
ptg



ptg

iOS Programming
THE BIG NERD RANCH GUIDE

JOE CONWAY & AARON HILLEGASS



ptg

iOS Programming

ii

iOS Programming: The Big Nerd Ranch Guide
by Joe Conway and Aaron Hillegass

Copyright © 2011 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by 
any means, electronic, mechanical, photocopying, recoring, or likewise. For information regarding permissions, contact

Big Nerd Ranch, Inc. 
154 Krog Street 
Suite 100 
Atlanta, GA 30307 
(404) 478-9005 
http://www.bignerdranch.com/ 
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group 
800 East 96th Street 
Indianapolis, IN 46240 USA 
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied warranty of any 
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in 
connection with or arising out of the use of the information or programs contained herein.

App Store, Apple, Bonjour, Cocoa, Cocoa Touch, Finder, Instruments, Interface Builder, iPad, iPhone, iPod, iPod touch, iTunes, 
iTunes Store, Keychain, Leopard, Mac, Mac OS, Multi-Touch, Objective-C, Quartz, Snow Leopard, and Xcode are trademarks 
of Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those 
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with 
initial capital letters or in all capitals.

ISBN 10  0321773772
ISBN 13  978-0321773777

First printing, July 2011

http://www.bignerdranch.com/
http://www.informit.com


ptg

iii

Acknowledgments
While our names appear on the cover, many people helped make this book a reality. We would like to
take this chance to thank them.

• The other instructors who teach the iOS Bootcamp fed us with a never-ending stream of suggestions
and corrections. They are Scott Ritchie, Brian Hardy, Mikey Ward, Christian Keur, Alex Silverman,
and Alex von Below.

• Our tireless editor, Susan Loper, took our distracted mumblings and made them into readable prose.

• Several technical reviewers helped us find and fix flaws. They are Bill Monk, Mark Miller, and
Jonathan Saggau.

• Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle frame.)

• Chris Loper at IntelligentEnglish.com designed and produced the EPUB and Kindle versions.

• The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

The final and most important thanks goes to our students whose questions inspired us to write this
book and whose frustrations inspired us to make it clear and comprehensible.



ptg

This page intentionally left blank 



ptg

v

Table of Contents
Introduction ..................................................................................................................  xiii

Prerequisites .......................................................................................................... xiii 
What’s Changed in the Second Edition? ....................................................................  xiii 
Our Teaching Philosophy ........................................................................................  xiv 
How To Use This Book ...........................................................................................  xv 
How This Book Is Organized ....................................................................................  xv 
Style Choices .......................................................................................................  xvii 
Typographical Conventions .....................................................................................  xvii 
Necessary Hardware and Software ..........................................................................  xviii

1. A Simple iOS Application ..............................................................................................  1 
Creating an Xcode Project .........................................................................................  2 
Building Interfaces .................................................................................................... 5 
Model-View-Controller ............................................................................................  10 
Declarations ...........................................................................................................  13

Declaring instance variables ..............................................................................  13 
Declaring methods ..........................................................................................  14

Making Connections ................................................................................................  15
Setting pointers ............................................................................................... 15 
Setting targets and actions ................................................................................  17 
Summary of connections ..................................................................................  19

Implementing Methods ............................................................................................  20 
Build and Run on the Simulator ................................................................................  21 
Deploying an Application .........................................................................................  23 
Application Icons ....................................................................................................  24 
Launch Images .......................................................................................................  27

2. Objective-C ................................................................................................................  31 
Objects ..................................................................................................................  31 
Using Instances ......................................................................................................  32

Creating objects ..............................................................................................  32 
Sending messages ...........................................................................................  33 
Destroying objects ..........................................................................................  34

Writing the RandomPossessions Tool .........................................................................  35
NSString .......................................................................................................  38 
NSArray and NSMutableArray ..........................................................................  39

Subclassing an Objective-C Class ..............................................................................  40
Instance variables ............................................................................................  44 
Accessor methods ...........................................................................................  45 
Instance methods ............................................................................................  48 
Initializers ...................................................................................................... 49 
Other initializers and the initializer chain ............................................................  52 
Class methods ................................................................................................  53 
Testing your subclass ......................................................................................  55

Exceptions and the Console Window ..........................................................................  56 
Fast Enumeration ....................................................................................................  57 
Challenge ..............................................................................................................  58



ptg

iOS Programming

vi

3. Memory Management ..................................................................................................  59 
Memory Management Basics ....................................................................................  59

Managing memory in C ...................................................................................  59 
Managing memory with objects .........................................................................  61

Reference Counting .................................................................................................  61
Using retain counts .........................................................................................  61 
Using autorelease ............................................................................................  64 
Accessors and memory management ..................................................................  67 
Implementing dealloc ......................................................................................  69 
Simplifying accessors with properties .................................................................  70 
copy and mutableCopy ....................................................................................  72 
Retain count rules ...........................................................................................  73

For the More Curious: More on Memory Management ..................................................  74
4. Delegation and Core Location .......................................................................................  77 

Projects, targets, and frameworks ...............................................................................  77 
Core Location ........................................................................................................  79

Receiving updates from CLLocationManager .......................................................  81 
Delegation .............................................................................................................  82

Protocols .......................................................................................................  83 
Delegation, controllers, and memory management .................................................  85

Using the Debugger ................................................................................................  86 
Challenge: Heading .................................................................................................  91 
For the More Curious: Build Phases, Compiler Errors, and Linker Errors ...........................  91

Preprocessing .................................................................................................  92 
Compiling ...................................................................................................... 93 
Linking .........................................................................................................  94

5. MapKit and Text Input ................................................................................................. 97 
Object Diagrams .....................................................................................................  97 
MapKit Framework .................................................................................................  99 
Interface Properties .................................................................................................  99 
Being a MapView Delegate ....................................................................................  102

Using the documentation ................................................................................  103 
Your own MKAnnotation ...............................................................................  108 
Tagging locations ..........................................................................................  112 
Putting the pieces together ..............................................................................  113

Challenge: Annotation Extras ..................................................................................  114 
Challenge: Reverse Geocoding ................................................................................  114

6. Subclassing UIView ...................................................................................................  115 
Creating a Custom View ........................................................................................  116

The drawRect: method ...................................................................................  116 
Instantiating a UIView ...................................................................................  118

Drawing Text and Shadows ....................................................................................  120 
Using UIScrollView ..............................................................................................  121 
Zooming ..............................................................................................................  122 
Hiding the Status Bar ............................................................................................. 123 
Challenge: Colors ..................................................................................................  125 
For the More Curious: Retain Cycles ........................................................................  125 
For the More Curious: Redrawing Views ...................................................................  125



ptg

iOS Programming

vii

7. View Controllers .......................................................................................................  127 
View Controllers and XIB Files ...............................................................................  127 
Using View Controllers ..........................................................................................  129

Creating the UITabBarController .....................................................................  130 
Creating view controllers and tab bar items ........................................................  131 
Creating views for the view controllers .............................................................  135

Appearing and Disappearing Views ..........................................................................  142 
The View Controller Lifecycle and Low-Memory Warnings ..........................................  142 
View Controller Subclasses and Templates ................................................................  146 
Challenge: Map Tab ..............................................................................................  147

8. The Accelerometer .....................................................................................................  149 
Setting Up the Accelerometer ..................................................................................  149 
Getting Accelerometer Data ....................................................................................  151 
Orientation and Scale of Acceleration .......................................................................  151 
Using Accelerometer Data ......................................................................................  151 
Smoothing Accelerometer Data ................................................................................  152 
Detecting Shakes ...................................................................................................  153 
Challenge: Changing Colors ....................................................................................  155 
For the More Curious: Filtering and Frequency ........................................................... 155 
For the More Curious: Retina Display .......................................................................  156

9. Notification and Rotation ............................................................................................  159 
Notification Center ................................................................................................  159 
UIDevice Notifications ...........................................................................................  160 
Autorotation .........................................................................................................  161

Setting autoresizing masks programmatically and bitwise operations .......................  167 
Forcing Landscape Mode ........................................................................................  169 
Challenge: Proximity Notifications ...........................................................................  170 
For the More Curious: Overriding Autorotation ..........................................................  170

10. UITableView and UITableViewController ....................................................................  171 
Beginning the Homepwner Application .....................................................................  171 
UITableViewController ..........................................................................................  172

Subclassing UITableViewController .................................................................  173 
UITableView’s Data Source ....................................................................................  176

PossessionStore: a singleton ............................................................................  177 
Implementing data source methods ...................................................................  180

UITableViewCells .................................................................................................  182
Creating and retrieving UITableViewCells .........................................................  183 
Reusing UITableViewCells .............................................................................  185

Code Snippet Library .............................................................................................  186 
Challenge: Sections ...............................................................................................  189

11. Editing UITableView ................................................................................................  191 
Editing Mode .......................................................................................................  191 
Adding Rows .......................................................................................................  197 
Deleting Rows ......................................................................................................  198 
Moving Rows .......................................................................................................  199

12. UINavigationController .............................................................................................  203 
UINavigationController ..........................................................................................  204

UINavigationBar ...........................................................................................  207



ptg

iOS Programming

viii

An Additional UIViewController .............................................................................  211 
Navigating with UINavigationController .................................................................... 217

Pushing view controllers ................................................................................. 217 
Passing data between view controllers ...............................................................  219 
Appearing and disappearing views ...................................................................  221

Challenge: Number Pad ..........................................................................................  221
13. Camera ..................................................................................................................  223 

Displaying Images and UIImageView .......................................................................  223
Taking pictures and UIImagePickerController .....................................................  226 
ImageStore ...................................................................................................  231 
Creating and using keys .................................................................................  234 
Dismissing the keyboard ................................................................................. 237

Challenge: Removing an Image ...............................................................................  238 
For the More Curious: Recording Video ....................................................................  238

14. UIPopoverController and Modal View Controllers .........................................................  241 
Universalizing Homepwner .....................................................................................  242 
UIPopoverController ..............................................................................................  244 
Modal View Controllers .........................................................................................  246

Dismissing modal view controllers ...................................................................  249 
Modal view controller styles ...........................................................................  250 
Writing a view controller delegate protocol ........................................................  252 
Modal view controller transitions .....................................................................  254

15. Saving, Loading, and Multitasking ..............................................................................  257 
Application Sandbox ..............................................................................................  257

Constructing a file path ..................................................................................  258 
Archiving .............................................................................................................  260

Archiving objects ..........................................................................................  260 
Unarchiving objects .......................................................................................  262

Application States, Transitions, and Multitasking ........................................................  265 
Writing to filesystem with NSData ...........................................................................  269 
More on Low-Memory Warnings .............................................................................  271 
Model-View-Controller-Store Design Pattern .............................................................. 272 
Challenge: Archiving Whereami ..............................................................................  272 
For The More Curious: Application State Transitions ...................................................  272 
For the More Curious: Reading and Writing to the filesystem ........................................  273 
For the More Curious: The Application Bundle ..........................................................  276

16. Subclassing UITableViewCell ....................................................................................  279 
Creating HomepwnerItemCell ..................................................................................  280

Creating subviews .........................................................................................  281 
Laying out subviews ......................................................................................  282 
Using the custom cell ....................................................................................  283

Image Manipulation ...............................................................................................  284 
Challenge: Accessory Indicators ............................................................................... 289 
Challenge: Shrinking the Main Image .......................................................................  289

17. Core Data ...............................................................................................................  291 
Object-Relational Mapping .....................................................................................  291 
Moving Homepwner to Core Data ............................................................................  291

The model file ..............................................................................................  292



ptg

iOS Programming

ix

NSManagedObject and subclasses ....................................................................  297 
Updating PossessionStore ...............................................................................  301 
Adding AssetTypes to Homepwner ................................................................... 307

More About SQL ..................................................................................................  311 
Trade-offs of Persistence Mechanisms ....................................................................... 314 
Challenge: New Asset Types ...................................................................................  315 
Challenge: Assets on the iPad .................................................................................  315

18. Localization ............................................................................................................  317 
Internationalization using NSLocale .......................................................................... 318 
Localizing Resources .............................................................................................  319 
NSLocalizedString and Strings Tables ....................................................................... 322 
Challenge: Another Localization ..............................................................................  325 
For the More Curious: NSBundle’s Role in Internationalization .....................................  325

19. Settings ..................................................................................................................  327 
Updating Whereami ...............................................................................................  327 
NSUserDefaults ....................................................................................................  329 
For the More Curious: The Settings Application .........................................................  331

20. Touch Events and UIResponder ..................................................................................  333 
Touch Events .......................................................................................................  334 
Creating the TouchTracker Application .....................................................................  335 
Turning Touches into Lines ....................................................................................  337 
The Responder Chain ............................................................................................. 340 
Challenge: Saving and Loading ...............................................................................  341 
Challenge: Circles .................................................................................................  341 
For the More Curious: UIControl .............................................................................  341

21. Instruments .............................................................................................................  343 
The Static Analyzer ...............................................................................................  343 
Instruments ..........................................................................................................  345

The Allocations Instrument .............................................................................  345 
Time Profiler Instrument ................................................................................  353

Xcode Schemes ....................................................................................................  355
Creating a new scheme ..................................................................................  357 

Build Settings .......................................................................................................  359
22. Core Animation Layer ..............................................................................................  363 

Layers and views ..................................................................................................  363 
Creating a CALayer ............................................................................................... 364 
Layer Content .......................................................................................................  367 
Implicitly Animatable Properties ..............................................................................  369 
For the More Curious: Programmatically Generating Content ........................................  371 
For the More Curious: Layers, Bitmaps, and Contexts ..................................................  372 
Challenge: Dynamic Layer Content ..........................................................................  374

23. Controlling Animation with CAAnimation ....................................................................  375 
Animation Objects .................................................................................................  375 
Spinning with CABasicAnimation ............................................................................  378

Timing functions ...........................................................................................  381 
Animation completion ....................................................................................  382

Bouncing with a CAKeyframeAnimation ...................................................................  383
Challenge: More Animation ....................................................................................  384



ptg

iOS Programming

x

For the More Curious: The Presentation Layer and the Model Layer ...............................  384
24. Blocks and Categories ..............................................................................................  387 

Colorizing TouchDrawView ....................................................................................  387 
Blocks .................................................................................................................  389

Blocks as variables ........................................................................................  389 
Capturing variables ........................................................................................  393 
Using blocks with other built-in methods ...........................................................  396 
Keeping code compact with blocks ...................................................................  396

Categories ............................................................................................................  397 
For the More Curious: Memory Management and Blocks .............................................  400 
For the More Curious: Pros and Cons of Callback Options ............................................  403

25. Web Services and UIWebView ..................................................................................  405 
Web Services .......................................................................................................  406

Starting the Nerdfeed application .....................................................................  407 
Fetching data from a URL ..............................................................................  408 
Working with NSURLConnection ....................................................................  410 
Parsing XML ................................................................................................  412 
A quick tip on logging ...................................................................................  423

UIWebView .........................................................................................................  424 
For the More Curious: NSXMLParser .......................................................................  426 
For the More Curious: The Request Body ..................................................................  427 
For the More Curious: Credentials ...........................................................................  429 
Challenge: More Data ............................................................................................  430 
Challenge: More UIWebView .................................................................................  430

26. UISplitViewController ..............................................................................................  431 
Splitting Up Nerdfeed ............................................................................................  432 
Master-Detail Communication .................................................................................  436 
Displaying the Master View Controller in Portrait Mode ..............................................  442 
Universalizing Nerdfeed .........................................................................................  445

27. Media Playback and Background Execution ..................................................................  449 
Creating the MediaPlayer Application .......................................................................  449 
System Sounds .....................................................................................................  452

Registering system sounds ..............................................................................  452 
Playing system sounds ...................................................................................  453

Compressed Audio Files .........................................................................................  454 
Playing Movie Files ............................................................................................... 455

MPMoviePlayerViewController .......................................................................  457 
Preloading video ...........................................................................................  458

Background Processes ............................................................................................  458
Guidelines for background execution ................................................................  459 
Other forms of background execution ...............................................................  460

Low-level APIs .....................................................................................................  462 
Challenge: Audio Recording ...................................................................................  462

28. Bonjour and Web Servers ..........................................................................................  463 
Bonjour ...............................................................................................................  463

Creating CocoaServer ....................................................................................  464 
Publishing a Bonjour service ...........................................................................  467 
Browsing for services via Bonjour .................................................................... 469



ptg

iOS Programming

xi

HTTP Communication ...........................................................................................  473
Writing a web server in Objective-C .................................................................  473 
Getting address data from the server .................................................................  474 
Byte ordering ...............................................................................................  475 
Making service requests .................................................................................  475 
Receiving service requests ..............................................................................  477

For the More Curious: TXTRecords .........................................................................  479
29. Push Notifications and Networking .............................................................................  481 

Preparing Client for Push Notifications .....................................................................  482
Registering for notifications ............................................................................  482 
Provisioning for push notifications ...................................................................  483

Delivering a Push Notification .................................................................................  486
Getting the token to the provider ...................................................................... 486 

Sending Push Notifications .....................................................................................  488
Connecting to Apple’s server with NSStream .....................................................  488 

Additional Client-side Notification Handling ..............................................................  498
Sounds and badges ........................................................................................  499 
Accessing data in notifications ......................................................................... 500

The Production Server and Moving Forward ..............................................................  502 
For the More Curious: The Feedback Service .............................................................  502

30. Afterword ...............................................................................................................  503 
What to do next ....................................................................................................  503 
Shameless plugs ....................................................................................................  503

Index ........................................................................................................................... 505



ptg

This page intentionally left blank 



ptg

xiii

Introduction
An aspiring iOS developer faces three basic hurdles:

• You must learn the Objective-C language. Objective-C is a small and simple extension to the
C language. After the first four chapters of this book, you will have a working knowledge of
Objective-C.

• You must master the big ideas. These include things like memory management techniques,
delegation, archiving, and the proper use of view controllers. The big ideas take a few days to
understand. When you reach the halfway point of this book, you will understand these big ideas.

• You must master the frameworks. The eventual goal is to know how to use every method of every
class in every framework in iOS. This is a project for a lifetime: there are over 3000 methods 
and more than 200 classes available in iOS. To make things even worse, Apple adds new classes
and new methods with every release of iOS. In this book, you will be introduced to each of the
subsystems that make up the iOS SDK, but we will not study each one deeply. Instead, our goal is
get you to the point where you can search and understand Apple’s reference documentation.

We have used this material many times at our iOS Development Bootcamp at Big Nerd Ranch. It is
well-tested and has helped hundreds of people become iOS application developers. We sincerely hope
that it proves useful to you.

Prerequisites
This book assumes that you are already motivated to learn to write iOS apps. We won’t spend any time
convincing you that the iPhone, the iPad, and the iPod touch are compelling pieces of technology.

We also assume that you know the C programming language and something about object-oriented
programming. If this is not true, you should probably start with an introductory book on C and
Objective-C, such as Objective-C Programming: The Big Nerd Ranch Guide.

What’s Changed in the Second Edition?
First, we changed the title from iPhone Programming to iOS Programming. As this change implies,
the second edition includes more iPad-specific information. For instance, we’ve added new chapters on
UIPopovercontroller and UISplitViewController, which exist only on the iPad.

Core Data has matured considerably since the first edition, so we decided a chapter on using SQLite
directly was unnecessary. The Core Data chapter was moved earlier in the book to reflect its increased
importance.

You’ll find new chapters on push notifications and blocks. We’ve also added a chapter dedicated to the
static analyzer and the Instruments profiling tool.

This edition assumes that the reader is using Xcode 4. For more information on getting Xcode 4, see
the final section of this introduction.

Besides these obvious changes, we made thousands of tiny improvements that were inspired by
questions from our readers and our students. Every page of this book is just a little better than the
corresponding page from the first edition.



ptg

Introduction

xiv

Our Teaching Philosophy
This book will teach you the essential concepts of iOS programming. At the same time, you’ll type 
in a lot of code and build a bunch of applications. By the end of the book, you’ll have knowledge and
experience. However, all the knowledge shouldn’t (and, in this book, won’t) come first. That’s sort of
the traditional way we’ve all come to know and hate. Instead, we take a learn-while-doing approach.
Development concepts and actual coding go together.

Here’s what we’ve learned over the years of teaching iOS programming:

• We’ve learned what ideas people must have to get started programming, and we focus on that
subset.

• We’ve learned that people learn best when these concepts are introduced as they are needed.

• We’ve learned that programming knowledge and experience grow best when they grow together.

• We’ve learned that “going through the motions” is much more important than it sounds. Many times
we’ll ask you to start typing in code before you understand it. We get that you may feel like a trained
monkey typing in a bunch of code that you don’t fully grasp. But the best way to learn coding is to
find and fix your typos. Far from being a drag, this basic debugging is where you really learn the 
ins and outs of the code. That’s why we encourage you to type in the code yourself. You could just
download it, but copying and pasting is not programming. We want better for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust. And we appreciate yours.
It also takes patience. As we lead you through these chapters, we will try to keep you comfortable 
and tell you what’s happening. However, there will be times when you’ll have to take our word 
for it. (If you think this will bug you, keep reading – we’ve got some ideas that might help.) Don’t 
get discouraged if you run across a concept that you don’t understand right away. Remember that
we’re intentionally not providing all the knowledge you will ever need all at once. If a concept seems
unclear, we will likely discuss it in more detail later when it becomes necessary. And some things 
that aren’t clear at the beginning will suddenly make sense when you implement them the first (or the
twelfth) time.

People learn differently. It’s possible that you will love how we hand out concepts on an as-needed
basis. It’s also possible that you’ll find it frustrating. In case of the latter, here are some options:

• Take a deep breath and wait it out. We’ll get there, and so will you.

• Check the index. We’ll let it slide if you look ahead and read through a more advanced discussion
that occurs later in the book.

• Check the online Apple documentation. This is an essential developer tool, and you’ll want plenty of
practice using it. Consult it early and often.

• If it’s Objective-C or object-oriented programming concepts that are giving you a hard time (or if
you think they will), you might consider backing up and reading our Objective-C Programming: The
Big Nerd Ranch Guide.



ptg

Introduction

xv

How To Use This Book
This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be consumed
in a certain manner.

Set yourself a reasonable goal, like “I will do one chapter every day.” When you sit down to attack a
chapter, find a quiet place where you won’t be interrupted for at least an hour. Shut down your email,
your Twitter client, and your chat program. This is not a time for multi-tasking; you will need to
concentrate.

Do the actual programming. You can read through a chapter first, if you’d like. But the real learning
comes when you sit down and code as you go. You will not really understand the idea until you have
written a program that uses it and, perhaps more importantly, debugged that program.

A couple of the exercises require supporting files. For example, in the first chapter you will need
an icon for your Quiz application, and we have one for you. You can download the resources and
solutions to the exercises from http://www.bignerdranch.com/solutions/iOSProgramming.zip.

There are two types of learning. When you learn about the Civil War, you are simply adding details 
to a scaffolding of ideas that you already understand. This is what we will call “Easy Learning”. Yes,
learning about the Civil War can take a long time, but you are seldom flummoxed by it. Learning iOS
programming, on the other hand, is “Hard Learning,” and you may find yourself quite baffled at times,
especially in the first few days. In writing this book, we have tried to create an experience that will
ease you over the bumps in the learning curve. Here are two things you can do to make the journey
easier:

• Find someone who already knows how to write iOS applications and will answer your questions. In
particular, getting your application onto the device the first time is usually very frustrating if you are
doing it without the help of an experienced developer.

• Get enough sleep. Sleepy people don’t remember what they have learned.

How This Book Is Organized
In this book, each chapter addresses one or more ideas of iOS development followed by hands-on
practice. For more coding practice, we issue challenges towards the end of each chapter. We encourage
you to take on at least some of these. They are excellent for firming up the concepts introduced in the
chapter and making you a more confident iOS programmer. Finally, most chapters conclude with one
or two “For the More Curious” sections that explain certain consequences of the concepts that were
introduced earlier.

Chapter 1 introduces you to iOS programming as you build and deploy a tiny application. You’ll get
your feet wet with Xcode and the iOS simulator along with all the steps for creating projects and files.
The chapter includes a discussion of Model-View-Controller and how it relates to iOS development.

Chapters 2 and 3 provide an overview of Objective-C and memory management. Although you
won’t create an iOS application in these two chapters, you will build and debug a tool called
RandomPossessions to ground you in these concepts. (You will reuse this tool and its related class in
the Homepwner application introduced in Chapter 10.)

In Chapters 4 and 5, you will learn about the Core Location and MapKit frameworks and create a
mapping application called Whereami. You will also get plenty of experience with the important

http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Introduction

xvi

design pattern of delegation and working with protocols, frameworks, object diagrams, and the Apple
documentation.

Chapters 6 and 7 focus on the iOS user interface with the Hypnosister and HypnoTime applications.
You will get lots of practice working with views and view controllers as well as implementing
scrolling, zooming, and navigating between screens using a tab bar.

Chapter 8 covers the accelerometer. You will learn how to obtain, filter, and use the data from the
accelerometer to handle motion events, including shakes. You will use accelerometer data to add a new
feature to the HypnoTime application.

In Chapter 9, you will create a smaller application named HeavyRotation while learning about
notifications and how to implement autorotation in an application. You will also use autoresizing to
make HeavyRotation iPad-friendly.

Chapter 10 introduces the largest application in the book – Homepwner. (By the way, “Homepwner” is
not a typo; you can find the definition of “pwn” at www.urbandictionary.com.) This application keeps
a record of your possessions in case of fire or other catastrophe. Homepwner will take nine chapters
total to complete.

In Chapters 10, 11, and 16, you will build experience displaying lists of information. You will learn
about table views, their view controllers, and their data sources. You will learn how to display data in a
table, how to allow the user to edit the table, and how to improve the interface.

Chapter 12 builds on the navigation experience gained in Chapter 7. You will learn how to use
UINavigationController, and you will give Homepwner a drill-down interface and a navigation bar.

In Chapter 13, you’ll learn how to take pictures with the camera and how to display and store images
in Homepwner. You’ll use NSDictionary and UIImagePickerController.

In Chapter 14, you’ll learn about UIPopoverController for the iPad and modal view controllers. In
addition, you will make Homepwner a universal application – an application that runs natively on both
the iPhone and the iPad.

Chapter 15 delves into ways to save and load data. In particular, you will archive data in the
Homepwner application using the NSCoding protocol. The chapter also shows you how to work with
multitasking and transitions between application states, such as active, background, and suspended.

Chapter 17 is an introduction to Core Data. You will change the Homepwner application to store and
load its data using an NSManagedObjectContext.

Chapter 18 introduces the concepts and techniques of internationalization and localization. You will
learn about NSLocale, strings tables, and NSBundle as you localize Homepwner. This chapter will
complete the Homepwner app.

In Chapter 19, you will use NSUserDefaults to save user preferences in a persistent manner.

In Chapter 20, you’ll create a drawing application named TouchTracker. You’ll learn how to add multi-
touch capability and more about touch events. You’ll also get experience with the first responder and
responder chain concepts and more practice with NSDictionary.

In Chapter 21, You’ll learn about the Instruments application while debugging performance and
memory issues in TouchTracker. It will also discuss Xcode schemes and the static analyzer.

Chapters 22 and 23 introduce layers and the Core Animation framework with a brief return to the
HypnoTime application to implement animations. You will learn about implicit animations and
animation objects, like CABasicAnimation and CAKeyframeAnimation.

www.urbandictionary.com


ptg

Introduction

xvii

Chapter 24 covers two important features of Objective-C: blocks and categories.

Chapter 25 ventures into the wide world of web services as you create the Nerdfeed application. This
application fetches and parses an RSS feed from a server using NSURLConnection and NSXMLParser.
Nerdfeed will also display a web page in a UIWebView.

In Chapter 26, you will learn about UISplitViewController and add a split view user interface to
Nerdfeed to take advantage of the iPad’s larger screen size.

Chapter 27 will show you how to play audio and video as you build an application called MediaPlayer.
You will learn about playing audio and video, where to keep these resources, streaming limits, and the
low-level audio API. You will also enable MediaPlayer to play music while in the background state
and learn guidelines and other uses for background execution.

Chapter 28 includes building a Cocoa application for the Mac desktop. You will also write an iOS
application that uses Bonjour to locate the desktop app on the network. Once the desktop application is
located, you will talk to it via HTTP.

In Chapter 29, you’ll extend the desktop app so that it can send push notifications to your iOS device.

Style Choices
This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple’s sample code or code you might find in other books.
You may not understand these points now, but it is best that we spell them out before you commit to
reading this book:

• There is an alternative syntax for calling accessor methods known as dot-notation. In this book, we
will explain dot-notation, but we will not use it. For us and for most beginners, dot-notation tends to
obfuscate what is really happening.

• In our subclasses of UIViewController, we always change the designated initializer to init. It is
our opinion that the creator of the instance should not need to know the name of the XIB file that the
view controller uses, or even if it has a XIB file at all.

• We will always create view controllers programmatically. Some programmers will instantiate
view controllers inside XIB files. We’ve found this practice leads to projects that are difficult to
comprehend and debug.

• We will nearly always start a project with the simplest template project: the window-based
application. The boilerplate code in the other template projects doesn’t follow the rules that precede
this one, so we think they make a poor basis upon which to build.

We believe that following these rules makes our code easier to understand and easier to maintain.
After you have worked through this book (where you will do it our way), you should try breaking the
rules to see if we’re wrong.

Typographical Conventions
To make this book easier to read, certain items appear in certain fonts. Class names, method names,
and function names appear in a bold, fixed-width font. Class names start with capital letters, and



ptg

Introduction

xviii

method names start with lowercase letters. In this book, method and function names will be formatted
the same for simplicity’s sake. For example, “In the loadView method of the RexViewController
class, use the NSLog function to print the value to the console.”

Variables, constants, and types appear in a fixed-width font but are not bold. So you’ll see, “The
variable fido will be of type float. Initialize it to M_PI.”

Applications and menu choices appear in the Mac system font. For example, “Open Xcode and select
New Project... from the File menu.”

All code blocks will be in a fixed-width font. Code that you need to type in is always bold. For
example, in the following code, you would type in everything but the first and last lines. (Those lines
are already in the code and appear here to let you know where to add the new stuff.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate> {
    int currentQuestionIndex;

    // The model objects
    NSMutableArray *questions;
    NSMutableArray *answers;

    // The view objects
    IBOutlet UILabel *questionField;
    IBOutlet UILabel *answerField;
    UIWindow *window;
}

Necessary Hardware and Software
You can only develop iOS apps on an Intel Mac. You will need to download Apple’s iOS SDK,
which includes Xcode (Apple’s Integrated Development Environment), the iOS simulator, and other
development tools.

You should join Apple’s iOS Developer Program, which costs $99/year, for three reasons:

• Downloading the latest developer tools is free for members.

• Only signed apps will run on a device, and only members can sign apps. If you want to test your app
on your device, you will need to join.

• You can’t put an app in the store until you are a member.

If you are going to take the time to work through this entire book, membership in the iOS Developer
Program is, without question, worth the cost. Go to http://developer.apple.com/programs/ios/ to
join.

What about iOS devices? Most of the applications you will develop in the first half of the book are for
the iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear
in an iPhone-sized window. Not a compelling use of the iPad, but that’s okay when you’re starting
with iOS. In these first chapters, you’ll be focused on learning the fundamentals of the iOS SDK, and
these are the same across iOS devices. Later in the book, we’ll look at some iPad-only options and how
to make applications run natively on both iOS device families.

Excited yet? Good. Let’s get started.

http://developer.apple.com/programs/ios/


ptg

1

1
A Simple iOS Application

In this chapter, you are going to write your first iOS application. You probably won’t understand
everything that you are doing, and you may feel stupid just going through the motions. But going
through the motions is enough for now. Mimicry is a powerful form of learning; it is how you
learned to speak, and it is how you’ll start iOS programming. As you become more capable, you can
experiment and challenge yourself to do creative things on the platform. For now, just do what we
show you. The details will be explained in later chapters.

When you are writing an iOS application, you must answer two basic questions:

• How do I get my objects created and configured properly? (Example: “I want a button here entitled
Show Estimate.”)

• How do I deal with user interaction? (Example: “When the user presses the button, I want this piece
of code to be executed.”)

Most of this book is dedicated to answering these questions.

When an iOS application starts, it puts a window on the screen. You can think of the window as the
background on which everything else appears: buttons, labels, etc. Anything that can appear on the
window is a view.

The iOS SDK is an object-oriented library, and the window and views are represented by objects. The
window is an instance of the class UIWindow. Each view is an instance of one of several subclasses of
UIView. For example, a button is an instance of UIButton, which inherits from UIView.

There are two ways you can place a view on the window:

• programmatically create the view and add it to the UIWindow

• visually choose and position the view using the interface builder

For your first iOS application, you will visually place views on the window. This application, called
Quiz, will show a user a question and then reveal the answer when the user presses a button. Pressing
another button will show a new question (Figure 1.1).



ptg

Chapter 1  A Simple iOS Application

2

Figure 1.1  Your first application: Quiz

Creating an Xcode Project
Open Xcode and, from the File menu, select New and then New Project....

A new workspace window will appear, and a sheet will slide from its toolbar with several application
templates to choose from. On the lefthand side, select Application from the iOS section. From the
choices that appear, select Window-based Application (the most basic template) and press the Next
button (Figure 1.2).

Figure 1.2  Creating a new project



ptg

Creating an Xcode Project

3

On the next pane (Figure 1.3), name this product Quiz. In the Company Identifier field, enter
com.bignerdranch (or replace bignerdranch with your company name). From the pop-up menu
labeled Device Family, select iPhone. Uncheck the two checkboxes and press Next.

Figure 1.3  Naming a new project

(Even though we’re building this application for the iPhone, it will run on the iPad. It will run in an
iPhone-sized window that does not make the most of the iPad screen, but that’s okay for now. For 
the applications in the first half of this book, we will stick with the iPhone device family template. In
these chapters, you’ll be focused on learning the fundamentals of the iOS SDK, and these are the same
across iOS devices. Later, we will look at some iPad-only options and how to make applications run
natively on both iOS device families.)

Save the project in the directory where you plan to store all of the exercises in this book. (You can
uncheck the box to create a local git repository, but it doesn’t hurt anything to keep it on.)

Once the project is created, it will open in the Xcode workspace window (Figure 1.4). Take a look 
at the lefthand side of this window. This area is called the navigator area, and it displays different
navigators – tools that show you different pieces of your project. You can choose which navigator to
use by selecting one of the icons in the navigator selector, the bar just above the navigator area. The 
navigator currently open is the project navigator. (If the project navigator is not visible, click the
icon in the navigator selector.)



ptg

Chapter 1  A Simple iOS Application

4

Figure 1.4  Xcode workspace window

(Feeling overwhelmed by the number of buttons, views, and gadgets in the workspace? Don’t worry
– in this chapter, we’ll cover a few in detail, and we’ll cover others later as they are needed. In the
meantime, you can mouse over any of the buttons to see a brief description of what it does.)

The project navigator shows you the files that make up your project (Figure 1.5). These files can 
be grouped into folders to help you organize your project. A few groups have been created by the
template for you; you can rename them whatever you want or add new ones. The groups are purely for
the organization of files and do not correlate to the filesystem in any way.

Figure 1.5  Quiz application’s files in the project navigator



ptg

Building Interfaces

5

In the project navigator, find a file named MainWindow.xib. This file contains the interface for your
Quiz application. Click on MainWindow.xib to open it in the editor area.

Building Interfaces
In many GUI builders on other platforms, you describe what you want an application to look like and
then press a button to generate a bunch of code. Xcode’s interface builder is different. It is an object
editor: you create and configure objects, like windows, buttons, and labels, and then save them into an
archive. The archive is a XIB (pronounced “zib”) file.

A XIB file is an XML representation of the archived objects. When you build a project, the XIB 
file is compiled into a NIB file. Developers manipulate XIB files (they’re easier to work with), and
applications use NIB files (they’re smaller and easier to parse). However, most iOS developers use the
words XIB and NIB interchangeably.

When you build an application, the compiled NIB file is copied into the application’s bundle. An iOS
application is really a directory containing the executable and any resources the executable uses. We
refer to this directory as the bundle. Then, when your application reads in the NIB file, the objects 
in the archive are brought to life. Your first application will have only one NIB file created from
MainWindow.xib that is loaded when the application first launches. A complex application can have
many NIB files that are read in as they are needed.

When you select a XIB file in the project navigator, the editor area displays an outline view and a
canvas (Figure 1.6). The outline view is on the lefthand side of the editor area, and it shows the objects
in the XIB file. You can shrink the outline view into a dock by clicking the disclosure button in the
bottom left corner of the view. The dock shows fewer details and is useful when screen real estate is
running low. However, for learning purposes, it is easier to see what is going on in the outline view.



ptg

Chapter 1  A Simple iOS Application

6

Figure 1.6  Editing a XIB in Xcode

The outline view shows that MainWindow.xib contains four objects:

File's Owner An instance of UIApplication. The event queue for your application is
managed by this object. 

First Responder This object doesn’t have much use in iOS right now; it is more of a relic
from Desktop Cocoa. You can ignore it.

QuizAppDelegate An instance of QuizAppDelegate, an object created by Xcode specifically
for this project. You will be editing the source code for this class. (We’ll
talk more about classes and objects in Chapter 2.)

Window An instance of UIWindow that represents the application’s window. 

The canvas portion of the editor area is for viewing and manipulating the layout of your interface.
Click on the Window object in the outline view to display it on the canvas (Figure 1.7). You can move
the window by dragging in the blue-shaded area around it. Note that moving the window doesn’t
change anything about it; it just re-organizes the canvas. You can also close the window by clicking



ptg

!"#$%#&'()&*+,-./+0

1

on the x in its top left corner. Again, this doesn’t delete the window; it just removes it from the canvas.
You can get it back by selecting it again in the outline view.

2#'",+(341556.&7.0(8#*9(:#&%;8(;<=+/*(%#0>$.?+%

The window object in Figure 1.7 is the foundation of your user interface and appears exactly as it will
in your application. Flip back to Figure 1.1, and you’ll see that Quiz needs four additional interface
elements: two text labels and two buttons.

To add these elements, you need to get to the utilities area. In the top-right corner of Xcode’s toolbar,
find the  buttons labeled View. These buttons toggle the navigator, debug area, and utilities.
Click the right button to show the utilities area (Figure 1.4).

The utilities area appears to the right of the editor area and has two sections: the inspector and the
library. The top section is the inspector, which contains settings for the file that is currently displayed
in the editor area. The bottom section is the library, which lists items you can add to a file or project.
You can change the relative sizes of these sections by dragging the line between them.

At the top of each section is a selector for different types of inspectors and libraries (Figure 1.8). From
the library selector, select the  icon to reveal the object library. This library contains the objects you
can add to a XIB file.



ptg

Chapter 1  A Simple iOS Application

8

Figure 1.8  Xcode utilities area

Scroll down the list or use the search bar at the bottom of the library to find Label. Then select the label
and drag it onto the window object on the canvas. Position this label in the center of the window, near
the top. Drag another label onto the window and position it in the center closer to the bottom. Then
find Round Rect Button in the library and drag two buttons onto the window. Position one below each
label. You can resize an object by selecting it and then dragging its corners and edges. Make all four
objects wide enough that they span most of the window.

Now let’s give the buttons helpful titles. You can edit the title of a button simply by double-clicking it.
Change the top button to Show Question and the bottom button to Show Answer. You can edit the text
of a label the same way; leave the top label blank and have the bottom label display ???. Your window
should look like the one in Figure 1.9.



ptg

Building Interfaces

9

Figure 1.9  Adding buttons and labels to the window

The labels and buttons are objects (of type UILabel and UIButton), and objects have instance variables
that specify their behavior and appearance. For example, when you entered a title for the top button,
you set that button’s title instance variable. You can edit a few of these instance variables directly 
on the canvas, but most must be edited in the utilities area. For example, labels have a textAlignment
instance variable. The default is left-aligned, but we want this text to be centered. Select the bottom
label and then click the icon in the inspector selector.

This inspector is the attributes inspector, and here you can set the instance variables of the selected
object. Near the top of this inspector is a segmented control for alignment. Select the centered text
option, as shown in Figure 1.10.



ptg

Chapter 1  A Simple iOS Application

10

Figure 1.10  Centering the label text

Notice the ??? is now centered in the bottom label. Now center the text in the top label. (There’s no
text now, but there will be in the running application.) 

Your application’s interface now looks like it should, but before we start writing code, let’s dive into
some programming theory.

Model-View-Controller
You may hear iOS programmers mention the Model-View-Controller pattern. What this means is
every object you create is exactly one of the following: a model object, a view object, or a controller
object.

View objects are visible to the user. In Quiz, the buttons, labels, and window are all view objects.
Views are usually standard UIView subclasses (UIButton, UISlider), but you will sometimes write
custom view classes. These typically have names like DangerMeterView or IncomeGraphView.

Model objects hold data and know nothing about the user interface. In this application, the model
objects will be two arrays of strings: the questions array and the answers array. Figure 1.11 displays
the object diagram of the Quiz application’s model objects.



ptg

Model-View-Controller

11

Figure 1.11  Diagram of model objects in Quiz

Model objects typically use standard collection classes (NSArray, NSDictionary, NSSet) and standard
value types (NSString, NSDate, NSNumber). But there can be custom classes, which typically have
names that sound like data-bearing objects, such as InsurancePolicy or PlayerHistory.

View and model objects are the factory workers of an application – they focus only on performing
specific tasks. For example, an instance of UILabel (a view object) knows how to display text in a
given font within a given rectangle. An NSString instance (a model object) knows how to store a
character string. But the label doesn’t know what text to display, and the string doesn’t know what
characters to store.

This is where controller objects come in. Controllers are the managers in an application. They keep the
view and model objects in sync, control the “flow” of the application, and save the model objects out
to the filesystem (Figure 1.12). Controllers are the least reusable classes that you will write, and they
tend to have names like ScheduleController and ScoreViewController.



ptg

Chapter 1  A Simple iOS Application

12

Figure 1.12  MVC Pattern

When you create a new iOS project from a template, the template automatically makes a controller
object for you. For Quiz, this controller is the QuizAppDelegate. Most applications have more than one
controller object, but a simple application like Quiz only needs one.

One of the QuizAppDelegate’s tasks will be showing the user a new question when the Show Question
button is tapped. Tapping this button will trigger a method in the QuizAppDelegate. This method will
retrieve a new question from an array of questions and place that question in one of the labels. These
interactions are laid out in the object diagram for Quiz (Figure 1.13).



ptg

Declarations

13

Figure 1.13  Object diagram for Quiz

This diagram is the big picture of Quiz. It’s okay if it doesn’t make perfect sense yet; it will make more
by the end of the chapter. We’ll talk about object diagrams again in Chapter 5.

Declarations
To manage its relationships and responsibilities, QuizAppDelegate needs five instance variables
and two methods. In this section, you will declare these in the QuizAppDelegate header file,
QuizAppDelegate.h.

Declaring instance variables

Here are the five instance variables QuizAppDelegate needs:

questions a pointer to an NSMutableArray containing instances of NSString

answers a pointer to another NSMutableArray containing instances of NSString

currentQuestionIndex an int that holds the index of the current question in the questions
array

questionField a pointer to the UILabel object where the current question will be
displayed



ptg

Chapter 1  A Simple iOS Application

14

answerField a pointer to the UILabel object where the current answer will be
displayed

In the project navigator, select QuizAppDelegate.h. Inside the curly braces, add the following
declarations for the five instance variables. (Notice the bold type? In this book, code that you need to
add is always bold; the code that’s not bold is there to tell you where to type in the new stuff.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate> 

{
    int currentQuestionIndex;

    // The model objects
    NSMutableArray *questions;
    NSMutableArray *answers;

    // The view objects - don't worry about this IBOutlet macro, 
    // we'll talk about it shortly
    IBOutlet UILabel *questionField;
    IBOutlet UILabel *answerField;
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

(Scary syntax? Feelings of dismay? Don’t panic – you will learn more about the Objective-C language
in the next chapter. For now, just keep going.)

Declaring methods
Each of the buttons needs to trigger a method in the QuizAppDelegate. A method is a lot like a
function – a list of instructions to be executed. Declare two methods in QuizAppDelegate.h after the
line that starts with @property. (We will explain @property in Chapter 3; you can ignore it for now.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate>
{
    int currentQuestionIndex;

    // The model objects
    NSMutableArray *questions;
    NSMutableArray *answers;

    // The view objects
    IBOutlet UILabel *questionField;
    IBOutlet UILabel *answerField; 
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;

- (IBAction)showQuestion:(id)sender;
- (IBAction)showAnswer:(id)sender;

@end

Save QuizAppDelegate.h.

What do IBOutlet and IBAction do in the declarations you just entered? They allow you to connect
your controller and view objects in the XIB file.



ptg

Making Connections

15

Making Connections
When the Quiz application loads its interface from MainWindow.xib, the objects that make up the
interface are floating around in memory. The QuizAppDelegate (a controller object) needs to know
where the labels (view objects) are in memory so that it can tell them what to display. The buttons
(view objects that the user interacts with) need to know where the QuizAppDelegate is so that they can
report when they are tapped. Your objects need connections. A connection lets an object know where
another object is in memory.

Figure 1.14 shows the connections for Quiz. Some have already been made by the template (between
the window outlet of QuizAppDelegate and the UIWindow instance, for example), and some were made
implicitly (dragging a view object onto the window sets up a connection between the view and the
window). However, you still have a few more connections to make to get your objects communicating
properly.

Figure 1.14  Current connections and needed connections

Here are the missing connections:

• QuizAppDelegate, the controller object, must have pointers to the UILabel instances so it can tell
them what to display.

• The UIButton instances must have pointers to the QuizAppDelegate so they can send messages to
the controller when tapped.

Setting pointers

Let’s start with the connections to the UILabel instances. The instance of QuizAppDelegate has a
pointer called questionField. You want questionField to point to the instance of UILabel at the top



ptg

Chapter 1  A Simple iOS Application

16

of the window. In MainWindow.xib, right-click or Control-click on the QuizAppDelegate in the outline
view to bring up the connections panel (Figure 1.15). Then drag from the circle beside questionField
to the UILabel.

Figure 1.15  Setting questionField

(If you do not see questionField here, double-check your QuizAppDelegate.h file for typos. Did you
end each line with a semicolon? Have you saved the file since you added questionField?)

When the XIB file is loaded (for MainWindow.xib, this is when the application launches), the
QuizAppDelegate’s questionField pointer will now automatically point to this instance of UILabel.

Next, drag from the circle beside answerField to the other UILabel (Figure 1.16).



ptg

Setting targets and actions

17

Figure 1.16  Setting answerField

Notice that you drag from the object with the pointer to the object that you want that pointer to point at.
Also, notice that the pointers that appear in the connections panel are the ones that have been decorated
with IBOutlet in QuizAppDelegate.h.

Setting targets and actions

When a UIButton is tapped, it sends a message to another object. The object that is sent the message
is called the target. The message is called the action, and it is the name of the method that tapping the
button should trigger. So the button needs answers to two questions: “Who’s the target?” and “What’s
the action?” For the Show Question button, the target should be QuizAppDelegate, and the action
should be showQuestion:.

To set an object’s target and action, you Control-drag from the object to its target. When you release
the mouse, the target is set, and a pop-up menu appears that lets you choose the action. Select the Show
Question button and Control-drag (or right-drag) to the QuizAppDelegate. Once QuizAppDelegate is
highlighted, release the mouse button and choose showQuestion: from the pop-up menu, as shown 
in Figure 1.17. Notice that the choices in this menu are the methods you decorated with IBAction in
QuizAppDelegate.h.



ptg

Chapter 1  A Simple iOS Application

18

Figure 1.17  Setting Show Question target/action

Now set the target and action of the Show Answer button. Control-drag from the button to the
QuizAppDelegate and choose showAnswer: from the pop-up menu (Figure 1.18).



ptg

Summary of connections

19

Figure 1.18  Setting Show Answer target/action

Summary of connections

There are now six connections between your QuizAppDelegate and other objects. You’ve set its
pointers answerField and questionField to point at the labels. That’s two. The QuizAppDelegate is
the target for both buttons. That’s four. The project’s template made two additional connections. First,
the UIApplication object (File's Owner in this XIB file) has a pointer called delegate which points
at the QuizAppDelegate; we’ll discuss this somewhat complex relationship in Chapter 4. Second, the
window pointer of your QuizAppDelegate was set to the instance of UIWindow. That makes six.

You can check these connections in the connections inspector. Select the QuizAppDelegate in the
outline view and then click the icon in the inspector selector to reveal the connections inspector in
the utilities area. (Figure 1.19).



ptg

Chapter 1  A Simple iOS Application

20

Figure 1.19  Checking connections in the Inspector

Your XIB file is complete. The view objects and the one controller object have been created, the views
have been configured, and all the necessary connections have been made. Save your XIB file, and let’s
move on to writing the methods.

Implementing Methods
Methods and instance variables are declared in the header file (in this case, QuizAppDelegate.h), but
the actual code for the methods is placed in the implementation file (in this case, QuizAppDelegate.m).
Select QuizAppDelegate.m from the project navigator and type in the following init method. This
method creates two arrays and fills them with questions and answers.

@implementation QuizAppDelegate

- (id)init
{
    // Call the init method implemented by the superclass
    self = [super init];
    if(self) {
        // Create two arrays and make the pointers point to them
        questions = [[NSMutableArray alloc] init];
        answers = [[NSMutableArray alloc] init];

        // Add questions and answers to the arrays
        [questions addObject:@"What is 7 + 7?"];
        [answers addObject:@"14"];

        [questions addObject:@"What is the capital of Vermont?"];
        [answers addObject:@"Montpelier"];

        [questions addObject:@"From what is cognac made?"];
        [answers addObject:@"Grapes"];
    }

    // Return the address of the new object
    return self;
}

In the declarations in QuizAppDelegate.h, neither questions or answers is labeled IBOutlet. The
objects that questions and answers point to are created and configured programmatically in the code
above instead of by the XIB file.



ptg

Build and Run on the Simulator

21

After the init method, add the two action methods.

- (IBAction)showQuestion:(id)sender
{
    // Step to the next question
    currentQuestionIndex++;

    // Am I past the last question?
    if (currentQuestionIndex == [questions count]) {

        // Go back to the first question
        currentQuestionIndex = 0;
    }

    // Get the string at that index in the questions array
    NSString *question = [questions objectAtIndex:currentQuestionIndex];

    // Log the string to the console
    NSLog(@"displaying question: %@", question);

    // Display the string in the question field
    [questionField setText:question];

    // Clear the answer field
    [answerField setText:@"???"];
}

- (IBAction)showAnswer:(id)sender
{
    // What is the answer to the current question?
    NSString *answer = [answers objectAtIndex:currentQuestionIndex];

    // Display it in the answer field
    [answerField setText:answer];
}

You will use the default implementations for the rest of the methods, so leave them alone.

Flip back to Figure 1.13. This diagram should make a bit more sense now that you have created all of
the objects and connected them in the XIB file.

Build and Run on the Simulator
Now you are ready to build the application and run it on the simulator. You can click the iTunes-esque
play button in the top left corner of the workspace, but you’ll be doing this often enough that it’s easier
to remember and use the keyboard shortcut, Command-R. Either way, make sure that the Simulator
option is selected in the pop-up menu next to the play button (Figure 1.20).

Figure 1.20  Running the application



ptg

Chapter 1  A Simple iOS Application

22

If there are any errors or warnings, you can view them in the issue navigator by selecting the icon
in the navigator selector (Figure 1.21). The keyboard shortcut for the issue navigator is Command-4.
In fact, the shortcut for any navigator is Command plus the navigator’s position in the selector. For
example, the project navigator is Command-1.

Figure 1.21  Issue navigator with errors and warnings

You can click on any issue in the issue navigator, and it will take you to the source file and the line of
code where the issue occurred. Find and fix any issues you have (i.e., code typos!) by comparing your
code with the book’s and then build the application again. Repeat this process until your application
compiles.

Once your application has compiled, it will launch in the iOS simulator. But before you play with 
it, you’ll want the console visible so that you can see the output of the log statements. To see the 
console, reveal the debug area by clicking the middle button in the group at the top right of the
workspace window.

The console is on the righthand side of the debug area, and the variables view is on the left. You can
toggle these panels on and off with the control in the top-right corner of the debug area. You 
can also resize the area and its panels by dragging their frames (Figure 1.22).



ptg

Deploying an Application

23

Figure 1.22  Debug area expanded

Play around with the Quiz application. You should be able to tap the Show Question button and see a
new question in the top label; tapping Show Answer should show the right answer. If your application
isn’t working as expected, double-check your connections in MainWindow.xib and check the console
output when you tap the buttons.

Deploying an Application
Now that you’ve written your first iOS application and run it on the simulator, it’s time to deploy it to a
device.

To install an application on your development device, you need a developer certificate from Apple.
Developer certificates are issued to registered iOS Developers who have paid the developer fee. This
certificate grants you the ability to sign your code, which allows it to run on a device. Without a valid
certificate, devices will not run your application.

Apple’s Developer Program Portal (http://developer.apple.com) contains all the instructions and
resources to get a valid certificate. The interface for the set-up process is continually being updated by

http://developer.apple.com


ptg

Chapter 1  A Simple iOS Application

24

Apple, so it is fruitless to describe it in detail. Instead, use the Development Provisioning Assistant, a
step-by-step guide available on the program portal.

Work through the Development Provisioning Assistant, paying careful attention to each screen. At the
end, you will have added the required certificates to Keychain Access and the provisioning profile to
Xcode.

If you’re curious about what exactly is going on here, there are four important items in the
provisioning process:

Developer Certificate This certificate file is added to your Mac’s keychain using Keychain
Access. It is used to digitally sign your code.

App ID The application identifier is a string that uniquely identifies your
application on the App Store. Application identifiers typically look
like this: com.bignerdranch.AwesomeApp, where the name of the
application follows the name of your company.

The App ID in your provisioning profile must match the bundle
identifier of your application. A development profile, like you
just created, will have a wildcard character (*) for its App ID
and therefore will match any bundle identifier. To see the bundle
identifier for the Quiz application, select the project in the project
navigator. Then select the Quiz target and the Summary pane.

Device ID (UDID) This identifier is unique for each iOS device.

Provisioning Profile This is a file that lives on your development device and on your
computer. It references a Developer Certificate, a single App ID,
and a list of the device IDs for the devices that the application can be
installed on. This file is suffixed with .mobileprovision.

When an application is deployed to a device, Xcode uses a provisioning profile on your computer 
to access the appropriate certificate. This certificate is used to sign the application binary. Then, the
development device’s UDID is matched to one of the UDIDs contained within the provisioning profile,
and the App ID is matched to the bundle identifier. The signed binary is then sent to your development
device where it is confirmed by the same provisioning profile on the device and finally launched. 

Open Xcode and plug your development device (iPhone, iPod touch, or iPad) into your computer. This
will automatically open the Organizer window, which you can re-open by clicking the button from 
the top right corner of the workspace. You can select Devices from the top of the Organizer window to
view all of the provisioning information.

To run the Quiz application on your device, you must tell Xcode to deploy to the device instead of the
simulator. Locate the pop-up button named Scheme in the top left of the workspace window. Choose
iOS Device from the list. (If iOS Device is not an option, find the choice that reads something like “Joe
Conway's iPad.”) Build and run your application (Command-R), and it will appear on your device.

Application Icons
Once the Quiz application is installed on your development device, return to the device’s Home screen,
and you’ll see that its icon is a plain white tile. Let’s give Quiz a better icon.



ptg

Application Icons

25

An application icon is a simple image that represents the application on the iOS desktop. Different
devices require different sizes icons, and these requirements are shown in Table 1.1.

Table 1.1. Application icon sizes by device

Device Application icon size

iPhone/iPod touch without Retina display 57x57 pixels

iPhone/iPod touch with Retina display 114x114 pixels

iPad 72x72 pixels

If you supply a single application icon image at 57x57 pixels, that image will be scaled up on devices
where a larger icon is needed. This is never good. A scaled-up icon will be pixellated and scream,
“We’re amateurs!” to your customers. Therefore, any application you deploy to the App Store should
have an icon for every device class on which it can run.

We have prepared two icon image files (sizes 57x57 and 114x114) for the Quiz application. You can
download these icons (along with resources for other chapters) from http://www.bignerdranch.com/
solutions/iOSProgramming.zip. Unzip iOSProgramming.zip and find the Icon.png and the
Icon@2x.png files in the Resources directory of the unzipped folder. (If you open these images, you’ll
see that they aren’t glossy and don’t have rounded corners like other application icons. These effects
are applied for you by the OS.)

Now you’re going to add these icons to your application bundle as resources. In general, there are two
kinds of files in an application: code and resources. Code is used to create the application itself (like
QuizAppDelegate.h and QuizAppDelegate.m). Resources are things like images and sounds that are
used by the application at runtime. XIB files, which are read in at runtime, are also resources.

In the project navigator, select the Quiz project, which is at the top of the list and slightly shaded.
Then, in the editor area, select Quiz from under the Targets heading. Finally, select Summary from the
top of the editor area (Figure 1.23).

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Chapter 1  A Simple iOS Application

26

Figure 1.23  Adding the smaller icon in the Summary panel

This panel is where you can set a number of options for the application, including its icon. Drag the
Icon.png file from Finder onto the tile in the App Icons section. A drop-down sheet will appear. You’ll
see this sheet any time you add a file to a project (Figure 1.24).



ptg

Launch Images

27

Figure 1.24  Adding a resource to a project

The first check box asks if you want to copy this file into your project’s directory on the filesystem.
Make sure this box is checked to keep all the files for this project in a single directory. You can
ignore the Folders section because you are only adding a single file. Also make sure the Quiz target is
checked. This specifies to the project to include this file in the application bundle on building. Click
Finish.

Next, drag the Icon@2x.png file from Finder onto the tile labeled Retina Display. (Note that there isn’t
a tile here for the iPad because Quiz is an iPhone application.)

Build and run the application again. After you exit the application, you should see the Quiz application
with the BNR logo.

When you dragged the image files onto the icon tiles, two things happened. First, the image files were
added to your project. (You can verify this by returning to the project navigator, where you’ll find
Icon.png and Icon@2x.png in the list of files.) Second, two entries were made in the Quiz-Info.plist
file. When you add an icon, the Icon files value is updated with the names of the files you added. You
can verify this by selecting Quiz-Info.plist and viewing it in the editor area. You can also select the
Info item next to Summary to see the same information.

Launch Images
Another item you can set for an application in the Summary panel is the launch image, which appears
while an application is loading. (If you don’t supply a launch image, the user will see a black screen
during this period.) The launch image has a specific role on iOS: it conveys to the user that the



ptg

Chapter 1  A Simple iOS Application

28

application is indeed launching and depicts the user interface that the user will interact with once the
application has finished launching. Therefore, a good launch image is a content-less screenshot of the
application. For example, the Weather application’s interface is a rounded square with the name of a
city and its current temperature; Weather’s launch image is just that rounded square. (Keep in mind
that the launch image is replaced when the application puts its window onto the screen; it does not
become the background image of the application.)

Xcode can grab a screenshot from your device, and you can use this screenshot as the launch image
for Quiz. To get a screenshot, build and run Quiz on a device. Open the Organizer window in Xcode
and locate your device from the device list. (It will be the one with a green dot next to it.) Underneath
your device, select the Screenshots item. In the bottom righthand corner of the editor area, click New
Screenshot, and the screenshot will appear in the editor area. You can either drag this image onto the
Launch Images tile or click the Save as Launch Image button at the bottom of the Organizer window
(Figure 1.25). (For most applications, you will first have to edit the screenshot in an image-editing
application to get the right look.)

Figure 1.25  Taking a screenshot with Xcode

Build and run the application. As the application launches, you will briefly see the launch image.



ptg

Launch Images

29

A launch image must fit the screen of the device it is being launched on. Table 1.2 shows the different
size images you will need for each type of device.

Table 1.2. Launch image sizes by device

Device Launch image size

iPhone/iPod touch without Retina display 320x480 pixels

iPhone/iPod touch with Retina display 640x960 pixels

iPad 1024x768 pixels

(Note that Table 1.2 lists the screen resolutions of the devices; the real status bar is overlaid on top of
the status bar in the launch image.)

Just like with application icons, there are tiles for different-sized images to support different devices.
And also, just like with icons, if you provide only one image, that image will be scaled to fit the
device’s screen. So provide an image for every possible device.

One thing the launch image should not do is display a splash screen for your company or application.
While many applications (especially games) use splash screens as launch images, here is the argument
against it: the amount of time it takes to load any application depends on the hardware it is running
on. Right now, iOS devices aren’t very powerful, and a large application may take a few seconds to
load. This gives the user ample time to ingest the launch image. However, as iOS devices become
more powerful, that launch image may only appear for a fraction of a second. This would appear as a
disconcerting flash to users, and they would wonder, “Have I pressed something wrong? How do I go
back to that screen?” There are infinite ways of expressing your creativity on the platform from within
an application – the launch image isn’t one of them.

Congratulations! You have written your first application and installed it on your device. Now it is time
to dive into the big ideas that make it work. 



ptg

This page intentionally left blank 



ptg

31

2
Objective-C

iOS applications are written in the Objective-C language using the Cocoa Touch library. Objective-
C is a simple extension of the C language and Cocoa Touch is a collection of Objective-C classes.
This book assumes you know some C and understand the ideas of object-oriented programming. If
C or object-oriented programming makes you feel uneasy, we recommend starting with Objective-C
Programming: The Big Nerd Ranch Guide.

In this chapter, you will learn the basics of Objective-C and create a command line tool called
RandomPossessions. You’ll reuse parts of this tool in an iOS application starting in Chapter 10, so
even if you’re familiar with Objective-C, you should still go through this chapter in order to create
RandomPossessions.

Objects
Let’s say you need a way to represent a party. Your party has a few attributes that are unique to it,
like a name, a date, and a list of invitees. You can also ask the party to do things like send an email
reminder to all the invitees, print name tags, or cancel the party altogether.

In C, you would define a structure to hold the data that describes a party. The structure would have
data members – one for each of the party’s attributes. Each data member would have a name and a
type.

To create an individual party, you would use the function malloc to allocate a chunk of memory large
enough to hold the structure. You would write C functions to set the value of its attributes and have it
perform actions.

In Objective-C, instead of using a structure to represent a party, you use a class. A class is like a
cookie-cutter that produces objects. The Party class creates objects, and these objects are instances of
the Party class. Each instance of the Party class can hold the data for a single party (Figure 2.1).



ptg

Chapter 2  Objective-C

32

Figure 2.1  A class and its instances

An instance of Party, like all objects, is a chunk of data stored in memory, and it stores the values
for its attributes in instance variables. So an instance of Party might have the following instance
variables: name, date, budget.

A C structure is a chunk of memory, and so is an object. A C structure has data members, each with a
name and a type. Similarly, an object has instance variables, each with a name and a type.

But there is an important difference between a structure in C and a class in Objective-C – a class has
methods. A method is similar to a function: it has a name, a return type, and a list of parameters that
it expects. A method also has access to an object’s instance variables. If you want an object to run the
code in one of its methods, you send that object a message.

Using Instances
An instance of a class (an object) has a life span: it is created, sent messages, and then destroyed when
it is no longer needed.

Creating objects

To create an object, you send an alloc message to a class. In response, that class creates an object in
memory and gives you a pointer to it. Creating an object looks like this:

NSMutableArray *arrayInstance = [NSMutableArray alloc];

Here an instance of type NSMutableArray is created, and you are returned a pointer to it in the variable
arrayInstance. When you have a pointer to an instance, you can send messages to it. The first
message you always send to a newly allocated instance is an initialization message. Although sending
an alloc message to a class creates an instance, the instance isn’t valid until it has been initialized.

[arrayInstance init];



ptg

Sending messages

33

Because an object must be allocated and initialized before it can be used, we always combine these
two messages in one line.

NSMutableArray *arrayInstance = [[NSMutableArray alloc] init];

The code to the right of the assignment operator (=) says, “Create an instance of NSMutableArray and
send it the message init.” Both alloc and init return a pointer to the newly created object so that
you have a reference to it. (A pointer holds the location of an object in memory, not the object itself. It
“points to” the object.) Typically, you use the assignment operator to store the pointer in a variable.

Combining two messages in a single line of code is called a nested message send. The innermost
brackets are evaluated first, so the message alloc is sent to the class NSMutableArray first. This
returns a new, uninitialized instance of NSMutableArray that is then sent the message init.

Sending messages

What do you do with an instance that has been initialized? You send it more messages.

Let’s take a closer look at message anatomy. First of all, a message is always contained in square
brackets. Within a pair of square brackets, a message has three parts:

receiver a pointer to the object being asked to execute a method

selector the name of the method to be executed

arguments the values to be supplied as the parameters to the method

One such message you can send an NSMutableArray instance is addObject: 

[arrayInstance addObject:anotherObject];

Sending the addObject: message to arrayInstance (the receiver) triggers the addObject: method
(named by the selector) and passes in anotherObject (an argument).

The addObject: message has only one argument, but Objective-C methods can take a number of
arguments or none at all. The message init, for instance, has no arguments.

Another message you can send an NSMutableArray instance is
replaceObjectsInRange:withObjectsFromArray:range:. This message takes three arguments. Each
argument is paired with a label in the selector, and each label ends with a colon. The selector is all of
the labels taken together (Figure 2.2).

Figure 2.2  Parts of a message send



ptg

Chapter 2  Objective-C

34

This pairing of labels and arguments is an important feature of Objective-C. In other languages, this
method would look like this:

arrayInstance.replaceObjectsInRangeWithObjectsFromArrayRange(aRange,
                                                             anotherArray,
                                                             anotherRange);

In these languages, it isn’t completely obvious what each of the arguments sent to this function are. In
Objective-C, however, each argument is paired with the appropriate label.

[arrayInstance replaceObjectsInRange:aRange
                withObjectsFromArray:anotherArray
                               range:anotherRange];

It takes some getting used to, but eventually, Objective-C programmers appreciate the
clarity of arguments being interposed into the selector. The trick is to remember that
for every pair of square brackets, there is only one message being sent. Even though
replaceObjectsInRange:withObjectsFromArray:range: has three labels, it is still only one message,
and sending that message results in only one method being executed.

Notice the distinction being made between a message and a method: a method is a chunk of code that
can be executed and a message is the act of asking a class or object to execute a method. However, the
name of a message always matches the name of the method to be executed.

In Objective-C, the name of a method is what makes it unique. Therefore, a class cannot have two
methods with the same name and different types for their arguments or return type. However, two
methods can have the same individual labels, as long as the name of each method differs when
taken as a whole. For example, the class NSString has two methods rangeOfString:options: and
rangeOfString:options:range:.

Destroying objects
To destroy an object, you send it the message release.

[arrayInstance release];

This line of code destroys the object pointed to by the arrayInstance variable. (It’s actually a bit more
complicated than that, and you’ll learn about the details of memory management in the next chapter.)
It is important to note that although you destroyed the object, the variable arrayInstance still has 
a value – the address of where the NSMutableArray instance used to exist. If you send a message to
arrayInstance now, it will cause a problem because that object no longer exists.

However, if arrayInstance is set to nil, the problem goes away. (nil is the zero pointer. C
programmers know it as NULL. Java programmers know it as null.)

arrayInstance = nil;

Now there is no danger of sending a message to the outdated memory address. Sending a message to
nil is okay in Objective-C – nothing happens. In a language like Java, sending messages to nil is
illegal, so you see this sort of thing a lot:



ptg

Writing the RandomPossessions Tool

35

if (rover != nil) {
    [rover doSomething];
}

In Objective-C, this check is unnecessary because a message sent to nil is ignored. (A corollary: if
your program isn’t doing anything when you think it should be doing something, an unexpected nil
pointer is often the culprit.)

Writing the RandomPossessions Tool
Before you dive into the UIKit, the set of libraries for creating iOS applications, you’re going to write
a command line tool that will let you focus on the Objective-C language. Open Xcode and select File →

New → New Project.... In the lefthand table in the Mac OS X section, click Application and then select
Command Line Tool from the upper panel, as shown in Figure 2.3. Click the Next button.

Figure 2.3  Creating a command line tool

On the next panel, name the product RandomPossessions and choose Foundation as its type
(Figure 2.4). Click Next, and you will be prompted to save the project. Save it some place safe – you
will be reusing parts of this code in future projects.



ptg

Chapter 2  Objective-C

36

Figure 2.4  Naming the project

One source file (main.m) has been created for you in the RandomPossessions group of the project
navigator (Figure 2.5).

Figure 2.5  Project navigator for command line tool template

Click on this file to open it in the editor area, and you’ll see that some code has already been written
for you – most notably, a main function that is the entry point of any C (or Objective-C) application.

Time to put your knowledge of Objective-C basics to the test. Delete the line of code that NSLogs
“Hello, World!” and replace it with lines that create and destroy an instance of an NSMutableArray.

#import <Foundation/Foundation.h> 
int main (int argc, const char * argv[])
{
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
    
    // Create a mutable array, store its address in items variable
    NSMutableArray *items = [[NSMutableArray alloc] init];



ptg

Writing the RandomPossessions Tool

37

    // Release the array
    [items release];

    // Don't leave items pointing at freed memory!
    items = nil;   

    [pool drain];
    return 0;
}

Once you have an instance of NSMutableArray, you can send it messages, like addObject: and
insertObject:atIndex:. In this code, the receiver is the items variable that points at the newly
instantiated NSMutableArray. Add a few strings to the array instance.

int main (int argc, const char * argv[]) 
{
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
    
    NSMutableArray *items = [[NSMutableArray alloc] init];

    // Send the message addObject: to the NSMutableArray pointed to 
    // by the variable items, passing a string each time.
    [items addObject:@"One"];
    [items addObject:@"Two"];
    [items addObject:@"Three"];
    
    // Send another message, insertObject:atIndex:, to that same array object
    [items insertObject:@"Zero" atIndex:0];

    [items release];
    items = nil;   

    [pool drain];
    return 0;
}

When this application executes, it creates an NSMutableArray and fills it with four NSString instances.
However, you need to confirm that you added the strings. In main.m, after adding the final object to the
array, loop through every item in the array and print each one to the console.

int main (int argc, const char * argv[]) 
{
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

    NSMutableArray *items = [[NSMutableArray alloc] init];
    [items addObject:@"One"];
    [items addObject:@"Two"];
    [items addObject:@"Three"];
    [items insertObject:@"Zero" atIndex:0];

    // For every item in the array as determined by sending count to the items array 
    for(int i = 0; i < [items count]; i++) {
        // We get the ith object from the array and pass it as an argument to NSLog, 
        // which implicitly sends the description message to that object
        NSLog(@"%@", [items objectAtIndex:i]);
    }
    



ptg

Chapter 2  Objective-C

38

    [items release];
    items = nil;   

    [pool drain];
    return 0;
}

Click the Run button. It may seem like nothing has happened because the program exits right away, but
the log navigator tells another story.

The log navigator stores the build results and console output from each build of your application. To
reveal the log navigator, select the icon or use the keyboard shortcut Command-7. Select Debug 
RandomPossessions at the top of the log navigator to see your console output in the editor area
(Figure 2.6).

Figure 2.6  Console output

NSString
Now let’s go back and take a closer look at some of the code in your main function. First, notice the
@"One" argument in the first addObject: message sent to items.

[items addObject:@"One"];                

In Objective-C, when you want a hard-coded string, you prefix a character string with an @ symbol.
This creates an instance of NSString (another Objective-C class) that holds the character string.

But, wait – aren’t instances created by sending alloc to a class? That is the way most objects are
created, but the @ prefix is a special case for the NSString class. It is convenient shorthand for creating
strings.

The following code shows three such uses, and each is completely valid Objective-C, where length is
an instance method on NSString:

NSString *myString = @"Hello, World!";
int len = [myString length];           

len = [@"Hello, World!" length];

myString = [[NSString alloc] initWithString:@"Hello, World!"];
len = [myString length];

Next, let’s look at the function NSLog we used to print to the console. NSLog takes a variable number of
arguments and prints a string to the console. The first argument is required and must be an NSString
instance. This instance is called the format string, and it contains text and a number of tokens. Each



ptg

NSArray and NSMutableArray

39

additional argument passed to the function replaces a token in the format string. The tokens (also called
format specifications) must be prefixed with a percent symbol (%), and they specify the type of the
argument they correspond to. Here’s an example:

int a = 1; 
float b = 2.5; 
char c = 'A';
NSLog(@"Integer: %d Float: %f Char: %c", a, b, c);                

The order of the arguments matters: the first token is replaced with the second argument (the format
string is always the first argument), the second token is replaced with the third argument, and so on.
The console output would be

Integer: 1 Float: 2.5 Char: A

In C, there is a function called printf that does the same thing. However, NSLog adds one more 
token to the available list: %@. When %@ is encountered in the format string, instead of the token being
replaced by the corresponding argument, that argument is sent the message description. This method
returns an NSString that replaces the token. Because the argument is sent a message, that argument
must be an object. As we’ll see shortly, every object implements the method description, so any
object will work.

NSArray and NSMutableArray
What exactly is this NSMutableArray you’ve been using? An array is a collection object (also
called a container). The Cocoa Touch frameworks provide a handful of collection objects, such as
NSDictionary and NSSet, and each has a slightly different use. An array is an ordered list of objects
that can be accessed by an index. Other languages might call it a list or a vector. An NSArray is
immutable, which means you cannot add or remove objects after the array is instantiated. You can,
however, retrieve objects from the array. NSArray’s mutable subclass, NSMutableArray, lets you add
and remove objects dynamically.

In Objective-C, an array does not actually contain the objects that belong to it; instead it holds a
pointer (a reference) to each object. When an object is added to an array,

    [array addObject:object];

the address of that object in memory is stored inside the array.

So, to recap, in your command line tool, you created an instance of NSMutableArray and added four
instances of NSString to it, as shown in Figure 2.7.

Figure 2.7  NSMutableArray instance



ptg

Chapter 2  Objective-C

40

Arrays can only hold references to Objective-C objects. This means primitives and C structures cannot
be added to an array. For example, you cannot have an array of ints. Also, because arrays only hold 
a pointer to an object, a single array can contain objects of different types. This is different from most
strongly-typed languages where an array can only hold objects of its declared type.

You can ask an array how many objects it is currently storing by sending it the message count. This
information is important because if you ask for an object from an array at an index that is greater
than the number of objects in the array, an exception will be thrown. (Exceptions are very bad; they
will most likely cause your application to crash. We’ll talk more about exceptions at the end of this
chapter.)

    int numberOfObjects = [array count];

When an object is added to an array with the message addObject:, it is added at the end of the array.
You can also insert objects at a specific index – as long as that index is less than or equal to the current
number of objects in the array.

    int numberOfObjects = [array count];
    [array insertObject:object
                atIndex:numberOfObjects];

Note that you cannot add nil to an array. If you need to add “holes” to an array, you must use NSNull.
NSNull is an object that represents nil and is used specifically for this task.

    [array addObject:[NSNull null]];

To retrieve the pointer to an object later, you send the message objectAtIndex: to the array

    NSString *object = [array objectAtIndex:0];

For readers who know something about retain counts: an object added to an array is sent the message
retain. When an object is removed from an array, it is sent the message release. When an array is
deallocated, all of its objects are sent the message release. If you don’t know what retain, release, and
deallocate mean, that’s okay; you’ll learn about them in the next chapter.

Subclassing an Objective-C Class
Classes exist in a hierarchy, and every class has exactly one superclass – except for the root class of the
entire hierarchy: NSObject (Figure 2.8). A class inherits the behavior of its superclass, which means, 
at minimum, every class inherits the methods and instance variables defined in NSObject. As the top
superclass, NSObject’s role is to implement the basic behavior of every object in Cocoa Touch. Two of
the methods NSObject implements are alloc and description. (We sometimes say “description is a
method on NSObject” and mean the same thing.)



ptg

Subclassing an Objective-C Class

41

Figure 2.8  Class hierarchy

A subclass can add methods and instance variables to extend the behavior of its superclass. For
example, NSMutableArray extends NSArray’s ability to hold pointers to objects by adding the ability to
dynamically add and remove objects.

A subclass can also override methods of its superclass. For example, NSString overrides the
description method of NSObject. Sending the description message to an NSObject returns
information about that instance. By default, description returns the object’s class and its address in
memory, like this: <QuizAppDelegate: 0x4b222a0>.

A subclass of NSObject can override this method to return something that better describes an instance
of that subclass. For example, NSString overrides description to return the string itself. NSArray
overrides description to return the description of every object in the array.

In this exercise, you’re going to create a subclass of NSObject named Possession. An instance of the
Possession class will represent an item that a person owns in the real world. Click File → New → New
File.... Select Cocoa Touch from the iOS section in the lefthand table. Then select Objective-C class 
from the upper panel and hit Next, as shown in Figure 2.9.



ptg

Chapter 2  Objective-C

42

Figure 2.9  Creating a class

On the next panel, select NSObject as the superclass and click Next, as shown in Figure 2.10.

Figure 2.10  Choosing a superclass



ptg

Subclassing an Objective-C Class

43

Name the class Possession (Figure 2.11). When creating a new class for a project, you want to save
the files that describe it inside the project’s source directory on the filesystem. By default, the current
project directory is already selected for you. You can also choose the group in the project navigator
that these files will be added to. Because these groups are simply for organizing and because this
project is very small, the group doesn’t matter, so just stick with the default. Make sure the checkbox
is selected for the RandomPossessions target. This ensures that this class will be compiled when the
project is built. Click Save.

Figure 2.11  Saving a new class

Creating the Possession class generated two files: Possession.h and Possession.m. Locate those
files in the project navigator. Possession.h is the header file (also called an interface file). This file
declares the name of the new class, its superclass, the instance variables that each instance of this class
has, and any methods this class implements. Possession.m is the implementation file, and it contains
the code for the methods that the class implements. Every Objective-C class has these two files. You
can think of the header file as a user manual for an instance of a class and the implementation file as
the engineering details that define how it really works.

Open Possession.h in the editor area by clicking on it in the project navigator. The file currently
looks like this:

#import <UIKit/UIKit.h>

@interface Possession : NSObject 
{

}
@end

Let’s break down this interface declaration to figure out what it means. First, note that the C language
retains all of its keywords, and any additional keywords added by Objective-C are distinguishable 
by the @ prefix. To declare a class in Objective-C, you use the keyword @interface followed by the



ptg

Chapter 2  Objective-C

44

name of this new class. After a colon comes the name of the superclass. Possession’s superclass is
NSObject. Objective-C only allows single inheritance, so you will only ever see the following pattern: 

@interface ClassName : SuperclassName

Next comes the space for declaring instance variables. Instance variables must be declared inside the
curly brace block immediately following the class and superclass declaration. After the closing curly
brace, you declare any methods that this class implements. Finally, the @end keyword finishes off the
declaration for the new class. 

Instance variables
So far, the Possession class doesn’t add anything to its superclass NSObject. What it needs are
some possession-like instance variables. A possession, in our world, is going to have a name, a serial
number, a value, and a date of creation. In Possession.h, add instance variables to the Possession
class: 

#import <Foundation/Foundation.h>

@interface Possession : NSObject
{
    NSString *possessionName;
    NSString *serialNumber;
    int valueInDollars;
    NSDate *dateCreated;
}
@end

Now every instance of Possession has a spot for a simple integer. It also has spots to hold references
to two NSString instances and one NSDate instance. (A reference is another word for pointer; the
asterisk (*) denotes that the variable is a pointer.) Figure 2.12 shows an example of a Possession
instance after its instance variables have been given values.

Figure 2.12  A Possession instance

Notice that Figure 2.12 shows a total of four objects: the Possession, two NSStrings and the NSDate.
Each of these objects is its own object and exists independently of the others. The Possession only has
pointer to the three other objects. These pointers are the instance variables of Possession.

For example, every Possession has a pointer instance variable named possessionName. This
Possession’s possessionName points to an NSString instance whose contents are “Red Sofa.” The
“Red Sofa” string does not live inside the Possession, though. The Possession instance knows where



ptg

Accessor methods

45

the “Red Sofa” NSString lives in memory and stores its address as possessionName. One way to think
of this relationship is “the Possession calls this string its possessionName. ”

The story is different for the instance variable valueInDollars. This instance variable is not a pointer
to another object; it is just an int. Non-pointer instance variables are stored inside the object itself.
This is not an easy idea to understand at first. Throughout this book, we will make use of object
diagrams like this one to drive home the difference between an object and a pointer to an object.

Accessor methods
Now that you have instance variables, you need a way to get and set their values. In object-oriented
languages, we call methods that get and set instance variables accessors. Individually, we call them
getters and setters. Without these methods, one object cannot access the instance variables of another
object.

Accessor methods look like this:

// Getter 
- (NSString *)possessionName
{
    // Return a pointer to the object this Possession calls its possessionName
    return possessionName;
}

// Setter 
- (void)setPossessionName:(NSString *)newPossessionName
{   
    // Change the instance variable to point at another string,
    // this Possession will now call this new string its possessionName
    possessionName = newPossessionName;
}

Then, if you wanted to access a Possession’s possessionName, you would send it one of the following
messages:

// Create a new Possession instance
Possession *p = [[Possession alloc] init];

// Set possessionName to a new NSString
[p setPossessionName:@"Red Sofa"];

// Get the pointer of the Possession's possessionName
NSString *str = [p possessionName];

// Print that object 
NSLog(@"%@", str); // This would print "Red Sofa"                

In Objective-C, the name of a setter method is set plus the name of the instance variable it is changing
– in this case, setPossessionName:. In other languages, the name of the getter method would likely be
getPossessionName. However, in Objective-C, the name of the getter method is just the name of the
instance variable. Some of the cooler parts of the Cocoa Touch library make the assumption that your
classes follow this convention; therefore, stylish Cocoa Touch programmers always do so.

In Possession.h, declare accessor methods for the instance variables of Possession. You will need
getters and setters for valueInDollars, possessionName, and serialNumber. For dateCreated, you
only need a getter method.



ptg

Chapter 2  Objective-C

46

#import <Foundation/Foundation.h>

@interface Possession : NSObject
{
    NSString *possessionName;
    NSString *serialNumber;
    int valueInDollars;
    NSDate *dateCreated; 
} 
- (void)setPossessionName:(NSString *)str;
- (NSString *)possessionName;

- (void)setSerialNumber:(NSString *)str;
- (NSString *)serialNumber;

- (void)setValueInDollars:(int)i;
- (int)valueInDollars;

- (NSDate *)dateCreated;
@end                

(For those of you with some experience in Objective-C, we’ll talk about properties in the next chapter.)

Now that these accessors have been declared, they need to be defined in the implementation file. Open
Possession.m in the editor area by selecting it in the project navigator.

At the top of any implementation file, you must import the header file of that class. The
implementation of a class needs to know how it has been declared. (Importing a file is the same as
including a file in the C language except you are ensured that the file will only be included once.)

After the import statements is an implementation block that begins with the @implementation keyword
followed by the name of the class that is being implemented. All of the method definitions in the
implementation file are inside this implementation block. Methods are defined until you close out the
block with the @end keyword.

We’re going to skip memory management until the next chapter, so the accessor methods for
Possession are very simple: setter methods assign the appropriate instance variable to point at the
incoming object, and getter methods return a pointer to the object the instance variable points at. (For
valueInDollars, we’re just assigning the passed-in value to the instance variable for the setter and
returning the value in the getter.) Edit Possession.m:

#import "Possession.h"

@implementation Possession

- (void)setPossessionName:(NSString *)str
{
    possessionName = str; 
} 
- (NSString *)possessionName
{
    return possessionName;
}

- (void)setSerialNumber:(NSString *)str
{
    serialNumber = str;



ptg

Accessor methods

47

}

- (NSString *)serialNumber
{
    return serialNumber;
}

- (void)setValueInDollars:(int)i
{
    valueInDollars = i;
}

- (int)valueInDollars
{
    return valueInDollars;
}

- (NSDate *)dateCreated
{
    return dateCreated;
}

@end

Build your application (select Product → Build or use the shortcut Command-B) to ensure that there are
no compiler errors or warnings.

Now that your accessors have been declared and defined, you can send messages to Possession
instances to get and set their instance variables. Let’s test this out. In main.m, import the header file for
Possession and create a new Possession instance. After it is created, log its instance variables to the
console.

#import "Possession.h"

int main (int argc, const char * argv[]) 
{
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
    
    NSMutableArray *items = [[NSMutableArray alloc] init];
    [items addObject:@"One"];
    [items addObject:@"Two"];
    [items addObject:@"Three"];
    [items insertObject:@"Zero" atIndex:0];

    for(int i = 0; i < [items count]; i++) {
        NSLog(@"%@", [items objectAtIndex:i]);
    }
    
    Possession *p = [[Possession alloc] init];
    NSLog(@"%@ %@ %@ %d", [p possessionName], [p dateCreated], 
                          [p serialNumber], [p valueInDollars]);
    
    [items release];
    items = nil;

    [pool drain];
    return 0; 
}                



ptg

Chapter 2  Objective-C

48

Build and run the application. Check the console by selecting the most recent entry in the log
navigator. You should see the previous console output followed by a line that has three “(null)” strings
and a 0. (When an object is created, all of its instance variables are set to 0. For primitives like int, the
value is 0; for pointers to objects, that pointer points to nil.)

To give this Possession some substance, you need to create new objects and pass them as arguments
to the setter methods for this instance. In main.m, type in the following code:

// Notice we omitted some of the surrounding code. The bold code is the code to add, 
// the non-bold code is existing code that shows you where to type in the new stuff.

Possession *p = [[Possession alloc] init];

// This creates a new NSString, "Red Sofa", and gives it to the Possession
[p setPossessionName:@"Red Sofa"];

// This creates a new NSString, "A1B2C", and gives it to the Possession
[p setSerialNumber:@"A1B2C"];

// We send the value 100 to be used as the valueInDollars of this Possession
[p setValueInDollars:100];

NSLog(@"%@ %@ %@ %d", [p possessionName], [p dateCreated], 
                      [p serialNumber], [p valueInDollars]);

Build and run the application. Now you should see values for everything but the dateCreated, which
we’ll take care of shortly.

Instance methods
Not all instance methods are accessors. You will regularly find yourself wanting to send messages 
to instances that perform other tasks. One such message is description. You can implement this
method for Possession to return a string that describes a Possession instance. Because Possession
is a subclass of NSObject (the class that originally declares the description method), when you re-
implement this method in the Possession class, you are overriding it. When overriding a method, all
you need to do is define it in the implementation file; you do not need to declare it in the header file
because it has already been declared by the superclass.

In Possession.m, override the description method. This new code can go anywhere between
@implementation and @end, as long as it’s not inside the curly brackets of an existing method.

- (NSString *)description
{
    NSString *descriptionString =
        [[NSString alloc] initWithFormat:@"%@ (%@): Worth $%d, recorded on %@",
                            possessionName,
                            serialNumber,
                            valueInDollars,
                            dateCreated];

    return descriptionString;

}    

Now whenever you send the message description to an instance of Possession, it will return an
NSString that describes that instance. (To those of you familiar with Objective-C and managing



ptg

Initializers

49

memory, don’t panic – you will fix the problem with this code in the next chapter.) In main.m,
substitute this new method into the NSLog that prints out the instance variables of the Possession.

[p setValueInDollars:100];

// Remember, an NSLog with %@ as the token will print the 
// description of the corresponding argument
NSLog(@"%@", p);

Build and run the application and check your results in the log navigator. You should see a log
statement that looks like this:

Red Sofa (A1B2C): Worth $100, recorded on (null)                

What if you want to create an entirely new instance method, one that you are not overriding from the
superclass? You declare the new method in the header file and define it in the implementation file. A
good method to begin with is an object’s initializer.

Initializers
At the beginning of this chapter, we discussed how an instance is created: its class is sent the message
alloc, which creates an instance of that class and returns a pointer to it, and then that instance is 
sent the message init, which gives its instance variables initial values. As you start to write more
complicated classes, you will want to create initialization methods like init that take arguments that
the object can use to initialize itself. For example, the Possession class would be much cleaner if we
could pass one or more of its variables as part of the initialization process.

To cover the different possible initialization scenarios, many classes have more than one initialization
method, or initializer. Each initializer begins with the word init. Naming initializers this way doesn’t
make these methods different from other instance methods; it is only a naming convention. However,
the Objective-C community is all about naming conventions, which you should strictly adhere to.
(Seriously. Disregarding naming conventions in Objective-C results in problems that are worse than
most beginners would imagine.)

For each class, regardless of how many initialization methods there are, one method is chosen as 
the designated initializer. For NSObject, there is only one initializer, init, so it is the designated
initializer. The designated initializer makes sure that every instance variable of an object is valid.
(“Valid” has different meanings, but in this context it means “when you send messages to this object
after initializing it, you can predict the outcome and nothing bad will happen.”)

Typically, the designated initializer has parameters for the most important and frequently used instance
variables of an object.

The Possession class has four instance variables, but only three are writeable. Therefore,
Possession’s designated initializer needs to accept three arguments. In Possession.h, declare the
designated initializer:

    NSDate *dateCreated;
}

- (id)initWithPossessionName:(NSString *)name
              valueInDollars:(int)value
                serialNumber:(NSString *)sNumber;

- (void)setPossessionName:(NSString *)str;



ptg

Chapter 2  Objective-C

50

This method’s name, or selector, is initWithPossessionName:valueInDollars:serialNumber:. This
selector has three labels (initWithPossessionName:, valueInDollars:, and serialNumber:), which
tells you the method accepts three arguments.

These arguments each have a type and a parameter name. In the declaration, the type follows the label
in parentheses. The parameter name then follows the type. So the label initWithPossessionName: is
expecting a pointer to an instance of type NSString. Within the body of that method, you can use name
to reference the NSString object pointed to.

id

Take another look at the initializer’s declaration. Its return type is id, which is defined as “a pointer
to any object.” (This is a lot like void * in C and is pronounced “eye-dee.”) init methods are always
declared to return id.

Why not make the return type Possession * – a pointer to a Possession? After all, that is the type 
of object that is returned from this method. A problem will arise, however, if Possession is ever
subclassed. The subclass would inherit all of the methods from Possession, including this initializer
and its return type. An instance of the subclass could then be sent this initializer message, but what
would be returned? Not a Possession, but an instance of the subclass. You might think, “No problem.
Override the initializer in the subclass to change the return type.” But remember – in Objective-C,
you cannot have two methods with the same selector and different return types (or arguments). By
specifying that an initialization method returns “any object,” we never have to worry what happens
with a subclass.

isa

As programmers, we always know the type of the object that is returned from an initializer. (How do
we know this? It is an instance of the class we sent alloc to.) Not only do we know the type of the
object, the object itself knows its type.

Every object has an instance variable called isa. When an instance is created by sending alloc to
a class, that class sets the isa instance variable of the returned object to point back at the class that
created it (Figure 2.13). We call it the isa pointer because an object “is a” instance of that class.

Figure 2.13  The isa pointer

The isa pointer is where Objective-C holds much of its power. At runtime, when a message is sent to
an object, that object goes to the class named in its isa pointer and says, “I was sent this message. Run



ptg

Initializers

51

the code for the matching method.” This is different than most compiled languages, where the method
to be executed is determined at compile time.

Implementing the designated initializer

Now that you have declared the designated initializer in Possession.h, you need to implement it.
Open Possession.m. Recall that the definitions for methods go within the implementation block in the
implementation file, and add the designated initializer there. 

@implementation Possession

- (id)initWithPossessionName:(NSString *)name
              valueInDollars:(int)value
                serialNumber:(NSString *)sNumber
{
    // Call the superclass's designated initializer
    [super init];

    // Give the instance variables initial values
    [self setPossessionName:name];
    [self setSerialNumber:sNumber];
    [self setValueInDollars:value];
    dateCreated = [[NSDate alloc] init];

    // Return the address of the newly initialized object
    return self;
}    

In the designated initializer, the first thing you always do is call the superclass’s designated initializer
using super. The last thing you do is return a pointer to the successfully initialized object using self.
So to understand what’s going on in an initializer, you will need to know about self and super.

self

Inside a method, self is an implicit local variable. There is no need to declare it, and it is
automatically set to point to the object that was sent the message. (Most object-oriented languages
have this concept, but some call it this instead of self.) Typically, self is used so that an object can
send a message to itself:

- (void)chickenDance
{
    [self pretendHandsAreBeaks];
    [self flapWings];
    [self shakeTailFeathers];
}

In the last line of an init method, you always return the newly initialized object, so the caller can
assign it to a variable:

return self;

super

Often when you are overriding a method in a subclass, you want it to add something to what the
existing method of the superclass already does. To make this easier, there is a compiler directive in
Objective-C called super:



ptg

Chapter 2  Objective-C

52

- (void)someMethod
{
    [self doMoreStuff];
    [super someMethod];
}

How does super work? Usually when you send a message to an object, the search for a method of that
name starts in the object’s class. If there is no such method, the search continues in the superclass of
the object. The search will continue up the inheritance hierarchy until a suitable method is found. (If 
it gets to the top of the hierarchy and no method is found, an exception is thrown.) When you send a
message to super, you are sending a message to self but demanding that the search for the method
begin at the superclass.

In the case of Possession’s designated initializer, we send the init message to super. This calls
NSObject’s implementation of init. If an initializer message fails, it will return nil. Therefore, it is a
good idea to save the return value of the superclass’s initializer into the self variable and confirm that
it is not nil before doing any further initialization. In Possession.m, edit your designated initializer to
confirm the initialization of the superclass. 

- (id)initWithPossessionName:(NSString *)name
              valueInDollars:(int)value
                serialNumber:(NSString *)sNumber
{
    // Call the superclass's designated initializer   
    self = [super init];
 
    // Did the superclass's designated initializer succeed?
    if (self) {
        // Give the instance variables initial values
        [self setPossessionName:name];
        [self setSerialNumber:sNumber];
        [self setValueInDollars:value];
        dateCreated = [[NSDate alloc] init];  
    }
    
    // Return the address of the newly initialized object
    return self;
}

Other initializers and the initializer chain
A class can have more than one initializer. For example, Possession could have an initializer that
takes an NSString for the possessionName, but not the serialNumber or valueInDollars. Instead
of replicating all of the code in the designated initializer, this other initializer would simply call the
designated initializer. It would pass the information it was given for the possessionName and pass
default values for the other two arguments.

Possession’s designated initializer is initWithPossessionName:valueInDollars:serialNumber:.
However, it has another initializer, init, that it inherits it from its superclass NSObject. If init
is sent to an instance of Possession, none of the stuff you put in the designated initializer will be
called. Therefore, you must link Possession’s implementation of init to its designated initializer. In
Possession.m, override the init method to call the designated initializer with default values.



ptg

Class methods

53

- (id)init
{
    return [self initWithPossessionName:@"Possession"
                         valueInDollars:0
                           serialNumber:@""];
}                    

Using initializers as a chain like this reduces the chance for error and makes maintaining code easier.
For classes that have more than one initializer, the programmer who created the class chooses which
initializer is designated. You only write the core of the initializer once in the designated initializer,
and other initialization methods simply call that core with default values. This relationship is shown in
Figure 2.14; the designated initializers are white, and the additional initializer is gray.

Figure 2.14  Initializer chain

Let’s form some simple rules for initializers from these ideas.

• A class inherits all initializers from its superclass and can add as many as it wants for its own
purposes.

• Each class picks one initializer as its designated initializer.

• The designated initializer calls the superclass’s designated initializer.

• Any other initializer a class has calls the class’s designated initializer.

• If a class declares a designated initializer that is different from its superclass, you must override the
superclass’ designated initializer to call the new designated initializer.

Class methods

Methods come in two flavors: instance methods and class methods. Instance methods (like init) are
sent to instances of the class, and class methods (like alloc) are sent to the class itself. Class methods
typically either create new instances of the class or retrieve some global property of the class. Class
methods do not operate on an instance or have any access to instance variables.



ptg

Chapter 2  Objective-C

54

Syntactically, class methods differ from instance methods by the first character in their declaration.
An instance method uses the - character just before the return type, and a class method uses the +
character.

One common use for class methods is to provide convenient ways to create instances of that class.
For the Possession class, it would be nice if you could create a random possession so that you could
easily test your class without having to think up a bunch of clever names. Declare a class method in
Possession.h that will create a random possession.

@interface Possession : NSObject 
{
    NSString *possessionName;
    NSString *serialNumber;
    int valueInDollars;
    NSDate *dateCreated;
}

+ (id)randomPossession;

- (id)initWithPossessionName:(NSString *)name
              valueInDollars:(int)value
                serialNumber:(NSString *)sNumber;

Notice the order of the declarations for the methods. Class methods come first, followed by initializers,
followed by any other methods. This is a convention that makes your header files easier to read.

Class methods that return an instance of their type create an instance (with alloc and init), configure
it, and then return it. In Possession.m, implement randomPossession to create, configure, and return a
Possession instance (make sure this method is between the @implementation and @end):

+ (id)randomPossession
{
    // Create an array of three adjectives
    NSArray *randomAdjectiveList = [NSArray arrayWithObjects:@"Fluffy",
                                                             @"Rusty",
                                                             @"Shiny", nil];

    // Create an array of three nouns
    NSArray *randomNounList = [NSArray arrayWithObjects:@"Bear",
                                                        @"Spork",
                                                        @"Mac", nil];

    // Get the index of a random adjective/noun from the lists
    // Note: The % operator, called the modulo operator, gives
    // you the remainder. So adjectiveIndex is a random number
    // from 0 to 2 inclusive.
    int adjectiveIndex = rand() % [randomAdjectiveList count];
    int nounIndex = rand() % [randomNounList count];

    NSString *randomName = [NSString stringWithFormat:@"%@ %@",
                [randomAdjectiveList objectAtIndex:adjectiveIndex],
                [randomNounList objectAtIndex:nounIndex]];

    int randomValue = rand() % 100;

    NSString *randomSerialNumber = [NSString stringWithFormat:@"%c%c%c%c%c",
                                        '0' + rand() % 10,
                                        'A' + rand() % 26,



ptg

Testing your subclass

55

                                        '0' + rand() % 10,
                                        'A' + rand() % 26,
                                        '0' + rand() % 10];

    // Once again, ignore the memory problems with this method
    Possession *newPossession =
        [[self alloc] initWithPossessionName:randomName
                              valueInDollars:randomValue
                                serialNumber:randomSerialNumber];
    return newPossession;
}

This method creates two arrays using the method arrayWithObjects:. arrayWithObjects: takes a list
of objects terminated by nil. nil is not added to the array; it just indicates the end of the argument list.

Then randomPossession creates a string from a random adjective and noun, another string from
random numbers and letters, and a random integer value. It then creates an instance of Possession and
sends it the designated initializer with these randomly-created objects and int as parameters.

In this method, you also use stringWithFormat:, which is a class method of NSString. This
message is sent directly to NSString, and the method returns an NSString instance with the passed-in
parameters. In Objective-C, class methods that return an object of their type (like stringWithFormat:
and randomPossession) are called convenience methods.

Notice the use of self in randomPossession. Because randomPossession is a class method, self
refers to the Possession class itself instead of an instance. Class methods should use self in
convenience methods instead of their class name so that a subclass can be sent the same message.
In this case, if you create a subclass of Possession, you can send that subclass the message
randomPossession. Using self (instead of Possession) will allocate an instance of the class that was
sent the message and set the instance’s isa pointer to that class as well.

Testing your subclass
Open main.m. Currently, in the main function, you are adding NSString instances to an
NSMutableArray instance and then printing them to the console. Now you will add Possession
instances to the array and log them instead. Delete the code that previously created a single
Possession and change your main function to look just like this:

#import <Foundation/Foundation.h>
#import "Possession.h"

int main (int argc, const char * argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

    NSMutableArray *items = [[NSMutableArray alloc] init];

    for (int i = 0; i < 10; i++) {
        Possession *p = [Possession randomPossession];
        [items addObject:p];
    }

    for (int i = 0; i < [items count]; i++) {
        NSLog(@"%@", [items objectAtIndex:i]);
    }



ptg

Chapter 2  Objective-C

56

    
    [items release];
    items = nil;

    [pool drain];
    return 0;
}

Build and run your application and then check the output in the log navigator. All you did was
replace what objects you added to the array, and the code runs perfectly fine with a different output
(Figure 2.15). Creating this class was a success.

Figure 2.15  Application result

Check out the #import statements at the top of main.m. Why did you have to import the class header
Possession.h when you didn’t you have to import, say, NSMutableArray.h? NSMutableArray comes
from the Foundation framework, so it is included when you import Foundation/Foundation.h. On the
other hand, your class exists in its own file, so you have to explicitly import it into main.m. Otherwise,
the compiler won’t know it exists and will complain loudly.

Exceptions and the Console Window
In a language like C, we have functions, and when we call a function, code is executed. If we try and
call a function that doesn’t exist, the compiler says, “I can’t do that, Joe,” and the code will fail to
compile. This is known as a compile-time error.

Objective-C, being a dynamically typed language, isn’t able to figure out at compile time whether an
object will respond to a message. (An object only responds to a message if its class implements the
associated method.) The compiler will warn you if it thinks you are sending a message to an object
that won’t respond, but the code will still compile. If, for some reason (and there are many), you end
up sending a message to an object that doesn’t respond, your application will throw an exception, also
known as a run-time error.



ptg

Fast Enumeration

57

In main.m, add the following line of code after you create your array:

NSMutableArray *items = [[NSMutableArray alloc] init];
[items doSomethingWeird];

The class NSMutableArray does not implement a method called doSomethingWeird, and sending
this message to an instance of NSMutableArray is going to throw an exception. Build and run your
application.

The application will immediately throw an exception, and the debugger will suspend execution at the
point of the exception. The debug area will appear (if not, select the center View button at the top right
of the workspace window), and the console will show the following:

2009-07-19 01:34:53.602 RandomPossessions[25326:10b]
*** -[NSCFArray doSomethingWeird]: unrecognized selector sent to instance 0x104b40

This is what an exception looks like. What exactly is it saying? At the beginning of every output
statement, the date, time, and name of the application are printed out. You can ignore that information
and focus on what comes after the “***.” That line tells us that an unrecognized selector was sent to an
instance. You know that selector means message. You sent a message to an object, and the object does
not implement that method.

The type of the receiver and the name of the message are also in this output, which makes it easier to
debug. An instance of NSCFArray was sent the message doSomethingWeird. (The - at the beginning
tells you the receiver was an instance of NSCFArray. A + would mean the class was the receiver.)

(What does NSCFArray mean? The CF stands for Core Foundation. We’ll get into that in Chapter 4. For
now, you can just drop the CF out of the name. An NSArray, the superclass of NSMutableArray is the
type of the object that was sent this bad message.)

Remove the line of code you added and take away this very important lesson: always check the console
output for errors when you run your application. Run-time errors are just as important as compile-time
errors.

Some languages use try and catch blocks to handle exceptions. While Objective-C has this ability, we
don’t use it very often in application code. Typically, an exception is a programmer error and should be
fixed in the code instead of handled at runtime.

Fast Enumeration
The newest version of Objective-C added a few syntax changes to the language. One if these is fast
enumeration. Before Objective-C 2.0, iterating through an NSArray looked like this:

for (int i = 0; i < [items count]; i++) {
    Possession *item = [items objectAtIndex:i];
    NSLog(@"%@", item);
}

Now you can write that code segment much more succinctly with fast enumeration in main.m.

    for (Possession *item in items)
        NSLog(@"%@", item);

    [items release];
    items = nil;



ptg

Chapter 2  Objective-C

58

    [pool drain];
    return 0;
}

Now that we have covered the basics of Objective-C, the next chapter will discuss memory
management in Cocoa Touch.

Challenge
Create a bug in your program by asking for the eleventh item in the array. Run it and note the
exception that gets thrown.



ptg

59

3
Memory Management

Understanding memory management in the Cocoa Touch framework is a major roadblock for
newcomers. Unlike Objective-C on the Mac, Objective-C on iOS has no garbage collector. Thus, it is
your responsibility to clean up after yourself.

Memory Management Basics
This book assumes you are coming from a C background, so the words “pointer,” “allocate,” and
“deallocate” shouldn’t scare you. If your memory is a little fuzzy, here’s a review.

An iOS device has a limited amount of random access memory. Random access memory (RAM) 
is much faster to write to and read from than a hard drive, so when an application is executing, 
all of the memory it consumes is taken from RAM. When an operating system like iOS launches
your application, it reserves a heaping pile of the system’s unused RAM for your application. Not-
so-coincidentally, the memory reserved for your application is called the heap. The heap is your
application’s playground; it can do whatever it wants with it, and it won’t affect the rest of the OS or
any other application.

When your application creates an instance of a class, it goes to the giant heap of memory it was given
and takes a little scoop. As your application runs, you create objects and start using more and more 
of the heap. Most objects are not permanently necessary, and when an object is no longer needed, the
memory it was consuming should be returned to the heap. Then that memory can be reused for an
object you create later.

This dynamic use, return, and reuse of memory requires proper management. Two major problems
occur when memory is not managed properly:

premature deallocation A chunk of memory is returned to the heap before a part of the
program is finished using it.

memory leak A chunk of memory is no longer needed by any part of a program,
but it is not freed up to be used for something else.

Managing memory in C

In the C programming language, you explicitly ask the heap for a certain number of bytes. This 
is called allocation, and it is the first stage of the heap life cycle shown in Figure 3.1. To allocate
memory, you use a function like malloc. If you want 100 bytes from the heap, you do something like
this:



ptg

Chapter 3  Memory Management

60

void function(void)
{
    char *buffer = malloc(100);
}

You then have 100 bytes with which you can perform a task like writing a string to these bytes and
then printing that string (which requires reading from those bytes). The location of the first of the 100
bytes is stored in the pointer buffer. You use this pointer to access the 100 bytes (Figure 3.1).

Figure 3.1  Heap allocation life cycle

When you don’t need those bytes anymore, you give them back to the heap by using the free function.
This is called deallocation.

void function(void)
{
    char *buffer = malloc(100);

    // Do something with buffer

    free(buffer);
}

Calling free returns the 100 bytes (starting at the address stored in buffer) to the heap. If another
malloc function is executed, any of these 100 bytes is fair game to be returned. Those bytes could be
divvied up into smaller sections, or they could become part of a larger allocation. Because you don’t
know what will become of those bytes when they are returned to the heap, it isn’t safe to access them
through the buffer pointer anymore.



ptg

Managing memory with objects

61

Managing memory with objects

Even though at the base level an object is also a certain number of bytes allocated from the heap, you
never explicitly call malloc or free with objects.

Every class knows how many bytes of memory it needs to allocate for an instance. When you create an
instance of a class by sending it the alloc message, the correct number of bytes is allocated from the
heap. Like with malloc, you are returned a pointer to this memory. However, when using Objective-
C, we think in terms of objects rather than raw memory. While our pointer still points to a spot in
memory, we don’t need to know the details of that memory; we just know we have an object.

Of course, once you allocate memory, you need a way to return it. Every object implements the
method dealloc. When an object receives this message, it returns its memory to the heap.

So, malloc is replaced with the class method alloc, and the function free is replaced with the instance
method dealloc. However, you never explicitly send a dealloc message to an object; an object is
responsible for sending dealloc to itself. That begs the question: if an object is in charge of destroying
itself, how does it know when it is safe and right to do so? This is where reference counting comes into
play.

Reference Counting
In the Cocoa Touch framework, Apple has adopted manual reference counting to manage memory and
avoid premature deallocation and memory leaks.

To understand reference counting, imagine a puppy. When the puppy is born, it has an owner. That
owner later gets married, and the new spouse also becomes an owner of that dog. The dog is alive
because they feed it. Later on, the couple gives the dog away. The new owner of the dog decides he
doesn’t like the dog and lets it know by kicking it out of the house. Having no owner, the dog runs
away and, after a series of unfortunate events, ends up in doggy heaven.

What is the moral of this story? As long as the dog had an owner to care for it, it was fine. When it no
longer had an owner, it ran away and ceased to exist. This is how reference counting works. When an
object is created, it has an owner. Throughout its existence, it can have different owners, and it can
have more than one owner at a time. When it has zero owners, it deallocates itself and goes to instance
heaven.

Using retain counts

An object never knows who its owners are. It only knows how many it currently has. It keeps track of
this number in its retain count (Figure 3.2).



ptg

Chapter 3  Memory Management

62

Figure 3.2  Retain count for a dog

When an object is created – and therefore has one owner – its retain count is set to one. When an object
gains an owner, it is sent the message retain, and its retain count is incremented. When an object loses
an owner, it is sent the message release, and its retain count is decremented. When that retain count
reaches zero, the object sends itself the message dealloc, which returns all of the memory it occupied
to the heap.

Imagine how you would write the code to implement this scheme yourself:

- (id)retain
{
    retainCount++;
    return self;
} 
- (void)release
{
    retainCount--;
    if (retainCount == 0)
        [self dealloc];
}

Let’s consider how retain counts work between objects by imagining you have a grocery list. You
created it, so you own it. Later, you give that grocery list to your friend to do the shopping. You don’t
need to keep the grocery list anymore, so you release it. Your friend is smart, so he retained the list as
soon as he got it. Therefore, the grocery list will still exist whenever your friend needs it, and he is now
the sole owner of the list.

Here is your code:

- (void)createAndGiveAwayTheGroceryList
{
   // Create a list
   GroceryList *g = [[GroceryList alloc] init];

   // (The retain count of g is 1)

   // Share it with your friend who retains it
   [smartFriend takeGroceryList:g];

   // (The retain count of g is 2)

   // Give up ownership
   [g release];



ptg

Using retain counts

63

   // (The retain count of g is 1)
   // But we don't really care here, as this method's
   // responsibility is finished.
}

Here is your friend’s code:

- (void)takeGroceryList:(GroceryList *)x
{
    // Take ownership
    [x retain];

    // Hold onto a pointer to the object
    myList = x;
}

Retain counts can still go wrong in the two classic ways: leaks and premature deallocation. Continuing
with the grocery list example, say you create and give a grocery list to your friend. He retains it, but
you don’t release it. Your friend finishes the shopping and releases the list. By now, you’ve forgotten
where the list is, and since you never released it, its retain count is greater than zero – and now always
will be. At this moment, nobody knows where this list is, but it still exists. This is a leak.

Think of the grocery list as an NSArray. You have a pointer to this NSArray in the method where you
created it. If you leave the scope of the method without releasing the NSArray, you’ll lose the pointer
along with the ability to release the NSArray later. (You can’t send a release message unless you know
where to send it.) Even if every other owner releases the NSArray, it will never be deallocated, and the
application can’t use that memory for something else.

Consider the other way this process can go wrong – premature deallocation. You create a grocery 
list and give it to a friend who doesn’t bother to retain it. When you release the list, it is deallocated
because you were its only owner. Later, when your friend tries to use the list, he can’t find it because it
doesn’t exist anymore.

This situation is worse that it sounds. Not only is your friend unable to do the shopping, but there are
also application-level consequences to premature deallocation. When an object attempts to access
another object that doesn’t exist, your application accesses bad memory, starts to fail, and eventually
crashes. On the other hand, if an object retains the objects it needs, then those objects are guaranteed to
exist, and this type of disaster is avoided.

Reference counting is all about responsibility: if something creates an object, it is an owner of that
object. Same goes for retaining an existing object. Releasing an object relinquishes that ownership. If
something takes ownership of an object, it is responsible for relinquishing its ownership when it can no
longer send messages to that object – when it no longer has a pointer to that object.

Let’s make these ideas more concrete with an example from the RandomPossessions tool you wrote 
in the last chapter. Open RandomPossessions.xcodeproj and then open main.m in the editor area. In
the main function, you created an instance of NSMutableArray named items. You know two things
about this instance: the main function owns it, and it has a retain count of one. As an owner, it is main’s
responsibility to send this instance the message release when it no longer needs it. The last time you
reference items in this function is when you print out all of its entries, so you can release it after that:



ptg

Chapter 3  Memory Management

64

    for (Possession *item in items) {
         NSLog(@"%@", item);
    }
    [items release];
    items = nil;

When the message release is sent, the object pointed to by items decrements its retain count. In this
case, the object is deallocated because main was its only owner. If another object had retained items, it
wouldn’t have been deallocated.

Using autorelease

You created items in main, use it there, and release it there. But what happens when you want to create
an object to give out, not to own and use yourself?

This is often the case with convenience methods – class methods that return instances of the class. In
the Possession class, you implemented a convenience method called randomPossession that returns
an instance of Possession with random parameters. The Possession class owns this instance because
it was created inside of a Possession class method, and the instance has a retain count of one.

However, the Possession class itself has no use for this instance; randomPossession is called by main
where it returns the newly created Possession instance.

Should you release the Possession in main?

for(int i = 0; i < 10; i++)
{
    Possession *p = [Possession randomPossession];
    [items addObject:p];

    // Don't do this!
    [p release];
}   

This is a very bad idea. The responsibility that is the core of reference counting includes not releasing
objects that don’t belong to you. That’s like cancelling your friend’s party. Or taking your neighbor’s
dog to the pound. If you don’t own it, you shouldn’t release it, and main does not own this Possession
instance – it did not allocate it or retain it; it only has a pointer to it, courtesy of the randomPossession
convenience method.

Releasing the possession is the responsibility of the Possession class, and it must be done in
randomPossession before the pointer to it is lost when the scope of the method runs out. But where in
randomPossession can you safely release the new Possession instance?

+ (id)randomPossession
{
    ... Create random variables ...
    Possession *newPossession = [[self alloc]
                        initWithPossessionName:randomName
                                valueInDollars:randomValue
                                  serialNumber:randomSerialNumber];

    // If we release newPossession here, 
    // the object is deallocated before it is returned.
    



ptg

Using autorelease

65

    return newPossession;

    // If we release newPossession here, this code is never executed.
}

What can you do? You need some way of saying “Don’t release this object yet, but I don’t want to 
be an owner of it anymore.” Fortunately, you can mark an object for future release by sending it the
message autorelease. When an object is sent autorelease, it is not immediately released; instead, it
is added to an instance of NSAutoreleasePool. This NSAutoreleasePool keeps track of all the objects
that have been autoreleased. Periodically, the autorelease pool is drained; it sends the message release
to the objects in the pool and then removes them.

An object marked for autorelease after its creation has two possible destinies: it can either continue its
death march to deallocation or another object can retain it. If another object retains it, its retain count
is now 2. (It is owned by the retaining object, and it has not yet been sent release by the autorelease
pool.) Sometime in the future, the autorelease pool will release it, which will set its retain count back
to 1.

Sometimes the idea of “the object will be released some time in the future” confuses developers. When
an iOS application is running, there is a run loop that is continually cycling. This run loop checks for
events, like a touch or a timer firing. Whenever an event occurs, the application breaks from the run
loop and processes that event by calling the methods you have written in your classes. When your code
is finished executing, the application returns to the loop. At the end of the loop, all autoreleased objects
are sent the message release, as shown in Figure 3.3. So, while you are executing a method, which
may call other methods, you can safely assume that an autoreleased object will not be released. 

Figure 3.3  Autorelease pool draining

The return value for autorelease is the instance that is sent the message, so you can nest autorelease
messages.

// Because autorelease returns the object being autoreleased, we can do this:
NSObject *x = [[[NSObject alloc] init] autorelease];



ptg

Chapter 3  Memory Management

66

At the end of randomPossession in Possession.m, autorelease the newly created instance so that the
receiver of this object can choose to retain it or just let it be destroyed.

    Possession *newPossession =
        [[self alloc] initWithPossessionName:randomName
                              valueInDollars:randomValue
                                serialNumber:randomSerialNumber];

    return [newPossession autorelease];
}

Now, in main.m, when the main function asks the Possession class for a random possession, the class
returns an autoreleased instance of Possession. At this point, nothing owns this instance. When the
Possession is added to the items array, the array retains it, and it has a retain count of one.

for(int i = 0; i < 10; i++)
{
    // Get a new Possession instance - no one owns it as it's been autoreleased
    Possession *p = [Possession randomPossession];

    // Add p to the items array, it will retain that Possession
    [items addObject:p];
}                

When will items release the Possession? When an NSMutableArray is deallocated, the objects it
contains are released. Thus, when main (the sole owner of items) releases items, the NSMutableArray
that items points to will release all its Possession instances (Figure 3.4). We’ve made sure these
Possession instances had only items as an owner, so these instances will also be deallocated.

Figure 3.4  Deallocating an NSMutableArray

Here are three memory management facts to remember when working with instances of
NSMutableArray:

• When an object is added to an NSMutableArray, that object is sent the message retain; the array
becomes an owner of that object and has a pointer to it.

• When an object is removed from an NSMutableArray, that object is sent the message release; the
array relinquishes ownership of that object and no longer has a pointer to it.



ptg

Accessors and memory management

67

• When an NSMutableArray is deallocated, it sends the message release to all of its entries.

Now let’s turn to another place in RandomPossessions where you should use autorelease. In
Possession.m, you override the description method of Possession’s superclass. This method creates
and returns an instance of NSString. Change the description method so that it returns an autoreleased
string.

- (NSString *)description
{
    NSString *descriptionString =
        [[NSString alloc] initWithFormat:@"%@ (%@): Worth $%d, Recorded on %@",
                            possessionName,
                            serialNumber,
                            valueInDollars,
                            dateCreated];
    return [descriptionString autorelease];
}

You can make this even simpler by using a convenience method. NSString, like many other
classes in the iOS SDK, includes convenience methods that return autoreleased objects –
just like randomPossession does now. Modify description to use the convenience method
stringWithFormat:. This ensures that the NSString instance that description creates and returns is
autoreleased.

- (NSString *)description
{
    return [NSString stringWithFormat:@"%@ (%@): Worth $%d, Recorded on %@",
                            possessionName,
                            serialNumber,
                            valueInDollars,
                            dateCreated];
}

Accessors and memory management
Up to this point, our examples of ownership have been ownership by creation. When you want to own
an object that you didn’t create, you must retain it. For example, if an object has instance variables that
point to other objects, that object should retain them. You can retain an object pointed to by an instance
variable in the setter method for that variable.

Let’s look at the instance variables of the Possession. Every instance of Possession has three
instance variables that are pointers to other objects (possessionName, serialNumber, and
dateCreated). Right now, the setter methods in Possession simply assign the incoming value to the
instance variable:

- (void)setPossessionName:(NSString *)str
{
    possessionName = str;
}        

Not good enough. If we give an NSString to a Possession for its possessionName, and the
Possession doesn’t retain it, then when we release the string, it will be destroyed. This is premature
deallocation because the Possession still needs that string as its possessionName. The Possession
will eventually send messages to or give out its possessionName. It will be embarrassing (and
application-crashing) if the object that the variable points to doesn’t exist.



ptg

Chapter 3  Memory Management

68

Therefore, in a setter method, an object should retain the objects pointed to by its instance variables
to make sure the objects continue to exist. Open Possession.m in the editor area. Modify the method
setPossessionName: so that the Possession retains the string passed to it:

- (void)setPossessionName:(NSString *)str
{
    [str retain];
    possessionName = str;
}            

The Possession will increment the retain count of the string passed to it, and no matter what happens
to that string elsewhere in code, it will still exist until the Possession releases it.

Now let’s look at what happens if you use the setter method to change the possessionName. For
example, imagine we named a possession “White Sofa,” and then a keen friend points out that it is
actually off-white:

Possession *p = [[Possession alloc] init];
[p setPossessionName:@"White Sofa"];

// Wait, no it isn't... 
[p setPossessionName:@"Off-white Sofa"];

Stepping through this code, p retains the string “White Sofa” and sets its possessionName to point at
that string. Then, it retains the string “Off-white Sofa” and sets its possessionName to point at that
string instead. This is a leak: the Possession lost its pointer to the “White Sofa” string but never
released its ownership of it (Figure 3.5).

Figure 3.5  Sending a setter message more than once

Therefore, in a setter method, you retain the new object, release the object you currently have, and then
make the assignment. Add the following line of code to this setter method in Possession.m.

- (void)setPossessionName:(NSString *)str
{
    [str retain];
    [possessionName release];



ptg

Implementing dealloc

69

    possessionName = str;
}                        

You must retain the new object before releasing the current one. More often than you might imagine,
possessionName and str will point at the same object. If you reverse the retain and release statements,
you would release the object that you had planned to retain as the possessionName. Oops.

Now write the matching code for the method setSerialNumber: in Possession.m.

- (void)setSerialNumber:(NSString *)str 
{
    [str retain];
    [serialNumber release];
    serialNumber = str;
}            

What happens in these setter methods if the incoming argument or the current instance variable
points to nil? If you pass nil as an argument in setPossessionName:, the Possession releases its
current possessionName and sets its possessionName to nil. The result is the Possession has no
possessionName. If you send setPossessionName: to a Possession that has no possessionName, you
will send the release message to nil, which has no effect.

Note that we’ve only been changing setter methods. Getter methods do not need additional memory
management. However, the object that sends the getter message may need to retain what is returned.

What about the other two instance variables? The dateCreated instance variable does not have a
setter method; it is created and given its value in the designated initializer. Therefore, the instance of
Possession already owns it, and it is ensured to exist. The valueInDollars instance variable needs no
memory management because valueInDollars is a primitive and not an object. 

Implementing dealloc
In the previous section, you released the object pointed to by possessionName when changing the
name of a Possession. It is just as important to release the objects pointed to by a Possession’s
instance variables when the Possession is being deallocated.

When the retain count of a Possession instance hits zero, it will send itself the message dealloc.
When the Possession instance is destroyed, its instance variables that are pointers to other objects are
also destroyed (but not the objects they point to). Thus, you must ask yourself if the Possession owns
these objects, and if it does, you must release them before these pointers are destroyed.

You own the objects pointed to by possessionName and serialNumber by virtue of retaining them in
their setter methods. You also own dateCreated because you allocated it in the designated initializer
for Possession.

Having established that you own these objects, you must release them before you lose your pointers
to them. You can do this at the beginning of the dealloc method of Possession. In Possession.m,
override dealloc to release the instance variables that the Possession owns.

- (void)dealloc
{
    [possessionName release];
    [serialNumber release];
    [dateCreated release];
    [super dealloc];
}



ptg

Chapter 3  Memory Management

70

Always call the superclass implementation of dealloc at the end of the method. When an object 
is deallocated, it should release all of its own instance variables first. Then, because you call the
superclass’s implementation, it goes up its class hierarchy and releases any instance variables of its
superclass. In the end, the implementation of dealloc in NSObject returns the object’s memory to the
heap.

Why send release to instance variables and not dealloc? One object should never send dealloc to
another. Always use release and let the object check its own retain count and decide whether to send
itself dealloc.

Simplifying accessors with properties
Now that you’ve added memory management to your setter methods, let’s look at a shortcut for
creating accessor (both setter and getter) methods called properties. A property declares accessors for
you in a header file. In Possession.h, replace the accessor declarations with properties.

@interface Possession : NSObject 
{
    NSString *possessionName; 
    NSString *serialNumber; 
    int valueInDollars; 
    NSDate *dateCreated;    
} 
+ (id)randomPossession;
    
- (id)initWithPossessionName:(NSString *)name
              valueInDollars:(int)value
                serialNumber:(NSString *)sNumber;

- (id)initWithPossessionName:(NSString *)name;

@property NSString *possessionName;
@property NSString *serialNumber;
@property int valueInDollars;
@property NSDate *dateCreated;

@end

Notice that properties are declared in the method area and not in the curly brackets with the instance
variables. They also are, by convention, declared after class methods and initializers but before other
instance methods.

Properties replace the accessor declarations, which saves a few lines of typing in the header file.
But that’s not all. You can also use properties to automatically generate the implementations of the
accessor methods. You generate the accessors by synthesizing the property in the implementation file.
But before we get to the actual synthesizing, we need to talk about property attributes.

Every property has a set of attributes that tailors the accessor methods it can generate. These attributes
are listed in the property declaration. There are three categories of attributes:

atomicity We will always use nonatomic for this attribute. There is rarely a reason to
use the default, atomic, and the discussion of why is outside the scope of
this book. 



ptg

Simplifying accessors with properties

71

writability By default, a property is readwrite. A readwrite property will generate
a setter and getter method. The other option, readonly, only generates a
getter method.

memory management This attribute category only applies to the setter method. By default, a
property is assign. In this case, a property’s setter method only assigns the
incoming argument to its instance variable. The other options are retain
and copy, where the incoming argument is either retained or copied and
then assigned to the instance variable. (We’ll talk more about copy in a
moment.)

In Possession.h, add attributes to the property declarations to match the current accessor
implementations.

// The generated accessor methods for this property will be a getter 
// and a setter that retains the incoming object and releases the old object.
@property (nonatomic, retain) NSString *possessionName;

// Ditto to the previous property 
@property (nonatomic, retain) NSString *serialNumber;

// The generated accessor methods for this property will be a getter and a setter 
// that simply assigns the incoming value to the ivar valueInDollars. 
@property (nonatomic) int valueInDollars;

// The only generated accessor method for this property will be a getter.
@property (nonatomic, readonly) NSDate *dateCreated;            

Now we can synthesize the properties in the implementation file. In Possession.m, remove all of the
accessor method implementations and synthesize the properties instead.

@implementation Possession 
@synthesize possessionName, serialNumber, valueInDollars, dateCreated;

Build and run the application. Everything should work the same as before.

Let’s review what’s changed here. Before, you explicitly declared and implemented all of your
accessor methods. Now you’ve replaced the accessor declarations with property declarations and the
accessor implementations with an @synthesize statement. The Possession keeps the same behavior
with significantly less typing. In programming, whenever you can specify details and let the system do
the work, it not only saves you typing, but it also helps prevent typos and other errors.

(So why did we make you type in all the accessors first instead of going straight to properties? It’s
important to understand what properties actually do. Too many new developers use properties without
understanding the code behind them, and it trips them up later.)

There are a couple of additional points to make about properties. First, you do not have to synthesize a
property. You can declare a property in the header file and implement the accessor methods yourself.
This is useful for situations where you want to customize the accessors. You can also synthesize a
property and implement one of the accessor methods; this overrides the method you replaced without
affecting its partner.

Second, the name of a property does not have to match the name of the instance variable. In a
synthesize statement, you can point a property at an instance variable of another name.



ptg

Chapter 3  Memory Management

72

// This is just an example, don't type this code in.                
@interface Possession : NSObject 
{
    ... 
}            
@property (nonatomic, assign) NSString *name;
@end

@implementation Possession

@synthesize name = possessionName;
// This is equivalent to 
// - (void)setName:(NSString *)str 
// { 
//      possessionName = str; 
// } 
// - (NSString *)name 
// { 
//      return possessionName; 
// } 
@end

This links the name property to the possessionName instance variable; therefore, when sending the
message name to an instance of Possession, the value of possessionName is returned.

Finally, you don’t even need an instance variable at all. When you synthesize a property, the compiler
looks for an instance variable of the same name and if it finds one, it uses that instance variable. If a
matching instance variable is not found, one is automatically created for you.

copy and mutableCopy

There are times when instead of retaining an object, you want to copy an object. When you send the
message copy to an instance, a brand new instance is created that has the same values as the original
instance. Copying an object gives you a brand new object with a retain count of one, and the retain
count of the original object is unchanged. The object that sent the copy message is the owner of the
new object.

You typically want to make a copy of an object if it is mutable. For example, an NSMutableArray
is a mutable array. There is also an NSMutableString, a mutable subclass of NSString.
Since NSMutableString “is a” NSString, it is conceivable that you could have an instance of
NSMutableString as the possessionName of a Possession.

Imagine what would happen if an NSMutableString was set as the possessionName of a Possession.
Another object that had a pointer to this string could change it, which would also change the name of
the Possession. The Possession would have no idea this had happened.

NSMutableString *str = [[NSMutableString alloc] initWithString:@"White Sofa"];

// This is okay, as NSMutableString is a NSString since it is a subclass
[possession setPossessionName:str];

[str appendString:@" - Stained"]; 
// possession's name is now "White Sofa - Stained"



ptg

Retain count rules

73

Typically, you do not want this behavior. Changing an object’s instance variables without using an
accessor is usually bad form. You can use copy to prevent the possibility of instance variables being
changed behind your back.

In general, if a class has a mutable subclass, properties that are of the type of that class should have the
attribute copy instead of retain. Then you will have a copy of the object that is all yours.

In Possession.h, change the memory management attribute of the two NSString properties to copy.

@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;

The generated setter methods for these properties now look like this:

- (void)setPossessionName:(NSString *)str
{
    id t = [str copy];
    [possessionName release];
    possessionName = t;
}                

When you copy an object, the copy returned is immutable. For instance, if you copy an
NSMutableArray, the new object is simply an NSArray. (If you want a copy that can change, you must
send the message mutableCopy instead.) Keep in mind, not all classes have mutable subclasses, and not
all objects can be copied.

Congratulations! You’ve implemented retain counts and fixed the memory management problems in
RandomPossessions. Your application now manages its memory like a champ!

Keep this code around because you are going to use it in later chapters. 

Retain count rules

Let’s make a few rules about retain counts to carry with us. In these rules, we use the word “you” to
mean “an instance of whatever class you are currently working on.” It is a useful form of empathy: you
imagine that you are the object you are writing. So, for example, “If you retain the string, it will not 
be deallocated.” really means “If an instance of the class that you are currently working on retains the
string it will not be deallocated.”

Here, then, are the rules. (Implementation details are in parentheses.)

• If you create an object using a method whose name starts with alloc or new or contains copy, then
you have taken ownership of it. (That is, assume that the new object has a retain count of 1 and is
not in the autorelease pool.) You have a responsibility to release the object when you no longer need
it. Here are some of the common methods that convey ownership: alloc (which is always followed
by an init method), copy, and mutableCopy.

• An object created through any other means – like a convenience method – is not owned by you.
(That is, assume it has a retain count of one and is already in the autorelease pool, and thus doomed
unless it is retained before the autorelease pool is drained.)

• If you don’t own an object and you want to ensure its continued existence, take ownership by
sending it the message retain. (This increments the retain count.)



ptg

Chapter 3  Memory Management

74

• When you own an object and no longer need it, send it the message release or autorelease.
(release decrements the retain count immediately. autorelease causes the message release to get
sent when the autorelease pool is drained.)

• As long as an object has at least one owner, it will continue to exist. (When its retain count goes to
zero, it is sent the message dealloc.)

One of the tricks to understanding memory management is to think locally. The Possession class
does not need to know anything about other objects that also care about its possessionName or
serialNumber. As long as a Possession instance retains objects it wants to keep, you won’t have
any problems. Programmers new the language sometimes make the mistake of trying to keep tabs on
objects throughout an application. Don’t do this. If you follow these rules and always think local to a
class, you never have to worry what the rest of an application is doing with an object.

Earlier in this chapter, we made changes to the accessor methods of Possession so they would
properly handle memory management. Before that, the application ran perfectly fine. Why? The
objects that were created and set as the instance variables of the Possession instances were never
released. Therefore, it didn’t matter if we retained them. However, in a real application, there are many
more moving parts, and objects will be created and released. With proper memory management in
place, this Possession class will now stand up in a real-world application.

For the More Curious: More on Memory
Management
Throughout the book, we include “For the More Curious” sections that go into deeper explanations 
of topics presented in the chapter. These sections are not absolutely essential to get you where you’re
going, but we hope you’ll find them interesting and useful. Because these sections are more in-depth
than the chapter, they are often (but not always) more advanced. If you read through one of these
sections and feel stupid, don’t worry; everyone felt stupid the first couple of times these concepts were
presented to them.

In this chapter, we talked about the heap and how every object lives inside this part of memory. There
are actually two more parts of memory that serve different purposes: the data segment and the stack.
The data segment is where the application executable lives, and all of the instructions that make up
your methods and functions live here. This area in memory never changes after an application is
launched. The code is loaded into memory once and isn’t modified. When you create a literal NSString
like so,

NSString *foo = @"A string";            

the memory for this string lives in the data segment as well. We still treat it as an object, though, and if
another object wants to keep this string, it must copy or retain it.

The stack is an area of memory reserved for handling the calling of functions. (A method is really just
a function under the hood.) When you call a function, a chunk of the stack is reserved specifically for
that function. We call this chunk a stack frame. The stack frame holds the address of the function that
called it so that when the function ends, it can return to the previous function. It also contains any of
the arguments passed to the function and a space to store the return value of a function. Additionally, it
reserves memory for the local variables of a function.



ptg

For the More Curious: More on Memory Management

75

- (void)fido
{
    int x = 5;
    NSString *str = [[NSString alloc] init];
    
    // The variable "str" is a local variable and it lives in the stack frame
    // The string it points to lives on the heap.
}            

Figure 3.6  Pointer on the stack, object on the heap

When a function exits, the stack frame is destroyed along with all of the local variables it had.

We also made a distinction between instance variables that are pointers to objects and instance
variables that are primitives. When we add instance variables to a class, we are increasing the size in
memory of an instance of that class by the amount of memory that instance variable needs to store its
information.

A pointer instance variable is simply four bytes: the amount needed to hold an address of another
object that lives on the heap. A primitive’s memory is stored inside that instance, so adding a double,
for example, would add 8 bytes to the size of that instance.

A Possession has three pointers instance variables and one int, which are each 4 bytes. Therefore, the
Possession is 16 bytes plus the amount of bytes an NSObject needs. Let’s pretend an NSObject is also
4, for a total of 20 bytes needed per Possession.

So, when instantiating a Possession, 20 bytes are allocated from the heap. Even if the NSString that is
the possessionName of that Possession is 100 bytes (because it has 100 characters), the Possession
itself remains 20 bytes. This can help us understand the difference between pointers to objects and
objects themselves.



ptg

This page intentionally left blank 



ptg

77

4
Delegation and Core

Location

In this chapter, we will introduce delegation, a recurring design pattern of Cocoa Touch development
and the Core Location framework, which provides the location-finding features of iOS. In addition, we
will also take a quick look at how to use the debugger that Xcode provides to find and fix problems in
your code.

To learn about delegation, you’re going to write an application called Whereami that uses delegation
over and over again. This application will display an interactive map and allow the user to tag the
current location with a pin and a title. This exercise spans two chapters. At the end of this chapter, the
application won’t look like much, but the final product – and the clearer understanding of delegation –
will be worth it.

From the File menu, select New and then New Project.... On the next window, select Application from
the iOS section and create a Window-based Application. Name the project Whereami and select iPhone
as the device family.

Projects, targets, and frameworks
Let’s look more closely at the what this new project actually is. A project is a file that contains 
a list of references to other files (source code, resources, frameworks, and libraries) as well as a
number of settings that lay out the rules for items within the project. Projects end in .xcodeproj, as in
Whereami.xcodeproj.

A project always has at least one target. A target uses the files in the project to build a particular
product. When you build and run, you build and run the target, not the project.

The product the target builds is typically an application, although it can be a compiled library or a unit
test bundle. When you create a new project and choose a template, Xcode automatically creates a target
for you. When you created the Whereami project, you selected an iOS application, so Xcode created an
iOS application target and named it Whereami.

In the project navigator, select the Whereami project (the item at the very top). Notice that the
Whereami project and the Whereami target are listed in the editor area. Select the Whereami target to
see the details and settings that define this target. (We won’t discuss all of these now, but we’ll come
back to different ones as we need them.) From the choices at the top of the editor area, select Build
Phases (Figure 4.1). The target’s build phases are a series of steps, and these steps lead, in this case, to
an iOS application.



ptg

Chapter 4  Delegation and Core Location

78

Figure 4.1  Build phases of the Whereami target

The essential build phases for creating an iOS application are Compile Sources, Link Binary With
Libraries, and Copy Bundle Resources. We’ll look at these phases in detail at the end of the chapter.
For now, let’s focus on Link Binary With Libraries and frameworks.

A framework is a collection of related classes that you can add to a target. Cocoa Touch is a collection
of frameworks. One of the benefits of Cocoa Touch being organized into frameworks is that you only
have to add the frameworks that a target needs.

To see what frameworks are already linked to your target, click the disclosure button next to Link
Binary With Libraries. Right now, there are three. The UIKit framework contains classes that make up
the iOS user interface, the Foundation framework includes classes like NSString and NSArray, and
Core Graphics enables the graphics library that we will dig into starting in Chapter 6.

Whereami also needs the Core Location framework, which includes the classes related to finding a
device’s location. To add this framework to your target, click the plus (+) button in the bottom left
corner of the Link Binary With Libraries section. A sheet that displays the available frameworks will
appear (Figure 4.2). Select CoreLocation.framework from this list and click Add.



ptg

Core Location

79

Figure 4.2  Adding the Core Location framework

CoreLocation.framework will now appear in the Link Binary With Libraries phase and in the project
navigator. In the project navigator, you can move the framework to the Frameworks group to keep your
project tidy, but you don’t have to.

Make sure you remember how to add a framework to a project – you will have to do it fairly
frequently! 

Core Location
The Core Location framework contains the classes that enable applications to determine the device’s
geographical location. No matter what type of iOS device is being used, the Core Location code you
write does not change.

The classes in the Core Location framework are all prefixed with CL. In fact, every framework in
Cocoa Touch has its own prefix – UIKit classes are prefixed with UI, Foundation classes with NS,
etc. Prefixing class names is a convention that prevents namespace collisions. For example, pretend
that both Foundation and Core Location have classes called Object. If you wrote an application
that used both frameworks, any instantiation of an Object would leave the compiler in a quandary 
– which Object does this code refer to? Note that prefixes aren’t just for frameworks. Objective-C
programmers typically include prefixes of two or three letters in the names of classes they create for
the same reason.

In addition to adding the Core Location framework to your target, you also have to import the
framework’s header file into files that need to know about Core Location classes. Every framework has
a header file that imports the header file of every class in that framework. This file is always the name
of the framework suffixed with .h.



ptg

Chapter 4  Delegation and Core Location

80

Open WhereamiAppDelegate.h and import the Core Location header file at the top. Also, add an
instance variable to hold a pointer to an instance of CLLocationManager – one of the classes in the
Core Location framework.

#import <UIKit/UIKit.h> 
#import <CoreLocation/CoreLocation.h>

@interface WhereamiAppDelegate : NSObject <UIApplicationDelegate>
{
    CLLocationManager *locationManager; 
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

CLLocationManager is the class that interfaces with the location hardware of the device. An instance
of CLLocationManager has a number of properties that specify its behavior. We’re going to set two of
them: distanceFilter and desiredAccuracy.

The distanceFilter property determines how far the device must move in meters before
CLLocationManager will tell your application that the location has changed. The desiredAccuracy
property tells the location manager how accurate the location-finding should be. This is important
because there is a tradeoff between the accuracy of the location and the amount of battery life and time
required to determine the location. Moreover, the accuracy ultimately depends on the type of device
the user has, the availability of cellular towers and satellites, and the availability of known wireless
access points.

Once its properties are set, the CLLocationManager is told to start working. It then does its thing
while the rest of the application continues with other tasks – like accepting user input or updating the
interface.

Open WhereamiAppDelegate.m, and in the application:didFinishLaunchingWithOptions: method,
instantiate a CLLocationManager to track the device’s location. For this application, you will set its
properties to request the most accurate location data as often as possible.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{    
    // Create location manager object
    locationManager = [[CLLocationManager alloc] init];

    // We want all results from the location manager
    [locationManager setDistanceFilter:kCLDistanceFilterNone];

    // And we want it to be as accurate as possible
    // regardless of how much time/power it takes
    [locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

    // Tell our manager to start looking for its location immediately
    [locationManager startUpdatingLocation];

    // This line may say self.window, don't worry about that
    [[self window] makeKeyAndVisible];
    return YES;
}



ptg

Receiving updates from CLLocationManager

81

Receiving updates from CLLocationManager

If you build and run this code right now, the location manager will get your current location, but you
won’t see this information anywhere. Your application has to retrieve the location from the location
manager. You might guess that there is a property on CLLocationManager called currentLocation
that we can access to retrieve the location. It’s a good guess, but there isn’t. You could try polling the
location manager to get the location, but the amount of time it takes to determine the current location is
too variable for polling to be efficient.

The best solution is for the location manager to take matters into its own hands. Whenever it finds the
current location, it sends the message locationManager:didUpdateToLocation:fromLocation:. Who
is sent this message? The location manager’s delegate – and we get to decide who that is.

Every CLLocationManager has a delegate property, and we can set this property to point to
the object that should receive the “location found” message. For Whereami, this object is the
WhereamiAppDelegate (Figure 4.3).

Figure 4.3  Whereami object diagram

In WhereamiAppDelegate.m, update the application:didFinishLaunchingWithOptions: method to
set the delegate property of the location manager to be the instance of WhereamiAppDelegate.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{
    locationManager = [[CLLocationManager alloc] init];
    
    // There will be a warning from this line of code; ignore it for now
    [locationManager setDelegate:self];
                    
    [locationManager setDistanceFilter:kCLDistanceFilterNone];

One of the arguments of the locationManager:didUpdateToLocation:fromLocation: message is an
instance of a class named CLLocation. When a CLLocationManager has enough data to produce a new
location, it creates an instance of CLLocation, which contains the latitude and longitude of the device
(Figure 4.4). It also contains the accuracy of its reading and, depending on the device, the elevation
above sea level.



ptg

Chapter 4  Delegation and Core Location

82

Figure 4.4  A CLLocation object

Because the CLLocationManager sends locationManager:didUpdateToLocation:fromLocation: to
the instance of WhereamiAppDelegate, you implement this method in WhereamiAppDelegate.m. (Be
very careful that there are no typos or capitalization errors, or it won’t be called. The selector of the
message the location manager sends must exactly match the selector of the method implemented.)

- (void)locationManager:(CLLocationManager *)manager 
    didUpdateToLocation:(CLLocation *)newLocation 
           fromLocation:(CLLocation *)oldLocation
{
    NSLog(@"%@", newLocation);
}

You also need to know if the CLLocationManager fails to find its location and
why. If it fails, CLLocationManager sends a different message to its delegate –
locationManager:didFailWithError:. In WhereamiAppDelegate.m, implement this method. 

- (void)locationManager:(CLLocationManager *)manager
       didFailWithError:(NSError *)error
{
    NSLog(@"Could not find location: %@", error);
}

Build and run the application. You can choose whether to build to the simulator or to a device by
selecting the appropriate item from the Scheme pop-up button next to the Run and Stop buttons.
After giving permission for the application to use location services and waiting a few seconds while
the location is found, your console should display the description of the location object, which looks
something like this: 

<+37.33168900, -122.03073100> +/- 100.00m (speed -1.00 mps / course -1.00)

Delegation
When you set the delegate property of the CLLocationManager and implemented the two methods
in WhereamiAppDelegate, you were using a design pattern called delegation. This is a very common
pattern in Cocoa Touch, and many classes have a delegate property.



ptg

Protocols

83

Delegation is an object-oriented approach to callbacks. A callback is a function that is supplied in
advance of an event and is called every time the event occurs. Some objects need to make a callback
for more than one event. For instance, the location manager wants to “callback” when it finds a new
location and when it encounters an error.

However, there is no built-in way for two (or more) callback functions to coordinate and share
information. This is the problem addressed by delegation – we supply a single delegate to receive all of
the event messages for a particular object. This delegate object can then store, manipulate, act on, and
relay the related information as it sees fit.

Let’s take a moment to compare delegation with another object-oriented approach to callbacks: target-
action pairs. (You used this approach in Chapter 1 with the UIButtons in your Quiz application.) In a
target-action pair, you have a target object that you send an action message to when an event occurs.
The target must implement the action message, and, for each event, a new target-action pair must be
created. With delegation, on the other hand, you set the delegate once and can then send it messages
for different events. The delegate will implement the method for each event it wants to hear about
(Figure 4.5). 

Figure 4.5  Target-Action vs. Delegation

Also, with a target-action pair, you can send the target any action message you choose. Delegation,
however, does not offer this flexibility; an object can only send its delegate a specific set of messages
listed in a protocol. 

Protocols

For every object that can have a delegate, there is a corresponding protocol that declares the messages
that the object can send its delegate. The delegate implements methods from the protocol for events it
is interested in. When a class implements methods from a protocol, it is said to conform to the protocol.

The protocol for CLLocationManager’s delegate looks like this:

// Note that a few methods have been omitted 
// from the real declaration of this protocol 
// so we can focus on what is going on            



ptg

Chapter 4  Delegation and Core Location

84

@protocol CLLocationManagerDelegate <NSObject>

@optional

- (void)locationManager:(CLLocationManager *)manager
    didUpdateToLocation:(CLLocation *)newLocation
           fromLocation:(CLLocation *)oldLocation;

- (void)locationManager:(CLLocationManager *)manager
       didUpdateHeading:(CLHeading *)newHeading;

- (BOOL)locationManagerShouldDisplayHeadingCalibration:(CLLocationManager *)manager;

- (void)locationManager:(CLLocationManager *)manager
         didEnterRegion:(CLRegion *)region;

- (void)locationManager:(CLLocationManager *)manager
       didFailWithError:(NSError *)error;
@end            

This protocol, like all protocols, is declared with the directive @protocol followed by its name,
CLLocationManagerDelegate. The NSObject in angled brackets refers to the NSObject protocol and
tells us that CLLocationManagerDelegate includes all of the methods in the NSObject protocol. The
methods specific to CLLocationManagerDelegate are declared next, and then the protocol is closed
with an @end directive.

Note that a protocol is not a class; it is simply a list of methods. You cannot create instances of a
protocol, it cannot have instance variables, and these methods are not implemented anywhere in the
protocol. Instead, the implementation is left to each class that conforms to the protocol.

We call protocols used for delegation delegate protocols, and the naming convention for a delegate
protocol is the name of the delegating class plus the word Delegate. Not all protocols are delegate
protocols, however, and we will see an example of a different kind of protocol in the next chapter.

All of the protocols we’ve mentioned so far are part of the iOS SDK, but you can also write your own
protocols. We’ll do that later in Chapter 14 and Chapter 26.

Protocol methods

In the CLLocationManagerDelegate protocol, we see two types of methods: methods that handle
information updates and methods that handle requests for input. For example, the location
manager’s delegate implements the locationManager:didEnterRegion: method if it wants to
hear from the location manager that the device has entered a particular region. On the other hand,
locationManagerShouldDisplayHeadingCalibration: is the message a location manager sends its
delegate to ask if it should display the heading calibration. The method returns a BOOL value, which is
the delegate’s answer.

Methods declared in a protocol can be required or optional. By default, protocol methods are required.
If a protocol has optional methods, these are preceded by the directive @optional. Looking back at
the CLLocationManagerDelegate protocol, you can see that all of its methods are optional. This is
typically true of delegate protocols.

Before sending an optional method, the object first asks its delegate by sending another message,
respondsToSelector:. Every object implements this method, which checks at runtime whether an
object implements a given method. You can turn a selector into a value you can pass as an argument



ptg

Delegation, controllers, and memory management

85

with the @selector() directive. For example, CLLocationManager could implement a method that
looks like this:

- (void)finishedFindingLocation:(CLLocation *)newLocation
{
    // locationManager:didUpdateToLocation:fromLocation:
    // is an optional method, so we check first.
    SEL updateMethod = @selector(locationManager:didUpdateToLocation:fromLocation:);

    if ([[self delegate] respondsToSelector:updateMethod]) {
        // If the method is implemented, then we send the message.
        [[self delegate] locationManager:self 
                     didUpdateToLocation:newLocation 
                            fromLocation:oldLocation];
    } 
}            

If a method in a protocol is required, then the message will be sent without checking first. This means
that if the delegate does not implement that method, an unrecognized selector exception will be
thrown, and the application will crash.

To prevent this from happening, the compiler will insist that a class implement the required methods in
a protocol. But, in order for the compiler to know to check for these methods, the class must explicitly
state that it conforms to a protocol. This is done in the class header file: the protocols that a class
conforms to are added to a comma-delimited list inside angled brackets in the interface declaration
following the superclass.

In WhereamiAppDelegate.h, declare that WhereamiAppDelegate conforms to the
CLLocationManagerDelegate protocol.

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate>

Build the application again. (Now that you’ve declared that WhereamiAppDelegate conforms to the
CLLocationManagerDelegate protocol, the warning from the line of code where you set the delegate
of the locationManager disappears.)

Notice the UIApplicationDelegate protocol in this declaration. The method
application:didFinishLaunchingWithOptions: is from the UIApplicationDelegate protocol. It’s 
a message that the UIApplication can send its delegate when the application is done launching and is
about to start accepting user input. For Whereami, the delegate of the UIApplication is the instance of
WhereamiAppDelegate. (The template set this property for you.) So, that delegate method is declared in
the UIApplicationDelegate protocol and implemented in WhereamiAppDelegate.m.

Delegation, controllers, and memory management

From the perspective of the model-view-controller pattern, WhereamiAppDelegate is a controller
object. It is typically the case that delegates are controller objects.

Delegates are never retained by their delegating objects. Why? Consider WhereamiAppDelegate. It
owns locationManager and is also the delegate of locationManager. If the locationManager retained
the WhereamiAppDelegate, these two objects would own each other and create something called a
retain cycle. We will discuss retain cycles in more depth in Chapter 6, but the idea is if two objects
retain each other, then they will never be deallocated.



ptg

Chapter 4  Delegation and Core Location

86

To avoid retain cycles, delegate properties use the assign attribute instead of retain or copy. We call
this a “weak reference,” where an object has a pointer to another object but does not retain it.

@property (nonatomic, assign) id delegate;            

Remember that the point of owning an object is that you can rely on its existence and will never get
caught sending messages to an object that doesn’t exist. So, if an object cannot retain its delegate, then
the delegate must be responsible and tell the object when it is being deallocated.

In this application, however, the WhereamiAppDelegate instance never gets deallocated. Check for
yourself – place an NSLog in WhereamiAppDelegate’s dealloc, and you’ll never see it. Some controller
objects are made to exist the entire time an application is running, and this is always the case for the
AppDelegate. For classes like this, we typically don’t bother writing dealloc methods. When you first
begin programming for iOS, it may be difficult to determine whether a controller will be destroyed.
When you aren’t sure, you should implement dealloc – it never hurts to do so.

So let’s go ahead and examine what WhereamiAppDelegate’s dealloc method would look like if we
were to implement it. We know it needs to remove itself as the location manager’s delegate. But there
is one other important thing it must do – release the locationManager instance variable.

- (void)dealloc
{
    if([locationManager delegate] == self)
        [locationManager setDelegate:nil];

    [locationManager release];
    [window release];
    [super dealloc];
}            

As you learned in the last chapter, releasing instance variables when an object is deallocated
is important for freeing up memory and avoiding memory leaks. The object pointed to by
locationManager is owned by the instance of WhereamiAppDelegate because you alloc’ed it in
application:didFinishLaunchingWithOptions:. So, if the WhereamiAppDelegate was ever going to
be destroyed, it would need to release locationManager in dealloc.

Note that the possibility of not implementing dealloc is for controller objects only; model and view
objects should always have dealloc methods. Also, keep in mind that each of your applications so
far has only had a single controller object, the AppDelegate. Soon, you’ll build applications that
have multiple controllers, some of which will definitely need to be deallocated. We will return to this
discussion once we start building more complicated applications.

Using the Debugger
When an application is launched from Xcode, the debugger is attached to that application. The
debugger monitors the current state of the application, like what method it is currently executing and
the values of the variables that are accessible from that method. Using the debugger can help you
understand what an application is actually doing, which, in turn, helps you find and fix bugs.

One way to use the debugger is to set a breakpoint. Setting a breakpoint on a line of code pauses the
execution of the application at that line (before it executes). This is useful when your application is not
doing what you expected and you need to look at what is really happening.



ptg

Using the Debugger

87

In WhereamiAppDelegate.m, find the first line of code in
application:didFinishLaunchingWithOptions: where you instantiate the CLLocationManager. Set 
a breakpoint by clicking the gutter (the lightly shaded bar on the left side of the editor area) next to that
line of code. The blue indicator shows you where the application will “break” the next time you run it
(Figure 4.6).

Figure 4.6  A breakpoint

Build and run the application. The application will start and then stop before the first line of
application:didFinishLaunchingWithOptions: is executed. Notice the green indicator that appears
on the same line as the breakpoint. This indicator shows you the current point of execution. 

Now our application is temporarily frozen in time, and we can examine it more closely. In the
navigator area, click the icon to open the debug navigator. This navigator shows a stack trace of 
where the breakpoint stopped execution. The slider at the bottom of the debug navigator expands and
collapses the stack. Drag it to the right to see all of the methods in the stack trace. (Figure 4.7).

Figure 4.7  The debug navigator

The method where the break occurred is at the top of the stack trace. It was called by the method just
below it, which was called by the method just below it, and so on. This chain of method calls continues



ptg

Chapter 4  Delegation and Core Location

88

all the way back to main. Notice that the two methods that you implemented are in black text and the
methods Apple implemented are in gray.

Select the method at the top of the stack. This will display the implementation of
application:didFinishLaunchingWithOptions: in the editor area. Below the editor area, check out
the variables view to the left of the console. This area shows the variables available within the scope of
this method along with their current values (Figure 4.8).

Figure 4.8  Debug area with Variables View

(If you don’t see the variables view, find the control above the console. Click the center button
to see both the console and the variables view.)

In the variables view, a variable that is a pointer to an object shows the object’s address in memory.
(There are some exceptions, like NSString, where the actual string is shown instead.) A variable that is
a primitive, like int, shows its actual value.

Now click the disclosure button next to self. The first item under self is its superclass. In the
context of this method, self is a pointer to the instance of WhereamiAppDelegate, so its superclass
is NSObject. Clicking the disclosure button next to NSObject shows what self inherits from its
superclass.

After the superclass, you can check out the object’s instance variables, which for
WhereamiAppDelegate, is just locationManager. The breakpoint is set to the line that creates the
instance of CLLocationManager and assigns it to locationManager. That line of code has yet to be
executed, so locationManager is still set to nil (0x0).

In addition to giving you a snapshot of the application at a given point, the debugger also allows you to
“step through” your code line by line and watch the behavior of your application as each line executes.
The buttons that control the execution are on the debugger bar. This bar sits between the editor area
and the debug area (Figure 4.9).

Click the button to step over a line. This will execute just the current line of code, which instantiates
the CLLocationManager. Notice that the green execution indicator moves to the next line. Even more
interesting, the variables view shows that the value of locationManager has changed to a valid address
in memory – this object is now alive and well.



ptg

Using the Debugger

89

Figure 4.9  Debugger bar

At this point, you could continue stepping through the code to see what happens. Or you could click
the button to continue executing your code normally. Or you could step into a method. Stepping into a
method takes you to the method that is called by the line of code that currently has the green execution
indicator. Once you’re in the method, you have the chance to step through its code in the same way.

Let’s add a method that we can step into and out of. Declare the following method in
WhereamiAppDelegate.h.

#import <UIKit/UIKit.h> 
#import <CoreLocation/CoreLocation.h>

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate>
{
    CLLocationManager *locationManager; 
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;

- (void)doSomethingWeird;

@end

In WhereamiAppDelegate.m, implement this method to log some stuff to the console.

- (void)doSomethingWeird
{
    NSLog(@"Line 1");
    NSLog(@"Line 2");
    NSLog(@"Line 3");
}



ptg

Chapter 4  Delegation and Core Location

90

Next in WhereamiAppDelegate.m, send this message to the instance of WhereamiAppDelegate in
application:didFinishLaunchingWithOptions:.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{    
    // Create location manager object -
    // it will send its messages to our WhereamiAppDelegate
    locationManager = [[CLLocationManager alloc] init];
    
    [self doSomethingWeird];                

Finally, drag your breakpoint to this newly-implemented line. Build and run the application.

When the execution halts, click the button to step into this method. The execution indicator will jump
inside the doSomethingWeird method to the first line of its implementation. Now click the button to
step over a line. The line of code that logs Line 1 will execute, and you will see its text in the console.

The execution indicator is now at the statement that logs Line 2. If you’ve decided that you’ve
seen enough of this fascinating method, you can click the button to step out of it. Notice that
the rest of the log statements appear in the console, and the execution indicator is now back in
application:didFinishLaunchingWithOptions: – right after the call to doSomethingWeird. This
behavior is important to understand: when you step out of a method, you don’t cancel its execution; the
method will finish normally and return to the code that called it.

To remove the breakpoint, simply drag it off the gutter. Or click the icon in the navigator selector to
reveal the breakpoint navigator and see all the breakpoints in your project. From there, you can select a
breakpoint and delete it.

Sometimes, a new developer will set a breakpoint and forget about it. Then, when the application
is run, execution stops, and it looks like the application has crashed. If you can’t make out why an
application of yours has “crashed,” make sure you aren’t stopped on a forgotten breakpoint.

While you can set breakpoints to break on a particular line, the debugger will break on any line that
causes your application to crash or that causes an exception to be thrown. Let’s introduce an exception
to see this happen. In WhereamiAppDelegate.m, delete the entire implementation of doSomethingWeird
(not just the code inside the method’s brackets, but the method signature, too). Leave the line in
application:didFinishLaunchingWithOptions: that sends the doSomethingWeird message and
leave the declaration in the header file.

Now WhereamiAppDelegate no longer implements this method, and when it sends this message to
self, an exception will be thrown. Build and run the application.

Immediately after launch, the application will blow up. The debugger will show you where (look for
the green execution indicator), and the console will show you why. Notice that the stack trace is a 
bit longer this time, and the method that caused the exception is not at the top of the stack trace. This
will sometimes be the case: your code supplies bad data (like an unrecognized selector) to a method,
and then somewhere within that method’s implementation, the application crashes. To find the source
of the error, look for your methods in the stack trace. The culprit may not be at the top, but it will
certainly be one of yours.

Also notice that the compiler warned you that the method definition was not found for
doSomethingWeird. This means you declared a method in the header file but did not implement it.
Remove the declaration of doSomethingWeird from WhereamiAppDelegate.h and build again. This



ptg

Challenge: Heading

91

time, you will see a different warning at the point where doSomethingWeird is sent to self. Now the
compiler is telling you that this method doesn’t exist at all.

Remove the line of code that sends doSomethingWeird to self. Your application should run correctly
again. Build and run to make sure before heading to the next chapter.

Challenge: Heading
Most chapters in this book will finish with a challenge that encourages you to take the application
another step further and prove to yourself what you’ve learned. We suggest that you tackle as many of
these challenges as you can to cement your knowledge and move from learning iOS development from
us to doing iOS development on your own.

In addition, these challenges usually require poking around in the Apple documentation – an essential
skill for an iOS developer. We will talk more about the documentation in the next chapter. In the
meantime, you can get to the “doc” by selecting Documentation and API Reference from Xcode’s Help
menu. For the following challenge, you’ll want to search for CLLocationManager.

Using delegation, retrieve the heading information from the CLLocationManager and print it to the
console. (Hint: You need to implement at least one more delegate method and send another message to
the location manager.)

For the More Curious: Build Phases, Compiler
Errors, and Linker Errors
Building an application in Xcode takes several steps. We call these steps build phases, and you saw
them earlier in this chapter when you were adding the Core Location framework to the Whereami
target (Figure 4.1). Here is what each build phase does:

Compile Sources This build phase contains the source code files that are compiled
when this target is built. By default, any time you add a source
code file to a project, it is added to this build phase.

Link Binary With Libraries After your source code has been compiled, it is linked with the
frameworks (libraries). This allows your code to use classes
from these frameworks.

Copy Bundle Resources After your code is compiled and linked, an executable is created
and placed inside an application bundle, which is really just 
a folder. Then, the files listed in the Copy Bundle Resources
phase are added to the bundle alongside the executable. These
resources are the data files that your application uses at runtime,
like MainWindow.xib and any images or sounds that are part of
the application. By default, when you add a file to a project that
is not source code, it is added to this build phase.

We usually see errors during the Compile Sources phase, but sometimes we get errors during the Link
Binary With Libraries phase. Errors generated during these phases are easier to diagnose and correct if
you understand what the phases do.



ptg

Chapter 4  Delegation and Core Location

92

Preprocessing

The Compile Sources build phase can be broken into two steps: preprocessing and compiling. The
goal of the preprocessing phase is to create an intermediate file for each implementation file (.m).
The intermediate file is still Objective-C code like the implementation file, but, as we will see, the
intermediate file can get very large.

To create an intermediate file, the preprocessor resolves all the preprocessor directives in the
implementation file. Preprocessor directives are statements prefixed with the pound symbol (#), like
#import. The resolution of a #import statement replaces the import statement with the contents of
the imported file. (You can view the contents of imported files by Command-clicking the import
statement.)

For example, consider WhereamiAppDelegate.m, which imports WhereamiAppDelegate.h.
The intermediate file created for WhereamiAppDelegate.m contains all the code from
WhereamiAppDelegate.h and WhereamiAppDelegate.m. But, it doesn’t stop there.
WhereamiAppDelegate.h imports two files, UIKit.h and CoreLocation.h. These two files
import more header files, which import more header files, and so on. The intermediate file for
WhereamiAppDelegate.m is all of the code in all of these files (Figure 4.10).

Figure 4.10  Preprocessor creates intermediate files



ptg

Compiling

93

Compiling

Once the preprocessor has finished, the generated intermediate files are compiled. Compiling an
intermediate file takes the Objective-C code and turns it into machine code. This machine code is
stored in an object file, one for each intermediate file.

The compiling phase – the transition to machine code – is where we see most of our errors as
programmers. When the compiler doesn’t understand our code, it generates an error. We call errors
generated during this phase compile-time errors or syntax errors. Compile-time errors are typically
misplaced semicolons, unbalanced brackets ([]) or braces ({}), spelling or capitalization errors.

These types of errors also occur when you use a class that hasn’t been declared. To see an example of a
compile-time error, comment out the following line in WhereamiAppDelegate.h:

// #import <CoreLocation/CoreLocation.h>

Build the application again, and the compile phase will fail. To see the problem up close, click the
icon to open the issue navigator or hit Command-4. This navigator shows you any errors or warnings
in your code (Figure 4.11). You can click on an individual error to see the line of code that generated
the error.

Figure 4.11  Build results with compile-time error

Before you removed the import statement, the intermediate file created from WhereamiAppDelegate.m
contained the code from CoreLocation.h, which contained the interface declaration for
CLLocationManager and the protocol declaration for CLLocationManagerDelegate. Without the
import statement, these files do not become part of the generated intermediate file, and the compiler
has no idea what to do with these lines of code. Note that the compiler can only read one intermediate



ptg

Chapter 4  Delegation and Core Location

94

file at a time, so even though the class and protocol are in other intermediate files, the compiler still
generates an error when they are not declared for WhereamiAppDelegate.m.

Uncomment the import statement. You should be able to build again with no errors.

Linking

An object file contains the machine code for the methods implemented in the implementation file.
However, within an implementation file, you use code from other implementation files. For example,
WhereamiAppDelegate.m uses the startUpdatingLocation method, and the machine code for that
method is in the object file generated from CLLocationManager.m.

Instead of copying the code for this method into the object file for WhereamiAppDelegate.m, the
compiler leaves a link to the object file for CLLocationManager.m. The Link Binary With Libraries
phase is where these links are resolved. For short, we just call it the “linking phase.”

Recall earlier in the chapter that you “linked” the Core Location framework to your target. A
framework is a collection of classes, and a class is defined by two files: a header file and an
implementation file. A framework, however, has pre-compiled its implementation files and shoved
the resulting object files into one or more library files. (That’s why in Objective-C you can’t see the
implementation files in a framework – they are already machine code.) Where you used code from the
classes in the Core Location framework in your classes, the compiler put a link in your object files to
the Core Location library (Figure 4.12).

Figure 4.12  Compiler creates object files; linker resolves links

If a link cannot be resolved (because the object file that contains the code cannot be found or because
the object file doesn’t contain the referenced code), you get a linker error. Linker errors are more
difficult for new developers to understand because they use unfamiliar terms and because there 
isn’t one line of code that generated the error. So let’s cause a linker error just for practice. Select
CoreLocation.framework from the project navigator and hit the Delete key. On the window that



ptg

Linking

95

appears, choose Remove Reference Only. Build the application again, and you will see new errors
(Figure 4.13).

Figure 4.13  Build results with linker error

You can select an error in the issue navigator to see a more detailed description of what is going on.
(You can also go to the log navigator and select the most recent Build Whereami item and see the same
information.) Notice that the errors generated are underneath the item named Link. When you see
linker errors, it is typically because you did not add the appropriate framework to your target. Add the
CoreLocation.framework file back to the target in the Link Binary With Libraries build phase and build
again to confirm that you have fixed the error. 



ptg

This page intentionally left blank 



ptg

97

5
MapKit and Text Input

In this chapter, you will finish the Whereami application using the MapKit framework, the
UITextField class, and more delegation. We will also dive into the Apple documentation.

Right now, your Whereami application finds the location and prints it to the console. At the end of
this chapter, the application will show a map of the current location instead. In addition, the user will
have the option to tag and name the current location with a MapKit annotation The default MapKit
annotation appears as a red pin on the map (Figure 5.1).

Figure 5.1  Completed Whereami application

Object Diagrams
iOS applications can get very large and use many classes and methods. One way to keep your head
wrapped around a large and complex project is to draw an object diagram. Object diagrams show 
the major objects in an application and any objects they have as instance variables. (At Big Nerd
Ranch, we use a program called OmniGraffle to draw our object diagrams.) Most exercises in this book



ptg

Chapter 5  MapKit and Text Input

98

will show you an object diagram to give you the big picture of the application you are developing.
Figure 5.2 shows the object diagram for the complete Whereami application. 

Figure 5.2  Whereami object diagram

Let’s go through this diagram. At the top are the view objects:

• Several instances of MKAnnotationView appear as icons on the MKMapView.

• An MKMapView displays the map and the labels for the recorded locations.

• A UIActivityIndicatorView indicates that the device is working and not stalled.

• A UITextField allows the user to input text to label the current location on the map.

The model objects are on the bottom. One is an instance of CLLocationManager, which interacts with
the device’s hardware to determine the user’s location. The other model objects are instances of a class
called MapPoint, which you will create later in this chapter.

In the middle of everything is the controller object, WhereamiAppDelegate. WhereamiAppDelegate is
responsible for processing updates and requests from objects and for updating the user interface. It is
the delegate for the MKMapView, UITextField, and CLLocationManager.

Take a look at the messages sent to WhereamiAppDelegate by these objects. MKMapView sends
mapView:didAddAnnotationViews: when a view (or views) is added. UITextField sends
textFieldShouldReturn: when the user has finished entering text. CLLocationManager sends
locationManager:didUpdateToLocation:fromLocation: to inform WhereamiAppDelegate of a
location update. 



ptg

MapKit Framework

99

MapKit Framework
The Core Location framework tells us where we are in the world; the MapKit framework shows us
that world. Most of MapKit’s work is done by the class MKMapView. Instances of this type display a
map, track touches, and display annotations. (They can do more, but that’s all you’ll need for this
application.)

Add the MapKit framework to your project. (If you’ve forgotten how, flip back to the beginning of
Chapter 4 and refresh your memory.) You must also import the MapKit header file into files that will
use MapKit classes.

At the top of WhereamiAppDelegate.h, import the MapKit header.

#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

To determine the necessary instance variables for the Whereami project, review the object diagram
in Figure 5.2. You’ll need an MKMapView, a UITextField, and a UIActivityIndicatorView.
(We’ll handle the MKAnnotationViews in a later section.) Declare these instance variables in
WhereamiAppDelegate.h. 

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate> 
{
    CLLocationManager *locationManager;

    IBOutlet MKMapView *worldView;
    IBOutlet UIActivityIndicatorView *activityIndicator;
    IBOutlet UITextField *locationTitleField;
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

Because you’ve used IBOutlet in these declarations, you’re going to configure the objects in a XIB
file. Open MainWindow.xib and select the Window object in the outline view. This will open the
UIWindow instance, and we can begin building the user interface.

Interface Properties
In the object library, use the search box at the bottom of the library pane to find an MKMapView
(Figure 5.3). Then drag the map view onto the UIWindow. (Remember – the object library is at the
bottom of the utilities area. To show the utilities area, click the right button in the View segmented
control in the top right corner of the workspace. The keyboard shortcut is Command-Option-0. Then, 
select the icon from the library selector.)



ptg

Chapter 5  MapKit and Text Input

100

Figure 5.3  Dropping MKMapView

Now drag a UITextField and a UIActivityIndicatorView onto the MKMapView. Resize, position, and
set their connections, as shown in Figure 5.4. To make a connection, first right click (or Control-click)
on the object with the instance variable to bring up its connection panel. Then drag from the circle by
the instance variable to the object you want it to point to. The arrows in Figure 5.4 show the direction
to drag when making connections.



ptg

Interface Properties

101

Figure 5.4  Whereami XIB layout

Now let’s adjust the properties of the UITextField. First, we want the UITextField to have helpful
placeholder text, like Enter Location Name. Next, consider the keyboard. When a UITextField
is activated, a keyboard appears on the screen. (We’ll see why this happens later in this chapter.)
The keyboard’s appearance is determined by a set of the UITextField’s properties called
UITextInputTraits. One of these properties is the type of the keyboard’s return key. For this
application, we want the return key to read Done.

You can make these changes in the attributes inspector of the utilities area. Select the UITextField and
from the inspector selector, select the icon to reveal the attributes inspector. Change the values for
Placeholder and Return Key to match what is shown in Figure 5.5. 



ptg

Chapter 5  MapKit and Text Input

102

Figure 5.5  UITextField attributes

While we’re here, wouldn’t it be nice if the UIActivityIndicatorView hid itself when it’s not
spinning? Select the UIActivityIndicatorView and check the box labeled Hides When Stopped in the
attributes inspector, as shown in Figure 5.6. 

Figure 5.6  UIActivityIndicator attributes

Save MainWindow.xib. You won’t have to return to it again in this project. 

Being a MapView Delegate
When Whereami launches, we want it to find the current location and display it on a map. In the 
last chapter, you worked directly with Core Location to find the user’s location. Now this won’t 
be necessary because an instance of MKMapView knows how to use Core Location to find the user’s
location. All you have to do is set the showsUserLocation property of an MKMapView to YES, and it will
show the user’s location on the map.

At the end of application:didFinishLaunchingWithOptions:, replace the message that tells the
locationManager to update its location with one that tells the MKMapView to show the current location.



ptg

Using the documentation

103

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions  
{    
    locationManager = [[CLLocationManager alloc] init];
    [locationManager setDelegate:self];

    [locationManager setDistanceFilter:kCLDistanceFilterNone];
    [locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

    // [locationManager startUpdatingLocation];
    [worldView setShowsUserLocation:YES];
    
    // This line may say self.window, don't worry about that
    [[self window] makeKeyAndVisible];

    return YES;
}

Build and run the application. A few moments after the application launches, the map will display a
blue annotation dot on your current location. Unfortunately, because you are looking at a map of the
entire world, the blue dot is the size of Brazil and not exactly useful for figuring out where you are.
Clearly, the application needs to zoom in on the current location. Let’s figure out when and how we
can do this.

For now, assume there is a “zoom-in-on-location” message you can send to an instance
of MKMapView. The question is when would you send that message? When the application
starts, it takes time for the device to determine the location. So you can’t send it in
application:didFinishLaunchingWithOptions: because you don’t yet know the location to zoom in
on. Nor do you want to continually tell the MKMapView to zoom its map; that would be inefficient.

Instead, how about delegation? MKMapView has a delegate property that you set to be the instance of
WhereamiAppDelegate. In WhereamiAppDelegate.h, declare that WhereamiAppDelegate conforms to
the MKMapViewDelegate protocol.

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate> 
{

(While you do not have to declare that a class conforms to a delegate protocol, it is helpful to do
so. First, a quick glance at the header file tells you that the class serves as a delegate for a particular
type of object. Second, and perhaps more important, Xcode will see this declaration and offer code
completion in the implementation file for the methods in that protocol.)

The map view will send messages to its delegate when interesting events happen. Perhaps there is a
message in the MKMapViewDelegate protocol for when the map view finds the user’s location. That
would be the perfect time to “do the zoom.” We can find out if the protocol declares such a message in
the Apple documentation.

Using the documentation
There’s nothing more important we can teach you than how to use the Apple documentation. So hang
on as we tackle – step-by-step – the questions of when and how to display a zoomed-in map of the
current location.

Overall, the documentation has four parts: API Reference, System Guides, Tools Guides, and
Sample Code. The API Reference shows you every class, protocol, function, structure, method, and



ptg

Chapter 5  MapKit and Text Input

104

anything else you may use from Cocoa Touch. The System Guides give you high-level overviews and
discussion about concepts in Cocoa Touch. The Tools Guide is the manual for Xcode and the rest of
the developer tools suite.

While all four parts are useful, the API Reference is absolutely essential to everyday programming.
There are so many classes and methods built into Cocoa Touch that it is impossible for a developer to
remember them all. At no point in your iOS developer career will you outgrow the API Reference.

From the Help menu, choose Documentation and API Reference. The organizer window will appear
with the Documentation item selected (Figure 5.7). Click the magnifying glass icon and choose Show
Find Options to show the Find Options panel, which allows you to tailor your search. In the search box,
enter MKMapViewDelegate.

Figure 5.7  Documentation Window

When you search for a term, the results from each part of the documentation are listed in the table on
the left side of the window. The top section titled Reference is the API Reference.

Search results from the API Reference are contained in a number of nested categories. Each result has
an icon that indicates whether it is a class, a method, a protocol or something else. Collectively, we call
these items symbols, and their mappings are shown in Figure 5.8.



ptg

Using the documentation

105

Figure 5.8  Documentation symbol guide

In your search results, look under the Reference heading for an item titled MKMapViewDelegate and
labeled with a Pr icon. Select that item to see the reference page for the MKMapViewDelegate protocol
(Figure 5.9). Then scroll down to the Tasks section, which groups the protocol’s methods by what they
used are for.

Figure 5.9  MKMapViewDelegate Protocol Reference



ptg

Chapter 5  MapKit and Text Input

106

Recall that we’re looking for a method that the MKMapView will send its delegate when it has found the
user’s location. See anything interesting? How about mapView:didUpdateUserLocation:? Blue text
in the documentation indicates hyperlinks, so you can click on this method name to get more details
(Figure 5.10).

Figure 5.10  A method in the API Reference

The documentation confirms that this is the method we need, so go ahead and implement a stub for it
in WhereamiAppDelegate.m. (If possible, copy and paste the method signature from the documentation;
this is best for delegate methods where typos and capitalization errors are especially difficult to
diagnose.) 

- (void)mapView:(MKMapView *)mv didUpdateUserLocation:(MKUserLocation *)u     
{

// Here we are...  but how do we actually zoom?

}

Now we know when to zoom, and we can turn our attention to the problem of how. To problem-solve
in programming, it’s best to start with the goal and what we already know. The goal is to display a map
that is zoomed in on the user’s current location. We know that when the MKMapView finds the user’s
location, it sends the message mapView:didUpdateUserLocation: to its delegate. We also know that,
in the mapView:didUpdateUserLocation: method, a pointer to an MKUserLocation instance will be
available.

In addition, we know from experience that the MKMapView does not automatically zoom in when it finds
the user’s location, so it must be told to do so. This, of course, means that MKMapView must implement a
method that zooms in on a location. Let’s track this method down in the API Reference.



ptg

Using the documentation

107

Search for the MKMapView class. In the class reference page, look for Manipulating the Visible Portion
of the Map in the Tasks section. There are a handful of methods and properties in this section; we’ll
start at the top with the region property. The details for region tell us that this property is of type
MKCoordinateRegion and that it provides an implicit zoom. Sounds perfect. But to set this property,
we need to know more about MKCoordinateRegion.

Search for MKCoordinateRegion. Its details are in the Map Kit Data Types Reference.
MKCoordinateRegion has two members of types CLLocationCoordinate2D and MKCoordinateSpan.
The CLLocationCoordinate2D is the center of the map and the MKCoordinateSpan determines the
level of zoom (Figure 5.11).

Figure 5.11  Parts of an MKCoordinateRegion

To set the region property of the map view, we’ll need to package up one of these instances, so let’s
find out how we can do this. Search again for MKCoordinateRegion and this time select the Map Kit
Functions Reference. One of these functions, MKCoordinateRegionMakeWithDistance, allows you to
specify a region with a CLLocationCoordinate2D and the north-south and east-west limits of the zoom
in meters. For the limits, we’ll use 250 by 250 meters. For the coordinate, we need the user’s location.
Where can we get that?

How about the MKUserLocation object that the MKMapView sends its delegate in the
mapView:didUpdateUserLocation: message? Search the documentation for MKUserLocation, and
you’ll find it has a property called location that holds the current location of the device. Keep drilling
down, and you’ll find that location is a CLLocation object, which has a coordinate property of type
CLLocationCoordinate2D. Success! We can use information in the MKUserLocation to prepare an
MKCoordinateRegion, which we then can use to set the region property of the map view.

Right now, getting the information from the MKUserLocation takes two steps: we send
MKUserLocation the message location and then send the returned CLLocation object the message
coordinate. The data returned from coordinate then becomes the MKCoordinateRegion’s center.



ptg

Chapter 5  MapKit and Text Input

108

But nosing around the API Reference has its rewards. Before we add this code to
WhereamiAppDelegate.m, take another look at the MKUserLocation reference. At the top, it tells us
that MKUserLocation conforms to the protocol MKAnnotation. Click on the link for that protocol, and
you’ll see that classes conforming to it are required to have a property named coordinate of type
CLLocationCoordinate2D. So we can simplify the process and send the message coordinate directly
to the MKUserLocation.

Now, in WhereamiAppDelegate.m, add the new code to mapView:didUpdateUserLocation:. 

- (void)mapView:(MKMapView *)mv didUpdateUserLocation:(MKUserLocation *)u     
{
    CLLocationCoordinate2D loc = [u coordinate];
    MKCoordinateRegion region = MKCoordinateRegionMakeWithDistance(loc, 250, 250);
    [worldView setRegion:region animated:YES];
}               

Notice that the MKMapView is sent the message setRegion:animated: instead of simply setRegion:.
What’s the difference? Check the documentation.

Build and run the application again. When the map figures out where you are in the world, it zooms in
on that location. 

This is pretty standard workflow for iOS programming: you want an object to do something and 
you follow the bread crumbs in the API Reference. There will be dead ends and wild goose chases,
but eventually you’ll find what you need. As you go through this book, don’t hesitate to look up 
the classes, protocols, and methods we use to see what else they can do. You want to become as
comfortable as possible with the API Reference. The more you use it, the easier it will be to progress
as an iOS developer. You cannot be an iOS developer without using the API Reference.

Apple will continue to update the iOS SDK and introduce iOS devices with new features and
capabilities. If you understand and are comfortable using the Apple documentation, you will be ready
to use whatever Apple dreams up in the future.

Your own MKAnnotation

Now that Whereami displays a nicely-zoomed map of the current location, we can turn to adding
annotations. Let’s start with an introduction to the MKAnnotation protocol.

MKAnnotation is not a delegate protocol. Instead, it declares a set of methods that are useful to 
any class that wants to put itself on the map. Imagine an application that maps everything in a
neighborhood, including restaurants, factories, and train stations. These objects could be very different
and hierarchically unrelated in your application, but they all can be added to a map view if they
conform to MKAnnotation.

When an object conforming to MKAnnotation is added to an MKMapView, an instance of
MKAnnotationView (or one of its subclasses) is created and added to the map view. The
MKAnnotationView keeps a pointer to the MKAnnotation-conforming object that it represents so it can
ask it for data as needed. The relationships between these objects are shown in Figure 5.12.



ptg

Your own MKAnnotation

109

Figure 5.12  MKMapView and its annotations

Now you’re going to write a new class called MapPoint that will conform to MKAnnotation. When the
user tags a location, an instance of MapPoint will be created and represented on the map.

From the File menu, select New and then New File.... Then choose Cocoa Touch from the iOS section,
select Objective-C class, and click Next (Figure 5.13).

Figure 5.13  Creating an NSObject subclass

On the next pane, select NSObject from the superclass list and hit Next.

A sheet will drop down for you to save the files for this class. Name the class MapPoint and click Save
(Figure 5.14). This creates the files MapPoint.h and MapPoint.m and adds them to your project.



ptg

Chapter 5  MapKit and Text Input

110

Figure 5.14  Naming the subclass

In MapPoint.h, declare that MapPoint conforms to MKAnnotation. Also declare two properties and an
initializer. 

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface MapPoint : NSObject <MKAnnotation>
{
    NSString *title;
    CLLocationCoordinate2D coordinate;
}

// A new designated initializer for instances of MapPoint 
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t;

// This is a required property from MKAnnotation 
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;

// This is an optional property from MKAnnotation
@property (nonatomic, copy) NSString *title;

@end

The protocol defines coordinate as a read-only property, which means there is a method named
coordinate that returns a CLLocationCoordinate2D. While most methods declared in the
MKAnnotation protocol are optional, the coordinate method is required – if MapPoint is to conform to
the MKAnnotation protocol, it must implement coordinate.

Switch to MapPoint.m. (The keyboard shortcut for switching between the header file and the
implementation file is Command-Control-Up arrow.) Synthesize the properties and add the
implementations for the initializer and dealloc.



ptg

Your own MKAnnotation

111

#import "MapPoint.h"

@implementation MapPoint

@synthesize coordinate, title;

- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
    self = [super init];
    if (self) {
        coordinate = c;
        [self setTitle:t];
    }
    return self;
}

- (void)dealloc
{
    [title release];
    [super dealloc];
} 
@end

Note that you don’t release coordinate in the dealloc method because it is not an Objective-C object
and can’t receive messages. The CLLocationCoordinate2D structure’s memory will live inside each
instance of MapPoint, and it will be created and destroyed automatically along with the object.

The protocol defines the required coordinate as a read-only property, which means there must be 
a method named coordinate that returns a CLLocationCoordinate2D, but it doesn’t have to be a
property in the class declaration. In fact, we don’t have to create the matching instance variables,
either. The MKAnnotation protocol, like all protocols, only dictates method signatures. As long 
as the signatures match exactly, the conforming class can implement them however it wants with
whatever instance variables it chooses. For example, the title method could perform some logic with
information is has available to it and then return a value:

- (NSString *)title 
{
    if ([self isEastOfTheMississippi])
        return @"Buying supplies"
    
    return @"On the Oregon Trail, uncharted territory";
}            

Therefore, we can think of a protocol as a contract, whereby the conforming class says, “I promise to
give you my interpretation of this contract when asked.” The objects that speak to the conforming class
through the protocol honor this contract by saying, “I promise to only ask you things in this contract.”
For example, MKAnnotationView has a annotation property declared as

@property (nonatomic, retain) id <MKAnnotation> annotation;                

This declaration says that the annotation can be of any type (id), as long as it conforms to the
MKAnnotation protocol (<MKAnnotation>). Therefore, the MKAnnotationView will only send messages
from the MKAnnotation protocol to its annotation; it won’t make any assumptions about the other
messages that object might respond to.

You’ve added a lot of code, so you may want to build the application to check for syntax errors before
you continue. There’s no need to run it, however, because the application’s behavior has not changed.



ptg

Chapter 5  MapKit and Text Input

112

Tagging locations

Now that you have your own class that conforms to MKAnnotation, you can tag locations on the
map. The user will enter the location’s name in the UITextField and then tap the Done button on the
keyboard. The tapping of the Done button is the signal to add an annotation. How will we know this
event has occurred? Delegation, of course.

In the XIB file, you set the text field’s delegate to be the instance of WhereamiAppDelegate. This
means WhereamiAppDelegate can implement methods from the UITextFieldDelegate protocol.
One of these methods is textFieldShouldReturn:. When the keyboard’s return key is tapped, the
UITextField sends this message to its delegate and asks if it really should return. At the same time, the
delegate has the opportunity to perform tasks that should coincide with the returning of the text field.

In WhereamiAppDelegate.h, declare that WhereamiAppDelegate conforms to the
UITextFieldDelegate protocol.

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate, 
    UITextFieldDelegate> 
{

In WhereamiAppDelegate.m, implement textFieldShouldReturn:.

- (BOOL)textFieldShouldReturn:(UITextField *)tf
{
    // This method isn't implemented yet - but will be soon.
    [self findLocation];
    
    [tf resignFirstResponder];
    
    return YES;
}

For now, ignore findLocation. You will write the implementation for that in a moment. First, let’s
talk about text editing and the first responder.

UIResponder is a class in the UIKit framework. A responder is responsible for receiving and handling
events that are associated with it. For example, a button is a responder that handles touch events, like 
a tap. In addition, one of the responders is the first responder of the window. Only one responder can
be the first responder at a time. The first responder handles events that aren’t associated with another
responder. For instance, a tap is sent to the responder object that was tapped, but a shake has no
associated responder and is sent to the first responder instead. We’ll talk more about the first responder
and event-handling in Chapter 8 and Chapter 20.

For now, let’s focus on UITextField. A UITextField is also a responder: it is a direct subclass of
UIControl, which is a subclass of UIView, which is a subclass of UIResponder. When a UITextField
is tapped, it handles this event by becoming the first responder.

When a UITextField becomes the first responder, a keyboard appears on the screen. To remove
the keyboard from the screen, you tell the UITextField to give up its first responder status by
sending it the message resignFirstResponder. Once the first responder of the window is no longer a
UITextField, the keyboard will disappear.

(Everything about UITextField holds true for the class UITextView, too. The difference between
UITextView and UITextField is that UITextView allows for multi-line editing: a text view’s return



ptg

Putting the pieces together

113

key enters the newline character whereas a text field’s return key dispatches the delegate method
textFieldShouldReturn:.) 

Putting the pieces together

To finish your Whereami application, you just need to add two final methods: findLocation,
which is sent in textFieldShouldReturn:, and foundLocation:, which will be sent in
locationManager:didUpdateToLocation:fromLocation:. In WhereamiAppDelegate.h, declare these
two methods.

@interface WhereamiAppDelegate : NSObject 
    <UIApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate,
     UITextFieldDelegate>
{
    CLLocationManager *locationManager;

    IBOutlet MKMapView *worldView;
    IBOutlet UIActivityIndicatorView *activityIndicator;
    IBOutlet UITextField *locationTitleField;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

- (void)findLocation; 
- (void)foundLocation:(CLLocation *)loc;

@end

The findLocation method will tell the locationManager to start looking for the current location. It
will also update the user interface so that the user can’t re-enter text into the text field and will start the
activity indicator spinning. The foundLocation: method will create an instance of MapPoint and add
it to the worldView. It will also handle the map’s zoom and reset the states of the UI elements and the
locationManager.

In WhereamiAppDelegate.m, import MapPoint.h and implement the two methods.

#import "WhereamiAppDelegate.h"
#import "MapPoint.h"

@implementation WhereamiAppDelegate

- (void)findLocation
{
    [locationManager startUpdatingLocation];
    [activityIndicator startAnimating];
    [locationTitleField setHidden:YES];
}

- (void)foundLocation:(CLLocation *)loc
{
    CLLocationCoordinate2D coord = [loc coordinate];

    // Create an instance of MapPoint with the current data
    MapPoint *mp = [[MapPoint alloc] initWithCoordinate:coord
                                                  title:[locationTitleField text]];
    // Add it to the map view 
    [worldView addAnnotation:mp];



ptg

Chapter 5  MapKit and Text Input

114

    
    // MKMapView retains its annotations, we can release
    [mp release];

    // Zoom the region to this location
    MKCoordinateRegion region = MKCoordinateRegionMakeWithDistance(coord, 250, 250);
    [worldView setRegion:region animated:YES];

    [locationTitleField setText:@""];
    [activityIndicator stopAnimating];
    [locationTitleField setHidden:NO];
    [locationManager stopUpdatingLocation];
}

Note that when importing files, you put quotation marks around header files you create and angled
brackets around header files from frameworks. Angled brackets tell the compiler, “Only look in your
system libraries for this file.” Quotation marks say, “Look in the directory for this project first, and if
you don’t find something, then look in the system libraries.”

Finally, send the message foundLocation: when a new location is found by the CLLocationManager.
Update the delegate method locationManager:didUpdateToLocation:fromLocation: in
WhereamiAppDelegate.m:

- (void)locationManager:(CLLocationManager *)manager
    didUpdateToLocation:(CLLocation *)newLocation
           fromLocation:(CLLocation *)oldLocation
{
    NSLog(@"%@", newLocation);
    
    // How many seconds ago was this new location created?
    NSTimeInterval t = [[newLocation timestamp] timeIntervalSinceNow];
    
    // CLLocationManagers will return the last found location of the 
    // device first, you don't want that data in this case.
    // If this location was made more than 3 minutes ago, ignore it.
    if (t < -180) {
        // This is cached data, you don't want it, keep looking
        return;
    }

    [self foundLocation:newLocation];
}

Build and run the application. Enter a title into the text field, and an annotation with that title will
appear on the map at your current location.

Challenge: Annotation Extras
Using the NSDate and NSDateFormatter classes, have your tagged annotations show the dates they
were tagged.

Challenge: Reverse Geocoding
Use delegation and the class MKReverseGeocoder to display the city and state of a MapPoint on the
map.



ptg

115

6
Subclassing UIView

In previous chapters, you’ve created several views: a UIButton, a UILabel, etc. But what exactly is a
view?

• A view is an instance of a UIView or one of its subclasses.

• A view knows how to draw itself on the application’s window.

• A view exists within a hierarchy. The window (an instance of UIWindow) is a view and the root of
the hierarchy. It has subviews (that appear on the window). Those views can also have subviews.

• A view handles touch events.

In this chapter, you are going to create your own UIView subclass that fills the screen with concentric
circles, as shown in Figure 6.1. You will also learn how to draw text and enable scrolling and zooming.

Figure 6.1  View that draws concentric circles



ptg

Chapter 6  Subclassing UIView

116

Creating a Custom View
In Xcode, create a new iOS Window-based Application for iPhone. Name it Hypnosister.

Create a new iOS Objective-C class named HypnosisView. On the second pane of the assistant, you’ll
be asked to choose a superclass; select NSObject, even though UIView is listed as an option. Choosing
NSObject here tells Xcode to use the most basic template to create your class files. Almost every class
and project in this book uses the simplest template available in Xcode. 

Why do we do this? Templates are great for speeding up development, but they get in the way when
you’re learning. Typing in every line of code instead of relying on the “magic” of a template will make
you more comfortable when you’re writing your own iOS applications in the future. After you become
more experienced and understand what the templates are doing, you can use them to speed things up.

Open HypnosisView.h in the editor area. Now that Xcode has created your class files, change the
superclass from NSObject to UIView.

@interface HypnosisView : UIView

The drawRect: method
Every UIView subclass implements the method drawRect:, which contains the drawing code for the
view. For example, a UIButton’s drawRect: method draws a rounded rectangle with a title string in the
center.

Each time an instance of UIView needs to be drawn (or redrawn), the system prepares a graphics
context specifically for that view. Then the context is activated, and the message drawRect: is sent 
to the instance of UIView that is being drawn. The graphics context’s type is CGContextRef (Core
Graphics Context Reference), and it is responsible for aggregating drawing commands and producing
an image as a result. This image is the appearance of the view instance. A graphics context also stores
its drawing state, which includes things like the current drawing color, coordinate system, and the
current line width.

Sometimes when drawing a view, you will use Objective-C to make calls defined in the UIKit
framework that implicitly use the active graphics context. Other times, you will get hold of the
graphics context explicitly and draw using the C functions of the Core Graphics framework. In this
chapter, you will do both.

In HypnosisView.m, override the drawRect: method: 

- (void)drawRect:(CGRect)rect 
{
    // What rectangle am I filling?
    CGRect bounds = [self bounds];

    // Where is its center?
    CGPoint center;
    center.x = bounds.origin.x + bounds.size.width / 2.0;
    center.y = bounds.origin.y + bounds.size.height / 2.0;

    // From the center how far out to a corner?
    float maxRadius = hypot(bounds.size.width, bounds.size.height) / 2.0;

    // Get the context being drawn upon
    CGContextRef context = UIGraphicsGetCurrentContext();



ptg

The drawRect: method

117

    // All lines will be drawn 10 points wide
    CGContextSetLineWidth(context, 10);

    // Set the stroke color to light gray
    [[UIColor lightGrayColor] setStroke];

    // Draw concentric circles from the outside in
    for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)
    {
        CGContextAddArc(context, center.x, center.y,
                        currentRadius, 0.0, M_PI * 2.0, YES);
        CGContextStrokePath(context);
    }
}

Notice that you are passed a CGRect structure. This is the rectangle that needs to be redrawn,
sometimes called the dirty rectangle. Typically, you ignore the dirty rectangle and issue the drawing
instructions as though the entire view needs to be redrawn. However, if your drawing code is intricate,
you might only redraw the parts in the dirty rectangle to speed up drawing.

A CGRect structure contains the members origin and size (Figure 6.2). These two members are also
structures. The origin is of type CGPoint and contains two float members: x and y. The size is 
of type CGSize and also has two float members: width and height. These structures are the basic
building blocks of Core Graphics routines. (Remember that a structure is not an Objective-C object, so
you can’t send it messages.)

Figure 6.2  CGRect

CGRect

origin: CGPoint

x : float

y : float width : float

height : float

size : CG
Size



ptg

Chapter 6  Subclassing UIView

118

Instantiating a UIView

Recall that there are two ways to create an instance of your view:

• visually choose and position the view while editing the XIB file

• create it programmatically with alloc and initWithFrame: and make it a subview
of the window

In Quiz and Whereami, you visually created views in the XIB file. In this chapter, you are going to
create views programmatically.

Open HypnosisterAppDelegate.h and add an instance variable for the new view:

#import <UIKit/UIKit.h>

// This is a "forward declaration"
@class HypnosisView;

@interface HypnosisterAppDelegate : NSObject <UIApplicationDelegate>
{
    HypnosisView *view; 
} 
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

Notice the @class directive after the import statement. This is a forward declaration for the class
HypnosisView. When you forward declare a class, you aren’t going as far as importing the header file;
you are just informing HypnosisterAppDelegate.h of the class HypnosisView so the compiler can
validate it. Forward declaring a class saves time when compiling – especially with large projects.

HypnosisterAppDelegate.m, on the other hand, needs to know more about HypnosisView, so you
will import the header file. In HypnosisterAppDelegate.m, import HypnosisView.h, create the new
instance, and place it on the window.

#import "HypnosisterAppDelegate.h"

#import "HypnosisView.h"

@implementation HypnosisterAppDelegate

@synthesize window;

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions  
{        
    // Make a CGRect that is the size of the window
    CGRect wholeWindow = [[self window] bounds];
    
    // Create an instance of HypnosisView that is the same size as the window 
    view = [[HypnosisView alloc] initWithFrame:wholeWindow];
    
    // Set the background color of that view to "clear"
    [view setBackgroundColor:[UIColor clearColor]];
    
    // Add the view to the view hierarchy so that it appears on the window



ptg

Instantiating a UIView

119

    [[self window] addSubview:view];

    // This line may say self.window, don't worry about that
    [[self window] makeKeyAndVisible];
    return YES;
}

// A dealloc method that will never get called because 
// HypnosisterAppDelegate will exist for the life of the application
- (void)dealloc 
{
    [view release];
    [_window release];
    [super dealloc];
}

@end

Notice that you are calling initWithFrame:, the designated initializer for UIView. This gives the view
a size and position. When the view is added to a view hierarchy (addSubview:), its position will be in
the bounds of its superview (window). 

(Retain count trivia: Because you created the view with alloc in HypnosisterAppDelegate.m and then
added it to the window, the view is being retained by HypnosisterAppDelegate and the window, and
so has a retain count of two. Also note that neither HypnosisterAppDelegate nor the window will ever
get deallocated because they exist the entire time the application is running.)

Build and run your application.



ptg

Chapter 6  Subclassing UIView

120

Drawing Text and Shadows
While we are talking about drawing, let’s add some text with a shadow to the view, as shown in
Figure 6.3.

Figure 6.3  View that draws text

Open HypnosisView.m and add the following code to the end of your drawRect: method:

    for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20) 
    {
        CGContextAddArc(context, center.x, center.y,
                        currentRadius, 0, M_PI * 2.0, YES);
        CGContextStrokePath(context);
    }

    // Create a string
    NSString *text = @"You are getting sleepy.";

    // Get a font to draw it in
    UIFont *font = [UIFont boldSystemFontOfSize:28];

    // Where am I going to draw it?
    CGRect textRect;
    textRect.size = [text sizeWithFont:font];
    textRect.origin.x = center.x - textRect.size.width / 2.0;
    textRect.origin.y = center.y - textRect.size.height / 2.0;

    // Set the fill color of the current context to black 
    [[UIColor blackColor] setFill];



ptg

Using UIScrollView

121

    // Set the shadow to be offset 4 points right, 3 points down, 
    // dark gray and with a blur radius of 2 points 
    CGSize offset = CGSizeMake(4, 3);
    CGColorRef color = [[UIColor darkGrayColor] CGColor];
    CGContextSetShadowWithColor(context, offset, 2.0, color);

    // Draw the string
    [text drawInRect:textRect
            withFont:font];
}

Build and run the application. You will see the text with a shadow appear on the view.

Notice that you only call drawing routines inside drawRect:. Outside of a drawRect: method, there
is no active CGContextRef, and drawing routines will fail. (In Chapter 16, you will manage your own
CGContextRef for offscreen drawing. Only then can you draw outside of drawRect:.) 

Using UIScrollView
When you want to let the user scroll around your view, you typically make your view the subview of a
UIScrollView, as shown in Figure 6.4.

Figure 6.4  Object diagram

In HypnosisterAppDelegate.m, put your view inside a scroll view and add that scroll view to the
window:

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    CGRect wholeWindow = [[self window] bounds];

    UIScrollView *scrollView = [[UIScrollView alloc] initWithFrame:wholeWindow];
    [[self window] addSubview:scrollView];

    // Make your view twice as large as the window
    CGRect reallyBigRect;
    reallyBigRect.origin = CGPointZero;
    reallyBigRect.size.width = wholeWindow.size.width * 2.0;
    reallyBigRect.size.height = wholeWindow.size.height * 2.0;
    [scrollView setContentSize:reallyBigRect.size];

    // Center it in the scroll view



ptg

Chapter 6  Subclassing UIView

122

    CGPoint offset;
    offset.x = wholeWindow.size.width * 0.5;
    offset.y = wholeWindow.size.height * 0.5;
    [scrollView setContentOffset:offset];

    // Create the view
    view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
    [view setBackgroundColor:[UIColor clearColor]];
    [scrollView addSubview:view];
    
    [scrollView release];    
    

    [[self window] makeKeyAndVisible];
    return YES;
}

Build and run your application. You can to push your view up and down, left and right. However,
zooming doesn’t work. Yet.

Zooming
To add zooming, you need to give the scroll view a delegate. In HypnosisterAppDelegate.h, declare
that HypnosisterAppDelegate conforms to the UIScrollViewDelegate protocol:

@interface HypnosisterAppDelegate : NSObject
    <UIApplicationDelegate, UIScrollViewDelegate>

Figure 6.5  HypnosisView in UIScrollView



ptg

Hiding the Status Bar

123

Open HypnosisterAppDelegate.m. In application:didFinishLaunchingWithOptions:, set the
delegate and the limits of the zoom:

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    CGRect wholeWindow = [[self window] bounds];

    UIScrollView *scrollView = [[UIScrollView alloc] initWithFrame:wholeWindow];
    [[self window] addSubview:scrollView];

    // Make your view twice as large as the window
    CGRect reallyBigRect;
    reallyBigRect.origin = CGPointZero;
    reallyBigRect.size.width = wholeWindow.size.width * 2.0;
    reallyBigRect.size.height = wholeWindow.size.height * 2.0;
    [scrollView setContentSize:reallyBigRect.size];

    // Center it in the scroll view
    CGPoint offset;
    offset.x = wholeWindow.size.width * 0.5;
    offset.y = wholeWindow.size.height * 0.5;
    [scrollView setContentOffset:offset];
    
    // Enable zooming
    [scrollView setMinimumZoomScale:0.5];
    [scrollView setMaximumZoomScale:5];
    [scrollView setDelegate:self];

    // Create the view
    view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
    [view setBackgroundColor:[UIColor clearColor]];
    [scrollView addSubview:view];

    [scrollView release];

    [[self window] makeKeyAndVisible];
    return YES;
}

In that same file, implement the delegate method viewForZoomingInScrollView: that tells the scroll
view which view to transform. 

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView
{
    return view;
}

Build and run the application and zoom away! (In the simulator, use the Option key to simulate two
finger touches.) 

Hiding the Status Bar
When you’re being hypnotized, you probably don’t want to see the time or your remaining
battery charge – these things cause anxiety. So, you’re going to hide the status bar before
you make the window visible. In HypnosisterAppDelegate.m, add a line near the end of
application:didFinishLaunchingWithOptions:.



ptg

Chapter 6  Subclassing UIView

124

    [scrollView addSubview:view];

    [scrollView release];

    [[UIApplication sharedApplication] setStatusBarHidden:YES
                                    withAnimation:UIStatusBarAnimationFade];

    [[self window] makeKeyAndVisible];
    return YES;
}

Build and run the application again. Notice the status bar fading out after the application launches.
You can also hide the status bar before your application appears on the screen by adding a new
key-value pair to the application’s info property list. To do this, select the project from the project
navigator. Then select the Hypnosister target and the Info pane in the editor area (Figure 6.6). This
pane is an editor for the Info.plist file that is a part of every iOS application. (You could select the
Hypnosister-Info.plist file from the project navigator, but this interface shows the key-value pairs
more clearly.)

Figure 6.6  Info property list with hidden status bar

Select the last row and click the + icon next to the key name. A new row will appear, and a pop-up
menu will open in the Key column. Choose Status bar is initially hidden from this list and hit return. In
the Value column, change the value to YES. Now the status bar will be hidden as soon as you launch the
application.



ptg

Challenge: Colors

125

Challenge: Colors
Make the circles appear in assorted colors.

For the More Curious: Retain Cycles
A view hierarchy is made up of many parent-child relationships. When we talk about view hierarchies,
we call parents superviews and their children subviews. When a view is added to a view hierarchy, it is
retained by its superview, as shown in Figure 6.7.

Figure 6.7  View hierarchy ownership

Every subview has a pointer back to its superview so that it can send its superview messages. The
superview property of a UIView is set to its superview when the view is added to a view hierarchy.
(When a view is not part of a view hierarchy, superview is nil.)

Superviews are not retained by their subviews. Why not? Well, imagine what would happen if they
were. Every time a subview was added to a view (let’s call it BigView), BigView’s retain count would
be incremented. For example, if BigView had six subviews, it would have a retain count of seven – one
for each subview and one for its superview.

What would happen if BigView’s superview wanted to get rid of BigView? The superview would send
BigView the message release. However, BigView would still be retained by each of its subviews and
would not be deallocated. As a result, BigView’s subviews would never be sent the message release.
BigView and all of its subviews would be cut off from the rest of the application and exist in their own
little cycle of independent objects where no other object could reach them.

We call this problem a retain cycle, and it can arise in any parent-child relationship, not just with view
objects. The solution is simple: children should never retain their parents. Moreover, a child should
never retain its parent’s parent, or its parent’s parent’s parent, and so on. When you adhere to this rule,
deallocating a parent object appropriately releases its child objects. If the parent is the only owner of its
children, then these child objects are deallocated.

For the More Curious: Redrawing Views
When a UIView instance is sent the message setNeedsDisplay, that view is marked for re-display.
View subclasses send themselves setNeedsDisplay when their drawable content changes. For
example, UITextField will mark itself for re-display if it is sent the message setText:. (It has to
redraw if the text it displays changes.)

When a view has marked itself for re-display, it is not immediately redrawn; instead, it is added to a
list of views that need updating. Your application is a giant infinite loop called the run loop. The run



ptg

Chapter 6  Subclassing UIView

126

loop’s job is to check for input (a touch, Core Location updates, data coming in through a network
interface, etc.) and then find the appropriate handlers for that event (like an action or delegate method
for an object). Those handler methods call other methods, which call more methods, and so on. Views
are not redrawn until after the methods have completed and control returns to the run loop, as shown in
Figure 6.8.

Figure 6.8  Redrawing views with the run loop

When control returns to the run loop, it says, “Well, a bunch of code was just executed. I’m going to
check if any views need to be redrawn.” Then the run loop prepares the necessary drawing contexts
and sends the message drawRect: to all of the views that have been sent setNeedsDisplay in this
iteration of the loop. After a view has redrawn itself, its subviews are automatically asked to redraw
themselves as well.



ptg

127

7
View Controllers

View Controllers and XIB Files
In the Quiz application, you had one “screen,” one controller, and one XIB file:

Figure 7.1  Quiz, a single screen application

But what about applications with multiple “screens”? Typically, each screen gets its own controller and
XIB file. Figure 7.2 shows an example application with two screens and the resulting controllers and
XIB files.



ptg

Chapter 7  View Controllers

128

Figure 7.2  Example of an application with two screens

Each controller has a view that gets placed on the window. (The view often has subviews like buttons
and labels.) Thus, we call these controllers view controllers. A view controller is a subclass of
UIViewController and has an instance variable called view. The view controller acts as the controller
for its view. And, we typically need an object to take care of the view swapping for us. In the example
application below, the swapping is done by a UITabBarController. The object diagram for this
application is shown in Figure 7.3.



ptg

Using View Controllers

129

Figure 7.3  Object diagram for the Phone application

Note that this approach means that when you write an application with seven screens, you will
typically write seven subclasses of UIViewController. Therefore, you may have up to eight XIB files
(one for the window and one for each view controller).

However, sometimes there are fewer XIB files. When a view controller has just one view, it is usually
easier to create a single view programmatically as you did in the last chapter. 

Using View Controllers
In this chapter, you are going to write an application with two view controllers. One will display the
HypnosisView you created in the last chapter, and the other will let the user get the current time by
tapping a button (Figure 7.4). We will swap in the views using a UITabBarController.



ptg

Chapter 7  View Controllers

130

Figure 7.4  HypnoTime screens

In Xcode, create a new Window-based Application iPhone project named HypnoTime. (Yes, there is a
Tab Bar Application project template, but using that template makes things seem more complicated and
magical than they are. Do not use it for this application.)

You will re-use HypnosisView in this application. Use Finder to locate HypnosisView.h and
HypnosisView.m and drag them into the project navigator of this project. When the sheet appears,
check the box labeled Copy items into destination group’s folder and click Finish. Also, add 
the icons Hypno.png and Time.png (available at http://www.bignerdranch.com/solutions/
iOSProgramming.zip) to the project navigator in the same way.

Creating the UITabBarController

In HypnoTimeAppDelegate.m, create the tab bar controller and set it as the rootViewController of the
window:

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Create the tabBarController
    UITabBarController *tabBarController = [[UITabBarController alloc] init];
    
    // Set tabBarController as rootViewController of window
    [[self window] setRootViewController:tabBarController];
    
    // The window retains tabBarController, we can release our reference
    [tabBarController release];
    

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Creating view controllers and tab bar items

131

    
    // Show the window
    [[self window] makeKeyAndVisible];
    
    return YES;
}

Build and run the application. The big white space is where your views will get swapped in.
Also notice the black tab bar at the bottom of the window. This is the UITabBar, a subview of the
UITabBarController’s view. Right now, there aren’t any tab bar items in it, but we’ll fix that in the
next section.

In previous applications, you manipulated the view hierarchy directly. For example, in Chapter 5, you
added subviews to the window dragging them onto the window in a XIB file. In Chapter 6, you added
subviews to the window using the method addSubview:.

When using view controllers, you don’t have to manipulate the view hierarchy directly. UIWindow
implements a method named setRootViewController:. Passing an instance of UIViewController as
the argument to this method automatically adds the view of that view controller as a subview of the
window and resizes it to fit. The window also retains its root view controller.

Figure 7.5  View hierarchy with UITabBarController

Creating view controllers and tab bar items

To create the first view controller for HypnoTime, select New File... from the New menu item in
the File menu. While there is a UIViewController subclass template option, you won’t use it here.
Choose Objective-C class and select NSObject as the superclass on the next pane. Name this class
CurrentTimeViewController.

Open CurrentTimeViewController.h and change the superclass to UIViewController.

@interface CurrentTimeViewController : UIViewController



ptg

Chapter 7  View Controllers

132

Now create another class in the same way, but name it HypnosisViewController. In
HypnosisViewController.h, change the superclass to UIViewController.

@interface HypnosisViewController : UIViewController

Now you need to create instances of the view controllers and add them to the tab bar controller. At the
top of HypnoTimeAppDelegate.m, import the header files for these classes.

#import "HypnoTimeAppDelegate.h" 
#import "HypnosisViewController.h" 
#import "CurrentTimeViewController.h"                

Then, also in HypnoTimeAppDelegate.m, modify the application:didFinishLaunchingWithOptions:
method to create instances of these view controllers and add them to the tab bar controller.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Create the tabBarController
    UITabBarController *tabBarController = [[UITabBarController alloc] init];
    
    // Create two view controllers
    UIViewController *vc1 = [[HypnosisViewController alloc] init];
    UIViewController *vc2 = [[CurrentTimeViewController alloc] init];
    
    // Make an array containing the two view controllers
    NSArray *viewControllers = [NSArray arrayWithObjects:vc1, vc2, nil];
        
    // The viewControllers array retains vc1 and vc2, we can release
    // our ownership of them in this method
    [vc1 release];
    [vc2 release];

    // Attach them to the tab bar controller
    [tabBarController setViewControllers:viewControllers];
    
    // Put the tabBarController's view on the window
    [[self window] setRootViewController:tabBarController];
    [tabBarController release];
    
    // Show the window
    [[self window] makeKeyAndVisible];
    
    return YES;
}

Build and run the application. The tab bar now has two tabs that you can select, but there isn’t anything
interesting about the tabs. Every view controller has a tab bar item that controls the text or icon that
appears in the tab bar as shown in Figure 7.6.



ptg

Creating view controllers and tab bar items

133

Figure 7.6  UITabBarItem example

Let’s start by putting a title on the tab bar items. Open HypnosisViewController.m. Create a new
init method, override the designated initializer for the superclass (UIViewController), and edit the
viewDidLoad method to match the code below:

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithNibName:nil
                           bundle:nil];
    if (self) {
        // Get the tab bar item
        UITabBarItem *tbi = [self tabBarItem];

        // Give it a label
        [tbi setTitle:@"Hypnosis"];
    }
    
    return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
    // Disregard parameters - nib name is an implementation detail
    return [self init];
}

// This method gets called automatically when the view is created
- (void)viewDidLoad 
{
    [super viewDidLoad];

    NSLog(@"Loaded the view for HypnosisViewController");

    // Set the background color of the view so we can see it
    [[self view] setBackgroundColor:[UIColor orangeColor]];
}



ptg

Chapter 7  View Controllers

134

Open CurrentTimeViewController.m and do all the same things, but use a different background color
for the view:

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithNibName:nil
                           bundle:nil];
    if (self) {
        // Get the tab bar item
        UITabBarItem *tbi = [self tabBarItem];

        // Give it a label
        [tbi setTitle:@"Time"];
    }
    
    return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
    // Disregard parameters - implementation detail
    return [self init];
}

- (void)viewDidLoad
{
    [super viewDidLoad];
    
    NSLog(@"Loaded the view for CurrentTimeViewController");
    
    // Set the background color of the view so we can see it
    [[self view] setBackgroundColor:[UIColor greenColor]];
}

Build and run the application. Two labeled tab bar items will appear on the tab bar (Figure 7.7). Tap
one and then the other, and you will see that the views for the view controllers are getting swapped in.

Figure 7.7  Tab bar items with labels

(If you are wondering why we made a new designated initializer for the UIViewController subclasses,
hang on until Chapter 10 – we’ll explain it then.)

Now let’s add icons. Open HypnosisViewController.m and edit the init method:

- (id)init
{
    self = [super initWithNibName:nil
                           bundle:nil];
    
    if (self) {
        UITabBarItem *tbi = [self tabBarItem];



ptg

Creating views for the view controllers

135

        [tbi setTitle:@"Hypnosis"];  
      
        // Create a UIImage from a file
        UIImage *i = [UIImage imageNamed:@"Hypno.png"];

        // Put that image on the tab bar item
        [tbi setImage:i];
    }
  
    return self;
}

Next, open CurrentTimeViewController.m and edit its init method:

- (id)init
{
    self = [super initWithNibName:nil
                           bundle:nil];
    
    if (self) {
        UITabBarItem *tbi = [self tabBarItem];
        [tbi setTitle:@"Time"];
        UIImage *i = [UIImage imageNamed:@"Time.png"];
        [tbi setImage:i];
    }
    
    return self;
}

Now when you build and run the application, you will also see icons in the tab bar (Figure 7.8).

Figure 7.8  Tab bar items with labels and icons

Creating views for the view controllers

Now that you have a perfectly nice tab bar with two view controllers (and the two corresponding tab
bar items), it’s time to give your view controllers views. (Technically, they already have views, but
they are default, blank views.) There are two ways to do this: 

• create the view programmatically

• create a XIB file

How do you know when to do one versus the other? Here’s a good rule-of-thumb: if the view has no
subviews, create it programmatically; if it has subviews, create a XIB file.

When the view needs to be created, the view controller is sent the message loadView. In
HypnosisViewController, you are going to override this method so that it creates an instance of
HypnosisView programmatically. When an instance of a UIViewController is instantiated, its view is



ptg

Chapter 7  View Controllers

136

not created right away. A UIViewController’s view is created when it is placed in a view hierarchy
(also known as “the first time it appears on screen” Add the following import statement and method to
HypnosisViewController.m:

#import "HypnosisViewController.h"
#import "HypnosisView.h"

@implementation HypnosisViewController
    
- (void)loadView 
{
    HypnosisView *hv = [[HypnosisView alloc] initWithFrame:CGRectZero];
    [hv setBackgroundColor:[UIColor whiteColor]];
    [self setView:hv];
    [hv release];
}

We no longer want the background of the view to be orange, so delete the following line from the
viewDidLoad method in HypnosisViewController.m:

[[self view] setBackgroundColor:[UIColor orangeColor]];

Also delete the similar line of code from the viewDidLoad method in CurrentTimeViewController.m.

[[self view] setBackgroundColor:[UIColor greenColor]];

Build and run the application. You should see a HypnosisView like the one in Figure 7.9.

Figure 7.9  HypnosisViewController

The CurrentTimeViewController’s view will have subviews (a UIButton and a UILabel). Therefore,
you will use a XIB file to load its view. Create a new XIB file by selecting New File... from the



ptg

Creating views for the view controllers

137

New item in the File menu. From the iOS section, choose User Interface. Then, select the Empty XIB
template. On the next pane, select iPhone from the pop-up menu.

Figure 7.10  Creating an empty XIB

Name this file CurrentTimeViewController.xib and save it. Then, select it in the project navigator to
show it in Xcode.

Demystifying the XIB: File's Owner

This is an empty XIB file, there are only two “objects” in it: File's Owner and First Responder. The
goal of this XIB file is to create the view for the CurrentTimeViewController.

Open the utilities area and drag a UIView onto the canvas. Notice that this view was added to the gutter
on the left edge of the XIB editor pane.

We would like this view to be the view of the CurrentTimeViewController. In other words, 
the instance variable view of CurrentTimeViewController should point at the view. Therefore, 
we must have an outlet connection from an instance of CurrentTimeViewController to the 
view. In previous exercises, this was simple: there was a AppDelegate object, and we’d set up
connections between the view objects in the XIB file and that AppDelegate. However, there is not a
CurrentTimeViewController object in this XIB file that you can make connections to and from.

Your first intuition may be to add a CurrentTimeViewController to the XIB file.
But, if there was a CurrentTimeViewController object in the XIB file, whenever that 
XIB file was loaded it would create an instance of CurrentTimeViewController. This
application already has an instance of CurrentTimeViewController, the one you created in



ptg

Chapter 7  View Controllers

138

application:didFinishLaunchingWithOptions:. If you were to add an instance of this class to the
XIB file, you would have two CurrentTimeViewController instances.

Figure 7.11  File's Owner

Instead, we need some way to connect objects loaded from the XIB file to objects that exist in memory
before the XIB file is loaded. This way, the already existing CurrentTimeViewController could set 
its view instance variable to point at the view loaded from this XIB file. This is where the File's Owner
comes in. The File's Owner is a placeholder object. When a XIB file is loaded, placeholder objects are
not instantiated. You can think of a placeholder object as a hole in which existing objects can be placed
so that connections can be made between them and the objects in the XIB file.

Take a peek at the available connections for the File's Owner by Control-clicking on it. There aren’t
any. That is because the type of the File's Owner defaults to NSObject, which has no IBOutlets.
Because a CurrentTimeViewController will be the placeholder object, we must change the type of the
File's Owner in this XIB file to be that class.

Select the File's Owner placeholder object on the outline view and click the icon to show the
identity inspector. Change the Class field to CurrentTimeViewController and hit return.

Figure 7.12  Changing the type of an object in a XIB file



ptg

Creating views for the view controllers

139

Now, Control-click on the File's Owner to see the available outlets. There is now a view outlet
available because UIViewController’s view is an IBOutlet and CurrentTimeViewController is a
subclass of UIViewController. Connect this outlet to the view in this XIB file.

Select the view and open the attributes inspector. Change its background color to something
obnoxious, like bright purple.

Figure 7.13  Changing the background color of a view

Build and run the application. While running, select the Time tab. Notice that you are looking at the
exact same view you created in CurrentTimeViewController.xib.

So, how does this work? When you create an instance of a UIViewController subclass, you pass it
the name of a XIB file through its designated initializer, initWithNibName:bundle:. When the view
controller is asked for its view, it checks to see if a XIB file with that name exists in your application
bundle. (If you specify nil as the name, it will search for a XIB file whose name matches the name of
the view controller subclass.) It then loads that XIB file. You can be more explicit about the XIB file
loaded in CurrentTimeViewController.m.

- (id)init
{
    self = [super initWithNibName:@"CurrentTimeViewController"
                           bundle:nil];
    
    if (self) {
        UITabBarItem *tbi = [self tabBarItem];
        [tbi setTitle:@"Time"];
        UIImage *i = [UIImage imageNamed:@"Time.png"];
        [tbi setImage:i];
    }
    
    return self;
}                

The loadView method is responsible for this XIB loading behavior. The default implementation of this
method does the checking for and loading of a XIB file. Therefore, when a view controller is loading
its view from a XIB file, you do not override loadView. If instead you want to create a view for a view
controller programmatically, you must override loadView so it does not load a XIB file.



ptg

Chapter 7  View Controllers

140

The instance of CurrentTimeViewController that is loading the XIB file places itself in the File's
Owner hole of that XIB file. Any connections to or from the File's Owner are made on that instance
of CurrentTimeViewController. This concept allows placeholder objects to get pointers to objects
loaded from a XIB file. If you did not set pointers from objects in memory to objects loaded from a
XIB file, the loaded objects would be alive but nothing would have a pointer to it. This would be a
leak.

Take a look at MainWindow.xib and check out the File's Owner in the identity inspector: its class
is UIApplication. When your application first launches, an instance of UIApplication is created
and it loads MainWindow.xib. The UIApplication is the File's Owner. The File's Owner of this
file has a outlet connection for its delegate that has been connected to HypnoTimeAppDelegate.
Therefore, after the XIB file loads, the delegate of the UIApplication is set to point at the
HypnoTimeAppDelegate object – the reason why HypnoTimeAppDelegate gets sent the message
application:didFinishLaunchingWithOptions:.

Understanding the File's Owner is an integral part of demystifying the magic of a XIB file. In
Chapter 15, we will talk about how objects are archived into the XIB file. 

Now that your XIB file is set up to work properly, you can continue creating the interface for
CurrentTimeViewController. In CurrentTimeViewController.h, add an outlet and an action.

#import <UIKit/UIKit.h>

@interface CurrentTimeViewController : UIViewController 
{
    IBOutlet UILabel *timeLabel; 
} 
- (IBAction)showCurrentTime:(id)sender;

@end                

Save this file.

In CurrentTimeViewController.xib, drag a UILabel and UIButton object onto the view that is
already there. Configure these objects and make connections, as shown in Figure 7.14.



ptg

Creating views for the view controllers

141

Figure 7.14  Button and Label

Implement the action method in CurrentTimeViewController.m:

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];

    // Static here means "only once." The *variable* formatter
    // is created when the program is first loaded into memory.
    // The first time this method runs, formatter will
    // be nil and the if-block will execute, creating
    // an NSDateFormatter object that formatter will point to.
    // Subsequent entry into this method will reuse the same
    // NSDateFormatter object.
    
    static NSDateFormatter *formatter = nil;
    
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setTimeStyle:NSDateFormatterShortStyle];
    }
    [timeLabel setText:[formatter stringFromDate:now]];
}

Build and run the application. You will be able to switch back and forth between the two views.
Clicking the button on the time view will display the current time.



ptg

Chapter 7  View Controllers

142

Appearing and Disappearing Views
UIViewController has several methods that get called at certain times:

viewWillAppear: when its view is about to be added to the window

viewDidAppear: when its view has been added to the window

viewWillDisappear: when its view is about to be dismissed, covered, or otherwise
hidden from view

viewDidDisappear: when its view has been dismissed, covered, or otherwise
hidden from view

These methods are useful because a view controller is only created once, but its view usually gets
displayed (and dismissed or hidden) several times. You often need a way to override the default
behavior at these times in the life of view controller. For example, you may want to do some sort
of initialization each time the view is moved on screen. Here you would use viewWillAppear: or
viewDidAppear:. Similarly, if you had a large data structure that you only need while the view
controller is being displayed, you might want to do some clean-up each time the view controller is
moved off screen. Then you would use viewWillDisappear: or viewDidDisappear:.

Note that these methods, as defined in UIViewController, do nothing. They are there so that your
subclasses can override them.

       - (void)viewWillAppear:(BOOL)animated;
       - (void)viewDidAppear:(BOOL)animated;
       - (void)viewWillDisappear:(BOOL)animated; 
       - (void)viewDidDisappear:(BOOL)animated;

Now let’s override viewWillAppear: to initialize the time label of the CurrentTimeViewController
to the current time each time it is displayed and viewWillDisappear: to log to the console. In
CurrentTimeViewController.m, make the following changes:

- (void)viewWillAppear:(BOOL)animated
{
    NSLog(@"CurrentTimeViewController will appear");
    [super viewWillAppear:animated];
    [self showCurrentTime:nil]; 
} 
- (void)viewWillDisappear:(BOOL)animated 
{
    NSLog(@"CurrentTimeViewController will DISappear");
    [super viewWillDisappear:animated];
}

Build and run the application. Note that each time you return to the Time screen, the time label is
updated. And each time you leave that screen, you will see the log statement in the console.

The View Controller Lifecycle and Low-Memory
Warnings
A view controller, like any other object, is created through alloc and init. It does not, however,
create its view at that time. Instead, it waits until the view is really needed before it calls loadView.
This lazy creation of the view is good: for example, if you have a tab view with a dozen view



ptg

The View Controller Lifecycle and Low-Memory Warnings

143

controllers, the view for any particular view controller will only be created if that particular tab is
selected. You can see this behavior in the console when you build and run HypnoTime – you will only
see the log message indicating that the CurrentTimeViewController’s view is loaded after you switch
to the Time tab for the first time.

How does a view controller know when to load its view? When it is sent the message view. The
implementation of this method in UIViewController looks something like this:

- (UIView *)view 
{
    if ([self isViewLoaded] == NO)
    {
        // If I don't currently have a view, then create it
        [self loadView];
        [self viewDidLoad];
    }
    
    // The view is definitely going to exist here, so return it 
    return view;
}           

This code says that anytime an object asks a view controller for its view, it will create it if it
doesn’t already exist. This is exactly what happens when the user selects a tab from the tab bar: the
UITabBarController sends the message view to the associated view controller and then places the
returned view in the view hierarchy. Imagine what would happen if you were to send the message view
to CurrentTimeViewController in its init method. In CurrentTimeViewController.m, access the
view in init and change its background color to yellow:

- (id)init
{
    self = [super initWithNibName:@"CurrentTimeViewController"
                           bundle:nil];
    
    if (self) {
        UITabBarItem *tbi = [self tabBarItem];
        [tbi setTitle:@"Time"];
        UIImage *i = [UIImage imageNamed:@"Time.png"];
        [tbi setImage:i];
        
        [[self view] setBackgroundColor:[UIColor yellowColor]];
    }
        
    return self;
}                

Build and run the application. Switch to the Time screen and notice that it is yellow. More importantly,
notice that the console says the CurrentTimeViewController’s view is loaded as soon as you start 
the application. By accessing the view in a view controller’s initialization method, the view is no
longer loaded lazily. This doesn’t seem like that big of an issue; that is, until you factor in low-memory
warnings.

When the system is running low on RAM, it issues a low-memory warning to the running
application. The application responds by freeing up any resources that it doesn’t need at the moment
and can easily recreate. View controllers, during a low-memory warning, are sent the message
didReceiveMemoryWarning. The default implementation of this method will check to see if the view is
currently on screen; if it is not, it is released. (If the view is on screen, nothing happens.)



ptg

Chapter 7  View Controllers

144

Run the application on the simulator. Switch to the Time tab, notice the view is yellow, and then switch
back to the Hypno tab. From the Hardware menu in the simulator, select Simulate Memory Warning.
This will issue a low-memory warning to your application. Then, switch back to the Time tab: the view
is no longer yellow.

Why isn’t the view yellow anymore? When a low-memory warning occurs,
CurrentTimeViewController’s view is destroyed – but the instance of CurrentTimeViewController
is not. When you switch back to the Time tab, the view is recreated, but the
CurrentTimeViewController itself is not recreated. Thus, the message init, which sets the
background color of the view to yellow, is never sent to the instance of CurrentTimeViewController
again.

We can make a rule out of this: never access a view controller’s view in that view controller’s
initialization method. If you have extra work you want to perform on the view, do so in viewDidLoad.
This message is sent to a view controller each time it loads its view. Delete the line of code that 
sets the background color of the view to yellow from the init method and add it to viewDidLoad in
CurrentTimeViewController.m.

- (void)viewDidLoad
{
    [super viewDidLoad];
    
    NSLog(@"Loaded the view for CurrentTimeViewController");
    
    [[self view] setBackgroundColor:[UIColor yellowColor]];
}            

Build and run the application. You can simulate as many memory warnings as you want and the view
will always be yellow. This is the desired behavior for handling low-memory warnings – the user
should never know that one occurred.

Figure 7.15  Retain count of views

In addition to viewDidLoad, you may also have to implement its counterpart, viewDidUnload. A view
controller’s view can have subviews and some of these subviews will be connected as outlets from
the view controller. When an object is connected via an outlet, it is retained by the object that has 
the outlet to it. For example, the timeLabel is an outlet of CurrentTimeViewController. Therefore,
CurrentTimeViewController retains its timeLabel. A view is also retained by its superview, so
timeLabel has a retain count of two.

When a low-memory warning occurs, the view of the CurrentTimeViewController will be
deallocated (its retain count will only be one, since CurrentTimeViewController is the only thing



ptg

The View Controller Lifecycle and Low-Memory Warnings

145

that retains it when it is not on the screen). When this view is deallocated, it will send release to its
subviews. The timeLabel then has a retain count of one (from the CurrentTimeViewController), but
it doesn’t have a superview any longer. When CurrentTimeViewController reloads its view, a new
UILabel instance is created from the XIB file.

Therefore, as soon as a view controller’s view is unloaded, you should release all outlets since
they will eventually be replaced by a new object. Do so by implementing viewDidUnload in
CurrentTimeViewController.m.

- (void)viewDidUnload
{
    NSLog(@"CurrentTimeViewController's view was unloaded due to memory warning");
    [super viewDidUnload];
    [timeLabel release];
    timeLabel = nil; 
}                        

Notice that we did not release the button, which is also a subview of the
CurrentTimeViewController’s view. This is because we did not have an outlet to this object.

When a view controller is deallocated, it is not sent the message viewDidUnload. (Its view is still
released, though.) Therefore, a view controller that will get deallocated must release its outlets 
in dealloc. Even though CurrentTimeViewController will not be released in this application,
implement its dealloc in CurrentTimeViewController.m.

- (void)dealloc
{
    [timeLabel release];
    [super dealloc];
}            

The biggest thing to keep in mind is that the view and its view controller are separate objects. A view
controller will see its view created, moved on screen, moved off screen, destroyed and created again –
perhaps many times over. You can think of the view as a renewable resource that the view controller
uses to communicate with the user. Figure 7.16 shows the life cycle of a view controller’s view in full.



ptg

Chapter 7  View Controllers

146

Figure 7.16  Lifecycle of a view controller

View Controller Subclasses and Templates
In this exercise, you were asked to create a UIViewController subclass by using the NSObject
template and an empty XIB file that you configured for the view controller. This is useful for learning
how the XIB file works. However, in practice, you typically let Xcode do the grunt work and use the
UIViewController subclass template.

Throughout the rest of this book, you will create a lot of view controllers. To save on time and
potential errors, we will instruct you to use the UIViewController template when that view controller
will have a XIB file. When you create a view controller subclass with a XIB template, the XIB’s File's



ptg

Challenge: Map Tab

147

Owner is already set to the class of that view controller. It also has an instance of UIView that has been
hooked up to the File's Owner’s view outlet.

There is a drawback to using the view controller templates: there is a lot of code written in the
implementation file. It becomes difficult to explain where to type the code with all of this extra junk
in the file. Therefore, when you create a view controller using these templates, we will instruct you to
delete all of the code in the implementation file between the @implementation and @end directives.
We’ll tell you this each time you create a file, so you don’t have to remember this, but consider this a
heads-up.

Challenge: Map Tab
Add another view controller to the tab bar controller. This new view controller should display an
MKMapView that shows the user’s location.



ptg

This page intentionally left blank 



ptg

149

8
The Accelerometer

One of the flashiest features of iOS is the accelerometer. The accelerometer detects the device’s real-
world orientation by tracking the force of the earth’s gravity on its X, Y, and Z axes. You can also use
accelerometer data to detect changes in the device’s velocity.

In this chapter, you are going to use the accelerometer to skew the center of the HypnosisView
according to the device’s orientation: when the user tilts the phone, the center will slide in the direction
of the tilt, as shown in Figure 8.1.

Figure 8.1  HypnoTime, tilted

Setting Up the Accelerometer
To receive accelerometer data, your application needs to get hold of the application’s shared instance
of UIAccelerometer and give it an updateInterval and a delegate. The delegate needs to implement
the method accelerometer:didAccelerate:. This method reports changes in the accelerometer data
every updateInterval seconds in the form of a UIAcceleration object.



ptg

Chapter 8  The Accelerometer

150

Open the HypnoTime project. Before you add any code, you need to decide which object will be the
UIAccelerometer delegate. There are two options: 

• Make the HypnosisView the delegate. It will receive the updates directly and use them to change the
center of drawing internally.

• Make the HypnosisViewController the delegate. It will receive the updates and forward the
necessary bits in messages to its view, the HypnosisView.

If the HypnosisView is the accelerometer delegate, it becomes a self-contained object, which makes
reusing it simpler. The problem is there can only be one accelerometer delegate. What if other objects
need input from the accelerometer? HypnosisView can’t forward information on to other objects – it’s
not a controller. Therefore, the better option is to let HypnosisViewController be the delegate and
receive the accelerometer updates, as shown in Figure 8.2. HypnosisViewController can easily inform
the HypnosisView of a change in orientation, and it can inform other objects, too, if necessary. 

Figure 8.2  Object diagram for HypnoTime

In HypnosisViewController.h, let the HypnosisViewController know it conforms to the
UIAccelerometerDelegate protocol.

@interface HypnosisViewController : UIViewController <UIAccelerometerDelegate>

In HypnosisViewController.m, override the method viewWillAppear: to get a pointer to the
accelerometer and set its update interval and delegate. 

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];

    NSLog(@"Monitoring accelerometer");
    UIAccelerometer *a = [UIAccelerometer sharedAccelerometer];

    // Receive updates every 1/10th of a second.
    [a setUpdateInterval:0.1];
    [a setDelegate:self];
}

When the HypnosisViewController’s view is moved off screen, the accelerometer updates become
unnecessary, and you should set the accelerometer’s delegate to nil. Setting the UIAccelerometer



ptg

Getting Accelerometer Data

151

delegate to nil stops the updates to the controller and powers down the accelerometer hardware to
conserve battery life. Make this change in HypnosisViewController.m:

- (void)viewWillDisappear:(BOOL)animated
{
    [super viewWillDisappear:animated];
    [[UIAccelerometer sharedAccelerometer] setDelegate:nil];
}

Getting Accelerometer Data
In HypnosisViewController.m, add the following implementation of the UIAccelerometer delegate
method, accelerometer:didAccelerate:. This method will log accelerometer updates to the console.
Notice that the types of the two parameters are different even though they look similar:

- (void)accelerometer:(UIAccelerometer *)meter 
        didAccelerate:(UIAcceleration *)accel
{
    NSLog(@"%f, %f, %f", [accel x], [accel y], [accel z]);
}

Build and run the application on your device. Watch the console as you rotate and shake the phone to
get a feel for the data that the accelerometer produces.

Orientation and Scale of Acceleration
The device’s acceleration is measured in Gs. 1G is the force due to the earth’s gravity. (When the
device is still, the accelerometer doesn’t know if it is moving at a constant velocity in the earth’s
gravity well or if it is far out in space and accelerating upwards at 9.8 meters per second every second.)

While the application is running, hold the device vertically in front of your face as if you were using 
it. Check the console: the y-component of the acceleration is approximately -1, and the x- and z-
components are approximately 0. If you lay the device on its back, the z-component of the acceleration
is approximately -1, and the others are approximately 0. If you balance the device on the edge with 
the volume switch down, the x-component of the acceleration is approximately -1, and the others are
approximately 0. If you drop your device, all three components are 0 – until it hits the floor.

Using Accelerometer Data
This application will use the accelerometer data to offset the center of drawing in the HypnosisView.
So, HypnosisView needs two properties to define the offset. In HypnosisView.h, add these properties.

@interface HypnosisView : UIView
{
    float xShift, yShift;
} 
@property (nonatomic, assign) float xShift;
@property (nonatomic, assign) float yShift;
@end

Now synthesize these properties in HypnosisView.m:



ptg

Chapter 8  The Accelerometer

152

@implementation HypnosisView
@synthesize xShift, yShift;

HypnosisView needs to know how to use these properties when it draws. In HypnosisView.m, add code
to drawRect: to offset the center using the xShift and yShift instance variables:

    // Draw concentric circles
    for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)
    {
        center.x += xShift;
        center.y += yShift;
        CGContextAddArc(context, center.x, center.y,
                        currentRadius, 0, M_PI * 2.0, YES);
        CGContextStrokePath(context);
    }

Using the UIAcceleration object the accelerometer sends its delegate, set xShift and yShift and
redraw the view. In HypnosisViewController.m, replace the following method:

- (void)accelerometer:(UIAccelerometer *)meter
        didAccelerate:(UIAcceleration *)accel
{
    HypnosisView *hv = (HypnosisView *)[self view];
    [hv setXShift:10.0 * [accel x]];
    [hv setYShift:-10.0 * [accel y]];

    // Redraw the view
    [hv setNeedsDisplay];
}

Build and run your application. The center of the view will move as you tilt the device. But the
movement of the HypnosisView has a jerky feel that is not so conducive to hypnosis. We’ll fix that
next.

Smoothing Accelerometer Data
Each time the accelerometer sends an update, the center of the view changes to reflect the orientation
of the device. However, because the accelerometer’s updateInterval is constant and the device’s
movement is variable, the center of the view jumps around instead of moving in calm, peaceful,
smooth manner. To get smooth movement, you need “smoothed” data. To smooth accelerometer data,
you apply a low-pass filter.

In HypnosisViewController.m, add the following lines of code to filter the accelerometer data:

- (void)accelerometer:(UIAccelerometer *)meter 
        didAccelerate:(UIAcceleration *)accel
{
    HypnosisView *hv = (HypnosisView *)[self view];
    float xShift = [hv xShift] * 0.8 + [accel x] * 2.0;
    float yShift = [hv yShift] * 0.8 - [accel y] * 2.0;
    [hv setXShift:xShift];
    [hv setYShift:yShift];

    // Redraw the view
    [hv setNeedsDisplay];
}

Build and run your application. The application will have a smoother response and a nicer feel.



ptg

Detecting Shakes

153

Detecting Shakes
To detect when the user is shaking the device, you could perform some intricate math on the signal that
comes from the accelerometer. However, the class UIResponder has been kind enough to implement
methods that do the math for you. 

// Triggered when a shake is detected 
- (void)motionBegan:(UIEventSubtype)motion
          withEvent:(UIEvent *)event;

// Triggered when the shake is complete 
- (void)motionEnded:(UIEventSubtype)motion
          withEvent:(UIEvent *)event;

// Triggered when a shake is interrupted (by a call for example)
// Or if a shake lasts for more than a second 
- (void)motionCancelled:(UIEventSubtype)motion
              withEvent:(UIEvent *)event;

Now in HypnoTime, let’s override motionBegan:withEvent: to change the stripe color when the phone
is shaken. First, add an instance variable to HypnosisView.h to hold the new color:

@interface HypnosisView : UIView {
    UIColor *stripeColor;
    float xShift, yShift; 
} 
@property (nonatomic, assign) float xShift;
@property (nonatomic, assign) float yShift;
@end

The designated initializer for UIView is initWithFrame:. In HypnosisView.m, initialize the
stripeColor in initWithFrame:.

- (id)initWithFrame:(CGRect)r
{
    self = [super initWithFrame:r];
    
    if (self) {
        // Notice we explicitly retain the UIColor instance
        // returned by the convenience method lightGrayColor,
        // because it is autoreleased and we need to keep it around
        // so we can use it in drawRect:.
        stripeColor = [[UIColor lightGrayColor] retain];
    }
    
    return self;
}

Finally, use the stripeColor in your drawRect: method of HypnosisView.m.

    CGContextSetLineWidth(context, 10);

    // Set the stroke color to the current stripeColor
    [stripeColor setStroke];

    // Draw concentric circles
    for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)
    {



ptg

Chapter 8  The Accelerometer

154

Build and run the application just to make sure you haven’t broken anything. It should work exactly as
before.

Because stripeColor is owned by HypnosisView, it must be released in the view’s dealloc method.
Override dealloc in HypnosisView.m.

- (void)dealloc
{
    [stripeColor release];
    [super dealloc];
}

Now override motionBegan:withEvent: to change the color and redraw the view in HypnosisView.m.

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
    // Shake is the only kind of motion for now,
    // but we should (for future compatibility)
    // check the motion type.
    if (motion == UIEventSubtypeMotionShake) {
        NSLog(@"shake started");
        float r, g, b;
        
        // Notice the trailing .0 on the dividends... this is necessary
        // to tell the compiler the result is a floating point number.. otherwise,
        // you will always get 0
        r = random() % 256 / 256.0;
        g = random() % 256 / 256.0;
        b = random() % 256 / 256.0;
        [stripeColor release];
        stripeColor = [UIColor colorWithRed:r
                                      green:g
                                       blue:b
                                      alpha:1];
        [stripeColor retain];
        [self setNeedsDisplay];
    }
}

There’s one more important detail: the window’s firstResponder is the object that gets sent all of
the motion events. Right now, the first responder is not HypnosisView, but you can change that in two
steps. First, you need to override canBecomeFirstResponder in HypnosisView.m:

- (BOOL)canBecomeFirstResponder
{
    return YES;
}

Then, when your view appears on the screen, you need to make it the first responder. In
HypnosisViewController.m, add the following line of code to viewWillAppear:animated.

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];
    NSLog(@"Monitoring accelerometer");
    UIAccelerometer *a = [UIAccelerometer sharedAccelerometer];
    [a setUpdateInterval:0.1];
    [a setDelegate:self];



ptg

Challenge: Changing Colors

155

    [[self view] becomeFirstResponder];
}

Build and run the application. Shake the device and watch the color of the stripes change. Notice that
the color does not continue to change if you continue shaking. This is because there isn’t a “while
motion continues” method. To change the color, you have to shake the device, stop shaking it, and
then shake it again. (If you wanted the color to continue to change, you could use an NSTimer to send
periodic “change the color now” messages. You would create the timer in motionBegan:withEvent:
and destroy it in motionEnded:withEvent: and motionCancelled:withEvent:.)

Also, it’s important to note that motion events have nothing to do with the UIAccelerometer delegate.
The system determines there is a shake by querying the accelerometer hardware and then sends the
appropriate messages to the firstResponder. 

Challenge: Changing Colors
Change the colors of the stripes based on the orientation of the device. There are three color channels
(Red, Green, Blue) and three axes of movement (X, Y, Z). Assign a color to each axis. When the G
force on an axis is closer to -1, set its color channel to 0 and when it is closer to 1 set its color channel
to 1. Use the documentation!

For the More Curious: Filtering and Frequency
In general, there are two ways of altering the accelerometer data to suit your needs: change the
frequency of accelerometer data updates and apply a filter to the data. When you’re writing an
application that relies on accelerometer data, you should determine the update interval and filtering
algorithm that gives the user the best experience.

In terms of update intervals, here are some recommendations:

Orientation Applications If your application relies on the current orientation of the device
(for example, to rotate an arrow to point in a certain direction),
the accelerometer can update infrequently. A value of 1/20 to
1/10 seconds for the updateInterval is sufficient.

Game Applications An application that uses accelerometer data as input for
controlling a visual object in real-time needs a slightly faster
update interval. For applications like this, the updateInterval
should be between 1/30 to 1/60 seconds.

High-Frequency Applications Applications that need to squeeze every little update out of the
accelerometer should set the updateInterval between 1/70 and
1/100 seconds (the smallest possible interval). An application
that detects shakes is updating at a high frequency.

Once you have chosen the right update interval, you need to choose what type of filter is best.
Typically, you’ll choose either a low-pass filter or a high-pass filter.

Using a low-pass filter, as you did in the exercise, isolates the gravity component of the acceleration
data and reduces the effect of sudden changes in the device’s orientation. In most situations, it gives
you just the orientation of the device. A basic low-pass filter equation looks like this:



ptg

Chapter 8  The Accelerometer

156

float filteringFactor = 0.1; 
lowPassed = newValue * filteringFactor + lowPassed * (1.0 - filteringFactor);

where lowPassed is the output. Notice that the previous output is used the next time the equation 
is solved and that the new value produced by the accelerometer is blended with all of the previous
values. The output of a low-pass filter is essentially a weighted average of previous inputs, and sudden
movements will not affect the output as much as they would with unfiltered data.

On the other hand, sometimes you want to ignore orientation and focus on sudden movements, like a
shake. For this, you would use a high-pass filter. Now that you know the low-pass filter, the high-pass
signal is what’s left if you subtract out the low-pass signal:

float filteringFactor = 0.1; 
lowPassed = newValue * filteringFactor + lowPassed * (1.0 - filteringFactor);
highPassed = newValue - lowPassed;

There are other algorithms for high-pass filtering, but this one is especially easy to understand.

Figure 8.3 is a graph over time of low-pass and high-pass filtering on a device that is being shaken. 

Figure 8.3  Low- and high-pass filter graphs

For the More Curious: Retina Display
With the release of iPhone 4, Apple introduced the Retina display for the iPhone and iPod touch. The
Retina display has much higher resolution – 640x960 pixels compared to 320x480 pixels on earlier
devices. Let’s look at what you should do to make graphics look their best on both displays.

For vector graphics, like HypnosisView’s drawRect: method and drawn text, you don’t need to do
anything; the same code will render as crisply as the device allows. However, if you draw using Core



ptg

For the More Curious: Retina Display

157

Graphics functions, these graphics will appear differently on different devices. In Core Graphics, also
called Quartz, we describe lines, curves, text, etc. in terms of points. On a non-Retina display, a point
is 1x1 pixel. On a Retina display, a point is 2x2 pixels (Figure 8.4).

Figure 8.4  Rendering to different resolutions

What about printers? When you print, 72 points is equal to one inch.

Given these differences, bitmap images (like JPEG or PNG files) will be unattractive if the image isn’t
tailored to the device’s screen type. Say your application includes a small image of 25x25 pixels. If
this image is displayed on a Retina display, then the image must be stretched to cover an area of 50x50
pixels. At this point, the system does a type of averaging called anti-aliasing to keep the image from
looking jagged. The result is an image that isn’t jagged – but it is fuzzy (Figure 8.5).

Figure 8.5  Fuzziness from stretching an image

You could use a larger file instead, but the averaging would then cause problems in the other direction
when the image is shrunk for a non-Retina display. The only solution is to bundle two image files with
your application: one at a pixel resolution equal to the number of points on the screen for non-Retina
displays and one twice that size in pixels for Retina displays.

Fortunately, you do not have to write any extra code to handle which image gets loaded on which
device. All you have to do is suffix the higher-resolution image with @2x. Then, when you use



ptg

Chapter 8  The Accelerometer

158

UIImage’s imageNamed: method to load the image, this method looks in the bundle and gets the file
that is appropriate for the particular device.

Let’s see this in action with HypnoTime. In the last chapter, you added two image files (Hypno.png and
Time.png) to your project from the iOSProgramming.zip file. In the same directory as those files, find
Hypno@2x.png and Time@2x.png and add them to the HypnoTime project. Then build and run on the
simulator.

Once the simulator application is running, you can change which display is being simulated. To see
HypnoTime in a Retina display, go to the Hardware menu, select Device, and then choose iPhone
(Retina). Notice that the tab bar items are crisp on both types of displays. (If you’re even more curious,
you can remove the @2x files from your project and build and run again to see the difference.)



ptg

159

9
Notification and Rotation

Objective-C code is all about objects sending messages to other objects. This communication usually
occurs between two objects, but sometimes a bunch of objects are concerned with one object. They all
want to know when this object does something interesting. But it’s just not feasible for that object to
send messages to every interested object.

Instead, an object can post notifications about what it is doing to a centralized notification center.
Interested objects register to receive a message when a particular notification is posted or when 
a particular object posts. In this chapter, you will learn how to use a notification center to handle
notifications. You’ll also learn about the autorotation behavior of UIViewController.

Notification Center
Every application has an instance of NSNotificationCenter, which works like a smart bulletin board.
An object can register as an observer (“Send me ‘lost dog’ notifications.”). When another object posts
a notification (“I lost my dog.”), the notification center forwards the notification to the registered
observers.

Notifications are instances of NSNotification. Every NSNotification object has a name and
a pointer back to the object that posted it. When you register as an observer, you can specify a
notification name, a posting object, and the message you want to be sent.

This snippet of code registers you for notifications named LostDog that have been posted by any
object. When an object posts a LostDog notification, you’ll be sent the message retrieveDog:.

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter]; 
[nc addObserver:self                      // The object self will be sent
       selector:@selector(retrieveDog:)   // retrieveDog:
           name:@"LostDog"                // when @"LostDog" is posted
         object:nil];                     // by any object.

Note that nil works as a wildcard in the notification center world. You can pass nil as the name
argument, which will give you every notification regardless of its name. If you pass nil for the
notification name and the posting object, you will get every notification. 

The method that is triggered when the notification arrives takes an NSNotification object as the
argument:

- (void)retrieveDog:(NSNotification *)note
{
    id poster = [note object];



ptg

Chapter 9  Notification and Rotation

160

    NSString *name = [note name];
    NSDictionary *extraInformation = [note userInfo];
    ....
}

Notice that the notification object may also have a userInfo dictionary attached to it. This dictionary
is used to pass additional information, like a description of the dog that was found. Here’s an example
of an object posting a notification with a userInfo dictionary attached:

NSDictionary *extraInfo = ...;
NSNotification *note = [NSNotification notificationWithName:@"LostDog"
                                                      object:self
                                                    userInfo:extraInfo];
[[NSNotificationCenter defaultCenter] postNotification:note];

For a (real-world) example, when a keyboard is coming onto the screen, it posts a
UIKeyboardDidShowNotification that has a userInfo dictionary. This dictionary contains the on-
screen region that the newly visible keyboard occupies.

This is important: the notification center does not retain observers. If an object registers with the
notification center, that object must unregister before it is deallocated. If it doesn’t, the next time a
notification it registered for is posted, the center will try to send the object a message. Since that object
has been deallocated, your application will crash.

- (void)dealloc
{
    [[NSNotificationCenter defaultCenter] removeObserver:self];
    [super dealloc];
}

UIDevice Notifications
One object that regularly posts notifications is UIDevice. Here are the constants that serve as the names
of the notifications that a UIDevice posts:

UIDeviceOrientationDidChangeNotification
UIDeviceBatteryStateDidChangeNotification
UIDeviceBatteryLevelDidChangeNotification
UIDeviceProximityStateDidChangeNotification

Wouldn’t it be cool to get a message when the device rotates? Or when the phone is placed next to the
user’s face? These notifications do just that.

Create a new Window-based Application iPhone project and name it HeavyRotation. In
HeavyRotationAppDelegate.m, register to receive notifications when the orientation of the device
changes:

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Get the device object
    UIDevice *device = [UIDevice currentDevice];

    // Tell it to start monitoring the accelerometer for orientation
    [device beginGeneratingDeviceOrientationNotifications];



ptg

Autorotation

161

    // Get the notification center for the app
    NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

    // Add yourself as an observer
    [nc addObserver:self
           selector:@selector(orientationChanged:)
               name:UIDeviceOrientationDidChangeNotification
             object:device];

    [[self window] makeKeyAndVisible]; 
    
    return YES;
}

Now, whenever the device’s orientation changes, the message orientationChanged: will be sent to
the instance of HeavyRotationAppDelegate. In the same file, add an orientationChanged: method:

- (void)orientationChanged:(NSNotification *)note
{
    // Log the constant that represents the current orientation
    NSLog(@"orientationChanged: %d", [[note object] orientation]);
}

Build and run the application. (This is best run on the device because the simulator won’t let you
achieve some orientations. If you must use the simulator, you can change the orientation by choosing
Rotate Left or Rotate Right from the Hardware menu.) 

Many classes post notifications including UIApplication, NSManagedObjectContext,
MPMoviePlayerController, NSFileHandle, UIWindow, UITextField, and UITextView. See their class
reference pages in the documentation for details. 

Autorotation
Many applications rotate and resize all of their views when the user rotates the device. You could
implement this using notifications, but it would be a lot of work. Thankfully, you can use autorotation
to simplify the process.

If the view on screen is controlled by a view controller, when the device is rotated, the view controller
is asked if it is okay to rotate the view. If the view controller agrees, the view is resized and rotated. Its
subviews are also resized and rotated.

To implement autorotation in HeavyRotation, you need to do two things:

• Override shouldAutorotateToInterfaceOrientation: in HeavyViewController to allow
autorotation.

• Carefully set the autoresize mask on each subview so that it acts reasonably when the superview is
resized to fill the rotated window.

Create a new class by selecting File → New → New File.... Choose the UIViewController subclass
template from the Cocoa Touch item under iOS and click Next.



ptg

Chapter 9  Notification and Rotation

162

Figure 9.1  UIViewController template

On the next pane, select UIViewController as the superclass, uncheck Targeted for iPad, and check With
XIB for user interface.

Figure 9.2  UIViewController template options



ptg

Autorotation

163

Name this class HeavyViewController and save it. Then, open HeavyViewController.m and delete
everything between @implementation and @end. The file should look like this:

#import "HeavyViewController.h"

@implementation HeavyViewController

@end            

Using this template, you get a subclass of UIViewController named HeavyViewController. You
also get a XIB file named HeavyViewController.xib. This XIB file has a file’s owner of type
HeavyViewController, whose view outlet is connected to a 320x460 point sized view object.

At this point, you could create an init method that specifies the NIB to load and override the
designated initializer of the superclass to call that init method:

- (id)init
{
    self = [super initWithNibName:@"HeavyViewController"
                           bundle:nil]; 
    return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
    return [self init];
}

However, your HeavyViewController class can get by with the default implementation of the
init method of its superclass, UIViewController. The init method of UIViewController calls
initWithNibName:bundle:, passing nil as the nibName. When the nibName is nil, the view controller
looks for a NIB file with the same name as the class of the object being initialized. In this case, that’s
HeavyViewController. In addition, HeavyViewController doesn’t have any instance variables of its
own to initialize. So this class doesn’t need an initializer at all; the default behavior is perfect.

When the device rotates, view controllers whose views are currently on the screen will be sent the
message shouldAutorotateToInterfaceOrientation:. This method returns a BOOL that indicates
whether it is okay to autorotate the view controller’s view.

For iPhone applications, you typically allow right-side up, landscape left, and landscape right. On
the iPad, you typically allow all orientations, including upside-down. In HeavyViewController.m,
implement this method to return YES for the three typical iPhone orientations.

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)x 
{
    // Return YES if incoming orientation is Portrait
    // or either of the Landscapes, otherwise, return NO
    return (x == UIInterfaceOrientationPortrait)
        ||  UIInterfaceOrientationIsLandscape(x);
}

Now let’s find something to rotate. Drag any image (smaller than 1024x1024) from Finder into
the project navigator. (Alternatively, you can use the file joeeye.jpg in the solutions at http://
www.bignerdranch.com/solutions/iOSProgramming.zip.)

Open HeavyViewController.xib. Drop a slider, an image view, and two buttons onto the window.
Then select the UIImageView and show the attributes inspector. Set the Image property to your image
file, set the Mode to Aspect Fit, and set the background color to gray, as shown in Figure 9.3.

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Chapter 9  Notification and Rotation

164

Figure 9.3  UIImageView

When the device rotates, two things happen. First, the view is rotated to be aligned with the device
orientation. Second, the view is resized to fit the screen. For example, a view that is 320 points wide
and 480 points tall in portrait mode will be 480 points wide and 320 points tall in landscape mode.
When a view is resized, it will autoresize all of its subviews. Each subview is resized according to its
autoresizing mask property. You can modify the autoresizing mask of a view by selecting it in the XIB 
file and then clicking the  icon to reveal the size inspector (Figure 9.4).

Figure 9.4  Autosizing in size inspector

Check out the box labeled Autosizing in Figure 9.4. You can click this control in six different places:
on the four sides outside the inner box and along the vertical and horizontal axes inside the inner box.
We call the outside four struts, and the inside two springs. Clicking on one of these areas toggles an
autoresizing mask option. A solid red line means the option is on, and a dim red dotted line means the
option is off.

A spring that is turned on tells the view to change size when its superview changes size. For example,
if you turn on the horizontal spring, the view will change its width at the same rate its superview
changes its width.

A strut tells the view to keep the margin between the view and its superview constant. For example, if
you turn on the left strut, the view will maintain the distance from the left side of its superview when
the superview changes its width.



ptg

Autorotation

165

You can toggle the springs and struts and watch the animated example next to the Autosizing area to
see what happens.

In your HeavyRotation application, you have four views. Here’s how you want them to handle
autorotation:

• The image view should stay centered and resize with its superview.

• The slider should get wider but not taller. It should stay fixed at the top of the superview and keep
the same distance from the left and right edges.

• The two buttons should stay with their respective corners and not resize.

Now select each view and set the autoresize mask appropriately, as shown in Figure 9.5. 

Figure 9.5  Autoresizing mask for views

Finally, to finish this application, you need to create an instance of HeavyViewController
and set it as the rootViewController of the window. Add the following lines of code to
application:didFinishLaunchingWithOptions: in HeavyRotationAppDelegate.m. Make sure to
include the import statement at the top of the file.



ptg

Chapter 9  Notification and Rotation

166

#import "HeavyViewController.h"

@implementation HeavyRotationAppDelegate 
- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Get the device object
    UIDevice *device = [UIDevice currentDevice];

    // Tell it to start monitoring the accelerometer for orientation
    [device beginGeneratingDeviceOrientationNotifications];
    
    // Get the notification center for the app
    NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

    // Add yourself as an observer
    [nc addObserver:self
           selector:@selector(orientationChanged:)
               name:UIDeviceOrientationDidChangeNotification
             object:device];
             
    
    HeavyViewController *hvc = [[[HeavyViewController alloc] init] autorelease];
    [[self window] setRootViewController:hvc];
    
    [[self window] makeKeyAndVisible];
                
    return YES;
}

Build and run the application. It should autorotate when you rotate the device, as shown in Figure 9.6.
(You can also run the application in the simulator and rotate it from the Hardware menu or use the
keyboard shortcuts Command-Right Arrow and Command-Left Arrow.) 

Figure 9.6  Running rotated

When a view is autorotated, it must change size (the width becomes the height and vice versa). This
is why the mask is called an autoresizing mask. Another time a view’s size must change is when the
size of the device does. For instance, if HeavyRotation was a universal application (that runs on both



ptg

Setting autoresizing masks programmatically and bitwise
operations

167

the iPad and iPhone device families), then the interface for the iPad version would have to fit the larger
screen size.

One approach to universalizing the interface is to create two separate XIB files – one for each device
family. However, for HeavyRotation, you do not need to do this, thanks to the autoresizing masks. The
view of HeavyViewController has its autoresizing mask set to resize when its superview is resized.
Its superview is the UIWindow instance, which will automatically be resized to fit the screen when the
application is launched. The subviews of the view will also be repositioned and resized according to
their autoresizing masks.

Let’s make HeavyRotation a universal application to see this happen. Select the project from the
project navigator. Then, select the HeavyRotation target from the editor area. Select Universal from
the Device Family pop-up menu as shown in Figure 9.7. A sheet will drop down asking if you wish to
create a copy of your XIB files for, choose No.

Figure 9.7  Universalizing HeavyRotation

From the Scheme menu next to the Run button, choose either the iPad simulator or an iPad device if
you’ve got one plugged in. Then build and run. Notice that the interface automatically resizes itself
appropriately for the larger window.

Setting autoresizing masks programmatically and
bitwise operations
The autoresizing mask can also be set programmatically by sending the message
setAutoresizingMask: to a view.

[view setAutoresizingMask:UIViewAutoresizingFlexibleLeftMargin | 
                          UIViewAutoresizingFlexibleHeight];            

This says that the view will resize its height when its superview’s height changes; this is the same as
checking the vertical spring in a XIB file. It also says that the left margin is flexible – which is the
same as un-checking the left strut. In a XIB file, this autoresizing mask would match the one shown in
Figure 9.8.

Figure 9.8  Autoresizing mask with flexible left margin and flexible height



ptg

Chapter 9  Notification and Rotation

168

See the | operator? That’s a bitwise-OR operator. Each autoresizing constant is equal to a power 
of two. (You can find all the UIViewAutoresizing constants in the UIView class reference page in 
the documentation.) For example, the flexible left margin constant is 1 (20), and the flexible height
constant is 16 (24). The property autoresizingMask is just an int and, like all values on a computer,
is represented in binary. Binary numbers are a string of 1s and 0s. Here are a few examples of numbers
in base 10 (decimal; the way we think about numbers) and base 2 (binary; the way a computer thinks
about numbers):

 110 = 000000012
 210 = 000000102
1610 = 000100002
2710 = 000110112
3410 = 001000102

In decimal representation, we have 10 different digits: 0 - 9. When we count past 9, we run out of
symbols to represent the number, so we add a new digit column. A digit in the second column is worth
10 times more than a digit in the first column; a digit in the third column is worth 10 times more 
than the second column and so on. The same general idea is true for binary numbers, except we only
have two digits (0 and 1), so we must add a new digit column each time we would normally use a 2.
Because of this, each digit in binary is only worth two times more than the digit to the right of it. The
rightmost digit is multiplied by 1, the one to the left of that is multiplied by 2, then 4, 8, and so on.

When talking about binary numbers, we call each digit a bit. We can think of each bit as an on-off
switch, where 1 is “on” and 0 is “off.” When thinking in these terms, we can use an int (which has
space for at least 32 bits) as a set of on-off switches. Each position in the number represents one switch
– a value of 1 means true, 0 means false. Essentially, we are shoving a ton of BOOLs into a single value.
We call numbers used in this way bitmasks, and that’s why the autoresize settings of a view are called
the autoresizing mask.

A number that only has one bit set to 1 (the rest are 0) is a power of two. Therefore, we can use
numbers that are powers of two to represent a single switch in a bitmask – each autoresizing constant 
is a single switch. We can turn on a switch in a bitmask using the bitwise-OR operation. This operation
takes two numbers and produces a number where a bit is set to 1 if either of the original numbers 
had a 1 in the same position. When you bitwise-OR a number with 2n, it flips on the switch at the nth
position. For example, if you bitwise-OR 1 and 16, you get the following:

  00000001 ( 110, UIViewAutoresizingFlexibleLeftMargin)
| 00010000 (1610, UIViewAutoresizingFlexibleHeight)
----------
  00010001 (1710, both UIViewAutoresizingFlexibleHeight 
                  and UIViewAutoresizingFlexibleLeftMargin)            

The complement to the bitwise-OR operator is the bitwise-AND (&) operator. When you bitwise-AND
two numbers, the result is a number that has a 1 in each bit where there is a 1 in the same position as
both of the original numbers.

  00010001 (1710, FlexibleHeight and FlexibleLeftMargin)
& 00010000 (1610, FlexibleHeight)
----------
  00010000 (1610, YES)

  00010001 (1710, FlexibleHeight and FlexibleLeftMargin)
& 00000010 ( 210, FlexibleWidth)
----------



ptg

Forcing Landscape Mode

169

  00000000 ( 010, NO)

Since any non-zero number means YES (and zero is NO), we use the bitwise-AND operator to check
whether a switch is on or not. Thus, when a view’s autoresizing mask is checked, the code looks like
this:

if ([self autoresizingMask] & UIViewAutoresizingFlexibleHeight)
{
    // Resize the height
}            

Forcing Landscape Mode
If your application only makes sense in landscape mode, you can force it to run that way. First, in
your view controller implement shouldAutorotateToInterfaceOrientation: to only return YES for
landscape orientations. 

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)x 
{
    return UIInterfaceOrientationIsLandscape(x);
}

An application’s Info.plist contains a key-value pair that specifies the valid initial orientations of the
application. There is also an easy-to-use interface for changing this value: select the project from the
project navigator, then the HeavyRotation target from the editor area, and finally the Summary pane.

Figure 9.9  Choosing the initial orientations

Find a section in the target’s summary called Supported Device Orientations. This section contains four
toggle buttons that specify which orientations are allowed. Buttons that are pushed in are valid.

Note that selecting orientations here only applies to orientation when the application launches; it does
not control orientation once the application is running. You still have to tell your view controller to
allow autorotation only to landscape orientations in shouldAutorotateToInterfaceOrientation:. 



ptg

Chapter 9  Notification and Rotation

170

Challenge: Proximity Notifications
Register for proximity notifications. Proximity refers to the nearness of the device to the user. It is
typically used to tell whether the iPhone is next to the user’s face (as in talking on the phone). When
this notification is posted, change the background color of HeavyViewController’s view to dark gray.
You will need to turn on proximity monitoring, which is only available on the iPhone:

[device setProximityMonitoringEnabled:YES];

For the More Curious: Overriding Autorotation
In most cases, autorotation does the right thing if the autoresizing masks are properly set. However,
you might want to take additional action on an autorotation or override the autorotation process
altogether to change the way the view looks when it rotates. You can do this by overriding
willAnimateRotationToInterfaceOrientation:duration: in a view controller subclass.

When a view controller is about to autorotate its view, it checks to see if you have implemented this
method. If you have, then this method is invoked during the animation block of the rotation code.
Therefore, all changes to subviews in this method will be animated as well. You can also perform
some custom code within this method. Here is an example that will reposition a button and change the
background color on autorotation:

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)x 
                                         duration:(NSTimeInterval)duration
{
    // Assume "button" is a subview of this view controller's view

    UIColor *color = nil;
    CGRect bounds = [[self view] bounds];
    // If the orientation is rotating to Portrait mode...
    if (UIInterfaceOrientationIsPortrait(x)) {

        // Put the button in the top right corner
        [button setCenter:CGPointMake(bounds.size.width - 30,
                                      20)];

        // the background color of the view will be red
        color = [UIColor redColor];
    } else {  // If the orientation is rotating to Landscape mode

        // Put the button in the bottom right corner
        [button setCenter:CGPointMake(bounds.size.width - 30,
                                      bounds.size.height - 20)];

        // the background color of the view will be blue
        color = [UIColor blueColor];
    }
    [[self view] setBackgroundColor:color];
}

Overriding this method is useful when you want to update your user interface for a different
orientation. For example, you could change the zoom or position of a scroll view or even swap in an
entirely different view. Make sure, however, that you do not replace the view of the view controller in
this method. If you wish to swap in another view, you must swap a subview of the view controller’s
view. 



ptg

171

10
UITableView and

UITableViewController

Many iOS applications show the user a list of items and allow the user to select, delete, or reorder
items on the list. Whether it’s a list of people in the user’s address book or a list of items on the App
Store, it’s a UITableView doing the work. A UITableView displays a single column of data with a
variable number of rows. Figure 10.1 shows some examples of UITableView.

Figure 10.1  Examples of UITableView

Beginning the Homepwner Application
In this chapter, you are going to start an application called Homepwner that keeps an inventory of all
your possessions. In the case of a fire or other catastrophe, you’ll have a record for your insurance
company. (“Homepwner,” by the way, is not a typo. If you need a definition for the word “pwn,”
please visit www.urbandictionary.com.)

So far, your iOS projects have been small, but Homepwner will grow into a realistically complex
application over the course of nine chapters. By the end of this chapter, Homepwner will present a list
of Possession objects in a UITableView, as shown in Figure 10.2.

www.urbandictionary.com


ptg

Chapter 10  UITableView and UITableViewController

172

Figure 10.2  Homepwner: phase 1

Create a new iPhone Window-based Application project and name it Homepwner.

UITableViewController
UITableView is a view object, so, according to Model-View-Controller, it knows how to draw itself,
but that’s it. It doesn’t handle application logic or data. Thus, when using a UITableView, you must
consider what else is necessary to get the table working in your application

• First, a UITableView needs a data source. A UITableView asks its data source for the number of
rows to display, the data to be shown in those rows, and other tidbits that make a UITableView
a useful user interface. Without a data source, a table view is just an empty container. The
dataSource for a UITableView can be any type of Objective-C object as long as it conforms to the
UITableViewDataSource protocol.

• A UITableView also typically needs a delegate that can inform other objects of events involving
the UITableView. The delegate can be any object as long as it (you guessed it!) conforms to the
UITableViewDelegate protocol.

• Finally, there is typically a view controller that creates and destroys the instance of UITableView.

Meet UITableViewController, a subclass of UIViewController. An instance of
UITableViewController can fill all three roles: data source, view controller, and delegate.
A UITableViewController’s view is always an instance of UITableView, and the
UITableViewController handles the preparation and presentation of the UITableView. When a
UITableViewController creates its view, the dataSource and delegate instance variables of the
UITableView are automatically set to point at the UITableViewController (Figure 10.3). 



ptg

Subclassing UITableViewController

173

Figure 10.3  UITableViewController-UITableView relationship

Subclassing UITableViewController
Now you’re going to write a subclass of UITableViewController for Homepwner. From the File
menu, select New and then New File.... Then, select Cocoa Touch from the iOS section. Before we go
further, let’s discuss file templates in a bit more detail.

Templates exist to speed up the process of creating new classes. Every class has a .h and .m file; using
a template creates these two files and adds them to your project. With every set of class files, a new
class and its superclass are declared in the .h file and an implementation block is declared in the .m
file. Therefore, every template automatically adds this code for you.

The various templates differ in two ways: the superclass specified for the new class and the method
stubs added to the implementation file. (A method stub is a method with no code between its curly
braces.) There are two categories of class templates: Objective-C class and UIViewController subclass.
Each of these categories has a number of templates. For example, there is a UIView template in the
Objective-C class category. Using this template will create a .h file that has the superclass specified as
UIView and an implementation file with method stubs for initWithFrame:, drawRect: and dealloc.

This additional code is useful when you know what you are doing and want to save time typing.
However, these oh-so-helpful templates can get in the way when you’re learning. Therefore, when
creating new classes, we will use the NSObject template (available in the Objective-C class category).
This template enters NSObject as the superclass of the new class and does not add any code to the
implementation file. You are forced to type in and understand every line of code you are writing.

Once the files have been added to your project, you can change their contents as you please – you are
not stuck with the superclass the template entered for you. You can create all of your classes using the
NSObject template and simply change the superclass in the generated .h file. Do this for your new
UITableViewController subclass.

Select Objective-C class and hit Next. Then, select NSObject from the pop-up menu and click Next
again. Save this class as ItemsViewController.

As promised, you now have two files in your project: ItemsViewController.h and
ItemsViewController.m. This class needs to be a subclass of UITableViewController, so open
ItemsViewController.h and change its superclass:

@interface ItemsViewController : UITableViewController

Now, ItemsViewController is a subclass of UITableViewController, even though we used the
NSObject template to create it.



ptg

Chapter 10  UITableView and UITableViewController

174

In ItemsViewController.m, implement the following initializers.

#import "ItemsViewController.h"

@implementation ItemsViewController

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithStyle:UITableViewStyleGrouped];
 
    return self;
}

- (id)initWithStyle:(UITableViewStyle)style
{
    return [self init];
}

The initWithStyle: method is the designated initializer of UITableViewController. In the code
above, you override it to call a new designated initializer for your subclass – init. Overriding the
designated initializer is a style choice that we use at Big Nerd Ranch for all view controller subclasses.
When we subclass a view controller (or a table view controller), we will make init the designated
initializer and, according to the initializer rules in Chapter 2, override the designated initializer of the
superclass to call our new designated initializer.

Note that you’ve done this with view controllers in previous chapters. For instance,
in the HypnoTime application in Chapter 7, you overrode the designated initializer of
HypnosisViewController’s superclass. The superclass is UIViewController, its designated initializer
is initWithNibName:bundle:, and the new designated initializer for HypnosisViewController is
init.

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithNibName:nil
                           bundle:nil]; 
                           
    // Code specific to a HypnosisViewController
    ...
 
    return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
    return [self init];
}

The reason we initialize our view controller subclasses this way is that the arguments passed to the
superclass designated initializers are details that are specific to each view controller instance. (The
details for the two examples here are the name of the view controller’s NIB file for UIViewController
and the style of the table view for UITableViewController.) Because these details are the same for
each instance, the object responsible for creating the instance shouldn’t be supplying them. Better that
the creating object only send the message init to a view controller instance. The view controller can
figure out its own details.



ptg

Subclassing UITableViewController

175

You’ll see this pattern for the rest of the book every time you create a view controller, so we wanted to
spell it out here. Now back to our regularly scheduled program. 

Open HomepwnerAppDelegate.m. In application:didFinishLaunchingWithOptions:, create an
instance of ItemsViewController and set it as the rootViewController of the window. Make sure to
import the header file for ItemsViewController at the top of this file.

#import "ItemsViewController.h"

@implementation HomepwnerAppDelegate

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Create a ItemsViewController
    ItemsViewController *itemsViewController = [[ItemsViewController alloc] init];

    // Place ItemsViewController's table view in the window hierarchy
    [[self window] setRootViewController:itemsViewController];

    [itemsViewController release];

    [[self window] makeKeyAndVisible];
    return YES;
}

(Does releasing itemsViewController here worry you? Remember that the window retains the object
that is passed in setRootViewController:. Your table view controller is safe.)

Build and run your application. You will see the default appearance of a plain UITableView with no
content, as shown in Figure 10.4. How did you get a table view? As a subclass of UIViewController,
a UITableViewController inherits the view method. This method calls loadView, which creates and
loads an empty view object if none exists. A UITableViewController’s view is always an instance
of UITableView, so sending view to the UITableViewController gets you a bright, shiny, and empty
table view. 



ptg

Chapter 10  UITableView and UITableViewController

176

Figure 10.4  Empty UITableView

Poor empty table view! You should give it some rows to display. Remember the Possession class you
wrote in Chapter 2? Now you’re going to use that class again: each row of the table view will display
an instance of Possession. Locate the header and implementation files for Possession (Possession.h
and Possession.m) in Finder and drag them onto Homepwner’s project navigator. 

When dragging these files onto your project window, make sure to select the checkbox labeled
Copy items into destination group’s folder when prompted. This will copy the files from their current
directory to your project’s directory on the filesystem and add them to your project.

UITableView’s Data Source
The process of providing a UITableView with rows in Cocoa Touch is different from the typical
procedural programming task. In a procedural design, you tell the table view what it should display. In
Cocoa Touch, the table view asks another object – its dataSource – what it should display. In our case,
the ItemsViewController is the data source, so it needs a way to store possession data.

In Chapter 2, you used an NSMutableArray to store Possession instances. You will do the same thing
in this exercise, but with a little twist. The NSMutableArray that holds the Possession instances will
be abstracted into a PossessionStore (Figure 10.5). 



ptg

PossessionStore: a singleton

177

Figure 10.5  Homepwner object diagram

PossessionStore: a singleton
If an object wants to see all of the possessions, it will ask the PossessionStore for the array that
contains them. In future chapters, you’ll make the store responsible for performing operations on the
array, like reordering, adding, and removing Possessions. It will also be responsible for saving and
loading the Possessions from disk.

From the File menu, select New and then New File.... Create a new NSObject subclass and name it
PossessionStore.

PossessionStore will be a singleton, just like UIAccelerometer. This means there will only be one
instance of this type in the application; if you try and create another instance, the class will quietly
return the existing instance instead.

To get the PossessionStore, you will send the class the message defaultStore. Declare this class
method in PossessionStore.h.

#import <Foundation/Foundation.h>

@interface PossessionStore : NSObject 
{

} 
// Notice that this is a class method, and is prefixed with a + instead of a -
+ (PossessionStore *)defaultStore;

@end 

When this message is sent to the PossessionStore class, the class will check to see if the instance
of PossessionStore has already been created. If the store exists, the class will return the instance. If



ptg

Chapter 10  UITableView and UITableViewController

178

not, it will create the instance and return it. To do this, you’ll use a global static variable. At the top of
PossessionStore.m, create a global static variable to hold the instance of PossessionStore where the
class can access it.

#import "PossessionStore.h"
#import "Possession.h"

static PossessionStore *defaultStore = nil;

@implementation PossessionStore                

Also in PossessionStore.m, implement +defaultStore, +allocWithZone: and -init so that only one
instance of the class can be created.

+ (PossessionStore *)defaultStore
{
    if (!defaultStore) {
        // Create the singleton
        defaultStore = [[super allocWithZone:NULL] init];
    }
    return defaultStore;
}

// Prevent creation of additional instances
+ (id)allocWithZone:(NSZone *)zone 
{
    return [self defaultStore];
}
 
- (id)init
{
    // If we already have an instance of PossessionStore...
    if (defaultStore) {

        // Return the old one
        return defaultStore;
    }

    self = [super init];

    return self;
}

This code is a bit tricky; let’s walk through it. Whenever the message defaultStore is sent to the
class PossessionStore, it checks if the defaultStore variable is nil. The first time this message
is sent, defaultStore will be nil, and an instance of PossessionStore will be created by calling
allocWithZone: and init.

You have overridden allocWithZone: to return the existing defaultStore to protect
the PossessionStore’s singleton status. That’s why defaultStore must call [super
allocWithZone:nil] instead of [self allocWithZone:nil].



ptg

PossessionStore: a singleton

179

Now, override the retain count methods so that no one can release the defaultStore

- (id)retain
{
    // Do nothing
    return self;
}

- (void)release
{
    // Do nothing
}
 
- (NSUInteger)retainCount
{
    return NSUIntegerMax;
}

Now you have a singleton.

In PossessionStore.h, give PossessionStore an instance variable to hold an array of Possession
instances and declare two more methods:

#import <Foundation/Foundation.h>

@class Possession;

@interface PossessionStore : NSObject 
{
    NSMutableArray *allPossessions;
} 
+ (PossessionStore *)defaultStore;

- (NSArray *)allPossessions; 
- (Possession *)createPossession;

@end                

In PossessionStore.m, create an instance of NSMutableArray and assign it to the instance variable in
the init method.

- (id)init
{
    if (defaultStore) {
        return defaultStore;
    }

    self = [super init];
    if (self) {
        allPossessions = [[NSMutableArray alloc] init];
    }

    return self;
}       



ptg

Chapter 10  UITableView and UITableViewController

180

Now implement the two methods in PossessionStore.m.

- (NSArray *)allPossessions
{
    return allPossessions;
}

- (Possession *)createPossession
{
    Possession *p = [Possession randomPossession];

    [allPossessions addObject:p];
   
    return p; 
}                

Implementing data source methods

In ItemsViewController.m, import PossessionStore.h and Possession.h and update the designated
initializer to add 10 random possessions to the PossessionStore.

#import "ItemsViewController.h"
#import "PossessionStore.h"
#import "Possession.h"

@implementation ItemsViewController

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithStyle:UITableViewStyleGrouped];
    
    if (self) {
        for (int i = 0; i < 10; i++) {
            [[PossessionStore defaultStore] createPossession];
        }
    }

    return self;
}

- (id)initWithStyle:(UITableViewStyle)style
{
    return [self init];
}

Now that there are some possessions in the store, you need to teach ItemsViewController how to turn
those possessions into rows that its UITableView can display. When a UITableView wants to know
what to display, it uses a set of messages declared in the UITableViewDataSource protocol.

From the Help menu, choose Documentation and API Reference to open the iOS SDK documentation.
Find the UITableViewDataSource protocol documentation (Figure 10.6).



ptg

Implementing data source methods

181

Figure 10.6  UITableViewDataSource protocol documentation

There are many methods here, but notice the two marked required method. For ItemsViewController
to conform to UITableViewDataSource, it must implement tableView:numberOfRowsInSection: and
tableView:cellForRowAtIndexPath:. These methods tell the table view how many rows it should
display and what content to display in each row.

Whenever a UITableView needs to display itself, it sends a series of messages (the required methods
plus any optional ones that have been implemented) to its dataSource. The required method
tableView:numberOfRowsInSection: returns an integer value for the number of rows that the
UITableView should display. In the table view for Homepwner, there should be a row for each entry in
the store (Figure 10.7).



ptg

Chapter 10  UITableView and UITableViewController

182

Figure 10.7  Obtaining the number of rows

Implement tableView:numberOfRowsInSection: in ItemsViewController.m. 

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section 
{
    return [[[PossessionStore defaultStore] allPossessions] count];
}

Wondering about the section that this method refers to? Table views can be broken up into sections,
and each section has its own set of rows. For example, in the address book, all names beginning with
“D” are grouped together in a section. By default, a table view has one section, and for this exercise,
we will work with only one. Once you understand how a table view works, it’s not hard to use multiple
sections. In fact, it’s one of the challenges at the end of this chapter.

The second required method in the UITableViewDataSource protocol is
tableView:cellForRowAtIndexPath:. To implement this method, we’ll need to learn about another
class – UITableViewCell.

UITableViewCells
A UITableViewCell is a subclass of UIView, and each row in a UITableView is a UITableViewCell.
(Recall that a table in iOS can only have one column, so a row only has one cell.) The
UITableViewCells are subviews of the UITableView.

A cell itself has one subview – its contentView (Figure 10.8). The contentView is the superview
for the content of the cell. It also can draw an accessory indicator. The accessory indicator shows 
an action-oriented icon, such as a checkmark, a disclosure icon, or a fancy blue dot with a chevron
inside. These icons are accessed through pre-defined constants for the appearance of the accessory
indicator. The default is UITableViewCellAccessoryNone, and that’s what we’ll use in this chapter.
But you’ll see the accessory indicator again in Chapter 16. (Curious now? See the reference page for
UITableViewCell for more details.)

Figure 10.8  UITableViewCell layout



ptg

Creating and retrieving UITableViewCells

183

The real meat of a UITableViewCell is the other three subviews of the contentView. Two of those
subviews are UILabel instances that are properties of UITableViewCell named textLabel and
detailTextLabel. The third subview is a UIImageView called imageView (Figure 10.9). For this
chapter, we’ll only use textLabel.

Figure 10.9  UITableViewCell hierarchy

In addition to its subviews, each cell has a UITableViewCellStyle that determines which subviews are
used and their position within the contentView. Examples of these styles and their constants are shown
in Figure 10.10. 

Figure 10.10  UITableViewCellStyles

Creating and retrieving UITableViewCells
In this chapter, each cell will display the description of a Possession as its textLabel. To make
this happen, you need to implement the second required method from the UITableViewDataSource



ptg

Chapter 10  UITableView and UITableViewController

184

protocol, tableView:cellForRowAtIndexPath:. This method will create a cell, set its textLabel to
the description of the corresponding Possession, and return it to the UITableView (Figure 10.11).

Figure 10.11  UITableViewCell retrieval

How do you decide which cell a Possession corresponds to? One of the parameters sent to
tableView:cellForRowAtIndexPath: is an NSIndexPath, which has two properties: section and
row. When this message is sent to a data source, the table view is asking, “Can I have a cell to display
in section X, row Y?” Because there is only one section in this exercise, the table view only needs to
know the row. In ItemsViewController.m, implement tableView:cellForRowAtIndexPath: so that
the nth row displays the nth entry in the allPossessions array.

- (UITableViewCell *)tableView:(UITableView *)tableView
         cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
    // Create an instance of UITableViewCell, with default appearance
    UITableViewCell *cell =
        [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
                                reuseIdentifier:@"UITableViewCell"] autorelease];

    // Set the text on the cell with the description of the possession
    // that is at the nth index of possessions, where n = row this cell
    // will appear in on the tableview
    Possession *p = [[[PossessionStore defaultStore] allPossessions]
                                            objectAtIndex:[indexPath row]];

    [[cell textLabel] setText:[p description]];
    
    
    return cell;
}



ptg

Reusing UITableViewCells

185

A UITableView retains any UITableViewCell returned to it by tableView:cellForRowAtIndexPath:,
which is why you can autorelease it here.

Build and run the application now, and you’ll see a UITableView populated with a list of random
Possessions. Yep, it was that easy. You didn’t have to change anything about Possession – you
simply changed the controller object and let the controller interface with a different view. This is why
Model-View-Controller is such a powerful concept. With a minimal amount of code, you were able to
show the same data in an entirely different way. 

Reusing UITableViewCells

iOS devices have a limited amount of memory. If we were displaying a list with thousands of entries in
a UITableView, we would have thousands of instances of UITableViewCell. And your long-suffering
iPhone would sputter and die. In its dying breath, it would say “You only needed enough cells to fill
the screen... arrrghhh!” It would be right.

To preserve the lives of iOS devices everywhere, you can reuse table view cells. When the user scrolls
the table, some cells move offscreen. Offscreen cells are put into a pool of cells available for reuse.
Then, instead of creating a brand new cell for every request, the data source first checks the pool. If
there is an unused cell, the data source configures it with new data and returns it to the table view.

Figure 10.12  Reusable UITableViewCells

There is one problem: sometimes a UITableView has different types of cells. Occasionally, you have to
subclass UITableViewCell to create a special look or behavior. However, different subclasses floating
around the pool of reusable cells create the possibility of getting back a cell of the wrong type. You
must be sure of the type of the cell returned to you so that you can be sure of what properties and
methods it has.



ptg

Chapter 10  UITableView and UITableViewController

186

Note that you don’t care about getting any specific cell out of the pool because you’re going to change
the cell content anyway. What you want is a cell of a specific type. The good news is every cell has a
reuseIdentifier property of type NSString. When a data source asks the table view for a reusable
cell, it passes a string and says, “I need a cell with this reuse identifier.” By convention, the reuse
identifier is simply the name of the cell class.

In ItemsViewController.m, update tableView:cellForRowAtIndexPath: to reuse cells: 

- (UITableViewCell *)tableView:(UITableView *)tableView 
         cellForRowAtIndexPath:(NSIndexPath *)indexPath 
{    
    // Check for a reusable cell first, use that if it exists
    UITableViewCell *cell =
        [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];

    // If there is no reusable cell of this type, create a new one
    if (!cell) {
        cell = [[[UITableViewCell alloc]
                    initWithStyle:UITableViewCellStyleDefault
                  reuseIdentifier:@"UITableViewCell"] autorelease];
    }
        
    Possession *p = [[[PossessionStore defaultStore] allPossessions]
                                            objectAtIndex:[indexPath row]];

    [[cell textLabel] setText:[p description]];

    return cell;
}

(If you have a table view that uses multiple styles of the same type of cell, you can suffix the reuse
identifier with the name of that style, e.g. UITableViewCell-Default.)

Reusing cells means that you only have to create a handful of cells, which puts fewer demands on
memory. Your application’s users (and iOS devices everywhere) will thank you. Build and run the
application. The behavior of the application should remain the same. 

Code Snippet Library
You may have noticed that when you start typing the word init, Xcode will automatically add an
init implementation in your source file. If you haven’t noticed this, go ahead and type init in an
implementation file and wait for the code-completion to kick in.

The freebie code comes from the code snippet library. You can see the code snippet library by opening
the utilities area and selecting the  icon in the library selector (Figure 10.13). Alternatively, you can 
use the shortcut Command-Control-Option-2, which reveals the utilities area and the Code Snippet
Library. Substituting another number in the shortcut selects the corresponding library.



ptg

Code Snippet Library

187

Figure 10.13  Code Snippet Library

Notice that there are a number of code snippets available (Figure 10.13). Click on one, and in a
moment, a window will appear with the details for that snippet. Click the Edit button on the code
snippet detail window (Figure 10.14).

Figure 10.14  Snippet editing window

The Completion Shortcut field in the edit window shows you what to type in a source file to have
Xcode add the snippet. This window also tells you that this snippet can be used in an Objective-C file
as long as you are in the scope of a class implementation.



ptg

Chapter 10  UITableView and UITableViewController

188

You can’t edit any of the pre-defined code snippets, but you can create your own. In
ItemsViewController.m, locate the implementation of tableView:numberOfRowsInSection:.
Highlight the entire method:

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section 
{
    return [[[PossessionStore defaultStore] allPossessions] count];
}            

Drag this highlighted code into the code snippet library. The edit window will appear again, allowing
you to fill out the details for this snippet.

One issue with this snippet is that the return statement is really specific to this application – it would be
much more useful if the value returned was a code completion placeholder that you could fill in easily.
In the edit window, modify the code snippet so it looks like this:

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section 
{
    return <#number of rows#>;
}            

Then, fill out the rest of the fields in the edit window as shown in Figure 10.15 and click Done.

Figure 10.15  Creating a new snippet

Back in ItemsViewController.m, start typing tablerows. Xcode will recommend this code snippet
and pressing the return key will automatically complete it for you – and the number of rows
placeholder will be selected. You’ll have to type in that bit of code to get the number of rows yourself.
Snippets aren’t magical – just handy.

Make sure to remove the code entered by the snippet, since you have already defined
tableView:numberOfRowsInSection: in ItemsViewController.m.



ptg

Challenge: Sections

189

Challenge: Sections
Have the UITableView display two sections – one for possessions worth more than $50 and one for the
rest. Before you start this challenge, copy the folder containing the project and all of its source files 
in Finder. Then tackle the challenge in the copied project; you’ll need the original to build on in the
coming chapters.



ptg

This page intentionally left blank 



ptg

191

11
Editing UITableView

In the last chapter, you created an application that displays a list of Possession instances in a
UITableView. The next step for Homepwner is allowing the user to interact with that table – to move,
delete, and insert rows. Figure 11.1 shows what Homepwner will look like by the end of this chapter. 

Figure 11.1  Homepwner in editing mode

Editing Mode
UITableView has an editing property, and when this property is set to YES, the UITableView enters
editing mode. Once the table view is in editing mode, the rows of the table can be manipulated by the
user. The user can change the order of the rows, add rows, or remove rows. Editing mode does not
allow the user to edit the content of a row.

But first, the user needs a way to put the UITableView in editing mode. For now, you’re going to
include a button that toggles editing mode in the header view of the table. A header view appears at
the top of a section of a table and is useful for adding section-wide or table-wide titles and controls. It
can be any UIView instance. There’s also a footer view for the bottom of a section that works the same
way. Figure 11.2 shows a table with two sections. Each section has a UISlider for a header view and a
UILabel for a footer view. 



ptg

Chapter 11  Editing UITableView

192

Figure 11.2  UITableView header and footer views

Reopen Homepwner.xcodeproj. In ItemsViewController.h, declare an instance variable of type
UIView for your header view and three new methods.

@interface ItemsViewController : UITableViewController
{
    IBOutlet UIView *headerView; 
} 
- (UIView *)headerView; 
- (IBAction)addNewPossession:(id)sender;
- (IBAction)toggleEditingMode:(id)sender;

@end

The headerView will appear at the top of the list of Possessions. It will have two subviews that are
instances of UIButton: one to toggle editing mode and the other to add a new Possession to the table.
You will create this view and its subviews in a XIB file, and ItemsViewController will unarchive that
XIB file when it needs to display the headerView.

From the File menu, select New and then New File.... Then choose the Empty template from the
User Interface section under iOS (Figure 11.3). On the next pane, select iPhone. Save this file as
HeaderView.



ptg

Editing Mode

193

Figure 11.3  Creating a new XIB file

In HeaderView.xib, change the Class of the File's Owner to ItemsViewController (Figure 11.4).

Figure 11.4  Changing the File's Owner

Drag a UIView onto the canvas. Drag two instances of UIButton onto that view. Then, make
connections, as shown in Figure 11.5.

Figure 11.5  HeaderView XIB Layout



ptg

Chapter 11  Editing UITableView

194

Also, change the background color of the UIView instance to be completely transparent. To do this,
select the view and show the attributes inspector. Click the color picker labeled Background to show
the color wheel and then drag the Opacity slider to 0 (Figure 11.6).

Figure 11.6  Setting background color to clear

So far, your XIB files have been loaded automatically by the implementation of classes like
UIApplication and UIViewController. For HeaderView.xib, you’re going to write the code to load
this XIB file manually.

To load a XIB file manually, you use NSBundle. This class is the interface between an application and
the application bundle it lives in. When you want to access a file in the application bundle, you ask
NSBundle for it. An instance of NSBundle is created when your application launches, and you can get a
pointer to this instance by sending the message mainBundle to NSBundle.

Once you have a pointer to the main bundle object, you can ask it to load a XIB file. In
ItemsViewController.m, implement headerView.

- (UIView *)headerView 
{
    // If we haven't loaded the headerView yet...
    if (!headerView) {
        // Load HeaderView.xib
        [[NSBundle mainBundle] loadNibNamed:@"HeaderView" owner:self options:nil];
    }

    return headerView;
}            

You don’t have to specify the suffix of the file name; NSBundle will figure it out. Also, you passed
self as the owner of the XIB file. This places the instance of ItemsViewController as the File's
Owner of the XIB file.

XIB files are typically used to create the window and application delegate (MainWindow.xib)
and to create the view for a view controller (for example, CurrentTimeViewController.xib).



ptg

Editing Mode

195

The code to load these XIB files is already written in the implementations of UIApplication and
UIViewController.

However, as you can see, a XIB file can be used any time you wish to archive view objects, and any
object can load a XIB file. UIViewController’s default XIB loading behavior uses the same code as
you have just written. The only difference is that it connects its view outlet to the view object in the
XIB file.  Imagine what the default implementation of loadView for UIViewController probably looks
like:

- (void)loadView 
{
    // If a nibName was passed to initWithNibName:bundle:...
    if ([self nibName]) {
        // Load that nib file, with ourselves as the file's owner, thus connecting 
        // the view outlet to the view in the nib
        [[NSBundle mainBundle] loadNibNamed:[self nibName] owner:self options:nil];
    }
    else {
        // What is the name of this class?
        NSString *className = NSStringFromClass([self class]);
        
        // What's the full path of the nib file?
        NSString *nibPath = [[NSBundle mainBundle] pathForResource:className 
                                                            ofType:@"nib"];

        // If there really is a nib file at that path, load it
        if ([[NSFileManager defaultManager] fileExistsAtPath:nibPath]) {
            [[NSBundle mainBundle] loadNibNamed:className owner:self options:nil];
        }
        else {
            // If there is no nib, just create a blank UIView and set it as the view
            UIView *view = [[UIView alloc] initWithFrame:CGRectZero];
            [self setView:view];
            [view release];
        }
    } 
}            

The first time the headerView message is sent to ItemsViewController, it loads HeaderView.xib and
keeps a pointer to the view object in the instance variable headerView. The buttons in this view send
messages to ItemsViewController when tapped.

Now that you’ve created headerView, you need to make it the header view of the table. This requires
implementing two methods from the UITableViewDelegate protocol in ItemsViewController.m.

- (UIView *)tableView:(UITableView *)tv viewForHeaderInSection:(NSInteger)sec
{
    return [self headerView];
}

- (CGFloat)tableView:(UITableView *)tv heightForHeaderInSection:(NSInteger)sec
{
    return [[self headerView] bounds].size.height;
}

These two methods are optional, but if you implement one, you must implement both.



ptg

Chapter 11  Editing UITableView

196

The first time tableView:heightForHeaderInSection: is sent to ItemsViewController, it sends
itself the message headerView. At this time, headerView will be nil, which causes headerView to be
loaded from the XIB file.

(You should really release headerView in dealloc and viewDidUnload, but in the next chapter you are
going to eliminate the header view and put these buttons on a navigation bar. So, ignore the leak for
now.)

Build and run the application. The two buttons appear at the top of the table, but tapping them will
generate an exception because you haven’t implemented their action methods yet. 

In the toggleEditingMode: method, you could toggle the editing property of UITableView directly.
However, UITableViewController also has an editing property. A UITableViewController instance
automatically sets the editing property of its table view to match its own editing property. Which
one should you set? Follow the Model-View-Controller pattern: talk to the controller and let the
controller talk to the view.

To set the editing property for a view controller, you send it the message setEditing:animated:. In
ItemsViewController.m, implement toggleEditingMode:.

- (void)toggleEditingMode:(id)sender
{
    // If we are currently in editing mode...
    if ([self isEditing]) {
        // Change text of button to inform user of state
        [sender setTitle:@"Edit" forState:UIControlStateNormal];
        // Turn off editing mode
        [self setEditing:NO animated:YES];
    } else {
        // Change text of button to inform user of state
        [sender setTitle:@"Done" forState:UIControlStateNormal];
        // Enter editing mode
        [self setEditing:YES animated:YES];
    }
}

Build and run your application, tap the Edit button, and the UITableView will enter editing mode
(Figure 11.7). 



ptg

Adding Rows

197

Figure 11.7  UITableView in editing mode

Adding Rows
There are a number of ways to add rows to a table view at runtime. The built-in behavior for adding a
row is to display a new row with a green plus sign icon. However, this technique has fallen out of favor
in iOS applications because it’s cumbersome to enter editing mode and then find the row with the plus
sign icon – especially in larger tables.

So we’re going to put a New button in the header view instead. Recall that when a table view first
appears on screen, it asks its data source for the data it needs to display, and the data source provides
it. You can force this process to run again by sending the message reloadData to the table view.
That way, if you add a Possession to the PossessionStore, you can reload the table, and the new
Possession will be included in the data sent to the table for display.

In ItemsViewController.m, implement the action method for the New button so that a new random
Possession is added to the store and the table is reloaded.

- (IBAction)addNewPossession:(id)sender
{
    [[PossessionStore defaultStore] createPossession];
    
    // tableView returns the controller's view
    [[self tableView] reloadData];
}            

Notice the tableView message that the ItemsViewController sends itself. Every
UITableViewController implements tableView, which returns the table controller’s view. Because
we know this method returns an instance of UITableView, we can send it UITableView-specific
messages, like reloadData.

Build and run the application and tap your New button. A new random possession will appear at the
bottom of the table. 



ptg

Chapter 11  Editing UITableView

198

Now that you have the ability to add rows, remove the code in the init method in
ItemsViewController.m that immediately puts 10 random possessions into the store. The init
method should now look like this:

- (id)init
{
    // Call the superclass's designated initializer
    self = [super initWithStyle:UITableViewStyleGrouped];

    return self;
}            

Deleting Rows
In editing mode, the red circles with the dash (shown in Figure 11.7) are deletion controls, and
touching one should delete that row. However, at this point, touching a deletion control doesn’t delete
anything. (Try it and see.) Before the table view will delete a row, it sends its data source a message
about the deletion and waits for confirmation before pulling the trigger.

A UITableView asks its data source for the cells it should display when it is first loaded and at least
three other times:

• when the user scrolls the table view

• when the table view is removed from the view hierarchy and then added back to the view hierarchy

• when an object sends it the message reloadData

Now consider what would happen if deleting a row only removed the row from the table view and
not from the data source. The PossessionStore would still have the Possession instance displayed
by that row, and the next time the UITableView asked for its rows, the data source would create a cell
for the supposedly deleted Possession. The unwanted row would rise from the dead and return to the
table.

To prevent zombie cells from roaming your table, you must update your data source to remove objects
that should no longer be displayed in the table. First, we need a way to remove objects from the
PossessionStore. In PossessionStore.h, add a new method that deletes a Possession.

@interface PossessionStore : NSObject 
{
    NSMutableArray *allPossessions;
} 
+ (PossessionStore *)defaultStore;

- (void)removePossession:(Possession *)p;

In PossessionStore.m, implement removePossession:.

- (void)removePossession:(Possession *)p
{
    [allPossessions removeObjectIdenticalTo:p];
}

Now you will implement tableView:commitEditingStyle:forRowAtIndexPath:, a method from the
UITableViewDataSource protocol. (This message is sent to the ItemsViewController. Keep in mind



ptg

Moving Rows

199

that while the PossessionStore is the where the data is kept, the ItemsViewController is the table
view’s “data source.”)

When tableView:commitEditingStyle:forRowAtIndexPath: is sent to the data source, two
extra arguments are passed along with it. The first is the UITableViewCellEditingStyle,
which, in this case, is UITableViewCellEditingStyleDelete. The other argument is the
NSIndexPath of the row in the table. In ItemsViewController.m, implement this method to have the
PossessionStore remove the right object and to confirm the row deletion by sending the message
deleteRowsAtIndexPaths:withRowAnimation: back to the table view.

- (void)tableView:(UITableView *)tableView 
    commitEditingStyle:(UITableViewCellEditingStyle)editingStyle 
     forRowAtIndexPath:(NSIndexPath *)indexPath 
{
    // If the table view is asking to commit a delete command...
    if (editingStyle == UITableViewCellEditingStyleDelete)
    {
        PossessionStore *ps = [PossessionStore defaultStore];
        NSArray *possessions = [ps allPossessions];
        Possession *p = [possessions objectAtIndex:[indexPath row]];
        [ps removePossession:p];

        // We also remove that row from the table view with an animation
        [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
                         withRowAnimation:YES];
    }
}

Build and run your application and then delete a row. It will disappear. Now scroll the list to force the
table view to reload. Then return to where the deleted row was and confirm that your data source was
updated. 

Moving Rows
To change the order of rows in a UITableView, you will use another method from the
UITableViewDataSource protocol – tableView:moveRowAtIndexPath:toIndexPath:.

To delete a row, you had to send the message deleteRowsAtIndexPaths:withRowAnimation: to
the UITableView to confirm the deletion. Moving a row, however, doesn’t require confirmation;
the table view moves the row on its own authority and sends the data source the message
tableView:moveRowAtIndexPath:toIndexPath: to report the move. You just have to catch this
message to update your data source to match the new order.

But before we can implement the data source method, we need to give the PossessionStore a method
to change the order of Possessions in its allPossessions array. In PossessionStore.h, declare this
method.

- (void)movePossessionAtIndex:(int)from
                      toIndex:(int)to;            

Implement this method in PossessionStore.m.

- (void)movePossessionAtIndex:(int)from
                      toIndex:(int)to



ptg

Chapter 11  Editing UITableView

200

{
    if (from == to) {
        return;
    }
    // Get pointer to object being moved
    Possession *p = [allPossessions objectAtIndex:from];

    // Retain it... (retain count of p = 2)
    [p retain];

    // Remove p from array, it is automatically sent release (retain count of p = 1)
    [allPossessions removeObjectAtIndex:from];

    // Insert p in array at new location, retained by array (retain count of p = 2)
    [allPossessions insertObject:p atIndex:to];

    // Release p (retain count = 1, only owner is now array)
    [p release];
}

Now in ItemsViewController.m, implement tableView:moveRowAtIndexPath:toIndexPath: to
update the store.

- (void)tableView:(UITableView *)tableView 
    moveRowAtIndexPath:(NSIndexPath *)fromIndexPath 
           toIndexPath:(NSIndexPath *)toIndexPath 
{
    [[PossessionStore defaultStore] movePossessionAtIndex:[fromIndexPath row]
                                                  toIndex:[toIndexPath row]];
}

Build and run your application. Check out the new reordering controls (the three horizontal lines)
on the side of each row. Touch and hold a reordering control and move the row to a new position
(Figure 11.8).



ptg

Moving Rows

201

Figure 11.8  Moving a row

Note that simply implementing tableView:moveRowAtIndexPath:toIndexPath: caused the reordering
controls to appear. This is because Objective-C is a very smart language. The UITableView can ask its
data source at runtime whether it implements tableView:moveRowAtIndexPath:toIndexPath:. If it
does, the table view says, “Good, you can handle moving rows. I’ll add the re-ordering controls.” If
not, it says, “You bum. If you are too lazy to implement that method, I’m not putting controls there.” 



ptg

This page intentionally left blank 



ptg

203

12
UINavigationController

In Chapter 7, you learned about UITabBarController and how it allows a user to access different
screens. A tab bar controller is great when you have screens that don’t rely on each other, but what if
you want to move between related screens?

For example, the Settings application has multiple related screens of information: a list of settings (like
Sounds), a detailed page for each setting, and a selection page for each detail. This type of interface is
called a drill-down interface.

In this chapter, you will use a UINavigationController to add a drill-down interface to Homepwner
that lets the user view and edit the details of a Possession. (Figure 12.1). 

Figure 12.1  Homepwner with UINavigationController



ptg

Chapter 12  UINavigationController

204

UINavigationController
When your application presents multiple screens of information, UINavigationController maintains
a stack of those screens. The stack is an NSArray of view controllers, and each screen is the view of a
UIViewController. When a UIViewController is on top of the stack, its view is visible.

When you initialize an instance of UINavigationController, you give it one UIViewController. This
UIViewController is called the root view controller. The root view controller is always on the bottom
of the stack (which is also the top if there is only one item). Figure 12.2 shows a navigation controller
with two view controllers: a root view controller and an additional view controller above it at the top
of the stack. The additional view controller is the one the user sees. When the UIViewController is
pushed onto the stack, its view slides onto the screen from the right. When the stack is popped, the top
view controller is removed from the stack, and the view of the one below it slides onto the screen from
the left.

Figure 12.2  UINavigationController’s stack

More view controllers can be pushed on top of the UINavigationController’s stack during execution.
This ability to add to the stack during execution is missing in UITabBarController, which gets all of
its view controllers when it is initialized. With a navigation controller, only the root view controller is
guaranteed to always be in the stack.

The UIViewController that is currently on top of the stack is accessed by sending the message
topViewController to the UINavigationController instance. You can also get the entire stack as an
NSArray by sending the navigation controller the message viewControllers. The viewControllers
array is ordered so that the root view controller is the first entry and the top view controller is the last
entry.

UINavigationController is a also subclass of UIViewController, so it has a view of its own. Its
view always has at least two subviews: a UINavigationBar and the view of its topViewController
(Figure 12.3).



ptg

UINavigationController

205

Figure 12.3  A UINavigationController’s view

In this chapter, you will add a UINavigationController to the Homepwner application and make 
the ItemsViewController the UINavigationController’s rootViewController. Then, you will
create another subclass of UIViewController that can be pushed onto the UINavigationController’s
stack. When a user selects one of the possession rows, the new UIViewController’s view will slide
onto the screen. This view controller will allow the user to view and edit the properties of the selected
Possession. The object diagram for the updated Homepwner application is shown in Figure 12.4. 



ptg

Chapter 12  UINavigationController

206

Figure 12.4  Homepwner object diagram

This application is getting fairly large, as you can see in the massive object diagram. Fortunately,
view controllers and UINavigationController know how to deal with this type of complicated object
diagram. When writing iOS applications, it is important to treat each UIViewController as its own
little world. The stuff that has already been implemented in Cocoa Touch will do the heavy lifting.

Now let’s give Homepwner a navigation controller. Reopen the Homepwner project and then
open HomepwnerAppDelegate.m. The only requirements for using a UINavigationController
are that you give it a root view controller and add its view to the visible view hierarchy. In
application:didFinishLaunchingWithOptions:, create the UINavigationController, give it a root
view controller of its own, and set the UINavigationController as the root view controller of the
window. 

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    ItemsViewController *itemsViewController = [[ItemsViewController alloc] init];

    // Create an instance of a UINavigationController
    // its stack contains only itemsViewController
    UINavigationController *navController = [[UINavigationController alloc]



ptg

UINavigationBar

207

            initWithRootViewController:itemsViewController];
    
    // You can now release the itemsViewController here,
    // UINavigationController will retain it
    [itemsViewController release];
        
    // Place navigation controller's view in the window hierarchy
    [[self window] setRootViewController:navController];
    
    [navController release];

    [[self window] makeKeyAndVisible];
    return YES;
}

This code initializes the UINavigationController instance with ItemsViewController as its root
view controller and makes the UINavigationController the rootViewController of the window.
Becoming the window’s rootViewController places the navigation controller’s view in the view
hierarchy.

Build and run the application. Homepwner will look the same as it did before – except now it has a
UINavigationBar at the top of the screen (Figure 12.5). Notice how ItemsViewController’s view was
resized to fit the screen with a navigation bar. UINavigationController did this for you. 

Figure 12.5  Homepwner with an empty navigation bar

UINavigationBar

The UINavigationBar isn’t very interesting right now. At a minimum, a UINavigationBar
should display a descriptive title for the UIViewController that is currently on top of the
UINavigationController’s stack.

Every UIViewController has a navigationItem property of type UINavigationItem. However,
unlike UINavigationBar, UINavigationItem is not a subclass of UIView, so it cannot appear on the
screen. Instead, the navigation item supplies the navigation bar with the content it needs to draw. When
a UIViewController comes to the top of a UINavigationController’s stack, the UINavigationBar
uses the UIViewController’s navigationItem to configure itself, as shown in Figure 12.6.



ptg

Chapter 12  UINavigationController

208

Figure 12.6  UINavigationItem

That’s not the easiest thing to understand at first glance. So, consider the following analogy. Think
of a UIViewController as an NFL football team, and moving to the top of the stack as going to
the Super Bowl. The UINavigationItem is the team logo design, which is the property of the team
and, no matter what happens, remains unchanged. The UINavigationController is the stadium,
and the UINavigationBar is an end zone. In a similar manner, when a UIViewController is
moved to the top of the stack, its UINavigationItem is painted on the UINavigationBar of the
UINavigationController.

By default, a UINavigationItem is empty. At the most basic level, a UINavigationItem has a
simple title string. When a UIViewController is moved to the top of the navigation stack and its
navigationItem has a valid string for its title property, the navigation bar will display that string
(Figure 12.7).

Figure 12.7  UINavigationItem with title

A navigation item can hold more than just a title string, as shown in Figure 12.8. There are three
customizable areas for each UINavigationItem: a leftBarButtonItem, a rightBarButtonItem, and 
a titleView. The left and right bar button items are pointers to instances of UIBarButtonItem, which
contains the information for a button that can only be displayed on a UINavigationBar or a UIToolbar.



ptg

UINavigationBar

209

Figure 12.8  UINavigationItem with everything

Like UINavigationItem, UIBarButtonItem is not a subclass of UIView but supplies the content that
a UINavigationBar needs to draw. Consider the UINavigationItem and its UIBarButtonItems to be
containers for strings, images, and other content. A UINavigationBar knows how to look in those
containers and draw the content it finds.

The third customizable area of a UINavigationItem is its titleView. You can either use a basic
string as the title or have a subclass of UIView sit in the center of the navigation item. You cannot
have both. If it suits the context of a specific view controller to have a custom view (like a button, a
slider, an image, or even a map), you would set the titleView of the navigation item to that custom
view. Figure 12.8 shows an example of a UINavigationItem with a custom view as its titleView.
Typically, however, a title string is sufficient, and that’s what we’ll do in this chapter.

Now let’s give Homepwner a UINavigationBar it can be proud of. In ItemsViewController.m, create
a UIBarButtonItem instance. This button will sit on the right side of the navigation bar when the
ItemsViewController is on top of the stack. When tapped, it will add a new Possession to the list.
Also, set the navigation item’s title. This string will be displayed in the center of the navigation bar.

- (id)init 
{
    self = [super initWithStyle:UITableViewStyleGrouped];
        
    if (self) {
        // Create a new bar button item that will send
        // addNewPossession: to ItemsViewController
        UIBarButtonItem *bbi = [[UIBarButtonItem alloc] 
                        initWithBarButtonSystemItem:UIBarButtonSystemItemAdd 
                                             target:self 
                                             action:@selector(addNewPossession:)];

        // Set this bar button item as the right item in the navigationItem
        [[self navigationItem] setRightBarButtonItem:bbi];
        
        // The navigationItem retains its buttons, so bbi can be released 
        [bbi release];
        
        // Set the title of the navigation item 
        [[self navigationItem] setTitle:@"Homepwner"];
    }        



ptg

Chapter 12  UINavigationController

210

    return self;
}

Build and run the application. Tap the + button, and a new row will appear in the table. (Note that
this is not the only way to set up a bar button item; check the documentation for other initialization
messages you can send an instance of UIBarButtonItem.)

A bar button item has a target-action pair that works like UIControl’s target-action mechanism: 
when tapped, it sends the action message to the target. When you set a target-action pair in a XIB file,
you Control-drag from a button to its target and then select a method from the list of IBActions. To
programmatically set up a target-action pair, you pass the target and the action to the button. The action
is passed as a value of type SEL.

The SEL data type is a pointer to a selector. A selector is a unique ID for a method. Wrapping a method
name in the @selector() directive returns the SEL that points at that method. Remember that a selector
is the entire method name including any colons. Here are some examples of method declarations and
how you would wrap them in @selector():

- (void)method; 
- (int)methodWithArg:(id)arg1; 
- (BOOL)methodWithArg:(id)arg1 andAnotherArg:(id)arg2;

SEL m1 = @selector(method);
SEL m2 = @selector(methodWithArg:);
SEL m3 = @selector(methodWithArg:andAnotherArg:);

Notice that @selector() doesn’t care about the return type, argument types, or names of arguments –
only the selector itself. Also, know that @selector() doesn’t check to see if the method actually exists.
If you give a SEL to a button, that button will send the corresponding message regardless of whether the
method is implemented by the target.

Now you’re going to replace the Edit button in the table view header with a UIBarButtonItem. In
ItemsViewController.m, edit the init method.

- (id)init 
{
    self = [super initWithStyle:UITableViewStyleGrouped];
    
    if (self) {
        UIBarButtonItem *bbi = [[UIBarButtonItem alloc] 
                            initWithBarButtonSystemItem:UIBarButtonSystemItemAdd 
                                                 target:self 
                                                 action:@selector(addNewPossession:)];

        [[self navigationItem] setRightBarButtonItem:bbi];
        
        [bbi release];
        
        [[self navigationItem] setTitle:@"Homepwner"];
    
        [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];
    }
    return self;
}

Surprisingly, that’s all the code you need to get an edit button on the navigation bar. Build and run, tap
the Edit button, and watch the UITableView enter editing mode! Where does editButtonItem come



ptg

An Additional UIViewController

211

from? UIViewController has an editButtonItem property, and when sent editButtonItem, the view
controller creates a UIBarButtonItem with the title Edit. Even better, this button comes with a target-
action pair: it sends the message setEditing:animated: to its UIViewController when tapped. 

Now that Homepwner has a fully functional navigation bar, you can get rid of the header view. In
ItemsViewController.m, delete the following two methods.

// Delete these!

- (UIView *)tableView:(UITableView *)aTableView
    viewForHeaderInSection:(NSInteger)section
{
    return [self headerView];
}

- (CGFloat)tableView:(UITableView *)tableView
    heightForHeaderInSection:(NSInteger)section
{
    return [[self headerView] frame].size.height;
}

Also remove the instance variable headerView along with the implementation of the methods
headerView and toggleEditingMode:.

Now you can build and run again. The old Edit and New buttons are gone, leaving you with a lovely
UINavigationBar (Figure 12.9). 

Figure 12.9  Homepwner with navigation bar

An Additional UIViewController
To see the real power of UINavigationController, you need another UIViewController to put on the
navigation controller’s stack. Create a new UIViewController subclass (File → New → New File...).



ptg

Chapter 12  UINavigationController

212

Choose the UIViewController subclass template. When prompted, check the box With XIB for user
interface (Figure 12.10). Save this class as ItemDetailViewController.

Figure 12.10  View controller with XIB subclass

In ItemDetailViewController.m, delete all of the code between the @implementation and @end
directives.

In Homepwner, we want the user to be able to tap a possession to get another screen with editable
text fields for each property of that Possession. This view will be controlled by an instance of
ItemDetailViewController.

The detail view needs four subviews – one for each instance variable of a Possession
instance. And because you need to be able to access these subviews during runtime,
ItemDetailViewController needs outlets for these subviews. Therefore, you must add four new
outlets to ItemDetailViewController, drag the subviews onto the view in the XIB file, and then make
the connections.

In previous exercises, these were three distinct steps: you added the outlets, then you configured the
interface, and then you made connections. We can combine these steps using a shortcut in Xcode. First,
open ItemDetailViewController.xib by clicking on it in the project navigator.

Now, Option-click on ItemDetailViewController.h in the project navigator. This shortcut opens the
file in the assistant editor, right next to ItemDetailViewController.xib. (You can toggle the assistant
editor by clicking the middle button from the Editor control at the top of the workspace; the shortcut to
display the assistant editor is Command-Option-Return; to return to the standard editor, use Command-
Return.)



ptg

An Additional UIViewController

213

You will also need the object library available so that you can drag the subviews onto the view.
Show the utilities area by clicking the right button in the View control at the top of the workspace (or
Command-Option-0).

Your window is now sufficiently cluttered. Let’s make some temporary space. Hide the navigator 
area by clicking the left button in the View control at the top of the workspace (the shortcut for this is
Command-0). Then, change the outline view in the XIB file to the dock view by clicking the toggle
button in the lower left corner of the outline view. Your workspace should now look like Figure 12.11.

Figure 12.11  Laying out the workspace

Now, drag four UILabels and three UITextFields onto the view in the canvas area and configure them
to look like Figure 12.12. For each of the UITextFields, uncheck the Clear when editing begins box in
the attribute inspector.



ptg

Chapter 12  UINavigationController

214

Figure 12.12  Configured ItemDetailViewController XIB

The three UITextFields and bottom UILabel will be outlets in ItemDetailViewController. Here
comes the exciting part. Control-drag from the UITextField underneath the Name label to the instance
variable area in ItemDetailViewController.h, as shown in Figure 12.13.



ptg

An Additional UIViewController

215

Figure 12.13  Dragging from XIB to source file

Let go while still inside the instance variable area, and a pop-up window will appear. Enter nameField
into this field and click Connect.

Figure 12.14  Auto-generating an outlet and making a connection

This will create an IBOutlet instance variable of type UITextField named nameField in
ItemDetailViewController. It will also connect this UITextField to the nameField outlet of the
File's Owner in the XIB file. You can verify this by Control-clicking on the File's Owner to see the
connections – notice that hovering your mouse above the nameField connection in the panel that
appears will reveal the UITextField that you connected. Two birds, one stone. Create the other three
outlets in the same way and name them as shown in Figure 12.15.



ptg

Chapter 12  UINavigationController

216

Figure 12.15  Connection diagram

For each of the UITextFields in the XIB file, connect their delegate property to the File's Owner.
(Remember, Control-drag from the UITextField to the File's Owner and select delegate from the list.)

Next, let’s consider the ItemDetailViewController’s view. Right now, it has a plain white
background. Let’s give it the same background as the UITableView. Recall that a view controller’s
view is not created until the view controller loads it the first time, so when should you make this
change to the view? After a UIViewController loads its view, it is immediately sent the message
viewDidLoad. This message is sent whether that view is loaded from a XIB file or programmatically.
If you need to do any extra initialization to a UIViewController that requires its view to already exist,
you must override viewDidLoad. Override viewDidLoad in ItemDetailViewController.m.

- (void)viewDidLoad
{
    [super viewDidLoad];
    [[self view] setBackgroundColor:[UIColor groupTableViewBackgroundColor]];
}

When ItemDetailViewController’s view gets unloaded, its subviews will still be retained by
ItemDetailViewController. They need to be released and set to nil in viewDidUnload. (When
you add outlets to a class by Control-dragging into a source file, code is automatically added to
viewDidUnload that will release the instance variables that you created; however, they may not be set
to nil.) Override this method in ItemDetailViewController.m.



ptg

Navigating with UINavigationController

217

- (void)viewDidUnload
{
    [super viewDidUnload];

    [nameField release];
    nameField = nil;

    [serialNumberField release];
    serialNumberField = nil;

    [valueField release];
    valueField = nil;

    [dateLabel release];
    dateLabel = nil;
}

And, finally, you need a dealloc method because this view controller will be instantiated and
destroyed multiple times while the application is running:

- (void)dealloc
{
    [nameField release];
    [serialNumberField release];
    [valueField release];
    [dateLabel release];
    [super dealloc];
}

Now that this project has a good number of source files, you will be switching between them fairly
regularly. One way to speed up switching between commonly accessed files is to use Xcode tabs. If
you double-click on a file in the project navigator, the file will open in a new tab. You can also open
up a blank tab with the shortcut Command-T. The keyboard shortcuts for cycling through tabs are
Command-Shift-} and Command-Shift-{. (You can see the other shortcuts for project organization by
selecting the General tab from Xcode’s preferences.)

Navigating with UINavigationController
Now you have a navigation controller, a navigation bar, and two view controllers. Time to put all the
pieces together. The user should be able to tap a row in ItemsViewController’s table view and have
the ItemDetailViewController’s view slide onto the screen and display the properties of the selected
Possession instance.

Pushing view controllers

Of course, you need to create an instance of ItemDetailViewController. Where should this object be
created? Think back to previous exercises where you instantiated all of your controllers in the method
application:didFinishLaunchingWithOptions:. For example, in the Chapter 7 chapter, you created
both view controllers and immediately added them to tab bar controller’s viewControllers array.

However, when using a UINavigationController, you cannot simply store all of the possible view
controllers in its stack. The viewControllers array of a navigation controller is dynamic – you start
with a root view controller and add view controllers depending on user input. Therefore, some object



ptg

Chapter 12  UINavigationController

218

other than the navigation controller needs to create the instance of ItemDetailViewController and be
responsible for adding it to the stack.

This object must meet two requirements: it needs to know when to push ItemDetailViewController
onto the stack, and it needs a pointer to the navigation controller. Why must this object have 
a pointer to the navigation controller? If it is to dynamically add view controllers to the
navigation controller’s stack, it must be able to send the navigation controller messages, namely,
pushViewController:animated:.

ItemsViewController fills both requirements. First, it knows when a row is tapped in a table view
because, as the table view’s delegate, it receives the message tableView:didSelectRowAtIndexPath:.
Second, any view controller in a navigation controller’s stack can get a pointer to the navigation
controller by sending itself the message navigationController. As the root view controller,
ItemsViewController is always in the navigation controller’s stack and thus can always
access it. Therefore, ItemsViewController will be responsible for creating the instance of
ItemDetailViewController and adding it to the stack.

At the top of ItemsViewController.h, import the interface file for ItemDetailViewController.

#import "ItemDetailViewController.h"

@interface ItemsViewController : UITableViewController

When a row is tapped, its delegate is sent tableView:didSelectRowAtIndexPath:, which contains
the index path of the selected row. In ItemsViewController.m, implement this method to allocate a
ItemDetailViewController and then push it on top of the navigation controller’s stack.

@implementation ItemsViewController
    
- (void)tableView:(UITableView *)aTableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
    ItemDetailViewController *detailViewController = 
        [[[ItemDetailViewController alloc] init] autorelease];

    // Push it onto the top of the navigation controller's stack
    [[self navigationController] pushViewController:detailViewController
                                           animated:YES];
}

Build and run the application. Select a row from the UITableView. Not only will you be taken
to ItemDetailViewController’s view, but you will get a free animation and a button in the
UINavigationBar titled Homepwner. Tapping this button will take you back to ItemsViewController.

Also, notice that the instance of ItemDetailViewController is autoreleased after it is instantiated.
The UINavigationController will retain it and then release it when it is popped from the stack.
Therefore, when the user taps the back button, the ItemDetailViewController will be deallocated.
This is why you implemented the dealloc method for ItemDetailViewController – instances of this
class definitely get destroyed while this application is running.

Having a view controller push the next view controller is a common pattern. In any application with
a UINavigationController, the navigation controller has one root view controller. The root view
controller typically creates the next view controller, and the next view controller creates the one after
that, and so on. Some applications may have view controllers that can push different view controllers



ptg

Passing data between view controllers

219

depending on user input. For example, the Photos will push a video view controller or an image view
controller onto the navigation stack depending on what type of media was selected. 

(The iPad-only class UISplitViewController calls for a different pattern. The iPad’s larger screen
size allows two view controllers in a drill-down interface to appear on screen simultaneously instead of
being pushed onto the same stack. You’ll learn more about UISplitViewController in Chapter 26.)

Passing data between view controllers

Of course, the UITextFields on the screen are currently empty. To fill these fields, you need a way to
pass data between the ItemsViewController and the ItemDetailViewController. How do you pass
data between UIViewControllers?

What you’re going to do is implement a method in ItemDetailViewController that accepts
a Possession instance and fills the contents of its UITextFields. ItemsViewController
will select the appropriate possession from its array and pass it through that method to the
ItemDetailViewController.

In ItemDetailViewController.h, add an instance variable to hold the Possession that is being edited
and declare a method to set that instance variable. The class declaration should now look like this:

#import <UIKit/UIKit.h>

@class Possession;

@interface ItemDetailViewController : UIViewController 
{
    IBOutlet UITextField *nameField;
    IBOutlet UITextField *serialNumberField;
    IBOutlet UITextField *valueField;
    IBOutlet UILabel *dateLabel;

    Possession *possession;
} 
@property (nonatomic, retain) Possession *possession;
@end

In ItemDetailViewController.m, synthesize the accessors for possession and import Possession’s
header file.

#import "Possession.h"

@implementation ItemDetailViewController 

@synthesize possession;

Since an instance of ItemDetailViewController will retain its possession, this instance variable
must be released when the view controller is deallocated. An instance of ItemDetailViewController
will be deallocated when the user goes back to the ItemsViewController. That user action removes
the ItemDetailViewController from the stack, which causes the navigation controller, its only owner,
to release it. In ItemDetailViewController.m, add this to the dealloc method.

- (void)dealloc 
{
    [possession release];



ptg

Chapter 12  UINavigationController

220

 
    [nameField release];
    [serialNumberField release];
    [valueField release];
    [dateLabel release];
    [super dealloc];
}   

When the ItemDetailViewController’s view appears on the screen, it needs to set the values
of its subviews to match the properties of the possession. Override viewWillAppear: in
ItemDetailViewController.m to transfer the possession’s properties to the various UITextFields. 

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];

    [nameField setText:[possession possessionName]];
    [serialNumberField setText:[possession serialNumber]];
    [valueField setText:[NSString stringWithFormat:@"%d",
                            [possession valueInDollars]]];

    // Create a NSDateFormatter that will turn a date into a simple date string
    NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init]
                                            autorelease];
    [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
    [dateFormatter setTimeStyle:NSDateFormatterNoStyle];

    // Use filtered NSDate object to set dateLabel contents
    [dateLabel setText:
        [dateFormatter stringFromDate:[possession dateCreated]]];

    // Change the navigation item to display name of possession
    [[self navigationItem] setTitle:[possession possessionName]];
}

Now you must invoke this method when the ItemDetailViewController is being pushed
onto the navigation stack. In ItemsViewController.m, add the following line of code to
tableView:didSelectRowAtIndexPath:.

- (void)tableView:(UITableView *)aTableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
    ItemDetailViewController *detailViewController = 
        [[[ItemDetailViewController alloc] init] autorelease];

    NSArray *possessions = [[PossessionStore defaultStore] allPossessions];

    // Give detail view controller a pointer to the possession object in row
    [detailViewController setPossession:
                [possessions objectAtIndex:[indexPath row]]];

    [[self navigationController] pushViewController:detailViewController
                                           animated:YES];
}

Many programmers new to iOS struggle with how data is passed between UIViewControllers. The
technique you just implemented, having all of the data in the root view controller and passing subsets
of that data to the next UIViewController, is a clean and efficient way of performing this task. 



ptg

Appearing and disappearing views

221

Build and run your application. Select one of the rows in the UITableView, and the view that appears
will contain the information for the Possession in that row. While you can edit this data, the
UITableView won’t have changed when you return to it. To fix this problem, you need to implement
code to update the properties of the Possession being edited. Next, we’ll look at when to do this.

Appearing and disappearing views
Whenever a UINavigationController is about to swap views, it sends out two messages:
viewWillDisappear: and viewWillAppear:. The UIViewController that is about to be popped off the
stack is sent the message viewWillDisappear:. The UIViewController that will then be on top of the
stack is sent viewWillAppear:.

When ItemDetailViewController is popped off the stack, you will set the properties of the
possession to the values in the UITextFields. When implementing these methods for views appearing
and disappearing, it is important to call the superclass’s implementation – it has some work to do as
well. In ItemDetailViewController.m, implement viewWillDisappear:.

- (void)viewWillDisappear:(BOOL)animated
{
    [super viewWillDisappear:animated];

    // Clear first responder
    [[self view] endEditing:YES];

    // "Save" changes to possession
    [possession setPossessionName:[nameField text]];
    [possession setSerialNumber:[serialNumberField text]];
    [possession setValueInDollars:[[valueField text] intValue]];
}

Notice the use of endEditing:. When the message endEditing: is sent to a view, if it or any of its
subviews are currently the first responder, it will resign its first responder status, and the keyboard will
be dismissed. (The argument passed determines whether the first responder is forced into retirement.
Some first responders might refuse to resign, and passing YES ignores that refusal.)

Now the values of the Possession will be updated when the user taps the Homepwner back button on
the UINavigationBar. When ItemsViewController appears back on the screen, it is sent the message
viewWillAppear:. Take this opportunity to reload its UITableView so the user can immediately see the
changes. In ItemsViewController.m, override viewWillAppear:.

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];
    [[self tableView] reloadData];
}

Build and run your application now. Now you can move back and forth between the
UIViewControllers you created and change the data with ease. 

Challenge: Number Pad
The keyboard for the UITextField that displays a Possession’s valueInDollars is a QWERTY
keyboard. It would be better if it was a number pad. Change the Keyboard Type of that UITextField to
the Number Pad. (Hint: You can do this in the XIB file using the attributes inspector.) 



ptg

This page intentionally left blank 



ptg

223

13
Camera

In this chapter, you’re going to add photos to the Homepwner application. You will present a
UIImagePickerController so that the user can take and save a picture of each possession. The image
will then be associated with a Possession instance, stored in an image store, and viewable in the
possession’s detail view. Then, when the insurance company demands proof, the user has a visual
record of owning that 70" HDTV.

Figure 13.1  Homepwner with camera addition

Displaying Images and UIImageView
Because we want the image to appear in the possession’s detail view, your first step is to have
the ItemDetailViewController get and display an image. An easy way to display an image



ptg

Chapter 13  Camera

224

is to put an instance of UIImageView on the screen. Open Homepwner.xcodeproj and click
ItemDetailViewController.xib in the project navigator to open the interface in the canvas area.
Then drag an instance of UIImageView onto the view, as shown in Figure 13.2.

Figure 13.2  UIImageView on ItemDetailViewController’s view

A UIImageView displays an image according to its contentMode property. This property determines
where to position and how to resize the content within its frame. The default value for contentMode
is UIViewContentModeCenter, which centers but does not resize the content to fit within the bounds
of the view. If you keep the default, the large image produced by the camera will take up most of the
screen. You have to change the contentMode of the image view so that it resizes the image.

Select the UIImageView and open the attributes inspector. Find the Mode attribute and change it
to Aspect Fit, as shown in Figure 13.3. This will resize the image to fit within the bounds of the
UIImageView.



ptg

Displaying Images and UIImageView

225

Figure 13.3  Image view attributes

Now, Option-click ItemDetailViewController.h in the project navigator to open it in
the assistant editor. Control-drag from the UIImageView to the instance variable area in
ItemDetailViewController.h. Name the outlet imageView and click Connect.

Because imageView is a new subview of ItemDetailViewController’s view that is instantiated
when the XIB file is loaded, it needs to be released and its pointer cleared in viewDidUnload. In
ItemDetailViewController.m, make the following changes.

- (void)viewDidUnload 
{
    [super viewDidUnload];

    [nameField release];
    nameField = nil;

    [serialNumberField release];
    serialNumberField = nil;

    [valueField release];
    valueField = nil;

    [dateLabel release];
    dateLabel = nil;

    [imageView release];
    imageView = nil;
}

Also release the image view in dealloc:

- (void)dealloc
{
    [nameField release];
    [serialNumberField release];
    [valueField release];
    [dateLabel release];
    
    [imageView release];



ptg

Chapter 13  Camera

226

    
    [super dealloc];
}

Taking pictures and UIImagePickerController
Now you need a button to initiate the photo-taking process. It would be nice to put this button on 
the navigation bar, but we will need the navigation bar for another button later. Instead, we will
create an instance of UIToolbar and place it at the bottom of ItemDetailViewController’s view. In
ItemDetailViewController.xib, drag a UIToolbar onto the bottom of the view.

A UIToolbar works a lot like a UINavigationBar in that you can add UIBarButtonItems to it.
However, where a navigation bar has two bar button items, a toolbar has an array of items. You can
place as many UIBarButtonItems in a toolbar as can fit on the screen.

By default, a new instance of UIToolbar created in a XIB file comes with one UIBarButtonItem.
Select this bar button item and open the attribute inspector. Change the Identifier to Camera, and the
item will show a camera icon (Figure 13.4).

Figure 13.4  UIToolbar with bar button item

The camera button needs to send a message to the instance of ItemDetailViewController when it is
tapped. In previous exercises, you connected action methods in two steps: declaring them in the header
file and then hooking them up in the XIB file. Just like you did with outlets, you can do both steps at



ptg

Taking pictures and UIImagePickerController

227

once by opening a source file in the assistant editor and Control-dragging from a XIB file to the file.
Option-click ItemDetailViewController.h in the project navigator to open it in the assistant editor.

Select the camera button and Control-drag from the button to the method declaration area in
ItemDetailViewController.h (Figure 13.5).

Figure 13.5  Creating and connecting an action method from a XIB

Let go of the mouse, and a window will appear that allows you to specify the type of connection you
are creating. From the Connection pop-up menu, choose Action. Then, name this method takePicture:
and click Connect (Figure 13.6).

Figure 13.6  Creating the action



ptg

Chapter 13  Camera

228

Now the action method is declared in the header file, and the UIBarButtonItem instance in the XIB is
hooked up to send this message to the ItemDetailViewController when tapped. There is also a stub
for the method in ItemDetailViewController.m.

- (IBAction)takePicture:(id)sender 
{ 
}            

In the takePicture: method, you will instantiate a UIImagePickerController and present it on
the screen. When creating an instance of UIImagePickerController, you must set its sourceType
property and assign it a delegate.

The sourceType is a constant that tells the image picker where to get images. It has three possible
values:

• UIImagePickerControllerSourceTypeCamera – The user will take a new picture.

• UIImagePickerControllerSourceTypePhotoLibrary – The user will be prompted to select
an album and then a photo from that album.

• UIImagePickerControllerSourceTypeSavedPhotosAlbum – The user picks from the most recently
taken photos.

Figure 13.7 shows the results of using each constant.

Figure 13.7  UIImagePickerControllerTypes

The first source type, UIImagePickerControllerSourceTypeCamera, won’t work on a device that
doesn’t have a camera. So before using this type, you have to check for a camera by sending the



ptg

Taking pictures and UIImagePickerController

229

UIImagePickerController class the message isSourceTypeAvailable:. Sending this message to
UIImagePickerController with one of the source type constants returns a boolean value for whether
the device supports that source type.

In addition to a source type, the UIImagePickerController instance needs a
delegate to handle requests from its view. When the user taps the Use Photo button
on the UIImagePickerController’s interface, the delegate is sent the message
imagePickerController:didFinishPickingMediaWithInfo:. (The delegate receives another
message – imagePickerControllerDidCancel: – if the process was cancelled.)

Once the UIImagePickerController has a source type and a delegate, it’s time to put its
view on the screen. Unlike other UIViewController subclasses you’ve used, an instance
of UIImagePickerController is presented modally. When a view controller is modal, 
it takes over the entire screen until it has finished its work. To present a view modally,
presentModalViewController:animated: is sent to the UIViewController whose view is on the
screen. The view controller to be presented is passed to it, and its view slides up from the bottom of the
screen.

In ItemDetailViewController.m, implement the method takePicture: to create, configure, and
present the UIImagePickerController. (Remember – there’s already a stub for this method, so locate
the stub in ItemDetailViewController.m and add the following code there.) 

- (void)takePicture:(id)sender
{
    UIImagePickerController *imagePicker =
            [[UIImagePickerController alloc] init];

    // If our device has a camera, we want to take a picture, otherwise, we
    // just pick from photo library
    if ([UIImagePickerController
            isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
        [imagePicker setSourceType:UIImagePickerControllerSourceTypeCamera];
    } else {
        [imagePicker setSourceType:UIImagePickerControllerSourceTypePhotoLibrary];
    }

    // This line of code will generate 2 warnings right now, ignore them
    [imagePicker setDelegate:self];

    // Place image picker on the screen
    [self presentModalViewController:imagePicker animated:YES];

    // The image picker will be retained by ItemDetailViewController
    // until it has been dismissed
    [imagePicker release];
}

You can build and run the application now. Select a Possession to see its details and then tap the
camera button on the UIToolbar. UIImagePickerController’s interface will appear on the screen
(Figure 13.8), and you can take a picture (or choose an existing image if you don’t have a camera).
Tapping the Use Photo button dismisses the UIImagePickerController. 



ptg

Chapter 13  Camera

230

Figure 13.8  UIImagePickerController preview interface

But, oops – you don’t have a reference to the image anywhere in the code. You need to
implement the delegate method imagePickerController:didFinishPickingMediaWithInfo:
in ItemDetailViewController to hold on to the selected image. But before you implement this
method, let’s take care of the two warnings that appeared during the last build telling you that
ItemDetailViewController does not conform to the UIImagePickerControllerDelegate or the
UINavigationControllerDelegate protocol. In ItemDetailViewController.h, add the protocols
to the class declaration. (Why UINavigationControllerDelegate? UIImagePickerController is a
subclass of UINavigationController.)

@interface ItemDetailViewController : UIViewController 
    <UINavigationControllerDelegate, UIImagePickerControllerDelegate>
{

That’s better. Now we’re all up to code.

When a photo is selected, the imagePickerController:didFinishPickingMediaWithInfo: message
will be sent to the image picker’s delegate. In ItemDetailViewController.m, implement this method
to put the image into the UIImageView that you created earlier.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info



ptg

ImageStore

231

{
    // Get picked image from info dictionary
    UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

    // Put that image onto the screen in our image view
    [imageView setImage:image];

    // Take image picker off the screen -
    // you must call this dismiss method
    [self dismissModalViewControllerAnimated:YES];
}

Build and run the application again. Take a photo, and the image picker is dismissed and you are
returned to the ItemDetailViewController’s view. Do you see your image? Oddly enough, you might
see it or you might not. Let’s figure out what’s going on and fix the problem.

When a photo is taken, that image is loaded into memory. However, the image file is so large that 
it causes a low-memory warning. Recall that a low-memory warning gives the system the option of
requiring view controllers to release their views if they are not currently visible. When a modal view
controller is on the screen, its view is visible – and the view of the view controller that presented it 
is not. In our case, the low-memory warning destroys ItemDetailViewController’s view, and the
imageView is no longer available when we try to set it.

To get around this problem, we must create a separate store for images. Instead of putting the image
directly into the imageView, we will put it into this store. Then when the ItemDetailViewController’s
view next appears on screen, we’ll have the ItemDetailViewController grab the image from the
image store and put it into its own imageView. In general, this is a best practice: a view controller
should re-populate its view’s subviews with data whenever it is sent the message viewWillAppear:,
eliminating the possibility that a low-memory warning could wipe out its content. 

ImageStore
The image store will hold all the pictures the user will take. In Chapter 15, you will have the
Possession objects write out their instance variables to a file, which will then be read in when the
application starts. However, as we’ve found out, images tend to be very large, so it’s a good idea to
keep them separate from the other possession data. The image store will fetch and cache the images as
they are needed. It will also be able to flush the cache if the device runs low on memory.

All of that nifty saving/fetching/loading stuff comes later; in this chapter, the image store is little more
than a dictionary of key-value pairs in which the keys are unique strings and the values are images.
Create a new NSObject subclass called ImageStore. Open ImageStore.h and create its interface:

#import <UIKit/UIKit.h>

@interface ImageStore : NSObject
{
    NSMutableDictionary *dictionary;
} 
+ (ImageStore *)defaultImageStore;

- (void)setImage:(UIImage *)i forKey:(NSString *)s;
- (UIImage *)imageForKey:(NSString *)s; 
- (void)deleteImageForKey:(NSString *)s;

@end



ptg

Chapter 13  Camera

232

NSDictionary

Notice that the dictionary is an instance of NSMutableDictionary. A dictionary is a collection object
similar to an array. However, an array is an ordered list of pointers to objects that is accessed by an
index. When you have an array, you can ask it for the object at the nth index:

    // Put some object at the beginning of an array
    [someArray insertObject:someObject atIndex:0];

    // Get that same object out
    someObject = [someArray objectAtIndex:0];

A dictionary’s objects are not ordered within the collection. So instead of accessing entries with an
index, you use a key. The key is usually an instance of NSString.

    // Add some object to a dictionary for the key "MyKey"
    [someDictionary setObject:someObject forKey:@"MyKey"];

    // Get that same object out
    someObject = [someDictionary objectForKey:@"MyKey"];

An NSDictionary is useful when you want to access entries within a collection by name. In other
development environments, this is called a hash map or hash table (Figure 13.9).

Figure 13.9  NSDictionary diagram

There can only be one object for each key. If you add an object to a dictionary with a key that matches
the key of an object already present in the dictionary, the earlier object is removed. If you need to store
multiple objects under one key, you can put them in an array and add the array to the dictionary.

Finally, note that a dictionary’s memory management is like that of an array. Whenever you add an
object to a dictionary, the dictionary retains it, and whenever you remove an object from a dictionary,
the dictionary releases it.

Like the PossessionStore, the ImageStore needs to be a singleton. In ImageStore.m, write the
following code to ensure ImageStore’s singleton status.

static ImageStore *defaultImageStore = nil;

@implementation ImageStore

+ (id)allocWithZone:(NSZone *)zone



ptg

ImageStore

233

{
    return [self defaultImageStore];
}

+ (ImageStore *)defaultImageStore
{
    if (!defaultImageStore) {
        // Create the singleton
        defaultImageStore = [[super allocWithZone:NULL] init];
    }
    return defaultImageStore;
}

- (id)init
{
    if (defaultImageStore) {
        return defaultImageStore;
    }

    self = [super init];
    if (self) {    
        dictionary = [[NSMutableDictionary alloc] init];
    }

    return self;
}

- (void)release
{
    // no op
}

- (id)retain
{
    return self;
}
 
- (NSUInteger)retainCount
{
    return NSUIntegerMax;
}

Then, implement the three methods declared in the header file.

- (void)setImage:(UIImage *)i forKey:(NSString *)s
{
    [dictionary setObject:i forKey:s];
}

- (UIImage *)imageForKey:(NSString *)s
{
    return [dictionary objectForKey:s];
}

- (void)deleteImageForKey:(NSString *)s
{
    if(!s)
        return;
    [dictionary removeObjectForKey:s];
}



ptg

Chapter 13  Camera

234

Note that there is no dealloc method because once created, the store will exist for the life of the
application. 

Creating and using keys
When an image is added to the store, it will be put into a dictionary under a unique key, and the
associated Possession object will be given that key. When the ItemDetailViewController wants an
image from the store, it will ask its possession for the key and search the dictionary for the image.
Add an instance variable to Possession.h to store the key.

    NSDate *dateCreated;
    NSString *imageKey; 
} 
@property (nonatomic, copy) NSString *imageKey;

Synthesize this new property in the implementation file.

@implementation Possession 
@synthesize possessionName, serialNumber, valueInDollars, dateCreated;
@synthesize imageKey; 

You also need to release this object when a Possession is deallocated. Add this code to the dealloc
method in Possession.m.

- (void)dealloc
{
    [possessionName release];
    [serialNumber release];
    [dateCreated release];
    [imageKey release];
    
    [super dealloc];
}

The image keys need to be unique in order for your dictionary to work. While there are many ways to
hack together a unique string, we’re going to use the Cocoa Touch mechanism for creating universally
unique identifiers (UUIDs), also known as globally unique identifiers (GUIDs). Objects of type
CFUUIDRef represent a UUID and are generated using the time, a counter, and a hardware identifier,
which is usually the MAC address of the ethernet card.

However, CFUUIDRef is not an Objective-C object; it is a C structure and part of the Core Foundation
API. Core Foundation is a C API that is included in template projects and contains the building blocks
for applications, such as strings, arrays, and dictionaries. Core Foundation “classes” are prefixed with
CF and suffixed with Ref. Other examples include CFArrayRef and CFStringRef.

Like Objective-C objects, Core Foundation structures have a retain count mechanism.

Many objects in Core Foundation have an Objective-C counterpart; for example, NSString * is
the Objective-C counterpart of CFStringRef. However, CFUUIDRef does not have an Objective-C
counterpart and, in fact, knows nothing at all about Objective-C. Thus, when it produces a UUID as a
string, that string cannot be an NSString – it must be a CFStringRef.

Recall that your instance variable for the image key is of type NSString *. Do you have to change it 
to CFStringRef in order to work with CFUUIDRef? Nope. Many Core Foundation objects can simply be
typecast as their Objective-C counterparts. Here’s an example:



ptg

Creating and using keys

235

    // Create an instance of a CFStringRef
    CFStringRef someString = CFSTR("String");
    // Turn it in to an NSString
    NSString *coolerString = (NSString *)someString;

We call this toll-free bridging. (And it works because the structures in memory are equivalent. How
smart is that?) 

At the top of ItemDetailViewController.m, import the header for ImageStore.

#import "ImageStore.h"

@implementation ItemDetailViewController                        

Now, in ItemDetailViewController.m, make changes to
imagePickerController:didFinishPickingMediaWithInfo: to create and use a key for a possession
image.

- (void)imagePickerController:(UIImagePickerController *)picker
        didFinishPickingMediaWithInfo:(NSDictionary *)info
{

    NSString *oldKey = [possession imageKey];

    // Did the possession already have an image?
    if (oldKey) {

        // Delete the old image
        [[ImageStore defaultImageStore] deleteImageForKey:oldKey];
    }

    UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

    // Create a CFUUID object - it knows how to create unique identifier strings
    CFUUIDRef newUniqueID = CFUUIDCreate (kCFAllocatorDefault);

    // Create a string from unique identifier
    CFStringRef newUniqueIDString =
            CFUUIDCreateString (kCFAllocatorDefault, newUniqueID);

    // Use that unique ID to set our possessions imageKey
    [possession setImageKey:(NSString *)newUniqueIDString];

    // We used "Create" in the functions to make objects, we need to release them
    CFRelease(newUniqueIDString);
    CFRelease(newUniqueID);

    // Store image in the ImageStore with this key
    [[ImageStore defaultImageStore] setImage:image 
                                      forKey:[possession imageKey]];

    // Put that image onto the screen in our image view
    [imageView setImage:image];

    // Take image picker off the screen
    [self dismissModalViewControllerAnimated:YES];
}

In this method, we call the C functions CFUUIDCreate and CFUUIDCreateString. When the name of
a C function contains the word Create, you are responsible for releasing its memory just as if you



ptg

Chapter 13  Camera

236

had sent the message alloc to a class. So you released these Core Foundation objects by calling the
function CFRelease with the object as a parameter. 

Figure 13.10  Cache

Now, when ItemDetailViewController’s view appears on the screen, it should grab an image
from the ImageStore using the imageKey of the Possession. Then, it should place the image in the
UIImageView. Add the following code to viewWillAppear: in ItemDetailViewController.m.

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];

    [nameField setText:[possession possessionName]];
    [serialNumberField setText:[possession serialNumber]];
    [valueField setText:[NSString stringWithFormat:@"%d",
                                    [possession valueInDollars]]];

    NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init]
                                            autorelease];
    [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
    [dateFormatter setTimeStyle:NSDateFormatterNoStyle];

    [dateLabel setText:
            [dateFormatter stringFromDate:[possession dateCreated]]];

    [[self navigationItem] setTitle:[possession possessionName]];

    NSString *imageKey = [possession imageKey];

    if (imageKey) {
        // Get image for image key from image store
        UIImage *imageToDisplay =
                [[ImageStore defaultImageStore] imageForKey:imageKey];



ptg

Dismissing the keyboard

237

        // Use that image to put on the screen in imageView
        [imageView setImage:imageToDisplay];
    } else {
        // Clear the imageView
        [imageView setImage:nil];
    }
}

Notice that if no image exists in the image store for that key (or there is no key for that possession), the
pointer to the image will be nil. When the image is nil, the UIImageView just won’t display an image.

Build and run the application. Create a Possession and select it from the UITableView. Then, tap the
camera button and take a picture. The image will appear as it should. 

Dismissing the keyboard
When the keyboard appears on the screen in the possession detail view, it obscures
ItemDetailViewController’s imageView. This is annoying when you’re trying to see an image, so
you’re going to implement the delegate method textFieldShouldReturn: to have the text field resign
its first responder status to dismiss the keyboard. (This is why you hooked up the delegate outlets
earlier.) But first, in ItemDetailViewController.h, have ItemDetailViewController conform to the
UITextFieldDelegate protocol.

@interface ItemDetailViewController : UIViewController 
    <UINavigationControllerDelegate, UIImagePickerControllerDelegate, 
        UITextFieldDelegate>

In ItemDetailViewController.m, implement textFieldShouldReturn:.

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
    [textField resignFirstResponder];
    return YES;
}

It would be stylish to also dismiss the keyboard if the user taps anywhere on
ItemDetailViewController’s view. We can dismiss the keyboard by sending the view the message
endEditing:. This message causes the text field (as a subview of the view) to resign as first responder.
Now let’s figure out how to get the view to send a message when tapped.

We have seen how classes like UIButton can send an action message to a target when tapped. Buttons
inherit this target-action behavior from their superclass, UIControl. You’re going to change the view
of ItemDetailViewController from an instance of UIView to an instance of UIControl so that it can
handle touch events.

In ItemDetailViewController.xib, select the main view instance. Open the identity inspector and
change the view’s class to UIControl (Figure 13.11).

Figure 13.11  Changing the class of ItemDetailViewController’s view



ptg

Chapter 13  Camera

238

Then, open ItemDetailViewController.h in the assistant editor. Control-drag from the view (now a
UIControl) to the method declaration area of ItemDetailViewController. When the pop-up window
appears, select Action from the Connection pop-up menu. Notice that the interface of this pop-up
window is slightly different than one you saw when creating and connecting the UIBarButtonItem.
A UIBarButtonItem is a simplified version of UIControl – it only sends its target an action message
when it is tapped. A UIControl, on the other hand, can send action messages on a variety of events.

Therefore, you must choose the appropriate event type to trigger the action message being sent. In this
case, you want the action message to be sent when the user taps on the view. Configure this pop-up
window to appear as it does in Figure 13.12 and click Connect.

Figure 13.12  Configuring a UIControl action

This will create a stub method in ItemDetailViewController.m. Enter the following code into that
method.

- (IBAction)backgroundTapped:(id)sender 
{
    [[self view] endEditing:YES];
}            

Build and run your application and test both ways of dismissing the keyboard.

Challenge: Removing an Image
Add a button that clears the image for a possession. 

For the More Curious: Recording Video
Once you understand how to use UIImagePickerController to take pictures, making the transition
to recording video is trivial. Recall that an image picker controller has a sourceType property 
that determines whether an image comes from the camera, photo library, or saved photos album.
Image picker controllers also have a mediaTypes property, which is an array of strings that contains
identifiers for what types of media can be selected from the three source types.

There are two types of media a UIImagePickerController can select: still images and video. By
default, the mediaTypes array only contains the constant string kUTTypeImage. Thus, if you do not
change the mediaTypes property of an image picker controller, the camera will only allow the user to
take still photos, and the photo library and saved photos album will only display images.



ptg

For the More Curious: Recording Video

239

Adding the ability to record video or choose a video from the disk is as simple as adding the constant
string kUTTypeMovie to the mediaTypes array. However, not all devices support video through the
UIImagePickerController. Just like the class method isSourceTypeAvailable: allows you to
determine if the device has a camera, the availableMediaTypesForSourceType: method checks to see
if that camera can capture video. To set up an image picker controller that can record video or take still
images, you would write the following code:

    UIImagePickerController *ipc = [[UIImagePickerController alloc] init];
    NSArray *availableTypes = [UIImagePickerController
        availableMediaTypesForSourceType:UIImagePickerControllerSourceTypeCamera];
    [ipc setMediaTypes:availableTypes];
    [ipc setSourceType:UIImagePickerControllerSourceTypeCamera];
    [ipc setDelegate:self];

Now when this image picker controller interface is presented to the user, there will be a switch that
allows them to choose between the still image camera or the video recorder. If the user chooses 
to record a video, you need to handle that in the UIImagePickerController delegate method
imagePickerController:didFinishPickingMediaWithInfo:.

When dealing with still images, the info dictionary that is passed as an argument contains the
full image as a UIImage object. However, there is no “UIVideo” class. (Loading an entire video
into memory at once would be tough to do with device memory constraints.) Therefore, recorded
video is written to disk in a temporary directory. When the user finalizes the video recording,
imagePickerController:didFinishPickingMediaWithInfo: is sent to the image picker controller’s
delegate, and the path of the video on the disk is in the info dictionary. You can get the path like so:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info 
{
    NSURL *mediaURL = [info objectForKey:UIImagePickerControllerMediaURL];
}

We will talk about the filesystem in Chapter 15, but what you should know now is that the temporary
directory is not a safe place to store the video. It needs to be moved to another location.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info 
{
    NSURL *mediaURL = [info objectForKey:UIImagePickerControllerMediaURL];
    if (mediaURL) {

        // Make sure this device supports videos in its photo album
        if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum([mediaURL path])) {

            // Save the video to the photos album
            UISaveVideoAtPathToSavedPhotosAlbum([mediaURL path], nil, nil, nil);

            // Remove the video from the temporary directory it was saved at
            [[NSFileManager defaultManager] removeItemAtPath:[mediaURL path]
                                                       error:nil];
        }
    }
}

That is really all there is to it. There is just one situation that requires some additional information:
suppose you want to restrict the user to choosing only videos. Restricting the user to images is simple



ptg

Chapter 13  Camera

240

(leave mediaTypes as the default). Allowing the user to choose between images and videos is just as
simple (pass the return value from availableMediaTypesForSourceType:). However, to allow video
only, you have to jump through a few hoops. First, you must make sure the device supports video and
then set the mediaTypes property to an array containing the identifier for video only. 

    NSArray *availableTypes = [UIImagePickerController
        availableMediaTypesForSourceType:UIImagePickerControllerSourceTypeCamera];

    if ([availableTypes containsObject:(NSString *)kUTTypeMovie])
        [ipc setMediaTypes:[NSArray arrayWithObject:(NSString *)kUTTypeMovie]];

Wondering why kUTTypeMovie is cast to an NSString? This constant is declared as:

    const CFStringRef kUTTypeVideo;

If you build this code, it will fail, and the compiler will complain that it’s never heard of
kUTTypeMovie. Oddly enough, both kUTTypeMovie and kUTTypeImage are declared and defined in
another framework – MobileCoreServices. You have to explicitly add this framework and import its
header file into your project to use these two constants.



ptg

241

14
UIPopoverController and

Modal View Controllers

So far, you have seen four ways to show a view controller’s view: setting it as the root view
controller of the window, pushing it onto a UINavigationController’s stack, adding it to a
UITabBarController and presenting it modally.

In this chapter, we will look at UIPopoverController and more options for presenting modal view
controllers. Some of these options are only available on the iPad, so we’ll start by making Homepwner
a universal application – an application that runs natively on the iPad as well as the iPhone and iPod
touch.

Figure 14.1  Homepwner on the iPad



ptg

Chapter 14  UIPopoverController and Modal View Controllers

242

Universalizing Homepwner
Open Homepwner.xcodeproj and select the Homepwner project from the project navigator. Then select
the Homepwner target in the editor area. In the Summary pane, change the Devices pop-up to Universal
(Figure 14.2). A sheet will drop down and ask if you want to copy and convert MainWindow.xib:
choose No. (We’ll talk more about the option in a moment.)

Figure 14.2  Universalizing Homepwner

A universal application needs to size its window to fit the screen dimensions of the device. Open
MainWindow.xib and select the Window object. Then reveal the utilities area and select the attributes
inspector. Check the box for Full Screen at Launch (Figure 14.3).

Figure 14.3  Making the window fit the screen

`

Click on the Scheme pop-up button next to the Run button. You’ll see that there is now an iPad
Simulator option. Select this option and build and run the application.

The ItemsViewController view looks great on the iPad, but if you select a row, you’ll see that the
ItemDetailViewController and its subviews could use some work.

One way to improve the looks of the ItemDetailViewController’s interface on the iPadis to change
the autoresizing masks of the subviews in ItemDetailViewController.xib so that when its view 
is resized to fit the iPad, all of the subviews are organized nicely. This is what you did when you
universalized your HeavyRotation application.



ptg

Universalizing Homepwner

243

Another way is to create two completely independent XIB files: one for the iPhone device family and
the other for the iPad. This is most useful when you want to have a different interface on the iPad that
takes advantage of the additional screen space. Just remember that you will have to recreate the entire
view hierarchy and re-establish connections in the iPad version of the XIB file.

When you create separate XIB files for the two device families, you do not need to write any extra
code to load the appropriate XIB file. Every UIViewController has a nibName that you pass in 
the initializer message. (If you pass nil, the nibName is effectively the name of the class.) When a
view controller goes to load its view, it loads the XIB file that matches its nibName. However, if the
application is running on an iPad, it first checks for a matching XIB file suffixed with ~ipad. If there is
one, it loads that XIB file instead.

At this point, we’re not really concerned about the appearance of the ItemDetailViewController’s
view, so we have another option: leave it as it is. But let’s do something about the painfully white
background. In ItemDetailViewController’s viewDidLoad method, the background color of the view
is set to be the groupTableViewBackgroundColor color. This color is not available on the iPad, which
is why you get the all-white background instead. So when the application is running on an iPad, let’s
set the color to closely match the background color of ItemsViewController’s view.

First, we need to check what type of device the application is running on. The object to ask is
the UIDevice singleton. You access the object by sending the class method currentDevice
to the UIDevice class. Then you can check the value of its userInterfaceIdiom property. At
this time, there are only two possible values: UIUserInterfaceIdiomPad (for an iPad) and
UIUserInterfaceIdiomPhone (for an iPhone or an iPod touch).

In ItemDetailViewController.m, modify viewDidLoad.

- (void)viewDidLoad
{
    [super viewDidLoad];
              
    UIColor *clr = nil;  
    if([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
        clr = [UIColor colorWithRed:0.875 green:0.88 blue:0.91 alpha:1];
    } else {
        clr = [UIColor groupTableViewBackgroundColor];
    }
    [[self view] setBackgroundColor:clr];
}

Notice that the existing code for the iPhone is now in the else clause of the new if-else block. (Be
sure to include that last closing brace!) Build and run the application on the iPad simulator or on an
iPad. Navigate to the ItemDetailViewController and sigh in relief at the much nicer color.

iPad users expect applications to work in all orientations, so add the following method to both
ItemsViewController.m and ItemDetailViewController.m:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
        return YES;
    } else {
        return (io == UIInterfaceOrientationPortrait);
    }
}



ptg

Chapter 14  UIPopoverController and Modal View Controllers

244

Now that Homepwner can run on the iPad, let’s take advantage of some iPad-only ways to present
view controllers, starting with UIPopoverController.

UIPopoverController
iOS applications sometimes present a view controller so that the user can make a choice. For example,
the UIImagePickerController shows the user a table of images to choose from. On the iPhone and
iPod touch, view controllers like this are presented modally and take up the entire screen. However, the
iPad has more screen real estate and offers another option: UIPopoverController.

A popover controller displays another view controller’s view in a bordered window that floats above
the rest of the application’s interface. When you create a UIPopoverController, you set this other
view controller as the popover controller’s contentViewController. (You can only instantiate
UIPopoverControllers on the iPad family of devices; trying to create one on an iPhone will throw an
exception.)

In this exercise, you will present the UIImagePickerController in a UIPopoverController when the
user taps the camera bar button item in the ItemDetailViewController’s view. Now that Homepwner
runs on the iPad, this modification is actually required – when using UIImagePickerController on the
iPad, it must be presented in a popover controller.

Figure 14.4  UIPopoverController

In ItemDetailViewController.h, add an instance variable to hold the popover controller. Also,
declare that ItemDetailViewController conforms to the UIPopoverControllerDelegate protocol.

@interface ItemDetailViewController : UIViewController 
    <UINavigationControllerDelegate, UIImagePickerControllerDelegate, 
     UITextFieldDelegate, UIPopoverControllerDelegate>



ptg

UIPopoverController

245

{
    IBOutlet UITextField *nameField;
    IBOutlet UITextField *serialNumberField;
    IBOutlet UITextField *valueField;
    IBOutlet UILabel *dateLabel;
    IBOutlet UIImageView *imageView;

    Possession *possession;
    
    UIPopoverController *imagePickerPopover;
}            

In ItemDetailViewController.m, add the following code to the takePicture: method.

- (void)takePicture:(id)sender
{
    UIImagePickerController *imagePicker =
                [[UIImagePickerController alloc] init];
    
    if ([UIImagePickerController
            isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) 
    {
        [imagePicker setSourceType:UIImagePickerControllerSourceTypeCamera];
    } else {
        [imagePicker setSourceType:UIImagePickerControllerSourceTypePhotoLibrary];
    }
    [imagePicker setDelegate:self];
    

    // Place image picker on the screen
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
        // Create a new popover controller that will display the imagePicker
        imagePickerPopover = [[UIPopoverController alloc] 
                initWithContentViewController:imagePicker];
    
        [imagePickerPopover setDelegate:self];
    
        // Display the popover controller, sender 
        // is the camera bar button item
        [imagePickerPopover presentPopoverFromBarButtonItem:sender
                                   permittedArrowDirections:UIPopoverArrowDirectionAny
                                                   animated:YES];
    } else {
        [self presentModalViewController:imagePicker animated:YES];
    }
    
    [imagePicker release];
}

Notice that the line of code that presents the image picker modally is now inside the else clause.

Build and run the application on the iPad simulator or on an iPad. Navigate to the
ItemDetailViewController and tap the camera icon. The popover should appear and show
the UIImagePickerController’s view. Select an image from the picker, and it will appear in
ItemDetailViewController’s view.

You can dismiss the popover controller by tapping anywhere else on the screen. When a popover is
dismissed in this way, it sends the message popoverControllerDidDismissPopover: to its delegate.
Implement this method in ItemDetailViewController.m.



ptg

Chapter 14  UIPopoverController and Modal View Controllers

246

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)popoverController
{
    NSLog(@"User dismissed popover");
    [imagePickerPopover autorelease];
    imagePickerPopover = nil;
}

Notice that you autorelease the UIPopoverController after it is dismissed. Why not just release it?
In this case, the popover’s dismissal is animated. By autoreleasing the popover, the animation code
gets a chance to retain it before the autorelease pool drains. After the animation finishes, the popover is
deallocated.

The popover should also be dismissed when you select an image from
the image picker. In ItemDetailViewController.m, at the end of
imagePickerController:didFinishPickingMediaWithInfo:, dismiss the popover when an image is
selected. 

    [imageView setImage:image];
    
    if([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {
        [self dismissModalViewControllerAnimated:YES];        
    } else {    
        [imagePickerPopover dismissPopoverAnimated:YES];
        [imagePickerPopover autorelease];
        imagePickerPopover = nil;
    }
}

Notice that here, we check for an iPhone (or iPod touch) interface instead of checking for an iPad one.
The iPad-only code is inside the else clause.

When you explicitly send the message dismissPopoverAnimated: to dismiss the popover controller, it
does not send popoverControllerDidDismissPopover: to its delegate.

Modal View Controllers
In this part of the exercise, you will update Homepwner to present the ItemDetailViewController
modally – but only when the user creates a new Possession. When the user selects an existing
Possession, the ItemDetailViewController will be pushed onto the UINavigationController’s
stack as before.



ptg

Modal View Controllers

247

Figure 14.5  New item

To implement this dual usage of ItemDetailViewController, you will give it a new designated
initializer, initForNewItem:isNew:. This initializer will check whether the instance is being used
for creating a new Possession or for showing an existing one and then configure the interface
accordingly.

In ItemDetailViewController.h, declare this initializer.

}                
- (id)initForNewItem:(BOOL)isNew;
                
@property (nonatomic, retain) Possession *possession;            

If the ItemDetailViewController is being used to create a new Possession, it will show
a Done button and a Cancel button on its navigation item. Implement this method in
ItemDetailViewController.m.

- (id)initForNewItem:(BOOL)isNew
{
    self = [super initWithNibName:@"ItemDetailViewController" bundle:nil];
    
    if (self) {
        if (isNew) {
            UIBarButtonItem *doneItem = [[UIBarButtonItem alloc] 
                    initWithBarButtonSystemItem:UIBarButtonSystemItemDone 
                                         target:self 
                                         action:@selector(save:)];
            [[self navigationItem] setRightBarButtonItem:doneItem];
            [doneItem release];
            



ptg

Chapter 14  UIPopoverController and Modal View Controllers

248

            
            UIBarButtonItem *cancelItem = [[UIBarButtonItem alloc] 
                    initWithBarButtonSystemItem:UIBarButtonSystemItemCancel 
                                         target:self 
                                         action:@selector(cancel:)];
            [[self navigationItem] setLeftBarButtonItem:cancelItem];
            [cancelItem release];
        }
    }
    
    return self;
}            

In the past, when you’ve changed the designated initializer of a class from its superclass’ designated
initializer, you’ve overridden the superclass’ initializer to call the new one. In this case, you’re going to
make it illegal to use the superclass’ designated initializer by throwing an exception when anyone calls
it.

In ItemDetailViewController.m, override UIViewController’s designated initializer.

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
    @throw [NSException exceptionWithName:@"Wrong initializer"
                                   reason:@"Use initForNewItem:"
                                 userInfo:nil];
    return nil;
}

This code creates an autoreleased instance of NSException with a name and a reason and then throws
an exception. This halts the application and shows the exception in the console.

To confirm that this exception will be thrown, let’s return to where initWithNibName:bundle: is
currently called – the tableView:didSelectRowAtIndexPath: method of ItemsViewController. In
this method, ItemsViewController creates an instance of ItemDetailViewController and sends it
the message init, which eventually calls initWithNibName:bundle:. Therefore, selecting a row in the
table view will result in the “Wrong initializer” exception being thrown.

Build and run the application and tap a row. You will see an exception in the console, and your
application will halt. Notice that the name and the reason are part of the console message. The
debugger will show you that sending init to the ItemDetailViewController was the cause.

You don’t want to see this exception again, so in ItemsViewController.m, update
tableView:didSelectRowAtIndexPath: to use the new initializer.

- (void)tableView:(UITableView *)tableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
    ItemDetailViewController *detailViewController = 
        [[[ItemDetailViewController alloc] initForNewItem:NO] autorelease];

    NSArray *possessions = [[PossessionStore defaultStore] allPossessions];

Build and run the application again. Nothing new and exciting will happen, but your application should
no longer crash when you select a row in the table.

Now that we’ve got our new initializer in place, let’s change what happens when the user adds a new
possession.



ptg

Dismissing modal view controllers

249

In ItemsViewController.m, edit the addNewPossession: method to create an instance of
ItemDetailViewController in a UINavigationController and present the navigation controller
modally.

- (IBAction)addNewPossession:(id)sender
{
    Possession *newPossession = [[PossessionStore defaultStore] createPossession];
    ItemDetailViewController *detailViewController = 
        [[ItemDetailViewController alloc] initForNewItem:YES];
    
    [detailViewController setPossession:newPossession];
    
    UINavigationController *navController = [[UINavigationController alloc] 
                                initWithRootViewController:detailViewController];
    
    [detailViewController release];
    
    // navController is retained by self when presented
    [self presentModalViewController:navController animated:YES];
    
    [navController release];
}

Build and run the application and tap the New button to create a new possession. An instance of
ItemDetailViewController will slide up from the bottom of the screen – but now it has a Done button
and a Cancel button on its navigation item. (Tapping these buttons, of course, will throw an exception
since you haven’t implemented the action methods yet.)

Dismissing modal view controllers

Every view controller has a property named modalViewController. If a view controller presents
another view controller modally, then this property holds a pointer to that view controller. Every
modally-presented view controller has a pointer named parentViewController that it sets to the view
controller that presented it (Figure 14.6). These relationships are useful when it comes time to dismiss
modal view controllers.

Figure 14.6  Parent-Modal Relationship

When a view controller is sent the message dismissModalViewControllerAnimated:, it
removes its modalViewController’s view from the screen, releases that view controller,



ptg

Chapter 14  UIPopoverController and Modal View Controllers

250

and sets its modalViewController property to nil. The modalViewController’s
parentViewController property is also set to nil. Therefore, when either of these two buttons
is tapped, we need to tell the parentViewController of the ItemDetailViewController to
dismissModalViewControllerAnimated:.

At the top of ItemDetailViewController.m, make the following import statement.

#import "PossessionStore.h"            

Then, implement the action methods in ItemDetailViewController.m to dismiss the view controller.

- (IBAction)save:(id)sender
{
    // This message gets forwarded to the parentViewController
    [self dismissModalViewControllerAnimated:YES];
}
 
- (IBAction)cancel:(id)sender
{
    // If the user cancelled, then remove the Possession from the store
    [[PossessionStore defaultStore] removePossession:possession];

    // This message gets forwarded to the parentViewController
    [self dismissModalViewControllerAnimated:YES];
}                        

Notice that this code sends dismissModalViewControllerAnimated: to the
ItemDetailViewController. This is odd because ItemDetailViewController is not the
parentViewController. It turns out that view controllers are smarter than they look. If you
send the message dismissModalViewControllerAnimated: to a modal view controller (like
ItemDetailViewController), it thinks, “I don’t have a modalViewController... I must be the
modalViewController. I’ll forward this message to my parent.”

Build and run the application. Create a new possession and tap the Cancel button. The instance of
ItemDetailViewController will slide off the screen, and nothing will be added to the table view.
Then, create a new possession and tap the Done button. The ItemDetailViewController will slide off
the screen, and your new Possession will appear in the table view.

Modal view controller styles

On the iPhone or iPod touch, a modal view controller takes over the entire screen. This is the
default behavior and the only possibility on these devices. On the iPad, you have two additional
options: a form sheet style and a page sheet style. You change the presentation of the modal
view controller by setting its modalPresentationStyle property to a pre-defined constant –
UIModalPresentationFormSheet or UIModalPresentationPageSheet.

The form sheet style shows the modal view controller’s view in a rectangle in the center of the iPad’s
screen and dims out the presenting view controller’s view (Figure 14.7). The page sheet style is the
same as the default full-screen style in portrait mode. In landscape mode, it keeps the same width as in
portrait mode and dims the left and right edges of the presenting view controller’s view that stick out
behind it.



ptg

Modal view controller styles

251

Figure 14.7  Form Sheet

In ItemsViewController.m, modify the addNewPossession: method to change the presentation style
of the UINavigationController that is being presented.

[navController setModalPresentationStyle:UIModalPresentationFormSheet];

[self presentModalViewController:navController animated:YES];                

Build and run the application on the iPad simulator or on an iPad. Tap the button to add a new
possession and watch the modal view controller slide onto the screen. Add some possession details
and then tap the Done button. The table view reappears, but your new Possession isn’t there. What
happened?

Before you changed its presentation style, the modal view controller took up the entire screen, which
caused the view of the ItemsViewController to disappear. When the modal view controller was
dismissed, the ItemsViewController was sent the messages viewWillAppear: and viewDidAppear:
and took this opportunity to reload its table to catch any updates to the PossessionStore.

With the new presentation style, the ItemsViewController’s view doesn’t disappear when it presents
the view controller. So it isn’t sent the re-appearing messages when the modal view controller is
dismissed, and it doesn’t get the chance to reload its table view.

We have to find another opportunity for the ItemsViewController to reload its table
view. We know that to dismiss the ItemDetailViewController, we send it the message
dismissModalViewControllerAnimated: – a message it forwards to its parentViewController.
One potential approach, then, is to override dismissModalViewControllerAnimated: in
ItemsViewController and reload the table there.

But the ItemDetailViewController’s parentViewController is not the ItemsViewController; it’s
the navigation controller that holds the ItemDetailViewController. “No problem” you say, “I’ll just



ptg

Chapter 14  UIPopoverController and Modal View Controllers

252

get the parentViewController of the navigation controller... which is the ItemsViewController,
right?”

Unfortunately, no. When a view controller presents a modal view controller, the
parentViewController of the modal view controller is set to be the parent of the presenting
view controller. Thus, the parentViewController of the UINavigationController that
holds the ItemDetailViewController is set to the UINavigationController that holds the
ItemsViewController. These relationships are shown in Figure 14.8.

Figure 14.8  Parent-Modal Relationships

Writing a view controller delegate protocol
Instead of relying on the (somewhat complicated) relationships that the SDK has established, we’re
going to create a new relationship between these two view controllers so that they can send messages
to each other directly. But how should we structure this relationship? Let’s consider three options:

• For view controllers that are closely related, like a table view controller and its detail view
controller, you can simply give them instance variables that point to each other. This is the easiest
way to send messages between two view controllers, but it is also the least adaptable.

// Send message to another view controller, kept as instance variable
[myDetailViewController showItem:myItem];

• You can also create a delegate protocol that specifies the messages one view controller can send 
to the others. This technique allows multiple controllers to adopt the same protocol. It also means
the view controller sending the message does not have to know what type of object it is sending the
message to; it only needs to know that it conforms to the protocol.



ptg

Writing a view controller delegate protocol

253

// A protocol specified by the sending view controller
@protocol ItemShowingProtocol 
- (void)showItem:(id)sender; 
@end                    

// Send message to another view controller
id <ItemShowingProtocol> detail = 
    [[[self navigationController] viewControllers] objectAtIndex:1];

[detail showItem:myItem];

• The third approach is to use the notification system. This solution is essential when the view
controllers are not related. It is also useful when multiple view controllers are interested in a single
controller. A view controller can post to the NSNotificationCenter, and interested objects can
register for that notification.

In our case, you could choose to give the ItemDetailViewController a pointer to the
ItemsViewController that effectively presented it. Then, when the ItemDetailViewController is
dismissed, it would send a message to the ItemsViewController to say, “I’m being removed from the
screen – do what you need to do.”

However, it is possible that a different view controller might one day be responsible for presenting
the ItemDetailViewController. To prepare for this possibility, you’re going to create a 
delegate protocol for ItemDetailViewController and give it a delegate property. Although the
ItemsViewController will serve as the delegate, using the delegate pattern will allow any object to
present the ItemDetailViewController and be informed when it is dismissed.

In ItemDetailViewController.h, create a new protocol at the top of the file.

@class ItemDetailViewController;

@protocol ItemDetailViewControllerDelegate <NSObject>

@optional 
- (void)itemDetailViewControllerWillDismiss:(ItemDetailViewController *)vc;

@end
                
@interface ItemDetailViewController : UIViewController

In ItemDetailViewController.h, add a new property to ItemDetailViewController.

- (id)initForNewItem:(BOOL)isNew;
                    
@property (nonatomic, assign)
                        id <ItemDetailViewControllerDelegate> delegate;

@property (nonatomic, retain) Possession *possession;

In ItemDetailViewController.m, synthesize this property.

@synthesize delegate;                

(Notice that we did not create an instance variable for the delegate. Remember that when you
synthesize a property that does not have a matching instance variable, the instance variable is
automatically created for you.)



ptg

Chapter 14  UIPopoverController and Modal View Controllers

254

Now, in ItemDetailViewController.m, update the two action methods to inform its delegate that it is
being dismissed. Because the delegate method is optional, use respondsToSelector: to make sure the
delegate implements the method before you call it.

- (IBAction)save:(id)sender
{
    [self dismissModalViewControllerAnimated:YES];

    if([delegate respondsToSelector:@selector(itemDetailViewControllerWillDismiss:)])
        [delegate itemDetailViewControllerWillDismiss:self];
} 
- (IBAction)cancel:(id)sender
{
    [[PossessionStore defaultStore] removePossession:possession];

    [self dismissModalViewControllerAnimated:YES];

    if([delegate respondsToSelector:@selector(itemDetailViewControllerWillDismiss:)])
        [delegate itemDetailViewControllerWillDismiss:self];
}                                    

In ItemsViewController.h, declare that ItemsViewController conforms to this new protocol and
import the header file for ItemDetailViewController.

#import "ItemDetailViewController.h"
                    
@interface ItemsViewController : UITableViewController
    <ItemDetailViewControllerDelegate>

In ItemsViewController.m, implement the method from the delegate protocol to reload the table.

- (void)itemDetailViewControllerWillDismiss:(ItemDetailViewController *)vc
{
    [[self tableView] reloadData];
}                

Then, update addNewPossession: in ItemsViewController.m to set the delegate of the presented
ItemDetailViewController.

- (IBAction)addNewPossession:(id)sender
{
    Possession *newPossession = [[PossessionStore defaultStore] createPossession];
    ItemDetailViewController *detailViewController = 
                [[ItemDetailViewController alloc] initForNewItem:YES];

    [detailViewController setDelegate:self];

Build and run the application. Create a new Possession and then return to the table view. The table
view will update appropriately.

Modal view controller transitions
In addition to the presentation style of a modal view controller, you can change the animation
that places it on screen. Just like with the presentation styles, there is a view controller property
(modalTransitionStyle) that you can set with a pre-defined constant. By default, the animation
will slide the modal view controller up from the bottom of the screen. You can also have the view
controller fade in, flip in, or appear underneath a page curl (like in the Maps application).



ptg

Modal view controller transitions

255

In ItemsViewController.m, update the addNewPossession: method to use a different transition.

[navController setModalPresentationStyle:UIModalPresentationFormSheet];
[navController setModalTransitionStyle:UIModalTransitionStyleFlipHorizontal];

[self presentModalViewController:navController animated:YES];

Build and run the application and notice the change in animation. Try out some of the other options,
but make sure to read the fine print in the documentation. For instance, you can’t use the page curl
transition unless the presentation style is full screen. Also, note that these transitions will still work
if you switch back to deploying on an iPhone. The presentation style, however, will always be full
screen.



ptg

This page intentionally left blank 



ptg

257

15
Saving, Loading, and

Multitasking

Every iOS application has its own application sandbox. An application sandbox is a directory on the
filesystem that is barricaded from the rest of the filesystem. Your application must stay in its sandbox,
and no other application can access your sandbox.

Application Sandbox

Figure 15.1  Application sandbox

The application sandbox contains a number of directories: 

application bundle This directory contains all the resources and the executable.
It is read-only.

Library/Preferences/ This directory is where any preferences are stored and where
the Settings application looks for application preferences. 
Library/Preferences is handled automatically by the class
NSUserDefaults (which you will learn about in Chapter 19) and
is backed up when the device is synchronized with iTunes.

tmp/ This directory is where you write data that you will use
temporarily during an application’s runtime. You should



ptg

Chapter 15  Saving, Loading, and Multitasking

258

remove files from this directory when done with them, and 
the operating system may purge them while your application 
is not running. It does not get backed up when the device is
synchronized with iTunes. To get the path to the tmp directory in
the application sandbox, you can use the convenience function
NSTemporaryDirectory.

Documents/ This directory is where you write data that the application
generates during runtime and that you want to persist between
runs of the application. It is backed up when the device is
synchronized with iTunes. If something goes wrong with the
device, files in this directory can be restored from iTunes. For
example, in a game application, the saved game files would be
stored here.

Library/Caches/ This directory is where you write data that the application
generates during runtime and that you want to persist between
runs of the application. However, unlike the Documents
directory, it does not get backed up when the device is
synchronized with iTunes. A major reason for not backing up
cached data is that the data can be very large and extend the time
it takes to synchronize your device. Data stored somewhere else
– like a web server – can be placed in this directory. If the user
needs to restore the device, this data can be downloaded from
the web server again.

Constructing a file path
We want Possessions to persist in Homepwner. (It’s not much fun if you have to enter all your
possessions every time you start the application.) The data for the Possessions will be saved and
loaded into a single file in the Documents directory of Homepwner’s sandbox. The PossessionStore
will handle writing to and reading from the filesystem. To do this, the PossessionStore needs a path
to the file in Documents containing the Possession data.

To get the full path for a directory in the sandbox, you use the C function
NSSearchPathForDirectoriesInDomains. This function takes three parameters: the type of directory,
the domain mask, and a boolean value that decides if it should expand a tilde (~) if one exists in the
path. The first parameter is an NSSearchPathDirectory constant. The last two parameters are always
the same on iOS: NSUserDomainMask and YES. For instance, to get the Documents directory for an
application, you would call the function as follows:

    NSArray *documentPaths =
        NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
                                            NSUserDomainMask, 
                                            YES);
    NSString *ourDocumentPath = [documentPaths objectAtIndex:0];

Notice that NSSearchPathForDirectoriesInDomains returns an NSArray. This is because this function
comes from Mac OS X where there could be multiple directories for the parameters. In iOS, however,
there is only one directory for the possible constants, and it is safe to grab the first NSString from the
array.



ptg

Constructing a file path

259

You can also get the path for the sandbox itself using the function NSHomeDirectory. Note that you
cannot write files or create directories at the root-level of the sandbox. Any new directories or files
must be created within one of the writeable directories in the sandbox: Documents, Library, or tmp.
You can append the names of the directories to the string returned from this function.

NSString *sandboxPath = NSHomeDirectory(); 
// Once you have the full sandbox path, you can create a path from it
NSString *documentPath = [sandboxPath 
            stringByAppendingPathComponent:@"Documents"];

However, it is safer to use NSSearchPathForDirectoriesInDomains than NSHomeDirectory with an
appended directory name. The name of a directory could change in future releases of the operating
system or you could mistype the string you are appending.

Open the Homepwner project. In PossessionStore.h, declare a new method that specifies the name of
the file on the filesystem that contains the data for all of the Possessions.

- (NSString *)possessionArchivePath;

In PossessionStore.m, implement this method so that it returns the full path to where the
Possessions will be stored.

- (NSString *)possessionArchivePath
{
    // The returned path will be Sandbox/Documents/possessions.data
    // Both the saving and loading methods will call this method to get the same path,
    // preventing a typo in the path name of either method
    
    return pathInDocumentDirectory(@"possessions.data");
}

Notice the pathInDocumentDirectory function. That’s what you’ll create next. This function will
return the full path of a file in the Documents directory when given the name of that file. It is not a part
of an Objective-C class but a stand-alone C function. You’ll use this function many different places, so 
create a separate file for it. Use the NSObject template like before (File → New → New File...) and name
your subclass FileHelpers.

Now you’re going to remove the class interface and implementation from the two files. (The
NSObject template is just a quick and easy way to create two new files with .h and .m suffixes.) Open
FileHelpers.h, delete the interface declaration, and declare the new function. The file should look just
like this:

#import <Foundation/Foundation.h>    

NSString *pathInDocumentDirectory(NSString *fileName);

In FileHelpers.m, delete the implementation block and define the pathInDocumentDirectory
function. FileHelpers.m should look exactly like this:

#import "FileHelpers.h"

// To use this function, you pass it a file name, and it will construct 
// the full path for that file in the Documents directory.
NSString *pathInDocumentDirectory(NSString *fileName) 
{
    // Get list of document directories in sandbox



ptg

Chapter 15  Saving, Loading, and Multitasking

260

    NSArray *documentDirectories = 
            NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
                                                NSUserDomainMask, YES);

    // Get one and only document directory from that list
    NSString *documentDirectory = [documentDirectories objectAtIndex:0];
    
    // Append passed in file name to that directory, return it
    return [documentDirectory stringByAppendingPathComponent:fileName];
}

This function will eventually be called from a number of different files and will have to be imported
into each file that uses it, which is a bit of a nuisance. We can avoid this nuisance by importing
FileHelpers.h into Homepwner’s precompiled header file. Every project has a precompiled header
file (.pch), and this file is imported into every file in the project. Open Homepwner-Prefix.pch from
the project navigator and import FileHelpers.h.

#ifdef __OBJC__
    #import <Foundation/Foundation.h>
    #import <UIKit/UIKit.h>
    #import "FileHelpers.h"
#endif    

Now every file in the Homepwner project will effectively import FileHelpers.h. Note that if you
modify a file that is imported in the precompiled header file, it forces your entire project to be
recompiled. Thus, you should only import files into the precompiled header file that rarely or never
change. 

Archiving
There are many ways to write data to the filesystem on iOS, and one of the most important is called
archiving. Archiving is the process of taking one or more objects from memory and writing them to the
filesystem. Unarchiving reads these objects back from the filesystem into memory.

Archiving works by creating an instance of NSCoder, which is essentially just a container for data, and
placing objects and their data inside it. Once the NSCoder has all of the data you have instructed it to
collect, it will be written to a specific file in the filesystem.

Not all objects can be archived – only those whose class conforms to the NSCoding protocol. The
NSCoding protocol has two methods, and both are required: encodeWithCoder: (for archiving) and
initWithCoder: (for unarchiving).

In Possession.h, declare that Possession conforms to the NSCoding protocol.

@interface Possession : NSObject <NSCoding>

Archiving objects

To write objects that conform to NSCoding to the filesystem, you use the class method
archiveRootObject:toFile: of NSKeyedArchiver, which is a subclass of NSCoder. The first argument
of this method is the root object, and the second argument is the path of the file to be written to.

The root object must be an instance of a class that conforms to NSCoding. So what’s our root object in
Homepwner? While you could archive each Possession separately, it is far simpler to begin with the



ptg

Archiving objects

261

allPossessions array of PossessionStore. The array can be the root object because NSMutableArray
also conforms to NSCoding. 

In PossessionStore.h, declare a new method that will archive allPossessions to the result of
possessionArchivePath.

- (BOOL)saveChanges;    

Implement this method in PossessionStore.m.

- (BOOL)saveChanges
{
    // returns success or failure
    return [NSKeyedArchiver archiveRootObject:allPossessions 
                                       toFile:[self possessionArchivePath]];
}

The archiveRootObject:toFile: method creates an instance of NSKeyedArchiver and then sends
encodeWithCoder: to allPossessions. The NSKeyedArchiver is passed as the argument. When an
array is archived, all of its contents are archived along with it (as long as those contents conform to
NSCoding), so passing an array full of Possession instances to archiveRootObject:toFile: kicks off
a chain reaction of encoding. This process is shown in Figure 15.2.

Figure 15.2  Archiving an array

Within its implementation of encodeWithCoder:, an object can send messages to the NSCoder (in our
case, the NSKeyedArchiver) to encode its instance variables.

In Possession.m, add the following implementation of encodeWithCoder:.

- (void)encodeWithCoder:(NSCoder *)encoder
{
    // For each instance variable, archive it under its variable name
    // These objects will also be sent encodeWithCoder:
    [encoder encodeObject:possessionName forKey:@"possessionName"];
    [encoder encodeObject:serialNumber forKey:@"serialNumber"];



ptg

Chapter 15  Saving, Loading, and Multitasking

262

    [encoder encodeObject:dateCreated forKey:@"dateCreated"];
    [encoder encodeObject:imageKey forKey:@"imageKey"];

    // For the primitive valueInDollars, make sure to use encodeInt:forKey:
    // the value in valueInDollars will be placed in the coder object
    [encoder encodeInt:valueInDollars forKey:@"valueInDollars"];
}

Notice the two different messages sent (encodeObject:forKey: and encodeInt:forKey:) for the
Possession’s two different types of instance variables. Also, what’s with all the keys?

This type of archiving is called keyed archiving. Keyed archives work a lot like an
NSMutableDictionary – you add an object to it with a key, and the key is used to retrieve that object
later. The key is always an instance of NSString and is typically the name of the instance variable that
is being encoded.

If any of the instance variables encoded into the NSCoder are objects, then those objects are also sent
encodeWithCoder: (Figure 15.3). So archiving is a recursive process that starts at the root object, who
encodes his friends, who encode their friends, and so on.

Figure 15.3  Encoding an object

(By the way, another class you are familiar with conforms to NSCoding: UIView. This is how XIB files
are created. Instances of UIView are created when you drag them onto the canvas area. When the XIB
file is saved, these views are archived into the XIB file. When your application launches, it unarchives
the views from the XIB file. There are some minor differences between a XIB file and a standard
archive, but overall, it’s the same process.)

Unarchiving objects
When an application wants to load archived objects, it unarchives them. First, an instance of NSCoder
is created, and data from the filesystem is read into it. Then, the archived objects are decoded.

To bring a set of objects back from the filesystem, you use the class method
unarchiveObjectWithFile: of NSKeyedUnarchiver, another subclass of NSCoder. This method takes
the path of an archive on the filesystem as its one argument. The contents at the path are then read into
memory, and a chain reaction of unarchiving begins.



ptg

Unarchiving objects

263

In PossessionStore.h, declare a new method that will kick off the unarchiving.

- (void)fetchPossessionsIfNecessary;

Implement this method in PossessionStore.m.

- (void)fetchPossessionsIfNecessary
{
    // If we don't currently have an allPossessions array, try to read one from disk
    if (!allPossessions) {
        NSString *path = [self possessionArchivePath];
        allPossessions = [[NSKeyedUnarchiver unarchiveObjectWithFile:path] retain];
    }

    // If we tried to read one from disk but does not exist, then create a new one 
    if (!allPossessions) {
        allPossessions = [[NSMutableArray alloc] init];
    }
}

(Note that the return value of unarchiveObjectWithFile: is of type id and can therefore be 
any object. It is the programmer’s responsibility to know the type of the root object that is being
unarchived. Also, notice that the object returned from unarchiveObjectWithFile: is retained because
the method returns an autoreleased object.) 

This method attempts to load the archive from the filesystem into the allPossessions array. If the
archive doesn’t exist, it creates an empty allPossessions array. If the archive does exist, an instance
of NSKeyedUnarchiver is created. The class of the root object is also determined and then sent alloc.
Once an uninitialized instance of that class has been created, the instance is sent initWithCoder: with
the instance of NSKeyedUnarchiver passed as the argument.

Our root object is allPossesions – an NSMutableArray. NSMutableArray’s implementation of
initWithCoder: decodes the contents of the archived array by sending each archived object the
message decodeObjectForKey:. For each object being decoded, the class of the object is found, sent
alloc, and then sent initWithCoder:.

In our case, the objects are Possessions, so in Possession.m, add the following implementation of
initWithCoder:.

- (id)initWithCoder:(NSCoder *)decoder
{
    self = [super init];

    if (self) {
        // For each instance variable that is archived, we decode it,
        // and pass it to our setters. (Where it is retained)
        [self setPossessionName:[decoder decodeObjectForKey:@"possessionName"]];
        [self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
        [self setImageKey:[decoder decodeObjectForKey:@"imageKey"]];

        // Make sure to use decodeIntForKey:, since valueInDollars is not an object
        [self setValueInDollars:[decoder decodeIntForKey:@"valueInDollars"]];
        
        // dateCreated is read only, we have no setter. We explicitly
        // retain it and set our instance variable pointer to it
        dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];
    }



ptg

Chapter 15  Saving, Loading, and Multitasking

264

    return self;
}

Notice that you make use of the setter methods in Possession where they are available. This ensures
proper memory management. When you decode an object from an instance of NSCoder, that object has
a retain count of 1 and is autoreleased. (You can tell because it doesn’t say alloc or copy anywhere.)
Your setter methods are all set up to copy or retain the objects they receive. The dateCreated instance
variable is read-only and doesn’t have a setter. So, instead, you set your instance variable here and
explicitly retain it. The primitive valueInDollars doesn’t need any memory management because it is
not an object.

When the decoding process finishes, you will be left with an NSMutableArray full of Possessions that
exactly matches the originally archived array (Figure 15.4).

Figure 15.4  Archived object

Build your application to check for any syntax errors. Note that initWithCoder: does not replace the
other initialization methods. If you wish to create a Possession programmatically, you use the other
initialization methods. The method initWithCoder: is only used during unarchiving. 

Now that fetchPossessionsIfNecessary is responsible for creating allPossessions, we need to
remove some code from the init method of PossessionStore. In PossessionStore.m, remove the
line of code in init that instantiates allPossessions. The method should now look like this:

- (id)init
{
    
    if (defaultStore) {
        return defaultStore;
    }
    self = [super init];
    return self;
}

While you’re in PossessionStore.m, modify the following methods:



ptg

Application States, Transitions, and Multitasking

265

- (NSArray *)allPossessions
{
    // This ensures allPossessions is created
    [self fetchPossessionsIfNecessary];
    
    return allPossessions;
}

- (Possession *)createPossession
{
    // This ensures allPossessions is created
    [self fetchPossessionsIfNecessary];

    Possession *p = [Possession randomPossession];

    [allPossessions addObject:p];
   
    return p;
}

These changes set up lazy loading for the PossessionStore. When the PossessionStore is first
instantiated, there will be no allPossessions array. When another object asks for the Possessions
(like ItemsViewController does when populating the table) or when a new Possession is created, the
store checks to see if the array exists. If it does not, it tries to unarchive one. If there is no archive, it
creates an empty array.

You can build the application to check for syntax errors, but before you run it, we need to fill one last
hole: the PossessionStore is never sent saveChanges. We have to figure out when we can send this
message to the PossessionStore so that the application data will be saved.

Application States, Transitions, and Multitasking
To know when an application should save its data to filesystem, it helps to understand the states that an
application can be in as well as the transitions between them.(Figure 15.5).



ptg

Chapter 15  Saving, Loading, and Multitasking

266

Figure 15.5  States of typical application

When an application is not running, it is in the not running state, and it does not execute any code or
have any memory reserved in RAM.

After the user launches an application, it enters the active state. Its interface is on the screen, it is
accepting events, and your code is handling those events. There is also an inactive state that is similar
to the active state, except that the application is not currently receiving events. An application is in the
inactive state when it is first being launched (before the run loop is created) or when a SMS message or
other system-event (like an alarm) occurs. Applications typically spend very little time in the inactive
state.

When the user presses the Home button while an application is running, it goes from active, briefly to
inactive, and then to the background state. While an application is in the background state, it can still
execute code, but it is no longer visible. Its icon appears in the dock, which is accessible by double-
clicking the Home button. By default, an application that enters the background state has five seconds
before it enters the suspended state. (An application can request to stay in the background state for
longer, though. We’ll cover this in Chapter 27.)

An application in the suspended state cannot execute code, and any resources it doesn’t need while
suspended are released. A suspended application is essentially freeze-dried and can be quickly
thawed when the user relaunches it. The resources that are released are ones that can be reloaded, like
cached images, system-managed caches, and other graphics data. (You don’t have to worry about
releasing and reloading these resources; your application handles the destruction and renewal of them
automatically.)



ptg

Application States, Transitions, and Multitasking

267

You can see the background and suspended applications by double-clicking the home button on your
device.

Figure 15.6  Background and suspended applications in the dock

An application in the suspended state also will remain in the dock as long as there is adequate 
system memory. When the operating system decides memory is getting low, it terminates suspended
applications as needed. And it will do so without warning. A suspended application gets no notification
that it is about to be terminated; it is simply removed from memory. (An application may remain in the
dock after it has been terminated, but it will be relaunched when tapped.)

When an application changes its state, the application delegate is sent a message. Here are some of the
messages from the UIApplicationDelegate protocol that announce application state transitions.

- application:didFinishLaunchingWithOptions:
- applicationDidBecomeActive: 
- applicationWillResignActive: 
- applicationDidEnterBackground: 
- applicationWillEnterForeground:

So, when should we save application data? Clearly, the not running and suspended states are out of the
question; no code can be executed in those states. You could periodically “autosave” your data while in
the active state, but that may slow down the user experience. (By the way, if you need to write a lot of
data at once, you will be better served using Core Data, which you will learn about in Chapter 17.)

We could save in the transition to the inactive state. Then data would be saved either when a system-
event occurs or when the application is on its way to the background state. However, saving data here



ptg

Chapter 15  Saving, Loading, and Multitasking

268

is a waste of time because the application will either become active again shortly or it will enter the
background.

Saving in the transition to the background state is our best option. At this point, the application is likely
on its way to being suspended, and at that point, it will be subject to being terminated by the operating
system. We definitely need to save before then.

The message sent to the application delegate when the application enters the background state is
applicationDidEnterBackground:. We’ll implement that method and save changes there. 

Open HomepwnerAppDelegate.m and import the header file for PossessionStore.

#import "HomepwnerAppDelegate.h"
#import "PossessionStore.h"

In HomepwnerAppDelegate.m, implement applicationDidEnterBackground: so that it tells the
PossessionStore to save its data to the filesystem.

- (void)applicationDidEnterBackground:(UIApplication *)application
{
    [[PossessionStore defaultStore] saveChanges];
}

Now all of the Possession instances will be archived to the filesystem when the user presses the Home
button.

Not all iOS devices support these different application states. Before iOS 4, there was no background
state, and only one application could be running at a time. When you pressed the Home button, the
current application terminated so that you could launch another. Pressing the Home button sent the
application delegate the message applicationWillTerminate:.

To support pre-iOS 4 devices, you can implement applicationWillTerminate: and save changes
there, too. This method will happily coexist with the others.

In HomepwnerAppDelegate.m, implement applicationWillTerminate: to perform the same task as its
multitasking counterpart. 



ptg

Writing to filesystem with NSData

269

- (void)applicationWillTerminate:(UIApplication *)application
{
    [[PossessionStore defaultStore] saveChanges];
}

Build and run the application. Create a few Possessions and hit the Home button. Next, double-click
the Home button and touch and hold the Homepwner icon. Tap the delete control in the top left corner
of the icon to terminate the application. Then, re-launch the application, and your Possessions will
appear in the table view. Your Possession images, however, are not being saved. We’ll get to that
next.

Writing to filesystem with NSData
The images for Possession instances are created by user interaction and are only stored within the
application. Therefore, the Documents directory is the best place to store them. Let’s extend the image
store to save images as they are added and fetch them as they are needed. You can use the image key
generated when the user takes a picture to name the image in the filesystem.

In this section, you are going to copy the JPEG representation of an image into a buffer in memory.
Instead of just malloc’ing a buffer, Objective-C programmers have a handy class to create, maintain,
and destroy these sorts of buffers – NSData. An NSData instance holds some number of bytes of binary
data, and you’re going to use NSData store image data.

Open ImageStore.m and extend the setImage:forKey: method to write a JPEG of the image to the
Documents directory.

- (void)setImage:(UIImage *)i forKey:(NSString *)s
{
    // Put it in the dictionary
    [dictionary setObject:i forKey:s];

    // Create full path for image
    NSString *imagePath = pathInDocumentDirectory(s);

    // Turn image into JPEG data,
    NSData *d = UIImageJPEGRepresentation(i, 0.5);

    // Write it to full path
    [d writeToFile:imagePath atomically:YES];
}

Let’s examine this code more closely. The function UIImageJPEGRepresentation takes two
parameters: a UIImage and a compression quality. The compression quality is a float from 0 to 1,
where 1 is the highest quality. The function returns an instance of NSData.

This NSData instance can be written to the filesystem by sending it the message
writeToFile:atomically:. The bytes held in this NSData are then written to the path specified by the
first parameter. The second parameter, atomically, is a boolean value. If it is YES, the file is written to
a temporary place on the filesystem, and, once the writing operation is complete, that file is renamed
to the path of the first parameter, replacing any previously existing file. This prevents data corruption
should your application crash during the write procedure.

It is worth noting that this way of writing data to the filesystem is not archiving. While NSData
instances can be archived, using the method writeToFile:atomically: is a binary write to the
filesystem.



ptg

Chapter 15  Saving, Loading, and Multitasking

270

In ImageStore.m, make sure that when an image is deleted from the store, it is also deleted from the
filesystem:

- (void)deleteImageForKey:(NSString *)s
{
    if(!s)
        return;
    [dictionary removeObjectForKey:s];
    NSString *path = pathInDocumentDirectory(s);
    [[NSFileManager defaultManager] removeItemAtPath:path
                                               error:NULL];
}

Now that the image is stored in the filesystem, the ImageStore will need to load that image when it is
requested. The class method imageWithContentsOfFile: of UIImage will read in an image from a file,
given a path.

In ImageStore, replace the method imageForKey: so that the ImageStore will load the image from the
filesystem if it doesn’t already have it.

- (UIImage *)imageForKey:(NSString *)s
{
    // If possible, get it from the dictionary
    UIImage *result = [dictionary objectForKey:s];

    if (!result) {
        // Create UIImage object from file
        result = [UIImage imageWithContentsOfFile:pathInDocumentDirectory(s)];

        // If we found an image on the file system, place it into the cache
        if (result)
            [dictionary setObject:result forKey:s];
        else
            NSLog(@"Error: unable to find %@", pathInDocumentDirectory(s));
    }
    return result;
}

When a Possession is removed from the store, its image should also be removed from the filesystem.
At the top of PossessionStore.m, import the header for the ImageStore and add the following code to
removePossession:.

#import "ImageStore.h"
            
@implementation PossessionStore
            
- (void)removePossession:(Possession *)p
{
    NSString *key = [p imageKey];
    [[ImageStore defaultImageStore] deleteImageForKey:key];

    [allPossessions removeObjectIdenticalTo:p];
}       

Build and run the application again. Take a photo for a possession, exit the application, and then kill
it from the dock. Launch the application again. Selecting that same possession will show all its saved
details – including the photo you just took. 



ptg

More on Low-Memory Warnings

271

More on Low-Memory Warnings
You have seen how view controllers handle low-memory warnings – they are sent the message
didReceiveMemoryWarning and release their view if it is not on the screen. This is an appropriate
solution to handling a low-memory warning: an object gets rid of anything it isn’t currently using and
can recreate later. Objects other than view controllers may have data that they aren’t using and can
recreate later. The ImageStore is such an object – when its images aren’t on the screen, it is okay to
destroy them because they can be loaded from the filesystem when they’re needed again.

Whenever a low-memory warning occurs, UIApplicationDidReceiveMemoryWarningNotification
is posted to the notification center. Objects that want to implement their own low-memory warning
handlers can register for this notification. In ImageStore.m, edit the init method to register the image
store as an observer of this notification.

- (id)init
{
    if (defaultImageStore) {
        return defaultImageStore;
    }

    self = [super init];
    if (self) {    
        dictionary = [[NSMutableDictionary alloc] init];
        
    NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
    [nc addObserver:self 
           selector:@selector(clearCache:) 
               name:UIApplicationDidReceiveMemoryWarningNotification 
             object:nil];
        
    }

    return self;
}

Now, a low-memory warning will send the message clearCache: to the ImageStore instance. In
ImageStore.m, implement clearCache: to remove all the UIImage objects from the ImageStore’s
dictionary.

- (void)clearCache:(NSNotification *)note
{
    NSLog(@"flushing %d images out of the cache", [dictionary count]);
    [dictionary removeAllObjects];
}    

Removing an object from a dictionary releases it, so flushing the cache releases all of the
images. Images that aren’t being used by other objects are deallocated, and when they are
needed again, they will be reloaded from the filesystem. If an image is currently displayed in the
ItemDetailViewController’s imageView, then it will not be deallocated. An image that is being used
during a memory warning remains in memory until the object using it releases it. At that point, it is
deallocated and will be reloaded from the filesystem when it is needed again.



ptg

Chapter 15  Saving, Loading, and Multitasking

272

Model-View-Controller-Store Design Pattern
In this exercise, we expanded on the PossessionStore to allow it to save and load Possession
instances from the filesystem. The controller object asks the PossessionStore for the model objects
it needs, but it doesn’t have to worry about where those objects actually came from. As far as the
controller is concerned, if it wants an object, it will get one; the PossessionStore is responsible for
making sure that happens.

The standard Model-View-Controller design pattern calls for the controller to be bear the burden 
of saving and loading model objects. However, in practice, this can become overwhelming – the
controller is simply “too busy” handling the interactions between model and view objects to deal with
the details of how objects are fetched and saved. Therefore, it is useful to move the logic that deals
with where model objects come from and where they are saved to into another type of object: a store.

A store simply exposes a number of methods that allow a controller object to fetch and save model
objects. Where these model objects come from is up to the store: in this exercise, the store worked with
a simple file. However, the store could also access a database, talk to a web service, or use some other
method to produce the model objects for the controller. The controller doesn’t care – it will get the
model objects it wants, and the details are abstracted into the store.

One benefit of this approach, besides simplified controller classes, is that you can swap out how the
store works without modifying the controller or the rest of your application. This can be a simple
change, like the directory structure of the data, or a much larger change, like the format of the data.
Thus, if an application has more than one controller object that needs to save and load data, you only
have to change the store object.

You can also apply the idea of a store to objects like CLLocationManager. The location manager is
a store that returns model objects of type CLLocation. The basic idea still stands: a model object is
returned to the controller; the controller doesn’t care where it came from.

Thus, we introduce a new design pattern called Model-View-Controller-Store, or simply MVCS. It’s
the hip, new design pattern that programmers are talking about everywhere.

Challenge: Archiving Whereami
Another application you wrote could benefit from archiving: Whereami. In Whereami, archive the
MapPoint objects so they can be reused. (Hint: you cannot archive structures. However, you can break
up structures into their primitive types....)

For The More Curious: Application State
Transitions
Let’s write some quick code to get a better understanding of the different application state transitions.

You already know about self, an implicit variable that points to the instance that is executing
the current method. There is another implicit variable called _cmd, which is the selector for
the current method. You can get the NSString representation of a selector with the function
NSStringFromSelector.

In HomepwnerAppDelegate.m, implement the application state transition delegate methods so that they
print out the name of the method. You’ll need to add three more methods: 



ptg

For the More Curious: Reading and Writing to the filesystem

273

- (void)applicationWillResignActive:(UIApplication *)application
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
}

Now, add the following NSLog statements to the top of
application:didFinishLaunchingWithOptions:, applicationWillTerminate:, and
applicationDidEnterBackground:. 

- (BOOL)application:(UIApplication *)application
   didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
    ...
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
    [[PossessionStore defaultStore] saveChanges];
}

- (void)applicationWillTerminate:(UIApplication *)application
{
    NSLog(@"%@", NSStringFromSelector(_cmd));
    [[PossessionStore defaultStore] saveChanges];
}

Build and run the application. You will see that the application gets sent
application:didFinishLaunchingWithOptions: and then applicationDidBecomeActive:. Click 
the Home button, and the console will report that the application briefly inactivated and then went to
the background state. Relaunch the application by tapping its icon on the Home screen or in the dock.
The console will report that the application entered the foreground and then became active. Double-
click the Home button to launch the dock and then touch and hold the Homepwner icon until it begins
to jiggle. Tap the red terminate button in the icon’s upper left corner and note that no message is sent to
your application delegate – it is simply terminated immediately. 

For the More Curious: Reading and Writing to
the filesystem
In addition to archiving and NSData’s binary read and write methods, there are a few more methods for
transferring data to and from the filesystem. One of them, Core Data, is coming up in Chapter 17. A
couple of the others are worth mentioning here.

You have access to the standard file I/O functions from the C library. These functions look like this:



ptg

Chapter 15  Saving, Loading, and Multitasking

274

FILE *inFile = fopen("textfile", "rt");
char *buffer = malloc(someSize);
fread(buffer, byteCount, 1, inFile);

FILE *outFile = fopen("binaryfile", "w");
fwrite(buffer, byteCount, 1, outFile);

However, you won’t see these functions used much because there are more convenient ways of reading
and writing binary and text data. Using NSData works well for binary data. For text data, NSString has
two instance methods writeToFile:atomically:encoding:error: and initWithContentsOfFile:.
They are used as follows:

// A local variable to store an error object if one comes back
NSError *err;

NSString *someString = @"Text Data";
BOOL success = [someString writeToFile:@"/some/path/"
                            atomically:YES
                              encoding:NSUTF8StringEncoding
                                 error:&err];
if (!success) {
    NSLog(@"Error writing file: %@", [err localizedDescription]);
}

NSString *x = [[NSString alloc] initWithContentsOfFile:@"/some/path/"
                                              encoding:NSUTF8StringEncoding
                                                 error:&err];
if (!x) {
    NSLog(@"Error reading file: %@", [err localizedDescription]);
}

What’s that NSError object? Some methods might fail for a variety of reasons – for example, writing
to the filesystem might fail because the path is invalid or the user doesn’t have permission to write 
to the specified path. NSError objects contain the reasons for failure. You can send the message
localizedDescription to an instance of NSError for a human-readable description of the error. This
is something you can show to the user or print out to a debug console.

Error objects also have code and domain properties. The code is an integer representing the error. The
domain represents the error domain. For example, not having permission to write to a directory results
in error code 513 in error domain NSCocoaErrorDomain. Each domain has its own set of error codes,
and codes within different domains can have the same integer value; therefore, an error is uniquely
specified by its code and error domain. You can check out the error codes for the NSCocoaErrorDomain
in the file Foundation/FoundationErrors.h.

The syntax for getting back an NSError instance is a little strange. An error object is only created if an
error occurred; otherwise, there is no need for the object. When a method can return an error through
one of its arguments, you create a local variable that is a pointer to an NSError object. Notice that you
don’t instantiate the error object – that is the job of the method you are calling. Instead, you pass the
address of your pointer variable (&err) to the method that might generate an error. If an error occurs 
in the implementation of that method, an NSError instance is created, and your pointer is set to point at
that new object. If you don’t care about the error object, you can always pass nil.

Sometimes you want to show the error to the user. This is typically done with an UIAlertView:

NSString *x = [[NSString alloc] initWithContentsOfFile:@"/some/path/"
                                              encoding:NSUTF8StringEncoding



ptg

For the More Curious: Reading and Writing to the filesystem

275

                                                 error:&err];
if (!x) {
    UIAlertView *a = [[[UIAlertView alloc] initWithTitle:@"Read Failed"
                                                 message:[err localizedDescription]
                                                delegate:nil
                                       cancelButtonTitle:@"OK"
                                       otherButtonTitles:nil] autorelease];
    [a show];
}

Figure 15.7  UIAlertView

Like NSString, the classes NSDictionary and NSArray have writeToFile: and
initWithContentsOfFile: methods. In order to write objects of these types to the filesystem in this
fashion, they must contain only property list serializable objects. The only objects that are property list
serializable are NSString, NSNumber, NSDate, NSData, NSArray, and NSDictionary. When an NSArray
or NSDictionary is written to the filesystem with these methods, an XML property list is created. An
XML property list is a collection of tagged values:

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
       "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0"> 
<array>
    <dict>
        <key>firstName</key>
        <string>Joe</string>
        <key>lastName</key>
        <string>Conway</string>
    </dict>
    <dict>
        <key>firstName</key>
        <string>Aaron</string>
        <key>lastName</key>
        <string>Hillegass</string>
    </dict>
</array>
</plist>

XML property lists are a convenient way to store data because they can be read on nearly any system.
Many web service applications use property lists as input and output. The code for writing and reading
a property list looks like this:

NSMutableDictionary *d = [NSMutableDictionary dictionary];
[d setObject:@"A string" forKey:@"String"]; 
[d writeToFile:@"/some/path" atomically:YES];



ptg

Chapter 15  Saving, Loading, and Multitasking

276

NSMutableDictionary *anotherD = [[NSMutableDictionary alloc]
                            initWithContentsOfFile:@"/some/path"];

For the More Curious: The Application Bundle
When you build an iOS application project in Xcode, you create an application bundle. The application
bundle contains the application executable and any resources you have bundled with your application.
Resources are things like XIB files, images, audio files – any files that will be used at runtime. When
you add a resource file to a project, Xcode is smart enough to realize that it should be bundled with
your application and categorizes it accordingly.

How can you tell which files are being bundled with your application? Select the Homepwner project
from the project navigator. Check out the Build Phases pane in the Homepwner target. Everything
under Copy Bundle Resources will be added to the application bundle when it is built.

Each item in the Homepwner target group is one of the phases that occurs when you build a project.
The Copy Bundle Resources phase is where all of the resources in your project get copied into the
application bundle.

You can check out what an application bundle looks like on the filesystem after you install an
application on the simulator. Navigate to ~/Library/Application Support/iPhone Simulator/
(version number)/Applications. The directories within this directory are the application sandboxes
for applications installed on your computer’s iOS Simulator. Opening one of these directories will
show you what you expect in an application sandbox: an application bundle and the Documents, tmp,
and Library directories. Right or Command-click the application bundle and choose Show Package
Contents from the contextual menu.

Figure 15.8  Viewing an Application Bundle

A Finder window will appear showing you the contents of the application bundle. When a user
downloads your application from the App Store, these files are copied to their device.



ptg

For the More Curious: The Application Bundle

277

Figure 15.9  The Application Bundle

You can load files from the application’s bundle at runtime. To get the full path for files in the
application bundle, you need to get a pointer to the application bundle and then ask it for the path of a
resource.

// Get a pointer to the application bundle 
NSBundle *applicationBundle = [NSBundle mainBundle];

// Ask for the path to a resource named myImage.png in the bundle
NSString *path = [applicationBundle pathForResource:@"myImage"
                                             ofType:@"png"];

If you ask for the path to a file that is not in the application’s bundle, this method will return nil. If
the file does exist, then the full path is returned, and you can use this path to load the file with the
appropriate class.

Also, files within the application bundle are read-only. You cannot modify them nor can you
dynamically add files to the application bundle at runtime. Files in the application bundle are typically
things like button images, interface sound effects, or the initial state of a database you ship with your
application. You will use this method in later chapters to load these types of resources at runtime. 



ptg

This page intentionally left blank 



ptg

279

16
Subclassing UITableViewCell

A UITableView displays a list of UITableViewCells. For many applications, the basic cell with its
textLabel, detailTextLabel, and imageView is sufficient. However, when you need a cell with more
detail or a different layout, you subclass UITableViewCell.

In this chapter, you will create a custom subclass of UITableViewCell to display Possession instances
more eloquently. Each of these cells will show a Possession’s name, its value in dollars, and a
thumbnail of its image (Figure 16.1).

Figure 16.1  Homepwner with subclassed UITableViewCells

Open Homepwner.xcodeproj. Create a new NSObject subclass and name it HomepwnerItemCell. In
HomepwnerItemCell.h, change the superclass to UITableViewCell and import the header file from
UIKit.



ptg

Chapter 16  Subclassing UITableViewCell

280

#import <Foundation/Foundation.h>

#import <UIKit/UIKit.h>

@interface HomepwnerItemCell : UITableViewCell        

Creating HomepwnerItemCell
UITableViewCell is a UIView subclass. When subclassing UIView (or any of its subclasses), you
typically override its drawRect: method to customize the view’s appearance. However, when
subclassing UITableViewCell, you don’t change the cell’s appearance directly. Each cell has a
subview named contentView, which is a container for the view objects that make up the layout of a
cell subclass (Figure 16.2). You subclass UITableViewCell by changing the view objects in a cell’s
contentView. For instance, you could create instances of the classes UITextField, UILabel, and
UIButton and add them to the contentView. (If you wanted something even more daring, you could
create a UIView subclass, override its drawRect:, and add an instance of it to the contentView.)

Figure 16.2  HomepwnerItemCell hierarchy

Adding subviews to the contentView instead of directly to the UITableViewCell subclass is important
because the cell will resize the contentView at certain times. For example, when a table view enters
editing mode, the contentView redraws itself to make room for the editing controls (Figure 16.3). If
you were to add subviews directly to the UITableViewCell, these editing controls would obscure the
subviews. The cell doesn’t know to adjust its size when entering edit mode, but the contentView does.



ptg

Creating subviews

281

Figure 16.3  Table view cell layout in standard and editing mode

Creating subviews
In your cell subclass, you need an instance variable for each subview so that you can set its content as
it is displayed in a table view. In HomepwnerItemCell.h, create instance variables for the necessary
subviews.

#import <UIKit/UIKit.h>

@interface HomepwnerItemCell : UITableViewCell 
{
    UILabel *valueLabel;
    UILabel *nameLabel;
    UIImageView *imageView;
}
@end

When an instance of HomepwnerItemCell is created, it will instantiate its valueLabel, nameLabel, and
imageView. Then, these subviews will be added to the cell’s contentView. Override the designated
initializer in HomepwnerItemCell.m to do this. HomepwnerItemCell.m should now look like this:

#import "HomepwnerItemCell.h"

#import "Possession.h"

@implementation HomepwnerItemCell 
- (id)initWithStyle:(UITableViewCellStyle)style
    reuseIdentifier:(NSString *)reuseIdentifier
{
    self = [super initWithStyle:style reuseIdentifier:reuseIdentifier];
    
    if (self) {
        // Create a subview - don't need to specify its position/size
        valueLabel = [[UILabel alloc] initWithFrame:CGRectZero];

        // Put it on the content view of the cell



ptg

Chapter 16  Subclassing UITableViewCell

282

        [[self contentView] addSubview:valueLabel];

        // It is being retained by its superview
        [valueLabel release];

        // Same thing with the name 
        nameLabel = [[UILabel alloc] initWithFrame:CGRectZero];
        [[self contentView] addSubview:nameLabel];
        [nameLabel release];

        // Same thing with the image view
        imageView = [[UIImageView alloc] initWithFrame:CGRectZero];
        [[self contentView] addSubview:imageView];

        // Tell the imageview to center its image inside its frame
        [imageView setContentMode:UIViewContentModeCenter];
        [imageView release];      
    }

    return self;
} 
@end

Laying out subviews

When a table view’s data source is asked for a cell, it creates a cell, configures its content, and returns
it to the table view. The table view then adds the cell as a subview of itself and positions and sizes the
cell. Therefore, when you first create a cell, it doesn’t know its size quite yet. For this reason, you do
not set the frames of a cell’s content view at initialization time. Instead, you wait until the cell knows
how big it is.

When a view changes size, it is sent the message layoutSubviews. Because UITableViewCell (and
therefore HomepwnerItemCell) is a subclass of UIView, it also is sent layoutSubviews when its size
changes.

In HomepwnerItemCell.m, override layoutSubviews to give each of the subviews a frame. (If you have
a hard time picturing the sizes of frame rectangles in your head, draw them out on a piece of paper
first.)

- (void)layoutSubviews
{
    // We always call this, the table view cell needs to do its own work first
    [super layoutSubviews];
    
    // We'll use this to add spacing between borders 
    float inset = 5.0;
    
    // How much space do we have to work with?
    CGRect bounds = [[self contentView] bounds];
    
    // Let's pull out of the height and width 
    // into easier-to-type variable names
    float h = bounds.size.height;
    float w = bounds.size.width;
    
    // This will be a constant value for the valueField's width 
    float valueWidth = 40.0;



ptg

Using the custom cell

283

    
    // Create a rectangle on the left hand side of the cell for the imageView
    CGRect imageFrame = CGRectMake(inset, inset, 40, 40);
    [imageView setFrame:imageFrame];

    // Create a rectangle in the middle for the name
    CGRect nameFrame = CGRectMake(imageFrame.size.width + imageFrame.origin.x + inset,
                                  inset, 
                                  w - (h + valueWidth + inset * 4.0), 
                                  h - inset * 2.0);
    [nameLabel setFrame:nameFrame];

    // Create a rectangle on the right side of the cell for the value
    CGRect valueFrame = CGRectMake(nameFrame.size.width + nameFrame.origin.x + inset, 
                                   inset, 
                                   valueWidth, 
                                   h - inset * 2.0);
    [valueLabel setFrame:valueFrame];
}

This method is fairly ugly, but let’s look at it more closely. First, you always invoke the superclass’
implementation of layoutSubviews. Invoking this method allows the UITableViewCell to layout 
its subview, the contentView. Then, you get the bounds of the contentView to find out how much
area you have to work with when sizing and positioning all of the subviews. (If you don’t invoke the
superclass’ implementation of layoutSubviews, the bounds of the contentView may not be correct.)
Finally, you set the frame of each subview relative to the contentView’s bounds. This process ensures
that instances of HomepwnerItemCell will have an appropriate layout regardless of the size of the
UITableViewCell. 

Using the custom cell
Now let’s look at the two options for setting the content of the subviews (imageView, nameLabel, and
valueLabel). The first option is to create a property for each subview to use when you set the cell
content in tableView:cellForRowAtIndexPath: (like you are currently accessing the textLabel
property of each cell). The second option is to pass the cell an instance of Possession and have 
it fill its own subviews. In this chapter, you will use the second option. Either way is perfectly
reasonable; however, in the second option, the HomepwnerItemCell is made specifically to represent
a Possession instance, so the code is written in a way that’s easier to follow. (The drawback is that
HomepwnerItemCell will only be able to represent Possession instances.)

In HomepwnerItemCell.m, implement the method setPossession: to extract values from a
Possession instance and display them in the cell. 

- (void)setPossession:(Possession *)possession
{
    // Using a Possession instance, we can set the values of the subviews
    [valueLabel setText:
            [NSString stringWithFormat:@"$%d", [possession valueInDollars]]];
    [nameLabel setText:[possession possessionName]];
}

Note that we’re not setting the imageView yet. We’ll get to that in the next section.



ptg

Chapter 16  Subclassing UITableViewCell

284

Also, declare setPossession: in HomepwnerItemCell.h:

@class Possession;

@interface HomepwnerItemCell : UITableViewCell 
{
    UILabel *valueLabel;
    UILabel *nameLabel;
    UIImageView *imageView; 
} 
- (void)setPossession:(Possession *)possession;
@end

You can build the application to make sure there are no compile errors. Running it won’t show
anything new because you aren’t yet returning HomepwnerItemCells from the UITableView data source
method implemented by ItemsViewController. In ItemsViewController.m, import the header file for
HomepwnerItemCell.

#import "HomepwnerItemCell.h"

@implementation ItemsViewController

In ItemsViewController.m, update the method tableView:cellForRowAtIndexPath: to return
instances of your new cell subclass.

- (UITableViewCell *)tableView:(UITableView *)tableView
         cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
    // Get instance of a HomepwnerItemCell - either an unused one or a new one.
    // The method returns a UITableViewCell; we typecast it as a HomepwnerItemCell.
    HomepwnerItemCell *cell = (HomepwnerItemCell *)[tableView
                        dequeueReusableCellWithIdentifier:@"HomepwnerItemCell"];
                        
    if (!cell) {
        cell = [[[HomepwnerItemCell alloc]
                        initWithStyle:UITableViewCellStyleDefault
                      reuseIdentifier:@"HomepwnerItemCell"] autorelease];
    }
    
    NSArray *possessions = [[PossessionStore defaultStore] allPossessions];
    Possession *p = [possessions objectAtIndex:[indexPath row]];

    // Instead of setting each label directly, we pass it a possession object
    // it knows how to configure its own subviews
    [cell setPossession:p];

    return cell;
}

Notice that the dequeueReusableCellWithIdentifier: method returns a UITableViewCell that we
typecast as a HomepwnerItemCell because we know that’s what we’re getting back. Remember that
typecasting does not change anything about the object; it only helps the compiler know what messages
are valid. 

Image Manipulation
To display an image within a cell, you could just resize the large image of the possession from the
image store. However, doing so would incur a performance penalty because a large number of bytes



ptg

Image Manipulation

285

would need to be read, filtered, and resized to fit within the cell. A better idea is to create and use a
thumbnail of the image instead.

To create a thumbnail of a Possession image, you are going to draw a scaled-down version of
the full image to an offscreen context and keep a pointer to that new image inside a Possession
instance. You’ll create this thumbnail when you take a photo and save the image for a Possession.
However, this application will only create a thumbnail when an image is taken, and, if the user exits
the application, the thumbnails will be lost. Therefore, you need a place to store this thumbnail image
so that it can be reloaded when the application launches again.

In Chapter 13, we put the full-sized images in the ImageStore so that they can be flushed if necessary.
However, the thumbnail images will be small enough that we can archive them with the other
Possession instance variables.

Big problem, though: the thumbnail will be an instance of UIImage. UIImage doesn’t conform to the
NSCoding protocol, so you can’t encode the thumbnail directly in an NSCoder. What you can do is
encode the thumbnail as data (JPEG format) and wrap it in an NSData object, which does conform to
NSCoding.

Open Possession.h. Declare two instance variables: a UIImage and an NSData. You will also want
methods to turn a full-sized image into a thumbnail and another to return the desired thumbnail size.

@interface Possession : NSObject <NSCoding> {
    NSString *possessionName;
    NSString *serialNumber;
    int valueInDollars;
    NSDate *dateCreated;
    NSString *imageKey;
    
    UIImage *thumbnail;
    NSData *thumbnailData;
} 
+ (CGSize)thumbnailSize;

@property (readonly) UIImage *thumbnail;

- (void)setThumbnailDataFromImage:(UIImage *)image;

In Possession.m, create a getter method for thumbnail that will create it from the data if necessary:

- (UIImage *)thumbnail
{
    // Am I imageless?
    if (!thumbnailData) {
        return nil;
    }

    // Is there no cached thumbnail image?
    if (!thumbnail) {

        // Create the image from the data
        thumbnail = [[UIImage imageWithData:thumbnailData] retain];
    }
    return thumbnail;
}



ptg

Chapter 16  Subclassing UITableViewCell

286

Also in Possession.m, implement the class method that returns the size of a thumbnail.

+ (CGSize)thumbnailSize
{  
    return CGSizeMake(40, 40);
}            

Both objects (the UIImage and the NSData) will be retained, so you need to send them release
messages when a Possession instance is deallocated. 

- (void)dealloc
{
    [thumbnail release];
    [thumbnailData release];
    [possessionName release];
    [serialNumber release];
    [dateCreated release];
    [imageKey release];
    [super dealloc];
}

Now let’s turn to the setThumbnailDataFromImage: method. This method will take a full-sized image,
create a smaller representation of it in an offscreen context object, and set the thumbnail pointer to the
image produced by the offscreen context.

iOS provides a convenient suite of functions to create offscreen contexts and produce
images from them. To create an offscreen image context, you use the function
UIGraphicsBeginImageContextWithOptions. This function accepts a CGSize structure that specifies
the width and height of the image context, a scaling factor, and whether the image should be opaque.
When this function is called, a new CGContextRef is created and becomes the current context.

To draw to a CGContextRef, you use Core Graphics, just as though you were implementing a
drawRect: method for a UIView subclass. To get a UIImage from the context after it has been drawn,
you call the function UIGraphicsGetImageFromCurrentImageContext.

Once you have produced an image from an image context, you must clean up the context with the
function UIGraphicsEndImageContext.

In Possession.m, implement the following methods to create a thumbnail using an offscreen context. 

// Private setter 
- (void)setThumbnail:(UIImage *)image
{
    [image retain];
    [thumbnail release];
    thumbnail = image;
}

// Private setter 
- (void)setThumbnailData:(NSData *)d
{
    [d retain];
    [thumbnailData release];
    thumbnailData = d;
}



ptg

Image Manipulation

287

- (void)setThumbnailDataFromImage:(UIImage *)image
{
    CGSize origImageSize = [image size];
        
    CGRect newRect;
    newRect.origin = CGPointZero;
    newRect.size = [[self class] thumbnailSize];

    // How do we scale the image?
    float ratio = MAX(newRect.size.width/origImageSize.width, 
                      newRect.size.height/origImageSize.height);
    
    // Create a bitmap image context
    UIGraphicsBeginImageContext(newRect.size);
    
    // Round the corners
    UIBezierPath *path = [UIBezierPath bezierPathWithRoundedRect:newRect
                                                    cornerRadius:5.0];
    [path addClip];
    
    // Into what rectangle shall I composite the image?
    CGRect projectRect;
    projectRect.size.width = ratio * origImageSize.width;
    projectRect.size.height = ratio * origImageSize.height;
    projectRect.origin.x = (newRect.size.width - projectRect.size.width) / 2.0;
    projectRect.origin.y = (newRect.size.height - projectRect.size.height) / 2.0;
    
    // Draw the image on it
    [image drawInRect:projectRect];
     
    // Get the image from the image context, retain it as our thumbnail
    UIImage *small = UIGraphicsGetImageFromCurrentImageContext();
    [self setThumbnail:small];
        
    // Get the image as a PNG data
    NSData *data = UIImagePNGRepresentation(small);
    [self setThumbnailData:data];

    // Cleanup image contex resources, we're done
    UIGraphicsEndImageContext();
}

In ItemDetailViewController.m, add the following line of code to
imagePickerController:didFinishPickingMediaWithInfo: to create a thumbnail when the camera
takes the original image.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info 
{
    NSString *oldKey = [possession imageKey];

    if (oldKey) {

        // Delete the old image
        [[ImageStore defaultImageStore] deleteImageForKey:oldKey];
    }
    UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];



ptg

Chapter 16  Subclassing UITableViewCell

288

    CFUUIDRef newUniqueID = CFUUIDCreate (kCFAllocatorDefault);

    CFStringRef newUniqueIDString =
                CFUUIDCreateString (kCFAllocatorDefault, newUniqueID);

    [possession setImageKey:(NSString *)newUniqueIDString];

    CFRelease(newUniqueIDString);
    CFRelease(newUniqueID);
    
    [[ImageStore defaultImageStore] setImage:image 
                                      forKey:[possession imageKey]];

    [imageView setImage:image];

    [possession setThumbnailDataFromImage:image];

    // Take image picker off the screen
    [self dismissModalViewControllerAnimated:YES];
}

In HomepwnerItemCell.m, add the following line of code to setPossession: to use this thumbnail to
set the imageView of the cells when they are configured for the table view.

- (void)setPossession:(Possession *)possession
{
    [valueLabel setText:
            [NSString stringWithFormat:@"$%d", [possession valueInDollars]]];
    [nameLabel setText:[possession possessionName]];
    [imageView setImage:[possession thumbnail]];
}

In HomepwnerItemCell.m, edit the layoutSubviews method to set the imageView’s frame according to
the Possession’s desired thumbnail size.

    float valueWidth = 40.0;
    CGSize thumbnailSize = [Possession thumbnailSize];
    float imageSpace = h - thumbnailSize.height;
    CGRect imageFrame = CGRectMake(inset, imageSpace / 2.0, 
                                   thumbnailSize.width, 
                                   thumbnailSize.height);
    [imageView setFrame:imageFrame];

Now build and run the application. Take a picture for a Possession instance and return to the table
view. That row will display a thumbnail image along with the name and value of the Possession.

Don’t forget to add the thumbnail data to your archive! Open Possession.m:

- (id)initWithCoder:(NSCoder *)decoder
{
    self = [super init];
    
    if (self) {
        [self setPossessionName:[decoder decodeObjectForKey:@"possessionName"]];
        [self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
        [self setValueInDollars:[decoder decodeIntForKey:@"valueInDollars"]];
        [self setImageKey:[decoder decodeObjectForKey:@"imageKey"]];
        dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];
        
        thumbnailData = [[decoder decodeObjectForKey:@"thumbnailData"] retain];



ptg

Challenge: Accessory Indicators

289

    }

    return self;
}

- (void)encodeWithCoder:(NSCoder *)encoder
{
    // For each instance variable, archive it under its variable name
    [encoder encodeObject:possessionName forKey:@"possessionName"];
    [encoder encodeObject:serialNumber forKey:@"serialNumber"];
    [encoder encodeInt:valueInDollars forKey:@"valueInDollars"];
    [encoder encodeObject:dateCreated forKey:@"dateCreated"];
    [encoder encodeObject:imageKey forKey:@"imageKey"];

    [encoder encodeObject:thumbnailData forKey:@"thumbnailData"];
}

Build and run the application. Take some photos of possessions and then exit and relaunch the
application. The thumbnails will now appear for saved possession objects. 

Challenge: Accessory Indicators
HomepwnerItemCell only displays three properties of a Possession instance. To show all of a
Possession’s properties, create two different display modes: one that shows the serial number and
the creation date of a Possession and another that shows the name and value in dollars. Then give
HomepwnerItemCell an accessory indicator that, when tapped, will toggle between the two different
display modes. 

Challenge: Shrinking the Main Image
When moving from the list of Possessions presented by the ItemsViewController to the detailed
view of the ItemDetailViewController, you may notice a considerable stutter in the animation. This
stutter is due to the large size of image that has to be loaded and drawn. To get rid of the stutter, when
an image is added to the cache for the first time, shrink the image to a more manageable size.



ptg

This page intentionally left blank 



ptg

291

17
Core Data

There are a few different approaches to saving and loading for iOS applications. When deciding
between them, the first question is typically “Local or remote?” If you want to save data to a remote
server, this is typically done with a web service. Web services are covered in Chapter 25, so let’s
assume that you want to store data locally. The next question is typically “Archiving or Core Data?”

At the moment, Homepwner uses keyed archiving to save possession data to the filesystem. The
biggest drawback to archiving is its all-or-nothing nature: to access anything in the archive, you must
unarchive the entire file; to save any changes, you must rewrite the entire file. Core Data, on the
other hand, can fetch a small subset of the stored objects. And if you change any of those objects, you
can update just that part of the file. This incremental fetching, updating, deleting, and inserting can
radically improve the performance of your application when you have a lot of model objects being
shuttled between the filesystem and RAM.

Object-Relational Mapping
Core Data is a framework that provides object-relational mapping. In other words, Core Data can
turn Objective-C objects into data that is stored in a SQLite database file and vice-versa. SQLite is a
relational database that is stored in a single file. (Technically, SQLite is the library that manages the
database file, but we use the word to mean both the file and the library.) It is important to note that
SQLite is not a full-fledged relational database server like Oracle, MySQL or SQLServer, which are
their own applications that clients can connect to over a network.

Core Data gives us the ability to fetch and store data in a relational database without having to know
SQL. However, you do have to understand a bit about how relational databases work. This chapter
will give you that understanding while replacing keyed archiving with Core Data in Homepwner’s
PossessionStore. (If you’d like more help understanding relational data, we suggest reading Joe
Celko’s SQL for Smarties.)

Moving Homepwner to Core Data
Your Homepwner application currently uses archiving to save and reload its data. For a moderately
sized object model (say, under 1000 objects), this is fine. As your object model gets larger, however,
you will want to be able to do incremental fetches and updates, and Core Data can do this.

The very first step is to add the Core Data framework to your project. Select the Homepwner target and
under Build Phases, open the Link Binary With Libraries build phase. Click the + button to add the Core
Data framework.



ptg

Chapter 17  Core Data

292

Figure 17.1  Add Core Data framework

The model file

In a relational database, we have something called a table. A table represents some type; You can have
a table of people, a table of a credit card purchases, or a table of real-estate listings. Each table has 
a number of columns to hold a piece of information about that thing. A table that represents people
might have a column for the person’s name, social security number, height, and age. Every row in the
table represents a single person.

Figure 17.2  Role of Core Data

This organization translates well to Objective-C. Every table is like an Objective-C class. Every
column is one of the class’ instance variables. Every row is one of the instances of that class. Thus,
Core Data’s job is to move data to and from these two organizations (Figure 17.2).

Core Data uses different terminology to describe these ideas of table/class, column/instance variable
and row/object. A table is called a entity. The instance variables are called attributes. A Core Data



ptg

The model file

293

model file is the description of every entity and their attributes in your application. Therefore, you will
describe a Possession entity in a model file and give it attributes like possessionName, serialNumber
and valueInDollars.

From the File menu, create a new file. Select Core Data and create a new Data Model. Name it
Homepwner.xcdatamodeld.

Figure 17.3  Create the model File

This will create a Homepwner.xcdatamodeld file and add it to your project. Open this file. The editor
area will now show the user interface for manipulating a Core Data model file.

Click the Add Entity button near the bottom of the window. A new Entity will appear in the Entities list.
Double-click this entity and change its name to Possession (Figure 17.4).



ptg

Chapter 17  Core Data

294

Figure 17.4  Create the Possession entity

Now you will add attributes to the Possession entity, remembering that these will be the instance
variables of the Possession class. For each attribute, click the + button in the Attributes section and
edit the Attribute and Type values for each one:

• possessionName is a String

• serialNumber is a String

• valueInDollars is an Integer 32

• dateCreated is a Date

• imageKey is a String

• thumbnailData is a Binary Data

• thumbnail is an Undefined (It’s a UIImage, but that isn’t one of the possibilities.)

Select thumbnail from the Attributes list and show the data model inspector. Check the box for
Transient (Figure 17.5). This means it will not be saved and loaded from the file. You will create it at
runtime from the thumbnailData instead.



ptg

The model file

295

Figure 17.5  Add attributes to the Possession entity

There is one more attribute to add. In Homepwner, users can order their possessions by moving them
around in the table view. Archiving possessions in an array naturally respects this order. However,
relational tables don’t order their rows. Instead, when you fetch a set of rows, you specify their order
using one of the attributes (“Fetch me all the Employee objects ordered by lastName.”). To maintain
the order of possessions, you need to create an attribute to record each possession’s position in the
table view. Then when you fetch possessions, you can ask for them to be ordered by this attribute.
(You’ll also need to update that attribute when the possessions are reordered.) Create this final
attribute: name it orderingValue and make it a Double.

At this point, your model file is sufficient to save and load possessions. However, one of the benefits
to using Core Data is that entities can be related to one another. In this exercise, you will add a new
entity called AssetType, which describes a category for the possessions. For example, a painting might
be of the Art asset type. Of course, AssetType will be an entity in the model file, and each row of that
table will be mapped to an Objective-C object at runtime. Every Possession will have a pointer to its
AssetType object, and every AssetType will have a list of the Possessions that fall into its category.

Figure 17.6  Entities



ptg

Chapter 17  Core Data

296

Create a new entity called AssetType.

Figure 17.7  Create the AssetType entity

Add an attribute called label of type String to AssetType. This will be the name of the category the
AssetType represents.

Now, you need to establish the relationship between AssetType and Possession. There are two
kinds of relationships: to-many and to-one. When an entity has a to-one relationship, each instance
of that entity will have a pointer to an instance in the entity it has a relationship to. For example, the
Possession entity will have a to-one relationship to the AssetType entity. Thus, a Possession instance
will have a pointer to its AssetType instance.

The AssetType entity, on the other hand, will have a to-many relationship to Possession since many
Possessions can be of the same AssetType type. With these relationships, we can ask an AssetType
object for a set of all of the Possessions that fall into its category, and we can ask a Possession which
AssetType it falls under.

Let’s add these relationships. Select the AssetType entity and then click the + button in the
Relationships section. Name the relationship possessions in the Relationship column. Then, select
Possession from the Destination column. In the data model inspector, check the box for To-Many
Relationship (Figure 17.8).



ptg

NSManagedObject and subclasses

297

Figure 17.8  Create the possessions relationship

Now go back to the Possession entity. Add a relationship named assetType and pick AssetType as its
destination. In the Inverse column, select possessions (Figure 17.9).

Figure 17.9  Create the assetType relationship

One final note on terminology: In the language of entity-relationship modeling, the attributes and
relationships of an entity are collectively known as its properties.

NSManagedObject and subclasses

When an object is fetched with Core Data, its class is, by default, NSManagedObject. NSManagedObject
is a subclass of NSObject that knows how to cooperate with the rest of Core Data. Therefore, when
you fetch an AssetType or a Possession from Core Data, the object that you get back is an instance
of NSManagedObject. This can be confusing, since these two entities have different attributes and
therefore the classes that represent these entities should have different instance variables. However,
NSManagedObject works a bit like a dictionary in that it holds arbitrary key-value pairs. Thus, an
NSManagedObject holds a key-value pair for every property in the entity.



ptg

Chapter 17  Core Data

298

NSManagedObject is little more than a data container. Sometimes, you would like your model objects
to do something in addition to holding data. For example, the Possession class knows how to create a
thumbnail from an image. When an objects of a particular entity need to perform custom behavior, you
must create a subclass of NSManagedObject. Then, in your model file, you must specify that this entity
is represented by instances of this subclass, not the standard NSManagedObject.

Select the Possession entity. Show the data model inspector and change the Class field to Possession,
as shown in Figure 17.10. Now, when a Possession entity is fetched with Core Data, the type of this
object will be Possession. (AssetType instances will still be of type NSManagedObject.)

Figure 17.10  Changing the class of an entity

There is one problem: you already have a Possession class, and it does not inherit from
NSManagedObject. Changing the superclass of Possession to NSManagedObject will require
considerable changes. Thus, the easiest solution is to copy the behavior methods from your current
Possession class, have Core Data generate a new Possession class, and then add your behavior
methods back in to the new class files.

In Finder, drag both Possession.h and Possession.m to your desktop. Then, in Xcode, delete these
two files from the project navigator.

Then, create a new file. Under Core Data, select the NSManagedObject subclass option and hit Next.
On the next pane, select the Homepwner data model. On the following pane, select the Possession
entity.

Xcode will generate two new files, Possession.h and Possession.m. In Possession.h, change the
type of the thumbnail property to UIImage and add two method declarations that you had previously
implemented in the earlier Possession.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Possession : NSManagedObject {



ptg

NSManagedObject and subclasses

299

@private 
} 
@property (nonatomic, retain) NSString *serialNumber;
@property (nonatomic, retain) NSNumber *valueInDollars;
@property (nonatomic, retain) UIImage *thumbnail;
@property (nonatomic, retain) NSString *imageKey;
@property (nonatomic, retain) NSDate *dateCreated;
@property (nonatomic, retain) NSString *possessionName;
@property (nonatomic, retain) NSData *thumbnailData;
@property (nonatomic, retain) NSNumber *orderingValue;
@property (nonatomic, retain) NSManagedObject *assetType;

- (void)setThumbnailDataFromImage:(UIImage *)image;
+ (CGSize)thumbnailSize;

@end

Next, in Possession.m, copy the setThumbnailDataFromImage: and thumbnailSize methods from
your old Possession.m to the new one:

- (void)setThumbnailDataFromImage:(UIImage *)image
{
    CGSize origImageSize = [image size];
    
    CGRect newRect;
    newRect.origin = CGPointZero;
    newRect.size = [[self class] thumbnailSize];
    
    float ratio = MAX(newRect.size.width/origImageSize.width, 
                      newRect.size.height/origImageSize.height);
    
    // Create a bitmap image context
    UIGraphicsBeginImageContext(newRect.size);
    
    // Round the corners
    UIBezierPath *path = [UIBezierPath bezierPathWithRoundedRect:newRect
                                                    cornerRadius:5.0];
    [path addClip];
    
    // Into what rectangle shall I composite the image?
    CGRect projectRect;
    projectRect.size.width = ratio * origImageSize.width;
    projectRect.size.height = ratio * origImageSize.height;
    projectRect.origin.x = (newRect.size.width - projectRect.size.width) / 2.0;
    projectRect.origin.y = (newRect.size.height - projectRect.size.height) / 2.0;
    
    // Draw the image on it
    [image drawInRect:projectRect];
     
    // Get the image from the image context, retain it as our thumbnail
    UIImage *small = UIGraphicsGetImageFromCurrentImageContext();
    [self setThumbnail:small];
        
    // Get the image as a PNG data
    NSData *data = UIImagePNGRepresentation(small);
    [self setThumbnailData:data];

    // Cleanup image contex resources, we're done
    UIGraphicsEndImageContext();



ptg

Chapter 17  Core Data

300

}

+ (CGSize)thumbnailSize
{  
    return CGSizeMake(40, 40);
}

The thumbnail attribute is not going to be saved – it is a transient attribute. You’ll need to update
thumbnail from the thumbnailData when the object first emerges from the filesystem. When
Homepwner used keyed archiving, we did this in initWithCoder:. Now that we’re using Core Data,
objects are initialized by another Core Data object that handles creating, updating, and deleting
NSManagedObjects. (You will meet this object in a moment.) Thus, you do not implement init
methods for NSManagedObject subclasses. Instead, if you want to configure an object after it has been
created, you override the method awakeFromFetch. Implement this method in Possession.m to set the
thumbnail from the thumbnailData (which is saved).

- (void)awakeFromFetch
{
    [super awakeFromFetch];
    
    UIImage *tn = [UIImage imageWithData:[self thumbnailData]];
    [self setPrimitiveValue:tn forKey:@"thumbnail"];
}

As mentioned earlier, an instance of NSManagedObject works like a dictionary – it can hold a large
number of key-value pairs. The method setPrimitiveValue:forKey: works like setObject:forKey:
of NSMutableDictionary. One of the amazing and delightful things about Core Data is that instances
of NSManagedObject can dynamically create accessor methods as they are called. It will also
automatically create methods for primitive access. For example, the following also would have
worked:

- (void)awakeFromFetch
{
    [super awakeFromFetch];
    
    UIImage *tn = [UIImage imageWithData:[self thumbnailData]];

    // At runtime, setPrimitiveThumbnail: will be created when first called
    [self setPrimitiveThumbnail:tn];
}

However, we would have received a warning from the compiler because it has no declaration of this
method.

Of course, when you first launch an application, there are no saved Possessions or AssetTypes. When
the user creates a new Possession instance, it will be added to the database. When objects are added to
the database, they are sent the message awakeFromInsert. Here is where you will set the dateCreated
instance variable of a Possession. Implement this method in Possession.m.



ptg

Updating PossessionStore

301

- (void)awakeFromInsert 
{
    [super awakeFromInsert];
    [self setDateCreated:[NSDate date]];
}

Updating PossessionStore

The portal through which you talk to the database is the NSManagedObjectContext. The
NSManagedObjectContext uses an NSPersistentStoreCoordinator. You ask the persistent store
coordinator to open a SQLite database at a particular filename. The persistent store coordinator uses
the model file in the form of an instance of NSManagedObjectModel.

Figure 17.11  PossessionStore and NSManagedObjectContext

In PossessionStore.h, add instance variables and import Core Data. Also, create a method for getting
all the AssetType objects:

#import <CoreData/CoreData.h>

@class Possession;

@interface PossessionStore : NSObject
{
    NSMutableArray *allPossessions;
    NSMutableArray *allAssetTypes;
    NSManagedObjectContext *context;
    NSManagedObjectModel *model;
}

+ (PossessionStore *)defaultStore;
- (BOOL)saveChanges;

#pragma mark Possessions
- (NSArray *)allPossessions; 
- (Possession *)createPossession; 
- (void)removePossession:(Possession *)p;



ptg

Chapter 17  Core Data

302

- (void)movePossessionAtIndex:(int)from toIndex:(int)to;

#pragma mark Asset types 
- (NSArray *)allAssetTypes;

@end

This is the first time you’ve seen the #pragma mark construct. Objective-C programmers often use this
to group methods. It isn’t used by the compiler at all – rather, Xcode notes it when it creates the pop-up
at the top of the editor (Figure 17.12).

Figure 17.12  #pragma mark in popup

When the PossessionStore is initialized, it needs to set up the NSManagedObjectContext and
NSPersistentStoreCoordinator. The persistent store coordinator needs to know two things: “What
are all of my entities and their attributes and relationships?” and “Where am I saving and loading data
from?” Therefore, you will create an instance of NSManagedObjectModel to hold the entity information
from Homepwner.xcdatamodeld and initialize the persistent store coordinator with this object. Then,
you will create the instance of NSManagedObjectContext and specify that it use this persistent store
coordinator to save and load objects. Update init in PossessionStore.m.

- (id)init
{
    if (defaultStore) {
        return defaultStore;
    }
    
    self = [super init];
    
    // Read in Homepwner.xcdatamodeld
    model = [[NSManagedObjectModel mergedModelFromBundles:nil] retain];
    // NSLog(@"model = %@", model);

    NSPersistentStoreCoordinator *psc = 
        [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel:model];

    // Where does the SQLite file go?    
    NSString *path = pathInDocumentDirectory(@"store.data");
    NSURL *storeURL = [NSURL fileURLWithPath:path]; 

    NSError *error = nil;



ptg

Updating PossessionStore

303

    if (![psc addPersistentStoreWithType:NSSQLiteStoreType 
                           configuration:nil
                                     URL:storeURL
                                 options:nil
                                   error:&error]) {
        [NSException raise:@"Open failed"
                    format:@"Reason: %@", [error localizedDescription]];
    }

    // Create the managed object context
    context = [[NSManagedObjectContext alloc] init];
    [context setPersistentStoreCoordinator:psc];
    [psc release];

    // The managed object context can manage undo, but we don't need it
    [context setUndoManager:nil];    
    
    return self;
}            

Before, PossessionStore would write out the entire NSMutableArray of Possessions when
you asked it to save using keyed archiving. Now, you will have it send the message save: to the
NSManagedObjectContext. The context will update all of the records in store.data with any changes
since the last time it was saved. Change this method in PossessionStore.m.

- (BOOL)saveChanges
{
    NSError *err = nil;
    BOOL successful = [context save:&err];
    if (!successful) {
        NSLog(@"Error saving: %@", [err localizedDescription]);
    }
    return successful;
}                

Note that this method is already called when the application is moved to the background.

In this application, we will fetch all of the Possessions in store.data the first time we need to use
them. In order to get objects back from the NSManagedObjectContext, you must prepare and execute
an NSFetchRequest. After a fetch request is executed, you will get an array of all the objects that
match the parameters of that request.

A fetch request needs an entity description that defines which entity you want to get objects from.
In order to fetch Possession instances, you specify the Possession entity. You can also set the
request’s sort descriptors, which specify the order of the objects in the array. A sort descriptor has a
key that maps to an attribute of the entity and a BOOL that indicates if the order should be ascending
or descending. You will sort the returned Possessions by their orderingValue in ascending order.
Replace the fetchPossessionsIfNecessary method in PossessionStore.m.

- (void)fetchPossessionsIfNecessary
{
    if (!allPossessions) {
        NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
        
        NSEntityDescription *e = [[model entitiesByName] objectForKey:@"Possession"];
        [request setEntity:e];



ptg

Chapter 17  Core Data

304

        NSSortDescriptor *sd = [NSSortDescriptor 
                                    sortDescriptorWithKey:@"orderingValue"
                                                ascending:YES];
        [request setSortDescriptors:[NSArray arrayWithObject:sd]];
    
        NSError *error;
        NSArray *result = [context executeFetchRequest:request error:&error];
        if (!result) {
            [NSException raise:@"Fetch failed"
                        format:@"Reason: %@", [error localizedDescription]];
        }
        
        allPossessions = [[NSMutableArray alloc] initWithArray:result];
    }
}                

In this application, you immediately fetched all the instances of the Possession entity. This is a
relatively simple case. In an application with a much larger data set, you would carefully fetch just the
instances you needed. You would add a predicate (an NSPredicate) to your fetch request, and only the
objects that satisfied the predicate would be returned.

A predicate contains a condition which can be true or false. For example, if you only wanted the
possessions worth more than $50, you would create a predicate and add it to the fetch request like this:

NSPredicate *p = [NSPredicate predicateWithFormat:@"valueInDollars > 50"];
[request setPredicate:p];

The format string for a predicate can be very long and complex. Apple’s Predicate Programming
Guide is a complete discussion of what is possible.

Predicates can also be used to filter the contents of an array. So, even if you had already fetched the
allPossessions array, you could still use a predicate:

NSArray *expensiveStuff = [allPossessions filteredArrayUsingPredicate:p];

This handles saving and loading, but what about adding and deleting? When the user wants to create
a new Possession, you will not allocate and initialize this new Possession. Instead, you will ask the
NSManagedObjectContext to insert a new object from the Possession entity. It will then return an
instance of Possession. In PossessionStore.m, edit the createPossession method.

- (Possession *)createPossession
{
    // Ensure the array is initialized
    [self fetchPossessionsIfNecessary];
    
    double order;
    if ([allPossessions count] == 0) {
        order = 1.0;
    } else {
        order = [[[allPossessions lastObject] orderingValue] doubleValue] + 1.0;
    }
    NSLog(@"Adding after %d items, order = %.2f",[allPossessions count], order);

    Possession *p = [NSEntityDescription insertNewObjectForEntityForName:@"Possession"
                                                  inManagedObjectContext:context];
    



ptg

Updating PossessionStore

305

    [p setOrderingValue:[NSNumber numberWithDouble:order]];

    [allPossessions addObject:p];
   
    return p; 
}                

When a user deletes a Possession, you must inform the context so that it is removed from the database
when saved. Add the following code to PossessionStore.m’s removePossession: method.

- (void)removePossession:(Possession *)p
{
    NSString *key = [p imageKey];
    [[ImageStore defaultImageStore] deleteImageForKey:key];
    [context deleteObject:p];
    [allPossessions removeObjectIdenticalTo:p];
}                

The last bit of functionality you need to replace for Possession is the ability to re-order Possessions
in the PossessionStore. Because Core Data will not handle ordering automatically, we must update a
Possession’s orderingValue every time it is moved in the table view.

This would get rather complicated if the orderingValue was an integer: every time a Possession
was placed in a new index, we would have to change the orderingValue’s of other Possessions.
Instead, orderingValue is a double. We can then take the orderingValues of the Possession that
will be before and after the moving possession, add them together, and divide by two. Thus, the new
orderingValue will fall directly in between the values of the Possessions that surround it. Modify
movePossessionAtIndex:toIndex: in PossessionStore.m.

- (void)movePossessionAtIndex:(int)from
                      toIndex:(int)to
{
    if (from == to) {
        return;
    }
    // Get pointer to object being moved
    Possession *p = [allPossessions objectAtIndex:from];
    
    // Retain it so it doesn't get dealloced while out of array
    [p retain];
    
    // Remove p from our array
    [allPossessions removeObjectAtIndex:from];
    
    // Re-insert p into array at new location
    [allPossessions insertObject:p atIndex:to];

    // Computing a new orderValue for the object that was moved
    double lowerBound = 0.0;

    // Is there an object before it in the array?
    if (to > 0) {
        lowerBound = [[[allPossessions objectAtIndex:to - 1] 
                                         orderingValue] doubleValue];
    } else {
        lowerBound = [[[allPossessions objectAtIndex:1] 
                                         orderingValue] doubleValue] - 2.0;
    }



ptg

Chapter 17  Core Data

306

    double upperBound = 0.0;

    // Is there an object after it in the array?
    if (to < [allPossessions count] - 1) {
        upperBound = [[[allPossessions objectAtIndex:to + 1] 
                                         orderingValue] doubleValue];
    } else {
        upperBound = [[[allPossessions objectAtIndex:to - 1] 
                                         orderingValue] doubleValue] + 2.0;
    }
    
    // The order value will be the midpoint between the lower and upper bounds
    NSNumber *n = [NSNumber numberWithDouble:(lowerBound + upperBound)/2.0];

    NSLog(@"moving to order %@", n);
    [p setOrderingValue:n];
    
    // Release p (retain count = 1, only owner is now array)
    [p release];

}                

One last detail. When we moved Possession to a subclass of NSManagedObject, the valueInDollars
property became an instance of NSNumber instead of an int. There are three places we still use this
instance variable. Update the code in the viewWillAppear: method of ItemDetailViewController.m.

- (void)viewWillAppear:(BOOL)animated
{
    [super viewWillAppear:animated];
                    
    [nameField setText:[possession possessionName]];
    [serialNumberField setText:[possession serialNumber]];
    
    if([possession valueInDollars]) {
        // Notice that the format string changed
        [valueField setText:[NSString stringWithFormat:@"%@",
                                            [possession valueInDollars]]];        
    } else {
        [valueField setText:@"0"];
    }  

    NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init] autorelease];

In the same file, update viewWillDisappear:.

- (void)viewWillDisappear:(BOOL)animated
{
    [super viewWillDisappear:animated];
    
    // End any incomplete editing
    [[self view] endEditing:YES];
    
    // "Save" changes to possession
    [possession setPossessionName:[nameField text]];
    [possession setSerialNumber:[serialNumberField text]];
    NSNumber *valueNum = [NSNumber numberWithInt:[[valueField text] intValue]];
    [possession setValueInDollars:valueNum];
}



ptg

Adding AssetTypes to Homepwner

307

And the third and final spot, in HomepwnerItemCell.m:

- (void)setPossession:(Possession *)possession
{
    // The format string changes again
    [valueLabel setText:[NSString stringWithFormat:@"$%@", 
                         [possession valueInDollars]]];
    [nameLabel setText:[possession possessionName]];
    [imageView setImage:[possession thumbnail]];
}                

Finally, you can build and run your application. Of course, the behavior is the same as it always was,
but it is now using Core Data. Now, you need to take care of the new asset type functionality.

Adding AssetTypes to Homepwner

In the model file, you described a new entity, AssetType, that every possession will have a to-one
relationship to. You need a way for the user to set the AssetType of Possessions and create new
AssetTypes. Also, the PossessionStore will need a way to fetch the AssetTypes. (Creating new
AssetTypes is left as a challenge.)

In PossessionStore.h, declare a new method.

- (NSArray *)allAssetTypes;                

In PossessionStore.m, define this method. If this is the first time the application is being run – and
therefore there are no AssetTypes in the store – create three default types.

- (NSArray *)allAssetTypes
{
    if (!allAssetTypes) {
        NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
        
        NSEntityDescription *e = [[model entitiesByName] objectForKey:@"AssetType"];
        
        [request setEntity:e];
        
        NSError *error;
        NSArray *result = [context executeFetchRequest:request error:&error];
        if (!result) {
            [NSException raise:@"Fetch failed"
                        format:@"Reason: %@", [error localizedDescription]];
        }
        allAssetTypes = [result mutableCopy];
    }
    
    // Is this the first time the program is being run?
    if ([allAssetTypes count] == 0) {
        NSManagedObject *type;
        
        type = [NSEntityDescription insertNewObjectForEntityForName:@"AssetType" 
                                             inManagedObjectContext:context];
        [type setValue:@"Furniture" forKey:@"label"];
        [allAssetTypes addObject:type];
        
        type = [NSEntityDescription insertNewObjectForEntityForName:@"AssetType"  
                                             inManagedObjectContext:context];



ptg

Chapter 17  Core Data

308

        [type setValue:@"Jewelry" forKey:@"label"];
        [allAssetTypes addObject:type];

        type = [NSEntityDescription insertNewObjectForEntityForName:@"AssetType" 
                                             inManagedObjectContext:context];
        [type setValue:@"Electronics" forKey:@"label"];
        [allAssetTypes addObject:type];

    }
    return allAssetTypes;
}                

Now, you need change the user interface so that the user can see the AssetType of the Possession in
the ItemDetailViewController and change it.

Figure 17.13  Interface for AssetType

Create a new Objective-C class template file and choose NSObject as the superclass. Name this class
AssetTypePicker.

In AssetTypePicker.h, change the superclass to UITableViewController and give it a Possession
property.

#import <UIKit/UIKit.h>
@class Possession;

@interface AssetTypePicker : UITableViewController 
{
    Possession *possession;
}



ptg

Adding AssetTypes to Homepwner

309

@property (nonatomic, retain) Possession *possession;
@end                

This table view controller will show a list of the available AssetTypes. Tapping a button on the
ItemDetailViewController’s view will display it (in a popover on the iPad and in a navigation
controller on the iPhone). Implement the data source methods and import the appropriate header files
in AssetTypePicker.m.

#import "AssetTypePicker.h"
#import "PossessionStore.h"
#import "Possession.h"

@implementation AssetTypePicker

@synthesize possession;

- (id)init
{
    return [super initWithStyle:UITableViewStyleGrouped];
} 
- (id)initWithStyle:(UITableViewStyle)style 
{
    return [self init];
} 
- (void)dealloc 
{
    [possession release];
    [super dealloc];
}

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section
{
    return [[[PossessionStore defaultStore] allAssetTypes] count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView 
         cellForRowAtIndexPath:(NSIndexPath *)ip
{    
    UITableViewCell *cell = 
        [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];
    if (cell == nil) {
        cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault 
                                       reuseIdentifier:@"UITableViewCell"] 
                                                autorelease];
    }
    
    NSArray *allAssets = [[PossessionStore defaultStore] allAssetTypes];
    NSManagedObject *assetType = [allAssets objectAtIndex:[ip row]];
    
    // Use key-value coding to get the asset type's label
    NSString *assetLabel = [assetType valueForKey:@"label"];
    [[cell textLabel] setText:assetLabel];
    
    // Checkmark the one that is currently selected
    if (assetType == [possession assetType]) {
        [cell setAccessoryType:UITableViewCellAccessoryCheckmark];
    } else {



ptg

Chapter 17  Core Data

310

        [cell setAccessoryType:UITableViewCellAccessoryNone];
    }
    
    return cell;
}

- (void)tableView:(UITableView *)tableView 
didSelectRowAtIndexPath:(NSIndexPath *)ip 
{
    UITableViewCell *cell = [tableView cellForRowAtIndexPath:ip];

    [cell setAccessoryType:UITableViewCellAccessoryCheckmark];
    
    NSArray *allAssets = [[PossessionStore defaultStore] allAssetTypes];
    NSManagedObject *assetType = [allAssets objectAtIndex:[ip row]];
    [possession setAssetType:assetType];
    
    [[self navigationController] popViewControllerAnimated:YES];
}

@end                

In ItemDetailViewController.xib, add a new UIButton to the view. Create and connect outlets as
shown in Figure 17.14.

Figure 17.14  Add a UIButton



ptg

More About SQL

311

At the top of ItemDetailViewController.m, import the header for this new table view controller.

#import "ItemDetailViewController.h"

#import "AssetTypePicker.h"

Implement showAssetTypePicker: in ItemDetailViewController.m. (If you generated the action
method by Control-dragging from the XIB to the source file, the method will already be entered with
an empty body.)

- (IBAction)showAssetTypePicker:(id)sender
{
    [[self view] endEditing:YES];
    
    AssetTypePicker *assetTypePicker = [[[AssetTypePicker alloc] init] autorelease];
    [assetTypePicker setPossession:possession];
    
    [[self navigationController] pushViewController:assetTypePicker
                                           animated:YES];
}                

And finally, update the title of the button to show the asset type of a Possession. Add the following
code to viewWillAppear: in ItemDetailViewController.m.

    if (imageKey) {
        // Get image for image key from image cache
        UIImage *imageToDisplay = [[ImageStore defaultImageStore] 
                                                    imageForKey:imageKey];
        
        // Use that imge to put on the screen in imageView
        [imageView setImage:imageToDisplay];
    } else {
        // clear the imageView
        [imageView setImage:nil];
    }
    NSString *typeLabel = [[possession assetType] valueForKey:@"label"];
    if(!typeLabel)
        typeLabel = @"None";
                    
    [assetTypeButton setTitle:[NSString stringWithFormat:@"Type: %@", typeLabel]
                     forState:UIControlStateNormal];
}                

Build and run the application. Select a Possession and set its asset type.

More About SQL
In this chapter, you used SQLite via Core Data. If you’re curious about what SQL commands 
Core Data is executing, you can use a command-line argument to log all communications with the
SQLite database to the console. From the Product menu, choose Edit Scheme.... Select the Run 
Homepwner.app item and the Arguments tab. Add two arguments: -com.apple.CoreData.SQLDebug
and 1.



ptg

Chapter 17  Core Data

312

Figure 17.15  Turning on Core Data logging

Build and run the application again. Make sure the debug area and console are visible so you can
see the SQL logging. Add a few locations and inventory items; then navigate around the application
looking at various items.

Relationships are fetched in a lazy manner. When you fetch a managed object with relationships, the
objects at the other end of those relationship are not fetched. Instead, Core Data uses faults. There
are to-many faults (which stand in for sets) and to-one faults (which stand in for managed objects).
So, for example, when the instances of Possession are fetched into your application, the instances of
AssetType are not. Instead, fault objects are created that stand in for the AssetType objects until they
are really needed.

Figure 17.16  Object faults



ptg

More About SQL

313

An object fault knows what entity it is from and what its primary key is. So, for example, when you
ask a fault that represents an asset type what its label is, you’ll see SQL executed that looks something
like this:

SELECT t0.Z_PK, t0.Z_OPT, t0.ZLABEL FROM ZASSETTYPE t0 WHERE t0.Z_PK = 2

(Why is everything prefixed with Z_? I don’t know. What is OPT? I don’t know, but I would guess it is
short for “optimistic locking”. These details are not important.) The fault is replaced, in the exact same
location in memory, with a managed object containing the real data.

Figure 17.17  After one fault is replaced

This lazy fetching makes Core Data not only easy to use, but also quite efficient.

What about to-many faults? Imagine that your application worked the other way: the user is presented
with a list of AssetType objects to select from. Then, the possessions for that asset type are fetched
and displayed. How would this work? When the assets are first fetched, each one has a set fault that is
standing in for the NSSet of possession objects:

Figure 17.18  Set faults

When the set fault is sent a message that requires the Possession objects, it fetches them and replaces
itself with an NSSet: 

Figure 17.19  Set faults



ptg

Chapter 17  Core Data

314

Core Data is a very powerful and flexible persistence framework, and this chapter has been just a quick
introduction to its capabilities. For more details, we strongly suggest that you read Apple’s Core Data
Programming Guide. Here are some of the things we have not delved into:

• NSFetchRequest is a powerful mechanism for specifying data you want from the persistent store.
We used it a little, but you will want to go deeper. You should also explore the following related
classes: NSPredicate, NSSortOrdering, NSExpressionDescription, and NSExpression. Also, fetch
request templates can be created as part of the model file.

• A fetched property is a little like a to-many relationship and a little like an NSFetchRequest. You
typically specify them in the model file.

• As your app evolves from version to version, you’ll need to change the data model over time.
This can be tricky – in fact, Apple has an entire book about it: Data Model Versioning and Data
Migration Programming Guide.

• There is good support for validating data as it goes into your instances of NSManagedObject and
again as it moves from your managed object into the persistent store.

• You can have a single NSManagedObjectContext working with more than one persistent store. You
partition your model into configurations and then assign each configuration to a particular persistent
store. You are not allowed to have relationships between entities in different stores, but you can use
fetched properties to achieve a similar result.

Trade-offs of Persistence Mechanisms
At this point, you can start thinking about the tradeoffs between the common ways that iOS
applications can store their data Which is best for your application? Use Table 17.1 to help you decide.

Table 17.1. Data storage pros and cons

Technique Pros Cons

Archiving Allows ordered relationships (arrays, not sets).
Easy to deal with versioning.

Reads all the objects in (no faulting).
No incremental updates.

Web
Service

Makes it easy to share data with other devices
and applications.

Requires a server and a connection to the
internet.

Core Data Lazy fetches by default.
Incremental updates.

Versioning is awkward (but can certainly
be done using an NSModelMapping).
No real ordered relationships (at the time
this is being written).



ptg

Challenge: New Asset Types

315

Challenge: New Asset Types
Make it possible for the user to add new asset types by adding a button to the AssetTypePicker’s
navigationItem.

Challenge: Assets on the iPad
On the iPad, present the AssetTypePicker in a UIPopoverController.



ptg

This page intentionally left blank 



ptg

317

18
Localization

The appeal of iOS is global – iOS users live in many different countries and speak many different
languages. You can ensure that your application is ready for this global audience through the processes
of internationalization and localization. Internationalization is making sure your native cultural
information is not hard-coded into your application. (By cultural information, we mean language,
currency, date formats, number formats, and more.) Localization, on the other hand, is providing the
appropriate data in your application based on the user’s Language and Region Format settings. You
can find these settings in the Settings application. Select the General row and then the International
row.

Figure 18.1  International Settings

Incredibly, Apple makes these processes simple. An application that takes advantage of the
localization APIs does not even need to be recompiled to be distributed in other languages or regions.
In this chapter, you’re going to localize the possession detail view of Homepwner. (By the way,
internationalization and localization are big words. Commonly, they are abbreviated to i18n and L10n,



ptg

Chapter 18  Localization

318

respectively. In order to prevent confusion, I will type out the full words. But you owe me a beer at the
next WWDC.)

Internationalization using NSLocale
In this first section, you will use the class NSLocale to internationalize the currency symbol for a value
of a possession.

NSLocale knows how different regions display symbols, dates, and decimals and whether they use
the metric system. An instance of NSLocale represents one region’s settings for these variables. In the
Settings application, the user can choose a region like United States or United Kingdom. (Why does
Apple use “region” instead of “country”? Some countries have more than one region with different
settings. Scroll through the options in Region Format to see for yourself.)

When you send the message currentLocale to NSLocale, the instance of NSLocale that represents
the user’s region setting is returned. Once you have a pointer to that instance of NSLocale, you can
ask it questions like, “What’s the currency symbol for this region?” or “Does this region use the
metric system?” To ask a question, you send the NSLocale instance the message objectForKey: with
one of the NSLocale constants as an argument. (You can find all of these constants in the NSLocale
documentation page.)

Let’s internationalize the currency symbol displayed in each HomepwnerItemCell. Open
Homepwner.xcodeproj and, in HomepwnerItemCell.m, locate the method setPossession:. When
the text of the valueLabel is set in this method, the string "$%@" is used, which makes the currency
symbol always a dollar sign. Replacing that code with the following will get and display the
appropriate currency symbol for the user’s region.

- (void)setPossession:(Possession *)possession
{
    NSString *currencySymbol = [[NSLocale currentLocale]
                            objectForKey:NSLocaleCurrencySymbol];
    [valueLabel setText:[NSString stringWithFormat:@"%@%@",
                    currencySymbol,
                    [possession valueInDollars]]];

    [nameLabel setText:[possession possessionName]];
    [imageView setImage:[possession thumbnail]];
}

Build and run the application. If the currency symbol is the dollar sign in your region, you’ll need to
change your region format in order to test this code. Exit the Homepwner application and kill it in the
dock. Then, in the Settings application, change Region Format to United Kingdom.

Run your application again. This time, you will see values displayed in pounds (£). (Note that this is
not a currency conversion from dollars to pounds; you’re just replacing the symbol.)

While your region format is set to the UK, check out the date format of the date a possession was
created. It’s Day Month Year. Now exit and kill Homepwner and change your region to US. Relaunch
Homepwner and navigate to a possession’s details. The date is now formatted as Month Day, Year.
The text for the date label has already been internationalized. When did this happen?

In Chapter 12, you used an instance of NSDateFormatter to set the text of the date label of
ItemDetailViewController. NSDateFormatter has a locale property, which is set to the device’s
current locale. Whenever you use an NSDateFormatter to create a date, it checks its locale property
and sets the format accordingly. So the text of the date label has been internationalized from the start. 



ptg

Localizing Resources

319

Localizing Resources
When internationalizing, you ask the instance of NSLocale questions. But the NSLocale only has a few
region-specific variables. This is where localization comes into play: Localization is the process by
which application-specific substitutions given a region or a language setting are created. This usually
means one of two things:

• generating multiple copies of resources like images, sounds, and interfaces
for different regions and languages

• creating and accessing “strings tables” to translate text into different languages

Any resource, whether it’s an image or a XIB file, can be localized with just a little work. In this
section, you’re going to localize one of Homepwner’s interfaces: the ItemDetailViewController.xib
file. Select ItemDetailViewController.xib in the project navigator. Then, show the utilities area.

Click the icon in the inspector selector to open the file inspector. Find the section in the inspector
area named Localization and click the + button at the bottom of the section. This signifies to Xcode that
this file can be localized and automatically creates an English version of it. Click the + button again
and select Spanish. The inspector area should look like Figure 18.2.

Figure 18.2  Localizing ItemDetailViewController.xib

When you add a localization, two things happen: first, a copy of the resource file is made. Then,
the copy is separated into an lproj directory named after the localization. In this case, look in



ptg

Chapter 18  Localization

320

Finder where ItemDetailViewController.xib was, and you will see two directories: en.lproj and
es.lproj. There is a copy of ItemDetailViewController.xib in each. (en is the Unicode form for
English and es is the Unicode form of Spanish.)

Now, back in Xcode, look in the project navigator. Click the disclosure button next to
ItemDetailViewController.xib (Figure 18.3) and then click the Spanish file. This is the
ItemDetailViewController.xib that is in the es.lproj folder.

Figure 18.3  Localized XIB in the project navigator

When the Spanish XIB file opens, the text is unfortunately still in English. You do have to translate it
yourself; that part isn’t automatic. One option is to manually edit each string in the Spanish XIB file in
Xcode. However, what happens when you add a new label or button to your localized XIB? You have
to add this view to the XIB for every language. This is not fun.

Instead, you can use a command-line tool named ibtool to suck the strings from your native language
XIB file into a file. Then, you can translate these strings and create a new XIB file for each language.
To get started, open Terminal.app in the Applications/Utilities directory.

Once Terminal launches, you’ll need to navigate to the location of ItemDetailViewController.xib
in en.lproj. If you are familiar with Unix, have at it. If not, you’re about to learn a cool trick. In
Terminal, type the following:

cd            

followed by a space.

Use Finder to find en.lproj in this project’s directory. Drag this folder’s icon from the Finder onto the
Terminal window. Terminal will fill out the path for you. Hit return. The current working directory of
Terminal is now this directory. For example, my terminal command looks like this:

cd /iphone/Homepwner/Homepwner/en.lproj            

Next, you will use ibtool to suck the strings from this XIB file. Enter the following in the terminal (all
terminal commands will be on the same line, we break them up onto multiple lines to fit the page):

ibtool --generate-strings-file ~/Desktop/ItemDetailViewController.strings 
                ItemDetailViewController.xib         

This will create a ItemDetailViewController.strings file on your desktop that contains all of the
strings in your XIB file. Edit this file:



ptg

Localizing Resources

321

/* Class = "IBUILabel"; text = "Name"; ObjectID = "4"; */
"4.text" = "Nombre";

/* Class = "IBUILabel"; text = "Serial"; ObjectID = "5"; */
"5.text" = "Numéro de serie";

/* Class = "IBUILabel"; text = "Value"; ObjectID = "6"; */
"6.text" = "Valor";

/* Class = "IBUILabel"; text = "Label"; ObjectID = "7"; */
"7.text" = "Label";

Save this file.

Now you will use ibtool to create a new XIB file, based on the English version of
ItemDetailViewController.xib, that will replace all of the strings with the values from
ItemDetailViewController.strings. To pull this off, you will need to know the path of your English
XIB file and the path of your Spanish directory in this project’s directory. In Finder, navigate to your
project’s root directory (where all of your source files are).

In Terminal.app, enter the following command, followed by a space after write:

ibtool --strings-file ~/Desktop/ItemDetailViewController.strings --write 

Next, find ItemDetailViewController.xib in es.lproj and drag it onto the terminal window. Then,
find ItemDetailViewController.xib in the en.lproj folder and drag it onto the terminal window.
Your command should look similar to this:

ibtool --strings-file ~/Desktop/ItemDetailViewController.strings --write 
    /iphone/Homepwner/Homepwner/es.lproj/Homepwner.xib 
    /iphone/Homepwner/Homepwner/en.lproj/Homepwner.xib 

Hit return.

This command says, “Create ItemDetailViewController.xib in es.lproj from the
ItemDetailViewController.xib in en.lproj, and then replace all of the strings with the values from
ItemDetailViewController.strings.” Open ItemDetailViewController.xib (Spanish) in Xcode.
This XIB file will now be localized to Spanish. (You will have to resize the label and text field for the
serial number, as shown in Figure 18.4.)



ptg

Chapter 18  Localization

322

Figure 18.4  Spanish ItemDetailViewController.xib

Once you have finished localizing this XIB file, you will want to test it. There is a little Xcode glitch
to be aware of: sometimes Xcode just ignores a resource file’s changes when you build an application.
To ensure your application is being built from scratch, first delete the application from your device or
simulator. Then, choose Clean from the Product menu. This will force the application to be entirely re-
compiled, re-bundled, and re-installed.

Homepwner’s detail view will not appear in Spanish until you change the language settings on the
device. In Settings, change the language settings to Español and then relaunch your application. Select
a possession row, and you will see the interface in Spanish.

NSLocalizedString and Strings Tables
In many places in your applications, you create NSString instances dynamically or display string
literals to the user. To display translated versions of these strings, you must create a strings table. A
strings table is a file containing a list of key-value pairs for all of the strings your application uses and
their associated translations. It’s a resource file that you add to your application, but you don’t need to
do a lot of work to get data from it.



ptg

NSLocalizedString and Strings Tables

323

Whenever you have a string in your code, it appears like this: 

    @"Hello!"

To internationalize a string in your code, you replace literal strings with the macro
NSLocalizedString().

NSString *translatedString =
    NSLocalizedString(@"Hello!", @"The greeting for the user");

This function takes two arguments: a key (which is required) and a comment (which is not). The key
is the lookup value in a strings table. At runtime, NSLocalizedString() will look through the strings
tables bundled with your application for a table that matches the user’s language settings. Then, in
that table, the function gets a translation that matches the key. (The function doesn’t use the second
argument; you will see what it’s for in a moment.)

Now you’re going to internationalize the string “Homepwner” that is displayed in the navigation bar.
In ItemsViewController.m, locate the init method and change the line of code that sets the title of
the navigationItem.

- (id)init 
{
    self = [super initWithStyle:UITableViewStyleGrouped];
    
    if (self) {
        UIBarButtonItem *bbi = [[UIBarButtonItem alloc] 
                            initWithBarButtonSystemItem:UIBarButtonSystemItemAdd 
                                                 target:self 
                                                 action:@selector(addNewPossession:)];
        [[self navigationItem] setRightBarButtonItem:bbi];
        [bbi release];
    
        [[self navigationItem] setTitle:
                    NSLocalizedString(@"Homepwner", @"Name of application")];
    
        [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];
    }

    return self;        
}

Once you have a file that has been internationalized with NSLocalizedString(), you can generate
strings tables with a command-line application.

Open Terminal.app and navigate to the location of ItemsViewController.m. My command looks like
this:

cd /iphone/Homepwner/Homepwner/

At which point, I can use the terminal command ls to print out the directory contents and see
ItemsViewController.m in that list.

To generate the strings table, enter the following into Terminal and hit return:

genstrings ItemsViewController.m

This creates a file named Localizable.strings in the same directory as ItemsViewController.m.
Drag this file into the project navigator. When the application is compiled, this resource will be copied
into the main bundle.



ptg

Chapter 18  Localization

324

Oddly enough, Xcode sometimes has a problem with strings tables. Open the Localizable.strings
file in the editor area. If you see a bunch of upside-down question marks, you need to reinterpret this
file as Unicode (UTF-16). Show the utilities area and select the file inspector. Locate the area named
Text Settings and change the pop-up menu next to Text Encoding to Unicode (UTF-16) (Figure 18.5). It
will ask if you want to reinterpret or convert. Choose Reinterpret.

Figure 18.5  Changing encoding of a file

The file should look like this:

/* Name of application */
"Homepwner" = "Homepwner";

Notice that the comments in your strings table are the second arguments you supplied to
NSLocalizedString(). Even though the function doesn’t require them, they will make your localizing
life easier.

Now that you’ve created Localizable.strings, localize it the same way you did the XIB file. (Strings
tables are resources, too!) Select the file in the project navigator and click the plus button in the utilities
area. Add the Spanish localization and then open the Spanish version of Localizable.strings. The
string on the lefthand side is the key that is passed to NSLocalizedString(), and the string on the
righthand side is what is returned. Change the text on the righthand side to the Spanish translation
shown below.

/* Name of application */
"Homepwner" = "Dueño de casa"



ptg

Challenge: Another Localization

325

Build and run the application again. The title of the navigation bar will appear in Spanish. If it doesn’t,
you might need to delete the application, clean your project, and rebuild. (Or check your user language
setting.) 

Challenge: Another Localization
Practice makes perfect. Localize Homepwner for another language. 

For the More Curious: NSBundle’s Role in
Internationalization
The real work of adding a localization is done for you by the class NSBundle. For example, when a
UIViewController is initialized, it is given two arguments: the name of a XIB file and an NSBundle
object. The bundle argument is typically nil, which is interpreted as the application’s main bundle.
(The main bundle is another name for the application bundle – all of the resources and the executable
for the application. When an application is built, all of the lproj directories are copied into this
bundle.)

When the view controller loads its view, it asks the bundle for the XIB file. The bundle, being very
smart, checks the current language settings of the device and looks in the appropriate lproj directory.
The path for the XIB file in the lproj directory is returned to the view controller and loaded.

NSBundle knows how to search through localization directories for every type of resource using the
instance method pathForResource:ofType:. When you want a path to a resource bundled with your
application, you send this message to the main bundle. Here’s an example using the resource file
myImage.png:

    NSString *path = [[NSBundle mainBundle] pathForResource:@"myImage"
                                                     ofType:@"png"];

The bundle first checks to see if there is a myImage.png file in the top level of the application bundle. If
so, it returns the full path to that file. If not, the bundle gets the device’s language settings and looks in
the appropriate lproj directory to construct the path. If no file is found, it returns nil.

This is why you must delete and clean an application when you localize a file. The previous un-
localized file will still be in the root level of the application bundle because Xcode will not delete a file
from the bundle when you re-install. Even though there are lproj folders in the application bundle, the
bundle finds the top-level file first and returns its path.



ptg

This page intentionally left blank 



ptg

327

19
Settings

Many applications include preferences that users can set. Whether users are picking the size of the 
text or storing usernames, there is a standard way of enabling iOS application preferences. In this
chapter, you will use the NSUserDefaults class to add a preference to your Whereami application. This
preference will specify the map type of the MKMapView.

Updating Whereami
Every MKMapView has a mapType property that specifies whether it shows roads, satellite imagery, or
both. You will allow the user to change this property by adding a UISegmentedControl that toggles the
map type. The user’s choice will be saved as a preference for the next time the application is launched.

Open the Whereami project. Then open MainWindow.xib and add a UISegmentedControl to the
interface. Change its style and number of segments as shown in Figure 19.1.

Figure 19.1  UISegmentedControl attributes

Then, create an action method and outlet for this control, as shown in Figure 19.2.



ptg

Chapter 19  Settings

328

Figure 19.2  Adding to Whereami’s interface

In WhereamiAppDelegate.m, implement this method to change the map type.

- (IBAction)changeMapType:(id)sender
{
    switch([sender selectedSegmentIndex])
    {
        case 0:
        { 
            [worldView setMapType:MKMapTypeStandard];
        }break;
        case 1:
        {
            [worldView setMapType:MKMapTypeSatellite];
        }break;
        case 2:
        {
            [worldView setMapType:MKMapTypeHybrid];
        }break;
    }
}            

Build and run the application and change the map type to make sure it works. However, if you quit the
application (and kill it from the dock), it won’t remember the change you made on the next launch.



ptg

NSUserDefaults

329

NSUserDefaults
In this exercise, we will store a value to specify the map type that the user last selected so that the
chosen type will automatically be displayed when the user launches the application again. This value
will be stored in an instance of NSUserDefaults.

Every application has an instance of NSUserDefaults that it can access by sending the class message
standardUserDefaults to the NSUserDefaults class. This instance of NSUserDefaults is like an
NSMutableDictionary; you can set and remove objects in it using a key. It is also automatically read
from disk when the application first accesses it and written to disk when modified.

The keys of an NSUserDefaults are always of type NSString. A key identifies a preference. An object
represents the value of a preference. These objects must be property list serializable or primitives. For
example, if you created a key “Text Size” and assigned the integer 16, it would mean user’s preferred
text size is 16 points.

But that “Text Size” key is a completely hypothetical example. There isn’t a built-in key that magically
resizes all of your text. In fact, there are no built-in keys at all. Instead, you create your own keys
specific to your application and give them values that mean something for that application.

The keys you will create are strings and will be used both when reading the value and setting the value.
You will define them as a static variable so that you can use the variable as the key instead of a hard-
coded string that you may mistype. (If you mistype a variable name, the compiler will give you an
error. It has no idea if you’ve mistyped a string.) At the top of WhereamiAppDelegate.m, declare a new
static variable to hold the preference name for the map type.

NSString * const WhereamiMapTypePrefKey = @"WhereamiMapTypePrefKey";

@implementation WhereamiAppDelegate

Notice that the variable name and the key are the name of the application, the name of the preference,
and the words PrefKey. This is the typical pattern for naming preference keys.

To add or change the value of a preference in an NSUserDefaults, you use setObject:forKey: just
like you would with an NSMutableDictionary. In addition, NSUserDefaults has some convenience
methods for putting primitives into preferences, like setInteger:forKey:.

In WhereamiAppDelegate.m, add the following line of code to the end of changeMapType:.

- (IBAction)changeMapType:(id)sender
{
    [[NSUserDefaults standardUserDefaults] 
                    setInteger:[sender selectedSegmentIndex]
                        forKey:WhereamiMapTypePrefKey];
                        
    switch([sender selectedSegmentIndex])
    {
        case 0:
        { 
            [worldView setMapType:MKMapTypeStandard];
        }break;
        case 1:
        {
            [worldView setMapType:MKMapTypeSatellite];
        }break;
        case 2:



ptg

Chapter 19  Settings

330

        {
            [worldView setMapType:MKMapTypeHybrid];
        }break;
    } 
}                        

Now, whenever the user changes the map type, that value will be written to the NSUserDefaults,
which will then be saved to disk. When the NSUserDefaults saves its data to disk, it saves it to
the Library/Preferences directory. The name of that file will be the bundle identifier for your
application.

When your application firsts asks for the standardUserDefaults, it will load this file from disk, and
all of the saved preferences will be available to your application. In WhereamiAppDelegate.m, update
the method application:didFinishLaunchingWithOptions: to read in this value and set the map
type accordingly.

- (BOOL)application:(UIApplication *)app 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    NSInteger mapTypeValue = [[NSUserDefaults standardUserDefaults] 
                                integerForKey:WhereamiMapTypePrefKey];
    
    // Update the UI 
    [mapTypeControl setSelectedSegmentIndex:mapTypeValue];

    // Update the map 
    [self changeMapType:mapTypeControl];

Build and run Whereami and change the map type. Exit the application by pressing the Home button
and kill it from the dock. Then, relaunch it, and the map will display the type of map you previously
selected.

When your application first launches, the value for the key WhereamiMapTypePrefKey does not exist;
it defaults to 0. For this application, that works fine, but some preferences may need a temporary,
non-zero default value (i.e., a “factory setting”) for the application to run correctly. These temporary
defaults are placed in the registration domain of NSUserDefaults. Any preferences set by the user are
stored in a different domain, the application domain.

By default, the application domain is empty: there are no keys and no values. The first time a user
changes a setting, a value is added to the application domain for the specified key. When you ask the
NSUserDefaults for the value of a preference, it first looks in the application domain. If there is a
value for that key, then the user has set a preference, and the NSUserDefaults returns that value. If not,
the NSUserDefaults looks in the registration domain and finds the temporary default.

The application domain is always saved to disk; that’s why it remembers user preferences on the next
launch. The registration domain is not, and its values must be set every time the application launches.
To set the values of the registration domain, you create an NSDictionary with a key-value pair for
each preference you plan on using in your application. Then, you send the dictionary as an argument to
the message registerDefaults: of NSUserDefaults.

Typically, you send the registerDefaults: message before any object is able to access the instance
of NSUserDefaults. This means before the instance of the application delegate is created. What comes
before the creation of the WhereamiAppDelegate? The creation of the WhereamiAppDelegate class.
Like any object, a class also must be initialized before it can receive messages. So, after a class is
created but before it receives its first message, it is sent the message initialize.



ptg

For the More Curious: The Settings Application

331

In WhereamiAppDelegate.m, override the class method initialize of NSObject to register defaults,
including setting the map type preference to 1.

+ (void)initialize
{
    NSDictionary *defaults = [NSDictionary 
                            dictionaryWithObject:[NSNumber numberWithInt:1]
                                          forKey:WhereamiMapTypePrefKey];
    [[NSUserDefaults standardUserDefaults] registerDefaults:defaults];
}                                                                     

Delete the application from your device to remove the previously saved preferences. Then, build and
run again. The first time the application launches, the default satellite map will be displayed. If you
change the map type, the preference is added to the application domain, and your application will use
that value from then on. The default value in the registration domain will be ignored.

NSUserDefaults is a simple class but a useful one. In addition to storing preferences, many developers
use NSUserDefaults to store little pieces of information that are important but don’t really need 
to be kept in distinct files. For example, if you want to display an alert to a user every 3rd time the
application is launched, you could store the number of times the application has been launched in the
NSUserDefaults.

For the More Curious: The Settings Application
Every iOS device has a Settings application. Applications that register some or all of their preferences
with Settings get an entry in this application where those preferences can be changed. However, most
applications do not use Settings to store their preferences: why leave the application, find Settings,
change a value, and then re-open the application when you could have your own built-in interface?

But, in case it’s something you want to do, here’s how. To register for an entry in Settings, you add a
Settings.bundle to your application. This bundle contains a property list that has an entry for each
preference you want to expose in the Settings application. (There is a template for this bundle when
you create a new file.)

Each entry contains a key that is a string that matches the name of the preference keys you use
with NSUserDefaults. Additionally, you set a preference specifier key with one of the pre-defined
constants. These constants indicate the type of control that will appear for this preference in the
Settings application. They are things like text fields, switches, and sliders. You also add a key for a
default value. Some preference specifiers require you to add additional keys. For example, a slider
preference will need a minimum and a maximum value.

If you choose to use a settings bundle, you must take care to respect the changes made in the Settings
application when transitioning between application states. If your application is terminated and then
the user changes a value in Settings, those changes will be written to disk, and the next time your
application launches, it will get the correct values. However, most iOS applications are not terminated
when the user presses the Home button. Thus, when your application returns from being suspended,
you should check to see if any of the preferences were changed while it was suspended.

An application returning from the suspended state that has had preferences changed will be notified
via the NSNotificationCenter. You can register for the NSUserDefaultsDidChangeNotification
notification to be informed of these changes. (You typically register for this notification when the
application first launches.)



ptg

This page intentionally left blank 



ptg

333

20
Touch Events and

UIResponder

In your Hypnosister project from Chapter 6, you created a UIScrollView that handled touch events to
scroll a view and even handled a multi-touch event to zoom. The UIScrollView class makes scrolling
and zooming easy to implement. But what if you want to do something else, something special or
unique, with touch events?

In this chapter, you are going to create a view that lets the user draw lines by dragging across the view
(Figure 20.1). Using multi-touch, the user will be able to draw more than one line at a time. Double-
tapping will clear the screen and allow the user to begin again.

Figure 20.1  A drawing program



ptg

Chapter 20  Touch Events and UIResponder

334

Touch Events
As a subclass of UIResponder, your view can override four methods to handle the four distinct touch
events:

• a finger or fingers touches the screen 

- (void)touchesBegan:(NSSet *)touches
           withEvent:(UIEvent *)event;

• a finger or fingers move across the screen (This message is sent repeatedly as a finger moves.) 

- (void)touchesMoved:(NSSet *)touches
           withEvent:(UIEvent *)event;

• a finger or fingers is removed from the screen 

- (void)touchesEnded:(NSSet *)touches
           withEvent:(UIEvent *)event;

• a system event, like an incoming phone call, interrupts a touch before it ends 

- (void)touchesCancelled:(NSSet *)touches
               withEvent:(UIEvent *)event;

When a touch event occurs, that event is added to a queue of events that the UIApplication object
manages. In practice, the queue rarely fills up, and events are delivered immediately. (If your touches
are sluggish, then one of your methods is hogging the CPU, and events are waiting in line to be
delivered. Chapter 21 will show you how to catch these problems.)

Delivering a touch event means sending one of the UIResponder messages to the view the event
occurred on. In these methods, there is always a UIEvent instance you have access to. The UIEvent can
tell you the type of event and when this event took place. It can also tell you all of the active touches in
an application. For touch events, however, you typically do not use the event object; you use UITouch
objects instead.

When the user touches the screen, an instance of UITouch is created and associated with that finger.
The UITouch knows where that finger is on the screen. As that finger moves, the same UITouch object
is updated so that it always holds the current position of that finger on the screen. When the finger
leaves the screen, the UITouch is discarded. (UITouch instances also keep track of things like the
previous location of the finger and how many times this finger tapped the screen.)

As these touch events occur, the appropriate UIResponder messages are sent to the touched view,
and the UITouch objects involved with those events are passed as arguments. Because more than
one finger can trigger the same event at the same time, the argument passed to the view is a set 
of those touches. For example, if two fingers touch a view at the same time, the view will be sent
touchesBegan:withEvent: and the first argument will be an NSSet that contains two UITouch
instances. However, if two fingers touch the same view one after the other, you will get two separate
touchesBegan:withEvent: messages, and each NSSet will contain one UITouch.

When a touch moves or ends, touchesMoved:withEvent: or touchesEnded:withEvent: will be sent
to the view that the touch originated on. Thus, once a touch begins its life, it is tied to the view that it
first touched. Also, the NSSet that is passed to these methods only contains the touches that triggered
the event. For example, if there are two touches on the view but only one of them moved, only the
moving touch will be in the set delivered via touchesMoved:withEvent:. 



ptg

Creating the TouchTracker Application

335

Creating the TouchTracker Application
Now let’s get started with your application. In Xcode, create a new Window-based Application iPhone
project and name it TouchTracker.

First, you will need a model object that describes a line. Create a new NSObject and name it Line. In
Line.h, declare two CGPoint instance variables and two properties:

#import <Foundation/Foundation.h>

@interface Line : NSObject {
    CGPoint begin;
    CGPoint end;
} 
@property (nonatomic) CGPoint begin;
@property (nonatomic) CGPoint end;
@end

In Line.m, synthesize the properties:

#import "Line.h"

@implementation Line

@synthesize begin, end;

@end

Next, create a new NSObject called TouchDrawView. In TouchDrawView.h, change the superclass to
UIView. Also, declare two collection objects: an array to hold complete lines and a dictionary to hold
lines that are still being drawn. We’ll talk about why we use two different collection objects when you
write the code to use them.

#import <Foundation/Foundation.h>    
#import <UIKit/UIKit.h>

@interface TouchDrawView : UIView 
{
    NSMutableDictionary *linesInProcess;
    NSMutableArray *completeLines;
} 
- (void)clearAll;
@end

In your Hypnosister project, you instantiated your custom view programmatically. In TouchTracker,
you will instantiate a custom view from a XIB file. Open MainWindow.xib.

From the object library, drag an instance of UIView onto the window. In the identity inspector, set its
class to TouchDrawView, as shown in Figure 20.2. 

Figure 20.2  Identity inspector



ptg

Chapter 20  Touch Events and UIResponder

336

Views created programmatically are sent initWithFrame:, views that are unarchived from a XIB file
are sent initWithCoder:. Thus, for TouchDrawView, you will override initWithCoder: instead of
initWithFrame:.

In TouchDrawView.m, take care of the creation and destruction of the two collections:

#import "TouchDrawView.h"
#import "Line.h"

@implementation TouchDrawView

- (id)initWithCoder:(NSCoder *)c
{
    self = [super initWithCoder:c];
    
    if (self) {
        linesInProcess = [[NSMutableDictionary alloc] init];
        
        // Don't let the autocomplete fool you on the next line,
        // make sure you are instantiating an NSMutableArray
        // and not an NSMutableDictionary!
        completeLines = [[NSMutableArray alloc] init];
        
        [self setMultipleTouchEnabled:YES];
    }
    
    return self;
}

Notice that you explicitly enabled multi-touch events by sending the message
setMultipleTouchEnabled:. Without this, only one touch at a time can be active on a view. If another
finger touches the view, it will be ignored, and the view will not be sent touchesBegan:withEvent: or
any of the other UIResponder messages.

In the dealloc method, release the objects you created.

- (void)dealloc
{
    [linesInProcess release];
    [completeLines release];
    [super dealloc];
}

Now override the drawRect: method to create lines using functions from Core Graphics:

- (void)drawRect:(CGRect)rect 
{
    CGContextRef context = UIGraphicsGetCurrentContext();
    CGContextSetLineWidth(context, 10.0);
    CGContextSetLineCap(context, kCGLineCapRound);

    // Draw complete lines in black
    [[UIColor blackColor] set];
    for (Line *line in completeLines) {
        CGContextMoveToPoint(context, [line begin].x, [line begin].y);
        CGContextAddLineToPoint(context, [line end].x, [line end].y);
        CGContextStrokePath(context);
    }



ptg

Turning Touches into Lines

337

    // Draw lines in process in red
    [[UIColor redColor] set];
    for (NSValue *v in linesInProcess) {
        Line *line = [linesInProcess objectForKey:v];
        CGContextMoveToPoint(context, [line begin].x, [line begin].y);
        CGContextAddLineToPoint(context, [line end].x, [line end].y);
        CGContextStrokePath(context);
    }
}

Finally, write a method that will clear the collections and redraw the view in TouchDrawView.m.

- (void)clearAll
{
    // Clear the collections
    [linesInProcess removeAllObjects];
    [completeLines removeAllObjects];

    // Redraw
    [self setNeedsDisplay];
}

Turning Touches into Lines
A line (remember 9th grade geometry class?) is defined by two points. Our Line stores these points as
properties named begin and end. When a touch begins, you’ll create a line and set both begin and end
to the point where the touch began. When the touch moves, you will update end. When the touch ends,
you will have your complete line.

There are two collection objects that hold Line instances. Lines that have been completed are
stored in the completeLines array. Lines that are still being drawn, however, are stored in an
NSMutableDictionary. Why do we need a dictionary? We’ve enabled multi-touch, so a user can draw
more than one line at a time. This means we have to keep track of which touch events go with which
line. For instance, imagine the user touches the screen with two fingers creating two instances of Line.
Then one of those fingers moves. The TouchDrawView is sent a message for the event, but how can it
know which line to update?

This is where the dictionary comes in: when a touch begins, we will grab the address of the UITouch
object that is passed in and wrap it in an NSValue instance. A new Line will be created and added
to the dictionary, and the NSValue will be its key. As we receive more touch events, we can use the
address of the UITouch that is passed in to access and update the right line (Figure 20.3).



ptg

Chapter 20  Touch Events and UIResponder

338

Figure 20.3  Object diagram for TouchTracker

Now let’s return to the methods for handling touch events. First, in TouchDrawView.m, override
touchesBegan:withEvent: to create a new Line instance and store it in an NSMutableDictionary.

- (void)touchesBegan:(NSSet *)touches
           withEvent:(UIEvent *)event
{
    for (UITouch *t in touches) {

        // Is this a double tap?
        if ([t tapCount] > 1) {
            [self clearAll];
            return;
        }

        // Use the touch object (packed in an NSValue) as the key
        NSValue *key = [NSValue valueWithPointer:t];

        // Create a line for the value
        CGPoint loc = [t locationInView:self];
        Line *newLine = [[Line alloc] init];
        [newLine setBegin:loc];
        [newLine setEnd:loc];

        // Put pair in dictionary
        [linesInProcess setObject:newLine forKey:key];

        // There is a memory leak in this method
        // You will find it using Instruments in the next chapter
    }
}

Next, in TouchDrawView.m, override touchesMoved:withEvent: to update the end point of the line
associated with the moving touch.

- (void)touchesMoved:(NSSet *)touches
           withEvent:(UIEvent *)event



ptg

Turning Touches into Lines

339

{
    // Update linesInProcess with moved touches
    for (UITouch *t in touches) {
        NSValue *key = [NSValue valueWithPointer:t];

        // Find the line for this touch
        Line *line = [linesInProcess objectForKey:key];

        // Update the line
        CGPoint loc = [t locationInView:self];
        [line setEnd:loc];
    }
    // Redraw
    [self setNeedsDisplay];
}

When a touch ends, you need to finalize the line. However, a touch can end for two reasons: the
user lifts the finger off the screen (touchesEnded:withEvent:) or the operating system interrupts
your application (touchesCancelled:withEvent:). A phone call, for example, will interrupt your
application.

In many applications, you’ll want to handle these two events differently. However, for TouchTracker,
you will write one method to handle both cases. Declare a new method in TouchDrawView.h.

- (void)endTouches:(NSSet *)touches;                    

In TouchDrawView.m, implement endTouches:.

- (void)endTouches:(NSSet *)touches
{
    // Remove ending touches from dictionary
    for (UITouch *t in touches) {
        NSValue *key = [NSValue valueWithPointer:t];
        Line *line = [linesInProcess objectForKey:key];

        // If this is a double tap, 'line' will be nil,
        // so make sure not to add it to the array
        if (line) {
            [completeLines addObject:line];
            [linesInProcess removeObjectForKey:key];
        }
    }
    // Redraw
    [self setNeedsDisplay];
}

Finally, override the two methods from UIResponder to call endTouches: in TouchDrawView.m.

- (void)touchesEnded:(NSSet *)touches 
           withEvent:(UIEvent *)event
{
    [self endTouches:touches];
}

- (void)touchesCancelled:(NSSet *)touches
               withEvent:(UIEvent *)event
{
    [self endTouches:touches];
}



ptg

Chapter 20  Touch Events and UIResponder

340

Build and run the application. Then make beautiful line art with one or more fingers. 

The Responder Chain
In Chapter 5, we talked briefly about UIResponder and the first responder. A UIResponder can receive
touch events. UIView is one example of a UIResponder subclass, but there are many others, including
UIViewController, UIApplication, and UIWindow. You are probably thinking, “But you can’t touch a
UIViewController. It’s not an on-screen object!” You are right – you can’t send a touch event directly
to a UIViewController, but view controllers can receive events through the responder chain. (By the
way, you get two bonus points for keeping the view controller and its view separate in your brain.)

Every UIResponder has a pointer called nextResponder, and together these objects make up the
responder chain shown in Figure 20.4. A touch event starts at the view that was touched. The
nextResponder of a view is typically its UIViewController (if it has one) or its superview (if it
doesn’t). The nextResponder of a view controller is typically its view’s superview. The top-most
superview is the window (UIWindow inherits from UIView). The window’s nextResponder is the
singleton instance of UIApplication. If the application doesn’t handle the event, then it is discarded.
(Note that the window and application don’t do anything with an event unless you subclass them.)

Figure 20.4  Responder chain

How does a UIResponder not handle an event? It forwards the same message to its nextResponder.
That’s what the default implementation of methods like touchesBegan:withEvent: do. So if a method
is not overridden, its next responder will attempt to handle the touch event.

You can explicitly send a message to a next responder, too. Let’s say there is a view that tracks
touches, but if a double tap occurs, its next responder should handle it. The code would look like this:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
    UITouch *touch = [touches anyObject];
    if ([touch tapCount] == 2) {
        [[self nextResponder] touchesBegan:touches withEvent:event];
        return;
    }



ptg

Challenge: Saving and Loading

341

    ... Go on to handle touches that aren't double taps
}

Challenge: Saving and Loading
Save the lines when the application terminates. Reload them when the application resumes.

Challenge: Circles
Use two fingers to draw circles. Try having each finger represent one corner of the bounding box
around the circle. You can simulate two fingers on the simulator by holding down the option button.
(Hint: This is much easier if you track touches that are working on a circle in a separate dictionary.) 

For the More Curious: UIControl
The class UIControl is the superclass for several classes in Cocoa Touch, including UIButton and
UISlider. We’ve seen how to set the targets and actions for these controls. Now we can take a closer
look at how UIControl overrides the same UIResponder methods you implemented in this chapter.

In UIControl, each possible control event is associated with a constant. Buttons, for example, typically
send action messages on the UIControlEventTouchUpInside control event. A target registered for 
this control event will only receive its action message if the user touches the control and then lifts the
finger off the screen inside the frame of the control. Essentially, it is a tap.

For a button, however, you can have actions on other event types. For example, you might trigger 
a method if the user removes the finger inside or outside the frame. Assigning the target and action
programmatically would look like this:

[rButton addTarget:tempController
            action:@selector(resetTemperature:)
  forControlEvents:UIControlEventTouchUpInside | UIControlEventTouchUpOutside];

Now consider how UIControl handles UIControlEventTouchUpInside.

// Not the exact code. There is a bit more going on! 
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
    // Reference to the touch that is ending
    UITouch *touch = [touches anyObject];

    // Location of that point in this control's coordinate system
    CGPoint touchLocation = [touch locationInView:self];

    // Is that point still in my viewing bounds?
    if (CGRectContainsPoint([self bounds], touchLocation))
    {
        // Send out action messages to all targets registered for this event!
        [self sendActionsForControlEvents:UIControlEventTouchUpInside];
    } else {
        // The touch ended outside the bounds, different control event
        [self sendActionsForControlEvents:UIControlEventTouchUpOutside];
    }
}



ptg

Chapter 20  Touch Events and UIResponder

342

So how do these actions get sent to the right target? At the end of the UIResponder method
implementations, the control sends the message sendActionsForControlEvents: to itself. This
method looks at all of the target-action pairs the control has, and if any of them are registered for the
control event passed as the argument, those targets are sent an action message.

However, a control never sends a message directly to its targets. Instead, it routes these messages
through the UIApplication object. Why not have controls send the action messages directly to the
targets? Controls can also have nil-targeted actions. If a UIControl’s target is nil, the UIApplication
finds the first responder of its UIWindow and sends the action message to it. 



ptg

343

21
Instruments

In Chapter 4, you learned about using the debugger to find and fix problems in your code. Now we’re
going to look at other tools available to iOS programmers and how to integrate them into application
development.

The Static Analyzer
There is a memory leak in your TouchTracker application. When the user double-taps, the screen
clears. At this point, all instances of Line should be deallocated, but they aren’t. In the first part of this
chapter, you’ll examine this leak with Xcode’s static analyzer.

When you build an application, you can ask Xcode to analyze your code. The static analyzer then
makes educated guesses about what would happen if that code were to be executed and informs you
of potential problems, like a memory leak. It does this without executing the code or building the
application.

When the static analyzer checks the code, it examines each function and method individually by
iterating over every possible code path. A method can have a number of control statements (if, for,
switch, etc.). The conditions of these statements will dictate which code is actually executed. A code
path is one of the possible paths the code will take given these control statements. For example, a
method that has a single if statement has two code paths: one if the condition fails and one if the
condition succeeds.

Open TouchTracker.xcodeproj.

To start the static analyzer, click and hold the Run button in the top-left corner of the workspace. In the
pop-up window that appears, choose Analyze (Figure 21.1). Alternatively, you can use the keyboard
shortcut: Command-Shift-B.



ptg

Chapter 21  Instruments

344

Figure 21.1  Using the static analyzer

Analysis results appear in the issue navigator. In this case, the analyzer found the leak in
TouchDrawView.m and tells you the line where the leaked object is allocated, as shown in Figure 21.2.
(If you don’t see line numbers in the gutter, you can turn them on by selecting Preferences from the
Xcode menu. Choose the Text Editing tab and click the checkbox Show Line Numbers.)

Figure 21.2  Analyzer results

The analyzer will also show us how it came to this conclusion. Click on the inline analyzer result (the
result in the source file) to reveal the expanded analysis (Figure 21.3).

Figure 21.3  Expanded analysis



ptg

Instruments

345

When you expand the analyzer’s results, the arrows show the code path that generated the issue. Take
a closer look at the code path shown with the darker arrows. It begins at the for loop and then assumes
the if statement failed, thus skipping its body. Execution continues until the new Line is allocated.
The analyzer highlights this allocation as the first event in the issue: the alloc method “returns an
Objective-C object with a +1 retain count.”

Then, the dimmer arrow runs from the allocation back to the for loop. This shows that when execution
returns to the beginning of the for loop, the pointer newLine is not referenced again before it is lost.
Therefore, the object it points to is leaked.

You can close the expanded analysis by clicking on the analysis result in the issue navigator. We will
fix this leak at the end of the chapter; for now, leave it in.

In addition to memory leaks, the analyzer can also find logic errors. In TouchDrawView.m, implement
the following method:

- (int)numberOfLines
{
    int count;
    
    // Check that they are non-nil before we add their counts...
    if (linesInProcess && completeLines)
        count = [linesInProcess count] + [completeLines count];

    return count;
}            

Analyze the code. The analyzer reports a logic error in the issue navigator. View the extended analysis
to see the code path that generates the error: when the if statement fails, the value of count is never
given a value. Thus, the caller will receive garbage when this method returns. (The solution, of course,
is to assign 0 to count when it is declared.)

When you analyze your code (which you will do on a regular basis because you are a smart
programmer), you’ll see issues other than those described here. Many times, we see novice
programmers shy away from analyzer issues because of the technical language. Don’t do this. Take the
time to expand the analysis and understand what the analyzer is trying to tell you. It will be worth it for
the development of your application and for your development as a programmer.

Instruments
The static analyzer is useful for catching issues that can be recognized at compile time. However,
some problems can’t be recognized until runtime. This is where Instruments excels. The Instruments
tool monitors your application while it is running and can find real issues as they are happening.
Instruments is made up of several plug-ins that enable you to inspect things like what objects are
allocated, where the CPU is spending its time, file I/O, network I/O, and others. Each plug-in is known
as an Instrument. Together, they help you track down inefficiencies in your application and optimize
your code.

The Allocations Instrument

Now let’s see how we would find the same memory leak in TouchTracker using the Allocations
instrument.



ptg

Chapter 21  Instruments

346

When you use Instruments to monitor your application, you are profiling the application. While you
can profile the application running on the simulator, you will get more accurate data on a device.

To profile an application, click and hold the Run button in the top left corner of the workspace. In the
pop-up menu that appears, select Profile (Figure 21.4).

Figure 21.4  Profiling an application

Instruments will launch and ask which instrument to use. Choose Allocations and click Profile.



ptg

The Allocations Instrument

347

Figure 21.5  Choosing an instrument

(There is a Leaks instrument, but it is simply a subset of Allocations. Once you understand the more
complicated Allocations instrument, using Leaks is easy.)

TouchTracker will launch, and a window will open in Instruments (Figure 21.6). The interface may
be overwhelming at first, but, like Xcode’s workspace window, it will become familiar with time and
use. First, make sure you can see everything by turning on all of the areas in the window. In the View
control at the top of the window, click all three buttons to reveal the three main areas. The window
should look like Figure 21.6.



ptg

Chapter 21  Instruments

348

Figure 21.6  Allocations instrument

This table shows every memory allocation in the application, but we’re only interested in allocations
of Line objects. You can filter this table to show only allocations of type Line by typing Line in the
Category search box in the top right corner of the window.

Then, in TouchTracker, draw some lines. Those instances will appear in the Object Summary table at
the bottom of the window (Figure 21.7).

Figure 21.7  Allocated Lines

The # Living column shows you how many objects of this type are currently allocated. Live Bytes
shows how much memory these living instances take up. The # Overall column shows you how
many Lines have been created during the course of the application – even if they have since been
deallocated.

As you would expect, the number of lines living and the number of lines overall are equal at the
moment. Now, double-tap the screen in TouchTracker and erase your lines. In Instruments, notice that



ptg

The Allocations Instrument

349

the number of living lines does not go down. The Lines you just cleared should be deallocated, but
they are not.

Let’s see what else the Allocations instrument can tell us about our leaky lines. In the table, select the
row that says Line. An arrow will appear in the Category column; click that arrow to see more details
about these allocations (Figure 21.8).

Figure 21.8  Line summary

Each row in this table shows a single instance of Line that exists in the application. Select one of the
rows and check out the stack trace that appears in the Extended Detail area on the right side of the
Instruments window (Figure 21.9). This stack trace shows you where that instance of Line was created.
Grayed-out items in the trace are system library calls. Items in black text are your code. Find the top-
most item that is your code (-[TouchDrawView touchesBegan:withEvent:]) and double-click it.

Figure 21.9  Stack trace

The source code for this implementation will replace the table of Line instances (Figure 21.10). The
relevant lines of code are highlighted, including where the Line instance is created and where it is
added to the linesInProcess, which retains it. Here’s where we notice that the Line instance is



ptg

Chapter 21  Instruments

350

not released in the scope of this method. Also, note that Allocations only shows you a leak if you’re
looking for one. Unlike the static analyzer, it won’t say, “Psst – you’ve got a leak here.”

Figure 21.10  Source code in Instruments

Click on the small Xcode icon in the bar above the source to open this file in Xcode. Fix the leak by
releasing the line after it has been added to the dictionary.

- (void)touchesBegan:(NSSet *)touches 
           withEvent:(UIEvent *)event
{
    for (UITouch *t in touches) {
        if ([t tapCount] > 1) {
            [self clearAll];
            return;
        }
        NSValue *key = [NSValue valueWithPointer:t];
        CGPoint loc = [t locationInView:self];
        
        Line *newLine = [[Line alloc] init];
        [newLine setBegin:loc];
        [newLine setEnd:loc];
        
        [linesInProcess setObject:newLine forKey:key];
        
        [newLine release];
    }

}

Settings in Allocations

Now that we’ve fixed our leak in TouchTracker, let’s look at other options in the Allocations
instrument. Close the Instruments window (without saving – you don’t need to store the results). In
Xcode, click the profile button again to build and profile the application. When Instruments launches
and asks which instrument to use, choose Allocations again.

Some settings in Instruments can only be changed while Instruments is not currently profiling. In the
top left corner of the Instruments window, click the red Stop button to stop profiling. Then, select the



ptg

The Allocations Instrument

351

info icon next to Allocations. In the pop-up window that appears, check the box for Record reference
counts and then click the x icon where the info icon was (Figure 21.11).

Figure 21.11  Enable recording of reference counts

The Record reference counts option instructs Instruments to note every alloc, retain, autorelease,
release, and dealloc message sent to every object. Click the red Record button again to start profiling
with this option turned on. (Instruments can’t build an application itself, so it always uses the most
recent build from Xcode.)

Draw some lines in TouchTracker and then double-tap to delete them. In Instruments, filter the
allocations to see just those for Line. No instances appear in the table because, by default, Allocations
does not show objects that no longer exist. To see all objects dead or alive, find the Allocation Lifespan
category on the left side of the window and then select the All Objects Created option (Figure 21.12).

Figure 21.12  Showing all objects



ptg

Chapter 21  Instruments

352

The Line instances will now show up in the table: there are 0 instances of Line living, and there are
however many you drew before clearing overall. You’ve definitely fixed that leak.

Now select the Line row and click the arrow next to it. Then, from this table, select one of the Line
instances and click its arrow. This new table shows you the reference count history of an individual
Line object (Figure 21.13).

Figure 21.13  Object’s lifespan

Notice the bar right above the table shows a drill-down of the tables you’ve seen. You can return to the
list of all Line objects by clicking on Object Summary.

Heapshot Analysis

The last item we’ll examine in the Allocations instrument is Heapshot Analysis. First, clear the search
box so that you aren’t filtering results anymore. Then, find the Heapshot Analysis category on the left
side of the Instruments window and click Mark Heap. A category named Baseline will appear in the
table. You can click the disclosure button next to this category to see all of the allocations that took
place before you marked the heapshot. Now, draw more lines in TouchTracker and click Mark Heap
again. Another category will appear named Heapshot 1. Click the disclosure button next to Heapshot 1
(Figure 21.14).

Figure 21.14  Heapshot

Every allocation that took place after the first heapshot is in this category. You can see the Line
instances that you just created, as well as a few objects that were used to handle other code during this
time. You can take as many heapshots as you like; they are very useful for seeing what objects get
allocated for a specific event. Double-tap the screen in TouchTracker to clear the lines and notice that
the objects in this heapshot disappear.

To return to the full object list where we started, select the pop-up button in the bar above the table that
currently says Heapshots and change it to Statistics. 



ptg

Time Profiler Instrument

353

Time Profiler Instrument

Now that you have hunted down wasted memory in TouchTracker, let’s look for wasted CPU cycles
using the Time Profiler instrument.

First, add the following CPU cycle-wasting code to the end of your drawRect: method:

float f = 0.0; 
for (int i = 0; i < 1000; i++) {
    f = f + sin(sin(time(NULL) + i));
}
NSLog(@"f = %f", f);

Build and profile the application. When Instruments asks which instrument to use, choose Time Profiler
(Figure 21.15). When Instruments launches the application and its window appears, make sure that all
three areas are visible by clicking the buttons in the View control to blue.

Figure 21.15  Time Profiler instrument

Touch and hold your finger on the TouchTracker screen. Move your finger around but keep it 
on the screen. This sends touchesMoved:withEvent: over and over to the TouchDrawView. Each
touchesMoved:withEvent: message causes drawRect: to be sent, which in turn causes the silly sin
code to run repeatedly.

As you move your finger, watch the table in Instruments shuffle around its items. Then click the pause
button (to the left of the Stop button) and examine the table’s contents. Each row is one function or



ptg

Chapter 21  Instruments

354

method call. In the left column, the amount of time spent in that function (expressed in milliseconds
and as a percentage of the total run time) is displayed (Figure 21.16). This gives you an idea of where
your application is spending its execution time.

Figure 21.16  Time Profiler results

There is no rule that says, “If X percentage of time is spent in this function, your application has a
problem.” Instead, use Time Profiler if you notice your application acting sluggish while testing it as a
user. For example, you should notice that drawing in TouchTracker is less responsive since we added
the wasteful sin code.

We know that when drawing a line, two things are happening: touchesMoved:withEvent: and
drawRect: are being sent to the TouchDrawView view. In TimeProfiler, we can check to see how much
time is spent in these two methods relative to the rest of the application. If an inordinate amount of
time is being spent in one of these methods, we know that’s where the problem is.

(Keep in mind that some things just take time. Redrawing the entire screen every time the user’s finger
moves, as is done in TouchTracker, is an expensive operation. If it was hindering the user experience,
you could find a way to reduce the number of times the screen is redrawn. For example, you could
redraw only every tenth of a second regardless of how many touch events were sent.)

Time Profiler shows you nearly every function and method call in the application. If you want to focus
on certain parts of the application’s code, you can prune down its results. For example, sometimes the
mach_msg_trap function will be very high on the sample list. This function is where the main thread
sits when it is waiting for input. It is not a bad thing to spend time in this function, so you might want
to eliminate the time spent in this function from the total amount of time shown in Time Profiler.

Use the search box in the top right corner of the Instruments window to find mach_msg_trap. Then,
select it from the table. On the left side of the screen, click the Symbol button under Specific Data
Mining. The mach_msg_trap function appears in the table under Specific Data Mining, and the pop-up
button next to it displays Charge. Click on Charge and change it to Prune. Then, clear the text from the
search box. Now, the list is adjusted so that any time spent in mach_msg_trap is ignored. You can click
on Restore while mach_msg_trap is selected in the Specific Data Mining table to add it back to the total
time.



ptg

Xcode Schemes

355

Figure 21.17  Pruning a symbol

Other options for reducing the list of symbols in Time Profiler include showing only Objective-C calls,
hiding system libraries, and charging calls to callers. The first two are obvious, but let’s look more
closely at charging calls to their caller. Select the row that holds mach_absolute_time. (If you are
running on the simulator, select _nanotime instead.) Then, click the Symbol button. This function is
removed from the main table, added to the Specific Data Mining table and listed as a Charge. This says
that all of the time spent in this function will be attributed to the function or method that called it.

Notice in the main table that mach_absolute_time has been replaced with the function that calls 
it, gettimeofday. If you charge gettimeofday, it will be replaced with its caller, time. If you
charge time, drawRect: will move to near the top of the list, since it now is now charged with time,
gettimeofday, and mach_absolute_time.

Some common function calls always use a lot of CPU time. Most of the time, these are harmless
and unavoidable. For example, the objc_msgSend function is the central dispatch function for any
Objective-C message. It occasionally creeps to the top of the list when you are sending lots of
messages to objects. Usually, it’s nothing to worry about. However, if you are spending more time
dispatching messages than actually doing work in the triggered methods and your application isn’t
performing well, you have a problem that needs solving.

As a real world example, an overzealous Objective-C developer might be tempted to create classes for
things like vectors, points, and rectangles. These classes would likely have methods to add, subtract,
or multiply instances as well as accessor methods to get and set instance variables. When these classes
are used for drawing, the code has to send a lot of messages to do something simple, like creating two
vectors and adding them together. The messages add excessive overhead considering the simplicity of
the operation. Therefore, the better alternative is to create data types like these as structures and access
their memory directly. (This is why CGRect and CGPoint are structures and not Objective-C classes.)

This should give you a good start with the Instruments application. The more you play with it, the
more adept at using it you will become. One final word of warning before you invest a significant
amount of your development time using Instruments: if there is no performance problem, don’t fret
over every little row in Instruments. It is a tool for diagnosing existing problems, not for finding new
ones. Write clean code that works first; then, if there is a problem, you can find and fix it with the help
of Instruments. 

Don’t forget to remove the CPU cycle-wasting code in drawRect:!

Xcode Schemes
In Chapter 4, we talked about how a workspace is a collection of projects, and a project is a collection
targets and files. A target has a number of build settings and phases that reference files from its project.



ptg

Chapter 21  Instruments

356

(We’ll talk more about those shortly.) When built, a target creates a product, which is usually an
application. A scheme contains one or more targets and specifies what to do with the product or
products (Figure 21.18). 

Figure 21.18  Xcode containers

When you create a new project, a scheme with the same name as the project is created for you. This
project has a TouchTracker scheme, and this scheme contains the TouchTracker target, which is
responsible for building the TouchTracker iOS application.

To view the details of a scheme, click the Scheme pop-up menu at the top left of the Xcode window
and select Edit Scheme.... The scheme editor will drop down into the workspace (Figure 21.19).



ptg

Creating a new scheme

357

Figure 21.19  Editing a scheme

On the left side of the scheme editor is the list of actions that every scheme can do. (Notice that these
scheme actions are also the choices you see when you click and hold the Run button in the Xcode
workspace – with the exception of Archive.) Selecting a scheme action here shows its options in the
details pane. Take a moment to look over the actions and the available options. Notice that some
actions have multiple tabs that categorize their options.

Creating a new scheme

As projects become larger and more complicated, they require more specific testing and debugging.
This can result in more time fiddling with the options for scheme actions. To avoid constant fiddling,
we typically create new schemes for common situations. For example, if we have an application that
consumes a lot of memory, we might want to routinely run the Allocations instrument on it. Instead of
having Instruments ask which instrument to use when we profile the application, we can set up a new
scheme that always runs Allocations.

Let’s set up this scheme for the TouchTracker target. From the Scheme pop-up menu, select New
Scheme.... When the sheet drops down, enter Allocations into the name and make sure TouchTracker is
selected as the target (Figure 21.20). Click OK.



ptg

Chapter 21  Instruments

358

Figure 21.20  Creating a new scheme

Reopen the scheme editor sheet either by selecting Edit Scheme... from the Scheme pop-up menu or
using the keyboard shortcut Command-Shift-<. Then click the Scheme pop-up menu in the scheme
editor and select Allocations. Select the Profile action from the left table. On the detail pane, change the
Instrument pop-up to Allocations and click OK (Figure 21.21).

Figure 21.21  An allocations-only scheme

To use your new scheme, click the Scheme pop-up menu back on the workspace window. Here
you can choose which scheme to use and a destination device for that scheme. Choose one of the



ptg

Build Settings

359

destination options under the Allocations heading (Figure 21.22). Then, profile your application.
Instruments will launch your application and automatically start the Allocations instrument.

Figure 21.22  Choosing a scheme

Switch back to the default TouchTracker scheme and profile again. This time, Instruments will again
ask you to choose an instrument.

Here’s a handy scheme tip: hold down the option key when selecting a scheme action from the Run
button. This automatically opens the scheme editor and allows you to quickly review and change the
settings of the selected scheme before performing the action. In fact, holding the option key down will
open the scheme editor whether you select the action from the Run pop-up button, from the Product
menu, or use a keyboard shortcut.

Build Settings
Every target includes build settings that describe how it should be built. Every project also has build
settings that serve as defaults for all the targets within the project. Let’s take a look at the project
build settings for TouchTracker. Select the project from the project navigator and then select the
TouchTracker project in the editor area.

Click the Build Settings tab at the top of the editor area. These are the project-level build settings – the
default values that targets will inherit. There is a search box in the top-right corner of the editor area
that you can use to search for a specific setting. Start typing iOS Deployment Target in the box, and
the list will adjust to show this setting (which specifies the lowest version of the OS that can run the
application).

Next to the search box are two sets of options. The first set, Basic or All, adjusts the settings shown.
To see the difference between the second pair, Combined and Levels, let’s look at the target’s build
settings.

In the left table of the editor area, select the TouchTracker target. Then select the Build Settings tab.
These are the build settings for this specific target. Find the iOS Deployment Target setting again and
click on Levels.



ptg

Chapter 21  Instruments

360

Figure 21.23  Build Settings Levels

When viewing the build settings with this option, you can see each setting’s value at the three different
levels: OS, project, and target. (Figure 21.23). The far right column shows the iOS Default settings;
these serve as the project’s defaults, which it can override. The next column to the left shows the
project’s settings, and the one after that shows the currently selected target’s settings. The Resolved
column shows which setting will actually be used; it is always be equal to the left-most specified value.
You can click in each column to set the value for that level.

Each target and project has multiple build configurations. A build configuration is a set of build
settings. When you create a project, there are two build configurations: debug and release. The build
settings for the debug configuration make it easier to debug your application, while the release settings
turn on optimizations to speed up execution.

Let’s take a look at the build settings and configurations for TouchTracker. Select the project from the
project navigator and the TouchTracker project in the editor area. Then, select Info from the tabs on top
of the editor area (Figure 21.24).

Figure 21.24  Build Configurations list

The Configurations section shows you the available build configurations in the project and targets. You
can add and remove build configurations with the buttons at the bottom of this section.

When performing a scheme action, the scheme will use one of these configurations when building its
targets. You can specify the build configuration that the scheme uses in the scheme editor in the option
for Build Configuration in the Info pane.

Enough talk – time to do something useful. Let’s change the value of the target build setting
Preprocessor Macros. Preprocessor macros allow you to compile code conditionally. They are
either defined or not defined at the start of a build. If you wrap a block of code in a preprocessor
directive, it will only be compiled if that macro has been defined. The Preprocessor Macros setting
lists preprocessor macros that are defined when a certain build configuration is used by a scheme to
build a target.



ptg

Build Settings

361

Select the TouchTracker target, and in its Build Settings  pane, search for the Preprocessor Macros
build setting. Double-click on the value column for the Debug configuration under Preprocessor
Macros. In the table that appears, add a new item: VIEW_DEBUG, as shown in Figure 21.25.

Figure 21.25  Changing a build setting

Adding this value to this setting says, “When you are building the TouchTracker target with the debug
configuration, a preprocessor macro VIEW_DEBUG is defined.”

Let’s add some debugging code to TouchTracker that will only be compiled when the target is built
with the debug configuration. UIView has a private method recursiveDescription that prints out the
entire view hierarchy of an application. However, you cannot call this method in an application that
you deploy to the App Store, so you will only allow it to be called if VIEW_DEBUG is defined.

In TouchTrackerAppDelegate.m, add the following code to
application:didFinishLaunchingWithOptions:.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{ 
#ifdef VIEW_DEBUG
    NSLog(@"%@", [[self window] recursiveDescription]);
#endif    
    [[self window] makeKeyAndVisible];
    return YES;
}

You can leave this code in for all builds. Because the preprocessor macro will not be defined for a
release build, the code will not be compiled when you build for the App Store.

Now let’s test out this code. Hold down the Option key and run the application. When the scheme
editor drops down, make sure that the debug configuration is selected. Check out the console and you
will see the view hierarchy of your application, starting at the window. (Don’t worry about the warning
that this line of code generates.)



ptg

This page intentionally left blank 



ptg

363

22
Core Animation Layer

Animation is a hallmark of the iOS interface. When used properly it gives the user visual cues about
the application’s workflow. The classes and functions needed to animate an application’s interface
are in the Core Animation API. To use any part of Core Animation, you need to add the QuartzCore
framework to your project.

Open your HypnoTime project and select the project from the project navigator. Then, select the
HypnoTime target and the Build Phases pane. Add QuartzCore.framework to Link Binary With
Libraries, as shown in Figure 22.1.

Figure 22.1  QuartzCore.framework

There are two classes that make Core Animation work: CALayer and CAAnimation.

At its core, an instance of CALayer is a buffer containing a bitmap. When you draw a layer (or a stack
of layers), the rendering is hardware-accelerated. This makes drawing a layer to the screen incredibly
fast. Like views, layers are arranged hierarchically – each layer can have sublayers.

A CAAnimation object causes a change over time. Typically, it changes one property (like opacity) of
a layer.

In this chapter, we will focus on CALayer, and in the next chapter, we’ll focus on CAAnimation.

Layers and views
In conversation, we talk about a view as though it is an object that is drawn to the screen – and this
works well for discussing views and understanding higher level concepts. However, it is technically



ptg

Chapter 22  Core Animation Layer

364

inaccurate. A view doesn’t know how to draw to the screen; it only knows how to draw to an instance
of CALayer.

Thus, the idea of layers may be new, but you’ve been using layers the entire time. When you
instantiate a view, it creates a layer, and when the view draws, it is drawing on its layer. We call layers
created by views implicit layers. Because every view has a layer, there is a matching layer hierarchy
that mimics the view hierarchy (Figure 22.2).

After the views draw on their layers, the layers are copied to the screen. When we talk about copying
a bunch of layers to the screen in a particular order and respecting each pixel’s opacity, we use the
word composite. Thus, the full description is “Each view renders its layer, and then all the layers are
composited to the screen.”

Figure 22.2  View and corresponding layer hierarchy

Notice in Figure 22.2 that each view has a layer and each view is its layer’s delegate. We’ll come
back to the delegate relationship later in the chapter.

So what’s the reason behind having views and layers? Remember that UIView is a subclass of
UIResponder. A view is really an abstraction of a visible object that can be interacted with on the
screen, wrapped into a tidy class. A layer, on the other hand, is all about the drawing.

Creating a CALayer
Not all layers are implicit layers. You can create a layer by sending alloc to the class CALayer. Layers
created this way are called explicit layers. In this section, you’re going to create a layer and then make
it a sublayer of the layer of your HypnosisView (Figure 22.3). 



ptg

Creating a CALayer

365

Figure 22.3  Object diagram

In HypnosisView.h, import the QuartzCore framework and add an instance variable to hold on to the
layer object you are about to create:

#import <UIKit/UIKit.h> 
#import <QuartzCore/QuartzCore.h>

@interface HypnosisView : UIView {
    CALayer *boxLayer;
    UIColor *stripeColor;
    float xShift, yShift;
}

@end

The designated initializer for a CALayer is simply init. After you instantiate a layer, you set its size,
position (relative to its superlayer), and contents. In HypnosisView.m, change the initWithFrame:
method to create a new layer and add it as a sublayer to HypnosisView’s layer. 

- (id)initWithFrame:(CGRect)r
{
    self = [super initWithFrame:r];

    if (self) {
        stripeColor = [[UIColor lightGrayColor] retain];

        // Create the new layer object
        boxLayer = [[CALayer alloc] init];

        // Give it a size
        [boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];



ptg

Chapter 22  Core Animation Layer

366

        // Give it a location
        [boxLayer setPosition:CGPointMake(160.0, 100.0)];
        
        // Make half-transparent red the background color for the layer
        UIColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 alpha:0.5];

        // Get a CGColor object with the same color values
        CGColorRef cgReddish = [reddish CGColor];
        [boxLayer setBackgroundColor:cgReddish];
            
        // Make it a sublayer of the view's layer
        [[self layer] addSublayer:boxLayer];
        
        [boxLayer release];
    }

    return self;
}

Build and run the application. You will see a semi-transparent red block appear on the view, as shown
in Figure 22.4. 

Figure 22.4  Red layer

Notice that layers interpret their size and position differently than views do. With a UIView, we
typically define the frame of the view to establish its size and position. The origin of the frame
rectangle is the upper-left corner of the view, and the size stretches right and down from the origin.

For a CALayer, instead of defining a frame, you set the bounds and position properties of the layer.
The default setting for position is the center of the layer in its superlayer. (The anchorPoint property
determines where the position lies inside the layer’s bounds, and its default value is (0.5, 0.5),



ptg

Layer Content

367

otherwise known as the center.) Therefore, if you change the size of the layer but leave the position
constant, the layer will remain centered on the same point.

Even though a layer doesn’t have a frame property, you can still get and set its “frame” by sending it
the messages frame and setFrame:. When a layer is sent the message frame, it computes a rectangle
from its position and bounds properties. Similarly, when sending a layer the message setFrame:, it
does some math and then sets the bounds and position properties accordingly.

However, it is better to think of layers in terms of their position and bounds properties. The mental
math to animate a layer is much simpler if you stick to setting the bounds and position properties
directly. 

Layer Content
A layer is simply a bitmap, and its contents can be set programmatically or with an image. To set the
contents programmatically, you either subclass CALayer or assign a delegate to an instance of CALayer.
The delegate then implements drawing routines. (This is how implicit layers work; the view is its
layer’s delegate.)

We will discuss drawing to a layer programmatically at the end of this chapter. For now, you’re going
to set the contents of the layer using an image file.

In HypnosisView.m, add the following code to the initWithFrame: method: 

- (id)initWithFrame:(CGRect)r
{
    self = [super initWithFrame:r];

    if (self) {
        stripeColor = [[UIColor lightGrayColor] retain];

        boxLayer = [[CALayer alloc] init];
        [boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];
        [boxLayer setPosition:CGPointMake(160.0, 100.0)];
        
        UIColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 alpha:0.5];
        CGColorRef cgReddish = [reddish CGColor];
        [boxLayer setBackgroundColor:cgReddish];
        
        // Create a UIImage
        UIImage *layerImage = [UIImage imageNamed:@"Hypno.png"];

        // Get the underlying CGImage
        CGImageRef image = [layerImage CGImage];

        // Put the CGImage on the layer
        [boxLayer setContents:(id)image];

        // Inset the image a bit on each side
        [boxLayer setContentsRect:CGRectMake(-0.1, -0.1, 1.2, 1.2)];

        // Let the image resize (without changing the aspect ratio) 
        // to fill the contentRect
        [boxLayer setContentsGravity:kCAGravityResizeAspect];
        
        [[self layer] addSublayer:boxLayer];
        [boxLayer release];



ptg

Chapter 22  Core Animation Layer

368

    }
    
    return self;
}

In this code, we create an image and then get the underlying CGImage to use with Core Graphics
drawing. Then we set the image as the layer’s contents and make adjustments for how the contents
appear within the layer.

Notice the use of CGImageRef and CGColorRef in this method. Why doesn’t Core Animation use
UIImage and UIColor?

The QuartzCore framework (which supplies the classes CALayer and CAAnimation) and Core Graphics
framework (which supplies CGImageRef) exist on both iOS and on the Mac. UIKit (where we get
UIImage and anything else prefixed with UI) only exists in iOS. To maintain its portability, QuartzCore
must use CGImageRef instead of UIImage. Fortunately, UIKit objects have methods to easily access
their Core Graphics counterparts, like UIImage’s CGImage method you used in the previous code.

Build and run the application. Now your layer has an image for its contents, as shown in Figure 22.5.

Figure 22.5  Layer with image

Because layers exist in a hierarchy, they can have sublayers, and each layer has a pointer back to its
parent layer called superlayer. When a layer is composited to the screen, it is copied to the screen,
and then each sublayer is composited atop it. Therefore, a layer always draws on top of its superlayer.

In a view hierarchy, sibling views (views with the same parent) will typically not have overlapping
bounds. For instance, imagine a view with two subviews that are buttons. What would be the point of
them overlapping and obscuring each other? It would only confuse and frustrate the user trying to tap
one or the other.



ptg

Implicitly Animatable Properties

369

The layer hierarchy, however, is a different story. Siblings are far more likely to overlap because layers
are about visual effects and drawing, not user interaction. Which sibling is composited over the other?
Each layer has a property called zPosition. If two layers are siblings and they overlap, then the layer
with the higher zPosition is composited on top of the layer with the lower zPosition. (A sublayer
always draws on top of its superlayer, regardless of zPosition.)

A layer’s zPosition defaults to 0 and can be set to a negative value.

    [underLayer setZPosition:-5];
    [overLayer setZPosition:5];
    [parentLayer addSublayer:underLayer];
    [parentLayer addSublayer:overLayer];

    // overLayer is composited on top of underLayer!

When the Z-axis is discussed, some developers imagine that perspective is applied, and they expect
a layer to appear larger as its zPosition increases. However, Core Animation layers are presented
orthographically; they do not appear as different sizes based on their zPositions.

Figure 22.6  Perspective vs. Orthographic

Implicitly Animatable Properties
Several of the properties of CALayer are implicitly animatable. This means that changes to these
properties are automatically animated when their setters are called. The property position is an
implicitly animatable property. Sending the message setPosition: to a CALayer doesn’t just move the
layer to a new position; it animates the change from the old position to the new one.

In this section, you will have the application respond to user taps: the boxLayer will move to wherever
the user starts a touch. This change in position will be animated because position is an implicitly
animatable property.

In HypnosisView.m, implement touchesBegan:withEvent: to change the layer’s position.



ptg

Chapter 22  Core Animation Layer

370

- (void)touchesBegan:(NSSet *)touches
           withEvent:(UIEvent *)event
{
    UITouch *t = [touches anyObject];
    CGPoint p = [t locationInView:self];
    [boxLayer setPosition:p];
}

Build and run the application. The layer will move smoothly from its current position to where you tap.
All you had to do to get this animation was send setPosition:. Pretty cool, huh?

If the user drags rather than taps, let’s have the layer follow the user’s finger. In HypnosisView.m,
implement touchesMoved:withEvent: to send setPosition: to the layer. method:

- (void)touchesMoved:(NSSet *)touches
           withEvent:(UIEvent *)event
{
    UITouch *t = [touches anyObject];
    CGPoint p = [t locationInView:self];
    [boxLayer setPosition:p];
}

Build and run the application. This is not so cool. Notice how the animation makes the layer lag behind
your dragging finger, making the application seem sluggish. 

Why the poor response? An implicitly animatable property changes to its destination value over a
constant time interval. However, changing a property while it is being animated starts another implicit
animation. Therefore, if a layer is in the middle of traveling from point A to point B, and you tell it to
go to point C, it will never reach B; and that little change of direction coupled with the timer restarting
makes the animation seem choppy. (Figure 22.7)

Figure 22.7  Animation missing waypoints

To disable an implicit animation, you can use an animation transaction. Animation transactions allow
you to batch animations and set their parameters, like the duration and animation curve. To begin a
transaction, you send the message begin to the class CATransaction. To end a transaction, you send



ptg

For the More Curious: Programmatically Generating Content

371

commit to CATransaction. Within the begin and commit block, you can set properties of a layer and
also set values for the transaction as a whole.

Animation transactions can be used for lots of things, but here we’ll use it to disable the animation of
the layer’s change in position. In HypnosisView.m, edit touchesMoved:withEvent:.

- (void)touchesMoved:(NSSet *)touches
            withEvent:(UIEvent *)event
{
    UITouch *t = [touches anyObject];
    CGPoint p = [t locationInView:self];
    [CATransaction begin];
    [CATransaction setDisableActions:YES];
    [boxLayer setPosition:p];
    [CATransaction commit];
}

Build and run the application. Now the dragging should feel much more responsive. 

For the More Curious: Programmatically
Generating Content
In this chapter, you set a layer’s contents with an image file. Now let’s look at setting a layer’s contents
programmatically. There are two ways of drawing to a layer that use Core Graphics: subclassing and
delegation.

In practice, subclassing is the last thing you want to do. The only reason to subclass CALayer to
provide custom content is if you need to draw differently depending on some state of the layer. If this
is the approach you wish to take, you must override the method drawInContext:.

@implementation LayerSubclass

- (void)drawInContext:(CGContextRef)ctx
{
    UIImage *layerImage = nil;
    if (hypnotizing)
        layerImage = [UIImage imageNamed:@"Hypno.png"];
    else
        layerImage = [UIImage imageNamed:@"Plain.png"];

    CGRect boundingBox = CGContextGetClipBoundingBox(ctx);
    CGContextDrawImage(ctx, boundingBox, [layerImage CGImage]);
} 
@end

Delegation is the more common way to programmatically draw to a layer. This is how implicit layers
work, but you can also give an explicit layer a delegate. (However, it is not a good idea to assign a
UIView as the delegate of an explicit layer. It is already the delegate of another layer, and bad things
will happen.)

A layer sends the message drawLayer:inContext: to its delegate object when it is being displayed.
The delegate can then perform Core Graphics calls on this context.



ptg

Chapter 22  Core Animation Layer

372

@implementation Controller

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx
{
    if (layer == hypnoLayer)
    {
        UIImage *layerImage = [UIImage imageNamed:@"Hypno.png"];
        CGRect boundingBox = CGContextGetClipBoundingBox(ctx);
        CGContextDrawImage(ctx, boundingBox, [layerImage CGImage]);
    }
}
@end

For both subclassing and delegation, you must send an explicit setNeedsDisplay to the layer in order
for these methods to be invoked. Otherwise, the layer thinks it doesn’t have any content and won’t
draw. 

For the More Curious: Layers, Bitmaps, and
Contexts
A layer is simply a bitmap – a chunk of memory that holds the red, green, blue, and alpha values 
of each pixel. When you send the message setNeedsDisplay to a UIView instance, that method is
forwarded to the view’s layer. After the run loop is done processing an event, every layer marked for
re-display prepares a CGContextRef. Drawing routines called on this context generate pixels that end
up in the layer’s bitmap.

How do drawing routines get called on the layer’s context? After a layer prepares its context, it sends
the message drawLayer:inContext: to its delegate. The delegate of an implicit layer is its view, so in
the implementation for drawLayer:inContext:, the view sends drawRect: to itself. Therefore, when
you see this line at the top of your drawRect: implementations, 

- (void)drawRect:(CGRect)r
{
    CGContextRef ctx = UIGraphicsGetCurrentContext();
}

you are getting a pointer to the layer’s context. All of the drawing in drawRect: is filling the layer’s
bitmap, which is then copied to the screen.

Need to see this for yourself? Set an Xcode breakpoint in HypnosisView’s drawRect: and check out
the stack trace in the debug navigator, as shown in Figure 22.8.

Figure 22.8  Stack trace in drawRect:



ptg

For the More Curious: Layers, Bitmaps, and Contexts

373

A few paragraphs up, we said that the pixels generated by drawing routines “end up in the layer’s
bitmap.” What does that mean? When you want to create a bitmap context in Cocoa Touch (as you did
when you created the thumbnails for the possessions), you typically do something like this:

    // Create context
    UIGraphicsBeginImageContextWithOptions(size, NO, [[UIScreen mainScreen] scale]);
        ... Do drawing here ...

    // Get image result
    UIImage *result = UIGraphicsGetImageFromCurrentImageContext();

    // Clean up image context
    UIGraphicsEndImageContext();

A bitmap context is created and drawn to, and the resulting pixels are stored in a UIImage instance.

The UIGraphics suite of functions provides a convenient way of creating a bitmap CGContextRef and
writing that data to a UIImage object: 

    // Create a color space to use for the context
    CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

    // Create a context of appropriate width and height
    // with 4 bytes per pixel - RGBA
    CGContextRef ctx =
        CGBitmapContextCreate(NULL, width, height, 8, width * 4,
                    colorSpace, kCGImageAlphaPremultipliedLast);

    // Make this context the current one
    UIGraphicsPushContext(ctx);

    ... Do drawing here ...

    // Get image result
    CGImageRef image = CGBitmapContextCreateImage(ctx);
    UIImage *result = [[[UIImage alloc] initWithCGImage:image] autorelease];

    // Clean up image context - make previous context current if one exists
    UIGraphicsPopContext();
    CGImageRelease(image);
    CGContextRelease(ctx);
    CGColorSpaceRelease(colorSpace);

A layer creates the same kind of context when it needs to redraw its contents. However, a layer does it
a little differently. See the NULL as the first parameter to CGBitmapContextCreate? That is where you
pass a data buffer to hold the pixels generated by drawing routines in this context. By passing NULL, we
say, “Core Graphics, figure out how much memory is needed for this buffer, create it, and then dispose
of it when the context is destroyed.” A CALayer already has a buffer (its contents), so it would call the
function as follows:

    CGContextRef ctx =
        CGBitmapContextCreate(myBitmapPixels, width, height, 8, width * 4,
                    colorSpace, kCGImageAlphaPremultipliedLast);

Then, when this context is drawn to, all of the resulting pixels are immediately written to the bitmap
that is the layer. 



ptg

Chapter 22  Core Animation Layer

374

Challenge: Dynamic Layer Content
Give boxLayer a delegate to draw its content. When the layer is near the top of the screen, draw the
Hypno.png image to the layer in the delegate method with full opacity. As the layer approaches the
bottom of the screen, draw the image more transparently.

This is a very difficult challenge, so you can have three hints:

1. The delegate of boxLayer cannot be HypnosisView.

2. You must send setNeedsDisplay to the layer every time it changes position.

3. To set the opacity of drawing in a context, use the function CGContextSetAlpha.

Happy coding!



ptg

375

23
Controlling Animation with

CAAnimation

An animation object drives change over time. An animation object is an instruction set (“Move from
point A to point B over 2 seconds”) that can be added to a CALayer instance. When an animation object
is added to a layer, that layer begins following the instructions of the animation. Many properties of
CALayer can be animated by animation objects: opacity, position, transform, bounds, and contents
are just a few.

Animation Objects
While you have not yet used animations objects explicitly, all animation in iOS is driven by them,
including the animations you saw in the last chapter. The abstract superclass for all animation
objects is CAAnimation. CAAnimation is responsible for handling timing; for instance, it has a
duration property that specifies the length of the animation. As an abstract superclass, you do not use
CAAnimation objects directly. Instead, you use one of its concrete subclasses shown in Figure 23.1.

Figure 23.1  Inheritance

CAPropertyAnimation is a subclass of CAAnimation that extends the ability of its superclass by
adding the ability to change the properties of a layer. Each property animation has a key path of



ptg

Chapter 23  Controlling Animation with CAAnimation

376

type NSString. This string is the name of an animatable property of a CALayer. Many of CALayer’s
properties are animatable. Check the documentation for a list. Search for “animatable properties” and
look under the Core Animation Programming Guide (Figure 23.2).

Figure 23.2  Animatable properties in the documentation

Typically, the key path matches the name of the property. For example, a property animation that will
animate a layer’s opacity property will have a key path of opacity.

Sometimes a property whose type is a structure (like position, whose type is CGPoint) can have each
of its members accessed by a key path. (The available options for this are in the documentation under
Core Animation Extensions To Key-Value Coding.)

However, like CAAnimation, CAPropertyAnimation is an abstract superclass. To create an
animation object that modifies a property of a layer, you use one of the two concrete subclasses of
CAPropertyAnimation: CABasicAnimation and CAKeyframeAnimation. Most of the time you will
spend with Core Animation will involve these two classes. 

CABasicAnimation is the simpler of the two classes. It has two properties: fromValue and toValue,
and it inherits CAAnimation’s duration property. When a basic animation is added to a layer, the
property to be animated is set to the value in fromValue. Over the time specified by duration, the
value of the property is interpolated linearly from fromValue to toValue, as shown in Figure 23.3.



ptg

Animation Objects

377

Figure 23.3  Interpolating a CABasicAnimation that animates the position
of a layer

Here’s an example of an animation object that acts on a layer’s opacity property.

// Create an animation that will change the opacity of a layer
CABasicAnimation *fader = [CABasicAnimation animationWithKeyPath:@"opacity"];

// It will last 2 seconds
[fader setDuration:2.0];

// The layer's opacity will start at 1.0 (completely opaque)
[fader setFromValue:[NSNumber numberWithFloat:1.0]];

// And will end at 0.0 (completely transparent)
[fader setToValue:[NSNumber numberWithFloat:0.0]];

// Add it to the layer 
[rexLayer addAnimation:fader forKey:@"BigFade"];

The key, “BigFade” in this case, is ignored by the system. However, you could use it to access the
animation later if, for example, you needed to cancel it mid-fade.

In this code, the fromValue and toValue take NSNumbers as arguments. The type of these properties
however, is id because animation objects need to be able to support different data types. For example,
an animation that changes the position of a layer would need values that are of type CGPoint.

However, you can’t just pass any object for any property; CABasicAnimation expects the appropriate
object based on the key path. For scalar values, like opacity, you can wrap a number in an NSNumber
instance. For properties represented by structures, like position, you wrap the structures in instances
of NSValue. 

CABasicAnimation *mover = [CABasicAnimation animationWithKeyPath:@"position"];
[mover setDuration:1.0]; 
[mover setFromValue:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
[mover setToValue:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];

The difference between CABasicAnimation and CAKeyframeAnimation is that a basic animation only
interpolates two values while a keyframe animation can interpolate as many values as you give it.
These values are put into an NSArray in the order in which they are to occur. This array is then set as
the values property of a CAKeyframeAnimation instance.

CAKeyframeAnimation *mover = [CAKeyframeAnimation animationWithKeyPath:@"position"];
NSArray *vals = [NSMutableArray array];



ptg

Chapter 23  Controlling Animation with CAAnimation

378

[vals addObject:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
[vals addObject:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];
[mover setValues:vals]; 
[mover setDuration:1.0];

Each value in the values property is called a keyframe. Keyframes are the values that the animation
will interpolate; the animation will take the property it is animating through each of these keyframes
over its duration. A basic animation is really a keyframe animation that is limited to two keyframes. (In
addition to allowing more than two keyframes, CAKeyframeAnimation adds the ability to change the
timing of each of the keyframes, but that’s more advanced than what we want to talk about right now.)

There are two more CAAnimation subclasses, but they are used less often. A CAAnimationGroup
instance holds an array of animation objects. When an animation group is added to a layer, the
animations run concurrently.

CABasicAnimation *mover = [CABasicAnimation animationWithKeyPath:@"position"];
[mover setDuration:1.0]; 
[mover setFromValue:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
[mover setToValue:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];

CABasicAnimation *fader = [CABasicAnimation animationWithKeyPath:@"opacity"];
[fader setDuration:1.0]; 
[fader setFromValue:[NSNumber numberWithFloat:1.0]]; 
[fader setToValue:[NSNumber numberWithFloat:1.0]];

CAAnimationGroup *group = [CAAnimationGroup animation]; 
[group setAnimations:[NSArray arrayWithObjects:fader, mover, nil]];

CATransition animates layers as they are transitioning on and off the screen. On Mac OS X,
CATransition is made very powerful by Core Image Filters. In iOS, it can only do a couple of simple
transitions like fading and sliding. (CATransition is used by UINavigationController when pushing
a view controller’s view onto the screen.) 

Spinning with CABasicAnimation
In this section, you are going to use an animation object to spin the implicit layer of the time field 
in HypnoTime’s CurrentTimeViewController whenever it is updated (Figure 23.4). (Recall that an
implicit layer is a layer created by a view when the view is instantiated. The time field is a UILabel,
which is a subclass of UIView, so it has an implicit layer that we can animate.)



ptg

Spinning with CABasicAnimation

379

Figure 23.4  Current time mid-spin

Open HypnoTime.xcodeproj.

The Core Animation code you will write in this exercise will be in CurrentTimeViewController.m. So
import the header from the QuartzCore framework at the top of this file.

#import <QuartzCore/QuartzCore.h>

@implementation CurrentTimeViewController

In order to spin the timeLabel, you need an animation object that will apply a 360-degree rotation over
time to a layer. So we need to determine four things:

• Which type of animation object suits this purpose?

• What key path handles rotation?

• How long should the animation take to complete?

• What values should the animation interpolate?

To answer the first question, think about the number of keyframes an animation would need to
make a complete revolution. It only needs two: a non-rotated value and a fully-rotated value, so
CABasicAnimation can handle this task. 

To determine the key path, we use the property of CALayer that deals with rotation. This property is
its transform, the transformation matrix that is applied to the layer when it draws. The transform
of a layer can rotate, scale, translate, and skew its frame. (For more details, go to Core Animation
Extensions To Key-Value Coding in the documentation.) This exercise only calls for rotating the layer,
and, fortunately, you can isolate the rotation of the transform in a key path (Figure 23.5). Therefore,
the key path of the basic animation will be transform.rotation. 



ptg

Chapter 23  Controlling Animation with CAAnimation

380

Figure 23.5  Core Animation Extensions to Key-Value Coding
documentation

Let’s make the duration of this animation one second. That’s enough time for the user to see the spin
but not so much time that they get bored waiting for it to complete.

Lastly, we need the values of the two keyframes: the fromValue and the toValue. The documentation
says that the transform.rotation is in radians, so that’s how we’ll pass these values. A little
geometry research tells us that no rotation is 0 radians and a full rotation is 2 * PI radians. When
using a CABasicAnimation, if you do not supply a fromValue, the animation assumes that fromValue
is the current value of that property. The default value of the transform property is the identity matrix
– no rotation. This means you only have to supply the final keyframe to this animation object.

In CurrentTimeViewController.m, edit the method showCurrentTime: to create the animation object. 

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];
    static NSDateFormatter *formatter = nil;
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setDateStyle:NSDateFormatterShortStyle];
    }
    [timeLabel setText:[formatter stringFromDate:now]];

    // Create a basic animation
    CABasicAnimation *spin =
                [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

    // fromValue is implied
    [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];



ptg

Timing functions

381

    [spin setDuration:1.0];
}

Now that you have an animation object, it needs to be applied to a layer for it to have any effect.
CALayer instances implement the method addAnimation:forKey: for this purpose. This method takes
two arguments: an animation object and a key. Once again: this key is not the key path; it is simply a
human-readable name for this animation.

In showCurrentTime:, add your animation object to the layer to start the animation.

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];
    static NSDateFormatter *formatter = nil;
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setDateStyle:NSDateFormatterShortStyle];
    }
    [timeLabel setText:[formatter stringFromDate:now]];

    CABasicAnimation *spin =
                [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

    [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
    [spin setDuration:1.0];

    // Kick off the animation by adding it to the layer
    [[timeLabel layer] addAnimation:spin
                             forKey:@"spinAnimation"];
}

Build and run the application. The label field will spin 360 degrees when the user updates it – either by
switching to the Time tab or tapping the button.

Note that the animation object exists independently of the layer it is applied to. This animation object
could be added to any layer to rotate it 360 degrees. You can create animation objects and keep them
around for later use in the application; however, make sure you retain them if you plan to do this. The
animation object returned from animationWithKeyPath: is autoreleased.

Timing functions
You may notice that the label field’s layer starts and stops suddenly; it would look nicer if it gradually
accelerated and decelerated. This sort of behavior is controlled by the animation’s timing function,
which is an instance of the class CAMediaTimingFunction. By default, the timing function is linear –
the values are interpolated linearly. Changing the timing function changes how these animations are
interpolated. It doesn’t change the duration or the keyframes.

In showCurrentTime:, change the timing function to “ease” in and out of the animation.

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];
    static NSDateFormatter *formatter = nil;
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setDateStyle:NSDateFormatterShortStyle];
    }



ptg

Chapter 23  Controlling Animation with CAAnimation

382

    [timeLabel setText:[formatter stringFromDate:now]];

    // Create a basic animation
    CABasicAnimation *spin =
                [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

    [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
    [spin setDuration:1.0];

    // Set the timing function
    CAMediaTimingFunction *tf =  [CAMediaTimingFunction
                        functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
    [spin setTimingFunction:tf];

    [[timeLabel layer] addAnimation:spin
                             forKey:@"spinAnimation"];
}

Build and run the application and see how the animation changes.

There are four timing functions, you have seen linear and kCAMediaTimingFunctionEaseInEaseOut.
The other two are kCAMediaTimingFunctionEaseIn (accelerates gradually, stops suddenly) and
kCAMediaTimingFunctionEaseOut (accelerates suddenly, stops slowly). You can also create your own
timing functions with CAMediaTimingFunction. See the doc for details. 

Animation completion
Sometimes you want to know when an animation is finished. For instance, you might want to chain
animations or update another object when an animation completes. How can you know when an
animation is complete? Every animation object can have a delegate, and the animation object sends the
message animationDidStop:finished: to its delegate when an animation stops.

Edit CurrentTimeViewController.m so that it logs a message to the console whenever an animation
stops.

- (void)animationDidStop:(CAAnimation *)anim finished:(BOOL)flag
{
    NSLog(@"%@ finished: %d", anim, flag);
}

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];
    static NSDateFormatter *formatter = nil;
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setDateStyle:NSDateFormatterShortStyle];
    }
    [timeLabel setText:[formatter stringFromDate:now]];

    CABasicAnimation *spin =
                [CABasicAnimation animationWithKeyPath:@"transform.rotation"];
    [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
    [spin setDuration:1.0];
    [spin setDelegate:self];

    CAMediaTimingFunction *tf = [CAMediaTimingFunction
                        functionWithName:kCAMediaTimingFunctionEaseInEaseOut];



ptg

Bouncing with a CAKeyframeAnimation

383

    [spin setTimingFunction:tf];

    [[timeLabel layer] addAnimation:spin
                             forKey:@"spinAnimation"];
}

Build and run the application. Notice the log statements when the animation is complete. If you
press the button several times quickly, the animation in progress will be interrupted by a new one.
The interrupted animation will still send the message animationDidStop:finished: to its delegate;
however, the finished flag will be NO.

Bouncing with a CAKeyframeAnimation
For practice with CAKeyframeAnimation, you are going to make the time label grow and shrink to give
it a bouncing effect (Figure 23.6).

Figure 23.6  Current time mid-bounce

Remove (or comment out) the spin animation and replace it with a nice bounce. The method
showCurrentTime: should look like this:

- (IBAction)showCurrentTime:(id)sender
{
    NSDate *now = [NSDate date];
    static NSDateFormatter *formatter = nil;
    if (!formatter) {
        formatter = [[NSDateFormatter alloc] init];
        [formatter setDateStyle:NSDateFormatterShortStyle];
    }
    [timeLabel setText:[formatter stringFromDate:now]];

    // Create a key frame animation
    CAKeyframeAnimation *bounce =



ptg

Chapter 23  Controlling Animation with CAAnimation

384

                    [CAKeyframeAnimation animationWithKeyPath:@"transform"];

    // Create the values it will pass through
    CATransform3D forward = CATransform3DMakeScale(1.3, 1.3, 1);
    CATransform3D back = CATransform3DMakeScale(0.7, 0.7, 1);
    CATransform3D forward2 = CATransform3DMakeScale(1.2, 1.2, 1);
    CATransform3D back2 = CATransform3DMakeScale(0.9, 0.9, 1);
    [bounce setValues:[NSArray arrayWithObjects:
                        [NSValue valueWithCATransform3D:CATransform3DIdentity],
                        [NSValue valueWithCATransform3D:forward],
                        [NSValue valueWithCATransform3D:back],
                        [NSValue valueWithCATransform3D:forward2],
                        [NSValue valueWithCATransform3D:back2],
                        [NSValue valueWithCATransform3D:CATransform3DIdentity],
                        nil]];
    // Set the duration
    [bounce setDuration:0.6];

    // Animate the layer
    [[timeLabel layer] addAnimation:bounce
                             forKey:@"bounceAnimation"];
}

Build and run the application. The time field should now scale up and down and up and down when it
is updated. The constant CATransform3DIdentity is the identity matrix. When the transform of a layer
is the identity matrix, no scaling, rotation, or translation is applied to the layer: it sits squarely within
its bounding box at its position. So, this animation starts at no transformation, scales a few times, and
then reverts back to no transformation. 

Once you understand layers and the basics of animation, there isn’t a whole lot to it – other than
finding the appropriate key path and getting the timing of things right. Core Animation is one of those
things you can play around with and see results immediately. So play with it!

Challenge: More Animation
When the time label bounces, it should also change its opacity. Try and match the fading
of the opacity with the shrinking and growing of the label. As another challenge, after the
CurrentTimeViewController’s view slides onto the screen, have the What time is it? button slide in
from the other direction.

For the More Curious: The Presentation Layer
and the Model Layer
You can think of an instance of CALayer as having two parts: the content that gets composited onto
the screen, and a set of parameters that describe how it should be composited: opacity, transform,
position, etc. When a layer is being animated, it actually has two copies of these parameters: the
model version and the presentation version. The presentation parameters are the ones that are being
smoothly changed by the animation object. The model parameters are the persistent ones – the ones
that will be used once the animation is over.

So, when a layer is being animated, its content is composited to the screen using the presentation
parameters. When it is animation-less, the model parameters are used.

Apple calls these sets of parameters the model layer and the presentation layer.



ptg

For the More Curious: The Presentation Layer and the Model
Layer

385

When you ask a layer for its position, you are getting the position of the model layer. To get the
presentation version, you ask for the presentationLayer first.

CGPoint whereIsItWhenAnimationStops = [layer position];
CGPoint whereIsItNow = [[layer presentationLayer] position];

Why is this useful? Imagine a game that has animating objects on the screen, and if the user taps one of
the objects, it blows up. Only the presentation layer knows where the object currently is on the screen,
which you must know in order to judge the accuracy of the user’s tap.

In this chapter, our examples have had the animated objects return to their original states after the
animation is complete. Often, however, you want to animate an object to a state and then have it stay
there once the animation is over. To do this, you must keep the presentation and model layers clear in
your mind. Not doing so leads to two common errors:

• Your animation goes great, but at the end it snaps back to its initial position (or opacity or
whatever) when you wanted it to remain where it was. This happens because you forgot to
update the model parameters to match the final state of your animation. Try using an explicit
animation in touchesBegan:withEvent: method in HypnosisView.m. (Also comment out
touchesMoved:withEvent:.)

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
    UITouch *t = [touches anyObject];
    CGPoint p = [t locationInView:self];
    CABasicAnimation *ba = [CABasicAnimation animationWithKeyPath:@"position"];
    [ba setFromValue:[NSValue valueWithCGPoint:[boxLayer position]]];
    [ba setToValue:[NSValue valueWithCGPoint:p]];
    [ba setDuration:3.0];

    // Update the model layer
    [boxLayer setPosition:p];

    // Add animation that will gradually update presentation layer
    [boxLayer addAnimation:ba forKey:@"foo"];
} 
- (void)touchesMoved:(NSSet *)touches
           withEvent:(UIEvent *)event 
{ 
//    UITouch *t = [touches anyObject]; 
//    CGPoint p = [t locationInView:self];
//    [boxLayer setPosition:p];

}

In this animation, If you build and run now and tap the screen, you will see the boxLayer slowly
move to wherever you touched the screen.

If you comment out the line that says [boxLayer setPosition:p], you’ll see that the layer bounces
back to its starting position once the animation ends. For beginners, this is a very common error.

• No animation happens. Your layer leaps directly to its final state. When an animation begins, if
there is no fromValue, the fromValue is taken from the model layer. If you update the model to the
final state before starting the animation, your fromValue and toValue end up the same. Usually the
fix is to give the animation an explicit fromValue.



ptg

This page intentionally left blank 



ptg

387

24
Blocks and Categories

In iOS 4.0, a language-level feature called blocks was made available. A block is a set of instructions
that can be passed around as a variable and called like a function. Blocks provide conveniences for 
a programmer and performance boosts for applications. If you are familiar with other high-level
languages, you may know blocks as closures or anonymous functions. This chapter will briefly cover
blocks and some of the common ways to use them. This chapter will also cover an Objective-C
language feature called categories.

Colorizing TouchDrawView
Earlier, you wrote an application called TouchTracker that allowed the user to paint black lines on a
white canvas. In this exercise, you will add functionality that will change the color of the lines based
on their angle and length. You will implement this behavior using blocks.

Figure 24.1  TouchTracker



ptg

Chapter 24  Blocks and Categories

388

Open TouchTracker.xcodeproj. Each Line instance will have its own color instance variable. When
the user shakes the device, each line will be given a new UIColor instance based on its angle and
length. When the device rotates, the color of the lines will be inverted.

Before we get to these things, TouchDrawView and Line need to support color. In Line.h, add a new
instance variable to the Line class and expose it as a property.

@interface Line : NSObject {
    CGPoint begin;
    CGPoint end;

    UIColor *color;
} 
@property (nonatomic) CGPoint begin;
@property (nonatomic) CGPoint end;

@property (nonatomic, retain) UIColor *color;

@end

In Line.m, synthesize the property and add an init method to set a default color and a dealloc
method to release it when the line is destroyed.

@implementation Line
@synthesize color; 
- (id)init 
{
    self = [super init];
    
    if (self) {
        [self setColor:[UIColor blackColor]];
    }
    
    return self;
}

- (void)dealloc 
{
    [color release];
    [super dealloc];
}

In TouchDrawView.m, update the drawRect: method to use the Line’s color when drawing a line.

- (void)drawRect:(CGRect)rect {
    CGContextRef context = UIGraphicsGetCurrentContext();
    CGContextSetLineWidth(context, 10.0);
    CGContextSetLineCap(context, kCGLineCapRound);

    // [[UIColor blackColor] set];
    for (Line *line in completeLines) {
        [[line color] set];

        CGContextMoveToPoint(context, [line begin].x, [line begin].y);
        CGContextAddLineToPoint(context, [line end].x, [line end].y);
        CGContextStrokePath(context);
    }

    [[UIColor redColor] set];



ptg

Blocks

389

    for (NSValue *v in linesInProcess) {
        Line *line = [linesInProcess objectForKey:v];
        CGContextMoveToPoint(context, [line begin].x, [line begin].y);
        CGContextAddLineToPoint(context, [line end].x, [line end].y);
        CGContextStrokePath(context);
    }
}

Build the application to make sure there are no errors. It should still run the same as before.

Blocks

Blocks as variables
Now that you have some experience with Objective-C and the iOS SDK, how would you add the
colorize-on-shake and invert-color-on-rotate features? You would probably write a method that would
loop over every line, perform some calculations with that line’s data, and then set its color.

// A candidate for colorizeOnShake as implemented by TouchDrawView
- (void)colorizeOnShake 
{
    for(Line *l in completeLines) {
        UIColor *clr = [self computeColorForLine:l];
        [l setColor:clr];
    }
    [self setNeedsDisplay];
}

Then, you would write a similar method for inverting the current color of a Line.

// A candidate for invertOnShake as implemented by TouchDrawView
- (void)invertOnRotate 
{
    for(Line *l in completeLines) {
        // The method called to compute the color
        // is the only difference in this method
        // versus the previous one.
        UIColor *clr = [self invertedColorForLine:l];
        [l setColor:clr];
    }
    [self setNeedsDisplay];    
}

Now, this is a fine approach, but notice the redundancy between the two methods. Imagine if you
wanted to add another coloring scheme to your application; for example, a double tap could reset all of
the lines to black. This method would repeat the same general form as the previous two (looping over
all of the lines and giving them a color) with slightly different details (the calculations to determine the
color).

It would be much cooler to write the general form once and plug in different sets of details. With
blocks, you can. In TouchDrawView.m, implement a stub for the following method. This method will
eventually take care of the generic part of the process.



ptg

Chapter 24  Blocks and Categories

390

- (void)transformLineColorsWithBlock:(UIColor * (^)(Line *))colorForLine
{
    // You'll fill in the body for this method in a bit.
    // The crazy syntax of the argument for this method
    // deserves some discussion first.
}

Scary syntax, huh? It’s actually not that bad when you break it down. The method
transformLineColorsWithBlock: accepts one argument: a block. This block must return an instance
of UIColor, and its only argument is of type Line.

Figure 24.2  Syntax of a block

The syntax of a block is made even scarier because it is being used as an argument to a method, which
adds an additional set of parentheses around the block. You will get used to it.

The name of the block variable in the scope of this method is colorForLine. A block, being a piece of
executable code, can be called just like a C function. Therefore, you can run the code in this block like
so:

    UIColor *c = colorForLine(someLine);

The goal of the method transformLineColorsWithBlock: is to change the color of every line in the
completeLines given a block that defines how they should be colored. Thus, the implementation of
this method will iterate over every Line in completeLines and set its color to the return value of the
block. Update this method in TouchDrawView.m.

- (void)transformLineColorsWithBlock:(UIColor * (^)(Line *))colorForLine
{
    for(Line *l in completeLines) {
        UIColor *c = colorForLine(l);
        [l setColor:c];
    }
    [self setNeedsDisplay];
}

Build your application to make sure there are no errors. It will still run the same because you have yet
to invoke this method.



ptg

Blocks as variables

391

Now, you will implement a method that will be invoked when the user shakes the device. It will create
a block that will be sent to transformLineColorsWithBlock:; which executes the block for each of
the completeLines. This block will do some simple geometry to compute a color for a given Line.
You will use the difference between the x and y components of the start and end points to compute the
red and green values of the color, and the length of the line for the blue component. Define this method
in TouchDrawView.m.

- (void)colorize
{
    // Vertical means more red, horizontal means more green, 
    // longer means more blue
    
    // A block variable named colorScheme is created here:
    UIColor * (^colorScheme)(Line *) = ^(Line *l) {
        // Compute delta between begin and end points
        // for each component
        float dx = [l end].x - [l begin].x;
        float dy = [l end].y - [l begin].y;

        // If dx is near zero, red = 1, otherwise, use slope
        float r = (fabs(dx) < 0.001 ? 1.0 : fabs(dy / dx));
        
        // If dy is near zero, green = 1, otherwise, use inv. slope
        float g = (fabs(dy) < 0.001 ? 1.0 : fabs(dx / dy));
        
        // blue = length over 300
        float b = hypot(dx, dy) / 300.0;

        return [UIColor colorWithRed:r green:g blue:b alpha:1];
    };
    
    // Pass this colorScheme block to the method
    // that will iterate over every line and assign
    // the computed color to that line
    [self transformLineColorsWithBlock:colorScheme];
}

We’re back in scary syntax land, again. Let’s break it down. The ultimate goal of this method is to
create a block that takes a Line as an argument and returns a UIColor. This block will then be passed
to the method transformLineColorsWithBlock:, which will execute this block for each line and set
its color. Therefore, we must create a block and a block variable that holds a reference to that block.



ptg

Chapter 24  Blocks and Categories

392

Figure 24.3  Syntax of a block variable and block

The actual block is the part that follows the assignment operator (=). A block is defined by the ^
character and parentheses that contain the arguments that must be passed to this block when it is called,
followed by curly brackets where the block body is entered. Objective-C, C, and C++ code can make
up the body of a block.

A block variable, which holds a reference to a block, is the part before the assignment operator. A
block variable is just like any other variable: it has a type and a name. The only difference is that the
variable declaration is a bit ugly. Typically, variable definitions follow the following form:

    type varname = ...;
    
    // Example
    int counter = 0;

The syntax for a block variable, however, mixes the name of the variable in the middle of the type of
the block. The form is the return type, followed by parentheses that contain the ^ character along with
the name of the variable and another set of parentheses that contain all of the arguments for this block.

The assignment of colorScheme to the block defined in colorize is valid because the block it
references has the same arguments and return type. (You don’t have to include the return type when
defining the block in this way; the compiler will figure it out.) Try changing the block to have a
different argument list to see the compiler complain:

    // The compiler will not like this: the block variable
    // and defined block are of different types.
    UIColor * (^colorScheme)(Line *) = ^(Line *l, int foo) {
        ...
    };

Change the block back to the working version.

Now you have a method, colorize, that, when executed, will create a block that computes a color
given a line. This block is sent via the message transformLineColorsWithBlock: to the instance of
TouchDrawView. In TouchDrawView.m, set up TouchDrawView so it is sent the message colorize when
the device is shaken by implementing the following code.



ptg

Capturing variables

393

- (BOOL)canBecomeFirstResponder
{
    return YES; 
} 
- (void)didMoveToWindow
{
    [self becomeFirstResponder]; 
} 
- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
    [self colorize];
}

Build and run your application. Draw some lines then shake the device. (If you are on the simulator,
choose Shake Gesture from the Hardware menu.)

You may have some warnings about colorize or transformLineColorsWithBlock:. You can
ignore these warnings for now; you’ll fix them later. If your application is throwing an exception
about unrecognized selectors, make sure you have spelled these two method names correctly in their
implementation and use.

Capturing variables
So far, blocks look a lot like C function pointers. However, there is one major feature of blocks that
separates it from function pointers: it captures variables. In the last section, the block created all of its
variables inside its definition. What happens if you use a variable inside a block that wasn’t declared in
that block? For example:

- (void)method
{
    // A variable created in the scope of this method
    // aka, not inside aBlock
    int value = 5;
    
    // Create a block with no arguments or return value
    void (^aBlock)() = ^(void)
    {
        // This block simply prints out value,
        // a variable declared outside the block
        NSLog(@"%d", value);
    };
    
    // Call the block
    aBlock();
}

This, as you may expect, will print the number 5 to the console. However, so will this:

- (void)method
{
    int value = 5;
    
    void (^aBlock)() = ^()
    {
        NSLog(@"%d", value);
    };
    
    // Change value's value before calling block



ptg

Chapter 24  Blocks and Categories

394

    value = 10;

    // Call the block, value = 10 in the scope of this method
    // but the block prints 5 when invoked
    aBlock();
}

When a block is created, the current values of any variables it references are captured. Any time this
block is executed in the future, it uses the captured values of those variables. This applies to more than
just primitives – pointers to objects can be captured, too.

Let’s use that knowledge. Whenever the user double-taps the screen, all lines are immediately removed
from the screen. It would look nicer if these lines faded off the screen instead. The easiest way to 
do this is to create a full-screen layer that matches the background color of the TouchDrawView and
animate its opacity from transparent to opaque. When the animation completes, all of the lines will be
removed from the screen along with the layer, restoring the user interface to its initial state.

To focus on the interesting parts of this exercise, let’s get the animation stuff out of the way. Add
QuartzCore.framework to your project. Then, at the top of TouchDrawView.m, import the top-level
header from this framework.

#import <QuartzCore/QuartzCore.h>

Change the implementation of clearAll to create a layer and apply a fade-in animation to it. In
TouchDrawView.m, replace the following method:

- (void)clearAll 
{
    // Create a new layer that obscures the whole view
    CALayer *fadeLayer = [CALayer layer];
    [fadeLayer setBounds:[self bounds]];
    [fadeLayer setPosition:
        CGPointMake([self bounds].size.width / 2.0, 
                    [self bounds].size.height / 2.0)];
    [fadeLayer setBackgroundColor:[[self backgroundColor] CGColor]];
    
    // Add this layer to the layer hierarchy on top of 
    // the view's layer
    [[self layer] addSublayer:fadeLayer];

    // Create an animation that fades this layer in over 1 sec.
    CABasicAnimation *animation = [CABasicAnimation 
                            animationWithKeyPath:@"opacity"];
    [animation setFromValue:[NSNumber numberWithFloat:0]];
    [animation setToValue:[NSNumber numberWithFloat:1]];
    [animation setDuration:1];
    [fadeLayer addAnimation:animation forKey:@"Fade"];
}

Build and run the application. Draw some lines and then double-tap. The screen will fade to white.
However, you won’t be able to create any new lines (the fadeLayer is obscuring them and hasn’t been
removed), and the Lines in completeLines are still there. You will need to remove the layer from its
superlayer and remove the lines from completeLines after the animation completes.

In order to do this, you could give the animation object a delegate. Then, you would implement the
method animationDidStop:finished: to remove the layer from the screen along with all of the
lines. There are two problems with this. The first is that the delegate method will be in a location



ptg

Capturing variables

395

other than where this animation was setup. For the purposes of code clarity, it would be nicer if you
could somehow define what happens when the animation ends in the same chunk of code where the
animation is kicked off.

The other problem is that, in order to remove fadeLayer from the layer hierarchy, you must keep a
pointer to it (you have to send it removeFromSuperlayer to take it out of the layer hierarchy). Your
only option, without blocks, is to create an instance variable in TouchDrawView that points to this layer.
That’s kind of a pain for what is essentially just a temporary object. Fortunately, you can solve both of
these problems using a block and the class CATransaction.

In the Chapter 23 chapter, you used CATransaction to turn off implicit animations for any layer
modifications occurring within the transaction. Another feature of CATransaction is a completion
block. You can pass a block to a CATransaction, and when the animations in the transaction finish,
that block will be executed.

Knowing that a block will capture its variables, you will have access to fadeLayer, completeLines,
linesInProcess, and even self when the block is executed (a full second after it is created). In
TouchDrawView.m’s clearAll method, wrap the animation addition in a transaction and define the
completion handler for that transaction.

    CABasicAnimation *animation = [CABasicAnimation 
                        animationWithKeyPath:@"opacity"];
    [animation setFromValue:[NSNumber numberWithFloat:0]];
    [animation setToValue:[NSNumber numberWithFloat:1]];
    [animation setDuration:1];
    
    [CATransaction begin];
        // Set the completion block of this transaction
        // this method requires a block that returns no
        // value and accepts no argument: (void (^)(void))
        [CATransaction setCompletionBlock:^(void) 
        {
            // When the animation completes, remove
            // the fadeLayer from the layer hierarchy
            [fadeLayer removeFromSuperlayer];
            // Also remove any completed or in process
            // lines
            [linesInProcess removeAllObjects];
            [completeLines removeAllObjects];
            
            // Redisplay the view after lines are removed
            [self setNeedsDisplay];
        }];
        [fadeLayer addAnimation:animation forKey:@"Fade"];
    [CATransaction commit];
    
}

This block will capture fadeLayer, linesInProcess, completeLines, and self. When the block
executes, these variables will point at the exact same objects they point at in clearAll.

Build and run the application. Draw some lines and double-tap. The lines will fade out (although we
know that a big layer is actually fading in on top of them). After the fade completes, the canvas will be
cleared and you can go back to drawing.

How does this actually work? The compiler is smart enough to notice any references to variables when
the block is defined – these values are copied into the memory for the block. For pointers to objects



ptg

Chapter 24  Blocks and Categories

396

that are referenced, the pointer is copied, not the object itself. In cases where the block is kept around
for use later, any objects referenced in the block are sent the message retain. In other words, the block
takes ownership of those objects to make sure they exist when the block is executed. (See the section
called “For the More Curious: Memory Management and Blocks” at the end of this chapter for more
details.)

When the block is destroyed, it releases ownership of any objects it captured.

Using blocks with other built-in methods
Blocks are so useful that many built-in classes have methods that accept blocks as arguments. One
example is NSArray’s enumerateObjectsUsingBlock:. When given a block, this method will loop
through the array and perform that block on each element. The block that is applied to each object in
the array is of the following form:

    void (^)(id obj, NSUInteger idx, BOOL *stop)

The block you define, then, must have these three arguments and not return a value. You will use
the enumerateObjectsUsingBlock: to replace the for loop in transformLineColorsWithBlock:.
Implement this in TouchDrawView.m.

- (void)transformLineColorsWithBlock:(UIColor * (^)(Line *))colorForLine
{
    [completeLines enumerateObjectsUsingBlock:^(id line, NSUInteger idx, BOOL *stop) {
        [(Line *)line setColor:colorForLine(line)];
    }];
    [self setNeedsDisplay];
}

Notice how you are creating another block here for the argument passed to
enumerateObjectsUsingBlock:. You don’t necessarily have to declare a block variable to hold a
block if you are just passing it in a message because you don’t need to use that block elsewhere. Now,
when this method is invoked, the objects in the array are enumerated over by this block. The block gets
a reference to the object currently being enumerated (line), the index in the array of that object, and 
a stop flag that you can set to YES if you want to stop enumerating. For each Line, you call the block
passed into the method and then set the color of that line given the result of the block.

Build and run the application again. The behavior should remain the same.

Another form of enumerateObjectsUsingBlock: exists for NSArray named
enumerateObjectsWithOptions:usingBlock:. The options you can supply to this method will allow
you to enumerate the array in reverse, and more importantly, enumerate the array concurrently. The
runtime knows how to divvy up a number of block operations among the different CPU cores when
told to.

On current iOS devices, there is only one CPU with one core. For the time being, you will see no
performance boost from concurrently running a number of blocks. However, on future iOS devices,
there will most likely be more than one core per CPU. Each core will be able to execute a block in
parallel, speeding up the enumeration by a factor equal to the number of cores.

Keeping code compact with blocks
NSNotificationCenter also knows how to use blocks. When you have used the notification center
before, you would add an observer and selector for a given notification name. Then, you would



ptg

Categories

397

implement a method with a matching selector somewhere else in your implementation file. As you
continue to write code, the method to handle that notification gets moved around, and you end up
spending time looking for it when you want to update or check it. Using blocks, you can define the
code that gets executed within the same chunk of code you add the notification observer.

You will add an observer that gets notified when the device orientation changes. When this happens,
you will execute a block that inverts the color of all the lines. In initWithCoder: of TouchDrawView.m,
add the following code.

- (id)initWithCoder:(NSCoder *)aDecoder
{
    self = [super initWithCoder:aDecoder]; 
    
    if (self) {
        linesInProcess = [[NSMutableDictionary alloc] init];
        completeLines = [[NSMutableArray alloc] init];
        [self setMultipleTouchEnabled:YES];

        [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

        [[NSNotificationCenter defaultCenter] 
            addObserverForName:UIDeviceOrientationDidChangeNotification 
                        object:nil 
                         queue:nil 
                    usingBlock: ^(NSNotification * note) {
                        [self transformLineColorsWithBlock:^(Line *l) {
                            // Note that extract_invertedColor doesn't
                            // exist yet, you will implement this soon.
                            return [[l color] extract_invertedColor];
                        }];
                    }];
    }
    return self;
}

Whenever TouchDrawView is notified of an orientation change, it executes the block passed as the
argument paired with usingBlock:. The argument to this block must be an NSNotification because
that is what the method addObserverForName:object:queue:usingBlock: expects.

This block invokes the method transformLineColorsWithBlock: with another block. The coloring
block here is defined inline (there is no variable to hold it), and it will return the inverted value of the
current color of the line.

However, there is no extract_invertedColor for UIColor because you’ve yet to define it.

Categories
In Objective-C, classes have instance and class methods. These define the behavior of a class and its
instances. Sometimes, you are using a class and you really wish “it just had a method to do this cool
thing I want to do.” You’re in luck. You can add methods to an existing class by creating a category
for that class.

The syntax for a category is not at all scary like blocks; in fact, it’s something you’ve already
used before. You will create a category for UIColor that has two new methods that an instance of
UIColor will respond to. Create a new NSObject subclass. Name it UIColor+Extract.m. In UIColor
+Extract.h, replace all of the code with the following:



ptg

Chapter 24  Blocks and Categories

398

#import <Foundation/Foundation.h>

#import <UIKit/UIKit.h>

@interface UIColor (Extract)

- (void)extract_getRed:(float *)r green:(float *)g blue:(float *)b;
- (UIColor *)extract_invertedColor;

@end

Notice you used nearly the same syntax as you would if you were declaring a new class named
UIColor. However, there are two differences: the area for defining the superclass has been replaced
with (Extract) and there is no section for instance variables. This declaration says, “I’m adding two
new methods to the UIColor class. The name of this addition is Extract, which is just a name.” Also,
note that these methods are prefixed with the name of the category. Because more than one category
can be added to a class, you don’t want to pollute the namespace with obvious-sounding method
names.

In UIColor+Extract.m, implement these two methods by replacing all of the text in the file with the
following:

#import "UIColor+Extract.h"

@implementation UIColor (Extract)

// Note that this method uses the word "get". The 
// "return values" are passed as pointers and filled 
// out by the method. 
- (void)extract_getRed:(float *)r green:(float *)g blue:(float *)b
{
    // Get the Core Graphics representation
    CGColorRef cgClr = [self CGColor];
    
    // Get each component of the color ("color channels")
    const CGFloat *components = CGColorGetComponents(cgClr);
    
    // Get the number of components
    size_t componentCount = CGColorGetNumberOfComponents(cgClr);

    if (componentCount == 2) {
        // A grayscale color will only have two components,
        // the grayscale value and the alpha channel
        // Assign the values pointed to by r, g, b to
        // the grayscale value
        *r = components[0];
        *g = components[0];
        *b = components[0];
    } else if (componentCount == 4) {
        // A RGB color has 4 components, r, g, b
        // and an alpha channel
        *r = components[0];
        *g = components[1];
        *b = components[2];
    } else {
        NSLog(@"Unsupported colorspace.");
        *r = *g = *b = 0;
    }



ptg

Categories

399

} 
- (UIColor *)extract_invertedColor
{
    // Use method you just defined to get components of color
    float r = 0, g = 0, b = 0;
    [self extract_getRed:&r green:&g blue:&b];
    
    // Return a new UIColor instance with inverted components
    return [UIColor colorWithRed:1.0 - r 
                           green:1.0 - g 
                            blue:1.0 - b 
                           alpha:1.0];
} 
@end

Now, you can send the messages getRed:green:blue: and invertedColor to any instance of
UIColor.

This approach has benefits over subclassing UIColor. First, if you had already been using UIColor
in your application, you don’t have to go back and change these objects to some new subclass. More
importantly, however, many methods that you don’t have control over may return UIColor instances.
You would not be able to send these two new messages to those objects with a subclass.

Go back to TouchDrawView.m. At the top of this file, import the header file for this category so this file
knows about these new declarations.

#import "TouchDrawView.h"
#import "Line.h" 
#import "UIColor+Extract.h"

Now, when you send the message invertedColor to a Line’s color,

[self transformLineColorsWithBlock:^(Line *l) {
    return [[l color] extract_invertedColor];
}];

the method in your category will be executed. You might want to keep this category around, it is pretty
useful.

Build and run the application. Draw some lines and then shake the device. Rotate it, and the colors will
invert. Rotate it again, and the colors will revert back to normal.

Categories have another use: pseudo-private methods. In Objective-C, there is no such thing as a
private method. If a class implements a method, you can always send that message. However, you
sometimes want the ability to at least hide methods from a user of the class. For example, a method
that only gets called internally by the class and requires a certain set of conditions in order to operate
properly is not something you want other objects knowing about. You could, of course, leave that
method declaration out of the header file, but the compiler will give you a warning when you try to use
it.

To hide method declarations and hush up the compiler about undeclared methods, you can create a
category at the top of an implementation file with declarations for methods you don’t want used by
other objects. A category used for this reason is called a class extension and has no name. Methods in a
class extension must be implemented in the standard @implementation block of a class or the compiler
will complain. Near the top of TouchDrawView.m, add the following category declaration.



ptg

Chapter 24  Blocks and Categories

400

@interface TouchDrawView () 
- (void)transformLineColorsWithBlock:(UIColor * (^)(Line *))t;
- (void)colorize; 
@end

@implementation TouchDrawView

Now, you won’t get any warnings when TouchDrawView uses one of these methods, but any other file
that tries to use these methods will get a warning. (You may not have had any warnings to begin with
depending on the order you implemented your methods.) Note that even though these methods aren’t
visible to other files, they can still be invoked. The compiler will just complain.

For the More Curious: Memory Management and
Blocks
There are some subtle rules when it comes to managing memory for blocks. To understand how the
block manages memory, you must understand the difference between the heap and the stack portions
of memory.

To allocate memory from the heap, you must explicitly do so. Typically, this is done by
sending the message alloc to a class, but it is also done when you call malloc or one of its
friends. Sometimes, this happens in the implementation of another function or method, like
UIGraphicsBeginImageContextWithOptions (because it calls malloc). When you allocate memory
from the heap, it is your responsibility to clean it up. This is done by deallocating an object, freeing a
malloc’ed buffer, or calling a function that frees a buffer (like UIGraphicsEndImageContext).

The stack operates differently than the heap. When you call a function, memory from the stack is
automatically allocated. (At the lowest level, a method is really just a function, so we can use the
terms interchangeably here). We call this chunk of memory a stack frame. A stack frame holds
information that is vital to the execution of a function. For example, the memory for variables declared
in a function are inside this stack frame. We call these local variables. When a function ends, that
stack frame is automatically deallocated. Thus, any local variables are destroyed when the function
completes.

When you define a block, it is assigned to a local variable. A newly created block then lives on the
stack and consequently will be destroyed when the function it was declared in ends. However, a
block sometimes needs to be called after it was created. For example, the blocks you supplied to
NSNotificationCenter and CATransaction need to be executed well after the function they were
declared in finishes executing. Therefore, we need some way of keeping a block around.

Interestingly enough, blocks are also objects. We can send them messages like retain, release, and
copy.

void (^aBlock)() = ^(void){...}; 
// Retain a block - just like an Objective-C object
[aBlock retain]; 
// Copy a block - also like an Objective-c object
void (^anotherBlock)() = [aBlock copy];

You might think, then, to keep a block around, you would send it the message retain. However,
this doesn’t work the way you would expect. When a block is first created, it is a stack-based block
– meaning its memory lives in the stack. Sending the message retain to a block increases its retain



ptg

For the More Curious: Memory Management and Blocks

401

count, but since it still lives in the stack, it will be destroyed (regardless of its retain count) when the
function it was declared in finishes.

To keep a block around, you must make a copy of it. The copy is dynamically allocated from the heap,
which then gives us control over when it is deallocated. We call a block that has been moved to the
heap a heap-based block. A heap-based block has a retain count that works in the way we expect: the
object that made the copy is an owner of that block and must release it for it to be deallocated. Other
objects may retain the copy to prevent it from being deallocated until they too release it.

Methods like CATransaction’s setCompletionBlock: will copy the block sent to it. When the
transaction finishes, that block will still exist in the heap, and it will be executed. After the block is
executed, the transaction releases it, and the memory is returned back to the heap. This seems pretty
straightforward, but it can get tricky when you add a block to a collection object like NSMutableArray
or NSMutableDictionary. Objects added to collection objects are sent the message retain. Because a
block that is only retained still lives on the stack, the block will get destroyed as soon as you leave the
method it was created in. Thus, to really add a block to a collection object, you will first make a copy,
then autorelease it. The collection object will retain the autoreleased copy, ensuring its existence.

- (NSMutableArray *)blockArray
{
    NSMutableArray *a = [NSMutableArray array];
    void (^aBlock)() = ^(void)
    {
        ...
    };
    // Copy the block to move it to the heap,
    // then autorelease it because the array
    // will retain the copy.
    [a addObject:[[aBlock copy] autorelease]];

    return a;
}

Earlier in this chapter, we talked about how a block will retain objects it references. This is not
completely true: a stack-based block will not retain objects it references. Only when a block is copied
to the heap will it actually retain those objects. Therefore, copying a block serves the dual purpose of
ensuring not only the block exists when it is executed later, but any objects it talks to will also exist.

One thing to note about the previous chunk of code is that aBlock could potentially reference the array
it belongs to in the body of the block. If this is the case, you would need to make sure that aBlock
doesn’t retain a, otherwise, you will get a retain cycle. There is a special modifier, __block, you can
add to variables to force this non-retaining behavior.

- (NSMutableArray *)blockArray
{
    __block NSMutableArray *a = [NSMutableArray array];
    void (^aBlock)() = ^(void)
    {
        NSLog(@"I'm in %@!", a);
    };

    [a addObject:[[aBlock copy] autorelease]];

    return a;
}



ptg

Chapter 24  Blocks and Categories

402

This modifier has more than one use. A variable that is captured by a block is, by default, constant.
You cannot change the value of a captured variable within the block. For primitives, like int, this
means you cannot change the value of that integer. For pointers to objects, this means you cannot set
the pointer to point at another object. You can still send messages to the object that change its instance
variables, though.

If you want to allow a variable to be modified by a block (for example, a block that takes an integer
that increases by one every time the block is called – a counter), you must declare that variable with
the __block modifier.

__block int counter = 0;
void (^aBlock)() = ^(void)
{
    NSLog(@"%d", counter++);
}; 
aBlock(); // This will print 0
aBlock(); // This will print 1

Pointers to objects declared with this modifier do not get retained by the block. In other words, when a
stack-based block becomes a heap-based block, the object pointed to by a __block-decorated variable
is not retained.

The final block memory “gotcha” is related to instance variables. If you access an instance variable in
a heap-based block directly, the instance variable is not retained. However, self is retained.

- (void)method
{
    // There is an instance variable in this class: NSString *myString;
    void (^aBlock)() = ^(void)
    {
        doSomethingWithObject(myString);
    };
    // Upon copy, *self* is retained by the block.
    void (^bCopy)() = [aBlock copy];

    // Send the copy somewhere... 
}

If, however, you have a local variable that points at an instance variable, the previous rules apply.

- (void)method
{
    // There is an instance variable in this class: NSString *myString;
    NSString *var = myString;
    void (^aBlock)() = ^(void)
    {
        doSomethingWithObject(var);
    };
    // Upon copy, *var* is retained by the block.
    void (^bCopy)() = [aBlock copy];

    // Send the copy somewhere...
}

When you are first learning blocks, most of the information covered in this section will probably fly
right over your head. However, as you become more comfortable with blocks and use them as they are
intended, you will need to know these gruesome details. 



ptg

For the More Curious: Pros and Cons of Callback Options

403

For the More Curious: Pros and Cons of Callback
Options
A callback, as you may remember from Chapter 4, is a chunk of code you supply in advance of an
event occurring. When that event goes down, the chunk of code gets executed. While blocks have
many more uses, you have seen in this chapter that they can be used as another approach to callbacks.
Other approaches to callbacks you have seen are delegation, target-action pairs, and notifications. Each
one has benefits and drawbacks compared to the others. This section will expand on these benefits and
drawbacks so that you can pick the appropriate one for your own implementations.

First, let’s note that each of these approaches to callbacks are design patterns that transcend their
implementations in Cocoa Touch. For example, the target-action pair design pattern is implemented
by UIControl, but this does not mean you have to use UIControl to use the design pattern. You could
create your own class that kept a pointer to a target object and a SEL for the message that object would
be sent when some event occurred.

Callbacks have two major components: the process of registering it and the code for the callback.
When registering a callback using delegation, target-actions or notifications, you register a pointer to
an object. This is the object that will receive messages when events occur. Additionally, both target-
actions and notifications require a SEL that will be the message that is sent to the object. Delegation, on
the other hand, uses pre-defined methods from a delegate protocol to decide the messages that get sent.

Figure 24.4  Callback design patterns

In these three callback design patterns, the code for the callback is in a distinct method
implementation. Overall, each of these approaches is pretty similar, but there are certain situations that
work better when using one or the other.

You use target-action when you have a close relationship between the two objects (like a view
controller and one of its views) and when there may be many instances of object that call back. For
example, a single interface controlled by one controller may have many buttons. If those buttons



ptg

Chapter 24  Blocks and Categories

404

only knew how to send one message (e.g., buttonTapped:), there would be mass confusion in the
implementation of that method (“Uhhh... which button are you again?”).

Delegation is used when an object receives many events and it wants the same object to handle each 
of those events. You’ve seen many examples of this throughout this book, because delegation is a very
common design pattern in Cocoa Touch. Because delegation uses a protocol that defines all of the
messages that will be sent, you do not have control over the names of these methods, but you do not
have to register them individually like with target-action pairs.

Notifications are used when you want multiple objects to invoke their callback for the same event and/
or when two objects are not related. Consider an application that had two view controllers that were 
in a tab bar controller together. They don’t have pointers to each other, not like two view controllers 
in a navigation controller stack, but one of them is interested in what is going on in the other. Instead
of giving them pointers to each other, which can be messy for a variety of reasons, one of view
controllers can be kind and post notifications to the notification center. The other could register as an
observer for that type of notification. Similarly, another view controller could come along and register
for the same notification, and both observers would be updated.

Blocks are the outliers when it comes to callbacks because they are not an object-oriented approach.
Blocks are useful when the callback is going to happen only once or when the callback is just a quick
and simple task (like updating a progress bar). For example, in this chapter, you supplied a block for
the completion of an animation. This animation was only going to run once, and therefore the block
would only be called once.

One of the reasons blocks are better suited for this one-shot behavior is because they will retain any
objects they reference. If a block was to stay around forever, the objects it references would also stay
around forever. Of course, you can destroy the block when it is no longer needed, but what if that
block is owned by an object that the block references? The object retains the block, the block retains
the object, and now you can’t deallocate them without some extra work. Since the blocks stick around
just for the one event, they will retain what they need until they no longer need it.

Another reason blocks are well-suited for this situation goes along with the reason why they are good
for quick and simple tasks: you can define the block’s code at the same point where the block is
registered as a callback. This keeps your code nice and clean.

An approach to callbacks we have not discussed is subclassing. In some languages, delegation is not
feasible because of the structure of the language. In these languages, classes like CLLocationManager
would be abstract classes – ones that were meant to be subclassed. Any time you wanted to use an
instance of CLLocationManager, you would subclass it and write the code for what happens when an
event occurs in the implementation of this subclass. The subclass would probably have an instance
variable for the object it was going to tell about these events, and that object would declare and define
these methods. This gets ugly pretty quickly, and thus, in Cocoa Touch, you do not see this pattern
because we have better alternatives.



ptg

405

25
Web Services and

UIWebView

In this chapter, you will lay the foundation of an application that reads the RSS feed from the Big Nerd
Ranch Forums (Figure 25.1). These posts will be listed in a table view. Selecting a post from the table
will display that post from the site.

Figure 25.1  Nerdfeed

Getting Nerdfeed to the point shown in Figure 25.1 consists of two main parts: collecting data from
a web service and using the UIWebView class to display web content. Figure 25.2 shows an object
diagram for Nerdfeed.



ptg

Chapter 25  Web Services and UIWebView

406

Figure 25.2  Nerdfeed Object Diagram

Web Services
Your handy web browser uses the HTTP protocol to communicate with a web server. In the simplest
interaction, the broswer sends a request specifying some URL to the server. The server responds 
by sending back the requested page (typically HTML and images), which the browser formats and
displays.

In more complex interactions, browser requests can include other parameters, like form data. The
server processes these parameters and returns a customized, or dynamic, webpage.

Web browsers are widely used and have been for a long time. So the technologies surrounding HTTP
are stable and well-developed: HTTP traffic passes neatly through most firewalls, web servers are very
secure and have great performance, and web application development tools have become easy to use.

You can write a client application for iOS that leverages the HTTP infrastructure to talk to a web-
enabled server. Because the HTTP protocol doesn’t care about what data it transports, your client
application can exchange requests and responses that contain complex data. This data is typically in
XML or JSON (JavaScript Object Notation) format. (If you control the web server as well as the client,
you can use any format you like; if not, you have to build your application to use whatever the server
supports.)

The server side of this application is a web service. Using a web service from your iOS application
typically requires



ptg

Starting the Nerdfeed application

407

• formatting the data to be sent as XML or JSON

• sending that data in an HTTP request

• receiving the HTTP response

• parsing and processing the received XML or JSON data 

Starting the Nerdfeed application
Create a new Window-based Application for the iPad Device Family. Name this application Nerdfeed,
as shown in Figure 25.3. (If you don’t have an iPad to deploy to, you can use the iPad simulator.)

Figure 25.3  Creating an iPad Window-based Application

Let’s knock out the basic UI before focusing on web services. Create a new NSObject subclass
and name it ListViewController. In ListViewController.h, change the superclass to
UITableViewController.

@interface ListViewController : UITableViewController            

In ListViewController.m, write stubs for the required data source methods so we can build and run as
we go through this exercise.



ptg

Chapter 25  Web Services and UIWebView

408

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section 
{
    return 0;
}

- (UITableViewCell *)tableView:(UITableView *)tableView 
         cellForRowAtIndexPath:(NSIndexPath *)indexPath 
{
    return nil;
}            

In NerdfeedAppDelegate.m, create an instance of ListViewController and set it as the root view
controller of a navigation controller. Make that navigation controller the root view controller of the
window.

#import "NerdfeedAppDelegate.h"
#import "ListViewController.h"
            
@implementation NerdfeedAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{    
    ListViewController *lvc = 
        [[ListViewController alloc] initWithStyle:UITableViewStylePlain];
    [lvc autorelease];

    UINavigationController *masterNav = 
        [[UINavigationController alloc] initWithRootViewController:lvc];
    [masterNav autorelease];

    [[self window] setRootViewController:masterNav];

    [[self window] makeKeyAndVisible];

    return YES;
}    

Build and run the application. You should see an empty UITableView and a navigation bar.

Fetching data from a URL
The Nerdfeed application will fetch data from a web server using three handy classes: NSURL,
NSURLRequest, and NSURLConnection (Figure 25.4).

Figure 25.4  Relationship of web service classes



ptg

Fetching data from a URL

409

Each of these classes has an important role in communicating with a web server:

• An NSURL instance contains the location of a web application in URL format. For many web
services, the URL will be composed of the base address, the web application you are communicating
with, and any arguments that are being passed.

• An NSURLRequest instance holds all the data necessary to communicate with a web server. This
includes an NSURL object, as well as a caching policy, a limit on how long you will give the web
server to respond, and additional data passed through the HTTP protocol. (NSMutableURLRequest is
the mutable subclass of NSURLRequest.)

• An NSURLConnection instance is responsible for actually making the connection to a web server,
sending the information in its NSURLRequest, and gathering the response from the server.

In this exercise, you will be making a web service request to the smartfeed service hosted at http://
forums.bignerdranch.com. You will pass a number of arguments to this service that determine the
format of the data that is returned. This data will be XML that describes the most recent posts at our
developer forums.

The form of a web service request varies depending on who implements the web service; there are no
set-in-stone rules when it comes to web services. You will need to find the documentation for the web
service to know how to format a request. As long as a client application sends the server what it wants,
you have a working exchange.

The Big Nerd Ranch Forum’s RSS feed wants a URL that looks like this:

http://forums.bignerdranch.com/smartfeed.php?limit=NO_LIMIT&count_limit=20
&sort_by=standard&feed_type=RSS2.0&feed_style=COMPACT

You can see that the base URL is forums.bignerdranch.com, the web application is smartfeed, and
there are five arguments. These arguments are required by the smartfeed web application.

This is a pretty common form for a web service request. Generally, a request URL looks like this:

http://baseURL.com/serviceName?argumentX=valueX&argumentY=valueY

At times, you will need to make a string “URL-safe.” For example, space characters and quotes are not
allowed in URLs; They must be replaced with escape-sequences. Here is how that is done.

NSString *search = @"Play some \"Abba\"";
NSString *escaped = 
      [search stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

// escaped is now "Play%20some%20%22Abba%22"

When the request to the Big Nerd Ranch forums is processed, the server will return XML data that
contains the last 20 posts. The ListViewController, who made the request, will populate its table
view with the titles of the posts.

In ListViewController.h, add an instance variable for the connection and one for the data that is
returned from that connection. Also add a new method declaration.

http://forums.bignerdranch.com/smartfeed.php?limit=NO_LIMIT&count_limit=20&sort_by=standard&feed_type=RSS2.0&feed_style=COMPACT
http://forums.bignerdranch.com/smartfeed.php?limit=NO_LIMIT&count_limit=20&sort_by=standard&feed_type=RSS2.0&feed_style=COMPACT
http://baseURL.com/serviceName?argumentX=valueX&argumentY=valueY


ptg

Chapter 25  Web Services and UIWebView

410

@interface ListViewController : UITableViewController
{
    NSURLConnection *connection;
    NSMutableData *xmlData;
} 
- (void)fetchEntries;
@end

Working with NSURLConnection
An NSURLConnection instance can communicate with a web server two ways: synchronously 
or asynchronously. Because passing data to and from a remote server can take some time,
synchronous connections are generally frowned upon because they stall your application until the
connection completes. This chapter will teach you how to perform an asynchronous connection with
NSURLConnection.

When an instance of NSURLConnection is created, it needs to know the location of the web application
and the data to pass to that web server. It also needs a delegate. When told to start communicating with
the web server, NSURLConnection will initiate a connection to the location, begin passing it data, and
possibly receive data back. It will update its delegate each step of the way with useful information.

In ListViewController.m, implement the fetchEntries method to create an NSURLRequest that
connects to http://forums.bignerdranch.com and asks for the last 20 posts in RSS 2.0 format. Then,
create a connection object that transfers this request to the server. 

- (void)fetchEntries
{
    // Create a new data container for the stuff that comes back from the service
    [xmlData release];
    xmlData = [[NSMutableData alloc] init];

    // Construct a URL that will ask the service for what you want -
    // note we can concatenate literal strings together on multiple 
    // lines in this way - this results in a single NSString instance
    NSURL *url = [NSURL URLWithString:
            @"http://forums.bignerdranch.com/smartfeed.php?"
            @"limit=NO_LIMIT&count_limit=20&sort_by=standard&"
            @"feed_type=RSS2.0&feed_style=COMPACT"];

    // For Apple's Hot News feed, replace the line above with
    // NSURL *url = [NSURL URLWithString:@"http://www.apple.com/pr/feeds/pr.rss"];

    // Put that URL into an NSURLRequest
    NSURLRequest *req = [NSURLRequest requestWithURL:url];
    
    // Create a connection that will exchange this request for data from the URL
    connection = [[NSURLConnection alloc] initWithRequest:req 
                                                 delegate:self 
                                         startImmediately:YES];
}    

Kick off the exchange whenever the ListViewController is created. In ListViewController.m,
override initWithStyle:.

http://forums.bignerdranch.com


ptg

Working with NSURLConnection

411

- (id)initWithStyle:(UITableViewStyle)style 
{
    self = [super initWithStyle:style];

    if (self) {
        [self fetchEntries];
    }

    return self;
}

Build the application to make sure there are no syntax errors. This code, as it stands, will make the
connection to the web service and retrieve the last 20 posts. However, there is one problem: you don’t
see those posts anywhere. You need to implement delegate methods for NSURLConnection to collect
the XML data returned from this request.

Figure 25.5  NSURLConnection flow chart

The delegate of an NSURLConnection is responsible for overseeing the connection and for collecting
the data returned from the request. (This data is typically an XML or JSON document; for this web
service, it is XML.) However, the data returned usually comes back in pieces, and it is the delegate’s
job to collect the pieces and put them together.

In ListViewController.m, implement connection:didReceiveData: to put all of the data received
by the connection into the instance variable xmlData.

// This method will be called several times as the data arrives 
- (void)connection:(NSURLConnection *)conn didReceiveData:(NSData *)data
{
    // Add the incoming chunk of data to the container we are keeping
    // The data always comes in the correct order
    [xmlData appendData:data];
}

When a connection has finished retrieving all of the data from a web service, it sends the message
connectionDidFinishLoading: to its delegate. In this method, you are guaranteed to have the
complete response from the web service request and can start working with that data. For now,



ptg

Chapter 25  Web Services and UIWebView

412

implement connectionDidFinishLoading: in ListViewController.m to just print out the string
representation of that data to the console to make sure good stuff is coming back.

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
    // We are just checking to make sure we are getting the XML
    NSString *xmlCheck = [[[NSString alloc] initWithData:xmlData
                                                encoding:NSUTF8StringEncoding]
                                                        autorelease];
    NSLog(@"xmlCheck = %@", xmlCheck);
}

There is a possibility that a connection will fail. If an instance of NSURLConnection cannot make a
connection to a web service, it sends its delegate the message connection:didFailWithError:. Note
that this message gets sent for a connection failure, like having no Internet connectivity or if the server
doesn’t exist. For other types of errors, such as data sent to a web service in the wrong format, the error
information is returned in connection:didReceiveData:.

In ListViewController.m, implement connection:didFailWithError: to inform your application of
a connection failure.

- (void)connection:(NSURLConnection *)conn 
  didFailWithError:(NSError *)error
{
    // Release the connection object, we're done with it 
    [connection release];
    connection = nil;

    // Release the xmlData object, we're done with it 
    [xmlData release];
    xmlData = nil;
    
    // Grab the description of the error object passed to us
    NSString *errorString = [NSString stringWithFormat:@"Fetch failed: %@", 
                             [error localizedDescription]];
                             
    // Create and show an alert view with this error displayed
    UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Error"
                                                 message:errorString
                                                delegate:nil
                                       cancelButtonTitle:@"OK"
                                       otherButtonTitles:nil];
    [av show];
    [av autorelease];
}

Try building and running your application. You should see the XML results in the console shortly
after you launch the application. If you put your device in Airplane Mode (or if it is not connected to a
network), you should see a friendly error message when you try to fetch again. (For now, you will have
to restart the application from Xcode in order to refetch the data after you’ve received the error.) 

Parsing XML
The XML that comes back from the server looks something like this:

<?xml version="1.0" encoding="utf-8"?> 
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">



ptg

Parsing XML

413

  <channel>
    <title>forums.bignerdranch.com</title>
    <description>Books written by Big Nerd Ranch</description>
        ...
    <item>
      <title>Big Nerd Ranch General Discussions :: Big Nerd Ranch is awesome!</title>
      <link>http://forums.bignerdranch.com/viewtopic.php?f=4&t=532&p=1517#p1517</link>
      <author>no_email@example.com (bignerd)</author>
      <category>Big Nerd Ranch General Discussions</category>
      <comments>http://forums.bignerdranch.com/posting.php?mode=reply&f=4</comments>
      <pubDate>Mon, 27 Dec 2010 11:27:01 GMT</pubDate>
    </item>
    ...
  </channel>
</rss>            

(If you aren’t seeing anything like this in your console, verify that you typed the URL correctly.)

Let’s break down the XML the server returned. The top-level element in this document is an rss
element. It contains a channel element. That channel element has some metadata that describes it (a
title and a description). Then, there is a series of item elements. Each item has a title, link, author, etc.
and represents a single post on the forum.

In a moment, you will create two new classes, RSSChannel and RSSItem, to represent the channel
and item elements. The ListViewController will have an instance variable for the RSSChannel,
which will hold an array of RSSItems. Each RSSItem will be displayed as a row in the table view.
Both RSSChannel and RSSItem will retain some of their metadata as instance variables, as shown in
Figure 25.6.

Figure 25.6  Model object graph

To parse the XML, you will use the class NSXMLParser. An NSXMLParser instance takes a chunk
of XML data and reads it line by line. As it finds interesting information, it sends messages to its



ptg

Chapter 25  Web Services and UIWebView

414

delegate, like, “I found a new element tag,” or “I found a string inside of an element.” The delegate
object is responsible for interpreting what these messages mean in the context of the application.

In ListViewController.m, delete the code you wrote in connectionDidFinishLoading: to log the
XML. Replace it with code to kick off the parsing and set the parser’s delegate to point at the instance
of ListViewController.

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
    // Create the parser object with the data received from the web service
    NSXMLParser *parser = [[NSXMLParser alloc] initWithData:xmlData];

    // Give it a delegate
    [parser setDelegate:self];

    // Tell it to start parsing - the document will be parsed and
    // the delegate of NSXMLParser will get all of its delegate messages
    // sent to it before this line finishes execution - it is blocking
    [parser parse];

    // The parser is done (it blocks until done), you can release it immediately
    [parser release];    
    
    // Get rid of the XML data as we no longer need it
    [xmlData release];
    xmlData = nil;

    // Get rid of the connection, no longer need it
    [connection release];
    connection = nil;

    // Reload the table.. for now, the table will be empty.
    [[self tableView] reloadData];    
}

The delegate of the parser, ListViewController, will receive a message when the parser finds a new
element, another message when it finds a string within an element, and another when an element is
closed.

For example, if a parser saw this XML:

<title>Big Nerd Ranch</title>.

it would send its delegate three consecutive messages: “I found a new element: ‘title’,” then, “I found
a string: ‘Big Nerd Ranch’,” and finally, “I found the end of an element: ‘title’.” These messages are
found in the NSXMLParserDelegate protocol:

// The "I found a new element" message
  - (void)parser:(NSXMLParser *)parser            // The parser
 didStartElement:(NSString *)elementName          // Name of the element found
    namespaceURI:(NSString *)namespaceURI         
   qualifiedName:(NSString *)qualifiedName        
      attributes:(NSDictionary *)attributeDict;   

// The "I found a string" message
  - (void)parser:(NSXMLParser *)parser            // Parser that is sending message
 foundCharacters:(NSString *)string;              // The contents of element (string)



ptg

Parsing XML

415

// The "I found the end of an element" message 
- (void)parser:(NSXMLParser *)parser              // The parser
 didEndElement:(NSString *)elementName            // Name of the element found
  namespaceURI:(NSString *)namespaceURI           
 qualifiedName:(NSString *)qName;                  

The namespaceURI, qualifiedName, and attributes arguments are for more complex XML, and we’ll
return to them at the end of the chapter.

It is up to the ListViewController to make sense of that series of messages, and it does this by
constructing an object tree that represents the XML feed. In this case, after the XML is parsed, there
will be an instance of RSSChannel that contains a number of RSSItem instances. Here are the steps to
constructing the tree:

• When the parser reports it found the start of the channel element, create an instance of RSSChannel.

• When the parser finds a title or description element and it is currently inside a channel element,
set the appropriate property of the RSSChannel instance.

• When the parser finds an item element, create an instance of RSSItem and add it to the items array
of the RSSChannel.

• When the parser finds a title or link element and it is currently inside a item element, set the
appropriate property of the RSSItem instance.

This list doesn’t seem too daunting. However, there is one issue that makes it difficult: the parser
doesn’t remember anything about what it has parsed. A parser may report, “I found a title element.”
Its next report is “Now I’ve found the string inside an element.” At this point, if you asked the parser
which element that string was inside, it couldn’t tell you. It only knows about the string it just found.
This leaves the burden of tracking state on the parser’s delegate, and maintaining the state for an entire
tree of objects in a single object is cumbersome.

Instead, you will spread out the logic for handling messages from the parser among the classes
involved. If the last found element is a channel, then that instance of RSSChannel will be responsible
for handling what the parser spits out next. The same goes for RSSItem; it will be responsible for
grabbing its own title and link strings.

“But the parser can only have one delegate,” you say. And you’re right; it can only have one delegate
at a time. We can change the delegate of an NSXMLParser whenever we please, and the parser will keep
chugging through the XML and sending messages to its current delegate. The flow of the parser and
the related objects is shown in Figure 25.7.



ptg

Chapter 25  Web Services and UIWebView

416

Figure 25.7  Flow diagram of XML being parsed into a tree, creating the
tree

When the parser finds the end of an element, it tells its delegate. If the delegate is the object that
represents that element, that object returns control to the previous delegate (Figure 25.8).



ptg

Parsing XML

417

Figure 25.8  Flow diagram of XML being parsed into a tree, back up the
tree



ptg

Chapter 25  Web Services and UIWebView

418

Now that we have a plan, let’s get to work. Create a new NSObject subclass named RSSChannel. A
channel object needs to hold some metadata, an array of RSSItem instances, and a pointer back to the
previous parser delegate. In RSSChannel.h, add these instance variables and properties:

@interface RSSChannel : NSObject
{
    NSString *title;
    NSString *shortDescription;
    NSMutableArray *items;

    id parentParserDelegate;
} 
@property (nonatomic, assign) id parentParserDelegate;

@property (nonatomic, retain) NSString *title; 
@property (nonatomic, retain) NSString *shortDescription;
@property (nonatomic, readonly) NSMutableArray *items;

@end            

In RSSChannel.m, synthesize the properties and override init and dealloc.

@implementation RSSChannel 
@synthesize items, title, shortDescription, parentParserDelegate;

- (id)init 
{
    self = [super init];
    
    if (self) {
        // Create the container for the RSSItems this channel has;
        // we'll create the RSSItem class shortly.
        items = [[NSMutableArray alloc] init];
    }
    
    return self;
}

- (void)dealloc
{
    // items is owned by this instance, must release
    [items release];
    
    // These ivars have the retain property attribute, must be released 
    [title release];
    [shortDescription release];
    
    [super dealloc];
}            
@end

Back in ListViewController.h, add an instance variable to hold an RSSChannel object and have the
class conform to the NSXMLParserDelegate protocol.

// a forward declaration; we'll import the header in the .m
@class RSSChannel;

@interface ListViewController : UITableViewController <NSXMLParserDelegate>
{



ptg

Parsing XML

419

    NSURLConnection *connection;
    NSMutableData *xmlData;

    RSSChannel *channel;

In ListViewController.m, implement an NSXMLParserDelegate method to catch the start of a
channel element. Also, at the top of the file, import the header for RSSChannel.

#import "RSSChannel.h"

@implementation ListViewController
 
- (void)parser:(NSXMLParser *)parser 
    didStartElement:(NSString *)elementName 
       namespaceURI:(NSString *)namespaceURI 
      qualifiedName:(NSString *)qualifiedName 
         attributes:(NSDictionary *)attributeDict
{
    NSLog(@"%@ found a %@ element", self, elementName);
    if ([elementName isEqual:@"channel"]) {
        
        // If the parser saw a channel, create new instance, store in our ivar
        [channel release];
        channel = [[RSSChannel alloc] init]; 
        
        // Give the channel object a pointer back to ourselves for later 
        [channel setParentParserDelegate:self];
        
        // Set the parser's delegate to the channel object
        [parser setDelegate:channel];
    } 
}            

Build and run the application. (Ignore the compiler warning for now.) You should see a log message
that the channel was created. If you don’t see this message, double-check that the URL you typed in
fetchEntries is correct.

Now that the channel is sometimes the parser’s delegate, it needs to implement NSXMLParserDelegate
methods to handle the XML. The RSSChannel instance will catch the metadata it cares about along
with any item elements.

The channel is interested in the title and description metadata elements, and you will store those
strings that the parser finds in the appropriate instance variables. When the start of one of these
elements is found, an NSMutableString instance will be created. When the parser finds a string, that
string will be concatenated to the mutable string.

In RSSChannel.h, declare that the class conforms to NSXMLParserDelegate and add an instance
variable for the mutable string.

@interface RSSChannel : NSObject <NSXMLParserDelegate>
{
    NSMutableString *currentString;            

In RSSChannel.m, implement one of the NSXMLParserDelegate methods to catch the metadata.

- (void)parser:(NSXMLParser *)parser 
    didStartElement:(NSString *)elementName 
       namespaceURI:(NSString *)namespaceURI 
      qualifiedName:(NSString *)qualifiedName 



ptg

Chapter 25  Web Services and UIWebView

420

         attributes:(NSDictionary *)attributeDict
{
    NSLog(@"\t%@ found a %@ element", self, elementName);
    
    if ([elementName isEqual:@"title"]) {
        currentString = [[NSMutableString alloc] init];
        [self setTitle:currentString];
    }
    else if ([elementName isEqual:@"description"]) {
        currentString = [[NSMutableString alloc] init];
        [self setShortDescription:currentString];
    } 
}         

Note that currentString points at the same object as the appropriate instance variable – either title
or shortDescription (Figure 25.9).

Figure 25.9  Two variables pointing at the same object

This means that when you append characters to the currentString, you are also appending them to
the title or to the shortDescription.

In RSSChannel.m, implement the parser:foundCharacters: method.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)str
{
    [currentString appendString:str];
}

When the parser finds the end of the channel element, the channel object will return control of the
parser to the ListViewController. Implement this method in RSSChannel.m.

- (void)parser:(NSXMLParser *)parser 
 didEndElement:(NSString *)elementName 
  namespaceURI:(NSString *)namespaceURI 
 qualifiedName:(NSString *)qName
{
    // If we were in an element that we were collecting the string for,
    // this appropriately releases our hold on it and the permanent ivar keeps 
    // ownership of it. If we weren't parsing such an element, currentString
    // is nil and this message does nothing.
    [currentString release];
    currentString = nil;

    // If the element that ended was the channel, give up control to
    // who gave us control in the first place
    if ([elementName isEqual:@"channel"])
        [parser setDelegate:parentParserDelegate];
}

Let’s double-check our work so far. In ListViewController.m, add the following log statement to
connectionDidFinishLoading:.



ptg

Parsing XML

421

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
    NSXMLParser *parser = [[NSXMLParser alloc] initWithData:xmlData];
    [parser setDelegate:self];
    [parser parse];
    [parser release];

    [xmlData release];
    xmlData = nil;
    
    [connection release];
    connection = nil;

    [[self tableView] reloadData];
    NSLog(@"%@\n %@\n %@\n", channel, [channel title], [channel shortDescription]);
}                

Build and run the application. At the end of the console, you should see the log statement with valid
values for the three strings. The data isn’t correct yet, but there should still be three blocks of text
separated by a new line.

Now, you will need to write the code for the leaves of the object tree represented by the XML – the
RSSItem instances. Create a new NSObject subclass. Name it RSSItem. In RSSItem.h, give the item
instance variables for its metadata and for parsing.

@interface RSSItem : NSObject <NSXMLParserDelegate>
{
    NSString *title;
    NSString *link;
    NSMutableString *currentString;

    id parentParserDelegate;
} 
@property (nonatomic, assign) id parentParserDelegate;

@property (nonatomic, retain) NSString *title;
@property (nonatomic, retain) NSString *link;

@end            

In RSSItem.m, synthesize these properties and set up the parsing code similar to what you did for
RSSChannel. For the properties that retain their objects, add release messages in dealloc.

@implementation RSSItem

@synthesize title, link, parentParserDelegate;

- (void)parser:(NSXMLParser *)parser 
    didStartElement:(NSString *)elementName 
       namespaceURI:(NSString *)namespaceURI 
      qualifiedName:(NSString *)qualifiedName 
         attributes:(NSDictionary *)attributeDict
{
    NSLog(@"\t\t%@ found a %@ element", self, elementName);

    if ([elementName isEqual:@"title"]) {
        currentString = [[NSMutableString alloc] init];



ptg

Chapter 25  Web Services and UIWebView

422

        [self setTitle:currentString];
    }
    else if ([elementName isEqual:@"link"]) {
        currentString = [[NSMutableString alloc] init];
        [self setLink:currentString];
    }
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)str
{
    [currentString appendString:str];
}

- (void)parser:(NSXMLParser *)parser 
 didEndElement:(NSString *)elementName 
  namespaceURI:(NSString *)namespaceURI 
 qualifiedName:(NSString *)qName
{
    [currentString release];
    currentString = nil;

    if ([elementName isEqual:@"item"])
        [parser setDelegate:parentParserDelegate];
}

- (void)dealloc
{
    [title release];
    [link release];
    [super dealloc];
} 
@end            

Build the application to check for syntax errors.

In RSSChannel.m, put RSSItem into the object tree. At the top of this file, make sure to import the
header for RSSItem.

#import "RSSItem.h"

@implementation RSSChannel

- (void)parser:(NSXMLParser *)parser 
    didStartElement:(NSString *)elementName
       namespaceURI:(NSString *)namespaceURI
      qualifiedName:(NSString *)qualifiedName
         attributes:(NSDictionary *)attributeDict
{
    if ([elementName isEqual:@"title"]) {
        currentString = [[NSMutableString alloc] init];
        [self setTitle:currentString];
    }
    else if ([elementName isEqual:@"description"]) {
        currentString = [[NSMutableString alloc] init];
        [self setShortDescription:currentString];
    }
    else if ([elementName isEqual:@"item"]) {
        // When we find an item, create an instance of RSSItem
        RSSItem *entry = [[RSSItem alloc] init];



ptg

A quick tip on logging

423

        // Set up its parent as ourselves so we can regain control of the parser
        [entry setParentParserDelegate:self];
        
        // Turn the parser to the RSSItem 
        [parser setDelegate:entry];
        
        // Add the item to our array and release our hold on it
        [items addObject:entry];
        [entry release];
    }
}            

Build and run the application. You should see log statements in the console that indicate the tree is
being built. The last log statement in the console should have the correct data for the channel object,
which looks something like this:

<RSSChannel: 0x4e18f80>
forums.bignerdranch.com 
Books written by Big Nerd Ranch

Finally, you will connect the channel and its items to the table view. In ListViewController.m, import
the header file for RSSItem and fill out the two data source methods you temporarily implemented
earlier.

#import "RSSItem.h"

@implementation ListViewController
            
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section 
{
    return [[channel items] count];
} 
- (UITableViewCell *)tableView:(UITableView *)tableView 
         cellForRowAtIndexPath:(NSIndexPath *)indexPath 
{
    UITableViewCell *cell = [tableView 
                            dequeueReusableCellWithIdentifier:@"UITableViewCell"];
    if (cell == nil) {
        cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault 
                                       reuseIdentifier:@"UITableViewCell"] 
                                                autorelease];
    }
    RSSItem *item = [[channel items] objectAtIndex:[indexPath row]];
    [[cell textLabel] setText:[item title]];
    
    return cell;
}            

Build and run the application. You should now see the titles of the last 20 posts in a table view. Also,
take a good look at the console to see the flow of the parser and how the delegate role is passed around.

A quick tip on logging

In this exercise, you log a lot of data to the console. An important log statement could be easily missed.
One way to catch important statements is to prefix the most important ones with an easily searchable
token (like xxx), but that’s a quick-and-dirty fix.



ptg

Chapter 25  Web Services and UIWebView

424

A more elegant and useful option is to define a preprocessor macro that you can use to categorize 
your log statements. For example, in Nerdfeed, you can generate a ton of log statements for checking
the input and output of your web service requests. You can also generate a ton of log statements for
checking the logic in the rest of the application. When you are debugging Nerdfeed, it would be helpful
to separate the web service-related statements from the others so that you can turn them on or off as
needed.

While there are many ways to do this, here is the simplest one:

#define WSLog NSLog

This statement tells the compiler, “When you come across WSLog, see NSLog.” Save this statement 
in its own .h file and import it into your precompiled header (Nerdfeed_Prefix.pch). Then, when
you want to log a web service-related statement in your code, use WSLog instead of NSLog, passing the
exact same arguments. For example, in ListViewController.m, you could change the log statement in
connectionDidFinishLoading: to the following:

WSLog(@"%@\n %@\n %@\n", channel, [channel title], [channel shortDescription]);

As long as WSLog is defined to NSLog, nothing will change. You will still see all of your log statements
in the console. When you want to turn off the web service-related statements to concentrate on other
areas, simply re-define WSLog to nothing in its header file:

#define WSLog              

Now any WSLog calls will be invisible to the compiler, so they will not appear in the console to distract
you from your non-web service debugging.

UIWebView
In addition to its title, an RSSItem also keeps a link that points to the web page where the post lives. It
would be neat if Nerdfeed could open up Safari and navigate to that page. It would be even neater if
Nerdfeed could render that webpage as a view without having to leave Nerdfeed to open Safari. Good
news, it can.

Instances of UIWebView render web content. In fact, the Safari application on your device uses a
UIWebView to render its web content. In this part of the chapter, you will create a view controller whose
view is an instance of UIWebView. When one of the items is selected from the table view of RSSItems,
you will push the web view’s controller onto the navigation stack and have it load the link stored in the
RSSItem.

Create a new NSObject subclass and name it WebViewController. In WebViewController.h, add a
property (but not an instance variable) and change the superclass to UIViewController:

@interface WebViewController : UIViewController
{

} 
@property (nonatomic, readonly) UIWebView *webView;
@end

In WebViewController.m, override loadView to create an instance of UIWebView as the view of this
view controller. Also, implement the method webView to return that view.



ptg

UIWebView

425

@implementation WebViewController

- (void)loadView 
{
    // Create an instance of UIWebView as large as the screen
    CGRect screenFrame = [[UIScreen mainScreen] applicationFrame];
    UIWebView *wv = [[UIWebView alloc] initWithFrame:screenFrame];
    // Tell web view to scale web content to fit within bounds of webview 
    [wv setScalesPageToFit:YES];
    
    [self setView:wv];
    [wv release];
}

- (UIWebView *)webView
{
    return (UIWebView *)[self view];
}   

In ListViewController.h, add a new instance variable and property to ListViewController.

@class WebViewController;

@interface ListViewController : UITableViewController <NSXMLParserDelegate>
{
    NSURLConnection *connection;
    NSMutableData *xmlData;

    RSSChannel *channel;

    WebViewController *webViewController;
} 
@property (nonatomic, retain) WebViewController *webViewController;
- (void)fetchEntries; 
@end

In ListViewController.m, import the header file and synthesize the property.

#import "WebViewController.h"
            
@implementation ListViewController
@synthesize webViewController;

In NerdfeedAppDelegate.m, import the header for WebViewController, create an instance of
WebViewController, and set it as the webViewController of the ListViewController.

#import "WebViewController.h"

@implementation NerdfeedAppDelegate
            
- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{    
    ListViewController *lvc = 
        [[ListViewController alloc] initWithStyle:UITableViewStylePlain];
    [lvc autorelease];



ptg

Chapter 25  Web Services and UIWebView

426

    
    UINavigationController *masterNav = 
        [[UINavigationController alloc] initWithRootViewController:lvc];
    [masterNav autorelease];

    WebViewController *wvc = [[[WebViewController alloc] init] autorelease];
    [lvc setWebViewController:wvc];            

(Notice that we are instantiating the WebViewController in the application delegate. In other exercises,
the root view controller of a navigation controller was responsible for instantiating the next view
controller to be pushed on the stack. We are instantiating the WebViewController in the application
delegate in preparation for the next chapter where the interface will be different for the iPad and
iPhone.)

When the user taps on a row in the table view, the WebViewController will be pushed onto the
navigation stack, and the link for the selected RSSItem will be loaded in its web view. To have a
web view load a web page, you send it the message loadRequest:. The argument is an instance of
NSURLRequest that contains the URL you wish to navigate to. In ListViewController.m, implement
the following table view delegate method:

- (void)tableView:(UITableView *)tableView
                didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{   
    // Push the web view controller onto the navigation stack - this implicitly 
    // creates the web view controller's view the first time through
    [[self navigationController] pushViewController:webViewController animated:YES];

    // Grab the selected item
    RSSItem *entry = [[channel items] objectAtIndex:[indexPath row]];

    // Construct a URL with the link string of the item
    NSURL *url = [NSURL URLWithString:[entry link]];
    
    // Construct a requst object with that URL
    NSURLRequest *req = [NSURLRequest requestWithURL:url];
    
    // Load the request into the web view 
    [[webViewController webView] loadRequest:req];
    
    // Set the title of the web view controller's navigation item
    [[webViewController navigationItem] setTitle:[entry title]];
}

Build and run the application. You should be able to select one of the posts, and it should take you to a
new view controller that displays the web page for that post.

For the More Curious: NSXMLParser
NSXMLParser is the built-in XML parser in the iOS SDK. While there are plenty of parsers you can
pick up on the Internet, adding a third party dependency is sometimes difficult. Many developers,
seeing that NSXMLParser is not a tree-based parser (it doesn’t create an object graph out of the box), go
searching for an alternative parser. However, in this chapter, you’ve learned how to make NSXMLParser
into a tree-based parser.

Other than tree-based parsing, some developers may be concerned about parsing more complicated
XML. To parse simple XML, all you need are the three delegate methods used in this chapter. More



ptg

For the More Curious: The Request Body

427

complex XML has element attributes, namespaces, CDATA, and a slew of other items that need to 
be handled. Not to worry – NSXMLParser can handle these, too. The NSXMLParserDelegate protocol
includes many more methods that handle nearly anything XML can throw at you. There are also
arguments to the methods you have already used that can handle more complex XML. For example, in
parser:didStartElement:namespaceURI:qualifiedName:attributes:, we only used the first two
arguments. For the other arguments, consider the following XML:

<?xml version="1.0" encoding="utf-8"?>
<container version="2.0" xmlns:foo="BNR">
    <foo:item attribute1="one" attribute2="two"></item>
</container>

When the foo:item element is encountered by the parser, the values for the parameters to the delegate
method are as follows:

• The element is “item.” The namespace is ignored, and the name of the element is kept.

• The namespaceURI is “BNR.” The element’s name is item, and it is in the foo namespace, which
has a value of “BNR.”

• The qualifiedName is “foo:item.”

• Attributes is a dictionary that contains two keys, “attribute1” and “attribute2.” Their values are
“one” and “two,” respectively.

One thing NSXMLParser can’t do is resolve XPaths. You have to use another library to handle this. (For
more information, check out the Tree-Based XML Programming Guide in the Apple documentation.)

For the More Curious: The Request Body
When NSURLConnection talks to a web server, it uses the HTTP protocol. This protocol says that any
data you send or receive must follow the HTTP specification. The actual data transferred to the server
in this exercise is shown in Figure 25.10.



ptg

Chapter 25  Web Services and UIWebView

428

Figure 25.10  HTTP Request Format

Fortunately, NSURLRequest has a number of methods that allow you to specify a piece of the request
and then properly format it for you.

Any service request has three parts: a request-line, the HTTP headers, and the HTTP body, which is
optional. The request-line (which Apple calls a status line in its API) is the first line of the request and
tells the server what the client is trying to do. In this request, the client is trying to GET the resource at
smartfeed.php?limit=NO_LIMIT&etc. (It also specifies the HTTP specification version that the data is
in.)

The command, GET, is an HTTP method. While there are a number of supported HTTP methods,
you typically only see GET and POST. The default of NSURLRequest, GET, indicates that the client
wants something from the server. The thing that it wants is called the Request-URI (smartfeed.php?
limit=NO_LIMIT&etc).

In the early days of the web, the Request-URI would be the path of a file on the server. For example,
the request http://www.website.com/index.html would return the file index.html, and your
browser would render that file in a window. Today, we also use the Request-URI to specify a service
that the server implements. For example, in this chapter, you accessed the smartfeed.php service,
supplied parameters to it, and were returned an XML document. You are still GETting something, but
the server is more clever in interpreting what you are asking for.

In addition to getting things from a server, you can send it information. For example, many web
servers allow you to upload photos. A client application would pass the image data to the server
through a service request. In this situation, you use the HTTP method POST, which indicates to the
server that you are including the optional HTTP body. The body of a request is data you can include
with the request – typically XML, JSON or Base-64 encoded data.

When the request has a body, it must also have the Content-Length header. Handily enough,
NSURLRequest will compute the size of the body and add this header for you.



ptg

For the More Curious: Credentials

429

NSURL *someURL = [NSURL URLWithString:@"http://www.photos.com/upload"];
UIImage *image = [self profilePicture];
NSData *data = UIImagePNGRepresentation(image);

NSMutableURLRequest *req =
    [NSMutableURLRequest requestWithURL:someURL
                            cachePolicy:NSURLRequestReloadIgnoringCacheData
                        timeoutInterval:90];

// This adds the HTTP body data and automatically sets the Content-Length header 
[req setHTTPBody:data];

// This changes the HTTP Method in the request-line
[req setHTTPMethod:@"POST"];            

// If you wanted to set the Content-Length programmatically... 
[req setValue:[NSString stringWithFormat:@"%d", [data length]] 
    forHTTPHeaderField:@"Content-Length"];

For the More Curious: Credentials
When you try to access a web service, it will sometimes respond with an authentication challenge,
which means “Who the heck are you?” You then need to send a username and password (a credential)
before the server will send its genuine response.

There are objects that represent these ideas. When the challenge is received, your connection delegate
is sent a message that includes an instance of NSURLAuthenticationChallenge. The sender of that
challenge conforms to the NSURLAuthenticationChallengeSender protocol. If you want to continue
to get the data, you send back an instance of NSURLCredential, which typically looks something like
this:

- (void)connection:(NSURLConnection *)conn
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
    // Have I already failed at least once?
    if ([challenge previousFailureCount] > 0) {

        // Why did I fail?
        NSError *failure = [challenge error];
        NSLog(@"Can't authenticate: %@", [error localizedDescription]);

        // Give up
        [[challenge sender] cancelAuthenticationChallenge:challenge];
        return;
    }

    // Create a credential
    NSURLCredential *newCred =
            [NSURLCredential credentialWithUser:@"sid"
                                       password:@"MomIsCool"
                                    persistence:NSURLCredentialPersistenceNone];

    // Supply the credential to the sender of the challenge
    [[challenge sender] useCredential:newCred
           forAuthenticationChallenge:challenge];
}



ptg

Chapter 25  Web Services and UIWebView

430

If you are dealing with a more secure and sophisticated web service, it may want a certificate (or
certificates) to confirm your identity. Most, however, will just want a username and a password.

Credentials can have persistence. There are three possibilities:

• NSURLCredentialPersistenceNone says to the URL loading system, “Forget this credential as soon
as you use it.”

• NSURLCredentialPersistenceForSession says to the URL loading system, “Forget this credential
when this application terminates.”

• NSURLCredentialPersistencePermanent says to the URL loading system, “Put this credential in
my keychain so that other applications can use it.”

Challenge: More Data
Create a UITableViewCell subclass that has three labels. Parse the author and category elements into
the RSSItem and display the title, author, and category for each row.

Challenge: More UIWebView
A UIWebView keeps its own history. You can send the messages goBack and goForward to a web
view, and it will traverse through that history. Create a UIToolbar instance and add it to the
WebViewController’s view hierarchy. This toolbar should have back and forward buttons that will let
the web view move through its history. Bonus: use two other properties of UIWebView to enable and
disable the toolbar items.



ptg

431

26
UISplitViewController

The iPhone and iPod touch have a limited amount of screen real estate. Given their small screen size,
when presenting a drill-down interface, we use a UINavigationController to swap between a list of
items and a detailed view for an item.

The iPad, on the other hand, has plenty of screen space to present both views using a built-in class
called UISplitViewController. UISplitViewController is an iPad-only class that presents two view
controllers in a master-detail relationship. The master view controller occupies a small strip on the left
hand side of the screen, and the detail view controller occupies the rest of the screen.

In this chapter, you will have Nerdfeed present its view controllers in a split view controller when
running on an iPad (Figure 26.1). We will also make Nerdfeed a universal application, and it will
continue to use a UINavigationController when run on the iPhone.



ptg

Chapter 26  UISplitViewController

432

Figure 26.1  Nerdfeed with UISplitViewController

Splitting Up Nerdfeed
Creating a UISplitViewController is simple since you have already learned about navigation
controllers and tab bar controllers. When you initialize a split view controller, you pass it an array of
view controllers just like with a tab bar controller. However, a split view controller’s array is limited
to two view controllers: a master view controller and a detail view controller. The order of the view
controllers in the array determines their roles and position in the split view; the first entry is the master
view controller, and the second is the detail view controller.

Open Nerdfeed.xcodeproj in Xcode. Then, open NerdfeedAppDelegate.m.

In application:didFinishLaunchingWithOptions:, check if the device is an iPad before
instantiating a UISplitViewController. The UISplitViewController class does not exist on the
iPhone, and trying to create an instance of UISplitViewController will cause an exception to be
thrown.



ptg

Splitting Up Nerdfeed

433

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{    
    ListViewController *lvc = 
        [[ListViewController alloc] initWithStyle:UITableViewStylePlain];
    [lvc autorelease];

    UINavigationController *masterNav = 
        [[UINavigationController alloc] initWithRootViewController:lvc];
    [masterNav autorelease];

    WebViewController *wvc = [[[WebViewController alloc] init] autorelease];
    [lvc setWebViewController:wvc];
    
    // Check to make sure we're running on the iPad. 
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
    
        // webViewController must be in a navigation controller, you'll see why later.
        UINavigationController *detailNav = 
            [[UINavigationController alloc] initWithRootViewController:wvc];
        [detailNav autorelease];
        
        // Put nav controller with list and nav controller with web view in an array
        // first view controller is the "Master" and second is the "Detail"
        NSArray *vcs = [NSArray arrayWithObjects:masterNav, detailNav, nil];
        
        UISplitViewController *svc = 
            [[[UISplitViewController alloc] init] autorelease];
        
        // Set the delegate of the split view controller to the detail view controller
        // We'll need this later
        [svc setDelegate:wvc];
        
        // Set the split view controller's viewControllers array
        [svc setViewControllers:vcs];
        
        // Set the root view controller of the window to the split view controller
        [[self window] setRootViewController:svc];
    } else {
        // On non-iPad devices, go with the old version and just add the 
        // single nav controller to the window
        [[self window] setRootViewController:masterNav];
    }
    [[self window] makeKeyAndVisible];
    
    return YES;
}

By placing the UISplitViewController code within an if statement in this method, we are laying the
groundwork for making Nerdfeed a universal application. Also, now you can see why we created the
instance of WebViewController here instead of following the typical pattern of creating the detail view
controller inside the implementation for the root view controller. A split view controller must have
both the master and the detail view controller when it is created. The diagram for Nerdfeed’s split view
controller is shown in Figure 26.2.



ptg

Chapter 26  UISplitViewController

434

Figure 26.2  Controller diagram

UISplitViewController

viewControllers

ListViewController

UINavigationController

viewControllers

WebViewController

UINavigationController

viewControllers

0 1

"master" "detail"

webViewController

However, if you build and run right now, you won’t see anything more than a navigation bar on top of
a blank screen. The blank screen is your web view controller. It’s blank because you haven’t selected a
row. You haven’t selected a row because the list view controller is not on screen. Why is there no list
view controller? A UISplitViewController only shows the detail view controller in portrait mode;
there isn’t enough space to show the master view controller, too. The split view controller will only
display both when in landscape mode.

Unfortunately, your split view controller will not rotate to landscape mode by default. The
UISplitViewController is a subclass of UIViewController, so it implements the method
shouldAutorotateToInterfaceOrientation:. When the device rotates, the split view controller is



ptg

Splitting Up Nerdfeed

435

sent this message. The method needs to return YES to allow the rotation and show the master view
controller.

Overriding a method requires creating a new subclass, but before we do anything so drastic, let’s
look more closely at the implementation of shouldAutorotateToInterfaceOrientation: in
UISplitViewController. It looks a bit like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
    if ([[self viewControllers] count] == 2) {
        UIViewController *master = [[self viewControllers] objectAtIndex:0];
        UIViewController *detail = [[self viewControllers] objectAtIndex:1];
        return [master shouldAutorotateToInterfaceOrientation:io]
            && [detail shouldAutorotateToInterfaceOrientation:io];
    }
    return NO; 
}                

This implementation asks the master and the detail view controller whether it should allow rotation.
It sends the same message to both view controllers, and if both return YES, it rotates. So to get the
UISplitViewController to allow rotation what we really need to do is modify the implementation of
this method in the UISplitViewController’s two view controllers.

In ListViewController.m, override this method to return YES if Nerdfeed is running on the iPad:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
        return YES;
    return io == UIInterfaceOrientationPortrait;
}

Do the same in WebViewController.m:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
        return YES;
    return io == UIInterfaceOrientationPortrait;
}

Build and run the application. You should be able to rotate to landscape mode and, after the web
service request finishes, see the list on the lefthand side.

But we’re not done yet. If you tap a row in the list view controller, the web view controller doesn’t
appear in the detail panel like you want. Instead, it is pushed onto the master panel and replaces the
list view controller. (Our master panel thinks it’s an iPhone.) To address this problem, you will check
if the ListViewController is a member of a split view controller and, if it is, take a different action
when a row is tapped.

You can send the message splitViewController to any UIViewController, and if that view
controller is part of a split view controller, it will return a pointer to the split view controller
(Figure 26.3). Otherwise, it returns nil. View controllers are smart: a view controller will return this
pointer if it is a member of the split view controller’s array or if it belongs to another controller that
is a member of a split view controller’s array (as is the case with both ListViewController and
WebViewController).



ptg

Chapter 26  UISplitViewController

436

Figure 26.3  UIViewController’s splitViewController property

UISplitViewController

UINavigationController

ListViewController

viewControllers

splitViewController

splitViewController

viewControllers

In ListViewController.m, locate the method tableView:didSelectRowAtIndexPath:. At the top of
this method, make the check before you push the WebViewController onto the navigation stack.

- (void)tableView:(UITableView *)tableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
    if (![self splitViewController])
        [[self navigationController] pushViewController:webViewController 
                                               animated:YES];

    RSSItem *entry = [[channel items] objectAtIndex:[indexPath row]];
    
    NSURL *url = [NSURL URLWithString:[entry link]];
    NSURLRequest *req = [NSURLRequest requestWithURL:url];
    
    [[webViewController webView] loadRequest:req];
    
    [[webViewController navigationItem] setTitle:[entry title]];
}

Now, if the ListViewController is not in a split view controller, we assume the device is
not an iPad and have it push the WebViewController onto the navigation controller’s stack. If
ListViewController is in a split view controller, then we leave it to the UISplitViewController to
place the WebViewController on the screen.

Build and run the application again. Rotate to landscape and tap on one of the rows. The web page will
now load in the detail panel.

Master-Detail Communication
In Chapter 14, we discussed different options for allowing view controllers to send messages to each
other. Using instance variables is the simplest option, and that’s what we’ve done in Nerdfeed – we



ptg

Master-Detail Communication

437

gave the ListViewController a pointer to the WebViewController. In this simple application, this
approach works fine. Now let’s make Nerdfeed a little more complex and write a delegate protocol
instead.

Right now, the detail view controller displays the WebViewController when a row in the master
view controller is selected. In a moment, you’re going to create another view controller called
ChannelViewController that will display metadata about the RSS feed. You will also create an Info
button on the ListViewController’s navigation bar. Then the user will be able choose what to display
in the detail panel: tap a row and see a post’s detail view or tap the Info button and see the metadata
about the RSS feed.

But, first, let’s look at the big picture. The ListViewController will need to send messages to two
different view controllers: the WebViewController and the ChannelViewController. Instead of giving
the ListViewController another instance variable for the ChannelViewController, you’re going 
to write a protocol that both detail view controllers will conform to. Then you can generalize the
message that the ListViewController sends the two view controllers as a method in that protocol
(Figure 26.4).

Figure 26.4  Master view controller delegating to detail view controllers

ListViewController

WebViewController ChannelViewController

- (void)listViewController:(ListViewController *)lvc
h a n d le O b je c t:( id ) o b j;

ListViewControllerDelegate

listViewController:handleObject: listViewController:handleObject:

conforms to

This protocol’s one method will be named listViewController:handleObject:. The
ListViewController will send this message to the WebViewController when a row in the table is
tapped or to the ChannelViewController when the Info button is tapped. Notice that the second label
and argument type of this method are very general so that it can be used with a range of classes. When
the ListViewController sends this message to the WebViewController, it will pass an RSSItem
object. When the ListViewController sends this message to the ChannelViewController, it will pass
an RSSChannel object.

In ListViewController.h, create the ListViewControllerDelegate protocol at the end of the file.

- (void)fetchEntries;
@end



ptg

Chapter 26  UISplitViewController

438

            
// A new protocol named ListViewControllerDelegate
@protocol ListViewControllerDelegate

// Classes that conform to this protocol must implement this method: 
- (void)listViewController:(ListViewController *)lvc handleObject:(id)object;

@end            

First, let’s update WebViewController. In WebViewController.h, declare that this class conforms to
ListViewControllerDelegate.

// Must import this file as it is where ListViewControllerDelegate is declared
#import "ListViewController.h"

@interface WebViewController : UIViewController <ListViewControllerDelegate>
{

} 
@property (nonatomic, readonly) UIWebView *webView;
@end

When one of the rows is tapped in the table view, the ListViewController will send the message
from the ListViewControllerDelegate protocol to the WebViewController. The object passed as
the argument will be the RSSItem that corresponds to the selected row. In WebViewController.m,
implement listViewController:handleObject:.

#import "RSSItem.h"

@implementation WebViewController
            
- (void)listViewController:(ListViewController *)lvc handleObject:(id)object
{
    // Cast the passed object to RSSItem
    RSSItem *entry = object;
    
    // Make sure that we are really getting a RSSItem
    if (![entry isKindOfClass:[RSSItem class]])
        return;

    // Grab the info from the item and push it into the appropriate views         
    NSURL *url = [NSURL URLWithString:[entry link]];
    NSURLRequest *req = [NSURLRequest requestWithURL:url];
    [[self webView] loadRequest:req];

    [[self navigationItem] setTitle:[entry title]];
}            

Notice that the code creating and loading the request is the same code that we are currently running in
ListViewController.

Next, in ListViewController.m, modify the tableView:didSelectRowAtIndexPath: method to send
listViewController:handleObject: to the WebViewController.

- (void)tableView:(UITableView *)tableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{   
    if (![self splitViewController])



ptg

Master-Detail Communication

439

        [[self navigationController] pushViewController:webViewController 
                                               animated:YES];

    RSSItem *entry = [[channel items] objectAtIndex:[indexPath row]];
    
    [webViewController listViewController:self handleObject:entry];
}            

Build and run the application. The behavior of the application should remain the same, but now we’re
sending a generalized message to the web view controller.

Now that WebViewController conforms to our protocol and implements the required method, we can
turn to creating the ChannelViewController class.

Create an NSObject subclass and name it ChannelViewController. In ChannelViewController.h,
change its superclass to UITableViewController, have it conform to the
ListViewControllerDelegate protocol, and add an instance variable for the RSSChannel object.

#import "ListViewController.h"

@class RSSChannel;            
            
@interface ChannelViewController : 
    UITableViewController <ListViewControllerDelegate>
{
    RSSChannel *channel;
}

@end

In ChannelViewController.m, implement the data source methods to display the metadata in a table:

#import "RSSChannel.h"            

@implementation ChannelViewController 

- (NSInteger)tableView:(UITableView *)tableView 
 numberOfRowsInSection:(NSInteger)section
{
    return 2;
}

- (UITableViewCell *)tableView:(UITableView *)tableView 
         cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
    UITableViewCell *cell = 
                    [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];

    if (!cell)
        cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
                                       reuseIdentifier:@"UITableViewCell"] 
                                        autorelease];

    if ([indexPath row] == 0) {
        // Put the title of the channel in row 0
        [[cell textLabel] setText:@"Title"];
        [[cell detailTextLabel] setText:[channel title]];
    } else {
        // Put the description of the channel in row 1



ptg

Chapter 26  UISplitViewController

440

        [[cell textLabel] setText:@"Info"];
        [[cell detailTextLabel] setText:[channel shortDescription]];
    }

    return cell;
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
    if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
        return YES;
    return io == UIInterfaceOrientationPortrait;
}

- (void)dealloc
{
    [channel release];
    [super dealloc];
} 
@end

Then, implement the method from the ListViewControllerDelegate protocol in the same file,
ChannelViewController.m.

- (void)listViewController:(ListViewController *)lvc handleObject:(id)object
{
    // Make sure the ListViewController gave us the right object
    if (![object isKindOfClass:[RSSChannel class]])
        return;

    // Get rid of our old channel if there is one, take ownership of the new one
    [object retain];
    [channel release];
    channel = object;

    [[self tableView] reloadData];
}

Now, you need to show this view controller and get the channel object to it. In
ListViewController.m, add a UIBarButtonItem to the ListViewController’s navigationItem.

- (id)initWithStyle:(UITableViewStyle)style 
{
    self = [super initWithStyle:style];
    
    if (self) {
        UIBarButtonItem *bbi = 
            [[UIBarButtonItem alloc] initWithTitle:@"Info" 
                                             style:UIBarButtonItemStyleBordered 
                                            target:self 
                                            action:@selector(showInfo:)];

        [[self navigationItem] setRightBarButtonItem:bbi];
        [bbi release];
        
        [self fetchEntries];
    }
    return self;
}            



ptg

Master-Detail Communication

441

When this button is tapped, the detail view controller in the split view will be replaced with an instance
of ChannelViewController. In ListViewController.m, implement the action method to create an
instance of ChannelViewController. Then check for a split view controller and set the split view
controller’s viewControllers array.

#import "ChannelViewController.h"

@implementation ListViewController

- (void)showInfo:(id)sender
{
    // Create the channel view controller
    ChannelViewController *channelViewController = [[[ChannelViewController alloc] 
                                initWithStyle:UITableViewStyleGrouped] autorelease];

    if ([self splitViewController]) {
        UINavigationController *nvc = [[[UINavigationController alloc] 
                     initWithRootViewController:channelViewController] autorelease];
        
        // Create an array with our nav controller and this new VC's nav controller
        NSArray *vcs = [NSArray arrayWithObjects:[self navigationController], 
                                                 nvc, 
                                                 nil];

        // Grab a pointer to the split view controller
        // and reset its view controllers array.
        [[self splitViewController] setViewControllers:vcs];

        // Make detail view controller the delegate of the split view controller 
        [[self splitViewController] setDelegate:channelViewController];

        // If a row has been selected, deselect it so that a row 
        // is not selected when viewing the info
        NSIndexPath *selectedRow = [[self tableView] indexPathForSelectedRow];
        if (selectedRow)
            [[self tableView] deselectRowAtIndexPath:selectedRow animated:YES];
    } else {
        [[self navigationController] pushViewController:channelViewController
                                               animated:YES];
    }
    
    // Give the VC the channel object through the protocol message
    [channelViewController listViewController:self handleObject:channel];
}

Notice that here again you have left a non-split view controller, non-iPad option in an else clause that
pushes the ChannelViewController onto the navigation controller’s stack.

Build and run the application. After the RSS feed loads, tap the Info button. The detail view controller
will display the metadata for the channel. However, if you tap on a post after you’ve loaded the
metadata, nothing will happen – you can’t get back to a web view. This is because the split view
controller no longer has a navigation controller that holds the web view controller. The old one was
only retained by the split view controller, and we replaced it with a navigation controller holding the
channel view controller in showInfo:. We have to create another navigation controller that holds the
web view controller and give it to the split view controller.

In ListViewController.m, modify the tableView:didSelectRowAtIndexPath: to place a navigation
controller with the WebViewController in the split view controller.



ptg

Chapter 26  UISplitViewController

442

- (void)tableView:(UITableView *)tableView 
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{   
    if (![self splitViewController])
        [[self navigationController] pushViewController:webViewController 
                                               animated:YES];
    else {
        // We have to create a new navigation controller, as the old one 
        // was only retained by the split view controller and is now gone
        UINavigationController *nav = 
        [[UINavigationController alloc] initWithRootViewController:webViewController];

        NSArray *vcs = [NSArray arrayWithObjects:[self navigationController],
                                                 nav,
                                                 nil];
        [nav release];

        [[self splitViewController] setViewControllers:vcs];

        // Make the detail view controller the delegate of the split view controller 
        [[self splitViewController] setDelegate:webViewController];
    }

    RSSItem *entry = [[channel items] objectAtIndex:[indexPath row]];
    [webViewController listViewController:self handleObject:entry];
}

Build and run the application. You should be able to move back and forth between the two detail view
controllers.

The ListViewController doesn’t know how to show a post in a web view or show the info for the
RSSChannel. So it needs to delegate those behaviors to other objects. ListViewController does know
about the ListViewControllerDelegate protocol, by which it can send messages to a conforming
detailed view controller to handle things it can’t.

Even though the ListViewController never sets either of the detail view controllers as its delegate,
this is still delegation. Delegation is a design pattern, not a naming convention. For another example,
the table view-data source relationship is still delegation, even though the variable the table view sends
messages to is called a dataSource.

Displaying the Master View Controller in Portrait
Mode
While in portrait mode, the master view controller is missing in action. It would be nice if you could
see the master view controller to select a new post from the list without having to rotate the device.
UISplitViewController lets you do just that by supplying its delegate with a UIBarButtonItem.
Tapping this button shows the master view controller in a UIPopoverController.

In your code, whenever a detail view controller was given to the split view controller, that detail view
controller was set as the split view controller’s delegate. When rotating to portrait mode, the detail
view controller will get a pointer to the UIBarButtonItem.

In WebViewController.m, implement the following delegate method to place the bar button item in the
WebViewController’s navigation item.



ptg

Displaying the Master View Controller in Portrait Mode

443

- (void)splitViewController:(UISplitViewController *)svc 
     willHideViewController:(UIViewController *)aViewController 
          withBarButtonItem:(UIBarButtonItem *)barButtonItem 
       forPopoverController:(UIPopoverController *)pc
{
    // If this bar button item doesn't have a title, it won't appear at all.
    [barButtonItem setTitle:@"List"];
    
    // Take this bar button item and put it on the left side of our nav item.
    [[self navigationItem] setLeftBarButtonItem:barButtonItem];
}

Notice that we explicitly set the title of the button. If the button doesn’t have a title, it won’t appear at
all. (If the master view controller’s navigationItem has a title, then the button will be set to that title.
But that’s not true in Nerdfeed.)

Build and run the application. Rotate to portrait mode, and you will see the bar button item appear on
the left of the navigation bar. Tap that button, and the master view controller’s view will appear in a
UIPopoverController.

This bar button item is why we always had you put the detail view controller inside a navigation
controller. You don’t have to use a navigation controller to put a view controller in a split view
controller, but it makes using the bar button item much easier. (If you don’t use a navigation controller,
you can instantiate your own UINavigationBar or UIToolbar to hold the bar button item and add it as
a subview of the WebViewController’s view.)

There are three small issues left to address with your List button. First, when the device is rotated
back to landscape mode, the button is still there. To remove it, the delegate needs to respond 
to another message from the UISplitViewController. Implement this delegate method in
WebViewController.m.

- (void)splitViewController:(UISplitViewController *)svc 
     willShowViewController:(UIViewController *)aViewController 
  invalidatingBarButtonItem:(UIBarButtonItem *)button
{
    // Remove the bar button item from our navigation item
    // We'll double check that its the correct button, even though we know it is
    if (button == [[self navigationItem] leftBarButtonItem])
        [[self navigationItem] setLeftBarButtonItem:nil];
}

Build and run the application. The List button will now appear and disappear as you rotate between
portrait and landscape modes.

The second issue is that the ChannelViewController also needs to show the List button. In
ChannelViewController.m, implement the two UISplitViewControllerDelegate methods.

- (void)splitViewController:(UISplitViewController *)svc 
     willHideViewController:(UIViewController *)aViewController 
          withBarButtonItem:(UIBarButtonItem *)barButtonItem 
       forPopoverController:(UIPopoverController *)pc
{
    [barButtonItem setTitle:@"List"];
    
    [[self navigationItem] setLeftBarButtonItem:barButtonItem];
}  



ptg

Chapter 26  UISplitViewController

444

- (void)splitViewController:(UISplitViewController *)svc 
     willShowViewController:(UIViewController *)aViewController 
  invalidatingBarButtonItem:(UIBarButtonItem *)button
{
    if (button == [[self navigationItem] leftBarButtonItem])
        [[self navigationItem] setLeftBarButtonItem:nil];
}

Build and run the application. Now the List button will also appear on the navigation bar when the
ChannelViewController is on the screen.

Since both WebViewController and ChannelViewController can be the delegate
for a UISplitViewController, it’s best to declare that they conform to the
UISplitViewControllerDelegate protocol.

In WebViewController.h, add this declaration:

@interface WebViewController : UIViewController 
            <ListViewControllerDelegate, UISplitViewControllerDelegate>

And do the same in ChannelViewController.h.

@interface ChannelViewController : UITableViewController 
                <ListViewControllerDelegate, UISplitViewControllerDelegate>

Build and run the application. The behavior will be the same, but there won’t be any warnings.

Finally, if you are in portrait mode and switch between the ChannelViewController and
the WebViewController, the List button disappears. To keep the button on the screen, the
ListViewController needs to take the button from the current detail view controller and give it to the
new detail view controller.

At the top of ListViewController.m, create a category to implement a new private method:

@interface ListViewController () 
- (void)transferBarButtonToViewController:(UIViewController *)vc;
@end

@implementation ListViewController            

Then, implement this method in ListViewController.m.

- (void)transferBarButtonToViewController:(UIViewController *)vc
{
    // Get the navigation controller in the detail spot of the split view controller 
    UINavigationController *nvc = [[[self splitViewController] viewControllers] 
                                                                    objectAtIndex:1];

    // Get the root view controller out of that nav controller
    UIViewController *currentVC = [[nvc viewControllers] objectAtIndex:0];
    
    // If it's the same view controller, let's not do anything
    if (vc == currentVC)
        return;
    
    // Get that view controller's navigation item 
    UINavigationItem *currentVCItem = [currentVC navigationItem];
    



ptg

Universalizing Nerdfeed

445

    // Tell new view controller to use left bar button item of current nav item 
    [[vc navigationItem] setLeftBarButtonItem:[currentVCItem leftBarButtonItem]];
    
    // Remove the bar button item from the current view controller's nav item
    [currentVCItem setLeftBarButtonItem:nil];
}

Whenever the user switches between the two different views, you will invoke this method. Because
this method references the current detail view controller, it must be called before the split view
controller is updated with a new set of view controllers. In ListViewController.m, invoke this method
near the top of showInfo:.

- (void)showInfo:(id)sender
{
    ChannelViewController *channelViewController = 
        [[[ChannelViewController alloc] 
                                initWithStyle:UITableViewStyleGrouped] autorelease];

    if ([self splitViewController])
    {
        [self transferBarButtonToViewController:channelViewController];
    
        UINavigationController *nvc = 
            [[UINavigationController alloc] 
                initWithRootViewController:channelViewController];            

Now do the same going the other way. In ListViewController.m, locate the
tableView:didSelectRowAtIndexPath: method and add the following code:

- (void)tableView:(UITableView *)tableView
    didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{   
    if (![self splitViewController])
        [[self navigationController] pushViewController:webViewController 
                                               animated:YES];
    else {
        [self transferBarButtonToViewController:webViewController];

        UINavigationController *nav = 
        [[UINavigationController alloc] initWithRootViewController:webViewController];

Build and run the application. The List button should now always appear in portrait mode – no matter
what the user does – and never appear in landscape mode.

Universalizing Nerdfeed
When first creating Nerdfeed, we chose to go with an iPad-only application. Now, you’re going to turn
it into a universal application. Select the Nerdfeed project from the project navigator. In the editor area,
choose the Nerdfeed target and then the Summary tab.



ptg

Chapter 26  UISplitViewController

446

Figure 26.5  Universalizing Nerdfeed

From the Devices pop-up menu, choose Universal. A sheet will appear asking if you want to copy and
convert MainWindow.xib. Choose No.

Figure 26.6  Changing simulators

That’s all there is to it – the application is now universal. You can test it by building and running again
on one simulator and then the other.

There are two reasons the universalization process was so easy for Nerdfeed. Remembering these
reasons will help you when you’re writing your own applications.

• As we built Nerdfeed, we were mindful of the device differences in the classes we used. For
example, knowing that a UISplitViewController doesn’t exist on the iPhone or iPod touch, we



ptg

Universalizing Nerdfeed

447

made sure that there was an alternative interface on those devices. In general, when using an Apple-
provided class, you should read the discussion in the documentation about that class. It will give you
tips about the availability of the class and its methods on the different devices.

• Nerdfeed is still a relatively simple application. It is always easier to universalize an application
early in development. As an application grows, its details get buried in the massive pile of code.
Finding and fixing issues as you’re writing code is much easier than coming back later. Details are
harder to find, and there is the risk of breaking what already works.



ptg

This page intentionally left blank 



ptg

449

27
Media Playback and

Background Execution

Many applications on a mobile device need audio and video playback. In this chapter, you will learn
how to use the most common audio and video playback routines the iOS SDK offers. In addition, we
will look at background processes and multitasking.

Figure 27.1  MediaPlayer

Creating the MediaPlayer Application
Create an iPhone Window-based Application in Xcode. Name this project MediaPlayer.

MediaPlayer will have a very simple interface so that you can concentrate on the guts of media 
playback. The application will display two buttons that will initiate different types of audio playback,
and it will also display a movie. The object diagram for this application is shown in Figure 27.1.



ptg

Chapter 27  Media Playback and Background Execution

450

Figure 27.2  MediaPlayer object diagram

Create a new UIViewController subclass (File → New → New File...) and check With XIB for user
interface. Name this subclass MediaPlayerViewController. In MediaPlayerAppDelegate.m, import 
the header file for MediaPlayerViewController, create an instance of the view controller, and set it to
be the window’s rootViewController.

#import "MediaPlayerAppDelegate.h"
#import "MediaPlayerViewController.h"

@implementation MediaPlayerAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    MediaPlayerViewController *vc = [[MediaPlayerViewController alloc] init];
    [[self window] setRootViewController:vc];
    [vc release];
    
    [[self window] makeKeyAndVisible];

    return YES;
}



ptg

Creating the MediaPlayer Application

451

The application needs two buttons for playing audio. One button’s title will change during runtime, and
both buttons need action methods. In MediaPlayerViewController.h, declare an instance variable for
the button with the title that will change and the two action methods.

@interface MediaPlayerViewController : UIViewController
{
    IBOutlet UIButton *audioButton;
} 
- (IBAction)playAudioFile:(id)sender;
- (IBAction)playShortSound:(id)sender;
@end

Save this file and then open MediaPlayerViewController.xib.

Click the View object in the outline view to open it. Drag two UIButton objects onto the view and
title them as shown in Figure 27.3. Then, make the action connections from the buttons back to the
MediaPlayerViewController. Finally, connect the audioButton outlet to the button labeled Play
Audio File.

Figure 27.3  MediaPlayerViewController.xib connections

In order to build and run the application without warnings, you will need stub methods for the
IBActions you declared. In MediaPlayerViewController.m, implement them as follows.

- (IBAction)playAudioFile:(id)sender
{
    NSLog(@"playAudioFile!"); 
} 
- (IBAction)playShortSound:(id)sender
{
    NSLog(@"playSound!");
}

If you want to check your connections, you can build and run the application. The log messages should
show up on the console.



ptg

Chapter 27  Media Playback and Background Execution

452

System Sounds
Audio files come in different formats. The format describes the organization of the audio data within
the file. Some files, like MP3 and M4A, have been compressed and require a decoder for playback.
Compressed files are much smaller in size but require more work by the processor to play.

The extra work it takes to decode a compressed file can affect application performance, and
compression doesn’t save much disk space if the recording is short. Thus, short sound effect files are
not compressed. These sounds are typically used as an interface element. They are not critical to an
application but add to the atmosphere you are trying to create.

The AudioToolbox framework gives you the ability to register short sound effects on the system sound
server. Sounds registered with the system sound server are called system sounds. System sounds must

• be a sound file less than 30 seconds in length

• have data in linear PCM or IMA4 format

• be packaged as one of the following three types: Core Audio Format (.caf), Waveform audio format
(.wav), or Audio Interchange File Format (.aiff)

Add the AudioToolbox framework to your project so that you can register and play system sounds.
Then, in MediaPlayerViewController.h, declare a SystemSoundID instance variable. Because this
type is declared in AudioToolbox framework, you will also need to import AudioToolbox’s top-level
header file.

#import <AudioToolbox/AudioToolbox.h>
@interface MediaPlayerViewController : UIViewController
{
    IBOutlet UIButton *audioButton;
    SystemSoundID shortSound;
}

Every registered system sound is given a SystemSoundID, which is really just an integer that you can
think of as a ticket. When you want to play a registered sound effect, you tell the sound server the
number on your ticket.

Registering system sounds
The audio data for a system sound must be contained in a file located on the device. In this exercise,
you will bundle a short audio clip file with the application. Locate the file Sound12.aif and 
add it to the project navigator. (This file and other resources can be downloaded from http://
www.bignerdranch.com/solutions/iOSProgramming.zip.)

To register this sound, you call the function AudioServicesCreateSystemSoundID and pass the full
path of the file as a CFURLRef object. How do we get the CFURLRef? First, you grab the full file path
using NSBundle’s pathForResource:ofType: method. The object returned from this method, however,
is of type NSString. To get from an string to a URL, you use NSURL’s fileURLWithPath: to create an
NSURL instance. Finally, you cast the NSURL instance to its toll-free bridged counterpart: CFURLRef.

In MediaPlayer, you are going to do this when the application launches, so add this code to
MediaPlayerViewController’s init method. In MediaPlayerViewController.m, edit init to get a
path to the Sound12.aif file and register its contents as a system sound.

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Playing system sounds

453

- (id)init
{
    self = [super initWithNibName:@"MediaPlayerViewController" bundle:nil];

    if (self) {
        // Get the full path of Sound12.aif
        NSString *soundPath = [[NSBundle mainBundle] pathForResource:@"Sound12"
                                                              ofType:@"aif"];
        // If this file is actually in the bundle...
        if (soundPath) {
            // Create a file URL with this path
            NSURL *soundURL = [NSURL fileURLWithPath:soundPath];
        
            // Register sound file located at that URL as a system sound
            OSStatus err = AudioServicesCreateSystemSoundID((CFURLRef)soundURL, 
                                                            &shortSound);
            if (err != kAudioServicesNoError)
                NSLog(@"Could not load %@, error code: %d", soundURL, err);
        }
    }

    return self; 
} 
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
    return [self init];
}

Notice the &shortSound passed to the AudioServicesCreateSystemSoundID function. This
function has an error code as a return value. Only one value can be returned from a function, so the
SystemSoundID cannot be returned to the caller. Instead, to get that value from the function, you pass
the address of a SystemSoundID variable to the function. This function then writes the value of the
SystemSoundID to that location in memory. This is called passing by reference and allows the function
to change the value of a variable.

Playing system sounds
Back in the MediaPlayerViewController.m, implement the method playShortSound:.

- (IBAction)playShortSound:(id)sender
{
    AudioServicesPlaySystemSound(shortSound);
}

Build and run your application. You should hear a pleasant noise every time you tap the Play Short
Sound button. (Make sure your volume is turned up.)

Most of the time, you will keep a system sound available the entire time an application is running.
However, if you want to dispose of a short sound to free up memory while an application is running,
you can call the C function AudioServicesDisposeSystemSoundID.

    AudioServicesDisposeSystemSoundID(aSystemSound);

On the iPhone (but not the iPad or iPod touch), you can use system sounds to vibrate the device. Add
the following line of code to MediaPlayerViewController.m to trigger vibration.



ptg

Chapter 27  Media Playback and Background Execution

454

- (IBAction)playShortSound:(id)sender
{
    AudioServicesPlaySystemSound(shortSound);
    AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
}

Build and run the application on an iPhone and tap the short sound button. It will play the sound and
vibrate in your hand. 

Compressed Audio Files
To play a compressed audio format or any file that is longer than 30 seconds, you use the class
AVAudioPlayer. In addition to playing longer compressed audio, this class also gives you more control
over audio playback.

The AVAudioPlayer class is defined in the AVFoundation framework. Add the AVFoundation
framework to your project and import its header file into MediaPlayerViewController.h. Declare an
instance variable of type AVAudioPlayer.

#import <AVFoundation/AVFoundation.h>

@interface MediaPlayerViewController : UIViewController <AVAudioPlayerDelegate>
{
    IBOutlet UIButton *audioButton;
    SystemSoundID shortSound;

    AVAudioPlayer *audioPlayer;

In this exercise, you will use an instance of this class to play an MP3 file. Locate the file Music.mp3
and add it to the project navigator. (This file and other resources can be downloaded from http://
www.bignerdranch.com/solutions/iOSProgramming.zip.)

Once again, you will use NSBundle’s pathForResource:ofType: to get the path of the file
as an NSString and then use NSURL’s fileURLWithPath: to create an NSURL instance. In
MediaPlayerViewController.m, add the following code to the top of init.

- (id)init
{
    self = [super initWithNibName:@"MediaPlayerViewController" bundle:nil];
    
    if (self) {
    
        NSString *musicPath = [[NSBundle mainBundle] pathForResource:@"Music"
                                                              ofType:@"mp3"];
        if (musicPath) {
            NSURL *musicURL = [NSURL fileURLWithPath:musicPath];
            audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:musicURL 
                                                                 error:nil];
            [audioPlayer setDelegate:self];
        }

        NSString *soundPath = [[NSBundle mainBundle] pathForResource:@"Sound12"
                                                              ofType:@"aif"];

Finally, in MediaPlayerViewController.m, have the associated button begin playback of the
audioPlayer.

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Playing Movie Files

455

- (IBAction)playAudioFile:(id)sender
{
    if ([audioPlayer isPlaying]) {
        // Stop playing audio and change text of button
        [audioPlayer stop];
        [sender setTitle:@"Play Audio File"
                forState:UIControlStateNormal];
    }
    else {
        // Start playing audio and change text of button so
        // user can tap to stop playback
        [audioPlayer play];
        [sender setTitle:@"Stop Audio File"
                forState:UIControlStateNormal];
    }
}

Build and run the application. Tap the Play Audio File and listen for the music.

With AVAudioPlayer, you have more control over the audio playback, and you can halt its playback
whenever you choose. You can also implement delegate methods for an AVAudioPlayer that will allow
you to control what happens when the audio player finishes playing or when it gets interrupted. For
instance, when the audio player finishes, you want the title of the button that plays the audio file to
revert to Play Audio File.

In MediaPlayerViewController.m, implement audioPlayerDidFinishPlaying:successfully: to
change the title of the button. .

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
                       successfully:(BOOL)flag
{
    [audioButton setTitle:@"Play Audio File"
                 forState:UIControlStateNormal];
}

Build and run the application. Let the audio file finish on its own and watch the playback button return
to its original state.

Audio playback can be interrupted. For example, playback will be interrupted when a phone call
occurs. When the iPhone interrupts an AVAudioPlayer instance from playing, it pauses the music for
you. At this moment, you can also perform additional tasks, like updating the user interface, with the
delegate method audioPlayerBeginInterruption:.

Another delegate method, audioPlayerEndInterruption:, is sent to the AVAudioPlayer’s delegate
when the interruption ends. In the case of a phone call, this message is sent to the delegate if the user
ignores the call. Implement this method in MediaPlayerViewController.m. 

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player
{
    [audioPlayer play];
}

Playing Movie Files
MPMoviePlayerController is responsible for playing movies on iOS. The YouTube application uses
the same class to play its movies, so you’ve probably seen the interface in Figure 27.4 before.



ptg

Chapter 27  Media Playback and Background Execution

456

Figure 27.4  MPMoviePlayerController in action

Playing a movie file on iOS is fairly restricted. You are limited to two formats:

• H.264 (Baseline Profile Level 3.0)

• MPEG-4 Part 2 video (Simple Profile)

(Fortunately, iTunes has an option to convert video files into these formats. In iTunes, select a movie
file and choose Create iPod or iPhone Version from the Advanced menu.)

Instances of MPMoviePlayerController can also play streaming video from a URL somewhere off 
in Internet land. However, you should seriously consider the problems of this approach on a mobile
device. If you have the choice, either bundle a movie file with the application or have your application
download the video to the application sandbox after launching. If you do not have the choice, be aware
that Apple can reject your application if a video file is too large to be transported over the network in
an appropriate amount of time. For example, your application can be rejected if it claims to support the
original iPhone (using the Edge network) and streams video at more than 1MB per second.

In order to use MPMoviePlayerController, you need yet another framework – the MediaPlayer
framework. Add the MediaPlayer framework to your project and import the appropriate header file
at the top of MediaPlayerViewController.h. While you’re there, create an instance variable in
MediaPlayerViewController for the movie player.

#import <MediaPlayer/MediaPlayer.h>

@interface MediaPlayerViewController : UIViewController <AVAudioPlayerDelegate>
{
    MPMoviePlayerController *moviePlayer;

In this exercise, you will bundle the Layers.m4v movie with the application. Locate this file and
add it to the project navigator. (This file and other resources can be downloaded from http://
www.bignerdranch.com/solutions/iOSProgramming.zip.)

To load the movie, add the following code to the top of init in MediaPlayerViewController.m.

http://www.bignerdranch.com/solutions/iOSProgramming.zip
http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

MPMoviePlayerViewController

457

- (id)init
{
    self = [super initWithNibName:@"MediaPlayerViewController" bundle:nil];

    if (self) {
    
        NSString *moviePath = [[NSBundle mainBundle] pathForResource:@"Layers" 
                                                              ofType:@"m4v"];
        if (moviePath) {
            NSURL *movieURL = [NSURL fileURLWithPath:moviePath];
            moviePlayer = [[MPMoviePlayerController alloc] 
                                    initWithContentURL:movieURL];
        }

        NSString *musicPath = [[NSBundle mainBundle] pathForResource:@"Music"
                                                              ofType:@"mp3"];

Every MPMoviePlayerController has a view that displays the movie and the player controls. In
MediaPlayerViewController.m, override viewDidLoad to add the moviePlayer’s view to the
MediaPlayerViewController’s view.

- (void)viewDidLoad
{
    [[self view] addSubview:[moviePlayer view]];
    float halfHeight = [[self view] bounds].size.height / 2.0;
    float width = [[self view] bounds].size.width;
    [[moviePlayer view] setFrame:CGRectMake(0, halfHeight, width, halfHeight)];
}

Build and run the application. The movie player will appear in the bottom half of the screen. You
can tap the play button within that view to begin playback. You can also tap the full-screen button to
present that video in full-screen mode.

Note that only one instance of MPMoviePlayerController can operate within an application.
Therefore, you should not create multiple instances of MPMoviePlayerController. If your application
intends to present a movie in multiple places, you should either reuse a single movie player controller
or destroy the movie player controller and recreate another elsewhere.

MPMoviePlayerViewController
If you wish to present a full-screen only video, you can use the class MPMoviePlayerViewController
(notice the addition of “View” in the class name). This class inherits from UIViewController and
manages a view that presents a movie. Instantiating an MPMoviePlayerViewController is just like
instantiating an MPMoviePlayerController:

MPMoviePlayerViewController *playerViewController =
    [[MPMoviePlayerViewController alloc] initWithContentURL:movieURL];

To present the full-screen video on top of an existing view controller, you send the message
presentMoviePlayerViewControllerAnimated: to a view controller that is currently on the screen.

    [viewController presentMoviePlayerViewControllerAnimated:playerViewController];

Alternatively, you can add an MPMoviePlayerViewController to a tab bar or navigation controller.

Note that, internally, an MPMoviePlayerViewController uses an MPMoviePlayerController.
Therefore, creating an instance of MPMoviePlayerViewController will invalidate any existing movie
player controllers as you can only have one movie player at a time.



ptg

Chapter 27  Media Playback and Background Execution

458

Preloading video
When you instantiate an MPMoviePlayerController, it immediately begins loading the video you ask
it to. This loading happens on another thread so that your application does not halt while the video
loads. A video loaded from disk will most likely be ready to play immediately, but one being streamed
from the Internet may take some time to load. You may not want to display an unloaded video right
away.

To know when a video has loaded, you can register for a notification when the movie player’s load
state changes. The loadState property of a movie player tells you whether the movie is playable,
stalled, or has enough data to play without interruption.

    [[NSNotificationCenter defaultCenter]
        addObserver:self
           selector:@selector(displayPreloadedVideo:)
               name:MPMoviePlayerLoadStateDidChangeNotification
             object:moviePlayer];

- (void)displayPreloadedVideo:(NSNotification *)note
{
    MPMoviePlayerController *mp = [note object];
    if ([mp loadState] == MPMovieLoadStatePlaythroughOK)
        [[self view] addSubview:[mp view]];
}

An instance of MPMoviePlayerController posts notifications for other events, too. Check out the
documentation for the class to see all available notification names. 

Now you can play any sort of media you like! Remember that audio and video files are relatively
large compared to other resources you might have in an application. Gratuitous use of these types of
resources may increase an application bundle’s size and the amount of time it takes to download.

Background Processes
An application can play audio even when it’s not the active application. Let’s modify the MediaPlayer
application so that it continues playing audio even when its been put in the background state.

By default, when the user presses the Home button, an application is put into the background state 
and then transitioned to the suspended state shortly thereafter. Audio playback cannot continue in the
suspended state because no code can be executed when an application is suspended. If your application
needs to continue executing code once it is no longer active, it can request to stay in the background
state instead of transitioning to the suspended state.

To delay being transitioned to the suspended state, you add a key-value pair to the application’s Info
property list. To get to an application’s info property list, select the project from the project navigator
and then select the target and the Info pane.

In MediaPlayer’s Info property list, add a new row by selecting the last row and clicking the plus
button (+) next to it. In the Key column of the new row, enter UIBackgroundModes. The Key column
will automatically update to display Required background modes, and its value will become an array
that has a single item.

Click the disclosure tab next to the text Required background modes, and the items in the array will
appear beneath it. There is currently one empty item. Enter “audio” in the Value column, and it will
automatically update to display App plays audio (Figure 27.5).



ptg

Guidelines for background execution

459

Figure 27.5  Info property list with background audio mode

MediaPlayer is now registered for background audio and will continue playing audio when it is put
into the background state. However, the application will only continue playing audio of a certain
audio session category. Every application has a single instance of AVAudioSession that manages 
the category of audio it plays. This category determines many things about how the application
interacts with the system in terms of audio, including whether an application can continue playing
audio in the background. (For more information about audio session categories, see the Audio Session
Programming Guide in the documentation.)

To change the audio session’s category, you send it the message setCategory:error: with one of the
defined constants. The category that allows an application to continue playing audio in the background
is AVAudioSessionCategoryPlayback. In MediaPlayerViewController.m, add the following code to
init.

    if (musicPath) {
        NSURL *musicURL = [NSURL fileURLWithPath:musicPath];
        [[AVAudioSession sharedInstance]
                    setCategory:AVAudioSessionCategoryPlayback error:nil];
        audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:musicURL
                                                             error:nil];
        [audioPlayer setDelegate:self];
    }

Build and run the application. (Do this on the device; background processes won’t work on the
simulator). Tap the button titled Play Audio File and then press the Home button. Notice how the track
keeps playing even if you open another application. When the track ends, the application will transition
to the suspended state.

Guidelines for background execution

An application operating in the background is under stricter rules than an application in the foreground.
Here are some general guidelines that an application should follow when it is operating in the
background:



ptg

Chapter 27  Media Playback and Background Execution

460

• Do not use OpenGL ES or shared system resources (like the address book). The operating system
will terminate your application if it notices you doing either of these things.

• Do not update your views. The user can’t see them anyway.

• Do release unneeded memory, similar to when responding to a low-memory warning.

• Do throttle back the application’s workload. For example, an application that plays audio in the
background should perform just the tasks needed to play the audio and nothing else.

An application that runs in the background is still subject to termination by the operating system when
memory gets low. The operating system will first issue a low-memory warning to all applications 
in the active or background state. If memory remains low, the OS will start purging suspended
applications. If that doesn’t free up enough memory, then background applications are terminated.

When an application running in the background is terminated, its delegate is gracefully sent the
message applicationWillTerminate: and given a moment to perform any final tasks. However, it is
safer to save any application information in the method applicationDidEnterBackground:, like we
did in Chapter 15. 

Other forms of background execution
In addition to audio playback, there are two types of standard background execution: voice over
internet protocol (VOIP) and location updates. You can add location or voip to the Required
background modes array in the info property list to configure your application to support these modes.
VOIP is its own, very complicated process that is outside the scope of this book, but let’s take a
moment to look at location updates and the various possibilities for using them in the background.

An application that is in the background (for any reason) will continue to receive location
updates. As the location is updated, the delegate of the CLLocationManager is sent
locationManager:didUpdateToLocation:fromLocation: as normal. You can specify that an
application wants to remain in the background specifically for location updates by adding the location
key to its UIBackgroundModes. An application that registers location as a background mode will
remain in background mode as long as a CLLocationManager is actively updating its location.

However, continually updating the location while running in the background is a big drain on the
battery. If your application doesn’t require precise updates at frequent intervals, you can instead
monitor for significant location changes. A significant location change occurs when the device
switches to a new cell phone tower. (Cell phone towers in metropolitan areas are typically a quarter- to
half-mile apart and two miles apart in more rural areas.)

An added benefit of monitoring for significant location changes is that even if your application is
suspended, the operating system will briefly wake your application up in the background. When it
is awoken, the location manager’s delegate is sent the appropriate message so your application can
handle the change in location.

To enable significant location changes, send the message
startMonitoringSignificantLocationChanges to an instance of CLLocationManager when it is
instantiated.



ptg

Other forms of background execution

461

CLLocationManager *manager = [[CLLocationManager alloc] init];
[manager startMonitoringSignificantLocationChanges];

At times, you may want your application to stay in the background (and not get suspended) for 
a reason other than one of the three standard background modes. For example, an application
downloading a file from the Internet may want to finish downloading that file before it is suspended.
In this case, you can request to stay in the background for longer. You can ask the operating 
system for additional time to complete a background task with the UIApplication’s method
beginBackgroundTaskWithExpirationHandler:.

As an example, let’s say you were downloading a large image from NASA’s public domain images.
Once this download started, you would like it to complete even if the user exits the application. Thus,
when you begin the web service request to fetch this image, you would register a background task:

NSString *path = @"http://grin.hq.nasa.gov/IMAGES/MEDIUM/GPN-2000-000946.jpg";
NSURL *url = [NSURL URLWithString:path];
NSURLRequest *req = [NSURLRequest requestWithURL:url];
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:req 
                                                        delegate:self 
                                                startImmediately:YES];
[self setConnection:connection]; 
[conn release];
            
UIBackgroundTaskIdentifier downloadImageTask = 
    [[UIApplication sharedApplication] beginBackgroundTaskWithExpirationHandler:
    ^(void) 
    {
        [[self connection] cancel];
        [self setConnection:nil];
    
        [[UIApplication sharedApplication] endBackgroundTask:downloadImageTask];
        downloadImageTask = UIBackgroundTaskInvalid;
    }];    

endBackgroundTask: When you start a background task, you are returned a
UIBackgroundTaskIdentifier that uniquely defines it. There are two possible outcomes of
registering for additional execution time in the background: the task completes in the time allotted
or time runs out and you must deal with the consequences. If time runs out, the block you supply
to beginBackgroundTaskWithExpirationHandler: is invoked. Regardless of which event occurs,
you must send the message endBackgroundTask: to the instance of UIApplication and pass the
UIBackgroundTaskIdentifier for that task.

Thus, the expiration block must always send this message to the application. Furthermore, you must
send this message when the task completes. For NSURLConnection, you simply call this code when the
connection finishes or fails.

- (void)connection:(NSURLConnection *)conn didFailWithError:(NSError *)error
{
    [self setConnection:nil;
            
    [[UIApplication sharedApplication] endBackgroundTask:downloadImageTask];
    downloadImageTask = UIBackgroundTaskInvalid; 
} 
- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
    [self setConnection:nil];
            



ptg

Chapter 27  Media Playback and Background Execution

462

    [[UIApplication sharedApplication] endBackgroundTask:downloadImageTask];
    downloadImageTask = UIBackgroundTaskInvalid;
}

The operating system may or may not give you additional time to complete the task depending on
system constraints, and the amount of time is never guaranteed. You should also never use this method
to attempt to keep your application in the background just for the sake of keeping it in the background.
It is rare that an application would need to use this method of background execution, but if you are
absolutely sure your application does, consult the Executing Code in the Background section of the
iOS Application Programming Guide.

Low-level APIs
In this section, you have been exposed to the simplest, highest-level API for sound and video. If you
plan to do a lot of audio work (either recording or playing), you should go deeper and learn about
audio queues, which are part of the AudioToolbox framework. You may also want to study Core
Audio, the framework upon which all of this is built. In addition, as of iOS 4, you can use the Core
Video framework for low-level video management. 

Challenge: Audio Recording
You can also record audio with the iOS SDK. Using the class AVAudioRecorder, record audio data and
then play it back with a new button. (Remember, you can’t write data to the application bundle.)



ptg

463

28
Bonjour and Web Servers

In this chapter, you’re going to start an exercise involving two applications:

• a Desktop web server (CocoaServer)

• an iOS client application (Notified)

You will create both applications and have them discover each other using Bonjour. You will also
enable them to communicate via HTTP. In the next chapter, you will add the ability to send push
notifications from the Desktop server to the iOS client. (That’s why our client application is called
Notified.)

This is ambitious stuff. There is a lot of code and information in the next two chapters. You will
need to keep track of separate projects in Xcode for the server and client. We’ll do our best to keep
everything clear. Stick with us, and the results will be worth it.

Bonjour
Bonjour is a protocol that allows a server to broadcast its presence and advertise its services on a local
area network. It also allows other machines on the network to browse for services they are interested in
connecting to.

When a server publishes a service, it announces to everyone on the local area network, “I’m a server.
You want to connect to me because I know how to do this really cool thing.” For example, a printer
could use Bonjour to advertise its service on a network. When you connect to a printer, “the really cool
thing” it can do is receive page data and print it.

There is a distinction to be made between the “server” and the “service.” A server refers to a process
running on a machine that you connect to; servers exist independently of Bonjour. A service is a term
that is specific to Bonjour, and it refers to the advertisement of a server on the local area network.
Thus, Bonjour is a way for clients to find servers.

You can think of this relationship by picturing a gas station. The server is the gas station, and if you
already know where this gas station is, you can go there to buy fuel. However, not everyone will know
about this gas station, so it puts a sign out front that advertises that it is a gas station. This sign is the
Bonjour service. If the sign is taken down, you can still buy fuel from the gas station, but people may
not be able to find it.

Every type of service has a name. For example, a web server is advertised as the service type
“_http._tcp.” and a printer is advertised as “_printer._tcp.”. Client applications can scan the local area



ptg

Chapter 28  Bonjour and Web Servers

464

network for a type they are interested in and find all servers that are advertising that service type. Thus,
the gas station’s service type might be “fuel.” People looking for fuel would look around for a “fuel”
sign and find this gas station. A server can publish multiple services with different service types. For
example, the gas station could also sell 128 oz. soft drinks, and it would put another sign out front to
advertise that.

Creating CocoaServer

We’ll get started with Bonjour by creating the server application. From the File menu, select New and
New Project.... Then select Application from the Mac OS X heading. Choose the Cocoa Application
template and click Next (Figure 28.1).

Figure 28.1  Creating CocoaServer

On the next pane, name the product CocoaServer and configure the rest of the items as shown in
Figure 28.2.



ptg

Creating CocoaServer

465

Figure 28.2  Configuring CocoaServer

Now we will set up a bare-bones interface for our server. Every Cocoa application has a main XIB file
called MainMenu.xib. Find and select this file in the project navigator. Like MainWindow.xib of an iOS
application, MainMenu.xib has an application delegate object and a window object. Click on 
Window - Cocoa Server in the outline view to open the window object in the canvas area.

Next, reveal the object library in the utilities area. Find the Label object, drag it onto the window, and
enter Server is not active as its text. Then, find and drag a table view onto the window. (Remember,
you can search for these items in the search bar at the bottom of the object library.) Your window
should look like the one in Figure 28.3.



ptg

Chapter 28  Bonjour and Web Servers

466

Figure 28.3  Configured window in MainMenu.xib

This table view is an instance of NSTableView. NSTableView works differently than UITableView.
First, a Cocoa table view can have more than one column. (For this application, however, you will
only need one.) Second, an NSTableView is displayed within an NSScrollView. If you click once 
on the NSTableView object, you actually select the scroll view. You have to click twice to select the
table view. (Clicking three times gets you the NSTableColumn. If you’re not sure what object you’ve
selected, you can always confirm its class in the identity inspector.)

Click twice on the NSTableView and open the attribute inspector to see the table view’s properties.
Change the number of columns to 1. Then, create and hook up the outlets, as shown in Figure 28.4.
(Make sure that you are connecting the outlets to the CocoaServerAppDelegate, not the Font Manager
object that is next to it. You can hover over the objects while viewing them in the dock to see their
name, or you can expand the dock into the outline view to see the class names.)



ptg

Publishing a Bonjour service

467

Figure 28.4  XIB connections in MainMenu.xib

After adding the outlets, CocoaServerAppDelegate.h should now look like this:

@interface CocoaServerAppDelegate : NSObject <NSApplicationDelegate>
{
    NSWindow *window;
                
    IBOutlet NSTableView *tableView;
    IBOutlet NSTextField *statusField; 
}

Publishing a Bonjour service
Now you are going to have CocoaServer publish a single Bonjour service named
“CocoaHTTPServer.” This service will advertise an HTTP server that receives HTTP requests
from clients. Each request will contain the client’s device name, and this name will be added to
CocoaServer’s table view.

To publish a service with Bonjour, you must first create and configure an instance of NSNetService
and assign it a delegate.

In CocoaServerAppDelegate.h, add two new instance variables and three protocols.

@interface CocoaServerAppDelegate : NSObject 
    <NSApplicationDelegate, NSNetServiceDelegate, 
    NSTableViewDataSource, NSTableViewDelegate> 
{
    NSWindow *window;



ptg

Chapter 28  Bonjour and Web Servers

468

    IBOutlet NSTableView *tableView;
    IBOutlet NSTextField *statusField;
    
    NSNetService *service;
    NSMutableArray *registeredUsers;
}

In CocoaServerAppDelegate.m, instantiate the two instance variables, set the delegate, and publish the
service.

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{   
    registeredUsers = [[NSMutableArray alloc] init];

    // Create a service object that will advertise the server's existence 
    // on the local network
    service = [[NSNetService alloc] initWithDomain:@"" 
                                              type:@"_http._tcp." 
                                              name:@"CocoaHTTPServer" 
                                              port:10000];
    [service setDelegate:self];
    [service publish];
}

Let’s look more closely at the initialization method of the NSNetService. The domain of an
NSNetService published on the local area network is the empty string. (To publish a service only on
your own computer so that your applications can find each other, use the string local., including the
dot.)

The type of the service is how clients search for the service and connect to it. There are two parts to the
type string: the application protocol and the transport protocol. The application protocol of our service
is http, and the transport protocol is tcp. Thus, a client will connect to this service using HTTP over
TCP. Both of the protocols must be prefixed with an underscore (_) and suffixed with a dot (.). The
type is how the service advertises the “really cool thing” it does; printers, for example, use the type
“_printer._tcp.”.

The application protocol defines the format of the data that will be sent to the server. A HTTP server
expects data that conforms to the HTTP protocol, and a printer server expects data that conforms to the
network printing protocol. The transport protocol indicates the type of connection that should be made
– TCP streaming connections or connectionless UDP communication. You can make up your own
application protocols if you are defining a new data format, but the transport protocol will typically be
TCP or UDP.

The name of the service uniquely identifies it among other services that have the same type on the
same network. Thus, while many services may broadcast that they support HTTP over TCP, only one
can be named CocoaHTTPServer. If two services have the same name and the same type, only one will
be published; the other will fail. A printer, for example, might have a name that specifies its make,
model, plus some unique identifier that distinguishes it from similar printers on the network.

The port of the service is hard-coded for now. Later in the chapter, you will have the server assign the
port dynamically.

So continuing with our printer example, if an application is looking to print something, it searches the
network for all _printer._tcp. services. Then, the user selects a specific printer by its unique name.

Now that you’ve published the NSNetService, let’s update the user interface to announce the
service’s status. In CocoaServerAppDelegate.m, implement three delegate methods from the



ptg

Browsing for services via Bonjour

469

NSNetServiceDelegate protocol to update the interface when the net service either publishes or fails
to publish.

- (void)netServiceDidPublish:(NSNetService *)sender
{
    // When the service succeeds in publishing...
    [statusField setStringValue:@"Server is advertising"];
}

- (void)netServiceDidStop:(NSNetService *)sender
{
    // If the service stops for some reason...
    [statusField setStringValue:@"Server is not advertising"];
}

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict
{
    // If the service fails to publish, either immediately or in the future...
    [statusField setStringValue:@"Server is not advertising"];
}

Build and run CocoaServer (and don’t worry about the warnings for the NSTableViewDataSource
protocol right now). The user interface will report that the server is advertising.

Browsing for services via Bonjour
Of course, Bonjour isn’t much fun unless you have a client application to find the published service.
Create a new iPhone Window-based Application named Notified.

Now that you have two projects for this exercise, it will become more difficult to maintain them.
However, we can use Xcode workspaces to help organize these projects. First, close all of the projects
and windows you currently have open in Xcode.

From the File menu, select New and then New Workspace.... An empty workspace will appear and
prompt you to save it. Save it as NotifiedClientServer.

Locate CocoaServer.xcodeproj on the filesystem and drag its icon onto the project navigator in the
NotifiedClientServer workspace. Then, do the same for Notified.xcodeproj. Make sure that
CocoaServer is not highlighted when adding Notified to the project navigator. You can do this by
positioning your cursor above the CocoaServer project when dragging Notified.

Now verify that you did this by correctly by closing the disclosure tab next to both projects. You
should still see both project files in the project navigator when their disclosure buttons are closed
(Figure 28.5).

Figure 28.5  Both projects in NotifiedClientServer workspace



ptg

Chapter 28  Bonjour and Web Servers

470

(If you made a mistake by dragging Notified’s project into the CocoaServer project, you can select
Notified, click the Delete button, and try again. Make sure you choose Remove References Only when
prompted.)

Now that both projects are in the same workspace, you can easily navigate to their files in
the same window. If you close the workspace and want to re-open it, make sure you open the
NotifiedClientServer.xcworkspace file and not the individual projects.

Open MainWindow.xib from the Notified project. Add a UILabel to the top of the window and
make its text Finding Server.... Create and connect an outlet in NotifiedAppDelegate for this label
(Figure 28.6).

Figure 28.6  Notified’s XIB

To search for Bonjour services, a client application uses an instance of NSNetServiceBrowser. An
NSNetServiceBrowser can search the network for services of a particular service type. Any matching
NSNetService on the network will be returned to the browser’s delegate.

In NotifiedAppDelegate.h, add instance variables for a net service and a net service browser.
Also, declare that NotifiedAppDelegate conforms to the NSNetServiceBrowserDelegate and
NSNetServiceDelegate protocols.

@interface NotifiedAppDelegate : NSObject 
    <UIApplicationDelegate, 
        NSNetServiceBrowserDelegate, NSNetServiceDelegate>
{
    IBOutlet UILabel *statusLabel;

    NSNetService *desktopServer;
    NSNetServiceBrowser *browser;
}

In NotifiedAppDelegate.m, create an NSNetServiceBrowser and have it search for HTTP services
that are broadcasting on the local network with Bonjour.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Search for all http servers on the local area network
    browser = [[NSNetServiceBrowser alloc] init];



ptg

Browsing for services via Bonjour

471

    [browser setDelegate:self];
    [browser searchForServicesOfType:@"_http._tcp." inDomain:@""];

When a matching service is found, the browser’s delegate is sent the message
netServiceBrowser:didFindService:moreComing:. The instance of NSNetService that represents the
found service is the second parameter. From this object, you can get the name of the service, its type,
and its domain – the same information the server specified when it published the service (Figure 28.7).

Figure 28.7  NSNetServiceBrowser finding a service

When the moreComing argument is YES, it means “I have a bunch of services I’m sending you, but I
can only send you one at a time.” This is helpful information: if you want to display all the services
the browser found, you can wait until you have all of them before updating the interface. By default, 
a browser will keep searching for services, and if it finds more services later, it will send this message
again. If you want the browser to stop searching, you send it the message stop.

When you get an NSNetService object back from the browser, it only has basic information about the
service. If you want to find out more, including its IP address and the port the service is running on,
you can resolve the service. You must resolve a service to be able to connect to it.

In NotifiedAppDelegate.m, implement netServiceBrowser:didFindService:moreComing: to
resolve any returned services named CocoaHTTPServer.

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser 
           didFindService:(NSNetService *)aNetService 
               moreComing:(BOOL)moreServicesComing
{
    // Looking for an HTTP service, but only one with the name CocoaHTTPServer
    if (!desktopServer && [[aNetService name] isEqualToString:@"CocoaHTTPServer"]) {
        [aNetService retain];
        [aNetService resolveWithTimeout:30];
        [aNetService setDelegate:self];
        [statusLabel setText:@"Resolving CocoaHTTPServer..."];
    } else {
        NSLog(@"ignoring %@", aNetService);
    }
}

Notice that the NSNetService is retained here; it needs to stick around while it is resolving. Whether
the resolution succeeds or fails, the net service will send a message to its delegate and pass itself as an



ptg

Chapter 28  Bonjour and Web Servers

472

argument. Thus, you will have a pointer to this object later and do not need to store it in an instance
variable.

When an NSNetService is successfully resolved, it sends the message
netServiceDidResolveAddress: to its delegate. In NotifiedAppDelegate.m, implement this method.

- (void)netServiceDidResolveAddress:(NSNetService *)sender
{
    [statusLabel setText:@"Resolved service..."];
    desktopServer = sender;
}

If the service fails to resolve for some reason, you must release the NSNetService instance. Implement
netService:didNotResolve: in NotifiedAppDelegate.m.

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict
{
    // Couldn't figure out the address... 
    [statusLabel setText:@"Could not resolve service."];
    NSLog(@"%@", errorDict);

    // Release the service object
    [sender release];
}

Before you build and run, make sure your device and computer are on the same local area network;
otherwise, the device will not be able to find the server. (If you are using the simulator, then you have
nothing to worry about.)

When you have a workspace with multiple projects, you can pick which target you are building and
running by choosing the appropriate one from the Scheme pop-up menu.

Also when running multiple targets from Xcode, you need to be able to switch between the two
processes in the debugger. You can do so by clicking the name of the application in the debugger bar
and selecting the name of the other application (Figure 28.8).

Figure 28.8  Changing Debuggers

Build and run CocoaServer. Then, build and run Notified. After a moment, the status label in Notified
will report that it has resolved the service.

Isn’t it romantic? Your client and server have found each other. But perhaps finding someone is easy
when compared with the challenge of really communicating over the long term. Bonjour is great for
broadcasting and discovering services on a network, but it does not allow the client and server to



ptg

HTTP Communication

473

exchange information. So in the next section, we will move on to enabling communication between our
client and server via HTTP.

Also note that here you have used Bonjour here with a desktop server and an iOS client, but iOS
devices can also publish services via Bonjour.

HTTP Communication
Now for the second part of this chapter – adding web server functionality to CocoaServer so that it can
receive HTTP requests from its clients.

Writing a web server in Objective-C
CocoaServer advertises an HTTP service, so it needs to be able to accept HTTP requests. Then, clients,
like Notified, can use NSURLConnection to exchange information with CocoaServer.

Writing a web server from scratch is not a task we can cover in this book. Instead, we have modified
some of Apple’s sample code to lay the foundation of a web server in Objective-C. This code is
available at http://www.bignerdranch.com/solutions/iOSProgramming.zip in the solution
directory for the CocoaServer project.

The web server code is encapsulated in two classes: TCPServer and HTTPServer. Find TCPServer.h,
TCPServer.m, HTTPServer.h, and HTTPServer.m and drag them into the CocoaServer project
navigator. Make sure to copy the files to the project’s directory when prompted.

If you are really curious, you can check out the code in these files. It is pretty advanced stuff, though.
After the next chapter, the code will make more sense, so consider waiting till then to poke around.

In CocoaServerAppDelegate.h, import the header for HTTPServer and declare an instance variable of
that type.

#import "HTTPServer.h"

@interface CocoaServerAppDelegate : NSObject 
    <NSApplicationDelegate, NSNetServiceDelegate, 
    NSTableViewDataSource, NSTableViewDelegate> 
{
    HTTPServer *server;

In CocoaServerAppDelegate.m, instantiate a server object and have it start accepting connections.

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{   
    server = [[HTTPServer alloc] init];
    [server setDelegate:self];
    
    NSError *err = nil;
    [server start:&err];

    if (err) {
        NSLog(@"Server failed to start: %@", err);
        return;
    }

When the server starts, it will pick an open port to accept connections on. The NSNetService
needs to broadcast that same port so clients will know which port to connect on. In

http://www.bignerdranch.com/solutions/iOSProgramming.zip


ptg

Chapter 28  Bonjour and Web Servers

474

CocoaServerAppDelegate.m, update the applicationDidFinishLaunching: method to provide the
port dynamically:

    service = [[NSNetService alloc] initWithDomain:@"" 
                                              type:@"_http._tcp." 
                                              name:@"CocoaHTTPServer" 
                                              port:[server port]];
    [service setDelegate:self];
    [service publish];
}

Build CocoaServer to make sure there are no syntax errors.

Getting address data from the server
Now let’s take care of the client’s needs. For this exercise, Notified must

• get address data (IP address and port) from the resolved net service

• use that data to construct a request URL

• create a POST request that contains the name of its device

• send the request to CocoaServer using NSURLConnection

When an NSNetService is resolved, it stores the IP address and port of the server it came from.
Sending the message addresses to that object returns an array of NSData instances. (Typically, a
server only has one address so there is only one object in this array.) The data wrapped in the NSData
instances is a low-level C sockaddr_in structure, which holds the IP address and port of a host.

To use and access this structure, import two files from the system libraries at the top of
NotifiedAppDelegate.m.

#import <netinet/in.h>
#import <arpa/inet.h>

In NotifiedAppDelegate.h, declare a method to create and return a string with the server’s address.

- (NSString *)serverHostName;            

Implement this method in NotifiedAppDelegate.m.

- (NSString *)serverHostName
{
    NSArray *addresses = [desktopServer addresses];

    NSData *firstAddress = [addresses objectAtIndex:0];
    
    // The binary data in the NSData object is a sockaddr_in - which 
    // represents a network host 
    const struct sockaddr_in *addy = [firstAddress bytes];

    // Convert 4-byte IP address in network byte order to a C string
    // of the format: xxx.xxx.xxx.xxx
    char *ipAddress = inet_ntoa(addy->sin_addr);
    
    // Convert the 2-byte port number from network to host byte order



ptg

Byte ordering

475

    UInt16 port = ntohs(addy->sin_port);
    

    return [NSString stringWithFormat:@"%s:%u", ipAddress, port];
} 

Byte ordering
Everyone agrees that a 32-bit number is made up of 4 bytes. There are, however, two different ways
of ordering those bytes: big-endian (where the significant byte comes first) and little-endian (where
the least significant byte comes first). Your Intel Mac is little-endian. If you have an older Mac with a
PowerPC chip, it is big-endian. Usually this difference (which affects not just 32-bit words, but 16-bit
and 64-bit words as well) can be ignored because the system is internally consistent. However, once
you send a multi-byte word to another machine, you must worry about whether it will be interpreted
correctly.

It was decided that the Internet would be big-endian. We refer to this as network byte order. The
endianness of the local machine is referred to as host byte order. In the code above, you received the
port number as two bytes in network byte order. To convert it to host byte order, you used the ntohs
function:

UInt16 port = ntohs(addy->sin_port);   // Network to Host a Short int

If you’re sure your machine is big-endian, should you leave this line out? No. First of all, it won’t hurt
anything if your host byte order is already equivalent to network byte order. Secondly, your code could
find itself on another machine one day, and you can’t know what that machine’s host byte order will
be.

Making service requests
Add another method to NotifiedAppDelegate.h.

- (void)postInformationToServer;      

In this method, you will make an HTTP request to the resolved server using NSURLConnection. The
body of this request will contain an XML-serialized NSDictionary with a name key.

CocoaServer will only process POST requests that include register as the service name. The form of
the request URL that CocoaServer will support looks something like this:

http://10.0.0.1:40000/register             

(The exact request will depend on your network configuration and the port the server picks.)

In Chapter 25, you passed information in the URL string as arguments to the service. As you can
see, the request URL for this exercise doesn’t have any arguments. Instead, you’re going to send
information in the HTTP body of the request. (If you need a review of HTTP request structure, flip
back to the section called “For the More Curious: The Request Body” in Chapter 25.)

The information that the client will send the server is its device name, which you will put in an
NSDictionary. However, you can’t pass a dictionary object in an HTTP request, so you will use the
class NSPropertyListSerialization to represent the dictionary in XML. (NSDictionary is a property
list serializable object, and NSPropertyListSerialization can turn any property list serializable
object into XML. It can also turn XML back into an object.)



ptg

Chapter 28  Bonjour and Web Servers

476

In NotifiedAppDelegate.m, implement postInformationToServer. Notice the use of the message
serverHostName to construct the request URL.

- (void)postInformationToServer
{    
    [statusLabel setText:@"Sending data to server..."];

    // Create a dictionary with relevant information 
    NSDictionary *d = [NSDictionary dictionaryWithObjectsAndKeys:
                                    [[UIDevice currentDevice] name], @"name", nil];

    // Create XML representation of this dictionary
    NSData *data = [NSPropertyListSerialization
                                   dataWithPropertyList:d
                                                 format:NSPropertyListXMLFormat_v1_0
                                                options:0
                                                  error:nil];

    // Make a connection to the provider to post the information to it - the URL 
    // is the address and port of the resolved service
    NSString *urlString = [NSString stringWithFormat:@"http://%@/register",
                                                     [self serverHostName]];

    // The request will use this URL, be a POST, and have the dictionary as its data
    NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:
                                                    [NSURL URLWithString:urlString]];
    [req setHTTPMethod:@"POST"];
    [req setHTTPBody:data];

    NSURLConnection *connection = [[NSURLConnection alloc] initWithRequest:req 
                                                                  delegate:self];
    [connection start];        
}            

Now implement the NSURLConnection delegate methods to update Notified’s user interface with the
status of the connection.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
    [statusLabel setText:@"Data sent to server."];
    [connection release];
} 

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error
{
    [statusLabel setText:@"Connection to server failed."];
    NSLog(@"%@", error);

    [connection release];
}            

In NotifiedAppDelegate.m, send the postInformationToServer message when the net service is
resolved.

- (void)netServiceDidResolveAddress:(NSNetService *)sender
{
    [statusLabel setText:@"Resolved service..."];
    desktopServer = sender;
    



ptg

Receiving service requests

477

    [self postInformationToServer];
}

Build Notified to make sure there are no syntax errors.

Receiving service requests

Now that Notified can make the appropriate request, CocoaServer must be able to receive it. To do this,
CocoaServer must

• test the received request for correctness

• retrieve the device name from the request

• update its table with the received device name

First, here’s a brief overview of the web server classes you added to the CocoaServer project. The
TCPServer class listens for and accepts new socket connections. When a new connection comes in,
HTTPServer, a subclass of TCPServer, creates an instance of another class called HTTPConnection. The
HTTPConnection object reads the data (in our case, a web service request) that is being passed through
the connection. Then, the HTTPConnection creates an instance of another class, HTTPServerRequest,
that encapsulates the request. Finally, the HTTPServerRequest is passed to the server’s delegate to be
handled.

When a client application sends a web service request to this server, CocoaServerAppDelegate will be
sent the message HTTPConnection:didReceiveRequest:. (CocoaServerAppDelegate is the delegate of
the HTTPServer and therefore the delegate of the HTTPConnection object that the HTTPServer creates.)

In CocoaServerAppDelegate.m, implement the HTTPConnection:didReceiveRequest: method
for HTTPConnection. This method will check the contents of a request, ensure it meets the server’s
requirements, and then respond to the client.

- (void)HTTPConnection:(HTTPConnection *)conn 
     didReceiveRequest:(HTTPServerRequest *)mess
{
    BOOL requestWasOkay = NO;

    // The HTTPServerRequest contains the message object 
    // that holds the request from the client
    CFHTTPMessageRef request = [mess request];

    // Get the HTTP method of that request
    NSString *method = [(NSString *)CFHTTPMessageCopyRequestMethod(request) 
                                autorelease];

    // We only care about POST requests
    if ([method isEqualToString:@"POST"]) {
        //Get the Request-URI
        NSURL *requestURL = [(NSURL *)CFHTTPMessageCopyRequestURL(request) 
                                autorelease];        

        // We only care about "register" service requests - the requestURL 
        // will have a slash in front of it
        if ([[requestURL absoluteString] isEqualToString:@"/register"]) {



ptg

Chapter 28  Bonjour and Web Servers

478

            // This method is not yet implemented, but it will return YES 
            // if the data in the request was appropriate 
            requestWasOkay = [self handleRegister:request];
        }
    }    
    
    CFHTTPMessageRef response = NULL;
    if (requestWasOkay) {                    
        // If the client gave us what we wanted, then tell them they did 
        // a good job by returning status code 200 - this is the response 
        // an NSURLConnection receives 
        response = CFHTTPMessageCreateResponse(NULL, 
                                               200, 
                                               NULL, 
                                               kCFHTTPVersion1_1);            
                                               
    } else {
        // If the client gave us bad data, then tell them they did 
        // with a bad request status code
        response = CFHTTPMessageCreateResponse(NULL, 
                                               400, 
                                               NULL, 
                                               kCFHTTPVersion1_1);    
    }
    
    // Must set the content-length of a response
    CFHTTPMessageSetHeaderFieldValue(response, 
                                     (CFStringRef)@"Content-Length", 
                                     (CFStringRef)@"0");

    // By setting the response of the HTTPServerRequest, 
    // it automatically dispatches it to the requesting client
    // and we can release it 
    [mess setResponse:response];

    CFRelease(response);
}

Now in CocoaServerAppDelegate.h, declare a new method:

- (BOOL)handleRegister:(CFHTTPMessageRef)request;            

In handleRegister:, you will pull the HTTP body out of the request and turn it back 
into an NSDictionary object on the server using NSPropertyListSerialization. This
dictionary will be added to the list of registeredUsers. The method returns YES to its caller,
HTTPConnection:didReceiveRequest:, if it was able to get a device name from the request body. In
CocoaServerAppDelegate.m, implement handleRegister:.

- (BOOL)handleRegister:(CFHTTPMessageRef)request 
{
    // Get the data from the service request 
    NSData *body = [(NSData *)CFHTTPMessageCopyBody(request) autorelease];

    // We know that it is a dictionary (if it’s not, this method will return nil)
    NSDictionary *bodyDict = [NSPropertyListSerialization
                                    propertyListFromData:body 
                                        mutabilityOption:NSPropertyListImmutable 
                                                  format:nil
                                        errorDescription:nil];



ptg

For the More Curious: TXTRecords

479

    // Get the "name" object from this dictionary
    // and make sure the object exists 
    NSString *name = [bodyDict objectForKey:@"name"];
    if (name) {
        // Take the whole dictionary and add it to the registeredUsers,
        // update the table that will eventually show the users
        [registeredUsers addObject:bodyDict];
        [tableView reloadData];
        return YES;
    }
    return NO;
}

Finally, in CocoaServerAppDelegate.m, implement the two data source methods for NSTableView to
show the list of registered users. (Notice that these data source methods are different than the ones in
iOS.)

- (id)tableView:(NSTableView *)aTableView 
    objectValueForTableColumn:(NSTableColumn *)aTableColumn 
                          row:(NSInteger)rowIndex
{
    NSDictionary *entry = [registeredUsers objectAtIndex:rowIndex];
    return [NSString stringWithFormat:@"%@", [entry objectForKey:@"name"]];
}

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView
{
    return [registeredUsers count];
}

Build and run CocoaServer and leave it running. Then build and run Notified. (Make sure that
CocoaServer is still running and that the device and computer are on the same network.) After a
moment, you should see your device appear in the list of devices in CocoaServer.

For the More Curious: TXTRecords
While Bonjour does not allow a client and server to exchange information, a service published via
Bonjour can include additional information that can be read by clients. For example, a printer could
tell clients that it is in the third-floor library, or a workstation could display the rules for using it. Every
NSNetService has a TXT Record for this purpose.

You can create a TXT Record with an NSDictionary. This dictionary has some restrictions
– its keys can only be NSStrings, and its values must be NSData objects that encapsulate an
NSString or binary data. Once you have a valid dictionary, you pass it to the class method
dataFromTXTRecordDictionary: of NSNetService and set it as an NSNetService’s TXTXRecordData.

- (void)setMessage:(NSString *)str forNetService:(NSNetService *)service
{
    // Pack the string into an NSData 
    NSData *stringData = [str dataUsingEncoding:NSUTF8StringEncoding]; 

    // Put the data in a dictionary 
    NSDictionary *txtDict = [NSDictionary dictionaryWithObject:stringData 
                                                        forKey:@"message"]; 

    // Pack the dictionary into an NSData 



ptg

Chapter 28  Bonjour and Web Servers

480

    NSData *txtData = [NSNetService dataFromTXTRecordDictionary:txtDict]; 

    // Put that data into the net service 
    [service setTXTRecordData:txtData]; 
}

A TXT record isn’t available to a client until it has resolved the net service. Once resolved, the client
can pull the data out and convert it back into an NSDictionary. 

- (void)netServiceDidResolveAddress:(NSNetService *)ns
{
    // Try to get the TXT Record
    NSData *data = [ns TXTRecordData];

    // Is there TXT data?
    if (data) {

        // Convert it into a dictionary
        NSDictionary *txtDict = [NSNetService dictionaryFromTXTRecordData:data];

        // Get the data that the publisher put in under the message key
        NSData *mData = [txtDict objectForKey:@"message"];

        // Is there data?
        if (mData) {

            // Make a string
            NSString *message = [[NSString alloc] initWithData:mData 
                                                      encoding:NSUTF8StringEncoding];
            NSLog(@"%@ says: %@", ns, message);
            [message release];
        }
    }
}



ptg

481

29
Push Notifications and

Networking

On an iOS device, only one application can run in the foreground at a time. Sometimes, you want an
application that isn’t currently running to notify you when something happens: an opponent in a game
makes a move, a buddy sends you a message in a chat program, or you have 5 minutes to get to your
next meeting.

Push notifications are one approach to solving this problem. A push notification is a message sent from
Apple’s servers to a device. The user sees a pop-up window on screen with the name of the application
that has been notified, a message, and possibly an alert sound or icon badge.

It’s not a coincidence that it is difficult to find a working implementation of push notifications on the
Net – this stuff isn’t easy. You have to create an SSL certificate, provision the application, and write
the network code to connect to Apple’s server.

But, in this chapter, we’re going to get it all done using the applications you created in Chapter 28.
You will update CocoaServer to send push notifications and update Notified to receive them. Push
notifications also require a middle man (Apple’s push notification server) and a device token, which
uniquely identifies an iOS device. Figure 29.1 gives you an idea of the relationships between the three
players.

Figure 29.1  Flow of a push notification



ptg

Chapter 29 Push Notifications and Networking

482

Preparing Client for Push Notifications
To get Notified ready to receive push notifications, we must register for notifications with the Apple
push notification server and then create a provisioning profile that allows for push notifications.

Registering for notifications

Registering for notifications does two things: it sets the types of notification the application will
accept, and it retrieves the required device token from Apple’s server.

There are three types of notifications: alerts, badges, and alert sounds. (Badges are small numeric icons
that appear on an application’s icon. You’ve probably seen them on the Mail and App Store icons when
you have unread mail or application updates to download.) When an application registers for push
notifications, it chooses the types of notifications it wishes to receive. When a notification is delivered,
the operating system only delivers the types that the application has registered for.

Reopen NotifiedClientServer.xcworkspace. In NotifiedAppDelegate.m, register for all
notification types at the top of application:didFinishLaunchingWithOptions:.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // Register (every time the app launches) for notifications
    [[UIApplication sharedApplication] registerForRemoteNotificationTypes:
                                            UIRemoteNotificationTypeAlert 
                                          | UIRemoteNotificationTypeBadge
                                          | UIRemoteNotificationTypeSound];

In addition to setting the valid notification types for this application, this code will make a network
connection to Apple’s push notification servers to retrieve a device token. The device token is a 32-
byte string of binary data that uniquely identifies the registering device. You can think of it like a
phone number that Apple dials each time it wants to deliver a notification. Once Apple has generated
the device token, it is returned to your device and delivered to the registering application via the
application delegate method application:didRegisterForRemoteNotificationsWithDeviceToken:.
(The device token will be the same each time you register, but re-registering keeps the servers up-to-
date.)

In NotifiedAppDelegate.h, add an instance variable to hold this token.

@interface NotifiedAppDelegate : NSObject 
    <UIApplicationDelegate, NSNetServiceBrowserDelegate, NSNetServiceDelegate> 
{
    NSData *pushToken;            

In NotifiedAppDelegate.m, implement the delegate method.

- (void)application:(UIApplication *)application 
    didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken
{
    // We'll keep this token and then attempt to send it to the server 
    pushToken = [deviceToken retain];
    
    // Shortly, we'll change the implementation of this method to send the device 
    // token along with the device name to the server



ptg

Provisioning for push notifications

483

    [self postInformationToServer];
}

Notice that this method triggers the postInformationToServer method that you wrote in Chapter 28.
Now this message is sent at two separate times: when the device token is retrieved and when the net
service is resolved. You’ll see why this is important in a moment.

If the application fails to register with Apple, a different delegate method is called. Typically,
this occurs when there is no network connection available. Implement this method in
NotifiedAppDelegate.m.

- (void)application:(UIApplication *)application 
    didFailToRegisterForRemoteNotificationsWithError:(NSError *)error
{
    [statusLabel setText:@"Failed to register with Apple"];
    NSLog(@"%@", error);
}            

Provisioning for push notifications

For the registration to succeed, the application has to be provisioned for push notifications. This
requires generating a push notification certificate and embedding it in a provisioning profile that the
application uses. You are going to create a new provisioning profile for Notified. Then, when Notified
is built, it will use the developer certificate from this profile to sign the application code. When the
application registers for push notifications, a value from this provisioning profile will be used to verify
that it is able to receive notifications.

To generate the provisioning profile and the push notification certificate, you must be the Team Agent
of your iOS developer account.

Log into the portal at developer.apple.com/ios and enter the iOS Provisioning Portal. While in the
portal, you’re going to create a new App ID, create and download the SSL certificate, and create and
configure the new provisioning profile.

In the left navigation table, select the App IDs item and click New App ID. Name this App ID Notified
and select Generate New from the pop-up menu (Figure 29.2). The Bundle Identifier item will need to
be something unique. For example, mine is com.bignerdranch.Notified. You can replace the middle
of the bundle identifier with your company name, and that should ensure its uniqueness. Note that you
cannot use the wildcard character (*) for this App ID. Click Submit.



ptg

Chapter 29 Push Notifications and Networking

484

Figure 29.2 Generating an application ID

Back in the list of App IDs, click the Configure button on the same row as the Notified App ID. On the
page that appears, click the checkbox to enable push notifications. Then, click the Configure button for
the Development Push SSL Certificate (Figure 29.3).

Figure 29.3 Enabling development notifications

Now an overlay window with an assistant will appear and walk you through the steps of
generating an SSL certificate. This certificate will be used to encrypt and decrypt push notification



ptg

Provisioning for push notifications

485

data. Follow the instructions in this guide, and you will eventually download a file named
aps_developer_identity.cer. Keep this file handy; you will use it soon.

Now, select Provisioning from the left navigation table in the provisioning portal and click New Profile.
Name this profile whatever you wish. Select your developer certificate (the one you have been using 
to sign your applications when building on the device) from the list of certificates. Choose the Notified
App ID from the pop-up menu, and then select your development device from the list of devices. Click
Submit.

This will take you back to the list of provisioning profiles, and your new profile will say Pending.
Refresh your browser, and a Download button will appear. Download your new profile and drag it onto
the Xcode window.

You will want to use this push notification-enabled profile to deploy the Notified application to your
device. For that to happen, the application’s bundle identifier must match the profile’s App ID. In
Xcode, select the Notified project from the project navigator and the Notified target from the editor area.
Then, select the Info pane and locate the Bundle Identifier key (Figure 29.4). Change it to exactly match
the App ID in the provisioning profile you just created. (This value is case-sensitive!)

Figure 29.4 Changing the bundle identifier

One more step and our client application will be ready to receive push notifications. In the Build
Settings pane, locate the Code Signing Identity setting. Click the value column for this setting and
select the Notified provisioning profile from the list. (There are a number of sub-items in this setting.
Changing the top-level item should also change all of the sub-items. However, if you have previously
set a sub-item’s values to something other than its parent’s setting, you may need to change it
individually.) My Code Signing Identity setting looks like the one in Figure 29.5.

Figure 29.5 Build settings



ptg

Chapter 29 Push Notifications and Networking

486

Build and run the application on a device. (You can’t test push notifications on the simulator.) The
application will ask you if it is okay to accept push notifications – say yes!

Exit the application and open the Settings application. Select the Notifications item and then select
Notified, which now appears in this list. This application registered for all three notification types, so
there is a switch for each type. Make sure they are all switched on.

Congratulations! Notified can now receive push notifications. Now let’s turn to the server side.

Delivering a Push Notification
To deliver a push notification to a device, a server you control (like CocoaServer) must send a
notification package to Apple’s push notification server. Then Apple’s push notification server delivers
the notification to the device. The server you control is called the provider. The notification package
contains the notification the user will eventually receive along with the device token and some other
administrative information. The Apple server then uses the device token to route the notification to the
correct device.

Getting the token to the provider
Before the provider can send the notification package to Apple’s push notification server, it needs to
know the device token. You’re going to have Notified send CocoaServer its device token in an HTTP
request. You’ve already implemented everything you need to do this in Chapter 28. All that remains is
adding the device token to the HTTP request.

Open NotifiedAppDelegate.m and find the postInformationToServer method. In this method,
Notified connects to CocoaServer, constructs an HTTP request, and sends the request to CocoaServer.
Recall that the postInformationToServer message is now sent to the NotifiedAppDelegate twice:
once when it resolves the net service and again when it retrieves the device token from Apple’s server.
As it stands now, whichever event happens first will trigger the code in postInformationToServer.
But that’s not what we want. We want postInformationToServer to be executed only after both
events have occurred. We only want to send the HTTP request after we’re sure we have a server and a
token.

In NotifiedAppDelegate.m, update postInformationToServer to test for both the server and the
token before continuing. Then, add the device token as the body of the HTTP request.

- (void)postInformationToServer 
{
    // We make sure we have both before we make the connection
    if (desktopServer && pushToken) {
    
        [statusLabel setText:@"Sending data to server..."];
        
        
        // Now, we are adding the token to the dictionary that will be the 
        // body of the request
        NSDictionary *d = 
            [NSDictionary dictionaryWithObjectsAndKeys:pushToken, @"token", 
                                 [[UIDevice currentDevice] name], @"name", nil];
        
        NSData *data = [NSPropertyListSerialization 
                              dataWithPropertyList:d 
                                            format:NSPropertyListXMLFormat_v1_0
                                           options:0 



ptg

Getting the token to the provider

487

                                             error:nil];        

        NSString *urlString = [NSString stringWithFormat:@"http://%@/register", 
                                                            [self serverHostName]];

        NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:
                                                [NSURL URLWithString:urlString]];

        [req setHTTPMethod:@"POST"];
        [req setHTTPBody:data];

        NSURLConnection *connection = [[NSURLConnection alloc] initWithRequest:req 
                                                                      delegate:self];
        [connection start];        

    // This curly brace ends the if statement - it wasn't here before
    }
}            

Now the provider needs to be able to receive tokens from HTTP requests. Open
CocoaServerAppDelegate.m and modify the handleRegister: method to collect and keep the token a
client passes.

- (BOOL)handleRegister:(CFHTTPMessageRef)request 
{
    NSData *body = [(NSData *)CFHTTPMessageCopyBody(request) autorelease];

    NSDictionary *bodyDict = [NSPropertyListSerialization
                                    propertyListFromData:body 
                                        mutabilityOption:NSPropertyListImmutable 
                                                  format:nil
                                        errorDescription:nil];
    
    // Grab the "token" and "name" objects from this dictionary
    // and make sure they are there 
    NSData *token = [bodyDict objectForKey:@"token"];
    NSString *name = [bodyDict objectForKey:@"name"];
    if (token && name) {
        
        // Make sure we haven't already recorded this device token
        BOOL unique = YES;
        for(NSDictionary *d in registeredUsers) {
            if ([[d objectForKey:@"token"] isEqual:token])
                unique = NO;
        }
        
        if (unique) {
            // If we haven't recorded this token, then it's a new one and 
            // we'll keep it - refresh the table 
            [registeredUsers addObject:bodyDict];
            [tableView reloadData];
        }
        return YES;
    }
    return NO;
}            

Also, update the data source method in CocoaServerAppDelegate.m to show the device token in the
server’s table view:



ptg

Chapter 29 Push Notifications and Networking

488

- (id)tableView:(NSTableView *)aTableView 
    objectValueForTableColumn:(NSTableColumn *)aTableColumn 
                          row:(NSInteger)rowIndex
{
    NSDictionary *entry = [registeredUsers objectAtIndex:rowIndex];
    return [NSString stringWithFormat:@"%@ (%@)", 
                                [entry objectForKey:@"name"], 
                                [entry objectForKey:@"token"]];
}            

Build and run CocoaServer. Then, build and run Notified on a device that is on the same local area
network. After a moment, you should see the device name and token in the table view of CocoaServer.

Keep in mind that there are other ways to get a device token to the provider; an HTTP request is just
the way that works best for this exercise.

Sending Push Notifications
Now that CocoaServer has the device token of its client application, it can send a notification package
to Apple’s push notification server. The first step in this process is connecting to the notification server
with NSStream. Once we have a connection, we’ll pack up and send the notification data that will
eventually be sent to the device.

Connecting to Apple’s server with NSStream

Apple requires that the data sent to its server from the provider be encrypted. This is where the SSL
certificate you downloaded comes into play – the provider must encrypt its outgoing data with this
certificate.

Locate the aps_developer_identity.cer file that you downloaded earlier. Double-click on it to
add it to your Login keychain. In Keychain Access, you should see this certificate and its private key
(Figure 29.6). Remember that the certificate that signs your application for deployment is different
than the certificate used to encrypt data.

Figure 29.6 SSL certificate in Keychain Access

To make it easy for CocoaServer to find this certificate, you will bundle it with the application. Drag
aps_developer_identity.cer to CocoaServer’s project navigator and check the box to copy it to the
project’s directory. Now, when CocoaServer is built, it will have access to this certificate.



ptg

Connecting to Apple’s server with NSStream

489

Using NSStream

The provider will make a connection to Apple’s push notification server and secure the data it sends
by signing it with this certificate. This connection to the notification server should stay open even 
if you aren’t currently sending push notifications; if you close and re-open the connection multiple
times, Apple may think you are trying to flood the server and reject your connection. Therefore, when
CocoaServer starts, you will initiate a connection to the notification server and keep it open.

In CocoaServerAppDelegate.h, declare three new methods and two new instance variables.

    NSOutputStream *writeStream;
    NSInputStream *readStream;
} 
- (void)configureStreams; 
- (NSArray *)certificateArray; 
- (void)connectToNotificationServer;                    

The implementation of connectToNotificationServer will open a streaming connection to the
notification server. A streaming connection is kept alive, and the two connected machines are free to
send data to each other whenever they please.

Let’s get some network theory out of the way. In Unix (on which iOS is built), we use file descriptors
to transfer data. We can think of a file descriptor as a wormhole. We put data into it, and that data
appears at the other end. Data arrives the same way. The operating system handles where that data
goes to or comes from; we just interface with our end of the file descriptor. The other side of a file
descriptor may be connected to a file on the filesystem or to the network hardware that talks to the
Internet. This is low-level stuff, and a number of abstractions have been built on top of it to make our
lives easier. You don’t have to know about file descriptors to load a file, but that’s what is happening
underneath the hood.

When a file descriptor is used to channel data to and from the network hardware, we call it an internet
socket (or more commonly, just a socket). When you put data into an internet socket, it ends up on
another machine. When that machine sends back data, you can read that data from a socket. Thus, a
streaming connection is really just two sockets: one that you put data on and one that you take data
from.

In connectToNotificationServer, you’re going to create your sockets and connect them using the C-
level Core Foundation framework. The function CFStreamCreatePairWithSocketToHost returns two
stream objects of type CFWriteStreamRef and CFReadStreamRef.

These Core Foundation classes are toll-free bridged with the two classes from Apple’s streaming
API: NSOutputStream and NSInputStream. You will use instances of these classes to manage your
connected sockets.

In CocoaServerAppDelegate.m, implement connectToNotificationServer.

- (void)connectToNotificationServer
{
    // Connect to push notification server, we get back two stream objects 
    // that will allow us to write to and read from that server
    CFStreamCreatePairWithSocketToHost(NULL,
                                       (CFStringRef)@"gateway.sandbox.push.apple.com",
                                       2195,
                                       (CFReadStreamRef *)(&readStream),



ptg

Chapter 29 Push Notifications and Networking

490

                                       (CFWriteStreamRef *)(&writeStream));
    // Open up the streams
    [readStream open];
    [writeStream open];

    // Make sure that opening didn't fail
    if ([readStream streamStatus] != NSStreamStatusError 
    && [writeStream streamStatus] != NSStreamStatusError) {
        [self configureStreams];
    }
    else {
        NSLog(@"Failed to connect to Apple.");
    }
}

You can see in the CFStreamCreatePairWithSocketToHost function that the host name of the
development push notification server is gateway.sandbox.push.apple.com and it accepts connections
on port 2195.

Since these streams need to encrypt their data, you must load the certificate into memory and hand it to
them. First, add Security.framework to your project. Then, at the top of CocoaServerAppDelegate.m,
import the top-level header for this framework.

#import <Security/Security.h>                

Next, in CocoaServerAppDelegate.m, implement certificateArray to load the certificate from the
bundle, establish its private key (also called its identity) from the Keychain, and then return an array
containing the certificate and its key.

- (NSArray *)certificateArray
{
    // Get the path of the certificate in the bundle
    NSString *certPath = 
        [[NSBundle mainBundle] pathForResource:@"aps_developer_identity" 
                                        ofType:@"cer"];

    // Pull the data from the filesystem and create a SecCertificate object 
    NSData *certData = [NSData dataWithContentsOfFile:certPath];
    SecCertificateRef cert = SecCertificateCreateWithData(NULL, (CFDataRef)certData);
    
    // Create the identity (private key) which requires 
    // that the certificate lives in the keychain
    SecIdentityRef identity;
    OSStatus err = SecIdentityCreateWithCertificate(NULL, cert, &identity);
    if (err) {
        NSLog(@"Failed to create certificate identity: %d", err);
        return nil;
    }
    
    // Put the key and certificate into an array
    return [NSArray arrayWithObjects:(id)identity, (id)cert, nil];
}                    



ptg

Connecting to Apple’s server with NSStream

491

Figure 29.7 Stream behavior

Now, the implementation of configureStreams will configure the streams with the encryption
certificate. In the same method, you will give the streams delegates and schedule them into 
the run loop so that they are monitored for data (Figure 29.7). Implement this method in
CocoaServerAppDelegate.m.

- (void)configureStreams
{
    NSArray *certArray = [self certificateArray];
    if(!certArray)
        return; 
        
    // Give the streams their SSL settings so they can encrypt/decrypt
    // data to/from the server 
    NSDictionary *sslSettings = 
        [NSDictionary dictionaryWithObjectsAndKeys:[self certificateArray],
                                        (id)kCFStreamSSLCertificates,
                                        (id)kCFStreamSocketSecurityLevelNegotiatedSSL,
                                        (id)kCFStreamSSLLevel, nil];
    
    [writeStream setProperty:sslSettings 
                      forKey:(id)kCFStreamPropertySSLSettings];

    [readStream setProperty:sslSettings 
                     forKey:(id)kCFStreamPropertySSLSettings];
    
    // Give streams a delegate so we can monitor them
    [readStream setDelegate:self];
    [writeStream setDelegate:self];



ptg

Chapter 29 Push Notifications and Networking

492

    // Schedule the streams into the run loop so that they can do their work 
    [writeStream scheduleInRunLoop:[NSRunLoop currentRunLoop] 
                           forMode:NSDefaultRunLoopMode];
    [readStream scheduleInRunLoop:[NSRunLoop currentRunLoop] 
                          forMode:NSDefaultRunLoopMode];
}

Once the streams have been opened and scheduled into the run loop, they will start telling their
delegate (the CocoaServerAppDelegate) what’s going on in their lives. For example, a read stream
might say, “I have some new data sitting on the socket. Would you like to read it?” A write stream
might say, “I just sent a bunch of data, and now I’m ready for more.” Also, if a stream encounters a
problem, it will report an error to its delegate.

In CocoaServerAppDelegate.h, declare that CocoaServerAppDelegate conforms to the
NSStreamDelegate protocol.

@interface CocoaServerAppDelegate : NSObject 
    <NSApplicationDelegate, NSNetServiceDelegate, 
    NSTableViewDataSource, NSTableViewDelegate,
    NSStreamDelegate>                 

Then, in CocoaServerAppDelegate.m, implement the event-handling delegate method.

- (void)stream:(NSStream *)aStream handleEvent:(NSStreamEvent)eventCode
{
    switch(eventCode)
    {
        case NSStreamEventHasBytesAvailable:
        {
            NSLog(@"%@ has bytes", aStream);
        } break;
        case NSStreamEventOpenCompleted:
        {
            NSLog(@"%@ is open", aStream);
        } break;
        case NSStreamEventHasSpaceAvailable:
        {
            NSLog(@"%@ can accept bytes", aStream);
        }break;
        case NSStreamEventErrorOccurred:
        {
            NSLog(@"%@ error: %@", aStream, [aStream streamError]);
        } break;
        case NSStreamEventEndEncountered:
        {
            NSLog(@"%@ ended - probably closed by server", aStream);
        } break;
    } 
}                

Finally, at the end of applicationDidFinishLaunching:, kick off the whole process of connecting to
the Apple push notification server.

    service = [[NSNetService alloc] initWithDomain:@"" 
                                              type:@"_http._tcp." 
                                              name:@"CocoaHTTPServer" 
                                              port:[server port]];
    [service setDelegate:self];



ptg

Connecting to Apple’s server with NSStream

493

    [service publish];
    
    [self connectToNotificationServer];
}

Build and run CocoaServer. Mac OS X will ask if it is okay to use the private key to securely speak
with the notification server. Select Always Allow. After a moment, your console should report that both
streams have opened and that the write stream can accept bytes. The console will look something like
this:

<SSCFInputStream: 0x10044d580> is open 
<NSCFOutputStream: 0x10044d650> is open 
<NSCFOutputStream: 0x10044d650> can accept bytes                

You now have an encrypted connection to the push notification server. In the next section, you’ll
format and send the notification data.

Providing data to the notification server

Once you have a connection to the notification server, you can send it notifications to forward to
devices. There are two formats for the notification data sent to the server: simple and enhanced. We
will use the enhanced format because it can inform the provider of any error in the data and it allows
the provider to include an expiration date for the notification.

The data will be a packed binary buffer, so we will use an instance of NSMutableData to put together
this information (Figure 29.8). The first byte of the data is called the command and it is either 1 or 0. If
the notification data is in the enhanced format, the command is 1, otherwise, it’s 0.

Figure 29.8 Enhanced notification format

Next is a 32-bit value that identifies this notification. If there is an error delivering the notification,
your application will be given back this identifier along with the error so you can decide what to do
next.

Another 32-bit integer follows the identifier, and it specifies an expiration date. If a push notification
cannot be delivered to a device (most likely because it does not have an Internet connection), the
notification server will try to re-send it later. The expiration date says, “If you still haven’t delivered
this notification by this time, then just trash it.” The value of expiration date is the number of seconds
past the epoch (Jan 1, 1970) at which the server should trash the notification. If you wanted, for
example, to have the notification expire in a day, you will call the function time to get the current
number of seconds since the epoch and then add a day’s worth of seconds to that value.

Next comes the device token: first a 16-bit integer to specify the length of the device token data (which
at this point is always 32 bytes, but in the future may vary) and then the token data itself. The token
data information is the same value the iOS application receives after it registers. It allows the push
notification server to route the notification to the correct device.



ptg

Chapter 29 Push Notifications and Networking

494

Last is the actual notification payload (and a 16-bit integer before it to specify its size). The payload 
is the notification data that will make it to the device. It can include alert text, the name of a sound file
to play, or a badge number to place on the application’s icon. This data will be binary-encoded JSON.
JSON is like XML; it is a platform-independent mark-up language used to transport data. There is no
built-in JSON generator in the iOS SDK, but constructing it by hand for simple things like delivering a
notification is easy enough.

In the JSON payload, there are a few reserved keys. The first is aps, which is the top-level container
for standard notification key-values. The standard notification keys are alert, sound, and badge.
Therefore, a simple notification that sends an alert to a device looks like this:

{
    "aps":
    {
        "alert":"Here's a simple message"
    }
}

If you want to include a sound file to play with the alert, you would add the name of that file to the aps
container.

{
    "aps":
    {
        "alert":"Here's a simple message",
        "sound":"Sound12.aif"
    }
}

The alert can also be a container if you need to add supported customizations to your notification, like
localizing the text or providing a special launch image for a notified application. You can check the
documentation for all of these keys. Furthermore, you can specify your own keys outside of the aps
container for use by your application. These keys will be available to the iOS application when it is
awoken by a notification, but they will not be visible to the user.

However, you should never rely on the delivery of a push notification. Therefore, do not relay critical
information in customizations of a notification; instead, indicate to the application that it should fetch
critical information from the server. Also, do not include confidential information, like passwords or
credit card numbers, in the payload.

Time to make the data. In CocoaServerAppDelegate.h, declare a new method to construct the
notification data.

- (NSData *)notificationDataForMessage:(NSString *)msgText token:(NSData *)token;
                

Implement this method in CocoaServerAppDelegate.m.

- (NSData *)notificationDataForMessage:(NSString *)msgText token:(NSData *)token 
{    
    
    // To signify the enhanced format, we use 1 as the first byte 
    uint8_t command = 1;
    
    // This is the identifier for this specific notification 
    static uint32_t identifier = 5000;
    



ptg

Connecting to Apple’s server with NSStream

495

    // The notification will expire in one day 
    uint32_t expiry = htonl(time(NULL) + 86400);
    
    // Find the binary lengths of the data we will send 
    uint16_t tokenLength = htons([token length]);
    
    // Must escape text before inserting in JSON
    NSMutableString *escapedText = [[msgText mutableCopy] autorelease];
    
    // Replace \ with \\
    [escapedText replaceOccurrencesOfString:@"\\"
                                 withString:@"\\\\"
                                    options:0
                                      range:NSMakeRange(0, [escapedText length])];

    // Replace " with \"
    [escapedText replaceOccurrencesOfString:@"\"" 
                                 withString:@"\\\"" 
                                    options:0 
                                      range:NSMakeRange(0, [escapedText length])];

    // Construct the JSON payload to deliver to the device
    NSString *payload = 
             [NSString stringWithFormat:@"{\"aps\":{\"alert\":\"%@\"}}", escapedText];

    // We'll have to encode this into a binary buffer, so NSString won't fly 
    const char *payloadBuffer = [payload UTF8String];

    // Note: sending length to an NSString will give us the number 
    // of characters, not the number of bytes, but strlen 
    // gives us the number of bytes. (Some characters 
    // take up more than one byte in Unicode)
    uint16_t payloadLength = htons(strlen(payloadBuffer));
    
    // Create a binary data container to pack all of the data 
    NSMutableData *data = [NSMutableData data];
    
    // Add each component in the right order to the data container
    [data appendBytes:&command length:sizeof(uint8_t)];
    
    [data appendBytes:&identifier length:sizeof(uint32_t)];
    
    [data appendBytes:&expiry length:sizeof(uint32_t)];
    
    [data appendBytes:&tokenLength length:sizeof(uint16_t)];
    [data appendBytes:[token bytes] length:[token length]];
    
    [data appendBytes:&payloadLength length:sizeof(uint16_t)];
    [data appendBytes:payloadBuffer length:strlen(payloadBuffer)];

    // Increment the identifier for the next notification 
    identifier++;

    return data;
}                

Now we need some way for the CocoaServer to specify the text of the message it sends to registered
users. In the CocoaServer project, open MainMenu.xib. Add an NSTextField (not a label) and an
NSButton to the interface. Then make outlets and actions and connect them as shown in Figure 29.9.



ptg

Chapter 29 Push Notifications and Networking

496

Figure 29.9 Finished CocoaServer XIB

In CocoaServerAppDelegate.m, implement pushMessage: so that it sends the contents of the
messageField to the device that is currently selected in the table view.

- (IBAction)pushMessage:(id)sender
{    
    // If you haven't selected a row, there is no one to send 
    // the message to 
    NSInteger row = [tableView selectedRow];
    if (row == -1)
        return;
        
    // Pull the message out of the text view and the token 
    // of the device we are going to talk to 
    NSString *msgText = [messageField stringValue];
    NSData *token = [[registeredUsers objectAtIndex:row] objectForKey:@"token"];
    
    NSData *data = [self notificationDataForMessage:msgText token:token];
    
    // Send this data out to Apple's server 
    [writeStream write:[data bytes] maxLength:[data length]];    
}

Notice the use of write:maxLength: at the end of this method. To send data to a server with
NSOutputStream, you send it this message. The write:maxLength: method takes a buffer of bytes and
the length of that buffer as arguments. It returns the actual number of bytes written (or -1 if there was
an error).

When you write to a stream, the data is essentially “queued up” for transfer. The stream will make
the transfer when it can. In this case, the stream is scheduled into the main run loop. Therefore,
when the main run loop is not processing another event, it will spend time flushing the output to the



ptg

Connecting to Apple’s server with NSStream

497

network interface. When the data has made its way out to the Internet, the write stream indicates to
its delegate that it is ready to accept bytes again by sending the message stream:handleEvent: with
NSStreamEventHasSpaceAvailable as the event type.

Now it’s time to see what you have wrought. Build and run CocoaServer. Then, build and run Notified.
After the device appears in CocoaServer’s table view, exit Notified by pressing the Home button. In
CocoaServer, select the device in the table view, enter a message into the text field, and press Push
Message. Wait a moment for the notification server to do its part, and then check your device for the
notification. How awesome is that?

Detecting errors in notification delivery

If there is an error delivering an enhanced notification, the server will respond with an error. This
data will be 6 bytes long. The first byte is a command and will always be the value 8. The second
byte is a status code that indicates the type of the error. (You can see all of the status codes in the
documentation.) The final 4 bytes is the identifier of that notification.

When a read stream has data available, it sends the message stream:handleEvent: to its delegate.
Then, you send the message read:maxLength: to the stream that has the data, passing an allocated
buffer to hold the result of the read along with the size of that buffer. The NSInputStream will take the
bytes off the stream and put them into the buffer until it reaches the number of bytes you specified. The
value returned by this method is a number. A positive number indicates the number of bytes that were
actually transferred to the buffer. The value is 0 if there are no bytes left to read and -1 if there was an
error.

Typically, when you read from an input stream, you pick a reasonable size (based on the size of the
data you are planning to receive) for a buffer, read that many bytes, and then repeat until the buffer
returns 0.

We know that a notification delivery error is always 6 bytes. Thus, we can read 6 bytes at a time from
the stream. In CocoaServerAppDelegate.m, locate the method stream:handleEvent: and add the
following code:

        case NSStreamEventHasBytesAvailable:
        {
            if (aStream == readStream)
            {
                // If data came back from the server, we have an error 
                // Let's fetch it out 
                NSUInteger lengthRead = 0;
                do 
                {
                    // Error packet is always 6 bytes 
                    uint8_t *buffer = malloc(6);
                    lengthRead = [readStream read:buffer maxLength:6];

                    // First byte is command (always 8)
                    uint8_t command = buffer[0];
                    
                    // Second byte is the status code 
                    uint8_t status = buffer[1];
                    
                    // This will be the notification identifier
                    uint32_t *ident = (uint32_t *)(buffer + 2);
                    



ptg

Chapter 29 Push Notifications and Networking

498

                    NSLog(@"ERROR WITH NOTIFICATION: %d %d %d", 
                                (int)command, (int)status, *ident);

                    free(buffer);
                } while(lengthRead > 0);
            }
        } break;                

Now, if there is an issue with your notification data, the console will show you why.

More on reading from a stream

This stream-reading technique is sufficient for our application because we know the exact size of 
the data we will get back from the server. In general, however, you have to take more precautions.
Sometimes, you will get more than one packet, a partial packet, or a combination of the two (e.g., one
and a half packets). Sometimes, data of variable sizes will be sent. The solution to these problems is
creating a packet format that both the client and server agree upon. Take a look at the notification data
you prepare for the notification server: it has a format that is set-in-stone and you always pass the size
of the variable parts of that data. By being a notification provider, you have agreed to this format.

A typical format uses the first byte as a command that indicates the format of the data. Since you
always receive at least one byte when the stream informs its delegate that it has bytes available, you
can safely read this byte and determine what to do next. Many formats use the next chunk of bytes to
indicate the length of the rest of the packet. So, the stream will check the command and say, “Oh, this
is a Message command, so I know that the next 2 bytes will be the length of the packet. I’ll read those
two bytes to figure out how large the packet is.”

The delegate will then attempt to read that many bytes from the stream. If there are exactly that many
bytes left in the read stream, you have a single and complete packet from the server and can use that
data in your application.

In practice, though, that doesn’t always happen. If the data you read is not the exact length you are
expecting, you will have to store that data for later. Let’s consider two examples:

• You read the first three bytes of a stream, and they indicate that there are 40 more bytes in the
packet. You allocate a buffer that is 40 bytes and attempt to read 40 bytes from the stream – but the
stream only has 32 bytes available. In this situation, you keep that data around. Then, the next time
a stream informs its delegate that bytes are available, you immediately lop off the first 8 bytes and
append them to the stored data. Now, you have a complete packet.

• You read the first three bytes and again know that there are 40 bytes left in the packet. But, there
are actually 60 bytes available. The first 40 bytes are a complete packet – you can use that data
immediately. However, the last 20 bytes belong to another packet. So, you grab the first byte to
determine the format. Let’s assume the same format, so you check the next two bytes for the length
and see that the packet is 36 bytes. You keep the extra bytes around, and the next chunk of data that
comes in will be appended to it.

Additional Client-side Notification Handling
Now that you’ve pulled off the basics of push notifications, let’s look at three additions to notification
handling in the client application: pushing sounds and badges, receiving notifications while running,
and using notification data when not running.



ptg

Sounds and badges

499

Sounds and badges

When Notified registers for notifications, it specifies that it can also receive sound and badge
notifications. A sound notification’s JSON payload contains the filename of a sound, and the notified
application will search its application bundle for a matching file and play it if it exists. This sound file
must follow the same rules as a system sound: less than 30 seconds and in a raw data format. Locate
Sound12.aif that you used in Chapter 27 and add it to the Notified project in the project navigator.

In the CocoaServer project, update the method notificationDataForMessage:token: in
CocoaServerAppDelegate.m to badge the application and have it play the alert sound.

    // Find the binary lengths of the data we will send 
    uint16_t tokenLength = htons([token length]);
    
    // Construct the JSON payload to deliver to the device
    NSString *payload = [NSString stringWithFormat:
              @"{\"aps\":{\"alert\":\"%@\",\"sound\":\"Sound12.aif\",\"badge\":1}}", 
              escapedText];
    
    // We'll have to encode this into a binary buffer, so NSString won't fly 
    const char *payloadBuffer = [payload UTF8String];            

The notification payload expanded looks like this:

{
    "aps":
    {
        "alert":"Message",
        "sound":"Sound12.aif",
        "badge":1 
    }
}

Build and run CocoaServer and Notified. Close Notified by pressing the Home button. Deliver a
notification from CocoaServer. Shortly, you will see the alert – and hear a sound and see a badge on
the application icon.

After you have badged an application, you typically want to remove that badge after the user launches
the application. In NotifiedAppDelegate.m, implement the following delegate method to clear the
badge.

- (void)applicationDidBecomeActive:(UIApplication *)application
{
    // When the user opens the application, clear the badge since we've seen the 
    // notification
    [[UIApplication sharedApplication] setApplicationIconBadgeNumber:0];
}

When a provider badges an application, the last notification sent determines the badge value that
appears on the icon. So if a notification payload does not contain a badge value, any existing badge
value is cleared.

Build and run Notified, close it, and push another notification from CocoaServer. Relaunch Notified and
exit it again to see its icon. Notice that the badge has disappeared.



ptg

Chapter 29 Push Notifications and Networking

500

Accessing data in notifications

Earlier in the chapter, we mentioned that, while you can send custom data in the alert of the JSON
payload of a notification, you shouldn’t send anything critical. For instance, imagine a basic chess
application where you play remote opponents. It would be great to notify the user when an opponent
has moved, but you wouldn’t pass the actual move in the notification. Instead, you would announce
that a move has been made. When the application is launched, it will check the server for the latest
move. Of course, it should do that anyway. The notification only serves as a convenient interrupt so the
user doesn’t have to keep launching the application to see if that slow &*%#@ has moved yet.

Remember, delivery of push notifications is not guaranteed, so you don’t want to base your
application’s logic (or your user’s experience) on them. Returning to the game example, if you did pass
the opponent’s move in a push notification, and the user chose to ignore the notification, then that data
would be lost.

Given that caveat, there is some data that it makes sense to pass in a notification – data the application
can use to set its context after launching. If the user is launching the application from a particular
notification, you could pass data that tells the application to open in the context most related to the
event the notification announced.

In the chess example, say the application supports multiple games. A move, and thus a notification,
would be associated with a particular game. You could pass data in the notification so that if the
application is launched from the alert window, it will open directly to the game in question. Very
slick. But it’s not the end of the world if the notification is not delivered or if the user ignores the
notification.

Our Notified application has very little context. So to demonstrate how to access data passed in a
notification, we’re just going to have the text of the alert appear in the Notified interface.

When an application that is not currently running receives a push notification, the user typically sees a
pop-up window and gets a chance to launch the application. What happens if the application receiving
the notification is currently running? The notification is still delivered, but the pop-up window does
not appear. To get the data out of the notification, you must implement the UIApplicationDelegate
method application:didReceiveRemoteNotification: to receive it.

Open Notified’s MainWindow.xib and add a UITextView to the window. Create and connect an outlet
for it, as shown in Figure 29.10.



ptg

Accessing data in notifications

501

Figure 29.10 Finished iOS XIB

When an iOS application is informed of a notification, it gets a dictionary that the JSON payload has
been parsed into. Therefore, there will be a top-level aps dictionary that contains an alert string. In
NotifiedAppDelegate.m, implement application:didReceiveRemoteNotification: to fill out the
notificationView with the alert from the notification.

- (void)application:(UIApplication *)application 
    didReceiveRemoteNotification:(NSDictionary *)userInfo
{
    // If we get a notification while the app is running, we'll just get the alert 
    // and display it to the user
    [notificationView setText:[[userInfo objectForKey:@"aps"] 
                                        objectForKey:@"alert"]];
}            

Build and run Notified and keep it running. Then push another notification from CocoaServer. After a
moment, the notification message will appear in the text view.

When an application is not running, the user can launch it from the alert window. If your application
wants to use the data from the notification once it is launched from the alert window, you can retrieve
it from the launchOptions dictionary of application:didFinishLaunchingWithOptions:. Add the
following code to the top of this method in NotifiedAppDelegate.m.

- (BOOL)application:(UIApplication *)application 
    didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    // If the user chooses to launch the application in response to a notification, 
    // get the notification information to use in the app 
    NSDictionary *remoteDict =
          [launchOptions 
           objectForKey:UIApplicationLaunchOptionsRemoteNotificationKey];
    if (remoteDict)
        [self application:application didReceiveRemoteNotification:remoteDict];
 



ptg

Chapter 29 Push Notifications and Networking

502

Build and run Notified. Exit the application and kill it from the dock. Then send another notification
and tap the View button. The text of the alert will appear in the UITextView once Notified has
relaunched.

The Production Server and Moving Forward
When you deploy an application to the App Store, you need to use a different SSL certificate and
talk to a different notification server. The process for generating that certificate is the same; in the
developer portal, just configure the Production section of the App ID. In your server, you must
point the connection to another instance of the notification server. The hostname of this server is
gateway.push.apple.com, and the port is still 2195.

Also, CocoaServer isn’t exactly a production server: it isn’t optimized to handle many service requests
at once.

Finally, all of the networking APIs and classes used in CocoaServer work in iOS as well.
An iOS application can get instances of NSInputStream and NSOutputStream after calling
CFStreamCreatePairWithSocketToHost and use those to exchange data with other machines.

For the More Curious: The Feedback Service
Not every user will keep your application forever. If a user uninstalls your application, you should no
longer send notifications to that device. To determine if a user has uninstalled your application, Apple
has a feedback server that spits out device tokens for uninstalled applications. You simply hook a read
stream to this server, and it will fire device tokens at you.

This read stream needs to be configured with the same SSL certificate used to push notifications. The
host for the feedback service is located at feedback.push.apple.com, port 2196 (The development
server is feedback.sandbox.push.apple.com). When a user uninstalls an application, the data you
receive on the read stream will be 38 bytes long.

The first four bytes will be a time_t value that gives you the number of seconds since the epoch 
that Apple realized the user had uninstalled the application. If this value is greater than the last time
the application sent your server its device token, then you know that the user no longer has your
application installed. (If it is less than that, then they have re-installed the application.) Therefore, you
typically note the time that you receive a device token so you can make this comparison later.

The rest of the packet from the feedback server will be the token of the device that uninstalled the
application. The first two bytes of this part of the packet will be the length of the device token, which
for now is 32 bytes. Then, the next 32 bytes are the device token itself. When you receive this data
from the server, you should remove that device token from your list of registered devices.



ptg

503

30
Afterword

Welcome to the end of the book! You should be very proud of all your work and all that you have
learned. Now, there’s good news and bad news:

• The good news: The stuff that leaves programmers befuddled when they come to the iOS platform
is behind you now. You are an iOS developer.

• The bad news: You are probably not a very good iOS developer.

What to do next
It is now time to make some mistakes, read some really tedious documentation, and be humbled by the
heartless experts who will ridicule your questions. Here’s what we recommend:

Write apps now. If you don’t immediately use what you have learned, it will fade. Exercise and extend
your knowledge. Now.

Go deep. This book has consistently favored breadth over depth; any chapter could have been
expanded into an entire book. Find a topic that you find interesting and really wallow in it – do some
experiments, read Apple’s docs on the topic, read a posting on a blog or on StackOverflow.

Connect. There is an iOS Developer Meetup in most cities, and the talks are surprisingly good. There
are discussion groups online. If you are doing a project, find people to help you: designers, testers
(AKA guinea pigs), and other developers.

Make mistakes and fix them. You will learn a lot the days you say, “This has become a ball of
crap! I’m going to throw it away and write it again with an architecture that makes sense.” Polite
programmers call this refactoring.

Give back. Share the knowledge. Answer a dumb question with grace. Give away some code.

Shameless plugs
You can find us both on Twitter, where we keep you informed about programming and entertained
about life: @joeconwaybnr and @aaronhillegass.

Keep an eye out for future guides from Big Nerd Ranch. We also offer week-long courses for
developers. And if you just need some code written, we do contract programming. For more
information, visit our website at www.bignerdranch.com.

It is you, dear reader, who makes our lives of writing, coding, and teaching possible. So thank you for
buying our book.

www.bignerdranch.com


ptg

This page intentionally left blank 



ptg

505

Index
Symbols
#import, 56
#pragma mark, 302
%@ prefix, 38
.h files, 43
.m files, 46
@ prefix 

for hard-coded strings, 38 
and Objective-C keywords, 43

@class, 118
@implementation, 46
@interface, 43, 397
@optional, 84
@protocol, 84
@selector(), 210
_cmd, 272
__block, 402

A
accelerometer, 149-156
accelerometer:didAccelerate:, 149, 151, 152
accessor methods, 45-48, 67-72 
accessory indicator (of UITableViewCell), 182
action methods, 17-20, 341, 342 
active state, 266, 500
addAnimation:forKey:, 381
addObject:, 33, 37, 40
addSubview:, 119
alloc, 32, 33, 61 
allocation, 59-61 
Allocations instrument, 345-352
analyzing (code), 343-345
angled brackets, 114
animation transactions, 370
animationDidStop:finished:, 382
animations

(see also CALayer, layers)
CABasicAnimation, 376, 377, 379-381, 384
CAKeyframeAnimation, 377, 383, 384
choosing, 379 
classes of, 363, 375-378 
and data types, 377 
identity matrices in, 384 
implicit, 369-371

key paths of, 375, 379
keyframes in, 378-380 
keys for, 381 
reusing, 381 
timing functions of, 381, 382

animationWithKeyPath:, 381
anonymous functions (see blocks)
anti-aliasing, 157 
API Reference, 103-108 
APIs

(see also frameworks)
Core Animation, 363, 368, 376
Core Audio, 462 
Core Foundation, 234-236
Core Video, 462 
private, 311

App ID, 24 
Apple documentation, 103-108 
application bundle, 257, 276, 277, 325, 452, 458
application delegate, 6, 11, 12, 15 
application dock, 266 
application domain, 330 
application sandbox, 257-260, 276 
application states, 265-268, 272, 273, 458-462
application:didReceiveRemoteNotification:,
500
applicationDidBecomeActive:, 272
applicationDidEnterBackground:, 267, 268,
273 
applications

(see also UIApplication)
allowing orientations, 169 
build settings for, 359-361
building, 21, 77, 91-95, 322
cleaning, 322 
data storage, 257, 258 
data storage options, 314
debugging (see debugginguniversal
applications) 
deploying, 23, 24 
directories in, 257-260 
icons for, 24-27 
launch images for, 27 
profiling, 346, 347 
and run loop, 65 
running on simulator, 21 
size limits, 458 
templates for, 77



ptg

Index

506

universal, 166, 167 (see universal applications)
user preferences in, 327-331

applicationWillEnterForeground:, 272
applicationWillResignActive:, 272
applicationWillTerminate:, 268, 460
aps container, 494
archiveRootObject:toFile:, 260, 261
archiving

applicationDidEnterBackground:, 267
described, 260-268 
keyed, 262-265 
root object, 260 
thumbnail images, 288 
unarchiving, 262-265 
vs. Core Data, 291 
when to use, 314

arguments, 33, 34
arrays

archiving, 260, 261 
and blocks, 396, 401 
fast enumeration of, 57
memory management of, 66
overview, 39, 40 
vs. dictionaries, 232
writing to filesystem, 275

assistant editor, 212-217, 226-228
attributes (Core Data), 292, 294, 295, 300
attributes inspector, 9, 101, 102 
audio

in background, 458-460
compression, 452, 454, 455
file formats, 452, 454
handling interruptions, 455
low-level APIs, 462
playing, 452-455
recording, 462 
session categories, 459
system sounds, 452-454

AudioServicesCreateSystemSoundID, 452, 453
AudioToolbox, 452, 462
autorelease, 64-67 
autoresize masks, 164, 165, 167-169
autorotation, 161-170, 434
availableMediaTypesForSourceType:, 239
AVAudioPlayer, 454, 455
AVAudioPlayerDelegate, 455
AVAudioRecorder, 462
AVAudioSession, 459

AVFoundation, 454
awakeFromFetch, 300
awakeFromInsert, 300

B
background (application state)

transitions, 272, 273 
background state, 266, 268

execution in, 458-462 
general guidelines for, 459
location updates, 460 
and low-memory warnings, 460
playing audio in, 458-460
transitions, 266-268, 458, 460, 461
and VOIP, 460

badges, 482, 499 
battery life, conserving, 150
becomeFirstResponder, 154
beginBackgroundTaskWithExpirationHandler:,
461 
big-endian, 475 
binary numbers, 168, 169 
bitmap contexts, 372, 373 
bitwise operators, 168, 169
__block, 402
blocks

as approach to callbacks, 404 
as arguments, 396 
and memory management, 400-402
and notifications, 396 
reasons to use, 387, 389, 404
stack-based vs. heap-based, 400
syntax of, 389-393 
using external variables in, 393-396
as variables, 390-393

Bonjour 
browsing for services, 470, 471
described, 463, 464, 468
publishing a service, 467-469
resolving services, 471, 472
TXT records, 479, 480

braces, 44 
brackets, 114
breakpoint navigator, 90
breakpoints, 86, 87, 90
build configurations, 360
build phases, 91-95



ptg

507

build settings, 359-361
bundles

application, 257, 276, 277, 325, 458
identifier, 24
NSBundle, 325

byte ordering, 475

C
CAAnimation, 363 

(see also animations)
CAAnimationGroup, 378
CABasicAnimation, 376, 377, 379-381
CAKeyframeAnimation, 377, 383, 384
CALayer

(see also animations, layers)
addAnimation:forKey:, 381
animatable properties of, 369-371
bitmap context for, 372
contents, 367 
creating, 364-366
delegate, 371
described, 363
designated initializer, 365
drawInContext:, 371, 372
presentationLayer, 384
properties, 366-370, 375, 376, 379
setPosition:, 369
subclassing, 371
superlayer, 368
zPosition, 368, 369

callbacks, 83, 403
CAMediaTimingFunction, 381
camera

(see also images)
recording video, 238-240
taking pictures, 226-231

canBecomeFirstResponder, 154
CAPropertyAnimation, 375
categories

for “private methods”, 399, 400, 444
syntax of, 397-399 
vs. subclassing, 399

CATransaction, 370
CATransform3DIdentity, 384
CATransition, 378 
cells (see table view cells, UITableViewCell)
CFReadStreamRef, 489

CFRelease, 235
CFStreamCreatePairWithSocketToHost, 489
CFStringRef, 234, 235
CFUUIDCreate, 235
CFUUIDCreateString, 235
CFUUIDRef, 234-236
CFWriteStreamRef, 489
CGBitmapContextCreate, 373
CGContextRef

drawing to, 286 
inside drawRect:, 116, 121
and layers, 372, 373

CGImage, 367
CGPoint, 117, 376, 377
CGRect, 117
CGSize, 117, 286
@class, 118 
class extensions, 399
class methods, 53-55
classes

(see also individual class names)
allocating from heap, 59, 61
creating, 41 
inheritance of, 40, 44 
name prefixes for, 79
overview, 31, 32 
properties (see properties)
reusing, 176 
size in memory, 75
subclassing, 40-56
superclasses, 40, 43, 51

CLLocation, 81, 82
CLLocationManager, 80-82, 460
CLLocationManagerDelegate, 83
closures (see blocks)
_cmd, 272
Cocoa Touch, 78

in Cocoa Touch, 78 
code snippet library, 186-188
command-line tool, 35
compile-time errors, 56, 93, 94
compiling, 93
connection:didFailWithError:, 412
connection:didReceiveData:, 411, 412
connectionDidFinishLoading:, 411-414
connections inspector, 19 
console, 22, 38
contentMode (UIImageView), 224, 225



ptg

Index

508

contentView (UITableViewCell), 183, 280-283
contentViewController

(UIPopoverController), 244
controller objects

(see also view controllers)
and dealloc, 86 
defined, 11 
as delegates, 85 
and store objects, 272

convenience methods, 54, 55, 64, 67, 73
coordinate (MKAnnotation), 108, 110
copy, 72 
Core Animation, 363, 368, 376

(see also animations, CALayer)
Core Audio, 462 
Core Data

attributes, 292, 294, 295
entities, 292-297, 307-311
faults, 312, 313 
fetch requests, 303, 304, 314
fetched property, 314 
lazy fetching, 312 
logging SQL commands, 311
model file, 292-297, 301
NSManagedObject, 297-300
NSManagedObjectContext, 301-305
NSManagedObjectModel, 301-303
NSPersistentStoreCoordinator, 301-303
as ORM, 291-293 
relationships, 295-297, 312, 313 
and SQLite, 291, 301-303, 311 
transient attributes, 300 
versioning, 314 
vs. archiving, 291 
when to use, 291, 314

Core Foundation, 234-236, 489 
Core Graphics, 116, 117, 157, 286, 367, 368,
371-373 
Core Location, 79-82 
Core Video, 462
count (NSArray), 40
curly braces, 44
currentDevice, 243
currentLocale, 318

D
data segment, 74

data source methods, 180
data storage

(see also archiving, Core Data)
for application data, 257, 258
binary, 269, 274 
choosing, 314 
with I/O functions, 273 
for images, 285-289 
with NSData, 269, 285, 286

dataSource (UITableView), 172, 176-182
dealloc

and arrays, 66 
for controller objects, 86 
for delegates, 86 
for instance variables, 69, 70
overriding, 69 
and retain counts, 61, 62

deallocation
defined, 60, 61
premature, 59, 63

debug area, 22
debug navigator, 87
debugger bar, 88
debugging

(see also debugging tools)
categorizing log statements, 423
compile-time errors, 93, 94
creating schemes for, 357-359
exceptions, 56, 57 
linker errors, 94 
multiple targets, 472
NSError, 274, 275 
stack trace, 87, 90 
stepping through methods, 88-90

debugging tools 
Allocations instrument, 345-352
breakpoints, 86, 87, 90 
debug navigator, 87 
debugger, 86-91 
heapshots, 352 
Instruments, 345-355 
issue navigator, 22 
Leaks instrument, 347 
log navigator, 38 
stack trace, 87, 90 
static analyzer, 343-345 
Time Profiler, 353-355
variables view, 88



ptg

509

declarations 
forward, 118 
instance variable, 44
method, 45, 49, 50, 54, 55
overview, 43 
protocol, 85, 103

decodeObjectForKey:, 263
delegate (property), 81, 86, 442

(see also delegation)
delegation

as approach to callbacks, 403
choosing a delegate, 150 
and controller objects, 85 
creating a delegate protocol, 437-442
creating a protocol, 253, 254
delegate, 81, 86, 442 
and layers, 371 
and memory management, 85
overview, 82, 83 
protocols used for, 83-85
swapping delegates, 415

deleteRowsAtIndexPaths:withRowAnimation:,
198
dequeueReusableCellWithIdentifier:, 284
description, 39
description (NSObject), 41, 48
designated initializers, 49-53 
detail view controllers, 432
developer certificates, 23 
device tokens, 482, 483, 486-488, 493
devices

checking for camera, 228, 229
deploying apps to, 23
deploying to, 24
determining type of, 243
orientation of, 151, 160, 163
provisioning, 23, 24 
Retina display, 25

dictionaries 
and blocks, 401 
described, 232 
memory management of, 271
using, 234-236 
and web server requests, 475-479
writing to filesystem, 275

didReceiveMemoryWarning, 143
directories

application, 257-260

Documents/, 258, 259
Library/Caches/, 258
Library/Preferences/, 257
lproj, 319, 325
temporary, 258

dirty rectangle, 117
dismissModalViewControllerAnimated:, 249,
251
dismissPopoverAnimated:, 246
dock

for applications, 266
in editor area, 5

documentation, using, 103-108
Documents/ (directory), 258, 259
domain, application, 330
domain, registration, 330
dot-notation, xvii
drawLayer:inContext: (CALayer), 371, 372
drawRect:, 116, 120, 121, 126, 280, 372
drill-down interface

with UINavigationController, 203
with UISplitViewController, 431

E
editButtonItem, 210
editing (UITableView,
UITableViewController), 191, 196
editor area, 5
encodeInt:forKey:, 262
encodeObject:forKey:, 262
encodeWithCoder:, 260-262
endEditing:, 221, 237 
entities (Core Data), 292-297, 307-311
enumerateObjectsUsingBlock: (NSArray), 396
errors

compile-time, 93, 94
connection, 412
linker, 94, 95 
and NSError, 274, 275
run-time, 56, 57

event loop, 125
exceptions, 56
explicit layers, 371

(see also CALayer)

F
fast enumeration, 57



ptg

Index

510

faults, 312, 313 
fetch requests, 303, 304, 314
fetched property, 314 
file descriptors, 489 
file inspector, 319 
file paths, retrieving, 258-260
File's Owner, 137-140 
files

header (.h), 43, 110
implementation (.m), 46, 110
importing, 46, 114
including, 46 
intermediate, 92 
library, 94 
object, 93 
project, 77

fileURLWithPath:, 452 
filters (accelerometer data), 152, 155, 156
first responder

becoming, 154 
and nil-targeted actions, 342
overview, 112, 113
resigning, 221, 237 
and responder chain, 340

format string, 38
forward declarations, 118
frameworks

adding, 78, 79, 363
AudioToolbox, 452, 462
AVFoundation, 454 
class name prefixes of, 79
Cocoa Touch, 78 
Core Audio, 462 
Core Data (see Core Data)

(see also Core Data)
Core Foundation, 234-236, 489 
Core Graphics, 116, 157, 286, 367, 368
Core Location, 79 
Core Video, 462 
header files of, 79 
importing, 79, 114 
and linker errors, 94 
MapKit, 97, 99 
MediaPlayer, 456
MobileCoreServices, 240
QuartzCore, 363, 368 
Security, 490 
UIKit, 78, 116, 368

functions 
in C, 235 
callback, 83 
in stack frame, 74 
timing (animation), 381, 382
vs. methods, 32

G
genstrings, 323 
getter methods, 45-47, 69 
graphic contexts, 372 
graphics contexts (see CGContextRef)
GUIDs, 234

H
.h files (see header files)
header files

description, 43 
for frameworks, 79 
importing, 46, 55, 56 
order of declarations in, 54 
shortcut to implementation files, 110

header view (UITableView), 191-196
heap

basics of, 59-61
vs. stack, 74, 75

heap-based block, 401
heapshots, 352
HeavyRotation application

implementing autorotation, 161-166
making universal, 166, 167 
registering and receiving notifications, 160,
161

hierarchies 
class, 40 
layer, 364 
view, 115, 125, 131, 135, 142

high-pass filter, 156
Homepwner application

adding drill-down interface, 203-221
adding images, 223-238 
adding modal presentation, 246-251
archiving data, 260-265
customizing cells, 279-289
enabling editing, 191-201
localizing, 318-325 
moving to Core Data, 291



ptg

511

object diagrams, 176, 205
reusing Possession class, 176
storing images, 269, 270
universalizing, 242, 243

HTTP protocol, 473-479
(see also networking)

Hypnosister application
adding text with shadow, 120
creating HypnosisView, 116, 117
hiding status bar, 123 
object diagram, 121 
scrolling and zooming, 121-123

HypnoTime application 
adding animation, 364-371, 378-384
creating a tab bar, 130-135 
creating views, 135-141 
object diagram, 150 
using accelerometer data, 151-155

I
I/O functions, 273
IBAction, 14, 17-19, 226-228
IBOutlet, 14-17, 214-217
ibtool, 320-322 
icons

application, 24-27
camera, 226 
tab bar, 134, 135

id, 50 
identity inspector, 138, 335 
identity matrices, 384 
image picker (see UIImagePickerController)
imageNamed:, 157
imagePickerController:

didFinishPickingMediaWithInfo:, 229
imagePickerControllerDidCancel:, 229
images

(see also camera, UIImage, UIImageView)
archiving, 285, 286, 288 
creating thumbnail, 284-289 
displaying in UIImageView, 223-225
manipulating in offscreen contexts, 284-289
for Retina display, 157 
storing, 231-234 
storing in cache, 269, 270 
wrapping in NSData, 269

imageWithContentsOfFile:, 270

@implementation, 46
implementation files, 46, 110
implicit animations, 369-371
implicit layers, 364, 367
#import, 56 
importing files, 46, 56, 114
inactive state, 266
including files, 46
Info.plist, 169
inheritance, single, 40, 44
init

and alloc, 32, 33 
overview, 49-53 
for view controllers, xvii, 174

initialize, 330
initializers, 49-53
initWithCGImage:, 368, 373
initWithCoder:, 260, 263, 264, 336
initWithContentsOfFile:, 274, 275
initWithFrame:, 118, 119, 336, 365, 367
initWithNibName:bundle:, 139
initWithStyle:, 174
insertObject:atIndex:, 37, 40
inspectors

attributes, 9, 101, 102
connections, 19 
file, 319 
identity, 138, 335
overview, 7 
size, 164, 165

instance variables 
accessor methods for, 45
customizing in attributes inspector, 9
declaring, 44 
description, 32 
and pointers, 44, 45, 75, 88 
and properties, 71, 73 
releasing, 69, 70, 86 
retaining, 67-69 
setting to nil, 34

instances, 32, 33
Instruments, 345-355, 357-359
@interface, 43 
interface files (see header files)
intermediate files, 92
internationalization, 325

(see also localization)
internet sockets, 489



ptg

Index

512

iPad 
application icons for, 25
launch images for, 29
orientations, 163 
XIB files for, 243

isa, 50
isSourceTypeAvailable:, 228
issue navigator, 22

J
JSON, 494

K
kCAMediaTimingFunctionEaseInEaseOut, 382
key paths (animation), 375-379 
key-value coding, 376 
key-value pairs

and dictionaries, 231
in Info.plist, 169

keyboard 
dismissing, 237 
number pad, 221 
setting properties of, 101

keyed archiving, 262-265
keyframes (animation), 378-380
keys

for animations, 381 
for dictionaries, 232-237

keywords, 43
kUTTypeImage, 238, 240
kUTTypeMovie, 239, 240

L
labels (in message names), 34
labels (UILabel), 9, 11
landscape mode

forcing rotation to, 169 
and split view controllers, 434

language settings, 317, 322
launch images, 27-29
launchOptions, 501
layers

(see also CALayer) 
compositing, 364 
and delegation, 371 
drawing programmatically, 371-373
explicit, 364, 371

hierarchy, 364 
hierarchy of, 368, 369
implicit, 364, 367 
model vs. presentation, 384
size and position, 366, 367
and views, 363, 364

layoutSubviews, 282, 283 
lazy allocation (of views), 142-146
leaks (see memory leaks)
Leaks instrument, 347 
libraries

code snippet, 186-188
object, 7 
overview, 7 
system, 94, 114

(see also frameworks)
library files, 94
Library/Caches/ (directory), 258
Library/Preferences/ (directory), 257
linker errors, 94 
little-endian, 475 
load state notifications, 458
loadState, 458
loadView, 135, 139, 142, 195, 216
Localizable.strings, 323
localization

adding, 319 
and ibtool, 320-322
internationalization, 317, 318, 325
lproj directories, 319, 325
NSBundle, 325
resources, 319-322
strings tables, 322-325
user settings for, 317, 322
XIB files, 319-322

localizedDescription, 274
location services, 79

(see also Core Location)
location updates, 81, 82, 460
locationManager:didFailWithError:, 82
locationManager:didUpdateToLocation:

fromLocation:, 81 
log navigator, 38 
low-memory warnings, 143, 231, 271, 460
low-pass filter, 152, 155
lproj directories, 319, 325



ptg

513

M
.m files, 46
M4A, 452
mach_msg_trap, 354 
macros, preprocessor, 360, 361
main, 36 
main bundle, 257, 276, 277, 325, 452, 458
mainBundle, 194, 277
MainWindow.xib, 6
malloc, 59 
MapKit (framework), 97, 99
MapKit annotation, 99
maps

(see also MKAnnotation, MKMapView)
changing type of, 327, 328
zooming, 103-108

mapType (MKMapView), 327, 328
mapView:didUpdateUserLocation:, 106
masks, autoresize, 164, 165, 167-169
master view controllers, 432, 442
MediaPlayer (framework), 456
MediaPlayer application

in background, 458
playing audio, 452-455
playing video, 455-458
recording audio, 462

mediaTypes, 238
memory leaks

avoiding with autorelease, 64, 65 
defined, 59 
finding with Allocations instrument, 345-352
finding with static analyzer, 343-345 
fixing, 63-70

memory management 
basics of, 59-73 
and blocks, 400-402 
C functions, 235 
and controller objects, 86
data segment, 74 
and delegates, 85
dictionaries, 232, 271 
lazy allocation of views, 143
and notifications, 160
NSMutableArray, 66 
optimizing with Allocations instrument,
345-352 
and properties, 71

and retain cycles, 125
rules for, 73 
stack, 400 
stack frame, 74
structures, 111, 235 
and UITableViewCell, 185

memory warnings, 143, 231, 271, 460
messages, 33-35

(see also methods)
methods

(see also accessor methods, individual method
names) 
(see also categories) 
accessor, 45-48 
action, 17-20, 341, 342 
class, 53-55 
convenience, 54, 55, 64, 67, 73 
data source, 180 
declaring, 45, 49, 50, 54 
defined, 32 
designated initializer, 49-53 
implementing, 46, 47, 49, 51 
initializer, 49-53 
making calls to illegal, 248 
names of, 34 
overriding, 41, 48, 49, 51-53 
parameters of, 50 
private, 399, 444 
protocol, 84 
stepping through, 88-90 
vs. messages, 34 
writing new, 49

MKAnnotation (protocol), 108-111
MKAnnotationView, 98, 108
MKCoordinateRegion, 107, 108
MKMapView, 98, 99, 102-108, 327
MKMapViewDelegate, 103-106
MKReverseGeocoder, 114
MKUserLocation, 107
MobileCoreServices, 240
.mobileprovision files, 24
modal view controllers

defined, 229 
dismissing, 249, 250 
and non-disappearing parent view, 251
styles of, 250 
transitions for, 254

modalPresentationStyle, 250



ptg

Index

514

modalTransitionStyle (UIViewController),
254
modalViewController, 249, 250 
model file (Core Data), 292-297, 301
model layer, 384 
model objects, 10, 98
Model-View-Controller, 10-13, 97, 98, 272
Model-View-Controller-Store, 272
motion events (shakes), 153-155
motionBegan:withEvent:, 153, 154
motionCancelled:withEvent:, 153
motionEnded:withEvent:, 153
movies (see video)
MP3, 452, 454
MPMoviePlayerController, 455-458
MPMoviePlayerViewController, 457
multi-touch, 336, 341 
multitasking, 458-460 
music (see audio)
mutableCopy, 73

N
naming conventions

accessor methods, 45
cell reuse identifiers, 186
class prefixes, 79
delegate protocols, 84
initializer methods, 49

navigation controllers 
(see also UINavigationController)
adding view controllers to, 217-219, 221
described, 204-207 
managing view controller stack, 204, 218
and UINavigationBar, 207-211
viewWillAppear:, 221
viewWillDisappear:, 221

navigationController, 218
navigationItem (UIViewController), 207
navigators

breakpoint, 90 
debug, 87 
issue, 22 
keyboard shortcuts for, 22
log, 38 
project, 3, 4

Nerdfeed application 
adding delegate protocol, 437-442

adding UIWebView, 424-426
categorizing log statements, 424
fetching data, 408-410 
parsing data, 413-423 
using UISplitViewController, 432-434

nested message sends, 33
netServiceBrowser:didFindService:

moreComing:, 471 
network services (see Bonjour)
networking

(see also Bonjour, web services)
HTTP protocol, 427-429, 473-479
with NSStream, 489-493
platforms, 502 
with NSStream, 498

nextResponder, 340
NIB files

defined, 5 
and view controllers, xvii
and view controllers, 163
vs. XIB files, 5

nil

in arrays, 40 
as notification wildcard, 159
returned from initializer, 52
sending messages to, 34 
in setter methods, 69
-targeted actions, 342

nonatomic, 70
notifications

as approach to callbacks, 403
and blocks, 396 
described, 159-161 
of low-memory warnings, 271
for video loading, 458

notifications, push (see push notifications)
NSArray, 39, 40, 396

(see also arrays)
NSAutoreleasePool, 65
NSBundle, 194, 325, 452
NSCocoaErrorDomain, 274
NSCoder, 260-264
NSCoding, 260-265, 285
NSData, 269, 285, 286, 288
NSDate, 51, 141, 220, 275
NSDateFormatter, 141, 220, 318
NSDictionary, 232 

(see also dictionaries)



ptg

515

NSError, 274, 275
NSExpression, 314
NSFetchRequest, 303, 304, 314
NSHomeDirectory, 259
NSIndexPath, 184, 198, 284
NSInputStream, 489, 497
NSKeyedArchiver, 260-265
NSKeyedUnarchiver, 262
NSLocale, 318
NSLocalizedString, 323, 324
NSLog, 38
NSManagedObject, 297-300, 314
NSManagedObjectContext, 301-305, 314
NSManagedObjectModel, 301-303
NSMutableArray, 37, 39, 40, 66, 401 

(see also arrays)
NSMutableDictionary, 232-234, 401 

(see also dictionaries)
NSMutableString, 72, 73 

(see also strings)
NSNetService, 467-473, 479
NSNetServiceBrowser, 470, 471
NSNetServiceDelegate, 468
NSNotification, 159, 160
NSNotificationCenter, 159-161, 396
NSNull, 40
NSNumber, 275, 377
NSObject, 40-44
NSOutputStream, 489, 496
NSPersistentStoreCoordinator, 301-303
NSPredicate, 304
NSSearchPathDirectory, 258
NSSearchPathForDirectoriesInDomains, 258,
259
NSSortOrdering, 314
NSStream, 489-493, 498
NSStreamDelegate, 492, 498
NSStreamEventHasSpaceAvailable, 496
NSString

(see also strings)
description, 41
internationalizing, 322 
as key path, 375 
property list serializable, 275
stringWithFormat:, 55, 67
toll-free bridging, 234 
as view object, 11

NSStringFromSelector, 272

NSTableView, 466
NSTemporaryDirectory, 257
NSTimer, 155
NSURL, 408-410, 452
NSURLAuthenticationChallenge, 429
NSURLAuthenticationChallengeSender, 429
NSURLConnection, 409-412, 427
NSURLCredential, 429, 430
NSURLRequest, 408-410, 428, 429
NSUserDefaults, 257, 329-331
NSUserDefaultsDidChangeNotification, 331
NSValue, 337-340, 377
NSXMLParser, 413-423, 426
NSXMLParserDelegate, 414-416, 419, 426
ntohs, 475
number pad, 221

O
objc_msgSend, 355 
object diagrams, 97, 98 
object files, 93 
object library, 7 
Object-Relational Mapping (ORM), 291
objectAtIndex:, 40
objectForKey:, 232-234
Objective-C

basics, 31-58 
compile-time errors in, 56
keywords, 43 
memory management in, 61-70
message names, 34 
method names, 34 
naming conventions, 45, 49
single inheritance in, 44

objects 
(see also classes) 
memory management of, 61-70
overview, 31-33 
property list serializable, 275

offscreen contexts, 284-286
OmniGraffle, 97 
optional methods (protocols), 84
Organizer, 24 
orientation

and accelerometer, 151
and autorotation, 161-169
landscape mode, 169



ptg

Index

516

on iPad, 163, 169, 243 
and split view controllers, 434
UIDevice constants for, 160

orientationChanged:, 161 
ORM (Object-Relational Mapping), 291
outlets, 15-20, 212 
overriding methods, 48, 49, 51-53

P
parentViewController, 249, 250
parentViewController (UIViewController),
251 
parsing XML, 413-423 
passing by reference, 453
pathForResource:ofType:, 325, 452
pathInDocumentDirectory, 259
.pch files, 260
pointers

and arrays, 39 
defined, 33 
as instance variables, 44, 45, 88
memory details of, 74, 75
overview, 32-35 
setting in XIB files, 15-17

popover controllers, 244-246, 442
popoverControllerDidDismissPopover:, 245
#pragma mark, 302
pre-compiled header files, 260
predicates (fetch requests), 304
preferences, 327-331 
prefix files, 260 
preloading notification, 458
premature deallocation, 59, 63
preprocessing, 92
preprocessor macros, 360, 361
presentation layer, 384
presentModalViewController:animated:, 229
presentMoviePlayerViewControllerAnimated:,
457 
private API, 311 
private methods, 399, 444 
products, 77, 356 
profiling (applications), 346, 347 
project, 3 
project navigator, 3-5 
projects

adding frameworks to, 363

build settings for, 359-361
cleaning and building, 322
copying files to, 130, 176
creating new, 2 
defined, 77 
diagram of, 356 
target settings in, 276

properties 
and accessor methods, 45-48
attributes of, 70
copy attribute, 73 
declaring, 70, 71 
and instance variables, 71, 73
in protocols, 253
synthesizing, 70, 71

property list serializable, 275
property list serializable objects, 275
protocols

AVAudioPlayerDelegate, 455
CLLocationManagerDelegate, 83
creating new, 253, 254, 437-442
declaring, 85, 103 
delegate, 83-85, 103, 437-442
implementation of, 111
MKAnnotation, 108-111
MKMapViewDelegate, 103-106
NSCoding, 260-265, 285
NSNetServiceDelegate, 468
NSStreamDelegate, 492, 498
NSURLAuthenticationChallengeSender, 429
NSXMLParserDelegate, 414-416, 419
optional methods in, 84 
properties in, 253 
required methods in, 84 
structure of, 84
UIAccelerometerDelegate, 149-151, 155
UIApplicationDelegate, 85, 140, 267, 268
UIImagePickerControllerDelegate, 229-231
UINavigationControllerDelegate, 230
UIPopoverControllerDelegate, 244
UIScrollViewDelegate, 122
UISplitViewControllerDelegate, 442-444
UITableViewDataSource, 172, 180-183, 198,
199
UITableViewDelegate, 172, 195
UITextFieldDelegate, 237
UITextInputTraits, 101

provisioning profiles, 24, 483



ptg

517

proximity monitoring, 170
push notifications

accessing data in, 500-502
aps container in, 494 
badges in, 482, 499 
certificates for, 483-486, 488, 490
delivering to device, 486-497 
described, 481 
device tokens for, 482, 483, 486-488, 493
errors in delivering, 497, 498 
expiration dates for, 493 
limitations of, 494, 500 
and notification server, 486, 488-497
package formats for, 493-495 
payload in, 494 
provisioning for, 483-486 
receiving in running app, 500
registering for, 482, 483 
setting app context with, 500 
sounds in, 499 
types of, 482 
unregistering a device for, 502

pushViewController:animated:, 217-219

Q
QuartzCore, 363, 368
Quiz application, 2-29
quotation marks, 114

R
RandomPossessions application

creating command-line tool, 35-39
creating Possession class, 41-56

read:maxLength:, 497
receiver, 33 
reference counting, 61, 63
registerDefaults:, 330 
registration domain, 330 
relationships (Core Data), 295-297, 312, 313
release, 62-70
reloadData, 198
removeObserver:, 160
reordering controls, 200
required methods (protocols), 84
resignFirstResponder, 112, 221
resizing views, 164, 165, 167-169
resources

defined, 25, 276
localizing, 319-322

responder chain, 340 
responders (see first responder, UIResponder)
respondsToSelector:, 84
retain, 62, 63 
retain counts, 61-64, 73, 125
retain cycles, 125 
Retina display, 25, 29, 156-158
reuseIdentifier (UITableViewCell), 186
reusing

animation objects, 381
classes, 176 
table view cells, 185, 186

root object (in archiving), 260
rootViewController (of window), 131, 207
rootViewController

(UINavigationController), 204-206
rotation, 161-169, 434 
rows (of a table view)

adding, 197
deleting, 198, 199
moving, 199-201

run loop, 65, 125
run-time errors, 56, 57

S
sandbox, application, 257-260, 276
schemes, 24, 355-359, 472
screenshots, 28 
scrolling, 121, 122 
sections (of table view), 182, 191
Security (framework), 490
SEL, 210
selector, 33, 210
self, 51, 55
sendAction:to:from:forEvent:, 342
sendActionsForControlEvents:, 342
setAutoresizingMask:, 167-169
setCategory:error:, 459, 460
setCompletionBlock: (CATransaction), 401
setEditing:animated:, 196, 210
setMultipleTouchEnabled:, 336
setNeedsDisplay, 125, 372
setObject:forKey:, 232-234
setPosition:, 369
setProximityMonitoringEnabled:, 170



ptg

Index

518

setRegion:animated:, 108
setRootViewController:, 130, 131, 175, 207
setStatusBarHidden:withAnimation:, 123
setter methods, 45-47, 67-69, 73
setText:, 125 
Settings application, 257, 331
settings, user, 327-331
shakes, detecting, 153-155
shouldAutorotateToInterfaceOrientation:,
161, 163, 169, 434
showsUserLocation, 102
simulator

and multi-touch simulating, 341
for Retina display, 158 
running applications on, 21
viewing application bundle in, 276

single inheritance, 40, 44
singletons, implementing, 177-180
size inspector, 164, 165
sockaddr_in, 474 
sockets, 489 
sort descriptors (NSFetchRequest), 303
sourceType (UIImagePickerController), 228,
229 
split view controllers

autorotating, 434, 435 
illegal on iPhone, 432 
master and detail view controllers, 432-437
in portrait mode, 442-445

splitViewController(UIViewController), 435
SQL, 311 
SQLite, 291, 301-303, 311 
stack frame, 74, 400 
stack trace, 87, 90 
stack-based block, 400
standardUserDefaults, 329, 330
startMonitoringSignificantLocationChanges,
460 
states, application, 265-268 
static analyzer, 343-345 
static variables, 141 
status bar, hiding, 123 
store objects, 272
stream:handleEvent:, 492, 496, 497
streaming connections, 489-493, 498
streaming video, 456 
strings

@ prefix, 38

collecting from XIB with ibtool, 320
convenience methods for, 55, 67
copying, 72, 73 
hard coding, 38 
localizing, 320 
writing to filesystem, 269-274

strings tables, 322-325
stringWithFormat:, 55, 67 
structures (vs. Objective-C objects), 31, 32, 111
subclassing, 40-56
super, 51, 52
superclasses, 40, 43, 51
superlayer, 368
superview, 125
suspended state, 266, 458
syntax errors, 93, 94
system libraries, 94, 114
system sounds, 452-454
SystemSoundID, 452

T
tab bar controller (see UITabBarController)
tab bar controllers, 128-142, 203, 204 
tab bar items, 132-135 
table view cells

(see also UITableViewCell)
adding images to, 284-289
retrieving, 183-185
reusing, 185, 186, 284

table view controllers 
(see also UITableViewController)
adding rows, 197 
as data source, 176-182 
deleting rows, 198, 199
described, 172, 173 
moving rows, 199-201 
returning cells, 183-186

table views 
(see also table view controllers, UITableView)
adding rows to, 197 
deleting rows from, 198, 199 
editing mode, 280 
editing mode of, 191, 196 
moving rows in, 199-201 
populating, 176-185

tableView, 197



ptg

519

tableView:cellForRowAtIndexPath:, 181,
183-186, 284
tableView:commitEditingStyle:

forRowAtIndexPath:, 198
tableView:didSelectRowAtIndexPath:, 220
tableView:heightForHeaderInSection:, 195
tableView:moveRowAtIndexPath:toIndexPath:,
199, 200
tableView:numberOfRowsInSection:, 181, 182
tableView:viewForHeaderInSection:, 195
target-action pairs

as approach to callbacks, 83, 403
defined, 17-20 
setting programmatically, 210
and UIControl, 341, 342

targets 
adding frameworks to, 78
build settings for, 359-361
building, 91-95 
defined, 77 
managing multiple, 472
and schemes, 355-359
settings of, 276

tcp sockets, 489
templates

application, 77 
class, 116, 146, 173 
reasons to avoid, xvii, 146, 173
view controller, 146

textFieldShouldReturn:, 98, 112, 113, 237
thumbnail images, creating, 284-289 
Time Profiler instrument, 353-355 
timing functions (animation), 381, 382
tmp/ (directory), 257
toggleEditingMode:, 196
toll-free bridging, 234, 235
topViewController (UINavigationController),
204 
touch events

and animation, 369-371 
basics of, 334 
enabling multi-touch, 336
handling interruptions, 339, 340
keeping track of, 337, 338 
and responder chain, 340 
and target-action pairs, 341, 342
and UIControl, 341, 342

touchesBegan:withEvent:, 334, 338, 369

touchesCancelled:withEvent:, 334, 339
touchesEnded:withEvent:, 334, 339
touchesMoved:withEvent:, 334, 338, 369
TouchTracker application

drawing lines, 335-340 
fixing memory leak, 343-350
using blocks to add color, 388-397

transient attributes (Core Data), 300
TXT record, 479, 480
typecasting, 234, 284

U
UIAcceleration, 152
UIAccelerometer, 149-156
UIAccelerometerDelegate, 149-151, 155
UIActivityIndicatorView, 98, 102
UIAlertView, 274
UIApplication

(see also applications)
delegate for, 85 
and events, 334 
as File's Owner, 6, 140 
and responder chain, 340, 342

UIApplicationDelegate, 85, 140, 267, 268
UIApplicationDidReceiveMemoryWarning

Notification, 271
UIBackgroundModes, 458, 460
UIBackgroundTaskIdentifier, 461
UIBarButtonItem, 208-211, 226-228, 238
UIControl, 237, 238, 341, 342
UIControlEventTouchUpInside, 341
UIDevice 

currentDevice, 243
determining device type, 243
notifications from, 160

UIEvent, 334 
UIGraphics functions, 286, 372, 373
UIGraphicsBeginImageContextWithOptions,
286
UIGraphicsEndImageContext, 286
UIGraphicsGetImageFromCurrentImageContext,
286
UIImage

and CGContextRef, 373
CGImage, 368 
wrapping in NSData, 269, 285, 286

UIImageJPEGRepresentation, 269



ptg

Index

520

UIImagePickerController

instantiating, 228, 229 
on iPad, 244 
presenting, 229-231
recording video with, 238-240
in UIPopoverController, 244

UIImagePickerControllerDelegate, 229-231
UIImageView

aspect fit, 163
described, 223-225

UIKeyboardDidShowNotification, 160
UIKit, 116, 368 
UIKit (framework), 78
UILabel, 9, 11
UIModalPresentationFormSheet, 250
UIModalPresentationPageSheet, 250
UIModalTransitionStyleFlipHorizontal, 254
UINavigationBar, 204, 206-211
UINavigationController

(see also navigation controllers)
described, 204-207
instantiating, 206
pushViewController:animated:, 217-219
rootViewController, 204, 205
topViewController, 204, 205
view, 204
viewControllers, 204

UINavigationControllerDelegate, 230
UINavigationItem, 207-211
UIPopoverController, 244-246, 442
UIPopoverControllerDelegate, 244
UIResponder

described, 112 
and responder chain, 340
and shakes, 153 
and touch events, 334

UIScrollView

scrolling, 121, 122
zooming, 122, 123

UIScrollViewDelegate, 122
UISplitViewController

(see also split view controllers)
UISplitViewControllerDelegate, 442-444
UITabBar, 131
UITabBarController, 128-142, 203, 204
UITabBarItem, 132-135
UITableView

(see also UITableViewCell,
UITableViewController)
editing mode, 210
editing property, 191, 196
footer view, 191 
header view, 191-196
sections, 182, 191
view, 175

UITableViewCell

(see also table view cells)
cell styles, 183
contentView, 183, 280-283
editing styles, 198
subclassing, 279-284
subviews, 182, 183

UITableViewCellEditingStyleDelete, 198
UITableViewController

(see also table view controllers, UITableView)
as data source, 198 
data source methods, 180
dataSource, 176-182
described, 172, 173
editing property, 196
initWithStyle:, 174
subclassing, 173-175
tableView, 197

UITableViewDataSource, 172, 180-183, 198, 199
UITableViewDelegate, 172, 195
UITextField

described, 98 
as first responder, 112, 113, 237, 342
and keyboard, 112
setText:, 125 
setting attributes of, 101, 221

UITextFieldDelegate, 237
UITextInputTraits, 101
UITextView, 112
UIToolbar, 208, 226
UITouch, 334-338
UIUserInterfaceIdiomPad, 243
UIUserInterfaceIdiomPhone, 243
UIView

(see also UIViewController, views)
defined, 1, 115
drawRect:, 116, 120, 121, 126
endEditing:, 221
initWithFrame:, 118, 119
layer, 364



ptg

521

layoutSubviews, 282, 283
setNeedsDisplay, 125
size and position, 366
subclassing, 116-119, 135
superview, 125 
and UIViewController, 128

UIViewController

(see also UIView, view controllers)
didReceiveMemoryWarning, 143
instantiating, xvii
loadView, 135, 142, 216
modalTransitionStyle, 254
modalViewController, 249, 250
navigationController, 218
navigationItem, 207
parentViewController, 249-251
splitViewController, 435
subclassing, 131 
template, 146
view, 128, 131, 135, 142-146, 340
viewWillAppear:, 231
and XIB files, xvii

UIWebView, 424-426
UIWindow

defined, 1 
in MainWindow.xib, 6, 7
and responder chain, 340
and view hierarchy, 115

unarchiveObjectWithFile:, 262, 263
universal applications

accommodating class differences, 446
accommodating code differences, 441
accommodating differences, 243, 432, 446
setting device family, 445 
user interfaces for, 166, 167, 242, 243
using iPad-only classes, 435 
XIB files for, 243

unrecognized selector, 57
updateInterval (UIAccelerometer), 149, 150,
155 
user interface

drill-down, 203, 431 
hiding status bar, 123 
keyboard, 101, 237 
making universal, 166, 167, 242, 243
scrolling, 121, 122 
zooming (views), 122, 123

userInterfaceIdiom (UIDevice), 243

utilities area, 7, 186
UUIDs, 234

V
variables view, 88 
variables, instance (see instance variables)
vibration, triggering, 453 
video

full-screen, 457
playing, 455-462
preloading, 458
recording, 238-240
streaming, 456, 458

view (UIViewController), 128, 135
view controllers

(see also UIViewController) 
adding to navigation controller, 217-219
adding to popover controller, 244 
adding to split view controller, 432-434
adding to tab bar, 132-134 
creating, 131 
creating delegate protocol for, 437-442
creating views for, 135 
defined, 128 
detail, 432 
initializing, 174, 175 
lazy creation of views, 142-146 
and low-memory warnings, 143 
managing views with, 142-146 
master, 432, 442 
memory management of, 143 
modal, 229 
and NIB files, 163 
passing data between, 219, 220, 252, 253, 436
reloading subviews, 231 
templates for, 146 
and view hierarchy, 131 
and XIB files, 127-129, 139

view hierarchy, 115, 119, 125, 135, 142
viewControllers (UINavigationController),
204
viewDidAppear:, 142
viewDidDisappear:, 142
viewDidLoad, 142, 216, 243
viewDidUnload, 144, 145, 216, 225
viewForZoomingInScrollView:, 123
views



ptg

Index

522

(see also UIView) 
autoresize masks for, 167-169
autoresizing, 164, 165
autorotating, 161-169 
creating, 116-119, 135 
creating programmatically, 118, 119
defined, 1, 115 
drawing, 120, 121, 125 
hierarchy of, 125, 131 
and layers, 363, 364 
life cycle, 142-146 
modal presentation of, 229 
in Model-View-Controller, 10, 98
redrawing, 125 
resizing, 224, 225 
and run loop, 125 
scrolling, 121, 122 
subviews, 125 
superviews, 125 
zooming, 122, 123

viewWillAppear:, 142, 220, 221, 231
viewWillDisappear:, 142, 221
VOIP, 460

W
web servers, 473, 474, 477, 502
web services

(see also networking)
credentials, 429, 430 
for data storage, 314
described, 406, 407 
and HTTP protocol, 427-429
parsing retrieved XML, 413-423
POST requests, 475-479
requesting data from, 408-412
security, 429, 430

Whereami application 
adding a user preference, 327-331
changing map type, 327, 328
configuring user interface, 99-102
finding and annotating locations, 102
object diagram, 98

willAnimateRotationToInterface..., 170
window (see UIWindow) 
workspaces (Xcode), 3, 469
write:maxLength:, 496
writeToFile:atomically:, 269

writeToFile:atomically:encoding:error:,
274

X
Xcode

(see also debugging tools, inspectors,
Instruments, libraries, navigators, projects,
simulator) 
assistant editor, 212-217, 226-228 
build settings, 359-361 
building interfaces, 5-20 
canvas, 5, 6 
console, 22 
containers, 356 
creating a class in, 41-43 
debug area, 22 
debugger, 86-91 
editor area, 5 
keyboard shortcuts, 217 
navigators, 3 
Organizer window, 24 
products, 77 
profiling applications in, 346, 347
projects, 77 
schemes, 24, 355-359, 472 
static analyzer, 343-345 
tabs, 217 
targets, 77, 472 
templates, 116 
utilities area, 7, 186 
workspaces, 3, 469

XIB files 
connecting objects in, 14-20
creating, 137-140 
defined, 5 
editing in Xcode, 5-10 
File's Owner, 137-140 
for iPad, 243 
loading manually, 194
localizing, 319-322 
vs. NIB files, 5 
setting pointers in, 15-17 
in universal applications, 243
and view controllers, 127-129

XML 
collecting from web service, 411, 412
constructing tree, 415-423



ptg

523

parsing, 413-423
property lists, 275

Z
ZeroConf standard, 463
zooming (maps), 103-108
zooming (views), 122, 123
zPosition, 368, 369



ptg

This page intentionally left blank 



ptgThe Story Behind the Hat
Back in 2001, Big Nerd Ranch founder, Aaron 
Hillegass, showed up at WWDC (World Wide 
Developers Conference) to promote the Big Nerd 
Ranch brand. Without the money to buy an expensive 
booth, Aaron donned a ten-gallon cowboy hat to 
draw attention while passing out Big Nerd literature 
to prospective students and clients. A week later, we 
landed our first big client and the cowboy hat has 
been synonymous with the Big Nerd brand ever 
since. Already easily recognizable at 6’5, Aaron 
can be spotted wearing his cowboy hat at speaking 
engagements and conferences all over the world.

The New Ranch – Opening 2012
In the continuing effort to perfect the student experience, 
Big Nerd Ranch is building its own facility. Located just 
20 minutes from the Atlanta airport, the new Ranch 
will be a monastic learning center that encompasses 
Aaron Hillegass’ vision for technical education 
featuring a state-of-the-art classroom, 
fine dining and exercise facilities. 

ABOUT US

www.bignerdranch.com

THE BIG NERD STORY
Big Nerd Ranch exists to broaden the minds of 
our students and the businesses of our clients. 
Whether we are training talented individuals 
or developing a company’s mobile strategy, 
our core philosophy is integral to everything 
we do. 

The brainchild of CEO Aaron Hillegass, 
Big Nerd Ranch has hosted more than 2,000 
students at the Ranch since its inception in 
2001. Over the past ten years, we have 
had the opportunity to work with some of the 
biggest companies in the world such as Apple, 
Samsung, Nokia, Google, AOL, Los Alamos 
National Laboratory and Adobe, helping them 
realize their programming goals. Our team of 
software engineers are among the brightest in 
the business and it shows in our work. We have 
developed dozens of innovative and fl exible 
solutions for our clients.

ABOUT US

www.bignerdranch.com


ptg

Available Classes
Advanced Mac OS X
Android
Beginning Cocoa
Beginning iOS (iPhone/iPad)
Beginning Ruby on Rails
Cocoa Commuter Class in Spanish
Cocoa I
Cocoa II
Commuter iOS Class
Django
iOS (iPhone/iPad)
OpenGL
Python Mastery
Ruby on Rails I
Ruby on Rails II

TRAINING

Interested in a class?
Register online at www.bignerdranch.com or call 404.478.9005 for more information. 

Full class schedule, pricing and availability also online.

ACHIEVE NERDVANA
Since 2001, Big Nerd Ranch has offered intensive 
computer programming courses taught by our expert 
instructors in a retreat environment. It is at our 
Ranch where we think our students flourish. Classes, 
accommodations and dining all take place within 
the same building, freeing you to learn, code and 
discuss with your programming peers and instructors. 
At Big Nerd Ranch, we take care of the details; 
your only job is to learn. 

Our Teachers
Our teachers are leaders in their respective fields. 
They offer deep understanding of the technologies 
they teach, as well as a broad spectrum of 
development experience, allowing them to address 
the concerns you encounter as a developer. 
Big Nerd Ranch instructors provide the necessary 
combination of knowledge and outstanding teaching 
experience, enabling our students to leave the Ranch 
with a vastly improved set of skills.

The Big Nerd Way
We have developed “The Big Nerd Ranch Way”. 
This methodology guides the development and 
presentation of our classes. The style is casual but 
focused, with brief lectures followed by hands-on 
exercises designed to give you immediate, relevant 
understanding of each piece of the technology you 
are learning. 

Your Stay At The Ranch
One fee covers tuition, meals, lodging and 
transportation to and from the airport. At the Big 
Nerd Ranch, we remove the distractions inherent in 
standard corporate training by offering classes in 
quiet, comfortable settings in Atlanta, Georgia and 
Frankfurt, Germany.

www.bignerdranch.com


ptg

ON-SITE TRAINING

Ready to book an on-site training course?
For a free Big Nerd Ranch on-site proposal, please contact us at 404.478.9005.

OUR NERDS,
YOUR LOCATION
Through our on-site training program you 
can affordably and conveniently have our 
renowned classes come to you. Our expert 
instructors will help your team advance through 
nerd-based instructional support that is fresh, 
engaging and allows for unencumbered 
hands-on learning.

Clients around the globe have praised our 
on-site instruction for some of the following 
reasons:

Flexibility 
• Classes can be booked when the timing is right for 

your team.
• We can tailor our existing syllabi to ensure our 

training meets your organization’s unique needs.
• Post-class mentorship is available to support your 

team as they work on especially challenging 
projects.

Affordability 
• No need for planes, trains and automobiles for all 

of your staff; our Nerds come to you.
• Train up to 22 students at a significant discount 

over open-enrollment training.

Nerd Know-how
• Our instructors are highly practiced in both 

teaching and programming. They move beyond 
theory by bringing their real-life experiences to 
your team.

• On-site training includes post-class access to our 
Nerds, our extensive Alumni Network, and our Big 
Nerd Ranch Forums. Learning support doesn’t end 
just because your class does. 

For your on-site training, we provide an 
instructor, all Big Nerd Ranch copyrighted class 
materials, gifts, certificates of completion and 
access to our extensive Alumni Network. You’ll 
provide the classroom set up, computers and 
related devices for all students, a projector and 
a screen. 



ptg

Testimonials
“tops has worked closely with Big Nerd 
Ranch for over eight years. Consistently 
they have delivered high-quality code for 
our projects; clean and poetic. Thanks to 
their contributions, we have become a 
leader in our field.”
	 Dr.	Mark	Sanchez
 President/Founder
 tops Software
 topsortho.com

“From the simplest GUI design gig to jobs 
that plumb the darkest corners of the OS, 
Big Nerd Ranch should be the first contact 
in your virtual Rolodex under Mac/
iPhone consulting. It’s no exaggeration 
to say that Aaron Hillegass literally wrote 
the book on Cocoa programming, and you 
couldn’t possibly do better than to bring 
his and his team’s expertise to bear on 
your application. I’ve yet to work with a 
consulting firm that is as competent and 
communicative as Big Nerd Ranch. Simply 
put, these guys deliver.”
 Glenn	Zelniker
 CEO
 Z-Systems Audio Engineering
 www.z-sys.com

“We turned to Big Nerd Ranch to develop 
the Teavana concept into an iPhone app. 
More than just a developer, they partnered 
with us to make the app better than we 
could have imagined alone. The final app 
was bug-free and functioned exactly as 
expected. I would definitely recommend 
Big Nerd Ranch and can’t speak highly 
enough about their work.”
	 Jay	Allen
 VP of Ecommerce
 Teavana Corporation
 www.teavana.com

CONSULTING

We’d love to talk to you about your project.
Contact our consulting team today for a free consultation at consult@bignerdranch.com

or visit www.bignerdranch.com/consulting for more information.       

ACHIEVE NERDVANA 
IN-HOUSE & ON-SITE
When you contract with Big Nerd Ranch, we’ll work 
directly with you to turn your needs into a full-fledged 
desktop and/or mobile solution. Our developers 
and designers have consistently created some of the 
iPhone App Store’s most intriguing applications.

Management Philosophy
Big Nerd Ranch holistically manages every client 
relationship. Our goal is to communicate and educate 
our clients from project initiation to completion, 
while ultimately helping them gain a competitive 
advantage in their niche marketplace.

Project Strategy
We take a detail-oriented approach to all of our 
project estimations. We’ll work with you to define 
a strategy, specify product offerings and then build 
them into software that stands alone.

Our Process
Our consulting process is broken down into three 
distinct phases: Requirements, Execution and 
Monitoring/Controlling. Bring your business case 
to us and we’ll develop a plan for a user interface 
and database design. From there, we’ll develop a 
quote and begin the design and implementation 
process. Our Nerds will perform many tests, including 
debugging and performance tuning, ensuring the 
app does what you want it to do. Finally, we’ll beta 
test your app and get it ready for submission and 
deployment in the iTunes store and/or the Android 
Market. Once your app is finished, the Nerds will 
work with you on subsequent version updates and 
can even help with the marketing of your app.

www.z-sys.com
www.teavana.com
www.bignerdranch.com/consulting


ptg

Mobile Apps
The world has gone mobile. If your 
company doesn’t have a mobile 
application, you are behind the curve. 
As of early 2011, the iTunes app store 
has grown to nearly 400,000 apps and 
the Android market has climbed to more 
than 250,000 applications. Google 
has unveiled its Android platform with 
an app store of its own and dozens 
of smartphone manufacturers have 
announced Android-powered devices. 
RIM has launched App World, Palm 
has its Palm Store, Nokia launched Ovi 
(its online store) and Microsoft has 
unveiled Windows Marketplace.

While still leading the way, the iOS 
market has put up some staggering 
statistics: 

• Total iOS app store downloads: 
10.3 billion

• iPhone apps are being downloaded 
at a rate of 30 million per day.

• As of early 2011, when the app 
store hit 10 billion downloads, it did 
so in half the time (31 months versus 
67 months) that it took for songs in 
the iTunes store to hit the same mark.

• The average number of apps 
downloaded for iPhone/iPad/iPod 
touch is currently at more than 60.

SOFTWARE

Need an App?
Visit us online at www.bignerdranch.com/software to see all our latest apps. 

Many Big Nerd apps are also available for sale at the iTunes store.

FINELY-CRAFTED 
APPLICATIONS
Big Nerd Ranch is a leading developer of 
downloadable mobile and desktop Mac applications. 
Several of our most intriguing iPhone and desktop 
apps are available for purchase in the iTunes store.

Mobile Applications
Smartphones have started to take over the mobile 
phone market. Since the inception of the iPhone, 
we have created dozens of apps for our clients and 
now have a roster of our own applications including 
games, utilities, music and educational apps. As an 
ever-evolving frontier of technology, Big Nerd Ranch 
is committed to staying ahead of the curve.

www.bignerdranch.com/software

	Table of Contents
	Introduction
	Prerequisites
	What’s Changed in the Second Edition?
	Our Teaching Philosophy
	How To Use This Book
	How This Book Is Organized
	Style Choices
	Typographical Conventions
	Necessary Hardware and Software

	1. A Simple iOS Application
	Creating an Xcode Project
	Building Interfaces
	Model-View-Controller
	Declarations
	Declaring instance variables
	Declaring methods

	Making Connections
	Setting pointers
	Setting targets and actions
	Summary of connections

	Implementing Methods
	Build and Run on the Simulator
	Deploying an Application
	Application Icons
	Launch Images

	2. Objective-C
	Objects
	Using Instances
	Creating objects
	Sending messages
	Destroying objects

	Writing the RandomPossessions Tool
	NSString
	NSArray and NSMutableArray

	Subclassing an Objective-C Class
	Instance variables
	Accessor methods
	Instance methods
	Initializers
	Other initializers and the initializer chain
	Class methods
	Testing your subclass

	Exceptions and the Console Window
	Fast Enumeration
	Challenge

	3. Memory Management
	Memory Management Basics
	Managing memory in C
	Managing memory with objects

	Reference Counting
	Using retain counts
	Using autorelease
	Accessors and memory management
	Implementing dealloc
	Simplifying accessors with properties
	copy and mutableCopy
	Retain count rules

	For the More Curious: More on Memory Management

	4. Delegation and Core Location
	Projects, targets, and frameworks
	Core Location
	Receiving updates from CLLocationManager

	Delegation
	Protocols
	Delegation, controllers, and memory management

	Using the Debugger
	Challenge: Heading
	For the More Curious: Build Phases, Compiler Errors, and Linker Errors
	Preprocessing
	Compiling
	Linking


	5. MapKit and Text Input
	Object Diagrams
	MapKit Framework
	Interface Properties
	Being a MapView Delegate
	Using the documentation
	Your own MKAnnotation
	Tagging locations
	Putting the pieces together

	Challenge: Annotation Extras
	Challenge: Reverse Geocoding

	6. Subclassing UIView
	Creating a Custom View
	The drawRect: method
	Instantiating a UIView

	Drawing Text and Shadows
	Using UIScrollView
	Zooming
	Hiding the Status Bar
	Challenge: Colors
	For the More Curious: Retain Cycles
	For the More Curious: Redrawing Views

	7. View Controllers
	View Controllers and XIB Files
	Using View Controllers
	Creating the UITabBarController
	Creating view controllers and tab bar items
	Creating views for the view controllers

	Appearing and Disappearing Views
	The View Controller Lifecycle and Low-Memory Warnings
	View Controller Subclasses and Templates
	Challenge: Map Tab

	8. The Accelerometer
	Setting Up the Accelerometer
	Getting Accelerometer Data
	Orientation and Scale of Acceleration
	Using Accelerometer Data
	Smoothing Accelerometer Data
	Detecting Shakes
	Challenge: Changing Colors
	For the More Curious: Filtering and Frequency
	For the More Curious: Retina Display

	9. Notification and Rotation
	Notification Center
	UIDevice Notifications
	Autorotation
	Setting autoresizing masks programmatically and bitwise operations

	Forcing Landscape Mode
	Challenge: Proximity Notifications
	For the More Curious: Overriding Autorotation

	10. UITableView and UITableViewController
	Beginning the Homepwner Application
	UITableViewController
	Subclassing UITableViewController

	UITableView’s Data Source
	PossessionStore: a singleton
	Implementing data source methods

	UITableViewCells
	Creating and retrieving UITableViewCells
	Reusing UITableViewCells

	Code Snippet Library
	Challenge: Sections

	11. Editing UITableView
	Editing Mode
	Adding Rows
	Deleting Rows
	Moving Rows

	12. UINavigationController
	UINavigationController
	UINavigationBar

	An Additional UIViewController
	Navigating with UINavigationController
	Pushing view controllers
	Passing data between view controllers
	Appearing and disappearing views

	Challenge: Number Pad

	13. Camera
	Displaying Images and UIImageView
	Taking pictures and UIImagePickerController
	ImageStore
	Creating and using keys
	Dismissing the keyboard

	Challenge: Removing an Image
	For the More Curious: Recording Video

	14. UIPopoverController and Modal View Controllers
	Universalizing Homepwner
	UIPopoverController
	Modal View Controllers
	Dismissing modal view controllers
	Modal view controller styles
	Writing a view controller delegate protocol
	Modal view controller transitions


	15. Saving, Loading, and Multitasking
	Application Sandbox
	Constructing a file path

	Archiving
	Archiving objects
	Unarchiving objects

	Application States, Transitions, and Multitasking
	Writing to filesystem with NSData
	More on Low-Memory Warnings
	Model-View-Controller-Store Design Pattern
	Challenge: Archiving Whereami
	For The More Curious: Application State Transitions
	For the More Curious: Reading and Writing to the filesystem
	For the More Curious: The Application Bundle

	16. Subclassing UITableViewCell
	Creating HomepwnerItemCell
	Creating subviews
	Laying out subviews
	Using the custom cell

	Image Manipulation
	Challenge: Accessory Indicators
	Challenge: Shrinking the Main Image

	17. Core Data
	Object-Relational Mapping
	Moving Homepwner to Core Data
	The model file
	NSManagedObject and subclasses
	Updating PossessionStore
	Adding AssetTypes to Homepwner

	More About SQL
	Trade-offs of Persistence Mechanisms
	Challenge: New Asset Types
	Challenge: Assets on the iPad

	18. Localization
	Internationalization using NSLocale
	Localizing Resources
	NSLocalizedString and Strings Tables
	Challenge: Another Localization
	For the More Curious: NSBundle’s Role in Internationalization

	19. Settings
	Updating Whereami
	NSUserDefaults
	For the More Curious: The Settings Application

	20. Touch Events and UIResponder
	Touch Events
	Creating the TouchTracker Application
	Turning Touches into Lines
	The Responder Chain
	Challenge: Saving and Loading
	Challenge: Circles
	For the More Curious: UIControl

	21. Instruments
	The Static Analyzer
	Instruments
	The Allocations Instrument
	Time Profiler Instrument

	Xcode Schemes
	Creating a new scheme

	Build Settings

	22. Core Animation Layer
	Layers and views
	Creating a CALayer
	Layer Content
	Implicitly Animatable Properties
	For the More Curious: Programmatically Generating Content
	For the More Curious: Layers, Bitmaps, and Contexts
	Challenge: Dynamic Layer Content

	23. Controlling Animation with CAAnimation
	Animation Objects
	Spinning with CABasicAnimation
	Timing functions
	Animation completion

	Bouncing with a CAKeyframeAnimation
	Challenge: More Animation
	For the More Curious: The Presentation Layer and the Model Layer

	24. Blocks and Categories
	Colorizing TouchDrawView
	Blocks
	Blocks as variables
	Capturing variables
	Using blocks with other built-in methods
	Keeping code compact with blocks

	Categories
	For the More Curious: Memory Management and Blocks
	For the More Curious: Pros and Cons of Callback Options

	25. Web Services and UIWebView
	Web Services
	Starting the Nerdfeed application
	Fetching data from a URL
	Working with NSURLConnection
	Parsing XML
	A quick tip on logging

	UIWebView
	For the More Curious: NSXMLParser
	For the More Curious: The Request Body
	For the More Curious: Credentials
	Challenge: More Data
	Challenge: More UIWebView

	26. UISplitViewController
	Splitting Up Nerdfeed
	Master-Detail Communication
	Displaying the Master View Controller in Portrait Mode
	Universalizing Nerdfeed

	27. Media Playback and Background Execution
	Creating the MediaPlayer Application
	System Sounds
	Registering system sounds
	Playing system sounds

	Compressed Audio Files
	Playing Movie Files
	MPMoviePlayerViewController
	Preloading video

	Background Processes
	Guidelines for background execution
	Other forms of background execution

	Low-level APIs
	Challenge: Audio Recording

	28. Bonjour and Web Servers
	Bonjour
	Creating CocoaServer
	Publishing a Bonjour service
	Browsing for services via Bonjour

	HTTP Communication
	Writing a web server in Objective-C
	Getting address data from the server
	Byte ordering
	Making service requests
	Receiving service requests

	For the More Curious: TXTRecords

	29. Push Notifications and Networking
	Preparing Client for Push Notifications
	Registering for notifications
	Provisioning for push notifications

	Delivering a Push Notification
	Getting the token to the provider

	Sending Push Notifications
	Connecting to Apple’s server with NSStream

	Additional Client-side Notification Handling
	Sounds and badges
	Accessing data in notifications

	The Production Server and Moving Forward
	For the More Curious: The Feedback Service

	30. Afterword
	What to do next
	Shameless plugs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


