

215 for (xidx in 1:datalist$NxLvl) {

216 plotPost(bSample[xidx,] , breaks=30 ,

217 xlab=bquote(beta[.(xidx)]) ,

218 main=paste(xnames[xidx]))

219 }

220 dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

221

222 # Consider parameter correlations:

223 kSample = samplesSample("k")

224 windows()

225 pairs(cbind(b0Sample , t(bSample) , kSample) , labels=c("b0",xnames,"k"))

226

227 # Display contrast analyses

228 nContrasts = length(contrastList)

229 if (nContrasts > 0) {

230 nPlotPerRow = 5

231 nPlotRow = ceiling(nContrasts/nPlotPerRow)

232 nPlotCol = ceiling(nContrasts/nPlotRow)

233 windows(3.75*nPlotCol,2.5*nPlotRow)

234 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

235 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

236 for (cIdx in 1:nContrasts) {

237 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix

468 CHAPTER 20. DICHOTOMOUS Y

238 incIdx = contrast!=0

239 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,

240 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,

241 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

242 cex.lab = 1.5 ,

243 main=paste("Contrast:", names(contrastList)[cIdx]))

244 }

245 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))

246 }

247

248 #==

249 # Do NHST ANOVA:

250

251 theData = data.frame(y=z/n , x=factor(x,labels=xnames))

252 aovresult = aov(y ˜ x , data = theData)

253 cat("\n--\n\n")

254 print(summary(aovresult))

255 cat("\n--\n\n")

256 print(model.tables(aovresult , "means") , digits=4)

257 windows()

258 boxplot(y ˜ x , data = theData)

259 cat("\n--\n\n")

260 print(TukeyHSD(aovresult , "x" , ordered = FALSE))

261 windows()

262 plot(TukeyHSD(aovresult , "x"))

263 if (F) {

264 for (xIdx1 in 1:(NxLvls-1)) {

265 for (xIdx2 in (xIdx1+1):NxLvls) {

266 cat("\n--\n\n")

267 cat("xIdx1 = " , xIdx1 , ", xIdx2 = " , xIdx2 ,

268 ", M2-M1 = " , mean(score[x==xIdx2])-mean(score[x==xIdx1]) ,

269 "\n")

270 print(t.test(score[x == xIdx2] , score[x == xIdx1]))

271 }

272 }

273 }

274 cat("\n--\n\n")

275

276 #==

20.6 Exercises

Exercise 20.1. [Purpose: Correlated predictors in logistic regression.] For this exercise, we’ll
use some fictitious data regarding whether or not a patient suffered a heart attack within a
year after a check up that included measurements of systolicand diastolic blood pressures,
cholesterol, weight, height, and age. The data are completely fabricated and fictional, for
illustrative purposes only. The data are generated by the programBloodDataGenerator.R,
which is available at the author’s web site.

(A) For this part, we will generate two data sets. In one set, the six predictors have
correlations of zero with each other. In the second set, the first two predictors have a very
strong positive correlation, but still zero correlation with all the other predictors. For both
sets, the true regression coefficient on the first predictor is zero, but the true regression
coefficient on the the predictor is positive. Use the programBloodDataGenerator.R to gen-
erate these two data sets, by selecting the relevant correlation matrix at the top of the pro-

20.6. EXERCISES 469

100 120 140 160

50
60

70
80

90
10

0
11

0

HeartAttack

Systolic

D
ia

st
ol

ic

0

0

00

0

0 0
0

0
0

0

0

0

0
0

0

0

0

0

0
0

0

0

0
0 0

0

0
0

0

0
0

0 0

0

0
0 0

0

0

0

0

00 0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

00
0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0 0

0

0
0 0

0
0

0

0

0
0 00

0

11
1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1
1

1

1
11

1
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

11 1

1
1

1

1
1

1

1

1

1

1

1
1

1 1

1

1

1

1

1

11

1

1
1 1

80 100 120 140 160

60
70

80
90

10
0

11
0

HeartAttack

Systolic

D
ia

st
ol

ic 0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0
0

0

0
0

0

0

0

0
0
0

0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

00
0

00
0

0

0

0
0

0

0

0

0

0
00

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

1
1

1
1

1

1

1

11

11
1

1
1

1
1

1

1
1

1

1
1
1

1

1

1

1
1

1

11

1
1

1

1
1

1

1 1

1

1
1

1

1

1

1

1

1

1
1

1

1
1

11

1

1

1

1

11

1

1

1

1

1
11 1

1

1

1

1
11

1
1

1
1

1
11

1
1

1
1

1

1

1
1

1

1
1

11

1

1
1
1

1
1

1

100 120 140 160

50
60

70
80

90
10

0
11

0

HeartAttack

Systolic

D
ia

st
ol

ic

0

0
0

0

0

0

0

00

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0 0

0

0

0 0

0

0

0

0
0

0

0

0

0

0

0
0

0 0

0

0

0

0 0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0
0

0

0

0
0

0

0

00

0
0

0

0

0

0

00

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

00 0

0

0
0

0

0

0

0

0

0

0

0

0

00 0

0

0

0
0

0

0

0
0

00
00

0

0

0

0

0 0

0

0
0

0

0

0
0

0

0

0
1

1

1
1 1

1

1 1

1

1

Figure 20.7: In all panels, the true regression coefficient on Systolic is zero, and
the true regression coefficient on Diastolic is positive (non-zero). In the left panel,
the predictors are uncorrelated, and the crediblep = .5 level contours are fairly
certain. In the middle panel, the predictors are highly correlated, and the credible
p= .5 level contours are veryuncertain. In the right panel, only a small percentage
of the data has value 1, and again the level contours are relatively uncertain. See
Exercises 20.1 and 20.2.

gram. For each data set, conduct a Bayesian analysis using the program in Section 20.5.1
(MultipleLogisticRegressionBrugs.R). Be sure to specify that the only predictors are the
first two, namely systolic and diastolic pressure. Include the posterior contour plots, which
should look similar to those in Figure 20.7. Be sure also to include the histograms of the
marginal posterior distributions. In which case are the HDI’s narrower?

(B) For this part, we generate a different fictitious data set, in which the first two pre-
dictors (systolic and diastolic) have zero correlation with each other, but they are corre-
lated with another predictor (weight). The first predictor (systolic) has a true regression
coefficient of zero, but the second (diastolic) and third (weight)predictors have positive re-
gression coefficients. Run the Bayesian logistic regression analysisusing only the first two
predictors. What is the estimate of the regression coefficient on the first predictor? Include
the histograms of the marginals of the posterior. Now re-runthe Bayesian logistic regres-
sion analysisincluding all six predictors. What is the estimate of the regression coefficient
on the first predictor? Include the histograms of the marginals of the posterior (for which
you might need to manually stretch the graph window or changethe character sizes in the
plot). Why are the estimates of the regression coefficient for the first predictor different in
the two analyses?

Exercise 20.2. [Purpose: Small proportion of 1’s in logistic regression.] For this exercise, we
again use fictitious data generated by the programBloodDataGenerator.R. Set all the inter-
predictor correlations to zero, by selecting the appropriate correlation matrix at the top of
the program.Change theproportionOnes constant to 0.02.This causes the proportion of 1’s
in the data to be very small. In other words, the threshold forthe sigmoidal function is set
very high, so that the weighted sum of the predictors must be very large beforep(y=1) gets
very large. This sort of situation, in which there are few 1’s, is not unusual in real data. In
heart attack data, for example, there will be few people who have a heart attack in the year
following a routine check up. Run a Bayesian logistic regression on the data, using only
the first two predictors. What are the estimates of the regression coefficients? Include the
histograms of the marginals of the posterior, and include the posterior contour plot, which
should look similar to the right panel of Figure 20.7. Compare the widths of the HDI’s to

470 CHAPTER 20. DICHOTOMOUS Y

the results of the first part of the previous exercise.

Exercise 20.3. [Purpose: Logistic ANOVA with out assuming homogeneity of variance.] Ex-
tend the program of Section 20.5.2 (LogisticOnewayAnovaBrugs.R) so that it allows dif-
ferent certainty (κ) parameters for each condition, with a hyperdistribution across condi-
tions, just as in the model on theright side of Figure 9.17, p. 183. Apply the model to
the filtration-condensation data, and compare the results with the results of Exercise 9.2,
p. 191. If you already did Exercise 18.3, you can simply modify your program for
that Exercise. Programming hint: Here’s what the model specification might look like:
(LogisticOnewayAnovaHeteroVarBrugs.R)

11 model {

12 for (i in 1:Ntotal) {

13 z[i] ˜ dbin(theta[i] , n[i])

14 theta[i] ˜ dbeta(aBeta[x[i]] , bBeta[x[i]])I(0.001,0.999)

15 }

16 for (j in 1:NxLvl) {

17 aBeta[j] <- mu[j] * k[j]

18 bBeta[j] <- (1-mu[j]) * k[j]

19 mu[j] <- 1 / (1 + exp(-(a0 + a[j])))

20 a[j] ˜ dnorm(0.0 , atau)

21 k[j] ˜ dgamma(skappa , rkappa)

22 }

23 a0 ˜ dnorm(0 , 0.001)

24 atau <- 1 / pow(aSD , 2)

25 aSD <- abs(aSDunabs) + .1

26 aSDunabs ˜ dt(0 , 0.001 , 2)

27 skappa <- pow(mg,2)/pow(sg,2)

28 rkappa <- mg/pow(sg,2)

29 mg ˜ dunif(0,50)

30 sg ˜ dunif(0,30)

31 }

Chapter 21

Ordinal Predicted Variable
Contents

21.1 Ordinal probit regression .472
21.1.1 What the data look like . 472
21.1.2 The mapping from metricx to ordinaly 472
21.1.3 The parameters and their priors 474
21.1.4 Standardizing for MCMC efficiency 475
21.1.5 Posterior prediction . 475

21.2 Some examples . 476
21.2.1 Why are some thresholds outside the data? 478

21.3 Interaction . 480
21.4 Relation to linear and logistic regression 481
21.5 R code . 481
21.6 Exercises . 486

The winner is first, and that’s all that he knows, whether
Won by a mile or won by a nose. But
Second recalls every inch of that distance, in
Vivid detail and with haunting persistence.

Very often the predicted variable is ordinal, such as a rating on a scale from 1 to 5: Rate
how much you agree with this statement: “Bayesian methods are the most informative,
useful, and rational way to analyze data”, where 5= strongly agree, 4= moderately agree,
3 = neither agree nor disagree, 2= moderately disagree, 1= strongly disagree. This sort
of response scale is often called aLikert (pronounced LICK-ert) scale (Likert, 1932), and
it typically has 5, 7 or more levels (Dawes, 2008). Vast amounts of survey data use Likert
rating scales.

We often want to predict the ordinal measure on the basis of other predictors. For exam-
ple, predictors might include age of respondent, number of years of education, CPU speed
of the computer used by respondent, and so forth. To predict ordinal values from metric
predictors, we need a way of mapping a weighted linear combination of predictors onto
ordinal scale values. The linking function we will use is a probit function with thresholds.
This type of analysis is therefore calledordinal probit regression. It appeared in the bottom
row of Table 14.1, p. 312.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

471

472 CHAPTER 21. ORDINAL PREDICTED VARIABLE

3

5

4

3 3

1

4

5

2

3

4

3

1 1

33

5

3

1

5

22

5

2

3

55

4

2

5 5

1

2

1 1 1

2

5

3

2 2

5

2

3 3

5 5

2

3

5 5

33

1

5

4

1

4 4

2

4

3

1

5

1

5

3

4

5 55

3

22

1 11

33

4

5

1

4

2

5

11 1

3

1

5 5

4

1

22

55

2 2

5

2

1

4

3

1

3

1

5 5

11

4

5

3

5

22

3

4

5

4

1

5

1

55

4

2

3

2

1

5

1

3

4

5

1

22

5 5

1

22

1

4

3

5

4

33

4

5

3

1 1

5

3

5

1

2

4

5

3

11

22

4

1

4 44

5

1

22

5

1

44

3

2

11

3

5

1 1

5

3

5

1

5

3

1

3

1

3

20000 40000 60000 80000 100000 120000

1
2

3
4

5
Stereotypical data for ordinal regression

X (metric)

Y
 (

or
di

na
l)

Figure 21.1: Some stereotypical (fictitious) data of the type modeled by ordinal
regression. Points are labeled with theiry value instead of plotted merely as dots.
Although they values are plotted at equal intervals on they axis, we really only
know their order, not their separation. The conceptual emphasis is onvertical
slices through the scatterplot: At any given value ofx, what is the probability
distribution across the discretey values?

21.1 Ordinal probit regression

21.1.1 What the data look like

Some stereotypical (fictitious) data that could be modeled by ordinal probit regression are
shown in Figure 21.1. The predicted variable,y, is from a 5-point ordinal scale. The
predictor variable,x, is metric. If you like concrete examples, imagine that they value is a
rating of overall happiness, and thex value is annual income in dollars. The key aspect of
y that makes it ordinal, not metric, is that we don’t know whether the distance from 1 to 2
is the same as the distance from 2 to 3, or from 3 to 4, etc. For example, is an increase in
happiness from 1 to 2 the same amount of differential happiness as an increase in happiness
from 2 to 3? It may be, but we don’t know. All we know is the orderof the ratings, not the
distances between them.

Regarding Figure 21.1, notice that whenx is relatively small, around 40,000, then the
y values tend to be 1’s or 2’s. Whenx is relatively large, around 100,000, then they values
tend to include more 4’s and 5’s. But notice also that there islots of random variability, in
the sense that there is a range ofy values at any givenx value.

21.1.2 The mapping from metricx to ordinal y

Our goal is to construct a model for this sort of data. To accomplish the goal, we start
with linear regression onx and then link the continuous prediction to ordinaly values via
a thresholded cumulative-normal function. Figure 21.2 shows the underlying mappings
from x to y. The right side of the diagram shows simple linear regression: The metric

21.1. ORDINAL PROBIT REGRESSION 473

Figure 21.2: The underlying mappings in ordinal probit regression. The lower
right shows the predictor value,x, which gets mapped to an underlying metric
value via a linear relation. There is normally distributed noise in the underlying
metric value, which has meanµ and standard deviationσ. The underlying metric
value is mapped to an ordinal value depending on which thresholds it falls be-
tween. The thresholds are not evenly spaced. The probability of falling between
thresholds is given by the cumulative normal function,Φ.

predictor value,x, gets mapped to an underlying metric tendencyµ via the simple linear
relationship,µ = β0 + βx. The underlying metric value is noisy, distributed aroundµ as a
normal distribution with standard devitionσ, which is drawn sideways in the diagram. So
far, this is merely simple linear regression.

The new part, on the left of Figure 21.2, gets us from the underlying metric value to
an observed ordinal value. To achieve this mapping, the underlying metric scale is carved
into intervals by thresholds, located at scale valuesθ1, θ2, and so on, as shown. The thresh-
old values are estimated from the data. When the underlying metric value falls between
θn−1 andθn, ordinal valuen is generated. Because the underlying metric value is normally
distributed, the probability that it falls in any interval is given by the cumulative normal
distribution.

As you may recall from Section 14.1.7.2 and Figure 14.8, p. 307, the cumulative normal
function is denotedΦ. The value ofΦ(z) indicates how much of the normal distribution falls
to the left ofz, wherez is a standardized value. For example,Φ(0) = .5, because half of the
standardized normal distribution falls to the left of 0. In R, the cumulative normal function
is pnorm(z). In BUGS, the cumulative normal function isphi(z).

To determine how much of the normal distribution falls between two values,zn andzn−1,
we simply compute the difference,Φ(zn)−Φ(zn−1). We apply this result to the thresholds in
Figure 21.2, but first standardize the thresholds relative to the mean and standard deviation
of the noise distribution. Thus, the mass of the normal distribution betweenθn andθn−1

is Φ ((θn − µ)/σ) − Φ ((θn−1 − µ)/σ). This mass is the probability of ordinal valuen. In

474 CHAPTER 21. ORDINAL PREDICTED VARIABLE

summary, and as written in Figure 21.2 for each interval,

p(“n” |µ) = Φ ((θn − µ)/σ) − Φ ((θn−1 − µ)/σ) (21.1)

where “n”, in quotes, means that the valuen is emitted by the subject. A more traditional,
but awkward, way of writingp(“n” |µ) = . . . is p(y=n|µ) = For the lowest and highest
ordinal values, the outside thresholds are at negative and positive infinity. The area under
the normal distribution to the left of positive infinity is 1,hence Equation 21.1 becomes
1− Φ ((θn−1 − µ)/σ) at the highest ordinal value.

Because the mapping from underlying metric value to ordinalvalue uses a cumulative
normal function, this type of regression might be called “cumulative normal regression” or
“phi regression”, by analogy to “logistic regression”. Butit’s not. Instead, it’s called “probit
regression” to indicate that a cumulative normal is used as the link function, and it’s called
“ordinal probit regression” to indicate that the predictedvalue is ordinal.

21.1.3 The parameters and their priors

Inspection of Figure 21.2 reveals the parameters that are estimated in ordinal probit re-
gression. There are the usual parameters for linear regression, includingβ0, β j for each
predictor, andσ. Also, there are the threshold parameters,θ1 throughθL−1, whereL is
the number of levels in the ordinal scale. It turns out that the intercept trades off with the
thresholds, because we can add any constant to the interceptand subtract that constant from
the thresholds and have an equivalent model. Therefore we set the intercept to an arbitrary
convenient constant. Also, the noise standard deviation,σ, trades off with the slopes and
thresholds, because if we multiple the noise by a constant, we can divide all the slopes
and thresholds by that constant and end up with an equivalentmodel (also translating the
thresholds if the intercept is not zero). In summary, we estimate the slopes on the predic-
tors, β j , and the thresholds,θn, but we fix the interceptβ0 and the noiseσ at convenient
constants. (Which constants are convenient? This is answered in the description of the R
code in Section 21.5 (OrdinalProbitRegressionBrugs.R).)

To estimate these parameters, we must define our prior uncertainty. The prior on the
regression coefficients is the same as for linear or logistic regression. For example, each re-
gression coefficient could have a normal prior. If there are several predictors, then a hyper-
prior could be posited to express the mutual informativeness of the regression coefficients,
as in Figure 17.6.

The prior on the thresholds can be (mildly) informed by the scale of the predicted value
and by the fact that the thresholds need to be in order, i.e., it must be thatθn > θn−1. Because
they values are 1 throughL, and we will set up the underlying metric value to match that
scale, it is reasonable to believe that the thresholds should be approximately 1.5, 2.5, ...,
L − .5. Our uncertainty in those values is moderate, not extreme,and therefore we may opt
to put a normal prior on each threshold with a standard deviation of about 1 unit. This sort
of prior, in which each threshold has a normal distribution that is independent of the others,
makes it quite possible to have thresholds that are out of order. There are various ways to
express prior knowledge that the thresholds must be ordered. One simple way is to put the
knowledge into the likelihood function itself, by changingEquation 21.1 to this:

p(“n” |µ) = max(0,Φ ((θn − µ)/σ) − Φ ((θn−1 − µ)/σ))

21.1. ORDINAL PROBIT REGRESSION 475

Notice that ifθn < θn−1, then the probability of “n” is zero. That would be fine if the value
n never occurs in the data, but if it does, then threshold inversions will never be found to be
credible.

The prior on the regression coefficients is explained in Exercise 21.2. In that exercise
you will also explore the robustness of the posterior to changes in the prior (and you’ll find
that the posterior is very robust).

21.1.4 Standardizing for MCMC efficiency

To reduce correlation among regression coefficients, and thereby make the MCMC sam-
pling more efficient, the predictor values are standardized before the parameters are es-
timated. In other words, thex j values are transformed according to Equation 16.1:
x(z)

j = (x j − M j)/SDj. For the formulas in this section, the standardized parameters for

the standardized predictors all have az superscript, like this:x(z), β(z)
j , and so on. After es-

timation, the parameters must be transformed back to the original scales of the predictors.
To do this back-transformation, consider the following sequence of equalities:

p(“n” |−→x) = Φ
(

(θ(z)
n − µ(z))/σ(z)

)

− Φ
(

(θ(z)
n−1 − µ

(z))/σ(z)
)

that’s Equation 21.1 withzsuperscripts

p(“≤ n” |−→x) = Φ
(

(θ(z)
n − µ(z))/σ(z)

)

notice “≤ n” on the left-hand side!

probit
(

p(“≤ n” |−→x)
)

= (θ(z)
n − µ(z))/σ(z)

=
1
σ(z)

θ

(z)
n −

β

(z)
0 +

∑

j

β
(z)
j x(z)

j

=
1

σ(z)

θ

(z)
n −

β

(z)
0 +

∑

j

β
(z)
j

(
x j −M j

SDj

)

=
1
σ(z)

θ

(z)
n − β

(z)
0 +

∑

j

β
(z)
j M j/SDj

︸ ︷︷ ︸

θn

−
∑

j

β
(z)
j

σ(z)SDj
︸ ︷︷ ︸

β j

x j (21.2)

with β0 ≡ 0 andσ ≡ 1

where all the parameters withoutz superscripts are on the original scale. Why isβ0 ≡ 0?
Because it’s arbitrary: we could set it to any value, adding it into the sum on the far right
and subtracting it out of the thresholds. Similarly, the value ofσ is arbitrary; we could set
it to any value if we multiplied all the thresholds and regression coefficients by that value,
and then divided byσ before passing into theΦ function.

21.1.5 Posterior prediction

The slope and threshold values from Equation 21.2 are arbitrary, determined only relative to
β0 ≡ 0 andσ ≡ 1. Their usefulness is being able to easily compute predicted probabilities

476 CHAPTER 21. ORDINAL PREDICTED VARIABLE

from the original scale values, as follows:

p(“n” |−→x) = Φ

θn −

∑

j

β j x j

− Φ

θn−1 −

∑

j

β j x j

(21.3)

This expression (in Equation 21.3) is merely Equation 21.2 re-written with the original-
scale parameters set where the underbraces indicate they belong. Exercise 21.3 has you use
this equation to make predictions.

21.2 Some examples

Consider the data shown in the top panel of Figure 21.3. Thereare two metric predictors,
labeled X1 and X2 in the graph, and the data to be predicted areordinal, ranging from 1 to 7.
Each data point is labeled with itsy value. These data were randomly generated but with
very little noise in they value, so that the transitions from oney level to the next would be
very clear. Notice that as X1 increases, they value tends to decrease. Hence the regression
coefficient on X1 should be negative. Notice also that as X2 increases, they values tends to
increase. Hence the regression coefficient on X2 should be positive.

The program in Section 21.5 (OrdinalProbitRegressionBrugs.R), which does Bayesian
ordinal probit regression, was run with these data. Aspectsof the resulting posterior are
shown in the middle and lower portions of Figure 21.3. The first histogram indicates credi-
ble values ofβ1, which are all negative, as inspection of the trends in the data suggested. The
second histogram indicates credible values ofβ2, which are all positive, again as inspection
of the trends in the data suggested.

The next six histograms show credible values of the thresholds. One thing to notice
about the distributions of the thresholds is that they appear to overlap tremendously: The
histogram forθ1 covers much of the same range as the histogram forθ2, and so on. This
overlap would seem to suggest a violation of the necessary ordering of the thresholds, be-
cause, it seems,θ1 could easily be larger thanθ2. What’s wrong? Nothing, because credible
values of the thresholds are very strongly correlated. The lower part of Figure 21.3 shows
pairwise scatterplots of the parameter values, and revealsthe extreme correlation. In fact,
if you plot histograms of the posteriorθn − θn−1, you will find that the differences do not
overlap zero at all; i.e., there is no violation of ordering in the thresholds. Exercise 21.1
provides more details regarding how to do this.

The plot of the data, in the top panel of Figure 21.3, also includes examples of level
contours from the posterior. A set of six (i.e.,L − 1) level contours comes from a single
step in the MCMC chain. The six level contours correspond to the six thresholds, for the
β1 andβ2 values at that step in the chain. The level contours within a set have the same
slope because they all correspond to the sameβ1 andβ2 values. Different sets of contours
have different slopes because they have differentβ1 andβ2 values. Because these data were
generated with very little noise in they values, there is little uncertainty in the slopes or
thresholds. One indicator of the lack of noise is that fact that between level contours in the
plot there is mostly just one value ofy.

The level contours in the top panel of Figure 21.3 were derived as follows. Consider the
line that marks the transition from the “n−1” region to the “n” region. The transition occurs
when p(“≤ n” |−→x) is 0.5, which means that probit

(

p(“≤ n” |−→x)
)

= 0. From Equation 21.3

21.2. SOME EXAMPLES 477

4

5

5

4

3

7

3

5

3 3

3

7

6 5

4

4

4
4

6

3

7

6

5

3

5

2

4

1

5

3

4

5

6

4

2

2

5

3

2

4

5

5

3

3

3

2

3

5

3
3 2

4

5

7 5

4

5

5

2

4

3

3

7

2

3

4

3

3

2 1

7

3

3

5
5

5

5

3

2

6

4
5

3

4

4

5

6

5

3

3

5

2

2

6

2

6

1

2

4

2

5

6
6

1

4

4

4

5
4

4

3

5

3

3

7

2

44

3
4

3

4

6

2

6

33

5

4

3

4

4

5

6
5

3

3

7

5

6

5

5

2

3

7

5

6

6

4

4

45

3

3

4
6

5

2

4
3

5

2

5

1

5

4

6

4

4

45 4

1

3

3

4

3

5

3

4

5
6

4
5

4

6

4

4

6
4

6

4

2

6

5

5
5

2

2

3

1920 1940 1960 1980 2000 2020

40
60

80
10

0
12

0
14

0

The Data (Random)

X1

X
2

bX1

Slope Value
−0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

mean = −0.261

100% <= 0 < 0%

95% HDI
−0.306 −0.216

bX2

Slope Value
0.0 0.1 0.2 0.3 0.4

mean = 0.329

0% <= 0 < 100%

95% HDI
0.269 0.384

θ1

Thresh Value
−650 −600 −550 −500 −450 −400 −350

mean = −495

95% HDI
−581 −411

θ2

Thresh Value
−650 −600 −550 −500 −450 −400 −350

mean = −490

95% HDI
−574 −405

θ3

Thresh Value
−650 −600 −550 −500 −450 −400 −350

mean = −485

95% HDI
−570 −402

θ4

Thresh Value
−650 −600 −550 −500 −450 −400 −350

mean = −480

95% HDI
−564 −398

θ5

Thresh Value
−600 −550 −500 −450 −400 −350

mean = −474

95% HDI
−557 −394

θ6

Thresh Value
−600 −550 −500 −450 −400 −350

mean = −469

95% HDI
−551 −389

bX1

0.30 0.40 −600 −450 −600 −450 −600 −450

−
0.

34
−

0.
24

0.
30

0.
40

bX2

thresh1

−
60

0
−

45
0

−
60

0
−

45
0

thresh2

thresh3

−
60

0
−

45
0

−
60

0
−

45
0

thresh4

thresh5

−
60

0
−

45
0

−0.34 −0.24

−
60

0
−

45
0

−600 −450 −600 −450 −600 −450

thresh6

Figure 21.3: Upper panel: Random ordinal data plotted against two predictors,
superimposed with a smattering of threshold lines from the posterior. Histograms
and lower scatterplots show posterior on the regression coefficients and thresholds.

478 CHAPTER 21. ORDINAL PREDICTED VARIABLE

(and/or Eqn. 21.2), we know

probit
(

p(“≤ n” |−→x)
)

= θn −
∑

j

β j x j

It follows that the transition line occurs for−→x values that satisfy

0 = θn −
∑

j

β j x j

0 = θn − β1x1 − β2x2 when there are two predictors

x2 =
θn

β2
+
−β1

β2
x1

The level contours in the top panel of Figure 21.3 used that formula; they are applied in the
last few lines of the code in Section 21.5 (OrdinalProbitRegressionBrugs.R).

The previous example used fictitious data so that the concepts could be clearly illus-
trated. Realistic data are typicallymuchmessier. Consider, for example, ratings of movies
(Moore, 2006), as shown in the top panel of Figure 21.4. The predictor on the abscissa is
the year the movie was made, and the predictor on the ordinateis length, i.e., duration, of
the movie in minutes. Notice that ratings are rather noisy; between any pair of contour lines
there occur many different rating values.

Despite the noise in the data, the regression coefficients on the two predictors are very
credibly non-zero, as can be seen in the first two histograms of Figure 21.4. Ratings clearly
tend to decrease as year of production increases, and ratings clearly tend to increase as
length increases. Nevertheless, the degree of uncertaintyin the regression coefficients is
much larger than the previous example. This uncertainty is apparent in the smattering of
posterior level contours superimposed on the data: The slants of the level contours vary
greatly from one set to another.

The posterior distribution of thresholds again shows the strong correlations, in the lower
scatterplots of Figure 21.4. The thresholds never violate the proper order, although exactly
where they should be is rather uncertain.

21.2.1 Why are some thresholds outside the data?

In Figure 21.4, the upper panel shows a scatterplot of data, along with a few of the posterior
contour lines superimposed. Notice that some of the extremethreshold contours fall outside
all the data points. For example, the lower right of the plot shows that the first and second
threshold contours have almost no data below them. How can these thresholds be among
the most credible?

The answer lies in gaining a better intuition for the predictions of the ordinal probit
model. Figure 21.5 shows the predictions of the model for a single x variable and thresh-
olds set at 1 through 5. The upper panel shows the predictionswhen the noise is very
small compared to the separation between thresholds, namely σ = 0.1. In this case, the
predictions match intuition: Whenx is between thresholdsn andn + 1, the most probable
response isn + 1. It’s only whenx is very close to a threshold that an adjacent response
gains probability.

Moving down Figure 21.5, the successive panels show greateramounts of noise, i.e.,
larger values ofσ. Consider what happens to the predicted response forx = 2.2. Whenσ
is small, the highest probability response is 3. As the noiseincreases, the dominance of this

21.2. SOME EXAMPLES 479

3

5

5

5

4

4

5

4

4 3

5

3

4

1

2

4

5

3
4

55

4

2

3

2

4

4

5

4

3
2

2

5

3

4

5

4 1

2
2

5

3

2

1

3

3

3

4

3

2

2

1

7

4

2
5

5

45

5

5

1

1

55

3

5

1

5

2

63

4

6

2

5

3 6

3
4

6

3

4

3

4

4

56

5

4

3
4

2

4

4

6

3

1

4

4

1930 1940 1950 1960 1970 1980 1990

60
80

10
0

12
0

14
0

The Data (Movies)

Year

Le
ng

th

bYear

Slope Value
−0.05 −0.04 −0.03 −0.02 −0.01 0.00

mean = −0.0267

100% <= 0 < 0%

95% HDI
−0.0406 −0.0138

bLength

Slope Value
0.00 0.01 0.02 0.03 0.04 0.05 0.06

mean = 0.0337

0% <= 0 < 100%

95% HDI
0.0197 0.047

θ1

Thresh Value
−100 −80 −60 −40 −20

mean = −51

95% HDI
−78.6 −27.2

θ2

Thresh Value
−100 −80 −60 −40 −20

mean = −50.2

95% HDI
−75.8 −24.5

θ3

Thresh Value
−100 −80 −60 −40 −20 0

mean = −49.5

95% HDI
−75.1 −23.9

θ4

Thresh Value
−80 −60 −40 −20 0

mean = −48.7

95% HDI
−74.2 −23

θ5

Thresh Value
−80 −60 −40 −20 0

mean = −47.6

95% HDI
−75.2 −23.9

θ6

Thresh Value
−80 −60 −40 −20 0

mean = −46.7

95% HDI
−72.3 −21.1

bYear

0.02 0.05 −80 −40 −80 −40 −80 −40

−
0.

04
−

0.
01

0.
02

0.
05

bLength

thresh1

−
80

−
40

−
80

−
40

thresh2

thresh3

−
80

−
40

−
80

−
40

thresh4

thresh5

−
80

−
40

−0.04 −0.01

−
80

−
40

−80 −40 −80 −40 −80 −40

thresh6

Figure 21.4: Upper panel: Movie ratings from Moore (2006) plotted against
Length and Year, superimposed with a smattering of threshold lines from the pos-
terior.. Histograms and lower scatterplots show posterioron the regression coeffi-
cients and thresholds.

480 CHAPTER 21. ORDINAL PREDICTED VARIABLE

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

σ = 0.1

x

p(
ca

t)

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

σ = 0.5

x

p(
ca

t)

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

σ = 1

x

p(
ca

t)

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

σ = 2

x

p(
ca

t)

Figure 21.5: Each panel shows the probability of an ordinal response as a function
of the stimulus value,x. The upper panel is for smallσ, and the lower panel is for
largeσ.

response becomes weaker. Finally, in the bottom panel, withhigh noise, 3 is no longer the
dominant response, and instead 1 is! Thus, even thoughx = 2.2, which falls between the
2nd and 3rd thresholds, the highest probability response is1.

Suppose that the data consist ofx values scattered betweenx = 2 andx = 4. Suppose
also that responses are very noisy, withσ = 2, as in the lowest panel of Figure 21.5. For
a point nearx = 2, the most probable response is 1, even though the point is far above the
threshold for 1. For a point nearx = 4, the most probable response is 6, even though the
point is far below the threshold for 6. It is this sort of pattern that we see in the movie data
of Figure 21.4, in which the responses are very noisy.

21.3 Interaction

Just as in multiple linear regression and multiple logisticregression, there can be multiplica-
tive interaction of the predictors in ordinal probit regression. Much as the logistic function

21.4. RELATION TO LINEAR AND LOGISTIC REGRESSION 481

squashes the predictions, the cumulative normal function squashes the predictions. Hence
the prediction surface, for ordinal probit regression withinteraction, is much like the pre-
diction surface for logistic regression, as was shown in Figure 20.4, p. 455. Ordinal probit
regression is analogous to logistic regression when there are only two levels of the ordinal
variabley, because logistic regression has a predicted variable withtwo levels. In fact, in
ordinal regression, the levels can be groups into “≤ n” and “> n”, and therefore every tran-
sition between adjacent levels can be thought of as analogous to logistic regression on two
levels. Thus, when there is multiplicative interaction of the predictors, the interaction can
express ideas such as conjuction: They value is “> n” when x1 is largeand x2 is large, but
not otherwise. A multiplicative interaction can also express an exclusive-OR: They value
is “> n” when x1 is largeor x2 is large, butnot both.

21.4 Relation to linear and logistic regression

This chapter took the core model of multiple linear regression, and extended it to ordinal
predicted values by mapping the linear prediction through athresholded cumulative normal
function. The only real news regarded the mathematical details of dealing with the cumu-
lative normal function, and implementing the model in R and BUGS. Otherwise, the basic
concepts of multiple regression apply to ordinal probit regression.

When dealing with ordinal predicted values, some analysts will assume, for conve-
nience, that the ordinal scale values are equally spaced on an interval scale. With this
assumption, the problem reverts to ordinary linear regression. Often the results of such an
analysis will be very similar to ordinal regression, in terms of the regression coefficients on
the predictors. But if the emphasis is prediction of the probabilities of each ordinal level,
the ordinal regression gives a more direct answer (via Equation 21.3).

When the predicted variable has only two levels, it is tantamount to an ordinal scale
with two levels (because order can be assigned arbitrary, with “1”>“0” or “0” >“1”, with-
out changing the results). In this case, ordinal probit regression will yield results essentially
equivalent to logistic regression. The only difference will be subtle because of the slight dif-
ference in shape between the logistic function and the cumulative normal function. In fact,
when there are only two levels of the predicted variable, some analysts prefer probit (cu-
mulative normal) regression to logistic regression. Because the results tend to be so similar,
the choice between link function usually is governed by meaningfulness for the domain of
application. If the link function is to be thought of as describing normally distributed noise
on an underlying linear relation, then the probit is more meaningful. If the analyst finds
it meaningful to discuss regression coefficients in terms of log-odds (see Section 20.1.3,
p. 452), then the logistic link function is more useful.

21.5 R code

Initialization of the chains uses the MLE from linear regression as a heuristic approximation
to start the slope estimates for ordinal regression. The R function lm() is used for this
purpose. The MLE also returns an estimate of the intercept (which should be close to the
mean of they values, because thex values are standardized), which is used as the arbitrary
fixed value forβ0 in the model. The MLE has a residual error, which is used to compute a
corresponding standard deviation that is used as the arbitrary fixed value forσ.

482 CHAPTER 21. ORDINAL PREDICTED VARIABLE

(OrdinalProbitRegressionBrugs.R)
1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fname = "OrdinalProbitRegressionBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for(i in 1 : nData) {

13 y[i] ˜ dcat(pr[i,1:nYlevels])

14 pr[i,1] <- phi((thresh[1] - mu[i]) / sigma)

15 for (k in 2:(nYlevels-1)) {

16 pr[i,k] <- max(0 , phi((thresh[k] - mu[i]) / sigma)

17 - phi((thresh[k-1] - mu[i]) / sigma))

18 }

19 pr[i,nYlevels] <- 1 - phi((thresh[nYlevels-1] - mu[i]) / sigma)

20 mu[i] <- b0 + inprod(b[1:nPredictors] , x[i,1:nPredictors])

21 }

22 bPrec <- pow(nYlevels/4 , -2) # max plausible slope is 1SD

23 for (j in 1:nPredictors) {

24 b[j] ˜ dnorm(0,bPrec) # modest precision because of normalized x,y values

25 }

26 threshPriorPrec <- 1

27 for (k in 1:(nYlevels-1)) {

28 threshPriorMean[k] <- k+0.5

29 thresh[k] ˜ dnorm(threshPriorMean[k] , threshPriorPrec)

30 }

31 }

32 # ... end BUGS model specification

33 " # close quote for modelstring

34 writeLines(modelstring,con="model.txt")

35 modelCheck("model.txt")

36

37 #--

38 # THE DATA.

39

40 dataSource = c("Random","Movies")[2]

41

42 # The loading of data must produce a matrix called dataMat that has

43 # one row per datum, where the first column is the ordinal predicted value

44 # and the 2nd - last columns are the predictor values. The columns should

45 # be named.

46

47 if (dataSource=="Random") {

48 fname = paste(fname , dataSource , sep="")

49 # Generate some random toy data.

50 source("OrdinalProbitDataGenerator.R")

51 nYlevels = 7

52 dataMat = OrdinalProbitDataGenerator(nData = 200 ,

53 normPrec=200 , slope=c(-1.0,1.26) , # c(-1.0,1.26) matches Movies

54 thresh=c(-Inf,seq(-1.2,1.2,length=nYlevels-1),Inf) ,

55 nYlevels=nYlevels , makePlots=F , rndSeed=47405)

56 # Change x values to arbitrary non-standardized scales:

57 dataMat[,2] = 1963.64 + 18.13 * dataMat[,2]

58 dataMat[,3] = 92.87 + 18.26 * dataMat[,3]

21.5. R CODE 483

59 }

60

61 if (dataSource=="Movies") {

62 fname = paste(fname , dataSource , sep="")

63 dataFram = read.table("Moore2006data.txt" , header=T)

64 rateVals = sort(unique(dataFram[,"Rating"]))

65 rankVals = match(dataFram[,"Rating"] , rateVals) # convert to ranks

66 dataMat = cbind(rankVals , dataFram[,"Year"] , dataFram[,"Length"])

67 colnames(dataMat) = c("Rating","Year","Length")

68 }

69

70 # Rename for use by generic processing later:

71 nData = NROW(dataMat)

72 x = dataMat[,-1]

73 predictorNames = colnames(dataMat)[-1]

74 nPredictors = NCOL(x)

75 y = as.matrix(dataMat[,1])

76 predictedName = colnames(dataMat)[1]

77 nYlevels = max(y)

78

79 # Re-center x values at mean, to reduce autocorrelation in MCMC sampling.

80 # Standardize (divide by SD) to make prior-setting easier.

81 standardizeCols = function(dataMat) {

82 zDataMat = dataMat

83 for (colIdx in 1:NCOL(dataMat)) {

84 mCol = mean(dataMat[,colIdx])

85 sdCol = sd(dataMat[,colIdx])

86 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol

87 }

88 return(zDataMat)

89 }

90 zx = standardizeCols(x)

91 # Don’t standarize y because they must be integers, 1 to nYlevels

92

93 lmInfo = lm(y ˜ zx) # R function returns MLE

94 b0Init = lmInfo$coef[1]

95 bInit = lmInfo$coef[-1]

96 sigmaInit = sqrt(sum(lmInfo$resˆ2)/nData)

97

98 # Get the data into BUGS:

99 datalist = list(

100 x = zx ,

101 y = as.vector(y) , # BUGS does not treat 1-column mat as vector

102 nPredictors = nPredictors ,

103 nData = nData ,

104 nYlevels = nYlevels ,

105 sigma = sigmaInit , # fixed, not estimated

106 b0 = b0Init # fixed, not estimated

107)

108 modelData(bugsData(datalist))

109

110 #--

111 # INTIALIZE THE CHAINS.

112

113 nChain = 3

114 modelCompile(numChains = nChain)

115

116 genInitList <- function() {

117 list(

484 CHAPTER 21. ORDINAL PREDICTED VARIABLE

118 b = bInit , # from lm(y˜zx), above

119 thresh = 1:(nYlevels-1)+.5

120)

121 }

122 for (chainIdx in 1 : nChain) {

123 modelInits(bugsInits(genInitList))

124 }

125

126 #--

127 # RUN THE CHAINS

128

129 # burn in

130 BurnInSteps = 2000

131 modelUpdate(BurnInSteps)

132 # actual samples

133 samplesSet(c("b" , "thresh"))

134 stepsPerChain = ceiling(5000/nChain)

135 thinStep = 20

136 modelUpdate(stepsPerChain , thin=thinStep)

137

138 #--

139 # EXAMINE THE RESULTS

140

141 source("plotChains.R")

142 source("plotPost.R")

143

144 checkConvergence = T

145 if (checkConvergence) {

146 bSum = plotChains("b" , saveplots=F , filenameroot=fname)

147 threshSum = plotChains("thresh" , saveplots=F , filenameroot=fname)

148 }

149

150 # Extract chain values:

151 zbSamp = NULL

152 for (j in 1:nPredictors) {

153 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))

154 }

155 chainLength = NROW(zbSamp)

156 zthreshSamp = NULL

157 for (j in 1:(nYlevels-1)) {

158 zthreshSamp = cbind(zthreshSamp ,

159 samplesSample(paste("thresh[",j,"]",sep="")))

160 }

161

162

163 # Convert to original scale:

164 bSamp = zbSamp * matrix(1/(sigmaInit*apply(x,2,sd)) , byrow=TRUE ,

165 ncol=nPredictors , nrow=chainLength)

166 threshSamp = (1/sigmaInit) * (zthreshSamp - b0Init +

167 rowSums(zbSamp * matrix(apply(x,2,mean)/apply(x,2,sd) ,

168 byrow=TRUE , ncol=nPredictors ,

169 nrow=chainLength)))

170 b0 = 0

171 sigma = 1

172

173 # Scatter plots of parameter values, pairwise:

174 if ((nPredictors+nYlevels) <= 10) { # don’t display if too many

175 windows()

176 thinIdx = ceiling(seq(1,chainLength,length=200))

21.5. R CODE 485

177 pairs(cbind(zbSamp[thinIdx,] , zthreshSamp[thinIdx,]) ,

178 labels=c(paste("zb",predictorNames,sep="") ,

179 paste("zthresh",1:nYlevels,sep="")))

180 windows()

181 pairs(cbind(bSamp[thinIdx,] , threshSamp[thinIdx,]) ,

182 labels=c(paste("b",predictorNames,sep="") ,

183 paste("thresh",1:nYlevels,sep="")))

184 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

185 }

186

187 # Display the posterior:

188 nPlotPerRow = 5

189 nPlotRow = ceiling((nPredictors+nYlevels-1)/nPlotPerRow)

190 nPlotCol = ceiling((nPredictors+nYlevels-1)/nPlotRow)

191 windows(3.5*nPlotCol,2.25*nPlotRow)

192 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

193 par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))

194 for (sIdx in 1:nPredictors) {

195 histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,

196 breaks=30 ,

197 main=bquote(b *.(predictorNames[sIdx])) ,

198 cex.main=1.67 , cex.lab=1.33)

199 }

200 for (sIdx in 1:(nYlevels-1)) {

201 histInfo = plotPost(threshSamp[,sIdx] , xlab="Thresh Value" , compVal=NULL ,

202 breaks=30 ,

203 main=bquote(theta * .(sIdx)) ,

204 cex.main=1.67 , cex.lab=1.33)

205 }

206 dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

207

208 # Plot the data

209 if (nPredictors == 2) {

210 windows()

211 plot(x[,1] , x[,2] , xlab=colnames(x)[1] , ylab=colnames(x)[2] ,

212 main=paste("The Data (" , dataSource , ")" , sep="") ,

213 pch=as.character(y))

214 for (chainIdx in round(seq(1,chainLength,len=3))) {

215 for (threshIdx in 1:(nYlevels-1)) {

216 abline(threshSamp[chainIdx,threshIdx]/bSamp[chainIdx,2] ,

217 -bSamp[chainIdx,1]/bSamp[chainIdx,2] ,

218 lwd = 2 , lty=chainIdx , col="grey")

219 }

220 }

221 dev.copy2eps(file=paste(fname,"Data.eps",sep=""))

222

223 } # end if nPredictors == 2

224

225 # Posterior prediction.

226 xProbe = c(1991 , 94) # Note order of values: x1 is year and x2 is duration.

227 # Set up a matrix for storing the values of p(y|xProbe) at each step in chain.

228 py = matrix(0 , nrow=chainLength , ncol=nYlevels)

229 # Step through chain and compute p(y|xProbe) and each step:

230 for (chainIdx in 1:chainLength) {

231 yValue = 1

232 py[chainIdx,yValue] = (

233 pnorm(threshSamp[chainIdx,yValue]

234 - sum(bSamp[chainIdx,] * xProbe)))

235 for (yValue in 2:(nYlevels-1)) {

486 CHAPTER 21. ORDINAL PREDICTED VARIABLE

236 py[chainIdx,yValue] = (

237 pnorm(threshSamp[chainIdx,yValue]

238 - sum(bSamp[chainIdx,] * xProbe))

239 - pnorm(threshSamp[chainIdx,yValue-1]

240 - sum(bSamp[chainIdx,] * xProbe)))

241 }

242 yValue = nYlevels

243 py[chainIdx,yValue] = (1 -

244 pnorm(threshSamp[chainIdx,yValue-1]

245 - sum(bSamp[chainIdx,] * xProbe)))

246 }

247 # Now average across the chain:

248 pyAve = colMeans(py)

21.6 Exercises

Exercise 21.1.[Purpose: Investigate posterior differences of thresholds.] Run the program in Sec-
tion 21.5 (OrdinalProbitRegressionBrugs.R) on the Movies data (Moore, 2006). At the end
of the program, notice that the posterior thresholds are stored in a matrix namedthreshSamp,
one column per threshold.

(A) Make histograms of the differences between every pair of adjacent thresholds, i.e.,
threshSamp[,n]-threshSamp[,n-1], for n in 2:nYlevels. (Hint: UseplotPost with compVal=0.)
Are any differences between adjacent thresholds close to zero?

(B) Make a scatterplot ofθ4 againstθ3. (Hint: plot(threshSamp[,4],threshSamp[,3]))
Superimpose a line that marksθ4 = θ3. (Hint: abline(0,1)) What is the relation of this
scatterplot to the histogram you made in the previous part? In particular, what is the relation
of the line in the scatterplot to the histogram?

Exercise 21.2. [Purpose: Examine robustness when prior is changed.] In the program in Sec-
tion 21.5 (OrdinalProbitRegressionBrugs.R), the priors on the regression coefficients and
thresholds are mildly informed. Consider the precision of the normal prior for the regres-
sion coefficients. Because the predictors are standardized, their range is approximately−2
to +2. If we have a prior assumption that the steepest possible relationship betweenx and
y maps the lowest value ofx to the lowest value ofy and the highest value ofx to the high-
est value ofy, then the steepest regression line would risenYlevels as x goes from−2 to
+2. Hence the steepest plausible slope isnYlevels/4, and the program makes that value the
standard deviation of the prior on each regression coefficient. Consider now the prior on the
thresholds. Because the thresholds are separated in the prior by 1 unit, and the thresholds
should not violate consecutive ordering, it is reasonable to set their standard deviations no
larger than 1.

(A) Set the prior on the regression coefficients so that the precision is very small,
say 1.0E-6. Run the program on the Movies data. Is the posterior much different?

(B) Set the prior on the thresholds to that the precision is very small, say 1.0E-6. (Set
the prior on the regression coefficients back to the original setting.) Run the program on the
Movies data. Is the posterior much different?

Exercise 21.3.[Purpose: Predicted values for novel predictor values.] Run the program in Sec-
tion 21.5 (OrdinalProbitRegressionBrugs.R) on the movies data (Moore, 2006). Consider a
movie that was not included in the rated movies. Suppose it was made in 1991, and had a
length of 94 minutes. What is the probability of each rating for the movie? In other words,

21.6. EXERCISES 487

what is the probability that it would be rated 7, what is the probability that it would be
rated 6, and so on. Answer the same question for a movie that had a length of 94 minutes
but was made in 1931. Hint: Use Equation 21.3, averaging the result across all the steps in
the MCMC chain. Extra special bonus hint: Code for doing thisis already included at the
end of the program; your job is to understand what it’s doing.

488 CHAPTER 21. ORDINAL PREDICTED VARIABLE

Chapter 22

Contingency Table Analysis
Contents

22.1 Poisson exponential ANOVA . 490
22.1.1 What the data look like . 490
22.1.2 The exponential link function 490
22.1.3 The Poisson likelihood . 492
22.1.4 The parameters and the hierarchical prior 494

22.2 Examples . 494
22.2.1 Credible intervals on cell probabilities 495

22.3 Log linear models for contingency tables 496
22.4 R code for Poisson exponential model 497
22.5 Exercises . 504

Count me the hours that we’ve been together, I’ll
Count you the hours I’m light as a feather, but
’Cause every hour you’re all that I see, there’s
No telling if there’s a contingency.

Consider a situation in which we observe two nominal values about every item mea-
sured. For example, suppose there is an election, and we pollrandomly selected people
regarding their political party affiliation (which is a nominal variable) and their candidate
preference (which is also a nominal variable). Presumably the two variables are not inde-
pendent, which is to say that the proportion of people who prefer candidate A should differ
from one political party to another. This is the type of situation addressed in this chapter.

Traditionally, this situation comes under the rubric of chi-square tests of independence.
But we will, of course, take a Bayesian approach, and consequently have no need to com-
pute chi-square values (except for comparison with the Bayesian conclusions). There are
many advantages of a Bayesian approach. As usual, a significant advantage is never having
to compute ap value. Better yet is that the Bayesian analysis provides credible intervals on
the conjoint probabilities and on any desired comparison ofconditions.

I will call our modeling frameworkPoisson exponential ANOVAbecause it uses a Pois-
son likelihood distribution with an exponential link function from an underlying ANOVA
model. This terminology is not conventional, and it might even be misleading if readers
mistakenly infer from the term “ANOVA” that there is a metricpredicted variable involved.
Nevertheless, the terminology is highly descriptive of thestructural elements of the model.

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

489

490 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

Table 22.1: Frequencies of different combinations of hair color and eye color. Data
from Snee (1974).

Eye Color
Hair Color Blue Brown Green Hazel

Black 20 68 5 15
Blond 94 7 16 10

Brunette 84 119 29 54
Red 17 26 14 14

22.1 Poisson exponential ANOVA

22.1.1 What the data look like

To motivate the model, we need first to understand the structure of the data. An example
of the sort of data we’ll be dealing with is shown in Table 22.1. The data come from
a classroom poll of students at the University of Delaware (Snee, 1974). Respondents
reported their hair color and eye color, with each variable split into four nominal levels
as indicated in Table 22.1. The cells of the table indicate the frequency with which each
combination occurred in the sample. Each respondent falls in one and only one cell of the
table.

The data to be predicted are the cell frequencies. The predictors are the nominal vari-
ables. This situation is analogous to two-way ANOVA, which also had two nominal predic-
tors, but had several metric values in each cell instead of a single frequency.

For data like these, we can ask a number of questions. We couldwonder about one
variable at a time, and ask questions such as, “Are there morebrown-eyed people than non-
brown-eyed people?”, or, “Are there more brunette-haired people than non-brunette haired
people?” Those questions are analogous to main effects in ANOVA. But usually we display
the conjoint frequencies specifically because we’re interested in the relationship between
the variables. We would like to know if the distribution of frequencies across one variable
depends on, or is contingent upon, the level of the other variable. For example, does the
distribution of hair colors depend on eye color, and, specifically, is the proportion of blond-
haired people the same for brown-eyed and blue-eyed? These questions are analogous to
interaction contrasts in ANOVA.

22.1.2 The exponential link function

The model can be motivated two different ways. One way is simply to start with the two-
way ANOVA model and find a way to map the predicted value to frequency data. The pre-
dictedµ value from the ANOVA model could be any value from negative topositive infinity,
but frequencies are non-negative. Therefore we must transform the ANOVA predictions to
non-negative values, while preserving order. The natural way to do this, mathematically, is
via the exponential transformation. But this transformation only gets us to an underlying
continuous predicted value, not to the probability of any discrete frequency. A natural can-
didate for the needed likelihood distribution is the Poisson (described below), which takes
a non-negative valueλ and gives a probability for each integer from zero to infinity. But
this motivation may seem a bit arbitrary, even if there’s nothing wrong with it in principle.

A different motivation was introduced in Section 14.2.1, p. 313. We start by treating the
cell frequencies as representative of underlying cell probabilities, and then asking whether

22.1. POISSON EXPONENTIAL ANOVA 491

Table 22.2: Example of exponentiated linear model with zerointeraction. Margins
show the values of theβ’s, and cells showλrc = exp(β0 + βr + βc). Notice that
every row has the same relative probabilities, namely, 10, 100, 1. In other words,
the row and column attributes are independent.

β0 = 4.60517 βc1 = 0 βc2 = 2.30259 βc2 = −2.30259

βr1 = 0 100 1000 10
βr2 = 2.30259 1000 10000 100
βr3 = −2.30259 10 100 1

the two nominal variables are independent of each other. (Recall the definition of indepen-
dence way back in Section 3.4.3, p. 39.) For example, in Table22.1, there’s a particular
marginal probability that hair color is black, and a particular marginal probability that eye
color is brown. If hair color and eye color are independent, then the conjoint probability
of black hair and brown eyes is the product of the marginal probabilities. The attributes of
hair color and eye color are independent if that relationship holds for every cell in the table.
Independence of hair color and eye color means that the proportion of black hair among
brown-eyed people is the same as the proportion of black hairamong blue-eyed people, and
so on for all hair and eye colors.

To check for independence of attributes, we need to estimatethe marginal probabilities
of the attributes. Denote the marginal (i.e., total) frequency of ther th row as f (r), and
denote the marginal frequency of thecth column as f (c). Then the estimated marginal
probabilities aref (r)/N and f (c)/N, whereN is the total of the entire table. If the attributes
are independent, then thepredictedconjoint probability, p̂(r, c), should equal the product
of the marginal probabilities, which means ˆp(r, c) = p(r) · p(c), hencef̂ (r, c)/N = f (r)/N ·
f (c)/N. Because the models we’ve been dealing with involve additive combinations, not
multiplicative combinations, we convert the multiplicative expression of independence into
an additive expression by using the fact that log(a · b) = log(a) + log(b), as follows:

f̂ (r, c)/N = f (r)/N · f (c)/N

f̂ (r, c) = f (r) · f (c) · 1/N

f̂ (r, c)
︸︷︷︸

λrc

= exp
(

log(f (r))
︸ ︷︷ ︸

βr

+ log(f (c))
︸ ︷︷ ︸

βc

+ log(1/N)
︸ ︷︷ ︸

β0

)

(22.1)

If we abstract the form of Equation 22.1 away from the specificfrequencies, we get the
equationλrc = exp(βr + βc + β0). The idea is that whatever are the values of theβ’s, the
resultingλ’s will obey multiplicative independence. An example is shown in Table 22.2.
The choice ofβ’s is shown in the margins of the table, and the resultingλ’s are shown in
the cells of the table. Notice that every row has the same relative probabilities, namely, 10,
100, and 1. In other words, the row and column attributes are independent.

We have dealt before with additive combinations of row and column influences, in the
context of ANOVA. In ANOVA,β0 is a baseline representing the overall central tendency,
andβr is a deflection away from baseline due to being in ther th row, andβc is a deflection
away from baseline due to being in thecth column. The deflections are constrained to sum
to zero, and the example in Table 22.2 respects this constraint.

In ANOVA, when the cell data are not captured by an additive combination of row
and column effects, we include an interaction term, denoted here asβrc. The interaction

492 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

0 10 20 30 40 500.
00

0.
15

0.
30

y

p(
y)

dpois(y|λ = 1.8)

0 10 20 30 40 500.
00

0.
15

0.
30

y

p(
y)

dpois(y|λ = 8.3)

0 10 20 30 40 500.
00

0.
15

0.
30

y

p(
y)

dpois(y|λ = 32.1)

Figure 22.1: Examples of the Poisson distribution.y includes integers from zero
to positive infinity.

terms are constrained so that every row and every column sumsto zero:
∑

r βrc = 0 ∀c and
∑

c βrc = 0 ∀r. The key idea is that the interaction term in the model, whichindicates viola-
tions of additivity in standard ANOVA, indicates violations of multiplicative independence
in exponentiated ANOVA. To estimate the magnitude of the violation of multiplicative in-
dependence, we estimate the magnitude of the interaction coefficients in exponentiation
ANOVA. To summarize, the model of the cell tendencies is

λrc = exp(β0 + βr + βc + βrc) with the constraints
∑

r

βr = 0 and
∑

c

βc = 0 and
∑

r

βrc = 0 ∀c and
∑

c

βrc = 0 ∀r (22.2)

If the researcher is interested in violations of independence, then the interest is on the mag-
nitudes of theβrc interaction terms. The model is especially convenient for this purpose,
because arbitrary interaction contrasts can be investigated to determine in more detail where
the non-independence is arising.

22.1.3 The Poisson likelihood

The value ofλrc in Equation 22.2 is a cell tendency, not a predicted frequency per se. In
particular, the value ofλrc can be any non-negative real value, but frequencies can only
be integers. What we need to complete the model is a likelihood function that maps the
parameter valueλrc to a probability of possible frequencies. The Poisson distribution is a

22.1. POISSON EXPONENTIAL ANOVA 493

Figure 22.2: Hierarchical dependencies for Poisson-exponential model of a two-
way frequency table. Compare with Figure 19.2, p. 424, for two-way ANOVA.

natural choice. The Poisson distribution is named after theFrench mathematician Simon-
Denis Poisson (1781–1840), and is defined as

p(y|λ) = λy exp(−λ)/y! (22.3)

wherey is a non-negative integer andλ is a non-negative real number. The mean of the
Poisson distribution isλ. Importantly, the variance of the Poisson distribution is also λ.
Thus, in the Poisson distribution, the variance is completely yoked to the mean. Examples
of the Poisson distribution are shown in Figure 22.1. Noticethat the distribution is discrete,
having masses only at non-negative integer values. Notice that the visual central tendency
of the distribution does indeed correspond withλ. And notice that asλ increases, the width
of the distribution also increases. The examples in Figure 22.1 use non-integer vales ofλ to
emphasize thatλ is not necessarily an integer, even thoughy is an integer.

The Poisson distribution is often used to model discrete occurrences in time (or across
space) when the probability of occurrence is the same at any moment in time (e.g., Sadiku
& Tofighi, 1999). For example, suppose that customers arriveat a retail store at anaverage
rate of 35 people per hour. Then the Poisson distribution, with λ = 35, is a model of the
probability that any particular number of people will arrive in an hour. As another example,
suppose that 11.2% of the students at the University of Delaware in the early 1970’s had
black hair and brown eyes, and suppose that an average of 600 students per term will fill out
a survey. That means an average of 67.2 (= 11.2%·600) students per term will indicate they
have black hair and brown eyes. The Poisson distribution,p(y|λ=67.2), gives the probability
that any particular number of people will give that response.

We will use the Poisson distribution as the likelihood function for modeling the proba-
bility of the observed frequency,f (r, c), given the mean,λrc, from Equation 22.2. The idea
is that each particularr, c combination has an underlying average rate of occurrence,λrc.
We collect data for a certain period of time, during which we happen to observe particu-
lar frequencies,f (r, c), of each combination. From the observed frequencies, we infer the

494 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

Table 22.3: Some toy data for illustrating that interactioncontrasts can be more
sensitive to interaction than individual cells. (Posterior appears in Figure 22.4.)

Column Attribute
Row Attribute C1 C2 C3 C4

R1 20 20 10 10
R2 20 20 10 10
R3 10 10 20 20
R4 10 10 20 20

underlying average rates.

22.1.4 The parameters and the hierarchical prior

The parameters of the Poisson exponential ANOVA model include all theβ parameters
from standard ANOVA. The prior on those parameters is the same as standard ANOVA.
Figure 22.2 shows the Poisson-exponential model, with its hierarchical prior. Above the
linear core, the hierarchy is identical to the two-way ANOVAmodel in Figure 19.2, p. 424.

The diagram retains the original notation from standard ANOVA (e.g., showing
−→
β 1
−→x1,i

instead ofβr,i), but hopefully the correspondence of notation is easy to make.
Below the linear core in Figure 22.2, the diagram simply shows the exponentiation

of the ANOVA summation to specifyλ, and the use of the Poisson distribution to spec-
ify p(y|λ). This portion of the diagram replaces the normal likelihood of standard ANOVA
the prior on the normal distribution’s precision. The Poisson, of course, has no separate
precision parameter.

The model is easily implemented in R, BRugs, and BUGS, as listed in Section 22.4
(PoissonExponentialBrugs.R). The code is a straightforward modification of the program for
two-factor ANOVA (that was listed in Section 19.3.1 (ANOVAtwowayBRugs.R)). The modifica-
tions are described immediately before the listing.

22.2 Examples

Consider again the hair color and eye color data in Table 22.1. When the program in Sec-
tion 22.4 (PoissonExponentialBrugs.R) is run with these data, the posterior has marginal
histograms as shown in Figure 22.3. Inspection of the histograms of the individual cell
interactions parameters reveals robustly non-zero interactions. For example, blue eyes and
black hair has an interaction parameter that is credibly below zero, which means simply
that the combination of blue eyes with black hair happens less frequently than would be
expected if eye color and hair color were independent. As another example, brown eyes
and black hair has an interaction parameter that is crediblyabove zero, which means sim-
ply that this combination happens more frequently than would be expected if eye color and
hair color were independent. Exercise 22.2 has you considersome other data and how to
interpret main effects and interaction contrasts.

Another way to investigate interaction is by examining specific interaction contrasts.
Interaction contrasts can be more sensitive and revealing than single-cell interaction terms.
To illustrate this point, consider the toy data in Table 22.3. The upper-left and lower-right
cells have higher frequencies than the upper-right and lower-left cells. When a Bayesian

22.2. EXAMPLES 495

Baseline

β0
3.0 3.1 3.2 3.3 3.4

mean = 3.2

95% HDI
3.08 3.31

x1: Blue

β11

0.2 0.3 0.4 0.5 0.6 0.7 0.8

mean = 0.499

95% HDI
0.33 0.668

x1: Brown

β12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

mean = 0.38

95% HDI
0.185 0.562

x1: Green

β13

−1.0 −0.8 −0.6 −0.4 −0.2

mean = −0.585

95% HDI
−0.808 −0.355

x1: Hazel

β14

−0.6 −0.4 −0.2 0.0

mean = −0.294

95% HDI
−0.494 −0.0874

x2: Black

β21

−0.6 −0.4 −0.2 0.0

mean = −0.284

95% HDI
−0.504 −0.072

x2: Blond

β22

−0.6 −0.4 −0.2 0.0

mean = −0.274

95% HDI
−0.491 −0.0679

x2: Brunette

β23

0.6 0.7 0.8 0.9 1.0 1.1 1.2

mean = 0.933

95% HDI
0.791 1.09

x2: Red

β24

−0.6 −0.4 −0.2 0.0

mean = −0.375

95% HDI
−0.575 −0.174

x1: Blue , x2: Black

β12x1=1, x2=1

−1.0 −0.6 −0.2 0.2

mean = −0.413

99.3% <= 0 < 0.7%
95% HDI

−0.727 −0.0947

x1: Brown , x2: Black

β12x1=2, x2=1

0.0 0.5 1.0 1.5

mean = 0.899

0% <= 0 < 100%
95% HDI

0.612 1.2

x1: Green , x2: Black

β12x1=3, x2=1

−1.5 −1.0 −0.5 0.0

mean = −0.562

99.5% <= 0 < 0.5%
95% HDI

−1.07 −0.121

x1: Hazel , x2: Black

β12x1=4, x2=1

−0.5 0.0 0.5

mean = 0.0759

95% HDI
−0.264 0.465

x1: Blue , x2: Blond

β12x1=1, x2=2

0.0 0.5 1.0 1.5

mean = 1.1

0% <= 0 < 100%
95% HDI

0.826 1.37

x1: Brown , x2: Blond

β12x1=2, x2=2

−2.0 −1.5 −1.0 −0.5 0.0

mean = −1.19

100% <= 0 < 0%
95% HDI

−1.62 −0.79

x1: Green , x2: Blond

β12x1=3, x2=2

0.0 0.5 1.0

mean = 0.39

2.2% <= 0 < 97.8%
95% HDI

0.0272 0.785

x1: Hazel , x2: Blond

β12x1=4, x2=2

−1.0 −0.5 0.0

mean = −0.296

95% HDI
−0.698 0.0855

x1: Blue , x2: Brunette

β12x1=1, x2=3

−0.6 −0.4 −0.2 0.0 0.2

mean = −0.205

95% HDI
−0.415 0.022

x1: Brown , x2: Brunette

β12x1=2, x2=3

0.0 0.2 0.4 0.6

mean = 0.257

1.1% <= 0 < 98.9%
95% HDI

0.0269 0.472

x1: Green , x2: Brunette

β12x1=3, x2=3

−0.6 −0.4 −0.2 0.0 0.2

mean = −0.185

95% HDI
−0.473 0.113

x1: Hazel , x2: Brunette

β12x1=4, x2=3

−0.2 0.0 0.2 0.4 0.6

mean = 0.134

95% HDI
−0.123 0.391

x1: Blue , x2: Red

β12x1=1, x2=4

−1.0 −0.6 −0.2 0.2

mean = −0.477

99.8% <= 0 < 0.2%
95% HDI

−0.81 −0.162

x1: Brown , x2: Red

β12x1=2, x2=4

−0.6 −0.2 0.0 0.2 0.4 0.6

mean = 0.0333

95% HDI
−0.273 0.348

x1: Green , x2: Red

β12x1=3, x2=4

−0.4 0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.357

95% HDI
−0.00988 0.729

x1: Hazel , x2: Red

β12x1=4, x2=4

−0.5 0.0 0.5

mean = 0.0866

95% HDI
−0.292 0.428

Figure 22.3: Posterior of Poisson exponential model applied to data of Table 22.1.

analysis is conducted on these data, the resulting posterior looks like Figure 22.4. Notice
that not one of the single-cell interaction coefficients excludes zero from its HDI. The bot-
tom histogram in Figure 22.4 shows the posterior distribution of an interaction contrast,
namely〈1, 1,−1,−1〉/2⊗ 〈1, 1,−1,−1〉/2. This contrast takes the average of the interaction
coefficients in the top-left and bottom-right cells, and subtracts the average of the interaction
coefficients in the top-right and bottom-left cells. The histogram of the contrast magnitude
clearly excludes zero from the credible values. Therefore we would conclude that the at-
tributes in Table 22.3 are not independent. Exercise 22.3 has you investigate the pattern of
this toy example with different total sample sizes, and compare the Bayesian results with
classical chi-square tests.

22.2.1 Credible intervals on cell probabilities

Although the posterior distributions of the beta coefficients are useful for making inferences
about differences between cells, the magnitudes of the beta coefficients do not explicitly
tell us about the credible cell proportions. To get those cell proportions, we need to use
Equation 22.2 to compute the predicted cell mean frequencies, and then divide by their
total to get the predicted cell proportions. Thus, at every step in the MCMC chain, we
computeλrc = exp(β0 + βr + βc + βrc), and then we divide, again at each step in the chain,
by

∑

r
∑

c λrc. The resulting posterior distribution of normalizedλrc’s shows the credible
proportions of each combination of attributes. Figure 22.5shows the resulting estimated

496 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

Baseline

β0
2.4 2.5 2.6 2.7 2.8 2.9

mean = 2.66

95% HDI
2.53 2.8

x1: C1

β11

−0.4 −0.2 0.0 0.2

mean = 0.00323

95% HDI
−0.202 0.19

x1: C2

β12

−0.4 −0.2 0.0 0.2 0.4

mean = −0.00207

95% HDI
−0.209 0.198

x1: C3

β13

−0.4 −0.2 0.0 0.2 0.4

mean = −0.00228

95% HDI
−0.19 0.21

x1: C4

β14

−0.4 −0.2 0.0 0.2

mean = 0.00111

95% HDI
−0.195 0.221

x2: R1

β21

−0.4 −0.2 0.0 0.2 0.4

mean = −0.00101

95% HDI
−0.205 0.198

x2: R2

β22

−0.4 −0.2 0.0 0.2

mean = 0.0026

95% HDI
−0.204 0.199

x2: R3

β23

−0.4 −0.2 0.0 0.2

mean = 0.00066

95% HDI
−0.218 0.189

x2: R4

β24

−0.2 0.0 0.2 0.4

mean = −0.00225

95% HDI
−0.213 0.197

x1: C1 , x2: R1

β121,1

−0.2 0.0 0.2 0.4 0.6 0.8

mean = 0.207

95% HDI
−0.0817 0.527

x1: C2 , x2: R1

β122,1

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

mean = 0.207

95% HDI
−0.0972 0.518

x1: C3 , x2: R1

β123,1

−1.0 −0.6 −0.2 0.2 0.4

mean = −0.209

95% HDI
−0.546 0.0952

x1: C4 , x2: R1

β124,1

−1.0 −0.5 0.0

mean = −0.205

95% HDI
−0.551 0.107

x1: C1 , x2: R2

β121,2

−0.4 0.0 0.2 0.4 0.6 0.8

mean = 0.203

95% HDI
−0.0981 0.525

x1: C2 , x2: R2

β122,2

−0.4 0.0 0.2 0.4 0.6 0.8

mean = 0.202

95% HDI
−0.101 0.506

x1: C3 , x2: R2

β123,2

−0.8 −0.4 0.0 0.2 0.4 0.6

mean = −0.203

95% HDI
−0.53 0.121

x1: C4 , x2: R2

β124,2

−1.0 −0.6 −0.2 0.2

mean = −0.202

95% HDI
−0.538 0.113

x1: C1 , x2: R3

β121,3

−1.0 −0.5 0.0 0.5

mean = −0.202

95% HDI
−0.572 0.109

x1: C2 , x2: R3

β122,3

−0.8 −0.4 0.0 0.2

mean = −0.206

95% HDI
−0.546 0.0915

x1: C3 , x2: R3

β123,3

−0.4 0.0 0.2 0.4 0.6 0.8

mean = 0.205

95% HDI
−0.085 0.542

x1: C4 , x2: R3

β124,3

−0.4 0.0 0.2 0.4 0.6 0.8

mean = 0.203

95% HDI
−0.1 0.515

x1: C1 , x2: R4

β121,4

−1.0 −0.6 −0.2 0.2

mean = −0.208

95% HDI
−0.55 0.106

x1: C2 , x2: R4

β122,4

−1.0 −0.6 −0.2 0.0 0.2

mean = −0.203

95% HDI
−0.548 0.1

x1: C3 , x2: R4

β123,4

−0.2 0.0 0.2 0.4 0.6 0.8

mean = 0.206

95% HDI
−0.0835 0.525

x1: C4 , x2: R4

β124,4

−0.2 0.0 0.2 0.4 0.6 0.8

mean = 0.204

95% HDI
−0.0871 0.526

R12.R34xC12.C34

 + 0.25 C1 R1 + 0.25 C1 R2 + −0.25 C1 R3 + −0.25 C1 R4 + 0.25 C2 R1 + 0.25 C2 R2 + −0.25 C2 R3 + −0.25 C2 R4 + −0.25 C3 R1 + −0.25 C3 R2 + 0.25 C3 R3 + 0.25 C3 R4 + −0.25 C4 R1 + −0.25 C4 R2 + 0.25 C4 R3 + 0.25 C4 R4

0.0 0.5 1.0 1.5

mean = 0.819

0% <= 0 < 100%
95% HDI

0.216 1.42

Figure 22.4: Posterior of Poisson exponential model applied to data of Table 22.3.
The interaction contrast excludes zero, but no single interaction coefficient does.

cell probabilities for the hair/eye color data from Table 22.1.

22.3 Log linear models for contingency tables

This chapter only scratches the surface of methods for analyzing count data from nominal
predictors. As mentioned earlier, these sorts of data are often displayed as tables, and the
counts in each cell are thought of as contingent upon the level of the nominal predictor.
Therefore the data are referred to as “contingency tables”.There can be more than two
predictors, and models are generalized in the same way as ANOVA is generalized to more
than two predictors. The formulation presented here has emphasized linkage expressed as
λ = exp(β0+βr+βc+βrc), but this equation can also be written log(λ) = β0+βr+βc+βrc. This
latter form lends the usual name for these models:log linear models for contingency tables.
This is the terminology to use when you want to explore these models more deeply. Agresti
and Hitchcock (2005) provide a brief review of Bayesian log-linear models for contingency
tables, but the method used in this chapter is not included, because the hierarchical ANOVA
model was only popularized later (Gelman, 2005, 2006). For adescription of Bayesian
inference regarding contingency tables with a Poisson ANOVA model, without the Gelman-
style hyperprior, see Marin and Robert (2007, pp. 109–118),and Congdon (2005, p. 134

22.4. R CODE FOR POISSON EXPONENTIAL MODEL 497

x1: Blue , x2: Black

probabilityx1=1, x2=1

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0347

95% HDI
0.0219 0.0504

x1: Brown , x2: Black

probabilityx1=2, x2=1

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.113

95% HDI
0.0866 0.139

x1: Green , x2: Black

probabilityx1=3, x2=1

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0106

95% HDI
0.00365 0.0186

x1: Hazel , x2: Black

probabilityx1=4, x2=1

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0258

95% HDI
0.0142 0.0387

x1: Blue , x2: Blond

probabilityx1=1, x2=2

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.155

95% HDI
0.126 0.183

x1: Brown , x2: Blond

probabilityx1=2, x2=2

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0148

95% HDI
0.00657 0.025

x1: Green , x2: Blond

probabilityx1=3, x2=2

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0266

95% HDI
0.0149 0.0393

x1: Hazel , x2: Blond

probabilityx1=4, x2=2

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0181

95% HDI
0.00881 0.0284

x1: Blue , x2: Brunette

probabilityx1=1, x2=3

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.142

95% HDI
0.115 0.169

x1: Brown , x2: Brunette

probabilityx1=2, x2=3

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.199

95% HDI
0.167 0.231

x1: Green , x2: Brunette

probabilityx1=3, x2=3

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0494

95% HDI
0.0338 0.0662

x1: Hazel , x2: Brunette

probabilityx1=4, x2=3

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0903

95% HDI
0.0661 0.112

x1: Blue , x2: Red

probabilityx1=1, x2=4

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0298

95% HDI
0.0166 0.043

x1: Brown , x2: Red

probabilityx1=2, x2=4

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0437

95% HDI
0.0277 0.0593

x1: Green , x2: Red

probabilityx1=3, x2=4

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0234

95% HDI
0.0116 0.0344

x1: Hazel , x2: Red

probabilityx1=4, x2=4

0.00 0.05 0.10 0.15 0.20 0.25

mean = 0.0238

95% HDI
0.0134 0.0366

Figure 22.5: Posterior distribution on estimated cell probabilities, for the data of
Table 22.1, p. 490. See Section 22.2.1 for details.

and p. 202).

22.4 R code for Poisson exponential model

This program constitutes a small adaptation of the two-way ANOVA program listed in
Section 19.3.1 (ANOVAtwowayBRugs.R). The only notable changes are that (i) the normal like-
lihood is changed to a Poisson, (ii) all references to the precision parameter of the normal
likelihood are removed, (iii) they values are not standardized, because they must be non-
negative integers, (iv) the initialization of the parameters is based on log(y), noty, because
the parameters are exponentiated to map toy.

At the end of the program, some code for conducting a chi-square test is included. The
purpose of this is merely for comparison of Bayesian resultswith NHST.

(PoissonExponentialBrugs.R)

1 graphics.off()

2 rm(list=ls(all=TRUE))

3 fnroot = "PoissonExponentialBrugs"

4 library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:

5 # A Tutorial with R and BUGS. Academic Press / Elsevier.

6 #--

7 # THE MODEL.

8

9 modelstring = "

10 # BUGS model specification begins here...

11 model {

12 for (i in 1:Ncells) {

13 y[i] ˜ dpois(lambda[i])

498 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

14 lambda[i] <- exp(a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]])

15 }

16 #

17 a0 ˜ dnorm(10,1.0E-6)

18 #

19 for (j1 in 1:Nx1Lvl) { a1[j1] ˜ dnorm(0.0 , a1tau) }

20 a1tau <- 1 / pow(a1SD , 2)

21 a1SD <- abs(a1SDunabs) + .1

22 a1SDunabs ˜ dt(0 , 0.001 , 2)

23 #

24 for (j2 in 1:Nx2Lvl) { a2[j2] ˜ dnorm(0.0 , a2tau) }

25 a2tau <- 1 / pow(a2SD , 2)

26 a2SD <- abs(a2SDunabs) + .1

27 a2SDunabs ˜ dt(0 , 0.001 , 2)

28 #

29 for (j1 in 1:Nx1Lvl) { for (j2 in 1:Nx2Lvl) {

30 a1a2[j1,j2] ˜ dnorm(0.0 , a1a2tau)

31 } }

32 a1a2tau <- 1 / pow(a1a2SD , 2)

33 a1a2SD <- abs(a1a2SDunabs) + .1

34 a1a2SDunabs ˜ dt(0 , 0.001 , 2)

35 }

36 # ... end BUGS model specification

37 " # close quote for modelstring

38 # Write model to a file, and send to BUGS:

39 writeLines(modelstring,con="model.txt")

40 modelCheck("model.txt")

41

42 #--

43 # THE DATA.

44 # Specify data source:

45 dataSource = c("HairEye" , "CrimeDrink" , "Toy")[1]

46

47 # Load the data:

48 if (dataSource == "HairEye") {

49 fnroot = paste(fnroot , dataSource , sep="")

50 dataFrame = data.frame(# from Snee (1974)

51 Freq = c(68,119,26,7,20,84,17,94,15,54,14,10,5,29,14,16) ,

52 Eye = c("Brown","Brown","Brown","Brown","Blue","Blue","Blue","Blue","Hazel","Hazel","Hazel","H

53 Hair = c("Black","Brunette","Red","Blond","Black","Brunette","Red","Blond","Black","Brunette","

54 y = as.numeric(dataFrame$Freq)

55 x1 = as.numeric(dataFrame$Eye)

56 x1names = levels(dataFrame$Eye)

57 x2 = as.numeric(dataFrame$Hair)

58 x2names = levels(dataFrame$Hair)

59 Ncells = length(y)

60 Nx1Lvl = length(unique(x1))

61 Nx2Lvl = length(unique(x2))

62 x1contrastList = list(GREENvHAZEL = c(0,0,1,-1))

63 x2contrastList = list(BLONDvRED = c(0,1,0,-1))

64 x1x2contrastList = list(BLUE.BROWNxBLACK.BLOND

65 = outer(c(-1,1,0,0),c(-1,1,0,0)))

66 }

67

68 if (dataSource == "CrimeDrink") {

69 fnroot = paste(fnroot , dataSource , sep="")

70 dataFrame = data.frame(# from Kendall (1943) via Snee (1974)

71 Freq = c(50,88,155,379,18,63,43,62,110,300,14,144) ,

72 Crime = c("Arson","Rape","Violence","Theft","Coining","Fraud","Arson","Rape","Violence","Theft

22.4. R CODE FOR POISSON EXPONENTIAL MODEL 499

73 Drink = c("Drinker","Drinker","Drinker","Drinker","Drinker","Drinker","Nondrink","Nondrink","Nondrink","Nondrink","No

74 y = as.numeric(dataFrame$Freq)

75 x1 = as.numeric(dataFrame$Crime)

76 x1names = levels(dataFrame$Crime)

77 x2 = as.numeric(dataFrame$Drink)

78 x2names = levels(dataFrame$Drink)

79 Ncells = length(y)

80 Nx1Lvl = length(unique(x1))

81 Nx2Lvl = length(unique(x2))

82 x1contrastList = list(FRAUDvOTHER = c(-1/5,-1/5,1,-1/5,-1/5,-1/5) ,

83 FRAUDvRAPE = c(0,0,1,-1,0,0))

84 x2contrastList = list(DRINKERvNON = c(1,-1))

85 x1x2contrastList = list(FRAUD.OTHERxDRINKER.NON

86 = outer(c(-1/5,-1/5,1,-1/5,-1/5,-1/5),c(-1,1)) ,

87 FRAUD.RAPExDRINKER.NON

88 = outer(c(0,0,1,-1,0,0),c(-1,1)))

89 }

90

91 if (dataSource == "Toy") {

92 dataMultiplier = 2 # Try 2 (chi-sq warns) , 6 (p>.05) , 7 (p<.05) , 10

93 fnroot = paste(fnroot , dataSource , dataMultiplier , sep="")

94 dataFrame = data.frame(

95 Freq = c(2,2,1,1, 2,2,1,1, 1,1,2,2, 1,1,2,2) * dataMultiplier ,

96 Col = c("C1","C2","C3","C4", "C1","C2","C3","C4", "C1","C2","C3","C4", "C1","C2","C3","C4"),

97 Row = c("R1","R1","R1","R1", "R2","R2","R2","R2", "R3","R3","R3","R3", "R4","R4","R4","R4"))

98 y = as.numeric(dataFrame$Freq)

99 x1 = as.numeric(dataFrame$Col)

100 x1names = levels(dataFrame$Col)

101 x2 = as.numeric(dataFrame$Row)

102 x2names = levels(dataFrame$Row)

103 Ncells = length(y)

104 Nx1Lvl = length(unique(x1))

105 Nx2Lvl = length(unique(x2))

106 x1contrastList = NULL

107 x2contrastList = NULL

108 x1x2contrastList = list(R12.R34xC12.C34 = outer(c(1,1,-1,-1)/2,c(1,1,-1,-1)/2))

109 }

110

111 # Specify the data in a form that is compatible with BRugs model, as a list:

112 datalist = list(

113 y = y ,

114 x1 = x1 ,

115 x2 = x2 ,

116 Ncells = Ncells ,

117 Nx1Lvl = Nx1Lvl ,

118 Nx2Lvl = Nx2Lvl

119)

120 # Get the data into BRugs:

121 modelData(bugsData(datalist))

122

123 #--

124 # INTIALIZE THE CHAINS.

125

126 nchain = 5

127 modelCompile(numChains = nchain)

128

129 if (F) {

130 modelGenInits() # often won’t work for diffuse prior

131 } else {

500 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

132 # initialization based on data

133 theData = data.frame(y=log(y) , x1=factor(x1,labels=x1names) ,

134 x2=factor(x2,labels=x2names))

135 a0 = mean(theData$y)

136 a1 = aggregate(theData$y , list(theData$x1) , mean)[,2] - a0

137 a2 = aggregate(theData$y , list(theData$x2) , mean)[,2] - a0

138 linpred = as.vector(outer(a1 , a2 , "+") + a0)

139 a1a2 = aggregate(theData$y, list(theData$x1,theData$x2), mean)[,3] - linpred

140 genInitList <- function() {

141 return(

142 list(

143 a0 = a0 ,

144 a1 = a1 ,

145 a2 = a2 ,

146 a1a2 = matrix(a1a2 , nrow=Nx1Lvl , ncol=Nx2Lvl) ,

147 a1SDunabs = sd(a1) ,

148 a2SDunabs = sd(a2) ,

149 a1a2SDunabs = sd(a1a2)

150)

151)

152 }

153 for (chainIdx in 1 : nchain) {

154 modelInits(bugsInits(genInitList))

155 }

156 }

157

158 #--

159 # RUN THE CHAINS

160

161 # burn in

162 BurnInSteps = 1000

163 modelUpdate(BurnInSteps)

164 # actual samples

165 samplesSet(c("a0" , "a1" , "a2" , "a1a2" , "a1SD" , "a2SD" , "a1a2SD"))

166 stepsPerChain = ceiling(5000/nchain)

167 thinStep = 500

168 modelUpdate(stepsPerChain , thin=thinStep)

169

170 #--

171 # EXAMINE THE RESULTS

172

173 source("plotChains.R")

174 source("plotPost.R")

175

176 checkConvergence = F

177 if (checkConvergence) {

178 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)

179 sumInfo = plotChains("a1" , saveplots=F , filenameroot=fnroot)

180 sumInfo = plotChains("a2" , saveplots=F , filenameroot=fnroot)

181 sumInfo = plotChains("a1a2" , saveplots=F , filenameroot=fnroot)

182 readline("Press any key to clear graphics and continue")

183 graphics.off()

184 sumInfo = plotChains("a1SD" , saveplots=F , filenameroot=fnroot)

185 sumInfo = plotChains("a2SD" , saveplots=F , filenameroot=fnroot)

186 sumInfo = plotChains("a1a2SD" , saveplots=F , filenameroot=fnroot)

187 readline("Press any key to clear graphics and continue")

188 graphics.off()

189 }

190

22.4. R CODE FOR POISSON EXPONENTIAL MODEL 501

191 # Extract and plot the SDs:

192 a1SDSample = samplesSample("a1SD")

193 a2SDSample = samplesSample("a2SD")

194 a1a2SDSample = samplesSample("a1a2SD")

195 windows(10,3)

196 layout(matrix(1:3,nrow=1))

197 par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))

198 histInfo = plotPost(a1SDSample , xlab="a1SD" , main="a1 SD" , breaks=30)

199 histInfo = plotPost(a2SDSample , xlab="a2SD" , main="a2 SD" , breaks=30)

200 histInfo = plotPost(a1a2SDSample , xlab="a1a2SD" , main="Interaction SD" ,

201 breaks=30)

202 dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

203

204 # Extract a values:

205 a0Sample = samplesSample("a0")

206 chainLength = length(a0Sample)

207 a1Sample = array(0 , dim=c(datalist$Nx1Lvl , chainLength))

208 for (x1idx in 1:datalist$Nx1Lvl) {

209 a1Sample[x1idx,] = samplesSample(paste("a1[",x1idx,"]",sep=""))

210 }

211 a2Sample = array(0 , dim=c(datalist$Nx2Lvl , chainLength))

212 for (x2idx in 1:datalist$Nx2Lvl) {

213 a2Sample[x2idx,] = samplesSample(paste("a2[",x2idx,"]",sep=""))

214 }

215 a1a2Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))

216 for (x1idx in 1:datalist$Nx1Lvl) {

217 for (x2idx in 1:datalist$Nx2Lvl) {

218 a1a2Sample[x1idx,x2idx,] = samplesSample(paste("a1a2[",x1idx,",",x2idx,"]",

219 sep=""))

220 }

221 }

222

223 # Convert to zero-centered b values:

224 m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))

225 for (stepIdx in 1:chainLength) {

226 m12Sample[,,stepIdx] = (a0Sample[stepIdx]

227 + outer(a1Sample[,stepIdx] ,

228 a2Sample[,stepIdx] , "+")

229 + a1a2Sample[,,stepIdx])

230 }

231 b0Sample = apply(m12Sample , 3 , mean)

232 b1Sample = (apply(m12Sample , c(1,3) , mean)

233 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))

234 b2Sample = (apply(m12Sample , c(2,3) , mean)

235 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))

236 linpredSample = array(0,dim=c(datalist$Nx1Lvl,datalist$Nx2Lvl,chainLength))

237 for (stepIdx in 1:chainLength) {

238 linpredSample[,,stepIdx] = (b0Sample[stepIdx]

239 + outer(b1Sample[,stepIdx] ,

240 b2Sample[,stepIdx] , "+"))

241 }

242 b1b2Sample = m12Sample - linpredSample

243

244 # Plot b values:

245 windows((datalist$Nx1Lvl+1)*2.75,(datalist$Nx2Lvl+1)*2.25)

246 layoutMat = matrix(0 , nrow=(datalist$Nx2Lvl+1) , ncol=(datalist$Nx1Lvl+1))

247 layoutMat[1,1] = 1

248 layoutMat[1,2:(datalist$Nx1Lvl+1)] = 1:datalist$Nx1Lvl + 1

249 layoutMat[2:(datalist$Nx2Lvl+1),1] = 1:datalist$Nx2Lvl + (datalist$Nx1Lvl + 1)

502 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

250 layoutMat[2:(datalist$Nx2Lvl+1),2:(datalist$Nx1Lvl+1)] = matrix(

251 1:(datalist$Nx1Lvl*datalist$Nx2Lvl) + (datalist$Nx2Lvl+datalist$Nx1Lvl+1) ,

252 ncol=datalist$Nx1Lvl , byrow=T)

253 layout(layoutMat)

254 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

255 histinfo = plotPost(b0Sample , xlab=expression(beta * 0) , main="Baseline" ,

256 breaks=30)

257 for (x1idx in 1:datalist$Nx1Lvl) {

258 histinfo = plotPost(b1Sample[x1idx,] , xlab=bquote(beta*1[.(x1idx)]) ,

259 main=paste("x1:",x1names[x1idx]) , breaks=30)

260 }

261 for (x2idx in 1:datalist$Nx2Lvl) {

262 histinfo = plotPost(b2Sample[x2idx,] , xlab=bquote(beta*2[.(x2idx)]) ,

263 main=paste("x2:",x2names[x2idx]) , breaks=30)

264 }

265 for (x2idx in 1:datalist$Nx2Lvl) {

266 for (x1idx in 1:datalist$Nx1Lvl) {

267 hdiLim = HDIofMCMC(b1b2Sample[x1idx,x2idx,])

268 if (hdiLim[1]>0 | hdiLim[2]<0) { compVal=0 } else { compVal=NULL }

269 histinfo = plotPost(b1b2Sample[x1idx,x2idx,] , breaks=30 , compVal=compVal ,

270 xlab=bquote(beta*12[list(x1==.(x1idx),x2==.(x2idx))]) ,

271 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]))

272 }

273 }

274 dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

275

276 # Display contrast analyses

277 nContrasts = length(x1contrastList)

278 if (nContrasts > 0) {

279 nPlotPerRow = 5

280 nPlotRow = ceiling(nContrasts/nPlotPerRow)

281 nPlotCol = ceiling(nContrasts/nPlotRow)

282 windows(3.75*nPlotCol,2.5*nPlotRow)

283 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

284 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

285 for (cIdx in 1:nContrasts) {

286 contrast = matrix(x1contrastList[[cIdx]],nrow=1) # make it a row matrix

287 incIdx = contrast!=0

288 histInfo = plotPost(contrast %*% b1Sample , compVal=0 , breaks=30 ,

289 xlab=paste(round(contrast[incIdx],2) , x1names[incIdx] ,

290 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

291 cex.lab = 1.0 ,

292 main=paste("X1 Contrast:", names(x1contrastList)[cIdx]))

293 }

294 dev.copy2eps(file=paste(fnroot,"x1Contrasts.eps",sep=""))

295 }

296 #

297 nContrasts = length(x2contrastList)

298 if (nContrasts > 0) {

299 nPlotPerRow = 5

300 nPlotRow = ceiling(nContrasts/nPlotPerRow)

301 nPlotCol = ceiling(nContrasts/nPlotRow)

302 windows(3.75*nPlotCol,2.5*nPlotRow)

303 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

304 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

305 for (cIdx in 1:nContrasts) {

306 contrast = matrix(x2contrastList[[cIdx]],nrow=1) # make it a row matrix

307 incIdx = contrast!=0

308 histInfo = plotPost(contrast %*% b2Sample , compVal=0 , breaks=30 ,

22.4. R CODE FOR POISSON EXPONENTIAL MODEL 503

309 xlab=paste(round(contrast[incIdx],2) , x2names[incIdx] ,

310 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,

311 cex.lab = 1.0 ,

312 main=paste("X2 Contrast:", names(x2contrastList)[cIdx]))

313 }

314 dev.copy2eps(file=paste(fnroot,"x2Contrasts.eps",sep=""))

315 }

316 #

317 nContrasts = length(x1x2contrastList)

318 if (nContrasts > 0) {

319 nPlotPerRow = 5

320 nPlotRow = ceiling(nContrasts/nPlotPerRow)

321 nPlotCol = ceiling(nContrasts/nPlotRow)

322 windows(3.75*nPlotCol,2.5*nPlotRow)

323 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))

324 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))

325 for (cIdx in 1:nContrasts) {

326 contrast = x1x2contrastList[[cIdx]]

327 contrastArr = array(rep(contrast,chainLength) ,

328 dim=c(NROW(contrast),NCOL(contrast),chainLength))

329 contrastLab = ""

330 for (x1idx in 1:Nx1Lvl) {

331 for (x2idx in 1:Nx2Lvl) {

332 if (contrast[x1idx,x2idx] != 0) {

333 contrastLab = paste(contrastLab , "+" ,

334 signif(contrast[x1idx,x2idx],2) ,

335 x1names[x1idx] , x2names[x2idx])

336 }

337 }

338 }

339 histInfo = plotPost(apply(contrastArr * b1b2Sample , 3 , sum) ,

340 compVal=0 , breaks=30 , xlab=contrastLab , cex.lab = 0.75 ,

341 main=paste(names(x1x2contrastList)[cIdx]))

342 }

343 dev.copy2eps(file=paste(fnroot,"x1x2Contrasts.eps",sep=""))

344 }

345

346 # Compute credible cell probability at each step in the MCMC chain

347 lambda12Sample = 0 * b1b2Sample

348 for (chainIdx in 1:chainLength) {

349 lambda12Sample[,,chainIdx] = exp(

350 b0Sample[chainIdx]

351 + outer(b1Sample[,chainIdx] , b2Sample[,chainIdx] , "+")

352 + b1b2Sample[,,chainIdx])

353 }

354 cellp = 0 * lambda12Sample

355 for (chainIdx in 1:chainLength) {

356 cellp[,,chainIdx] = (lambda12Sample[,,chainIdx]

357 / sum(lambda12Sample[,,chainIdx]))

358 }

359 # Display credible cell probabilities

360 windows((datalist$Nx1Lvl)*2.75,(datalist$Nx2Lvl)*2.25)

361 layoutMat = matrix(1:(datalist$Nx2Lvl*datalist$Nx1Lvl) ,

362 nrow=(datalist$Nx2Lvl) , ncol=(datalist$Nx1Lvl) , byrow=T)

363 layout(layoutMat)

364 par(mar=c(4,1.5,2.5,0.5) , mgp=c(2,0.7,0))

365 maxp = max(cellp)

366 for (x2idx in 1:datalist$Nx2Lvl) {

367 for (x1idx in 1:datalist$Nx1Lvl) {

504 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

368 histinfo = plotPost(cellp[x1idx,x2idx,] ,

369 breaks=seq(0,maxp,length=51) , xlim=c(0,maxp) ,

370 xlab=bquote(probability[list(x1==.(x1idx),x2==.(x2idx))]) ,

371 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]) ,

372 HDItextPlace=0.95)

373 }

374 }

375 dev.copy2eps(file=paste(fnroot,"CellP.eps",sep=""))

376

377

378 #==

379 # Conduct NHST Pearson chi-square test of independence.

380

381 # Convert dataFrame to frequency table:

382 obsFreq = matrix(0 , nrow=Nx1Lvl , ncol=Nx2Lvl)

383 for (x1idx in 1:Nx1Lvl) {

384 for (x2idx in 1:Nx2Lvl) {

385 obsFreq[x1idx,x2idx] = y[dataFrame[,2]==x1names[x1idx]

386 & dataFrame[,3]==x2names[x2idx]]

387 }

388 }

389 obsFreq = t(obsFreq) # merely to match orientation of histogram display

390 chisqtest = chisq.test(obsFreq)

391 print("obs :")

392 print(chisqtest$observed)

393 print("(obs - exp)ˆ2 / exp :")

394 print((chisqtest$observed - chisqtest$expected)ˆ2 / chisqtest$expected)

395 print(chisqtest)

396

397 #==

22.5 Exercises

Exercise 22.1. [Purpose: Sample size and precision of estimate.] Consider the data regarding
hair color and eye color in Table 22.1, which is available foruse in the code of Section 22.4
(PoissonExponentialBrugs.R).

(A) Divide the original data frequencies by 2 and take theceiling() of the result. Thus,
the modified data areceiling(c(68,...,16) / 2). This modification (nearly) preserves
the relative proportions in each cell but halves the sample size. Run the program with
these modified data, show the histograms, and compute the width of the 95% HDI’s for the
contrasts.

(B) Multiply the original data vector by 5, so that all the cell frequencies are five times
larger than the original. This modification preserves the relative proportions in each cell
but quintuples the sample size. Run the program again. Show the histograms. Compute the
width of the 95% HDI’s for the contrasts. How do the precisions of the contrasts differ for
the reduced and the enlarged data?

Exercise 22.2.[Purpose: Explore “main effects” and interactions in a contingency table.] The data
section of the program in Section 22.4 (PoissonExponentialBrugs.R) includes data regarding
the type of crime committed by convicted criminals and whether or not the criminal is a
regular drinker of alcoholic beverages (Snee, 1974).

(A) Run the program with these data selected. Is there a crediblenon-independence of
the attributes? Describe the interaction in terms of the actual levels of the attributes (i.e.,

22.5. EXERCISES 505

type of crime and drinker or non-drinker).
(B) Is there a (“simple”) main effect of fraud versus rape? That is, marginalizing across

drinking, is there a credible difference in the proportion of criminals who committed fraud
or committed rape? Show the results of an appropriate contrast.

(C) Is the difference from the previous part the same among drinkers and non-drinkers?
In other words, is the effect of criminal type the same at all levels of drinking? Show the
results of an appropriate interaction contrast.

R12.R34xC12.C34

 + 0.25 C1 R1 + 0.25 C1 R2 + −0.25 C1 R3 + −0.25 C1 R4 + 0.25 C2 R1 + 0.25 C2 R2 + −0.25 C2 R3 + −0.25 C2 R4 + −0.25 C3 R1 + −0.25 C3 R2 + 0.25 C3 R3 + 0.25 C3 R4 + −0.25 C4 R1 + −0.25 C4 R2 + 0.25 C4 R3 + 0.25 C4 R4

0.0 0.5 1.0 1.5 2.0

mean = 0.532

2.1% <= 0 < 97.9%
95% HDI

−0.0127 1.23

R12.R34xC12.C34

 + 0.25 C1 R1 + 0.25 C1 R2 + −0.25 C1 R3 + −0.25 C1 R4 + 0.25 C2 R1 + 0.25 C2 R2 + −0.25 C2 R3 + −0.25 C2 R4 + −0.25 C3 R1 + −0.25 C3 R2 + 0.25 C3 R3 + 0.25 C3 R4 + −0.25 C4 R1 + −0.25 C4 R2 + 0.25 C4 R3 + 0.25 C4 R4

0.0 0.5 1.0 1.5 2.0

mean = 0.616

1.1% <= 0 < 98.9%
95% HDI

0.0408 1.3

Figure 22.6: For Exercise 22.3. Left histogram shows posterior interaction con-
trast for the “toy” data whendataMultiplier=6. A chi-square test (not shown)
indicates thatp > .05. Right histogram shows posterior interaction contrast for
the “toy” data whendataMultiplier=7. A chi-square test (not shown) indicates
that p < .05.

Exercise 22.3.[Purpose: Compare Bayesian analysis with chi-square test of independence.] This
exercise assumes that you have some familiarity with traditional chi-square tests of indepen-
dence. In the code of Section 22.4 (PoissonExponentialBrugs.R), the data section includes
some “toy” data, which we can manipulate and compare resultsof Bayesian and chi-square
analyses.

(A) Set thedataMultiplier to 6, and run the program. Include the histograms of theβ

parameters and of the interaction contrast. Does the 95% HDIof the contrast include zero?
The end of the program runs a chi-square test. What is thep value from the test? Hint: See
Figure 22.6.

(B) Set thedataMultiplier to 7, and run the program. Include the histograms of theβ

parameters and of the interaction contrast. Does the 95% HDIof the contrast include zero?
The end of the program runs a chi-square test. What is thep value from the test? Hint: See
Figure 22.6.

(C) . Typical chi-square tests rely on approximating the sampling distribution ofdiscrete
Pearson chi-square values (i.e.,

∑

r
∑

c(frc − f̂rc)2/ f̂rc) with thecontinuouschi-square distri-
bution (which derives from the sum of standardized normal samples). When the expected
frequencies,f̂rc, are too small, then the approximation is not very good, and the estimated
p value may be wrong. A usual heuristic for declaring the chi-square test to be suspect is
when (at least 10% of the) expected frequencies,f̂rc, are less than 5. This is why computer
packages will issue warnings when expected values are too small. Bayesian analysis has
no such problems. Set thedataMultiplier to 2, and run the program. Does the Bayesian
analysis complain or do anything wrong? (No.) The end of the program runs a chi-square
test. Is there a warning message? (Yes; report what it is.)

506 CHAPTER 22. CONTINGENCY TABLE ANALYSIS

Chapter 23

Tools in the Trunk
Contents

23.1 Reporting a Bayesian analysis .508
23.1.1 Essential points . 508
23.1.2 Optional points . 509
23.1.3 Helpful points . 509

23.2 MCMC burn-in and thinning . 510
23.3 Functions for approximating highest density intervals 513

23.3.1 R code for computing HDI of a grid approximation 513
23.3.2 R code for computing HDI of a MCMC sample 513
23.3.3 R code for computing HDI of a function 515

23.4 Reparameterization of probability distributions 516
23.4.1 Examples . 516
23.4.2 Reparameterization of two parameters 517

She changes her hair, and he changes his style,
She paints on her face, and he wears a fake smile,
She shrink wraps her head, and he stretches the truth;
But they’ll always be stuck with their done wasted youth.

This chapter includes a few a few important topics that can apply to many different
models throughout the book. The first topic is how to report a Bayesian analysis in a
scientific journal. The second topic is the details behind computing an HDI.

The third issue is something that has not come up explicitly very often in the book, but
lurks in the shadows all the time. This is the topic of reparameterization. For example,
the beta distribution has shape parametersa andb, but we regularly transformed them into
parametersµ andκ. The complication of reparameterization is that a probability distribution
on a parameter is not the same on the transformed parameter. In particular, if we specify a
prior on a parameter, but then transform the parameter, the implied prior on the transformed
parameter is different. (The quatrain at the beginning of the chapter has reparameterization
in mind.)

Kruschke, J. K. (2010).Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/
Elsevier. Copyrightc© 2010 by John K. Kruschke. Draft of May 11, 2010. Please do not circulate this
preliminary draft. If you report Bayesian analyses based onthis book, please do cite it! ¨⌢

507

508 CHAPTER 23. TOOLS IN THE TRUNK

23.1 Reporting a Bayesian analysis

Bayesian data analyses are not yet standard procedure in many fields of research, and no
conventional format for reporting them has been established. Therefore the researcher who
reports a Bayesian analysis must be sensitive to the background knowledge of his or her
specific audience, and frame the description accordingly. Ionce assigned an exercise to
students in which they had to write up the results of a Bayesian analysis as it would appear
in a research journal. Because I am a psychologist, a studentthen earnestly asked me, “Do
we have to write it as if it were for apsychologyjournal or for asciencejournal?” After
swallowing my feeling of injury at the implication that psychology is not science, I politely
asked the student to clarify the question. The student said,“For a psychology journal you
have to explain what you did, but for a science journal the reader has to puzzle it out.”

23.1.1 Essential points

When reporting a Bayesian analysis, the writer must addressthe following essential points:

• Motivate the use of Bayesian (non-NHST) analysis.Many audiences, including jour-
nal editors and reviewers, are used to NHST and unfamiliar with Bayesian methods.
You may motivate your use of Bayesian data analysis on several grounds, depending
in part on the particular application. For example, Bayesian models are designed to
be appropriate to the data structure, without having to makeapproximation assump-
tions typical in NHST. The inferences from a Bayesian analysis are richer and more
informative than NHST. And, of course, there is no reliance on p values.

• Clearly describe the model and its parameters.Because the posterior distribution is a
distribution over parameter values, the parameters must beclearly defined. This task
of describing the model can be arduous for complex hierarchical models, but it is
necessary and crucial if your analysis is to mean anything toyour audience. Because
the model refers to the data and their structure, the model description requires that
the structure of the data has already been explained.

• Clearly describe and justify the prior.It is crucial to convince your audience that
your prior is appropriate and does not predetermine the outcome. There is no escape
from this requirement, even when using “objective” or ”uninformed” priors, because
there is no unique choice of such priors and even they can havemajor consequences
for model comparison. The prior should be amenable to a skeptical audience. The
prior should be at least mildly informed to match the scale ofthe data being modeled.
If there is copious previous research using very similar methods, it should not be
ignored. Optionally, as mentioned again below, it may be helpful to try different
priors and report the robustness of the posterior.

• Mention the MCMC details, especially evidence that the chains were converged
(plenty of burn-in and no orphaned chains) and not clumpy (low auto-correlation
from sufficient thinning). Also state how many points there are in the final MCMC
sample. Usually this section of the report can be brief, if your audience believes that
you know what you’re doing and therefore took adequate caution to generate a trust-
worthy and representative sample from the posterior. See Section 23.2 for a reminder
of how to do this.

23.1. REPORTING A BAYESIAN ANALYSIS 509

• Interpret the posterior.Many models have dozens or even hundreds of parameters,
and therefore it is impossible to summarize all of them. The choice of which pa-
rameters or contrasts to report is driven by domain-specifictheory and by the results
themselves. You want to report the parameters and contraststhat are theoretically
meaningful, and those that showed effects driven by data, whether expected or not.
Reporting of HDI’s can be done in text alone, to save space. (Histograms of poste-
riors are useful for explanation in a textbook, but may be unnecessary in a concise
report.) Include scatterplots of correlated important parameters if the scatter is not
bivariate Gaussian. Be sure to describe effects of shrinkage if appropriate. If your
model includes interactions of predictors, be careful how you interpret lower-order
effects. Finally, if you are using a ROPE for posterior interpretation, justify its limits.

23.1.2 Optional points

The following points are not necessarily crucial to addressin every report, but certainly
should be considered. Whether or not to include these pointsdepends on the particulars of
the application domain, the points the reporter wants to make, and the audience to which
the report is being addressed.

• Robustness of the posterior for different priors.When there is real or imagined con-
tention about the prior, it can be most convincing simply to conduct the analysis with
different priors and demonstrate that the essential conclusions from the posterior do
not change. Which priors should be used? Those that are amenable to your audience,
such as reviewers and editors of the journal to which the report is submitted. This
uncertainty in the choice of priors may seem unappealing, but in fact it accurately
reflects the way science gets done, by incorporating previously conducted research
and addressing currently active researchers.

• Posterior predictive check.By generating simulated data from the credible parameter
values of the model, and examining the qualities of the simulated data, the veracity
of the model can be further bolstered, if the simulated data do resemble the actual
data. On the other hand, if the simulated data are discrepantfrom the actual data
in systematic and interpretable ways, then the posterior predictive check can inspire
new research and new models.

• Power analysis.For example, if there is only a weak effect in your results, what
sample size would be needed to achieve some desired precision in the estimate? If
you found a credible difference, what was the retrospective power of your experiment
and what is its replication power? This sort of information can be useful not only for
the researcher’s own planning, but it can also be useful to the audience of the report
to anticipate potential follow-up research and to assess the robustness of the currently
reported results.

23.1.3 Helpful points

Finally, to help science be cumulative, make your results available on the web:

• Post the raw data.There are two benefits of posting the original data. One benefit is
that subsequent researchers can analyze the data with different models. New insights
can be gained by alternative modeling interpretations. Thelongevity of the original

510 CHAPTER 23. TOOLS IN THE TRUNK

research is enhanced. A second benefit is that if an exact or near-exact replication is
conducted, the original data set can be concatenated with the new data set, to enhance
sensitivity of the new data.

• Post the MCMC sample of the posterior.There are two benefits of making the pos-
terior publicly available. One is that other researchers can explore the posterior for
effects and comparisons that were not in the report. Complex models have many pa-
rameters, and no single report can cover every possible perspective on the posterior
distribution. The longevity and impact of the research is thereby enhanced. A second
benefit is that if subsequent researchers do follow-up research with a similar design
and model, then the posted posterior can inform the prior of the subsequent analy-
sis. Because the full posterior automatically incorporates all the covariations between
all the parameters, the full posterior can be more useful than summaries of marginal
distributions in a report.

23.2 MCMC burn-in and thinning

When using a Markov chain to generate a Monte Carlo sample from a distribution, we want
to be sure that the resulting chain is a trulyrepresentativesample from the distribution.
There are several ways in which the chain might fail to be representative.

One problem is that the chains might start far from the true mode(s) of the distribution,
and therefore the early steps in the chain might be unrepresentative of the distribution. The
main way to mitigate this problem is to start the chains intelligently, instead of randomly, if
you can. If you know a point that is likely to be in the midst of the distribution, try starting
the chains there. Many of the programs in this book use this method. For example, in the
multiple linear regression program of Section 17.5.1 (MultipleLinearRegressionBrugs.R),
the chains were started at the maximum likelihood estimate,because it was assumed that
the posterior will be dominated by the data, not by the prior.Although a good starting point
reduces the time it takes for the chains to find the bulk of the distribution, the early steps
are still not necessarily representative because we still need to let the chains run a while to
dilute the influence of the initial value; see Figure 7.2, p. 102. This initial set of steps is
called theburn-in period.

Another problem is that the chains might not change value much from step to step, and
therefore take a long time to generate values from the entirebreadth of the distribution.
When consecutive steps have similar values, the chain is said to be highlyautocorrelated.
The problem is not merely taking a long time to generate the full range of the distribution.
The main problem is that an autocorrelated chain is “clumpy”: It over-represents some
values and under-represents other values. To primary way tomitigate this problem is tothin
the chain: Instead of using every step in the chain, we only use everymth step, wherem
could be 50 or 500 or larger, depending on the model and data.

Autocorrelation is measured simply as the correlation of the chain values with the values
L steps behind (or ahead), whereL is called the “lag”. Expressed in terms of R code, if the
chain is the vectorv and it hasW components, then the autocorrelation at lagL is ACF(L)=
cor(v[1:(W-L)] , v[(L+1):W]). At L=0, the ACF(0) is 1.0, of course. If consecutive steps
in the chain are very similar, then ACF(1) will be close to 1.0, but if consecutive steps in
the chain are uncorrelated, then ACF(1) will be close to zero.

Another problem is that it is possible for chains to get stuckin unrepresentative regions
of parameter space if they are initialized poorly or take a bad jump. As a check that the

23.2. MCMC BURN-IN AND THINNING 511

0 50 100 150 200

0
2

4
6

8
10

’aSD’

iteration
10000 10050 10100 10150 10200

1
2

3
4

5
6

’aSD’

iteration
10000 10050 10100 10150 10200

0
2

4
6

8

’aSD’

iteration

0 50 100 150 200

0.
0

1.
0

2.
0

3.
0

aSD

iteration

bg
r

10000 10050 10100 10150 10200

0.
0

0.
5

1.
0

1.
5

2.
0

aSD

iteration

bg
r

10000 10050 10100 10150 10200

0.
0

0.
4

0.
8

1.
2

aSD

iteration

bg
r

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

’aSD’

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

’aSD’

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F
’aSD’

Figure 23.1: Effects of burn-in and thinning on MCMC chains.Left column:Zero
burn-in steps and no thinning.Middle column:10,000 burn-in steps and no thin-
ning. Right column:10,000 burn-in steps and thinning to 1 every 500 steps.

chains are actually exploring the bulk of the distribution,and are not stuck in some unrep-
resentative zone, we run several chains at once and examine whether they are well mixed,
without any outlying chain.

One measure of mixing considers the variability between chains relative to the variabil-
ity within chains. If the chains are well mixed, then this ratio should be about 1, i.e., there
should be no more variability between chains than within chains. But if the chains are not
well mixed, and one or more chains is lingering far from the others, then the variance be-
tween chains will be larger than the variance within chains.This ratio is merely anF ratio
for the chain values over a specified window of steps. In BUGS it is called the bgr statistic,
after Brooks, Gelman and Rubin (see Brooks & Gelman, 1998).

To illustrate these ideas, consider theσβ parameter from oneway ANOVA, near the
top of the hierarchical diagram of Figure 18.1, p. 403. This standard deviation ex-
presses the estimated variation across groups. In the BRugsprogram of Section 18.4.1
(ANOVAonewayBRugs.R), this parameter is denotedaSD. The top-left panel of Figure 23.1 shows
the initial steps of three chains when they are intentionally started far from truly representa-

512 CHAPTER 23. TOOLS IN THE TRUNK

tive values. You can see that it takes about 50 steps (labeledas “iterations” in the graph) for
the chains to descend to representative values. The top-middle panel of Figure 23.1 shows
the chains after 10,000 burn-in steps (which is overkill forthis particular application). The
chains appear to be converged, without systematically increasing or decreasing.

The bottom row of panels in Figure 23.1 shows the autocorrelation function, ACF. The
left and middle columns show results when there is no thinning of the chains, and you can
see that the ACF remains high for lags up to 15 or 20 steps. The autocorrelation is visible in
the chains themselves as sustained plateaus during which the values from step to step barely
change. The right column shows results when the chains were thinned, keeping only 1 step
in every 500. You can see that after even one of the thinned steps, ACF(L=1) is nearly zero.

The middle row of Figure 23.1 shows the bgr statistic, which measures how well mixed
the chains are, over a limited length of the chains. As mentioned above, the bgr should
be around 1.0. The plots show the bgr as a curve (plotted as redby BUGS) hovering near
a value of 1.0. The two other curves, lower in graphs (and plotted as green and blue by
BUGS), show the between-chain and within-chain variances.In this particular application,
the chains converge quickly and well.

The graphs in Figure 23.1 were produced by the following R program, which can be
called after running any BUGS model. The argumentnodename is a string that is name of
any variable monitored by BUGS. (plotChains.R)

1 plotChains = function(nodename , saveplots=F , filenameroot="DeleteMe") {

2 summarytable = samplesStats(nodename)

3 show(summarytable)

4 nCompon = NROW(summarytable)

5 nPlotPerRow = 5

6 nPlotRow = ceiling(nCompon/nPlotPerRow)

7 nPlotCol = ceiling(nCompon/nPlotRow)

8 windows(3.75*nPlotCol,3.5*nPlotRow)

9 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))

10 samplesHistory(nodename , ask=F , mfrow=c(nPlotRow,nPlotCol) ,

11 cex.lab=1.5 , cex.main=1.5)

12 if (saveplots) {

13 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,

14 "history.eps" , sep="")) }

15 windows(3.75*nPlotCol,3.5*nPlotRow)

16 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))

17 samplesAutoC(nodename , chain=1 , ask=F , mfrow=c(nPlotRow,nPlotCol) ,

18 cex.lab=1.5 , cex.main=1.5)

19 if (saveplots) {

20 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,

21 "autocorr.eps" , sep="")) }

22 windows(3.75*nPlotCol,3.5*nPlotRow)

23 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))

24 samplesBgr(nodename , ask=F , mfrow=c(nPlotRow,nPlotCol) ,

25 cex.lab=1.5 , cex.main=1.5)

26 if (saveplots) {

27 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,

28 "bgr.eps" , sep="")) }

29 return(summarytable)

30 }

23.3. FUNCTIONS FOR APPROXIMATING HIGHEST DENSITY INTERVALS 513

23.3 Functions for approximating highest density intervals

HDI’s have been used routinely throughout the book to describe distributions. This section
provides details regarding how the HDI’s are computed. The algorithm for computing an
HDI on a grid approximation applied to any dimensionality and any shape distribution. The
algorithms for computing an HDI of an MCMC sample or for a function apply only to
single parameters with unimodal distributions.

23.3.1 R code for computing HDI of a grid approximation

This function was first used in the R code of Section 6.7.1 (BernGrid.R), and again in Sec-
tion 8.8.1 (BernTwoGrid.R).

We can imagine the grid approximation of a distribution as a landscape of poles sticking
up from each point on the parameter grid, with the height of each pole indicating the proba-
bility mass at that discrete point. We can imagine the highest density region by visualizing
a rising tide: We gradually flood the landscape, monitoring the total mass of the poles that
protrude above water, stopping the flood when 95% (say) of themass remains protruding.
The waterline at that moment defines the highest density region.

The program, listed below, finds the approximate highest density region in a somewhat
analogous way. It uses one extra trick at the beginning, however. It first sorts all the poles in
order of height, from tallest to shortest. The idea is to movedown the sorted queue of poles
until the cumulative probability has just barely exceeded 95% (or whatever). The resulting
height is the “waterline” that defines all points inside the highest density. See the comments
in the top of the code for details of how to use the function.

(HDIofGrid.R)

1 HDIofGrid = function(probMassVec , credMass=0.95) {

2 # Arguments:

3 # probMassVec is a vector of probability masses at each grid point.

4 # credMass is the desired mass of the HDI region.

5 # Return value:

6 # A list with components:

7 # indices is a vector of indices that are in the HDI

8 # mass is the total mass of the included indices

9 # height is the smallest component probability mass in the HDI

10 # Example of use: For determining HDI of a beta(30,12) distribution

11 # approximated on a grid:

12 # > probDensityVec = dbeta(seq(0,1,length=201) , 30 , 12)

13 # > probMassVec = probDensityVec / sum(probDensityVec)

14 # > HDIinfo = HDIofGrid(probMassVec)

15 # > show(HDIinfo)

16 sortedProbMass = sort(probMassVec , decreasing=T)

17 HDIheightIdx = min(which(cumsum(sortedProbMass) >= credMass))

18 HDIheight = sortedProbMass[HDIheightIdx]

19 HDImass = sum(probMassVec[probMassVec >= HDIheight])

20 return(list(indices = which(probMassVec >= HDIheight) ,

21 mass = HDImass , height = HDIheight))

22 }

23.3.2 R code for computing HDI of a MCMC sample

The algorithms for computing the HDI for an MCMC sample or fora function rely on a
crucial property: For a unimodal probability distributionon a single variable, the HDI of

514 CHAPTER 23. TOOLS IN THE TRUNK

massM is thenarrowestpossible interval of that mass. Figure 23.2 illustrates whythis
is true. Consider the 90% HDI as shown. We construct another interval of 90% mass by
moving the limits of the HDI to right, such that each limit is moved to a point that covers
4%, as marked in grey in Figure 23.2. The new interval does indeed cover 90%, because
the 4% lost on the left is replaced by the 4% gained on the right.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

HDI is shortest

θ

p(
θ)

4% 4%

90% HDI width = 3.29

90% width = 3.67

Figure 23.2: For a unimodal distribution, the HDI is the narrowest interval of that
mass. This figure shows the 90% HDI and another interval that has 90% mass.

Consider the grey regions in Figure 23.2. Their left edges have the same height, because
the left edges are defined by the HDI. Their areas are the same,because, by definition, the
areas are both 4%. Notice, however, that the left grey area istaller than the right grey area,
because the left edge falls at a point where the distributionis increasing in density, but the
right edge falls at a point where the distribution is decreasing in density. Therefore, because
the areas are the same but the left is taller than the right,the width of the left grey zone must
be less than the width of the right grey zone. Consequently, the distance between right edges
of the two grey zones must be greater than the HDI width. The exact widths are marked in
Figure 23.2.

This argument applies for any size of grey zone, and for any mass HDI. The argument
relies on unimodality, however. Given the argument and diagram in Figure 23.2, it is not too
hard to believe the converse: For a unimodal distribution onone variable, for any massM,
the interval containing massM that has the narrowest width is the HDI for that mass. The
algorithms described below are based on this property of HDIs. The algorithms find the
HDI by searching among candidate intervals of massM. The shortest one found is declared
to be the approximate HDI. It is an approximation, of course.(See Chen and Shao (1999)
for more details, and Chen, He, Shao, and Xu (2003) for dealing with the unusual situation
of multimodal distributions.)

Below is the code for finding the HDI of an MCMC sample. It is brief and hopefully
self-explanatory after the discussion above.

(HDIofMCMC.R)
1 HDIofMCMC = function(sampleVec , credMass=0.95) {

2 # Computes highest density interval from a sample of representative values,

23.3. FUNCTIONS FOR APPROXIMATING HIGHEST DENSITY INTERVALS 515

3 # estimated as shortest credible interval.

4 # Arguments:

5 # sampleVec

6 # is a vector of representative values from a probability distribution.

7 # credMass

8 # is a scalar between 0 and 1, indicating the mass within the credible

9 # interval that is to be estimated.

10 # Value:

11 # HDIlim is a vector containing the limits of the HDI

12 sortedPts = sort(sampleVec)

13 ciIdxInc = floor(credMass * length(sortedPts))

14 nCIs = length(sortedPts) - ciIdxInc

15 ciWidth = rep(0 , nCIs)

16 for (i in 1:nCIs) {

17 ciWidth[i] = sortedPts[i + ciIdxInc] - sortedPts[i]

18 }

19 HDImin = sortedPts[which.min(ciWidth)]

20 HDImax = sortedPts[which.min(ciWidth) + ciIdxInc]

21 HDIlim = c(HDImin , HDImax)

22 return(HDIlim)

23 }

23.3.3 R code for computing HDI of a function

This program finds the HDI of a probability density function that is specified mathemati-
cally in R. For example, it can find HDI’s of normal densities or of beta densities or gamma
densities, because those densities are specified as functions in R.

What the program accomplishes is just a search of HDI’s, converging to the shortest
one, but it does this by using some commands and R functions that have not been used
much, or at all, elsewhere in the book. One function that the program uses is theinverse
cumulative density function(ICDF) for whatever probability distribution is being targeted.
We have seen one case of an ICDF previously, namely the probitfunction, which is the
inverse of the cumulative-density function for the normal distribution. In R, the ICDF of
the normal is theqnorm(x) function, where the argumentx is a value between zero and one.
The program for finding the HDI takes, as one of its arguments,R’s name for the ICDF
of the function. For example, if we want to find an HDI of a normal density, we pass in
ICDFname="qnorm".

The crucial function called by the program is R’soptimize routine. Theoptimize routine
searches the minimum of a specified function over a specified domain. In the program
below, we define a function calledintervalWidth that returns the width of the interval that
starts atlowTailPr and has 95% mass. ThisintervalWidth function is repeatedly called from
theoptimize routine until it converges to a minimum.

(HDIofICDF.R)

1 HDIofICDF = function(ICDFname , credMass=0.95 , tol=1e-8 , ...) {

2 # Arguments:

3 # ICDFname is R’s name for the inverse cumulative density function

4 # of the distribution.

5 # credMass is the desired mass of the HDI region.

6 # tol is passed to R’s optimize function.

7 # Return value:

8 # Highest density iterval (HDI) limits in a vector.

9 # Example of use: For determining HDI of a beta(30,12) distribution, type

10 # HDIofICDF(qbeta , shape1 = 30 , shape2 = 12)

516 CHAPTER 23. TOOLS IN THE TRUNK

11 # Notice that the parameters of the ICDFname must be explicitly named;

12 # e.g., HDIofICDF(qbeta , 30 , 12) does not work.

13 # Adapted and corrected from Greg Snow’s TeachingDemos package.

14 incredMass = 1.0 - credMass

15 intervalWidth = function(lowTailPr , ICDFname , credMass , ...) {

16 ICDFname(credMass + lowTailPr , ...) - ICDFname(lowTailPr , ...)

17 }

18 optInfo = optimize(intervalWidth , c(0 , incredMass) , ICDFname=ICDFname ,

19 credMass=credMass , tol=tol , ...)

20 HDIlowTailPr = optInfo$minimum

21 return(c(ICDFname(HDIlowTailPr , ...) ,

22 ICDFname(credMass + HDIlowTailPr , ...)))

23 }

23.4 Reparameterization of probability distributions

There are situations in which it is natural to express a distribution on one scale, but pa-
rameterize it mathematically on a different scale. For example, we may think intuitively of
the standard deviation of a normal distribution, but have toparameterize it in terms of the
precision (i.e., reciprocal of the variance). As another example, we may think intuitively of
an underlying bias on an infinite scale, but have to parameterize it on a zero-to-one interval.
The question is, if we express a probability distribution onone scale, what is the equivalent
distribution on a transformed scale?

The answer is not difficult to figure out, especially for single parameters. Let the
“destination” parameter be denotedθ, and suppose thatθ = f (φ) for the “source” pa-
rameterφ, with a monotonic and differentiable functionf . Let the probability distri-
bution onφ be denotedp(φ). Then the corresponding probability distribution onθ is

p(θ) = p
(

f −1(θ)
) /∣∣

∣
∣ f ′

(

f −1(θ)
)∣∣
∣
∣ , where f ′(φ) is the derivative off with respect toφ.

Here’s why. Consider a small (actually infinitesimal) interval under the distribution
p(φ), at a particular valueφ. Call the width of the intervaldφ. The probability mass in
that interval is the product of the density and the width, i.e., p(φ) dφ. We want to con-
struct a density onθ, which we denotep(θ) = p (f (φ)), that has the same probability mass
in the corresponding interval atθ = f (φ). The width of the corresponding interval onθ
is, by definition of derivative,dθ = dφ | f ′(φ)|. So the probability mass in that interval is
p(θ)dθ = p (f (φ)) dφ | f ′(φ)|. Therefore, to equate the probability masses in the correspond-
ing intervals, we require thatp (f (φ)) dφ | f ′(φ)| = p(φ) dφ, which, when re-arranged, yields
p (f (φ)) = p(φ) /| f ′(φ)| .

23.4.1 Examples

We can apply the general formula to the case in whichθ = f (φ) = sig(φ) = 1/[1+exp(−φ)],
and the distribution onφ is p(φ) = (f (φ))a (1− f (φ))b /B (a, b) = θa (1− θ)b /B(a, b). No-
tice that the derivative off is f ′(φ) = exp(−φ)/[1+exp(−φ)]2 = sig(φ) (1−sig(φ)) = θ(1−θ).
Therefore, the equivalent probability density atθ = f (φ) is p (θ) = p(φ)/ f ′(φ) =
θa (1− θ)b /[θ(1− θ)B(θ; a, b)] = θ(a−1) (1− θ)(b−1) /B(a, b) = beta(θ; a, b). The upper row
of Figure 23.3 shows this situation whena = b = 1. An intuitive way to think of this
situation is that the probability onφ is dense nearφ = 0, but that is exactly where the sig-
moidal transformation stretches the distribution. On the other hand, the probability onφ
is sparse at large positive or large negative values, but that is exactly where the sigmoidal

23.4. REPARAMETERIZATION OF PROBABILITY DISTRIBUTIONS 517

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

φ

p(
φ)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ
θ

=
f(φ

)

 ⇒

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

θ

p(
θ)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ψ

p(
ψ

)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ψ

θ
=

f(ψ
)

 ⇒

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

θ

p(
θ)

Figure 23.3: Top row shows a reparameterization that maps [−∞,+∞] to [0, 1].
Bottom row shows a reparameterization that maps [0,+∞] to [0, 1].

0.5 1.0 1.5 2.0

0.
3

0.
4

0.
5

0.
6

0.
7

Standard deviation SD

p(
S

D
)

0.5 1.0 1.5 2.0

0
20

40
60

80
10

0

Standard deviation SD

P
re

ci
si

on
 t

 ⇒

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Precision t

p(
t)

Figure 23.4: A uniform distribution on standard deviation,mapped to the corre-
sponding distribution on precision.

transformation compresses the distribution.
As another example, consider a case in whichθ = f (ψ) = 1− exp(−ψ), with the prob-

ability densityp(ψ) = exp(−ψ). Notice that the derivative of the transformation isf ′(ψ) =
exp(−ψ), and therefore the equivalent density atθ = f (φ) is p (f (ψ)) = p(ψ)/ f ′(ψ) = 1. In
other words, the equivalent density onθ is the uniform density, as shown in the lower panel
of Figure 23.3.

As a final example, Figure 23.4 shows a uniform distribution on standard deviation
transformed to the corresponding distribution on precision. By definition, precision is the
reciprocal of squared standard deviation.

23.4.2 Reparameterization of two parameters

When there is more than one parameter being transformed, thecalculus becomes a little
more involved. Suppose we have a probability density on a two-parameter space,p(α1, α2).
Let β1 = f1(α1, α2) andβ2 = f2(α1, α2). Our goal is to find the probability densityp(β1, β2)

518 CHAPTER 23. TOOLS IN THE TRUNK

that corresponds top(α1, α2). We do this by considering infinitesimal corresponding re-
gions. Consider a pointα1, α2. The probabilitymassof a small region near that point is
the density at that point times the area of the small region:p(α1, α2) dα1 dα2. The cor-
responding region in the transformed parameters should have the same mass. That mass
is the density at the transformed point times the area of the region mapped to from the
originating region. In vector calculus textbooks, you can find discussions demonstrating
that the area of the mapped-to region is|det(J)|dα1 dα2 whereJ is the Jacobian matrix:
Jrc = d fr (α1, α2)/dαc and det(J) is the determinant of the Jacobian matrix. Setting the two
masses equal and re-arranging yieldsp(β1, β2) = p(α1, α2)/|det(J)|.

As we have had no occasions to apply this transformation, no examples will be provided
here. But the method has been mentioned for those intrepid souls who may wish to venture
into the wilderness of multivariate probability distributions with nothing more than pen and
paper.

References

Adcock, C. J. (1997). Sample size determination: a review.The Statistician, 46, 261–283.

Agresti, A., & Hitchcock, D. B. (2005). Bayesian inference for categorical data analysis.
Statistical Methods& Applications, 14(3), 297–330.

Albert, J. H., & Rossman, A. J. (2001).Workshop statistics: Discovery with data, a
Bayesian approach. Emeryville, CA: Key College Publishing.

Berger, J. O. (1985).Statistical decision theory and Bayesian analysis, 2nd edition. New
York: Springer.

Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the illusion of objectivity.
American Scientist, 76(2), 159–165.

Berger, R. L., Boos, D. D., & Guess, F. M. (1988). Tests and confidence sets for comparing
two mean residual life functions.Biometrics, 44(1), 103–115.

Berry, D. A. (1996).Statistics: A Bayesian perspective. Belmont, CA: Duxbury Press/
Wadsworth.

Berry, D. A., & Hochberg, Y. (1999). Bayesian perspectives on multiple comparisons.
Journal of Statistical Planning and Inference, 82(1-2), 215–227.

Bishop, C. M. (2006).Pattern recognition and machine learning. New York: Springer.

Bliss, C. I. (1934). The method of probits.Science, 79(2037), 38–39.

Bolstad, W. M. (2007).Introduction to Bayesian statistics(2nd ed.). Hoboken, NJ: Wiley.

Brambor, T., Clark, W. R., & Golder, M. (2006). Understanding interaction models:
Improving empirical analyses.Political Analysis, 14, 63–82.

Braumoeller, B. F. (2004). Hypothesis testing and multiplicative interaction terms.Inter-
national Organization, 58(04), 807–820.

Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning
of probabilistic inference tasks.Organizational Behavior and Human Performance, 11,
1–27.

Brooks, S. P., & Gelman, A. (1998). Alternative methods for monitoring convergence of
iterative simulations.Journal of Computational and Graphical Statistics, 7, 434–455.

Carlin, B. P., & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo
methods.Journal of the Royal Statistical Society, B, 57(3), 473–484.

519

520 REFERENCES

Carlin, B. P., & Louis, T. A. (2000).Bayes and empirical Bayes methods for data analysis
(2nd ed.). Boca Raton, FL: Chapman & Hall/ CRC.

Carlin, B. P., & Louis, T. A. (2009).Bayesian methods for data analysis(3rd ed.). Boca
Raton, FL: CRC Press.

Casella, G., & Moreno, E. (2006). Objective Bayesian variable selection.Journal of the
American Statistical Association, 101(473), 157–167.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review.Statistical
Science, 10(3), 273–304.

Chen, M.-H., He, X., Shao, Q.-M., & Xu, H. (2003). A Monte Carlo gap test in computing
HPD regions. Development of Modern Statistics and Related Topics: In Celebration of
Professor Yaoting Zhang’s 70th Birthday, 38–52.

Chen, M. H., & Shao, Q. M. (1999). Monte Carlo estimation of Bayesian credible and
HPD intervals.Journal of Computational and Graphical Statistics, 8, 69–92.

Clyde, M., & George, E. I. (2004). Model uncertainty.Statistical Science, 81–94.

Congdon, P. (2005).Bayesian models for categorical data. West Sussex, England: Wiley.

Damgaard, L. H. (2007). Technical note: How to use WinBUGS todraw inferences in
animal models.Journal of Animal Science, 85, 1363–1368.

Dawes, J. (2008). Do data characteristics change accordingto the number of scale points
used? an experiment using 5-point, 7-point and 10-point scales. International Journal of
Market Research, 50(1), 61–77.

de Saint-Exupery, A. (1943).The little prince. San Diego: Harcourt.

De Santis, F. (2004). Statistical evidence and sample size determination for Bayesian
hypothesis testing.Journal of Statistical Planning and Inference, 124, 121–144.

De Santis, F. (2007). Using historical data for Bayesian sample size determination.Jour-
nal of the Royal Statistical Society: Series A, 170, 95–113.

DeGroot, M. H. (2004).Optimal statistical decisions. New York: Wiley Interscience.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for
psychological research.Psychological Review, 70, 193–242.

Feldman, H. A. (1988). Families of lines: random effects in linear regression analysis.
Journal of Applied Physiology, 64(4), 1721–1732.

Freedman, L. S., Lowe, D., & Macaskill, P. (1984). Stopping rules for clinical trials
incorporating clinical opinion.Biometrics, 40, 575–586.

Gallistel, C. R. (2009). The importance of proving the null.Psychological Review, 116(2),
439–453.

Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: asymptotics and exact
calculations.Journal of the Royal Statistical Society, Series B, 56, 501–514.

REFERENCES 521

Gelman, A. (2005). Analysis of variance — why it is more important than ever.The
Annals of Statistics, 33(1), 1–53.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1(3), 515–533.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004).Bayesian data analysis
(2nd ed.). Boca Raton, Florida: CRC Press.

Gelman, A., & Hill, J. (2007).Data analysis using regression and multilievel/hierarchical
models. New York: Cambridge University Press.

Gelman, A., Hill, J., & Yajima, M. (2009). Why we (usually)
don’t have to worry about multiple comparisons. Available from
http://www.stat.columbia.edu/∼gelman/research/unpublished/multiple2.pdf

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbsdistributions, and the
Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721–741.

George, D. N., & Pearce, J. M. (1999). Acquired distinctiveness is controlled by stimu-
lus relevance not correlation with reward.Journal of Experimental Psychology: Animal
Behavior Processes, 25(3), 363–373.

George, E. I. (2000). The variable selection problem.Journal of the American Statistical
Association, 95(452).

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without
instruction: Frequency formats.Psychological Review, 102, 684-704.

Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted
to know about significance testing but were afraid to ask. In D. Kaplan (Ed.),The Sage
handbook of quantitative methodology for the social sciences (pp. 391–408). Thousand
Oaks, CA: Sage.

Gilks, W. R., Thomas, A., & Spiegelhalter, D. J. (1994). A language and program for
complex Bayesian modelling.The Statistician, 43(1), 169–177.

Gill, J. (2002). Bayesian methods for the social and behavioral sciences. Boca Raton,
Florida: CRC Press.

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot handin basketball: On the
misperception of random sequences.Cognitive Psychology, 17(3), 295–314.

Gopalan, R., & Berry, D. (1998). Bayesian multiple comparisons using Dirichlet process
priors. Journal of the American Statistical Association, 1130–1139.

Gosset, W. S. (1908). The probable error of a mean.Biometrika, 6, 1–25.

Greenland, S. (2008). Invited commentary: variable selection versus shrinkage in the
control of multiple confounders.American Journal of Epidemiology, 167(5), 523–529.

522 REFERENCES

Guber, D. L. (1999). Getting what you pay for: The debate overequity in pub-
lic school expenditures. Journal of Statistics Education, 7(2). Available from
http://www.amstat.org/publications/JSE/secure/v7n2/datasets.guber.cfm

Hahn, U., Chater, N., & Richardson, L. B. (2003). Similarityas transformation.Cognition,
87(1), 1–32.

Han, C., & Carlin, B. P. (2001). Markov chain Monte Carlo methods for computing Bayes
factors: A comparative review.Journal of the American Statistical Association, 96(455),
1122–1132.

Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J., & Ostrowski, E. (1994).A handbook
of small data sets. London: Chaprman & Hall.

Hobbs, B. P., & Carlin, B. P. (2008, January). Practical Bayesian design and analysis for
drug and device clinical trials.Journal of Biopharmaceutical Statistics, 18(1), 54–80.

Hoffman, P. J., Earle, T. C., & Slovic, P. (1981). Multidimensional functional learning
(MFL) and some new conceptions of feedback.Organizational Behavior and Human
Performance, 27(1), 75–102.

Holcomb, J., & Spalsbury, A. (2005). Teaching students to use summary statistics and
graphics to clean and analyze data.Journal of Statistics Education, 13(3). Available from
http://www.amstat.org/publications/jse/v13n3/datasets.holcomb.html

Hyndman, R. J. (1996). Computing and graphing highest density regions.The American
statistician, 50(2), 120–126.

Joseph, L., Wolfson, D. B., & du Berger, R. (1995a). Sample size calculations for binomial
proportions via highest posterior density intervals.The Statistician, 44, 143–154.

Joseph, L., Wolfson, D. B., & du Berger, R. (1995b). Some comments on Bayesian sample
size determination.The Statistician, 44, 167–171.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergenera-
tional knowledge transmission reveals inductive biases.Psychonomic Bulletin& Review,
14(2), 288.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors.Journal of the American Statistical
Association, 90, 773–795.

Keith, T. (2005).Multiple regression and beyond. Columbus, OH: Allyn & Bacon.

Kolmogorov, A. N. (1956).Foundations of the theory of probability. New York: Chelsea.

Krauss, S., Martignon, L., & Hoffrage, U. (1999). Simplifying Bayesian inference: The
general case. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.),Model-based reasoning
in scientific discovery(pp. 165–180). New York: Springer.

Kruschke, J. K. (1993). Human category learning: Implications for backpropagation
models.Connection Science, 5, 3–36.

REFERENCES 523

Kruschke, J. K. (1996). Dimensional relevance shifts in category learning.Connection
Science, 8, 201–223.

Kruschke, J. K. (2008). Bayesian approaches to associativelearning: From passive to
active learning.Learning& Behavior, 36(3), 210-226.

Kruschke, J. K. (2009). Highlighting: A canonical experiment. In B. Ross (Ed.),The
psychology of learning and motivation(Vol. 51, pp. 153–185). Elsevier/ Academic Press.

Kruschke, J. K. (2010). Bayesian data analysis.Wiley Interdisciplinary Reviews: Cogni-
tive Science, ** (**), **-**.

Learner, E. E. (1978).Specification searches. New York: Wiley.

Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition.Psy-
chonomic Bulletin& Review, 12(4), 605–621.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O.(2008). Mixtures ofg
priors for Bayesian variable selection.Journal of the American Statistical Association,
103, 410–423.

Likert, R. (1932). A technique for the measurement of attitudes.Archives of Psychology,
140, 1–55.

Lindley, D. V. (1997). The choice of sample size.The Statistician, 46, 129–138.

Lindley, D. V., & Phillips, L. D. (1976). Inference for a Bernoulli processs (a Bayesian
view). The American Statistician, 30(3), 112–119.

Lindquist, M. A., & Gelman, A. (2009). Correlations and multiple comparisons in func-
tional imaging – a statistical perspective.Perspectives in Psychological Science, 4(3),
310–313.

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizabil-
ity. Journal of Mathematical Psychology, 52, 362–375.

Lynch, S. M. (2007).Introduction to applied Bayesian statistics and estimation for social
scientists. New York: Springer.

MacKay, D. J. C. (2003).Information theory, inference& learning algorithms. Cam-
bridge, UK: Cambridge University Press.

Marin, J.-M., & Robert, C. P. (2007).Bayesian core: A practical approach to computa-
tional Bayesian statistics. New York: Springer.

Maxwell, S. E., & Delaney, H. D. (2004).Designing experiments and analyzing data: a
model comparison perspective(2nd ed.). Mahwah, NJ: Erlbaum.

McCullagh, P., & Nelder, J. (1989).Generalized linear models, 2nd ed.Boca Raton, FL:
Chapman and Hall/CRC.

McDonald, J. H. (2009).Handbook of biological statistics (2nd ed.). Baltimore, Mary-
land: Sparky House Publishing.

524 REFERENCES

McDonald, J. H., Seed, R., & Koehn, R. K. (1991). Allozymes and morphometric char-
acters of three species of Mytilus in the Northern and Southern Hemispheres.Marine
Biology, 111(3), 323–333.

McIntyre, L. (1994). Using cigarette data for an introduction to mul-
tiple regression. Journal of Statistics Education, 2(1). Available from
http://www.amstat.org/publications/jse/v2n1/datasets.mcintyre.html

Meng, C. Y. K., & Dempster, A. P. (1987). A Bayesian approach to the multiplicity
problem for significance testing with binomial data.Biometrics, 43(2), 301–311.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equations of state calulations by fast computing machines.Journal of Chemical Physics,
21, 1087–1091.

Meyer, R., & Yu, J. (2000). BUGS for a Bayesian analysis of stochastic volatility models.
Econometrics Journal, 3(2), 198–215.

Miller, J. (2009). What is the probability of replicating a statistically significant effect?
Psychonomic Bulletin& Review, 16(4), 617–640.

Moore, T. L. (2006). Paradoxes in film ratings. Jour-
nal of Statistics Education, 14(1). Available from
www.amstat.org/publications/jse/v14n1/datasets.moore.html

Mueller, P., Parmigiani, G., & Rice, K. (2007). FDR and Bayesian multiple comparisons
rules. In J. M. Bernardo et al. (Eds.),Bayesian statistics 8.Oxford, UK: Oxford University
Press.

Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling individual
differences using Dirichlet processes.Journal of Mathematical Psychology, 50, 101–122.

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models.Journal of the
Royal Statistical Society. Series A (General), 135(3), 370–384.

Nietzsche, F. (1967).The will to power. New York: Random House. (Translated by W.
Kaufmann and R. J. Hollingdale)

Ntzoufras, I. (2009).Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.

Oswald, C. J. P., Yee, B. K., Rawlins, J. N. P., Bannerman, D. B., Good, M., & Honey,
R. C. (2001). Involvement of the entorhinal cortex in a process of attentional modula-
tion: Evidence from a novel variant of an IDS/EDS procedure.Behavioral neuroscience,
115(4), 841–849.

Pham-Gia, T., & Turkkan, N. (1992). Sample size determination in Bayesian analysis.
The Statistician, 41, 389–392.

Poldrack, R. A. (2006). Can cognitive processes be inferredfrom neuroimaging data?
Trends in Cognitive Sciences, 10(2), 59–63.

Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate.Techno-
metrics, 375–383.

REFERENCES 525

Qian, S. S., & Shen, Z. (2007). Ecological applications of multilevel analysis of variance.
Ecology, 88(10), 2489–2495.

Robert, C. P., & Casella, G. (2004).Monte Carlo statistical methods(2nd ed.). New York:
Springer.

Rosa, L., Rosa, E., Sarner, L., & Barrett, S. (1998). A close look at therapeutic touch.
Journal of the American Medical Association, 279(13), 1005–1010.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with
an application in the theory of signal detection.Psychonomic Bulletin& Review, 12(4),
573–604.

Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for
estimating response time distributions.Psychonomic Bulletin& Review, 12(2), 195–223.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian
t-tests for accepting and rejecting the null hypothesis.Psychonomic Bulletin& Review,
16, 225–237.

Roy, A., Ghosal, S., & Rosenberger, W. F. (2009). Convergence properties of sequential
Bayesian D-optimal designs.Journal of Statistical Planning and Inference, 139, 425–440.

Sadiku, M. N. O., & Tofighi, M. R. (1999). A tutorial on simulation of queueing models.
International Journal of Electrical Engineering Education, 36, 102–120.

Scott, J. G., & Berger, J. O. (2006). An exploration of aspects of Bayesian multiple testing.
Journal of statistical planning and inference, 136(7), 2144–2162.

Snee, R. D. (1974). Graphical display of two-way contingency tables. The American
Statistician, 28(1), 9–12.

Solari, F., Liseo, B., & Sun, D. (2008). Some remarks on Bayesian inference for one-way
ANOVA models.Annals of the Institute of Statistical Mathematics, 60, 483–498.

Spiegelhalter, D. J., Freedman, L. S., & Parmar, M. K. B. (1994). Bayesian approaches to
randomized trials.Journal of the Royal Statistical Society. Series A, 157, 357–416.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684),
677–680.

Thomas, A. (2004). BRugs user manual (the R interface to BUGS).Available from
http://mathstat.helsinki.fi/openbugs/data/Docu/BRugs%20Manual.html

Thomas, A., O’Hara, B., Ligges, U., & Sturtz, S. (2006, March). Making BUGS open.R
News, 6(1), 12–17.

Tsionas, E. G. (2002). Bayesian inference in the noncentralStudent-t model.Journal of
Computational and Graphical Statistics, 11(1), 208–221.

Wagenmakers, E. J. (2007). A practical solution to the pervasive problems ofp values.
Psychonomic Bulletin& Review, 14(5), 779–804.

526 REFERENCES

Walker, L. J., Gustafson, P., & Frimer, J. A. (2007). The application of Bayesian analysis
to issues in developmental research.International Journal of Behavioral Development,
31(4), 366.

Wang, F., & Gelfand, A. E. (2002). A simulation-based approach to Bayesian sample size
determination for performance under a given model and for separating models.Statistical
Science, 17, 193–208.

Weiss, R. (1997). Bayesian sample size calculations for hypothesis testing.The Statisti-
cian, 46, 185–191.

Werner, M., Stabenau, J. R., & Pollin, W. (1970). Thematic apperception test method for
the differentiation of families of schizophrenics, delinquents, and “normals”. Journal of
Abnormal Psychology, 75(2), 139–145.

Western, B., & Jackman, S. (1994). Bayesian inference for comparative research.The
American Political Science Review, 88(2), 412–423.

Winer, B. J., Brown, D. R., & Michels, K. M. (1991).Statistical principles in experimental
design, 3rd ed.New York: McGraw-Hill.

REFERENCES 527

The Index on the following pages is incomplete. It includes merely a
few items to test the indexing facility. The index will be expanded at
a later date.

Index

aggregate, 188

Bernoulli distribution, 66
Bernoulli versus binomial, 67
binomial probability distribution, 217
Binomial versus Bernoulli, 67
Bonferonni correction, 228
BUGS, 115

categorical density function, 198
censoring in BUGS, 171, 188

dcat, 198
dev.copy2eps, 17, 20
dgamma, 170

encapsulated PostScript, 20
entropy, 264
EPS format, 20
exchangeability, 165
experimentwise false alarm rate, 228

filtration and condensation, 179

gamma, 170
gamma distribution, 170
gamma function, 170
Grinch, 252

help in R, 17
highest density interval, 34

I(lower,upper) in BUGS, 171

logistic, 305
logit, 306

MCMC: Markov chain Monte Carlo, 109

natural frequencies, 60
Markov representation, 60

negative binomial distribution, 220
in R, 233

nested indexing in BUGS, 172

OpenBUGS, 115

per comparison false alarm rate, 228
planned comparison, 229
Poisson distribution, 235, 492, 493
post-hoc comparison, 229
posterior predictive check, 81, 232
precision of normal distribution, 320
probit, 308
product space, 208
pseudoprior, 202

R programs
ANOVAonewayBRugs.R, 405, 413
ANOVAonewayNonhomogvarBrugs.R,

418, 419
ANOVAtwowayBRugs.R, 436
ANOVAtwowayBRugsWithinSubj.R,

446
BayesUpdate.R, 57
BernBeta.R, 77
BernBetaBugsFull.R, 116–118
BernBetaModelCompBrugs.R, 198
BernBetaMuKappaBugs.R, 171, 185
BernGrid.R, 90
BernMetropolisTemplate.R, 121
BernTwoBugs.R, 140, 142, 149
BernTwoBugsPriorOnly.R, 141
BernTwoFurrowsBugs.R, 154
BernTwoGrid.R, 144
BernTwoMetropolis.R, 146
BetaPosteriorPredictions.R, 82
BinomNHSTpoissonrate.R, 235
FilconBrugs.R, 180, 188
FilconBrugsPower.R, 276

528

INDEX 529

FilconCoKappaBrugs.R, 193
FilconModelCompBrugs.R, 200
FilconModelCompPseudoPrior-

Brugs.R, 202
HDIofGrid.R, 513
HDIofICDF.R, 515
HDIofMCMC.R, 514
HtWtDataGenerator.R, 358
IntegralOfDensity.R, 41
Kruschke1996CSbugs.R, 283, 284, 286
LogisticOnewayAnovaBrugs.R, 463
LogisticOnewayAnovaHeteroVar-

Brugs.R, 470
minNforHDIpower.R, 273
MultiLinRegressHyperBrugs.R, 394
MultiLinRegressInterBrugs.R, 384
MultipleLinearRegressionBrugs.R,

375, 378, 390
MultipleLogisticRegressionBrugs.R,

460
NHSTtwoTierStoppingExercise.R, 237
OneOddGroupModelComp.R, 252
OneOddGroupModelCompEx12.1.R,

255
OrdinalProbitRegressionBrugs.R, 482
plotChains.R, 512
plotPost.R, 151
PoissonExponentialBrugs.R, 497
RunningProportion.R, 40
SimpleGraph.R, 17
SimpleLinearRegressionBrugs.R, 347
SimpleLinearRegressionRepeated-

Brugs.R, 355, 362
SimpleRobustLinearRegression-

Brugs.R, 353, 359
SystemsBrugs.R, 331, 335
ToyModelComp.R, 211
YmetricXsingleBrugs.R, 323, 333

R: help, 17
R: Tinn-R editor, 18
region of practical equivalence (ROPE), 72

sampling distribution, 218
Santa Claus, 252
sigmoid, 305

t distribution, 323, 324
folded, 403–405, 418

for outliers, 325, 331, 352, 353, 368,
379

thematic apperception test, 256
Tinn-R (R editor), 18
transdimensional MCMC, 197

BernTwoFurrowsBugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 # Likelihood. Each flip is Bernoulli.
 for (i in 1 : N1) { y1[i] ~ dbern(theta1) }
 for (i in 1 : N2) { y2[i] ~ dbern(theta2) }
 # Prior. Curved scallops!
 x ~ dunif(0,1)
 y ~ dunif(0,1)
 N <- 4
 xt <- sin(2*3.141593*N * x) / (2*3.141593*N) + x
 yt <- 3 * y + (1/3)
 xtt <- pow(xt , yt)
 theta1 <- xtt
 theta2 <- y
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 N1 = 7 ,
 y1 = c(1,1,1,1,1,0,0) ,
 N2 = 7 ,
 y2 = c(1,1,0,0,0,0,0)
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAIN.

modelCompile()
modelGenInits()

#--
RUN THE CHAINS.

samplesSet(c("theta1" , "theta2")) # Keep a record of sampled "theta" values
chainlength = 10000 # Arbitrary length of chain to generate.
modelUpdate(chainlength) # Actually generate the chain.

#--
EXAMINE THE RESULTS.

theta1Sample = samplesSample("theta1") # Put sampled values in a vector.
theta2Sample = samplesSample("theta2") # Put sampled values in a vector.

source("plotChains.R")
plotChains("theta1")
plotChains("theta2")

Plot the trajectory of the last sampled values.
windows()
par(pty="s")
nToPlot=2000
plot(theta1Sample[(chainlength-nToPlot+1):chainlength] ,
 theta2Sample[(chainlength-nToPlot+1):chainlength] , type = "p" ,
 xlim = c(0,1) , xlab = bquote(theta[1]) , ylim = c(0,1) ,
 ylab = bquote(theta[2]) , main="BUGS Result")
Display means in plot.
theta1mean = mean(theta1Sample)
theta2mean = mean(theta2Sample)
if (theta1mean > .5) { xpos = 0.0 ; xadj = 0.0
} else { xpos = 1.0 ; xadj = 1.0 }
if (theta2mean > .5) { ypos = 0.0 ; yadj = 0.0
} else { ypos = 1.0 ; yadj = 1.0 }
text(xpos , ypos ,
	bquote(
	"M=" * .(signif(theta1mean,3)) * "," * .(signif(theta2mean,3))
) ,adj=c(xadj,yadj) ,cex=1.5)
dev.copy2eps(file="BernTwoFurrowsBugs.eps")

BernTwoGrid.R

Specify the grid on theta1,theta2 parameter space.
nInt = 501 # arbitrary number of intervals for grid on theta.
theta1 = seq(from=((1/nInt)/2) ,to=(1-((1/nInt)/2)) ,by=(1/nInt))
theta2 = theta1

Specify the prior probability _masses_ on the grid.
priorName = c("Beta","Ripples","Null","Alt")[1] # or define your own.
if (priorName == "Beta") {
	a1 = 3 ; b1 = 3 ; a2 = 3 ; b2 = 3
	prior1 = dbeta(theta1 , a1 , b1)
	prior2 = dbeta(theta2 , a2 , b2)
	prior = outer(prior1 , prior2) # density
	prior = prior / sum(prior) # convert to normalized mass
}
if (priorName == "Ripples") {
	rippleAtPoint = function(theta1 , theta2) {
		m1 = 0 ; m2 = 1 ; k = 0.75*pi
		sin((k*(theta1-m1))^2 + (k*(theta2-m2))^2)^2 }
	prior = outer(theta1 , theta2 , rippleAtPoint)
	prior = prior / sum(prior) # convert to normalized mass
}
if (priorName == "Null") {
 # 1's at theta1=theta2, 0's everywhere else:
 prior = diag(1 , nrow=length(theta1) , ncol=length(theta1))
 prior = prior / sum(prior) # convert to normalized mass
}
if (priorName == "Alt") {
 # Uniform:
 prior = matrix(1 , nrow=length(theta1) , ncol=length(theta2))
 prior = prior / sum(prior) # convert to normalized mass
}

Specify likelihood
z1 = 5 ; N1 = 7 ; z2 = 2 ; N2 = 7 # data are specified here
likeAtPoint = function(t1 , t2) {
 p = t1^z1 * (1-t1)^(N1-z1) * t2^z2 * (1-t2)^(N2-z2)
 return(p)
}
likelihood = outer(theta1 , theta2 , likeAtPoint)

Compute posterior from point-by-point multiplication and normalizing:
pData = sum(prior * likelihood)
posterior = (prior * likelihood) / pData

Display plots.

Specify the complete filename for saving the plot
plotFileName = paste("BernTwoGrid",priorName,".eps" ,sep="")

Specify the probability mass for the HDI region
credib = .95

Specify aspects of perspective and contour plots.
rotate = (-25)
tilt = 25
parallelness = 5.0
shadeval = 0.05
perspcex = 0.7
ncontours = 9
zmax = max(c(max(posterior) , max(prior)))

Specify the indices to be used for plotting. The full arrays would be too
dense for perspective plots, so we plot only a thinned-out set of them.
nteeth1 = length(theta1)
thindex1 = seq(1, nteeth1 , by = round(nteeth1 / 30))
thindex1 = c(thindex1 , nteeth1) # makes sure last index is included
thindex2 = thindex1

windows(7,10)
layout(matrix(c(1,2,3,4,5,6) ,nrow=3 ,ncol=2 ,byrow=TRUE))
par(mar=c(3,3,1,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(2,1,0)) # which margin lines to use for labels
par(mai=c(0.4,0.4,0.2,0.05)) # margin size in inches: bottom,left,top,right
par(pty="s") # makes contour plots in square axes.

prior
persp(theta1[thindex1] , theta2[thindex2] , prior[thindex1,thindex2] ,
 xlab="theta1" , ylab="theta2" , main="Prior" , cex=perspcex , lwd=0.1 ,
 xlim=c(0,1) , ylim=c(0,1) , zlim=c(0,zmax) , zlab="p(t1,t2)" ,
	 theta=rotate , phi=tilt , d=parallelness , shade=shadeval)
contour(theta1[thindex1] , theta2[thindex2] , prior[thindex1,thindex2] ,
 main=bquote(" ") , levels=signif(seq(0,zmax,length=ncontours),3) ,
 drawlabels=FALSE , xlab=bquote(theta[1]) , ylab=bquote(theta[2]))

likelihood
persp(theta1[thindex1] , theta2[thindex2] , likelihood[thindex1,thindex2] ,
 xlab="theta1" , ylab="theta2" , main="Likelihood" , lwd=0.1 ,
	 xlim=c(0,1) , ylim=c(0,1) , zlab="p(D|t1,t2)" , cex=perspcex ,
	 theta=rotate , phi=tilt , d=parallelness , shade=shadeval)
contour(theta1[thindex1] , theta2[thindex2] , likelihood[thindex1,thindex2] ,
 main=bquote(" ") , nlevels=(ncontours-1) ,
	 xlab=bquote(theta[1]) , ylab=bquote(theta[2]) , drawlabels=FALSE)
Include text for data
maxlike = which(likelihood==max(likelihood) , arr.ind=TRUE)
if (theta1[maxlike[1]] > 0.5) { textxpos = 0 ; xadj = 0
} else { textxpos = 1 ; xadj = 1 }
if (theta2[maxlike[2]] > 0.5) { textypos = 0 ; yadj = 0
} else { textypos = 1 ; yadj = 1 }
text(textxpos , textypos , cex=1.5 ,
	 bquote("z1="* .(z1) *",N1="* .(N1) *",z2="* .(z2) *",N2="* .(N2)) ,
	 adj=c(xadj,yadj))

posterior
persp(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,
 xlab="theta1" , ylab="theta2" , main="Posterior" , cex=perspcex ,
 lwd=0.1	, xlim=c(0,1) , ylim=c(0,1) , zlim=c(0,zmax) ,
 zlab="p(t1,t2|D)" , theta=rotate , phi=tilt , d=parallelness ,
 shade=shadeval)
contour(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,
 main=bquote(" ") , levels=signif(seq(0,zmax,length=ncontours),3) ,
 drawlabels=FALSE , xlab=bquote(theta[1]) , ylab=bquote(theta[2]))
Include text for p(D)
maxpost = which(posterior==max(posterior) , arr.ind=TRUE)
if (theta1[maxpost[1]] > 0.5) { textxpos = 0 ; xadj = 0
} else { textxpos = 1 ; xadj = 1 }
if (theta2[maxpost[2]] > 0.5) { textypos = 0 ; yadj = 0
} else { textypos = 1 ; yadj = 1 }
text(textxpos , textypos , cex=1.5 ,
 bquote("p(D)=" * .(signif(pData,3))) , adj=c(xadj,yadj))

Mark the highest posterior density region
source("HDIofGrid.R")
HDIheight = HDIofGrid(posterior)$height
par(new=TRUE) # don't erase previous contour
contour(theta1[thindex1] , theta2[thindex2] , posterior[thindex1,thindex2] ,
 main=bquote(.(100*credib)*"% HD region") ,
 levels=signif(HDIheight,3) , lwd=3 , drawlabels=FALSE ,
 xlab=bquote(theta[1]) , ylab=bquote(theta[2]))

Change next line if you want to save the graph.
wantSavedGraph = T # TRUE or FALSE
if (wantSavedGraph) { dev.copy2eps(file=plotFileName) }

BernTwoMetropolis.R

Use this program as a template for experimenting with the Metropolis
algorithm applied to two parameters called theta1,theta2 defined on the
domain [0,1]x[0,1].

Load the MASS package, which defines the mvrnorm function.
If this "library" command balks, you must intall the MASS package:
#install.packages("MASS")
library(MASS)

Define the likelihood function.
The input argument is a vector: theta = c(theta1 , theta2)
likelihood = function(theta) {
	# Data are constants, specified here:
	z1 = 5 ; N1 = 7 ; z2 = 2 ; N2 = 7
	likelihood = (theta[1]^z1 * (1-theta[1])^(N1-z1)
 * theta[2]^z2 * (1-theta[2])^(N2-z2))
	return(likelihood)
}

Define the prior density function.
The input argument is a vector: theta = c(theta1 , theta2)
prior = function(theta) {
	# Here's a beta-beta prior:
	a1 = 3 ; b1 = 3 ; a2 = 3 ; b2 = 3
	prior = dbeta(theta[1] , a1 , b1) * dbeta(theta[2] , a2 , b2)
	return(prior)
}

Define the relative probability of the target distribution, as a function
of theta. The input argument is a vector: theta = c(theta1 , theta2).
For our purposes, the value returned is the UNnormalized posterior prob.
targetRelProb = function(theta) {
	if (all(theta >= 0.0) & all(theta <= 1.0)) {
		targetRelProbVal = likelihood(theta) * prior(theta)
	} else {
		# This part is important so that the Metropolis algorithm
		# never accepts a jump to an invalid parameter value.
		targetRelProbVal = 0.0
	}
	return(targetRelProbVal)
}

Specify the length of the trajectory, i.e., the number of jumps to try.
trajLength = ceiling(1000 / .9) # arbitrary large number
Initialize the vector that will store the results.
trajectory = matrix(0 , nrow=trajLength , ncol=2)
Specify where to start the trajectory
trajectory[1,] = c(0.50 , 0.50) # arbitrary start values of the two param's
Specify the burn-in period.
burnIn = ceiling(.1 * trajLength) # arbitrary number
Initialize accepted, rejected counters, just to monitor performance.
nAccepted = 0
nRejected = 0
Specify the seed, so the trajectory can be reproduced.
set.seed(47405)
Specify the covariance matrix for multivariate normal proposal distribution.
nDim = 2 ; sd1 = 0.2 ; sd2 = 0.2
covarMat = matrix(c(sd1^2 , 0.00 , 0.00 , sd2^2) , nrow=nDim , ncol=nDim)

Now generate the random walk. stepIdx is the step in the walk.
for (stepIdx in 1:(trajLength-1)) {
	currentPosition = trajectory[stepIdx,]
	# Use the proposal distribution to generate a proposed jump.
	# The shape and variance of the proposal distribution can be changed
	# to whatever you think is appropriate for the target distribution.
	proposedJump = mvrnorm(n=1 , mu=rep(0,nDim), Sigma=covarMat)
	# Compute the probability of accepting the proposed jump.
	probAccept = min(1,
		targetRelProb(currentPosition + proposedJump)
		/ targetRelProb(currentPosition))
	# Generate a random uniform value from the interval [0,1] to
	# decide whether or not to accept the proposed jump.
	if (runif(1) < probAccept) {
		# accept the proposed jump
		trajectory[stepIdx+1 ,] = currentPosition + proposedJump
		# increment the accepted counter, just to monitor performance
		if (stepIdx > burnIn) { nAccepted = nAccepted + 1 }
	} else {
		# reject the proposed jump, stay at current position
		trajectory[stepIdx+1 ,] = currentPosition
		# increment the rejected counter, just to monitor performance
		if (stepIdx > burnIn) { nRejected = nRejected + 1 }
	}
}

End of Metropolis algorithm.

#---
Begin making inferences by using the sample generated by the
Metropolis algorithm.

Extract just the post-burnIn portion of the trajectory.
acceptedTraj = trajectory[(burnIn+1) : dim(trajectory)[1] ,]

Compute the mean of the accepted points.
meanTraj = apply(acceptedTraj , 2 , mean)
Compute the standard deviations of the accepted points.
sdTraj = apply(acceptedTraj , 2 , sd)

Display the sampled points
par(pty="s") # makes plots in square axes.
plot(acceptedTraj , type = "o" , xlim = c(0,1) , xlab = bquote(theta[1]) ,
 ylim = c(0,1) , ylab = bquote(theta[2]))
Display means and rejected/accepted ratio in plot.
if (meanTraj[1] > .5) { xpos = 0.0 ; xadj = 0.0
} else { xpos = 1.0 ; xadj = 1.0 }
if (meanTraj[2] > .5) { ypos = 0.0 ; yadj = 0.0
} else { ypos = 1.0 ; yadj = 1.0 }
text(xpos , ypos ,	bquote(
	"M=" * .(signif(meanTraj[1],3)) * "," * .(signif(meanTraj[2],3))
	* "; " * N[pro] * "=" * .(dim(acceptedTraj)[1])
	* ", " * frac(N[acc],N[pro]) * "="
	* .(signif(nAccepted/dim(acceptedTraj)[1],3))
) , adj=c(xadj,yadj) , cex=1.5)

Evidence for model, p(D).
Compute a,b parameters for beta distribution that has the same mean
and stdev as the sample from the posterior. This is a useful choice
when the likelihood function is binomial.
a = meanTraj * ((meanTraj*(1-meanTraj)/sdTraj^2) - rep(1,nDim))
b = (1-meanTraj) * ((meanTraj*(1-meanTraj)/sdTraj^2) - rep(1,nDim))
For every theta value in the posterior sample, compute
dbeta(theta,a,b) / likelihood(theta)*prior(theta)
This computation assumes that likelihood and prior are properly normalized,
i.e., not just relative probabilities.
wtd_evid = rep(0 , dim(acceptedTraj)[1])
for (idx in 1 : dim(acceptedTraj)[1]) {
	wtd_evid[idx] = (dbeta(acceptedTraj[idx,1],a[1],b[1])
		* dbeta(acceptedTraj[idx,2],a[2],b[2]) /
		(likelihood(acceptedTraj[idx,]) * prior(acceptedTraj[idx,])))
}
pdata = 1 / mean(wtd_evid)
Display p(D) in the graph
text(xpos , ypos+(.12*(-1)^(ypos)) , bquote("p(D) = " * .(signif(pdata,3))) ,
	 adj=c(xadj,yadj) , cex=1.5)

Change next line if you want to save the graph.
want_saved_graph = F # TRUE or FALSE
if (want_saved_graph) { dev.copy2eps(file="BernTwoMetropolis.eps") }

Estimate highest density region by evaluating posterior at each point.
npts = dim(acceptedTraj)[1] ; postProb = rep(0 , npts)
for (ptIdx in 1:npts) {
 postProb[ptIdx] = targetRelProb(acceptedTraj[ptIdx,])
}
Determine the level at which credmass points are above:
credmass = 0.95
waterline = quantile(postProb , probs=c(1-credmass))
Display highest density region in new graph
windows()
par(pty="s") # makes plots in square axes.
plot(acceptedTraj[postProb < waterline ,] , type="p" , pch="x" , col="grey" ,
 xlim = c(0,1) , xlab = bquote(theta[1]) ,
 ylim = c(0,1) , ylab = bquote(theta[2]) ,
 main=paste(100*credmass,"% HD region",sep=""))
points(acceptedTraj[postProb >= waterline ,] , pch="o" , col="black")
Change next line if you want to save the graph.
want_saved_graph = F # TRUE or FALSE
if (want_saved_graph) { dev.copy2eps(file="BernTwoMetropolisHD.eps") }

BetaPosteriorPredictions.R

Specify known values of prior and actual data.
priorA = 100
priorB = 1
actualDataZ = 8
actualDataN = 12
Compute posterior parameter values.
postA = priorA + actualDataZ
postB = priorB + actualDataN - actualDataZ
Number of flips in a simulated sample should match the actual sample size:
simSampleSize = actualDataN
Designate an arbitrarily large number of simulated samples.
nSimSamples = 10000
Set aside a vector in which to store the simulation results.
simSampleZrecord = vector(length=nSimSamples)
Now generate samples from the posterior.
for (sampleIdx in 1:nSimSamples) {
	# Generate a theta value for the new sample from the posterior.
	sampleTheta = rbeta(1 , postA , postB)
	# Generate a sample, using sampleTheta.
	sampleData = sample(x=c(0,1) , prob=c(1-sampleTheta , sampleTheta) ,
 size=simSampleSize , replace=TRUE)
	# Store the number of heads in sampleData.
	simSampleZrecord[sampleIdx] = sum(sampleData)
}
Make a histogram of the number of heads in the samples.
hist(simSampleZrecord)
 # Kruschke, J. K. (2011). Doing Bayesian data analysis: A
 # Tutorial with R and BUGS. Academic Press / Elsevier.

BinomHierGrid.R

Grid on 1st-level parameter
b=7 ; nbin = 2*(2*b+1) ; binwidth = 1/nbin
theta = seq(from=binwidth/2 , to=1.0-binwidth/2 , by=binwidth)
Grid on hyperparameter
mu = seq(from=binwidth/2 , to=1.0-binwidth/2 , by=binwidth)

###
UNCOMMENT JUST ONE OF THE FOLLOWING SETS OF SPECIFICATIONS

setSpec = c("twoval","betaSmallK","betaLargeK")[3]
if (setSpec=="twoval") {
 # Two-value mu for model-comparison hyperprior
 hypertype = "twoval"
 priorMuN = 12
 datay = 6 ; dataN = 9
}
if (setSpec=="betaSmallK") {
 # Beta hyperprior, low dependence
 hypertype = "beta"
 priorMuN = 6
 hyper_a = 20 ; hyper_b = 20
 datay = 9 ; dataN = 12
}
if (setSpec=="betaLargeK") {
 # Beta hyperprior, high dependence
 hypertype = "beta"
 priorMuN = 100
 hyper_a = 2 ; hyper_b = 2
 datay = 9 ; dataN = 12
}

###

Specify prior
Prior at 1st level
Small priorMuN implies low certainty about dependence of theta on mu.
Large priorMuN implies high certainty about dependence of theta on mu.
pThetaAtMu = function(theta , mu , n=priorMuN) {
	dbeta(theta ,n*mu ,(1-mu)*n)
}
Hyperprior
if (hypertype == "twoval") {
	pMu = function(mu) {
		valone = .25 ; valtwo = .75 ; slicewidth = .001
		(abs(mu-valone)<slicewidth) | (abs(mu-valtwo)<slicewidth)
	}
}
if (hypertype == "beta") {
	# Small values for hyper_a,hyper_b imply low certainty about mu.
	# Large values for hyper_a,hyper_b imply high certainty about mu.
	pMu = function(mu) { dbeta(mu , hyper_a , hyper_b) }
}
Joint prior
pThetaAndMu = function(theta , mu) { pThetaAtMu(theta,mu) * pMu(mu) }
jointprior = outer(theta , mu , pThetaAndMu)
jointprior = jointprior / sum(jointprior) # mass at discrete points
jointprior = jointprior / (binwidth^2) # density
Marginal of joint prior
priorMuMarg = colSums(jointprior) * binwidth # density
priorThetaMarg = rowSums(jointprior) * binwidth # density

Specify likelihood

likeatjointpoint = function(t , m , y=datay , N=dataN) {
	t^y * (1-t)^(N-y) # notice this depends only on t, not on m
}
likelihood = outer(theta , mu , likeatjointpoint)

Determine posterior
pData = sum(jointprior * likelihood)
posterior = (jointprior * likelihood) / pData
posterior = posterior / (binwidth^2) # density
Marginals of joint posterior
postMuMarg = colSums(posterior) * binwidth # density
postThetaMarg = rowSums(posterior) * binwidth # density

#------ plot ----------------------------

ipp = 3 # inches per plot
windows(3.2*ipp,5*ipp)
layout(
	matrix(c(1,1, 2,2, 3,3,
			1,1, 2,2, 3,3,
			4,4, 5,5, 6,6,
			4,4, 5,5, 7,7,
			8,8, 9,9, 10,10,
			8,8, 9,9, 10,10,
			11,11, 12,12, 13,13,
			11,11, 12,12, 13,13,
			14,14, 15,15, 16,16,
			14,14, 15,15, 17,17
)
	,nrow=10,ncol=6,byrow=TRUE)
)

cexfac = (0.75)
par(cex=cexfac,cex.axis=cexfac,cex.lab=cexfac,cex.main=cexfac*1.2,cex.sub=cexfac)
par(mex=0.9*cexfac)
par(mar=c(2.95,2.95,1.0,0)) # number of margin lines: bottom,left,top,right
par(tcl=-0.25) # tick length as proportion of character ht
par(mgp=c(1.35,0.35,0)) # which margin lines title,label,line
par(oma = c(0.1, 0.1, 0.1, 0.1)) # outer margin

rotate = (-25)
tilt = 25
parallelness = 5.0
shadeval = 0.05
perspcex = 0.7
ncontours = 9
zmax = max(c(max(posterior),max(jointprior)))
muMargMax = max(c(max(priorMuMarg),max(postMuMarg)))
thetaMargMax = max(c(max(priorThetaMarg),max(postThetaMarg)))

1
par(pty="m")
persp(theta ,mu ,jointprior ,main="Prior" ,cex=perspcex ,zlab="prior"
	,xlim=c(0,1) ,ylim=c(0,1) ,zlim=c(0,zmax) ,lwd=0.1
	,theta=rotate, phi=tilt ,d=parallelness ,shade=shadeval)

#2
par(pty="m")
contour(theta ,mu ,jointprior ,main=bquote(" ")
	,levels=signif(seq(0,zmax,length=ncontours),3) ,drawlabels=FALSE
	,xlab=bquote(theta) ,ylab=bquote(mu))

#3
par(pty="m")
plot(priorMuMarg ,mu ,type="l"
	,ylab=bquote(mu)
	,xlab=bquote("Marginal p("*mu*")") ,xlim=c(0,muMargMax))

#4
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(1,.8,"Prior",adj=c(1,-0.1),cex=1.5)
if (hypertype == "beta") {
text(1,0.8,bquote(list(A[mu]==.(hyper_a) , B[mu]==.(hyper_b))),adj=c(1,1.2),cex=1.0)
}
text(1,0.8,bquote(list(K==.(priorMuN))),adj=c(1,2.6),cex=1.0)

#5
par(pty="m")
plot(theta, priorThetaMarg ,type="l"
	,xlab=bquote(theta)
	,ylab=bquote("Marginal p("*theta*")") ,ylim=c(0,thetaMargMax))

#6
plotmuval=.75
plotmuidx = which.min(abs(mu-plotmuval))
plotmuval = mu[plotmuidx]
ymax = max(c(max(jointprior[,plotmuidx]/sum(jointprior[,plotmuidx]))
	, max(posterior[,plotmuidx]/sum(posterior[,plotmuidx]))))*(1/binwidth)
par(pty="m")
plot(theta , jointprior[,plotmuidx]/sum(jointprior[,plotmuidx])*(1/binwidth)
	, type="l" ,ylim=c(0,ymax) ,xlab=bquote(theta)
	,ylab=bquote("p("*theta*"|"*mu*"=.75)")
	,cex.lab=cexfac*.8 ,cex.axis=cexfac*.8)

#7
plotmuval=.25
plotmuidx = which.min(abs(mu-plotmuval))
plotmuval = mu[plotmuidx]
ymax = max(c(max(jointprior[,plotmuidx]/sum(jointprior[,plotmuidx]))
	, max(posterior[,plotmuidx]/sum(posterior[,plotmuidx]))))*(1/binwidth)
par(pty="m")
plot(theta , jointprior[,plotmuidx]/sum(jointprior[,plotmuidx])*(1/binwidth)
	, type="l" ,ylim=c(0,ymax) ,xlab=bquote(theta)
	,ylab=bquote("p("*theta*"|"*mu*"=.25)")
	,cex.lab=cexfac*.8 ,cex.axis=cexfac*.8)

#8
par(pty="m")
persp(theta,mu, likelihood ,main="Likelihood" ,cex=perspcex ,lwd=0.1
	,theta=rotate, phi=tilt ,d=parallelness ,shade=shadeval)

#9
par(pty="m")
contour(theta ,mu ,likelihood ,main=bquote(" ") ,nlevels=(ncontours-1)
	,xlab=bquote(theta) ,ylab=bquote(mu) ,drawlabels=FALSE)

#10
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0.0,0.5,"Likelihood",adj=c(0,-0.2),cex=1.5)
text(0.0,0.5
	,bquote("D = " * .(datay) *" heads, "* .(dataN-datay) *" tails")
	,adj=c(0,1.2),cex=1.0)

#11
par(pty="m")
persp(theta,mu, posterior ,main="Posterior" ,cex=perspcex
	,xlim=c(0,1) ,ylim=c(0,1) ,zlim=c(0,zmax) ,lwd=0.1
	,theta=rotate, phi=tilt ,d=parallelness ,shade=shadeval)

#12
par(pty="m")
contour(theta ,mu ,posterior ,main=bquote(" ")
	,levels=signif(seq(0,zmax,length=ncontours),3) ,drawlabels=FALSE
	,xlab=bquote(theta) ,ylab=bquote(mu))

#13
par(pty="m")
plot(postMuMarg ,mu ,type="l"
	,ylab=bquote(mu)
	,xlab=bquote("Marginal p("*mu*"|D)") ,xlim=c(0,muMargMax))

#14
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(1,.8,"Posterior",adj=c(1,-0.1),cex=1.5)

#15
par(pty="m")
plot(theta, postThetaMarg ,type="l"
	,xlab=bquote(theta)
	,ylab=bquote("Marginal p("*theta*"|D)") ,ylim=c(0,thetaMargMax))

#16
plotmuval=.75
plotmuidx = which.min(abs(mu-plotmuval))
plotmuval = mu[plotmuidx]
ymax = max(c(max(jointprior[,plotmuidx]/sum(jointprior[,plotmuidx]))
	, max(posterior[,plotmuidx]/sum(posterior[,plotmuidx]))))*(1/binwidth)
par(pty="m")
plot(theta , posterior[,plotmuidx]/sum(posterior[,plotmuidx])*(1/binwidth)
	, type="l" ,ylim=c(0,ymax) ,xlab=bquote(theta)
	,ylab=bquote("p("*theta*"|"*mu*"=.75,D)")
	,cex.lab=cexfac*.8 ,cex.axis=cexfac*.8)

#17
plotmuval=.25
plotmuidx = which.min(abs(mu-plotmuval))
plotmuval = mu[plotmuidx]
ymax = max(c(max(jointprior[,plotmuidx]/sum(jointprior[,plotmuidx]))
	, max(posterior[,plotmuidx]/sum(posterior[,plotmuidx]))))*(1/binwidth)
par(pty="m")
plot(theta , posterior[,plotmuidx]/sum(posterior[,plotmuidx])*(1/binwidth)
	, type="l" ,ylim=c(0,ymax) ,xlab=bquote(theta)
	,ylab=bquote("p("*theta*"|"*mu*"=.25,D)")
	,cex.lab=cexfac*.8 ,cex.axis=cexfac*.8)

want_eps_file = TRUE
if (want_eps_file) {
	if (hypertype == "beta") {
		epsfilename = paste("BinomHierGrid"
			,"_",bquote(.(priorMuN))
			,"_",bquote(.(hyper_a))
			,"_",bquote(.(hyper_b))
			,"_",bquote(.(datay))
			,"_",bquote(.(dataN))
			,".eps" ,sep="")
	}
	if (hypertype == "twoval") {
		epsfilename = "BinomHierGridTwoval.eps"
	}
	dev.copy2eps(file = epsfilename)
}

BinomHierTwoCoins.R

graphics.off()

Grids
b=12 ; nbin = 2*(2*b+1) ; binwidth = 1/nbin
theta1 = seq(from=binwidth/2 , to=1.0-binwidth/2 , by=binwidth)
theta2 = seq(from=binwidth/2 , to=1.0-binwidth/2 , by=binwidth)
mu = seq(from=binwidth/2 , to=1.0-binwidth/2 , by=binwidth)

Specify prior
n = 75 ; c = 2 ; d = 2
n = 5 ; c = 2 ; d = 2
pt1t2mu = function(mu , theta1 , theta2) {
	pmu = dbeta(mu , c , d)
	pt1gmu = dbeta(theta1 , n*mu , (1-mu)*n)
	pt2gmu = dbeta(theta2 , n*mu , (1-mu)*n)
	pt1t2mu = pmu * pt1gmu * pt2gmu
}
prior = array(0 , dim = c(length(mu) , length(theta1) , length(theta2)))
for (t2 in 1:length(theta2)) {
	for (t1 in 1:length(theta1)) {
		for (m in 1:length(mu)) {
			prior[m,t1,t2] = pt1t2mu(mu[m],theta1[t1],theta2[t2])
		}
	}
}
prior = prior / sum(prior)

Marginals of joint prior
priorMuMarg = apply(prior , 1 , sum)
priorTheta1Marg = apply(prior , 2 , sum)
priorTheta2Marg = apply(prior , 3 , sum)
priorMuTheta1Marg = apply(prior , c(1,2) , sum)
priorMuTheta2Marg = apply(prior , c(1,3) , sum)

Specify likelihood
y1 = 3 ; N1 = 15 ; y2 = 4 ; N2 = 5
likelihood = array(0 , dim = c(length(mu) , length(theta1) , length(theta2)))
for (t2 in 1:length(theta2)) {
	for (t1 in 1:length(theta1)) {
		for (m in 1:length(mu)) {
			likelihood[m,t1,t2] = (
 theta1[t1]^y1 * (1-theta1[t1])^(N1-y1) *
 theta2[t2]^y2 * (1-theta2[t2])^(N2-y2))
		}
	}
}
Marginals of likelihood
likelihoodMuTheta1Marg = apply(likelihood , c(1,2) , sum)
likelihoodMuTheta2Marg = apply(likelihood , c(1,3) , sum)

Determine posterior
pData = sum(prior * likelihood)
posterior = (prior * likelihood) / pData

Marginals of joint posterior
posteriorMuMarg = apply(posterior , 1 , sum)
posteriorTheta1Marg = apply(posterior , 2 , sum)
posteriorTheta2Marg = apply(posterior , 3 , sum)
posteriorMuTheta1Marg = apply(posterior , c(1,2) , sum)
posteriorMuTheta2Marg = apply(posterior , c(1,3) , sum)

#------ plot ----------------------------

MuThetaMax = max(c(
	max(priorMuTheta1Marg),
	max(priorMuTheta2Marg),
	max(posteriorMuTheta1Marg),
	max(posteriorMuTheta2Marg)))

MargMax = max(c(
	max(priorMuMarg),
	max(priorTheta1Marg) ,
	max(priorTheta2Marg) ,
	max(posteriorMuMarg),
	max(posteriorTheta1Marg) ,
	max(posteriorTheta2Marg)))

windows(4.5,6.5)
layout(matrix(1:15 ,nrow=5,ncol=3,byrow=TRUE))

cexfac = (0.75)
par(cex=cexfac,cex.axis=cexfac,cex.lab=cexfac,cex.main=cexfac*1.2,cex.sub=cexfac)
par(mex=0.9*cexfac)
par(mar=c(2.95,2.95,1.0,0)) # number of margin lines: bottom,left,top,right
par(tcl=-0.25) # tick length as proportion of character ht
par(mgp=c(1.35,0.35,0)) # which margin lines title,label,line
par(oma = c(0.1, 0.1, 0.1, 0.1)) # outer margin

rotate = (-25)
tilt = 25
parallelness = 5.0
shadeval = 0.05
perspcex = 0.7
ncontours = 9

1
par(pty="m")
contour(theta1 ,mu ,t(priorMuTheta1Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,MuThetaMax,length=ncontours),3)
	,xlab=bquote(theta[1]) ,ylab=bquote(mu))
text(0,1,bquote(p(theta[1],mu)),adj=c(0,1),cex=0.75)

#2
par(pty="m")
contour(theta2 ,mu ,t(priorMuTheta2Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,MuThetaMax,length=ncontours),3)
	,xlab=bquote(theta[2]) ,ylab=bquote(mu))
text(0,1,bquote(p(theta[2],mu)),adj=c(0,1),cex=0.75)

#3
par(pty="m")
plot(priorMuMarg ,mu ,type="l"
	,ylab=bquote(mu)
	,xlab=bquote("p("*mu*")") ,xlim=c(0,MargMax))

#4
par(pty="m")
plot(theta1, priorTheta1Marg ,type="l"
	,xlab=bquote(theta[1]) ,ylim=c(0,MargMax)
	,ylab=bquote("p("*theta[1]*")"))

#5
par(pty="m")
plot(theta2, priorTheta2Marg ,type="l"
	,xlab=bquote(theta[2]) ,ylim=c(0,MargMax)
	,ylab=bquote("p("*theta[2]*")"))

#6
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0,.8,"Prior",adj=c(0,-0.1),cex=1.5)
text(0.0,0.8,bquote(list(A[mu]==.(c) , B[mu]==.(d))),adj=c(0,1.2),cex=1.0)
text(0.0,0.8,bquote(list(K==.(n))),adj=c(0,2.6),cex=1.0)

likelihoodMax = max(c(max(likelihoodMuTheta1Marg)
			, max(likelihoodMuTheta2Marg)))

7
par(pty="m")
contour(theta1 ,mu ,t(likelihoodMuTheta1Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,likelihoodMax,length=ncontours),3)
	,xlab=bquote(theta[1]) ,ylab=bquote(mu))

#8
par(pty="m")
contour(theta2 ,mu ,t(likelihoodMuTheta2Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,likelihoodMax,length=ncontours),3)
	,xlab=bquote(theta[2]) ,ylab=bquote(mu))

#9
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0.0,0.5,"Likelihood",adj=c(0,-0.2),cex=1.5)
text(0.0,0.5
	,bquote("D1: "* .(y1) *" heads, "* .(N1-y1) *" tails")
	,adj=c(0,1.2),cex=1.0)
text(0.0,0.5
	,bquote("D2: "* .(y2) *" heads, "* .(N2-y2) *" tail")
	,adj=c(0,2.4),cex=1.0)

#10
par(pty="m")
contour(theta1 ,mu ,t(posteriorMuTheta1Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,MuThetaMax,length=ncontours),3)
	,xlab=bquote(theta[1]) ,ylab=bquote(mu))
text(0,1,bquote(p(theta[1],mu*"|"*D)),adj=c(0,1),cex=0.75)

#11
par(pty="m")
contour(theta2 ,mu ,t(posteriorMuTheta2Marg) ,main=bquote(" ")
	,drawlabels=FALSE
	,levels=signif(seq(0,MuThetaMax,length=ncontours),3)
	,xlab=bquote(theta[2]) ,ylab=bquote(mu))
text(0,1,bquote(p(theta[2],mu*"|"*D)),adj=c(0,1),cex=0.75)

#12
par(pty="m")
plot(posteriorMuMarg ,mu ,type="l"
	,ylab=bquote(mu) ,xlim=c(0,MargMax)
	,xlab=bquote("p("*mu*"|D)"))

#13
par(pty="m")
plot(theta1, posteriorTheta1Marg ,type="l"
	,xlab=bquote(theta[1]) ,ylim=c(0,MargMax)
	,ylab=bquote("p("*theta[1]*"|D)"))

#14
par(pty="m")
plot(theta2, posteriorTheta2Marg ,type="l"
	,xlab=bquote(theta[2]) ,ylim=c(0,MargMax)
	,ylab=bquote("p("*theta[2]*"|D)"))

#15
plot(c(0,1),c(0,1) ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0,1,"Posterior",adj=c(0,1),cex=1.5)

want_eps_file = TRUE
if (want_eps_file) {
	epsfilename = paste("BinomHierTwoCoins"
		,"_",bquote(.(n))
		,"_",bquote(.(c))
		,"_",bquote(.(d))
		,"_",bquote(.(y1))
		,"_",bquote(.(N1))
		,"_",bquote(.(y2))
		,"_",bquote(.(N2))
		,".eps" ,sep="")
	dev.copy2eps(file = epsfilename)
}

BinomMCMCdemo.R

MCMC demo. Simple Metropolis algorithm applied to 1D discrete values, with
proposal distribution being merely to try one value up or one value down.
graphics.off()

Specify probability mass in each interval
Comment out all but one of spec's below
#
relprob = c(0,1,2,3,4,5,6,7,0) # MUST HAVE ZERO AT EACH END!
distribname = "incline"
#
#relprob = c(0,1,2,3,4,5,0) # MUST HAVE ZERO AT EACH END!
#distribname = "shortincline"
#
#relprob = c(0,1,2,3,4,5,1,2,3,4,0) # MUST HAVE ZERO AT EACH END!
#distribname = "sawtooth"

##
Part I: Plot the probability of being in each position as a function of
update number. This is not an individual trajectory, but a distribution
of probabilities that the particle is in each possible position.
##

pin is the target relative probability distribution with matrix attributes.
pin = matrix(relprob , nrow=1 , ncol=length(relprob) , byrow=TRUE)

Specify transition matrix, tm. Rows are from, columns are to.
This assumes that the proposal distribution is either choosing one interval
up or one interval down.
pup = .5 # MUST BE <=.5, prob. of choosing interval above current interval
pdown = pup # probability of choosing interval below current interval
tm = matrix(0 , nrow=length(relprob) , ncol=length(relprob))
NEXT STATEMENT RELIES ON ZEROS AT ENDS OF relprob
for (rowint in (1+1) : (length(relprob)-1)) {
	# determine p(rowint-1)
	tm[rowint,rowint-1] = pdown * min(pin[1,rowint-1]/pin[1,rowint] , 1)
	# determine p(rowint+1)
	tm[rowint,rowint+1] = pup * min(pin[1,rowint+1]/pin[1,rowint] , 1)
	# determine p(rowint)
	tm[rowint,rowint] = 1 - tm[rowint,rowint-1] - tm[rowint,rowint+1]	
}

Specify initial probability vector. Must have length same as relprob.
pvec = matrix(0 , nrow=1 , ncol=length(relprob))
pvec[1,ceiling(median(1:length(pvec)))] = 1

Specify number of updates to execute
nupdate = 99
Specify graphics window details.
nr = 4 # 3 for shortincline, 5 otherwise
nc = 4
windows(7,7)
layout(matrix(1:nupdate,nrow=nr,ncol=nc,byrow=FALSE))
par(mar=c(2,2,0,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(1,1,0)) # which margin lines to use for labels
par(mai=c(0.25,0.25,0.05,0.05)) # margin size in inches: bottom,left,top,right

Plot the updated distributions
for (t in 1:nupdate) {
	if (t <= (nr*nc - 2)) {
		plot(1:(length(pvec)-2) , pvec[2:(length(pvec)-1)]
			, type="h" , lwd=4 , xlab="" , ylab=""
			,ylim=c(0,max(pvec[2:(length(pvec)-1)])))
		text(1,max(pvec),bquote(t==.(t)) ,adj=c(0,1) ,cex=1.5)
	}
	pvec = pvec %*% tm
}

Plot the final updated distribution
plot(1:(length(pvec)-2) , pvec[2:(length(pvec)-1)]
	, type="h" , lwd=4 , xlab="" , ylab=""
	,ylim=c(0,max(pvec[2:(length(pvec)-1)])))
text(1,max(pvec),bquote(t==.(t)) ,adj=c(0,1) ,cex=1.5)

Plot the target distribution.
prob = relprob
plot(1:(length(pvec)-2) , prob[2:(length(prob)-1)]
		, type="h" , lwd=4 , xlab="" , ylab=""
		,ylim=c(0,max(prob[2:(length(prob)-1)])))
text(1,max(prob),bquote(target) ,adj=c(0,1) ,cex=1.5)

Save the plot as an EPS file.
filename = paste("BinomMCMCdemo_", distribname ,".eps",sep="")
dev.copy2eps(file=filename)

##
Part II: Plot some individual trajectories.
##

set.seed(47)

trajlength = 2000
trajectory = rep(0 , trajlength)

Start in middle of range
trajectory[1] = ceiling(median(1:length(relprob)))

for (t in 1:(trajlength-1)) {
	currentposition = trajectory[t]
	proposedjump = sample(c(-1,1) , 1)
	probaccept = min(1,
		relprob[currentposition + proposedjump]
		/ relprob[currentposition])
	if (runif(1) < probaccept) {
		trajectory[t+1] = trajectory[t] + proposedjump
	} else {
		trajectory[t+1] = trajectory[t]
	}
}

trajectory = trajectory-1
trajectoryX = 1:(length(relprob)-2)

windows(7,10)
layout(matrix(c(1,1,1,1, 2,2, 3,3,3,3,3,3, 4,4, 5,5,5,5)
	, nrow=9 , ncol=2 , byrow=TRUE))

plot 1 is histogram
par(mar=c(2,2,0,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(2,1,0)) # which margin lines to use for labels
par(mai=c(0.4,0.45,0.05,0.05)) # margin size in inches: bottom,left,top,right
burnin=200
hist(trajectory[burnin:length(trajectory)]
	, breaks = c(0,trajectoryX)+.5
	, xlab=bquote(theta) ,main="" ,cex.lab=1.5)

make upward arrow
Specify margin measurements for subplot.
par(mai=c(0.0,0.4,0.0,0.0)) # margin size in inches: bottom,left,top,right
plot(0 , 0 ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0,0 ,bquote(" " %dblup% " ") ,cex=4)

plot 3 is trajectory
par(mar=c(3,2,0,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(2,1,0)) # which margin lines to use for labels
par(mai=c(0.4,0.45,0.05,0.05)) # margin size in inches: bottom,left,top,right
yvec = seq(trajlength , 1 , by=(-1))
plot(trajectory , 1:trajlength , type='o'
	, xlab=bquote(theta)
	,log='y' , ylab="Time" , main="" ,cex.lab=1.5)

plot 4 is upward arrow
Specify margin measurements for subplot.
par(mai=c(0.0,0.4,0.0,0.0)) # margin size in inches: bottom,left,top,right
plot(0 , 0 ,type="n" ,bty="n" ,xaxt="n" ,yaxt="n" ,xlab="" ,ylab="")
text(0,0 ,bquote(" " %dblup% " ") ,cex=4)

plot 5 is target relprob
par(mar=c(2,2,0,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(2,1,0)) # which margin lines to use for labels
par(mai=c(0.4,0.45,0.05,0.05)) # margin size in inches: bottom,left,top,right
plot(trajectoryX , relprob[2:(length(relprob)-1)]
	, type='h' ,lwd=4
 , xlab=bquote(theta)
	, ylim = c(0,max(relprob)) , ylab=expression(P(theta)) ,cex.lab=1.5)

Save the plot as an EPS file.
filename = paste("BinomMCMCdemowalk_", distribname ,".eps",sep="")
dev.copy2eps(file=filename)

BinomNHSTpoissonrate.R

z_obs = 30 ; N_obs = 46
nulltheta = .5
tail_prob = 0 # Zero initial value for accumulation over possible N.
for (N in 1 : (3*N_obs)) { # Start at 1 to avoid /0. 3*N_obs is arbitrary.
 # Create vector of z values such that z/N >= z_obs/N_obs
 zvec = (0:N)[(0:N)/N >= z_obs/N_obs]
 tail_prob = tail_prob + (
 dpois(N , N_obs) * sum(dbinom(zvec , N , nulltheta)))
}
show(tail_prob)

BloodDataGenerator.R

Fictitious blood data. The correlations, means, and SDs used here are
fabricated for pedagogical purposes and may have no resemblance to real data.
Kruschke, J. K. (2010). Doing Bayesian data analysis:
A Tutorial with R and BUGS. Academic Press / Elsevier Science.

Specify the names of the predictors:
xNames = c("Systolic","Diastolic","Weight","Cholesterol","Height","Age")
nX = length(xNames) # number of predictors
SPECIFY THE CORRELATIONS BETWEEN PREDICTORS:
if (T) { # zero correlations everywhere
rMat = matrix(c(1 , 0 , 0 , 0 , 0 , 0 ,
 0 , 1 , 0 , 0 , 0 , 0 ,
 0 , 0 , 1 , 0 , 0 , 0 ,
 0 , 0 , 0 , 1 , 0 , 0 ,
 0 , 0 , 0 , 0 , 1 , 0 ,
 0 , 0 , 0 , 0 , 0 , 1) , ncol=nX) }
if (F) { # first two predictors strongly correlated
rMat = matrix(c(1 , .95, 0 , 0 , 0 , 0 ,
 .95, 1 , 0 , 0 , 0 , 0 ,
 0 , 0 , 1 , 0 , 0 , 0 ,
 0 , 0 , 0 , 1 , 0 , 0 ,
 0 , 0 , 0 , 0 , 1 , 0 ,
 0 , 0 , 0 , 0 , 0 , 1) , ncol=nX) }
if (F) { # first two uncorrelated, but other predictors correlated
rMat = matrix(c(1 , 0 , .6 , .2 , .1 , .1 ,
 0 , 1 , .6 , .2 , .1 , .1 ,
 .6 , .6 , 1 , .4 , .2 , .2 ,
 .2 , .2 , .4 , 1 , 0 , .3 ,
 .1 , .1 , .2 , 0 , 1 , 0 ,
 .1 , .1 , .2 , .3 , 0 , 1) , ncol=nX) }
if (F) { # first two strongly correlated with others also correlated
rMat = matrix(c(1 , .95 , .6 , .2 , .1 , .1 ,
 .95 , 1 , .6 , .2 , .1 , .1 ,
 .6 , .6 , 1 , .4 , .2 , .2 ,
 .2 , .2 , .4 , 1 , 0 , .3 ,
 .1 , .1 , .2 , 0 , 1 , 0 ,
 .1 , .1 , .2 , .3 , 0 , 1) , ncol=nX) }
SPECIFY THE NUMBER OF DATA POINTS:
nSubj = 200
mVec = rep(0,nX) # means of predictors
require(MASS) # package needed for mvrnorm() function in next line
set.seed(47405)
xMat = mvrnorm(n=nSubj , mu=mVec , Sigma=rMat) #
SPECIFY THE REGRESSION COEFFICIENTS:
betaVec = c(0 , 2 , 2 , 1 , 0 , 0.5)
SPECIFY THE PROPORTION OF PREDICTED VALUES THAT ARE 1's, WHICH IN TURN
DETERMINES THE THRESHOLD (i.e., negative intercept). THIS IS ACCURATE ONLY
FOR LARGE REGRESSION COEFFICIENTS; OTHERWISE SPECIFY MORE EXTREME PROPORTION:
proportionOnes = 0.5 # e.g., about .05 for actual .10
heartAttackLinear = xMat %*% betaVec
threshold = quantile(heartAttackLinear , 1-proportionOnes)
heartAttackProb = 1 / (1 + exp(-1 * (heartAttackLinear - threshold)))
y = 0*heartAttackProb
for (sIdx in 1:nSubj) {
 y[sIdx] = sample(x=c(0,1) , size=1 ,
 prob=c(1-heartAttackProb[sIdx] , heartAttackProb[sIdx]))
}
cat("Generated proportion of 1's in data: ",mean(y),"\n")
Convert to "real world" scale values (multiply by SD, add mean):
xMat[,1] = xMat[,1] * 17 + 125 # systolic
xMat[,2] = xMat[,2] * 11 + 80 # diastolic
xMat[,3] = xMat[,3] * 30 + 150 # weight
xMat[,4] = xMat[,4] * 30 + 130 # cholest
xMat[,5] = xMat[,5] * 3 + 65 # height
xMat[,6] = xMat[,6] * 15 + 50 # age
xMat = round(xMat)
Assemble the values into a matrix:
dataMat = cbind(y , xMat)
colnames(dataMat) = c("HeartAttack" , xNames)
Write the matrix to a table to be loaded by other programs:
write.table(dataMat , file="BloodDataGeneratorOutput.txt" , row.names=F , col.names=T)

FilconBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fileNameRoot="FilconBrugs" # for constructing output filenames
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (subjIdx in 1:nSubj) {
 # Likelihood:
 z[subjIdx] ~ dbin(theta[subjIdx] , N[subjIdx])
 # Prior on theta: Notice nested indexing.
 theta[subjIdx] ~ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)
 }
 for (condIdx in 1:nCond) {
 a[condIdx] <- mu[condIdx] * kappa[condIdx]
 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]
 # Hyperprior on mu and kappa:
 mu[condIdx] ~ dbeta(Amu , Bmu)
 kappa[condIdx] ~ dgamma(Skappa , Rkappa)
 }
 # Constants for hyperprior:
 Amu <- 1
 Bmu <- 1
 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)
 Rkappa <- meanGamma/pow(sdGamma,2)
 meanGamma <- 10
 sdGamma <- 10
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
writeLines(modelstring,con="model.txt")
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

For each subject, specify the condition s/he was in,
the number of trials s/he experienced, and the number correct.
(These lines intentionally exceed the margins so that they don't take up
excessive space on the printed page.)
cond = c(1,2,3,4,4)
N = c(64,64)
z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
nSubj = length(cond)
nCond = length(unique(cond))

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 cond = cond ,
 N = N ,
 z = z
)

Get the data into BRugs:
Function bugsData stores the data file (default filename is data.txt).
Function modelData loads data file into BRugs (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains=nChain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 genInitList <- function() {
 sqzData = .01+.98*datalist$z/datalist$N
 mu = aggregate(sqzData , list(datalist$cond) , "mean")[,"x"]
 sd = aggregate(sqzData , list(datalist$cond) , "sd")[,"x"]
 kappa = mu*(1-mu)/sd^2 - 1
 return(
 list(
 theta = sqzData ,
 mu = mu ,
 kappa = kappa
)
)
 }
 for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS.

burninSteps = 2000
modelUpdate(burninSteps)
samplesSet(c("mu","kappa","theta","a","b"))
nPerChain = ceiling(5000/nChain)
modelUpdate(nPerChain , thin=10)

#--
EXAMINE THE RESULTS.

Check for convergence, mixing and autocorrelation:
source("plotChains.R")
sumInfo = plotChains("mu" , saveplots=T , fileNameRoot)
sumInfo = plotChains("kappa" , saveplots=F)
sumInfo = plotChains("theta[1]" , saveplots=F)

Extract parameter values and save them.
mu = NULL
kappa = NULL
for (condIdx in 1:nCond) {
 mu = rbind(mu , samplesSample(paste("mu[",condIdx,"]",sep="")))
 kappa = rbind(kappa , samplesSample(paste("kappa[",condIdx,"]",sep="")))
}
save(mu , kappa , file=paste(fileNameRoot,"MuKappa.Rdata",sep=""))
chainLength = NCOL(mu)

Histograms of mu differences:
windows(10,2.75)
layout(matrix(1:3,nrow=1))
source("plotPost.R")
plotPost(mu[1,]-mu[2,] , xlab=expression(mu[1]-mu[2]) , main="" ,
 breaks=20 , compVal=0)
plotPost(mu[3,]-mu[4,] , xlab=expression(mu[3]-mu[4]) , main="" ,
 breaks=20 , compVal=0)
plotPost((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2 ,
 xlab=expression((mu[1]+mu[2])/2 - (mu[3]+mu[4])/2) ,
 main="" , breaks=20 , compVal=0)
dev.copy2eps(file=paste(fileNameRoot,"MuDiffs.eps",sep=""))

Scatterplot of mu,kappa in each condition:
windows()
muLim = c(.60,1) ; kappaLim = c(4.0 , 40) ; mainLab="Posterior"
thindex = round(seq(1 , chainLength , len=300))
plot(mu[1,thindex] , kappa[1,thindex] , main=mainLab ,
 xlab=expression(mu[c]) , ylab=expression(kappa[c]) , cex.lab=1.75 ,
 xlim=muLim , ylim=kappaLim , log="y" , col="red" , pch="1")
points(mu[2,thindex] , kappa[2,thindex] , col="blue" , pch="2")
points(mu[3,thindex] , kappa[3,thindex] , col="green" , pch="3")
points(mu[4,thindex] , kappa[4,thindex] , col="black" , pch="4")
dev.copy2eps(file=paste(fileNameRoot,"Scatter.eps",sep=""))

FilconBrugsPower.R

graphics.off()
rm(list=ls(all=TRUE))

GoalAchievedForSample = function(datalist , plotResults=F ,
 fileNameRoot="DeleteMe") {

library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (subjIdx in 1:nSubj) {
 # Likelihood:
 z[subjIdx] ~ dbin(theta[subjIdx] , N[subjIdx])
 # Prior on theta: Notice nested indexing.
 theta[subjIdx] ~ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)
 }
 for (condIdx in 1:nCond) {
 a[condIdx] <- mu[condIdx] * kappa[condIdx]
 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]
 # Hyperprior on mu and kappa:
 mu[condIdx] ~ dbeta(Amu , Bmu)
 kappa[condIdx] ~ dgamma(Skappa , Rkappa)
 }
 # Constants for hyperprior:
 Amu <- 1
 Bmu <- 1
 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)
 Rkappa <- meanGamma/pow(sdGamma,2)
 meanGamma <- 10
 sdGamma <- 10
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
writeLines(modelstring,con="model.txt")
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

datalist supplied from outside the function.
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains=nChain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 genInitList <- function() {
 sqzData = .01+.98*datalist$z/datalist$N
 mu = aggregate(sqzData , list(datalist$cond) , mean)[,"x"]
 sd = aggregate(sqzData , list(datalist$cond) , sd)[,"x"]
 kappa = mu*(1-mu)/sd^2 - 1
 return(
 list(
 theta = sqzData ,
 mu = mu ,
 kappa = kappa
)
)
 }
 for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS.

burninSteps = 1000
modelUpdate(burninSteps)
cat("Got through burn in...");flush.console()
samplesSet(c("mu","kappa","theta","a","b"))
nPerChain = ceiling(3000/nChain)
modelUpdate(nPerChain , thin=5)

#--
EXAMINE THE RESULTS.

Extract chain values from BUGS:
mu = NULL
kappa = NULL
for (condIdx in 1:nCond) {
 nodeName = paste("mu[" , condIdx , "]" , sep="")
 mu = rbind(mu , samplesSample(nodeName))
 nodeName = paste("kappa[" , condIdx , "]" , sep="")
 kappa = rbind(kappa , samplesSample(nodeName))
}
chainLength = NCOL(mu)

Display results if desired:
if (plotResults) {
 # Histograms of condition (i.e. group) mu differences:
 windows(12,4)
 layout(matrix(1:3,nrow=1))
 source("plotPost.R")
 histInfo = plotPost(mu[1,]-mu[2,] , xlab=expression(mu[1]-mu[2]) ,
 compVal=0.0 , breaks=30 , main="")
 histInfo = plotPost(mu[3,]-mu[4,] , xlab=expression(mu[3]-mu[4]) ,
 breaks=30 , main="")
 HDIlim = HDIofMCMC(mu[3,]-mu[4,])
 text(mean(HDIlim) , .25*max(histInfo$density) , adj=c(.5,0) , cex=1.25 ,
 bquote("HDI width = " * .(signif(HDIlim[2]-HDIlim[1],3))))
 nSubjPerCond = round(datalist$nSubj / datalist$nCond)
 histInfo = plotPost((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2 , compVal=0.0 ,
 xlab=expression((mu[1]+mu[2])/2 - (mu[3]+mu[4])/2) ,
 breaks=30 , main="")
 dev.copy2eps(file = paste(fileNameRoot,"N",nSubjPerCond,"_",expIdx,".eps" ,
 sep=""))
 # Scatterplot of mu, kappa:
 windows()
 muLim = c(.60,1) ; kappaLim = c(2.0 , 50) ; mainLab="Posterior"
 thindex = round(seq(1 , chainLength , len=300))
 plot(mu[1,thindex] , kappa[1,thindex] , main=mainLab ,
 xlab=expression(mu[c]) , ylab=expression(kappa[c]) , cex.lab=1.75 ,
 xlim=muLim , ylim=kappaLim , log="y" , col="red" , pch="1")
 points(mu[2,thindex] , kappa[2,thindex] , col="blue" , pch="2")
 points(mu[3,thindex] , kappa[3,thindex] , col="green" , pch="3")
 points(mu[4,thindex] , kappa[4,thindex] , col="black" , pch="4")
} # end if plotResults

Specify goals and check whether they are achieved:
source("HDIofMCMC.R")
Goal is filtration vs condensation 95% HDI exceeds zero:
goal1Ach = (HDIofMCMC((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2)[1] > 0.0)
Goal is filtration1 vs filtration2 95% HDI exceeds zero:
goal2Ach = (HDIofMCMC(mu[1,]-mu[2,])[1] > 0.0)
Goal is condensation1 vs condensation2 95% HDI has width less than 0.2:
HDIlim = HDIofMCMC(mu[3,]-mu[4,])
HDIwidth = HDIlim[2] - HDIlim[1]
goal3Ach = (HDIwidth < 0.2)
goalAchieved = c(goal1Ach , goal2Ach , goal3Ach)

return(goalAchieved)
} # end of function GoalAchievedForSample

#==
Now call the function defined above, using simulated data.

analysisType = c("Retro","Repli")[1] # specify [1] or [2]
fileNameRoot = paste("FilconBrugsPower",analysisType,sep="")

Load original data, for use in replication probability analysis:
(These lines intentionally exceed the margins so that they don't take up
excessive space on the printed page.)
CondOfSubjOrig = c(1,2,3,4,4)
nTrlOfSubjOrig = c(64,64)
nCorrOfSubjOrig = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
nSubjOrig = length(CondOfSubjOrig)
nCondOrig = length(unique(CondOfSubjOrig))

Load previously computed posterior mu[cond,step], kappa[cond,step] chains.
load(file="FilconBrugsMuKappa.Rdata")
chainLength = NCOL(mu)
nCond = NROW(mu) # should be 4, of course

SPECIFY NUMBER OF SUBJECTS PER GROUP FOR SIMULATED DATA:
nSubjPerCond = 17

Specify number of simulated experiments:
nSimExperiments = min(200,chainLength)
nSubj = nSubjPerCond * nCond # Number of subjects total.
nTrlPerSubj = 64 # Number of trials per subject; fixed by design at 64.
nGoal=3 # Determined in function above.

If previous record of power estimation exists, load it and continue the runs.
filelist = dir(pattern=paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))
if (length(filelist) > 0) { # if the file already exists...
 # load previous expIdx, nSuccess
 load(paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))
 prevExpIdx = expIdx
 # Use just some of the MCMC steps, distributed among the whole chain:
 chainIdxVec = round(seq(1,chainLength,len=(prevExpIdx+nSimExperiments)))
} else { # ... otherwise, start a new record
 prevExpIdx = 0
 nSuccess = rep(0,nGoal) # Initialize success counter.
 chainIdxVec = round(seq(1,chainLength,len=nSimExperiments))
}

Simulated experiment loop begins here:
for (expIdx in (1+prevExpIdx):(nSimExperiments+prevExpIdx)) {

 # Generate random data from posterior parameters
 chainIdx=chainIdxVec[expIdx]
 CondOfSubj = sort(rep(1:nCond , nSubjPerCond))
 nTrlOfSubj = rep(nTrlPerSubj , nSubj)
 nCorrOfSubj = rep(0 , nSubj)
 for (condIdx in 1:nCond) {
 m = mu[condIdx,chainIdx]
 k = kappa[condIdx,chainIdx]
 a = m*k
 b = (1-m)*k
 # Generate random theta and z values for simulated subjects:
 thetaVec = rbeta(nSubjPerCond , a , b)
 zVec = rbinom(n=nSubjPerCond , size=nTrlPerSubj , prob=thetaVec)
 nCorrOfSubj[CondOfSubj==condIdx] = zVec
 }

 # Put data into list for BUGS program
 if (analysisType == "Retro") { # retrospective power
 datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 cond = CondOfSubj ,
 N = nTrlOfSubj ,
 z = nCorrOfSubj
)
 }
 if (analysisType == "Repli") { # replication probability
 datalist = list(
 nCond = nCond ,
 nSubj = nSubj + nSubjOrig ,
 cond = c(CondOfSubj , CondOfSubjOrig) ,
 N = c(nTrlOfSubj , nTrlOfSubjOrig) ,
 z = c(nCorrOfSubj , nCorrOfSubjOrig)
)
 }

 # Make plots for first 10 simulated experiments:
 if (expIdx <= 10) { plotRes = T } else { plotRes = F }

 # Call BUGS program and tally number of successes:
 nSuccess = nSuccess + GoalAchievedForSample(datalist ,
 plotRes , fileNameRoot)
 estPower = nSuccess / expIdx
 cat("\n*** nSubjPerCond:",nSubjPerCond, ", nSimExp:",expIdx,
 " , nSuccess:",nSuccess, ", estPower:",round(estPower,2), "\n\n")
 flush.console()
 save(nSuccess , expIdx , estPower ,
 file=paste(fileNameRoot,"N",nSubjPerCond,"Result.Rdata",sep=""))

} # end of simulated experiment loop.

FilconCoKappaBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fileNameRoot="FilconCoKappaBrugs" # for constructing output filenames
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (subjIdx in 1:nSubj) {
 # Likelihood:
 z[subjIdx] ~ dbin(theta[subjIdx] , N[subjIdx])
 # Prior on theta: Notice nested indexing.
 theta[subjIdx] ~ dbeta(a[cond[subjIdx]] , b[cond[subjIdx]])I(0.001,0.999)
 }
 for (condIdx in 1:nCond) {
 a[condIdx] <- mu[condIdx] * kappa[condIdx]
 b[condIdx] <- (1-mu[condIdx]) * kappa[condIdx]
 # Hyperprior on mu and kappa:
 mu[condIdx] ~ dbeta(Amu , Bmu)
 kappa[condIdx] ~ dgamma(Skappa , Rkappa)
 }
 # Constants for hyperprior:
 Amu <- 1
 Bmu <- 1
 Skappa <- pow(meanGamma,2)/pow(sdGamma,2)
 Rkappa <- meanGamma/pow(sdGamma,2)
 meanGamma ~ dunif(0.01 , 30)
 sdGamma ~ dunif(0.01 , 30)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
writeLines(modelstring,con="model.txt")
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

For each subject, specify the condition s/he was in,
the number of trials s/he experienced, and the number correct.
(These lines intentionally exceed the margins so that they don't take up
excessive space on the printed page.)
cond = c(1,2,3,4,4)
N = c(64,64)
z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
nSubj = length(cond)
nCond = length(unique(cond))

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 cond = cond ,
 N = N ,
 z = z
)

Get the data into BRugs:
Function bugsData stores the data file (default filename is data.txt).
Function modelData loads data file into BRugs (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains=nChain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 genInitList <- function() {
 sqzData = .01+.98*datalist$z/datalist$N
 mu = aggregate(sqzData , list(datalist$cond) , mean)[,"x"]
 sd = aggregate(sqzData , list(datalist$cond) , sd)[,"x"]
 kappa = mu*(1-mu)/sd^2 - 1
 return(
 list(
 theta = sqzData ,
 mu = mu ,
 kappa = kappa ,
 meanGamma = mean(kappa),
 sdGamma = sd(kappa)
)
)
 }
 for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS.

burninSteps = 2000
modelUpdate(burninSteps)
samplesSet(c("mu","kappa","theta","meanGamma","sdGamma"))
nPerChain = ceiling(5000/nChain)
modelUpdate(nPerChain , thin=10)

#--
EXAMINE THE RESULTS.

Check for convergence, mixing and autocorrelation:
source("plotChains.R")
sumInfo = plotChains("mu" , saveplots=T , fileNameRoot)
sumInfo = plotChains("kappa" , saveplots=F)
sumInfo = plotChains("theta[1]" , saveplots=F)

Extract parameter values and save them.
mu = NULL
kappa = NULL
for (condIdx in 1:nCond) {
 mu = rbind(mu , samplesSample(paste("mu[",condIdx,"]",sep="")))
 kappa = rbind(kappa , samplesSample(paste("kappa[",condIdx,"]",sep="")))
}
save(mu , kappa , file=paste(fileNameRoot,"MuKappa.Rdata",sep=""))
chainLength = NCOL(mu)

Histograms of mu differences:
windows(10,2.75)
layout(matrix(1:3,nrow=1))
source("plotPost.R")
plotPost(mu[1,]-mu[2,] , xlab=expression(mu[1]-mu[2]) , main="" ,
 breaks=20 , compVal=0)
plotPost(mu[3,]-mu[4,] , xlab=expression(mu[3]-mu[4]) , main="" ,
 breaks=20 , compVal=0)
plotPost((mu[1,]+mu[2,])/2 - (mu[3,]+mu[4,])/2 ,
 xlab=expression((mu[1]+mu[2])/2 - (mu[3]+mu[4])/2) ,
 main="" , breaks=20 , compVal=0)
dev.copy2eps(file=paste(fileNameRoot,"MuDiffs.eps",sep=""))

Scatterplot of mu,kappa in each condition:
windows()
muLim = c(.60,1) ; kappaLim = c(4.0 , 40) ; mainLab="Posterior"
thindex = round(seq(1 , chainLength , len=300))
plot(mu[1,thindex] , kappa[1,thindex] , main=mainLab ,
 xlab=expression(mu[c]) , ylab=expression(kappa[c]) , cex.lab=1.75 ,
 xlim=muLim , ylim=kappaLim , log="y" , col="red" , pch="1")
points(mu[2,thindex] , kappa[2,thindex] , col="blue" , pch="2")
points(mu[3,thindex] , kappa[3,thindex] , col="green" , pch="3")
points(mu[4,thindex] , kappa[4,thindex] , col="black" , pch="4")
dev.copy2eps(file=paste(fileNameRoot,"Scatter.eps",sep=""))

FilconModelCompBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:nSubj) {
 # Likelihood:
 nCorrOfSubj[i] ~ dbin(theta[i] , nTrlOfSubj[i])
 # Prior on theta: Notice nested indexing.
 theta[i] ~ dbeta(aBeta[CondOfSubj[i]] ,
 bBeta[CondOfSubj[i]])I(0.0001,0.9999)
 }
 # Hyperprior on mu and kappa:
 kappa0 ~ dgamma(shapeGamma , rateGamma)
 for (j in 1:nCond) {
 mu[j] ~ dbeta(aHyperbeta , bHyperbeta)
 kappa[j] ~ dgamma(shapeGamma , rateGamma)
 }
 for (j in 1:nCond) {
 aBeta[j] <- mu[j] * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))
 bBeta[j] <- (1-mu[j]) * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))
 # BUGS equals(,) won't work here, for no apparent reason.
 # Took me hours to isolate this problem (argh!). So, DO NOT use:
 # aBeta[j] <- mu[j] * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))
 # bBeta[j] <- (1-mu[j]) * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))
 }
 # Constants for hyperprior:
 aHyperbeta <- 1
 bHyperbeta <- 1
 shapeGamma <- 1.0
 rateGamma <- 0.1
 # Hyperprior on model index:
 mdlIdx ~ dcat(modelProb[])
 modelProb[1] <- .5
 modelProb[2] <- .5
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

For each subject, specify the condition s/he was in,
the number of trials s/he experienced, and the number correct.
(These lines intentionally exceed the margins so that they don't take up
excessive space on the printed page.)
CondOfSubj = c(1,2,3,4,4)
nTrlOfSubj = c(64,64)
nCorrOfSubj = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
nSubj = length(CondOfSubj)
nCond = length(unique(CondOfSubj))

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 CondOfSubj = CondOfSubj ,
 nTrlOfSubj = nTrlOfSubj ,
 nCorrOfSubj = nCorrOfSubj
)

Get the data into BRugs:
Function bugsData stores the data file (default filename is data.txt).
Function modelData loads data file into BRugs (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 1
modelCompile(numChains=nchain)
modelGenInits()

#--
RUN THE CHAINS.

burninSteps = 1000
modelUpdate(burninSteps)
samplesSet(c("mu","kappa","kappa0","theta","mdlIdx"))
nPerChain = 10000
modelUpdate(nPerChain , thin=1) # takes nPerChain * thin steps

#--
EXAMINE THE RESULTS.

filenamebase = "FilconModelCompBrugs"

modelIdxSample = samplesSample("mdlIdx")
pM1 = sum(modelIdxSample == 1) / length(modelIdxSample)
pM2 = 1 - pM1
string1 =paste("p(M1|D)=",round(pM1,3),sep="")
string2 =paste("p(M2|D)=",round(pM2,3),sep="")
windows(10,4)
plot(1:length(modelIdxSample) , modelIdxSample , type="l" ,
 xlab="Step in Markov chain" , ylab="Model Index (1, 2)" ,
 main=paste(string1,", ",string2,sep=""))
dev.copy2eps(file=paste(filenamebase,"_mdlIdx",".eps",sep=""))

kappa0sampleM1 = samplesSample("kappa0")[modelIdxSample == 1]
kappa0sampleM2 = samplesSample("kappa0")[modelIdxSample == 2]
windows()
layout(matrix(1:2,nrow=2))
hist(kappa0sampleM1 , main="Post. kappa0 for M = 1" ,
 xlab=expression(kappa[0]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa0sampleM2 , main="Post. kappa0 for M = 2" ,
 xlab=expression(kappa[0]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
dev.copy2eps(file=paste(filenamebase,"_k0",".eps",sep=""))

kappa1sampleM1 = samplesSample("kappa[1]")[modelIdxSample == 1]
kappa2sampleM1 = samplesSample("kappa[2]")[modelIdxSample == 1]
kappa3sampleM1 = samplesSample("kappa[3]")[modelIdxSample == 1]
kappa4sampleM1 = samplesSample("kappa[4]")[modelIdxSample == 1]
kappa1sampleM2 = samplesSample("kappa[1]")[modelIdxSample == 2]
kappa2sampleM2 = samplesSample("kappa[2]")[modelIdxSample == 2]
kappa3sampleM2 = samplesSample("kappa[3]")[modelIdxSample == 2]
kappa4sampleM2 = samplesSample("kappa[4]")[modelIdxSample == 2]
windows(10,5)
layout(matrix(1:8,nrow=2,byrow=T))
hist(kappa1sampleM1 , main="Post. kappa[1] for M = 1" ,
 xlab=expression(kappa[1]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa2sampleM1 , main="Post. kappa[2] for M = 1" ,
 xlab=expression(kappa[2]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa3sampleM1 , main="Post. kappa[3] for M = 1" ,
 xlab=expression(kappa[3]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa4sampleM1 , main="Post. kappa[4] for M = 1" ,
 xlab=expression(kappa[4]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa1sampleM2 , main="Post. kappa[1] for M = 2" ,
 xlab=expression(kappa[1]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa2sampleM2 , main="Post. kappa[2] for M = 2" ,
 xlab=expression(kappa[2]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa3sampleM2 , main="Post. kappa[3] for M = 2" ,
 xlab=expression(kappa[3]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa4sampleM2 , main="Post. kappa[4] for M = 2" ,
 xlab=expression(kappa[4]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
dev.copy2eps(file=paste(filenamebase,"_kcond",".eps",sep=""))

FilconModelCompPseudoPriorBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:nSubj) {
 # Likelihood:
 nCorrOfSubj[i] ~ dbin(theta[i] , nTrlOfSubj[i])
 # Prior on theta: Notice nested indexing.
 theta[i] ~ dbeta(aBeta[CondOfSubj[i]] ,
 bBeta[CondOfSubj[i]])I(0.0001,0.9999)
 }
 # Hyperprior on mu and kappa:
 kappa0 ~ dgamma(shk0[mdlIdx] , rak0[mdlIdx])
 for (j in 1:nCond) {
 mu[j] ~ dbeta(aHyperbeta , bHyperbeta)
 kappa[j] ~ dgamma(shk[j,mdlIdx] , rak[j,mdlIdx])
 }
 for (j in 1:nCond) {
 aBeta[j] <- mu[j] * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))
 bBeta[j] <- (1-mu[j]) * ((kappa[j]*(2-mdlIdx))+(kappa0*(mdlIdx-1)))
 # BUGS equals(,) won't work here, for no apparent reason.
 # Took me hours to isolate this problem (argh!). So, DO NOT use:
 # aBeta[j] <- mu[j] * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))
 # bBeta[j] <- (1-mu[j]) * (kappa[j]*equals(mdlIdx,1)+kappa0*equals(mdlIdx,2))
 }
 # Constants for hyperprior:
 aHyperbeta <- 1
 bHyperbeta <- 1

 # Actual priors:
 shP <- 1.0 # shape for prior
 raP <- 0.1 # rate for prior
 # shape, rate kappa0[model]
 shk0[2] <- shP
 rak0[2] <- raP
 # shape kappa[condition , model]
 shk[1,1] <- shP
 shk[2,1] <- shP
 shk[3,1] <- shP
 shk[4,1] <- shP
 # rate kappa[condition , model]
 rak[1,1] <- raP
 rak[2,1] <- raP
 rak[3,1] <- raP
 rak[4,1] <- raP

 # Pseudo priors:
 # shape, rate kappa0[model]
 shk0[1] <- 54.0
 rak0[1] <- 4.35
 # shape kappa[condition , model]
 shk[1,2] <- 11.8
 shk[2,2] <- 11.9
 shk[3,2] <- 13.6
 shk[4,2] <- 12.6
 # rate kappa[condition , model]
 rak[1,2] <- 1.34
 rak[2,2] <- 1.11
 rak[3,2] <- 0.903
 rak[4,2] <- 0.748

 # Hyperprior on model index:
 mdlIdx ~ dcat(modelProb[])
 modelProb[1] <- .5
 modelProb[2] <- .5
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

For each subject, specify the condition s/he was in,
the number of trials s/he experienced, and the number correct.
(These lines intentionally exceed the margins so that they don't take up
excessive space on the printed page.)
CondOfSubj = c(1,2,3,4,4)
nTrlOfSubj = c(64,64)
nCorrOfSubj = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
nSubj = length(CondOfSubj)
nCond = length(unique(CondOfSubj))

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 CondOfSubj = CondOfSubj ,
 nTrlOfSubj = nTrlOfSubj ,
 nCorrOfSubj = nCorrOfSubj
)

Get the data into BRugs:
Function bugsData stores the data file (default filename is data.txt).
Function modelData loads data file into BRugs (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 1
modelCompile(numChains=nchain)
modelGenInits()

#--
RUN THE CHAINS.

burninSteps = 1000
modelUpdate(burninSteps)
samplesSet(c("mu","kappa","kappa0","theta","mdlIdx"))
nPerChain = 10000
modelUpdate(nPerChain , thin=1) # takes nPerChain * thin steps

#--
EXAMINE THE RESULTS.

filenamebase = "FilconModelCompPseudoPriorBrugs"

modelIdxSample = samplesSample("mdlIdx")
pM1 = sum(modelIdxSample == 1) / length(modelIdxSample)
pM2 = 1 - pM1
string1 =paste("p(M1|D)=",round(pM1,3),sep="")
string2 =paste("p(M2|D)=",round(pM2,3),sep="")
windows(10,4)
plot(1:length(modelIdxSample) , modelIdxSample , type="l" ,
 xlab="Step in Markov chain" , ylab="Model Index (1, 2)" ,
 main=paste(string1,", ",string2,sep=""))
dev.copy2eps(file=paste(filenamebase,"_mdlIdx",".eps",sep=""))

kappa0sampleM1 = samplesSample("kappa0")[modelIdxSample == 1]
kappa0sampleM2 = samplesSample("kappa0")[modelIdxSample == 2]
windows()
layout(matrix(1:2,nrow=2))
hist(kappa0sampleM1 , main="Post. kappa0 for M = 1" ,
 xlab=expression(kappa[0]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa0sampleM2 , main="Post. kappa0 for M = 2" ,
 xlab=expression(kappa[0]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
dev.copy2eps(file=paste(filenamebase,"_k0",".eps",sep=""))

kappa1sampleM1 = samplesSample("kappa[1]")[modelIdxSample == 1]
kappa2sampleM1 = samplesSample("kappa[2]")[modelIdxSample == 1]
kappa3sampleM1 = samplesSample("kappa[3]")[modelIdxSample == 1]
kappa4sampleM1 = samplesSample("kappa[4]")[modelIdxSample == 1]
kappa1sampleM2 = samplesSample("kappa[1]")[modelIdxSample == 2]
kappa2sampleM2 = samplesSample("kappa[2]")[modelIdxSample == 2]
kappa3sampleM2 = samplesSample("kappa[3]")[modelIdxSample == 2]
kappa4sampleM2 = samplesSample("kappa[4]")[modelIdxSample == 2]
windows(10,5)
layout(matrix(1:8,nrow=2,byrow=T))
hist(kappa1sampleM1 , main="Post. kappa[1] for M = 1" ,
 xlab=expression(kappa[1]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa2sampleM1 , main="Post. kappa[2] for M = 1" ,
 xlab=expression(kappa[2]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa3sampleM1 , main="Post. kappa[3] for M = 1" ,
 xlab=expression(kappa[3]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa4sampleM1 , main="Post. kappa[4] for M = 1" ,
 xlab=expression(kappa[4]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
hist(kappa1sampleM2 , main="Post. kappa[1] for M = 2" ,
 xlab=expression(kappa[1]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa2sampleM2 , main="Post. kappa[2] for M = 2" ,
 xlab=expression(kappa[2]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa3sampleM2 , main="Post. kappa[3] for M = 2" ,
 xlab=expression(kappa[3]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
hist(kappa4sampleM2 , main="Post. kappa[4] for M = 2" ,
 xlab=expression(kappa[4]) , xlim=c(0,30) , freq=F , ylab="" ,
 col="grey" , border="white" , cex.lab=1.75 , breaks=c(seq(0,30,len=19),10000))
lines(seq(0,30,.1) , dgamma(seq(0,30,.1) , 1 , .1))
dev.copy2eps(file=paste(filenamebase,"_kcond",".eps",sep=""))

source("plotPost.R")
windows(10,5)
layout(matrix(1:6,nrow=2,byrow=T))
histInfo = plotPost(kappa1sampleM1 - kappa2sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[1] -kappa[2]) , compVal=0 , breaks=20)
histInfo = plotPost(kappa1sampleM1 - kappa3sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[1] -kappa[3]) , compVal=0 , breaks=20)
histInfo = plotPost(kappa1sampleM1 - kappa4sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[1] -kappa[4]) , compVal=0 , breaks=20)
histInfo = plotPost(kappa2sampleM1 - kappa3sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[2] -kappa[3]) , compVal=0 , breaks=20)
histInfo = plotPost(kappa2sampleM1 - kappa4sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[2] -kappa[4]) , compVal=0 , breaks=20)
histInfo = plotPost(kappa3sampleM1 - kappa4sampleM1 , cex.lab=2 ,
 xlab=bquote(kappa[3] -kappa[4]) , compVal=0 , breaks=20)
dev.copy2eps(file=paste(filenamebase,"_kdiff",".eps",sep=""))

Guber1999data.txt

1 - 16 Name of state (in quotation marks)
18 - 22 Current expenditure per pupil in average daily attendance
in public elementary and secondary schools, 1994-95
(in thousands of dollars)
24 - 27 Average pupil/teacher ratio in public elementary and
secondary schools, Fall 1994
29 - 34 Estimated average annual salary of teachers in public
elementary and secondary schools, 1994-95 (in thousands of
dollars)
36 - 37 Percentage of all eligible students taking the SAT, 1994-95
39 - 41 Average verbal SAT score, 1994-95
43 - 45 Average math SAT score, 1994-95
47 - 50 Average total score on the SAT, 1994-95
"Alabama" 4.405 17.2 31.144 8 491 538 1029
"Alaska" 8.963 17.6 47.951 47 445 489 934
"Arizona" 4.778 19.3 32.175 27 448 496 944
"Arkansas" 4.459 17.1 28.934 6 482 523 1005
"California" 4.992 24.0 41.078 45 417 485 902
"Colorado" 5.443 18.4 34.571 29 462 518 980
"Connecticut" 8.817 14.4 50.045 81 431 477 908
"Delaware" 7.030 16.6 39.076 68 429 468 897
"Florida" 5.718 19.1 32.588 48 420 469 889
"Georgia" 5.193 16.3 32.291 65 406 448 854
"Hawaii" 6.078 17.9 38.518 57 407 482 889
"Idaho" 4.210 19.1 29.783 15 468 511 979
"Illinois" 6.136 17.3 39.431 13 488 560 1048
"Indiana" 5.826 17.5 36.785 58 415 467 882
"Iowa" 5.483 15.8 31.511 5 516 583 1099
"Kansas" 5.817 15.1 34.652 9 503 557 1060
"Kentucky" 5.217 17.0 32.257 11 477 522 999
"Louisiana" 4.761 16.8 26.461 9 486 535 1021
"Maine" 6.428 13.8 31.972 68 427 469 896
"Maryland" 7.245 17.0 40.661 64 430 479 909
"Massachusetts" 7.287 14.8 40.795 80 430 477 907
"Michigan" 6.994 20.1 41.895 11 484 549 1033
"Minnesota" 6.000 17.5 35.948 9 506 579 1085
"Mississippi" 4.080 17.5 26.818 4 496 540 1036
"Missouri" 5.383 15.5 31.189 9 495 550 1045
"Montana" 5.692 16.3 28.785 21 473 536 1009
"Nebraska" 5.935 14.5 30.922 9 494 556 1050
"Nevada" 5.160 18.7 34.836 30 434 483 917
"New Hampshire" 5.859 15.6 34.720 70 444 491 935
"New Jersey" 9.774 13.8 46.087 70 420 478 898
"New Mexico" 4.586 17.2 28.493 11 485 530 1015
"New York" 9.623 15.2 47.612 74 419 473 892
"North Carolina" 5.077 16.2 30.793 60 411 454 865
"North Dakota" 4.775 15.3 26.327 5 515 592 1107
"Ohio" 6.162 16.6 36.802 23 460 515 975
"Oklahoma" 4.845 15.5 28.172 9 491 536 1027
"Oregon" 6.436 19.9 38.555 51 448 499 947
"Pennsylvania" 7.109 17.1 44.510 70 419 461 880
"Rhode Island" 7.469 14.7 40.729 70 425 463 888
"South Carolina" 4.797 16.4 30.279 58 401 443 844
"South Dakota" 4.775 14.4 25.994 5 505 563 1068
"Tennessee" 4.388 18.6 32.477 12 497 543 1040
"Texas" 5.222 15.7 31.223 47 419 474 893
"Utah" 3.656 24.3 29.082 4 513 563 1076
"Vermont" 6.750 13.8 35.406 68 429 472 901
"Virginia" 5.327 14.6 33.987 65 428 468 896
"Washington" 5.906 20.2 36.151 48 443 494 937
"West Virginia" 6.107 14.8 31.944 17 448 484 932
"Wisconsin" 6.930 15.9 37.746 9 501 572 1073
"Wyoming" 6.160 14.9 31.285 10 476 525 1001

HDIofGrid.R

HDIofGrid = function(probMassVec , credMass=0.95) {
 # Arguments:
 # probMassVec is a vector of probability masses at each grid point.
 # credMass is the desired mass of the HDI region.
 # Return value:
 # A list with components:
 # indices is a vector of indices that are in the HDI
 # mass is the total mass of the included indices
 # height is the smallest component probability mass in the HDI
 # Example of use: For determining HDI of a beta(30,12) distribution
 # approximated on a grid:
 # > probDensityVec = dbeta(seq(0,1,length=201) , 30 , 12)
 # > probMassVec = probDensityVec / sum(probDensityVec)
 # > HDIinfo = HDIofGrid(probMassVec)
 # > show(HDIinfo)
 sortedProbMass = sort(probMassVec , decreasing=T)
 HDIheightIdx = min(which(cumsum(sortedProbMass) >= credMass))
 HDIheight = sortedProbMass[HDIheightIdx]
 HDImass = sum(probMassVec[probMassVec >= HDIheight])
 return(list(indices = which(probMassVec >= HDIheight) ,
 mass = HDImass , height = HDIheight))
}

HDIofICDF.R

HDIofICDF = function(ICDFname , credMass=0.95 , tol=1e-8 , ...) {
 # Arguments:
 # ICDFname is R's name for the inverse cumulative density function
 # of the distribution.
 # credMass is the desired mass of the HDI region.
 # tol is passed to R's optimize function.
 # Return value:
 # Highest density iterval (HDI) limits in a vector.
 # Example of use: For determining HDI of a beta(30,12) distribution, type
 # HDIofICDF(qbeta , shape1 = 30 , shape2 = 12)
 # Notice that the parameters of the ICDFname must be explicitly named;
 # e.g., HDIofICDF(qbeta , 30 , 12) does not work.
 # Adapted and corrected from Greg Snow's TeachingDemos package.
 incredMass = 1.0 - credMass
 intervalWidth = function(lowTailPr , ICDFname , credMass , ...) {
 ICDFname(credMass + lowTailPr , ...) - ICDFname(lowTailPr , ...)
 }
 optInfo = optimize(intervalWidth , c(0 , incredMass) , ICDFname=ICDFname ,
 credMass=credMass , tol=tol , ...)
 HDIlowTailPr = optInfo$minimum
 return(c(ICDFname(HDIlowTailPr , ...) ,
	 ICDFname(credMass + HDIlowTailPr , ...)))
}

HDIofMCMC.R

HDIofMCMC = function(sampleVec , credMass=0.95) {
 # Computes highest density interval from a sample of representative values,
 # estimated as shortest credible interval.
 # Arguments:
 # sampleVec
 # is a vector of representative values from a probability distribution.
 # credMass
 # is a scalar between 0 and 1, indicating the mass within the credible
 # interval that is to be estimated.
 # Value:
 # HDIlim is a vector containing the limits of the HDI
 sortedPts = sort(sampleVec)
 ciIdxInc = floor(credMass * length(sortedPts))
 nCIs = length(sortedPts) - ciIdxInc
 ciWidth = rep(0 , nCIs)
 for (i in 1:nCIs) {
 ciWidth[i] = sortedPts[i + ciIdxInc] - sortedPts[i]
 }
 HDImin = sortedPts[which.min(ciWidth)]
 HDImax = sortedPts[which.min(ciWidth) + ciIdxInc]
 HDIlim = c(HDImin , HDImax)
 return(HDIlim)
}

HtWtDataGenerator.R

HtWtDataGenerator = function(nSubj , rndsd=NULL) {
Random height, weight generator for males and females. Uses parameters from
Brainard, J. & Burmaster, D. E. (1992). Bivariate distributions for height and
weight of men and women in the United States. Risk Analysis, 12(2), 267-275.
Kruschke, J. K. (2010). Doing Bayesian data analysis:
A Tutorial with R and BUGS. Academic Press / Elsevier.

require(MASS)

Specify parameters of multivariate normal (MVN) distributions.
Men:
HtMmu = 69.18
HtMsd = 2.87
lnWtMmu = 5.14
lnWtMsd = 0.17
Mrho = 0.42
Mmean = c(HtMmu , lnWtMmu)
Msigma = matrix(c(HtMsd^2 , Mrho * HtMsd * lnWtMsd ,
 Mrho * HtMsd * lnWtMsd , lnWtMsd^2) , nrow=2)
Women cluster 1:
HtFmu1 = 63.11
HtFsd1 = 2.76
lnWtFmu1 = 5.06
lnWtFsd1 = 0.24
Frho1 = 0.41
prop1 = 0.46
Fmean1 = c(HtFmu1 , lnWtFmu1)
Fsigma1 = matrix(c(HtFsd1^2 , Frho1 * HtFsd1 * lnWtFsd1 ,
 Frho1 * HtFsd1 * lnWtFsd1 , lnWtFsd1^2) , nrow=2)
Women cluster 2:
HtFmu2 = 64.36
HtFsd2 = 2.49
lnWtFmu2 = 4.86
lnWtFsd2 = 0.14
Frho2 = 0.44
prop2 = 1 - prop1
Fmean2 = c(HtFmu2 , lnWtFmu2)
Fsigma2 = matrix(c(HtFsd2^2 , Frho2 * HtFsd2 * lnWtFsd2 ,
 Frho2 * HtFsd2 * lnWtFsd2 , lnWtFsd2^2) , nrow=2)

Randomly generate data values from those MVN distributions.
if (!is.null(rndsd)) { set.seed(rndsd) }
datamatrix = matrix(0 , nrow=nSubj , ncol=3)
colnames(datamatrix) = c("male" , "height" , "weight")
maleval = 1 ; femaleval = 0 # arbitrary coding values
for (i in 1:nSubj) {
 # Flip coin to decide sex
 sex = sample(c(maleval,femaleval) , size=1 , replace=TRUE , prob=c(.5,.5))
 if (sex == maleval) { datum = mvrnorm(n = 1, mu=Mmean, Sigma=Msigma) }
 if (sex == femaleval) {
 Fclust = sample(c(1,2) , size=1 , replace=TRUE , prob=c(prop1,prop2))
 if (Fclust == 1) { datum = mvrnorm(n = 1, mu=Fmean1, Sigma=Fsigma1) }
 if (Fclust == 2) { datum = mvrnorm(n = 1, mu=Fmean2, Sigma=Fsigma2) }
 }
 datamatrix[i ,] = c(sex , round(c(datum[1] , exp(datum[2])) , 1))
}

return(datamatrix)
} # end function

IncomeFamilySizeState.csv

			# http://www.census.gov/hhes/www/income/statemedfaminc.html Dec.06			2009

			Income			FamSize			State

			48075			2			Alabama

			55631			3			Alabama

			65311			4			Alabama

			62431			5			Alabama

			57482			6			Alabama

			49656			7			Alabama

			74073			2			Alaska

			77544			3			Alaska

			85422			4			Alaska

			89221			5			Alaska

			94893			6			Alaska

			81200			7			Alaska

			56894			2			Arizona

			62066			3			Arizona

			69452			4			Arizona

			63472			5			Arizona

			57657			6			Arizona

			56663			7			Arizona

			44415			2			Arkansas

			48721			3			Arkansas

			57905			4			Arkansas

			49443			5			Arkansas

			51465			6			Arkansas

			44501			7			Arkansas

			64878			2			California

			70890			3			California

			79477			4			California

			68073			5			California

			67499			6			California

			74290			7			California

			64985			2			Colorado

			69977			3			Colorado

			81644			4			Colorado

			73105			5			Colorado

			74100			6			Colorado

			74289			7			Colorado

									

									

									

			72586			2			Connecticut

			86643			3			Connecticut

			102124			4			Connecticut

			108055			5			Connecticut

			89435			6			Connecticut

			89260			7			Connecticut

									

									

									

			60953			2			Delaware

			70075			3			Delaware

			88725			4			Delaware

			78364			5			Delaware

			86105			6			Delaware

			69190			7			Delaware

									

									

									

			68892			2			District of Columbia

			69294			3			District of Columbia

			60418			4			District of Columbia

			82458			5			District of Columbia

			30253			6			District of Columbia

			51720			7			District of Columbia

									

									

									

			52259			2			Florida

			58574			3			Florida

			69009			4			Florida

			66248			5			Florida

			63759			6			Florida

			66941			7			Florida

									

									

									

			55258			2			Georgia

			61104			3			Georgia

			68502			4			Georgia

			63364			5			Georgia

			64654			6			Georgia

			59212			7			Georgia

									

									

									

			67199			2			Hawaii

			77539			3			Hawaii

			91483			4			Hawaii

			86463			5			Hawaii

			89544			6			Hawaii

			117593			7			Hawaii

									

									

									

			51474			2			Idaho

			52765			3			Idaho

			62051			4			Idaho

			58400			5			Idaho

			57479			6			Idaho

			61398			7			Idaho

									

									

									

			60052			2			Illinois

			71329			3			Illinois

			81465			4			Illinois

			76898			5			Illinois

			70010			6			Illinois

			76118			7			Illinois

									

									

									

			52554			2			Indiana

			59650			3			Indiana

			70873			4			Indiana

			69530			5			Indiana

			65006			6			Indiana

			64880			7			Indiana

									

									

									

			55284			2			Iowa

			64372			3			Iowa

			72961			4			Iowa

			71070			5			Iowa

			64788			6			Iowa

			55270			7			Iowa

									

									

									

			57767			2			Kansas

			63438			3			Kansas

			72610			4			Kansas

			70213			5			Kansas

			60738			6			Kansas

			62020			7			Kansas

									

									

									

			45653			2			Kentucky

			54683			3			Kentucky

			64459			4			Kentucky

			57596			5			Kentucky

			60480			6			Kentucky

			60663			7			Kentucky

									

									

									

			48287			2			Louisiana

			53461			3			Louisiana

			66256			4			Louisiana

			62991			5			Louisiana

			59281			6			Louisiana

			54074			7			Louisiana

									

									

									

			50912			2			Maine

			62076			3			Maine

			70374			4			Maine

			66259			5			Maine

			72620			6			Maine

			62269			7			Maine

									

									

									

			73061			2			Maryland

			85455			3			Maryland

			101803			4			Maryland

			94750			5			Maryland

			95544			6			Maryland

			97272			7			Maryland

									

									

									

			69451			2			Massachusetts

			82591			3			Massachusetts

			99648			4			Massachusetts

			96141			5			Massachusetts

			104012			6			Massachusetts

			106985			7			Massachusetts

									

									

									

			52620			2			Michigan

			61737			3			Michigan

			74824			4			Michigan

			73576			5			Michigan

			64639			6			Michigan

			57733			7			Michigan

									

									

									

			62384			2			Minnesota

			75073			3			Minnesota

			86637			4			Minnesota

			83506			5			Minnesota

			84013			6			Minnesota

			66475			7			Minnesota

									

									

									

			42758			2			Mississippi

			46685			3			Mississippi

			58518			4			Mississippi

			51038			5			Mississippi

			44196			6			Mississippi

			44760			7			Mississippi

									

									

									

			51568			2			Missouri

			60371			3			Missouri

			71059			4			Missouri

			67664			5			Missouri

			67079			6			Missouri

			62052			7			Missouri

									

									

									

			52497			2			Montana

			58636			3			Montana

			65827			4			Montana

			63701			5			Montana

			63582			6			Montana

			59479			7			Montana

									

									

									

			56861			2			Nebraska

			63702			3			Nebraska

			72542			4			Nebraska

			70402			5			Nebraska

			70199			6			Nebraska

			65345			7			Nebraska

									

									

									

			60449			2			Nevada

			67052			3			Nevada

			71104			4			Nevada

			70660			5			Nevada

			61087			6			Nevada

			81426			7			Nevada

									

									

									

			64204			2			New Hampshire

			79668			3			New Hampshire

			93926			4			New Hampshire

			91560			5			New Hampshire

			97314			6			New Hampshire

			90152			7			New Hampshire

									

									

									

			72000			2			New Jersey

			86070			3			New Jersey

			103261			4			New Jersey

			100126			5			New Jersey

			100992			6			New Jersey

			98415			7			New Jersey

									

									

									

			50637			2			New Mexico

			50630			3			New Mexico

			55561			4			New Mexico

			60951			5			New Mexico

			56930			6			New Mexico

			61156			7			New Mexico

									

									

									

			58109			2			New York

			69421			3			New York

			82457			4			New York

			80515			5			New York

			77393			6			New York

			78728			7			New York

									

									

									

			52194			2			North Carolina

			56930			3			North Carolina

			67295			4			North Carolina

			62396			5			North Carolina

			57644			6			North Carolina

			51448			7			North Carolina

									

									

									

			54662			2			North Dakota

			62635			3			North Dakota

			75140			4			North Dakota

			73505			5			North Dakota

			63750			6			North Dakota

			49328			7			North Dakota

									

									

									

			52216			2			Ohio

			61772			3			Ohio

			73301			4			Ohio

			71930			5			Ohio

			69136			6			Ohio

			68978			7			Ohio

									

									

									

			50891			2			Oklahoma

			54522			3			Oklahoma

			62037			4			Oklahoma

			58603			5			Oklahoma

			55680			6			Oklahoma

			50884			7			Oklahoma

									

									

									

			56019			2			Oregon

			62832			3			Oregon

			72667			4			Oregon

			67164			5			Oregon

			62927			6			Oregon

			69807			7			Oregon

									

									

									

			53763			2			Pennsylvania

			67757			3			Pennsylvania

			77867			4			Pennsylvania

			76179			5			Pennsylvania

			71453			6			Pennsylvania

			67571			7			Pennsylvania

									

									

									

			62806			2			Rhode Island

			76846			3			Rhode Island

			87002			4			Rhode Island

			77853			5			Rhode Island

			84644			6			Rhode Island

			74797			7			Rhode Island

									

									

									

			51374			2			South Carolina

			55296			3			South Carolina

			65655			4			South Carolina

			64046			5			South Carolina

			60504			6			South Carolina

			54201			7			South Carolina

									

									

									

			54331			2			South Dakota

			63153			3			South Dakota

			70182			4			South Dakota

			66960			5			South Dakota

			60732			6			South Dakota

			59306			7			South Dakota

									

									

									

			49110			2			Tennessee

			54014			3			Tennessee

			64228			4			Tennessee

			63052			5			Tennessee

			55590			6			Tennessee

			56194			7			Tennessee

									

									

									

			55859			2			Texas

			59222			3			Texas

			66381			4			Texas

			58607			5			Texas

			54391			6			Texas

			55052			7			Texas

									

									

									

			56932			2			Utah

			61905			3			Utah

			69990			4			Utah

			71190			5			Utah

			80574			6			Utah

			79855			7			Utah

									

									

									

			56858			2			Vermont

			65326			3			Vermont

			74163			4			Vermont

			73579			5			Vermont

			77288			6			Vermont

			51141			7			Vermont

									

									

									

			65122			2			Virginia

			74151			3			Virginia

			85939			4			Virginia

			85590			5			Virginia

			75200			6			Virginia

			86963			7			Virginia

									

									

									

			64158			2			Washington

			72533			3			Washington

			82716			4			Washington

			73804			5			Washington

			67489			6			Washington

			72990			7			Washington

									

									

									

			43224			2			West Virginia

			51836			3			West Virginia

			58479			4			West Virginia

			60418			5			West Virginia

			58353			6			West Virginia

			45281			7			West Virginia

									

									

									

			57405			2			Wisconsin

			68123			3			Wisconsin

			80530			4			Wisconsin

			76261			5			Wisconsin

			68438			6			Wisconsin

			61223			7			Wisconsin

									

									

									

			59830			2			Wyoming

			65820			3			Wyoming

			76964			4			Wyoming

			82446			5			Wyoming

			68660			6			Wyoming

			86135			7			Wyoming

									

									

									

			17550			2			Puerto Rico

			23196			3			Puerto Rico

			27532			4			Puerto Rico

			26896			5			Puerto Rico

			27753			6			Puerto Rico

			23454			7			Puerto Rico

IntegralOfDensity.R

Graph of normal probability density function, with comb of intervals.
meanval = 0.0 # Specify mean of distribution.
sdval = 0.2 # Specify standard deviation of distribution.
xlow = meanval - 3*sdval # Specify low end of x-axis.
xhigh = meanval + 3*sdval # Specify high end of x-axis.
dx = 0.02 # Specify interval width on x-axis
Specify comb points along the x axis:
x = seq(from = xlow , to = xhigh , by = dx)
Compute y values, i.e., probability density at each value of x:
y = (1/(sdval*sqrt(2*pi))) * exp(-.5 * ((x-meanval)/sdval)^2)
Plot the function. "plot" draws the intervals. "lines" draws the bell curve.
plot(x , y , type="h" , lwd=1 , cex.axis=1.5
	, xlab="x" , ylab="p(x)" , cex.lab=1.5
	, main="Normal Probability Density" , cex.main=1.5)
lines(x , y)
Approximate the integral as the sum of width * height for each interval.
area = sum(dx * y)
Display info in the graph.
text(-sdval , .9*max(y) , bquote(paste(mu ," = " ,.(meanval)))
 , adj=c(1,.5))
text(-sdval , .8*max(y) , bquote(paste(sigma ," = " ,.(sdval)))
 , adj=c(1,.5))
text(sdval , .9*max(y) , bquote(paste(Delta , "x = " ,.(dx)))
 , adj=c(0,.5))
text(sdval , .8*max(y) ,
 bquote(
 paste(sum(,x,) , " " , Delta , "x p(x) = " , .(signif(area,3)))
) , adj=c(0,.5))
Save the plot to an EPS file.
dev.copy2eps(file = "IntegralOfDensity.eps")

Lock1993data.txt

Make Model Type MinPrice MidPrice MaxPrice CityMPG HiMPG AirBag Drive Cyl EngSz HP RPM RPMile Manual TankCap Pass Length Wheel Width Uturn Rseat Lugg Weight Domestic
Acura Integra Small 12.9 15.9 18.8 25 31 0 1 4 1.8 140 6300 2890 1 13.2 5 177 102 68 37 26.5 11 2705 0
Acura Legend Midsize 29.2 33.9 38.7 18 25 2 1 6 3.2 200 5500 2335 1 18.0 5 195 115 71 38 30.0 15 3560 0
Audi 90 Compact 25.9 29.1 32.3 20 26 1 1 6 2.8 172 5500 2280 1 16.9 5 180 102 67 37 28.0 14 3375 0
Audi 100 Midsize 30.8 37.7 44.6 19 26 2 1 6 2.8 172 5500 2535 1 21.1 6 193 106 70 37 31.0 17 3405 0
BMW 535i Midsize 23.7 30.0 36.2 22 30 1 0 4 3.5 208 5700 2545 1 21.1 4 186 109 69 39 27.0 13 3640 0
Buick Century Midsize 14.2 15.7 17.3 22 31 1 1 4 2.2 110 5200 2565 0 16.4 6 189 105 69 41 28.0 16 2880 1
Buick LeSabre Large 19.9 20.8 21.7 19 28 1 1 6 3.8 170 4800 1570 0 18.0 6 200 111 74 42 30.5 17 3470 1
Buick Roadmaster Large 22.6 23.7 24.9 16 25 1 0 6 5.7 180 4000 1320 0 23.0 6 216 116 78 45 30.5 21 4105 1
Buick Riviera Midsize 26.3 26.3 26.3 19 27 1 1 6 3.8 170 4800 1690 0 18.8 5 198 108 73 41 26.5 14 3495 1
Cadillac DeVille Large 33.0 34.7 36.3 16 25 1 1 8 4.9 200 4100 1510 0 18.0 6 206 114 73 43 35.0 18 3620 1
Cadillac Seville Midsize 37.5 40.1 42.7 16 25 2 1 8 4.6 295 6000 1985 0 20.0 5 204 111 74 44 31.0 14 3935 1
Chevrolet Cavalier Compact 8.5 13.4 18.3 25 36 0 1 4 2.2 110 5200 2380 1 15.2 5 182 101 66 38 25.0 13 2490 1
Chevrolet Corsica Compact 11.4 11.4 11.4 25 34 1 1 4 2.2 110 5200 2665 1 15.6 5 184 103 68 39 26.0 14 2785 1
Chevrolet Camaro Sporty 13.4 15.1 16.8 19 28 2 0 6 3.4 160 4600 1805 1 15.5 4 193 101 74 43 25.0 13 3240 1
Chevrolet Lumina Midsize 13.4 15.9 18.4 21 29 0 1 4 2.2 110 5200 2595 0 16.5 6 198 108 71 40 28.5 16 3195 1
Chevrolet Lumina_APV Van 14.7 16.3 18.0 18 23 0 1 6 3.8 170 4800 1690 0 20.0 7 178 110 74 44 30.5 * 3715 1
Chevrolet Astro Van 14.7 16.6 18.6 15 20 0 2 6 4.3 165 4000 1790 0 27.0 8 194 111 78 42 33.5 * 4025 1
Chevrolet Caprice Large 18.0 18.8 19.6 17 26 1 0 8 5.0 170 4200 1350 0 23.0 6 214 116 77 42 29.5 20 3910 1
Chevrolet Corvette Sporty 34.6 38.0 41.5 17 25 1 0 8 5.7 300 5000 1450 1 20.0 2 179 96 74 43 * * 3380 1
Chrylser Concorde Large 18.4 18.4 18.4 20 28 2 1 6 3.3 153 5300 1990 0 18.0 6 203 113 74 40 31.0 15 3515 1
Chrysler LeBaron Compact 14.5 15.8 17.1 23 28 2 1 4 3.0 141 5000 2090 0 16.0 6 183 104 68 41 30.5 14 3085 1
Chrysler Imperial Large 29.5 29.5 29.5 20 26 1 1 6 3.3 147 4800 1785 0 16.0 6 203 110 69 44 36.0 17 3570 1
Dodge Colt Small 7.9 9.2 10.6 29 33 0 1 4 1.5 92 6000 3285 1 13.2 5 174 98 66 32 26.5 11 2270 1
Dodge Shadow Small 8.4 11.3 14.2 23 29 1 1 4 2.2 93 4800 2595 1 14.0 5 172 97 67 38 26.5 13 2670 1
Dodge Spirit Compact 11.9 13.3 14.7 22 27 1 1 4 2.5 100 4800 2535 1 16.0 6 181 104 68 39 30.5 14 2970 1
Dodge Caravan Van 13.6 19.0 24.4 17 21 1 2 6 3.0 142 5000 1970 0 20.0 7 175 112 72 42 26.5 * 3705 1
Dodge Dynasty Midsize 14.8 15.6 16.4 21 27 1 1 4 2.5 100 4800 2465 0 16.0 6 192 105 69 42 30.5 16 3080 1
Dodge Stealth Sporty 18.5 25.8 33.1 18 24 1 2 6 3.0 300 6000 2120 1 19.8 4 180 97 72 40 20.0 11 3805 1
Eagle Summit Small 7.9 12.2 16.5 29 33 0 1 4 1.5 92 6000 2505 1 13.2 5 174 98 66 36 26.5 11 2295 1
Eagle Vision Large 17.5 19.3 21.2 20 28 2 1 6 3.5 214 5800 1980 0 18.0 6 202 113 74 40 30.0 15 3490 1
Ford Festiva Small 6.9 7.4 7.9 31 33 0 1 4 1.3 63 5000 3150 1 10.0 4 141 90 63 33 26.0 12 1845 1
Ford Escort Small 8.4 10.1 11.9 23 30 0 1 4 1.8 127 6500 2410 1 13.2 5 171 98 67 36 28.0 12 2530 1
Ford Tempo Compact 10.4 11.3 12.2 22 27 0 1 4 2.3 96 4200 2805 1 15.9 5 177 100 68 39 27.5 13 2690 1
Ford Mustang Sporty 10.8 15.9 21.0 22 29 1 0 4 2.3 105 4600 2285 1 15.4 4 180 101 68 40 24.0 12 2850 1
Ford Probe Sporty 12.8 14.0 15.2 24 30 1 1 4 2.0 115 5500 2340 1 15.5 4 179 103 70 38 23.0 18 2710 1
Ford Aerostar Van 14.5 19.9 25.3 15 20 1 2 6 3.0 145 4800 2080 1 21.0 7 176 119 72 45 30.0 * 3735 1
Ford Taurus Midsize 15.6 20.2 24.8 21 30 1 1 6 3.0 140 4800 1885 0 16.0 5 192 106 71 40 27.5 18 3325 1
Ford Crown_Victoria Large 20.1 20.9 21.7 18 26 1 0 8 4.6 190 4200 1415 0 20.0 6 212 114 78 43 30.0 21 3950 1
Geo Metro Small 6.7 8.4 10.0 46 50 0 1 3 1.0 55 5700 3755 1 10.6 4 151 93 63 34 27.5 10 1695 0
Geo Storm Sporty 11.5 12.5 13.5 30 36 1 1 4 1.6 90 5400 3250 1 12.4 4 164 97 67 37 24.5 11 2475 0
Honda Prelude Sporty 17.0 19.8 22.7 24 31 2 1 4 2.3 160 5800 2855 1 15.9 4 175 100 70 39 23.5 8 2865 0
Honda Civic Small 8.4 12.1 15.8 42 46 1 1 4 1.5 102 5900 2650 1 11.9 4 173 103 67 36 28.0 12 2350 0
Honda Accord Compact 13.8 17.5 21.2 24 31 2 1 4 2.2 140 5600 2610 1 17.0 4 185 107 67 41 28.0 14 3040 0
Hyundai Excel Small 6.8 8.0 9.2 29 33 0 1 4 1.5 81 5500 2710 1 11.9 5 168 94 63 35 26.0 11 2345 0
Hyundai Elantra Small 9.0 10.0 11.0 22 29 0 1 4 1.8 124 6000 2745 1 13.7 5 172 98 66 36 28.0 12 2620 0
Hyundai Scoupe Sporty 9.1 10.0 11.0 26 34 0 1 4 1.5 92 5550 2540 1 11.9 4 166 94 64 34 23.5 9 2285 0
Hyundai Sonata Midsize 12.4 13.9 15.3 20 27 0 1 4 2.0 128 6000 2335 1 17.2 5 184 104 69 41 31.0 14 2885 0
Infiniti Q45 Midsize 45.4 47.9 50.4 17 22 1 0 8 4.5 278 6000 1955 0 22.5 5 200 113 72 42 29.0 15 4000 0
Lexus ES300 Midsize 27.5 28.0 28.4 18 24 1 1 6 3.0 185 5200 2325 1 18.5 5 188 103 70 40 27.5 14 3510 0
Lexus SC300 Midsize 34.7 35.2 35.6 18 23 2 0 6 3.0 225 6000 2510 1 20.6 4 191 106 71 39 25.0 9 3515 0
Lincoln Continental Midsize 33.3 34.3 35.3 17 26 2 1 6 3.8 160 4400 1835 0 18.4 6 205 109 73 42 30.0 19 3695 1
Lincoln Town_Car Large 34.4 36.1 37.8 18 26 2 0 8 4.6 210 4600 1840 0 20.0 6 219 117 77 45 31.5 22 4055 1
Mazda 323 Small 7.4 8.3 9.1 29 37 0 1 4 1.6 82 5000 2370 1 13.2 4 164 97 66 34 27.0 16 2325 0
Mazda Protege Small 10.9 11.6 12.3 28 36 0 1 4 1.8 103 5500 2220 1 14.5 5 172 98 66 36 26.5 13 2440 0
Mazda 626 Compact 14.3 16.5 18.7 26 34 1 1 4 2.5 164 5600 2505 1 15.5 5 184 103 69 40 29.5 14 2970 0
Mazda MPV Van 16.6 19.1 21.7 18 24 0 2 6 3.0 155 5000 2240 0 19.6 7 190 110 72 39 27.5 * 3735 0
Mazda RX-7 Sporty 32.5 32.5 32.5 17 25 1 0 * 1.3 255 6500 2325 1 20.0 2 169 96 69 37 * * 2895 0
Mercedes-Benz 190E Compact 29.0 31.9 34.9 20 29 1 0 4 2.3 130 5100 2425 1 14.5 5 175 105 67 34 26.0 12 2920 0
Mercedes-Benz 300E Midsize 43.8 61.9 80.0 19 25 2 0 6 3.2 217 5500 2220 0 18.5 5 187 110 69 37 27.0 15 3525 0
Mercury Capri Sporty 13.3 14.1 15.0 23 26 1 1 4 1.6 100 5750 2475 1 11.1 4 166 95 65 36 19.0 6 2450 1
Mercury Cougar Midsize 14.9 14.9 14.9 19 26 0 0 6 3.8 140 3800 1730 0 18.0 5 199 113 73 38 28.0 15 3610 1
Mitsubishi Mirage Small 7.7 10.3 12.9 29 33 0 1 4 1.5 92 6000 2505 1 13.2 5 172 98 67 36 26.0 11 2295 0
Mitsubishi Diamante Midsize 22.4 26.1 29.9 18 24 1 1 6 3.0 202 6000 2210 0 19.0 5 190 107 70 43 27.5 14 3730 0
Nissan Sentra Small 8.7 11.8 14.9 29 33 1 1 4 1.6 110 6000 2435 1 13.2 5 170 96 66 33 26.0 12 2545 0
Nissan Altima Compact 13.0 15.7 18.3 24 30 1 1 4 2.4 150 5600 2130 1 15.9 5 181 103 67 40 28.5 14 3050 0
Nissan Quest Van 16.7 19.1 21.5 17 23 0 1 6 3.0 151 4800 2065 0 20.0 7 190 112 74 41 27.0 * 4100 0
Nissan Maxima Midsize 21.0 21.5 22.0 21 26 1 1 6 3.0 160 5200 2045 0 18.5 5 188 104 69 41 28.5 14 3200 0
Oldsmobile Achieva Compact 13.0 13.5 14.0 24 31 0 1 4 2.3 155 6000 2380 0 15.2 5 188 103 67 39 28.0 14 2910 1
Oldsmobile Cutlass_Ciera Midsize 14.2 16.3 18.4 23 31 1 1 4 2.2 110 5200 2565 0 16.5 5 190 105 70 42 28.0 16 2890 1
Oldsmobile Silhouette Van 19.5 19.5 19.5 18 23 0 1 6 3.8 170 4800 1690 0 20.0 7 194 110 74 44 30.5 * 3715 1
Oldsmobile Eighty-Eight Large 19.5 20.7 21.9 19 28 1 1 6 3.8 170 4800 1570 0 18.0 6 201 111 74 42 31.5 17 3470 1
Plymouth Laser Sporty 11.4 14.4 17.4 23 30 0 2 4 1.8 92 5000 2360 1 15.9 4 173 97 67 39 24.5 8 2640 1
Pontiac LeMans Small 8.2 9.0 9.9 31 41 0 1 4 1.6 74 5600 3130 1 13.2 4 177 99 66 35 25.5 17 2350 1
Pontiac Sunbird Compact 9.4 11.1 12.8 23 31 0 1 4 2.0 110 5200 2665 1 15.2 5 181 101 66 39 25.0 13 2575 1
Pontiac Firebird Sporty 14.0 17.7 21.4 19 28 2 0 6 3.4 160 4600 1805 1 15.5 4 196 101 75 43 25.0 13 3240 1
Pontiac Grand_Prix Midsize 15.4 18.5 21.6 19 27 0 1 6 3.4 200 5000 1890 1 16.5 5 195 108 72 41 28.5 16 3450 1
Pontiac Bonneville Large 19.4 24.4 29.4 19 28 2 1 6 3.8 170 4800 1565 0 18.0 6 177 111 74 43 30.5 18 3495 1
Saab 900 Compact 20.3 28.7 37.1 20 26 1 1 4 2.1 140 6000 2910 1 18.0 5 184 99 67 37 26.5 14 2775 0
Saturn SL Small 9.2 11.1 12.9 28 38 1 1 4 1.9 85 5000 2145 1 12.8 5 176 102 68 40 26.5 12 2495 1
Subaru Justy Small 7.3 8.4 9.5 33 37 0 2 3 1.2 73 5600 2875 1 9.2 4 146 90 60 32 23.5 10 2045 0
Subaru Loyale Small 10.5 10.9 11.3 25 30 0 2 4 1.8 90 5200 3375 1 15.9 5 175 97 65 35 27.5 15 2490 0
Subaru Legacy Compact 16.3 19.5 22.7 23 30 1 2 4 2.2 130 5600 2330 1 15.9 5 179 102 67 37 27.0 14 3085 0
Suzuki Swift Small 7.3 8.6 10.0 39 43 0 1 3 1.3 70 6000 3360 1 10.6 4 161 93 63 34 27.5 10 1965 0
Toyota Tercel Small 7.8 9.8 11.8 32 37 1 1 4 1.5 82 5200 3505 1 11.9 5 162 94 65 36 24.0 11 2055 0
Toyota Celica Sporty 14.2 18.4 22.6 25 32 1 1 4 2.2 135 5400 2405 1 15.9 4 174 99 69 39 23.0 13 2950 0
Toyota Camry Midsize 15.2 18.2 21.2 22 29 1 1 4 2.2 130 5400 2340 1 18.5 5 188 103 70 38 28.5 15 3030 0
Toyota Previa Van 18.9 22.7 26.6 18 22 1 2 4 2.4 138 5000 2515 1 19.8 7 187 113 71 41 35.0 * 3785 0
Volkswagen Fox Small 8.7 9.1 9.5 25 33 0 1 4 1.8 81 5500 2550 1 12.4 4 163 93 63 34 26.0 10 2240 0
Volkswagen Eurovan Van 16.6 19.7 22.7 17 21 0 1 5 2.5 109 4500 2915 1 21.1 7 187 115 72 38 34.0 * 3960 0
Volkswagen Passat Compact 17.6 20.0 22.4 21 30 0 1 4 2.0 134 5800 2685 1 18.5 5 180 103 67 35 31.5 14 2985 0
Volkswagen Corrado Sporty 22.9 23.3 23.7 18 25 0 1 6 2.8 178 5800 2385 1 18.5 4 159 97 66 36 26.0 15 2810 0
Volvo 240 Compact 21.8 22.7 23.5 21 28 1 0 4 2.3 114 5400 2215 1 15.8 5 190 104 67 37 29.5 14 2985 0
Volvo 850 Midsize 24.8 26.7 28.5 20 28 2 1 5 2.4 168 6200 2310 1 19.3 5 184 105 69 38 30.0 15 3245 0

LogisticOnewayAnovaBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "LogisticOnewayAnovaBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 z[i] ~ dbin(theta[i] , n[i])
 theta[i] ~ dbeta(aBeta[x[i]] , bBeta[x[i]])I(0.001,0.999)
 }
 for (j in 1:NxLvl) {
 aBeta[j] <- mu[j] * k
 bBeta[j] <- (1-mu[j]) * k
 mu[j] <- 1 / (1 + exp(-(a0 + a[j])))
 a[j] ~ dnorm(0.0 , atau)
 }
 k ~ dgamma(1.0 , 0.01)
 a0 ~ dnorm(0 , 0.001)
 atau <- 1 / pow(aSD , 2)
 aSD <- abs(aSDunabs) + .1
 aSDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Specify data source:
dataSource = c("Filcon" , "Relshift" , "Random")[1]
Load the data:

sigmoid = function(x) { return(1 / (1 + exp(-x))) }
logit = function(y) { return(log(y / (1-y))) }

if (dataSource == "Filcon") {
 fnroot = paste(fnroot , dataSource , sep="")
 x = c(1,2,3,4,4)
 n = c(64,64)
 z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
 Ntotal = length(z)
 xnames = c("FiltLR","FiltHt","Condns1","Condns2")
 NxLvl = length(unique(x))
 contrastList = list(FiltLRvFiltHt = c(1,-1,0,0) ,
 Cond1vCond2 = c(0,0,1,-1) ,
 FiltvCond = c(1/2,1/2,-1/2,-1/2))
}

if (dataSource == "Relshift") {
 fnroot = paste(fnroot , dataSource , sep="")
 #source("Kruschke1996CSdata.R") # if it has not yet been run
 load("Kruschke1996CSdatsum.Rdata") # loads CondOfSubj, nCorrOfSubj, nTrlOfSubj
 x = CondOfSubj
 n = nTrlOfSubj
 z = nCorrOfSubj
 Ntotal = length(z)
 xnames = c("Rev","Rel","Irr","Cmp")
 NxLvl = length(unique(x))
 contrastList = list(REVvREL = c(1,-1,0,0) , RELvIRR = c(0,1,-1,0) ,
 IRRvCMP = c(0,0,1,-1) , CMPvOneRel = c(0,-1/2,-1/2,1) ,
 FourExvEightEx = c(-1,1/3,1/3,1/3) ,
 OneRelvTwoRel = c(-1/2,1/2,1/2,-1/2))
}

if (dataSource == "Random") {
 fnroot = paste(fnroot , dataSource , sep="")
 #set.seed(47405)
 a0true = -0.5
 atrue = c(0.8 , -0.3 , -0.5) # sum to zero
 ktrue = 100
 subjPerCell = 50
 nPerSubj = 100
 datarecord = matrix(0, ncol=3 , nrow=length(atrue)*subjPerCell)
 colnames(datarecord) = c("x","z","n")
 rowidx = 0
 for (xidx in 1:length(atrue)) {
 for (subjidx in 1:subjPerCell) {
 rowidx = rowidx + 1
 datarecord[rowidx,"x"] = xidx
 mu = sigmoid(a0true+atrue[xidx])
 theta = rbeta(1 , mu*ktrue , (1-mu)*ktrue)
 datarecord[rowidx,"z"] = rbinom(1 , prob=theta , size=nPerSubj)
 datarecord[rowidx,"n"] = nPerSubj
 }
 }
 datarecord = data.frame(x=as.factor(datarecord[,"x"]) , z=datarecord[,"z"] ,
 n=datarecord[,"n"])
 z = as.numeric(datarecord$z)
 Ntotal = length(z)
 n = as.numeric(datarecord$n)
 x = as.numeric(datarecord$x)
 xnames = levels(datarecord$x)
 NxLvl = length(unique(x))
 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:
 contrastList = NULL
 for (g1idx in 1:(NxLvl-1)) {
 for (g2idx in (g1idx+1):NxLvl) {
 cmpVec = rep(0,NxLvl)
 cmpVec[g1idx] = -1
 cmpVec[g2idx] = 1
 contrastList = c(contrastList , list(cmpVec))
 }
 }
}

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 z = z ,
 n = n ,
 x = x ,
 Ntotal = Ntotal ,
 NxLvl = NxLvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains.
nchain = 10
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(pr=.01+.98*datalist$z/datalist$n ,
 x=factor(x,labels=xnames))
 a0 = mean(logit(theData$pr))
 a = aggregate(logit(theData$pr) , list(theData$x) , mean)[,2] - a0
 mGrp = aggregate(theData$pr , list(theData$x) , mean)[,2]
 sdGrp = aggregate(theData$pr , list(theData$x) , sd)[,2]
 kGrp = mGrp*(1-mGrp)/sdGrp^2 - 1
 k = mean(kGrp)
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a = a ,
 aSDunabs = sd(a) ,
 theta = theData$pr ,
 k = k
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 10000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a" , "aSD" , "k"))
stepsPerChain = ceiling(2000/nchain)
thinStep = 750
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = T
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("aSD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("k" , saveplots=F , filenameroot=fnroot)
}

Extract and plot the SDs:
aSDSample = samplesSample("aSD")
windows()
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
aSample = array(0 , dim=c(datalist$NxLvl , chainLength))
for (xidx in 1:datalist$NxLvl) {
 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))
}

Convert to zero-centered b values:
mSample = array(0, dim=c(datalist$NxLvl , chainLength))
for (stepIdx in 1:chainLength) {
 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])
}
b0Sample = apply(mSample , 2 , mean)
bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)

Plot b values:
windows(datalist$NxLvl*2.75,2.5)
layout(matrix(1:datalist$NxLvl , nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
for (xidx in 1:datalist$NxLvl) {
 plotPost(bSample[xidx,] , breaks=30 ,
 xlab=bquote(beta[.(xidx)]) ,
 main=paste(xnames[xidx]))
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Consider parameter correlations:
kSample = samplesSample("k")
windows()
pairs(cbind(b0Sample , t(bSample) , kSample) , labels=c("b0",xnames,"k"))

Display contrast analyses
nContrasts = length(contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.5 ,
 main=paste("Contrast:", names(contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))
}

#==
Do NHST ANOVA:

theData = data.frame(y=z/n , x=factor(x,labels=xnames))
aovresult = aov(y ~ x , data = theData)
cat("\n--\n\n")
print(summary(aovresult))
cat("\n--\n\n")
print(model.tables(aovresult , "means") , digits=4)
windows()
boxplot(y ~ x , data = theData)
cat("\n--\n\n")
print(TukeyHSD(aovresult , "x" , ordered = FALSE))
windows()
plot(TukeyHSD(aovresult , "x"))
if (F) {
 for (xIdx1 in 1:(NxLvls-1)) {
 for (xIdx2 in (xIdx1+1):NxLvls) {
 cat("\n--\n\n")
 cat("xIdx1 = " , xIdx1 , ", xIdx2 = " , xIdx2 ,
 ", M2-M1 = " , mean(score[x==xIdx2])-mean(score[x==xIdx1]) ,
 "\n")
 print(t.test(score[x == xIdx2] , score[x == xIdx1]))
 }
 }
}
cat("\n--\n\n")

#==

LogisticOnewayAnovaHeteroVarBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "LogisticOnewayAnovaHeteroVarBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 z[i] ~ dbin(theta[i] , n[i])
 theta[i] ~ dbeta(aBeta[x[i]] , bBeta[x[i]])I(0.001,0.999)
 }
 for (j in 1:NxLvl) {
 aBeta[j] <- mu[j] * k[j]
 bBeta[j] <- (1-mu[j]) * k[j]
 mu[j] <- 1 / (1 + exp(-(a0 + a[j])))
 a[j] ~ dnorm(0.0 , atau)
 k[j] ~ dgamma(skappa , rkappa)
 }
 a0 ~ dnorm(0 , 0.001)
 atau <- 1 / pow(aSD , 2)
 aSD <- abs(aSDunabs) + .1
 aSDunabs ~ dt(0 , 0.001 , 2)
 skappa <- pow(mg,2)/pow(sg,2)
 rkappa <- mg/pow(sg,2)
 mg ~ dunif(0,50)
 sg ~ dunif(0,30)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Specify data source:
dataSource = c("Filcon" , "Relshift" , "Random")[1]
Load the data:

sigmoid = function(x) { return(1 / (1 + exp(-x))) }
logit = function(y) { return(log(y / (1-y))) }

if (dataSource == "Filcon") {
 fnroot = paste(fnroot , dataSource , sep="")
 x = c(1,2,3,4,4)
 n = c(64,64)
 z = c(45,63,58,64,58,63,51,60,59,47,63,61,60,51,59,45,61,59,60,58,63,56,63,64,64,60,64,62,49,64,64,58,64,52,64,64,64,62,64,61,59,59,55,62,51,58,55,54,59,57,58,60,54,42,59,57,59,53,53,42,59,57,29,36,51,64,60,54,54,38,61,60,61,60,62,55,38,43,58,60,44,44,32,56,43,36,38,48,32,40,40,34,45,42,41,32,48,36,29,37,53,55,50,47,46,44,50,56,58,42,58,54,57,54,51,49,52,51,49,51,46,46,42,49,46,56,42,53,55,51,55,49,53,55,40,46,56,47,54,54,42,34,35,41,48,46,39,55,30,49,27,51,41,36,45,41,53,32,43,33)
 Ntotal = length(z)
 xnames = c("FiltLR","FiltHt","Condns1","Condns2")
 NxLvl = length(unique(x))
 contrastList = list(FiltLRvFiltHt = c(1,-1,0,0) ,
 Cond1vCond2 = c(0,0,1,-1) ,
 FiltvCond = c(1/2,1/2,-1/2,-1/2))
}

if (dataSource == "Relshift") {
 fnroot = paste(fnroot , dataSource , sep="")
 #source("Kruschke1996CSdata.R") # if it has not yet been run
 load("Kruschke1996CSdatsum.Rdata") # loads CondOfSubj, nCorrOfSubj, nTrlOfSubj
 x = CondOfSubj
 n = nTrlOfSubj
 z = nCorrOfSubj
 Ntotal = length(z)
 xnames = c("Rev","Rel","Irr","Cmp")
 NxLvl = length(unique(x))
 contrastList = list(REVvREL = c(1,-1,0,0) , RELvIRR = c(0,1,-1,0) ,
 IRRvCMP = c(0,0,1,-1) , CMPvOneRel = c(0,-1/2,-1/2,1) ,
 FourExvEightEx = c(-1,1/3,1/3,1/3) ,
 OneRelvTwoRel = c(-1/2,1/2,1/2,-1/2))
}

if (dataSource == "Random") {
 fnroot = paste(fnroot , dataSource , sep="")
 #set.seed(47405)
 a0true = -0.5
 atrue = c(0.8 , -0.3 , -0.5) # sum to zero
 ktrue = 100
 subjPerCell = 50
 nPerSubj = 100
 datarecord = matrix(0, ncol=3 , nrow=length(atrue)*subjPerCell)
 colnames(datarecord) = c("x","z","n")
 rowidx = 0
 for (xidx in 1:length(atrue)) {
 for (subjidx in 1:subjPerCell) {
 rowidx = rowidx + 1
 datarecord[rowidx,"x"] = xidx
 mu = sigmoid(a0true+atrue[xidx])
 theta = rbeta(1 , mu*ktrue , (1-mu)*ktrue)
 datarecord[rowidx,"z"] = rbinom(1 , prob=theta , size=nPerSubj)
 datarecord[rowidx,"n"] = nPerSubj
 }
 }
 datarecord = data.frame(x=as.factor(datarecord[,"x"]) , z=datarecord[,"z"] ,
 n=datarecord[,"n"])
 z = as.numeric(datarecord$z)
 Ntotal = length(z)
 n = as.numeric(datarecord$n)
 x = as.numeric(datarecord$x)
 xnames = levels(datarecord$x)
 NxLvl = length(unique(x))
 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:
 contrastList = NULL
 for (g1idx in 1:(NxLvl-1)) {
 for (g2idx in (g1idx+1):NxLvl) {
 cmpVec = rep(0,NxLvl)
 cmpVec[g1idx] = -1
 cmpVec[g2idx] = 1
 contrastList = c(contrastList , list(cmpVec))
 }
 }
}

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 z = z ,
 n = n ,
 x = x ,
 Ntotal = Ntotal ,
 NxLvl = NxLvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains.
nchain = 3
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(pr=.01+.98*datalist$z/datalist$n ,
 x=factor(x,labels=xnames))
 a0 = mean(logit(theData$pr))
 a = aggregate(logit(theData$pr) , list(theData$x) , mean)[,2] - a0
 mGrp = aggregate(theData$pr , list(theData$x) , mean)[,2]
 sdGrp = aggregate(theData$pr , list(theData$x) , sd)[,2]
 kGrp = mGrp*(1-mGrp)/sdGrp^2 - 1
 k = mean(kGrp)
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a = a ,
 aSDunabs = sd(a) ,
 theta = theData$pr ,
 k = kGrp ,
 mg = 10 ,
 sg = 10
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 5000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a" , "aSD" , "k" , "mg" , "sg"))
stepsPerChain = ceiling(2000/nchain)
thinStep = 500 # 750
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = T
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("aSD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("k" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("mg" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("sg" , saveplots=F , filenameroot=fnroot)
}

NEEDS MODIFICATION BELOW THIS POINT!

Extract and plot the SDs:
aSDSample = samplesSample("aSD")
windows()
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
aSample = array(0 , dim=c(datalist$NxLvl , chainLength))
for (xidx in 1:datalist$NxLvl) {
 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))
}

Convert to zero-centered b values:
mSample = array(0, dim=c(datalist$NxLvl , chainLength))
for (stepIdx in 1:chainLength) {
 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])
}
b0Sample = apply(mSample , 2 , mean)
bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)

Plot b values:
windows(datalist$NxLvl*2.75,2.5)
layout(matrix(1:datalist$NxLvl , nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
for (xidx in 1:datalist$NxLvl) {
 plotPost(bSample[xidx,] , breaks=30 ,
 xlab=bquote(beta[.(xidx)]) ,
 main=paste(xnames[xidx]))
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Consider parameter correlations:
kSample = samplesSample("k")
windows()
pairs(cbind(b0Sample , t(bSample) , kSample) , labels=c("b0",xnames,"k"))

Display contrast analyses
nContrasts = length(contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.5 ,
 main=paste("Contrast:", names(contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))
}

#==
Do NHST ANOVA:

theData = data.frame(y=z/n , x=factor(x,labels=xnames))
aovresult = aov(y ~ x , data = theData)
cat("\n--\n\n")
print(summary(aovresult))
cat("\n--\n\n")
print(model.tables(aovresult , "means") , digits=4)
windows()
boxplot(y ~ x , data = theData)
cat("\n--\n\n")
print(TukeyHSD(aovresult , "x" , ordered = FALSE))
windows()
plot(TukeyHSD(aovresult , "x"))
if (F) {
 for (xIdx1 in 1:(NxLvls-1)) {
 for (xIdx2 in (xIdx1+1):NxLvls) {
 cat("\n--\n\n")
 cat("xIdx1 = " , xIdx1 , ", xIdx2 = " , xIdx2 ,
 ", M2-M1 = " , mean(score[x==xIdx2])-mean(score[x==xIdx1]) ,
 "\n")
 print(t.test(score[x == xIdx2] , score[x == xIdx1]))
 }
 }
}
cat("\n--\n\n")

#==

McDonaldSK1991data.txt

From http://udel.edu/~mcdonald/statanovasig.html
"Here are some data on a shell measurement (the length of the anterior
adductor muscle scar, standardized by dividing by length) in the mussel
Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland,
taken from a much larger data set used in McDonald et al. (1991)."
#
McDonald, J. H., R. Seed and R. K. Koehn. 1991.
Allozymes and morphometric characters of three species of Mytilus
in the Northern and Southern Hemispheres.
Mar. Biol. 111:323-333.
#
Group code:
1=Tillamook,Oregon
2=Newport,Oregon
3=Petersburg,Alaska
4=Magadan,Russia
5=Tvarminne,Finland
Group Size
1 0.0571
1 0.0813
1 0.0831
1 0.0976
1 0.0817
1 0.0859
1 0.0735
1 0.0659
1 0.0923
1 0.0836
2 0.0873
2 0.0662
2 0.0672
2 0.0819
2 0.0749
2 0.0649
2 0.0835
2 0.0725
3 0.0974
3 0.1352
3 0.0817
3 0.1016
3 0.0968
3 0.1064
3 0.1050
4 0.1033
4 0.0915
4 0.0781
4 0.0685
4 0.0677
4 0.0697
4 0.0764
4 0.0689
5 0.0703
5 0.1026
5 0.0956
5 0.0973
5 0.1039
5 0.1045
#
http://udel.edu/~mcdonald/statanovaunplanned.html
shows that Tukey-Kramer method of unplanned comparisons
groups
Newport/Magadan/Tillamook (2/4/1),
Magadan/Tillamook/Tvarminne (4/1/5),
and Tvarminne/Petersburg (5/3).

From http://udel.edu/~mcdonald/statanovaplanned.html:
Really important note about planned comparisons
Planned comparisons must be planned before you look at the data. If you
look at some data, pick out an interesting comparison, then analyze it as
if it were a planned comparison, you will be committing scientific fraud.
For example, if you look at the mean arch heights for the nine sports, see
that cross-country has the lowest mean and swimming has the highest mean,
then compare just those two means, your P-value will be much too low. This
is because there are 36 possible pairwise comparisons in a set of 9 means.
You expect 5 percent, or 1 out of 20, tests to be "significant" at the
P<0.05 level, even if all the data really fit the null hypothesis, so
there's a good chance that the most extreme comparison in a set of 36
will have a P-value less than 0.05.
It would be acceptable to run a pilot experiment and plan your planned
comparisons based on the results of the pilot experiment. However, if you
do this you could not include the data from the pilot experiment in the
analysis; you would have to limit your anova to the new data.

McIntyre1994data.csv

			Brand			Tar			Nic			Wt			CO

			Alpine			14.1			0.86			0.9853			13.6

			BensonAndHedges			16.0			1.06			1.0938			16.6

			BullDurham			29.8			2.03			1.1650			23.5

			CamelLights			8.0			0.67			0.9280			10.2

			Carlton			4.1			0.40			0.9462			5.4

			Chesterfield			15.0			1.04			0.8885			15.0

			GoldenLights			8.8			0.76			1.0267			9.0

			Kent			12.4			0.95			0.9225			12.3

			Kool			16.6			1.12			0.9372			16.3

			LandM			14.9			1.02			0.8858			15.4

			LarkLights			13.7			1.01			0.9643			13.0

			Marlboro			15.1			0.90			0.9316			14.4

			Merit			7.8			0.57			0.9705			10.0

			MultiFilter			11.4			0.78			1.1240			10.2

			NewportLights			9.0			0.74			0.8517			9.5

			Now			1.0			0.13			0.7851			1.5

			OldGold			17.0			1.26			0.9186			18.5

			PallMallLight			12.8			1.08			1.0395			12.6

			Raleigh			15.8			0.96			0.9573			17.5

			SalemUltra			4.5			0.42			0.9106			4.9

			Tareyton			14.5			1.01			1.0070			15.9

			True			7.3			0.61			0.9806			8.5

			ViceroyRichLight			8.6			0.69			0.9693			10.6

			VirginiaSlims			15.2			1.02			0.9496			13.9

			WinstonLights			12.0			0.82			1.1184			14.9

minNforHDIpower.R

minNforHDIpower = function(genPriorMean , genPriorN ,
 HDImaxwid=NULL , nullVal=NULL , ROPE=c(nullVal,nullVal) ,
 desiredPower=0.8 , audPriorMean=0.5 , audPriorN=2 ,
 HDImass=0.95 , initSampSize=20 , verbose=T) {
 if (is.null(HDImaxwid) + is.null(nullVal) != 1) {
 stop("One and only one of HDImaxwid and nullVal must be specified.")
 }
 # Convert prior mean and N to a,b parameter values of beta distribution.
 genPriorA = genPriorMean * genPriorN
 genPriorB = (1.0 - genPriorMean) * genPriorN
 audPriorA = audPriorMean * audPriorN
 audPriorB = (1.0 - audPriorMean) * audPriorN
 # Initialize loop for incrementing sampleSize
 sampleSize = initSampSize
 notPowerfulEnough = TRUE
 # Increment sampleSize until desired power is achieved.
 while(notPowerfulEnough) {
 zvec = 0:sampleSize # All possible z values for N flips.
 # Compute probability of each z value for data-generating prior.
 pzvec = exp(lchoose(sampleSize , zvec)
 + lbeta(zvec + genPriorA , sampleSize-zvec + genPriorB)
 - lbeta(genPriorA , genPriorB))
 # For each z value, compute HDI. hdiMat is min, max of HDI for each z.
 hdiMat = matrix(0 , nrow=length(zvec) , ncol=2)
 for (zIdx in 1:length(zvec)) {
 z = zvec[zIdx]
 hdiMat[zIdx,] = HDIofICDF(qbeta , shape1 = z + audPriorA ,
 shape2 = sampleSize - z + audPriorB)
 }
 hdiWid = hdiMat[,2] - hdiMat[,1]
 if (!is.null(HDImaxwid)) {
 powerHDI = sum(pzvec[hdiWid < HDImaxwid])
 }
 if (!is.null(nullVal)) {
 powerHDI = sum(pzvec[hdiMat[,1] > ROPE[2] | hdiMat[,2] < ROPE[1]])
 }
 if (verbose) {
 cat(" For sample size = ", sampleSize , ", power = " , powerHDI ,
 "\n" , sep="") ; flush.console()
 }
 if (powerHDI > desiredPower) {
 notPowerfulEnough = FALSE
 } else {
 sampleSize = sampleSize + 1
 }
 } # End while(notPowerfulEnough)
 # Return the minimal sample size that achieved the desired power.
 return(sampleSize)
} # end of function

Moore2006data.txt

Title Year Length Cast Rating Description
A_Ticklish_Affair 1963 89 5 2.0 7
Action_in_the_North_Atlantic 1943 127 7 3.0 9
And_the_Ship_Sails_On 1984 138 7 3.0 15
Autumn_Sonata 1978 97 5 3.0 11
Bachelor_Apartment 1931 77 6 2.5 7
Benson_Murder_Case 1930 69 8 2.5 10
Black_Hand 1950 93 5 3.0 8
Blaze 1989 119 8 2.5 15
Blondie_Has_Servant_Trouble 1940 70 9 2.5 8
Blondie_in_the_Dough 1947 69 9 2.0 8
Brewster_McCloud 1970 101 9 3.0 11
Calling_Philo_Vance 1940 62 6 2.0 10
Car_Wash 1976 97 10 2.5 12
City_Lights 1985 85 10 1.0 13
Come_Out_Fighting 1945 62 9 1.5 9
Conflict 1945 86 6 2.5 7
Conquest 1937 112 10 3.0 10
Dakota 1988 97 6 2.0 11
Deadhead_Miles 1972 93 12 2.5 11
Divided_Heart 1954 89 7 3.0 8
Evergreen 1934 90 5 3.0 9
Falcon_Strikes_Back 1943 66 9 2.5 9
Find_the_Lady 1976 79 6 1.5 13
Five_Golden_Hours 1961 90 7 2.0 9
Flash_and_the_Firecat 1975 84 6 1.5 7
Flight 1929 116 6 2.5 7
Four_Jills_in_a_Jeep 1944 89 12 2.5 12
Galileo 1973 145 11 3.0 13
Hambone_and_Hillie 1984 89 8 2.5 8
Hitler--Dead_or_Alive 1943 70 7 2.0 6
Hold_Back_Tomorrow 1955 75 5 1.5 6
House_Party_3 1994 94 8 1.5 12
It_Came_from_Outer_Space 1953 81 6 3.0 12
Jason's_Lyric 1994 119 9 2.0 16
Jessica 1962 112 6 2.5 7
Kit_Carson 1940 97 7 3.0 8
Kronos 1957 78 5 2.5 11
Lady_Dracula 1973 80 4 1.0 8
Last_Plane_Out 1983 92 6 1.5 12
Mad_Love 1995 95 12 1.5 13
Manhunter 1986 119 7 3.0 21
Memories_of_Me 1988 105 8 2.0 13
Murder_by_Television 1935 60 5 1.5 8
Night_of_the_Dark_Shadows 1971 97 6 1.0 11
Okinawa 1952 67 6 2.0 6
Once_a_Thief 1965 107 7 2.0 7
One_Crazy_Summer 1986 93 8 2.0 12
Our_Man_in_Havana 1960 107 7 2.5 8
Secret_World 1969 94 5 2.0 7
Secrets 1971 86 6 1.5 10
Seminole_Uprising 1955 74 4 1.5 5
She_Demons 1958 80 5 1.0 9
Sherlock_Jr. 1924 45 6 4.0 13
Shout_at_the_Devil 1976 119 5 2.5 10
Single_Room_Furnished 1968 93 7 1.5 10
Sleep_My_Love 1948 97 8 3.0 9
Smash_Up:_The_Story_of_a_Woman 1947 103 6 3.0 14
Spare_the_Rod 1961 93 6 2.5 7
Station_West 1948 92 10 3.0 12
Telefon 1977 102 7 3.0 11
The_Abominable_Dr._Phibes 1971 94 5 3.0 9
The_Amazing_Transparent_Man 1960 58 4 1.0 10
The_Boogens 1981 95 6 1.0 8
The_Boy_Who_Cried_Bitch 1991 101 10 3.0 12
The_Chocolate_War 1988 103 7 3.0 13
The_Cockeyed_Miracle 1946 81 5 2.0 7
The_Competition 1980 129 8 3.0 10
The_Curse_of_Bigfoot 1972 87 3 1.0 5
The_Great_Waldo_Pepper 1975 107 8 3.0 11
The_Hatter's_Ghost 1982 120 4 1.5 9
The_Judge_and_the_Assassin 1975 130 5 3.5 9
The_Last_Valley 1970 128 6 2.0 9
The_Marriage_of_a_Young_Stockbroker 1971 95 6 2.5 14
The_Miracle_Worker 1962 107 7 3.5 14
The_Mutineers 1949 60 4 1.5 5
The_Raven 1963 86 6 3.0 9
The_Ravine 1969 97 6 2.0 7
The_Revolt_of_Job 1983 97 6 3.5 9
The_Romantic_Age 1949 86 6 2.0 7
The_Siege_at_Red_River 1954 81 5 2.5 5
The_Stone_Boy 1984 93 8 3.5 12
The_Strip 1951 85 4 2.0 9
The_Surrogate 1984 95 7 2.5 13
The_Twinkle_in_God's_Eye 1955 73 5 2.0 7
The_Ultimate_Warrior 1975 94 6 2.5 10
The_Unholy_Three 1930 72 6 2.5 9
The_Well 1951 85 7 3.0 8
Tom_Dick_and_Harry 1941 86 7 3.5 11
Triumph_of_the_Spirit 1989 121 7 3.0 12
Uncle_Moses 1932 87 7 2.5 16
Unsane 1982 100 6 2.0 12
Valley_of_Gwangi 1969 95 5 2.5 11
Valley_of_the_Dragons 1961 79 5 1.5 8
Vicki 1953 85 7 2.5 9
Volere_Volare 1991 92 7 2.5 17
Warning_Shot 1967 100 13 3.5 12
Whispering_Smith_vs._Scot._Yard 1951 77 5 2.0 9
Windows 1980 96 4 1.0 9
Windwalker 1980 108 5 2.5 11
You_Only_Live_Twice 1967 116 9 2.5 14

MultiLinRegressHyperBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fname = "MultiLinRegressHyper"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : nData) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- b0 + inprod(b[] , x[i,])
 }
 tau ~ dgamma(.01,.01)
 b0 ~ dnorm(0,1.0E-12)
 for (j in 1:nPredictors) {
 b[j] ~ dt(muB , tauB , tdfB)
 }
 muB ~ dnorm(0 , .100)
 tauB ~ dgamma(.01,.01)
 udfB ~ dunif(0,1)
 tdfB <- 1 + tdfBgain * (-log(1 - udfB))
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

tdfBgain = 1

dataSource = c("Guber1999","McIntyre1994","random")[3]

if (dataSource=="Guber1999") {
 fname = paste("Guber1999Brugs","tdf",tdfBgain,sep="")
 dataMat = read.table(file="Guber1999data.txt" ,
 col.names = c("State","Spend","StuTchRat","Salary",
 "PrcntTake","SATV","SATM","SATT"))
 # Specify variables to be used in BUGS analysis:
 predictedName = "SATT"
 predictorNames = c("Spend" , "PrcntTake")
 #predictorNames = c("Spend" , "PrcntTake" , "Salary" , "StuTchRat")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource=="McIntyre1994Hyper") {
 fname = paste("McIntyre1994Brugs","tdf",tdfBgain,sep="")
 dataMat = read.csv(file="McIntyre1994data.csv")
 predictedName = "CO"
 predictorNames = c("Tar","Nic","Wt")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource=="random") {
 fname = paste("RandomHyper","tdf",tdfBgain,sep="")
 # Generate random data.
 # True parameter values:
 betaTrue = c(100 , 1 , 2 , rep(0,21)) # beta0 is first component
 nPredictors = length(betaTrue) - 1
 sdTrue = 2
 tauTrue = 1/sdTrue^2
 # Random X values:
 set.seed(47405)
 xM = 5 ; xSD = 2
 nData = 100
 x = matrix(rnorm(nPredictors*nData , xM , xSD) , nrow=nData)
 predictorNames = colnames(x) = paste("X",1:nPredictors,sep="")
 # Random Y values generated from linear model with true parameter values:
 y = x %*% matrix(betaTrue[-1],ncol=1) + betaTrue[1] + rnorm(nData,0,sdTrue)
 predictedName = "Y"
 # Select which predictors to include
 includeOnly = 1:nPredictors # default is to include all
 #includeOnly = 1:6 # subset of predictors overwrites default
 x = x[,includeOnly]
 predictorNames = predictorNames[includeOnly]
 nPredictors = NCOL(x)
}

Prepare data for BUGS:
Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
standardizeCols = function(dataMat) {
 zDataMat = dataMat
 for (colIdx in 1:NCOL(dataMat)) {
 mCol = mean(dataMat[,colIdx])
 sdCol = sd(dataMat[,colIdx])
 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol
 }
 return(zDataMat)
}
zx = standardizeCols(x)
zy = standardizeCols(y)

Get the data into BUGS:
datalist = list(
 x = zx ,
 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector
 nPredictors = nPredictors ,
 nData = nData ,
 tdfBgain = tdfBgain
)
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains = nChain)

genInitList <- function(nPred=nPredictors) {
 lmInfo = lm(y ~ x) # R function returns least-squares (normal MLE) fit.
 bInit = lmInfo$coef[-1] * apply(x,2,sd) / sd(y)
 tauInit = (length(y)*sd(y)^2)/sum(lmInfo$res^2)
 list(
 b0 = 0 ,
 b = bInit ,
 tau = tauInit ,
 muB = mean(bInit) ,
 tauB = 1 / sd(bInit)^2 ,
 udfB = 0.95 # tdfB = 4
)
}
for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 100
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b0" , "b" , "tau" , "muB" , "tauB" , "tdfB"))
stepsPerChain = ceiling(10000/nChain)
thinStep = 2
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)
 bSum = plotChains("b" , saveplots=F , filenameroot=fname)
 tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)
 muBSum = plotChains("muB" , saveplots=F , filenameroot=fname)
 tauBSum = plotChains("tauB" , saveplots=F , filenameroot=fname)
 tdfBSum = plotChains("tdfB" , saveplots=F , filenameroot=fname)
}

Extract chain values:
zb0Samp = matrix(samplesSample("b0"))
zbSamp = NULL
for (j in 1:nPredictors) {
 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))
}
zTauSamp = matrix(samplesSample("tau"))
zSigmaSamp = 1 / sqrt(zTauSamp) # Convert precision to SD
chainLength = length(zTauSamp)

Convert to original scale:
bSamp = zbSamp * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))
b0Samp = (zb0Samp * sd(y)
 + mean(y)
 - rowSums(zbSamp
 * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))
 * matrix(apply(x,2,mean) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))))
sigmaSamp = zSigmaSamp * sd(y)

Scatter plots of parameter values, pairwise:
if (nPredictors <= 6) { # don't display if too many predictors
 windows()
 thinIdx = round(seq(1,length(zb0Samp),length=200))
 pairs(cbind(zSigmaSamp[thinIdx] , zb0Samp[thinIdx] , zbSamp[thinIdx,]) ,
 labels=c("Sigma zy","zIntercept",paste("zSlope",predictorNames,sep="")))
 windows()
 thinIdx = seq(1,length(b0Samp),length=700)
 pairs(cbind(sigmaSamp[thinIdx] , b0Samp[thinIdx] , bSamp[thinIdx,]) ,
 labels=c("Sigma y" , "Intercept", paste("Slope",predictorNames,sep="")))
 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))
}
Show correlation matrix on console:
cat("\nCorrlations of posterior sigma, b0, and bs:\n")
show(cor(cbind(sigmaSamp , b0Samp , bSamp)))

Display the posterior:
nPlotPerRow = 5
nPlotRow = ceiling((2+nPredictors)/nPlotPerRow)
nPlotCol = ceiling((2+nPredictors)/nPlotRow)
windows(3.5*nPlotCol,2.25*nPlotRow)
layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(sigmaSamp , xlab="Sigma Value" , compVal=NULL ,
 breaks=30 , main=bquote(sigma[y]) ,
 cex.main=1.67 , cex.lab=1.33)
histInfo = plotPost(b0Samp , xlab="Intercept Value" , compVal=NULL ,
 breaks=30 , main=bquote(.(predictedName) *" at "* x==0) ,
 cex.main=1.67 , cex.lab=1.33)
for (sIdx in 1:nPredictors) {
histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,
 breaks=30 ,
 main=bquote(Delta * .(predictedName) /
 Delta * .(predictorNames[sIdx])) ,
 cex.main=1.67 , cex.lab=1.33)
}
dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

Posterior prediction:
Specify x values for which predicted y's are needed.
xPostPred is a matrix such that ncol=nPredictors and nrow=nPostPredPts.
xPostPred = rbind(
 apply(x,2,mean)-3*apply(x,2,sd) , # mean of data x minus thrice SD of data x
 apply(x,2,mean) , # mean of data x
 apply(x,2,mean)+3*apply(x,2,sd) # mean of data x plus thrice SD of data x
)
Define matrix for recording posterior predicted y values for each xPostPred.
One row per xPostPred value, with each row holding random predicted y values.
postSampSize = chainLength
yPostPred = matrix(0 , nrow=NROW(xPostPred) , ncol=postSampSize)
Define matrix for recording HDI limits of posterior predicted y values:
yHDIlim = matrix(0 , nrow=NROW(xPostPred) , ncol=2)
Generate posterior predicted y values.
This gets only one y value, at each x, for each step in the chain.
for (chainIdx in 1:chainLength) {
 yPostPred[,chainIdx] = rnorm(NROW(xPostPred) ,
 mean = b0Samp[chainIdx]
 + xPostPred %*% cbind(bSamp[chainIdx,]) ,
 sd = rep(sigmaSamp[chainIdx] , NROW(xPostPred)))
}
source("HDIofMCMC.R")
for (xIdx in 1:NROW(xPostPred)) {
 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])
}
cat("\nPosterior predicted y for selected x:\n")
show(cbind(xPostPred , yPostPredMean=rowMeans(yPostPred) , yHDIlim))

#--

MultiLinRegressInterBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fname = "MultiLinRegressInterBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : nData) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- b0 + b1 * x[i,1] + b2 * x[i,2] + b12 * x[i,1] * x[i,2]
 }
 tau ~ dgamma(.001,.001)
 b0 ~ dnorm(0,1.0E-12)
 b1 ~ dnorm(0,1.0E-12)
 b2 ~ dnorm(0,1.0E-12)
 b12 ~ dnorm(0,1.0E-12)
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

dataSource = c("Guber1999","McIntyre1994","random")[1]

if (dataSource=="Guber1999") {
 fname = paste(fname,"Guber1999Brugs",sep="") # file name for saved graphs
 dataMat = read.table(file="Guber1999data.txt" ,
 col.names = c("State","Spend","StuTchRat","Salary",
 "PrcntTake","SATV","SATM","SATT"))
 # Specify variables to be used in BUGS analysis:
 predictedName = "SATT"
 predictorNames = c("Spend" , "PrcntTake") # only two predictors allowed
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 #nPredictors = NCOL(x)
}

if (dataSource=="McIntyre1994") {
 fname = paste(fname,"McIntyre1994Brugs",sep="") # file name for saved graphs
 dataMat = read.csv(file="McIntyre1994data.csv")
 predictedName = "CO"
 predictorNames = c("Tar","Nic") # only two predictors allowed
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 #nPredictors = NCOL(x)
}

if (dataSource=="random") {
 fname = paste(fname,"Random",sep="") # file name for saved graphs
 # Generate random data.
 # True parameter values:
 betaTrue = c(100 , 1 , 1 , -1) # b0,b1,b2,b12
 nPredictors = 2
 sdTrue = 1
 tauTrue = 1/sdTrue^2
 # Random X values:
 set.seed(47405)
 xM = 5 ; xSD = 4*sdTrue
 nData = 100
 x = matrix(rnorm(nPredictors*nData , xM , xSD) , nrow=nData)
 predictorNames = colnames(x) = paste("X",1:nPredictors,sep="")
 # Random Y values generated from linear model with true parameter values:
 y = cbind(betaTrue[1]
 + betaTrue[2] * x[,1]
 + betaTrue[3] * x[,2]
 + betaTrue[4] * x[,1]*x[,2]
 + rnorm(nData,0,sdTrue))
 predictedName = "Y"
}

Prepare data for BUGS:
Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
standardizeCols = function(dataMat) {
 zDataMat = dataMat
 for (colIdx in 1:NCOL(dataMat)) {
 mCol = mean(dataMat[,colIdx])
 sdCol = sd(dataMat[,colIdx])
 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol
 }
 return(zDataMat)
}
zx = standardizeCols(x)
zy = standardizeCols(y)

Get the data into BUGS:
datalist = list(
 x = zx ,
 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector
 nData = nData
)
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains = nChain)

genInitList <- function(nPred=nPredictors) {
 lmInfo = lm(y ~ x) # R function returns least-squares (normal MLE) fit.
 bInit = lmInfo$coef[-1] * apply(x,2,sd) / sd(y)
 tauInit = (length(y)*sd(y)^2)/sum(lmInfo$res^2)
 list(
 b0 = 0 ,
 b1 = bInit[1] ,
 b2 = bInit[2] ,
 b12 = 0 ,
 tau = tauInit
)
}
for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 100
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b0" , "b1" , "b2" , "b12" , "tau"))
stepsPerChain = ceiling(50000/nChain)
thinStep = 2
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)
 b1Sum = plotChains("b1" , saveplots=F , filenameroot=fname)
 b2Sum = plotChains("b2" , saveplots=F , filenameroot=fname)
 b12Sum = plotChains("b12" , saveplots=F , filenameroot=fname)
 tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)
}

Extract chain values:
zb0Samp = matrix(samplesSample("b0"))
zb1Samp = matrix(samplesSample("b1"))
zb2Samp = matrix(samplesSample("b2"))
zb12Samp = matrix(samplesSample("b12"))
zTauSamp = matrix(samplesSample("tau"))
zSigmaSamp = 1 / sqrt(zTauSamp) # Convert precision to SD

Convert to original scale:
chainLength = length(zb0Samp)
My = mean(y) # y is original-scale data
SDy = sd(y)
Mx = apply(x,2,mean) # x is original-scale data
SDx = apply(x,2,sd)
b0Samp = 0 * zb0Samp
b1Samp = 0 * zb1Samp
b2Samp = 0 * zb2Samp
b12Samp = 0 * zb12Samp
for (stepIdx in 1:chainLength) {
 b0Samp[stepIdx] = (My + SDy * zb0Samp[stepIdx]
 - SDy * (Mx[1]/SDx[1]) * zb1Samp[stepIdx]
 - SDy * (Mx[2]/SDx[2]) * zb2Samp[stepIdx]
 + SDy * (Mx[1]/SDx[1]) * (Mx[2]/SDx[2]) * zb12Samp[stepIdx])
 b1Samp[stepIdx] = (zb1Samp[stepIdx] * SDy / SDx[1]
 - zb12Samp[stepIdx] * SDy * (Mx[1]/SDx[1]) * (1/SDx[2]))
 b2Samp[stepIdx] = (zb2Samp[stepIdx] * SDy / SDx[2]
 - zb12Samp[stepIdx] * SDy * (1/SDx[1]) * (Mx[2]/SDx[2]))
 b12Samp[stepIdx] = zb12Samp[stepIdx] * SDy * (1/SDx[1]) * (1/SDx[2])
}
sigmaSamp = zSigmaSamp * SDy

save(b0Samp , b1Samp , b2Samp , b12Samp , sigmaSamp ,
 file=paste(fname,".Rdata",sep=""))

Scatter plots of parameter values, pairwise:
windows()
thinIdx = seq(1,length(b0Samp),length=200)
pairs(cbind(sigmaSamp[thinIdx] , b0Samp[thinIdx] , b1Samp[thinIdx,] ,
 b2Samp[thinIdx,] , b12Samp[thinIdx,]) ,
 labels=c("Sigma y" , "Intercept" ,
 paste("Beta",predictorNames[1],sep="") ,
 paste("Beta",predictorNames[2],sep="") ,
 "Interaction"))
dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

Display the posterior:
windows(3.5*5,2.75)
layout(matrix(1:5,nrow=1))
par(mar=c(4,3,5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(sigmaSamp , xlab="Sigma Value" , compVal=NULL ,
 breaks=30 , main=bquote(sigma[y]) ,
 cex.main=1.67 , cex.lab=1.33)
histInfo = plotPost(b0Samp , xlab="Intercept Value" , compVal=NULL ,
 breaks=30 , main=bquote(.(predictedName) *" at all "* x==0) ,
 cex.main=1.67 , cex.lab=1.33)
histInfo = plotPost(b1Samp , xlab="Beta Value" , compVal=NULL ,
 breaks=30 , cex.main=1.5 , cex.lab=1.33 ,
 main=bquote(atop(Delta * .(predictedName) /
 Delta * .(predictorNames[1]) ,
 " at "* .(predictorNames[2])==0)))
histInfo = plotPost(b2Samp , xlab="Beta Value" , compVal=NULL ,
 breaks=30 , cex.main=1.5 , cex.lab=1.33 ,
 main=bquote(atop(Delta * .(predictedName) /
 Delta * .(predictorNames[2]) ,
 " at "* .(predictorNames[1])==0)))
histInfo = plotPost(b12Samp , xlab="Interaction Value" , compVal=NULL ,
 breaks=30 , cex.main=1.67 , cex.lab=1.33 ,
 main=paste(predictorNames[1],"x",predictorNames[2]))
dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

Credible slopes as function of value of other predictor:
source("HDIofMCMC.R")
#
windows(7,5)
par(mar=c(4,4,3,0) , mgp=c(2,0.7,0))
x2low = max(min(x[,2]) - 0.1 * (max(x[,2]) - min(x[,2])) , 0)
x2high = max(x[,2]) + 0.1 * (max(x[,2]) - min(x[,2]))
x2comb = seq(x2low , x2high , length=20)
beta1HDI = matrix(0 , nrow=3 , ncol=length(x2comb))
for (x2idx in 1:length(x2comb)) {
 slope1Samp = b1Samp + b12Samp * x2comb[x2idx]
 HDIlim = HDIofMCMC(slope1Samp)
 beta1HDI[,x2idx] = c(HDIlim[1] , mean(slope1Samp) , HDIlim[2])
}
plot(x2comb , beta1HDI[2,] , type="o" , pch="+" , cex=2 , col="grey" ,
 ylim=c(min(beta1HDI),max(beta1HDI)) ,
 xlab=bquote("Value of "*.(predictorNames[2])) ,
 ylab=bquote("Slope along "*.(predictorNames[1])) ,
 main="Posterior mean and 95% HDI of slope" ,
 cex.lab=1.5)
abline(h=0 , lty="dashed")
segments(x2comb , beta1HDI[1,] , x2comb , beta1HDI[3,] , lwd=4 , col="grey")
dev.copy2eps(file=paste(fname,"PostSlope1.eps",sep=""))
#
windows(7,5)
par(mar=c(4,4,3,0) , mgp=c(2,0.7,0))
x1low = max(min(x[,1]) - 0.1 * (max(x[,1]) - min(x[,2])) , 0)
x1high = max(x[,1]) + 0.1 * (max(x[,1]) - min(x[,1]))
x1low = 0 ; x1high = 50
x1comb = seq(x1low , x1high , length=20)
beta2HDI = matrix(0 , nrow=3 , ncol=length(x1comb))
for (x1idx in 1:length(x1comb)) {
 slope2Samp = b2Samp + b12Samp * x1comb[x1idx]
 HDIlim = HDIofMCMC(slope2Samp)
 beta2HDI[,x1idx] = c(HDIlim[1] , mean(slope2Samp) , HDIlim[2])
}
plot(x1comb , beta2HDI[2,] , type="o" , pch="+" , cex=2 , col="grey" ,
 ylim=c(min(beta2HDI),max(beta2HDI)) ,
 xlab=bquote("Value of "*.(predictorNames[1])) ,
 ylab=bquote("Slope along "*.(predictorNames[2])) ,
 main="Posterior mean and 95% HDI of slope" ,
 cex.lab=1.5)
abline(h=0 , lty="dashed")
segments(x1comb , beta2HDI[1,] , x1comb , beta2HDI[3,] , lwd=4 , col="grey")
dev.copy2eps(file=paste(fname,"PostSlope2.eps",sep=""))

#--

MultipleLinearRegressionBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fname = "MultipleLinearRegressionBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : nData) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- b0 + inprod(b[] , x[i,])
 }
 tau ~ dgamma(.01,.01)
 b0 ~ dnorm(0,1.0E-12)
 for (j in 1:nPredictors) {
 b[j] ~ dnorm(0,1.0E-12)
 }
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

dataSource = c("Guber1999","McIntyre1994","random")[1]

if (dataSource=="Guber1999") {
 fname = "Guber1999" # file name for saved graphs
 dataMat = read.table(file="Guber1999data.txt" ,
 col.names = c("State","Spend","StuTchRat","Salary",
 "PrcntTake","SATV","SATM","SATT"))
 # Specify variables to be used in BUGS analysis:
 predictedName = "SATT"
 predictorNames = c("Spend" , "PrcntTake")
 #predictorNames = c("Spend" , "PrcntTake" , "Salary" , "StuTchRat")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource=="McIntyre1994") {
 fname = "McIntyre1994" # file name for saved graphs
 dataMat = read.csv(file="McIntyre1994data.csv")
 predictedName = "CO"
 predictorNames = c("Tar","Nic","Wt")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource=="random") {
 fname = "Random" # file name for saved graphs
 # Generate random data.
 # True parameter values:
 betaTrue = c(100 , 1 , 2 , rep(0,21)) # beta0 is first component
 nPredictors = length(betaTrue) - 1
 sdTrue = 2
 tauTrue = 1/sdTrue^2
 # Random X values:
 set.seed(47405)
 xM = 5 ; xSD = 2
 nData = 100
 x = matrix(rnorm(nPredictors*nData , xM , xSD) , nrow=nData)
 predictorNames = colnames(x) = paste("X",1:nPredictors,sep="")
 # Random Y values generated from linear model with true parameter values:
 y = x %*% matrix(betaTrue[-1],ncol=1) + betaTrue[1] + rnorm(nData,0,sdTrue)
 predictedName = "Y"
 # Select which predictors to include
 includeOnly = 1:nPredictors # default is to include all
 #includeOnly = 1:10 # subset of predictors overwrites default
 x = x[,includeOnly]
 predictorNames = predictorNames[includeOnly]
 nPredictors = NCOL(x)
}

Prepare data for BUGS:
Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make prior specification easier.
standardizeCols = function(dataMat) {
 zDataMat = dataMat
 for (colIdx in 1:NCOL(dataMat)) {
 mCol = mean(dataMat[,colIdx])
 sdCol = sd(dataMat[,colIdx])
 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol
 }
 return(zDataMat)
}
zx = standardizeCols(x)
zy = standardizeCols(y)

Get the data into BUGS:
datalist = list(
 x = zx ,
 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector
 nPredictors = nPredictors ,
 nData = nData
)
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains = nChain)

genInitList <- function(nPred=nPredictors) {
 lmInfo = lm(datalist$y ~ datalist$x) # R function returns MLE
 bInit = lmInfo$coef[-1]
 tauInit = length(datalist$y) / sum(lmInfo$res^2)
 list(
 b0 = 0 ,
 b = bInit ,
 tau = tauInit
)
}
for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 100
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b0" , "b" , "tau"))
stepsPerChain = ceiling(10000/nChain)
thinStep = 2
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)
 bSum = plotChains("b" , saveplots=F , filenameroot=fname)
 tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)
}

Extract chain values:
zb0Samp = matrix(samplesSample("b0"))
zbSamp = NULL
for (j in 1:nPredictors) {
 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))
}
zTauSamp = matrix(samplesSample("tau"))
zSigmaSamp = 1 / sqrt(zTauSamp) # Convert precision to SD
chainLength = length(zTauSamp)

Convert to original scale:
bSamp = zbSamp * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))
b0Samp = (zb0Samp * sd(y)
 + mean(y)
 - rowSums(zbSamp
 * matrix(sd(y)/apply(x,2,sd) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))
 * matrix(apply(x,2,mean) , byrow=TRUE ,
 ncol=nPredictors , nrow=NROW(zbSamp))))
sigmaSamp = zSigmaSamp * sd(y)

Save MCMC sample:
save(b0Samp , bSamp , sigmaSamp ,
 file="MultipleLinearRegressionBrugsGuber1999.Rdata")

Scatter plots of parameter values, pairwise:
if (nPredictors <= 6) { # don't display if too many predictors
 windows()
 thinIdx = round(seq(1,length(zb0Samp),length=200))
 pairs(cbind(zSigmaSamp[thinIdx] , zb0Samp[thinIdx] , zbSamp[thinIdx,]) ,
 labels=c("Sigma zy","zIntercept",paste("zSlope",predictorNames,sep="")))
 windows()
 thinIdx = seq(1,length(b0Samp),length=700)
 pairs(cbind(sigmaSamp[thinIdx] , b0Samp[thinIdx] , bSamp[thinIdx,]) ,
 labels=c("Sigma y" , "Intercept", paste("Slope",predictorNames,sep="")))
 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))
}
Show correlation matrix on console:
cat("\nCorrlations of posterior sigma, b0, and bs:\n")
show(cor(cbind(sigmaSamp , b0Samp , bSamp)))

Display the posterior:
nPlotPerRow = 5
nPlotRow = ceiling((2+nPredictors)/nPlotPerRow)
nPlotCol = ceiling((2+nPredictors)/nPlotRow)
windows(3.5*nPlotCol,2.25*nPlotRow)
layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(sigmaSamp , xlab="Sigma Value" , compVal=NULL ,
 breaks=30 , main=bquote(sigma[y]) ,
 cex.main=1.67 , cex.lab=1.33)
histInfo = plotPost(b0Samp , xlab="Intercept Value" , compVal=NULL ,
 breaks=30 , main=bquote(.(predictedName) *" at "* x==0) ,
 cex.main=1.67 , cex.lab=1.33)
for (sIdx in 1:nPredictors) {
histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,
 breaks=30 ,
 main=bquote(Delta * .(predictedName) /
 Delta * .(predictorNames[sIdx])) ,
 cex.main=1.67 , cex.lab=1.33)
}
dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

Posterior prediction:
Specify x values for which predicted y's are needed.
xPostPred is a matrix such that ncol=nPredictors and nrow=nPostPredPts.
xPostPred = rbind(
 apply(x,2,mean)-3*apply(x,2,sd) , # mean of data x minus thrice SD of data x
 apply(x,2,mean) , # mean of data x
 apply(x,2,mean)+3*apply(x,2,sd) # mean of data x plus thrice SD of data x
)
Define matrix for recording posterior predicted y values for each xPostPred.
One row per xPostPred value, with each row holding random predicted y values.
postSampSize = chainLength
yPostPred = matrix(0 , nrow=NROW(xPostPred) , ncol=postSampSize)
Define matrix for recording HDI limits of posterior predicted y values:
yHDIlim = matrix(0 , nrow=NROW(xPostPred) , ncol=2)
Generate posterior predicted y values.
This gets only one y value, at each x, for each step in the chain.
for (chainIdx in 1:chainLength) {
 yPostPred[,chainIdx] = rnorm(NROW(xPostPred) ,
 mean = b0Samp[chainIdx]
 + xPostPred %*% cbind(bSamp[chainIdx,]) ,
 sd = rep(sigmaSamp[chainIdx] , NROW(xPostPred)))
}
source("HDIofMCMC.R")
for (xIdx in 1:NROW(xPostPred)) {
 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])
}
cat("\nPosterior predicted y for selected x:\n")
show(cbind(xPostPred , yPostPredMean=rowMeans(yPostPred) , yHDIlim))

#--

MultipleLogisticRegressionBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fname = "MultipleLogisticRegressionBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : nData) {
 y[i] ~ dbern(mu[i])
 mu[i] <- 1/(1+exp(-(b0 + inprod(b[] , x[i,]))))
 }
 b0 ~ dnorm(0 , 1.0E-12)
 for (j in 1 : nPredictors) {
 b[j] ~ dnorm(0 , 1.0E-12)
 }
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

dataSource = c("HtWt" , "Cars" , "HeartAttack")[3]

if (dataSource == "HtWt") {
 fname = paste(fname , dataSource , sep="")
 # Generate random but realistic data:
 source("HtWtDataGenerator.R")
 dataMat = HtWtDataGenerator(nSubj = 70 , rndsd=474)
 predictedName = "male"
 predictorNames = c("height" , "weight")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource == "Cars") {
 fname = paste(fname , dataSource , sep="")
 dataMat = read.table(file="Lock1993data.txt",header=T,sep=" ")
 predictedName = "AirBag"
 predictorNames = c("MidPrice" , "RPM" , "Uturn")
 nData = NROW(dataMat)
 y = as.matrix(as.numeric(dataMat[,predictedName] > 0)) # 0,1,2 to 0,1
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

if (dataSource == "HeartAttack") {
 fname = paste(fname , dataSource , sep="")
 dataMat = read.table(file="BloodDataGeneratorOutput.txt",header=T,sep=" ")
 predictedName = "HeartAttack"
 predictorNames = c("Systolic", "Diastolic", "Weight", "Cholesterol",
 "Height", "Age")
predictorNames = c("Systolic", "Diastolic")
 nData = NROW(dataMat)
 y = as.matrix(dataMat[,predictedName])
 x = as.matrix(dataMat[,predictorNames])
 nPredictors = NCOL(x)
}

Prepare data for BUGS:
Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
standardizeCols = function(dataMat) {
 zDataMat = dataMat
 for (colIdx in 1:NCOL(dataMat)) {
 mCol = mean(dataMat[,colIdx])
 sdCol = sd(dataMat[,colIdx])
 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol
 }
 return(zDataMat)
}
zx = standardizeCols(x)
zy = y # y is not standardized; must be 0,1

Get the data into BUGS:
datalist = list(
 x = zx ,
 y = as.vector(zy) , # BUGS does not treat 1-column mat as vector
 nPredictors = nPredictors ,
 nData = nData
)
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains = nchain)

genInitList <- function() {
 glmInfo = glm(datalist$y ~ datalist$x , family=binomial(logit)) # R func.
 show(glmInfo) ; flush.console() # display in case glm() has troubles
 b0Init = glmInfo$coef[1]
 bInit = glmInfo$coef[-1]
 return(list(
 b0 = b0Init ,
 b = bInit
))
}
for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 1000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b0" , "b"))
stepsPerChain = ceiling(5000/nchain)
thinStep = 50 # check autocorrelation and increase as needed
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

Check chains for mixing
checkConvergence = T
if (checkConvergence) {
 b0Sum = plotChains("b0" , saveplots=F , filenameroot=fname)
 bSum = plotChains("b" , saveplots=F , filenameroot=fname)
}

Extract chain values:
zb0Sample = matrix(samplesSample("b0"))
chainLength = length(zb0Sample)
zbSample = NULL
for (j in 1:nPredictors) {
 zbSample = cbind(zbSample , samplesSample(paste("b[",j,"]",sep="")))
}

Convert to original scale:
x = dataMat[,predictorNames]
y = dataMat[,predictedName]
My = mean(y)
SDy = sd(y)
Mx = apply(x,2,mean)
SDx = apply(x,2,sd)
b0Sample = 0 * zb0Sample
bSample = 0 * zbSample
for (stepIdx in 1:chainLength) {
 b0Sample[stepIdx] = (zb0Sample[stepIdx]
 - sum(Mx / SDx * zbSample[stepIdx,]))
 for (j in 1:nPredictors) {
 bSample[stepIdx,j] = zbSample[stepIdx,j] / SDx[j]
 }
}

Examine sampled values, z scale:
windows()
thinIdx = ceiling(seq(1,chainLength,length=700))
pairs(cbind(zb0Sample[thinIdx] , zbSample[thinIdx,]) ,
 labels=c("zb0", paste("zb",predictorNames,sep="")))
Examine sampled values, original scale:
windows()
pairs(cbind(b0Sample[thinIdx] , bSample[thinIdx,]) ,
 labels=c("b0", paste("b_",predictorNames,sep="")))
dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))

Display the posterior :
windows(3.5*(1+nPredictors),2.75)
layout(matrix(1:(1+nPredictors),nrow=1))
histInfo = plotPost(b0Sample , xlab="b0 Value" , compVal=NULL , breaks=30 ,
 main=paste("logit(p(", predictedName ,
 "=1)) when predictors = zero" , sep=""))
for (bIdx in 1:nPredictors) {
histInfo = plotPost(bSample[,bIdx] , xlab=paste("b",bIdx," Value",sep="") ,
 compVal=0.0 , breaks=30 ,
 main=paste(predictorNames[bIdx]))
}
dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

Plot data with .5 level contours of believable logistic surfaces.
The contour lines are best interpreted when there are only two predictors.
for (p1idx in 1:(nPredictors-1)) {
 for (p2idx in (p1idx+1):nPredictors) {
 windows()
 xRange = range(x[,p1idx])
 yRange = range(x[,p2idx])
 # make empty plot
 plot(NULL , NULL , main=predictedName , xlim=xRange , ylim=yRange ,
 xlab=predictorNames[p1idx] , ylab=predictorNames[p2idx])
 # Some of the 50% level contours from the posterior sample.
 for (chainIdx in ceiling(seq(1 , chainLength , length=20))) {
 abline(-(b0Sample[chainIdx]
 + if (nPredictors>2) {
 bSample[chainIdx,c(-p1idx,-p2idx)]*Mx[c(-p1idx,-p2idx)]
 } else { 0 })
 / bSample[chainIdx,p2idx] ,
 -bSample[chainIdx,p1idx]/bSample[chainIdx,p2idx] ,
 col="grey" , lwd = 2)
 }
 # The data points:
 for (yVal in 0:1) {
 rowIdx = (y == yVal)
 points(x[rowIdx,p1idx] , x[rowIdx,p2idx] , pch=as.character(yVal) ,
 cex=1.75)
 }
 dev.copy2eps(file=paste(fname,"PostContours",p1idx,p2idx,".eps",sep=""))
 }
}

#--

MLE logistic regression:
glmRes = glm(datalist$y ~ as.matrix(x) , family=binomial(logit))
show(glmRes)

NHSTtwoTierStoppingExercise.R

For NHST exercise regarding two-tier testing.

N1 = 30 # Number of flips for first test. Try 17.
N2 = 15 # Number of _additional_ flips for second test. Try 27 or 50.

theta = .5 # Hypothesized bias of coin.
FAmax = .05 # False Alarm maximum for a single test.
NT = N1 + N2 # Total number of flips.

Determine critical values for N1:
EXPLAIN what each function does and why, including
dbinom, cumsum, which, max, and (0:N)[...]
loCritN1 = (0:N1)[max(which(cumsum(dbinom(0:N1,N1,theta)) <= FAmax/2))]
hiCritN1 = (N1:0)[max(which(cumsum(dbinom(N1:0,N1,theta)) <= FAmax/2))]
Compute actual false alarm rate for those critical values.
EXPLAIN what this does and why.
FA1 = sum((0:N1 <= loCritN1 | 0:N1 >= hiCritN1) * dbinom(0:N1,N1,theta))
cat("N1:",N1 , ", lo:",loCritN1 , ", hi:",hiCritN1 , ", FA:",FA1 , "\n")

Determine critical values for NT:
EXPLAIN what each function does and why, including
dbinom, cumsum, which, max, and (0:N)[...]
loCritNT = (0:NT)[max(which(cumsum(dbinom(0:NT,NT,theta)) <= FAmax/2))]
hiCritNT = (NT:0)[max(which(cumsum(dbinom(NT:0,NT,theta)) <= FAmax/2))]
Compute actual false alarm rate for those critical values.
EXPLAIN what this does and why.
FAT = sum((0:NT <= loCritNT | 0:NT >= hiCritNT) * dbinom(0:NT,NT,theta))
cat("NT:",NT , ", lo:",loCritNT , ", hi:",hiCritNT , ", FA:",FAT , "\n")

Determine actual false alarm rate for the two-tier test:
EXPLAIN each of the matrices below --- what is in each one?
Z1mat = matrix(0:N1 , nrow=N2+1 , ncol=N1+1 , byrow=TRUE)
ZTmat = outer(0:N2 , 0:N1 , "+")
pZTmat = outer(dbinom(0:N2 , N2 , theta) , dbinom(0:N1 , N1 , theta))
EXPLAIN the matrices in computation below.
FA1or2 = sum(((ZTmat <= loCritNT | ZTmat >= hiCritNT) # double dagger matrix
 | (Z1mat <= loCritN1 | Z1mat >= hiCritN1) # single dagger matrix
) * pZTmat)
cat("Two tier FA:" , FA1or2 , "\n")

OneOddGroupModelComp.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:nSubj) {
 # Likelihood:
 nCorrOfSubj[i] ~ dbin(theta[i] , nTrlOfSubj[i])
 # Prior on theta (notice nested indexing):
 theta[i] ~ dbeta(aBeta[CondOfSubj[i]] , bBeta[CondOfSubj[i]])I(0.0001,0.9999)
 }
 # Re-parameterization of aBeta[j],bBeta[j] in terms of mu and kappa:
 for (j in 1:nCond) {
 # Model 1: Distinct mu[j] each group. Model 2: Shared mu0 all groups.
 aBeta[j] <- (mu[j]*(2-mdlIdx) + mu0*(mdlIdx-1)) * kappa[j]
 bBeta[j] <- (1 - (mu[j]*(2-mdlIdx) + mu0*(mdlIdx-1))) * kappa[j]
 }
 # Hyperpriors for mu and kappa:
 for (j in 1:nCond) {
 mu[j] ~ dbeta(a[j,mdlIdx] , b[j,mdlIdx])
 }
 for (j in 1:nCond) {
 kappa[j] ~ dgamma(shk , rak)
 }
 mu0 ~ dbeta(a0[mdlIdx] , b0[mdlIdx])

 # Constants for hyperprior:
 # (There is no higher-level distribution of across-group relationships,
 # merely to keep the focus here on model comparison.)
 shk <- 1.0
 rak <- 0.1
 aP <- 1
 bP <- 1

 a0[1] <- .53*400 # pseudo
 b0[1] <- (1-.53)*400 # pseudo

 a0[2] <- aP # true
 b0[2] <- bP # true

 a[1,1] <- aP # true
 a[2,1] <- aP # true
 a[3,1] <- aP # true
 a[4,1] <- aP # true
 b[1,1] <- bP # true
 b[2,1] <- bP # true
 b[3,1] <- bP # true
 b[4,1] <- bP # true

 a[1,2] <- .61*100 # pseudo
 a[2,2] <- .50*100 # pseudo
 a[3,2] <- .49*100 # pseudo
 a[4,2] <- .51*100 # pseudo
 b[1,2] <- (1-.61)*100 # pseudo
 b[2,2] <- (1-.50)*100 # pseudo
 b[3,2] <- (1-.49)*100 # pseudo
 b[4,2] <- (1-.51)*100 # pseudo

 # Hyperprior on model index:
 mdlIdx ~ dcat(modelProb[])
 modelProb[1] <- .5
 modelProb[2] <- .5
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
writeLines(text=modelstring , con="model.txt")
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

For each subject, specify the condition s/he was in,
the number of trials s/he experienced, and the number correct.
(Randomly generated fictitious data.)
npg = 20 # number of subjects per group
ntrl = 20 # number of trials per subject
CondOfSubj = c(rep(1,npg) , rep(2,npg) , rep(3,npg) , rep(4,npg))
nTrlOfSubj = rep(ntrl , 4*npg)
set.seed(47401)
nCorrOfSubj = c(rbinom(npg,ntrl,.61) , rbinom(npg,ntrl,.50) ,
 rbinom(npg,ntrl,.49) , rbinom(npg,ntrl,.51))
nSubj = length(CondOfSubj)
nCond = length(unique(CondOfSubj))
Display mean number correct in each group:
for (condIdx in 1:nCond) {
 show(mean(nCorrOfSubj[CondOfSubj==condIdx]))
}

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 nCond = nCond ,
 nSubj = nSubj ,
 CondOfSubj = CondOfSubj ,
 nTrlOfSubj = nTrlOfSubj ,
 nCorrOfSubj = nCorrOfSubj
)

Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains=nchain)
modelGenInits()

#--
RUN THE CHAINS.

burninSteps = 5000
modelUpdate(burninSteps)
samplesSet(c("mu","kappa","mu0","theta","mdlIdx"))
nPerChain = 5000 ; nThin = 10
modelUpdate(nPerChain , thin=nThin)

#--
EXAMINE THE RESULTS.

filenamebase = "OneOddGroupModelComp"

Check burnin(convergence) and clumpiness(autocorrelation):
source("plotChains.R")
plotChains("mu0")
plotChains("mu")
plotChains("kappa")

Display the model index
modelIdxSample = samplesSample("mdlIdx")
pM1 = sum(modelIdxSample == 1) / length(modelIdxSample)
pM2 = 1 - pM1
string1 =paste("p(DiffMu|D)=",round(pM1,3),sep="")
string2 =paste("p(SameMu|D)=",round(pM2,3),sep="")
windows(10,4)
nStepsToPlot = 1000
plot(1:nStepsToPlot , modelIdxSample[1:nStepsToPlot] , type="l" ,
 xlab="Step in Markov chain" , ylab="Model Index (1, 2)" ,
 main=paste(string1,", ",string2,sep=""))
dev.copy2eps(file=paste(filenamebase,"_mdlIdx",".eps",sep=""))

Display the mu0 posterior
mu0sampleM1 = samplesSample("mu0")[modelIdxSample == 1]
mu0sampleM2 = samplesSample("mu0")[modelIdxSample == 2]
windows()
layout(matrix(1:2,nrow=2))
hist(mu0sampleM1 , main="Post. mu0 for M = 1 (DiffMu)" ,
 xlab=expression(mu[0]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu0sampleM2 , main="Post. mu0 for M = 2 (SameMu)" ,
 xlab=expression(mu[0]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
dev.copy2eps(file=paste(filenamebase,"_mu0",".eps",sep=""))

Display the mu[j] posterior
mu1sampleM1 = samplesSample("mu[1]")[modelIdxSample == 1]
mu2sampleM1 = samplesSample("mu[2]")[modelIdxSample == 1]
mu3sampleM1 = samplesSample("mu[3]")[modelIdxSample == 1]
mu4sampleM1 = samplesSample("mu[4]")[modelIdxSample == 1]
mu1sampleM2 = samplesSample("mu[1]")[modelIdxSample == 2]
mu2sampleM2 = samplesSample("mu[2]")[modelIdxSample == 2]
mu3sampleM2 = samplesSample("mu[3]")[modelIdxSample == 2]
mu4sampleM2 = samplesSample("mu[4]")[modelIdxSample == 2]
windows(10,5)
layout(matrix(1:8,nrow=2,byrow=T))
hist(mu1sampleM1 , main="Post. mu[1] for M = 1 (DiffMu)" ,
 xlab=expression(mu[1]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu2sampleM1 , main="Post. mu[2] for M = 1 (DiffMu)" ,
 xlab=expression(mu[2]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu3sampleM1 , main="Post. mu[3] for M = 1 (DiffMu)" ,
 xlab=expression(mu[3]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu4sampleM1 , main="Post. mu[4] for M = 1 (DiffMu)" ,
 xlab=expression(mu[4]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu1sampleM2 , main="Post. mu[1] for M = 2 (SameMu)" ,
 xlab=expression(mu[1]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu2sampleM2 , main="Post. mu[2] for M = 2 (SameMu)" ,
 xlab=expression(mu[2]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu3sampleM2 , main="Post. mu[3] for M = 2 (SameMu)" ,
 xlab=expression(mu[3]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
hist(mu4sampleM2 , main="Post. mu[4] for M = 2 (SameMu)" ,
 xlab=expression(mu[4]) , freq=F , xlim=c(0,1) ,
 col="grey" , border="white")
dev.copy2eps(file=paste(filenamebase,"_mucond",".eps",sep=""))

Display the differences of mu[j]'s
muSample = rbind(mu1sampleM1 , mu2sampleM1 , mu3sampleM1 , mu4sampleM1)
source("plotPost.R")
windows(10,5)
layout(matrix(1:6,nrow=2,ncol=3,byrow=T))
xmin = -0.25
xmax = 0.25
for (i in 1:3) {
 for (j in (i+1):4) {
 plotPost(muSample[i,]-muSample[j,] , compVal=0.0 ,
 xlab=bquote(mu[.(i)]-mu[.(j)]) ,
 breaks=unique(c(min(c(xmin,muSample[i,]-muSample[j,])),
 seq(xmin,xmax,len=20),
 max(c(xmax,muSample[i,]-muSample[j,])))) ,
 main="" , xlim=c(xmin,xmax))
 }
}
dev.copy2eps(file=paste(filenamebase,"_mudiff",".eps",sep=""))

OrdinalProbitRegressionBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fname = "OrdinalProbitRegressionBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : nData) {
 y[i] ~ dcat(pr[i,1:nYlevels])
 pr[i,1] <- phi((thresh[1] - mu[i]) / sigma)
 for (k in 2:(nYlevels-1)) {
 pr[i,k] <- max(0 , phi((thresh[k] - mu[i]) / sigma)
 - phi((thresh[k-1] - mu[i]) / sigma))
 }
 pr[i,nYlevels] <- 1 - phi((thresh[nYlevels-1] - mu[i]) / sigma)
 mu[i] <- b0 + inprod(b[1:nPredictors] , x[i,1:nPredictors])
 }
 bPrec <- pow(nYlevels/4 , -2) # max plausible slope is 1SD
 for (j in 1:nPredictors) {
 b[j] ~ dnorm(0,bPrec) # modest precision because of normalized x,y values
 }
 threshPriorPrec <- 1
 for (k in 1:(nYlevels-1)) {
 threshPriorMean[k] <- k+0.5
 thresh[k] ~ dnorm(threshPriorMean[k] , threshPriorPrec)
 }
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

dataSource = c("Random","Movies")[2]

The loading of data must produce a matrix called dataMat that has
one row per datum, where the first column is the ordinal predicted value
and the 2nd - last columns are the predictor values. The columns should
be named.

if (dataSource=="Random") {
 fname = paste(fname , dataSource , sep="")
 # Generate some random toy data.
 source("OrdinalProbitDataGenerator.R")
 nYlevels = 7
 dataMat = OrdinalProbitDataGenerator(nData = 200 ,
 normPrec=200 , slope=c(-1.0,1.26) , # c(-1.0,1.26) matches Movies
 thresh=c(-Inf,seq(-1.2,1.2,length=nYlevels-1),Inf) ,
 nYlevels=nYlevels , makePlots=F , rndSeed=47405)
 # Change x values to arbitrary non-standardized scales:
 dataMat[,2] = 1963.64 + 18.13 * dataMat[,2]
 dataMat[,3] = 92.87 + 18.26 * dataMat[,3]
}

if (dataSource=="Movies") {
 fname = paste(fname , dataSource , sep="")
 dataFram = read.table("Moore2006data.txt" , header=T)
 rateVals = sort(unique(dataFram[,"Rating"]))
 rankVals = match(dataFram[,"Rating"] , rateVals) # convert to ranks
 dataMat = cbind(rankVals , dataFram[,"Year"] , dataFram[,"Length"])
 colnames(dataMat) = c("Rating","Year","Length")
}

Rename for use by generic processing later:
nData = NROW(dataMat)
x = dataMat[,-1]
predictorNames = colnames(dataMat)[-1]
nPredictors = NCOL(x)
y = as.matrix(dataMat[,1])
predictedName = colnames(dataMat)[1]
nYlevels = max(y)

Re-center x values at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make prior-setting easier.
standardizeCols = function(dataMat) {
 zDataMat = dataMat
 for (colIdx in 1:NCOL(dataMat)) {
 mCol = mean(dataMat[,colIdx])
 sdCol = sd(dataMat[,colIdx])
 zDataMat[,colIdx] = (dataMat[,colIdx] - mCol) / sdCol
 }
 return(zDataMat)
}
zx = standardizeCols(x)
Don't standarize y because they must be integers, 1 to nYlevels

lmInfo = lm(y ~ zx) # R function returns MLE
b0Init = lmInfo$coef[1]
bInit = lmInfo$coef[-1]
sigmaInit = sqrt(sum(lmInfo$res^2)/nData)

Get the data into BUGS:
datalist = list(
 x = zx ,
 y = as.vector(y) , # BUGS does not treat 1-column mat as vector
 nPredictors = nPredictors ,
 nData = nData ,
 nYlevels = nYlevels ,
 sigma = sigmaInit , # fixed, not estimated
 b0 = b0Init # fixed, not estimated
)
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nChain = 3
modelCompile(numChains = nChain)

genInitList <- function() {
 list(
 b = bInit , # from lm(y~zx), above
 thresh = 1:(nYlevels-1)+.5
)
}
for (chainIdx in 1 : nChain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 2000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b" , "thresh"))
stepsPerChain = ceiling(5000/nChain)
thinStep = 20
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = T
if (checkConvergence) {
 bSum = plotChains("b" , saveplots=F , filenameroot=fname)
 threshSum = plotChains("thresh" , saveplots=F , filenameroot=fname)
}

Extract chain values:
zbSamp = NULL
for (j in 1:nPredictors) {
 zbSamp = cbind(zbSamp , samplesSample(paste("b[",j,"]",sep="")))
}
chainLength = NROW(zbSamp)
zthreshSamp = NULL
for (j in 1:(nYlevels-1)) {
 zthreshSamp = cbind(zthreshSamp ,
 samplesSample(paste("thresh[",j,"]",sep="")))
}

Convert to original scale:
bSamp = zbSamp * matrix(1/(sigmaInit*apply(x,2,sd)) , byrow=TRUE ,
 ncol=nPredictors , nrow=chainLength)
threshSamp = (1/sigmaInit) * (zthreshSamp - b0Init +
 rowSums(zbSamp * matrix(apply(x,2,mean)/apply(x,2,sd) ,
 byrow=TRUE , ncol=nPredictors ,
 nrow=chainLength)))
b0 = 0
sigma = 1

Scatter plots of parameter values, pairwise:
if ((nPredictors+nYlevels) <= 10) { # don't display if too many
 windows()
 thinIdx = ceiling(seq(1,chainLength,length=200))
 pairs(cbind(zbSamp[thinIdx,] , zthreshSamp[thinIdx,]) ,
 labels=c(paste("zb",predictorNames,sep="") ,
 paste("zthresh",1:nYlevels,sep="")))
 windows()
 pairs(cbind(bSamp[thinIdx,] , threshSamp[thinIdx,]) ,
 labels=c(paste("b",predictorNames,sep="") ,
 paste("thresh",1:nYlevels,sep="")))
 dev.copy2eps(file=paste(fname,"PostPairs.eps",sep=""))
}

Display the posterior:
nPlotPerRow = 5
nPlotRow = ceiling((nPredictors+nYlevels-1)/nPlotPerRow)
nPlotCol = ceiling((nPredictors+nYlevels-1)/nPlotRow)
windows(3.5*nPlotCol,2.25*nPlotRow)
layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
par(mar=c(4,3,2.5,0) , mgp=c(2,0.7,0))
for (sIdx in 1:nPredictors) {
histInfo = plotPost(bSamp[,sIdx] , xlab="Slope Value" , compVal=0.0 ,
 breaks=30 ,
 main=bquote(b *.(predictorNames[sIdx])) ,
 cex.main=1.67 , cex.lab=1.33)
}
for (sIdx in 1:(nYlevels-1)) {
histInfo = plotPost(threshSamp[,sIdx] , xlab="Thresh Value" , compVal=NULL ,
 breaks=30 ,
 main=bquote(theta * .(sIdx)) ,
 cex.main=1.67 , cex.lab=1.33)
}
dev.copy2eps(file=paste(fname,"PostHist.eps",sep=""))

Plot the data
if (nPredictors == 2) {
windows()
plot(x[,1] , x[,2] , xlab=colnames(x)[1] , ylab=colnames(x)[2] ,
 main=paste("The Data (" , dataSource , ")" , sep="") ,
 pch=as.character(y))
for (chainIdx in round(seq(1,chainLength,len=3))) {
 for (threshIdx in 1:(nYlevels-1)) {
 abline(threshSamp[chainIdx,threshIdx]/bSamp[chainIdx,2] ,
 -bSamp[chainIdx,1]/bSamp[chainIdx,2] ,
 lwd = 2 , lty=chainIdx , col="grey")
 }
}
dev.copy2eps(file=paste(fname,"Data.eps",sep=""))

} # end if nPredictors == 2

Posterior prediction.
xProbe = c(1991 , 94) # Note order of values: x1 is year and x2 is duration.
Set up a matrix for storing the values of p(y|xProbe) at each step in chain.
py = matrix(0 , nrow=chainLength , ncol=nYlevels)
Step through chain and compute p(y|xProbe) and each step:
for (chainIdx in 1:chainLength) {
 yValue = 1
 py[chainIdx,yValue] = (
 pnorm(threshSamp[chainIdx,yValue]
 - sum(bSamp[chainIdx,] * xProbe)))
 for (yValue in 2:(nYlevels-1)) {
 py[chainIdx,yValue] = (
 pnorm(threshSamp[chainIdx,yValue]
 - sum(bSamp[chainIdx,] * xProbe))
 - pnorm(threshSamp[chainIdx,yValue-1]
 - sum(bSamp[chainIdx,] * xProbe)))
 }
 yValue = nYlevels
 py[chainIdx,yValue] = (1 -
 pnorm(threshSamp[chainIdx,yValue-1]
 - sum(bSamp[chainIdx,] * xProbe)))
}
Now average across the chain:
pyAve = colMeans(py)

plotChains.R

plotChains = function(nodename , saveplots=F , filenameroot="DeleteMe") {
 summarytable = samplesStats(nodename)
 show(summarytable)
 nCompon = NROW(summarytable)
 nPlotPerRow = 5
 nPlotRow = ceiling(nCompon/nPlotPerRow)
 nPlotCol = ceiling(nCompon/nPlotRow)
 windows(3.75*nPlotCol,3.5*nPlotRow)
 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))
 samplesHistory(nodename , ask=F , mfrow=c(nPlotRow,nPlotCol) ,
 cex.lab=1.5 , cex.main=1.5)
 if (saveplots) {
 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,
 "history.eps" , sep="")) }
 windows(3.75*nPlotCol,3.5*nPlotRow)
 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))
 samplesAutoC(nodename , chain=1 , ask=F , mfrow=c(nPlotRow,nPlotCol) ,
 cex.lab=1.5 , cex.main=1.5)
 if (saveplots) {
 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,
 "autocorr.eps" , sep="")) }
 windows(3.75*nPlotCol,3.5*nPlotRow)
 par(mar=c(4,4,3,1) , mgp=c(2,0.7,0))
 samplesBgr(nodename , ask=F , mfrow=c(nPlotRow,nPlotCol) ,
 cex.lab=1.5 , cex.main=1.5)
 if (saveplots) {
 dev.copy2eps(file=paste(filenameroot , toupper(nodename) ,
 "bgr.eps" , sep="")) }
 return(summarytable)
}

plotPost.R

plotPost = function(paramSampleVec , credMass=0.95 , compVal=NULL ,
 HDItextPlace=0.7 , ROPE=NULL , yaxt=NULL , ylab=NULL ,
 xlab=NULL , cex.lab=NULL , cex=NULL , xlim=NULL , main=NULL ,
 showMode=F , ...) {
 # Override defaults of hist function, if not specified by user:
 # (additional arguments "..." are passed to the hist function)
 if (is.null(xlab)) xlab="Parameter"
 if (is.null(cex.lab)) cex.lab=1.5
 if (is.null(cex)) cex=1.4
 if (is.null(xlim)) xlim=range(c(compVal , paramSampleVec))
 if (is.null(main)) main=""
 if (is.null(yaxt)) yaxt="n"
 if (is.null(ylab)) ylab=""
 # Plot histogram.
 par(xpd=NA)
 histinfo = hist(paramSampleVec , xlab=xlab , yaxt=yaxt , ylab=ylab ,
 freq=F , col="lightgrey" , border="white" ,
 xlim=xlim , main=main , cex=cex , cex.lab=cex.lab ,
 ...)
 # Display mean or mode:
 if (showMode==F) {
 meanParam = mean(paramSampleVec)
 text(meanParam , .9*max(histinfo$density) ,
 bquote(mean==.(signif(meanParam,3))) , adj=c(.5,0) , cex=cex)
 } else {
 dres = density(paramSampleVec)
 modeParam = dres$x[which.max(dres$y)]
 text(modeParam , .9*max(histinfo$density) ,
 bquote(mode==.(signif(modeParam,3))) , adj=c(.5,0) , cex=cex)
 }
 # Display the comparison value.
 if (!is.null(compVal)) {
 pcgtCompVal = round(100 * sum(paramSampleVec > compVal)
 / length(paramSampleVec) , 1)
 pcltCompVal = 100 - pcgtCompVal
 lines(c(compVal,compVal) , c(.5*max(histinfo$density),0) ,
 lty="dashed" , lwd=2)
 text(compVal , .5*max(histinfo$density) ,
 bquote(.(pcltCompVal)*"% <= " *
 .(signif(compVal,3)) * " < "*.(pcgtCompVal)*"%") ,
 adj=c(pcltCompVal/100,-0.2) , cex=cex)
 }
 # Display the ROPE.
 if (!is.null(ROPE)) {
 pcInROPE = (sum(paramSampleVec > ROPE[1] & paramSampleVec < ROPE[2])
 / length(paramSampleVec))
 ROPEtextHt = .35*max(histinfo$density)
 lines(c(ROPE[1],ROPE[1]) , c(ROPEtextHt,0) , lty="dotted" , lwd=2)
 lines(c(ROPE[2],ROPE[2]) , c(ROPEtextHt,0) , lty="dotted" , lwd=2)
 text(mean(ROPE) , ROPEtextHt ,
 bquote(.(round(100*pcInROPE))*"% in ROPE") ,
 adj=c(.5,-0.2) , cex=1)
 }
 # Display the HDI.
 source("HDIofMCMC.R")
 HDI = HDIofMCMC(paramSampleVec , credMass)
 lines(HDI , c(0,0) , lwd=4)
 text(mean(HDI) , 0 , bquote(.(100*credMass) * "% HDI") ,
 adj=c(.5,-1.9) , cex=cex)
 text(HDI[1] , 0 , bquote(.(signif(HDI[1],3))) ,
 adj=c(HDItextPlace,-0.5) , cex=cex)
 text(HDI[2] , 0 , bquote(.(signif(HDI[2],3))) ,
 adj=c(1.0-HDItextPlace,-0.5) , cex=cex)
 par(xpd=F)
 return(histinfo)
}

PoissonExponentialBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "PoissonExponentialBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ncells) {
 y[i] ~ dpois(lambda[i])
 lambda[i] <- exp(a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]])
 }
 #
 a0 ~ dnorm(10,1.0E-6)
 #
 for (j1 in 1:Nx1Lvl) { a1[j1] ~ dnorm(0.0 , a1tau) }
 a1tau <- 1 / pow(a1SD , 2)
 a1SD <- abs(a1SDunabs) + .1
 a1SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j2 in 1:Nx2Lvl) { a2[j2] ~ dnorm(0.0 , a2tau) }
 a2tau <- 1 / pow(a2SD , 2)
 a2SD <- abs(a2SDunabs) + .1
 a2SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j1 in 1:Nx1Lvl) { for (j2 in 1:Nx2Lvl) {
 a1a2[j1,j2] ~ dnorm(0.0 , a1a2tau)
 } }
 a1a2tau <- 1 / pow(a1a2SD , 2)
 a1a2SD <- abs(a1a2SDunabs) + .1
 a1a2SDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.
Specify data source:
dataSource = c("HairEye" , "CrimeDrink" , "Toy")[1]

Load the data:
if (dataSource == "HairEye") {
 fnroot = paste(fnroot , dataSource , sep="")
 dataFrame = data.frame(# from Snee (1974)
 Freq = c(68,119,26,7,20,84,17,94,15,54,14,10,5,29,14,16) ,
 Eye = c("Brown","Brown","Brown","Brown","Blue","Blue","Blue","Blue","Hazel","Hazel","Hazel","Hazel","Green","Green","Green","Green"),
 Hair = c("Black","Brunette","Red","Blond","Black","Brunette","Red","Blond","Black","Brunette","Red","Blond","Black","Brunette","Red","Blond"))
 y = as.numeric(dataFrame$Freq)
 x1 = as.numeric(dataFrame$Eye)
 x1names = levels(dataFrame$Eye)
 x2 = as.numeric(dataFrame$Hair)
 x2names = levels(dataFrame$Hair)
 Ncells = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = list(GREENvHAZEL = c(0,0,1,-1))
 x2contrastList = list(BLONDvRED = c(0,1,0,-1))
 x1x2contrastList = list(BLUE.BROWNxBLACK.BLOND
 = outer(c(-1,1,0,0),c(-1,1,0,0)))
}

if (dataSource == "CrimeDrink") {
 fnroot = paste(fnroot , dataSource , sep="")
 dataFrame = data.frame(# from Kendall (1943) via Snee (1974)
 Freq = c(50,88,155,379,18,63,43,62,110,300,14,144) ,
 Crime = c("Arson","Rape","Violence","Theft","Coining","Fraud","Arson","Rape","Violence","Theft","Coining","Fraud"),
 Drink = c("Drinker","Drinker","Drinker","Drinker","Drinker","Drinker","Nondrink","Nondrink","Nondrink","Nondrink","Nondrink","Nondrink"))
 y = as.numeric(dataFrame$Freq)
 x1 = as.numeric(dataFrame$Crime)
 x1names = levels(dataFrame$Crime)
 x2 = as.numeric(dataFrame$Drink)
 x2names = levels(dataFrame$Drink)
 Ncells = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = list(FRAUDvOTHER = c(-1/5,-1/5,1,-1/5,-1/5,-1/5) ,
 FRAUDvRAPE = c(0,0,1,-1,0,0))
 x2contrastList = list(DRINKERvNON = c(1,-1))
 x1x2contrastList = list(FRAUD.OTHERxDRINKER.NON
 = outer(c(-1/5,-1/5,1,-1/5,-1/5,-1/5),c(-1,1)) ,
 FRAUD.RAPExDRINKER.NON
 = outer(c(0,0,1,-1,0,0),c(-1,1)))
}

if (dataSource == "Toy") {
 dataMultiplier = 2 # Try 2 (chi-sq warns) , 6 (p>.05) , 7 (p<.05) , 10
 fnroot = paste(fnroot , dataSource , dataMultiplier , sep="")
 dataFrame = data.frame(
 Freq = c(2,2,1,1, 2,2,1,1, 1,1,2,2, 1,1,2,2) * dataMultiplier ,
 Col = c("C1","C2","C3","C4", "C1","C2","C3","C4", "C1","C2","C3","C4", "C1","C2","C3","C4"),
 Row = c("R1","R1","R1","R1", "R2","R2","R2","R2", "R3","R3","R3","R3", "R4","R4","R4","R4"))
 y = as.numeric(dataFrame$Freq)
 x1 = as.numeric(dataFrame$Col)
 x1names = levels(dataFrame$Col)
 x2 = as.numeric(dataFrame$Row)
 x2names = levels(dataFrame$Row)
 Ncells = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = NULL
 x2contrastList = NULL
 x1x2contrastList = list(R12.R34xC12.C34 = outer(c(1,1,-1,-1)/2,c(1,1,-1,-1)/2))
}

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 y = y ,
 x1 = x1 ,
 x2 = x2 ,
 Ncells = Ncells ,
 Nx1Lvl = Nx1Lvl ,
 Nx2Lvl = Nx2Lvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 5
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(y=log(y) , x1=factor(x1,labels=x1names) ,
 x2=factor(x2,labels=x2names))
 a0 = mean(theData$y)
 a1 = aggregate(theData$y , list(theData$x1) , mean)[,2] - a0
 a2 = aggregate(theData$y , list(theData$x2) , mean)[,2] - a0
 linpred = as.vector(outer(a1 , a2 , "+") + a0)
 a1a2 = aggregate(theData$y, list(theData$x1,theData$x2), mean)[,3] - linpred
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a1 = a1 ,
 a2 = a2 ,
 a1a2 = matrix(a1a2 , nrow=Nx1Lvl , ncol=Nx2Lvl) ,
 a1SDunabs = sd(a1) ,
 a2SDunabs = sd(a2) ,
 a1a2SDunabs = sd(a1a2)
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 1000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a1" , "a2" , "a1a2" , "a1SD" , "a2SD" , "a1a2SD"))
stepsPerChain = ceiling(5000/nchain)
thinStep = 500
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
 sumInfo = plotChains("a1SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2SD" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
}

Extract and plot the SDs:
a1SDSample = samplesSample("a1SD")
a2SDSample = samplesSample("a2SD")
a1a2SDSample = samplesSample("a1a2SD")
windows(10,3)
layout(matrix(1:3,nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
histInfo = plotPost(a1SDSample , xlab="a1SD" , main="a1 SD" , breaks=30)
histInfo = plotPost(a2SDSample , xlab="a2SD" , main="a2 SD" , breaks=30)
histInfo = plotPost(a1a2SDSample , xlab="a1a2SD" , main="Interaction SD" ,
 breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
a1Sample = array(0 , dim=c(datalist$Nx1Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 a1Sample[x1idx,] = samplesSample(paste("a1[",x1idx,"]",sep=""))
}
a2Sample = array(0 , dim=c(datalist$Nx2Lvl , chainLength))
for (x2idx in 1:datalist$Nx2Lvl) {
 a2Sample[x2idx,] = samplesSample(paste("a2[",x2idx,"]",sep=""))
}
a1a2Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 for (x2idx in 1:datalist$Nx2Lvl) {
 a1a2Sample[x1idx,x2idx,] = samplesSample(paste("a1a2[",x1idx,",",x2idx,"]",
 sep=""))
 }
}

Convert to zero-centered b values:
m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))
for (stepIdx in 1:chainLength) {
 m12Sample[,,stepIdx] = (a0Sample[stepIdx]
 + outer(a1Sample[,stepIdx] ,
 a2Sample[,stepIdx] , "+")
 + a1a2Sample[,,stepIdx])
}
b0Sample = apply(m12Sample , 3 , mean)
b1Sample = (apply(m12Sample , c(1,3) , mean)
 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))
b2Sample = (apply(m12Sample , c(2,3) , mean)
 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))
linpredSample = array(0,dim=c(datalist$Nx1Lvl,datalist$Nx2Lvl,chainLength))
for (stepIdx in 1:chainLength) {
 linpredSample[,,stepIdx] = (b0Sample[stepIdx]
 + outer(b1Sample[,stepIdx] ,
 b2Sample[,stepIdx] , "+"))
}
b1b2Sample = m12Sample - linpredSample

Plot b values:
windows((datalist$Nx1Lvl+1)*2.75,(datalist$Nx2Lvl+1)*2.25)
layoutMat = matrix(0 , nrow=(datalist$Nx2Lvl+1) , ncol=(datalist$Nx1Lvl+1))
layoutMat[1,1] = 1
layoutMat[1,2:(datalist$Nx1Lvl+1)] = 1:datalist$Nx1Lvl + 1
layoutMat[2:(datalist$Nx2Lvl+1),1] = 1:datalist$Nx2Lvl + (datalist$Nx1Lvl + 1)
layoutMat[2:(datalist$Nx2Lvl+1),2:(datalist$Nx1Lvl+1)] = matrix(
 1:(datalist$Nx1Lvl*datalist$Nx2Lvl) + (datalist$Nx2Lvl+datalist$Nx1Lvl+1) ,
 ncol=datalist$Nx1Lvl , byrow=T)
layout(layoutMat)
par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
histinfo = plotPost(b0Sample , xlab=expression(beta * 0) , main="Baseline" ,
 breaks=30)
for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(b1Sample[x1idx,] , xlab=bquote(beta*1[.(x1idx)]) ,
 main=paste("x1:",x1names[x1idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 histinfo = plotPost(b2Sample[x2idx,] , xlab=bquote(beta*2[.(x2idx)]) ,
 main=paste("x2:",x2names[x2idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 for (x1idx in 1:datalist$Nx1Lvl) {
 hdiLim = HDIofMCMC(b1b2Sample[x1idx,x2idx,])
 if (hdiLim[1]>0 | hdiLim[2]<0) { compVal=0 } else { compVal=NULL }
 histinfo = plotPost(b1b2Sample[x1idx,x2idx,] , breaks=30 , compVal=compVal ,
 xlab=bquote(beta*12[list(x1==.(x1idx),x2==.(x2idx))]) ,
 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]))
 }
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Display contrast analyses
nContrasts = length(x1contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x1contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b1Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x1names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X1 Contrast:", names(x1contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1Contrasts.eps",sep=""))
}
#
nContrasts = length(x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x2contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b2Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x2names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X2 Contrast:", names(x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x2Contrasts.eps",sep=""))
}
#
nContrasts = length(x1x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = x1x2contrastList[[cIdx]]
 contrastArr = array(rep(contrast,chainLength) ,
 dim=c(NROW(contrast),NCOL(contrast),chainLength))
 contrastLab = ""
 for (x1idx in 1:Nx1Lvl) {
 for (x2idx in 1:Nx2Lvl) {
 if (contrast[x1idx,x2idx] != 0) {
 contrastLab = paste(contrastLab , "+" ,
 signif(contrast[x1idx,x2idx],2) ,
 x1names[x1idx] , x2names[x2idx])
 }
 }
 }
 histInfo = plotPost(apply(contrastArr * b1b2Sample , 3 , sum) ,
 compVal=0 , breaks=30 , xlab=contrastLab , cex.lab = 0.75 ,
 main=paste(names(x1x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1x2Contrasts.eps",sep=""))
}

Compute credible cell probability at each step in the MCMC chain
lambda12Sample = 0 * b1b2Sample
for (chainIdx in 1:chainLength) {
 lambda12Sample[,,chainIdx] = exp(
 b0Sample[chainIdx]
 + outer(b1Sample[,chainIdx] , b2Sample[,chainIdx] , "+")
 + b1b2Sample[,,chainIdx])
}
cellp = 0 * lambda12Sample
for (chainIdx in 1:chainLength) {
 cellp[,,chainIdx] = (lambda12Sample[,,chainIdx]
 / sum(lambda12Sample[,,chainIdx]))
}
Display credible cell probabilities
windows((datalist$Nx1Lvl)*2.75,(datalist$Nx2Lvl)*2.25)
layoutMat = matrix(1:(datalist$Nx2Lvl*datalist$Nx1Lvl) ,
 nrow=(datalist$Nx2Lvl) , ncol=(datalist$Nx1Lvl) , byrow=T)
layout(layoutMat)
par(mar=c(4,1.5,2.5,0.5) , mgp=c(2,0.7,0))
maxp = max(cellp)
for (x2idx in 1:datalist$Nx2Lvl) {
 for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(cellp[x1idx,x2idx,] ,
 breaks=seq(0,maxp,length=51) , xlim=c(0,maxp) ,
 xlab=bquote(probability[list(x1==.(x1idx),x2==.(x2idx))]) ,
 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]) ,
 HDItextPlace=0.95)
 }
}
dev.copy2eps(file=paste(fnroot,"CellP.eps",sep=""))

#==
Conduct NHST Pearson chi-square test of independence.

Convert dataFrame to frequency table:
obsFreq = matrix(0 , nrow=Nx1Lvl , ncol=Nx2Lvl)
for (x1idx in 1:Nx1Lvl) {
 for (x2idx in 1:Nx2Lvl) {
 obsFreq[x1idx,x2idx] = y[dataFrame[,2]==x1names[x1idx]
 & dataFrame[,3]==x2names[x2idx]]
 }
}
obsFreq = t(obsFreq) # merely to match orientation of histogram display
chisqtest = chisq.test(obsFreq)
print("obs :")
print(chisqtest$observed)
print("(obs - exp)^2 / exp :")
print((chisqtest$observed - chisqtest$expected)^2 / chisqtest$expected)
print(chisqtest)

#==

QianS2007SeaweedData.txt

			COVER			BLOCK			TREAT

			14.00			BLOCK 1			CONTROL

			23.00			BLOCK 1			CONTROL

			22.00			BLOCK 2			CONTROL

			35.00			BLOCK 2			CONTROL

			67.00			BLOCK 3			CONTROL

			82.00			BLOCK 3			CONTROL

			94.00			BLOCK 4			CONTROL

			95.00			BLOCK 4			CONTROL

			34.00			BLOCK 5			CONTROL

			53.00			BLOCK 5			CONTROL

			58.00			BLOCK 6			CONTROL

			75.00			BLOCK 6			CONTROL

			19.00			BLOCK 7			CONTROL

			47.00			BLOCK 7			CONTROL

			53.00			BLOCK 8			CONTROL

			61.00			BLOCK 8			CONTROL

			4.00			BLOCK 1			L

			4.00			BLOCK 1			L

			7.00			BLOCK 2			L

			8.00			BLOCK 2			L

			28.00			BLOCK 3			L

			58.00			BLOCK 3			L

			27.00			BLOCK 4			L

			35.00			BLOCK 4			L

			11.00			BLOCK 5			L

			33.00			BLOCK 5			L

			16.00			BLOCK 6			L

			31.00			BLOCK 6			L

			6.00			BLOCK 7			L

			8.00			BLOCK 7			L

			15.00			BLOCK 8			L

			17.00			BLOCK 8			L

			11.00			BLOCK 1			f

			24.00			BLOCK 1			f

			14.00			BLOCK 2			f

			31.00			BLOCK 2			f

			52.00			BLOCK 3			f

			59.00			BLOCK 3			f

			83.00			BLOCK 4			f

			89.00			BLOCK 4			f

			33.00			BLOCK 5			f

			34.00			BLOCK 5			f

			39.00			BLOCK 6			f

			52.00			BLOCK 6			f

			43.00			BLOCK 7			f

			53.00			BLOCK 7			f

			30.00			BLOCK 8			f

			37.00			BLOCK 8			f

			3.00			BLOCK 1			Lf

			5.00			BLOCK 1			Lf

			3.00			BLOCK 2			Lf

			6.00			BLOCK 2			Lf

			9.00			BLOCK 3			Lf

			31.00			BLOCK 3			Lf

			21.00			BLOCK 4			Lf

			57.00			BLOCK 4			Lf

			5.00			BLOCK 5			Lf

			9.00			BLOCK 5			Lf

			26.00			BLOCK 6			Lf

			43.00			BLOCK 6			Lf

			4.00			BLOCK 7			Lf

			12.00			BLOCK 7			Lf

			12.00			BLOCK 8			Lf

			18.00			BLOCK 8			Lf

			10.00			BLOCK 1			fF

			13.00			BLOCK 1			fF

			10.00			BLOCK 2			fF

			15.00			BLOCK 2			fF

			44.00			BLOCK 3			fF

			50.00			BLOCK 3			fF

			57.00			BLOCK 4			fF

			73.00			BLOCK 4			fF

			26.00			BLOCK 5			fF

			42.00			BLOCK 5			fF

			38.00			BLOCK 6			fF

			42.00			BLOCK 6			fF

			29.00			BLOCK 7			fF

			36.00			BLOCK 7			fF

			11.00			BLOCK 8			fF

			40.00			BLOCK 8			fF

			1.00			BLOCK 1			LfF

			2.00			BLOCK 1			LfF

			3.00			BLOCK 2			LfF

			5.00			BLOCK 2			LfF

			6.00			BLOCK 3			LfF

			9.00			BLOCK 3			LfF

			7.00			BLOCK 4			LfF

			22.00			BLOCK 4			LfF

			5.00			BLOCK 5			LfF

			6.00			BLOCK 5			LfF

			10.00			BLOCK 6			LfF

			17.00			BLOCK 6			LfF

			5.00			BLOCK 7			LfF

			14.00			BLOCK 7			LfF

			5.00			BLOCK 8			LfF

			7.00			BLOCK 8			LfF

RatLives.Rdata

RatLives.Rdata

RunningProportion.R

Goal: Toss a coin N times and compute the running proportion of heads.
N = 500	# Specify the total number of flips, denoted N.
Generate a random sample of N flips for a fair coin (heads=1, tails=0);
the function "sample" is part of R:
#set.seed(47405) # Uncomment to set the "seed" for the random number generator.
flipsequence = sample(x=c(0,1) , prob=c(.5,.5) , size=N , replace=TRUE)
Compute the running proportion of heads:
r = cumsum(flipsequence) # The function "cumsum" is built in to R.
n = 1:N # n is a vector.
runprop = r / n # component by component division.
Graph the running proportion:
To learn about the parameters of the plot function,
type help('par') at the R command prompt.
Note that "c" is a function in R.
plot(n , runprop , type="o" , log="x" ,
	 xlim=c(1,N) , ylim=c(0.0,1.0) , cex.axis=1.5 ,
	 xlab="Flip Number" , ylab="Proportion Heads" , cex.lab=1.5 ,
	 main="Running Proportion of Heads" , cex.main=1.5)
Plot a dotted horizontal line at y=.5, just as a reference line:
lines(c(1,N) , c(.5,.5) , lty=3)
Display the beginning of the flip sequence. These string and character
manipulations may seem mysterious, but you can de-mystify by unpacking
the commands starting with the innermost parentheses or brackets and
moving to the outermost.
flipletters = paste(c("T","H")[flipsequence[1:10] + 1] , collapse="")
displaystring = paste("Flip Sequence = " , flipletters , "..." , sep="")
text(5 , .9 , displaystring , adj=c(0,1) , cex=1.3)
Display the relative frequency at the end of the sequence.
text(N , .3 , paste("End Proportion =",runprop[N]) , adj=c(1,0) , cex=1.3)
Save the plot to an EPS file.
dev.copy2eps(file = "RunningProportion.eps")

Salary.csv

			Org			Post			Salary

			CEDP			FT1			89504

			CEDP			FT1			106554

			CHEM			FT1			108158

			CEDP			FT1			92961

			CHEM			FT1			154703

			CEDP			FT1			81840

			BFIN			FT1			238000

			THTR			FT1			86794

			CEDP			FT1			84121

			THTR			FT1			80450

			CEDP			FT1			98434

			CHEM			FT1			194192

			CEDP			FT1			92896

			THTR			FT1			72240

			CEDP			FT1			88374

			BFIN			FT1			234000

			THTR			FT1			81566

			CEDP			FT1			102300

			CHEM			FT1			159753

			CHEM			FT1			121313

			CHEM			FT2			123200

			BFIN			FT2			183000

			THTR			FT2			62611

			BFIN			FT2			222000

			CEDP			FT2			63000

			CHEM			FT2			120000

			BFIN			FT2			200000

			CEDP			FT2			65115

			BFIN			FT2			198000

			CEDP			FT2			83762

			CEDP			FT2			75559

			BFIN			FT2			146000

			CHEM			FT2			83164

			CHEM			FT2			135794

			CHEM			FT2			82762

			BFIN			FT2			134000

			CHEM			FT2			88147

			THTR			FT2			59210

			CEDP			FT2			66186

			THTR			FT2			63924

			CHEM			FT2			123610

			CHEM			FT2			88271

			THTR			FT2			62315

			BFIN			FT2			174000

			THTR			FT2			63261

			CEDP			FT2			66794

			THTR			FT2			71706

			CEDP			FT2			79236

			CHEM			FT2			104568

			BFIN			FT2			180000

			CHEM			FT3			77169

			CHEM			FT3			81773

			CEDP			FT3			59568

			CHEM			FT3			75000

			THTR			FT3			53000

			CHEM			FT3			75000

			THTR			FT3			51991

			CEDP			FT3			57000

			CHEM			FT3			75000

			THTR			FT3			56985

			THTR			FT3			51365

			CHEM			FT3			76714

			CEDP			FT3			58890

			BFIN			FT3			188000

			THTR			FT3			52140

			THTR			FT3			53000

			CHEM			FT3			80017

			BFIN			FT3			165000

			THTR			FT3			53000

			CEDP			FT3			57443

			BFIN			FT3			190000

			CHEM			FT3			75000

			BFIN			FT3			177000

			CEDP			FT3			57443

			BFIN			FT3			180000

			CHEM			FT3			78000

			BFIN			FT3			180000

			CHEM			FT3			68523

			BFIN			FT3			176000

			CEDP			FT3			57000

			CEDP			FT3			58500

			CEDP			FT3			57443

			BFIN			FT3			171000

			BFIN			FT3			176000

SimpleGraph.R

x = seq(from = -2 , to = 2 , by = 0.1) # Specify vector of x values.
y = x^2 # Specify corresponding y values.
plot(x , y , type = "l") # Make a graph of the x,y points.
dev.copy2eps(file = "SimpleGraph.eps") # Save the plot to an EPS file.

SimpleLinearRegressionBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : Ndata) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- beta0 + beta1 * x[i]
 }
 beta0 ~ dnorm(0 , 1.0E-12)
 beta1 ~ dnorm(0 , 1.0E-12)
 tau ~ dgamma(0.001 , 0.001)
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Simulated height and weight data:
source("HtWtDataGenerator.R")
HtWtData = HtWtDataGenerator(30 , rndsd=5678)
nSubj = NROW(HtWtData)
x = HtWtData[,"height"]
y = HtWtData[,"weight"]

Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
xM = mean(x) ; xSD = sd(x)
yM = mean(y) ; ySD = sd(y)
zx = (x - xM) / xSD
zy = (y - yM) / ySD

Specify data, as a list.
datalist = list(
 x = zx ,
 y = zy ,
 Ndata = nSubj
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains = nchain)

genInitList <- function() {
 r = cor(x,y)
 list(
 beta0 = 0 , # because data are standardized
 beta1 = r , # because data are standardized
 tau = 1 / (1-r^2) # because data are standardized
)
}
for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 100
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("beta0" , "beta1" , "tau"))
stepsPerChain = 6667
thinStep = 1
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")

fname = "SimpleLinearRegressionBrugs"
beta0Sum = plotChains("beta0" , saveplots=F , filenameroot=fname)
beta1Sum = plotChains("beta1" , saveplots=F , filenameroot=fname)
tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)

Extract chain values:
z0 = samplesSample("beta0")
z1 = samplesSample("beta1")
zTau = samplesSample("tau")
zSigma = 1 / sqrt(zTau) # Convert precision to SD

Convert to original scale:
b1 = z1 * ySD / xSD
b0 = (z0 * ySD + yM - z1 * ySD * xM / xSD)
sigma = zSigma * ySD

Posterior prediction:
Specify x values for which predicted y's are needed:
xPostPred = seq(55,80,1)
Define matrix for recording posterior predicted y values at each x value.
One row per x value, with each row holding random predicted y values.
postSampSize = length(b1)
yPostPred = matrix(0 , nrow=length(xPostPred) , ncol=postSampSize)
Define matrix for recording HDI limits of posterior predicted y values:
yHDIlim = matrix(0 , nrow=length(xPostPred) , ncol=2)
Generate posterior predicted y values.
This gets only one y value, at each x, for each step in the chain.
for (chainIdx in 1:postSampSize) {
 yPostPred[,chainIdx] = rnorm(length(xPostPred) ,
 mean = b0[chainIdx] + b1[chainIdx] * xPostPred ,
 sd = rep(sigma[chainIdx] , length(xPostPred)))
}
source("HDIofMCMC.R")
for (xIdx in 1:length(xPostPred)) {
 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])
}

Display believable beta0 and b1 values
windows(10,5)
par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))
layout(matrix(1:2,nrow=1))
thinIdx = seq(1,length(b0),length=700)
plot(z1[thinIdx] , z0[thinIdx] , cex.lab=1.75 ,
 ylab="Standardized Intercept" , xlab="Standardized Slope")
plot(b1[thinIdx] , b0[thinIdx] , cex.lab=1.75 ,
 ylab="Intercept (ht when wt=0)" , xlab="Slope (pounds per inch)")
dev.copy2eps(file=paste(fname,"SlopeIntercept.eps",sep=""))

Display the posterior of the b1:
source("plotPost.R")
windows(10,4)
par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))
layout(matrix(1:2,nrow=1))
histInfo = plotPost(z1 , xlab="Standardized slope" , compVal=0.0 ,
 breaks=30)
histInfo = plotPost(b1 , xlab="Slope (pounds per inch)" , compVal=0.0 ,
 breaks=30)
dev.copy2eps(file=paste(fname,"PostSlope.eps",sep=""))

Display data with believable regression lines and posterior predictions.
windows()
par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))
Plot data values:
xRang = max(x)-min(x)
yRang = max(y)-min(y)
limMult = 0.25
xLim= c(min(x)-limMult*xRang , max(x)+limMult*xRang)
yLim= c(min(y)-limMult*yRang , max(y)+limMult*yRang)
plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,
 xlab="X (height in inches)" , ylab="Y (weight in pounds)" , cex.lab=1.5 ,
 main="Data with credible regression lines" , cex.main=1.33)
Superimpose a smattering of believable regression lines:
for (i in seq(from=1,to=length(b0),length=50)) {
 abline(b0[i] , b1[i] , col="grey")
}
dev.copy2eps(file=paste(fname,"DataLines.eps",sep=""))

Display data with HDIs of posterior predictions.
windows()
par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))
Plot data values:
yLim= c(min(yHDIlim) , max(yHDIlim))
plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,
 xlab="X (height in inches)" , ylab="Y (weight in pounds)" , cex.lab=1.5 ,
 main="Data with 95% HDI & Mean of Posterior Predictions" , cex.main=1.33)
Superimpose posterior predicted 95% HDIs:
segments(xPostPred, yHDIlim[,1] , xPostPred, yHDIlim[,2] , lwd=3, col="grey")
points(xPostPred , rowMeans(yPostPred) , pch="+" , cex=2 , col="grey")
dev.copy2eps(file=paste(fname,"DataPred.eps",sep=""))

#--

SimpleLinearRegressionRepeatedBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
model {
 for(r in 1 : Ndata) {
 y[r] ~ dnorm(mu[r] , tau[subj[r]])
 mu[r] <- b0[subj[r]] + b1[subj[r]] * x[r]
 }
 for (s in 1 : Nsubj) {
 b0[s] ~ dnorm(mu0G , tau0G)
 b1[s] ~ dnorm(mu1G , tau1G)
 tau[s] ~ dgamma(sG , rG)
 }
 mu0G ~ dnorm(0,.01)
 tau0G ~ dgamma(.1,.1)
 mu1G ~ dnorm(0,.01)
 tau1G ~ dgamma(.1,.1)
 sG <- pow(m,2)/pow(d,2)
 rG <- m/pow(d,2)
 m ~ dgamma(1,.1)
 d ~ dgamma(1,.1)
}
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Data from H. A. Feldman, 1988, Table 4, p. 1731.
Columns are "group" , "subjID" , "time" , "retention"
source("Feldman1988Table4data.R")
Remove missing data:
includeRowVec = is.finite(Feldman1988Table4data[,"retention"])
dataMat = Feldman1988Table4data[includeRowVec ,]
Retain only the Group 1 (lung) data:
dataMat = dataMat[dataMat[,"group"]==1 ,]
Convert to log10(retention):
dataMat[,"retention"] = log10(dataMat[,"retention"])
Column names and plot labels
yColName = "retention" ; yPlotLab = "log10 Retention"
xColName = "time" ; xPlotLab = "Day"
subjColName = "subjID" ; subjPlotLab = "Subject"
fname = "SimpleLinearRegressionRepeatedBrugs"

if (F) { # change to T to use income data instead of contam.retention data.
 # Data from http://www.census.gov/hhes/www/income/statemedfaminc.html
 # Downloaded Dec. 06, 2009.
 load("IncomeFamszState.Rdata") # loads IncomeFamszState
 dataMat = IncomeFamszState
 yColName="Income" ; yPlotLab = "Income"
 xColName="Famsz" ; xPlotLab="Family Size"
 subjColName="State" ; subjPlotLab="State"
 fname = "IncomeFamszState"
}

Extract data info to pass to BUGS:
Ndata = NROW(dataMat)
subj = as.integer(factor(dataMat[,subjColName]))
Nsubj = length(unique(subj))
x = as.numeric(dataMat[,xColName])
y = as.numeric(dataMat[,yColName])

Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
xM = mean(x) ; xSD = sd(x)
yM = mean(y) ; ySD = sd(y)
zx = (x - xM) / xSD
zy = (y - yM) / ySD

Specify data, as a list.
datalist = list(
 Ndata = Ndata ,
 Nsubj = Nsubj ,
 subj = subj ,
 x = zx ,
 y = zy
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains = nchain)

genInitList <- function() {
 b0 = b1 = tau = rep(0,length=Nsubj)
 for (sIdx in 1:Nsubj) {
 yVec = datalist$y[datalist$subj==sIdx]
 xVec = datalist$x[datalist$subj==sIdx]
 lmInfo = lm(yVec ~ xVec)
 b0[sIdx] = lmInfo$coef[1]
 b1[sIdx] = lmInfo$coef[2]
 tau[sIdx] = length(yVec) / sum(lmInfo$res^2)
 }
 mu0G = mean(b0)
 tau0G = 1/sd(b0)^2
 mu1G = mean(b1)
 tau1G = 1/sd(b1)^2
 m = mean(tau)
 d = sd(tau)
 list(b0=b0 , b1=b1 , tau=tau ,
 mu0G=mu0G , tau0G=tau0G ,
 mu1G=mu1G , tau1G=tau1G ,
 m=m , d=d)
}
for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 500
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("b0","b1","tau" , "mu0G","tau0G", "mu1G","tau1G", "m","d"))
stepsPerChain = ceiling(5000/nchain)
thinStep = 100 # 40 or more
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

Check convergence and autocorrelation:
checkConvergence = T # check this first time through, examine m,d,tau0G,tau1G
if (checkConvergence) {
 # check a few selected chains
 b01Sum = plotChains("b0[1]" , saveplots=F , filenameroot=fname)
 b11Sum = plotChains("b1[1]" , saveplots=F , filenameroot=fname)
 tau1Sum = plotChains("tau[1]" , saveplots=F , filenameroot=fname)
 mu0GSum = plotChains("mu0G" , saveplots=F , filenameroot=fname)
 tau0GSum = plotChains("tau0G" , saveplots=F , filenameroot=fname)
 mu1GSum = plotChains("mu1G" , saveplots=F , filenameroot=fname)
 tau1GSum = plotChains("tau1G" , saveplots=F , filenameroot=fname)
 mSum = plotChains("m" , saveplots=F , filenameroot=fname)
 dSum = plotChains("d" , saveplots=F , filenameroot=fname)
}

Extract chain values for subsequent examination:
zmu0Gsamp = samplesSample("mu0G")
zmu1Gsamp = samplesSample("mu1G")
zb0samp = NULL
zb1samp = NULL
for (subjIdx in 1:Nsubj) {
 zb0samp = rbind(zb0samp , samplesSample(paste("b0[",subjIdx,"]",sep="")))
 zb1samp = rbind(zb1samp , samplesSample(paste("b1[",subjIdx,"]",sep="")))
}

Convert to original scale:
mu0Gsamp = zmu0Gsamp * ySD + yM - zmu1Gsamp * ySD * xM / xSD
mu1Gsamp = zmu1Gsamp * ySD / xSD
b1samp = zb1samp * ySD / xSD

Display believable intercept and slope values
windows(10,5.5)
par(mar=c(4,4,1.75,1)+0.1 , mgp=c(2.5,0.8,0))
layout(matrix(1:2,nrow=1))
thinIdx = round(seq(1,length(mu0Gsamp),length=700))
plot(zmu1Gsamp[thinIdx] , zmu0Gsamp[thinIdx] , cex.lab=1.75 ,
 ylab="Standardized Intercept" , xlab="Standardized Slope")
plot(mu1Gsamp[thinIdx] , mu0Gsamp[thinIdx] , cex.lab=1.0 ,
 ylab=paste("Intercept (",yPlotLab," when ",xPlotLab," =0)",sep="") ,
 xlab=paste("Slope (change in",yPlotLab,"per unit",xPlotLab,")"))
dev.copy2eps(file=paste(fname,"SlopeIntercept.eps",sep=""))

Make graphs of data and corresponding believable slopes:
windows(12,6)
par(mar=c(4,4,1.75,1)+0.1 , mgp=c(2.5,0.8,0))
layout(matrix(c(1:5,1:5,6:10),nrow=3,byrow=T))
xlims = c(min(dataMat[,xColName]) , max(dataMat[,xColName]))
ylims = c(min(dataMat[,yColName]) , max(dataMat[,yColName]))
sIdVec = unique(dataMat[,subjColName])
Plot data of individual subjects:
nSubjPlots = 4 # number of representative subject plots to make
subjIdxVec = round(seq(1,length(sIdVec),length=nSubjPlots))
for (sIdx in subjIdxVec) {
 rVec = (dataMat[,subjColName] == sIdVec[sIdx])
 plot(dataMat[rVec,xColName] , dataMat[rVec,yColName] , type="o" ,
 ylim=ylims , ylab=yPlotLab , xlab=xPlotLab , cex.lab=1.5 ,
 pch=sIdx%%26 , lty=sIdx , main=bquote(.(subjPlotLab) *" "* .(sIdx)) ,
 cex.main=1.75)
}
Plot data of all subjects superimposed
plot(NULL,NULL, xlab=xPlotLab,xlim=xlims , ylab=yPlotLab,ylim=ylims ,
 cex.lab=1.5 , main=paste("All ",subjPlotLab,"s",sep="") , cex.main=1.75)
for (sIdx in 1:length(sIdVec)) {
 rVec = (dataMat[,subjColName] == sIdVec[sIdx])
 lines(dataMat[rVec,xColName] , dataMat[rVec,yColName] ,
 lty=sIdx , pch=sIdx%%26 , type="o")
}
Plot histograms of corresponding posterior slopes:
for (sIdx in subjIdxVec) {
 histInfo = plotPost(b1samp[sIdx,] , xlab="Slope" , compVal=0.0 , breaks=30 ,
 HDItextPlace=0.9)
}
histInfo = plotPost(mu1Gsamp , xlab="Slope, Group Level" , compVal=0.0 ,
 breaks=30 , HDItextPlace=0.9)
dev.copy2eps(file=paste(fname,"Data.eps",sep=""))

#--

SimpleRobustLinearRegressionBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : Ndata) {
 y[i] ~ dt(mu[i] , tau , tdf)
 mu[i] <- beta0 + beta1 * x[i]
 }
 beta0 ~ dnorm(0 , 1.0E-12)
 beta1 ~ dnorm(0 , 1.0E-12)
 tau ~ dgamma(0.001 , 0.001)
 udf ~ dunif(0,1)
 tdf <- 1 - tdfGain * log(1-udf) # tdf in [1,Inf).
 # tdfGain specified in data section
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

cigData = read.csv(file="McIntyre1994data.csv")
nSubj = NROW(cigData)
x = cigData[,"Wt"]
xName="Weight"
y = cigData[,"Tar"]
yName="Tar"

Re-center data at mean, to reduce autocorrelation in MCMC sampling.
Standardize (divide by SD) to make initialization easier.
xM = mean(x) ; xSD = sd(x)
yM = mean(y) ; ySD = sd(y)
zx = (x - xM) / xSD
zy = (y - yM) / ySD

Specify data, as a list.
tdfGain = 1 # 1 for low-baised tdf, 100 for high-biased tdf
datalist = list(
 x = zx ,
 y = zy ,
 Ndata = nSubj ,
 tdfGain = tdfGain
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains = nchain)

genInitList <- function() {
 r = cor(x,y)
 list(
 beta0 = 0 , # because data are standardized
 beta1 = r , # because data are standardized
 tau = 1 / (1-r^2) , # because data are standardized
 udf = 0.95 # tdf = 4
)
}
for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 100
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("beta0" , "beta1" , "tau" , "tdf"))
stepsPerChain = ceiling(10000/nchain)
thinStep = 10
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")

fname = paste("SimpleRobustLinearRegressionBrugsTdfGain",tdfGain,
 sep="")
#beta0Sum = plotChains("beta0" , saveplots=F , filenameroot=fname)
#beta1Sum = plotChains("beta1" , saveplots=F , filenameroot=fname)
#tauSum = plotChains("tau" , saveplots=F , filenameroot=fname)
#tdfSum = plotChains("tdf" , saveplots=F , filenameroot=fname)

Extract chain values:
tdfSamp = samplesSample("tdf")
tdfM = mean(tdfSamp)
z0 = samplesSample("beta0")
z1 = samplesSample("beta1")
zTau = samplesSample("tau")
zSigma = 1 / sqrt(zTau) # Convert precision to SD

Convert to original scale:
b1 = z1 * ySD / xSD
b0 = (z0 * ySD + yM - z1 * ySD * xM / xSD)
sigma = zSigma * ySD

Posterior prediction:
Specify x values for which predicted y's are needed:
xRang = max(x)-min(x)
yRang = max(y)-min(y)
limMult = 0.25
xLim= c(min(x)-limMult*xRang , max(x)+limMult*xRang)
yLim= c(min(y)-limMult*yRang , max(y)+limMult*yRang)
yLim = c(-10,35)
xPostPred = seq(xLim[1] , xLim[2] , length=20)
Define matrix for recording posterior predicted y values at each x value.
One row per x value, with each row holding random predicted y values.
postSampSize = length(b1)
yPostPred = matrix(0 , nrow=length(xPostPred) , ncol=postSampSize)
Define matrix for recording HDI limits of posterior predicted y values:
yHDIlim = matrix(0 , nrow=length(xPostPred) , ncol=2)
Generate posterior predicted y values.
This gets only one y value, at each x, for each step in the chain.
for (chainIdx in 1:postSampSize) {
 yPostPred[,chainIdx] = rnorm(length(xPostPred) ,
 mean = b0[chainIdx] + b1[chainIdx] * xPostPred ,
 sd = rep(sigma[chainIdx] , length(xPostPred)))
}
source("HDIofMCMC.R")
for (xIdx in 1:length(xPostPred)) {
 yHDIlim[xIdx,] = HDIofMCMC(yPostPred[xIdx,])
}

Display believable beta0 and b1 values
windows()
par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))
#layout(matrix(1:2,nrow=1))
thinIdx = seq(1,length(b0),length=700)
#plot(z1[thinIdx] , z0[thinIdx] , cex.lab=1.75 ,
ylab="Standardized Intercept" , xlab="Standardized Slope")
plot(b1[thinIdx] , b0[thinIdx] , cex.lab=1.75 ,
 ylab="Intercept" , xlab="Slope")
dev.copy2eps(file=paste(fname,"SlopeIntercept.eps",sep=""))

Display the posterior of the b1:
source("plotPost.R")
windows(7,4)
par(mar=c(4,4,1,1)+0.1 , mgp=c(2.5,0.8,0))
#layout(matrix(1:2,nrow=1))
#histInfo = plotPost(z1 , xlab="Standardized slope" , compVal=0.0 ,
breaks=30)
histInfo = plotPost(b1 , main=bquote("Mean tdf"==.(signif(tdfM,3))) , cex.main=2 ,
 xlab=bquote("Slope (" * Delta * .(yName) / Delta * .(xName)
 * ")") , compVal=0.0 , breaks=30)
dev.copy2eps(file=paste(fname,"PostSlope.eps",sep=""))

Display data with believable regression lines and posterior predictions.
windows()
par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))
Plot data values:
plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,
 xlab=xName , ylab=yName , cex.lab=1.5 ,
 main="Data with credible regression lines" , cex.main=1.33)
Superimpose a smattering of believable regression lines:
for (i in seq(from=1,to=length(b0),length=50)) {
 abline(b0[i] , b1[i] , col="grey")
}
dev.copy2eps(file=paste(fname,"DataLines.eps",sep=""))

Display data with HDIs of posterior predictions.
windows()
par(mar=c(3,3,2,1)+0.5 , mgp=c(2.1,0.8,0))
Plot data values:
#yLim= c(min(c(yHDIlim,y)) , max(c(yHDIlim,y)))
plot(x , y , cex=1.5 , lwd=2 , col="black" , xlim=xLim , ylim=yLim ,
 xlab=xName , ylab=yName , cex.lab=1.5 ,
 main="Data with 95% HDI & Mean of Posterior Predictions" , cex.main=1.33)
Superimpose posterior predicted 95% HDIs:
segments(xPostPred, yHDIlim[,1] , xPostPred, yHDIlim[,2] , lwd=3, col="grey")
points(xPostPred , rowMeans(yPostPred) , pch="+" , cex=2 , col="grey")
dev.copy2eps(file=paste(fname,"DataPred.eps",sep=""))

#--

SolariLS2008data.txt

Data from Solari, Liseo & Sun 2008
#
(Pompilj and Napolitani, 1954). An experiment is conducted
to analyze the possible influence of some types of manuring
on the ascorbic acid content in tomatoes. The treatments
under study are nine manures obtained as different
combinations of calcium nitrate and calcium superphosphate.
#
T1 T2 T3 T4 T5 T6 T7 T8 T9
7.12 4.42 6.49 8.07 8.05 5.09 5.87 6.57 4.13
7.16 5.68 8.09 2.86 5.82 4.57 5.36 5.08 7.31
4.57 5.15 8.79 6.84 2.47 6.06 5.85 5.95 4.47
3.79 3.83 8.44 6.85 3.28 4.87 6.27 7.51 2.53
4.20 3.30 6.11 4.12 5.38 4.52 5.96 3.79 3.96
5.84 4.44 5.17 3.32 3.98 5.08 4.95 4.33 5.30
5.56 3.51 8.13 1.74 6.08 4.29 5.85 3.70 2.66
5.02 4.60 7.58 1.74 6.28 6.19 4.70 5.21 4.12
3.69 4.85 6.47 1.57 5.72 3.45 1.53 4.48 3.54
2.99 4.84 5.45 3.02 2.88 5.85 3.88 5.17 2.98
4.99 5.45 6.18 5.08 6.40 2.51 2.88 4.69 5.08
2.16 4.71 4.34 4.96 4.58 4.93 2.07 2.12 5.15
Type Acid
1 7.12
1 7.16
1 4.57
1 3.79
1 4.20
1 5.84
1 5.56
1 5.02
1 3.69
1 2.99
1 4.99
1 2.16
2 4.42
2 5.68
2 5.15
2 3.83
2 3.30
2 4.44
2 3.51
2 4.60
2 4.85
2 4.84
2 5.45
2 4.71
3 6.49
3 8.09
3 8.79
3 8.44
3 6.11
3 5.17
3 8.13
3 7.58
3 6.47
3 5.45
3 6.18
3 4.34
4 8.07
4 2.86
4 6.84
4 6.85
4 4.12
4 3.32
4 1.74
4 1.74
4 1.57
4 3.02
4 5.08
4 4.96
5 8.05
5 5.82
5 2.47
5 3.28
5 5.38
5 3.98
5 6.08
5 6.28
5 5.72
5 2.88
5 6.40
5 4.58
6 5.09
6 4.57
6 6.06
6 4.87
6 4.52
6 5.08
6 4.29
6 6.19
6 3.45
6 5.85
6 2.51
6 4.93
7 5.87
7 5.36
7 5.85
7 6.27
7 5.96
7 4.95
7 5.85
7 4.70
7 1.53
7 3.88
7 2.88
7 2.07
8 6.57
8 5.08
8 5.95
8 7.51
8 3.79
8 4.33
8 3.70
8 5.21
8 4.48
8 5.17
8 4.69
8 2.12
9 4.13
9 7.31
9 4.47
9 2.53
9 3.96
9 5.30
9 2.66
9 4.12
9 3.54
9 2.98
9 5.08
9 5.15

Systems.Rdata

Systems.Rdata

SystemsBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
BUGS model specification begins here...
model {
 for(i in 1 : Ndata) {
 y[i] ~ dnorm(mu[subj[i]] , tau[subj[i]])
 }
 for (j in 1 : Nsubj) {
 mu[j] ~ dnorm(muG , tauG)
 tau[j] ~ dgamma(sG , rG)
 }
 muG ~ dnorm(2.3 , 0.1)
 tauG ~ dgamma(1 , .5)
 sG <- pow(m,2) / pow(d,2)
 rG <- m / pow(d,2)
 m ~ dgamma(1 , .25)
 d ~ dgamma(1 , .5)
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Load the aircraft data:
load("Systems.Rdata") # loads dataMat
nSubj = length(unique(dataMat[,"Aircraft"]))
Transform the data:
DaysTransf = dataMat[,"Days"]^(1/5)
dataMat = cbind(dataMat , DaysTransf)
colnames(dataMat) = c(colnames(dataMat)[1:3] , "DaysTransf")

Specify data, as a list.
datalist = list(
 y = dataMat[,"DaysTransf"] ,
 subj = dataMat[,"Aircraft"] ,
 Ndata = NROW(dataMat) ,
 Nsubj = nSubj
)
Get the data into BRugs: (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

First, compile the model:
nchain = 10
modelCompile(numChains = nchain)

modelGenInits() # works when the priors are not too flat

#--
RUN THE CHAINS

burn in
BurnInSteps = 1000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("muG" , "tauG" , "mu" , "tau" , "m" , "d"))
stepsPerChain = ceiling(10000/nchain)
thinStep = 100
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")
filenamert = "SystemsBrugs"

Examine chains for convergence and autocorrelation:
muSum = plotChains("muG" , saveplots=F , filenameroot=filenamert)
tauSum = plotChains("tauG" , saveplots=F , filenameroot=filenamert)
mSum = plotChains("m" , saveplots=F , filenameroot=filenamert)
dSum = plotChains("d" , saveplots=F , filenameroot=filenamert)
mu1Sum = plotChains("mu[1]" , saveplots=F , filenameroot=filenamert)
tau1Sum = plotChains("tau[1]" , saveplots=F , filenameroot=filenamert)

Extract chains from BUGS into R:
muGsample = samplesSample("muG")
tauGsample = samplesSample("tauG")
mSample = samplesSample("m")
dSample = samplesSample("d")
muSample = NULL
tauSample = NULL
for (sIdx in 1:nSubj) {
 muSample = rbind(muSample , samplesSample(paste("mu[",sIdx,"]",sep="")))
 tauSample = rbind(tauSample , samplesSample(paste("tau[",sIdx,"]",sep="")))
}

Plot the aircraft mu:
windows(15,6)
layout(matrix(1:nSubj , nrow=2 , byrow=T))
for (sIdx in 1:nSubj) {
 plotPost(muSample[sIdx,] , xlab=bquote(mu[.(sIdx)]))
}
dev.copy2eps(file=paste(filenamert,"PostMu.eps",sep=""))

Plot the aircraft tau:
windows(15,6)
layout(matrix(1:nSubj , nrow=2 , byrow=T))
for (sIdx in 1:nSubj) {
 plotPost(tauSample[sIdx,] , xlab=bquote(tau[.(sIdx)]) , HDItextPlace=.3)
}
dev.copy2eps(file=paste(filenamert,"PostTau.eps",sep=""))

Plot the hyperdistributions:
windows(15,3)
layout(matrix(1:4,ncol=4))
plotPost(muGsample , xlab=expression(mu[G]) , breaks=30)
plotPost(tauGsample , xlab=expression(tau[G]) , breaks=30)
plotPost(mSample , xlab=expression(m) , breaks=30)
plotPost(dSample , xlab=expression(d) , breaks=30 , HDItextPlace=.1)
dev.copy2eps(file=paste(filenamert,"PostHyper.eps",sep=""))

#--

ToyModelComp.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:nFlip) {
 # Likelihood:
 y[i] ~ dbern(theta)
 }
 # Prior
 theta <- ((2-mdlIdx) * 1/(1+exp(-nu)) # theta from model index 1
 + (mdlIdx-1) * exp(-eta)) # theta from model index 2
 nu ~ dnorm(0,.1) # 0,.1 vs 1,1
 eta ~ dgamma(.1,.1) # .1,.1 vs 1,1
 # Hyperprior on model index:
 mdlIdx ~ dcat(modelProb[])
 modelProb[1] <- .5
 modelProb[2] <- .5
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in a form that is compatible with BRugs model, as a list:
N = 30
z = 8
datalist = list(
 y = c(rep(1,z) , rep(0,N-z)) ,
 nFlip = N
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 1
modelCompile(numChains=nchain)
modelGenInits()

#--
RUN THE CHAINS.

burninSteps = 1000
modelUpdate(burninSteps)
samplesSet(c("theta","nu","eta","mdlIdx"))
nPerChain = 10000
modelUpdate(nPerChain , thin=5) # takes nPerChain * thin steps

#--
EXAMINE THE RESULTS.

filenamebase = "ToyModelComp1"

modelIdxSample = samplesSample("mdlIdx")
pM1 = sum(modelIdxSample == 1) / length(modelIdxSample)
pM2 = 1 - pM1
string1 =paste("p(M1|D)=",round(pM1,3),sep="")
string2 =paste("p(M2|D)=",round(pM2,3),sep="")
windows(10,4)
plot(1:length(modelIdxSample) , modelIdxSample , type="l" ,
 xlab="Step in Markov chain" , ylab="Model Index (1, 2)" ,
 main=paste(string1,", ",string2,sep=""))
dev.copy2eps(file=paste(filenamebase,"_mdlIdx",".eps",sep=""))

thetaSampleM1 = samplesSample("theta")[modelIdxSample == 1]
thetaSampleM2 = samplesSample("theta")[modelIdxSample == 2]
source("plotPost.R")
windows()
layout(matrix(1:2,nrow=2))
h1 = plotPost(thetaSampleM1 , main="Post. theta for M1" , breaks=21)
h2 = plotPost(thetaSampleM2 , main="Post. theta for M2" , breaks=21)
dev.copy2eps(file=paste(filenamebase,"_theta",".eps",sep=""))

nuSampleM1 = samplesSample("nu")[modelIdxSample == 1]
etaSampleM2 = samplesSample("eta")[modelIdxSample == 2]
windows()
layout(matrix(1:2,nrow=2))
h1 = plotPost(nuSampleM1 ,
 main=bquote("p("*nu*"|D,M1), with p(M1|D)="*.(round(pM1,3))) ,
 breaks=21 , xlab=expression(nu) , xlim=c(-3,4))
h2 = plotPost(etaSampleM2 ,
 main=bquote("p("*eta*"|D,M2), with p(M2|D)="*.(round(pM2,3))) ,
 breaks=seq(0,50,.25) , xlab=expression(eta) , xlim=c(0,7))
dev.copy2eps(file=paste(filenamebase,"_nu_eta",".eps",sep=""))

YmetricXsingleBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.
modelstring = "
BUGS model specification begins here...
model {
 # Likelihood:
 for(i in 1 : N) {
 y[i] ~ dnorm(mu , tau) # tau is precision, not SD
 }
 # Prior:
 tau ~ dgamma(0.01 , 0.01)
 mu ~ dnorm(0 , 1.0E-10)
}
... end BUGS model specification
" # close quote for modelstring
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Generate random data from known parameter values:
set.seed(47405)
trueM = 100
trueSD = 15
y = round(rnorm(n=500 , mean=trueM , sd=trueSD)) # R dnorm uses mean and SD

datalist = list(
 y = y ,
 N = length(y)
)

Get the data into BRugs: (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

nchain = 3
modelCompile(numChains = nchain)

automaticInit = F # TRUE or FALSE
if (automaticInit) {
 modelGenInits() # automatically initialize chains from prior
} else {
 genInitList <- function() { # manually initialize chains near the data
 list(mu = mean(datalist$y) ,
 tau = 1 / sd(datalist$y)^2)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 500
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("mu" , "tau"))
stepsPerChain = 2000
thinStep = 1
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

filenamert = "YmetricXsingleBrugs"

source("plotChains.R")
muSum = plotChains("mu" , saveplots=F , filenamert)
sigmaSum = plotChains("tau" , saveplots=F , filenamert)

muSample = samplesSample("mu")
tauSample = samplesSample("tau")
sigmaSample <- 1 / sqrt(tauSample) # Convert precision to SD

source("plotPost.R")
windows()
plotPost(muSample , xlab="mu" , breaks=30 , main="Posterior")
dev.copy2eps(file=paste(filenamert,"PostMu.eps",sep=""))

nPts = length(muSample) ; nPtsForDisplay = min(nPts , 2000)
thinIdx = seq(1 , nPts , nPts / nPtsForDisplay)
windows()
plot(muSample[thinIdx] , sigmaSample[thinIdx] , col="gray" ,
 xlab="mu" , ylab="sigma" , cex.lab=1.5 , main="Posterior" , log="y")
points(mean(muSample) , mean(sigmaSample) , pch="+" , cex=2)
text(mean(muSample) , mean(sigmaSample) ,
 bquote(.(round(mean(muSample),1)) *" "* .(round(mean(sigmaSample),1))),
 adj=c(.5,-0.5))
dev.copy2eps(file=paste(filenamert,"PostMuSigma.eps",sep=""))

#--

ANOVAonewayBRugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "ANOVAonewayBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- a0 + a[x[i]]
 }
 #
 tau <- pow(sigma , -2)
 sigma ~ dunif(0,10) # y values are assumed to be standardized
 #
 a0 ~ dnorm(0,0.001) # y values are assumed to be standardized
 #
 for (j in 1:NxLvl) { a[j] ~ dnorm(0.0 , atau) }
 atau <- 1 / pow(aSD , 2)
 aSD <- abs(aSDunabs) + .1
 aSDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Specify data source:
dataSource = c("McDonaldSK1991" , "SolariLS2008" , "Random")[1]
Load the data:

if (dataSource == "McDonaldSK1991") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("McDonaldSK1991data.txt", header=T ,
 colClasses=c("factor","numeric"))
 y = as.numeric(datarecord$Size)
 Ntotal = length(datarecord$Size)
 x = as.numeric(datarecord$Group)
 xnames = levels(datarecord$Group)
 NxLvl = length(unique(datarecord$Group))
 contrastList = list(BIGvSMALL = c(-1/3,-1/3,1/2,-1/3,1/2) ,
 ORE1vORE2 = c(1,-1,0,0,0) ,
 ALAvORE = c(-1/2,-1/2,1,0,0) ,
 NPACvORE = c(-1/2,-1/2,1/2,1/2,0) ,
 USAvRUS = c(1/3,1/3,1/3,-1,0) ,
 FINvPAC = c(-1/4,-1/4,-1/4,-1/4,1) ,
 ENGvOTH = c(1/3,1/3,1/3,-1/2,-1/2) ,
 FINvRUS = c(0,0,0,-1,1))
}

if (dataSource == "SolariLS2008") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("SolariLS2008data.txt", header=T ,
 colClasses=c("factor","numeric"))
 y = as.numeric(datarecord$Acid)
 Ntotal = length(datarecord$Acid)
 x = as.numeric(datarecord$Type)
 xnames = levels(datarecord$Type)
 NxLvl = length(unique(datarecord$Type))
 contrastList = list(G3vOTHER = c(-1/8,-1/8,1,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8))
}

if (dataSource == "Random") {
 fnroot = paste(fnroot , dataSource , sep="")
 #set.seed(47405)
 ysdtrue = 4.0
 a0true = 100
 atrue = c(2 , -2) # sum to zero
 npercell = 8
 datarecord = matrix(0, ncol=2 , nrow=length(atrue)*npercell)
 colnames(datarecord) = c("y","x")
 rowidx = 0
 for (xidx in 1:length(atrue)) {
 for (subjidx in 1:npercell) {
 rowidx = rowidx + 1
 datarecord[rowidx,"x"] = xidx
 datarecord[rowidx,"y"] = (a0true + atrue[xidx] + rnorm(1,0,ysdtrue))
 }
 }
 datarecord = data.frame(y=datarecord[,"y"] , x=as.factor(datarecord[,"x"]))
 y = as.numeric(datarecord$y)
 Ntotal = length(y)
 x = as.numeric(datarecord$x)
 xnames = levels(datarecord$x)
 NxLvl = length(unique(x))
 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:
 contrastList = NULL
 for (g1idx in 1:(NxLvl-1)) {
 for (g2idx in (g1idx+1):NxLvl) {
 cmpVec = rep(0,NxLvl)
 cmpVec[g1idx] = -1
 cmpVec[g2idx] = 1
 contrastList = c(contrastList , list(cmpVec))
 }
 }
}

Specify the data in a form that is compatible with BRugs model, as a list:
ySDorig = sd(y)
yMorig = mean(y)
z = (y - yMorig) / ySDorig
datalist = list(
 y = z ,
 x = x ,
 Ntotal = Ntotal ,
 NxLvl = NxLvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains (on serial CPUs).
nchain = 5
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(y=datalist$y , x=factor(x,labels=xnames))
 a0 = mean(theData$y)
 a = aggregate(theData$y , list(theData$x) , mean)[,2] - a0
 ssw = aggregate(theData$y , list(theData$x) ,
 function(x){var(x)*(length(x)-1)})[,2]
 sp = sqrt(sum(ssw) / length(theData$y))
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a = a ,
 sigma = sp ,
 aSDunabs = sd(a)
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 10000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a" , "sigma" , "aSD"))
stepsPerChain = ceiling(5000/nchain)
thinStep = 750
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = T
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=T , filenameroot=fnroot)
 sumInfo = plotChains("a" , saveplots=T , filenameroot=fnroot)
 sumInfo = plotChains("sigma" , saveplots=T , filenameroot=fnroot)
 sumInfo = plotChains("aSD" , saveplots=T , filenameroot=fnroot)
}

Extract and plot the SDs:
sigmaSample = samplesSample("sigma")
aSDSample = samplesSample("aSD")
windows()
layout(matrix(1:2,nrow=2))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
plotPost(sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30)
plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
aSample = array(0 , dim=c(datalist$NxLvl , chainLength))
for (xidx in 1:datalist$NxLvl) {
 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))
}

Convert to zero-centered b values:
mSample = array(0, dim=c(datalist$NxLvl , chainLength))
for (stepIdx in 1:chainLength) {
 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])
}
b0Sample = apply(mSample , 2 , mean)
bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)
Convert from standardized b values to original scale b values:
b0Sample = b0Sample * ySDorig + yMorig
bSample = bSample * ySDorig

Plot b values:
windows(datalist$NxLvl*2.75,2.5)
layout(matrix(1:datalist$NxLvl , nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
for (xidx in 1:datalist$NxLvl) {
 plotPost(bSample[xidx,] , breaks=30 ,
 xlab=bquote(beta*1[.(xidx)]) ,
 main=paste("x:",xnames[xidx]))
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Display contrast analyses
nContrasts = length(contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X Contrast:", names(contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))
}

#==
Do NHST ANOVA and t tests:

theData = data.frame(y=y , x=factor(x,labels=xnames))
aovresult = aov(y ~ x , data = theData) # NHST ANOVA
cat("\n--\n\n")
print(summary(aovresult))
cat("\n--\n\n")
print(model.tables(aovresult , "means") , digits=4)
windows()
boxplot(y ~ x , data = theData)
cat("\n--\n\n")
print(TukeyHSD(aovresult , "x" , ordered = FALSE))
windows()
plot(TukeyHSD(aovresult , "x"))
if (T) {
 for (xIdx1 in 1:(NxLvl-1)) {
 for (xIdx2 in (xIdx1+1):NxLvl) {
 cat("\n--\n\n")
 cat("xIdx1 = " , xIdx1 , ", xIdx2 = " , xIdx2 ,
 ", M2-M1 = " , mean(y[x==xIdx2])-mean(y[x==xIdx1]) , "\n")
 print(t.test(y[x==xIdx2] , y[x==xIdx1] , var.equal=T)) # t test
 }
 }
}
cat("\n--\n\n")

#==

ANOVAonewayNonhomogvarBrugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "ANOVAonewayNonhomogvarBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 y[i] ~ dnorm(mu[i] , tau[x[i]])
 mu[i] <- a0 + a[x[i]]
 }
 a0 ~ dnorm(0,0.001)
 for (j in 1:NxLvl) {
 a[j] ~ dnorm(0.0 , atau)
 tau[j] ~ dgamma(sG , rG)
 }
 sG <- pow(m,2)/pow(d,2)
 rG <- m/pow(d,2)
 m ~ dgamma(1,1)
 d ~ dgamma(1,1)
 atau <- 1 / pow(aSD , 2)
 aSD <- abs(aSDunabs) + .1
 aSDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.

Specify data source:
dataSource = c("McDonaldSK1991" , "SolariLS2008" , "Random")[1]
Load the data:

if (dataSource == "McDonaldSK1991") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("McDonaldSK1991data.txt", header=T ,
 colClasses=c("factor","numeric"))
 y = as.numeric(datarecord$Size)
 Ntotal = length(datarecord$Size)
 x = as.numeric(datarecord$Group)
 xnames = levels(datarecord$Group)
 NxLvl = length(unique(datarecord$Group))
 contrastList = list(BIGvSMALL = c(-1/3,-1/3,1/2,-1/3,1/2) ,
 ORE1vORE2 = c(1,-1,0,0,0) ,
 ALAvORE = c(-1/2,-1/2,1,0,0) ,
 NPACvORE = c(-1/2,-1/2,1/2,1/2,0) ,
 USAvRUS = c(1/3,1/3,1/3,-1,0) ,
 FINvPAC = c(-1/4,-1/4,-1/4,-1/4,1) ,
 ENGvOTH = c(1/3,1/3,1/3,-1/2,-1/2) ,
 FINvRUS = c(0,0,0,-1,1))
}

if (dataSource == "SolariLS2008") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("SolariLS2008data.txt", header=T ,
 colClasses=c("factor","numeric"))
 y = as.numeric(datarecord$Acid)
 Ntotal = length(datarecord$Acid)
 x = as.numeric(datarecord$Type)
 xnames = levels(datarecord$Type)
 NxLvl = length(unique(datarecord$Type))
 contrastList = list(G3vOTHER = c(-1/8,-1/8,1,-1/8,-1/8,-1/8,-1/8,-1/8,-1/8))
}

if (dataSource == "Random") {
 fnroot = paste(fnroot , dataSource , sep="")
 #set.seed(47405)
 ysdtrue = 4.0
 a0true = 100
 atrue = c(2 , -2) # sum to zero
 npercell = 8
 datarecord = matrix(0, ncol=2 , nrow=length(atrue)*npercell)
 colnames(datarecord) = c("y","x")
 rowidx = 0
 for (xidx in 1:length(atrue)) {
 for (subjidx in 1:npercell) {
 rowidx = rowidx + 1
 datarecord[rowidx,"x"] = xidx
 datarecord[rowidx,"y"] = (a0true + atrue[xidx] + rnorm(1,0,ysdtrue))
 }
 }
 datarecord = data.frame(y=datarecord[,"y"] , x=as.factor(datarecord[,"x"]))
 y = as.numeric(datarecord$y)
 Ntotal = length(y)
 x = as.numeric(datarecord$x)
 xnames = levels(datarecord$x)
 NxLvl = length(unique(x))
 # Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:
 contrastList = NULL
 for (g1idx in 1:(NxLvl-1)) {
 for (g2idx in (g1idx+1):NxLvl) {
 cmpVec = rep(0,NxLvl)
 cmpVec[g1idx] = -1
 cmpVec[g2idx] = 1
 contrastList = c(contrastList , list(cmpVec))
 }
 }
}

Specify the data in a form that is compatible with BRugs model, as a list:
ySDorig = sd(y)
yMorig = mean(y)
z = (y - yMorig) / ySDorig
datalist = list(
 y = z ,
 x = x ,
 Ntotal = Ntotal ,
 NxLvl = NxLvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains (on serial CPUs).
nchain = 10
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(y=datalist$y , x=factor(x,labels=xnames))
 a0 = mean(theData$y)
 a = aggregate(theData$y , list(theData$x) , mean)[,2] - a0
 tau = 1/(aggregate(theData$y , list(theData$x) , sd)[,2])^2
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a = a ,
 tau = tau ,
 m = mean(tau) ,
 d = sd(tau) ,
 aSDunabs = sd(a)
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 10000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a" , "tau", "m", "d", "aSD"))
stepsPerChain = ceiling(2000/nchain)
thinStep = 500 # 750
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = T
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("tau" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("m" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("d" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("aSD" , saveplots=F , filenameroot=fnroot)
}

Extract and plot the SDs:
aSDSample = samplesSample("aSD")
windows()
layout(matrix(1:2,nrow=2))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
plotPost(aSDSample , xlab="aSD" , main="a SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a and tau values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
aSample = array(0 , dim=c(datalist$NxLvl , chainLength))
for (xidx in 1:datalist$NxLvl) {
 aSample[xidx,] = samplesSample(paste("a[",xidx,"]",sep=""))
}
tauSample = array(0 , dim=c(datalist$NxLvl , chainLength))
for (xidx in 1:datalist$NxLvl) {
 tauSample[xidx,] = samplesSample(paste("tau[",xidx,"]",sep=""))
}

Convert a to zero-centered b values:
mSample = array(0, dim=c(datalist$NxLvl , chainLength))
for (stepIdx in 1:chainLength) {
 mSample[,stepIdx] = (a0Sample[stepIdx] + aSample[,stepIdx])
}
b0Sample = apply(mSample , 2 , mean)
bSample = mSample - matrix(rep(b0Sample ,NxLvl),nrow=NxLvl,byrow=T)
Convert from standardized b values to original scale b values:
b0Sample = b0Sample * ySDorig + yMorig
bSample = bSample * ySDorig

Plot b values:
windows(datalist$NxLvl*2.75,2.5)
layout(matrix(1:datalist$NxLvl , nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
for (xidx in 1:datalist$NxLvl) {
 plotPost(bSample[xidx,] , breaks=30 ,
 xlab=bquote(beta*1[.(xidx)]) ,
 main=paste("x:",xnames[xidx]))
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Plot tau values:
windows(datalist$NxLvl*2.75,2.5)
layout(matrix(1:datalist$NxLvl , nrow=1))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
for (xidx in 1:datalist$NxLvl) {
 plotPost(tauSample[xidx,] , breaks=30 ,
 xlab=bquote(tau[.(xidx)]) ,
 main=paste("x:",xnames[xidx]))
}
dev.copy2eps(file=paste(fnroot,"tau.eps",sep=""))

Display contrast analyses
nContrasts = length(contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% bSample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , xnames[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X Contrast:", names(contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"xContrasts.eps",sep=""))
}

ANOVAtwowayBRugs.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "ANOVAtwowayBrugs"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]]
 }
 #
 tau <- pow(sigma , -2)
 sigma ~ dunif(0,10) # y values are assumed to be standardized
 #
 a0 ~ dnorm(0,0.001) # y values are assumed to be standardized
 #
 for (j1 in 1:Nx1Lvl) { a1[j1] ~ dnorm(0.0 , a1tau) }
 a1tau <- 1 / pow(a1SD , 2)
 a1SD <- abs(a1SDunabs) + .1
 a1SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j2 in 1:Nx2Lvl) { a2[j2] ~ dnorm(0.0 , a2tau) }
 a2tau <- 1 / pow(a2SD , 2)
 a2SD <- abs(a2SDunabs) + .1
 a2SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j1 in 1:Nx1Lvl) { for (j2 in 1:Nx2Lvl) {
 a1a2[j1,j2] ~ dnorm(0.0 , a1a2tau)
 } }
 a1a2tau <- 1 / pow(a1a2SD , 2)
 a1a2SD <- abs(a1a2SDunabs) + .1
 a1a2SDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.
Specify data source:
dataSource = c("QianS2007" , "Salary" , "Random" , "Ex19.3")[2]

Load the data:
if (dataSource == "QianS2007") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("QianS2007SeaweedData.txt" , header=TRUE , sep=",")
 # Logistic transform the COVER value:
 # Used by Appendix 3 of QianS2007 to replicate Ramsey and Schafer (2002).
 datarecord$COVER = -log((100 / datarecord$COVER) - 1)
 y = as.numeric(datarecord$COVER)
 x1 = as.numeric(datarecord$TREAT)
 x1names = levels(datarecord$TREAT)
 x2 = as.numeric(datarecord$BLOCK)
 x2names = levels(datarecord$BLOCK)
 Ntotal = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = list(f_Effect=c(1/2 , -1/2 , 0 , 1/2 , -1/2 , 0) ,
 F_Effect=c(0 , 1/2 , -1/2 , 0 , 1/2 , -1/2) ,
 L_Effect=c(1/3 , 1/3 , 1/3 , -1/3 , -1/3 , -1/3))
 x2contrastList = NULL # list(vector(length=Nx2Lvl))
 x1x2contrastList = NULL # list(matrix(1:(Nx1Lvl*Nx2Lvl) , nrow=Nx1Lvl))
}

if (dataSource == "Salary") {
 fnroot = paste(fnroot , dataSource , sep="")
 datarecord = read.table("Salary.csv" , header=TRUE , sep=",")
 y = as.numeric(datarecord$Salary)
 if (F) { # take log10 of salary
 y = log10(y)
 fnroot = paste(fnroot , "Log10" , sep="")
 }
 x1 = as.numeric(datarecord$Org)
 x1names = levels(datarecord$Org)
 x2 = as.numeric(datarecord$Post)
 x2names = levels(datarecord$Post)
 Ntotal = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = list(BFINvCEDP = c(1 , -1 , 0 , 0) ,
 CEDPvTHTR = c(0 , 1 , 0 , -1))
 x2contrastList = list(FT1vFT2 = c(1 , -1 , 0) , FT2vFT3 = c(0,1,-1))
 x1x2contrastList = list(
 CHEMvTHTRxFT1vFT3 = outer(c(0,0,+1,-1) , c(+1,0,-1)) ,
 BFINvOTHxFT1vOTH = outer(c(+1,-1/3,-1/3,-1/3) , c(+1,-1/2,-1/2)))
}

if (dataSource == "Random") {
 fnroot = paste(fnroot , dataSource , sep="")
 set.seed(47405)
 ysdtrue = 3.0
 a0true = 100
 a1true = c(2 , 0 , -2) # sum to zero
 a2true = c(3 , 1 , -1 , -3) # sum to zero
 a1a2true = matrix(c(1,-1,0, -1,1,0, 0,0,0, 0,0,0),# row and col sum to zero
 nrow=length(a1true) , ncol=length(a2true) , byrow=F)
 npercell = 8
 datarecord = matrix(0, ncol=3 , nrow=length(a1true)*length(a2true)*npercell)
 colnames(datarecord) = c("y","x1","x2")
 rowidx = 0
 for (x1idx in 1:length(a1true)) {
 for (x2idx in 1:length(a2true)) {
 for (subjidx in 1:npercell) {
 rowidx = rowidx + 1
 datarecord[rowidx,"x1"] = x1idx
 datarecord[rowidx,"x2"] = x2idx
 datarecord[rowidx,"y"] = (a0true + a1true[x1idx] + a2true[x2idx]
 + a1a2true[x1idx,x2idx] + rnorm(1,0,ysdtrue))
 }
 }
 }
 datarecord = data.frame(y=datarecord[,"y"] ,
 x1=as.factor(datarecord[,"x1"]) ,
 x2=as.factor(datarecord[,"x2"]))
 y = as.numeric(datarecord$y)
 x1 = as.numeric(datarecord$x1)
 x1names = levels(datarecord$x1)
 x2 = as.numeric(datarecord$x2)
 x2names = levels(datarecord$x2)
 Ntotal = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 x1contrastList = list(X1_1v3 = c(1 , 0 , -1)) #
 x2contrastList = list(X2_12v34 = c(1/2 , 1/2 , -1/2 , -1/2)) #
 x1x2contrastList = list(
 IC_11v22 = outer(c(1,-1,0) , c(1,-1,0,0)) ,
 IC_23v34 = outer(c(0,1,-1) , c(0,0,1,-1))
)
}

Load the data:
if (dataSource == "Ex19.3") {
 fnroot = paste(fnroot , dataSource , sep="")
 y = c(101,102,103,105,104, 104,105,107,106,108, 105,107,106,108,109, 109,108,110,111,112)
 x1 = c(1,1,1,1,1, 1,1,1,1,1, 2,2,2,2,2, 2,2,2,2,2)
 x2 = c(1,1,1,1,1, 2,2,2,2,2, 1,1,1,1,1, 2,2,2,2,2)
 # S = c(1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5)
 x1names = c("x1.1","x1.2")
 x2names = c("x2.1","x2.2")
 # Snames = c("S1","S2","S3","S4","S5")
 Ntotal = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 # NSLvl = length(unique(S))
 x1contrastList = list(X1.2vX1.1 = c(-1 , 1))
 x2contrastList = list(X2.2vX2.1 = c(-1 , 1))
 x1x2contrastList = NULL # list(matrix(1:(Nx1Lvl*Nx2Lvl) , nrow=Nx1Lvl))
}

Specify the data in a form that is compatible with BRugs model, as a list:
ySDorig = sd(y)
yMorig = mean(y)
z = (y - yMorig) / ySDorig
datalist = list(
 y = z ,
 x1 = x1 ,
 x2 = x2 ,
 Ntotal = Ntotal ,
 Nx1Lvl = Nx1Lvl ,
 Nx2Lvl = Nx2Lvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains.
nchain = 10
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(y=datalist$y , x1=factor(x1,labels=x1names) ,
 x2=factor(x2,labels=x2names))
 a0 = mean(theData$y)
 a1 = aggregate(theData$y , list(theData$x1) , mean)[,2] - a0
 a2 = aggregate(theData$y , list(theData$x2) , mean)[,2] - a0
 linpred = as.vector(outer(a1 , a2 , "+") + a0)
 a1a2 = aggregate(theData$y, list(theData$x1,theData$x2), mean)[,3] - linpred
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a1 = a1 ,
 a2 = a2 ,
 a1a2 = matrix(a1a2 , nrow=Nx1Lvl , ncol=Nx2Lvl) ,
 sigma = sd(theData$y)/2 , # lazy
 a1SDunabs = sd(a1) ,
 a2SDunabs = sd(a2) ,
 a1a2SDunabs = sd(a1a2)
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 10000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a1" , "a2" , "a1a2" ,
 "sigma" , "a1SD" , "a2SD" , "a1a2SD"))
stepsPerChain = ceiling(2000/nchain)
thinStep = 500 # 750
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
 sumInfo = plotChains("sigma" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2SD" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
}

Extract and plot the SDs:
sigmaSample = samplesSample("sigma")
a1SDSample = samplesSample("a1SD")
a2SDSample = samplesSample("a2SD")
a1a2SDSample = samplesSample("a1a2SD")
windows()
layout(matrix(1:4,nrow=2))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
plotPost(sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30)
plotPost(a1SDSample , xlab="a1SD" , main="a1 SD" , breaks=30)
plotPost(a2SDSample , xlab="a2SD" , main="a2 SD" , breaks=30)
plotPost(a1a2SDSample , xlab="a1a2SD" , main="Interaction SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
a1Sample = array(0 , dim=c(datalist$Nx1Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 a1Sample[x1idx,] = samplesSample(paste("a1[",x1idx,"]",sep=""))
}
a2Sample = array(0 , dim=c(datalist$Nx2Lvl , chainLength))
for (x2idx in 1:datalist$Nx2Lvl) {
 a2Sample[x2idx,] = samplesSample(paste("a2[",x2idx,"]",sep=""))
}
a1a2Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 for (x2idx in 1:datalist$Nx2Lvl) {
 a1a2Sample[x1idx,x2idx,] = samplesSample(paste("a1a2[",x1idx,",",x2idx,"]",
 sep=""))
 }
}

Convert to zero-centered b values:
m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))
for (stepIdx in 1:chainLength) {
 m12Sample[,,stepIdx] = (a0Sample[stepIdx]
 + outer(a1Sample[,stepIdx] ,
 a2Sample[,stepIdx] , "+")
 + a1a2Sample[,,stepIdx])
}
b0Sample = apply(m12Sample , 3 , mean)
b1Sample = (apply(m12Sample , c(1,3) , mean)
 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))
b2Sample = (apply(m12Sample , c(2,3) , mean)
 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))
linpredSample = array(0,dim=c(datalist$Nx1Lvl,datalist$Nx2Lvl,chainLength))
for (stepIdx in 1:chainLength) {
 linpredSample[,,stepIdx] = (b0Sample[stepIdx]
 + outer(b1Sample[,stepIdx] ,
 b2Sample[,stepIdx] , "+"))
}
b1b2Sample = m12Sample - linpredSample
Convert from standardized b values to original scale b values:
b0Sample = b0Sample * ySDorig + yMorig
b1Sample = b1Sample * ySDorig
b2Sample = b2Sample * ySDorig
b1b2Sample = b1b2Sample * ySDorig

Plot b values:
windows((datalist$Nx1Lvl+1)*2.75,(datalist$Nx2Lvl+1)*2.0)
layoutMat = matrix(0 , nrow=(datalist$Nx2Lvl+1) , ncol=(datalist$Nx1Lvl+1))
layoutMat[1,1] = 1
layoutMat[1,2:(datalist$Nx1Lvl+1)] = 1:datalist$Nx1Lvl + 1
layoutMat[2:(datalist$Nx2Lvl+1),1] = 1:datalist$Nx2Lvl + (datalist$Nx1Lvl + 1)
layoutMat[2:(datalist$Nx2Lvl+1),2:(datalist$Nx1Lvl+1)] = matrix(
 1:(datalist$Nx1Lvl*datalist$Nx2Lvl) + (datalist$Nx2Lvl+datalist$Nx1Lvl+1) ,
 ncol=datalist$Nx1Lvl , byrow=T)
layout(layoutMat)
par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
histinfo = plotPost(b0Sample , xlab=expression(beta * 0) , main="Baseline" ,
 breaks=30)
for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(b1Sample[x1idx,] , xlab=bquote(beta*1[.(x1idx)]) ,
 main=paste("x1:",x1names[x1idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 histinfo = plotPost(b2Sample[x2idx,] , xlab=bquote(beta*2[.(x2idx)]) ,
 main=paste("x2:",x2names[x2idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(b1b2Sample[x1idx,x2idx,] , breaks=30 ,
 xlab=bquote(beta*12[.(x1idx)*","*.(x2idx)]) ,
 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]))
 }
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Display contrast analyses
nContrasts = length(x1contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x1contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b1Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x1names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X1 Contrast:", names(x1contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1Contrasts.eps",sep=""))
}
#
nContrasts = length(x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x2contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b2Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x2names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X2 Contrast:", names(x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x2Contrasts.eps",sep=""))
}
#
nContrasts = length(x1x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = x1x2contrastList[[cIdx]]
 contrastArr = array(rep(contrast,chainLength) ,
 dim=c(NROW(contrast),NCOL(contrast),chainLength))
 contrastLab = ""
 for (x1idx in 1:Nx1Lvl) {
 for (x2idx in 1:Nx2Lvl) {
 if (contrast[x1idx,x2idx] != 0) {
 contrastLab = paste(contrastLab , "+" ,
 signif(contrast[x1idx,x2idx],2) ,
 x1names[x1idx] , x2names[x2idx])
 }
 }
 }
 histInfo = plotPost(apply(contrastArr * b1b2Sample , 3 , sum) ,
 compVal=0 , breaks=30 , xlab=contrastLab , cex.lab = 0.75 ,
 main=paste(names(x1x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1x2Contrasts.eps",sep=""))
}

#==
Do NHST ANOVA:

theData = data.frame(y=y , x1=factor(x1,labels=x1names) ,
 x2=factor(x2,labels=x2names))
windows()
interaction.plot(theData$x1 , theData$x2 , theData$y , type="b")
dev.copy2eps(file=paste(fnroot,"DataPlot.eps",sep=""))
aovresult = aov(y ~ x1 * x2 , data = theData)
cat("\n--\n\n")
print(summary(aovresult))
cat("\n--\n\n")
print(model.tables(aovresult , type = "effects", se = TRUE) , digits=3)
cat("\n--\n\n")

#==

ANOVAtwowayBRugsWithinSubj.R

graphics.off()
rm(list=ls(all=TRUE))
fnroot = "ANOVAtwowayBrugsWithinSubj"
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 for (i in 1:Ntotal) {
 y[i] ~ dnorm(mu[i] , tau)
 mu[i] <- a0 + a1[x1[i]] + a2[x2[i]] + a1a2[x1[i],x2[i]] + aS[S[i]]
 }
 #
 tau <- pow(sigma , -2)
 sigma ~ dunif(0,10) # y values are assumed to be standardized
 #
 a0 ~ dnorm(0,0.001) # y values are assumed to be standardized
 #
 for (j1 in 1:Nx1Lvl) { a1[j1] ~ dnorm(0.0 , a1tau) }
 a1tau <- 1 / pow(a1SD , 2)
 a1SD <- abs(a1SDunabs) + .1
 a1SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j2 in 1:Nx2Lvl) { a2[j2] ~ dnorm(0.0 , a2tau) }
 a2tau <- 1 / pow(a2SD , 2)
 a2SD <- abs(a2SDunabs) + .1
 a2SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (j1 in 1:Nx1Lvl) { for (j2 in 1:Nx2Lvl) {
 a1a2[j1,j2] ~ dnorm(0.0 , a1a2tau)
 } }
 a1a2tau <- 1 / pow(a1a2SD , 2)
 a1a2SD <- abs(a1a2SDunabs) + .1
 a1a2SDunabs ~ dt(0 , 0.001 , 2)
 #
 for (jS in 1:NSLvl) { aS[jS] ~ dnorm(0.0 , aStau) }
 aStau <- 1 / pow(aSSD , 2)
 aSSD <- abs(aSSDunabs) + .1
 aSSDunabs ~ dt(0 , 0.001 , 2)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file, and send to BUGS:
writeLines(modelstring,con="model.txt")
modelCheck("model.txt")

#--
THE DATA.
Specify data source:
dataSource = c("Ex19.3")[1]

Load the data:
if (dataSource == "Ex19.3") {
 fnroot = paste(fnroot , dataSource , sep="")
 y = c(101,102,103,105,104, 104,105,107,106,108, 105,107,106,108,109, 109,108,110,111,112)
 x1 = c(1,1,1,1,1, 1,1,1,1,1, 2,2,2,2,2, 2,2,2,2,2)
 x2 = c(1,1,1,1,1, 2,2,2,2,2, 1,1,1,1,1, 2,2,2,2,2)
 S = c(1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5)
 x1names = c("x1.1","x1.2")
 x2names = c("x2.1","x2.2")
 Snames = c("S1","S2","S3","S4","S5")
 Ntotal = length(y)
 Nx1Lvl = length(unique(x1))
 Nx2Lvl = length(unique(x2))
 NSLvl = length(unique(S))
 x1contrastList = list(X1.2vX1.1 = c(-1 , 1))
 x2contrastList = list(X2.2vX2.1 = c(-1 , 1))
 x1x2contrastList = NULL # list(matrix(1:(Nx1Lvl*Nx2Lvl) , nrow=Nx1Lvl))
}

Specify the data in a form that is compatible with BRugs model, as a list:
ySDorig = sd(y)
yMorig = mean(y)
z = (y - yMorig) / ySDorig
datalist = list(
 y = z ,
 x1 = x1 ,
 x2 = x2 ,
 S = S ,
 Ntotal = Ntotal ,
 Nx1Lvl = Nx1Lvl ,
 Nx2Lvl = Nx2Lvl ,
 NSLvl = NSLvl
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

Autocorrelation within chains is large, so use several chains to reduce
degree of thinning. But we still have to burn-in all the chains, which takes
more time with more chains.
nchain = 10
modelCompile(numChains = nchain)

if (F) {
 modelGenInits() # often won't work for diffuse prior
} else {
 # initialization based on data
 theData = data.frame(y=datalist$y , x1=factor(x1,labels=x1names) ,
 x2=factor(x2,labels=x2names) , S=factor(S,labels=Snames))
 a0 = mean(theData$y)
 a1 = aggregate(theData$y , list(theData$x1) , mean)[,2] - a0
 a2 = aggregate(theData$y , list(theData$x2) , mean)[,2] - a0
 aS = aggregate(theData$y , list(theData$S) , mean)[,2] - a0
 linpred = as.vector(outer(a1 , a2 , "+") + a0)
 a1a2 = aggregate(theData$y, list(theData$x1,theData$x2), mean)[,3] - linpred
 genInitList <- function() {
 return(
 list(
 a0 = a0 ,
 a1 = a1 ,
 a2 = a2 ,
 aS = aS ,
 a1a2 = matrix(a1a2 , nrow=Nx1Lvl , ncol=Nx2Lvl) ,
 sigma = sd(theData$y)/2 , # lazy
 a1SDunabs = sd(a1) ,
 a2SDunabs = sd(a2) ,
 a1a2SDunabs = sd(a1a2) ,
 aSSDunabs = sd(aS)
)
)
 }
 for (chainIdx in 1 : nchain) {
 modelInits(bugsInits(genInitList))
 }
}

#--
RUN THE CHAINS

burn in
BurnInSteps = 10000
modelUpdate(BurnInSteps)
actual samples
samplesSet(c("a0" , "a1" , "a2" , "a1a2" , "aS" ,
 "sigma" , "a1SD" , "a2SD" , "a1a2SD" , "aSSD"))
stepsPerChain = ceiling(2000/nchain)
thinStep = 100 # 500
modelUpdate(stepsPerChain , thin=thinStep)

#--
EXAMINE THE RESULTS

source("plotChains.R")
source("plotPost.R")

checkConvergence = F
if (checkConvergence) {
 sumInfo = plotChains("a0" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("aS" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
 sumInfo = plotChains("sigma" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a2SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("a1a2SD" , saveplots=F , filenameroot=fnroot)
 sumInfo = plotChains("aSSD" , saveplots=F , filenameroot=fnroot)
 readline("Press any key to clear graphics and continue")
 graphics.off()
}

Extract and plot the SDs:
sigmaSample = samplesSample("sigma")
a1SDSample = samplesSample("a1SD")
a2SDSample = samplesSample("a2SD")
a1a2SDSample = samplesSample("a1a2SD")
aSSDSample = samplesSample("aSSD")
windows()
layout(matrix(1:6,nrow=2))
par(mar=c(3,1,2.5,0) , mgp=c(2,0.7,0))
plotPost(sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30)
plotPost(a1SDSample , xlab="a1SD" , main="a1 SD" , breaks=30)
plotPost(a2SDSample , xlab="a2SD" , main="a2 SD" , breaks=30)
plotPost(a1a2SDSample , xlab="a1a2SD" , main="Interaction SD" , breaks=30)
plotPost(aSSDSample , xlab="aSSD" , main="aS SD" , breaks=30)
dev.copy2eps(file=paste(fnroot,"SD.eps",sep=""))

Extract a values:
a0Sample = samplesSample("a0")
chainLength = length(a0Sample)
a1Sample = array(0 , dim=c(datalist$Nx1Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 a1Sample[x1idx,] = samplesSample(paste("a1[",x1idx,"]",sep=""))
}
a2Sample = array(0 , dim=c(datalist$Nx2Lvl , chainLength))
for (x2idx in 1:datalist$Nx2Lvl) {
 a2Sample[x2idx,] = samplesSample(paste("a2[",x2idx,"]",sep=""))
}
a1a2Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl , chainLength))
for (x1idx in 1:datalist$Nx1Lvl) {
 for (x2idx in 1:datalist$Nx2Lvl) {
 a1a2Sample[x1idx,x2idx,] = samplesSample(paste("a1a2[",x1idx,",",x2idx,"]",
 sep=""))
 }
}
aSSample = array(0 , dim=c(datalist$NSLvl , chainLength))
for (Sidx in 1:datalist$NSLvl) {
 aSSample[Sidx,] = samplesSample(paste("aS[",Sidx,"]",sep=""))
}

Convert the a values to zero-centered b values.
m12Sample is predicted cell means at every step in MCMC chain:
m12Sample = array(0, dim=c(datalist$Nx1Lvl , datalist$Nx2Lvl ,
 datalist$NSLvl , chainLength))
for (stepIdx in 1:chainLength) {
 for (a1idx in 1:Nx1Lvl) {
 for (a2idx in 1:Nx2Lvl) {
 for (aSidx in 1:NSLvl) {
 m12Sample[a1idx , a2idx , aSidx , stepIdx] = (
 a0Sample[stepIdx]
 + a1Sample[a1idx,stepIdx]
 + a2Sample[a2idx,stepIdx]
 + a1a2Sample[a1idx,a2idx,stepIdx]
 + aSSample[aSidx,stepIdx])
 }
 }
 }
}

b0Sample is mean of the cell means at every step in chain:
b0Sample = apply(m12Sample , 4 , mean)
b1Sample is deflections of factor 1 marginal means from b0Sample:
b1Sample = (apply(m12Sample , c(1,4) , mean)
 - matrix(rep(b0Sample ,Nx1Lvl),nrow=Nx1Lvl,byrow=T))
b2Sample is deflections of factor 2 marginal means from b0Sample:
b2Sample = (apply(m12Sample , c(2,4) , mean)
 - matrix(rep(b0Sample ,Nx2Lvl),nrow=Nx2Lvl,byrow=T))
bSSample is deflections of factor S marginal means from b0Sample:
bSSample = (apply(m12Sample , c(3,4) , mean)
 - matrix(rep(b0Sample ,NSLvl),nrow=NSLvl,byrow=T))
linpredSample is linear combination of the marginal effects:
linpredSample = 0*m12Sample
for (stepIdx in 1:chainLength) {
 for (a1idx in 1:Nx1Lvl) {
 for (a2idx in 1:Nx2Lvl) {
 for (aSidx in 1:NSLvl) {
 linpredSample[a1idx,a2idx,aSidx,stepIdx] = (
 b0Sample[stepIdx]
 + b1Sample[a1idx,stepIdx]
 + b2Sample[a2idx,stepIdx]
 + bSSample[aSidx,stepIdx])
 }
 }
 }
}
b1b2Sample is the interaction deflection, i.e., the difference
between the cell means and the linear combination:
b1b2Sample = apply(m12Sample - linpredSample , c(1,2,4) , mean)

Convert from standardized b values to original scale b values:
b0Sample = b0Sample * ySDorig + yMorig
b1Sample = b1Sample * ySDorig
b2Sample = b2Sample * ySDorig
bSSample = bSSample * ySDorig
b1b2Sample = b1b2Sample * ySDorig

Plot b values:
windows((datalist$Nx1Lvl+1)*2.75,(datalist$Nx2Lvl+1)*2.0)
layoutMat = matrix(0 , nrow=(datalist$Nx2Lvl+1) , ncol=(datalist$Nx1Lvl+1))
layoutMat[1,1] = 1
layoutMat[1,2:(datalist$Nx1Lvl+1)] = 1:datalist$Nx1Lvl + 1
layoutMat[2:(datalist$Nx2Lvl+1),1] = 1:datalist$Nx2Lvl + (datalist$Nx1Lvl + 1)
layoutMat[2:(datalist$Nx2Lvl+1),2:(datalist$Nx1Lvl+1)] = matrix(
 1:(datalist$Nx1Lvl*datalist$Nx2Lvl) + (datalist$Nx2Lvl+datalist$Nx1Lvl+1) ,
 ncol=datalist$Nx1Lvl , byrow=T)
layout(layoutMat)
par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
histinfo = plotPost(b0Sample , xlab=expression(beta * 0) , main="Baseline" ,
 breaks=30)
for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(b1Sample[x1idx,] , xlab=bquote(beta*1[.(x1idx)]) ,
 main=paste("x1:",x1names[x1idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 histinfo = plotPost(b2Sample[x2idx,] , xlab=bquote(beta*2[.(x2idx)]) ,
 main=paste("x2:",x2names[x2idx]) , breaks=30)
}
for (x2idx in 1:datalist$Nx2Lvl) {
 for (x1idx in 1:datalist$Nx1Lvl) {
 histinfo = plotPost(b1b2Sample[x1idx,x2idx,] , breaks=30 ,
 xlab=bquote(beta*12[.(x1idx)*","*.(x2idx)]) ,
 main=paste("x1:",x1names[x1idx],", x2:",x2names[x2idx]))
 }
}
dev.copy2eps(file=paste(fnroot,"b.eps",sep=""))

Display contrast analyses
nContrasts = length(x1contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x1contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b1Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x1names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X1 Contrast:", names(x1contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1Contrasts.eps",sep=""))
}
#
nContrasts = length(x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = matrix(x2contrastList[[cIdx]],nrow=1) # make it a row matrix
 incIdx = contrast!=0
 histInfo = plotPost(contrast %*% b2Sample , compVal=0 , breaks=30 ,
 xlab=paste(round(contrast[incIdx],2) , x2names[incIdx] ,
 c(rep("+",sum(incIdx)-1),"") , collapse=" ") ,
 cex.lab = 1.0 ,
 main=paste("X2 Contrast:", names(x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x2Contrasts.eps",sep=""))
}
#
nContrasts = length(x1x2contrastList)
if (nContrasts > 0) {
 nPlotPerRow = 5
 nPlotRow = ceiling(nContrasts/nPlotPerRow)
 nPlotCol = ceiling(nContrasts/nPlotRow)
 windows(3.75*nPlotCol,2.5*nPlotRow)
 layout(matrix(1:(nPlotRow*nPlotCol),nrow=nPlotRow,ncol=nPlotCol,byrow=T))
 par(mar=c(4,0.5,2.5,0.5) , mgp=c(2,0.7,0))
 for (cIdx in 1:nContrasts) {
 contrast = x1x2contrastList[[cIdx]]
 contrastArr = array(rep(contrast,chainLength) ,
 dim=c(NROW(contrast),NCOL(contrast),chainLength))
 contrastLab = ""
 for (x1idx in 1:Nx1Lvl) {
 for (x2idx in 1:Nx2Lvl) {
 if (contrast[x1idx,x2idx] != 0) {
 contrastLab = paste(contrastLab , "+" ,
 signif(contrast[x1idx,x2idx],2) ,
 x1names[x1idx] , x2names[x2idx])
 }
 }
 }
 histInfo = plotPost(apply(contrastArr * b1b2Sample , 3 , sum) ,
 compVal=0 , breaks=30 , xlab=contrastLab , cex.lab = 0.75 ,
 main=paste(names(x1x2contrastList)[cIdx]))
 }
 dev.copy2eps(file=paste(fnroot,"x1x2Contrasts.eps",sep=""))
}

#==
Do NHST ANOVA:

theData = data.frame(y=y , x1=factor(x1,labels=x1names) ,
 x2=factor(x2,labels=x2names))
windows()
interaction.plot(theData$x1 , theData$x2 , theData$y , type="b")
dev.copy2eps(file=paste(fnroot,"DataPlot.eps",sep=""))
aovresult = aov(y ~ x1 * x2 , data = theData)
cat("\n--\n\n")
print(summary(aovresult))
cat("\n--\n\n")
print(model.tables(aovresult , type = "effects", se = TRUE) , digits=3)
cat("\n--\n\n")

#==

BayesUpdate.R

Theta is the vector of candidate values for the parameter theta.
nThetaVals is the number of candidate theta values.
To produce the examples in the book, set nThetaVals to either 3 or 63.
nThetaVals = 3
Now make the vector of theta values:
Theta = seq(from = 1/(nThetaVals+1) , to = nThetaVals/(nThetaVals+1) ,
 by = 1/(nThetaVals+1))

pTheta is the vector of prior probabilities on the theta values.
pTheta = pmin(Theta , 1-Theta) # Makes a triangular belief distribution.
pTheta = pTheta / sum(pTheta) # Makes sure that beliefs sum to 1.

Specify the data. To produce the examples in the book, use either
Data = c(1,1,1,0,0,0,0,0,0,0,0,0) or Data = c(1,0,0,0,0,0,0,0,0,0,0,0).
Data = c(1,1,1,0,0,0,0,0,0,0,0,0)
nHeads = sum(Data == 1)
nTails = sum(Data == 0)

Compute the likelihood of the data for each value of theta:
pDataGivenTheta = Theta^nHeads * (1-Theta)^nTails

Compute the posterior:
pData = sum(pDataGivenTheta * pTheta)
pThetaGivenData = pDataGivenTheta * pTheta / pData # This is Bayes' rule!

Plot the results.
windows(7,10) # create window of specified width,height inches.
layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels
par(mar=c(3,3,1,0)) # number of margin lines: bottom,left,top,right
par(mgp=c(2,1,0)) # which margin lines to use for labels
par(mai=c(0.5,0.5,0.3,0.1)) # margin size in inches: bottom,left,top,right

Plot the prior:
plot(Theta , pTheta , type="h" , lwd=3 , main="Prior" ,
 xlim=c(0,1) , xlab=bquote(theta) ,
 ylim=c(0,1.1*max(pThetaGivenData)) , ylab=bquote(p(theta)) ,
 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)

Plot the likelihood:
plot(Theta , pDataGivenTheta , type="h" , lwd=3 , main="Likelihood" ,
 xlim=c(0,1) , xlab=bquote(theta) ,
 ylim=c(0,1.1*max(pDataGivenTheta)) , ylab=bquote(paste("p(D|",theta,")")),
 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)
text(.55 , .85*max(pDataGivenTheta) , cex=2.0 ,
 bquote("D=" * .(nHeads) * "H," * .(nTails) * "T") , adj=c(0,.5))

Plot the posterior:
plot(Theta , pThetaGivenData , type="h" , lwd=3 , main="Posterior" ,
 xlim=c(0,1) , xlab=bquote(theta) ,
 ylim=c(0,1.1*max(pThetaGivenData)) , ylab=bquote(paste("p(",theta,"|D)")),
 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5)
text(.55 , .85*max(pThetaGivenData) , cex=2.0 ,
 bquote("p(D)=" * .(signif(pData,3))) , adj=c(0,.5))

Save the plot as an EPS file.
if (nThetaVals == 3) { modeltype = "simpleModel" }
if (nThetaVals == 63) { modeltype = "complexModel" }
if (nHeads == 3 & nTails == 9) { datatype = "simpleData" }
if (nHeads == 1 & nTails == 11) { datatype = "complexData" }
filename = paste("BayesUpdate_" ,modeltype ,"_" ,datatype ,".eps" ,sep="")
The command dev.copy2eps, used below, doesn't work on all systems.
Try help("dev.copy2eps") for info about saving graphs in other file formats.
dev.copy2eps(file=filename)

BernBeta.R

BernBeta = function(priorShape , dataVec , credMass=0.95 , saveGraph=F) {
Bayesian updating for Bernoulli likelihood and beta prior.
Input arguments:
priorShape
vector of parameter values for the prior beta distribution.
dataVec
vector of 1's and 0's.
credMass
the probability mass of the HDI.
Output:
postShape
vector of parameter values for the posterior beta distribution.
Graphics:
Creates a three-panel graph of prior, likelihood, and posterior
with highest posterior density interval.
Example of use:
> postShape = BernBeta(priorShape=c(1,1) , dataVec=c(1,0,0,1,1))
You will need to "source" this function before using it, so R knows
that the function exists and how it is defined.

Check for errors in input arguments:
if (length(priorShape) != 2) {
 stop("priorShape must have two components.") }
if (any(priorShape <= 0)) {
 stop("priorShape components must be positive.") }
if (any(dataVec != 1 & dataVec != 0)) {
 stop("dataVec must be a vector of 1s and 0s.") }
if (credMass <= 0 | credMass >= 1.0) {
 stop("credMass must be between 0 and 1.") }

Rename the prior shape parameters, for convenience:
a = priorShape[1]
b = priorShape[2]
Create summary values of the data:
z = sum(dataVec == 1) # number of 1's in dataVec
N = length(dataVec) # number of flips in dataVec
Compute the posterior shape parameters:
postShape = c(a+z , b+N-z)
Compute the evidence, p(D):
pData = beta(z+a , N-z+b) / beta(a , b)
Determine the limits of the highest density interval.
This uses a home-grown function called HDIofICDF.
source("HDIofICDF.R")
hpdLim = HDIofICDF(qbeta , shape1=postShape[1] , shape2=postShape[2])

Now plot everything:
Construct grid of theta values, used for graphing.
binwidth = 0.005 # Arbitrary small value for comb on Theta.
Theta = seq(from = binwidth/2 , to = 1-(binwidth/2) , by = binwidth)
Compute the prior at each value of theta.
pTheta = dbeta(Theta , a , b)
Compute the likelihood of the data at each value of theta.
pDataGivenTheta = Theta^z * (1-Theta)^(N-z)
Compute the posterior at each value of theta.
pThetaGivenData = dbeta(Theta , a+z , b+N-z)
Open a window with three panels.
windows(7,10)
layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels
par(mar=c(3,3,1,0) , mgp=c(2,1,0) , mai=c(0.5,0.5,0.3,0.1)) # margin specs
maxY = max(c(pTheta,pThetaGivenData)) # max y for plotting
Plot the prior.
plot(Theta , pTheta , type="l" , lwd=3 ,
 xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,
 xlab=bquote(theta) , ylab=bquote(p(theta)) , cex.lab=1.5 ,
 main="Prior" , cex.main=1.5)
if (a > b) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text(textx , 1.0*max(pThetaGivenData) ,
 bquote("beta(" * theta * "|" * .(a) * "," * .(b) * ")") ,
 cex=2.0 ,adj=textadj)
Plot the likelihood: p(data|theta)
plot(Theta , pDataGivenTheta , type="l" , lwd=3 ,
 xlim=c(0,1) , cex.axis=1.2 , xlab=bquote(theta) ,
 ylim=c(0,1.1*max(pDataGivenTheta)) ,
 ylab=bquote("p(D|" * theta * ")") ,
 cex.lab=1.5 , main="Likelihood" , cex.main=1.5)
if (z > .5*N) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text(textx , 1.0*max(pDataGivenTheta) , cex=2.0 ,
 bquote("Data: z=" * .(z) * ",N=" * .(N)) ,adj=textadj)
Plot the posterior.
plot(Theta , pThetaGivenData ,type="l" , lwd=3 ,
 xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,
 xlab=bquote(theta) , ylab=bquote("p(" * theta * "|D)") ,
 cex.lab=1.5 , main="Posterior" , cex.main=1.5)
if (a+z > b+N-z) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text(textx , 1.00*max(pThetaGivenData) , cex=2.0 ,
 bquote("beta(" * theta * "|" * .(a+z) * "," * .(b+N-z) * ")") ,
 adj=textadj)
text(textx , 0.75*max(pThetaGivenData) , cex=2.0 ,
 bquote("p(D)=" * .(signif(pData,3))) , adj=textadj)
Mark the HDI in the posterior.
hpdHt = mean(c(dbeta(hpdLim[1],a+z,b+N-z) , dbeta(hpdLim[2],a+z,b+N-z)))
lines(c(hpdLim[1],hpdLim[1]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5)
lines(c(hpdLim[2],hpdLim[2]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5)
lines(hpdLim , c(hpdHt,hpdHt) , type="l" , lwd=2)
text(mean(hpdLim) , hpdHt , bquote(.(100*credMass) * "% HDI") ,
 adj=c(0.5,-1.0) , cex=2.0)
text(hpdLim[1] , hpdHt , bquote(.(round(hpdLim[1],3))) ,
 adj=c(1.1,-0.1) , cex=1.2)
text(hpdLim[2] , hpdHt , bquote(.(round(hpdLim[2],3))) ,
 adj=c(-0.1,-0.1) , cex=1.2)
Construct file name for saved graph, and save the graph.
if (saveGraph) {
 filename = paste("BernBeta_",a,"_",b,"_",z,"_",N,".eps" ,sep="")
 dev.copy2eps(file = filename)
}
return(postShape)
} # end of function

BernBetaBugsFull.R

library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

Specify the model in BUGS language, but save it as a string in R:
modelString = "
BUGS model specification begins ...
model {
 # Likelihood:
 for (i in 1:nFlips) {
 y[i] ~ dbern(theta)
 }
 # Prior distribution:
 theta ~ dbeta(priorA , priorB)
 priorA <- 1
 priorB <- 1
}
... BUGS model specification ends.
" # close quote to end modelString

Write the modelString to a file, using R commands:
writeLines(modelString,con="model.txt")
Use BRugs to send the model.txt file to BUGS, which checks the model syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in R, using a list format compatible with BUGS:
dataList = list(
 nFlips = 14 ,
 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)
)

Use BRugs commands to put the data into a file and ship the file to BUGS:
modelData(bugsData(dataList))

#--
INTIALIZE THE CHAIN.

modelCompile() # BRugs command tells BUGS to compile the model.
modelGenInits() # BRugs command tells BUGS to randomly initialize a chain.

#--
RUN THE CHAINS.

BRugs tells BUGS to keep a record of the sampled "theta" values:
samplesSet("theta")
R command defines a new variable that specifies an arbitrary chain length:
chainLength = 10000
BRugs tells BUGS to generate a MCMC chain:
modelUpdate(chainLength)

#--
EXAMINE THE RESULTS.

thetaSample = samplesSample("theta") # BRugs asks BUGS for the sample values.
thetaSummary = samplesStats("theta") # BRugs asks BUGS for summary statistics.

Make a graph using R commands:
windows(10,6)
layout(matrix(c(1,2) , nrow=1))
plot(thetaSample[1:500] , 1:length(thetaSample[1:500]) , type="o" ,
 xlim=c(0,1) , xlab=bquote(theta) , ylab="Position in Chain" ,
 cex.lab=1.25 , main="BUGS Results")
source("plotPost.R")
histInfo = plotPost(thetaSample , xlim=c(0,1))
dev.copy2eps(file="BernBetaBugsFull.eps")

Posterior prediction:
For each step in the chain, use posterior theta to flip a coin:
chainLength = length(thetaSample)
yPred = rep(NULL , chainLength) # define placeholder for flip results
for (stepIdx in 1:chainLength) {
 pHead = thetaSample[stepIdx]
 yPred[stepIdx] = sample(x=c(0,1), prob=c(1-pHead,pHead), size=1)
}
Jitter the 0,1 y values for plotting purposes:
yPredJittered = yPred + runif(length(yPred) , -.05 , +.05)
Now plot the jittered values:
windows(5,5.5)
plot(thetaSample[1:500] , yPredJittered[1:500] , xlim=c(0,1) ,
 main="posterior predictive sample" ,
 xlab=expression(theta) , ylab="y (jittered)")
points(mean(thetaSample) , mean(yPred) , pch="+" , cex=2)
text(mean(thetaSample) , mean(yPred) ,
 bquote(mean(y) == .(signif(mean(yPred),2))) ,
 adj=c(1.2,.5))
text(mean(thetaSample) , mean(yPred) , srt=90 ,
 bquote(mean(theta) == .(signif(mean(thetaSample),2))) ,
 adj=c(1.2,.5))
abline(0 , 1 , lty="dashed" , lwd=2)
dev.copy2eps(file="BernBetaBugsPost.eps")

BernBetaModelCompBrugs.R

library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 # Likelihood:
 for (i in 1:nflips) {
 y[i] ~ dbern(theta) # y[i] distributed as Bernoulli
 }
 # Prior distribution:
 theta ~ dbeta(aTheta , bTheta) # theta distributed as beta density
 aTheta <- muTheta * kappaTheta
 bTheta <- (1-muTheta) * kappaTheta
 # Hyperprior:
 muTheta <- muThetaModel[modelIndex]
 muThetaModel[1] <- .75
 muThetaModel[2] <- .25
 kappaTheta <- 12
 # Hyperhyperprior:
 modelIndex ~ dcat(modelProb[])
 modelProb[1] <- .5
 modelProb[2] <- .5
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in a form that is compatible with BRugs model, as a list:
y = c(rep(0,3) , rep(1,6))
nflips = length(y)
datalist = list(
 nflips = nflips ,
 y = y
)

Get the data into BRugs:
Function bugsData stores the data file (default filename is data.txt).
Function modelData loads data file into BRugs (default filename is data.txt).
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAINS.

modelCompile(numChains=1)
modelGenInits()

#--
RUN THE CHAINS.

burninSteps = 10000
modelUpdate(burninSteps)
samplesSet(c("theta","modelIndex"))
nPerChain = 100000
modelUpdate(nPerChain , thin=1) # takes nPerChain * thin steps

#--
EXAMINE THE RESULTS.

Get the posterior sample of modelIndex:
modelIdxSample = samplesSample("modelIndex")
Compute the proportion of modelIndex at each value:
pM1 = sum(modelIdxSample == 1) / length(modelIdxSample)
pM2 = 1 - pM1

Get the posterior sample of theta:
thetaSample = samplesSample("theta")
Extract theta values when modelIndex is 1:
thetaSampleM1 = thetaSample[modelIdxSample == 1]
Extract theta values when modelIndex is 2:
thetaSampleM2 = thetaSample[modelIdxSample == 2]

Plot histograms of sampled theta values for each model,
with pM displayed.
windows()
layout(matrix(1:2,nrow=2))
hist(thetaSampleM1 , main="Posterior Theta_1 when Model Index = 1" ,
 xlab=expression(theta) , xlim=c(0,1) ,
 col="grey" , border="white")
text(0 , 0 , bquote("p(M1|D)" == .(signif(pM1,3))) , adj=c(0,-2) , cex=1.5)
hist(thetaSampleM2 , main="Posterior Theta_2 when Model Index = 2" ,
 xlab=expression(theta) , xlim=c(0,1) ,
 col="grey" , border="white")
text(0 , 0 , bquote("p(M2|D)" == .(signif(pM2,3))) , adj=c(0,-2) , cex=1.5)

dev.copy2eps(file="BernBetaModelCompBrugs.eps")

BernBetaMuKappaBugs.R

#graphics.off()
rm(list=ls(all=TRUE))
library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

Specify the model in BUGS language, but save it as a string in R:
modelString = "
BUGS model specification begins ...
model {
 # Likelihood:
 for (t in 1:nTrialTotal) {
 y[t] ~ dbern(theta[coin[t]])
 }
 # Prior:
 for (j in 1:nCoins) {
 theta[j] ~ dbeta(a , b)I(0.0001,0.9999)
 }
 a <- mu * kappa
 b <- (1.0 - mu) * kappa
 mu ~ dbeta(Amu , Bmu)
 kappa ~ dgamma(Skappa , Rkappa)
 Amu <- 2.0
 Bmu <- 2.0
 Skappa <- pow(10,2)/pow(10,2)
 Rkappa <- 10/pow(10,2)
}
... BUGS model specification ends.
" # close quote to end modelString

Write the modelString to a file, using R commands:
.temp = file("model.txt","w") ; writeLines(modelString,con=.temp) ; close(.temp)
Use BRugs to send the model.txt file to BUGS, which checks the model syntax:
modelCheck("model.txt")

#--
THE DATA.

Demo data for various figures in the book:
N = c(5, 5, 5, 5, 5) # c(10, 10, 10) # c(15, 5) # c(5, 5, 5, 5, 5)
z = c(1, 1, 1, 1, 5) # c(1, 5, 9) # c(3, 4) # c(1, 1, 1, 1, 5)

ncoins = 5 ; nflipspercoin = 50
muAct = .7 ; kappaAct = 20
thetaAct = rbeta(ncoins ,muAct*kappaAct ,(1-muAct)*kappaAct)
z = rbinom(n=ncoins ,size=nflipspercoin ,prob=thetaAct)
N = rep(nflipspercoin , ncoins)

Therapeutic touch data:
z = c(1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,7,7,7,8)
N = rep(10,length(z))
Convert z,N to vectors of individual flips.
coin vector is index of coin for each flip.
y vector is head or tail for each flip.
For example,
coin = c(1, 1, 2, 2, 2)
y = c(1, 0, 0, 0, 1)
means that the first flip was of coin 1 and it was a head, the second flip
was of coin 1 and it was a tail, the third flip was of coin 2 and it was a
tail, etc.
coin = NULL ; y = NULL
for (coinIdx in 1:length(N)) {
 coin = c(coin , rep(coinIdx,N[coinIdx]))
 y = c(y , rep(1,z[coinIdx]) , rep(0,N[coinIdx]-z[coinIdx]))
}
nTrialTotal = length(y)
nCoins = length(unique(coin))
dataList = list(
 y = y ,
 coin = coin ,
 nTrialTotal = nTrialTotal ,
 nCoins = nCoins
)

Use BRugs commands to put the data into a file and ship the file to BUGS:
modelData(bugsData(dataList))

#--
INTIALIZE THE CHAIN.

nChains = 3
modelCompile(numChains = nChains) # BRugs tells BUGS to compile the model.
modelGenInits() # BRugs tells BUGS to randomly initialize the chains.

#--
RUN THE CHAINS.

Run some initial steps without recording them, to burn-in the chains:
burninSteps = 1000
modelUpdate(burninSteps)
BRugs tells BUGS to keep a record of the sampled values:
samplesSet(c("mu" , "kappa" , "theta"))
nPerChain = 1000
modelUpdate(nPerChain , thin=10)

#--
EXAMINE THE RESULTS.

Check for mixing and autocorrelation:
source("plotChains.R")
plotChains("mu" , saveplots=F)
plotChains("kappa" , saveplots=F)
plotChains("theta[1]" , saveplots=F)

Extract the posterior sample from BUGS:
muSample = samplesSample("mu") # BRugs gets sample from BUGS
kappaSample = samplesSample("kappa") # BRugs gets sample from BUGS
thetaSample = matrix(0 , nrow=nCoins , ncol=nChains*nPerChain)
for (coinIdx in 1:nCoins) {
 nodeName = paste("theta[" , coinIdx , "]" , sep="")
 thetaSample[coinIdx,] = samplesSample(nodeName)
}

Make a graph using R commands:
source("plotPost.R")
if (nCoins <= 5) { # Only make this figure if there are not too many coins
windows(3.2*3,2.5*(1+nCoins))
layout(matrix(1:(3*(nCoins+1)) , nrow=(nCoins+1) , byrow=T))
par(mar=c(2.95,2.95,1.0,0),mgp=c(1.35,0.35,0),oma=c(0.1, 0.1, 0.1, 0.1))
nPtsToPlot = 500
plotIdx = floor(seq(1,length(muSample),length=nPtsToPlot))
kPltLim = signif(quantile(kappaSample , p=c(.01,.99)) , 4)
plot(muSample[plotIdx] , kappaSample[plotIdx] , type="p" , ylim=kPltLim ,
 xlim=c(0,1) , xlab=expression(mu) , ylab=expression(kappa) , cex.lab=1.5)
plotPost(muSample , xlab="mu" , xlim=c(0,1) , main="" , breaks=20)
plotPost(kappaSample , xlab="kappa" , main="" , breaks=20 , HDItextPlace=.6)
for (coinIdx in 1:nCoins) {
 plotPost(thetaSample[coinIdx,] , xlab=paste("theta",coinIdx,sep="") ,
 xlim=c(0,1) , main="" , breaks=20 , HDItextPlace=.3)
 plot(thetaSample[coinIdx,plotIdx] , muSample[plotIdx] , type="p" ,
 xlim=c(0,1) , ylim=c(0,1) , cex.lab=1.5 ,
 xlab=bquote(theta[.(coinIdx)]) , ylab=expression(mu))
 plot(thetaSample[coinIdx,plotIdx] , kappaSample[plotIdx] , type="p" ,
 xlim=c(0,1) , ylim=kPltLim , cex.lab=1.5 ,
 xlab=bquote(theta[.(coinIdx)]) , ylab=expression(kappa))
}
#dev.copy2eps(file=paste("BernBetaMuKappaBugs",paste(z,collapse=""),".eps",sep=""))
} # end if (nCoins <= ...

Uncomment the following if using therapeutic touch data:
windows(7,5)
layout(matrix(1:4 , nrow=2 , byrow=T))
par(mar=c(2.95,2.95,1.0,0),mgp=c(1.35,0.35,0),oma=c(0.1, 0.1, 0.1, 0.1))
plotPost(muSample , xlab="mu" , main="" , breaks=20 , compVal=0.5)
plotPost(kappaSample , xlab="kappa" , main="" , breaks=20 , HDItextPlace=.1)
plotPost(thetaSample[1,] , xlab="theta1" , main="" , breaks=20 , compVal=0.5)
#plotPost(thetaSample[28,] , xlab="theta28" , main="" , breaks=20 , compVal=0.5)
#dev.copy2eps(file="BernBetaMuKappaBugsTT.eps")

BernGrid.R

BernGrid = function(Theta , pTheta , Data ,
 credib=.95 , nToPlot=length(Theta)) {
Bayesian updating for Bernoulli likelihood and prior specified on a grid.
Input arguments:
Theta is a vector of theta values, all between 0 and 1.
pTheta is a vector of corresponding probability _masses_.
Data is a vector of 1's and 0's, where 1 corresponds to a and 0 to b.
credib is the probability mass of the credible interval, default is 0.95.
nToPlot is the number of grid points to plot; defaults to all of them.
Output:
pThetaGivenData is a vector of posterior probability masses over Theta.
Also creates a three-panel graph of prior, likelihood, and posterior
probability masses with credible interval.
Example of use:
Create vector of theta values.
> binwidth = 1/1000
> thetagrid = seq(from=binwidth/2 , to=1-binwidth/2 , by=binwidth)
Specify probability mass at each theta value.
> relprob = pmin(thetagrid,1-thetagrid) # relative prob at each theta
> prior = relprob / sum(relprob) # probability mass at each theta
Specify the data vector.
> datavec = c(rep(1,3) , rep(0,1)) # 3 heads, 1 tail
Call the function.
> posterior = BernGrid(Theta=thetagrid , pTheta=prior , Data=datavec)
Hints:
You will need to "source" this function before calling it.
You may want to define a tall narrow window before using it; e.g.,
> windows(7,10)

Create summary values of Data
z = sum(Data==1) # number of 1's in Data
N = length(Data) # number of flips in Data
Compute the likelihood of the Data for each value of Theta.
pDataGivenTheta = Theta^z * (1-Theta)^(N-z)
Compute the evidence and the posterior.
pData = sum(pDataGivenTheta * pTheta)
pThetaGivenData = pDataGivenTheta * pTheta / pData

Plot the results.
layout(matrix(c(1,2,3) ,nrow=3 ,ncol=1 ,byrow=FALSE)) # 3x1 panels
par(mar=c(3,3,1,0) , mgp=c(2,1,0) , mai=c(0.5,0.5,0.3,0.1)) # margin settings
dotsize = 4 # how big to make the plotted dots
If the comb has a zillion teeth, it's too many to plot, so plot only a
thinned out subset of the teeth.
nteeth = length(Theta)
if (nteeth > nToPlot) {
 thinIdx = seq(1, nteeth , round(nteeth / nToPlot))
 if (length(thinIdx) < length(Theta)) {
 thinIdx = c(thinIdx , nteeth) # makes sure last tooth is included
 }
} else { thinIdx = 1:nteeth }
Plot the prior.
meanTheta = sum(Theta * pTheta) # mean of prior, for plotting
plot(Theta[thinIdx] , pTheta[thinIdx] , type="p" , pch="." , cex=dotsize ,
 xlim=c(0,1) , ylim=c(0,1.1*max(pThetaGivenData)) , cex.axis=1.2 ,
 xlab=bquote(theta) , ylab=bquote(p(theta)) , cex.lab=1.5 ,
 main="Prior" , cex.main=1.5)
if (meanTheta > .5) {
 textx = 0 ; textadj = c(0,1)
} else {
 textx = 1 ; textadj = c(1,1)
}
text(textx , 1.0*max(pThetaGivenData) ,
 bquote("mean(" * theta * ")=" * .(signif(meanTheta,3))) ,
 cex=2.0 , adj=textadj)
Plot the likelihood: p(Data|Theta)
plot(Theta[thinIdx] ,pDataGivenTheta[thinIdx] ,type="p" ,pch="." ,cex=dotsize
	,xlim=c(0,1) ,cex.axis=1.2 ,xlab=bquote(theta)
	,ylim=c(0,1.1*max(pDataGivenTheta))
	,ylab=bquote("p(D|" * theta * ")")
	,cex.lab=1.5 ,main="Likelihood" ,cex.main=1.5)
if (z > .5*N) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text(textx ,1.0*max(pDataGivenTheta) ,cex=2.0
	,bquote("Data: z=" * .(z) * ",N=" * .(N)) ,adj=textadj)
Plot the posterior.
meanThetaGivenData = sum(Theta * pThetaGivenData)
plot(Theta[thinIdx] ,pThetaGivenData[thinIdx] ,type="p" ,pch="." ,cex=dotsize
	,xlim=c(0,1) ,ylim=c(0,1.1*max(pThetaGivenData)) ,cex.axis=1.2
	,xlab=bquote(theta) ,ylab=bquote("p(" * theta * "|D)")
	,cex.lab=1.5 ,main="Posterior" ,cex.main=1.5)
if (meanThetaGivenData > .5) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text(textx ,1.00*max(pThetaGivenData) ,cex=2.0
	,bquote("mean(" * theta * "|D)=" * .(signif(meanThetaGivenData,3)))
	,adj=textadj)
text(textx ,0.75*max(pThetaGivenData) ,cex=2.0
	,bquote("p(D)=" * .(signif(pData,3))) ,adj=textadj)
Mark the highest density interval. HDI points are not thinned in the plot.
source("HDIofGrid.R")
HDIinfo = HDIofGrid(pThetaGivenData)
points(Theta[HDIinfo$indices] ,
 rep(HDIinfo$height , length(HDIinfo$indices)) , pch="-" , cex=1.0)
text(mean(Theta[HDIinfo$indices]) , HDIinfo$height ,
 bquote(.(100*signif(HDIinfo$mass,3)) * "% HDI") ,
 adj=c(0.5,-1.5) , cex=1.5)
Mark the left and right ends of the waterline. This does not mark
internal divisions of an HDI waterline for multi-modal distributions.
lowLim = Theta[min(HDIinfo$indices)]
highLim = Theta[max(HDIinfo$indices)]
lines(c(lowLim,lowLim) , c(-0.5,HDIinfo$height) , type="l" , lty=2 , lwd=1.5)
lines(c(highLim,highLim) , c(-0.5,HDIinfo$height) , type="l" , lty=2 , lwd=1.5)
text(lowLim , HDIinfo$height , bquote(.(round(lowLim,3))) ,
 adj=c(1.1,-0.1) , cex=1.2)
text(highLim , HDIinfo$height , bquote(.(round(highLim,3))) ,
 adj=c(-0.1,-0.1) , cex=1.2)

return(pThetaGivenData)
} # end of function

BernMetropolisTemplate.R

Use this program as a template for experimenting with the Metropolis
algorithm applied to a single parameter called theta, defined on the
interval [0,1].

Specify the data, to be used in the likelihood function.
This is a vector with one component per flip,
in which 1 means a "head" and 0 means a "tail".
myData = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)

Define the Bernoulli likelihood function, p(D|theta).
The argument theta could be a vector, not just a scalar.
likelihood = function(theta , data) {
 z = sum(data == 1)
 N = length(data)
 pDataGivenTheta = theta^z * (1-theta)^(N-z)
 # The theta values passed into this function are generated at random,
 # and therefore might be inadvertently greater than 1 or less than 0.
 # The likelihood for theta > 1 or for theta < 0 is zero:
 pDataGivenTheta[theta > 1 | theta < 0] = 0
 return(pDataGivenTheta)
}

Define the prior density function. For purposes of computing p(D),
at the end of this program, we want this prior to be a proper density.
The argument theta could be a vector, not just a scalar.
prior = function(theta) {
 prior = rep(1 , length(theta)) # uniform density over [0,1]
 # For kicks, here's a bimodal prior. To try it, uncomment the next line.
 #prior = dbeta(pmin(2*theta,2*(1-theta)) ,2,2)
 # The theta values passed into this function are generated at random,
 # and therefore might be inadvertently greater than 1 or less than 0.
 # The prior for theta > 1 or for theta < 0 is zero:
 prior[theta > 1 | theta < 0] = 0
 return(prior)
}

Define the relative probability of the target distribution,
as a function of vector theta. For our application, this
target distribution is the unnormalized posterior distribution.
targetRelProb = function(theta , data) {
 targetRelProb = likelihood(theta , data) * prior(theta)
 return(targetRelProb)
}

Specify the length of the trajectory, i.e., the number of jumps to try:
trajLength = 11112 # arbitrary large number
Initialize the vector that will store the results:
trajectory = rep(0 , trajLength)
Specify where to start the trajectory:
trajectory[1] = 0.50 # arbitrary value
Specify the burn-in period:
burnIn = ceiling(.1 * trajLength) # arbitrary number, less than trajLength
Initialize accepted, rejected counters, just to monitor performance:
nAccepted = 0
nRejected = 0
Specify seed to reproduce same random walk:
set.seed(47405)

Now generate the random walk. The 't' index is time or trial in the walk.
for (t in 1:(trajLength-1)) {
	currentPosition = trajectory[t]
	# Use the proposal distribution to generate a proposed jump.
	# The shape and variance of the proposal distribution can be changed
	# to whatever you think is appropriate for the target distribution.
	proposedJump = rnorm(1 , mean = 0 , sd = 0.1)
	# Compute the probability of accepting the proposed jump.
	probAccept = min(1,
		targetRelProb(currentPosition + proposedJump , myData)
		/ targetRelProb(currentPosition , myData))
	# Generate a random uniform value from the interval [0,1] to
	# decide whether or not to accept the proposed jump.
	if (runif(1) < probAccept) {
		# accept the proposed jump
		trajectory[t+1] = currentPosition + proposedJump
		# increment the accepted counter, just to monitor performance
		if (t > burnIn) { nAccepted = nAccepted + 1 }
	} else {
		# reject the proposed jump, stay at current position
		trajectory[t+1] = currentPosition
		# increment the rejected counter, just to monitor performance
		if (t > burnIn) { nRejected = nRejected + 1 }
	}
}

Extract the post-burnIn portion of the trajectory.
acceptedTraj = trajectory[(burnIn+1) : length(trajectory)]

End of Metropolis algorithm.

#---
Display the posterior.

source("plotPost.R")
histInfo = plotPost(acceptedTraj , xlim=c(0,1) , breaks=30)

Display rejected/accepted ratio in the plot.
Get the highest point and mean of the plot for subsequent text positioning.
densMax = max(histInfo$density)
meanTraj = mean(acceptedTraj)
sdTraj = sd(acceptedTraj)
if (meanTraj > .5) {
 xpos = 0.0 ; xadj = 0.0
} else {
 xpos = 1.0 ; xadj = 1.0
}
text(xpos , 0.75*densMax ,
	bquote(N[pro] * "=" * .(length(acceptedTraj)) * " " *
	frac(N[acc],N[pro]) * "=" * .(signif(nAccepted/length(acceptedTraj) , 3))
) , adj=c(xadj,0))

#--
Evidence for model, p(D).

Compute a,b parameters for beta distribution that has the same mean
and stdev as the sample from the posterior. This is a useful choice
when the likelihood function is Bernoulli.
a = meanTraj * ((meanTraj*(1-meanTraj)/sdTraj^2) - 1)
b = (1-meanTraj) * ((meanTraj*(1-meanTraj)/sdTraj^2) - 1)

For every theta value in the posterior sample, compute
dbeta(theta,a,b) / likelihood(theta)*prior(theta)
This computation assumes that likelihood and prior are proper densities,
i.e., not just relative probabilities. This computation also assumes that
the likelihood and prior functions were defined to accept a vector argument,
not just a single-component scalar argument.
wtdEvid = dbeta(acceptedTraj , a , b) / (
		likelihood(acceptedTraj , myData) * prior(acceptedTraj))
pData = 1 / mean(wtdEvid)

Display p(D) in the graph
if (meanTraj > .5) { xpos = 0.0 ; xadj = 0.0
} else { xpos = 1.0 ; xadj = 1.0 }
text(xpos , 0.9*densMax , bquote(p(D)==.(signif(pData,3))) ,
 adj=c(xadj,0) , cex=1.5)

Uncomment next line if you want to save the graph.
#dev.copy2eps(file="BernMetropolisTemplate.eps")

BernTwoBugs.R

library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 # Likelihood. Each flip is Bernoulli.
 for (i in 1 : N1) { y1[i] ~ dbern(theta1) }
 for (i in 1 : N2) { y2[i] ~ dbern(theta2) }
 # Prior. Independent beta distributions.
 theta1 ~ dbeta(3 , 3)
 theta2 ~ dbeta(3 , 3)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 N1 = 7 ,
 y1 = c(1,1,1,1,1,0,0) ,
 N2 = 7 ,
 y2 = c(1,1,0,0,0,0,0)
)
Get the data into BRugs:
modelData(bugsData(datalist))

#--
INTIALIZE THE CHAIN.

modelCompile()
modelGenInits()

#--
RUN THE CHAINS.

samplesSet(c("theta1" , "theta2")) # Keep a record of sampled "theta" values
chainlength = 10000 # Arbitrary length of chain to generate.
modelUpdate(chainlength) # Actually generate the chain.

#--
EXAMINE THE RESULTS.

theta1Sample = samplesSample("theta1") # Put sampled values in a vector.
theta2Sample = samplesSample("theta2") # Put sampled values in a vector.

Plot the trajectory of the last 500 sampled values.
windows()
par(pty="s")
plot(theta1Sample[(chainlength-500):chainlength] ,
 theta2Sample[(chainlength-500):chainlength] , type = "o" ,
 xlim = c(0,1) , xlab = bquote(theta[1]) , ylim = c(0,1) ,
 ylab = bquote(theta[2]) , main="BUGS Result")
Display means in plot.
theta1mean = mean(theta1Sample)
theta2mean = mean(theta2Sample)
if (theta1mean > .5) { xpos = 0.0 ; xadj = 0.0
} else { xpos = 1.0 ; xadj = 1.0 }
if (theta2mean > .5) { ypos = 0.0 ; yadj = 0.0
} else { ypos = 1.0 ; yadj = 1.0 }
text(xpos , ypos ,
	bquote(
	"M=" * .(signif(theta1mean,3)) * "," * .(signif(theta2mean,3))
) ,adj=c(xadj,yadj) ,cex=1.5)
#dev.copy2eps(file="BernTwoBugs.eps")

Plot a histogram of the posterior differences of theta values.
thetaDiff = theta1Sample - theta2Sample
source("plotPost.R")
windows(7,4)
plotPost(thetaDiff , xlab=expression(theta[1]-theta[2]) , compVal=0.0 ,
 breaks=30)
#dev.copy2eps(file="BernTwoBugsDiff.eps")

For Exercise 8.5:
Posterior prediction. For each step in the chain, use the posterior thetas
to flip the coins.
chainLength = length(theta1Sample)
Create matrix to hold results of simulated flips:
yPred = matrix(NA , nrow=2 , ncol=chainLength)
for (stepIdx in 1:chainLength) { # step through the chain
 # flip the first coin:
 pHead1 = theta1Sample[stepIdx]
 yPred[1,stepIdx] = sample(x=c(0,1), prob=c(1-pHead1,pHead1), size=1)
 # flip the second coin:
 pHead2 = theta2Sample[stepIdx]
 yPred[2,stepIdx] = sample(x=c(0,1), prob=c(1-pHead2,pHead2), size=1)
}
Now determine the proportion of times that y1==1 and y2==0
pY1eq1andY2eq0 = sum(yPred[1,]==1 & yPred[2,]==0) / chainLength

BernTwoBugsPriorOnly.R

library(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
 # A Tutorial with R and BUGS. Academic Press / Elsevier.
#--
THE MODEL.

modelstring = "
BUGS model specification begins here...
model {
 # Likelihood. Each flip is Bernoulli.
 for (i in 1 : N1) { y1[i] ~ dbern(theta1) }
 for (i in 1 : N2) { y2[i] ~ dbern(theta2) }
 # Prior. Independent beta distributions.
 theta1 ~ dbeta(3 , 3)
 theta2 ~ dbeta(3 , 3)
}
... end BUGS model specification
" # close quote for modelstring
Write model to a file:
.temp = file("model.txt","w") ; writeLines(modelstring,con=.temp) ; close(.temp)
Load model file into BRugs and check its syntax:
modelCheck("model.txt")

#--
THE DATA.

Specify the data in a form that is compatible with BRugs model, as a list:
datalist = list(
 N1 = 7 ,
y1 = c(1,1,1,1,1,0,0) ,
 N2 = 7 #,
y2 = c(1,1,0,0,0,0,0)
)
Get the data into BRugs:
modelData(bugsData(datalist)) # commented out

#--
INTIALIZE THE CHAIN.

modelCompile()
modelGenInits()

#--
RUN THE CHAINS.

samplesSet(c("theta1" , "theta2")) # Keep a record of sampled "theta" values
chainlength = 10000 # Arbitrary length of chain to generate.
modelUpdate(chainlength) # Actually generate the chain.

#--
EXAMINE THE RESULTS.

theta1Sample = samplesSample("theta1") # Put sampled values in a vector.
theta2Sample = samplesSample("theta2") # Put sampled values in a vector.

Plot the trajectory of the last 500 sampled values.
windows()
par(pty="s")
plot(theta1Sample[(chainlength-500):chainlength] ,
 theta2Sample[(chainlength-500):chainlength] , type = "o" ,
 xlim = c(0,1) , xlab = bquote(theta[1]) , ylim = c(0,1) ,
 ylab = bquote(theta[2]) , main="BUGS Result")
Display means in plot.
theta1mean = mean(theta1Sample)
theta2mean = mean(theta2Sample)
if (theta1mean > .5) { xpos = 0.0 ; xadj = 0.0
} else { xpos = 1.0 ; xadj = 1.0 }
if (theta2mean > .5) { ypos = 0.0 ; yadj = 0.0
} else { ypos = 1.0 ; yadj = 1.0 }
text(xpos , ypos ,
	bquote(
	"M=" * .(signif(theta1mean,3)) * "," * .(signif(theta2mean,3))
) ,adj=c(xadj,yadj) ,cex=1.5)
dev.copy2eps(file="BernTwoBugsPriorOnly.eps")

Plot a histogram of the posterior differences of theta values.
thetaDiff = theta1Sample - theta2Sample
windows(7,4)
source("plotPost.R")
plotPost(thetaDiff , xlab=expression(theta[1]-theta[2]) ,
 breaks=20 , main="")
dev.copy2eps(file="BernTwoBugsPriorOnlyDiff.eps")

Kruschke1996CSdatsum.Rdata

Kruschke1996CSdatsum.Rdata

