
iO
S App D

evelopm
ent

Feiler

Jesse Feiler is a developer, consultant, and author specializing in
Apple technologies. He is the creator of Minutes Machine for iPad,
the meeting management app, and Saranac River Trail and is heard
regularly on WAMC Public Radio for the Northeast’s The Roundtable.

Visit the companion website at www.dummies.com/
extras/iosapplicationdevelopment for source code, all
the figures from the book, and other information.

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

 Open the book and find:

•	How to download and use
the latest SDK

•	How to use animation in
your app’s views

•	The differences between iPad
and iPhone apps

•	Tricks to fixing syntax errors as
you go

•	Using storyboards to create
your UI

•	Tips on navigating in the
Xcode® source editors

•	Hands-on examples to jumpstart
your work

•	Step-by-step exercises to create
real applications

$34.99 USA / $41.99 CAN / £24.99 UK

9 781118 871058

53499

ISBN:978-1-118-87105-8

Computers/Application Development/Apple

Get started making apps for
iPhone and iPad with this
easy-to-use guide!
There’s no time like the present to begin developing apps
for the iPhone and iPad. Discover the Apple iOS SDK and
developer tools, and then dive right in to planning and
coding your app’s interface and functionality. This handy
guide leads you step-by-step through the app development
process, including designing interfaces, creating storyboards,
and handling events, notifications, gestures, and more!

•	A	primer —	find	out	about	the	iOS	development	environment,	
how	to	design	a	great	user	experience,	and	how	to	build	apps	
that	get	on	the	App	Store	

•	Dive	right	in —	download	the	iOS	SDK	and	get	started	with	the	
Apple	developer	tools	

•	Get	universal	—	understand	the	key	differences	between	iPad	
and	iPhone	applications,	and	how	to	make	universal	apps	

•	It’s	all	about	the	user —	dive	in	to	designing	apps	that	work	
intuitively	and	please	the	user

•	The	next	level —	find	out	about	storyboard	files,	view	controllers,	
interface	objects,	gesture	recognizers,	and	a	whole	lot	more	

Cover Image: Toolbox ©iStockphoto.com/
AndrewJohnson; Map ©iStockphoto.com/boris64;
WiFi icon ©iStockphoto.com/Samarskaya; Rainbow
Flower © iStockphoto.com/chris_lemmens; Gear
Icon: Wiley

Jesse Feiler
Author of iWork For Dummies®, 2nd Edition

Learn	to:
• Download the iOS SDK and use Apple’s

developer tools

• Build a universal app for the iPad®
and iPhone®

• Make the most of the latest iOS
features in your app designs

• Provide a great user experience and
make your app stand out in the crowd

iOS App
Development

Making	Everything	Eas
ier!™

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/iosappdevelopment

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

http://www.dummies.com/cheatsheet/iosappdevelopment

by Jesse Feiler

iOS App Development

iOS App Development For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2013957974

ISBN 978-1-118-87105-8 (pbk); ISBN 978-1-118-87107-2 (ebk); ISBN 978-1-118-87110-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents
Introduction ... 1

A Bit of History ... 1
The iPhone stands alone ... 2
Enter the App Store ... 2
The iPad joins the party .. 3

The Plan for This Book ... 3
iOS and Xcode Game Changers .. 4
About This Book .. 5
Conventions Used in This Book ... 5
Icons Used in This Book ... 6
Foolish Assumptions ... 7
How This Book Is Organized .. 7

Part I: Getting Started .. 8
Part II: Building RoadTrip ... 8
Part III: Getting Your Feet Wet: Basic Functionality 8
Part IV: The Model and the App Structure ... 9
Part V: Adding the App Content ... 9
Part VI: The Part of Tens ... 9

Beyond the Book ... 10
Where to Go from Here ... 10

Part I: Getting Started .. 11

Chapter 1: What Makes a Great iOS App . 13
Figuring Out What Makes a Great iOS App ... 14

Making your app work well .. 14
Handling networking, social media, and location 15
Designing a powerful and intuitive interface that disappears 15

Using the iOS Platform to the Fullest .. 16
Exploiting advantages of the system ... 16
Accessing the Internet... 17
Knowing the location of the user ... 18
Tracking orientation and motion ... 18
Tracking users’ fingers on the screen ... 19
Playing content .. 19
Accessing information from Apple’s apps .. 19
Copying, cutting, and pasting between apps 20
Multitasking, background processing, and notifications................ 20
Living large on the big screen .. 21

Embracing Device Limitations ... 21
Designing for fingers .. 22
Balancing memory and battery life ... 22

iOS App Development For Dummies iv
Why Develop iOS Apps? .. 23
Developing with Apple’s Expectations in Mind ... 24
Thinking About You, Apps, and Money .. 25
Enter the Cloud .. 26
Developing an App the Right Way Using the

Example App in This Book .. 27
What’s Next .. 27

Chapter 2: Getting to Know the SDK . 29
Developing Using the SDK .. 29
Using Xcode to Develop an App .. 30

Creating an Xcode project .. 31
Developing the app .. 31

The Workspace Window ... 33
Workspace areas .. 34
Displaying an area’s content .. 36
The toolbar and Tab bar ... 40
The Organizer window .. 42

Chapter 3: The Nuts and Bolts of an Xcode Project 45
Creating Your Project ... 45
Exploring Your Project ... 50

The project ... 50
The Project editor .. 50
The Project navigator .. 53

Setting Your Xcode Preferences .. 57
Building and Running Your Application ... 59

Building an app .. 61
The iPad’s Split views .. 63
The Log navigator .. 64

Running in the Simulator .. 66
Interacting with your simulated hardware 66
Making gestures ... 67
Uninstalling apps and resetting your device 68
Living with the Simulator’s limitations ... 69

Using Asset Catalogs ... 70
Adding the Image and Sound Resources and an App Icon 74

Part II: Building RoadTrip ... 77

Chapter 4: Storyboards and the User Experience 79
Introducing the Storyboard .. 80

Telling your story .. 81
Working with object graphs ... 83

Defining What You Want an App to Do: The RoadTrip App 84
Creating the Application Architecture .. 88
What You Add Where .. 89

v Table of Contents

Using Frameworks ... 90
Using Design Patterns ... 91

The iOS design patterns .. 92
The Model-View-Controller (MVC) design pattern 92

Working with Windows and Views .. 95
Looking out the window.. 95
Admiring the view .. 96
The kinds of views you use... 97

View Controllers — the Main Storyboard Players 101
What About the Model? .. 104
It’s Not That Neat ... 105
Taking a Look at Other Frameworks ... 106

The Foundation framework .. 106
The CoreGraphics framework .. 106
Even more frameworks ... 107

Understanding the MVC in the Project ... 107

Chapter 5: Creating the RoadTrip User Interface 111
Creating Your User Interface in the iPad Storyboard 111

It’s about the view controller ... 112
Using Interface Builder to add the user elements 113

Working within the Utility Area ... 115
Inspector and Quick Help pane .. 115
Library pane ... 116

Understanding iPad Navigation ... 117
Adding a New View Controller ... 121

Danger Will Robinson .. 128
Adding an identifier to the view controller 129

View Layout .. 130
Adding the User Interface Objects .. 131

Autosizing with Auto Layout .. 136
Adding the Test Drive button ... 141

Massaging the Template Code ... 144
Getting Rid of Warnings .. 148
Creating the iPhone User Interface ... 148

Chapter 6: The Runtime, Managing Memory, and
Using Properties . 151

Stepping Through the App Life Cycle ... 152
UIApplicationMain ... 153
Handling events while your application is executing 158
Knowing what to do when the normal processing of your

 application is interrupted ... 160
An overview of the view controller life cycle 163

Working within the Managed Memory Model Design Pattern 164
Understanding memory management ... 165
Using reference counting .. 165

iOS App Development For Dummies vi
Automatic Reference Counting (ARC) .. 167

Working with variable types according to ARC 169
Understanding the deadly retain cycle ... 170

Observing Low-Memory Warnings .. 172
The didReceiveMemoryWarning method 172
The applicationDidReceiveMemoryWarning: method 172
The UIApplicationDidReceiveMemoryWarningNotification:

notification .. 173
Picking the right memory-management strategy for

your application ... 173
Customizing the Behavior of Framework Classes 174

Subclassing ... 174
The Delegation pattern ... 175

Understanding Declared Properties .. 176
What comprises a declared property ... 176
Using dot syntax .. 177
Setting attributes for a declared property...................................... 178
Writing your own accessors ... 180
Accessing instance variables with accessors 181

Hiding Instance Variables ... 181

Chapter 7: Working with the Source Editor . 183
Navigating in the Xcode Source Editors ... 183

Using the Jump bar .. 186
Organizing your code using the #pragma mark statement 190

Using the Xcode Source Editor .. 190
Using Live Issues and Fix-it ... 192
Compiler warnings ... 193
The Issue navigator ... 193

Accessing Documentation .. 195
Getting Xcode help .. 195
The Organizer window .. 198
The Help menu ... 199

Finding and Searching in Your Project ... 199
Using the Find command to locate an item in a file 199
Using the Search navigator to search

your project or framework .. 200
Using the Symbol navigator .. 201

You’re Finally Ready to Write Code! ... 202

Part III: Getting Your Feet Wet: Basic Functionality ... 203

Chapter 8: It’s (Finally) T ime to Code . 205
Checking for Network Availability ... 205

Downloading the Reachability sample .. 205
Adding the code to check for reachability 208

vii Table of Contents

Exploring the Changes in iOS 7 .. 211
The dated interface ... 211
Losing the content ... 212

Setting the Master View Controller Title .. 213
Understanding Autorotation .. 214
Writing Bug-Free Code .. 215

Working in the Debug area and Debug navigator 216
Managing breakpoints ... 218
What you’ll find in the Debug area .. 222
What you’ll find in the Debug navigator ... 223
Displaying variables in the Source editor 224
Tiptoeing through your program ... 225

Chapter 9: Adding Outlets and Actions to Your RoadTrip Code 227
Using Custom View Controllers ... 228

Adding the custom view controller ... 228
Setting up the TestDriveController in the MainStoryboard

for iPad .. 229
Understanding Outlets .. 231
Adding Outlets ... 232

Opening the Assistant editor.. 232
Creating the outlet ... 234
The Connections inspector .. 237

Working with the Target-Action Design Pattern 239
Using the Target-Action pattern: It’s about controls 239
Adding an action .. 241

How Outlets and Actions Work .. 244
Update the iPhone storyboard file .. 244

Chapter 10: Adding Animation and Sound to Your App 247
Understanding iOS Animation .. 248

View geometry and coordinate systems ... 248
Points versus pixels ... 248
A view’s size and position... 249
Working with data structures .. 250

Coordinating Auto Layout, Frames, and Constraints 250
Animating a View ... 251
Finally, More Code ... 252
Implementing the testDrive Method ... 252
Understanding Block Objects .. 256
Rotating the Object ... 259
Working with Audio ... 261
Tracking Touches .. 269
Animating a Series of Images “In Place” ... 272
iPhone versus iPad .. 273

iOS App Development For Dummies viii

Part IV: The Model and the App Structure 275

Chapter 11: The Trip Model . 277
What the Model Contains ... 277
Adding the Model Data ... 278

Using property lists ... 278
Adding a property list to your project .. 280

Adding the First Two Model Classes ... 290
Understanding the Trip Interface .. 292
Implementing the Trip Class .. 294

Initializing objects .. 296
Invoking the superclass’s init method .. 297
Initializing instance variables ... 298
Returning self ... 299

Initializing the Destination Class ... 300
Creating the Trip Object ... 303
More Debugger Stuff .. 305

Chapter 12: Implementing the Master View Controller 309
Setting Up a Custom View Controller for the iPad 309
Adding a Background Image and Title .. 319
Updating the iPhone Storyboard File .. 321

Chapter 13: Working with Split View Controllers and
the Master View . 323

The Problem with Using a Navigation Controller in Detail View 323
Using a Navigation Controller in the Master View 326
Adding a Gesture Recognizer ... 330
The Split View Controller ... 333

The UISplitViewController delegate .. 335
Localization .. 340
Back to the main feature ... 340

Adding the Toolbar ... 346
Adding the button when the view controller is replaced 350

A Few More Tweaks to the MasterViewController 354
And (a Little Extra) One More Thing ... 355
Don’t Forget the iPhone .. 356

Chapter 14: Finishing the Basic App Structure 357
Extending the iPad Storyboard to Add More Functionality

to Your App .. 358
Adding the Weather view controller ... 358
Adding the Events controller ... 364
Adding the remaining controllers .. 367

ix Table of Contents

Changing the Split View Controller to a Detail View Controller
Relationship .. 368

Repeat for iPhone .. 372

Part V: Adding the App Content 373

Chapter 15: How’s the Weather? Working with Web Views 375
The Plan .. 375

The iPad storyboard .. 376
The iPhone storyboard ... 377

Setting Up the Weather Controller .. 379
Adding the custom view controller ... 379
Setting Up WeatherController in the Main_iPad.storyboard file 380

The Weather Controller .. 385
Managing links in a Web view .. 388

More Opportunities to Use the Debugger .. 392
Unrecognized selector sent to instance.. 392

Repeat for the iPhone Storyboard ... 393
Adding the WeatherController to the iPhone storyboard file 393
Test in the iPhone Simulator .. 394

Chapter 16: Displaying Events Using a Page View Controller 395
The Plan .. 396
Setting Up the EventsController .. 397

Adding the custom view controller ... 397
Setting up the EventsController in the MainStoryboard 398
Adding and setting up the EventPageController in the

MainStoryboard .. 399
Extending the Trip Model ... 401
Adding the Events Class ... 403
The EventsController and Its PageViewController 406

Data sources and delegates .. 406
Data source ... 407
Delegate ... 407
The EventsController .. 407
The EventPageController .. 412

Adding Events Support to the iPhone Storyboard 415

Chapter 17: Finding Your Way . 417
The Plan .. 418
Setting Up the Map Controller ... 419

Adding the custom view controller ... 420
Setting up the MapController in the Main_iPad.Storyboard 420
Test .. 426

iOS App Development For Dummies x
Putting MapKit through Its Paces .. 428

MKMapView .. 428
Enhancing the map .. 429

Changing the Map Type .. 435
Adding Annotations ... 437

Creating the annotation .. 437
Displaying the map title and annotations 441

Going to the Current Location ... 446
Fixing the Status Bar ... 451
Update the iPhone Storyboard .. 454

Chapter 18: Geocoding . 455
Understanding Geocoding on the iPad ... 455
Reverse Geocoding .. 458

Chapter 19: Finding a Location . 465
Setting Up the Find Controller ... 465

Adding the custom view controller ... 466
Setting up FindControllerin the Main_iPad File 466

Implementing the Find Controller ... 469
Adding the Map View .. 469
Getting the text... 470
Disabling cell highlighting .. 477

Finding the Location ... 477
Making the Map Title the Found Location ... 484
Adding the FindController to the iPhone Storyboard 485

Chapter 20: Selecting a Destination . 487
The Plan .. 487
Setting Up the DestinationController for the iPad Storyboard 488

Adding the custom view controller ... 488
Setting up the DestinationController

in the Main_iPad.storyboard .. 489
Adding a Modal View .. 494
Implementing a Table View .. 497
Creating the Table View .. 498

Adding sections .. 499
Displaying the cell.. 501
Working with user selections ... 503

Saving the Destination Choice and Selecting a Destination 511
Displaying the Destination table .. 516
Testing ... 517

Adding Destination Support to the iPhone Storyboard 518
A Word about Adding Settings ... 519
What’s Next? ... 519

xi Table of Contents

Part VI: The Part of Tens ... 521

Chapter 21: Ten Ways to Be Successful with Apps 523
Make a Million Dollars in a Week ... 523
Build a Portfolio ... 524
Build App Icons .. 524
Design User Interfaces .. 524
Build Back Ends ... 525
Socialize with Apps ... 525
Talk About Apps with People Who Want Them 525
Promote Apps .. 525
Provide Support to Users ... 526
Fix Bugs ... 526

Chapter 22: Ten Ways to Be a Happy Developer 527
Keep Things Loosely Coupled ... 527
Remember Memory ... 528
Don’t Reinvent the Wheel ... 528
Understand State Transitions .. 529
Do the Right Thing at the Right Time ... 530
Avoid Mistakes in Error Handling ... 530
Use Storyboards .. 531
Remember the User ... 531
Keep in Mind That the Software Isn’t Finished Until the

Last User Is Dead ... 531
Keep It Fun .. 531

Index ... 533

iOS App Development For Dummies xii

Introduction

i
OS App Development For Dummies is a beginner’s guide to developing iOS
apps. And not only do you not need any iOS development experience to

get started, but you also don’t need any Mac development experience, either.
I’ve written this book as though you are coming to iPhone and iPad app
development as a blank slate, ready to be filled with useful information and
new ways to do things. Well, almost a blank slate, anyway; see the upcom-
ing “Foolish Assumptions” section for details on what you do need to know
before using this book.

Because of the nature of the iPhone and iPad, you can create small, bite-sized
apps that can be quite powerful. Also, because you can start small and create
real applications that do something important for a user, it’s relatively easy
to transform yourself from an “I know nothing” person into a developer who,
though not (yet) a superstar, can still crank out quite a respectable app.

But the iPhone and iPad can be home to some pretty fancy software as
well — so I’ll take you on a journey through building an industrial-strength
app and show you the ropes for developing one on your own.

A Bit of History
It’s 6:00 a.m. PST on January 9, 2007. A distressingly long line of nerds wrapped
all the way around San Francisco’s Moscone Center. Why? To hear Steve Jobs
give his MacWorld Expo keynote address. It was nuts to get up so early on a
cold morning, but Steve Jobs was rumored to be introducing an Apple phone.

No one knew whether an Apple phone would be any good, but perhaps Steve
would show us magic — something that would revolutionize an industry.
Perhaps it would be as cool and important as the iPod! A few hours later,
Steve told the crowd that “Apple is going to reinvent the phone.” Steve was
never modest, but he was certainly correct — Apple completely blew away
the phone industry that day. The damage was not yet visible to the current
phone vendors (Palm, Motorola, Nokia, Sony, Ericsson, RIM, and Microsoft),
but they were suddenly left back in the 20th century. The future had arrived.

2 iOS App Development For Dummies

The iPhone stands alone
The first iPhone shipped in late June 2007. It came with a bunch of Apple’s
native apps such as Contacts, Maps, Stocks, Safari, and so on. The problem
was that only Apple could develop these native apps. The Apple developer
“evangelists” told developers that we should be happy writing web apps.
This did not make us happy — we wanted to write native Objective-C apps.

Steve Jobs and Apple eventually saw the light (in fact, some people believe
that there was always the possibility of releasing tools to let developers write
native apps, but getting the iPhone itself launched took a higher priority).
Apple released a beta version of the iPhone Software Development Kit (SDK)
in the spring of 2008, and it opened the App Store for business in July 2008. At
this point, you could develop native apps — but only for the iPhone, because
the iPad did not yet exist.

Enter the App Store
The App Store in July 2008 was a far cry from today’s App Store. The numbers
of apps and the numbers of downloads today are staggering. Search for “App
Store” on Wikipedia to get the latest numbers. The billions of dollars that
developers have earned directly from the App Store are fantastic.

But beyond these large numbers, there’s something about the App Store that
I didn’t truly appreciate until my first app went on sale. On the first day, more
than 20 copies were sold. (My initial advertising was a mass e-mail to friends.)
This was very much a niche-of-a-niche product, but it continued to sell a few
copies each week. I added a link to the app to my e-mail signature, and, when
I saw a few copies had been sold in Great Britain, I assumed that some of my
English cousins had pitched in (bless their hearts, as they say in the South).

But I don’t have any relatives in Argentina. I’m pretty certain I don’t know
anyone in Malaysia. Okay, the first couple of sales in Canada might be
explained by the fact that I live 20 miles south of the border. But why would
someone in China be buying the app? I certainly hope the people in South
Africa who have bought the app are using it productively.

Almost all of those people found the app by searching on the App Store.
Apple provides a great deal of help and advice for you to put your app’s best
face forward on the App Store, and they provide tips and continually refine
their search algorithms so that if you use good keywords, people can discover
your apps. Apple wants to sell hardware, and they want users of their devices
to discover apps that enhance their experiences with the devices.

The numbers of iOS devices are so vast that, with good keywords and a good
app description, a niche-of-a-niche-of-a-niche app can find a home on the App

3 Introduction

Store. You may write the next blockbuster app, but you also may write an
app that gets modest results. The highly automated App Store provides the
infrastructure to make it all possible.

You can count me among the people who think that the App Store itself may
turn out to be a more significant achievement for Apple than the iPhone itself.

The iPad joins the party
Apple released the first iPad in April 2010. In some ways, the iPad was an
even more remarkable achievement than the iPhone. The mobile phone
existed before iPhone. iPad was the first time that a high-powered computing
and communicating device that was truly mobile caught on.

Initially, the iPad ran the iPhone OS. That was a little hard for some people
to understand, and before long, the operating system was renamed iOS.
We’re now at version 7 of iOS. In addition to the renaming, there has been
some restructuring of the developer tools and environment so that things fit
together very well.

When I look at developer features such as universal apps (they can run on both
iPhone and iPad with minimal code changes), support for in-app purchases,
and iBeacon integration, I see a full-featured environment that matches and
even surpasses some of the most sophisticated development environments I’ve
worked with.

Even though there are many more features today than there were back in 2008,
iOS development today is easier than it was a few years ago. The developer tools
have matured, and the frameworks themselves have been tweaked with tools
such as auto layout that make the placement of interface elements on a screen
automatic as devices are rotated and as new screen sizes appear on the devices.

The Plan for This Book
You will build this book’s RoadTrip app using the following steps:

 1. Create the initial storyboards for both the iPad and iPhone versions,
starting with Xcode’s Master-Detail project template.

 The template’s iPad storyboard is based on using UIKit’s UISplitView
Controller, which uses the same custom MasterViewController
and custom DetailViewController used in the iPhone version. The
Master View controller will appear on the left when the iPad is held in
landscape orientation, whereas the Detail View controller appears on
the right.

4 iOS App Development For Dummies

 2. Build and test the iPad version in the iPad simulator. You should see a
Table view embedded in a Navigation controller in the Master view.

 The template’s initial iPhone storyboard design begins with a custom
MasterViewController (a Table view) embedded in a Navigation
view. Selecting an item in the Table view displays data managed by a
custom DetailViewController.

 3. Build and test the iPhone version in the iPhone simulator. It should also
work perfectly because you haven’t had a chance to make any mistakes yet.

 4. Add a TestDriveController to the iPhone storyboard. Build and test.
Add it to the iPad storyboard. Build and test.

 5. Add animation and sound to the Test Drive controller. Build and test
both the iPhone and iPad versions.

 6. Add additional features to each version until done.

iOS and Xcode Game Changers
With iOS 7 and — more importantly — with Xcode 5 (and later versions), the
nuts and bolts of iOS app development have changed dramatically. Xcode 5
has added much more functionality to the integrated development environ-
ment (IDE) you use to develop iOS applications, especially when it comes to
writing syntactically correct (and bug-free) code that’s better able to manage
memory. The latest versions bring much simpler integration with the App
Store as well as newly designed performance-monitoring tools. Of course, the
rub is getting the hang of Xcode 5. That’s where this book comes in. I care-
fully take you through Xcode 5, pointing out its features and describing how
to best use them. When you set this book aside, you’ll have a great under-
standing of how to take advantage of all those features that will make your
life easier.

You find out how to develop a single app that includes features that readers
and students of earlier editions have been asking for — including more anima-
tion and sound — as well as an infrastructure that people can use to develop
more robust applications. The resulting example is an app called RoadTrip,
which can send you on your way to developing apps that you can be proud of
and that other people will want to have.

This new edition is based on iOS 7 and Xcode 5. If you want to find out how to
develop applications, the tools discussed in this book are the tools you abso-
lutely need to use to do it the right way.

5 Introduction

About This Book
iOS App Development For Dummies distills the hundreds (or even thousands)
of pages of Apple documentation (not to mention my own development expe-
rience and that of many colleagues and friends) into only what’s necessary to
start you developing real applications. But this is no recipe book that leaves
it up to you to put it all together. Rather, it takes you through the frameworks
(the code supplied in the SDK) and iOS architecture in a way that gives you a
solid foundation in how applications really work, and also acts as a road map
to expand your knowledge as you need to.

I assume that you’re in this for the long haul and that you want to master
the whole app-development ball of wax. I use real-world applications to
show the concepts and give you the background on how things actually
work on iOS.

For many people, their first excursion into programming has been the classic
Hello World C program. Depending on how you space it, it can be written in
anywhere from one to three lines of code. For a long time now, I’ve thought
that this program has long since outlived its usefulness. We just don’t write
code like that today (and many of us never did). As you’ll see in this book,
the development process involves typing code, but it also involves drawing
an interface with your mouse, choosing options in check boxes to configure
your app, and a whole bunch of other activities that are as far as you can get
from typing a few lines of code into a blank document.

It’s a new world for developers, and I think its excitement and opportunities
have barely started.

Conventions Used in This Book
This book guides you through the process of building iOS apps. Throughout
the book, you use the classes provided by Apple’s iOS frameworks (and create
new classes of your own, of course). You code them using the Objective-C
 programming language.

Code examples in this book appear in a monospaced font so that they stand
out a bit better. That means that the code you see will look like this:

#import <UIKit/ UIKit.h>

Objective-C is based on C, which is case-sensitive, so please enter the code
that appears in this book exactly as it appears in the text. I also use the

6 iOS App Development For Dummies

standard Objective-C naming conventions — for example, class names always
start with a capital letter, and the names of methods and instance variables
always start with a lowercase letter.

Note that all URLs in this book appear in a monospaced font as well, like this:

www.northcountryconsulting.com

When I ask you to add code to a program, it will be in bold like this:

#import <UIKit/ UIKit.h>

You’ll notice — starting around Chapter 8 — that you will sometimes be
asked to delete some of the code you have in place for your project to make
room for some new stuff. When that happens, I comment out the code to
make things really clear. I refer to code I want you to delete as commented
out, bold, underline, and italic code because said code will show up as com-
mented out, bold, underlined, and italic. Simple enough, as shown in the fol-
lowing example:

// Delete this

If you’re ever uncertain about anything in the code, you can always look at
the source code on the companion website. (More on that in the section
“Beyond the Book,” later in this Introduction.)

Icons Used in This Book
 This icon indicates a useful pointer that you shouldn’t skip.

 This icon represents a friendly reminder. It describes a vital point that you
should keep in mind while proceeding through a particular section of the
chapter.

 This icon signifies that the accompanying explanation may be informative (dare
I say interesting?), but it isn’t essential to understanding iOS app development.
Feel free to skip past these tidbits if you like (though skipping while learning
may be tricky).

http://www.northcountryconsulting.com

7 Introduction

 This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.

 This icon indicates how to use an important part of Xcode functionality. This
helps you wade through Xcode’s complexity and focus on how to get specific
things done.

Foolish Assumptions
To begin programming your iOS applications, you need an Intel-based Mac
with the latest or next-to-latest version of OS X on it. (No, you can’t develop
iOS applications directly on the iPhone or iPad.) You also need to download
the iOS Software Development Kit (SDK) — which is free. And, oh yeah, you
need an iPhone and/or iPad. You won’t start running your app on it right
away — you’ll use the iOS Simulator that Apple provides with the iOS SDK
during the initial stages of development — but at some point, you’ll want to
test your app on a real, live iOS device.

This book assumes that you have some programming knowledge and that you
have at least a passing acquaintance with object-oriented programming, using
some variant of the C language (such as C++, C#, or maybe even Objective-C).
In case you don’t, I’ll point out some resources that can help you get up to
speed. The app example in this book is based on the frameworks that come
with the SDK; the code is pretty simple (usually) and straightforward. (I don’t
use this book as a platform to dazzle you with fancy coding techniques.)

I also assume that you’re familiar with the iPhone and iPad themselves and
that you’ve at least explored Apple’s included applications to get a good
working sense of an iOS app’s look and feel. It might also help to browse the
App Store to see the kinds of applications available there and maybe even
download a few free ones (as if I could stop you).

How This Book Is Organized
iOS App Development For Dummies has six main parts, which are described in
the following sections.

8 iOS App Development For Dummies

Part I: Getting Started
Part I introduces you to the iOS world. You find out what makes a great iOS
app and see how an iOS app is structured. In Chapter 2, I give an overview
of how Xcode 5 works that gets you up to speed on all its features; you can
use this chapter as a reference and return to it as needed. You also create
your Xcode project in this part — a universal app that can run equally well
on an iPad or iPhone — and I take you on a guided tour of what makes up the
Xcode project that will become your home away from home.

Part II: Building RoadTrip
In this part of the book, you find out how to create the kind of user interface
that will capture someone’s imagination. I explain the Interface Builder editor,
which is much more than your run-of-the-mill program for building graphical
user interfaces. You also discover storyboards, which are the icing on the
Interface Builder cake that let you lay out the entire user experience and app
flow — saving you a lot of coding, to boot.

You’ll also take a brief tour of the RoadTrip app, the app that you build in
this book. I show you not only what the app can do but also how it uses the
frameworks and SDK to do that.

I also explain how the main components of an iOS app go together. I describe
how the iOS applications work from a viewpoint of classes and design pat-
terns, as well as show how the app works at runtime. I spend some time on
three very important ideas: how to extend the framework classes to do what
you want them to, how to manage memory, and how to take advantage of
declared properties. I also explain how everything works together at runtime,
which should give you a real feel for how an iOS app works.

Parts I and II give you the fundamental background that you need to develop
iOS applications.

Part III: Getting Your Feet Wet:
Basic Functionality
Now that you have the foundation in place, Part III starts you on the process of
having your app actually do something. You start off by determining whether
a network is available to support the app functionality that requires Internet
access. You find out how to customize the appearance of the controls provided

9 Introduction

by the framework to make your app a thing of beauty. You finish off by adding
animation and sound just to get going. You also see how to connect the elements
on your storyboard to your app code to make them do things — such as have a
’59 pink Cadillac Eldorado Biarritz convertible drive up and down the screen.

Part IV: The Model and the App Structure
Now you begin to get down to the real work. You find out about the iPad’s
popovers and Split View controllers, and you also add navigation to the app.
Along the way, I really get into showing you how to account for the differences
between an iPad and an iPhone, and make sure that the app can run flawlessly
on whatever device the user has handy. You also add the app model, which
provides both the data and the logic you need to create an app that delivers
real value to the user. You then finish the storyboard so that you can see your
basic application flow. To wrap it all up, I show you how to package your app
with a custom icon and prepare it for the App Store.

Part V: Adding the App Content
Now that you have the application foundation and the user experience archi-
tecture in place, Part V takes you into the world of applications that contain
major functionality. I show you how to display the weather using a web page
right off the Internet, how to allow the user to page through local events as if
he were reading a book, how to display a map of where the user is going and
where he is right now, how to find a location that he has always wanted to
visit and display it on a map, and even how to change where he is going (lim-
ited in the RoadTrip app to New York and San Francisco, but it’s incredibly
easy to add other destinations). I don’t go slogging through every detail of
every detail, but I demonstrate almost all the technology you need to master
if you intend to create a compelling app like this on your own.

Part VI: The Part of Tens
Part VI consists of some tips to help you avoid having to discover everything
the hard way. It talks about approaching app development in an “adult” way
right from the beginning (without taking the fun out of it). I also revisit the app
and explain what else you would need to do to make this app a commercial
and critical success.

10 iOS App Development For Dummies

Beyond the Book
This book has additional content you can access online:

 ✓ Sample code: Sample code for each chapter can be found online at www.
dummies.com/extras/iosappdevelopment. Note that the posted code
represents the code as it is at the end of the chapter. If you want to
download code to follow along with as you read, download the code for
the previous chapter.

 ✓ Cheat Sheet: This book’s Cheat Sheet can be found online at www.
dummies.com/cheatsheet/iosappdevelopment. See the Cheat Sheet
for more on expanding your app with subclassing, target action, and
delegation.

 ✓ Dummies.com online articles: Companion articles to this book’s
content can be found online at www.dummies.com/extras/
iosappdevelopment. The topics range from tips on building an interface,
using frameworks in iOS app development, and ten ways to make your
app-developing life easier, among others.

 ✓ Updates: If this book has any Updates after printing, they will be posted
to www.dummies.com/extras/iosappdevelopment.

Where to Go from Here
If you’re starting from the beginning, I would suggest you start with Chapter 1.
However, if you are brushing up your skills, feel free to jump into a chapter that
is particularly relevant to your question. Chapters such as Chapter 10, “Adding
Animation and Sound to Your App” may be useful to you on their own. The
chapters in Part V are relatively independent of one another.

http://www.dummies.com/extras/iosappdevelopment
http://www.dummies.com/extras/iosappdevelopment
http://www.dummies.com/extras/iosappdevelopment
http://www.dummies.com/extras/iosappdevelopment
http://www.dummies.com/extras/iosappdevelopment
http://www.dummies.com/cheatsheet/iosappdevelopment
http://www.dummies.com/cheatsheet/iosappdevelopment

Part I
Getting Started

 Visit www.dummies.com for more great content online.

http://www.dummies.com

In this part . . .
 ✓ Figuring out what makes a great iOS app

 ✓ Getting to know the SDK

 ✓ Sorting out the parts of an Xcode app

Chapter 1

What Makes a Great iOS App
In This Chapter
▶ Figuring out what makes an insanely great iOS app

▶ Discovering the iOS features that can inspire you

▶ Understanding Apple’s expectations for iOS apps

▶ Making a plan for developing iOS software

J
uly 10, 2008.

That was the day the App Store opened. The next day, Apple launched the
iPhone 3G, which came with the brand-new iPhone OS 2.0.1. Owners could
choose from the 500 apps in the App Store to expand their phone’s power
and features. You can find the latest numbers and versions in the App Store
article on Wikipedia, which is updated regularly. I think it’s fair to say that no
one in 2008 envisioned the world of apps that we have today.

This is a world that some people have dreamed of from the dawn of the
computer age in the early 1950s. It’s a world of computers that are highly
portable, that boast terrific connectivity without wires and cables, and that
do things that people find useful, such as providing entertainment, education,
practical support, and information. Part of that dream was a world in which
the ability to program computers is accessible to the largest nations and
corporations on almost equal terms as it is to the individual developer
or hobbyist.

April 3, 2010.

That was the day the first iPad was shipped. Its operating system was iPhone
OS 3.2. iOS 4 was released a few months later, and, today, iOS and its develop-
ment tools have been substantially rearchitected to make both the user expe-
rience and the development process easier.

Today.

Because of the App store and the new development tools, this is a great time
to start developing for iOS. Welcome!

14 Part I: Getting Started

Figuring Out What Makes
a Great iOS App

A great iOS app can be described simply: It helps people do something that
they want to do; it does it well; it does it when and where people want to do
it; and it disappears. Because you can leverage the power of the App Store,
your app can be successful globally. Yes, that may mean millions of users for
your app, but it also may mean that you can find the 100 widely scattered
around the world for whom your app may become a necessity.

For the most part, choosing your app’s topic and market is beyond the scope
of this book, but you can find many articles on the Internet and in books and
magazines. You can even study the topic in colleges.

What this book does focus on is the rest of that description — building an
app that works well, works when and where people want to use it, and has
a user interface that helps people use the app but does not draw attention
to itself. If people are thinking about your app when they should be thinking
about a plot, a high score, or a trip to a store or another country, your app
isn’t great.

Making your app work well
The nuts and bolts of making your app work well are described in this book.
At the most basic level, they are technical and organizational, but the first
step is understanding what your app is going to be and do. Before you write
your first line of code, think through the app. Who will the audience be? What
will the app look like?

For large app development projects as well as small ones, sketching out a
wireframe sequence of your app’s screens is a good idea. You may think it’s
unnecessary in a one-person project, but it may even be more essential there.
Show your sketches to friends who will be honest with you. You can search
for “ios wireframe” on your favorite search engine to get recommendations
for tools to help develop wireframes.

If your app delivers content, make certain that you have the content. If you
have expertise in a specific area, that can serve as the basis for an app. If you
have access to experts in other areas, see if they will advise you. If you go to
the App Store and look at the reviews for apps, you’ll see that people quickly
provide low ratings for apps that don’t work or that don’t provide reliable data.

15 Chapter 1: What Makes a Great iOS App

Making your app work well is easier than ever before with Xcode 5. Powerful
debugging tools are built in so that you can even watch your app’s perfor-
mance on real-time gauges. Compared to earlier versions of iOS, iOS 7 has
a host of improvements for users and simplifications for developers. In my
opinion, the milestone was iOS 5. Although significant changes occurred in
the later releases, iOS 5 was the first to provide the concept of universal apps
where you could write a single code base for both iPhone and iPad. That
entailed making some changes to the APIs, but we’re over that hump and pro-
ceeding full speed ahead.

Handling networking, social media,
and location
Networking, social media, and location can make your app great. There cer-
tainly are many successful and even great apps that don’t use them, but they
add additional layers of greatness to your app. Networking means that you
can access Internet resources directly from your app. You can display web
pages within your app, and you can also access data that you display in your
app’s interface. The tools to do this are available to you in the APIs.

Today, social media integration scarcely needs promotion: It has become
part and parcel of our daily lives. Allowing users to promote your app on
Facebook or Twitter with a simple tap is a no-brainer for many developers.
iOS lets users enter their sign-in information whenever those taps occur.

Location awareness has opened a wide range of opportunities for apps. The
most obvious opportunities involve integration with Maps, but “near me”
functionality intrigues developers and users. With iOS 7, developers now
have two sets of location tools to use. For traditional mapping, a set of tools
uses GPS and cell tower locations to locate the device. Now, iBeacon adds
tools to handle low-energy Bluetooth beacons over much shorter distances,
such as individual paintings in a museum or specific shelves in a store.

Designing a powerful and intuitive
interface that disappears
Designing a disappearing interface is one of the most challenging aspects of
app design, and you’ll find tips to achieve this throughout the book. A disap-
pearing interface is one that works (or as many people say, “just works”) with-
out people having to think about it.

16 Part I: Getting Started

When someone looks at your app’s interface and notices the interface, you’re
on the wrong track. What you want to achieve is a situation where someone
looks at the screen and immediately sees how to get a weather report, the
current temperature, or the prediction for tomorrow’s weather in New York
City. Users should not notice the interface. Instead, they should notice what
the interface can do.

Using the iOS Platform to the Fullest
Okay, enough talk about the user experience. Just what exactly is the iOS
platform, and what are its features?

Exploiting advantages of the system
One of the keys to creating a great app is taking advantage of what the device
offers. In the case of a new platform with new possibilities, exploiting advan-
tages is especially important. The combination of hardware and system
software opens up design advantages that depart from the typical design
approach for desktop and laptop apps. For example:

 ✓ Multifinger gestures: Apps respond to multifinger gestures, not mouse
clicks. If you design an app that simply uses a single finger tap as if it
were a mouse click, you may be missing an opportunity to design a
better user experience.

 ✓ Movement and orientation: iOS devices have a variety of sensors that
collect movement and orientation data. The new M7 chip in iPhone 5S,
iPad Air, and iPad Mini (second generation) collects sensor information
from the integrated accelerometers, gyroscopes, and compasses. This
enhances existing location services and takes some of the workload off
the main chip.

 ✓ Split views and unique keyboards: You can use a split view on an iPad
to display more than one view onscreen at a time. Both iPad and iPhone
provide a special keyboard unique to a task, such as the numbers-and-
formulas keyboard that appears in the Numbers app.

 ✓ Internet access: With quick and easy access, your app doesn’t need to
store lots of data — all it really needs to do is jump on the Internet and
grab what it needs from there. However, to be truly useful, your app
needs to be ready to function when the Internet is unavailable to it.

17 Chapter 1: What Makes a Great iOS App

 ✓ Television or projection system connection: Users can connect an
iPhone or iPad to an HDTV or projection system to show content to
larger audiences. With iOS’s AirPlay feature and an Apple TV, users don’t
even need a physical connection.

 ✓ Consistent system environment: The Home button quits your app, and
the volume controls take care of audio, just like you’d expect them to.
User preference settings can be made available in the Settings applica-
tion to avoid cluttering your app’s user interface. Your native iOS apps
can coexist with web services and apps created in HTML5.

 ✓ Breathtaking imagery: Photos and video already look fantastic on this
display, but the artwork you create yourself for your app should be set
to 24 bits (8 bits each for red, green, and blue), plus an 8-bit alpha chan-
nel to specify how a pixel’s color should be merged with another pixel
when the two are overlaid one on top of the other. In general, the PNG
format is recommended for graphics and artwork that are included as
part of your iOS app.

In the following sections, you get to dive into some of the major features,
grouped into the following major areas:

 ✓ Accessing the Internet

 ✓ Tracking location

 ✓ Tracking motion

 ✓ Supporting multifinger gestures and touches

 ✓ Playing content

 ✓ Accessing the content of Apple’s supplied apps (such as Contacts and
Photos)

 ✓ Taking advantage of the display

Accessing the Internet
An iOS device can access websites and servers on the Internet through Wi-Fi
or optional data services from the same carriers that support the iPhone’s
voice communication. This Internet access gives you the capability to create
apps that can provide real-time information. An app can tell a user, for exam-
ple, that the next tour at the Tate Modern in London is at 3 p.m, how to get
there, and how long the line for the tour is.

18 Part I: Getting Started

This kind of access also allows you, as the developer, to go beyond the lim-
ited memory and processing power of the device and access large amounts of
data stored on servers, or even offload the processing. You don’t need all the
information for every city in the world stored on the device, nor do you have
to strain the device processor to compute the best way to get someplace on
the Tube. You can send the request to a server for all that information, espe-
cially information that changes often.

Knowing the location of the user
You can create an app that can determine the device’s current location or
even be notified when that location changes, using iOS location services. As
people move, it may make sense for your app to tailor itself to where the user
is, moment by moment.

Many iPad and iPhone apps use location information to tell you where the
nearest coffeehouse is or even where your friends are.

When you know the user’s location, you can even put it on a map, along with
other places she may be interested in. You find out how easy it is to add a
map to your app in Chapter 17.

Tracking orientation and motion
All iOS devices contain an accelerometer with three-dimensional data — a
component that detects changes in movement. The accelerometer measures
change along one of the primary axes in three-dimensional space. An app
can, for example, know when the user has turned the device from vertical
to horizontal orientation, and it can change the orientation from Portrait to
Landscape if doing so makes for a better user experience. Newer devices add
a gyroscope and — together with the accelerometer — improve the ability of
the device to measure in the direction you are moving it in space.

You can also determine other types of motion such as a sudden start or stop
in movement (think of a car accident or a fall) or the user shaking the device
back and forth. It makes some way-cool features easy to implement — for
example, the Etch A Sketch metaphor of shaking the device to undo an
operation. You can even control a game by moving the iPhone or iPad like a
controller.

19 Chapter 1: What Makes a Great iOS App

Tracking users’ fingers on the screen
People use their fingers to select and manipulate objects on the device
screen. The moves that do the work, called gestures, give the user a height-
ened sense of control and intimacy with the device. Several standard ges-
tures — tap, double-tap, pinch-close, pinch-open, flick, and drag — are used
in the apps supplied with iOS.

 You may want to stick with the standard gestures in your app just because
folks are already aware of (and comfortable with) the current pool, but iOS
Multi-Touch gesture support lets you go beyond standard gestures when
appropriate. Because you can monitor the movement of each finger to detect
gestures, you can create your own.

Playing content
Your iOS app can easily play audio and video. You can play sound effects or
take advantage of the multichannel audio and mixing capabilities available.
You can even create your own music player that has access to all the audio
synced to the device from the user’s iTunes Library, or from Apple’s iCloud
service. You can also play back many standard movie file formats, configure
the aspect ratio, and specify whether controls are displayed. You can put up
pages that look like web pages or book pages if you want, and you can easily
mix content for an immersive experience.

Accessing information from Apple’s apps
Your app can access the user’s information in the Contacts app and display
that information in a different way or use it as information in your app. For
example, a user could enter the name and address of a hotel, and the app
would file it in the user’s Contacts database. Then, when the user arrives
in New York City, for example, the app can retrieve the address from the
Contacts app and display directions. What’s more, your app can also present
standard interfaces for picking and creating contacts.

What you can do with Contacts, you can do in a similar fashion with the
Calendar app. Your app can remind a user when to leave for the airport or
create calendar events based on what’s happening this week in New York.
These events show up in the Calendar app and in other apps that support
that framework.

20 Part I: Getting Started

Your app can also access the Photo library in the Photos app, not only to dis-
play photos but also to use or even modify them. For example, Apple’s Photos
app lets you add a photo to a contact, and many apps enable you to edit your
photos on the device itself. You can develop your own photo-editing app for
the iPhone or iPad using, for example, Apple’s Core Image framework.

Copying, cutting, and
pasting between apps
iOS provides support for Copy, Cut, and Paste operations within and between
apps. It also provides a context-sensitive Edit menu that can display the Copy,
Cut, Paste, Select, Select All, and Delete system commands. That means that
although each iOS app is generally expected to play only in its own sandbox,
you actually do have ways to send small amounts of data between apps.

Multitasking, background processing,
and notifications
Recent releases of iOS have implemented and improved background process-
ing for apps. (This has been made possible by new hardware as well as soft-
ware.) As you will see throughout this book, a lot of iOS development takes
place in an asynchronous environment. In older software, programs typically
executed in a linear (or synchronous) manner — one line of code after the
other. From time to time, this linear process was interrupted with conditional
statements and branches such as if and switch statements, but the overall
flow was linear.

With asynchronous processing, you can execute a section of code (often
in the form of what is called a block) and not continue on to another line of
code. When the block finishes executing, it notifies the app that it is done,
and, at that point, the app executes some other code. You basically never
know when you will receive such notifications, but iOS makes it easy to
manage them. This architecture provides for a peppy user experience.

iOS also offers push notifications for receiving alerts from your remote serv-
ers even when your app isn’t running, and local notifications that you can use
in your app to alert users of scheduled events and alarms in the background
(no servers required). You can use local notifications to get a user’s attention;
for example, a driver navigation app running in the background can use local
notifications to alert the user when it’s time to make a turn. Applications can
also schedule the delivery of local notifications for a future date and time and
have those notifications delivered even if the app isn’t running.

21 Chapter 1: What Makes a Great iOS App

Living large on the big screen
The iPad display offers enough space to show a laptop-style app (which is
one reason why web pages look so great). You can organize your app with a
master list and detailed list of menu choices, or in a layout for Landscape ori-
entation with a source column on the left and a view on the right — similar to
the OS X versions of iTunes and iPhoto and exemplified by the Contacts app
on the iPad.

Note: Although the iPhone screen is smaller than the iPad screen, don’t think
of the iPhone screen as being tiny. The iPhone 5 screen, for example, at
1136 x 640 pixels, displays more pixels (on a smaller physical screen) than the
original Macintosh screen (512 x 342 pixels). The first Mac had a 0.18-megapixel
monochrome display. The iPhone 5 clocks in at a 0.73-megapixel (four times
larger) dazzling full-color display. Progress is a wonderful thing, eh?

For example, to crop and mask out parts of an image in Apple’s Keynote app
for iPad (the app that lets you create slide shows), you don’t have to select
a photo and then hunt for the cropping tool or select a menu item — just
double-tap the image, and a mask slider appears. In Apple’s Numbers app
for the iPad, if you double-tap a numeric formula, the app displays a special
numeric-and-function keyboard rather than a full-text keyboard — and the
app can recognize what you’re doing and finish the function (such as a Sum
function) for you.

These are examples of redesigning a known type of app to get rid of (or at
least minimize) that modal experience of using a smartphone app — that
sinking feeling of having only one path of communication to perform a task
or supply a response. iOS apps should allow people to interact with them
in nonlinear ways. Modality prevents this freedom by interrupting a user’s
workflow and forcing the user to choose a particular path.

 Lists are a common way to efficiently display large amounts of information in
iPhone apps. Lists are very useful in iPad apps, too, but you should take this
opportunity to investigate whether you can present the same information in a
richer way on the larger display.

Embracing Device Limitations
Along with all those features, however, the iPhone, and even the iPad, have
some limitations. The key to successful app development — and to not
making yourself too crazy — is to understand those limitations, live and
program within them, and even learn to love them. (It can be done. Honest.)
These constraints help you understand the kinds of apps that are right for
this device.

22 Part I: Getting Started

 Often, it’s likely that if you can’t do something (easily, anyway) because of
device limitations, maybe you shouldn’t.

 ✓ Users have fat fingers. You may think that the iPad’s larger display
makes that relatively easy to deal with, but keep in mind that you may
want to design a multiuser app for the iPad that takes into account mul-
tiple fingers. (Anyone for a nice game of Touch Hockey?)

 ✓ Memory and battery power are limited. This limitation may or may not
be a decisive factor, depending on what kind of app you want to create,
but smaller apps generally perform better.

The next sections help get you closer to a state of iOS enlightenment.

Designing for fingers
Although the Multi-Touch interface is a feature of the iPad, iPhone, and iPod
touch, it brings with it some limitations.

First of all, fingers aren’t as precise as a mouse pointer, which makes some
operations even more difficult on an iPhone or iPod touch than on an iPad
(text selection, for example). Still, due to fat fingers, user-interface elements
need to be large enough and spaced far enough apart so that users’ fingers
can find their way around the interface comfortably. Apple recommends that
anything a user has to select or manipulate with a finger be a minimum of
44 x 44 points in size.

Because it’s so much easier to make a mistake using fingers, you also need to
ensure that you implement a robust — yet unobtrusive — Undo mechanism.
You don’t want to have your users confirm every action (it makes using the
app tedious), but on the other hand, you don’t want your app to let anybody
mistakenly delete a page without asking, “Are you sure this is what you really
want to do?” Lost work is worse than tediousness.

Balancing memory and battery life
As an app designer, you have several balancing acts to keep in mind:

 ✓ Limited memory: When compared to the original Macintosh’s stan-
dards, the computer power and amount of memory on the iPad may
seem significant . . . but that is so yesterday. No ifs, ands, or buts; the
computer power and amount of memory on the iPhone and iPad are
limited. But this is an issue much more with older devices. The newer
iPhones and iPads do have fairly large amounts of memory. However, as
experienced developers know, the actual amount of memory is pretty
much irrelevant: there is never enough for you to relax.

23 Chapter 1: What Makes a Great iOS App

 ✓ Limited battery power: Access to the Internet can mitigate the device’s
power and memory limitations by storing data and (sometimes) offload-
ing processing to a server, but those Internet operations eat up the bat-
tery faster.

 Although it’s true that the iOS power-management system conserves power
by shutting down any hardware features that aren’t currently being used, a
developer must manage the trade-off between all those busy features and a
shorter battery life. Any app that takes advantage of Internet access, core
location, and the accelerometer is going to eat up the batteries.

As with memory, there is never enough power that you can afford not to
think about it.

 iOS devices are particularly unforgiving when it comes to memory usage. If
you run out of memory, in order to prevent corruption of other apps and
memory, the system will simply shut down your app.

Why Develop iOS Apps?
Because you can. Because it’s fun. And because the time has come (today!).
iOS apps are busting out all over, and developers have been very successful.

Developing iOS apps can be the most fun you’ve had in years, with very little
investment of time and money (compared with developing for platforms like
Windows). Here’s why:

 ✓ iOS apps are usually bite-sized, which means that they’re small
enough to get your head around. A single developer — or one with
a partner and some graphics support — can do them. You don’t need
a 20-person project team with endless procedures and processes and
meetings to create something valuable.

 ✓ The apps tend to be crisp and clean, focusing on what the user wants
to do at a particular time and/or place. They’re simple but not sim-
plistic. This makes app design (and subsequent implementation) much
easier and faster.

 ✓ The apps use the most innovative platform available for mobile com-
puting. It’s completely changing the Internet as a publishing medium,
the software industry with regard to applications, and the mobile device
industry with regard to the overall digital media experience.

 ✓ The free iOS Software Development Kit (SDK) makes development as
easy as possible. This book reveals the SDK in all its splendor and glory
in Chapter 2. If you can’t stand waiting, you could register as an iOS
developer, and download the SDK . . . but (fair warning) jumping the gun
leads to extra hassle. It’s worth getting a handle on the ins and outs of
iOS app development beforehand.

24 Part I: Getting Started

iOS has these two other advantages that are important to you as a developer:

 ✓ You can distribute your app through the App Store. Apple will list your
app in the App Store in the category you specify, and the store takes
care of credit-card processing (if you charge for your app), hosting,
downloading, notifying users of updates, and all those things that most
developers hate doing. Developers name their own prices for their cre-
ations or distribute them free; Apple gets 30 percent of the sales price
of commercial apps, with the developer getting the rest. However, keep
in mind that Apple must approve your app before it appears in the App
Store.

 ✓ Apple has a robust yet inexpensive developer program. To place your
app in the store and manage it, you have to pay $99 per year to join the
Individual or Company version of the iOS Developer Program (which
includes iPhone and iPad development support). (Apple also offers an
Enterprise version for $299 per year to develop proprietary, in-house iOS
apps that you can distribute to employees or members of your organiza-
tion, and a free University version for educational institutions to include
iOS development as part of a curriculum.) But that’s it. You don’t find
any of the infamous hidden charges that you often encounter, especially
when dealing with credit card companies. Go to the Apple iOS Developer
site (http://developer.apple.com/programs/ios) and click the
Enroll Now button to get started.

Developing with Apple’s
Expectations in Mind

Just as the iPhone and iPad can extend the reach of the user, the device
possibilities and the development environment can extend your reach as a
developer. To make sure that you’re reaching in the right direction, it helps to
understand Apple’s perspective on what iOS apps should be — the company
clearly has done some serious thinking about it, far longer than anybody else
out there, having taken years to bring iOS devices to market under a veil of
secrecy.

So what does Apple think? Spokespeople often talk about three different app
styles:

 ✓ Productivity apps use and manipulate information. The RoadTrip
sample app that I show in this book is an example, and so are my own
Minutes Machine app as well as FileMaker Go (FileMaker), and Apple’s
iWork apps — Keynote, Pages, and Numbers. Common to all these apps
is the use and manipulation of multiple types of information.

http://developer.apple.com/programs/ios

25 Chapter 1: What Makes a Great iOS App

 ✓ Utility apps perform simple, highly defined tasks. Google’s YouTube
app is an example — it deals only with the YouTube videos. The Brushes
app for painting (by Steve Sprang) is considered a utility because it per-
forms a simple, highly defined task.

 ✓ Immersive apps are focused on delivering — and having the user
interact with — content in a visually rich environment. A game is a
typical example of an immersive app.

Although these categories help you understand how Apple thinks about iOS
apps (at least publicly), don’t let them get in the way of your creativity. You’ve
probably heard ad nauseam about thinking outside the box. But hold on to
your lunch; the iOS “box” isn’t even a box yet. So here’s a more extreme meta-
phor: Try diving into the abyss and coming up with something really new.

Thinking About You, Apps, and Money
This book focuses on technology, and you can find many books and articles
about the business side of apps. Nevertheless, it’s worth spending a moment
to review the financial world of apps as it has developed over the last few
years.

First of all, consider the fact that it is likely that most apps are given away.
They may be given away under various circumstances:

 ✓ They may be used as cross-promotion for products that are priced (think
of Apple’s iWork apps, which became free with the release of iOS 7). People
who have iOS 7 (or any other version) have bought at least one iOS device.

 ✓ They may be used to provide added value for services that are priced.
Think of the free apps for many banks and the free apps from hotels,
airlines, and tour companies.

 ✓ They may be given away, but they support in-app purchases, whereby
you can add more advanced game levels or additional functionality to
the basic free app.

Beyond the question of the app’s price, you may be wondering if you can be
paid for building apps. Although it’s hard to find accurate numbers, it is also
likely that most developers are not paid. These include students (and remem-
ber that only a few years ago everyone was a student when it comes to iOS)
as well as would-be professional app developers who are building a
portfolio — often with free work for friends or non-profit organizations.

26 Part I: Getting Started

Organizations that are building apps to give away often hire developers (and
graphic designers and marketers) as do organizations that are selling apps.

Then there are individual developers or small groups thereof who attempt to
do one of the hardest things of all: They attempt to make money from selling
the apps they have written.

This is a broad overview of you, apps, and money. You don’t have to decide
where you’re going to land as you become a proficient app developer; you
can wait and see what you like to do most. In addition, be aware that many
developers today mix and match roles. They may work for free for a non-
profit and for pay for an app developer as well as for themselves. (Does every
app developer have at least one “skunkworks” project to work on in his free
time? Probably.)

Two things are important for you right now:

 ✓ Learn iOS with this book.

 ✓ Look for groups of app developers near you or online. (Meetup is a good
resource.) Many developers share their experiences.

Enter the Cloud
Apple, of course, created a great deal of excitement when it announced
iCloud. However, iCloud is more than just an integral part of the built-in appli-
cations; it can also be used by developers to implement new functionality for
their apps.

iCloud lets you create apps that share data among all of a user’s devices. For
example, you could create a RoadTrip app that allowed the user to plan a trip
on an iPad, and then access and even update that data on an iPhone.

iCloud is available on iOS as well as on the Mac’s operating system, OS X. This
means that sharing iCloud data among all of a user’s devices can mean iPad,
iPod touch, iPhone, MacBook Pro, Mac Pro, and the remarkable new device
that’s still under wraps in Cupertino at Apple’s headquarters. (It doesn’t matter
when you read this: there will always be a remarkable new device under wraps.
And, if the past is any indication, we’ll all try to figure out how we ever lived
without it.) All of this sharing relies on one simple fact: You must use the same
(free) Apple ID on all of your devices that you want to share.

Because this book deals only with iOS, I look at iCloud only from that side, but
remember that you can make a round trip from iOS to OS X and back again.

27 Chapter 1: What Makes a Great iOS App

Developing an App the Right Way Using
the Example App in This Book

As I mention in the Introduction, the point of this book isn’t to find out how
to program in Objective-C using the iOS frameworks. Instead, the point is to
discover how to build apps, and that’s what you’ll be doing — finding out the
right way to develop iOS apps.

The best way I can think of to show you how to build an app is to build one,
and I take you through doing that throughout this book. The app you build is
called RoadTrip. It allows you to plan a trip, check the weather along the way,
find the events happening at your destination, and display the destination,
sights, and your current location on a map, as well as display any other loca-
tion by entering the address or the name of a point of interest. You can also
choose between destinations.

As simple as it is, RoadTrip shows you how to do many of the tasks that
are common to iOS apps. You add animation and sound, display views and
navigate through them, and use controls such as buttons, as well as use
the Navigation controllers like the kind you find on the iPhone and the split
screen on the iPad that allows you to see two views side by side, or one view
with another in a popover window.

As you build the RoadTrip app, you even find out how to display a web page
and navigate its links (and return) from inside the app. You also download
and display data from the Internet.

In addition, I have you build a universal app — one that can run either on the
iPad or iPhone. Let’s get started!

What’s Next
You must be raring to go by now and probably can’t wait to download the
Software Development Kit (SDK). That’s exactly what many new developers
do — and later are sorry that they didn’t spend more time up front under-
standing the iOS user experience, how apps work in the iOS environment, and
the guidelines that Apple enforces for apps to be approved for the App Store.

The following chapters cover all the aspects of development you need to
know before you spend time coding. Then, I promise, it’s off to the stars.

28 Part I: Getting Started

Chapter 2

Getting to Know the SDK
In This Chapter
▶ Understanding what’s in the SDK

▶ Getting an overview of how programmers use Xcode for app development

▶ Taking a detailed tour of the Workspace window

X
code is the integrated development environment (IDE) that you use to
build your iOS apps. In addition to building iOS apps, it can be used

to build OS X apps. It is used to build Apple’s own apps such as the iWorks
suite. And to top it all off, it’s used to build iOS and OS X themselves. Over
its history, it has gotten even more powerful. In its most recent versions
(4 and 5), it has also been given a modern and easy-to-use interface. It also
has served as a test bed for user interface technologies that Apple later
brings to its consumer apps.

In this chapter, I take you on a guided tour of the features you’ll find in
Xcode — giving you the view from 30,000 feet. I go through it all in detail as
you use it throughout this book until your feet are firmly planted on terra
firma — at least when it comes to Xcode. The point of this chapter is to pro-
vide a frame of reference as you move forward, and a complete reference for
you to look back on.

Developing Using the SDK
The iOS Software Development Kit (SDK) provides support for developing
iOS apps and includes the complete set of Xcode tools, compilers, and frame-
works for creating apps for iOS and Mac OS X. These tools include the Xcode
IDE (its integrated development environment) and the Instruments perfor-
mance analysis tool, among many others.

30 Part I: Getting Started

Xcode 5 (the latest version) is an app that you simply download from the
Mac App store. You need the current or first prior version of OS X installed to
use Xcode. You should also become a registered developer. To do that, first
go to http://developer.apple.com/devcenter/ios, look for (and then
click) the link to become a registered developer, fill out some registration
information, and then start reaping the benefits of being a registered devel-
oper, starting with access to tons of documentation sample code and a lot of
other useful information. Note: If you want to actually run your app on your
iPhone or iPad and submit it to the App Store, you need to join an official iOS
Developer Program, which you can do right after you become a registered
developer.

 Apple links do change from time to time, so if a link I provide in this book
doesn’t work, you can always start at http://developer.apple.com and
navigate to the iOS Dev Center from there.

Xcode is the latest iteration of Apple’s IDE, a complete toolset for building
Mac OS X and iOS apps. With Xcode 5, you can develop apps that run on any
iPhone, iPad, or iPod touch running iOS. You can also test your apps using
the included iOS Simulator, which supports iOS 6 and iOS 7.

The Xcode IDE includes a powerful source editor, a sophisticated graphical
user interface editor, and many other features, including source code reposi-
tory management. Moreover, as you code, Xcode can identify mistakes in
both syntax and logic, and even suggest fixes.

To start with, I give you an overview of Xcode and how you’ll use it to
develop your app. As you move from step to step, I provide more detail on
how to use Xcode to specifically do what you need to do in any given step.

Using Xcode to Develop an App
To develop an iPhone, iPod touch, or iPad app, you have to work within the
context of an Xcode project. Xcode supports the following activities that are
parts of developing your app:

 ✓ Creating an Xcode project

 ✓ Developing the app (designing the user interface using a storyboard,
coding, and running and debugging the code)

 ✓ Tuning app performance

 ✓ Distributing the app

It supports many more activities as well, such as automated testing, but these
are the activities I focus on in this book. The following sections tell you more
about each of these tasks.

http://developer.apple.com/devcenter/ios
http://developer.apple.com

31 Chapter 2: Getting to Know the SDK

Creating an Xcode project
To develop an iOS app, you start by creating an Xcode project. A project
contains all the elements needed to create an app, including the source files,
a graphical representation of the user interface, and build settings needed to
build your app. You work on your project in the Workspace window, which
allows you to create all of these elements as well as build, run, debug, and
submit your app to the App Store.

Developing the app
You have a lot to do to develop an app. You need to design the user experi-
ence and then implement what you came up with as a user interface. You
need to write code to implement the features of the app. You also need to test
and debug the app.

Designing the user interface using a storyboard
Xcode’s Interface Builder is the editor you use to assemble your app’s user
interface with the help of preconfigured objects found in the Library. The
objects include windows, controls (such as switches, text fields, and buttons),
and the views you’ll use, such as Image, Web, and Table views. The Interface
Builder editor allows you to add objects, configure their properties, and create
connections not only between user interface objects, but also between user
interface objects and your code.

 When you use a storyboard (which you do in this book), most of if not all your
screens end up being displayed in the storyboard, and Interface Builder saves
your storyboard in a storyboard file (with the .storyboard extension). When
you don’t use a storyboard, each screen is saved separately as a nib file (with
the .xib extension). Either way, these files contain all the information iOS
needs to reconstitute the user interface objects in your app at runtime.

Interface Builder saves you time and effort when it comes to creating your
app’s user interface. You don’t have to code each object (which saves you a
lot of work), and what’s more, because Interface Builder is a visual editor, you
get to see what your app’s user interface will look like at runtime.

Coding
To code, you use the Source Code editor, which supports features such as
code completion, syntax-aware indentation, and source code folding (to hide
“code blocks” temporarily). You can get context-based help to assist you, and

32 Part I: Getting Started

if you need information about a particular symbol, you can either get a sum-
mary of a symbol’s documentation directly in the editor, or you can opt for
more extensive documentation.

Xcode’s Live Issues and Fix-it features work together to point out mistakes as
you enter your code and offer to fix those mistakes for you.

Running and debugging
When you run your app to debug or test it, you can run it in the iOS Simulator
on your Mac and then on an iOS-based device (if you’re in the developer pro-
gram). Using the simulator, you can make sure your app behaves the way you
want. You can also get debugging information — as you run — in the Debug
area. By running your app on a device connected to your Mac (still using the
debugger, if you like), you can observe the actual user experience and see
how the app will perform.

Tuning app performance
As you are running your app, gauges show you the amount of memory you’re
using, what’s happening in your app’s iCloud sandbox, how you’re doing on
energy consumption (a critical issue for mobile devices), network activity,
and more. The clear, graphical interface of the gauges is a major new feature
of Xcode 5.

Distributing the app
Xcode provides various kinds of app distribution, including

 ✓ Ad hoc distribution for testing on up to 100 iOS devices.

 ✓ The App Store for distributing to hundreds of millions of iOS device users.
You can give your apps away for free or let Apple sell them for you.

 ✓ Custom B2B Apps for distributing business-to-business apps directly
to your business customers who have a Volume Purchase Program
account.

You create an archive of your app that contains debugging information,
making it easier to track down bugs reported by testers (and users) of your
app. When your app is ready to go, you submit it to the App Store. (Before
you submit your app to the store, you even run some of the same software-
validation procedures on your app that Apple does — passing these tests
makes your app’s approval process as fast as possible.)

33 Chapter 2: Getting to Know the SDK

The Workspace Window
Command central for Xcode is the Workspace window, where you’ll do
almost all the things you need to do to develop your app.

In this section, I present only an overview — more or less the map of what’s
in the Workspace window and what each bar and button is and does. I came
up with this as a way to provide a quick reference to the Workspace window
so you can see all its elements, including the various bars and buttons and
what they do.

Figure 2-1 shows the window. (If you like, bookmark this page so you can
refer to this figure at any time when reading the book.) At first glance, it may
seem overwhelming, but take a deep breath and don’t worry: I explain each
part. As I take you through using Xcode to develop your app, I go into more
detail as needed. So for now, take a quick read through the upcoming sec-
tions just to familiarize yourself with the lay of the land and then return to
Figure 2-1 as needed for quick reference.

Figure 2-1:
The Xcode

Workspace
window.

34 Part I: Getting Started

 Although I have added shadings to the Workspace window components in this
chapter for easy reference, figures in the remainder of the book show the com-
ponents as they appear on your screen.

The Workspace window consists of

 ✓ Workspace areas

 ✓ The toolbar

 ✓ An optional tab bar

The following sections describe each of these elements — the heart of Xcode.

Workspace areas
The Workspace is divided into four areas, as follows:

 ✓ Editor area (always shown)

 ✓ Navigator area

 ✓ Utility area

 ✓ Debug area

 You can configure the Workspace area in a number of ways. Right off the bat,
you can choose to hide and/or show various areas in various combinations.
(Note that the Editor area is always present.) The Debug and Utility areas are
already configured with panes, but in the Debug area, you can select the pane
configuration.

Editor area (always present)
The Editor area is always present. You can choose any of the various content
editors to be shown within the Editor area; you do so using the Editor selec-
tor, the group of buttons in the toolbar you can see in the following figure.

The content editors you have available are as follows:

 ✓ Standard editor: The button for this editor is on the left side of the
Editor selector. The Standard editor displays a single pane for editing.
You have probably worked with standard editors in many environments
and IDEs.

35 Chapter 2: Getting to Know the SDK

 ✓ Assistant editor: Select this editor using the center button. This adds an
additional pane to the Editor area so that you can view two files at the
same time. You can also split one of the panes so that you can work with
three, four, or more files at the same time (the size of your monitor limits
the number you can work with at the same time). The Assistant editor
has some navigation features that I explain in Chapters 7 and 9.

 ✓ Version editor: Open this editor using the right button on the Editor
selector. This enables you to compare two different versions of a file.

I later explain the tasks you can perform within these areas.

Additional areas to view as needed
You use the View selector (see the following figure) to toggle between show-
ing and hiding any of the optional areas. These optional areas are as follows:

 ✓ Navigator area (left button): This area can display any of a number
of navigators that let you navigate through your project, through
breakpoints, and other items. It is described in the following section
(“Displaying an area’s content”).

 ✓ Debug area (center button): Displays either or both of two panes
depending on what you choose to see. You change panes using the
Debug area Scope bar, shown in the following figure.

 The Debug area Scope bar toggles each pane’s visibility. You can choose
either or both of them:

	 •	Debug pane: This shows you the values for variables as they are
set and changed while the app runs.

	 •	Console pane: This shows you messages generated by the app for
the console (including debugging messages you can insert).

 You can control the visibility of each pane, but you can’t reorder them.
If the Variables pane is shown, it is always on the left, and if the Console
pane is shown, it’s on the right. If only one pane is shown, it takes up the
entire width of the Debug area.

36 Part I: Getting Started

 ✓ Utility area (right button): Is further configured with two panes (either
can be expanded to hide some or all of the other):

	 •	Inspector pane

	 •	Library pane

I explain what you see in each of those panes when I explain the Utility area
section, later in the chapter.

 When you hover your mouse pointer over a toolbar button, a tooltip describes
its function.

Displaying an area’s content
Each area displays certain content, and each area has its own way of display-
ing its content:

 ✓ The Navigator area has navigators.

 ✓ The Editor area has content editors.

 ✓ The Utility area has

	 •	Quick Help or Inspectors in the Inspector/Quick Help pane.

	 •	Libraries in the Library pane.

 ✓ The Debug area has

	 •	Debugger variables in the Variables pane.

	 •	Debugger output in the Console pane.

The following sections tell you about these areas in more detail.

Navigator area navigators
The Navigator area contains a host of navigators that organize the tasks and
components you use within your Xcode project. You use a Navigator selector
bar to select the navigator you need. The following figure shows the various
navigators you can choose from. The navigators you most frequently use are
described in this book. Here is a summary of them:

37 Chapter 2: Getting to Know the SDK

 ✓ Project navigator: Here’s where you manage all the files in your project.
You can add files, delete files, and even organize your files by placing
them into groups. Selecting a file in the Project navigator launches the
appropriate editor in the Editor area.

 ✓ Symbol navigator: Lets you zero in on a particular symbol — an element
such as a variable, method, or function name — in your project. Selecting
a symbol highlights it in the editor.

 ✓ Find navigator: Finds any string within your projects and frameworks.

 ✓ Issue navigator: Displays issues such as diagnostics, warnings, and
errors that arise when you’re coding and building your project.

The following navigators are beyond the scope of this book:

 ✓ Test navigator: Xcode 5 allows you to integrate automated test suites
into your project. Unfortunately, the Test navigator and automated test
suites are beyond the scope of this book, but don’t worry: You can still
build great apps and test them manually.

 ✓ Debug navigator: Displays the call stack — information about what
method has called what method — during program execution.

 ✓ Breakpoint navigator: Manages and edits the breakpoints — markers
you add to your code that stop program execution at a certain point in
your program — in your project or Workspace.

 ✓ Log navigator: Examines the logs that Xcode generates when you run
and debug your app.

Editor area content editors
The Editor area has a number of editors you use to edit specific content.
Content editors are context based where the context is determined by the
type of file you are editing. This means that the selection you make in a
Navigator or Editor jump bar — the toolbar that appears at the top of each
Editor area pane and is used to navigate through the files and symbols in
your project — determines the Content editor. The following bullet list names
each Content editor that is described in this book and outlines the tasks
associated with each one (note that not all tasks are applicable to iOS app
development):

 ✓ Source editor: Write and edit your Objective-C source code; set, enable,
or disable breakpoints; and control program execution.

 ✓ Project editor: View and edit settings such as build options, target archi-
tectures, and code signing.

 ✓ Interface Builder: Graphically create and edit user interface files in sto-
ryboards (and XIB files if you are not using a storyboard).

38 Part I: Getting Started

 ✓ Property list editor: View and edit various types of small, highly struc-
tured property lists (plists). (You’ll use one for some of your program’s
data.)

 ✓ Viewer: Display files for which there is no editor (some audio, video,
and graphics files, for example) using the same Quick Look facility used
by the Finder.

For the sake of completeness, the other content areas that are beyond the
scope of this book are briefly described here:

 ✓ Core Data model editor: Implement or modify a Core Data model.

 ✓ Mapping model editor: Graphically create and edit a mapping between
an old Core Data store and a new one.

 ✓ Script editor: Create and edit AppleScript script files.

 ✓ Scripting dictionary editor: Create and edit the scripting definition
(.sdef) file — used by AppleScript — for your app.

 ✓ Rich text editor: View and edit rich text (.rtf) files, much as you would
with Text Edit.

Utility area
The Utility area has two panes: the Inspector pane and the Library pane.
Part of the Inspector pane is always visible, but you can totally collapse the
Library pane if you want by dragging it to the bottom of the Utility area.

When working within the Inspector pane, you click a button in the Inspector
selector (shown in the following figure) to select a particular inspector. (Note
that a previous navigator selection or Content editor selection may determine
which inspectors are available.) Your choices are as follows:

 ✓ File inspector: For viewing (and managing) file metadata, such as a file-
name, type, and path.

 ✓ Quick Help (second button): For viewing (applicable) details about
what has been selected in an editor, such as an abstract or concise
description, where and how it is declared, and selection-based informa-
tion such as an element’s scope, the parameters it takes, its platform
and architecture availability, references, sample code, and so on. The
following selections are supported:

39 Chapter 2: Getting to Know the SDK

	 •	Symbols, in the Source editor

	 •	Interface objects, in Interface Builder

	 •	Build settings, in the Project editor

Additional inspectors are available in some editors; for example, Interface
Builder offers the following:

 ✓ Identity inspector: For viewing (and managing) object metadata such as
an object’s class, runtime attributes, label, and so forth.

 ✓ Attributes inspector: For configuring the attributes specific to the
selected interface object. For example, some text field attributes include
text alignment and color, border type, and editability.

 ✓ Size inspector: For specifying characteristics such as the initial size and
position of an interface object, its minimum and maximum sizes, and
various autosizing rules for the object.

 ✓ Connections inspector: View the outlets and actions for an interface
object, make new connections, and delete existing connections.
(Connections “connect” your program code to user interface objects you
create in Interface Builder.)

When working within the Library pane, you click a button in the Library
selector bar (shown in the following figure) to select a library of resources
you can use in your project. The following libraries are available:

 ✓ File templates: These templates are for the common types of files listed
as choices in the New File menu. To add a file of that type to your proj-
ect, drag it from the library to the Project navigator.

 ✓ Code snippets: These are short pieces of source code for use in your
app. To use one, drag it directly into your source code file.

 ✓ Objects: This library contains the kinds of interface objects you’d use to
make up your user interface. To add one to a view, drag it directly into
your storyboard or nib file in the Interface Builder editor.

 ✓ Media library: This library contains a whole slew of graphics, icons, and
sound files. To use one, drag it directly to your storyboard or nib file in
the Interface Builder editor.

40 Part I: Getting Started

Debug area
The Debug area is where you’d try to track down the bugs in your code and
squash them. A selection in the Debug area Scope bar determines the infor-
mation the debugger displays as described previously in this section.

The pop-up menu in the Variables Pane Scope bar lets you display in the fol-
lowing ways:

 ✓ Auto: Display recently accessed variables

 ✓ Local: Display local variables

 ✓ All: Display all variables and registers

The pop-up menu in the Console Pane Scope bar lets you display

 ✓ All Output: Target and debugger output

 ✓ Debugger Output: Debugger output only

 ✓ Target Output: Target output only

 You also find other controls and filters for what is displayed; explore them on
your own.

Xcode has extensive contextual help articles that you can view by Control-
clicking in the Workspace window on the item you need help on.

The toolbar and Tab bar
The toolbar (see the following figure) includes Workspace-level tools for man-
aging and running schemes (instructions on how to build your app), viewing
the progress of (executing) tasks, and configuring the Workspace window.

41 Chapter 2: Getting to Know the SDK

That’s a lot of tools, so to keep things straight, it’s best to think of the toolbar
as actually having three parts: A Flow control part, an Activity Viewer part,
and a Workspace Configuration part.

 Flow controls are for defining, choosing, running, and stopping projects. A
scheme defines characteristics such as build targets, build configurations,
and the executable environment for the product to be built in.

The Flow controls are as follows:

 ✓ Run button: Clicking the Run button builds and runs the targets.
(A target, in this context, is the product you want to build as well as the
instructions for building that product from a set of files in a project or
Workspace for the currently selected scheme.) Pressing and holding
the mouse button opens a menu (which is also available in the Product
menu) that allows you to run, test, profile, or analyze your app.

 ✓ Stop button: Terminates your executing app in either the Simulator or
the device.

 ✓ Scheme menu: Lets you select the scheme and build destination to use.

The Activity Viewer part of the toolbar shows the progress of tasks currently
executing. This viewer displays status messages, build progress, and other
information about your project. Click the Issues icon in the Activity viewer to
open the Issue navigator (explained earlier in this chapter, in the “Navigator
area navigators” section).

You use the final part of the toolbar — the Workspace Configuration
part — to configure the Xcode Workspace window to suit your needs. You
can use these controls to select an editor type, show or hide optional view
areas, and open the Organizer window. (See the “Displaying an area’s con-
tent” section, earlier in the chapter, for more on your choices here.)

42 Part I: Getting Started

The Tab bar is great for keeping track of where you’ve been and what
you might want to go back to. Note, however, that showing the Tab bar is
optional. If you decide that the Tab bar is something you just can’t do with-
out, choose View➪Show Tab Bar from Xcode’s main menu. You can reorder
tabs, close them individually, or drag them out of the bar to create a new
window.

 If you lose the toolbar (or Tab bar), you can always add it back to any window
by selecting View➪Show Toolbar (or View➪Show Tab Bar). The View menu
also allows you to configure the Workspace window.

The Organizer window
The Organizer window (see Figure 2-2) enables you to do supplemental
tasks such as accessing documentation and managing devices, archives, and
project-related metadata.

Figure 2-2:
The

Organizer
window.

43 Chapter 2: Getting to Know the SDK

To display the Organizer window, choose Window➪Organizer from Xcode’s
main menu. The Organizer window includes three individual organizers,
which enable you to do the following:

 ✓ Devices organizer: Provision a device, manage your developer profile,
install iOS on the device, and manage your app and data on a device.

 ✓ Projects organizer: Lets you locate your projects without having to
remember where they are in the file system and offers snapshots — a
Save feature that enables you to save different versions of your projects.

 ✓ Archives organizer: Submit your app to the App Store or testers and
manage your product archives.

As you can see in Figure 2-2, the Projects organizer shows a list of projects
at the left. When you select a project, you can see its location on disk, snap-
shots that you may have taken or that Xcode has taken, and perhaps most
importantly, derived data that has been generated by Xcode.

To create a snapshot, choose File➪Create Snapshot. To revert to a snapshot,
choose File➪Restore Snapshot. This will take you back to that version of
your project. This provides similar functionality to the Source Control menu
that lets you work with Git or Subversion.

Derived data is a feature to remember. Xcode caches some intermediate
values during its build process. It actually caches two sets of values. When
you make modifications to your project, you can use Product➪Clean to
remove many of the cached values. (In fact, some developers routinely use
the key combinations to Clean and Build their projects all at once. They are
Control+Shift+K and Control+B.)

In addition to cleaning your project, you can remove the second cache of
values — the derived data you see in Figure 2-2. If you make a change to your
project and don’t see anything different, clean and purge derived data: Often
that will do the trick.

44 Part I: Getting Started

Chapter 3

The Nuts and Bolts of
an Xcode Project

In This Chapter
▶ Getting a handle on your Xcode project

▶ Setting Xcode preferences

▶ Building and running an iPad app

▶ Getting inside the Simulator

▶ Adding application icons and images

T
o use Xcode to create an app, you need to create an Xcode project. An
Xcode project includes all the files, resources, and information required

to build your application. It’s your partner in creating your application, and
the sooner you make friends with it, the easier your life will become.

In this chapter, I show you how to create an Xcode project and then build and
run your app in the Simulator.

Creating Your Project
Because developing an iPhone and/or an iPad app requires you to work in
an Xcode project, it’s time to create one. The app you’ll be building is called
RoadTrip (and will also be the name of the project). The app, as I mention in
the Introduction to this book, is like a travel guide on your iOS device. Here’s
how you get your RoadTrip project off the ground:

 1. Launch Xcode.

 Simply go the Mac App Store, search for Xcode 5, click the Free button,
and then click the Install App button that the Free button transmogrifies
into, and you are done. After the download, you’ll find Xcode in your
Applications folder. Double-click to launch it.

46 Part I: Getting Started

 Here are a couple of hints to make Xcode handier and more efficient
right from the start:

	 •	Create a shortcut. Control-click the Xcode icon that appears in the
Dock and then choose Options➪Keep in Dock. You’ll be using Xcode
a lot, so it wouldn’t hurt to be able to launch it from the Dock.

	 •	Nix the Welcome to Xcode screen if you’d like. When you first launch
Xcode, you see the Welcome to Xcode screen with several links.
(After you use Xcode to create projects, your Welcome screen lists
all your most recent projects in the right column.) If you don’t
want to be bothered with the Welcome screen in the future, dese-
lect the Show This Window When Xcode Launches check box.

 You can also just click Cancel to close the Welcome screen.

 If you ever want to see the Welcome screen again, you can access it
through the Window menu or by pressing Shift+⌘+1.

 2. Click the Create a New Xcode Project link on the left side of the
Welcome screen, or choose File➪New➪Project to create a new project.

 Alternatively, you can just press Shift+⌘+N.

 No matter how you decide to start a new project, you’re greeted by the
Choose a Template for Your New Project sheet (a “sheet” is also known
as a “document-modal dialog”). Its purpose in life is pretty clear: It’s
there to let you choose a new template for your new project. Note that
the leftmost pane has two sections: one for iOS and the other for OS X
(Apple’s name for the Macintosh operating system).

 3. In the upper-left corner of the Choose a Template dialog, select
Application under the iOS heading (if it isn’t already selected).

 After clicking Application, the main pane of the Choose a Template
sheet refreshes, revealing several choices. (See Figure 3-1.) Each choice
is actually a template that, when chosen, generates code to get you
started.

 4. Select Master-Detail Application from the template choices displayed
(as I have in Figure 3-1) and then click Next.

 After you click Next, the Choose Options for Your New Project sheet
appears.

 This Master-Detail Application template provides a starting point for the
appropriately named Master-Detail application. What you get is a skeleton
app with a split view. (I explain all about split views in the “The iPad’s Split
views” section, later in this chapter.) A Split view is what you see in the
Mail application. In Landscape orientation on the left is a Master view, and
on the right is a Detail view. In Portrait orientation, you see the Detail view
with a button that enables you to display the Master view in a popover.

47 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-1:
Choose a
template

first.

 Note that when you select a template, a brief description of the tem-
plate is displayed underneath the main pane. (Again, refer to Figure 3-1
to see a description of the Master-Detail Application template.) In
fact, go ahead and click some of the other template choices just to see
how they’re described as well. Just be sure to click the Master-Detail
Application template again when you’re done, and then click Next, to
follow along with developing the RoadTrip app.

 These template names do change from time to time, so don’t be sur-
prised if yours are a little different from the ones I refer to in this book.
For the most part, the kinds of application they build tend to stay the
same.

 5. In the Choose Options for Your New Project sheet (see Figure 3-2), enter
a name for your new project in the Product Name field, and add a
company name (or your name) in the Organization Name field. For the
Company Identifier, use your reverse domain name (com.yourdomain)
if you have one.

 If you don’t have one, you can make one up as long as you are not going
to be submitting the app to the App Store.

 I named this project RoadTrip. (You should do the same if you’re follow-
ing along with developing RoadTrip.)

48 Part I: Getting Started

Figure 3-2:
Choose
project

options.

 Class prefix is something that will get prepended to the classes the tem-
plate will generate, so enter RT (for RoadTrip) in the Class Prefix field.
Prefixes are most often used to distinguish classes created by different
teams so that if they are combined into a single project at a later date,
duplicate names are avoided. (These are called namespace collisions.)

 6. Select Universal from the Devices Family pop-up menu (if it isn’t
already selected).

 Doing so creates a skeleton app that will be configured to run on the
iPad, iPhone, or iPod touch.

 By choosing Universal, you’re creating an app that can run on iPhone
(and iPod touch) and iPad.

 Any iPhone application will run on the iPad, but it doesn’t work the
other way around unless you create a Universal application.

 I have you select Universal because, with the introduction of story-
boards in iOS 5 and Xcode 4.2, creating a universal application has
become much easier.

 Do not select the Use Core Data check box. (Core Data is not covered in
this book.)

49 Chapter 3: The Nuts and Bolts of an Xcode Project

 7. Click Next and choose a location to save the project (the Desktop or
any folder works just fine), do not select the Source Control: Create
Local Git Repository check box, and then click Create.

 Git is a software control management (SCM) system that keeps track
of changes in the code and saves multiple versions of each file on your
hard drive. Git can be used as a local repository — thus the Create Local
Git Repository for This Project option — or you can install a Git server
on a remote machine to share files among team members. Git is beyond
the scope of this book — but if you want to find out more about it, check
out the Xcode 5 User Guide (choose Help➪Xcode User Guide).

 After you click Create, Xcode creates the project and opens the
Workspace window for the project — which should look like what you
see in Figure 3-3.

 Xcode will remember your choices for your next project.

Figure 3-3:
The Xcode

Workspace
window.

50 Part I: Getting Started

Exploring Your Project
Not to sound like a broken record, but to develop an iOS app, you have to
work within the context of an Xcode project, very much like the one shown
in Figure 3-3. This is, in effect, Command Central for developing your app; it
displays and organizes your projects, source files, and the other resources
needed to build your apps.

The project
 If the project isn’t open, go ahead and open it in Xcode by tracking down the

project file — on the Desktop, in a folder, wherever — and double-clicking it.
When your project is launched in Xcode, the Navigator area appears on the
left side of the Workspace window. When using the Master-Detail Application
template — you did select the Master-Detail Application template when you
created your project, right? — the following options may be selected for you
by default:

 ✓ The Utility and Debug areas are hidden.

 ✓ The Navigator area is shown, with the Project navigator selected by
default in the Navigator selector.

 ✓ The project (RoadTrip, in this case) is selected in the Project navigator.

And as a result, the Project editor displays the RoadTrip project information
in the Standard editor.

Long story short, when you launch your RoadTrip project in Xcode, what you
see in the editor is the Project editor displaying the RoadTrip project.

 When I refer to (or ask you to select) the RoadTrip project in the Project
Navigator, I am referring to the RoadTrip project that you see selected in
Figure 3-3.

The Project editor
 Having your RoadTrip project selected in the Navigator area’s Project naviga-

tor (refer to Figure 3-3) sets a couple of balls rolling. In the first column of the
Project editor, under the Project heading, you see the project itself. (A work-
space can actually have more than one project, but you won’t be doing that in
this book. One common use for a multi-project workspace is one that contains

51 Chapter 3: The Nuts and Bolts of an Xcode Project

an iOS project, an OS X project, and some shared files.) A bit below the Project
heading, you see the Targets heading. (Yes, there’s room for more than one
target here as well.) Any project you create defines the default build settings
for all the targets in that particular project. (Note that each target can also
specify its own build settings, which could potentially override the project
build settings.)

A target is really just the app (the product you are building) and includes
the information that Xcode requires to build the product from a set of files
in a project or workspace — stuff like the build settings and build phases
which you can see and edit in the Xcode project editor. A target inherits the
build settings for the project, but you can override one or more of them by
specifying different settings at the target level. There is one active target at
a time, with the Xcode scheme (iPad Simulator for example) specifying the
target.

The Project editor shows tabs across the top; clicking these tabs opens
panes that enable you to examine and change project settings. Most of the
default settings will work for your needs. The tabs are as follows:

 ✓ General: There are five sections in General. Each can be opened and
closed with the disclosure triangle next to its name. Most of the time all
start opened. Here they are:

	 •	Identity: This section is filled in automatically, but each value can
be changed. For now, leave the defaults. It contains your app’s
bundle identifier, which is a unique identifier built from your organi-
zation name and project name, a version (1.0 to start) and a build
(1.0 to start). You can select a development team (there’s more
on this later in this chapter in the section “Setting Your Xcode
Preferences”). You may see a warning saying “No matching code
signing identity found” or a similar warning with regarding to pro-
visioning profiles. You can safely ignore it for now.

	 •	Deployment Info: This is the deployment target (the minimum iOS
version you’re writing for) as well as which devices you support
(the default is Universal). For each device, you can specify the
interface, which orientations you support, and the status bar style.
For starters, simply leave the default values.

	 •	App Icons: This section lets you specify where the icons are. Before
Xcode 5, the names determined which icon was which. Now, asset
catalogs let you provide your own names even as you place the
images in a structured interface. Asset catalogs are discussed in
“Using Asset Catalogs” later in this chapter. You can still provide
individual images, but the asset catalogs are easier for newcomers
as well as experienced developers.

52 Part I: Getting Started

	 •	Launch Images: These are the images that are shown as the app is
launching. They, too, can be stored in asset catalogs.

	 •	Linked Frameworks and Libraries: These are the iOS frameworks
that you need to use. The Master-Detail Application template
automatically includes CoreGraphics, UIKit, and Foundation. Don’t
worry about these for now: just leave them there.

 ✓ Capabilities: This is where you turn various features on and off. Each
one can be opened or closed with a disclosure triangle. An on-off switch
at the right controls each capability. Most have a description of the
capability along with a notice about what will happen if you turn the
capability on. In this book, I focus on the common features do not use
any of the advanced capabilities.

 ✓ Info: If you actually created the RoadTrip project earlier in this chapter
and were then to open the disclosure triangle next to the Supporting
Files folder in the Project navigator, you’d see a file called RoadTrip-
Info.plist. The Info tab contains more or less the same information
as that file. An information property list file contains essential configura-
tion information for a bundled executable (the executable code and the
accompanying resources, such as the storyboard, nibs, images, sounds,
and so on). The system uses these keys and values to obtain information
about your application and how it’s configured. As a result, all bundled
executables (plug-ins, frameworks, and applications) are expected to
have an information property list file.

 There also are sections where you can specify the types of documents
your app can read and write. RoadTrip doesn’t use documents, so you
don’t need to worry about the settings on this section.

 ✓ Build Settings: Most developers can get by with the default build set-
tings, but if you have special requirements — ones that require anything
from tweaking a setting or two to creating an entirely new build configu-
ration — you’ll take care of them in this tab.

 ✓ Build Phases: This tab has a number of sections that control how Xcode
builds your products. For example, Xcode detects when one of your
products is dependent on another and automatically builds those prod-
ucts in the correct order. However, if you need to tweak the order in
which Xcode builds your products, you can use the Build Phases tab to
create explicit target dependencies.

 ✓ Build Rules: Xcode processes your source files according to file type
using a set of built-in rules. For example, property list (plist) files are
copied into the product using the CopyPlistFile script located in the
Xcode directory. Because the built-in rules are fine for almost all cir-
cumstances, you won’t need to mess with this particular tab for a long
time — and if you’re lucky, never.

53 Chapter 3: The Nuts and Bolts of an Xcode Project

The Project navigator
After your project is created, the Xcode workspace displays the Project
 navigator. I introduce the Project navigator in Chapter 2, but give you a
full tour here.

 Xcode has a lot of context-based help. Whenever you’re curious about what
something does, try Control-clicking on it, and you’ll likely find a menu with
relevant commands including Help. In Figure 3-4, for example, I Control-clicked
in the Project navigator to bring up a shortcut menu from which I can choose
the Project Navigator Help menu.

Figure 3-4:
Project

navigator
help.

 The Navigator area is an optional area on the left side of the Workspace
window where you can load different navigators — including the Project navi-
gator — with the help of the Navigator selector. To hide or show the Navigator
area, click the left View selector button in the workspace toolbar, shown in
Figure 3-5.

54 Part I: Getting Started

Figure 3-5:
The View

selec-
tor in the

workspace
toolbar.

The Navigator area includes the Navigator selector bar, the Content area,
and the Filter bar. It can also include other features specific to the selected
navigator.

 The Project navigator enables you to do things like add, delete, group, and
otherwise manage files in your project or choose a file to view or edit in the
Editor area. (Depending on which file you choose, you’ll see the appropriate
editor.) In Figure 3-6, for example, you can see that I’ve decided to open all
the disclosure triangles so that the Project navigator displays all the files in
the project.

The Filter bar lets you restrict the content that’s displayed — such as recently
edited files, unsaved files, or filenames.

Making your way down the group structure shown in the Project navigator
(refer to Figure 3-6), the first group listed is labeled RoadTrip.

 “What?” you may be saying. I see folders just like in the Finder. “What are
these groups?” In the Project navigator, you can group files together. They are
shown using folder icons just as in the Finder, but they are Xcode groups. The
files may be in different folders on disk.

The RoadTrip group contains all the source elements for the project, includ-
ing source code, resource files, graphics, and a number of other pieces that
will remain unmentioned for now (but I get to those in due course). Although
each template organizes these source elements in different ways, the Master-
Detail Application template organizes the interface header and implemen-
tation code files (along with the Storyboard file(s) and a Supporting Files
folder) inside the RoadTrip group. (For good measure, the RoadTrip group
also includes a Frameworks folder and a Products folder.)

55 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-6:
The

RoadTrip
Project

navigator.

56 Part I: Getting Started

Here’s the kind of stuff that gets tossed into groups for projects like the
RoadTrip project:

 ✓ AppDelegate files: The AppDelegate.h and AppDelegate.m files con-
tain the code for app-specific behavior that customizes the behavior of a
framework object (so that you don’t have to subclass it — as I describe
in Chapter 6). A behavior-rich framework object (used as-is) delegates
the task of implementing one of its responsibilities to an application
delegate for a very specific behavior. The delegation pattern of adding
behaviors to objects is described in more detail in Chapter 6.

 ✓ Storyboard: The storyboard files live in your project as the Main_
iPad.storyboard file and the Main_iPhone.storyboard file (for a
universal app), or just as a lone Main_whatever.storyboard file (for
a device-specific app). With a storyboard, you can create and implement
an overall view of the flow of your application and the user interface ele-
ments. I go into great detail on storyboards in Chapter 4. Soon you’ll like
the .storyboard files as much as I do.

 ✓ View controllers: The MasterViewController.h and MasterView
Controller.m files contain the code to control the initial view of the
RoadTrip (based on the Master-Detail Application template). You’ll do a
lot more with view controllers in later chapters.

 ✓ Supporting Files: In this folder, you typically find the precompiled
headers (header files that are compiled to reduce your applica-
tion compilation time) of the frameworks you’ll be using — such as
RoadTrip_Prefix.pch — as well as the property list (RoadTrip-
Info.plist) and main.m, your application’s main function. You
may even find images and other media files, and some data files. The
InfoPlist.strings file is used for localization (translating the text in
your app to the user’s language preference). Default values are provided
in your Info.plist file for items such as the copyright and the app
name; InfoPlist.strings then provides language-specific versions
of the values in <yourApp>-Info.plist. Each language has its own
InfoPlist.strings in a folder for that language.

 ✓ Frameworks: This folder holds the code libraries that act a lot like
prefab building blocks for your app. (I talk about frameworks in
Chapter 4.) By choosing the Master-Detail Application template, you
let Xcode know that it should add the UIKit, Foundation, and
CoreGraphics frameworks to your project, because it expects that
you’ll need them in this kind of application.

 You’ll be adding more frameworks yourself in addition to these three in
developing RoadTrip. You find out how to add more frameworks in
Chapter 8.

57 Chapter 3: The Nuts and Bolts of an Xcode Project

 ✓ Products: The Products folder is a bit different from the others. In it,
you’ll find the final RoadTrip.app file — not the source code of the
app, but rather the built version of the app, which means that it has been
translated from the source code into the object code for the iOS device’s
processor to execute. At the moment, this file is listed in red because
the file can’t be found.

 When a filename appears in red, this means that Xcode can’t find the underly-
ing physical file. And because you’ve never compiled the RoadTrip app, it
makes sense that the RoadTrip.app file (the app itself) is missing.

Setting Your Xcode Preferences
Xcode gives you options galore. I’m guessing that you won’t change any of
them until you have a bit more programming experience under your belt, but
a few options are actually worth thinking about now — so in this section, I
show you how to set some of the preferences you might be interested in.

Follow these steps to set some of the preferences you’ll find useful:

 1. With Xcode open, choose Xcode➪Preferences from the main menu.

 2. Click the Behaviors tab at the top of the Preferences window to show
the Behaviors pane.

 The Xcode Preferences window refreshes to show the Behaviors pane.

 The left side of the pane shows the Events pane (the check marks indi-
cate events for which settings are set), while the right side shows the
possible actions for an event.

 3. Select (Running) Generates output in the left column and then choose
the Show, Hide, or If No Output Hide option from the Debug area
pop-up menu to the left of the debugger in the right pane.

 This step controls what appears while you run your app. By default,
you’ll find that the check box for showing the debugger in the Debug
area is selected. (See Chapter 8 for more about debugging.)

 4. Select other options from the left column — perhaps (Build) Starts,
(Build) Generates new issues, (Build) Succeeds, and (Build) Fails —
and experiment with the options available.

 You can link an event with playing a sound (something I like to do) or
have an event trigger the Xcode icon bouncing up and down in the Dock.
You can change many options in the Behaviors pane — too many to cover
in this chapter! But take a look through them and experiment — they can
make your life much easier.

58 Part I: Getting Started

 Figure 3-7 shows the behaviors I have chosen if the run pauses. (By pause,
I mean the run hits, say, a breakpoint; I cover breakpoints in Chapter 8.)
I like to have a sound inform me in case I’m busy daydreaming (sosumi
seems like the appropriate sound to play here).

Figure 3-7:
Setting

behaviors.

 Figure 3-8 shows the behaviors I have chosen if a build fails. I like to use
a sound for this occurrence as well. I also want to have the Issue naviga-
tor display. (See Chapter 8 for more about the value and use of the Issue
navigator.) I also want it to navigate to the first new issue.

 5. Click the Downloads tab at the top of the Preferences window.

 6. Select the Check for and Install Updates Automatically check box, and
then click the Check and Install Now button.

 This step ensures that the documentation remains up-to-date and allows
you to load and access other documentation.

 7. (Optional) Click the Fonts & Colors tab at the top of the Preferences
window and use the options to change your workspace theme.

 As you click the various theme options, you see a preview in the center
of the window.

59 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-8:
Choosing

a behavior
for when a
build fails.

 8. (Optional) Click the Text Editing tab at the top of the Preferences
window and set your text editing preferences.

 I set the Indent width to 2 in the Indentation settings to get as much
code on a line as possible.

 9. Click the red Close button in the top-left corner of the window to close
the Xcode Preferences window.

Building and Running Your Application
 The Xcode toolbar (see Figure 3-9) is where you do things like run your appli-

cation. I spell out the process a bit more here.

60 Part I: Getting Started

Figure 3-9:
The Xcode

toolbar.

The Flow controls are for defining, choosing, running, and stopping projects.
They consist of the following:

 ✓ Run button: Clicking the Run button builds and runs the targets — a
target is a product to build and the instructions for building the product
from a set of files in a project or workspace for the currently selected
scheme. Pressing and holding the mouse button opens a menu — also
available in the Product menu — that allows you to run, test, profile, or
analyze your application.

 Holding various modifier keys while clicking and holding the Run button
allows you to select these other run options:

 Control key: Run, test, or profile without building

 Shift key: Build for running, testing, or profiling

 Option key: Run, test, or profile

 Regardless of the modifier key, Analyze is an option in each case.

 ✓ Stop button: Terminates your (executing) application in the Simulator or
the device.

 ✓ Scheme menu: A scheme defines characteristics such as build targets,
build configurations, and the executable environment for the product
to be built. The scheme menu lets you select which scheme and which
build destination you want to use. (I describe schemes in greater detail
in the next section of this chapter.)

The Activity viewer shows the progress of tasks currently executing by dis-
playing status messages, build progress, and other information about your
project. For example, when you’re building your project, Xcode updates the
Activity viewer to show where you are in the process — and whether the

61 Chapter 3: The Nuts and Bolts of an Xcode Project

process completed successfully. If an Issues icon appears in the Activity
viewer, click it to open the Issues navigator and look there for messages
about your project. (None exist yet in Figure 3-9, so you won’t see an Issues
icon there.)

The Workspace configuration includes the Editor and View controls (which I
explain in Chapter 2).

Building an app
Building an app in Xcode means compiling all the source code files in the
project. It’s really exciting (well, I exaggerate a bit) to see what you get when
you build and run a project that you created from a template. Building and
running an app is relatively simple; just follow these steps:

 1. In the toolbar, choose a scheme from the Scheme pop-up menu
located to the right of the Run and Stop buttons.

 A scheme tells Xcode the purpose of the built product. The schemes in
the Scheme pop-up menu specify which targets (actual products) to build,
what build configuration to use when building them, which debugger to use
when testing them, and which executable to launch when running them on
the device or Simulator. You can use the default RoadTrip scheme for now.

 2. From the selected scheme, hold down the mouse button and slide to
the right to choose your device or the simulator.

 Choose one of the installed simulators. Do not choose iOS Device
because that will run on a connected iPhone or iPad, and you need fur-
ther preparation to do that.

 3. Choose Product➪Run from the main menu to build and run the
application.

 You can also click the Run button in the top-left corner of the Workspace
window. The Activity viewer (shown in Figure 3-9) tells you all about the
build progress, flags any build errors (such as compiler errors) or warn-
ings, and (oh, yeah) tells you whether the build was successful.

Figure 3-10 shows you what you’ll see in the Simulator (in the Portrait mode)
when you tap the Master button. (The Master button is located in the view
that’s underneath the master view controller at the left of Figure 3-10. Its pur-
pose is to show the master view controller you see in Figure 3-10.) I know it’s
not much to look at, but it’s a start — and it is a functioning iPad app.

62 Part I: Getting Started

Figure 3-10:
Not much of

an app, but
it is yours.

If you rotate the Simulator by choosing Hardware➪Rotate Left, in the Simulator
menu, you see a nice Split view (as shown in Figure 3-11). (I talk more about
the mechanics behind this — the use of a Split view controller — in the next
section, and in even more detail in Chapter 13.)

63 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-11:
Your app in
landscape

mode.

The iPad’s Split views
Although it’s true that on the iPhone, you often see only one view at a
time, on the iPad you get to see two views, courtesy of the Master-Detail
Application template (and something called a Split view controller, which I
explain in detail in Chapter 13). If you take another look at Figure 3-11, you
can see what I’m talking about. The view on the left displays what is called
the Master view. Although technically it could be any type of view you’d like,
in the case of the Master-Detail Application template, you get something
called a Table view, which displays a list of what are referred to as cells,
entries, or rows. On the left side of Figure 3-12, I tapped the + button and you
see a timestamp (in Coordinated Universal Time [UTC], the primary time
standard and the successor to Greenwich Mean Time [GMT]) in the first
cell in the master view. When I tap that cell, as I have on the right side of
Figure 3-12, the same timestamp is displayed in the detail view and the cell is
highlighted in the master view.

64 Part I: Getting Started

Figure 3-12:
Splits aren’t

just for
bananas.

All the detail view does right now is display “Detail view content goes here.”
Well, that’s not all it does. When you rotate the iPad into portrait mode, it’s
also responsible for both displaying a nice Master button as well as for dis-
playing the Master view in the popover that you see when you tap the nice
Master button. (Refer to Figure 3-10.)

In landscape view, the master view on the left side also includes a toolbar
with Edit and + bar button items that allow the user to modify content in this
particular example program.

Again, it probably doesn’t seem like much, but (as you’ll see when I explain
the RoadTrip app in Chapter 4), this is pretty much all the “infrastructure”
you’ll need to put together a really cool app.

The Log navigator
If you want to look at how the build works, now is as good a time as any to
explain how the Log navigator works.

 Xcode generates a series of logs during the build process, which meticu-
lously record the actions performed. You can view these logs by selecting
the Log navigator, either by using the Navigator selector or by choos-
ing View➪Navigators➪Show Log Navigator from Xcode’s main menu. In
Figure 3-13, you can see a log of all my recent builds.

65 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-13:
Build

results.

The Log navigator lists these two types of actions:

 ✓ Tasks: The Task log lists all the operations Xcode performed to carry out
the task, such as building operations, archiving operations, and source
control operations.

 ✓ Sessions: A Session log is the transcript of the events that occurred
during a session (a period during which an activity is performed).
Running or debugging an application, for example, generates a session
log that would include all debugger output.

The Log navigator contains the Task and Session list. When you select an
item in this list, the corresponding log appears in the Log viewer. You can
filter this list with the Filter bar.

It turns out you won’t need to use the Log navigator for the sample app in
this book, simply because I have you examine all debug activity in the Debug
area instead and any task-related issues in the Issue navigator.

 The ultimate success (or failure) of your build is also displayed in the Activity
viewer.

66 Part I: Getting Started

Running in the Simulator
When you run your app, Xcode installs it on the Simulator (or on a real
device if you specified a device as the active SDK) and launches it. Using the
Hardware menu and your keyboard and mouse, the Simulator mimics most of
what a user can do on a real device, albeit with some limitations that I point
out shortly.

At first, the iPad Simulator looks like any iPad model would — kind of like
what you can see back in Figure 3-11.

Interacting with your simulated hardware
Any simulator worth its salt has to be able to duplicate the actions you’d
expect from a real device. The Xcode Simulator — no surprise here — can
mimic a wide range of activities, all accessed from the Simulator Hardware
menu. The Hardware menu items allow you to control various simulator
behaviors, including

 ✓ Choose a device. Switch the simulated device to an iPad, any model
iPhone, or the Retina display found on iPhone 4, iPhone 4S, and fourth-
generation iPod touch models.

 ✓ Choose a version. Switch to a different version of iOS.

 ✓ Rotate left. Choosing Hardware➪Rotate Left rotates the Simulator to the
left. If the Simulator is in Portrait view, it changes to Landscape view; if
the Simulator is already in Landscape view, it changes to Portrait view.

 ✓ Rotate right. Choosing Hardware➪Rotate Right rotates the Simulator
to the right. Again, if the Simulator is in Portrait view, it changes to
Landscape view; if the Simulator is already in Landscape view, it changes
to Portrait view.

 ✓ Use a shake gesture. Choosing Hardware➪Shake Gesture simulates
shaking the device.

 ✓ Go to the Home screen. Choosing Hardware➪Home does the
expected — you go to the Home screen.

 ✓ Lock the Simulator (device). Choosing Hardware➪Lock locks the
Simulator, which then displays the Lock screen.

67 Chapter 3: The Nuts and Bolts of an Xcode Project

 ✓ Send the running app low-memory warnings. Choosing
Hardware➪Simulate Memory Warning fakes out your app by sending it a
(fake) low-memory warning.

 ✓ Simulate the hardware keyboard. Choose Hardware➪Simulate Hardware
Keyboard to check out how your app functions when the device is con-
nected to an optional physical keyboard dock or paired with a Bluetooth
keyboard.

 ✓ Choose an external display. To bring up another window that acts like
an external display attached to the device, choose Hardware➪TV Out
and then choose 640 x 480, 1024 x 768, 1280 x 720 (720p), or 1920 x 1080
(1080p) for the window’s display resolution. Choose Hardware➪TV
Out➪Disabled to close the external display window.

Making gestures
On the real device, a gesture is something you do with your fingers to make
something happen in the device — a tap, a drag, a swipe, and so on. Table 3-1
shows you how to simulate gestures using your mouse and keyboard.

Table 3-1 Gestures in the Simulator
Gesture iPad Action
Tap Click the mouse.

Touch and
hold

Hold down the mouse button.

Double tap Double-click the mouse button.

Two-finger
tap

1. Move the mouse pointer over the place where you want to start.

2. Hold down the Option key, which makes two circles appear that
stand in for your fingers.

3. Click the mouse button.

Swipe 1. Click where you want to start and hold down the mouse button.

2. Move the mouse slowly in the direction of the swipe and then
release the mouse button.

Flick 1. Click where you want to start and hold the mouse button down.

2. Move the mouse quickly in the direction of the flick and then
release the mouse button.

(continued)

68 Part I: Getting Started

Gesture iPad Action

Drag 1. Click where you want to start and hold down the mouse button.

2. Move the mouse slowly in the drag direction.

Pinch 1. Move the mouse pointer over the place where you want to start.

2. Hold down the Option key, which makes two circles appear that
stand in for your fingers.

3. Hold down the mouse button and move the circles in (to pinch) or
out (to unpinch).

Uninstalling apps and
resetting your device
You uninstall applications on the Simulator the same way you do on the iPad,
except you use your mouse instead of your finger. Follow these steps:

 1. On the Home screen, place the pointer over the icon of the app you
want to uninstall and hold down the mouse button until all the app
icons start to wiggle.

 2. Click the app icon’s Remove button — the little x that appears in the
upper-left corner of the icon — to make the app disappear.

 3. Click the Home button (use Hardware➪Home) to stop the other app
icons from wiggling and finish the uninstall.

 On a separate note, you can always reposition an app’s icon on the Home
screen by clicking and dragging it around with the mouse.

You can remove an application from the background the same way you’d do
on the iPad, except that you use your mouse instead of your finger. Follow
these steps:

 1. Simulate double-tapping the Home buttons with the keyboard
 equivalent Shift-Command-H twice.

 2. Scroll left and right with the mouse to locate the app you want to stop.

 3. Drag the view of the app up and out of the horizontal scrolling
list of apps.

 To reset the Simulator to the original factory settings — which also removes
all the apps you’ve installed — choose iOS Simulator➪Reset Content and
Settings, and then click Reset in the warning dialog that appears.

Table 3-1 (continued)

69 Chapter 3: The Nuts and Bolts of an Xcode Project

You have some of the basic apps installed on the Simulator — these include
Settings. You can use Settings just as you do on an iOS device. This is particu-
larly useful if you want to set an Apple ID for the Simulator to use. One reason
for doing this would be to use the Simulator to test iCloud code in an app
you have written. The app on the Simulator will use the Apple ID you have
specified in Settings rather than the Apple ID under which you may be run-
ning on your app. iCloud on the Simulator is a new feature in iOS 7. This book
doesn’t go into iCloud, but rest assured that when you’re ready to go there,
the Simulator will be ahead of you.

Living with the Simulator’s limitations
Keep in mind that, despite the Simulator’s many virtues, running apps in
the Simulator is still not the same thing as running them on an iOS device.
Here’s why:

 ✓ Different frameworks: The Simulator uses OS X versions of the low-
level system frameworks, instead of the actual frameworks that run on
the device. That means that occasionally some code may run fine in the
Simulator but not on actual iOS devices. Although the Simulator is useful
for testing functionality, there’s no substitute for debugging the app on
the device itself if you want to find out how it will really run.

 ✓ Different hardware and memory: The Simulator uses the Mac hardware
and memory. To accurately determine how your app will perform on an
honest-to-goodness iOS device, you have to run it on a real iOS device.

 ✓ Different installation procedure: Xcode installs your app in the
Simulator automatically when you build the app using the iOS SDK. It’s a
different kettle of fish to install your app on the device for testing. And,
by the way, you don’t have a way to get Xcode to install apps from the
App Store in the Simulator.

 ✓ Lack of GPS: You can’t fake the Simulator into thinking that it’s lying on
the beach at Waikiki.

 You can, however, choose to simulate a location in the Debug area.

 ✓ Two-finger limit: You can simulate a maximum of two fingers. If your
application’s user interface can respond to touch events involving more
than two fingers, you need to test that on an actual device.

 ✓ Accelerometer differences: You can access your computer’s accelerom-
eter (if it has one) through the UIKit framework. Its reading, however,
will differ from the accelerometer readings on an actual iPad (for some
technical reasons that I don’t have the space to go into).

 ✓ Differences in rendering: OpenGL ES (Open Graphics Library for
Embedded Systems, in other words) is one of the many 3D graphics
libraries that works with the iOS SDK. It turns out that the renderers it

70 Part I: Getting Started

uses on devices are slightly different from the ones it uses in the iOS
Simulator. As a result, a scene on the Simulator and the same scene on a
device may not be identical at the pixel level.

 ✓ Telephony: You can’t make a phone call on the iPhone simulator.

Using Asset Catalogs
Now that there are several screen sizes for iPhones and (currently) two reso-
lutions, your images need to be managed in a more sophisticated way than
in the past. Initially, images had specific names that indicated if they were
icons, launch images, or other images. With Xcode 5, things are much simpler
because instead of relying on naming conventions, you use asset catalogs.

Images inside an asset catalog are divided into sets. Each set contains one or
more image representations. You create an asset catalog by creating a new file
(File➪New➪File) and choosing Asset Catalog from the Resource section at
the left of the window.

Figure 3-14 shows an asset catalog with three image sets in it — AppIcon,
Launch Image, and MyImage. The navigation at the left of the workspace
window and the Utility area at the right are hidden. Inside the Editor area are
two columns. At the left of the Editor area, a list of the sets is shown.

 1. Select the image set you want to work with in the set list.

 In Figure 3-14, the App Icon set is selected. To follow along, select it now.

 2. Notice that the set viewer (the right-hand column in the asset catalog)
now reflects the images of the selected set (AppIcon in this case).

 There may be several representations of a single image reflecting the
appropriate idioms (iPhone or iPad).

 3. If you want, you can change the name of the set either in the Status
area or by double-clicking and editing the name in the set list.

 You can also specify which representations (iPad, iPhone, Mac) you
want to use at the top of the Status area and the appropriate scales for
each (1x for non-Retina and 2x for Retina displays).

 4. Select the representation you want to work with in the Editing area.

 The Status area at the right of the workspace window reflects the details
for the selected representation below the set information.

71 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-14:
Look inside

an asset
catalog.

An asset catalog can contain four types of images:

 ✓ App icons: You may think you have a single app icon, but you would
be wrong. You actually have an app icon image set with a multitude of
idioms and scales. Each representation has its size shown both in the
Editor area and in the Status area so that you know what you should be
working with. (Remember that app icons are square, so only one dimen-
sion is provided.) It is best not to rename this set.

 ✓ Launch images: These are images that are shown as early as possible in
the app’s launch. They should provide the background of the first screen
the user sees. When the launch is completed, the actual screen and its
data appear. The effect is that the background is drawn and relevant
text and graphics are drawn on top of it. There’s a launch image set in
the Master-Detail template so you can explore it. Note that in the Status
area, you can specify the details of the launch images, including not only
the idiom but also the orientation. These are check boxes: You only have
to provide the ones you choose. It is best not to rename this set.

72 Part I: Getting Started

 ✓ Images: These are all the other images in your app. Using the button at
the lower right of the Editor area, you can show the overview that lets
you edit the representations for a specific image set (by defaults, there
are two idioms and two scales, but this may well change over time). You
can also look at image slicing, but that is an advanced topic that I don’t
cover in this book. Each image will have its own image set.

 ✓ OS X icons: For completeness, these are mentioned, but in this book,
I focus on iOS.

You can see the representations for launch images in Figure 3-15.

You drag your images from your disk into the appropriate representation of
the appropriate set. For app icons and launch images, if the image you try to
drag is the wrong size, you will get an error. Note that for both app icons and
launch images, there are different images for the different devices. Also note
that there are separate versions for Retina (2X) and non-Retina (1X) displays.

If you are using one of the Xcode templates, you will have an asset catalog
(usually called Images.xcassets) with an icon and launch images. You
can add your own image sets to it. Figure 3-16 shows an image set called
MyImage added to Images.xcassets. It has Retina and non-Retina display
representations for Universal, iPhone, iPad, and Mac. (There is also a Retina
display for the iPhone 4.)

Figure 3-15:
Look at
launch

images.

73 Chapter 3: The Nuts and Bolts of an Xcode Project

Figure 3-16:
Add your

own image
set.

You can choose the representations you want for your image set using the
Editor➪Device Image Reps submenu, as shown in Figure 3-17.

Many developers don’t modify the template’s asset catalog which contains
the launch images and app icons. Instead, they create a separate asset cata-
log for their own image sets. Here’s how to do that:

 1. Choose File➪New➪File.

 2. In the dialog that appears, select Resource under iOS at the left.

 3. Select Asset Catalog.

 4. Name and save the file in your project.

 If you want, you can place the file in the Supporting Files group in your
project (or anywhere else you choose).

Pre-Xcode 5 code for manipulating images was not pretty. Today, after you
have set up your image catalog(s), you simply select the image set name that
you want (often from a pop-up menu in the Utility area of a storyboard). At
runtime, the appropriate image is chosen for you depending on the device
in use. You don’t have to do anything but use the image set name: iOS will
choose the correct file.

74 Part I: Getting Started

Figure 3-17:
Choose your
image reps.

Adding the Image and Sound
Resources and an App Icon

As a starter, you can download image and sound resources as well as an app
icon. Here are the steps:

 1. Download the iOS 7 RoadTrip Resources folder from this book’s
 companion website.

 To find out how to access this book’s companion website, please see the
Introduction. Store the folder somewhere handy where you’ll be sure to
find it again.

 This folder includes not only the application icon, but also a number of
other resource files (images and sound) you’ll be using in your
application.

 You’ll start by adding the resources you’ll need.

75 Chapter 3: The Nuts and Bolts of an Xcode Project

 2. Control-click RoadTrip project in the Project Navigator, choose Add
Files to “RoadTrip” from the contextual menu, use the dialog that
appears to navigate to the RoadTrip Resources folder you down-
loaded, and then select non-image resources to add, such as sound
files (.aif files). Choose File➪Add Files to RoadTrip and pick the
sound files.

 Xcode asks you (via a check box in the aforementioned dialog) whether
you want to make a copy of the file. If you don’t select the check box,
Xcode creates a pointer (alias) to the file. The advantage of using an
alias is that if you modify the file later, Xcode will use that modified ver-
sion. The disadvantage is that Xcode won’t be able to find the file if you
move it.

 3. Select the Copy Items into Destination Group’s Folder (If Needed)
check box, make sure the check box in front of Road Trip in the Add
to Targets section is selected, and then click Add to copy the files.

 This adds the sound files you need.

 You can also drag sound files into the Project navigator.

 4. Create an image set for each named image and drag the appropriate
representations (iPhone and iPad, for example) to that image set.

 Note that these are a starter set of images. You will not have all the
representations. For your own app, it’s important to have all relevant
representations.

76 Part I: Getting Started

Part II
Building RoadTrip

 Visit www.dummies.com/extras/iosappdevelopment for more tips on
building a great iOS app interface.

http://www.dummies.com/extras/iosappdevelopment

In this part . . .
 ✓ Getting to know storyboards

 ✓ Developing a user interface

 ✓ Managing memory and using properties

 ✓ Working with the source editor

Chapter 4

Storyboards and the User
Experience

In This Chapter
▶ Introducing the storyboard

▶ Exploring the RoadTrip app

▶ Understanding the Model-View-Controller design pattern

▶ Knowing what’s available in UIKit and the other frameworks

▶ Examining how the Model-View-Controller design pattern is implemented in your app

A
s I mention in the Introduction, my goal for this book is for you to
understand the right way to develop apps for the iPhone and iPad.

Because you’ll be using the knowledge I impart to you to develop my
RoadTrip app, now is probably a good time to explain the app — what it actu-
ally does, how it is organized, and what the program architecture looks like.

 One thing that makes iOS software development so appealing is the richness
of the tools and frameworks provided in the iOS Software Development Kit
(SDK). In this regard, the frameworks are especially important. Each one is a
distinct body of code that actually implements your app’s generic functional-
ity — in other words, frameworks give the app its basic way of working. This is
especially true of one framework in particular: the UIKit framework, which is
the heart of the user interface.

In this chapter, you get an overview of the iOS user interface architecture,
meaning you’ll find out what the various pieces are, what each does, and how
they interact with each other. The idea here is for this chapter to lay the
groundwork for developing the RoadTrip app’s user interface, while succeed-
ing chapters take you to the next level(s).

I also go through what classes and frameworks are available in the SDK — well,
at least the main ones you’ll need to know about in order to build the RoadTrip
app, as well as a number of other classes and frameworks any self-respecting

80 Part II: Building RoadTrip

app developer would need to know in order for her to build her own apps. For
added measure, I also talk about something Apple calls design patterns, or pro-
gramming paradigms that the frameworks are based on.

But the place I want to start is a feature that is typical of Apple in its devel-
opment process: a way to visually lay out your app’s interface and the
sequencing of screens. The technology is called storyboarding or storyboards,
depending on whether you want to focus on the process or the tool.

Apple didn’t invent storyboards. According to Wikipedia, storyboards were
used by Constantin Stanislavski in preparing his production of Anton Chekhov’s
The Seagull in 1898 and were popularized by Walt Disney in the 1930s.
Storyboards moved from live theater to animated films and on to Gone with
the Wind in 1939. The engineers and designers at Apple recognize an effi-
cient tool when they find it. True to form, they adopted storyboards and
improved on the basic concept.

Introducing the Storyboard
I really like Xcode’s Storyboard feature. When I saw a storyboard for the
first time, it was like a dream come true. (Well, okay, not quite.) To me, the
Storyboard feature represented exactly what I needed — not only for building
my own apps, but also for teaching other people how to build their own apps.

Using a storyboard is analogous to sketching the user interface and app flow
on a white board, and then having that sketch turn into something your app
can use. This last part is what’s really important to you. Your sketch is not a
free-form drawing. Rather, you assemble graphical elements such as buttons
and views using the library of such objects in the Utility area. At build time,
these graphical elements turn into their corresponding functional elements
on the screen. As you proceed through this chapter, you’ll see how you make
the connection between the graphical element and the code-based element.
That’s where the magic of storyboards happens.

Working with a storyboard can save you lots of time and effort by reducing
the code you have to write. Moreover, it can really help when it comes to fully
understanding the app flow. If you haven’t developed before, you’ll find that
using a storyboard makes it easier to get a more complex app up and running.

The idea behind a storyboard is that you’d use it to lay out the entire flow of
your app. Figure 4-1 shows you what the iPad storyboard for a finished app
would look like. You’ll find that when you lay out an app in a storyboard, you
can actually run your program before you even add any content, so you can
get a sense of how the user experience will unfold.

81 Chapter 4: Storyboards and the User Experience

Figure 4-1:
The com-

pleted
RoadTrip

storyboard.

 To get to the storyboard so you can actually edit it, you use the Project naviga-
tor and select the storyboard file you’re interested in. Doing so brings up the
Interface Builder editor. You’ll use the Utility area as well to add user interface
elements, use the inspectors to set attributes, and so on.

Telling your story
As you develop your app, you use Interface Builder to graphically add user
interface elements to each one of your views in the storyboard. (I tell you more
about views in the “Working with Windows and Views” section, later in this
chapter; for now just think of views as containers for displaying what you see
on the device screen.) In this context, user interface elements include things
like controls, images, and placeholders for content you’ll display. After you’ve
added the elements you need, all you have to do is fill in code where it’s needed.
If you’ve used Xcode to program in the past, you’ll find that you have to write
a lot less plumbing code — code that is specifically designed to do things like
launch view controllers — and, in some cases, no plumbing code at all.

 Typically, I try to lay out the entire flow of my app early on in the development
process, but for the example app developed for this book, I decided not to
do that because I wanted to first show you all the basics of developing an
app with Xcode. That means you’ll see some of the storyboard stuff now, but

82 Part II: Building RoadTrip

will have to wait until Chapter 14 to storyboard the rest of the RoadTrip app.
This actually is not far from the way most apps are developed. If you have an
experienced team and a large budget, you can work out everything in advance
and then code from beginning to end. In many cases, though, the app evolves
as you work on it. Xcode and particularly storyboards make it easy to handle
these evolutions as you change the sequence of screens and the ways in
which the transitions occur.

Ready for a storyboard tour? To follow along with me, go back to Xcode
and select the Main_iPad.storyboard file for your sample project in the
Project navigator. This is the iPad storyboard, one of the storyboards that
Xcode created for you when you used the Master-Detail Application template
and selected the Universal Device Family. (See Chapter 3 for more on the
specifics of the Master-Detail Application template.) The name Main in the
Main_iPad.storyboard file implies that, of course, there can be other sto-
ryboards. (In this case, you’ll notice there are two MainStoryboards — one
for iPad and one for iPhone.)

Selecting the Main_iPad.storyboard file in the Project navigator opens
that file in the Interface Builder editor, as shown in Figure 4-2. Although all
this may look a bit daunting at first, I promise you that by the time you’re
finished with this book, it will seem like old hat. (For a detailed explanation of
what’s going on in Figure 4-2, see Chapter 13.)

Figure 4-2:
RoadTrip
Main_
iPad.
story
board.

83 Chapter 4: Storyboards and the User Experience

 In the olden days (pre-storyboards), you used nib files to define your user
interface one view controller at a time. The term nib (with its corresponding
file extension .xib) is an acronym for NeXT Interface Builder, a bit of software
originally developed at NeXT Computer, whose OPENSTEP operating system
was used as the basis for creating OS X and iOS. A nib file is a special type
of resource file that you use to store the user interface you create with the
Interface Builder editor. Storyboards are actually just a series of connected
nib files.

 View controllers manage what you see on the iPad or iPhone screen — the
views themselves. Views are visible objects (images, buttons, and the like),
while view controllers are just what the name suggests: controllers of the
visible objects. If this terminology reminds you of the Model-View-Controller
design pattern previously mentioned, you’re right. The model is the data, and
we’ll get to that in Part IV. For more specifically on view controllers, check out
the section “View Controllers — the Main Storyboard Players,” later in this
chapter.

Working with object graphs
Continuing with the storyboard tour, note that as you create your storyboard,
you create an object graph that is then archived when you save the file. When
you load the file, the object graph is unarchived.

So, what’s an object graph? Here’s the short answer: Object-oriented programs
are made up of complex webs of interrelated objects. They are linked to one
another in a variety of ways. One object can contain another object, for
 example, or it can own it, or it can reference it. All the items that you see in
your storyboard (and some items that you don’t see) are all objects and are
part of that web of objects. The Interface Builder editor allows you to create
this network graphically and then, at runtime, it makes the connections for you.

A storyboard file can capture your entire user interface in one place and lets
you define both the individual view controllers and the transitions between
those view controllers. As a result, storyboards capture the flow of your over-
all user interface in addition to the content you present.

 In the app you build in this book, you use just one storyboard file to store all
the view controllers and views for each device. Behind the curtain, however,
Interface Builder takes the contents of this one storyboard file and divides it
into discrete pieces that can be loaded individually for better performance.

84 Part II: Building RoadTrip

That’s the 100-yard-dash tour of the storyboard and its purpose. For you to
truly get a feel for the essence of the storyboard, however, you need to see
how the storyboard replicates the way an iOS app is structured — in other
words, you need an in-depth look at the iOS app architecture. The best way
to do that is within the context of a real app. So, before I get into even more
detail about working in the storyboard, I want to give you a sense of the basic
functions and purpose of the app developed throughout this book — the app
I’ve affectionately named RoadTrip.

Defining What You Want an App
to Do: The RoadTrip App

A year ago, my friend Skippy got a new job which necessitated him moving
from California to New York. He decided to drive his car across the country
and see what some people refer to as “flyover country”— the land between
the two coasts. He started surfing the web and soon had a whole collection
of web pages bookmarked on his iPad. Sorting through them was starting to
take more time than the trip was going to take. He asked me if I couldn’t do
something on the iPad that would organize the information and even collect
it for him so that he didn’t have to spend time using a search engine over and
over. That’s how RoadTrip started.

To make RoadTrip a useful app, I had to move from Skippy’s problem — all
those searches and web bookmarks — to the app’s solution, which is to pre-
sent information that’s relevant to the following questions:

 ✓ Where are you?

 ✓ Where do you plan to be?

 ✓ What do want to do, or where do you want to go when you get there?

By concentrating on what is truly relevant, you reduce the app to the amount
of information you need to deal with at any one time.

Guided by the app’s purpose — as well as by what the iPad or iPhone does
best — I developed a clearer picture of what Skippy would want the app to
do. That clearer picture comes into focus in Figure 4-3, where — there on the
left side — you can see the app functionality in what Xcode calls the Master
view. The pane on the right — displaying the appropriately named Detail
view — gives Skippy the chance to watch his car go back and forth onscreen
(with sound effects, no less). That animation is included in the app and this
book as a demonstration of what’s possible to do on the iOS devices. It’s also
there to get you started with animation techniques that are frequently used
in games. (For more on Master and Detail views, check out Chapter 13.)

85 Chapter 4: Storyboards and the User Experience

Figure 4-3:
A real-live

example of
the Master

view/
Detail view

combination.

The iPad’s split-view interface allows the user to sometimes see a Master
view and a Detail view at the same time. The iPhone’s smaller screen requires
that you design your user interface to only show one or the other at a given
time. I use the iPad storyboard file as the example in this chapter, but the
storyboard for the iPhone is basically similar — it just differs in some of the
details. You’ll see how to manage both iPad and iPhone user interfaces in
later chapters.

This division into Master view and Detail view is an elegant way of allowing
the user to pick a task from the navigation list on the left and see the content
associated with that task on the right. The tasks I came up with for my
RoadTrip app are as follows:

 ✓ Get real-time weather access. Snow in New York in August? Not likely,
but these days you never can tell. You can see real-time weather access
at work in Figure 4-4.

 ✓ Find out what’s going on wherever you are. Figure 4-5 shows an event
that Skippy might be interested in.

86 Part II: Building RoadTrip

Figure 4-4:
The weather
in New York
on the iPad

screen.

Figure 4-5:
RoadTrip

describes
some things
for you to do

while in a
city.

87 Chapter 4: Storyboards and the User Experience

 ✓ Bring up a map based on the destination. The map shows Skippy’s
 destination and points of interest, and even allows him to zero in on his
current location. (See Figure 4-6.)

 ✓ Find some place on a map. If Skippy has an address that he wants to find
on the map, he should be able to do that and get its GPS coordinates as
well. Figure 4-7 gives an example of finding a point of interest on a map.

 There are of course a lot of other features you’d want to add to this app to
make it worth the $.99 you’ll be charging, and I talk about some of those in
Chapter 21. When you start thinking of pricing and features, browse the App
Store to see what other apps are doing. You may wind up creating several ver-
sions of your app such as a low-priced (or free) “Lite” version along with the
full-featured version. In addition, the freemium model has become popular in
certain categories of apps (most particularly games). The app itself is typically
free in these cases. It may generate a revenue stream from ads inside the app,
but it also generates revenue from in-app purchases of advanced game levels,
new content, and the like. In the case of RoadTrip, new destinations might be
in-app purchases, but the overall structure of the app should be independent
of which destinations are included, and that is how it is built in this book.

Given the user interface described in this section, the big questions are a)
how do you create an app from your knowledge of the problem, and b) how
do you want the app to help solve it?

Figure 4-6:
Finding your

way with
pinpoint

accuracy.

88 Part II: Building RoadTrip

Figure 4-7:
Where is

Radio City
Music Hall,

anyway?

The answers to those questions can be found in the application architecture.

 In the Apple Human Interface Guidelines, Apple suggests the current selection
in the Master view (left pane) should be indicated. In Chapter 13, I give you
the option of having the current Master View selection remain highlighted, but
until then, I won’t bother with that.

Creating the Application Architecture
At a basic level, the RoadTrip app is made up of the following:

 ✓ Models: Model objects encapsulate the logic and content (data) of the app.

 ✓ Views: Data content is useless if your user never sees it. Views are the
 windows to your content — the pathway to the user experience — and
it’s up to you to decide what information to display and how to display it.
Part of the decision will involve what kind of view best serves your con-
tent. (Xcode offers you a number of different ways to display both infor-
mation and navigation choices.)

89 Chapter 4: Storyboards and the User Experience

 ✓ View controllers: View controllers manage the user experience. They
connect the views that present the user experience with the models that
provide the necessary content. View controllers also manage the way
the user navigates the app.

 The MVC (Model-View-Controller) model is pretty much the basis for all iOS
app development projects. I explain MVC in more detail in the “The Model-
View-Controller (MVC) design pattern” section, later in this chapter. The trick
here is to come up with just the right views, view controllers, and model
objects to get your project off the ground.

What You Add Where
Table 4-1 summarizes the chapters in which you will add new Objective-C
classes and new view controller scenes to your project. The Chapter 3
classes and storyboard scenes are built with Apple’s Master-Detail template,
but the rest are up to you as you work through this book.

Table 4-1 Classes and Scenes by Chapter
Chapter Create Objective-C Class Add Storyboard Scene

3 AppDelegate

MasterViewController

DetailViewController

Master View controller

Detail View controller

5 Test Drive controller

9 TestDriveController

11 Trip

Destination

14 Weather controller

Map controller

Find controller

Destination Controller

15 WeatherController

16 EventsController

EventPageController

Events

19 FindController

20 DestinationController

90 Part II: Building RoadTrip

But before you decide what you need to build your app, you’ll need to under-
stand what’s available. Frameworks supply the classes you have to work with
in your app — classes like UIView, UIViewController, UIControl, and a
whole lot more.

Using Frameworks
A framework offers common code that provides generic functionality. The iOS
SDK provides a set of frameworks for incorporating technologies, services,
and features into your apps. For example, the UIKit framework gives you
event-handling support, drawing support, windows, views, and controls that
you can use in your app.

A framework is designed to easily integrate the code that runs, say, an app or
game or that delivers the information your user wants. A framework is similar
to a software library, but with an added twist: It can also implement a pro-
gram’s flow of control (in contrast to a software library, whose components
are arranged by the programmer into a flow of control). So, when working
within a framework, the programmer may not have to decide the order in
which things should happen — such as which messages are sent to which
objects and in what order when an app launches, or when a user touches a
button on the screen. Instead, the order of those events, or flow of control,
may be a part of the framework.

When you use a framework, it provides your app with a ready-made set of
basic functions; essentially you’ve told it “Here’s how to act,” and it’s in a
position to take the ball and run with it. With the framework in place, all you
need to do is add the specific functionality that you want in the app — the
content as well as the controls and views that enable the user to access and
use that content.

The frameworks and iOS provide pretty complex functionality, such as

 ✓ Launching the app and displaying a window on the screen

 ✓ Displaying controls on the screen and responding to a user action —
changing a toggle switch, for example, or scrolling a view, such as the
list of your contacts

 ✓ Accessing sites on the Internet, not just through a browser but also from
within your own program

 ✓ Managing user preferences

 ✓ Playing sounds and movies

91 Chapter 4: Storyboards and the User Experience

 Some developers talk in terms of “using a framework” — but in reality, your
code doesn’t use the framework so much as the framework uses your code.
Your code provides the functions that the framework accesses; the framework
needs your code to become an app that does something other than start up,
display a blank window, and then end. This perspective makes figuring out
how to work with a framework much easier.

If this seems too good to be true, well, okay, it is — all that complexity (and
convenience) comes at a cost. It can be really difficult to get your head
around the whole thing and know exactly where (and how) to add your
app’s functionality to the functionality that the framework supplies. That’s
where design patterns, which I discuss next, come in. Understanding the
design patterns behind the frameworks gives you a way of thinking about
a framework — especially UIKit because it’s based on the MVC design
 pattern — that doesn’t make your head explode.

Using Design Patterns
When it comes to iOS app development, the UIKit framework does a lot
of the heavy lifting for you. That’s all well and good, but working with that
framework is a little more complicated than just letting it do its work on its
own. The framework is designed around certain programming paradigms,
also known as design patterns. The design pattern is a model that your own
code must be consistent with.

To understand how to take best advantage of the power of frameworks — or
(better put), figuring out how the framework objects want to best use your
code — you need to understand design patterns. If you don’t understand
them or if you try to work around them because you’re sure that you have a
“better” way of doing things, your job will actually end up being much more
difficult. (Developing apps can be hard enough, so making your job more diffi-
cult is definitely something you want to avoid.) Getting a handle on the basic
design patterns that the framework uses (and expects) will help you develop
an app that makes the best use of the framework. This means doing the least
amount of work in the shortest amount of time.

 The design patterns can help you to understand not only how to structure
your code but also how the framework itself is structured. They describe rela-
tionships and interactions between classes or objects, as well as how respon-
sibilities should be distributed among classes, so that the iOS device does
what you want it to do. In programming terms, a design pattern is a commonly
used template that gives you a consistent way to get a particular task done.

92 Part II: Building RoadTrip

The iOS design patterns
To develop an iOS app, you need to be comfortable with the following basic
design patterns:

 ✓ Model-View-Controller (MVC)

 ✓ Delegation

 ✓ Block Objects

 ✓ Target-Action

 ✓ Managed Memory Model

Of these, the Model-View-Controller design pattern is the key to understanding
how an iPad or iPhone app works and is the focus of the following section. I
explain the remainder of the patterns as they’re put to use in this book.

 Another basic design pattern exists as well: Threads and Concurrency. This
pattern enables you to execute tasks concurrently (including the use of Grand
Central Dispatch, that aiding-and-abetting feature introduced in OS X Snow
Leopard for taking full advantage of all that processing power available, even
on the smaller iPad and much smaller iPhone). Particularly with the advent
of 64-bit multi-core processors in some of the iOS devices, the ability to use
that power with tools such as Grand Central Dispatch is increasingly impor-
tant. Unfortunately, the Threads and Concurrency design pattern — as well as
Grand Central Dispatch — is beyond the scope of this book.

The Model-View-Controller (MVC)
design pattern
The iOS frameworks are object oriented. An easy way to understand what
that really means is to think about a team working in an office. The work that
needs to get done is divided up and assigned to individual team members
(in this case, objects). Each team member has a job and works with other
team members to get things done. What’s more, a good team member doesn’t
care how other members do their work, just that they do it according to the
agreed upon division of labor. Likewise, an object in object-oriented program-
ming takes care of its own business and doesn’t care what the object in the
virtual cubicle next door is doing, as long as it will do what it’s supposed to
do when asked to do it.

93 Chapter 4: Storyboards and the User Experience

 Object-oriented programming was originally developed to make code more
maintainable, reusable, extensible, and understandable by encapsulating all
the functionality behind well-defined interfaces. The actual details of how
something works (as well as its data it uses to do that work) are hidden, which
makes modifying and extending an app much easier.

Great — so far — but a pesky question still plagues programmers:

Exactly how do you decide on the objects and what each one does?

Sometimes the answer to that question is pretty easy — just use the real
world as a model. (Eureka!) In the RoadTrip app, for example, some of the
classes of model objects are Trip, Events, Destination, and so on. But
when it comes to a generic program structure, how do you decide what the
objects should be? That may not be so obvious.

The MVC pattern is a well-established way to group app functions into
objects. Variations of it have been around at least since the early days of
Smalltalk, one of the very first object-oriented languages. MVC is a high-
level pattern — it addresses the architecture of an app and classifies objects
according to the general roles they play in an app, rather than drilling down
into specifics.

The MVC pattern creates, in effect, a miniature universe for the app, popu-
lated with three distinct kinds of objects. It also specifies roles and responsi-
bilities for all three types of objects and specifies the way they’re supposed
to interact with each other. To make things more concrete (that is, to keep
your head from exploding), imagine a big, beautiful, 60-inch, flat-screen TV.
Here’s the gist:

 ✓ Model objects: These objects together comprise the content “engine”
of your app. They contain the app’s data and logic — making your app
more than just a pretty face. In the RoadTrip app, for example, the model
maintains a list of events and sights, as well as the name and location of
the destination and a background image to use.

 You can think of the model (which may be one object or several that
interact) as a particular television program, one that, quite frankly,
doesn’t give a hoot about what TV set it’s shown on.

 In fact, the model shouldn’t give a hoot. Even though it owns its data, it
should have no connection to the user interface and should be blissfully
ignorant about what’s done with its data.

 ✓ View objects: These objects display things on the screen and respond
to user actions. Pretty much anything you can see is a kind of view
object — the window and all the controls, for example. Your views know

94 Part II: Building RoadTrip

how to display information they receive from the model object and
how to get any input from the user the model may need. But the view
itself should know nothing about the model. It may handle a request to
display some events, but it doesn’t bother itself with what that request
means.

 You can think of the view as a television screen that doesn’t care about
what program it’s showing or what channel you just selected.

 The UIKit framework provides many different kinds of views, as you
find out in the next section.

 If the view knows nothing about the model, and the model knows noth-
ing about the view, how do you get data and other notifications to pass
from one to the other? To get that conversation started (Model: “I’ve just
updated my data.” View: “Hey, give me something to display,” for exam-
ple), you need the third element in the MVC triumvirate, the controller.

 ✓ Controller objects: These objects connect the app’s view objects to its
model objects. They supply the view objects with what they need to
display (getting it from the model) and also provide the model with user
input from the view.

 You can think of the controller as the circuitry that pulls the show off of
the cable and then sends it to the screen or requests a particular pay-
per-view show.

 With Xcode, both the model and view objects are often built with graphical
user interfaces such as Interface Builder for views and view controllers and
the Data Model Editor for Core Data objects. Controllers are almost always
built with code. Building a controller object is the part of MVC that, for many
developers, “feels” like traditional coding.

The basic application architecture looks like Figure 4-8.

Figure 4-8:
The Model-

View-
Controller.

95 Chapter 4: Storyboards and the User Experience

 When you think about your app in terms of model, view, and controller
objects, the UIKit framework starts to make sense. Understanding the
framework this way also begins to lift the fog hanging over where to make at
least part of your app-specific behavior go. Before you delve into that topic,
however, you need to know a little more about the classes that the UIKit
provides, because these are the guys you will task with implementing the MVC
design pattern — window classes, view classes, and view controller classes.

 Throughout this book, I’ll be talking about both classes and objects, and now
is as good a time as any to remind you of the difference between the two.

In Objective-C, classes include instance variables, properties, and methods
(that can access the instance variables of a class). Classes are about files in
your project that contain code. Classes are types in your program.

Objects, on the other hand, exist at runtime and are instances of a class. You
can think of a class as a blueprint to build an object of that type.

Working with Windows and Views
iOS apps have a single window, so you won’t find additional document
windows for displaying content as you do an a Mac. When your app is run-
ning — even though other apps may be hibernating or running in the back-
ground — your app’s interface takes over the entire screen.

Looking out the window
The single window that you see displayed on an iPad or iPhone is an instance
of the UIWindow class. This window is created at launch time, either pro-
grammatically by you or automatically by UIKit when you use a storyboard.
In general, after you create the Window object (that is, if you create it instead
of having it done for you by the framework, which is the most common case),
you never really have to think about it again.

 A user can’t directly close or manipulate an iOS window. It’s your app that
 programmatically manages the window.

Although your app never creates more than one window at a time, iOS can
support additional windows on top of your window. The system status bar is
one example. You can also display alerts on top of your window by using the
supplied Alert views.

96 Part II: Building RoadTrip

Admiring the view
In an iOS app world, view objects are responsible for the view functionality
in the Model-View-Controller architecture. A view is a rectangular area on the
screen (it appears to be on top or within a window).

 In the UIKit framework, windows are really a special kind of view, but for the
purpose of this discussion, I’m referring to views that sit on top of the window.

What views do
Views are the main way for your app to interact with a user. This interaction
happens in two ways:

 ✓ Views display content. This happens, for example, by making drawing
and animation happen onscreen. The view object displays the data from
the model object.

 ✓ Views handle touch events. Views respond when the user touches a
button, for example. Handling touch events is part of a responder chain
(which I explain in Chapter 6).

The view hierarchy
Views and subviews create a view hierarchy. You have two ways of looking at it
(no pun intended this time): visually (how the user perceives it) and program-
matically (how you create it). You must be clear about the differences or you’ll
find yourself in a state of confusion that resembles the subway at rush hour.

Looking at it visually, the window is at the base of this hierarchy with a
Content view on top of it (a transparent view that fills the window’s Content
rectangle). The Content view displays information as well as allowing the
user to interact with the app, using (preferably standard) user interface items
such as text fields, buttons, toolbars, and tables.

In your program, that relationship is different. The Content view is added to
the window view as a subview. But the Content view can also have its own
subviews, and so on. Possible relationships include

 ✓ Views added to the Content view become subviews of it.

 ✓ Views added to the Content view become the superviews of any views
added to them.

 ✓ A view can have one (and only one) superview and zero or more subviews.

 It seems counterintuitive, but a subview is displayed on top of its parent view
(that is, on top of its superview). Think about this relationship as contain-
ment: A superview contains its subviews. Figure 4-9 shows an example of a
view hierarchy.

97 Chapter 4: Storyboards and the User Experience

Figure 4-9:
The view
hierarchy

is both
visual and
structural.

Controls — such as buttons, text fields, and so on — are actually view sub-
classes that become subviews. So are any other display areas that you may
specify. The view must manage its subviews, as well as resize itself with
respect to its superviews. Fortunately, much of what the view must do is
already coded for you. The UIKit framework supplies the code that defines
view behavior.

The view hierarchy also plays a key role in both drawing and event handling.
I explain event handling in Chapter 6.

You create or modify a view hierarchy whenever you add a view to another
view, either programmatically or with the help of the Interface Builder. The
UIKit framework automatically handles the relationships associated with
the view hierarchy.

 Developers typically gloss over this visual-versus-programmatic-view-hierarchy
stuff when starting out — and without understanding these concepts, it’s really
difficult to get a handle on what’s going on.

The kinds of views you use
The UIView class defines the basic properties of a view, and you may be
able to use it “as is” — as you’ll do in the Test Drive screen of the RoadTrip
app — by simply adding an image view and some controls.

In the Detail view shown back in Figure 4-3, the user can take a test drive
by tapping the Test Drive button. (Later in the book, in Chapter 10, I show
you how to animate the car so that it leisurely drives to the other side of the
screen, turns around, drives back, and then turns around one more time so
that it’s back to where it started on the screen.)

98 Part II: Building RoadTrip

The UIKit framework also provides you with a number of other views that
are subclassed from UIView. These views implement the kinds of things that
you as a developer need to do in the user interface.

 It’s important to think about the view objects that are part of the UIKit
framework. When you use an object such as a UISlider or UIButton, your
slider or button behaves just like a slider or button in any other iOS app. This
enables the consistency in appearance and behavior across apps that users
expect.

Container views
Container views are a technical (Apple) term for content views that do more
than just lie there on the screen and display your controls and other content.
The UIScrollView class, for example, adds scrolling without you having
to do any work. Most of the time, Container views just do their thing in the
background (as part of other views you use — Table views, for example), and
I don’t explain any more about them in this book because you won’t need to
use or manage them explicitly.

UITableView inherits this scrolling capability from UIScrollView and
adds the ability to display lists and respond to the selections of an item in
that list. Think of the Contacts app on your iPad (and a host of others, come
to think of it). UITableView is one of the primary navigation views on the
iPad.

Table views are used a lot in iOS apps to do these two things:

 ✓ Display hierarchal data: For an example, think of the Music app, which
gives you a list of albums and, if you select one, a list of its songs.

 ✓ Act as a table of contents: Now, think of the Settings app, which gives
you a list of apps that you can set preferences for. When you select one
of those apps from the list, it takes you to a view that lists what prefer-
ences you’re able to set as well as a way to set them.

In the RoadTrip app, the List views — such as the ones in the Master view
shown earlier in Figure 4-3 — are Table views. The List view shown in the
figure acts as an introduction to the app; it provides the user with a way to
decide where he wants to go, for example, by selecting Destination in the
Table view.

Another Container view, the UIToolbar class, contains button-like controls,
which you find everywhere on an iOS device. In the Mail app, for example, you
tap an icon on the bottom toolbar to respond to an e-mail. In RoadTrip, you
find such controls at the top of the Map view (refer to Figure 4-6) to allow
you to decide on how you want the map to be displayed.

99 Chapter 4: Storyboards and the User Experience

Controls
Controls are the fingertip-friendly graphics that are used extensively in a typi-
cal app’s user interface. Controls are actually subclasses of the UIControl
superclass, a subclass of the UIView class. They include touchable items
such as buttons, sliders, and switches, as well as text fields in which you
enter data. You use them in your views, including, as you just saw, in a
toolbar.

Controls make heavy use of the Target-Action design pattern, which is used
when you touch the Test Drive button, as shown in Figure 4-10.

I explain the Target-Action pattern in detail in Chapter 9.

Display views
Think of Display views as controls that look good but don’t really do any-
thing except, well, look good. These include the following: UIImageView
(check out the background to the Master view shown earlier in Figure 4-3
for an example); UILabel (for adding labels to buttons and other controls);
UIProgressView; and UIActivityIndicatorView. I like to add an activ-
ity indicator to those views where I download data so folks have something
to watch while waiting.

Figure 4-10:
A button is

the tip of
the Target-

Action
design

pattern.

100 Part II: Building RoadTrip

Text and Web views
Text and Web views provide a way to display formatted text in your app. The
UITextView class supports the display and editing of multiple lines of text
in a scrollable area. The UIWebView class provides a way to display HTML
content. These views can be used as the Main view, or as a subview of a
another view. (You encounter UIWebView in the RoadTrip app as Weather
views.) UIWebView is also the primary way to include graphics and format-
ted text in Text Display views.

The views that display content — such as the Detail views shown previously
in Figures 4-4 and 4-5 — are Web views, for some very good, practical reasons:

 ✓ Some views must be updated regularly. Web views, in that context, are
the perfect solution; they make it easy to access data from a central
repository on the Internet. (Client/server is alive and well!)

 ✓ Web views can easily display formatted data that’s locally stored. Real-
time access isn’t always necessary — sometimes it’s perfectly fine to
store some data on the iPad or iPhone. Web views have no problem with
locally stored data, which is very handy.

 ✓ Web views can access websites! Don’t overlook the obvious: Web views
open the door to websites, which means you have the whole Internet at
your beck and call. If users want more detailed weather information, for
example, they can get to the ten-day forecast by simply touching a link.

Alert views and Action sheets
Alert views and Action sheets present a message to the user, along with but-
tons that allow the user to respond to the message. In the case of an alert,
the response may be yes or no or a simple OK to indicate that the user has
read the alert. An action sheet can present multiple buttons. I have you add
an Alert view to the RoadTrip app in Chapter 8 to inform the user when
the Internet isn’t available. Figure 4-11 shows what the user would see if no
Internet connection is available.

Navigation views
Tab bars and Navigation bars work in conjunction with view controllers
to provide tools for navigating in your app. (For more on navigation
bars, see Chapter 5.) Normally, you don’t need to create a UITabBar or
UINavigationBar directly — it’s easier to let Interface Builder do the job
for you or configure these views through a Tab bar or Navigation controller,
respectively.

The window
You’ll remember this one: The window provides the surface for drawing
content and is the root container for all other views.

101 Chapter 4: Storyboards and the User Experience

Figure 4-11:
Users need
the Internet

alert, so
be sure to
include it.

View Controllers — the Main
Storyboard Players

Early in this chapter, I provide an overview of the storyboard — the whiteboard,
 so to speak, on which you lay out the flow of the elements, or design pattern,
of your app. In this book, the example app developed throughout — Road
Trip — uses the Model-View-Controller (MVC) design pattern, and in this par-
ticular design pattern, it’s the view controllers that implement the pattern’s con-
troller component. These controller objects contain the code that connects the
app’s view objects to its model objects. Whenever the view needs to display
something, the view controller goes out and gets what the view needs from
the model. Similarly, view controllers respond to controls in your Content view
and may do things like tell the model to update its data (when the user adds
or changes text in a text field, for example), compute something (the current
value of, say, your U.S. dollars in British pounds), or change the view being dis-
played (like when the user presses the Detail Disclosure button on the Music
app to find out more about a song).

View controllers, as you can see in Figure 4-12, are the objects that control
what is displayed and that respond to user actions. They are the heart and
soul of the storyboard.

102 Part II: Building RoadTrip

Figure 4-12:
It’s all about

the view
controller.

As I explain in more detail in Chapter 9, a view controller is often the (target)
object that responds to the onscreen controls. The Target-Action mechanism
is what enables the view controller to be aware of any changes in the view,
which can then be transmitted to the model.

Imagine that an iPad user launches the RoadTrip app. On the left side (or
in a popover), she sees a Table view and on the right side a Detail view (the
Weather, for example). (Refer to Figure 4-4.) The user may tap an entry (cell)
in the Table view to display events. The Events controller is then launched
and sends a message to the appropriate method in the model to get the
events. The model object returns a list of URLs, and so on. The controller
then delivers that information to the view, which promptly displays the
 information to the user.

103 Chapter 4: Storyboards and the User Experience

If your imaginary user now launches the RoadTrip app on the iPhone (or
iPod touch), the user will see a full-screen table view. The screen will shift to
a detail view when the user taps a cell in the table. The same information is
available in the iPhone version as in the iPad version, but the user interface
has to be slightly different.

You will be pleased to know that you can build one set of Objective-C classes
that works with both the iPhone and iPad storyboard files, so you only need
one set of code to build your Universal app.

The sequence of events is as follows:

 1. A message is sent to that view’s view controller to handle the request.

 2. The view controller’s method interacts with the Trip model object.

 3. The model object processes the request from the user for the current
events.

 4. The model object sends the data back to the view controller.

 5. The view controller sends the data to the view to display the
information.

View controllers have other vital iOS responsibilities as well, such as the
following:

 ✓ Managing a set of views: This includes creating the views as well as
flushing them from memory during low-memory situations.

 ✓ Responding to a change in the device’s orientation: If, say, the user
causes the iPad to switch from landscape to portrait orientation, the
view controller responds by adjusting its views to match the new
orientation.

 ✓ Creating a Modal (not model) view: A Modal view is a child window
that displays a dialog that requires the user to do something (tap the
Yes or Cancel button, for example) before returning to the app.

 You use a Modal view to ensure that the user has paid attention to the
implications of an action (for example, “Are you sure you want to delete
all your contacts?”).

 ✓ Display a popover: A popover is a transient view that is shown when
people tap a control or an onscreen area. Popovers are used in a variety
of ways, including displaying the Master view when a Split View app (like
RoadTrip) is in Portrait orientation, or displaying additional information
about a selection. They are only available on the iPad.

104 Part II: Building RoadTrip

 ✓ Respond to user input and navigation: While the view processes a
touch using the Target-Action pattern, it is almost always the view that
is the target of the action — responding to the touch appropriately (like
having the image of a ’59 Cadillac Eldorado Biarritz convertible drive
right up the center of the screen — sound effects included).

View controllers are also typically the objects that serve as delegates and
data sources for Table views (more about those in Chapter 19) as well as for
other kinds of framework views.

In addition to the base UIViewController class, UIKit includes the
following:

 ✓ Subclasses such as UITabBarController (to manage the Tab bar)

 ✓ UITableViewController (which you use to manage Table views)

 ✓ UINavigationController (which implements navigation back and
forth between view controllers)

 ✓ UIPageViewController (to allow users to navigate between view con-
trollers using the specified transition)

 ✓ UIImagePickerController (to access the camera and Photo library
on the iPad)

 ✓ UISplitViewController (which you’ll be using on the iPad only to
display the side-by-side views you see in Figure 4-3, for example)

What About the Model?
As this chapter shows (and as you’ll continue to discover), much of the func-
tionality you need in an app is already in the frameworks.

But when it comes to the model objects — the things you build to actually
hold the data and carry out the logic for your app — you’re on your own,
for the most part. In the RoadTrip app, for example, you’re going to need to
create a Trip object that owns the data and logic and uses other objects to
perform some of the actions it needs.

I talk about the model and model classes in more detail in Chapter 11. That’s
where you’ll also find much more on implementing model objects.

 You may find classes in the framework that help you get the nuts and bolts of the
model working. But the actual content and specific functionality are up to you.

105 Chapter 4: Storyboards and the User Experience

To implement the structure that enables me to include several destinations
in the RoadTrip app, I need to have the data. I use property lists (XML files, in
other words) to take care of that because they’re well suited for the job, and
(more importantly) support for them is built into the iOS frameworks. (For
more on property lists, see Chapter 11.) Property lists are great for relatively
small amounts of data. For larger amounts, the Core Data persistent objects
framework is a great choice, but it’s not part of this book. You can start with
property lists to get a feel for data management on iOS and then move on to
Core Data for your next app.

 iOS includes a UIDocument class for managing the data associated with a
user’s documents. If you’re implementing a document-based app, you can use
this class to reduce the amount of work you must do to manage your docu-
ment data. If you’re implementing an app that supports iCloud storage, the
use of document objects makes the job of storing files in iCloud much easier.
I don’t cover the UIDocument class in this book.

It’s Not That Neat
It would be nice (not to mention amazing) if everything fit neatly into model,
view, or controller, but it doesn’t work that way.

You really need to know about one other kind of class. The UIApplication
class handles routing of incoming user events, dispatches action messages
from controls, and deals with numerous other basic plumbing functions
that aren’t the responsibilities of a model, view, or controller. It typically
works with an application delegate, a set of methods that allows you to

Using naming conventions
When creating your own classes, methods, and
variables, it’s a good idea to follow a couple of
standard naming conventions:

 ✓ Class names (such as View) should start
with a capital letter.

 ✓ The names of methods (such as
viewDidLoad) should start with a low-
ercase letter, and additional words within
the name should start with an uppercase
letter (viewDidLoad).

 ✓ The names of instance variables and prop-
erties (such as frame) should start with a
lowercase letter.

When you follow these conventions, you can
tell from the name what something actually is. A
few more such conventions are good to know,
and I explain them as they arise in the course
of the book.

106 Part II: Building RoadTrip

customize how your app responds to events such as app launch, low-memory
warnings, and app termination. The app delegate (as it’s often referred to) is
also the place where you’ll create your model. I explain the mysteries of the
UIApplication class as well as the role of the app delegate in Chapter 6.

Taking a Look at Other Frameworks
So far, almost all the things that I’ve talked about can be found in the UIKit
framework, whose sole purpose in life is to provide a developer with all the
classes an app needs in order to construct and manage its user interface. The
UIKit framework does a majority of the heavy lifting for you, but developers
don’t live by the UIKit framework alone; quite a few other frameworks get
put into play as well. The next few sections give you a rundown of some of
the other frameworks you may encounter.

The Foundation framework
The Foundation framework is similar to the UIKit framework in that
it defines general-purpose classes. The difference is that whereas UIKit
limits itself to classes that implement the user interface, the Foundation
framework stakes a claim on all the other stuff — the non–user-interface
stuff — you need in your app. In practical terms, this means that the
Foundation framework defines basic object behavior, memory manage-
ment, notifications, internationalization, and localization.

The Foundation framework also provides object wrappers or equivalents
(for numeric values, strings, and collections) and utility classes (for accessing
underlying system entities and services, such as ports, threads, and file sys-
tems as well as networking, and date and time management).

The CoreGraphics framework
The CoreGraphics framework contains the interfaces for the Quartz 2D
drawing API and is the same advanced, vector-based drawing engine that’s
used in OS X. It provides support for path-based drawing, anti-aliased render-
ing, gradients, images, colors, coordinate-space transformations, and PDF
document creation, display, and parsing. Although the API is C based, it uses
object-based abstractions to make things easier for you. Although it is the
basis for many things you see on the screen, you won’t be using it directly in
this book.

107 Chapter 4: Storyboards and the User Experience

Even more frameworks
Besides the UIKit, Foundation, and CoreGraphics frameworks, you use
a handful of others in this book’s example app, as well as (I’m sure) in your
own apps down the road. They are as follows:

 ✓ MapKit: Lets you embed a fully functional map interface into your app.
The map support provided by this framework includes many of the fea-
tures normally found in the Maps app.

 ✓ AVFoundation: Provides an Objective-C interface for managing and
playing audio-visual media in your iOS app.

 ✓ AudioToolbox: Contains the APIs that provide application-level ser-
vices — for playing sounds, for example.

 ✓ MediaPlayer: Provides basic functionality for playing movie, music,
audio podcast, and audiobook files, as well as access to the iPod Library.

 ✓ SystemConfiguration: Contains interfaces for determining the net-
work configuration of a device.

 ✓ CoreLocation: Provides location data to support functionality such
as social networking. It also includes classes to do both forward and
reverse geocoding (which I explain in Chapter 18).

You can find many, many more frameworks for your apps in iOS Technology
Overview Appendix B: iOS Frameworks, which you can find in the iOS
Developer Library, at http://developer.apple.com/library/ios/
navigation/index.html; then enter iOS Technology Overview. Be advised
that if you want to be able to do something, there’s probably a framework to
support it.

Understanding the MVC in the Project
As one might expect, when you create an Xcode project, any and all classes
added to the project by the template correspond to the Model-View-
Controller design pattern. No surprises there.

If you look carefully, you can actually see how the features of the MVC model
end up getting translated into a real, live project. Start by checking out the
Project navigator, where you see MasterViewController .h and .m files,
DetailViewController .h and .m files, and AppDelegate .h and .m files.

http://developer.apple.com/library/ios/navigation/index.html
http://developer.apple.com/library/ios/navigation/index.html

108 Part II: Building RoadTrip

(Remember that, because everything in the iPad version is built using a split
view, you’re going to see two controllers — one for the Master view and one
for the Detail view. I explain that in detail in Chapter 13.)

The interface (.h file) contains the class declaration and the methods and
properties associated with the class. But although the interface file has
traditionally also included the instance variables, you’re actually going to
include all instance variables in the implementation file instead, so you can
keep them away from prying eyes. (You can find more on hiding the instance
 variables in Chapter 6.)

The implementation (.m file) contains the actual code for the methods of the
class and — as just mentioned — also includes your instance variables.

The MasterViewController and DetailViewController correspond
to the controllers I explain in the “View Controllers — the Main Storyboard
Players” section, earlier in this chapter. But where are the classes that
 correspond to the views?

To find out, select the Main_iPad.storyboard file in the Project navigator
and you see two view controllers in the Document Outline. Each view con-
troller in a storyboard file manages a single scene. Select the disclosure
triangle to expand the Master View controller and you see its view, shown in
Figure 4-13.

Figure 4-13:
The view

controller
highlighted

on the
Canvas.

109 Chapter 4: Storyboards and the User Experience

 When you click the view controller in the Document Outline, you see a (blue)
line around the window to represent the view controller.

 If you can’t see the Document Outline, you can use the Hide/Show Document
Outline control, shown in Figure 4-14. You can also zoom in and out of a sto-
ryboard by double-clicking in the Interface Builder editor or using the zoom
control shown in Figure 4-14.

Now click the view in the Document Outline, and you’ll see a display of the
view itself — waiting for you to add all sorts of interesting images and con-
trols (which you do in the next chapter). You can see that in Figure 4-14.

You see, of course, that the window changes — the view has been highlighted
on the Canvas — but I explain more about that when I have you actually add
the user interface elements in Interface Builder.

So now that you have controllers and views, what about models? (The design
pattern is called Model-View-Controller, after all.) Well, the models aren’t
there . . . at least not yet. For that other shoe to drop, you’ll have to go to
Chapter 11, where I explain in great detail all about model classes and how to
add them.

Figure 4-14:
The view

in the
storyboard.

110 Part II: Building RoadTrip

You can also see some of the other parts of the application infrastructure I
mention earlier in the Project navigator. The AppDelegate .h and .m files in
the Project navigation area correspond to the app delegate.

You’ll see one other element in the Document Outline — the first responder:
This object is the first entry in an app’s dynamically constructed responder
chain (a term I explain along with more about the application infrastructure
at runtime in Chapter 6) and is the object designated to be the first handler
of events other than touch events, such as motion events and a few other
events you won’t be working with in this book.

But because the responder chain of an app can’t be determined at design
time, the first responder proxy acts as a stand-in target for any action mes-
sages that need to be directed at the app’s responder chain.

 Although you might use the first responder mechanism quite a bit in your
apps, you don’t have to do anything to manage it. It’s automatically set and
maintained by the UIKit framework.

Chapter 5

Creating the RoadTrip
User Interface

In This Chapter
▶ Seeing how storyboards work

▶ Working in the Utility area

▶ Understanding and adding navigation controllers

▶ Using Interface Builder to add objects to your storyboard

I
f you’ve read the preceding chapters, you have the foundation for under-
standing the tools you need to build an app, with particular focus on the

example app developed in this book. Now you’re ready to find out how to add
a user interface to your app via the storyboard.

In this chapter, I show you how to add items to the TestDriveController’s
view using both Interface Builder and the user interface objects available to
you in the Library pane in the Utility area. You first add these items to your
iPad storyboard and then add similar items to your iPhone storyboard.

Creating Your User Interface
in the iPad Storyboard

In the Project navigator, select the Main_iPad.storyboard file and you’ll see
several view controllers in the Document Outline (Split View Controller, Master
View Controller, and Detail View Controller). Each view controller in a story-
board file manages a single scene (a scene, in this sense, is really just a view
controller). On the iPad, courtesy of the Split View Controller (which I explain
in more detail in Chapter 13) or a popover controller, you can have multiple
scenes on a screen. (On the iPhone, you can generally see only one scene on a
screen at a time.) In the Document Outline, select the disclosure triangle next
to the Master View Controller in the Master View Controller – Master Scene to
expand the view controller and you’ll see its view.

112 Part II: Building RoadTrip

 If you can’t see the Document Outline, you can use the Hide/Show Document
Outline control shown in the lower-middle of Figure 5-1. You can also zoom
in and out of a storyboard by double-clicking in the storyboard’s Canvas, or
by using the zoom control shown in the lower-right in Figure 5-1. The = sign
returns the storyboard to full size, which is the only way views are editable.

To add user interface elements, select the view you want to work with under
the view controller heading listed in the Document Outline.

It’s about the view controller
Selecting a storyboard file in the Project navigator launches Interface Builder,
which is the editor you use to edit the storyboard files for your application.
Most applications need only one storyboard file, but because you’re creating
a universal app, you’ll have two storyboards, one for the iPad user interface
(Main_iPad.storyboard) and one for the iPhone user interface (Main_
iPhone.storyboard). Each storyboard file you create has its own initial
view controller, which serves as the entry point into the storyboard. In your
application’s main storyboard file, the initial view controller would be the
first view controller presented by your application.

Figure 5-1:
The initial
Main_
iPad

storyboard.

113 Chapter 5: Creating the RoadTrip User Interface

The view controller is the big kahuna here, and each view controller in a story-
board file, as I said, manages a single scene. For iPhone applications, a scene
manages one screen’s worth of content, but for iPad applications, the content
from multiple scenes can be onscreen simultaneously. To add new scenes
to your storyboard file, all you have to do is drag a view controller from the
Library to the storyboard canvas. You can then add controls and other views
(such as Image, Web, or even Table views) to the view controller’s view.

 Besides the ability to lay out your application as a whole, storyboards also
reduce the amount of code you have to write. Say you want to create a transi-
tion from one view controller to another; all you would need to do is Control-
click a button or Table View cell in one view controller and drag to the other.
Dragging between view controllers creates a segue, which appears in Interface
Builder as a configurable object. Segues support all the same types of transi-
tions available in UIKit, such as navigation and modal transitions. A segue
also enables you to define custom transitions.

I explain more about segues and view controller transitions in Chapter 14,
when you add more scenes and segues to the RoadTrip app.

Using Interface Builder to add
the user elements
Xcode’s Interface Builder enables you to create a storyboard by letting you lay
out your user interface graphically in each view controller. You use Interface
Builder to design your app’s user interface and then save what you’ve done
as a resource file, which is included in your app and loaded into your app at
runtime. This resource file is then used to automatically create the window and
your app’s view controllers, as well as all your views and controls.

 If you don’t want to use Interface Builder, you can also create your objects pro-
grammatically — creating views and view controllers and even things like but-
tons and labels using your very own application code. I show you an example
of creating a button programmatically in Chapter 15.

So how do you actually get those little controls into the view that lives in the
view controller scene? For that, you use another area of the workspace — the
Utility area.

 You use the View selector on the toolbar to display or hide the Utility area.
The Utility area is an optional area on the right side of the Workspace
window. To hide or show the Utility area, click the Utility button on the View
selector on the right on the Workspace toolbar. (In Figure 5-2, I’m using the
View selector to open the Utility area.)

 When you hover your mouse pointer over a toolbar button, a tooltip describes
its function.

114 Part II: Building RoadTrip

Figure 5-2:
The View
selector.

 Figure 5-3 shows the Utility area in all its glory. I have resized the Library pane.

Figure 5-3:
The Utility

area.

115 Chapter 5: Creating the RoadTrip User Interface

As you can see, this area includes two panes, the top one for Quick Help and
other inspectors (the Attributes inspector is selected here), and the bottom
one for libraries of resources.

Working within the Utility Area
The Utility area consists of the Inspector and Library panes and their cor-
responding Inspector and Library selector bars. The idea is to use the
Inspector pane to view and access Quick Help and other inspectors, and to
scour the Library pane for ready-made resources you want to use in your
project. You’ll be using both the Inspector and Library panes in this chapter.

Inspector and Quick Help pane
You use the Inspector selector (shown in Figure 5-4) to toggle on the particu-
lar inspector you want to use. (Xcode makes the decision-making process a
bit easier by having your choice of Navigator or Content editor predetermine
which inspectors in fact show up in the Inspector selector.)

Figure 5-4:
The

Inspector
selector.

Utility area inspectors perform a variety of tasks. Following is a list of impor-
tant inspectors and what you use them for:

 ✓ File inspector (first button): Lets you view and manage file metadata
such as its name, type, and path.

 ✓ Quick Help (second button): Lets you view applicable details about
what has been selected in an editor. Details include an abstract or con-
cise description, where and how the selected element is declared, its
scope, the parameters it takes, its platform and architecture availability,
references, sample code, and so on. Different editors support different
elements for selection, as follows:

	 •	Symbols, available for selection in the Source editor

	 •	Interface objects, available for selection in Interface Builder

	 •	Build settings, available for selection in the Project editor

116 Part II: Building RoadTrip

Additional inspectors are available in some editors; for example, Interface
Builder offers the following:

 ✓ Identity inspector: Lets you view and manage object metadata such as
its class, runtime attributes, label, and so forth.

 ✓ Attributes inspector: Lets you configure the attributes specific to the
selected interface object. For example, some text field attributes include
text alignment and color, border type, and editability.

 ✓ Size inspector: Lets you specify characteristics such as the initial size
and position, minimum and maximum sizes, and autosizing rules for an
interface object.

 ✓ Connections inspector: Lets you view the outlets and actions for an
interface object, make new connections, and delete existing connec-
tions. The Connections inspector is where you’ll find things like outlets
and targets that I explain in Chapter 9.

Library pane
A selection in the Library selector in the Library pane does the obvious: It
selects a particular library of resources that you can then use in your project.
Figure 5-5 shows the choices offered by the Library selector; the following list
gives the details:

Figure 5-5:
The Library

selector.

 ✓ File templates: Click here to find templates for the common types of files
you create using the New File menu. To add a file of that type to your
project, simply drag it from the File Templates library to the Project
navigator.

 ✓ Code snippets: Need just a smidgeon of code? Click here to find short
pieces of source code you can then use in your application. Just drag the
bit you found directly into your source code file.

 ✓ Objects: This library consists of interface objects you can use as part of
your user interface. To add one to a particular view, drag it directly into
your storyboard or nib file in Interface Builder.

 ✓ Media files: Here’s where you’ll find graphics, icons, and sound files.
To use one, drag it directly to your storyboard or nib file in Interface
Builder.

117 Chapter 5: Creating the RoadTrip User Interface

 You can filter out what gets displayed in a selected library by entering your
Search text into the text field in the Filter bar at the bottom of the Library pane.

Understanding iPad Navigation
Although the iPhone and iPad are very similar, one area in which they often
differ is in how a user can navigate through an application.

For example, in iPhone apps that use a master-detail architecture, a Back
button is prominently displayed in a detail view to go back to the Master view.
(Figure 5-6 shows what I mean.) An iPad app that uses Split view functionality for
the master-detail architecture will not need that Back button. But there are many
other user interface designs on the iPad where a Back button is often used.

Apple has built this ability into the iOS architecture and has made it an inte-
gral part of the view controller architecture, as personified in the Navigation
controller. (Okay, I know it isn’t a “person,” but you get the idea.)

Figure 5-6:
An iPhone

application
sequence.

118 Part II: Building RoadTrip

A Navigation controller is a Container view controller that enables the user
to navigate back and forth between view controllers. A Navigation controller
is an instance of the UINavigationController class, which is a class you
use “as is” and don’t subclass. The methods of this class provide support for
managing a stack-based collection of custom view controllers. This stack rep-
resents the path taken by the user through the application, with the bottom
of the stack reflecting the starting point and the top of the stack reflecting the
user’s current position in the application.

 Apple’s UIKit framework (one of the Cocoa Touch frameworks) generally
uses class names that begin with UI, such as UIView, UIViewController,
UIImageView, UIButton, and many more. To avoid confusion, you should
not use the UI prefix for your own class names. Apple also has special prefixes
for many other frameworks. For example, the Core Image framework includes
classes such as CIColor, CIContext, CIFaceFeature, and so on. These
naming conventions provide hints so that when you come across an Apple
class named CIImage, you can expect to find it in the Core Image framework.

Some developers adopt their own special prefixes for all their custom classes,
including simple schemes such as using the RT prefix, so that class names could
be RTMasterViewController, RTMapController, RTWeatherController,
and so on. It’s not necessary to use a unique prefix for every custom class
name, but you should avoid using Apple’s class names for your own classes.

 A stack is a commonly used data structure that works on the principle of “last
in, first out.” Imagine an ideal boarding scenario for an airplane: Passengers
would start being seated in the last seat in the last row, and they’d board
the plane in back-to-front order until they got to the first seat in the first row,
which would contain the seat for the last person to board. When the plane
reached its destination, everyone would deplane (is that really a word?) in the
reverse order. That last person on — the person in row one, seat one — would
be the first person off.

A computer stack works on the same concept. Adding an object is called a
push — in this case, when you tap the Travel button, for example, the view
controller for that view is pushed onto the stack. Removing an object is
called a pop — touching the Back button pops the view controller for the
view being displayed. When you pop an object off the stack, it’s always the
last one you pushed onto it. The controller that was there before the push is
still there and now becomes the active one.

Although the Navigation controller’s primary job is to act as a manager of
other view controllers, it also manages a few views. Specifically, it manages a
Navigation bar that displays information about the user’s current location in
the data hierarchy, a Back button for navigating to previous screens, and any
custom controls the current view controller needs.

119 Chapter 5: Creating the RoadTrip User Interface

Take another look at Figure 5-6 and notice that, when the user taps Events in
the iPhone version of RoadTrip, the Navigation controller (courtesy of the
storyboard) pushes the next view controller onto the stack. The new view
controller’s view slides into place and the Navigation bar items are updated
appropriately. When the user taps the Back button on the Navigation bar, the
current view controller pops off the stack, that view slides off the screen, and
the user finds himself back in the previous view.

 The Navigation controller maintains the stack of view controllers, one for each
of the views displayed. The very first view controller that the Navigation con-
troller pushes onto its stack when a Navigation controller is created is called
the Root view controller. It remains active until the user selects the next view
to look at.

Navigation bars enable a user to navigate the hierarchy. Here’s what you need
to know in order to make that work:

 ✓ The view beneath the Navigation bar presents the current level of the
application.

 ✓ A Navigation bar includes a title for the current view.

 ✓ If the current view is lower in the hierarchy than the top level, a Back
button appears on the left side of the bar; the user can tap it to return
to the previous level. (Back in Figure 5-6, these buttons are named Road
Trip and New York City and are shaped like a left-pointing arrow; the text
in the Back button tells the user what the previous level was.)

 ✓ A Navigation bar may also have an Edit button on the right side — used
to enter Editing mode for the current view — or even custom buttons.

On the iPad, the Master-Detail Application template has not one, but two
Navigation controllers already included in the storyboard — one for the
Master View controller and the other for the Detail View controller, as you
can see in Figure 5-7.

The only “problem” right now is that each Navigation controller has only one
view controller to manage, which means you won’t be able to select anything
and see a new view, with its accompanying Back button.

In this chapter, you get to fix that for the Detail View controller, at least.

What you’re working toward right now is shown in Figure 5-8. When you tap
the first cell in the Master View controller (you’ll add the Test Drive label
shortly), a new view controller will slide its view into place. If you select the
Back button, you will slide back to the previous Detail view.

120 Part II: Building RoadTrip

Figure 5-7:
The

Navigation
controllers

are already
in.

Figure 5-8:
Navigating
in RoadTrip

on the iPad.

 You have other (even slicker) iPad navigation options at your disposal, and I
get to them in Chapter 13, where you get a chance to change from navigation
that uses the Navigation controller to something a bit more appropriate for
the RoadTrip application. For now, though, you’ll go with the Navigation con-
troller approach, just to get you off and running.

So, on your mark, get set, and go. Time to add a new view controller.

121 Chapter 5: Creating the RoadTrip User Interface

Adding a New View Controller
 Your first step in adding a new view controller is to select the iPad storyboard

file in the Project navigator. With the storyboard displayed, you then make
sure that the Utility area is visible by clicking its icon in the Xcode toolbar’s
View selector. With that done, you can now hide the Project navigator by click-
ing its icon in the Xcode toolbar’s View selector. (See Figure 5-9; remember, the
button is a toggle, as I explain in Chapter 2.) Doing so gives you a little more
real estate onscreen. (If you are blessed with a large monitor, though, you can
keep the Project navigator open.)

Because I have limited space on a book page, I’m hiding the Navigator area,
as you can see in Figure 5-10. (When I work on my large-screen monitor, I usu-
ally keep the Navigator area shown.)

 As the last step in getting your canvas ready, click the Attributes inspector
button in the Inspector selector in the Utility area.

Figure 5-9:
Hiding the
Navigator

area.

122 Part II: Building RoadTrip

Figure 5-10:
Drag in
a view

controller.

To add the Test Drive controller (which manages the view that will allow
you to have RoadTrip’s little car drive up the screen, turn around, and then go
back to its original position, all with sound effects), you need to do the following:

 1. Select Objects in the Utility area’s Library pane, and then drag a new
view controller from the pane into your storyboard.

 Whereas you can add controls and other views to views only when the
storyboard elements are full size, you can add view controllers (and, as
you’ll soon see, segues) at any zoom level.

 A new scene is created, as shown in Figure 5-10.

 2. Select the Table view in the Master View Controller – Master Scene
(as I have in Figure 5-11) and then select the Attributes inspector.

 If you look at the Canvas, you see a Table view with Prototype Cells, and
a cell with the text of Title.

 You’ll notice that, in the Table View section of the Attributes inspector,
the Dynamic Prototypes option is selected.

 Right now, if you select a cell, nothing happens. That’s because with
Dynamic Prototype cells, you have to implement a method in your
view controller to do something when a cell is selected (as you will in
Chapter 20, where you create cells based on the information for each
destination in the Destinations plist).

123 Chapter 5: Creating the RoadTrip User Interface

Figure 5-11:
The Table

view.

 For now, all I want to do is to be able to launch a Test Drive controller
when the first cell is selected (and I really don’t care about the time
stamp). To do that in the most expeditious way possible, I’ll have you
use the Attributes inspector to change the Master view from Dynamic
Prototypes to Static Cells.

 Static cells are used when you know in advance what needs to be dis-
played in a cell. Instead of having to implement a method in your view
controller to return the cell with the text you want, you can format the
cells in the storyboard. But more importantly, you can create a segue
from a static cell that will launch the Test Drive Controller for you when
the cell is tapped.

 That’s all I am going to say about static cells for now — I really want to
get on with explaining how to create the user interface in the storyboard
using Interface Builder, but I promise I’ll return to static cells in detail
in Chapter 12, because they are a feature that you’ll probably be using
often.

 3. In the Attributes inspector, select Static Cells from the Content drop-
down menu, as I have in Figure 5-12.

 You’ll notice a change in the Table view. The heading Prototype Cells will
disappear and you’ll see three cells each with the text Title.

124 Part II: Building RoadTrip

Figure 5-12:
Make them
static cells.

 4. In the Outline view, expand the disclosure triangle next to the table
view and you’ll see a Table View section.

 Expand the Table View section and you’ll see three Table View cells.
Expand the first Table View cell and you’ll find a content view and then
a label. Select the label, and in the Attributes inspector Title field, enter
Test Drive as I have in Figure 5-13.

 5. Select the first Table View cell (the cell, not the Test Drive label) in the
Document Outline, and Control-drag from the cell in the Master View
controller to the view controller you just added, as shown in Figure 5-14.
Then release the mouse button.

 Control-clicking from a button or Table View cell and dragging to the
view controller you want displayed creates a selection segue or an
accessory action. When you release the mouse button, you’ll see the
Storyboard Segues contextual menu, which pops up onscreen. You’ll
learn more about segues in this section and in Chapter 14. We won’t be
using an accessory action, but it’s a way to trigger a segue — from an
accessory button in a table view cell rather than from a tap anywhere in
the cell (a selection segue).

125 Chapter 5: Creating the RoadTrip User Interface

Figure 5-13:
Your Test

Drive cell.

Figure 5-14:
Drag from

the Test
Drive cell

to the
Table view
controller.

126 Part II: Building RoadTrip

 6. Select Push from the Selection Segue pop-up menu, as shown in
Figure 5-15.

 A segue performs the visual transition between two view controllers and
supports push (navigation), modal, and custom transitions.

 A push segue changes the scene — and the user sees the new view
controller’s view (with its Back button) slide into place when the user
taps a button; the Navigation bar items are updated appropriately. (See
the “Understanding iPad Navigation” section, earlier in this chapter, for
more on adding a Navigation controller.)

 In contrast to a push segue, a modal segue presents the view control-
ler modally, with the transition style you specify, and requires the user
to do something (tap Save or Cancel, for example) to get back to the
previous view controller. As for custom transitions, segues support the
standard visual transition styles such as Cover Vertical, Flip Horizontal,
Cross Dissolve, and Partial Curl.

 Segue objects are used to prepare for the transition from one view con-
troller to another, which means segue objects contain information about
both view controllers involved in a transition. When a segue is trig-
gered — but before the visual transition occurs — the storyboard run-
time calls the current view controller’s prepareForSegue:sender:
method so that it can pass any needed data to the view controller that’s
about to be displayed.

Figure 5-15:
Creating a

push segue.

127 Chapter 5: Creating the RoadTrip User Interface

You’ll notice that selecting Push from the Storyboard Segue’s pop-up menu
causes the Navigation bar to appear but also shrinks the view. I explain that
in Chapter 13.

 7. Select the Push segue in the Master View Controller scene. After
making sure that Push appears on the Style menu in the Attributes
inspector, enter TestDrive in the inspector’s Identifier field, as I have
in Figure 5-16; then press return (or enter).

 You won’t always use the identifier, but it’s good practice to name it so
that you can identify the segue.

 The field in the storyboard isn’t updated until you press return, or some-
times until you click in another field in that inspector.

 8. Choose Detail Split from the Attributes inspector’s Destination drop-
down menu, as I have in Figure 5-16.

 The size of the view in the Test Drive controller changes.

 9. Finally, select the two unused Table View cells in the Document Outline
and delete them by pressing Delete. (You won’t be using them.)

 The default destination was set to Current, which meant that it was set
to the Master view, because that’s where you were dragging from. With
that default, the view controller had been resized for the Master view,
which is 320 points wide in the standard Split View Controller. But you
want the destination to be in the Detail view; choosing Detail Split in this
step takes care of that for you.

Figure 5-16:
Make the

destination
a Detail

view and
add an

identifier.

128 Part II: Building RoadTrip

 If you look closely at Figure 5-16, you can see that the view has now been
sized down and that a Navigation bar has been added to the top of the
view. If you expand the view controller in the View Controller Scene in
the Document Outline, you can see that a Navigation bar was added there
as one would expect.

 You’ll also notice that a Disclosure Indicator (the chevron — a right-
arrowhead-like shape on the right side of the Test Drive cell) has also
been added. For now we’ll leave it there, but in Chapter 13, I explain how
to remove or change it if you’d like.

When you select the Detail cell and create the Push segue with the Detail
view as the destination, the new Test Drive controller becomes embedded in
the Detail view’s Navigation controller. This Navigation controller manages
the view controller stack for everything in the Detail view of the Split View
Controller.

Danger Will Robinson
If you were to build and run RoadTrip for iPad at this point, the app would
crash because Apple’s Master-Detail template has added code for dynamic
table cells that can’t be used for our static table cell. You will soon delete that
unwanted code, so the app will work properly by the end of this chapter.

After the unwanted code is deleted, there will be two ways to test the app
for iPad.

First, you could choose Landscape orientation, and select Test Drive, which
would allow a new view controller’s view to slide into place, Back button and
all. If you then selected the Back button, the old Detail view would slide back
into place.

However, in Portrait orientation, if you selected the Master button and then
selected Detail, you’d see the new controller with a Back button as well. The
Master button, however, will only appear again after you have selected Back
and returned to the Detail View controller (the Root View controller). You’ll
find out how to fix that annoying bit of business in Chapter 13.

Before you go any further, take a look at the View Controller you just added in
the Attributes inspector, which I have selected in the Inspector selector bar
in the Utility area in Figure 5-17. As you can see, the controller has properties
that you can set using Interface Builder (including a title and identifier which
I explain next).

 The Attributes inspector is the place where you’ll set properties of the view
controllers, controls, and other view objects you add to the view.

129 Chapter 5: Creating the RoadTrip User Interface

Figure 5-17:
Adding a
title and

identifier.

Adding an identifier to the view controller
If you take another look at Figure 5-17, you can see that I’ve set Interface
Builder’s zoom to full size, clicked on the view controller I just created,
selected the Attributes inspector in the Inspector selector bar, and then
entered TestDrive in the Title field in the View Controller section. I then
selected the Identity Inspector tab, and set the Storyboard ID to TestDriveID.
The Title string is used in the Outline view, whereas the Storyboard ID string
is used from code in the app.

I did all that for one simple reason: If you want to do anything special with a
view controller in a storyboard, you need to be able to find it, and the easiest
way to keep tabs on a view controller is by giving it a name using the identi-
fier. Although you may not need an identifier for every view controller, it’s a
good idea to get in the habit of adding it just in case you do. As for the name
you enter in the Title field, it enables you to distinguish which view control-
ler is which in the storyboard. You’ll notice that in the Document Outline, the
selected view controller is now named View Controller – TestDrive and the
scene now is named View Controller – TestDrive Scene.

 Whatever you type in a field isn’t added until you press Return or click in
another field.

130 Part II: Building RoadTrip

View Layout
Before you start to add another view — which will be a subview of the view
that’s already there — it’s necessary to talk about view layout options. View
layout is particularly important on mobile devices because the pesky user
might rotate her device. So why is that an issue? Look at the specific case of
the original iPad. When held in Portrait orientation, the screen is 768 pixels
wide by 1,024 pixels tall. But when rotated to Landscape position, the screen
becomes 1,024 pixels wide, but only 768 pixels tall.

If your app handles rotation properly, components such as buttons, text
fields, images, and so on usually need to move and resize. In other words,
you need a layout strategy, so that subviews are moved and resized correctly
when their containing superview is resized.

Here are three strategies for view layout:

 ✓ Hard-code the layout. Here, you set the location, width, and height of
each view yourself, and change those properties when the device is
rotated. This is a really bad idea for most apps. It’s difficult, error-prone,
and inflexible.

 ✓ Use iOS autosizing. Autosizing has existed since early versions of the
iOS SDK and provides a mechanism for automatically moving and resiz-
ing a view in response to changes in its superview’s position or size. You
can set the default autosizing behavior for your views from the Size pane
of the inspector. The Size inspector contains an autosizing section with
springs and struts that let you specify which edges of an object (if any)
are pinned to the edge of its container (which is often the screen itself)
and which edges can move. Although currently supported and used in
much older code, it is not the first choice for many developers today.

 ✓ Use Auto Layout. You use the Auto Layout system to define layout
constraints for user interface elements. Constraints represent relation-
ships between user interface elements. Auto layout improves upon
Autosizing’s “springs and struts” model in many ways. It was introduced
in iOS 6 and is the preferred method of handling autosizing today.

Autosizing isn’t just about rotation. Yes, the screen image must adjust as you
rotate a device, but when Apple releases a new device with a new screen size,
ideally, you want your app to adjust automatically to the new screen size.
Using Auto Layout for autosizing can give you a big leg up here.

And there’s even more. If your app will be localized, you need to prepare
separate storyboards for each language. Depending on which languages you
use, you may have to accommodate scripts that run from right to left as well
as from left to right (not to mention languages that can run vertically). On
top of that, some languages require more space to express the same thought,
although this varies somewhat based on the subject matter of the thought

131 Chapter 5: Creating the RoadTrip User Interface

and the language. When you put these localization issues together, you can
see that the objects on your storyboard that contain localized text may
need to be able to change size to reflect their content. Auto Layout helps to
do this. These are advanced issues, but I bring them up here so that if they
apply to you and your app, you’ll be aware of Auto Layout and some of its
advanced capabilities.

Adding the User Interface Objects
At this point, I could continue building out my storyboard by adding more
elements such as views and segues, just like I did in the previous section. But
by now I’m itching to really do something, which would require me getting
some actual objects into the storyboard. When an itch comes, I scratch, so
get ready to start editing and adding some objects.

 To edit an object in the TestDrive view in the storyboard, select Main_iPad.
storyboard in the Project editor to open Interface Builder. Expand the
View Controller – TestDrive in the View Controller – TestDrive Scene in the
Document Outline. Select the View, and then select the Attributes inspector in
the Inspector selector.

The Attributes inspector enables you to set various object properties. For
example, to change the color of the view’s background, you’d choose the
background color from the Background pop-up menu.

If you select Default from the pop-up menu or just click in the current color
 displayed in the Background field, you see the various default colors (shown on
the right side in Figure 5-18). You can also click Other to open the Colors palette.

Points, pixels, and Retina displays
With the introduction of Retina displays, we
have to be careful about how we talk about
screen dimensions. In the past, many people
used points and pixels interchangeably. Point
is a term that was used mostly in typesetting
(particularly for print). It is defined as 1/72 of an
inch. Pixel is a single element of the screen.

For a long time, most displays supported
72 pixels per inch (PPI). Thus, on those screens,
pixels and points were identical. With the
Retina display, the pixel count doubled to 144
per inch. This means that every pre-Retina

display pixel now was displayed by four pixels
(two across and two down). As a result, we
can no longer use the two terms interchange-
ably. The original iPad was 768 x 1,024 pixels
and points. An iPad with Retina display is
768 x 1,024 points, but in pixels, it’s 1536 x 2,048.
As a very rough guide, if you’re using an app
such as Photoshop to do your work and you’re
worried about resolution, you’re probably wor-
ried about pixels. If you’re using Xcode and you
want to specify the size and location of objects
on the screen, you’re probably using points.

132 Part II: Building RoadTrip

Figure 5-18:
Pick a color,

any color.

The toolbar at the top of the Colors palette gives you a number of options
for selecting a color. These are the standard options available for choosing a
color on the Mac, and I’ll leave you to explore them on your own.

Changing the background color for a view is kind of neat, but the real fun
comes from your ability to add your own view object as a background image.
That’s what you’re going to do next. (Feel the excitement!)

 Any view object you end up using has properties such as color (sometimes),
a background image, or the ability to interact with the user — respond to
touches, in other words. You generally set these properties using either the
Attributes inspector in Interface Builder or programmatically.

To see those properties, you need to zoom to full size or select it in the
Document Outline (which zooms it to full size). Full size is the only time view
objects are editable.

To add a background image, follow these steps:

 1. Scroll down in the Library window and drag an Image view (the one
selected in the Library in Figure 5-19) from the Library onto the view.

 An Image view is a view that’s used to display an image. (See Chapter 4
for more on views.)

 If you click an object in the Library, up pops a dialog telling you what it
is. The dialog even tells you what class it is, as you can see in
Figure 5-19. Click Done to dismiss it.

 What you just did is add an Image view as a subview of the RoadTrip
controller’s view, the one created for you by the template.

 Except for the view controllers up top and a few gesture recognizers
scattered around the middle of the gallery, most of the “objects” you see
in the Library are derived from the View class.

 You can add horizontal and vertical guides to help you line things up by
choosing Editor➪Add Horizontal Guide or Editor➪Add Vertical Guide,
respectively.

133 Chapter 5: Creating the RoadTrip User Interface

Figure 5-19:
Adding an

Image view.

 2. Select the Image view you just added, either in the Document Outline
or on the Canvas.

 Doing so changes what you see in the Attributes inspector. It now dis-
plays the attributes for the Image view.

 3. Using the Attributes inspector’s Image drop-down menu, scroll down
to select SeeTheUSA, as shown in Figure 5-20.

 Doing so adds the image you want to use to the Image view, as shown in
Figure 5-21. (You should have added this image in Chapter 3 — it was in
the RoadTrip Resources file you downloaded and added to an asset cata-
log — either the template’s default asset catalog or a separate one for
your own images, which I usually call Media.xcassets.)

 The preferred format for the image is .png. Although most common
image formats display correctly, Xcode automatically optimizes .png
images at build time to make them the fastest and most efficient image
type for use in iPad applications.

134 Part II: Building RoadTrip

Figure 5-20:
Selecting a

background
image.

Figure 5-21:
The image

selected
and in
place.

135 Chapter 5: Creating the RoadTrip User Interface

 4. Drag in another Image view and place it at the bottom-center of the
Image view you just added, as shown in Figure 5-22.

 5. Return to the Attributes inspector’s Image drop-down menu, but this
time select CarImage.

 The image you selected is added to the new Image view.

 6. Select the Image view you just added and choose Editor➪Size to Fit
Content from the main menu.

 If the command is not enabled, you may need to select it in the
Document Outline. The Image view is resized so that it better fits the
enclosed content. (See Figure 5-23.) If you look closely, you’ll recognize a
vintage pink 1959 Cadillac Eldorado Biarritz convertible.

 7. With the car Image view still selected, choose Editor➪Add Horizontal
Guide and Editor➪Add Vertical Guide.

 I’ll take any help I can get when it comes to positioning objects, and
these guides can help me keep track of a particular location on the
larger scene.

In Chapter 10, I show you how to animate the Eldorado Biarritz so it leisurely
drives to the top of the screen, turns around, drives back, and then turns
around one more time so that it’s back where it started.

Figure 5-22:
Adding

another
image view.

136 Part II: Building RoadTrip

Figure 5-23:
The family

car.

Autosizing with Auto Layout
Because you’re sure to decide — as all good app developers have decided
and will continue to decide in perpetuity — that the RoadTrip app needs
to function well in both Portrait and Landscape orientations, you’ll need to
make sure that, when you rotate the view, the car (subview) remains posi-
tioned at the bottom of the screen.

Luckily for you, most of that work gets done for you in UIView
Controller — the class from which we’ve derived TestDrive Controller.
(The technical term for this bit of work is autosizing.) The only thing you
have to do is tell the view controller exactly how you want it to move things
around when the view changes orientation. You can make such wishes known
in the storyboard using the Size inspector.

You’ll need to select some of the views to manage their autosizing. For this
process, make certain that the Document Outline is shown at the left of the
storyboard. The reason for this becomes clear if you look at the Document
Outline in Figure 5-24. Inside the View Controller – TestDrive, you have a view
(I’m skipping over the layout guides you added just now). Within that view,
you have an image view containing SeeTheUSA image from the asset cata-
log. The image view is now the same size as its containing view. You need to
be able to select each one separately, so the easiest way to do that is in the
Document Outline. Figure 5-24 shows the settings you want to set for the Size
inspector of the main view.

137 Chapter 5: Creating the RoadTrip User Interface

Figure 5-24:
Understand

the
Document

Outline view
structure.

There are four sections of the Size settings. From top to bottom, they are

 ✓ Metrics: Here at the top of the Size inspector, you set the location coor-
dinates and the view size. Most of the time, I use the Interface Builder
tools described in this and the following section, but when I want spe-
cific and accurate sizes, I type them in here. (That’s what you’ll do when
you add a button soon.)

 ✓ Content Hugging Priority and Content Compression Resistance
Priority: These sections are used mostly for adjusting the view’s size
based on its contents. As you see in Figure 5-24, each of these has a slider
where you can adjust the horizontal and vertical values. This is not
an on/off situation: at runtime, the values are weighed and the highest
values win out where there’s a conflict. You may set constraints (coming
up soon) that are contradictory. For example, you may want a view to be
positioned in a certain location based on another view (next to it by 10
points, say). In order to do that, the view may need to be resized. In such
a case, a higher hugging priority will mean that view will resist resizing
at the expense of not fulfilling the request to position it 10 points away
from another view. Compression is the other side of the coin. If the com-
pression resistance has a higher value, resizing that might truncate the
view’s content will be resisted.

 ✓ Intrinsic Size: This is set to default, which is where you’ll leave it for basic
layouts. This is the natural size of the view that may be resized or reshaped.

138 Part II: Building RoadTrip

 ✓ Constraints: These are the heart of Auto Layout. You provide constraints
as to the view’s location. The ones shown in Figure 5-24, which you’ll
create shortly, specify the view’s location relative to its container that,
for the top-level view, is the screen window. These constraints may be
contradictory in some cases, but you can assign a weight to each one to
indicate which constraints are more important than others. At runtime,
Auto Layout quickly figures out the optimal collection of constraints that
does as much as possible of what you want.

 If you don’t see the Constraints section, Auto Layout may be turned off for
your storyboard. To turn it on, select the storyboard in the Project navigator
and open the File inspector. The Use Auto Layout option is a check box in the
Interface Builder Document section.

The simplest way to set the constraints is shown in Figure 5-25. Select the
view in the Document Outline, and choose Editor ➪ Resolve Auto Layout
Issues ➪ Reset to Suggested Constraints in View Controller.

You now should have the three constraints shown in Figure 5-24. All three
have the same basic structure. The first one specifies the trailing space from
the selected view (the top-most View object) to the image view. The second
specifies the leading space, and the third specifies the bottom space.

Figure 5-25:
Set View

constraints.

139 Chapter 5: Creating the RoadTrip User Interface

You may wonder what leading and trailing are in this context. Remember the
comment about localization and the directions in which various languages
write? In a left-to-right script such as English, Spanish, French, and the like,
the leading space is the space between the left edge of the two views, and
trailing is the space between the right edges.

For a right-to-left language such as Hebrew or Arabic, the leading space is the
space on the right and the trailing space is the space on the left. Spaces for
top and bottom are independent of language direction.

If you select the first one, you’ll see that you can click the gear wheel at the
right of each constraint to open more details, as shown in Figure 5-26. The
default is quite simple: The spacing between right edges of the top-most View
and the image view is zero points. If you explore further, you’ll see that the
bottom spacing is the default, which is also zero.

You’re not yet done with managing Auto Layout. Select the image view and
pin it to the bottom of its superview. Use Editor ➪Pin ➪Bottom Space to
Superview. This means that it will be the right size when the device is rotated.

Repeat the process for the car image. The defaults show you another aspect
of constraints. You’ll have the default bottom space to superview again, but
you’ll have a new constraint that aligns the center of the car image to the
center of the image view for the X (horizontal) coordinate.

Figure 5-26:
View

and edit
constraints.

140 Part II: Building RoadTrip

Although the app won’t run until you enter the code in the following section,
trust me that when you do enter that code, you’ll be able to rotate the app in
the simulator, as shown in Figure 5-27.

Figure 5-27:
Try rotat-

ing the
simulator.

141 Chapter 5: Creating the RoadTrip User Interface

This process is typical of using Auto Layout. Draw your layout in the story-
board scene. Some constraints will be created for you automatically, and you
can test to see what happens. You may need to tweak the constraints (such
as by pinning an object to a superview). You also may choose to clear all the
constraints and reset to the defaults. Another tweak may be necessary. But
consider that, in this section, you’ve used two menu commands to make the
interface handle rotation as well as new screen sizes and shapes.

Adding the Test Drive button
I say the more objects, the merrier. I want to add a nice Test Drive button
which, when clicked, will send our 1959 Cadillac Eldorado Biarritz convert-
ible on its merry way. Here’s how it’s done:

 1. Select the Button in the Library and drag it onto the view.

 2. Click the Attributes Inspector button on the Inspector selector bar.

 The button attributes you’re going to set using the Attributes inspector
are all Objective-C properties. Note that you can also set these proper-
ties programmatically; I show you how to do that in Chapter 8.

 As you can see in Figure 5-28, the Type pop-up menu in the Attributes
inspector is set to System. The button is shown in its default State con-
figuration — in this case, unselected and unhighlighted. If you were to
click the State Config pop-up menu and choose another configuration,
such as Highlighted or Selected, you’d be able to change the font, text
color, shadow, background, and other attributes in the Attributes inspec-
tor for the selected state.

 This particular button, being distinctly generic, is remarkably unexciting.
To liven things up just a tad, I’m going to have you add a background image
I created. (You’ll find that image in the RoadTrip Resources folder that you
should have downloaded and added to your asset catalog in Chapter 3.)

 3. In the Attributes inspector, choose Custom from the Type pop-up
menu, as shown in Figure 5-29.

 4. Choose Button from the Background drop-down menu, as shown in
Figure 5-30.

 So why are you using the Background drop-down menu rather than the
Image drop-down menu to place an image as your button? When you
choose an image from the Background drop-down menu, you’re simply
doing that — setting the image for the button. You’ll still add the title
and so on using the Attributes inspector. If you were to choose from the
Image drop-down menu, you would have included the title as part of the
image and you wouldn’t have been able to add it in the Inspector.

142 Part II: Building RoadTrip

Figure 5-28:
Adding a

button.

Figure 5-29:
Creating

a custom
button.

143 Chapter 5: Creating the RoadTrip User Interface

Figure 5-30:
Choose

a custom
image for

the button.

 5. Using Size inspector (as shown in Figure 5-31), resize the button to 96
points by 37 points using the width and height in the fields provided.

 You can also use the resize handles.

 6. To center the button, select it and choose Editor➪Align➪Horizontal
Center in Container.

 Another constraint will automatically be added.

 7. To center it vertically, select it and choose Editor➪Align➪Vertical
Center in Container.

 The vertical constraint will be added.

 8. Give this button a title (buttons don’t have text; they have titles) by
going back to the Attributes inspector, entering Test Drive in the Title
field, and pressing Return.

 You could double-click the button and enter the Title there and press
Return as well. In my experience, though, doing so may cause the button
to resize itself.

 You could select a different Background image and title for each button state
by cycling through the State Config choices and repeating Steps 2 through 5.
I’ll leave that for you to explore on your own.

144 Part II: Building RoadTrip

Figure 5-31:
Using

the Size
inspector.

 Whenever you enter text, be sure to press Return. Anything you enter won’t
change the current setting unless you press Return or click in another field.

Massaging the Template Code
If you have been playing around with the code generated for you by the
Master-Detail Application template, you’ve probably discovered that not only
can you select the + (plus sign) button to create a timestamp displayed both
in the Master and Detail views, but you can also select the Edit button and
delete the timestamp entry in the Master (and consequently) Detail views.

All this functionality is built into the template courtesy of the
UITableViewController. I explain how Table views work in Chapter 20,
but because you are using a segue and static cells in the Master view, you
won’t need that functionality in the Master view. But not only don’t you need
it, it also actually interferes with the functioning of the segue, which you’ll
also understand when I explain Table view (and its UITableViewDelegate
and UITableViewDataSource protocols) in detail in Chapter 20.

To deal with this issue, I want you to delete the code in Listing 5-1. Here
I’m talking about the code in MasterViewController.m starting with
the #pragma mark Table View statement and up to — but not

145 Chapter 5: Creating the RoadTrip User Interface

including — the @end statement. This is the code that implements the Table
View functionality, and also another method, prepareForSegue, that lets
you pass data to the view controller you are transitioning to — unused here,
but explained in detail in Chapter 13.

Listing 5-1: Delete This Code from MasterViewController.m

#pragma mark Table View

 (NSInteger)numberOfSectionsInTableView:(UITableView *)
tableView

{
 return 1;
}

 (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

{
 return _objects.count;
}

 (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"Cell"];

 NSDate *object = [_objects objectAtIndex:indexPath.row];
 cell.textLabel.text = [object description];
 return cell;
}

 (BOOL)tableView:(UITableView *)tableView
canEditRowAtIndexPath:(NSIndexPath *)indexPath

{
 // Return NO if you do not want the specified item to

be editable.
 return YES;
}

 (void)tableView:(UITableView *)tableView commitEditingS
tyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath

{
 if (editingStyle == UITableViewCellEditingStyleDelete)

{
 [_objects removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray

arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];

 } else if (editingStyle ==
UITableViewCellEditingStyleInsert) {

(continued)

146 Part II: Building RoadTrip

Listing 5-1 (continued)

 // Create a new instance of the appropriate class,
insert it into the array, and add a new row to
the table view.

 }
}

/*
// Override to support rearranging the table view.
 (void)tableView:(UITableView *)tableView

moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
toIndexPath:(NSIndexPath *)toIndexPath

{
}
*/

/*
// Override to support conditional rearranging of the

table view.
 (BOOL)tableView:(UITableView *)tableView canMoveRowAtInd

exPath:(NSIndexPath *)indexPath
{
 // Return NO if you do not want the item to be

reorderable.
 return YES;
}
*/

 (void)tableView:(UITableView *)tableView didSelectRowAtI
ndexPath:(NSIndexPath *)indexPath

{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

UIUserInterfaceIdiomPad) {
 NSDate *object = [_objects

objectAtIndex:indexPath.row];
 self.detailViewController.detailItem = object;
 }
}

 (void)prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender

{
 if ([[segue identifier]

isEqualToString:@"showDetail"]) {
 NSIndexPath *indexPath = [self.tableView

indexPathForSelectedRow];
 NSDate *object = [_objects

objectAtIndex:indexPath.row];
 [[segue destinationViewController]

setDetailItem:object];
 }
}

147 Chapter 5: Creating the RoadTrip User Interface

You’ll also need to delete some code in the viewDidLoad method. This
code adds the edit and + (plus) buttons to the Navigation bar. Delete the
code in Listing 5-2 that I’ve commented out in bold, underline, and italic in
viewDidLoad in MasterViewController.m.

Listing 5-2: Delete the Code in viewDidLoad

 (void)viewDidLoad
{
 [super viewDidLoad];
// Do any additional setup after loading the view,

typically from a nib.
//self.navigationItem.leftBarButtonItem =

self.editButtonItem;
//UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self action:@selector(insertNewObject:)];
//self.navigationItem.rightBarButtonItem = addButton;
self.detailViewController = (RTDetailViewController *)
 [[self.splitViewController.viewControllers lastObject]
 topViewController];
}

Finally, in Listing 5-3, delete the insertNewObject: method in
MasterViewController.m (the action method specified in the + button
created in viewDidLoad, which was the selector used).

Listing 5-3: Delete insertNewObject:

 (void)insertNewObject:(id)sender
{
 if (!_objects) {
 _objects = [[NSMutableArray alloc] init];
 }
 [_objects insertObject:[NSDate date] atIndex:0];
 NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:0 inSection:0];
 [self.tableView insertRowsAtIndexPaths:
 [NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
}

 Occasionally you might make a change to your app (usually having to do
with a resource) and then, when you run your app, nothing seems to have
changed. When you click Run, Xcode does only what it needs to do to the
parts of your app that have changed, and if it gets “confused” (yes, there are
bugs in Xcode), your change won’t be linked into the app. If you think that has
happened, choose Product➪Clean, and Xcode will recompile all the pieces of
your app. And if that doesn’t work, go to the Projects tab in the Organizer and
delete Derived Data for your project.

148 Part II: Building RoadTrip

Getting Rid of Warnings
Earlier, I warned you the app would not run until you cleaned up the
unneeded code. You should have done that now with the code you just
deleted, and the app should run.

You may have some warnings. If you do, it’s a good idea to clean them up. If
they are related to misplaced views on a storyboard, you have a good deal of
help waiting for you. Here’s what you can do:

 1. Select the warning for the misplaced view in the Issue navigator.

 You’ll see details of the warning.

 2. You can adjust the values yourself, but look for another yellow warn-
ing icon at the right of the warning and click it.

 3. You’ll be given a choice of automatic corrections. Choose the one you
want to try, as shown in Figure 5-32.

 The solutions are presented in less- to more-extreme order from top to
bottom.

Figure 5-32:
Automati-

cally fix
misplaced

views.

Creating the iPhone User Interface
All the code that you write in Chapters 1 through 5 for the iPad will work fine
for the iPhone. That will also be true for later chapters in this book. All you
need to do is add the following items to your iPhone storyboard file, in a very
similar manner to what you just did for the iPad storyboard:

 ✓ Drag a UIViewController into the iPhone storyboard. Change its class
name to TestDriveController and its Storyboard ID to TestDrive.

 ✓ Add a UIImageView, using the SeeTheUSA_iPhone.png image.

 ✓ Add a UIImageView, using the CarImage.png image.

149 Chapter 5: Creating the RoadTrip User Interface

 ✓ Add a Test Drive button.

 ✓ Select the Master View Controller scene in the iPhone storyboard.

 ✓ Select the Table view in the Master View Controller.

 ✓ Use the Attributes inspector to change the Master view from Dynamic
Prototypes to Static Cells.

 ✓ Select the Label in the first Table View cell, and change its text to Test
Drive.

 ✓ Control-drag from the Table View cell to the TestDriveController;
choose a Push segue from the pop-up menu.

 ✓ Select the unused Table View cells from the Table view and delete them.

Now the iPhone app should work in a similar manner to the iPad app.

150 Part II: Building RoadTrip

Chapter 6

The Runtime, Managing Memory,
and Using Properties

In This Chapter
▶ Understanding the application life cycle

▶ Handling interruptions

▶ Using Automatic Reference Counting to manage memory

▶ Understanding the five rules of memory management

▶ Customizing framework behaviors

▶ Taking advantage of the power of declared properties

P
revious chapters provide you with at least a basic understanding of how
to graphically build your user interface. Now it’s time to add some code

to have your app actually do something. But before you do that, I want to
explain three things about writing iOS apps.

First, a lot of what you’ll be doing is customizing and extending the behavior
of framework classes. You customize and extend the behavior of these classes
through subclassing, delegation, and using a powerful Objective-C feature
called declared properties.

Second, on iPhone or iPad, like any other device, you create objects to do your
bidding — which means that you allocate memory, which happens to be a
scarce resource, particularly on relatively small mobile devices. Running out
of memory is the main cause of apps crashing (not to mention being rejected
from the App Store), so you need to understand memory management.

And finally, to know what message to send to what objects at what time, as well
as what messages will be sent to your app at runtime, you need to understand
the application life cycle.

152 Part II: Building RoadTrip

Dealing with these three aspects of writing iOS apps is your pass to the
Successful iOS Programmers’ Society, and in this chapter, you start your
initiation. And because you’ll find all this stuff easier to understand if you
understand the overall context, I begin with the application life cycle.

 This chapter is enough to get you started and also keep you going as you
develop your own iOS apps. It provides a frame of reference on which you can
hang the concepts I throw around with abandon in upcoming chapters — as
well as the groundwork for a deep enough understanding of the application
life cycle to give you a handle on the detailed documentation. However, the
full and definitive documentation is on https://developer.apple.com/.

So relax. Get yourself a cup of coffee (or something stronger if you want) and
be prepared to be entertained.

Stepping Through the App Life Cycle
Although simple for the eventual user, the birth, life, and death of an app is
a pretty complex process. In this section, I explain what happens through-
out the time that the user launches the app from the Home screen, uses the
app, and then stops using the app, either because she is done or decides to
respond to an interruption such as an SMS message or phone call.

The life of an iOS app begins when a user launches it by tapping its icon on
the Home screen. The system launches your app by calling its main func-
tion — which Xcode kindly lets you peek at if you go to the Project navigator,
open the disclosure triangle next to the Supporting Files group, and select
main.m.

 The details of the implementation shown here may change, but the overall
architecture will stay the same from one iOS version to another.

#import <UIKit/UIKit.h>
#import "AppDelegate.h"

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil, NSString

FromClass([RTAppDelegate class]));
 }
}

https://developer.apple.com/

153 Chapter 6: The Runtime, Managing Memory, and Using Properties

The main function is where a program starts execution. This function is
responsible for the high-level organization of the program’s functionality
and typically has access to the arguments given to the program when it gets
executed.

The main function does only these two things:

 1. Sets up an autorelease pool:

@autoreleasepool {

 This is a piece of memory-management plumbing that you don’t need to
use in this book (other than here), or perhaps ever, but feel free to inves-
tigate on your own if you are interested.

 2. Calls the UIApplicationMain function to create the application object
and delegate and set up the event loop:

return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));

 This is your entrance into the entire app startup process and its under-
lying architecture.

 You may notice that with the exception of the @autoreleasepool directive,
what you’re looking at in main is C code. This is the bootstrap code that gets
you into the world of Objective-C.

UIApplicationMain
The UIApplicationMain function creates the application object (a single-
ton — the only — UIApplication object) and the application delegate
(a class created for you by the Xcode template). It also sets up the main event
loop, including the app’s run loop (which is responsible for polling input
sources) and begins processing events.

In the following section, I explain the role of each of these elements in the
application life cycle.

UIApplication provides application-wide control
The UIApplication object provides the application-wide control and coor-
dination for an iOS app. It’s responsible for handling the initial routing of
incoming user events (touches, for example) as well as for dispatching action
messages from control objects (such as buttons) to the appropriate target
objects. The application object sends messages to its application delegate

154 Part II: Building RoadTrip

to allow you to respond in an application-unique way to occurrences such
as application launch, low-memory warnings, and state transitions such as
moving into background and back into foreground.

 Delegation is a mechanism used to avoid subclassing complex UIKit objects,
such as the UIApplication object. Instead of subclassing and overriding
methods in a framework or other object, you go ahead and use that object
unmodified and opt for putting your custom code inside a delegate object
instead. As interesting events occur, the framework or other object sends
messages to your delegate object. You use these methods to execute your
custom code and implement the behavior you need. I explain the delegation
pattern more in “The Delegation pattern” section, later in this chapter.

The Application Delegate object (the AppDelegate you see in the template)
is responsible for handling several critical system messages and must be
present in every iOS app. The object can be an instance of any class you like,
as long as it adopts the UIApplicationDelegate protocol. In the template,
you’ll find that it’s a subclass of UIResponder, which enables it to respond
to and handle events. (UIApplication is also derived from UIResponder.)

The methods of this protocol correspond to behaviors that are needed
during the application life cycle and are your way of implementing this
custom behavior. Although you aren’t required to implement all the methods
of the UIApplicationDelegate protocol, you’ll often find yourself writing
code to handle the following:

 ✓ Initialization in your application delegate’s application:didFinish
LaunchingWithOptions: method.

 ✓ State transitions such as moving in and out of background and foreground.
I explain these in more detail in the section “Knowing what to do when the
normal processing of your application is interrupted,” later in this chapter.

 ✓ Low-memory warnings, which I cover in the section “Observing Low-
Memory Warnings,” later in this chapter.

The UIApplication is a singleton object (there is just the one in an app).
To get a reference to it, you send the sharedApplication message to the
UIApplication class. (In Objective-C, you can send messages to classes,
which are really objects on their own.) Sending the sharedApplication
object the delegate message gives you a pointer to the delegate object:

AppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];

You’ll be doing that a lot, so much so, in fact, that it should become second
nature to you.

155 Chapter 6: The Runtime, Managing Memory, and Using Properties

UIApplicationMain loads the storyboard
If the application’s Info.plist file specifies a storyboard file (or a main nib
file), as RoadTrip’s Info.plist file does, the UIApplicationMain function
loads it. The app’s Info.plist file provides a map to the high-level structure
of the app.

 To see the RoadTrip-Info.plist file, select RoadTrip-Info.plist under the
Supporting Files heading in the Project navigator, as shown in Figure 6-1. The
file dutifully appears in the Editor area.

 A nib file is a resource file that contains the specifications for one or more
objects and is used to graphically create your user interface using Interface
Builder in apps when you’ve opted not to use a storyboard. (A storyboard
consists of a series of linked nib files created for you; for more on storyboards,
see Chapters 4 and 5.)

If you’re using a storyboard, the initial view controller is instantiated for
you. As you can see in the Attributes inspector in Figure 6-2, the Initial View
Controller setting is a View Controller property. It is set for you by most of
the Xcode templates. Note the check box in the View Controller attributes
in the Utility area at the right of Figure 6-2. (You usually don’t even have
to think about it.) In the iPad storyboard file, the initial view controller is
a Split view controller that was included by the template. The nib-loader
will also instantiate both Navigation controllers as well as their Root view
controllers. (I explain Navigation controllers and Root view controllers in
Chapter 5.)

Figure 6-1:
The Road
Trip-
Info.

plist file.

156 Part II: Building RoadTrip

Figure 6-2:
The initial
view con-

troller is
specified

for the iPad
storyboard.

In the iPhone storyboard file, the initial view controller is a Navigation
 controller that uses a Table View controller as its root view controller.

UIApplication sends the application:didFinishLaunchingWithOptions:
message to its delegate
If the method is implemented in the application delegate, the application:
didFinishLaunchingWithOptions: message is sent to the application
delegate.

Launch time is a particularly important point in an application’s life cycle.
In addition to the user launching an app by tapping its icon, an app can be
launched to respond to a specific type of event. For example, it could be
launched in response to an incoming push notification, it could be launched
to open a file, or it could be launched to handle some background event that
it had specified it wanted to handle (a location update, for example). In all
these cases, an Options dictionary passed to the application:didFinish
LaunchingWithOptions: method provides information about the reason
for the launch. (An app launched by the system for a specific reason — other
than the user tapping its icon — is beyond the scope of this book.)

157 Chapter 6: The Runtime, Managing Memory, and Using Properties

The application:didFinishLaunchingWithOptions: message is sent
to the delegate when the app has launched and its storyboard has been
loaded. In this step, as you will see, you initialize and set up your app. At the
time this message is sent, your app is in the inactive state. At some point
after this method returns (completes) — unless your app does some kind of
background processing — your app will become active and will receive the
applicationDidBecomeActive: message when it enters the foreground
(becomes the app that the user sees on the screen).

 If you’re thinking that somewhere in this startup process you should display
your app’s splash screen with a welcome message (and maybe some copyright
mumbo-jumbo), forget about it. Ideally, you get your users directly into the
app as quickly as possible without those outdated welcome screens. In fact,
the way in which you do this is to provide one or more launch images that you
typically place in your app’s asset catalog. A launch image is the background of
the first screen the user sees. An easy way to create them is to set a breakpoint
in a viewDidLoad method for the first view the user will see. Stop the action
just before you add any data to the view. At runtime, the launch image for the
appropriate device and orientation will be presented immediately, and, if you
look very carefully, you’ll be able to see the content appear to be quickly placed
on the background. In fact, as long as your launch image is the same size,
shape, and general color of the live view, the illusion of putting content onto
the background will succeed. In reality, you’re simply presenting another view
instead of the launch image.

 The class interface (usually declared in the .h file) lists the messages to which
an object of that class can respond. The actual code for implementing a message
is called a method and will be found in the associated .m file. When you want
to have an object execute a method, you send it a message. In other words, the
message is what you want done, while the method is how to do it.

 Your goal during startup is to present your app’s user interface as quickly as
possible — and quick initialization equals happy users. Don’t load large data
structures that your app won’t use right away. If your app requires time to load
data from the network (or perform other tasks that take noticeable time), get
your interface up and running first and then launch the task that takes a longer
time on a background thread. Then you can display a progress indicator or
other feedback to the user to indicate that your app is loading the necessary
data or doing something important.

In the templates that don’t use a storyboard, the application:didFinish
LaunchingWithOptions: method allocates and initializes the window and
the Split view controller (as well as its initial view controllers), adds it all to
the window, and makes the window visible.

158 Part II: Building RoadTrip

In a storyboard-based app, this is all done by the storyboard for you, and the
application:didFinishLaunchingWithOptions: method does nothing
other than return YES (the usual return).

 You would return NO only if your app was launched because another app
opened a URL that’s owned by your app and your app can’t handle the URL.

You will be adding some code to this method in Chapter 8.

Handling events while your
application is executing
Most events sent to an app are encapsulated in an event object — an
instance of the UIEvent class. In the case of touch-related events, the
event object contains one or more touch objects (UITouch) representing
the fingers that are touching the screen. As the user places fingers on the
screen, moves them around, and finally removes them from the screen,
the system reports the changes for each finger in the corresponding touch
object.

Distributing and handling events is the job of responder objects,
which are instances of the UIResponder class. The UIApplication,
UIViewController, UIWindow, and UIView classes (and your own
AppDelegate) all inherit from UIResponder. After pulling an event off
the event queue, the app dispatches that event to the UIWindow object
where it occurred. The window object, in turn, forwards the event to its
first responder, designated to be the first recipient of events other than
touch events. In the case of touch events, the first responder is typically
the view object (UIView) in which the touch took place. For example, a
touch event occurring in a button is delivered to the corresponding button
object.

If the first responder is unable to handle an event, it forwards the event to
its next responder, which is typically a Parent view or view controller. If that
object is unable to handle the event, it forwards it to its next responder,
and so on until the event is handled. This series of linked responder
objects is known as the responder chain. Messages continue traveling up
the responder chain — toward higher-level responder objects, such as the
window, the app, and the app’s delegate — until the event is either handled
or discarded.

159 Chapter 6: The Runtime, Managing Memory, and Using Properties

The responder object that handles an event often sets in motion a series of
programmatic actions by the app. The following list provides the chronology
of what actually happens when the user taps something:

 1. A touch event object is created in response to the user’s tap.

 The touch of a finger (actually the lifting of a finger from the screen)
adds a touch event to the app’s event queue, where that event is
encapsulated in — placed into, in other words — a UIEvent object. A
UITouch object exists for each finger touching the screen, so that you
can track individual touches. As the user manipulates the screen with
her fingers, the system reports the changes for each finger in the corre-
sponding UITouch object.

 2. The run loop monitor dispatches the event.

 When something occurs that needs to be processed, the event-handling
code of the UIApplication processes touch events by dispatching
them to the appropriate responder object — the object that has signed up
to take responsibility for doing something when a specific type of event
happens (when the user touches the screen, for example). As mentioned
previously, responder objects can include instances of UIApplication,
UIWindow, and UIView (and any of its subclasses), as well as
UIViewController (and any of its subclasses). All these classes inherit
from UIResponder.

 3. A responder object decides how to handle the event.

 For example, a touch event occurring with a button in a view is delivered
to the button object. The button object handles the event by sending an
action message to another object — in this case, the UIViewController
object. This enables you to use standard button objects without having
to muck about in their internals — you just tell the button what method
you want to have invoked in your target (usually the view controller, as I
explain in Chapter 9), and you’re basically set.

 Processing the message may result in changes to a view, a new view
altogether, or some other kind of change in the user interface. When one
of these results occurs, the view and graphics infrastructure takes over
and processes the required drawing events.

 4. Your app then returns to the run loop.

 After an event is handled or discarded, app control passes back to the
run loop. The run loop then processes the next event or puts the thread
to sleep if it has nothing more to do.

But because your app isn’t alone on the device, it can be interrupted by an
SMS message, or the user touching the Home button. When your app is inter-
rupted, you’ll have to take care of some things before control is switched to
another app.

160 Part II: Building RoadTrip

Knowing what to do when the normal
processing of your application is
interrupted
On an iOS device, various events besides termination can interrupt your app
to allow the user to respond — for example, calendar notifications or the
user pressing the Sleep/Wake button — and your app moves into the inactive
state. If the user chooses to ignore an interruption, your app moves back into
the active state and continues running as before. If the user decides to tap
the alert to deal with it (or if the interruption was from the user touching the
Home button to switch out of your app), your app then moves into its back-
ground state, where it’s suspended but remains in memory.

iOS sends you a number of messages to let you know exactly what’s happening
as well as to give you the opportunity to take actions such as save user data
and state information, which means saving the point where the user was in the
app. (If an app needs to continue running, it can request execution time from
the system.) Because the app is in the background (running or suspended)
and still in memory, relaunching is nearly instantaneous. An app’s objects
(including its windows and views) remain in memory, so they don’t need to be
re-created when the app relaunches. If memory becomes constrained, iOS may
purge background apps to make more room for the foreground app.

 Because these interruptions cause a temporary loss of control by your app,
touch events are no longer sent to your app. When developing your app, you
need to take this fact into account. For example, if your app is a game, you
should pause the game when your game is interrupted. In general, your app
should store information about its current state when it moves to the inac-
tive state and be able to restore itself to the current state upon a subsequent
relaunch.

In all cases, the sequence of events starts the same way — with the
applicationWillResignActive: message sent to your app delegate
when the app is about to move from active to inactive state. In this method,
you should pause ongoing tasks, disable timers, throttle down OpenGL ES
frame rates (that is, you should use this method to pause the game), and
generally put things on hold.

What happens after this depends on a) the nature of the interruption, and b)
how the user responds to the interruption. Your app may be either moved to
the background or reactivated. I explain these occurrences next.

Before I do that, however, check out Figure 6-3, which shows the application
life cycle and how interruptions are handled.

161 Chapter 6: The Runtime, Managing Memory, and Using Properties

Figure 6-3:
The appli-
cation life

cycle.

If the user responds to the interruption (the SMS message, for example) or
has launched another app, your app is moved to the background.

The next two bullets explain the messages your app can respond to after it’s
been moved into the background:

 ✓ The applicationDidEnterBackground: message: When your app
first enters the background state, it’s sent the applicationDidEnter
Background: message. In this method, you should save any unsaved
data or state (where the user is in the app — the current view, options
selected, and stuff like that) to a temporary cache file or to the prefer-
ences database on disk. (Apple calls the iOS storage system a disk even
though it is a solid-state drive.)

162 Part II: Building RoadTrip

 Even though your app enters the background state, you have no guaran-
tee that it will remain there indefinitely. If memory becomes constrained,
iOS will purge background apps to make more room for the foreground
app. You need to do everything necessary to be able to restore your app
in case it’s subsequently purged from memory so that the next time the
user launches your app, your app can use that information to restore
your app to its previous state. You also have to do additional cleanup
operations, such as deleting temporary files.

 If your app is purged when it’s in this suspended state, it receives no
notice that it’s removed from memory. That’s why you need to save any
data when you receive the applicationDidEnterBackground:
message.

 When your delegate is sent the applicationDidEnterBackground:
method, your app has an undocumented amount of time to finish things
up. If the method doesn’t return before time runs out (or if your app
doesn’t request more execution time from iOS), your app is terminated
and purged from memory.

 If your app requests more execution time or it has declared that it does
background execution, it’s allowed to continue running after the applic
ationDidEnterBackground: method returns. If not, your (now) back-
ground application is moved to the suspended state shortly after return-
ing from the applicationDidEnterBackground: method.

 If the app is in the background, it then may be relaunched. This can
happen if the user selects the app from the Home screen or the multi-
tasking bar, or it’s launched by the system if the app processes events in
the background or monitors a significant location change, for example.

 ✓ The applicationWillEnterForeground: message: When your app
is relaunched from the background, it’s sent the applicationWillEn
terForeground: message. In this method, you need to undo what you
did in the applicationDidEnterBackground: method.

If the user ignores the SMS message, or the app is relaunched from the back-
ground, your app is reactivated and starts getting touch and other events.

When your app is reactivated, it’s sent the applicationDidBecomeActive:
message.

You can use the applicationDidBecomeActive: method to restore the
app to the state it was in before the interruption. Here you undo what you
did in the applicationWillResignActive method, such as restart any
tasks that were paused (or not yet started) while the app was inactive. If the
app was previously in the background, you might need to refresh the user
interface.

163 Chapter 6: The Runtime, Managing Memory, and Using Properties

While an app is in the suspended state, the system tracks and coalesces (really
nets out) events that might have an impact on that app when it relaunches. As
soon as your app is up and running again, the system delivers those events
to it. For most of these events, your app’s existing infrastructure should just
respond appropriately. For example, if the device orientation changed, your
app’s view controllers would automatically update the interface orientation in
an appropriate way.

Apps are generally moved to the background when interrupted or when the
user quits. But if the app was compiled with a very early version of the SDK,
or is running on an early version of the operating system that doesn’t sup-
port multitasking — or if you decide that you don’t want your app to run in
the background and you set the UIApplicationExitsOnSuspend key in its
Info.plist file — iOS terminates your app.

 Even if your app supports multitasking (almost all do at this point), you
must still be prepared for your app to be killed without any notification.
The user can kill apps explicitly using the multitasking bar. In addition,
if memory becomes constrained, the system might remove apps from
memory to make more room. If it does remove your suspended app, it
doesn’t give you any warning, much less notice after the fact! However, if your
app is currently running in the background state, the system does call the
applicationWillTerminate: method of the app delegate.

When your application delegate is sent the applicationWillTerminate:
message in nonmultitasking applications, or those running in the back-
ground, you need to do the same kinds of things you do in applicationDi
dEnterBackground:, except this time you do them knowing that your app
won’t be returning from the background.

Your applicationWillTerminate: method implementation has a limited
(albeit undocumented) amount of time to do what it needs to do and return.
Any longer than that and your app is terminated and purged from memory.
(The Terminator doesn’t kid around.)

An overview of the view
controller life cycle
View controllers have a life cycle just as apps do, but I don’t need to go into
much detail about it here. The important part to know is certain messages that
are sent as views are displayed and hidden.

164 Part II: Building RoadTrip

The two methods you need to know about in order to work with views are
the following:

 ✓ viewDidLoad

 ✓ viewWillAppear:

The viewDidLoad message is sent to your view controller. This message is
sent after the view controller has loaded its associated views into memory.
This method is used to perform additional view initialization on views loaded
from the storyboard or nib file, and the message isn’t necessarily sent every
time the view appears. If, for example, the user makes a selection in the view
that causes a new view controller to load and slide its view into place, and the
user then taps the Back button, this message isn’t sent when the originating
view reappears. That’s the job of viewWillAppear:.

The viewWillAppear: message is sent when the view is about to become
visible. The first time it’s sent is after the viewDidLoad message, and then
whenever the view reappears, such as when you tap the Back button, for
example. You use this method to do the things that are necessary to present
the view. For example, if you are displaying the location of the nearest book
store that carries iOS App Development For Dummies, update that information
in this method.

Numerous other methods are also placed in the view controller for you as
stubs. I leave you to explore them on your own.

Of course, aside from all this system stuff that happens, your app will be
chugging along doing what the user wants it to do. And in responding to
user requests, you’ll create objects to do the user’s bidding — which means
that you allocate memory. And because memory is a scarce resource on iOS
devices (and, indeed, on even the largest computers), you need to understand
memory management, discussed in the next section.

Working within the Managed Memory
Model Design Pattern

As powerful as it is, the iPhone — and even the iPad — are limited in resources,
and the most critical of these resources is memory. To truly understand how
to manage memory correctly in your app, you need to understand how the iOS
memory works.

165 Chapter 6: The Runtime, Managing Memory, and Using Properties

Understanding memory management
Whenever you (or a framework object) create an object using Objective-C,
you allocate memory for the object. Although iOS devices and the Mac all use
what’s known as virtual memory, unlike the Mac, virtual memory in iOS is lim-
ited to the actual amount of physical memory. So when it begins to run low
on memory, the Memory Manager frees memory pages that contain read-only
content (such as code); this way, all it has to do is load the “originals” back
into memory when they’re needed. In contrast to what the Mac does, iOS
doesn’t temporarily store “changeable” memory (such as object data) to the
disk to free space and then read the data back later when it’s needed. This
state of affairs limits the amount of available memory.

So as you can see, when one object is done using memory, it’s critical that
the memory be released for use by other objects.

If memory continues to be limited, the system may also send notifications to
the running app, asking it to free additional memory. This is one of the critical
events that all apps must respond to, and I explain this process in the section
“Observing Low-Memory Warnings,” later in this chapter.

In Objective-C, memory is managed in iOS apps by reference counting — keeping
the system up-to-date on whether an object is currently being used. Read on
for all the details.

Using reference counting
In fact, memory management is simply an exercise in counting. Every object
has its own reference count, or retain count, which is the number of other
objects that are currently using the object. As long as the retain count is
greater than zero, the memory manager assumes that someone cares about
that object and leaves it alone. When an object’s retain count goes to zero,
the memory manager knows that no one needs it anymore and sends the
object a dealloc message, and after that, its memory is returned to the
system to be reused.

That process sounds pretty straightforward, but how does the retain count
get incremented and decremented? Until Xcode 4.2 and iOS 5.0, you had to
manage the retain count in your app. When an object is created via alloc
or new or through a copy or mutableCopy message (which creates a
copy of an object but has subtleties beyond the scope of this book), the
object’s retain count is set to 1. When your app uses one of those methods,
ownership is transferred to the object that sent the message — that is, the
object has been retained and that object that sent the message becomes a

166 Part II: Building RoadTrip

nonexclusive owner of the object. Ownership here means that the object will
be there to use until it’s explicitly released by sending it a release message
when it’s no longer needed (although if other active owners exist, it wouldn’t
be deallocated until all of them have released it).

Before Xcode 4.2 and iOS 5.0, if you didn’t create an object by one of those
methods but you wanted to become an owner, thereby making sure that the
object stayed around for you to use until you were done with it, it was up to
you to send a retain message to increase the retain count, and when you
were done, to send a release message. This was because the creator of the
object (which caused the retain count to be set to 1) may have autoreleased
it — sent an object a release message that will cause it to be released later
(usually the next time the run loop is entered). This is useful in situations in
which you want to relinquish ownership of an object but avoid the possibility
of its being deallocated immediately (such as when you return an object from
a method). In either instance, you were maintaining a pointer to the object so
that it could be used.

Although this approach was simple in theory, it was a real headache for
programmers. The vast majority of system crashes occurred because apps
ran out of memory and were shut down by the system. In some of these
cases, the app didn’t respond to the memory warning methods and manage
the low-memory warnings I explain in the section “Observing Low-Memory
Warnings,” later in this chapter.

Most of the time, however, even if the app responded to the low-memory
warnings, it was limited to what it could do because the memory was leaked.
Memory was actually available because some objects were not being used,
but those objects’ memory had not been released back to the system. In fact,
there were no longer pointers to these objects (for a variety of reasons), so
they couldn’t be released and then deallocated and the memory reused.

 Developers have had a number of ways to manage memory automatically. One
is garbage collection, which scans through memory and releases objects that
have no pointers to them. Garbage collection for Objective-C was available on
the Mac (and for many other languages on other platforms), but garbage col-
lection has a few problems. It can start up and pause your apps at the most
inopportune time, and it affects performance and the user experience because
you have no control, or any idea, when it will occur. It was never implemented
on iOS and is deprecated beginning with OS X 10.8 (Mountain Lion).

Having to do all this memory management in your app has changed with the
latest versions of the Objective-C compiler, which now comes with automatic
reference counting (ARC), which is enabled by default whenever you create
a project. (For more on options when creating a project, see Chapter 3.)
ARC does for you in the compiler what you used to have to do on your own.

167 Chapter 6: The Runtime, Managing Memory, and Using Properties

It handles all those releases, autoreleases, and retains for you. I tell
you much more about ARC in the next section, but in a nutshell it’s still about
counting. The only difference is that Xcode and the compiler do the counting
for you.

Automatic Reference Counting (ARC)
Automatic reference counting (ARC) is a compiler-level feature that simplifies
the process of managing the lifetimes of Objective-C objects. Instead of you
having to remember when to retain or release an object, ARC evaluates the
lifetime requirements of your objects and automatically synthesizes the appro-
priate method calls at compile time. It isn’t a new runtime memory model —
and it isn’t a garbage collector. All the action takes place in the compiler.

ARC takes care of the process of retaining and releasing objects by taking
advantage of (and having the compiler enforce) naming conventions. It also
relies on new object pointer ownership qualifiers (more on that later).

Lest you worry, ARC is actually much faster (has better performance) than
doing memory management on your own.

 ARC doesn’t automate malloc() and free() (C functions I won’t get into
here) and doesn’t automate CoreFoundation (CF) or CoreGraphics (CG).
You’ll be using some of those kinds of functions, and I talk about them in
Chapter 10.

To be able to manage memory for you, ARC imposes some restrictions —
 primarily enforcing some best practices and disallowing some other practices.
You won’t have to worry about most of this in an app that was created to use
ARC. You may see some things in non-ARC samples, but hopefully my discus-
sion here will help you figure out how to work within the ARC restrictions.

In the following, I explain the rules that you have to follow to use ARC in
your app.

 ✓ Rule 1: Don’t call the retain, release, or autorelease methods. In
addition, you can’t implement custom retain or release methods.

 If you’re new to Objective-C programming, this rule won’t mean anything
to you because it isn’t something you’ll have been doing in your existing
apps. The only reason you’ll need to know about this rule is to understand
what non-ARC code is doing to manage memory. If you’re an old hand,
you’ll have been using these methods, and you’ll be happy to be told not
to use them.

168 Part II: Building RoadTrip

 You can provide a custom implementation of dealloc if you need to
manage other resources — but I don’t have you do that for the example
app developed in this book.

 ✓ Rule 2: Don’t store object pointers in C structures. Because the compiler
must know when references come and go, you can’t store object pointers
in structs. For most readers, that won’t be a problem because you’ll be
using objects rather than C structures.

 ✓ Rule 3: Inform the compiler about ownership when using
Core Foundation–style objects. In iOS apps, you often use the
CoreFoundation framework. An example is in Chapter 10, when you
add sound to your app.

 CoreFoundation objects are anything beginning with a CF — things
like the address book functions, for example. A CoreFoundation object
would look like this:

AudioServicesCreateSystemSoundID(
 (__bridge CFURLRef)burnRubberURL, burnRubberSoundID);

 ARC doesn’t automatically manage the lifetimes of CoreFoundation
types, and there are CoreFoundation memory management rules and
functions you can use, such as CFRetain and CFRelease (or the corre-
sponding type-specific variants).

 In this book, and most of the time, you don’t have to worry about
memory management because you usually will be casting an Objective-C
object to a CoreFoundation type object, or vice versa — with the
result that you end up with no CoreFoundation memory management
in your code. You still have to let the compiler know about any memory
management implications, though.

 Again, in this book, and much of the time elsewhere, you simply tell ARC
not to worry by using a __bridge cast. (You’ll use a __bridge cast in
Chapter 10.)

 If you do have CoreFoundation memory management, macros such as
CFBridgingRetain or CFBridgingRelease will transfer ownership
between ARC and CoreFoundation. (This topic is beyond the scope of
this book, however.)

 ✓ Rule 4: Use the @autoreleasepool keyword to mark the start of an
autorelease block. This isn’t something you’ll be concerned about — or
will ever do, for that matter. But it’s a rule nonetheless.

 ✓ Rule 5: Follow the naming conventions. The compiler knows whether to
retain an object based on what gets returned. Sometimes the object being
returned by a method is retained, and sometimes it’s autoreleased later. If
the object is going to be autoreleased, the object needs to be retained. If
it’s already retained, you don’t want the compiler to do anything.

169 Chapter 6: The Runtime, Managing Memory, and Using Properties

 The only way the compiler knows whether an object has been retained
when it’s returned is through certain naming conventions. Under ARC,
these naming conventions are now part of the language, and you must
follow them.

 The compiler knows that a retained object has been returned when the
first word in the first part of the selector (the method name) is alloc,
new, copy, mutableCopy, or init. These methods transfer ownership —
where transferred ownership means that the object has been retained
for you. An example is the NSString initWithFormat: method.
(Remember that “ownership” is not exclusive ownership: Several object
may simultaneously own a single object.)

 In addition, you can’t give a property a name that begins with new.

 ✓ Rule 6: Just follow the rules. That’s it — no retaining releasing or
autoreleasing. Just follow the rules and code to your heart’s content
without worrying about memory management.

 Except, of course, in some situations, you’ll need to explicitly tell the
compiler about what you want to do. In those cases, you’ll have to tell
the compiler explicitly about an object’s lifetime. I explain how to do
that in the next section.

Working with variable types
according to ARC
Because the reference to an object lives in a variable, object pointers can be
qualified using ownership type or lifetime qualifiers. These qualifiers deter-
mine when the compiler can deallocate an object to which a pointer points.
These qualifiers are as follows:

__strong
__weak
__unsafe_unretained
__autoreleasing

The following sections describe the function of each of these qualifiers.

 ✓ __strong variables retain their values. __strong is the default. You
almost never have to specify it, and all stack local variables, including
parameters, are __strong. A __strong pointer to an object will cause
that object to be retained while it’s in scope (or not set to nil). No more
dangling references (objects that have been deallocated that you expect
to be there)!

170 Part II: Building RoadTrip

 ✓ __weak variables don’t retain values. _ weak variables don’t cause an
object to be retained (that is, you don’t use them in the reference count)
and are, in fact, set to nil (zeroed) as soon as the referenced object
starts deallocating. You need to be concerned with these only to prevent
retain cycles, which I explain shortly.

 ✓ __unsafe_unretained variables don’t retain values and aren’t
zeroed. Some Apple-provided classes (only on the Mac and some third-
party libraries) don’t work with zeroing weak references. These have to
be cleared in a dealloc method elsewhere.

 Using ARC, __strong, __weak, and __autoreleasing stack variables
are now implicitly initialized with nil.

 ✓ __autoreleasing for indirect pointers. These variables aren’t for
general use. They’re used for out parameters that pass values back to
the calling routine. They’re retained and then autoreleased when they’re
read into, and are beyond the scope of this book.

Understanding the deadly retain cycle
ARC works very well to manage memory except in one circumstance. In this
section, I explain how that circumstance can arise, and what you’ll need to do
to keep it from happening.

When you create an object, the compiler makes sure that ownership is trans-
ferred and all is well. The compiler will release that object when it goes out of
scope, so if it’s an instance variable, it will stay in scope until the object itself
is deallocated.

I take you through this process using a little program called RetainCycle that
I wrote to illustrate the retain cycle.

I create a new RetainIt object in the viewDidLoad method of my
RetainCycleViewController object. It will be released only when the
retainIt variable goes out of scope (it’s __strong by default). In this case,
it will be released and then deallocated (assuming that no other object takes
ownership) at the end of viewDidLoad because the retainIt variable will
go out of scope:

- (void)viewDidLoad
{
 [super viewDidLoad];
 RetainIt* retainIt = [[RetainIt new]init];
}

171 Chapter 6: The Runtime, Managing Memory, and Using Properties

But when I create the RetainIt object, in the RetainIt class’s initialization
method, init (see the following), I create a Cycle object and assign it to the
cycle instance variable I declared. As you might expect, the Cycle object will
be retained until the RetainIt object is deallocated because it’s referenced
by an instance variable, which stays in scope until the object is deallocated:

- (id)init
{
 self = [super init];
 if (self) {
 self.cycle = [[Cycle new] init];
 cycle.retainIt = self;
 }
 return self;
}

I also, however, assign to the Cycle object’s retainIt property a reference
back to the RetainIt object. The Cycle class looks like this:

@interface Cycle : NSObject

@property (strong, nonatomic) RetainIt* retainIt;

@end

At the end of the day, it looks like Figure 6-4.

This means that the RetainIt object won’t be deallocated until the Cycle
object is deallocated, and the Cycle object will be deallocated only when the
RetainIt object is deallocated. Whoops!

Although this example may appear a bit contrived, it actually can occur in real
life when you have one object with a back pointer to the object that creates it
(either directly or through a chain of other objects, each with a strong refer-
ence to the next leading back to the first).

Figure 6-4:
The retain

cycle.

172 Part II: Building RoadTrip

The __weak lifetime qualifiers for objects take care of this. Although I haven’t
explained properties yet, the solution is to make the lifetime qualifier back
pointer __weak.

@property (weak, nonatomic) RetainIt* retainIt;

I explain this more when I explain property attributes later in this chapter.

Observing Low-Memory Warnings
Even if you’ve done everything correctly, in a large app, you may simply run
out of memory. When that situation occurs, the system dispatches a low-
memory notification to your app — and it’s something you must pay atten-
tion to. If you don’t, it’s a reliable recipe for disaster. (Think of your low-fuel
light going on as you approach a sign on the highway that says, “Next ser-
vices 100 miles.”) UIKit provides several ways for you to set up your app so
that you receive timely low-memory notifications:

 ✓ Override the didReceiveMemoryWarning methods in your custom
UIViewController subclass.

 ✓ Implement the applicationDidReceiveMemoryWarning: method of
your application delegate.

 ✓ Register to receive the UIApplicationDidReceiveMemoryWarningN
otification: notification.

The didReceiveMemoryWarning method
The didReceiveMemoryWarning method is sent to the view controller when
the app receives a memory warning. Your implementation of this method
should do anything it can to reduce its use of memory. This may involve
drastic steps such as actually closing views, but there are many other steps
you can take that depend on your specific view controller and its views. For
example, if you have stored data and objects, they may be able to be removed
and set to nil if you can recreate them as needed.

The applicationDidReceive
MemoryWarning: method
Your application delegate should set any references to objects it can safely
free to nil.

173 Chapter 6: The Runtime, Managing Memory, and Using Properties

The UIApplicationDidReceiveMemory
WarningNotification: notification
Low-memory notifications are sent to the Notification Center, where all noti-
fications are centralized. An object that wants to get informed about any
notifications registers itself to the Notification Center by telling which notifi-
cation it wants to be informed about, and a block (to be explained in Chapter 10)
to be called when the notification is raised. Instead of a block, you can supply
a target method to be called. A model object, for example, could then
release data structures or objects it owns that it doesn’t need immediately
and can re-create later by setting references to nil. However, this approach
is beyond the scope of this book.

 For those of you who are curious, in your model object (which you create in
Chapter 11), you could add the following:

[[NSNotificationCenter defaultCenter] addObserverForName:
 UIApplicationDidReceiveMemoryWarningNotification
 object:[UIApplication sharedApplication] queue:nil
 usingBlock:^(NSNotification *notif) {

//your code here
 }];

 You can test applicationDidReceiveMemoryWarning: and UIApplicat
ionDidReceiveMemoryWarningNotification: in the Simulator by
choosing Hardware➪Simulate Memory Warning.

Picking the right memory-management
strategy for your application
Each of these strategies gives a different part of your app a chance to free
the memory it no longer needs (or doesn’t need right now). How you actually
get these strategies working for you depends on your app’s architecture, so
you’ll have to explore that on your own.

 Not freeing enough memory will result in iOS sending your app the application
WillTerminate: message and shutting the app down. For many apps, though,
the best defense is a good offense, which means you need to manage your
memory effectively and eliminate any memory leaks in your code by following
the ARC rules.

174 Part II: Building RoadTrip

 For testing, implement all of these methods and place NSLog statements in
them along with breakpoints so that you can see the memory issues as they
happen. It’s easy to pinpoint places where you can free up memory, but it’s
most efficient to address the ones that provide the biggest bang for your
 programming buck.

Customizing the Behavior
of Framework Classes

Although you’ll be creating classes of your own (especially model classes),
often you’re going to want to customize the behavior of a particular framework
class. You have three ways to go about it:

 ✓ Subclassing

 ✓ Delegating

 ✓ Declared properties

In this section, I’ll cover the first two, and the third in the following section.

Subclassing
Objective-C, like other object-oriented programming languages, permits you to
base a new class on a class that’s already declared. The base class is called a
superclass; the new class is its subclass. Each subclass that you define inherits
methods and instance variables of its superclass.

Some framework classes are expected to be subclassed. Among them are view
controllers, which you’ll be subclassing quite a bit. In fact, there are some
classes that are never instantiated directly: These are called abstract classes.
Their subclasses can be instantiated directly: These are called concrete
instances.

Almost all object-oriented programming languages support subclassing.
However, there’s a bit of a problem sometimes. It’s called the multiple inheri-
tance problem: it’s when you want a class to be a subclass of two classes.
There’s no problem if both subclasses are in the class hierarchy. You could
have a class called structure, a subclass called residential structure,
and a subclass of both called house.

But what do you do if you want house to be a subclass both of structure and
of investment? Read on.

175 Chapter 6: The Runtime, Managing Memory, and Using Properties

The Delegation pattern
Delegation is a pattern used extensively in the iOS frameworks, so much so
that, if you want to do any serious app development work, you’re going to
have to get your head around it. In fact, when you do understand it, your life
will instantly become much easier to manage.

Delegation is a way of customizing the behavior of an object without sub-
classing it. Instead, one object (a framework or any other object) delegates
the task of implementing one of its responsibilities to another object.
You’re using a behavior-rich object supplied by the framework as is and
putting the code for program-specific behavior in a separate (delegate)
object. When a request is made of the framework object, the method of the
delegate that implements the program-specific behavior is automatically
called.

iOS frameworks rely heavily on the delegation pattern.

For example, the UIApplication object handles most of the actual work
needed to run the app. But, as you saw, it sends your application delegate the
application:didFinishLaunchingWithOptions: message to give you
an opportunity to create model objects that are unique to your app.

When a framework object has been designed to use delegates to implement
certain behaviors, the behaviors it requires (or gives you the option to imple-
ment) are defined in a protocol.

Protocols define an interface that the delegate object implements. In iOS,
protocols can be formal or informal, although I concentrate solely on
the former because formal protocols include support for things like type
checking and runtime checking to see whether an object conforms to the
protocol.

In a formal protocol, you usually don’t have to implement all the methods;
many are declared optional, meaning that you have to implement only the ones
relevant to your app. Before a formal protocol attempts to send a message to
its delegate, the host object determines whether the delegate implements the
method (via a respondsToSelector: message) to avoid the embarrassment
of branching into nowhere if the method isn’t implemented.

A protocol can be adopted by any class as long as it implements the required
methods of the protocol. Thus, by adopting one or more protocols and
becoming a delegate, a single class can implement functionality from two
other classes — it provides an approximation of multiple inheritance.

176 Part II: Building RoadTrip

Understanding Declared Properties
Although properties and instance variable access and accessors are often
mashed together in the minds of programmers, I want to make sure that you
understand the unique nature of properties and how they really work.

Whereas methods are concerned with sending messages to objects to get things
done, properties are concerned with the state of the objects. Frameworks and
other objects behave based on what they find in their properties (hence you
can modify object behavior by changing a property); for example, a button’s
background image is a property you set (indirectly, in Interface Builder) in
Chapter 5.

You also may want to know something about the state of the object, such as
its color, or about a window’s Root view controller.

In Chapter 12, I discuss creating a model object — Trip. Your app’s view
controllers, which act as a bridge between the views and the model, need to
be able to find the Trip object to get data and send it updates. All of this is
done using properties. A property looks like the following:

@property (strong, nonatomic) IBOutlet UIImageView *car;

But not all properties are outlets. If you select the RTAppDelegate.h file in
the Project inspector, you can see that it includes a window property:

@property (strong, nonatomic) UIWindow *window;

And in Chapter 11, you add a trip property to RTAppDelegate:

@property (nonatomic, strong) Trip *trip;

 As you can see, the order of the attributes (strong, nonatomic versus
nonatomic, strong, which I explain in the later section “Setting attributes
for a declared property”) doesn’t matter.

What comprises a declared property
A declared property has two parts: its declaration and its implementation.

The declaration uses the @property keyword, followed by an optional
parenthesized set of attributes, the type information, and the name of the
property.

177 Chapter 6: The Runtime, Managing Memory, and Using Properties

Access to properties is implemented by accessor methods (although within
the class that declares the property, the property can be accessed directly,
just as instance variables are). You can write your own accessor methods
or you can let the compiler do it for you. To do it yourself, you use the
attributes in the upcoming “Setting attributes for a declared property”
section.

The default names for the getter and setter methods associated with a prop-
erty are whateverThePropertyNameIs for the getter and setWhateverTheProperty
NameIs: for the setter. In the case of trip, the getter method is trip, and the
setter method is setTrip:.

To access the trip property in the appDelegate, you would use

AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
Trip* thisTrip = [appDelegate trip];

or to set that property, use

AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
[appDelegate setTrip:newTrip];

delegate, by the way is a UIApplication property.

Using dot syntax
Objective-C provides a dot (.) operator that offers an alternative to square
bracket notation ([]) to invoke accessor methods. You use dot syntax in
the same way you would when accessing a C structure element:

Trip* thisTrip = appDelegate.trip;

or to set that property, use

appDelegate.trip = newTrip;

When used with objects, however, dot syntax acts as “syntactic sugar” — it’s
transformed by the compiler into an accessor message. Dot syntax doesn’t
directly get or set an instance variable. The code examples using it are the
exact equivalent to using the bracket notation.

178 Part II: Building RoadTrip

Many programmers like the dot syntax because it may be more readable; just
think of those bracket notation situations where you’re accessing a property
that is a property of another object (that itself is a property of another object,
and so on). The real advantage of dot syntax, though, is that the compiler will
generate an error when it detects an attempt to write to a read-only declared
property. This is so much better than having to settle for an undeclared
method warning because you invoked a nonexistent setter method, with the
app subsequently failing at runtime.

When you use the compiler to create accessor methods for you, the compiler
creates an instance variable of the type you have declared that it will then
use to store and retrieve the property value with the name of the property.
For example for the following property:

@property (weak, nonatomic) IBOutlet UIImageView *car;

the statement

@synthesize car;

generates an instance variable with the name of car of type UIImage.

However, if you let the compiler automatically generate an @synthesize
statement for you, it actually uses an instance variable name beginning with
an underscore character, so you would get the following code generated for
you behind the scenes:

@synthesize car = _car;

This allows you to distinguish between the property name (accessed by
self.car) and the instance variable name (accessed simply as _car).

Apple recommends that you use the property reference (self.car) in
normal methods, but use the _car variable in init methods. This applies
only to the code within a .m file. Code elsewhere in your app accesses the
property as it is declared in the @interface section of the .h. There is no
way that code anywhere in the app except in the .m file of a class can access
the instance variable directly when you let the compiler do the work. And
that’s a good thing to ensure that encapsulation is properly provided.

Setting attributes for a declared property
I mention earlier in this chapter that you can set certain property attributes
when you declare a property. I cover some of those attributes in this section.

179 Chapter 6: The Runtime, Managing Memory, and Using Properties

Setter semantics/ownership
These properties specify how instance variable storage should be managed
(see the earlier section “Working with variable types according to ARC” for
more):

 ✓ strong (similar to retain, which was used previous to ARC) creates
an accessor method that means that the object this property points to
will be retained while it is in scope (or until it’s set to nil). This is the
default value.

 ✓ weak (similar to assign, which was used previous to ARC) creates an
accessor that uses simple assignment. You typically use this attribute
for scalar types such as NSInteger and CGRect, or (in a reference-
counted environment) for objects you don’t own — delegates, for exam-
ple — and to avoid retain cycle problems, as I explain in “Understanding
the deadly retain cycle,” earlier in this chapter.

 ✓ copy specifies that a copy of the object should be used for assignment.
The previous value is sent a release message.

 The copy is made by invoking the copy method. This attribute is valid
only for object types, which must implement the NSCopying protocol
(and is beyond the scope of this book).

For object properties, you must explicitly specify one of the types listed
previously; otherwise, you get a compiler warning. So you need to think
about what memory management behavior you want, and type the behavior
explicitly.

Writability
The following attributes specify whether a property has an associated set
accessor. They are mutually exclusive.

 ✓ readwrite indicates that the property should be treated as read/write.
This attribute is the default. The getter and setter methods are synthe-
sized automatically.

 ✓ readonly indicates that the property is read-only. Only a getter method
is synthesized. If you implement your own accessors, only a getter
method is required. If you attempt to assign a value using the dot syntax,
you get a compiler error.

Accessor method names
You’ll remember that the default names for the getter and setter methods
associated with a property are propertyName and setPropertyName:,
respectively. For example, for the property trip, the accessors are trip and

180 Part II: Building RoadTrip

setTrip:. You can, however, specify custom names instead. They’re both
optional and can appear with any other attribute (except for readonly in
the case of setter =):

 ✓ getter = getterName specifies the name of the get accessor for the
property. The getter must return a type matching the property’s type
and take no parameters.

 ✓ setter = setterName specifies the name of the set accessor for
the property. The setter method must take a single parameter of a type
matching the property’s type and must return void.

 Typically, you should specify accessor method names that are key-value
coding compliant (which is beyond the scope of this book). A common reason
for using the getter decorator is to adhere to the isPropertyName conven-
tion for Boolean values. If you have a Boolean property called alphabetized
that you use to keep track of how an array of names is sorted, the default
getter would be alphabetized. Using the naming convention, you would
create an accessor method called isAlphabetized, which is a bit clearer.

Atomicity
You can use this attribute to specify that accessor methods aren’t atomic. (No
keyword denotes atomic.) This has to do with concurrency issues that are
way beyond the scope of this book. If you specify nonatomic, a synthesized
accessor for an object property simply returns the value directly. Otherwise,
a synthesized get accessor for an object property uses a lock and retains and
autoreleases the returned value. You use nonatamic throughout this book.

Writing your own accessors
You don’t have to use the accessors generated by the compiler; and, some-
times, it even makes sense to implement them yourself (although such times
don’t arise in this book). If you implement the accessor methods yourself, you
should make sure that your approach matches the attributes you’ve declared.
(For example, if you specify copy, you must make sure that you do copy the
input value in the setter method.)

For example, if you have a lot of overhead to create an object that might not
be used, you can create your own getter accessor that creates the object the
first time it’s accessed. In addition, writing your own accessor means you don’t
have to have an instance variable associated with the property. You could,
for example, have an area property on a object representing a rectangle. The
getter for area might perform length x width and never bother with an
instance variable.

181 Chapter 6: The Runtime, Managing Memory, and Using Properties

Accessing instance variables
with accessors
If you don’t use self, you access the instance variable directly. In the follow-
ing example, the set accessor method for _currentDestinationIndex
isn’t invoked:

_currentDestinationIndex = [[NSUserDefaults
 standardUserDefaults]objectForKey:CurrentDestinationKey];

The preceding isn’t the same as

self.currentDestinationIndex = [[NSUserDefaults
 standardUserDefaults]objectForKey:CurrentDestinationKey];

To use an accessor, you must use self.

Hiding Instance Variables
When properties were first developed, they were looked at as a way to avoid
the tedium of writing accessors for instance variable-based properties.

People used to think about properties as a way to access instance variables.
In fact, instance variables shouldn’t be equated to properties, and more
important, instance variables shouldn’t be made public. (Doing so violates
the object-oriented principle of encapsulation, but that’s a conversation for a
different time.) In fact, Apple’s new approach is to put instance variable dec-
larations in the implementation file of the class.

Xcode 4.2 came about, we declared instance variables in the header file in
the @interface class declaration. In the old times, you would’ve added the
 following bolded code to the TestDriveController.h file:

@interface TestDriveController : UIViewController
 <DestinationControllerDelegate> {

 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
 BOOL touchInCar;
}

This approach made instance variables (ivars) visible to everyone and every-
thing and was, as I mentioned, at odds with the principle of encapsulation
(even if the variables couldn’t be accessed).

182 Part II: Building RoadTrip

Starting with Xcode 4.2, you can now hide instance variables by declaring
them in the implementation file in one of two ways. The first is as a class
extension, which you create by adding a second interface section in the
implementation file followed by open and close parentheses:

@interface TestDriveController () {

 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
 BOOL touchInCar;
}
@end

The second way is by declaring the instance variable in the @
implementation block of the class:

@implementation TestDriveController

AVAudioPlayer *backgroundAudioPlayer;
SystemSoundID burnRubberSoundID;
BOOL touchInCar;

 A class extension is a variation of an Objective-C category, which is beyond the
scope of this book.

The approach you use is your choice; I prefer the class extension because
I think it makes the variables easier to distinguish.

 You can also use class extensions to have a publicly declared set of methods
and then declare additional methods for use solely by the class:

@interface TestDriveController () {

 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
 BOOL touchInCar;
}
- (void) privateMethod;
 @end

 These methods are not really private, but are not visible in the header file.
They are “private APIs.”

Chapter 7

Working with the Source Editor
In This Chapter
▶ Using the Standard source editor to add code

▶ Fixing syntax errors as you code

▶ Getting the help you need from the documentation and other forms of help

▶ Searching and finding symbols

Y
ou may be chomping at the bit to write code, but that’s exactly what
you’ve been doing ever since Chapter 2. (Chapter 1 was an introductory

overview, as you may recall.) You’ve started building a storyboard for your
app’s interface — that was writing code just as much as typing print "Hello
World" is. You’ve configured your project’s settings with the graphical user
interface tools of Xcode — that, too, is writing code.

But typing code into an editor is still a major part of the developer’s work,
and in this chapter, you’ll look at the source code editing features of Xcode.

In this chapter, I tell you how to navigate the files in your project using the
Jump bar and the navigators, as well as how to work with the source editor to
enter code. And for when you are confused, or simply just curious, I explain
how to access the documentation and Xcode’s Help system. This chapter
 finishes the explanation on how to use Xcode.

Navigating in the Xcode Source Editors
In previous chapters, I give you quite a bit of information about the Xcode
Workspace, albeit primarily focusing on storyboards. I mention the Assistant
as well, and in this chapter, I want to extend that knowledge and describe
most of the rest of the tasks you need to be able to do in Xcode.

As you’ve seen, most development work in Xcode is done in the Editor area,
the main area that’s always visible within the Workspace window. The Editor
area can also be further configured, with the Standard editor pane always

184 Part II: Building RoadTrip

shown, as well as one or more optional Assistant panes that show related
content. (If you select an interface [.h] header file, the Assistant pane can
automatically show the corresponding implementation [.m] code file, and
vice versa; I don’t talk about the Version pane, but showing that area is also
an option.) I use the term pane (Standard editor pane and Assistant pane) to
refer to certain configurations. I do this to distinguish between the Editor area
configuration (the Standard editor isn’t actually an editor at all, but simply
a single pane configuration in the editor area) and the built-in editors — an
editor operates in an Editor area. The main editors are the following:

 ✓ Source editor: You use this editor to write and edit your source code, as
well as to set and enable (or disable, for that matter) breakpoints as well
as to control program execution.

 ✓ Project editor: With this editor, you view and edit project and target
settings, such as build options, target architectures, and code signing
characteristics.

 ✓ Core Data Model editor: If you use Core Data, you can design your data
model for tables and relationships graphically. The Core Data Model
editor also can convert your graphical representation of your data
model to Objective-C code. Core Data is outside the scope of this book,
but the Core Data model editor is definitely worth exploring.

 ✓ Interface Builder: Here, you graphically create and edit user interface
files in storyboards and .xib files.

The editor you use is determined by what you have selected in the Project
navigator. An editor pane appears for that (selected) item in the Editor area.

So far, you’ve worked primarily in the Interface Builder editor, but when you
code, you do the bulk of your work in the source editor in the Standard editor
pane, with some forays, as needed, in the Assistant editor pane and an occa-
sional excursion into the Utility area as well.

As described earlier in the book, you use the View selector in the Workspace
toolbar to hide or show the Navigator, Debug, and Utility areas. (To review
the Xcode workspace landscape, see Chapter 2.) If you like, you can hide the
other areas and see just the source editor (and perhaps the Assistant).

 Figure 7-1 shows the Project navigator. Because I selected MasterView
Controller.m, you see the source editor displaying that file in the Standard
editor pane. (If you were to select one of the storyboard files in the Project
navigator, you’d see Interface Builder as your editor of choice; that’s the editor
I highlight in Chapter 5.) In Figure 7-1, I also selected the Assistant in the
Editor selector and split the panes using the split controls (“+” icon at the far
right in the Jump bar).

185 Chapter 7: Working with the Source Editor

Figure 7-1:
The source
editor with

Standard
and

Assistant
editor

panes.

 Notice that when I selected the Assistant, the MasterViewController.h
file opened. That’s because the Assistant editor pane automatically (depend-
ing how you have set it — see the next section) shows the related content for
whatever I select in the Project navigator so that you can edit both easily. You
then see MasterViewController.m (the implementation code file) in the
Standard source editor pane and MasterViewController.h (the header
file) in the Assistant editor pane. Clicking the split control (the + at the right
of the jump bar) opens a second pane in the Assistant editor pane as well,
giving you a total of three panes.

The Standard editor pane (the left editor pane, or the top one if you have a
horizontal split) is the one that’s affected by changing your selection in the
Project navigator.

 The interface (.h) header file defines the class’s interface by specifying the
following:

 ✓ The class declaration (and what it inherits from)

 ✓ Methods

 ✓ Any instance variables (that is, variables defined in a class)

 ✓ Declared properties

186 Part II: Building RoadTrip

 In recent updates to Xcode and the sample code on developer.apple.com,
Apple has rejiggered the world of variables and properties with regard to
classes. Declared properties are preferred to instance variables because they
can contain more information than just the type and name of a variable and
because their accessors can further encapsulate the data. However, instance
variables rather than properties are often more appropriate for scalars such
as ints and floats. In addition, declaring instance variables as well as prop-
erties in a class extension in the implementation file further keeps them out of
the way so that they are not visible to other classes.

The implementation (.m) code file, on the other hand, contains the code for
the class, which includes each method definition. It also can contain a class
extension with instance variable and property declarations. See Chapter 6 for
more on this topic.

 By default, the Assistant editor pane appears to the right of the source editor
pane. To change the orientation of the Assistant editor pane to the source
editor pane, choose View➪Assistant Editor and then choose a layout. If
the header file doesn’t appear for you, navigate to it using the Jump bar, as
explained in the next section.

Using the Jump bar
A Jump bar appears at the top of each Editor area pane to provide an alterna-
tive way to navigate through the files and symbols in your project. You can
use the Jump bar to go directly to items at any level in the Workspace.

A Jump bar is an interactive, hierarchical mechanism for browsing items
in your workspace. Each editor area includes a Jump bar, as do Interface
Builder and the documentation organizer. The configuration and behavior of
each Jump bar is customized for the context in which it appears.

 The active pane is indicated by slightly darker arrows in the Jump bar.
Experiment for yourself and you’ll soon notice the difference. It’s subtle
enough that it’s not easy to distinguish on the screenshots in this book.

The Standard editor Jump bar
 The Standard editor Jump bar has the basic configuration, which includes the

following:

 ✓ Context-related items: Click the Related Items menu (represented by
an icon showing a cluster of tiny rectangles on the far left side) to see
additional selections relevant to the current context, such as recently
opened files or the interface (.h) header file for an implementation (.m)
code file you’re editing.

187 Chapter 7: Working with the Source Editor

 ✓ Previous and Next buttons: These are the left- and right-arrow buttons
on the left side of the Jump bar. You use these to step back and forth
through your navigation history just as you would with a web browser.

 ✓ A hierarchical path menu: This menu shows the same structure that
you see in the Project navigator, down to individual files and the sym-
bols inside the files. The path you would see in the source editor in the
Standard editor pane is shown in Figure 7-2.

The hierarchical path menu lets you quickly choose a file. For example,
in Figure 7-3, I get an overview of all the RoadTrip files when I select the
RoadTrip project in the hierarchical path menu.

Selecting the last item in the hierarchical path menu provides a list of all the
symbols in that file, as shown in Figure 7-4.

Figure 7-2:
The hierar-

chal path
menu in the

Standard
editor pane.

188 Part II: Building RoadTrip

Figure 7-3:
A file

hierarchy.

Figure 7-4:
A tour of
Master

View
Control‑

ler.m.

189 Chapter 7: Working with the Source Editor

The Assistant modes and the Jump bar
When you use the Assistant, you’ll find that the Jump bar differs somewhat
from the Jump bar of the Standard editor. The Assistant’s Jump bar has two
modes: Tracking (or Automatic) mode and Manual mode:

 ✓ Manual mode: You select the file to display in the Assistant pane on
your own, rather than have the Assistant choose for you. (As mentioned
previously, you can also split the Assistant editor pane to create mul-
tiple assistant editors.)

 ✓ Tracking mode: As you can see in Figure 7-5, you can automatically see
the counterpart files (.h files for .m files and vice versa), the interface
files, and other related files. This can be a great time-saver because most
of the files you are probably looking for are only a click away.

 Hold down the Option key when selecting an item in the Project navigator to
open the Assistant and display that item in the Assistant editor pane.

If you have any questions about what something does, just position the
mouse pointer above the icon; a tooltip appears to explain it.

Figure 7-5:
Assistant
options in

the source
editor.

190 Part II: Building RoadTrip

Organizing your code using the
#pragma mark statement
While you’re here, this is a good time to introduce the #pragma mark state-
ment. If you look in DetailViewController.m, you can see how this
statement can be used to group things in your file; such statements are also
displayed in the list of symbols.

You use the # pragma mark statement with a label (such as View life
cycle or Animation) to add a category header in the Methods list so that
you can identify and keep separate the methods that fit logically in the list.

For example, in the DetailViewController template, I added

#pragma mark ‑ Managing the detail item

The first part of the statement (with a space and a dash) places a horizontal
line in the Methods list. The second one places the text “Managing the detail
item” in the Methods list.

This is a useful trick for finding code sections, organizing your code, and
adding new code in the proper sections.

 Some sections for your code are easy to identify, but, as you’ll see in some of
the sample code on http://developer.apple.com, developers differ as
to how they organize their code. Should viewDidLoad go in a section called
User Interface or Initialization? Do whatever makes the most sense to you.
It’s probably a good idea to stick with the code sections in the templates and
sample code at least to start.

Using the Xcode Source Editor
The main tool you use to write code for an iOS app is the Xcode source
editor, which appears as the Standard editor pane in the editor area on the
right side of the Xcode Workspace window after you select a source code file
in the Project navigator. It also appears as the Assistant editor in a second
pane if you click the Assistant Editor button — the middle Editor selector
button in the top-right corner of the Workspace window.

http://developer.apple.com

191 Chapter 7: Working with the Source Editor

Apple has gone out of its way to make the source editor as useful as possible
by including the following:

 ✓ Code completion: Code completion is a feature of the editor that shows
symbols — arguments, placeholders, and suggested code — as you type
statements. Code completion can be really useful, especially if you’re
like me and forget exactly what the arguments are for a function. When
code completion is active (as it is by default), Xcode uses the text you
typed — as well as the context within which you typed it — to provide
inline suggestions for completing what it thinks you’re going to type.
You can accept inline suggestions by pressing Tab or Return. You can
also see a pop-up list of suggestions while typing; move up and down
the list with the up and down arrows. Press Return to use the selected
completion. Press the Esc key, or Control+spacebar, to cancel a code
completion operation. You can turn off code completion, or set options
for code completion, by choosing Xcode➪Preferences and clicking the
Text Editing tab.

 ✓ Automatic indenting, formatting, and closing braces: As I explain in
Chapter 3 in the section on preferences, the source editor indents the
text you type according to rules you can set in the Text Editing prefer-
ences pane. It also uses fonts and colors for the various syntax ele-
ments (variables, constants, comments, and so on) according to the
settings in the Fonts & Colors pane of Xcode preferences. As for closing
braces, anytime you type an opening brace ({) and then press Return,
Xcode automatically adds a closing brace (}) — unless you’ve deac-
tivated the Automatically Insert Closing “}” option in the Text Editing
preferences.

 ✓ Code folding in the Focus ribbon: With code folding, you can collapse
code that you’re not working on and display only the code that requires
your attention. You do this by clicking in the Focus ribbon column (see
Figure 7-6) to the left of the code you want to hide (between the gutter,
which can display line numbers and breakpoints, and the editor). A
disclosure triangle appears, and clicking it hides or shows blocks of
code. Notice that in Figure 7-6, the code inside awakeFromNib has been
folded up.

 ✓ Opening a file in a separate window: Double-click the file in the Project
navigator to open the file in its own window.

192 Part II: Building RoadTrip

Figure 7-6:
The Gutter
and Focus

ribbon.

Using Live Issues and Fix-it
The Apple LLVM compiler engine wants to be your best friend, so Live Issues
continuously evaluates your code in the background and alerts you to coding
mistakes. Before this feature came along, you had to build your app first, and
trust me, this new way saves lots of time and effort.

But not only is Live Issues happy to point out your mistakes (like someone
else I know, but I won’t go there), Fix-it will also offer (when it can) to fix the
problem for you. Clicking the error displays the available Fix-its, such as cor-
recting an assignment to a comparison, repairing a misspelled symbol, or
appending a missing semicolon. With a single keyboard shortcut, you can
instantly have the error repaired, and you can continue coding. Fix-it marks
syntax errors with a red underline or a caret at the position of the error and
with a symbol in the gutter.

For example, in Figure 7-7, the semicolon is missing after the [super
viewDidLoad] statement. (Notice the error indicator — the red stop sign
with exclamation point — in the Activity viewer along with the red circle in
the gutter at the left of the offending line of code.) Clicking the red circle in
the gutter at the left will automatically fix this problem. This is a very useful
feature and will cut down your debugging time significantly (especially if you
actually use it).

193 Chapter 7: Working with the Source Editor

Figure 7-7:
Live Issues

and Fix-it.

Compiler warnings
Although Xcode and the compiler working together are very good at giving
you warnings and errors, sometimes they’re a little slow on the uptake when
you actually get around to fixing the problem. So don’t be surprised by
random warnings and errors, especially if the compiler for some reason can’t
find the header file.

If you see a warning or error that you’re just sure you’ve fixed, you can click
the Run button. Xcode and the compiler will reset, and the warning will
go away. (Unless, of course, it was right all along and you hadn’t fixed the
problem.)

The Issue navigator
 The Issue navigator is one of the navigators provided by Xcode. The error dis-

played in Figure 7-7, shown previously, also appears in the Issue navigator, as
shown in Figure 7-8.

194 Part II: Building RoadTrip

Figure 7-8:
An error

message
displayed

by the Issue
navigator.

 To get to the Issue navigator, you select it in the Navigator selector bar.

If, in spite of Live Issues and Fix-it (or any other) warnings, you decide
to compile the program, the Issue navigator will automatically launch
for you.

The Issue navigator displays the error and warning messages generated in
a Project or Workspace and is similar to the other navigators you’ve used
so far.

When you select a warning or error in the Issue navigator, an editor displays
the item with the issue, and if the error occurs in a source file, the issue
 message is placed on the line of code with the issue.

 Place the pointer over an issue message that ends with an ellipsis (which
appears if the pane is too narrow to display the entire message) to get a
 complete description of the issue.

195 Chapter 7: Working with the Source Editor

You can display issues by file or by type using the buttons on the Scope bar
at the bottom of the navigator pane (refer to Figure 7-7), filter the issue list
with the Filter bar, and even step through issues using the Issue stepper in
the Jump bar. Use the Next and Previous buttons in the Jump bar to jump to
the previous and next issues.

As you may recall from Chapter 3, I changed Xcode preferences to have the
Issue navigator displayed and a sound played when a build fails.

Accessing Documentation
The ability to quickly access documentation is a major feature of Xcode, and
one you’ll want to use regularly. If you have no idea how to do something, or
how something works, you can often find the answer in the documentation.

Being able to figure out what’s going on will make your life easier. You saw
that Xcode will complete your code for you, which is useful when you can’t
quite remember the method signature and parameters, but what if you don’t
even have a clue?

Or like many developers, you may find yourself wanting to dig deeper when it
comes to a particular bit of code. That’s when you’ll really appreciate things
like Xcode’s Quick Help, the Documentation and API Reference pane in the
Help menu, and the Find tools. With these tools, you can quickly access the
documentation for a particular class, method, or property.

Getting Xcode help
To see how easy it is to access the documentation, say that you’ve selected
MasterViewController.m. What if you wanted to find out more about
UITableViewController, the super class of MasterViewController?

 The Quick Help section of the Utility area provides documentation for a
single symbol. (To see the Utility area, click the rightmost View selector
button in the top-right corner of the Workspace window and select the
second button in the Inspector selector bar.) In an editor, click anywhere in
the symbol or select the entire symbol, as shown in Figure 7-9.

The Quick Help section of the Utility area shows a description of the symbol
and provides links to more information. For example, you can click the
UITableViewController Class Reference link near the bottom of the Quick
Help section (refer to Figure 7-9) to bring up the class reference definition in a
Documentation window, as shown in Figure 7-10. I use class references a lot!

196 Part II: Building RoadTrip

Figure 7-9:
Accessing
the Quick

Help section
of the Utility

area.

Figure 7-10:
The class

reference in
a Documen-

tation
window.

197 Chapter 7: Working with the Source Editor

With the Quick Help section open, information is available for three types of
elements in your project, depending on your selection in the open editor:

 ✓ Symbols, in the source editor

 ✓ Interface objects, in Interface Builder

 ✓ Build settings, in the Project editor

It may be more convenient to use a Quick Help window if, for example, you
prefer to work with the Utility area hidden. To do so, press Option and click
Symbols in the source editor.

As you can see in Figure 7-11, a Quick Help window appears with the
pointer indicating the item you selected (in this case, the symbol
UITableViewController):

 If you’re like me and want to go directly to the class reference, press Option
and double-click the symbol instead.

Figure 7-11:
The Quick

Help
window.

198 Part II: Building RoadTrip

The Organizer window
You can have only one Organizer window (shown in Figure 7-12). You use
the organizers in this window to manage the development resources such as
devices (for testing), projects, and archives.

To display the Organizer window, choose Organizer from the Window menu.
The window includes three individual organizers, whose tasks I describe in
the following list:

 ✓ Devices organizer: Lets you provision a device, manage your developer
profile, install iOS on the device, and work with your app and its data.
This organizer is present only if the iOS SDK is installed.

 ✓ Projects organizer: Lets you find, view, and manage an open project or
Workspace, its derived data, and its snapshots. Note that a project orga-
nizer lets you managed derived data — that consists of data that doesn’t
have to be recompiled each time. The Delete button lets you delete a set
of derived data. It’s a bit like a “Super Clean” button to force everything
to be recompiled.

 ✓ Archives organizer: Lets you view and manage build product archives
resulting from your distribution scheme.

Figure 7-12:
The

Organizer
window.

199 Chapter 7: Working with the Source Editor

Each of these organizers includes task-oriented contextual help articles that
you can view by choosing the Organizer and clicking in its content pane while
pressing Control.

I explain a bit more about some of the other organizers as you use them in
upcoming chapters.

The Help menu
The Help menu’s search field (in the Xcode menu bar) also lets you search
Xcode Help, the Xcode User Guide, and Documentation and API Reference.
You can also choose Quick Help for Selected Item, which displays a Quick
Help panel above the selected symbol in the editor.

Finding and Searching in Your Project
You’ll find that, as your classes get bigger, sometimes you’ll want to find a
symbol or some other text in your project. Xcode provides a number of ways
to do that.

Using the Find command to
locate an item in a file
Need to track down a single symbol or all occurrences of a symbol in a file or
class? You can easily locate what you’re looking for by using the Find menu
or pressing ⌘+F, which opens a Find toolbar above the Editor pane to help
you search the file in the editor.

 The Find menu has 15 find-and-replace submenus. The keyboard equivalent
⌘+F opens a find-and-replace bar above the Editor pane. They are not the
same.

For example, as shown in Figure 7-13, I entered viewDidLoad in the Find tool-
bar. Xcode found two instances of viewDidLoad in the source editor and
highlighted them. (Admittedly, the first highlight is a tad darker.)

200 Part II: Building RoadTrip

Figure 7-13:
You can
use Find
to locate

something
in a file.

 You can jump from one instance to the next by pressing ⌘+G. Or you can use
the Previous and Next buttons (left and right arrows) on the Find bar.

Click the Find pop-up menu on Find toolbar and choose Replace to do a file-
level replace.

Click the magnifying glass in the Search field in the Find toolbar to display a
menu that allows you to show or hide the Find options. For example, you can
choose to ignore or match the case of the text in the Search field. Changes
you make to this set of options remain persistent for future searches.

Using the Search navigator to search
your project or framework

 Whereas the Find command works for locating an item in a file or class,
you use the Find navigator (the third button from the left in the Navigator
selector) to find items in your project or even frameworks. You can use
Shift+Command+F as a handy keyboard shortcut for the Find command in the
Workspace menu item, which also opens the Find navigator pane.

In Figure 7-14, I entered viewDidLoad in the Find field. I also clicked the mag-
nifying glass in the Find field to display search options. (Clicking in the Find
pop-up menu will also let you choose Replace to perform a global replace.)

201 Chapter 7: Working with the Source Editor

Figure 7-14:
The Search

navigator
shows a
specific

use of the
search term

in the file.

Note how the initial results of my search are displayed in the Find navigator;
if I wanted to filter the Results list still further, I could enter text into the field
at the bottom of the pane. Any items that don’t match the text are removed
from the Results list.

To go directly to where the search term appears in a file, click an entry under
the file’s name in the Find navigator, as shown in Figure 7-14. The file appears
in the editor pane on the right, open to the location where the search term
appears.

Using the Symbol navigator
 The Symbol navigator allows you to browse through the symbols in your

project — just click the Symbol button on the Navigator selector bar. Note
that you need to wait until Xcode finishes indexing your project before you
can use this feature.

You can display symbols in a hierarchical or flat list using the buttons at the
top of the Symbol navigator.

202 Part II: Building RoadTrip

You can specify which symbols are displayed by using the buttons at the
bottom of the navigator. Buttons are blue when on and black when off. Use
the following buttons in any combination:

 ✓ The first button on the Symbol navigator shows only class symbols and
hides global symbol types.

 ✓ The middle button shows only symbols in this project.

 ✓ The third button shows only containers (classes and categories).

You can refine the Results list still more by entering text in the Filter field at
the bottom of the navigator.

If you select a symbol to display, its header file definition will be displayed in
the source editor. In Figure 7-15, I’ve hidden everything but the member sym-
bols. In the resulting list, I then filtered on the viewDidLoad method, and its
declaration in the header file was highlighted in the source editor.

Figure 7-15:
The Symbol

navigator.

You’re Finally Ready to Write Code!
Yes, it’s finally time to write code, and from here on, it’s full-steam ahead.

Part III
Getting Your Feet Wet:

Basic Functionality

 Visit www.dummies.com/extras/iosappdevelopment for more on how to
develop your iOS app with storyboarding.

http://www.dummies.com/extras/iosappdevelopment

In this part . . .
 ✓ Getting started with coding

 ✓ Adding outlets and actions to your code

 ✓ Adding animation and sound to your app

Chapter 8

It’s (Finally) T ime to Code
In This Chapter
▶ Determining Internet availability

▶ Using the debugger

▶ Using breakpoints to examine runtime behavior

Y
es, it’s finally time to start coding, although this chapter doesn’t get
you going on the RoadTrip app functionality itself yet (the example app

developed in this book). In this chapter, I show you some code you have to
include to make sure that your app isn’t rejected out of hand by Apple.

Next, I give you an introduction to your new friend, the debugger. While some
of you out there (but not me) may code perfectly, most developers make
some mistakes as they develop an app. Fortunately, the debugger in Xcode
starts helping you right from the start — so you want to understand how to
use it as soon as you start coding.

Checking for Network Availability
One of the easiest ways to get your app rejected by Apple is to fail to make
sure that you have an Internet connection when your app needs it, and there-
fore fail to notify the user that the functionality that requires the connection
will be unavailable (or even worse, have your app just hang there).

Downloading the Reachability sample
Apple provides a sample app called Reachability that shows how to deter-
mine whether you have an Internet connection (as well as quite a bit of addi-
tional network information I won’t be going into), and you’ll be using that
code in the RoadTrip app developed in this book. Here’s how to use code
from that valuable sample program:

206 Part III: Getting Your Feet Wet: Basic Functionality

 1. Download the Reachability sample from Apple by clicking Sample
Code at http://developer.apple.com/devcenter/ios.

 2. Type Reachability in the Search field.

 3. Click the Reachability project in the search results, and in the iOS
Developer Library window that appears, click the Download Sample
Code button.

 4. In your Downloads folder, double-click the Reachability folder to
open it.

 You set your Safari Downloads folder in Safari➪Preferences using the
General tab.

 5. Open the inner Reachability folder and drag the Reachability.m
and Reachability.h files into your project.

 (I put them in my Supporting Files group just to keep them out of the way.)

 6. Select the check box in front of Road Trip in the Add to Targets
section.

 Be sure to select the Copy Items into destination group’s folder option
(if it isn’t already selected).

In order for you to be able to use this code, you need to add the
SystemConfiguration framework. To do so, follow these steps:

 1. In the Project navigator, select the project icon (in this case, RoadTrip)
at the top of the Project navigator content area to display the Project
editor.

 2. In the targets pop-up menu just below the jump bar for the project,
select RoadTrip.

 3. On the Build Phases tab, scroll down to the Link Binary with Libraries
section.

 4. Expand the Link Binary with Libraries section if it isn’t already
expanded (see Figure 8-1) by clicking the disclosure triangle.

 5. Click the + (plus sign) button underneath the list of current project
frameworks.

 A list of frameworks appears.

 6. Scroll down and select SystemConfiguration.framework, as shown in
Figure 8-2.

 7. Click the Add button.

 You’ll see the framework added to the Linked Frameworks and Libraries
section.

 8. Close the Linked Frameworks and Libraries section.

http://developer.apple.com/devcenter/ios

207 Chapter 8: It’s (Finally) Time to Code

Figure 8-1:
Adding a

framework.

Figure 8-2:
Select

the system
configu

ration
framework.

208 Part III: Getting Your Feet Wet: Basic Functionality

Adding the code to check for reachability
The place to check for whether you have access to the Internet is right when
you start up. The method for doing that is the app delegate protocol method
application:didFinishLaunchingWithOptions:.

You also need to include the Reachability.h file to be able to use
Reachability, so add the bolded code in Listing 8-1 to the beginning of both
the AppDelegate.m file and the application:didFinishLaunchingWith
Options: method.

Listing 8-1: Updating the RTAppDelegate Implementation and
application:didFinishLaunchingWithOptions:

#import "AppDelegate.h"
#import "Reachability.h"

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 UISplitViewController *splitViewController =

(UISplitViewController *)
 self.window.rootViewController;
 UINavigationController *navigationController =
 [splitViewController.viewControllers lastObject];
 splitViewController.delegate =
 (id)navigationController.topViewController;
 }
NetworkStatus networkStatus =
 [[Reachability reachabilityForInternetConnection]
 currentReachabilityStatus];
 if (networkStatus == NotReachable) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Network Unavailable"
 message:@"RoadTrip requires an Internet connection"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 }
 return YES;
}

209 Chapter 8: It’s (Finally) Time to Code

Ignore the code not in bold for the time being. I explain it in detail in Chapter 13.

In the main bolded section of Listing 8-1, you start by creating a Reachability
object and then send it the currentReachabilityStatus message:

NetworkStatus networkStatus =
 [[Reachability reachabilityForInternetConnection]
 currentReachabilityStatus];

reachabilityForInternetConnection is an initializer that creates a
Reachability object that checks for the availability of an Internet connec-
tion. As I said, Reachability has a lot of functionality, but all you really care
about right now is whether you can reach the Internet.

Next, check to see whether you have network access:

if (networkStatus == NotReachable) {

If you don’t have network access, you post an alert:

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Network Unavailable"
 message:@"RoadTrip requires an Internet connection"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
[alert show];

This is the standard way to configure and then show an alert. You have filled
in the various (self-explanatory) parameters required by the initialization
method. Configured this way, the alert will have a single button.

The show message to the alert object causes the alert to be displayed in
the window, and when the user taps OK, the alert is dismissed.

 If you had added other buttons to give the user a choice of responses, you
would have had to make the object posting the alert (the AppDelegate, in
this case) a UIAlertViewDelegate, assigned the delegate parameter to
self, and added the title of the other buttons using a nil terminated list. You
would then have needed to implement the alertView:clickedButtonAtI
ndex: method in the delegate.

Explaining how Reachability works is beyond the scope of this book, but by
examining the code, you can easily figure out how to get any other network
status information you want.

210 Part III: Getting Your Feet Wet: Basic Functionality

If you run the app now, and either turn off your Internet connection on the
computer (if you’re running the Simulator) or turn on Airplane mode or turn off
your Wi-Fi connection on the device, you see the message shown in Figure 8-3.
(If this doesn’t seem to work, read on. What matters isn’t the behavior on the
simulator but, later on, the behavior on a device.)

You can also temporarily change the

if (networkStatus == NotReachable) {

to

if (networkStatus != NotReachable) {

Figure 8-3:
Checking

the network
connection.

211 Chapter 8: It’s (Finally) Time to Code

so that the test works in reverse. Just be sure to change it back!

Of course, in a real app, you would want to do something further here, such
as give the user options and so on. I’ll leave that up to you.

Congratulations! You’ve had your first adventure in coding land.

Exploring the Changes in iOS 7
iOS 7 introduces a major revision to the user interface of iOS. It addresses
two main issues: the dated look of the interface and the fact that content was
getting lost on the app screen.

The dated interface
Change for the sake of change may or may not be a good idea — it depends
on the context and the cost. In the case of a new user interface, users and
developers have to learn new skills.

With iOS 7, the functionality of the interface changes very little. Apple was
able to make relatively small changes in the interface appearance, and for
most users, not much changed. Developers have a few extra items to think
about.

The “datedness” of the interface wasn’t so much the fact that it had been
around for a while, but that it was designed originally for the iPhone with a
small screen and a much less powerful processor than we have today. The
screen on the iPhone is larger today, and its resolution is much higher with
the Retina display. The iPad, of course, is the same size (although the iPad
Mini came along a little while ago), but both are now sporting Retina displays.

This means that not only is there more screen real estate to use, but the
details can be much smaller and subtler. In demonstrations of the Retina
display, we usually see beautiful photos. However, the fact that very small
elements on the screen can now be visible does have an effect on the user
interface.

212 Part III: Getting Your Feet Wet: Basic Functionality

This has all happened before. If you look at screenshots of the original Mac
(or a PC), you’ll see interfaces that look very old and clunky. We just don’t
use those enormous interface elements any more the way we had to a couple
of decades ago. It’s also important to note that Apple has significant tools in
the accessibility area so that, even with small interface elements, people with
limited vision can still use the devices.

Losing the content
The second issue that the interface revision addressed was the fact that con-
tent was sometimes getting lost on the screen. At the Worldwide Developers
Conference in June 2013 where iOS 7 was first demonstrated, speaker after
speaker stressed that part of the design goal was to make the content stand
out and the interface disappear as much as possible.

Part of the strategy to make the content stand out was to simplify the user
interface. One important simplification is to introduce the idea of a tint color
(really a highlight color). If you set a tint color for your app, the interface is
drawn basically in gray on a white background with the exception of items
that are highlighted: All highlighted items use the tint color. You can set it for
your app or for an individual window. Users may not even notice the fact that
all highlights appear in the same color unless you point it out to them, but it
makes learning how to use the app and — most importantly — distinguishing
between content and interface much easier.

If your app uses color in its content, a good tint color is one that is unlikely
to show up in the content, if that’s possible. Remember, the point of the tint
color is to distinguish the interface from the content. A secondary point is to
remind users what app they’re in. Apple, for example, uses blue as the tint
color in many of the built-in apps. You’re welcome to use it, but if you choose
a different color (a significantly different color) you can help people know
where they are.

Furthermore, if the tint color picks up a color from your app icon, you also may
establish your own palette identity. You can set a tint color for an individual
window, but many apps set it globally. To do so, select a storyboard file from in
the Project navigator and use the File inspector to set the tint color, as shown
in Figure 8-4. This method makes it easy to use different tint colors for each
storyboard. So that means you can set the tint color dynamically in code for a
window regardless of device, for a storyboard and all of its views and view con-
trollers, or for a specific view (that, too, would require code).

213 Chapter 8: It’s (Finally) Time to Code

Figure 8-4:
Set the tint

color.

Setting the Master View Controller Title
You’ll also want to be able to set the title in the Navigation bar for the view.
You could have done that in Interface Builder, but I’m showing you how to do
it programmatically because you want to be able to set the title of the view
based on where the user is going.

To set the MasterViewController title, add the bolded code in Listing 8-2
to viewDidLoad in MasterViewController.m.

Listing 8-2: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view,
 typically from a nib.
 self.detailViewController =
 (DetailViewController *)
 [[self.splitViewController.viewControllers
 lastObject] topViewController];
 self.title = @"Road Trip";
}

214 Part III: Getting Your Feet Wet: Basic Functionality

How did I know to put this code here, rather than in some other section of
the code? viewDidLoad is the message sent when the view is loaded for the
first time, but before it’s displayed. If you want a title, you want to set it here,
before the view is displayed.

Understanding Autorotation
One of the responsibilities of the UIViewController class is to work with
the app’s window to handle device rotation (also known as device orientation
changes). Although the UIViewController class itself already includes the
functionality to animate the transition from the current orientation to the
new one (which you can override if you need to lay out the view again for
the new orientation), it must also communicate to the application window
whether it in fact wants to support a particular orientation.

In earlier versions of iOS, you had to override certain UIViewController
methods to control autorotation, but you can manage this now by simply
choosing your desired Device Orientations in the Target’s Deployment Info
section of the General tab, as shown in Figure 8-5.

Figure 8-5:
The Target’s

Supported
Device

Orientations.

215 Chapter 8: It’s (Finally) Time to Code

Writing Bug-Free Code
Although some developers think that writing code is where they spend the
vast majority of their time when they’re developing an app, debugging is
actually right up there as a very close second. (And yes, I know that the title
of this section is wishful thinking.)

Because debugging plays such a crucial role in writing workable code, I want
to use this section to emphasize two points:

 ✓ App developers should strive to write code with as few bugs as possible
(duh!).

 ✓ App developers need to know how to use the debugger so they can track
down the inevitable bugs they do introduce into their code as efficiently
as possible.

With the release of Xcode 5, Apple has made it easier to write code with
fewer bugs, as well as use the debugger to track down bugs you do have.

Because the best defense is a good offense, I want to start with the tools that
Xcode provides that help you to write less buggy code. Xcode has figured out
that the best way to make sure your code has as few bugs as possible is by
giving you the opportunity to fix the code as you write it. Such opportunities
come in the form of Xcode’s various compiler warnings. More specifically,
by taking advantage of the Live Issues and Fix-it features, which I explain in
Chapter 7, you’ll catch many of your errors before you even run your app,
and fixing them will be easy. (Well, some of them, at least.) Live Issues contin-
uously evaluates your code in the background and alerts you to coding mis-
takes, and Fix-it will also offer to fix the problem for you. I suggest that unless
you are crystal clear about what you’re doing, don’t run your app without
first resolving any outstanding compiler warnings.

Although Live Issues and Fix-it can catch many problems and help you
resolve them, they can’t identify and fix everything. (I can tell you that they
have made my life more difficult. When I want to demonstrate how to fix a
coding error in a book or class, it’s much harder to set it up because Live
Issues and Fix-it tend to catch the error before I can finish typing it.)

216 Part III: Getting Your Feet Wet: Basic Functionality

Working in the Debug area
and Debug navigator
The Debug area consists of the Debug bar, partnered with the Variables pane
and the Console pane, each of which has a Scope bar fitted out with a pop-up
menu. You usually use the Debug area in conjunction with the Debug navigator.

You access the Debug area by selecting it in the Xcode toolbar’s View selector
(as shown in Figure 8-6). You select the Debug navigator by showing the
Navigator area and then selecting the Debug navigator in the Navigator selec-
tor bar. The default behavior is to show the Debug navigator and the relevant
debugging gauges (you can change this in Debug preferences).

If you get a runtime error (or if you click the Pause button or a breakpoint is
triggered), the Debug area and the Debug navigator open automatically.

Figure 8-7 show what happens when you hit a breakpoint (which I explain
shortly) in your program.

What you see in the Debug area is controlled by using the Debug area Scope
buttons, shown in Figure 8-8 at the bottom right of the Debug area. You use
this bar to toggle between the Variables pane only (left button), both Variables
and Console panes (both buttons), and Console pane only (right button).

Figure 8-6:
Accessing
the Debug

area.

217 Chapter 8: It’s (Finally) Time to Code

Figure 8-7:
Hitting a

breakpoint
displays the
Debug area
and Debug
navigator.

Figure 8-8:
Use the

Debug area
Scope

buttons to
control what

panes you
see in the

Debug area.

218 Part III: Getting Your Feet Wet: Basic Functionality

The Variables pane and the Console pane have their very own Scope bars as
well. The pop-up menu in the Variables pane Scope bar lets you display

 ✓ Auto: Recently accessed variables

 ✓ Local: Local variables

 ✓ All: All variables and registers

The pop-up menu in the Console pane Scope bar lets you display

 ✓ All Output: Target and debugger output

 ✓ Debugger Output: Debugger output only

 ✓ Target Output: Target output (program logging to the debugger, for
example) only

 Xcode offers other controls and filters for what gets displayed that I encourage
you to explore on your own.

Managing breakpoints
You can use the debugger to pause execution of your program at any time
and view the state of the running code.

As mentioned previously, you won’t find much to see in the Debug area and
Debug navigator unless your program is stopped at a breakpoint or paused
(and not much at those points, either). The debugger is more useful to you if
you set breakpoints to stop at known points and then view the values of the
variables in your source code. Given that fact, it’s probably time to show you
how to set a breakpoint and explain what a breakpoint is.

A breakpoint is an instruction to the debugger to stop execution at a particular
program instruction. By setting breakpoints at various methods in your pro-
gram, you can step through its execution — at the instruction level — to see
exactly what it’s doing. You can also examine the variables that the program
is setting and using. If you’re stymied by a logic error, setting breakpoints is a
great way to break that logjam.

To set breakpoints, open a file in the Source editor and click in the Gutter —
the column between the Navigator area and the Focus ribbon that is adjacent
to the Editor area in Figure 8-8 — next to the spot where you want execution
to stop. You can toggle the state (on or off) of all the breakpoints in your pro-
gram at any time by clicking the Breakpoints button at the left of the Debug
bar: it’s the colored button that’s the second from the left. In Figure 8-8,
note that the button looks like the breakpoint that’s set in the gutter next to
UINavigationController.

219 Chapter 8: It’s (Finally) Time to Code

 To disable an individual breakpoint, click its icon in the gutter. To get rid of a
breakpoint completely, simply drag it off to the side. You can also right-click
(or Control-click) the breakpoint and choose Delete Breakpoint from the
pop-up menu that appears.

 In Figure 8-9, I’ve added a breakpoint to the statement just before I check to
see if the device is an iPad. You’ll also notice that I’ve displayed the Breakpoint
navigator by selecting the appropriate icon in the Navigator selector bar. The
Breakpoint navigator lets you see all breakpoints at once; if you select a given
breakpoint in the Breakpoint navigator, it displays in the Source editor (where
you can also edit it).

You can set several options for each breakpoint by Control-clicking the break-
point and choosing Edit Breakpoint from the shortcut menu that appears, as
shown in Figure 8-10.

Figure 8-9:
Setting a

breakpoint
and dis

playing the
Breakpoint

navigator.

220 Part III: Getting Your Feet Wet: Basic Functionality

Figure 8-10:
Editing a

breakpoint.

Doing so opens the Edit Breakpoint window, where you can set the actions
and options you want for breakpoints added in the Breakpoint editor. As
shown in Figure 8-11, you can set a condition for a breakpoint, ignore it a set
number of times before stopping, add an action, and automatically continue
after evaluating actions.

In Figure 8-11, I selected the Add Action button and then chose to add a
sound in Figure 8-12. I also set a condition that I want the breakpoint to be
triggered only if the networkStatus isn’t equal to notReachable. In this
case, as you can see in Figure 8-12, I had to specify

networkStatus != 0

This is because networkStatus is not a symbol the debugger has access
to, but rather an enumerated type (a set of named values that behave as con-
stants). If you examine the Reachability.h file, you’ll find

typedef enum {
 NotReachable = 0,
 ReachableViaWiFi,
 ReachableViaWWAN
} NetworkStatus;

221 Chapter 8: It’s (Finally) Time to Code

Figure 8-11:
Some

breakpoint
options.

Figure 8-12:
Fine

tuning the
breakpoint.

222 Part III: Getting Your Feet Wet: Basic Functionality

The “normal” condition, of course, would be to set the breakpoint to stop
when the condition is something you don’t expect, like the networkStatus
equal to NotReachable. But I want to keep my Mac connected to my net-
work (which connects the Simulator as well), so I set the breakpoint condition
to be equal to Not Reachable so it would stop at the breakpoint every time
(unless of course my network unexpectedly goes down).

Set this breakpoint and run your program in Xcode. As you saw previously in
Figure 8-7, you’ll be stopped at the breakpoint.

As you can see in the figure, when the breakpoint is reached, the Debug area
is displayed and the Debug navigator opened automatically. (You can change
that response in the Behaviors tab of Xcode Preferences.) It stopped because
the condition I set (networkStatus != 0) evaluated YES.

What you’ll find in the Debug area
On one side of the Debug area you have the Variables pane (which displays
the values of variables), and on the other side, you have the Console pane.
You select one or both with the Debug area Scope buttons at the lower right
of the Debug area. In Figure 8-7, for example, you saw only the Variables pane.

The Variables pane
The Variables pane displays the variables you’re interested in. Click the
disclosure triangle next to self to see the instance variables in the object.
You’ll see the local variables to a method as well. As mentioned earlier, you
can specify which items to display by using the pop-up menu in the top-left
corner of the Variables pane:

 ✓ Auto: Displays only the variables you’re most likely to be interested in,
given the current context

 ✓ Local: Displays local variables

 ✓ All: Displays all variables and registers

You can also use the Search field on the toolbar to filter the items displayed
in the Variables pane.

The Console pane
The Console pane displays program output. Again, as mentioned earlier, you
can specify the type of output you see in the console by using the pop-up
menu in the top-left corner of the Console pane:

 ✓ All Output: Displays target and debugger output

 ✓ Debugger Output: Displays debugger output only

 ✓ Target Output: Displays target output only

223 Chapter 8: It’s (Finally) Time to Code

When you are stopped at the breakpoint you set earlier, what you see is a lot
of boilerplate and then this:

2012-02-19 12:02:12.486 RoadTrip[26123:f803] Reachability
Flag Status: -R -----l- networkStatusForFlags

(lldb)

Not much of interest here, but in Chapter 11, you’ll find out how to print
(really display) the contents of a variable to the Console pane — and in
Chapter 15, you’ll have the opportunity to examine some runtime error
messages.

The (rather boring) stuff you see here is the result of an NSLog statement in
Reachability:

2012-02-19 12:02:12.486 RoadTrip[26123:f803] Reachability
 Flag Status: -R -----l- networkStatusForFlags

NSLog allows you to display information in the Console pane during execu-
tion. For example, if you wanted to know how many points of interest your
app had to display (the number of elements in the poiData array — you find
out about poiData in Chapter 17), instead of using a breakpoint and display-
ing a variable, you could add the following NSLog statement:

NSLog(@"Number of points of interest %i",
 [poiData count]);

which would display

2012-02-19 12:06:52.688 RoadTrip[26145:f803]
 Number of points of interest 1

in the Console pane.

NSLog is pretty useful and uses the same formatting as NSString’s
stringWithFormat and other formatting methods.

What you’ll find in the Debug navigator
 Selecting an item in the Debug navigator causes information about the item to

be displayed in the Source editor. For example, selecting a method displays
the source code for that function in the Source editor.

Each app within iOS is made up of one or more threads, each of which rep-
resents a single path of execution through the app’s code. Every app starts
with a single thread, which runs the app’s main function. The main thread

224 Part III: Getting Your Feet Wet: Basic Functionality

encompasses the app’s main run loop, and it’s where the NSApplication
object receives events. Apps can add (spawn) additional threads, each of
which executes the code of a specific method.

 Threads per se are way beyond the scope of this book, but that’s okay: Here
you’ll be concerned with only the main thread.

Every time you send a message (or make a function call), the debugger stores
information about it in a stack frame and then it stores all such frames in the
call stack. When you’re thrown into the debugger because of an error (or
if you pause the application by clicking the Pause button on the toolbar),
Xcode displays the thread list, and within each thread the call stack for that
thread, putting the most recent call at the top. The call stack shows a trace of
the objects and methods that got you to where you are now.

You can do a lot more as far as threads are concerned, but again, that’s out-
side of the scope of this book. (If you don’t know whether to be disappointed
or relieved, hold that thought.)

 Although the trace isn’t really all that useful in this particular context, it can be
very useful in a more complex application — it can help you to understand the
path that you took to get where you are. Seeing how one object sent a message
to another object — which sent a message to a third object — can be really
helpful, especially if you didn’t expect the program flow to work that way.

Getting a look at the call stack can also be useful if you’re trying to under-
stand how the framework does its job, and in what order messages are sent.
As you’ll soon see, you can stop the execution of your program at a break-
point and trace the messages sent up to that point.

Displaying variables in the Source editor
In the Debugger window, you can move your pointer over an object or vari-
able in the Source editor to show its contents and move your pointer over
disclosure triangles to see even more information when the app is stopped at
a breakpoint.

In Figure 8-13, for example, I moved the pointer over navigationController
to see its value (information about the current status of the Internet connection).

 When you move your pointer over a variable, its contents are revealed — and
if more disclosure triangles appear, you can move your pointer over them to
see even more information (which I explain in more detail in Chapter 11).

You see the value of the variable in the Variables pane as well.

In the next section, I show you how to step through your program after it’s
stopped at a breakpoint.

225 Chapter 8: It’s (Finally) Time to Code

Figure 8-13:
Showing the
 navigation
controller.

Tiptoeing through your program
When you build and run the program with breakpoints, the Debug bar
appears in the Workspace window as the program runs in the Simulator. The
program stops executing at the first breakpoint (if you have set a condition, it
stops executing if that condition is met).

To control the execution, you use the Debug bar (located at the top of the
Debug area that you see in Figure 8-14). The Debug bar includes buttons to

 ✓ Open or close the Debug area. As mentioned previously, you can hide
the Debug area if you don’t need it for what you’re doing right now.

 ✓ Turn all breakpoints on or off. This will let you keep them in place for
whenever you need to debug them again.

 ✓ Pause or resume execution of your code. Click this button to stop your
program from executing or continue execution after it stopped when it
entered the debugger.

 ✓ Step over. Click this button to make the process counter (PC), which is
identified by the green arrow in the gutter, move to the next line of code
to be executed. If that line of code sends a message, it will send the mes-
sage (and run the method) — but then, from your perspective, it just
moves to the next line of code.

226 Part III: Getting Your Feet Wet: Basic Functionality

Figure 8-14:
The Debug

area and
Debug bar.

 ✓ Step in. Click this button to move the process counter to the next line of
code to be executed. If the line of code sends a message to a method in
your source code, the debugger will step to the method and then return
to the next line of code after the line that sends the message.

 ✓ Step out. Click this button to step out of the current function or method.
The Source editor then displays either the method that sent the mes-
sage or the function’s caller.

 ✓ Simulate location. You can have the debugger simulate the location of
the iPad for you. I explain this in Chapter 17.

When I build and run RoadTrip in Figure 8-14, you can see that the program has
stopped executing at the breakpoint. If I then want to watch what happens as
RoadTrip executes step-by-step, I would select Step In and proceed line by line.
At each line, I can view the values of the variables as they change (changed
values are shown in blue). When I have seen what I want to see, I can resume
execution or stop the app and make my repairs.

This concludes your introduction to the debugger and Debug navigator. I do
want to show you a couple more things, but I need to have you add more code
to have them make sense. In Chapter 11, I show you how to print (display) the
contents of a variable in the Console pane, and then in Chapter 15, I show you
a couple of my favorite runtime errors.

Chapter 9

Adding Outlets and Actions
to Your RoadTrip Code

In This Chapter
▶ Connecting your user interface to your code

▶ Using the Assistant

▶ Taking advantage of the Connections inspector

▶ How connections are made at runtime

O
ne of the things that the RoadTrip app will be able to do is send the
image of a car to the top of the screen, have it move back down the

screen, and then have it turn around so it’s back where it started, all from
a simple tap of the Test Drive button. This isn’t an essential for an app like
RoadTrip, but it’s an interesting add-on that lets me show you how to add ani-
mation and sound to an app in the next chapter. So if you’re more interested
in developing games than a data-based travel guide, you’ll be on your way.

To get ready to add sound and animation to your app, you’re going to need
to add some logic to your code. You do that in a custom view controller,
which gets detailed coverage in this very chapter — especially the bits about
adding custom view controllers and connecting them to the view controllers
you create in your storyboard. But that’s only one part of the story. For all
the pieces to fit, you’ll need to be able to access the elements stipulated in
your storyboard — elements like the car image — and then connect those
elements to the code in your custom view controller.

 The way you add the logic to connect the view to the model via the view con-
troller in this chapter is going to be the model for how you deal with the rest
of the view controllers in the storyboard. Keep in mind that, although you can
add all the view controllers you’ll ever need to the storyboard graphically, you
still need to add some code on your own if you ever want the controller to
actually do anything, such as get data from the model and send it to the view.

228 Part III: Getting Your Feet Wet: Basic Functionality

Using Custom View Controllers
The view controller provided by the storyboard is a UIViewController (or
UITableViewController, which is a type of view controller) and is bliss-
fully unaware of what you want to display in a view, or how to respond to
view actions (such as the user tapping the Test Drive button). In this section,
you create a custom controller that does know about its view. (In Chapter 10,
you get to add the logic you need to the custom view controller to make the
car move and make noise.)

Adding the custom view controller
You start the process of adding a custom view controller to your project by
adding the custom view controller class, as follows:

 1. To create a new group to keep your view controller classes in, select
the RoadTrip group in the Project navigator and either right-click
and choose New Group from the menu that appears or choose File➪
New➪New Group from the main menu.

 Note that you need to select the RoadTrip group, right there under
RoadTrip Resources, and not the RoadTrip project, which is at the top of
the Project navigator.

 To change a file’s group, select the file and drag it to the group you want
it to occupy. The same goes for groups as well (after all, they can go into
other groups).

 2. The New Group should be selected so you can name your new group
View Controller Classes by typing it.

 If it is not already selected, or you want to change the name, select the name
and name it (this is the same way you would name a folder on the Mac).

 3. In the Project navigator, select the (newly created) View Controller
Classes group and either right-click and then choose New File from
the menu that appears or choose File➪New➪New File from the main
menu (or press ⌘+N) to bring up the New File dialog.

 4. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select Objective-C class template in the top-right pane, and
then click Next.

 5. In the Class field, enter TestDriveController, choose UIViewController
from the Subclass Of drop-down menu, make sure that the Target for
iPad option is selected and that the With XIB for User Interface option
is deselected, and then click Next.

229 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

 You could also name this TestDriveViewController. It is a view
controller but it generally controls the test drive feature. It’s up to
you. Apple engineers have gradually been moving to longer and more
descriptive names for things. Even the most typing-challenged engineers
can live with longer names thanks to Xcode’s Fix-it and code completion
logic. I’m opting for the shortest name in part because it makes the code
listings in this book a little easier for the layout (and reading!) process.

 6. In the Save sheet that appears, select a location, and then click Create.

If you examine the (generated) code added in TestDriveController, you’ll
notice two methods.

The first one I’ll draw your attention to is viewDidLoad — you’ll be adding
code to it to do any view controller or view initialization after the view
 controller and its view have been loaded from the storyboard:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view,

typically from a nib.
}

Setting up the TestDriveController in the
MainStoryboard for iPad
Now that you have a custom view controller (it doesn’t do anything yet, but it
will), you need to let the storyboard know that you want to load your custom
view controller rather than a UIViewController.

In the Project navigator, select the Main_iPad.storyboard file, and in the
Document Outline, select View Controller – TestDrive in the View Controller –
TestDrive Scene. (I had you enter TestDrive in the Title field way back when,
and now you’re actually using it.)

Using the Inspector selector bar, open the Identity inspector in the
Utility area and then choose TestDriveController (replacing
UIViewController) from the Class drop-down menu in the Custom
Class section, as I have in Figure 9-1). This means that when the Detail
cell in the Master Controller is tapped, your custom controller — the
TestDriveController — will be instantiated and initialized, meaning
it will now receive events from the user and connect the view to the Trip
model you’ll create in Chapter 11.

230 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-1:
Connecting

the view
controller

object in
the iPad

storyboard
to the Test

Drive
Control-
ler class.

When you write your own code, it’s pretty obvious how an app works: You
create an object, initialize it, and then send it messages. When you work with
storyboards, however, how your app works may not be so obvious. How do
you go from the objects you added to your user interface in Interface Builder
to code that enables you to access these objects? How do you get an Image
view to change its image or receive a message that the user has tapped a
button, for example?

The objects in your user interface must communicate with each other and
with your source code if your app is to allow the user to interact with it. In
order to access a user interface object and specify which messages are sent
and received, you use Interface Builder to create connections. There are two
basic types of connections you can create:

 ✓ Outlet connections, which connect your code to Interface Builder
objects that enable you to get and set properties (change the image in an
Image view, for example)

 ✓ Action connections, which specify the message to be sent to your code
when the control is interacted with (the user taps a button, for example)

In this chapter, I explain how to create both outlets and actions in your code.

231 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

Understanding Outlets
An outlet is a way to connect your code to an object you added to a view in
your storyboard that you’ve decided will become part of your user interface at
runtime. The connections between your code and its outlets are automatically
reestablished every time the object referenced by the outlet is loaded.

The object containing an outlet is often a custom controller object such as
the view controller generated for you by the template. In the class declara-
tion of that custom controller, you declare an outlet as a property with the
type qualifier of IBOutlet.

Listing 9-1 shows you what the TestDriveController class extension (in
the .m file) will look like after you’re done mucking about with it at the end of
this chapter.

Listing 9-1: Outlets (and Actions) Declared

@interface TestDriveController () {
 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
 BOOL touchInCar;

}
@property (weak, nonatomic) IBOutlet UIImageView *car;
@property (weak, nonatomic)
 IBOutlet UIButton *testDriveButton;
- (IBAction)testDrive:(id)sender;
@end

An outlet is a property that points to another object, enabling an object in
an app to communicate with another object at runtime. Using an outlet, you
have a reference to an object defined in the storyboard (or a nib file) that is
then loaded from that storyboard file at runtime. You can make outlet con-
nections between any objects that you add to your storyboard in Interface
Builder.

For example, in Figure 9-2, you use an outlet to get the text the user typed in
the Find text field.

But before you go setting up outlets for anything and everything, make sure
that you really need one. You don’t have to use outlets to be able to access
all Interface Builder objects.

232 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-2:
Using an
outlet to

get the text
entered by

the user.

Adding Outlets
To recap from the previous section, outlets are the way your code can
access — either by sending messages or setting properties — the Interface
Builder objects in your storyboard. You can do all this graphically in Interface
Builder, and the required code is generated for you. Read on to find out more
about how this works.

Opening the Assistant editor
To create an outlet, you need to connect the interface object in Interface
Builder with your code. Although you have a couple of ways to make this
connection, the easiest and most clear-cut way is to use the Assistant editor
to automatically display the code file that’s most relevant to the interface ele-
ment you’re working with. To make the Assistant editor automatically display
a likely code file, follow these steps:

 1. Select the Main_iPad.storyboard file in the Project navigator.

 2. Close the Utility area if it’s open (and you need the space) by deselecting
it in the View selector in the Xcode toolbar.

233 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

 3. In Interface Builder, select the View Controller – TestDrive in the View
Controller – TestDrive Scene (see, it is handy to actually label things)
in the Document Outline; then click the Assistant Editor button in the
Editor selector on the toolbar (see Figure 9-3).

 The Assistant editor pane opens. If Automatic is chosen in the tool-
bar, you will have a choice of views in TestDriveController.h and
Test DriveController.m. That’s because both files are relevant
to the selected view in the Document Outline. You want to work with
TestDriveController.m so, if necessary, choose it as shown in
Figure 9-4.

Figure 9-3:
Select the
Assistant

editor.

234 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-4:
The view

controller
in the

storyboard
and the
Test
Drive

Control-
ler.m

file in the
Assistant

editor.

A Jump bar (a handy thing to know about) appears at the top of each Editor
area pane and gives you a way to navigate through the files and symbols in your
project. The configuration and behavior of each Jump bar is customized for the
context in which it appears. In addition to a hierarchical path that enables you
to navigate to a file or symbol in your project, the basic configuration of a Jump
bar includes the following:

 ✓ The Related Items menu (accessed by clicking the icon shown in the left
margin) grants you access to additional selections relevant to the cur-
rent context, such as recently opened files or the interface (.h) header
file for an implementation (.m) code file you’re editing.

 ✓ Previous and Next buttons enable you to step back and forth through
your navigation history.

I explain the Jump bar in detail when discussing the Standard editor in
Chapter 7.

Creating the outlet
After you have the TestDriveController implementation displayed (as
I do in Figure 9-4), either by having the Assistant editor display it automati-
cally or by navigating to it using the Jump bar, the actual creating-an-outlet

235 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

business using the Interface Builder editor is very straightforward and pretty
easy. You do it by Control-dragging from the element you’re interested in to
the TestDriveController interface, as detailed in the following steps:

 1. Control-click and drag from the element in the view (the car image,
in this example) to the TestDriveController.h file between the
@interface and @end statements, as shown in Figure 9-5.

 2. In the dialog that appears, name this outlet car (see Figure 9-6) and
then click the Connect button.

 The outlet is added as a property. (I explain properties in Chapter 6.)

 Figure 9-7 shows your new outlet in all its glory.

 A connection between an object and its outlets is actually stored in a nib
file. (Come to think of it, a storyboard is really just a series of nib files.)
When the nib file is loaded, each connection is reconstituted and rees-
tablished, thus enabling you to send messages to the object. IBOutlet
is the keyword that tags an instance-variable declaration so that the
Interface Builder app knows that a particular instance variable is an
outlet — and can then enable the connection to it.

Figure 9-5:
Control-drag

from an
object to

create an
outlet.

236 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-6:
Name the
outlet car.

Figure 9-7:
The outlet

you just
created.

237 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

 3. Go back to the Interface file and create an outlet for the Test Drive
button (name it testDriveButton).

 Control-drag from the button to the TestDriveController interface
in the same way as you do the car image (between the @interface and
@end statements).

 The only reason you need to create an outlet for a button (normally you’ll
attach an action to the button, which you’ll do in the later section “Working
with the Target-Action Design Pattern”) is to change a Button property. You’ll
be using this outlet in Chapter 10 to make the button blink on and off.

The Connections inspector
While clicking and dragging is the easy way to go, you should know that you
can make the same outlet connections using the Connections inspector in
the Utility area, with a bit more work. But the real value of the Connections
inspector is that it shows you what the outlets and received actions —
 covered next — and the segues actually are. To use the Connections inspec-
tor, follow these steps:

 1. Select Standard editor on the View selector in the toolbar.

 The Assistant editor closes.

 2. Show the Utility area by selecting it in the View selector.

 3. Select the Connections inspector by clicking its icon in the Inspector
selector bar. (The icon is shown here in the left margin.)

 4. In the Document Outline, select the View Controller in the Test Drive
Controller – Test Drive Scene.

Freedom of outlet reference choice
You actually have a choice — you can add the
outlet reference to the public class interface
declared in the .h file, or you can add the
outlet reference to the private class interface
declared in the .m file. An outlet declared in
the .h file will be a public property that can be

used by methods in other classes in your app.
An outlet declared in your .m file can only be
used by methods defined in that .m file. A gen-
eral programming guideline is to keep things
private unless they need to be public, so you
might keep your outlet references in the .m file.

238 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-8:
The

Connections
inspector

and window.

In Figure 9-8, you can see that in the Outlets section of the Connections inspec-
tor, the view controller contains both car and testDriveButton outlets (as
should yours, if you followed along and created them). You’ll also see in the
Referencing Storyboard Segues section a Push from Table View Cell – Cell. The
view outlet has always been there — it’s part of the template.

You can also Control-click the view controller in the Document Outline to get
a similar picture in the Connections window.

Besides showing the outlets, if you need to change what an existing outlet
points to, the Connections inspector or window is the way to go. Just drag
from the circle at the end of the connection in the Outlets section in the
Connections inspector or Connections window to the Interface Builder object
you want that outlet to point to.

If you wanted to create an outlet without all this dragging, you would simply
enter the code that Interface Builder created for you in the view controller’s @
Interface (the property — don’t forget the IBOutlet):

@property (weak, nonatomic) IBOutlet UIImageView *car;

239 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

The new outlet will show up in the Connections inspector and window, and
then all you need to do is drag from the circle at the end of the connection
in the Outlets section to the Interface Builder object you want that outlet to
point to.

 When you add outlets, you have some memory management considerations,
not to mention the entire subject of properties, both of which I explain in
Chapter 6. But in this chapter, I’m keeping the focus on what you need to know
about interacting with Interface Builder objects in a storyboard. That interac-
tion also includes working with a design pattern called Target-Action, which I
explain next.

Working with the Target-Action
Design Pattern

The other requirement of a user interface that I mention at the beginning of
this chapter is being able to deal with situations where you want to connect a
button to your code so that when a user taps the button, something happens.
This requirement involves using the Target-Action pattern, which is one of the
key design patterns in iOS programming.

You use the Target-Action pattern to let your app know that it should do
something when prompted. A user might tap a button or enter some text, for
example, and the app must respond in some way. The control — a button,
say — sends a message (the Action message) that you specify to the target
(the receiving object, which is usually a view controller object) that you have
selected to handle that particular action.

Using the Target-Action pattern:
It’s about controls
When a user acts on the control by, say, tapping a button, the iPhone or iPad
generates an event. The event triggering a particular action message can be
anything, just as the object sending the message can be any object. For exam-
ple, a gesture-recognizer object might send an action message to another
object when it recognizes its gesture. However, the Target-Action pattern is
usually found with controls such as buttons and sliders.

The event as such probably doesn’t tell you much, but Target-Action provides
a way to send an app-specific instruction to the appropriate object.

240 Part III: Getting Your Feet Wet: Basic Functionality

Figure 9-9:
The Target-

Action
mechanism.

If you wanted to develop an app that could start a car from an iOS device
(not a bad idea for those who live in a place like Hibbing, Minnesota in
winter), you could display two buttons, Start and Heater. You could use
Interface Builder to specify that when the user taps Start, the target is the
CarController object and the method to invoke is ignition. Figure 9-9
shows the Target-Action mechanism in action.

 The Target-Action mechanism enables you to create a control object and tell
it not only which object you want handling the event but also the message to
send. For example, if the user taps a Ring Bell button onscreen, you want to
send a Ring Bell message to the view controller. But if the Wave Flag button
on the same screen is touched, you want to be able to send the Wave Flag
message to the same view controller. If you couldn’t specify the message, all
buttons would have to send the same message. It would then make the coding
more difficult and more complex because you would have to identify which
button sent the message and what to do in response. It would also make
changing the user interface more work and more prone to errors.

You set a control’s action and target using Interface Builder. You get to spec-
ify what method — in which object — should respond to a control without
having to write any code.

Action methods have a certain signature (format, in other words):

- (IBAction)testDrive:(id)sender;

The type qualifier IBAction, which is used in place of the void return type,
flags the declared method as an action so that Interface Builder is aware
of it. (This is similar to the IBOutlet tag, used in the “Creating the outlet”

241 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

section, earlier in this chapter.) And just as with outlets, you can actually
make the connections in the Interface Builder editor, and Xcode will generate
the necessary code for you.

The sender parameter is the control object sending the action message.
When responding to an action message, you may query the sender to get more
information about the context of the event triggering the action message.

 You can set the action and target of a control object programmatically or in
Interface Builder. Setting these properties effectively connects the control
and its target via the action. If you connect a control and its target in Interface
Builder, the connection is archived in a nib file. When an app later loads the
nib file, the connection is restored.

 IBAction is like IBOutlet — it does nothing in the code but rather is a tag
used by Interface Builder.

Adding an action
After you have the TestDriveController interface displayed, either
by having the Assistant editor display it automatically or by navigating to
it using the Jump bar, the actual business of creating an action is pretty
straightforward. From within the Interface Builder editor, just Control-drag
from the element you’re interested in (the Test Drive button, in this case) to
the TestDriveController interface, as detailed in the following steps:

 1. In the Project navigator, select the Main_iPad.storyboard file.

 2. Close the Utility area by deselecting it in the View selector.

 You don’t need it to create the action.

 3. Open the Assistant editor by clicking its button in the Editor selector
in the toolbar.

 You should see the TestDriveController.m interface file displayed
in the Assistant editor. If it doesn’t appear, navigate to it using the steps
in the earlier section “Creating the outlet.”

 4. Control-click and drag from the Test Drive button in the view (the car
image, in this example) to the TestDriveController.m file, right
between the @interface and @end statements.

242 Part III: Getting Your Feet Wet: Basic Functionality

 5. In the dialog that appears, choose Action from the Connection drop-
down menu, as shown in Figure 9-10.

 6. In the same dialog, leave Touch Up Inside as the selection in the Event
drop-down menu.

 To create an Action for a control, you need to specify what event triggers
the action. In the case of a button, a Touch Up Inside event is the usual
choice because Touch Up Inside is the event that’s generated when the
very last place the user touched before lifting her finger is still inside
the button. (This allows a user to change her mind about touching the
button by moving her finger off the button before lifting it.)

 7. Still in the same dialog, name this action testDrive by entering testDrive
in the Name field; then click Connect.

 As shown in Figure 9-11, a new action method

- (IBAction)testDrive:(id)sender;

 gets added to your code.

Figure 9-10:
Select

Action as
the connec-

tion type.

243 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

Figure 9-11:
A new
action

message.

Xcode also adds code for you in the .m file to support whatever it is that
you’re doing. (In this case, the added code supports the action.)

 You can always double-check the status of your Target-Action connections
with the help of the Connections inspector, mentioned earlier in this chap-
ter as part of my coverage of outlets. With the Utility area displayed, click
the Connections inspector icon in the Inspector selector bar to open the
Connections inspector or right-click the view controller in the Document
Outline to get a similar picture in the Connections window. In the Received
Actions section, you’ll see the new action. As I explain earlier, you can change
the Interface Builder object you are receiving the action from by dragging
from the circle to the new Interface Builder object. You can also add an action
by entering the code the Interface Builder would have added for you (the
method declaration and definition) in view controller’s @interface

- (IBAction)testDrive:(id)sender;

and @implementation

- (IBAction)testDrive:(id)sender {
}

244 Part III: Getting Your Feet Wet: Basic Functionality

and then dragging from the circle in the Received Actions section in the
Connections inspector or window to the control and choose an Event type
from the contextual menu that appears when you release the mouse button.

I’m sure you’ve noticed that RoadTrip has a bunch of other buttons that also
need connecting. It turns out, though, that you won’t be using the Target-
Action pattern to connect them. You’ll be using a storyboard feature called
segues to do that for you. I explain using segues in Chapter 14.

How Outlets and Actions Work
You need to be able to connect the objects you added to your user interface
in Interface Builder to code that enables you to access these objects (such as
to an Image view to change its image) or receive a message that the user has
tapped a button.

In the chapter, I show you how to create outlets and actions to do that, but I
haven’t really explained how all that is connected at runtime.

Storyboards are a collection of (resource) nib files that you use to store the
user interface of your app. A nib file is an Interface Builder document. When
you use Interface Builder in Chapter 4 to create your user interface, you create
an object graph that is saved (archived) as part of the resource file. When
you load the file, the object graph is then used to re-create the relationships
between the objects in the file, and your program objects as well.

Every storyboard file has an initial view controller. At runtime, it’s loaded
along with its view and all the other Interface Builder objects you added in
Chapter 5 — and you get an exact replica of the objects that were in your
Interface Builder document. The nib-loading code instantiates the objects,
configures them, and reestablishes any inter-object connections including the
outlets and actions that you created in Interface Builder. Not bad for a bunch
of 0s and 1s, right?

Update the iPhone storyboard file
As in previous chapters, the code you added in this chapter works for both
the iPhone and iPad. But, as in previous chapters, you now should add
objects to the iPhone storyboard file to keep it on an equal footing with its
iPad sibling. You don’t want the iPhone storyboard to think that you love it
less than the iPad.

245 Chapter 9: Adding Outlets and Actions to Your RoadTrip Code

You created the Test Drive scene way back in Chapter 5. Now make sure that
the TestDriveController in the iPhone storyboard file has the connections
shown in Figure 9-12, which are very similar to the iPad storyboard connections
shown earlier in Figure 9-8.

Figure 9-12:
Test-
Drive-

Control-
ler

connec-
tions in

the iPhone
storyboard

file.

246 Part III: Getting Your Feet Wet: Basic Functionality

Chapter 10

Adding Animation and
Sound to Your App

In This Chapter
▶ Understanding the iOS coordinate system

▶ Animating the car (view)

▶ Working with the block object pattern

▶ Detecting and responding to touches

▶ Animating in place

A
lthough it may take some time before you go on your road trip, as well
as complete the building of the app I’m showing you in this book, the

least I can do is show you how to take a test drive in your ’59 pink Cadillac
Eldorado Biarritz convertible.

In this chapter, you find out how to make the car move up the screen, turn
around, and move back to its original position — with the appropriate sound
effects.

I also show you how to drag the car on the screen to position the ride from
wherever you’d like. And to add just a little more pizzazz, I show you how to
make the Test Drive button blink.

This chapter provides you with a very good base for understanding animation,
sound, and how to manage touches on the screen. They’re particularly useful
in games, but they also find a very comfortable home in advanced interfaces
for all types of apps.

248 Part III: Getting Your Feet Wet: Basic Functionality

Understanding iOS Animation
Fortunately, most of what you need to do as far as iOS animation is concerned
is already built into the framework. Some view properties can be animated
(the center point, for example), which means that you just need to tell the
view where to start and where to end its move, and a few other optional
parameters, and you’re done. The view itself (in the UIView base class) has
the functionality to animate the move. To give you some context in which to
understand how animation on the iPhone and iPad works, however, I need
to explain what goes on under the hood when a framework takes care of the
animation chores for you. More specifically, I need to delve a bit deeper into
views, their properties, and the coordinate systems on the iPad.

View geometry and coordinate systems
The default coordinate system in UIKit places its origin in the top-left
corner and has axes that extend down and to the right from the origin
point. Coordinate values are represented using floating-point numbers,
and you don’t have to worry about the screen resolution; the frameworks
take care of that automatically. In addition to the screen coordinate
system, views define their own local coordinate systems that allow you to
specify coordinates relative to the view instead of relative to the screen.
In practice, you often do both depending on what you’re trying to do.

 Because every view and window defines its own local coordinate system,
whenever you’re drawing or dealing with coordinates, you’ll need to pay
attention to which coordinate system you’re using. I know that sounds
 ominous, but it’s really not that big a deal after you get into the rhythm of
working with the coordinate systems.

Points versus pixels
Okay, so where does the high-resolution Retina display come in?

In iOS, all coordinate values and distances are specified using floating-point
values in units referred to as points. The main thing to understand about
points is that they provide a fixed frame of reference for drawing. That fixed
frame of reference is derived from the fact that a point is 1/72 of an inch.
(This was set for the original Macintosh and LaserWriter and remains
a milestone — perhaps the cornerstone — of desktop publishing. In our
context, a point is a commonly accepted unit of length.)

249 Chapter 10: Adding Animation and Sound to Your App

The original Macintosh had a screen resolution of 72 pixels per inch (PPI).
This meant that points and pixels were identical. However, over time, tech-
nology has advanced and now the pixel size and density (PPI) have changed.
No longer do most devices actually have 72 PPI, but because pixels and
points have been used interchangeably, the arrival of high-density displays
such as the Retina display has caused confusion.

When you are talking about size or location, you are probably talking in points.
If you are talking about the resolution of the image you will place on an object
with a certain size or location, you are probably talking in pixels. On a Retina
display, your image will have twice the pixels that you have on a non-Retina
display, and you probably use a separate .png file. (Don’t worry: The asset
manager makes it easy to have two files for a single image.)

Keep this distinction in mind, particularly when you are looking at old (pre-2013)
documentation. You have to sort out when “pixel” means pixel and when it
means point. Some developers use as a basic rule of thumb, “Xcode=points and
Photoshop=pixels.” That’s a generalization and it’s not true in all cases, but as
generalizations go, it’s generally right.

A view’s size and position
A view object’s location in a coordinate system is determined using either its
frame or its center property:

 ✓ The frame property contains the frame rectangle, which specifies the
size and location of the view in its superview’s coordinate system. (If you’re
still hazy about the whole superview/subview thing, check out Chapter 4.)

 ✓ The center property contains the known center point of the view in its
superview’s coordinate system.

In your wanderings, you may someday encounter the bounds property. It’s
tied up with the bounds rectangle, which specifies the size of the view (and
its content origin) in the view’s own local coordinate system. I mention it here
for completeness, but I don’t use it in this book.

The view coordinates you set for your view’s location in Interface Builder
are in points. The coordinates start from 0,0 in the top left and increase
as you go down and to the right. You usually place your objects below the
20-point status bar, but with iOS 7, views can appear through a navigation
or toolbar, so you may place them even lower if you don’t want them to
show through.

250 Part III: Getting Your Feet Wet: Basic Functionality

Working with data structures
In addition to knowing what goes where, you’ll need to understand how data
structures impact how you work with views.

The frame is a CGRect — a struct (a C language type that aggregates con-
ceptually related variables into a single type) with an origin and a size
that are comprised of CGPoints. CG here stands for Core Graphics, one of
the frameworks included by the Xcode when you selected the Single-View
Application template. (See Chapter 4 to remind yourself about frameworks.)
The following code shows the CGRect struct:

struct CGRect {
 CGPoint origin;
 CGSize size;
};

An origin is a CGPoint with an x and y value, and a CGSize is a CGPoint
with a width and height value. The following code shows the CGPoint
struct:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};

struct CGSize {
 CGFloat width;
 CGFloat height;
};

Similarly, the center property is a CGPoint. And that’s all you need to know
about the data structures you’ll be using.

Coordinating Auto Layout,
Frames, and Constraints

If you are using Auto Layout (and you should be), you need to know at least
the basics of how it interacts with your view’s frame. Whereas the Size
inspector lets you specify the exact size and location of each point in the
frame, the constraints-based Auto Layout system lets you prioritize con-
straints. This means that at runtime, the constraints are juggled together
with their priorities affecting the whole layout. Into the mix, the size of the

251 Chapter 10: Adding Animation and Sound to Your App

device, its orientation, and the sizes of views that depend on what their
contents happen to be are all taken into account. You cannot know exactly
what will happen.

In the Size inspector before Auto Layout came into the picture, you could
pin edges of objects to their container view. As a result, there was a certain
amount of dynamism, but Auto Layout brings much more to the table, and
it lets you deal with changing device and view sizes easily.

In Apple’s documentation as well as in this book, most of the discussion of
Auto Layout assumes that the things that change at runtime are the orienta-
tion of the device as well as the size and position of views that respond to
orientation and content changes.

With this chapter, however, another variable comes into play. You are going
to be moving the view containing the car image. Unless you are careful, the
results may be other than what you expect to see. Here is what you should
keep in mind.

If you will be transforming a view (and you will be doing that when you rotate
the car image), make certain that is constraints don’t undo what you are trying
to do. Positional constraints work with the center point of a view. Sizing con-
straints (pinning to the frame of another view or container view) are working
with frames most of the time.

Before moving ahead to animate the car image, check what its constraints
are by opening the Constraints section in the Document Outline for the
Main_iPad.storyboard file. It should be pinned vertically to Bottom
Layout Guide. It should also be horizontally centered (that uses the
center point and not the frame). Any other constraints for the car image
view that may have accumulated in your experiments should be removed.
Just delete them from the Constraints section of the Document Outline
using the Delete key.

If necessary, use Editor➪Align➪Horizontal Center in Container to add the
centering constraint. Select the car image and control-drag from it to Bottom
Layout Guide in the Document Outline to add the vertical constraint
(choose the vertical spacing option).

Animating a View
Whenever you assign a new value to certain view properties (such as the frame
and center properties, as explained in the previous section), the view is imme-
diately redrawn and the change is immediately visible on the screen.

252 Part III: Getting Your Feet Wet: Basic Functionality

In addition, changes to several view properties (such as those just mentioned)
can be animated. This means that changing the property creates an anima-
tion that conveys the change to the user over a short period of time — and
it’s all handled for you by the UIView class. What’s more, it takes only one
method call to specify the animations to be performed and the options for the
animation.

You can animate the following properties of the UIView class (the first three
are explained previously):

 ✓ frame: This property contains the frame rectangle, which specifies the
size and location of the view in its superview’s coordinate system.

 ✓ bounds: This property contains the bounds rectangle, which specifies
the size of the view (and its content origin) in the view’s own local
 coordinate system.

 ✓ center: This property contains the known center point of the view in its
superview’s coordinate system.

 ✓ transform: I get to this one a bit later in the chapter.

 ✓ alpha: This property controls the degree of transparency. If you animate
it, you can get views to fade in and fade out.

 ✓ backgroundColor: This property allows you to transition from one
color to another.

Finally, More Code
In this section, you add the code to animate your ’59 pink Cadillac Eldorado
Biarritz convertible and have it travel up the screen, turn around, and travel
back down the screen.

Implementing the testDrive Method
In Chapter 9, you learned how to create an action for the Test Drive button
using Interface Builder, which generated a method stub for you. Now it’s time
to fill that stub with code.

Add the bolded code in Listing 10-1 to the testDrive: method in TestDrive
Controller.m. I’m also having you add the stubs for code you’ll be adding
later so that you can run your program before you’re completely finished with
the back and forth of the animation.

253 Chapter 10: Adding Animation and Sound to Your App

Listing 10-1: Updating testDrive: to Move the Car up the Screen

- (IBAction)testDrive:(id)sender {

 CGPoint center = CGPointMake(self.car.center.x,
 self.view.frame.origin.y +

self.car.frame.size.height/2);
 [UIView animateWithDuration:3 animations:^ {
 self.car.center = center;
 }
 completion:^(BOOL finished){
 [self rotate];
 }];
}

- (void)rotate {
}

- (void)returnCar {
}

- (void)continueRotation {
}

Now, run your program and click or touch the Test Drive button. You’ll see
your car move up the screen. You’re on your way!

Looking more closely at Listing 10-1, you see that you start by creating the
coordinate (CGPoint) of where you would like the car to end up.

 A car is just another view. The following code shows how to move the car
 on-screen by simply moving the center of the view that holds the image of
the car.

CGPoint center = CGPointMake(self.car.center.x,
 self.view.frame.origin.y +

self.car.frame.size.height/2);

You use the center and frame properties primarily for manipulating the view.
If you’re changing only the position of the view (and not its size), the center
property is the preferred way to do so.

CGPointMake is a function that creates a point for you when you specify the
y and x coordinates as parameters. (You’ll be setting the car’s new center
point.)

254 Part III: Getting Your Feet Wet: Basic Functionality

You can leave the x coordinate as is. Doing so makes the car drive right up
the center of the screen.

self.car.center.x

Here’s the y coordinate:

self.view.frame.origin.y + self.car.frame.size.height/2)

self.view.frame.origin.y is the top of the view, but if you have the
center there, half the car is off the screen. To keep it all on the screen, you
add back half the car’s height by including car.frame.size.height/2.

Notice I’m adding to the y coordinate because y increases as you move down
the screen from the origin.

So, how do you get the sucker to actually move? Listing 10-1 uses the following
code:

[UIView animateWithDuration:3 animations:^ {
 self.car.center = center;
 }
 completion:^(BOOL finished){
 [self rotate];
 }];

animateWithDuration:animations:completion: is a UIView class
method that allows you to set an animation duration and specify what you
want animated as well as a completion handler that’s called when the anima-
tion is complete.

First you specify that you want the animation to take three seconds:

animateWithDuration:3

and then you pass in an animation block with what you want animated:

animations:^ {
 self.car.center = center;
}

This sets the new center you just computed, taking three seconds to move it
from start to finish.

 If the preceding syntax seems mysterious (what’s the ^ doing there and what’s
up with the code as part of the message?), don’t worry: I explain blocks in the
next section.

255 Chapter 10: Adding Animation and Sound to Your App

So although that’s all there is to get the car to move across the screen, you’re
not done. You want it to rotate and then drive back across the screen and then
rotate again. That’s where the completion handler comes in.

Although you can use a completion handler to simply let you know that an
animation is finished, you can also use a completion handler to link multiple
animations. (In fact, it’s the primary way to take care of that task.)

The completion handler that you specify

completion:^(BOOL finished){
 [self rotate];
}

causes the rotate message to be sent when the animation is complete. You
do the actual rotation in the rotate method.

Of course, right now, the rotate method does nothing. I have you add it so that
the app will compile and run. I have you add returnCar and continueRotation
to prevent the Incomplete Implementation TestDriveController.m compiler
warning.

 animateWithDuration:animations:completion: is only one of a num-
ber of block-based methods that offer different levels of configuration for the
animation block. Other methods include

animateWithDuration:animations:

and

animateWithDuration:delay:options:animations:completion

animateWithDuration:animations: has no completion block, as you
can see.

Both animateWithDuration:animations:completion: and animateWith
Duration:animations: run only once, using an ease-in, ease-out animation
curve — the default for most animations, it begins slowly, accelerates through
the middle of the animation, and then slows again before completing. If you want
to change the default animation parameters, you must use the animateWith
Duration:delay:options:animations:completion: method, which lets
you customize the following:

 ✓ The delay to use before starting the animation

 ✓ The type of timing curve to use during the animation

 ✓ The number of times the animation should repeat

256 Part III: Getting Your Feet Wet: Basic Functionality

 ✓ Whether the animation should reverse itself automatically when it
reaches the end

 ✓ Whether touch events are delivered to views while the animations are in
progress

 ✓ Whether the animation should interrupt any in-progress animations or
wait until those are complete before starting

As you probably noticed (and I even admitted to), one of the things I tiptoed
around was an explanation of the animation syntax:

[UIView animateWithDuration:3 animations:^ {
 self.car.center = center;
}

Animations use blocks, which is a primary design pattern in iOS and is becoming
increasingly more important. So before I get to the rotate completion handler,
I want to explain blocks.

Understanding Block Objects
Objective-C blocks are like traditional C functions in that blocks are small,
self-contained units of code. They can be passed in as arguments of methods
and functions and then used when they’re needed to do some work. (Like
many programming topics, understanding block objects is easier when you
use them, as you do in the previous section.)

With iOS 4 and newer versions, a number of methods and functions of the
system frameworks are starting to take blocks as parameters, including the
following:

 ✓ Completion handlers

 ✓ Notification handlers

 ✓ Error handlers

 ✓ Enumeration

 ✓ View animation and transitions

 ✓ Sorting

In the code listings in this chapter, you get to use a block-based method to
animate the car, but block objects also have a number of other uses, especially
in Grand Central Dispatch and the NSOperationQueue class, the two rec-
ommended technologies for concurrent processing. But because concurrent
processing is beyond the scope of this book (way beyond the scope, in fact),
I leave you to explore that use on your own.

257 Chapter 10: Adding Animation and Sound to Your App

One of the values of using blocks is that you can access local variables (as well
as instance variables), which you can’t do in a function or a callback. You also
don’t have to pass data around — a block can modify variables to pass data
back. In addition, if you need to change something, there’s no API to change,
with its concomitant ripple effect.

In the animation explained in the previous section, you passed a block as the
argument to a method. You created the block inline (it’s there in the message
you are sending to the UIView to do the animation) because there wasn’t
that much code, and that’s often the way it’s done. But sometimes it’s easier
to follow what’s happening by declaring a block variable and passing that
as the argument to the method. The declaration syntax, however, is similar
to the standard syntax for function pointers, except that you use a caret (^)
instead of an asterisk pointer (*).

If you look at animateWithDuration:animations:completion: in the
UIView class reference, you’ll see

+ (void)animateWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL finished))completion;

I know this looks a bit advanced for a For Dummies book, but I cover it here
because Apple is now treating blocks as a primary design pattern, up there
with inheritance and delegation — so don’t be surprised to find blocks being
used more and more.

Nevertheless, because it’s a tad advanced, I’ll go through the code slowly, and
by the end — I promise — you’ll be comfortable with blocks, despite the really
weird syntax.

To start, this is the syntax that defines animations as a block that has no
parameters and no return value:

void (^)(void))animations

completion is defined as a block that has no return value and takes a single
Boolean argument parameter:

 (void (^)(BOOL finished))completion

When you create a block inline, you just use the caret (^) operator to indicate
the beginning of a block and then follow with the code enclosed within the
normal braces. That’s what was going on in Listing 10-1, with

animations:^ {
 self.car.center = center;
}

258 Part III: Getting Your Feet Wet: Basic Functionality

and

completion:^(BOOL finished){
 [self rotate];
}

Although in this example you use blocks inline, you could also declare them
like any other local variable, as you can see in Listing 10-2. Add the code in
bold in Listing 10-2 to your testDrive method replacing what you already
have in that spot.

Listing 10-2: Using Declared Blocks

- (IBAction)testDrive:(id)sender {

 CGPoint center = CGPointMake(car.center.x,
 self.view.frame.origin.y + car.frame.size.height/2);

 void (^animation)()= ^() {

 self.car.center = center;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [self rotate];
 };

 [UIView animateWithDuration:3 animations:animation
 completion:completion];
}

 When you declare a block, you use the caret (^) operator to indicate the
beginning of a block with the code enclosed within the normal braces, and a
semicolon to indicate the end of a block expression.

The declaration in Listing 10-2 is pretty much the same as you see in the
following animateWithDuration:animations:completion: method
declaration, except that the identifiers have been moved around a little.
I have bolded both to make that a little easier to see:

+ (void)animateWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL finished))completion;

Here, you’re declaring two block variables by using the ^ operator: one with
the name of animations that has no return value, and one with the name of
completion that has no return value and takes BOOL as its single argument:

void (^animation)()
void (^completion)(BOOL)

259 Chapter 10: Adding Animation and Sound to Your App

This is like any other variable declaration (int i = 1, for example), in
which you follow the equal sign with its definition.

You use the ^ operator again to indicate the beginning of the block literal — the
definition assigned to the block variable. The block literal includes argument
names (finished) as well as the body (code) of the block and is terminated
with a semicolon:

void (^animation)() = ^() {
 self.car.center = center;
};

void (^completion)(BOOL) = ^(BOOL finished){
 [self rotate];
};

You’ll be using blocks a few more times in this book, so at some point (despite
the weird syntax), you’ll become comfortable with them. (Frankly it took me a
while to get used to them myself.) After you do get the hang of them, though,
you’ll find all sorts of opportunities to use them to simplify your code, as you
discover in Chapter 19.

Rotating the Object
In this section, I show you how to rotate a view (in this case, turn the car
around). To do so, you update the rotate code stub you started out with
back in Listing 10-1 with the bolded code in Listing 10-3.

Listing 10-3: Updating rotate

- (void)rotate {

 CGAffineTransform transform =
CGAffineTransformMakeRotation(M_PI);

 void (^animation)() = ^() {
 self.car.transform = transform;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [self returnCar];
 };

 [UIView animateWithDuration:3 animations:animation

completion:completion];
}

260 Part III: Getting Your Feet Wet: Basic Functionality

This method uses the block declarations I explain in the previous section.

The CGAffineTransform data structure represents a matrix used for affine
transformations — a blueprint for how points in one coordinate system map
to points in another coordinate system. Although CGAffineTransform has
a number of uses (such as scaling and translating a coordinate system), the
only one covered here is the rotation method you use in Listing 10-3:

CGAffineTransformMakeRotation(M_PI)

To rotate a view, you specify the angle (in radians) to rotate the coordinate
system axes. Whereas degrees are numbers between 0 and 360, radians,
though similar, range from 0 to 2Π. So when you create a rotation that turns
an object around one half-circle, that rotation in radians is pi. (M_PI is a
system constant that represents pi.)

 Just to make your life interesting, you should note that in iOS, positive is coun-
terclockwise, but on Mac OS X, positive is clockwise.

The end result of Listing 10-3 is that the car will rotate 180 degrees in three
seconds, and when it’s done, you send the returnCar message in the com-
pletion handler.

To return the car to its original position, add the bolded code in Listing 10-4
to the returnCar method stub in TestDriveController.m.

Listing 10-4: Updating returnCar

- (void)returnCar {

 CGPoint center = CGPointMake(self.view.center.x,

self.view.frame.size.height -
 self.car.frame.size height);

 void (^animation)() = ^() {
 self.car.center = center;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [self continueRotation];
 };

 [UIView animateWithDuration:3 animations:animation
 completion:completion];
}

261 Chapter 10: Adding Animation and Sound to Your App

This approach is pretty much the same as that of the testDrive method. You
put the center back by computing the bottom of the view

 self.view.frame.size.height
 - self.car.frame.size.height);

You can experiment with these formulas to see how to move the car around
the view.

But you’re not done yet. You need to rotate the car back to its original posi-
tion (unless you want to drive in reverse from California to New York). Add
the bolded code in Listing 10-5 to the continueRotation method stub in
TestDriveController.m.

Listing 10-5: Updating continueRotation

- (void)continueRotation {

 CGAffineTransform transform =
 CGAffineTransformMakeRotation(0);

 void (^animation)() = ^() {
 self.car.transform = transform;
 };

[UIView animateWithDuration:3 animations:animation
 completion:NULL];
}

You need to understand that the transform (in this case, a view rotation) is
still there; that is, you created a transform to rotate the car 180 degrees. If
you want to get the car back to the original position, you need to return the
transform to 0.

You could extend this action by having the car drive around the perimeter of
the screen — but I’ll leave that up to you.

Working with Audio
Cars make noise, and a ’59 Cadillac certainly doesn’t disappoint in that
respect. So in this section, I show you how to add some sound to the
RoadTrip app so that everyone can hear your car coming down the road.

262 Part III: Getting Your Feet Wet: Basic Functionality

More specifically, I discuss using two different ways iOS has for implementing
audio. One is an instance of the AVAudioPlayer class — called, appropriately
enough, an audio player — which provides playback of audio data from a file
or memory. You use this class unless you’re playing audio captured from a net-
work stream or in need of very low I/O latency (lag time). The AVAudioPlayer
class offers quite a lot of functionality, including playing sounds of any dura-
tion, looping sounds, playing multiple sounds simultaneously, and having one
sound per audio player with precise synchronization among all the players in
use. It also controls relative playback level, stereo positioning, and playback
rate for each sound you’re playing.

The AVAudioPlayer class lets you play sound in any audio format avail-
able in iOS. You implement a delegate to handle interruptions (such as an
incoming SMS message) and to update the user interface when a sound
has finished playing. The delegate methods to use are described in the
AVAudioPlayerDelegate Protocol Reference (which you can access in the
Organizer window as I explain in Chapter 7).

The second way to play sound is by using System Sound Services, which
provides a way to play short sounds and make the device vibrate. You can
use System Sound Services to play short (30 seconds or shorter) sounds. The
interface doesn’t provide level, positioning, looping, or timing control and
doesn’t support simultaneous playback: You can play only one sound at a
time. You can use System Sound Services to provide audible alerts; on some
iOS devices, alerts can even include vibration.

You have seen how to add frameworks to your app. You now need to add both
AVFoundation.framework and AudioToolbox.framework. You see how to do
this in Chapter 8 in the section on network availability. Just as a reminder, you
add them to Linked Frameworks and Libraries in the project’s General tab.

I showed you how to do that because I wanted you to understand that you
often need to add new frameworks to support your code. Starting with Xcode 5,
the process is easier (that is to say, it’s automated), so I won’t be asking you
to add the new frameworks.

Later in this chapter, you will import the two framework header files using
this code:

#import AudioToolbox;
#import AVFoundation;

The libraries will be linked automatically for you.

The sound files you need for RoadTrip (the aptly named BurnRubber.aif
and CarRunning.aif) are already in the Resources folder that you added to
your project. (See Chapter 3 if you haven’t already done this.)

263 Chapter 10: Adding Animation and Sound to Your App

 You can use Audacity, a free, open source software for recording and editing
sounds, to create your own sound files. It’s available for Mac OS X, Microsoft
Windows, GNU/Linux, and other operating systems.

With the added frameworks in place, you now need to import the necessary
audio player and system sound services headers and then add the instance
variables you’ll be using. To accomplish all this, add the bolded code in
Listing 10-6 to TestDriveController.m.

Listing 10-6: Updating the TestDriveController Class Extension

#import "TestDriveController.h"
#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>

@interface TestDriveController () {
 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
}
@property (weak, nonatomic) IBOutlet UIButton
 *testDriveButton;
@property (strong, nonatomic) IBOutlet UIImageView *car;
@property (weak, nonatomic) IBOutlet UIToolbar *toolbar;
- (IBAction)testDrive:(id)sender;
- (void)rotate;
- (void)returnCar;

@end

@implementation TestDriveController

As you can see, I’m having you take advantage of being able to put instance
variables in the implementation file to keep them hidden. In fact, the file tem-
plate already had added the class extension for you, and you have already
placed two properties and an action in it.

@interface TestDriveController ()

@end

Next, you need to set up the audio player and system sound services. Add the
bolded code in Listing 10-7 to viewDidLoad in TestDriveController.m.

264 Part III: Getting Your Feet Wet: Basic Functionality

Listing 10-7: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSURL* backgroundURL = [NSURL fileURLWithPath:
 [[NSBundle mainBundle]pathForResource:
 @"CarRunning" ofType:@"aif"]];
 backgroundAudioPlayer = [[AVAudioPlayer alloc]

initWithContentsOfURL:backgroundURL error:nil];
 backgroundAudioPlayer.numberOfLoops = -1;
 [backgroundAudioPlayer prepareToPlay];

 NSURL* burnRubberURL = [NSURL fileURLWithPath:
 [[NSBundle mainBundle] pathForResource:
 @"BurnRubber" ofType:@"aif"]];
 AudioServicesCreateSystemSoundID(
 (__bridge CFURLRef)burnRubberURL, &burnRubberSoundID);
}

In Listing 10-7, the first thing you do is load the sound file from the resources
in your bundle:

 NSURL* backgroundURL = [NSURL fileURLWithPath:
 [[NSBundle mainBundle]pathForResource:
 @"CarRunning" ofType:@"aif"]];

“What bundle?” you say? Well, when you build your iOS application, Xcode
packages it as a bundle — one containing the following:

 ✓ The application’s executable code

 ✓ Any resources that the app has to use (for instance, the application icon,
other images, and localized content — in this case, the plist, .html files,
and .png files)

 ✓ The RoadTrip-Info.plist file, also known as the information property
list, which defines key values for the application, such as bundle ID,
version number, and display name

Pretty easy, huh?

Coming back to Listing 10-7, fileURLWithPath is an NSURL class method
that initializes and returns an NSURL object as a file URL with a specified
path. The NSURL class includes the utilities necessary for downloading files
or other resources from web and FTP servers and from the file system.

265 Chapter 10: Adding Animation and Sound to Your App

The sound file you’ll be using is a resource, and pathForResource: is an
NSBundle method that creates the path needed by the fileURLWithPath:
method to construct the NSURL. Just give pathForResource: the name and
the file type, and it returns the path that gets packed in to the NSURL and loaded.

 Be sure that you provide the correct file type; otherwise, this technique
won’t work.

Next, you create an instance of the audio player

 backgroundAudioPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:backgroundURL error:nil];

and initialize it with the audio file location (NSURL). You’ll ignore any errors.

Set the number of loops to -1 (which will cause the audio file to continue to
play until you stop it) and tell the player to get ready to play:

backgroundAudioPlayer.numberOfLoops = -1;
[backgroundAudioPlayer prepareToPlay];

prepareToPlay prepares the audio player for playback by preloading its
buffers; it also acquires the audio hardware needed for playback. This pre-
loading minimizes the lag between calling the play method and the start of
sound output. Without this preloading, although the player would still play
when you send the play message (later) in viewDidLoad, you’ll likely notice
a lag as it sets up its buffers.

Similarly, you set up the NSURL for the BurnRubber sound:

NSURL* burnRubberURL = [NSURL fileURLWithPath:
 [[NSBundle mainBundle] pathForResource:
 @"BurnRubber" ofType:@"aif"]];

You then call a core foundation method to create a system sound object that
you later use to play the sound:

 AudioServicesCreateSystemSoundID((__bridge
 CFURLRef)burnRubberURL, &burnRubberSoundID);

CFURLRef is a CoreFoundation object, and ARC doesn’t automatically
manage the lifetimes of CoreFoundation types. And although you can use
certain CoreFoundation memory management rules and functions, you
don’t need to do that here. That’s because all you’re doing is casting an
Objective-C object to a CoreFoundation type object, and you won’t need
to use any CoreFoundation memory management in your code. You have
to let the compiler know about any memory management implications, how-
ever, so you need to use the __bridge cast.

266 Part III: Getting Your Feet Wet: Basic Functionality

In testDrive, you’ll play both the BurnRubber and CarRunning
sounds. To do so, add the bolded code in Listing 10-8 to testDrive: in
TestDriveController.m.

Listing 10-8: Updating testDrive

- (IBAction)testDrive:(id)sender {

 AudioServicesPlaySystemSound(burnRubberSoundID);
 [self performSelector:@selector(playCarSound)
 withObject:self afterDelay:.2];

 CGPoint center = CGPointMake(_car.center.x,
 self.view.frame.origin.y +

self.car.frame.size.height/2);

 void (^animation)() = ^() {

 self.car.center = center;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [self rotate];
 };

 [UIView animateWithDuration:3 animations:animation

completion:completion];
}

You also need to add the code in Listing 10-9 to play the CarRunning sound.

Listing 10-9: Adding playCarSound

- (void)playCarSound {

 [backgroundAudioPlayer play];
}

I’m having you play the BurnRubber sound first, followed by the CarRunning
sound. If you don’t wait until the BurnRubber sound is complete before you
play the CarRunning sound, the BurnRubber sound is drowned out by the
CarRunning sound.

267 Chapter 10: Adding Animation and Sound to Your App

To play the BurnRubber sound, you use a function call to System Sound
Services:

AudioServicesPlaySystemSound(burnRubberSoundID);

After this sound is done, you start the CarRunning sound by using a very
useful method that will enable you to send the message to start the audio
player after a delay. That method is performSelector:withObject:
afterDelay:, and it looks like this:

 [self performSelector:@selector(playCarSound)
 withObject:self afterDelay:.2];

performSelector:withObject:afterDelay: sends a message that you
specify to an object after a delay. The method you want invoked should have
no return value, and should have zero or one argument.

In Listing 10-9, this method meets these rules:

- (void)playCarSound {

 [backgroundAudioPlayer play];
}

@selector(playCarSound) is a compiler directive that returns a selec-
tor for a method name. A selector is the name used to select a method to
execute for an object; it becomes a unique identifier when the source code is
compiled.

 Selectors really don’t do anything. What makes the selector method name dif-
ferent from a plain string is that the compiler makes sure that selectors are
unique. Selectors are useful because at runtime they act like a dynamic func-
tion pointer that, for a given name, automatically points to the implementation
of a method appropriate for whichever class they’re used with.

withObject: is the argument to pass to the method when it’s invoked.
afterDelay: is the minimum time before which the message is sent.
Specifying a delay of 0 doesn’t necessarily cause the selector to be performed
immediately. When you send the performSelector:withObject: message,
you specify 0.2 seconds because that’s the duration of the BurnRubber sound.

 Sometimes you may need to cancel a selector. cancelPerformSelectors
WithTarget: cancels all outstanding selectors scheduled to be performed
with a given target.

268 Part III: Getting Your Feet Wet: Basic Functionality

Several other variations exist on the performSelector:withObject:
afterDelay: method. Those variations are part of the NSObject class,
which is the root class of most Objective-C class hierarchies. It provides the
basic interface to the runtime system as well as the capability to behave as
Objective-C objects.

Finally, to play the sound in the playCarSound method, you send the audio
player the play message:

[backgroundAudioPlayer play];

The play message plays a sound asynchronously. If you haven’t already sent
the prepareToPlay message, play will send that for you as well (although
you should expect a lag before the sound is played).

Next, you need to stop playing the sound in the continueRotation
animation’s completion block (or it gets really annoying). To stop playing
the sound, add the bolded code in Listing 10-10 to continueRotation in
TestDriveController.m. (completion replaces the previous value that
was NULL.)

Listing 10-10: Updating continueRotation to Stop the Sound

- (void)continueRotation {

 CGAffineTransform transform =
 CGAffineTransformMakeRotation(-0);

 void (^animation)() = ^() {
 _car.transform = transform;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [backgroundAudioPlayer stop];
 [backgroundAudioPlayer prepareToPlay];
 };

 [UIView animateWithDuration:3 animations:animation
 completion:completion];
}

In the code in Listing 10-10, you also set up the audio player to play again.

And there you have it. Run your project and you’ll notice some very realistic
sound effects when you tap the Test Drive button.

269 Chapter 10: Adding Animation and Sound to Your App

Tracking Touches
It would be nice to be able to drag the car and place it anywhere on the
screen. In this section, I explain how to code for dragging an object, as well as
how touches work on an iOS device.

The touch of a finger (or lifting it from the screen) adds a touch event to the
application’s event queue, where it’s encapsulated (contained) in a UIEvent
object. A UITouch object exists for each finger touching the screen, which
enables you to track individual touches.

The touchesBegan:withEvent: message is sent when one or more fingers
touch down in a view. This message is a method of the TestDriveController’s
superclass, UIResponder, from which the view controller is derived.

As the user continues to touch the screen with his or her fingers, the
system reports the changes for each finger in the corresponding UITouch
object, thereby sending the touchesMoved:withEvent: message. The
touchesEnded:withEvent: message is sent when one or more fingers lift
from the associated view. The touchesCancelled:withEvent: message, on
the other hand, is sent when a system event (such as a low-memory warning)
cancels a touch event.

In this app, you need be concerned only with the first two methods just
described.

To begin the process of responding to a touch event, add a new instance variable
(bolded in Listing 10-11) to the TestDriveController.m implementation file.

Listing 10-11: Updating the TestDriveController Implementation

@interface TestDriveController () {

 AVAudioPlayer *backgroundAudioPlayer;
 SystemSoundID burnRubberSoundID;
 BOOL touchInCar;
}
@end

Next, add the touchesBegan: method in Listing 10-12 to TestDrive
Controller.m to start tracking touches. (You’re actually overriding this
method because UIViewController inherited it from the UIResponder
base class.)

270 Part III: Getting Your Feet Wet: Basic Functionality

Listing 10-12: Overriding touchesBegan:

- (void)touchesBegan:(NSSet *)touches withEvent:
 (UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 if (CGRectContainsPoint(self.car.frame,
 [touch locationInView:self.view]))
 touchInCar = YES;
 else {
 touchInCar = NO;
 [super touchesBegan:touches withEvent:event];
 }
}

As mentioned previously, the touchesBegan:withEvent: message is sent
when one or more fingers touch down in a view. The touches themselves are
passed to the method in an NSSet object — an unordered collection of
distinct elements.

To access an object in NSSet, use the anyObject method — it returns one
of the objects in the set. For our purposes here, you’re assuming just one
object — but you might want to explore this issue further on your own so
that you can understand how to handle additional possibilities.

The following code shows how to set up the anyObject method:

UITouch *touch = [touches anyObject];

Next, have the code determine whether the user’s touch event is in the Car
(UIImage) view:

 if (CGRectContainsPoint(self.car.frame,
 [touch locationInView:self.view]))

CGRectContainsPoint is a function that returns YES when a rectangle (view
coordinates) contains a point. You specify the car’s frame as the rectangle:

self.car.frame

and you specify the point by sending the locationInView: message to the
touch:

locationInView:self.view

locationInView: returns the current location of the receiver in the coordi-
nate system of the given view. In this case, you’re using the Main view, but you
might want to change the view if you’re trying to determine the location within

271 Chapter 10: Adding Animation and Sound to Your App

another view, for example. Maybe the user is touching an itty-bitty gas pedal.
(Just to be clear, in our RoadTrip app, the car does not have an itty-bitty gas
pedal.)

If it’s determined that the touch is in the car, you assign YES to the touchInCar
instance variable; if it’s not, you assign NO and forward the message up the
responder chain. You use touchInCar later to determine whether the user is
dragging the car around or just running his finger over the screen.

 The default implementation of touchesBegan: does nothing. However, sub-
classes derived directly from UIResponder, particularly UIView, forward
the message up the responder chain. To forward the message to the next
responder, send the message to super (the superclass implementation).

If you override touchesBegan:withEvent: without calling super (a
common use pattern), you must also override the other methods for handling
touch events, if only as stub (empty) implementations.

Multiple touches are disabled by default. To allow your app to receive mul-
tiple touch events, you must set the multipleTouchEnabled property of
the corresponding view instance to YES.

As users merrily move the car around the screen (perhaps saying zoom zoom to
themselves), your app is constantly being sent the touchesMoved: message.
Add the code in Listing 10-13 to TestDriveController.m to override that
method, which will enable you to move the car to where the user’s finger is.

Listing 10-13: Overriding touchesMoved:withEvent:

- (void)touchesMoved:(NSSet *)touches withEvent:
 (UIEvent *)event {

 if (touchInCar) {
 UITouch* touch = [touches anyObject];
 self.car.center = [touch locationInView:self.view];
 }
 else
 [super touchesMoved:touches withEvent:event];
}

If the first touch was in the Car view (touchInCar is YES), you assign car’s
center property to the touch coordinate. As I explain in the “Animating a
View” section, earlier in this chapter, when you assign a new value to the
center property, the view’s location is immediately changed. Otherwise, you
ignore the touch and forward the message up the responder chain.

272 Part III: Getting Your Feet Wet: Basic Functionality

It’s interesting to observe that when you position the car next to a button,
it will travel under that button when you touch the Test Drive button. This
feature illustrates the subview structure that I explain in Chapter 4 in the sec-
tion about the view hierarchy. Because I had you add the buttons last (they’re
subviews of the Main view), they’re displayed on top of the subviews (car)
that you added earlier.

Experiment with moving the car around and then using the Test Drive button.
If there’s anything wrong with your formulas for positioning the car during
the Test Drive, you’ll see it when the car starts from a different place.

Animating a Series of Images “In Place”
Although I explain animation using the UIView methods earlier in this chapter,
this section shows you a way to animate a series of images “in place” — you
are not moving the image around as you did earlier with the car; instead you
are changing the image where it is to make it appear as if it were animated.

To make the Test Drive button blink, for example, add the bolded code in
Listing 10-14 to TestDriveController.m. As you can see in the listing,
only a single line of code is needed to animate the button.

Listing 10-14: Creating a Blinking Button

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSURL* backgroundURL = [NSURL
fileURLWithPath:[[NSBundle mainBundle]
pathForResource:@"CarRunning" ofType:@"aif"]];

 backgroundAudioPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:backgroundURL error:nil];

 backgroundAudioPlayer.numberOfLoops = -1;
 [backgroundAudioPlayer prepareToPlay];

 NSURL* burnRubberURL = [NSURL

fileURLWithPath:[[NSBundle mainBundle]
pathForResource:@"BurnRubber" ofType:@"aif"]];

 AudioServicesCreateSystemSoundID((__bridge
CFURLRef)burnRubberURL, &burnRubberSoundID);

 [self.testDriveButton setBackgroundImage:[UIImage
animatedImageNamed:@"Button" duration:1.0]
forState:UIControlStateNormal];

}

273 Chapter 10: Adding Animation and Sound to Your App

 This blinking button is designed to show you how to animate changing images.
Blinking objects on the screen are generally avoided in good interfaces.
Remember the famous saying, “Less is more.”

In Chapter 5, I show you how to add a custom button with a Button background
image. You could have also programmatically added the background image by
sending the button the setBackgroundImage:forState: message. (Chapter
5 explains the control state as well.) Normally, you might think of making the
background image a single image. However, animatedImageNamed:duration:
and some similar methods use instead a series of files, each displayed for a dura-
tion you specify. This type of method enables you to animate (this time, in place)
not only a button but also any image by simply supplying a series of images:

 [testDriveButton setBackgroundImage:
 [UIImage animatedImageNamed:@"Button" duration:1.0]
 forState:UIControlStateNormal];

In the animatedImageNamed: method, you supply a base name of an image
to animate. The method appends a 0 to the base name and loads that image
(in this case, Button0). After the time that you specify in duration has
elapsed, the animatedImageNamed: method appends the next number (in
this case, 1) to the base image name and attempts to load it and the remain-
der of images (up to 1,024 images) until it runs out of images, and then it
starts over.

In the Project navigator, open the disclosure triangle for the RoadTrip Resources
group that you created in Chapter 3. If you look in the RoadTrip Resources
group, you see two images, Button0 and Button1 — with Button being the
base name you specified. This is an “in place” animation, so all images included
in the animated image should share the same size and scale.

If you select each image in the Project navigator, you can see that they’re
slightly different colors, and each will display for 1.0 second (duration:1.0).
This makes the button blink and certainly adds some life to the Main view.

iPhone versus iPad
The iOS 7 animation and sound libraries and frameworks are the same for the
iPhone and iPad, so the code shown in this chapter works properly on both
the iPhone and iPad apps. The differences are confined mostly to the sepa-
rate storyboards and the support for a navigation view interface as opposed
to a split view controller interface.

274 Part III: Getting Your Feet Wet: Basic Functionality

Part IV
The Model and the App

Structure

 Visit www.dummies.com/extras/iosappdevelopment for more on how to
use frameworks in iOS app development.

http://www.dummies.com/extras/iosappdevelopment

In this part . . .
 ✓ Implementing the Master View Controller

 ✓ Working with split view controllers and the master view

 ✓ Finishing the basic app structure

Chapter 11

The Trip Model
In This Chapter
▶ Recognizing the importance of models

▶ Working with property lists

▶ Starting the Trip class implementation

▶ Displaying variable content in the debugger

I
t’s time to add some content to RoadTrip. The owner of RoadTrip’s data
is the model, so I start this chapter with a look at the data you’ll need

and how the model will manage it. Then I show you how to add a Trip class
that will serve as the interface to the model. Finally, you see how to add the
Destination class — which is one of the objects that will be used by the
model but is hidden behind the Trip interface.

What the Model Contains
In the Model-View-Controller (MVC) design pattern that is the basis for all
iOS apps, the model owns the app content logic and data. Therefore, to
design your model, the best place to start is with the app design I present in
Chapter 4 and consider what will be displayed in the views.

In this first version of RoadTrip, the model needs to provide, for each desti-
nation, the following:

 ✓ The destination name

 ✓ A background image for the destination

 ✓ The destination latitude and longitude, along with a title and subtitle to
be displayed in the annotation on a map

 ✓ Events that the user might be interested in

 ✓ Titles and subtitles of sights or places of interest to be displayed in the
annotation on a map

 ✓ Weather information

278 Part IV: The Model and the App Structure

I’ve made the point (several times) that the model is about the data, so where
does the data come from? The easy answer is . . . any place you’d like. Given
the iOS model, however, you can take several approaches:

 ✓ Option 1: Download the data from a web service (or FTP site) and
have the model control it in a file or have Core Data (an iOS object
 persistence mechanism outside the scope of this book) manage it.

 ✓ Option 2: Have a web service manage your data and get what you need
as you need it.

 ✓ Option 3: Include the data as an app resource.

 ✓ Option 4: Access the data on the web as an HTML page.

Although I really like Option 1 (and explain that in my book Sams Teach
Yourself Core Data for Mac and iOS in 24 Hours), it’s beyond the scope of this
book, so the Trip model uses both Options 3 and 4.

Although the preceding answers most of the model’s “Show me the data”
responsibility, yet another question still has to be answered: How does the
model know where the data is? The answer to that question lies in a very useful
structure that’s used extensively by not only iOS but also Cocoa apps: property
lists (more commonly known as plists). The RoadTrip plist that you are about
to create will have both data used by the Trip model object (Option 3) as well
as the URLs for the data you download as HTML pages (Option 4).

Adding the Model Data
For situations in which you need to store relatively small amounts of persis-
tent data — say, less than a megabyte — a property list offers a uniform and
convenient means of organizing, storing, and accessing the data.

Using property lists
A property list (or plist) is perfect for storing small amounts of data that con-
sist primarily of strings and numbers. What adds to its appeal is the capabil-
ity to easily read it into your program, use the data, and (although you won’t
be doing it in the RoadTrip app) modify the data and then write the property
list back out again (see the “Using plists to store data” sidebar, later in this
chapter). That’s because iOS provides a small set of objects that have that
behavior built right in.

Apps and other system software in OS X and iOS use property lists exten-
sively. For example, the OS X Finder stores file and directory attributes in a
property list, and iOS uses them for user defaults. You also get a Property List
editor with Xcode, which makes property list files easy to create and main-
tain in your own programs.

279 Chapter 11: The Trip Model

Figure 11-1 shows a property list that I show you how to build — one that
contains the data necessary for the RoadTrip app.

After you figure out how to work with property lists, it’s actually easy, but like
most things, getting there is half the fun.

Property lists hold serializable objects. A serializable object can convert itself
into a stream of bits so that it can be stored in a file; it can then reconstitute
itself into the object it once was when it’s read back in.

These objects, called property list objects, that you have to work with are as
follows, and you find two types (which I explain in an upcoming paragraph):

Basic Classes:

 ✓ NSData and NSMutableData

 ✓ NSDate

 ✓ NSNumber

 ✓ NSString and NSMutableString

Figure 11-1:
The

RoadTrip
plist.

280 Part IV: The Model and the App Structure

Containers:

 ✓ NSArray and NSMutableArray

 ✓ NSDictionary and NSMutableDictionary

As previously shown in Figure 11-1, the RoadTrip plist is actually an
NSDictionary named Root (this is true of all property list unless you
change it). Root has one entry — DestinationData, which is an array
of dictionaries — and the data for each one of the destinations is held in a
 dictionary in that array (Item 0 and Item 1).

Now for that explanation of two kinds of property list objects:

 ✓ Basic classes: The term basic classes describes the simplest kind of
object. They are what they are.

 ✓ Containers: Containers can hold primitives as well as other containers.

One important feature of property list object containers (such as NSArray
and NSDictionary), besides their ability to hold other objects, is that
they both have a writeToFile: method that writes the object to a file,
and a corresponding initWithContentsOfFile:, which initializes the
object with the contents of a file. So if I create an array or dictionary and fill
it chock-full of objects of the property list type, all I have to do to save that
array or dictionary to a file is tell it to go save itself — or create an array or
dictionary and then tell it to initialize itself from a file.

Primitives NSString and NSData and their mutable counterparts also can
write and read themselves to and from a file.

NSData and NSMutableData are wrappers (a wrapper is an object whose
basic purpose is to turn something into an object) in which you can dump
any kind of digital data and then have that data act as an object.

 The containers can contain other containers as well as the primitive types.
Thus, you might have an array of dictionaries, and each dictionary might
 contain other arrays and dictionaries as well as the primitive types.

Adding a property list to your project
Given the versatility of property lists, you’re sure to turn to them time and
time again. Follow these steps to incorporate a plist into your Xcode project:

 1. In the Project navigator, add a RoadTrip Resources group to
Supporting Files. Right-click it, and then choose New File from the
menu that appears to get the New File dialog.

281 Chapter 11: The Trip Model

 Or select the RoadTrip Resources group and choose File➪New➪New File
from the main menu (or press ⌘+N).

 2. In the left column of the New File dialog, select Resource under the
iOS heading, select the Property List template in the top-right pane,
and then click Next.

 A Save sheet appears.

 3. Enter Destinations in the Save As field.

 4. Click Create (and make sure that the Target field has the RoadTrip
check box selected).

 A property list will be created with a single element called Root; it is a
dictionary, but you can change it to be an array if you want.

 5. Right-click in the Root row to show the context-sensitive menu; then
choose Add Row, as shown in Figure 11-2.

 You can also choose Editor➪Add Item to add a row.

 A new row appears, as shown in Figure 11-3.

Figure 11-2:
Add a row
to the new

plist file.

282 Part IV: The Model and the App Structure

Figure 11-3:
A new row.

 6. Enter DestinationData in the Key field, replacing New Item (which
should be highlighted).

 7. Click in the up and down arrows in the Type field and then choose
Array from the pop-up menu that appears, as shown in Figure 11-4.

Figure 11-4:
Change the

New Item to
Array.

283 Chapter 11: The Trip Model

 8. Click the disclosure triangle in front of the DestinationData key
so it is pointing down and click the + (plus) button, as shown in
Figure 11-5. A new entry appears.

 DestinationData is an array of dictionaries that will hold all your
destination-specific information, with Item 0 being the first one.

 In Figure 11-5, I’ve added the row, and you can see the + (plus) button in
the new row.

Figure 11-5:
Add an

entry.

 9. Make Item 0 a dictionary by selecting Dictionary in the Type pop-up
menu (in the same way you select Array in Step 7).

 Your new entry is made into a dictionary, as shown in Figure 11-6.

 10. Click the disclosure triangle in front of the Item 0 key so that it points
down, and click the + (plus) button as you did in Step 7 to add a new
entry to the dictionary.

 You see a new entry under the dictionary like the one in Figure 11-7.

 These disclosure triangles work the same way as those in the Finder
and the Xcode editor. The Property List editor interprets what you want
to add based on the triangle. So if the items are revealed (that is, the
triangle is pointing down), the editor assumes that you want to add a
sub item or child. If the sub items are not revealed (that is, the triangle is
pointing sideways), the editor assumes that you want to add an item at
that level (sibling). In this case, with the arrow pointing down, you add a
new entry — a sub item — to the dictionary. If the triangle were pointing
sideways, you would be entering a new entry under the root.

 Only arrays and dictionaries have children.

284 Part IV: The Model and the App Structure

Figure 11-6:
A dictionary

entry.

Figure 11-7:
A new

entry in the
dictionary.

 11. In the Key field of your newest entry, enter DestinationName, leave
the Type as String, and then double-click (or tab to) the Value field
and enter New York City, as shown in Figure 11-8.

 12. Click the + button in the row you just entered, and you get a new entry
(a sibling of the previous row). In the Key field, enter DestinationImage,
leave the Type as String, and then double-click (or tab to) the Value
field and enter NYCImage.

285 Chapter 11: The Trip Model

Figure 11-8:
A dictionary

entry.

 13. Click the + button in the row you just entered, and you get a
new entry (a sibling of the previous row). In the Key field, enter
DestinationLocation and select Dictionary in the Type pop-up menu.

 14. Click the disclosure triangle in front of the DestinationLocation
key so it’s facing down, and click the + button.

 You see a new entry under the dictionary, as you can see in Figure 11-9.

Figure 11-9:
A new

dictionary
with another

entry.

286 Part IV: The Model and the App Structure

 15. In the Key field, enter Title, and enter New York City in the Value field.

 16. Add these three keys with their corresponding type and value:

Key Type Value
Subtitle String A great city
Latitude Number 40.712756
Longitude Number −74.006047

 When you’re done, your plist should look like Figure 11-10.

 17. Click the disclosure triangle to hide the DestinationLocation
 dictionary entries, and add a new array named Events as a sibling
of the DestinationLocation, as shown in Figure 11-11.

 As explained previously, when the disclosure triangle is closed, you add
a sibling entry.

 18. Continue filling out the plist to make it match Figure 11-12 and
Table 11-1.

Figure 11-10:
The

 Desti-
nation

Loca tion
entries.

287 Chapter 11: The Trip Model

Figure 11-11:
The Events
dictionary
entry is an

array.

Figure 11-12:
The New
York City

destination
entry.

288 Part IV: The Model and the App Structure

Table 11-1 New York City plist Keys and Values
Key Type Value
DestinationName String New York City

DestinationImage String NYCImage

DestinationLocation Dictionary

 Title String New York City

 Subtitle String A great city

 Latitude Number 40.712756

 Longitude Number -74.006047

Events Array

 Item 0 String http://jessefeiler.com/
NYC01.html

 Item 1 String http://jessefeiler.com/
NYC02.html

POIs Array

 Item 0 Dictionary

 Title String The Statue of Liberty

 Subtitle String Pro-democracy and anti-monarchy
symbol of freedom

 Latitude Number 40.689244

 Longitude Number -74.044514

Weather String http://forecast.
weather.gov/
MapClick.php?zoneid=NYZ072

After you finish entering these items, close Item 0 under DestinationData
and go through Steps 8 through 18 again to add the San Francisco entry using
the keys and values in Table 11-2. If you want to save some typing, you can
copy and paste Item 0 and then expand the new Item 1 and simply replace
the values. (That’s what I did.)

http://jessefeiler.com/NYC01.html
http://jessefeiler.com/NYC01.html
http://jessefeiler.com/NYC02.html
http://jessefeiler.com/NYC02.html
http://forecast.weather.gov/MapClick.php?zoneid=NYZ072
http://forecast.weather.gov/MapClick.php?zoneid=NYZ072
http://forecast.weather.gov/MapClick.php?zoneid=NYZ072

289 Chapter 11: The Trip Model

Table 11-2 San Francisco plist Keys and Values
Key Type Value
DestinationName String San Francisco

DestinationImage String SFImage

DestinationLocation Dictionary

 Title String San Francisco

 Subtitle String A great city

 Latitude Number 37.7793

 Longitude Number −122.4192

Events Array

 Item 0 String http://jessefeiler.com/
SF01.html

 Item 1 String http://jessefeiler.com/
SF02.html

POIs Array

 Item 0 Dictionary

 Title String Golden Gate Bridge

 Subtitle String An internationally recognized symbol
of San Francisco

 Latitude Number 37.819722

 Longitude Number −122.478611

Weather String http://forecast.weather.
gov/MapClick.php?site=
mtr&textField1=37.76&text
Field2=-122.43&smap=1

 Make sure that you spell the entries exactly as specified or else you won’t be
able to access them using the examples in this book. Be especially careful of
trailing spaces.

http://jessefeiler.com/SF01.html
http://jessefeiler.com/SF01.html
http://jessefeiler.com/SF02.html
http://jessefeiler.com/SF02.html
http://forecast.weather.gov/MapClick.php?site=mtr&textField1=37.76&textField2=-122.43&smap=1
http://forecast.weather.gov/MapClick.php?site=mtr&textField1=37.76&textField2=-122.43&smap=1
http://forecast.weather.gov/MapClick.php?site=mtr&textField1=37.76&textField2=-122.43&smap=1
http://forecast.weather.gov/MapClick.php?site=mtr&textField1=37.76&textField2=-122.43&smap=1

290 Part IV: The Model and the App Structure

Using plists to store data
Although you won’t do it here, you can also modify a plist to store data. The only restriction of note
is that you can’t modify a plist you’ve created in your bundle. You need to save it in the file system
instead. For example:

NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);

NSString *documentsDirectory = [paths objectAtIndex:0];
NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:state];
[updatedDestinations writeToFile:filePath atomically:YES];

When you’re done, refer to Figure 11-1 to see how your plist should look.

You may wonder why you’re using this specific data (title and subtitle, for
example). You’ll understand that when you explore maps in Chapter 17.

Now that you have the information needed by the model to locate the data
it’s responsible for, it’s time to start adding some model classes, which
I cover in the following section.

Adding the First Two Model Classes
The first model class I have you add is the Trip class. This will become the
only model object visible to the view controllers. Although the Trip object
will use other objects to carry out its responsibilities, hiding them behind the
Trip object results in the loose coupling I explain in the next section and in
“The importance of loose coupling” sidebar, later in this chapter.

Here is how to create your first two model classes:

 1. Create a new group to keep your model classes in by going to the
Project navigator, selecting the RoadTrip group (not the RoadTrip
project, which is at the top), and right-clicking and choosing New
Group from the menu that appears.

 Or you can select the RoadTrip group and choose File➪New➪Group
from the main menu.

 You’ll see a new group. (It looks like a folder.)

291 Chapter 11: The Trip Model

 2. Name your new group Model Classes.

 To change a file’s group, select the file and drag it to the group you want
it to occupy. The same goes for groups as well. (After all, they can go
into other groups.)

 3. In the Project navigator, select the Model Classes group, right-click the
selection, and then choose New File from the menu that appears to
open the New File dialog.

 Or you can select the Model Classes group and choose File➪New➪File
from the main menu (or press ⌘+N).

 You’ll see a dialog that enables you to select a file type.

 4. In the left column of the dialog, select Cocoa Touch under the iOS
heading. Next, select the Objective-C class template in the top-right
pane; then click Next.

 5. In the Class field, enter Trip. In the Subclass Of drop-down menu,
select NSObject. Click Next.

 A Save sheet appears.

 6. In the Save sheet, click Create.

 7. Repeat Steps 3–6 to create the Destination class.

You’ll also be using the MapKit and CoreLocation frameworks, so add
them as well:

 1. In the Project navigator, select the RoadTrip Project at the top of the
Project navigator area to display the Project editor.

 2. In the Targets section, select RoadTrip.

 3. On the General tab, scroll down to the Linked Frameworks and
Libraries section.

 4. Expand the Linked Frameworks and Libraries section, if it isn’t
already expanded, by clicking the disclosure triangle.

 5. Click the + button underneath the list of current project frameworks.

 A list of frameworks appears.

 6. Scroll down and select both MapKit.framework and CoreLocation.
framework from the list of frameworks.

 7. Click the Add button.

 You’ll see the frameworks added to the Linked Frameworks and
Libraries section.

 8. Close the Linked Frameworks and Libraries section.

292 Part IV: The Model and the App Structure

 If you make a mistake and want to delete a file, right-click and choose Delete
from the menu that appears or select the file and press Delete. Whichever
method you choose, you’ll see the dialog in Figure 11-13.

Figure 11-13:
What would

you like
to do?

Remove Reference only removes the file from the Project navigator but leaves
it on disk. You can’t copy a new file with that name to that project until you
delete that file from your project on the disk as well.

When you use the template to create a class, it adds the methods it thinks
you may need. As a result, there will be some methods you won’t need and
that appear to sit around doing nothing. You can delete them or just leave
them in case you do need them. This is especially true of initialization
 methods because initialization in this app will be (mostly) taken care of by
the storyboard.

Understanding the Trip Interface
Following is what the Trip interface will eventually become:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
@class Annotation;

@interface Trip : NSObject

- (UIImage *) destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;

- (id)initWithDestinationIndex:(int)destinationIndex;

293 Chapter 11: The Trip Model

- (NSString *)weather;
- (int)numberOfEvents;
- (NSString *)getEvent:(int)index;
- (NSArray *)createAnnotations;
- (NSString *)mapTitle;
- (void)addLocation:(NSString *)findLocation
 completionHandler:(void (^)(Annotation *annotation,
 NSError* error)) completion;
@end

As you can see, this code contains a lot of stuff, and I explain it as you add
functionality to the Trip class along the way.

Earlier in the chapter, I mention that Trip is the model interface, and I say
this because in many cases more than one class will be involved in delivering
the necessary functionality of the model. For example, in this chapter you
just added a Destination class that will be responsible for the information
about your destination. An Events class that you will add in Chapter 16 will
be responsible for managing the list of things going on at your destination,
and an Annotation class (coming in Chapter 17) will provide the informa-
tion you need to plot annotations (places to see) on a map. Hiding additional
model objects behind the Trip object is known as loose coupling and is an
important object-oriented design principle (see the nearby “The importance
of loose coupling” sidebar).

You might be tempted to have the view controllers create the model classes
they’ll use (for example, a WeatherController would create the Weather
object, and so on). The problem with that approach is that it makes the
 coupling between controller objects and the model much tighter.

One advantage of the Model-View-Controller (MVC) design pattern that
I explain in Chapter 4 is that it allows you to assign (most) classes into one
of three groups in your app and work on them individually. If each group has
a well-defined interface, it encapsulates many of the kinds of changes that
are often made so that they don’t affect the other groups. This little fact is
 especially true of the model and view controller relationship.

If the view controllers have minimal knowledge about the model, you can
change the model objects with minor impact on the view controllers. So
although the Trip class will provide this functionality to the various view
controllers, as I said, it won’t be doing all the work on its own. What makes
this possible is a well-defined interface, which I showed you at the start of
this section. You create an interface between the model and the control-
lers by using a technique called composition, which is a useful way to create
interfaces.

294 Part IV: The Model and the App Structure

 I’m a big fan of composition because it’s another way to hide what’s really
going on behind the curtain. It keeps the objects that use the composite object
(in this case, Trip is the composite object) ignorant of the objects that the
composite object uses and actually makes the components ignorant of each
other, allowing you to switch components in and out at will.

So you’ll have Trip create the model objects, encapsulating the knowledge of
what objects make up the model from the object that uses it. Trip hides all
implementation knowledge from a view controller; it will know only about the
Trip object. Again, this setup makes everything loosely coupled and makes
your app more extensible and easier to change.

Implementing the Trip Class
In this chapter, I show you how to implement the Trip model functionality
that will enable you to choose between multiple destinations (although you
won’t be doing the choosing until Chapter 20). You also implement the Trip
functionality that will be needed by the Master View controller (you add that
in Chapter 12) — the name of the destination and its background image.

Start by adding the bolded code in Listing 11-1 to Trip.h.

The importance of loose coupling
A loosely coupled system is one in which each
of its components has little or no knowledge
(or makes no use of the knowledge it may
have) of other components. The term loose
coupling refers to the degree of direct knowl-
edge that one class has of another. This isn’t
about encapsulation or one class’s knowledge
of another class’s attributes or implementation,
but rather knowledge of that other class itself.

Applying loose coupling means presenting a
minimum interface to other objects. The client
deals with the fewest number of objects as pos-
sible. So although you may want to break down

a function into smaller pieces (for example, by
using composition), you never want the client to
know that. Clients are happy dealing with one
object, even if that object then turns around and
redistributes that work to other objects.

There are many ways to implement loose
coupling, and Cocoa uses a number of them.
Messages can be sent to objects, the identity
of which is only known dynamically at run-time.
Similarly, notifications can be sent out to any
observer that has registered to receive them.
In these cases (and more), the tight coupling of
a known sender and recipient does not exist.

295 Chapter 11: The Trip Model

Listing 11-1: Updating the Trip Interface

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface Trip : NSObject

-(instancetype)initWithDestinationIndex:(int)destination
Index;
- (UIImage *) destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;
@end

As you can see, the code in Listing 11-1 contains an initialization method.
This method will enable the Trip object to set itself up for the selected
 destination. Allow me to explain initialization and a few other things.

Initialization is the logical place to start, but first you need to add some
instance variables and import the Destination header file if you’re going to
use it (which you are, in the Trip implementation). Add the bolded code in
Listing 11-2 to Trip.m.

Listing 11-2: Updating the Trip Implementation

#import "Trip.h"
#import "Destination.h"

@interface Trip ()
 @property (strong, nonatomic) NSDictionary

*destinationData;
 @property (strong, nonatomic) Destination* destination;
@end

@implementation Trip

Now you can add the initWithDestinationIndex: method in Listing 11-3
to Trip.m. Note that until you have completed the code in this chapter, you
will have an error related to the not-yet-entered Destination class.

Listing 11-3: Adding initWithDestinationIndex:

- (instancetype)initWithDestinationIndex:(int)
destinationIndex {

 if ((self = [super init])) {

 NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];

(continued)

296 Part IV: The Model and the App Structure

 NSDictionary *destinations =
 [NSDictionary dictionaryWithContentsOfFile:filePath];
 NSArray *destinationsArray =
 destinations[@"DestinationData"];
 _destinationData =
 destinationsArray[destinationIndex];
 _destination = [[Destination alloc]
 initWithDestinationIndex:destinationIndex];
 }
 return self;
}

Before I explain the logic in these listings, I want to explain initialization in
general. (And yes, you’ll see compiler warnings, and you’ll be fixing them as
you go along.)

Initializing objects
Initialization is the procedure that sets the instance variables of an object
(including pointers to other objects) to a known initial state. Essentially, you
need to initialize an object in order to assign initial values to these variables.
Initialization isn’t required in every class in every app; if you can live with all
the instance variables initialized to 0 and nil, you need do nothing. Trip,
however, will need to create the objects it will be using, and you’ll do that
during initialization.

 Even when you use declared properties, remember that Xcode is automati-
cally creating backing variables for them. As a result, you may think you are
declaring and then initializing the property, but in reality, Xcode is working
with the backing variables.

An initialization method doesn’t have to include an argument for every
instance variable because some will become relevant only during the course
of your object’s existence. You must make sure, however, that all the instance
variables your object uses, including other objects that it needs to do its
work, are in a state that enables your object to respond to the messages it
receives.

You may think that the main job in initialization is to, well, initialize the vari-
ables in your objects (hence the name), but more is involved when you have
a superclass and a subclass chain.

Listing 11-3 (continued)

297 Chapter 11: The Trip Model

 Most of the time you use declared properties to manage your class’s data. Xcode
automatically creates instance variables (sometimes called backing variables)
and creates getters and setters to and from the instance variables that the
 property uses behind the scenes. However, inside your .m file and, particularly
in initialization code, you sometimes work directly with the instance variable.

To see what I mean, start by looking at the initializer I use for the Trip class
in Listing 11-3 (shown previously). By convention, initialization methods begin
with the abbreviation init. (This is true, however, only for instance —
as opposed to class — methods.) If the method takes no arguments, the
method name is just init. If it takes arguments, labels for the arguments
follow the init prefix. As you can see, the initializer in Listing 11-3 has a return
type of instanceType. You discover the reason for that in the next section.

Initialization involves these three steps:

 1. Invoke the superclass init method.

 2. Initialize instance variables.

 3. Return self.

The following sections explain each step.

Invoking the superclass’s init method
Here is the type of statement you use to get the init method up and
running:

 self = [super init];
 if (self) {

[super init] does nothing more than invoke the superclass init method.
By convention, all initializers are required to assign self. self is the
“hidden” variable accessible to methods in an object that points its instance
variables to whatever object you get back from the superclass initializer,
which explains self = [super init].

The if statement can be a little confusing to people. You may not get an
object returned from the super class init method. If that’s the case, you
don’t want to do any further initialization.

Although the scenario just described is possible, it isn’t common and won’t
happen in this book (and in general). You might find it in classes that need
certain resources to initialize themselves, and if they aren’t present, the
object can’t be created.

298 Part IV: The Model and the App Structure

Initializing instance variables
Initializing instance variables, including creating the objects you need, is
what you probably thought initialization is about. Notice that you’re initial-
izing your instance variable after your superclass’s initialization, which you
can see in Listing 11-3 (shown previously). Waiting until after your superclass
does its initialization gives you the opportunity to actually change something
your superclass may have done during its initialization, but more impor-
tantly, it allows you to perform initialization knowing that what you have
inherited is initialized and ready to be used.

In your initWithDestinationIndex: method, you start by finding the
plist that holds the Trip data or location of the data you need:

NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];

Next, you create a dictionary to hold the data. You use the method initWith
ContentsOfFile:, which does all the heavy lifting for you. It reads in the
Destinations plist file and creates a dictionary for you. The plist, as I said pre-
viously, is really a dictionary with a single entry with the key DestinationData.
The dictionaryWithContentsOfFile: method creates a dictionary from the
plist (and objects and keys for all of its entries) with dictionary keys that are the
keys you specified in the plist.

This method also allocates and initializes all the elements in the dictionary
(including other dictionaries), so when it’s done, you’re ready to roll:

NSDictionary *destinations =
 [NSDictionary dictionaryWithContentsOfFile:filePath];

 NSDictionary, NSMutableDictionary, NSArray, and NSMutableArray all
have the methods initWithContentsOfFile: and writeToFile:atomically:
that read themselves in from a file and write themselves out to a file, respectively.
This is one of the capabilities that makes property list objects so useful.

 Property list containers — and only property list containers (and NSString
and NSData) — can read themselves in from and write themselves out to a
file. The other property list objects can only store themselves, without any
effort on your part, as part of a file.

Your next step in initializing instance variables is to use the destination
Index to get the right element in the array of dictionaries in the Destination
Data entry based on the destination chosen by the user. (You’ll specify that in
the AppDelegate in Listing 11-10, later in this chapter, where you’ll allocate
the Trip object.)

299 Chapter 11: The Trip Model

NSArray *destinationsArray =
 destinations[@"DestinationData"];
_destinationData =
 destinationsArray[destinationIndex];

Finally, you allocate and initialize the Destination object:

_destination = [[Destination alloc]
 initWithDestinationIndex:destinationIndex];

Returning self
Earlier in this chapter, I explain that the self = statement ensures that
self is set to whatever object you get back from the superclass initializer.
No matter what you get back from invoking the superclass initializer in the
initialization method, you need to set self to that value and then return it to
the invoking method — the method that wants to instantiate the object or a
subclass that invoked the superclass’s init method.

After the code block that initializes the variables, you insert the following:

return self;

The reason the return type is an instancetype is that sometimes what
you ask for isn’t exactly what you get. But don’t worry; that becomes trans-
parent to you if you follow the rules for initialization I just explained.

So where do the braces go?
If you look in the code provided by the template,
sometimes you see a method implementation
that looks like this:

- (void)viewDidLoad
{

and sometimes you’ll see one that looks like this:

- (IBAction)testDrive(id)
sender {

I personally prefer the latter — with the bracket
on the same line as the method — and will use
it in the methods I have you add.

Quite frankly, it doesn’t matter to the compiler,
but it can raise itself to a religious issue among
programmers. Do what you’d like.

300 Part IV: The Model and the App Structure

The reason that you may get back a different class than what you asked for
is that under certain circumstances when you allocate a framework object,
what you may get back may be a class optimized for your use based on
the context. The relatively new instancetype is used to indicate that the
returned value is not any old object but one that is specifically relevant to
the initializer. Old code may return an id value which, indeed, can be any old
object. Using instancetype is a safer and preferred style of coding today.

Initializing the Destination Class
Now it’s time to turn to the Destination class and its initialization. Add
the bolded code in Listing 11-4 to Destination.h to update its interface
to add the header files, the properties you’ll be using, and the method
declarations.

Listing 11-4: Updating the Destination Interface

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface Destination : NSObject

@property (nonatomic, readwrite)
 CLLocationCoordinate2D coordinate;
@property (nonatomic, readwrite, copy) NSString *title;
@property (nonatomic, readwrite, copy) NSString *subtitle;
@property (nonatomic, strong) NSString *destinationName;
@property (nonatomic, strong) UIImage *destinationImage;

- (instancetype)initWithDestinationIndex:
 (NSUInteger)destinationIndex;
@end

You’ll be displaying the destination on a map with an annotation (that
pop-up window that displays information about the location when
you touch the pin on the map). Doing that requires a coordinate
property of type CLLocationCoordinate2d (that’s why you need
to include the MapKit and CoreLocation frameworks) and optional
title and subtitle properties. Although you won’t be doing anything
with this part of Destination until Chapter 17, I have you initialize
Destination with what is described in the plist but defer the explana-
tion until Chapter 17.

When you’re done, you can add the initWithDestinationIndex: method
in Listing 11-5 to Destination.m.

301 Chapter 11: The Trip Model

Listing 11-5: Add initWithDestinationIndex:

- (instancetype)initWithDestinationIndex:
 (NSUInteger)destinationIndex {

 self = [super init];
 if (self) {

 NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];
 NSDictionary *destinations = [NSDictionary
 dictionaryWithContentsOfFile:filePath];
 NSArray *destinationsArray =
 destinations[@"DestinationData"];
 NSDictionary *data =
 destinationsArray[destinationIndex];

 _destinationImage =
 [UIImage imageNamed:data[@"DestinationImage"]];

 _destinationName =
 data[@"DestinationName"];
 NSDictionary* destinationLocation =
 data[@"DestinationLocation"];
 CLLocationCoordinate2D destinationCoordinate;
 destinationCoordinate.latitude =
 [destinationLocation[@"Latitude"] doubleValue];
 destinationCoordinate.longitude =
 [destinationLocation
 [@"Longitude"] doubleValue];
 _coordinate = destinationCoordinate;
 _title =
 destinationLocation[@"Title"];
 _subtitle =
 destinationLocation[@"Subtitle"];
 }
 return self;

}

Destination initializes itself more or less the same way that Trip did.
It starts by loading its data:

NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];
NSDictionary *destinations =
 [NSDictionary dictionaryWithContentsOfFile: filePath];
NSArray *destinationsArray =
 destinations[@"DestinationData"];
NSDictionary *data =
 destinationsArray[destinationIndex];

302 Part IV: The Model and the App Structure

Then it uses the dictionary data to initialize its properties:

;
 _destinationImage =
 [UIImageimageNamed:data[@"DestinationImage"]];

;

Although there are separate images for the iPad and iPhone, they’re in an
asset catalog and you just use the basic name for the image set containing
the separate images.

_destinationName =
 data[@"DestinationName"];
NSDictionary* destinationLocation =
 data[@"DestinationLocation"];
CLLocationCoordinate2D destinationCoordinate;
destinationCoordinate.latitude =
 [destinationLocation[@"Latitude"] doubleValue];
destinationCoordinate.longitude =
 [destinationLocation
 [@"Longitude"] doubleValue];
_coordinate = destinationCoordinate;
_title = destinationLocation[@"Title"];
_subtitle =
 destinationLocation[@"Subtitle"];

The initialization of the properties is simply done by using the keys you
 specified when you created the plist, which turn into dictionary keys when
you load the dictionary (and its dictionaries) from the plist file.

Now you can add the Trip methods destinationImage, destinationName,
and destinationCoordinate, which use the Destination object. Add the
methods in Listing 11-6 to Trip.m.

Listing 11-6: Adding destinationImage, destinationName, and
destinationCoordinate

- (UIImage *) destinationImage {

 return self.destination.destinationImage;
}

- (NSString *) destinationName {

 return self.destination.destinationName;
}

- (CLLocationCoordinate2D) destinationCoordinate {

 return self.destination.coordinate;
}

303 Chapter 11: The Trip Model

These Trip methods will be used by the Master View controller to request
the data it needs for its view.

Interestingly, in this case, all Trip does is turn around and send the request
to the Destination object. This is, of course, an example of loose coupling,
which I explain earlier.

In this case, there isn’t that much for Destination to do, so you could’ve
simply had Trip manage the data. But in a more robust app (like one worth
99 cents), it would likely have more to do. In fact, you could start by having
Trip manage all the data and add a Destination object when you felt you
needed to. And when you did add the Destination object, doing so would
have no impact on the objects needing that data — ah, loose coupling in
action.

Creating the Trip Object
Finally, you have to create the Trip object. You need to make it accessible
to the view controllers that need to use it, so you’ll make it an AppDelegate
property. Any object in your app can find the AppDelegate, and from it get a
pointer to the Trip object.

Add the bolded code in Listing 11-7 to AppDelegate.h.

Listing 11-7: Updating the AppDelegate Interface

#import <UIKit/UIKit.h>
@class Trip;

@interface RTAppDelegate : UIResponder
<UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;
@property (nonatomic, strong) Trip *trip;

- (void) createDestinationModel:(int)destinationIndex;

@end

createDestinationModel: is the method that actually creates the Trip
object.

@class is a compiler directive to let the compiler know that Trip is a class
(or type). You need to import the header to actually use it in your code,
however, and you’ll do that by adding the bolded code in Listing 11-8 to
AppDelegate.m.

304 Part IV: The Model and the App Structure

Listing 11-8: Updating the AppDelegate Implementation

#import "AppDelegate.h"
#import "Reachability.h"
#import "Trip.h"

@implementation AppDelegate

You also declare a method that will actually create the Trip object. Add the
bolded code in Listing 11-9 to application:didFinishLaunchingWith
Options: in AppDelegate.m to use that method.

Listing 11-9: Updating application:didFinishLaunchingWithOptions:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 UINavigationController *navigationController;
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 UISplitViewController *splitViewController =
 (UISplitViewController *)
 self.window.rootViewController;
 splitViewController.presentsWithGesture = NO;
 UINavigationController *detailNavigationController
 [splitViewController.viewControllers lastObject];
 splitViewController.delegate =
 (id)detailNavigationController.topViewController;
 navigationController =
 [splitViewController.viewControllers objectAtIndex:0];
 }
 else {
 navigationController = (UINavigationController *)
 self.window.rootViewController;
 }
 NetworkStatus networkStatus = [[Reachability

reachabilityForInternetConnection]
currentReachabilityStatus];

 if (networkStatus == NotReachable) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Network Unavailable"
 message:@"RoadTrip requires an Internet connection"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 }

 [self createDestinationModel:0];
 return YES;
}

305 Chapter 11: The Trip Model

As you can see, you use the createDestinationModel: method to actually
create the model. I have this as a separate method because you’ll need to be
able to send the AppDelegate a message to create a new Trip when the
user chooses a new destination in Chapter 20.

Also notice that, for now, you’ll be defaulting to the first destination in the
plist. You’ll fix that in Chapter 20 as well.

Add the createDestinationModel: method in Listing 11-10 to
AppDelegate.m.

Listing 11-10: Adding createDestinationModel:

- (void) createDestinationModel:(int)destinationIndex {

 self.trip = [[Trip alloc]

initWithDestinationIndex:destinationIndex];
}

All you do is allocate and initialize the Trip object and assign it to the trip
property.

More Debugger Stuff
In this section, I give you something more interesting to look at in the
Debugger than you’ve had up to now for this book’s example app. As it
stands, you can compile RoadTrip with no errors and it runs, albeit the same
way that it did before. So you have no idea if all that code you added really
works. Does it really find the Destinations.plist file and create all the
dictionaries with their entries correctly?

One way to find out is to put a breakpoint in your code and see what’s there;
so go ahead and set a breakpoint in Trip.m on the following line (in the
initWithDestinationIndex: method) by clicking in the gutter next to (in
front of) the line:

_destination = [[Destination alloc]
 initWithDestinationIndex:destinationIndex];

Then set another breakpoint in Destination.m (in its initWith
DestinationIndex: method) on the following line:

_subtitle =
 destinationLocation[@"Subtitle"];

Run your app.

306 Part IV: The Model and the App Structure

If your program execution stops at a breakpoint, you can move your pointer over
an object or variable in the Source editor to see its contents. In Figure 11-14, I’ve
done that with destinationData (and so should you).

destinationData is a pointer to the dictionary that contains the data for
the first entry in the Destination plist’s DestinationData array. You’ll have
six key/value pairs, as you should have, and if you look in the Variables pane
in the Debugger, you’ll see two objects in the destinationsArray, which is
also as it should be.

You can explore the display by opening the disclosure triangles to drill down
and look at the data as you see in Figure 11-15.

You can use the circled i to reveal the contents of the variable as shown in
Figure 11-16.

Figure 11-14:
Display the
contents of

a variable in
the Source

editor.

307 Chapter 11: The Trip Model

Figure 11-15:
Drill down

into the
data.

Figure 11-16:
Reveal the

contents of
a variable.

308 Part IV: The Model and the App Structure

Finally, you can use the Quick Look icon to explore the variable and its
memory location, as you see in Figure 11-17.

Figure 11-17:
Use Quick
Look while
the app is

stopped at a
breakpoint.

Chapter 12

Implementing the Master
View Controller

In This Chapter
▶ Working with custom view controllers

▶ Using the Trip model to get data for a view

W
ith the model in place, you can now return to the Master View con-
troller and transform its view into the user interface you fell in love

with way back in Chapter 4. In this chapter, you’ll connect the Master View
controller for the iPad to the Trip model to create the interface and also to be
able to (eventually) respond to user requests. You’ll then repeat the process
for the iPhone version.

 The strategy you adopt in this chapter to add the logic to connect the view to
the model via the view controller is the same strategy you’ll use for the rest
of the view controllers in the storyboard. As always, although you can add the
view controllers you’ll need to the storyboard graphically, you’ll still need to
add some code to have the controller actually do anything, such as get data
from the model and send it to the view.

Setting Up a Custom View
Controller for the iPad

Although MasterViewController already actually does something, I want
to develop it for use in RoadTrip by customizing its appearance and having it
display (through its entries or cells) a table of contents showing the app func-
tionality. Here’s how you’d start things off:

 1. In the Project navigator, select Main_iPad.storyboard.

 2. In the Document outline, select Master View Controller – Master in the
Master View Controller – Master scene, open the disclosure triangle next
to the Master View controller in the scene, and select the Table view.

310 Part IV: The Model and the App Structure

 3. Using the Inspector selector bar, open the Attributes inspector in the
Utility area.

 You’ll notice that, in the Table View section of the Attributes inspector, the
Static Cells option is selected in the Content drop-down menu, as shown
in Figure 12-1. You changed this Table view to Static cells in Chapter 5.

 As I explain in Chapter 5, static cells are used when you know in advance
what needs to be displayed in a cell. Instead of having to implement
a method in your view controller and return the cell with the text you
want, you can format the cells in the storyboard.

 4. In the Document outline, open the disclosure triangle next to the
Table view, select Table View Section, and delete it.

 You could’ve left that cell and added cells to that section and more sec-
tions, but I want to show you what it’s like to start from a clean slate.

 Notice that the segue to the Test Drive controller has been deleted as
well. That means you can no longer select Test Drive and have the view
slide into place. But you’ll fix that in Chapter 13.

You are now ready to add the text you want displayed to the cells, but before
you do, I want to give you some background on how Table views work.

Figure 12-1:
You start

with static
cells.

311 Chapter 12: Implementing the Master View Controller

Table views require both a data source as well as a delegate. The data source
supplies the content for the Table view and provides the content for each cell
(or row). The delegate manages the appearance and behavior of the Table
view and determines what to do when the user selects a cell (or row) — it
could, for example, push a view controller onto the stack.

 In the template (as is the case with many Table views), the table view itself
is assigned to both the data source and the delegate properties. This means
that all of the Table view functionality is embodied in the Table view class.
However, having the ability to assign other classes to the delegate or the data
source property opens up the opportunity for you to share the functionality
among several objects. You will find a number of cases in the Cocoa frame-
works where an object’s functionality is provided by itself (as in the Table
view) as well as by other objects that may from time to time be the same as
the primary object. If you’re using the Table view only as a type of table of
contents for your app, selecting Static Cells lets you create the cell content in
Interface Builder (as I show you how to do next) and use storyboard segues to
specify what happens when a user selects a cell — much easier and a lot less
work than coding it yourself! I explain more about this in Chapter 20.

The following steps show you how to customize your Table view:

 1. Select Table View in the Document Outline in the Master View
Controller – Master Scene.

 2. Using the Inspector selector, open the Attributes inspector in the
Utility area, select Grouped from the inspector’s Style drop-down
menu, and then enter 3 in the Sections field.

 You see three sections with three rows each, as shown in Figure 12-2.

 Note that Table views come in two basic styles:

	 •	Plain: The default style is called plain and looks really
unadorned — plain vanilla. It’s a list: just one darn thing after
another. You can index it, though, just as the Table view in the
Contacts app is indexed, so it can be a pretty powerful tool.

 A plain view can also have section titles (as I describe shortly) and
footers.

	 •	Grouped: The other style is the grouped Table view; unsurprisingly,
it allows you to lump entries together into various categories.

 Grouped tables can’t have an index.

 When you configure a grouped Table view, you can also have
header, footer, and section titles. I show you how to do section
titles shortly.

 The details of what you’ve just done may change as the storyboard
defaults are changed, but you get the picture.

312 Part IV: The Model and the App Structure

Figure 12-2:
Static cells

and three
sections.

 3. Open the disclosure triangle next to Table View in the Document outline,
check out the Table View sections under it, and select the first section.

 The Attributes inspector refreshes to show the attributes of the first
Table View section.

 4. Change the Rows field in the Attributes inspector to 2 (or delete one
of the cells) and enter At My Destination in the Header field.

 5. Select the second section and, after the Attributes inspector refreshes,
change the Rows field in the Attributes inspector to 2, and enter
Getting Around in the Header field.

 6. Select the third section and, after the Attributes inspector refreshes,
change the Rows field in the Attributes inspector to 2, and enter
Planning My Trip in the Header field. (See Figure 12-3.)

 7. Open the first Table View Section and select the first Table View Cell.

 8. Still in the Attributes inspector, choose Basic from the Style menu.

 The Style menu provides a number of options for how the cell is format-
ted. Each one formats the text in the cell a little differently in the label(s)
it adds to the cell to display the text. (Or you can leave it as Custom,
drag in a label(s), and format the label any way you want.)

 When you select Basic, a disclosure triangle gets added next to first
Table View Cell in the Document Outline in the Master View Controller –
Master Scene. If you open it, you see that a single label has been added
for you, as shown in Figure 12-4.

313 Chapter 12: Implementing the Master View Controller

Figure 12-4:
A basic cell

with the
supplied

label.

Figure 12-3:
Setting the
number of
rows and
sections

with head-
ers that you

want.

314 Part IV: The Model and the App Structure

 9. Select the Label in the Document outline.

 The Attributes inspector displays the Label properties — including the
text, which you can change to your heart’s content. (Selecting the Text
icon in the Font field allows you to change the font as well.)

 If you want, you can change the font style by selecting the Font icon (the
little T inside the Font field). However, remember that the content of
your app should be the centerpiece, so using standard fonts and styles
for things such as labels (as opposed to content) is usually a good idea.
Set the text for the label to Weather as shown in Figure 12-5.

 10. Finally, and this is the pièce de résistance, select White Color from the
Label section’s Color drop-down menu.

 Yes, it is in fact the case that you won’t be able to see the text very well,
as demonstrated by Figure 12-6.

 11. Repeat Steps 7–10 to format the next two cells, this time entering Events
and Map, respectively, in the Text field in the Attributes inspector.

 Events is the second cell in At My Destination, and Map is the first cell in
Getting Around. You have to treat the Find cell in Getting Around a little dif-
ferently. Rather than just adding a title to the Table View Cell, you’re going
to add a label and input text field inside the table view cell. This is only one
example of how you can put almost any view inside a Table View Cell.

 Start by leaving the cell type as Custom in the Style menu. (Because
you’ll have the user enter the place she wants to find in the cell, you’ll
have to format it on your own.) Continue with the steps that follow.

Figure 12-5:
The format-
ted cell of a

table.

315 Chapter 12: Implementing the Master View Controller

 12. Drag a label from the Library pane onto the cell.

 As you work, you may notice that Xcode places a Content View object
inside the Table View Cell; your new objects such as the label are placed
inside the Content View automatically.

 13. With the label selected, go to the Attributes inspector and enter Find: in
the Text field and set the Label and Table View Cell text to White Color
(if it’s not already set that way), as you did in Steps 9–11.

 If you select the label, it should look like Figure 12-7.

 14. Drag a Text Field from the Library pane onto the cell and position it
as shown in Figure 12-8.

 15. At the top of the Text Field section of the Attributes inspector, enter
Enter address or place in the Placeholder field to help the user under-
stand what this text field is for.

 16. In the Attributes inspector, select the first Border Style (No Border) in
the Text Field section.

 The text field will seem to disappear, but you can always select it again
in the Document outline.

Figure 12-6:
The first cell

and label
are done.

316 Part IV: The Model and the App Structure

Figure 12-7:
Add a label.

Figure 12-8:
Add a text

field.

317 Chapter 12: Implementing the Master View Controller

 17. Using the appropriate drop-down menus, set the background to Clear
Color and the text to White Color.

 Resize and reshape the text field as desired. You can see the results in
Figure 12-9.

 Text fields enable the user to enter small amounts of text, which is
exactly what you need here.

 18. Repeat Steps 7–10 to format the next two cells, this time enter-
ing Destination and Test Drive, respectively, in the Text field in the
Attributes inspector.

 19. Your Master View controller should look more or less like mine does
in Figure 12-10.

 Pay particular attention to the document outline at the left to make cer-
tain that you have all of the pieces in place.

If you were to remove the code breakpoint that you set in Chapter 11, and
then click the Run button for the iPad version, you would see the screen
shown in Figure 12-11. Clicking or tapping in a cell doesn’t get you anything
yet, but it soon will.

Of course, this user interface isn’t particularly exciting; in fact, it’s rather
pedestrian. Let’s fix that. Doing that requires doing some coding in the
Master View controller.

Figure 12-9:
The Find cell

complete.

318 Part IV: The Model and the App Structure

Figure 12-11:
The latest

additions to
the RoadTrip
app for iPad.

Figure 12-10:
The finished

Content
controller.

319 Chapter 12: Implementing the Master View Controller

Adding a Background Image and Title
The type of Table view highlighted in this chapter has static cells that you set
up in Interface Builder, as I mention in the previous section. However, in this
view, everything isn’t static — including two things based on the destination.
Those two things are the background image and the title. You have to set
those programmatically.

Start by hiding the Utility area and then show the Project navigator (if you
have hidden it) by making the appropriate selections in the toolbar. Then
select MasterViewController.m in the Project navigator.

You may recall from Chapter 6 that the View Controller method you’d use to
customize a view at launch time is viewDidLoad, which is the method I’ll
have you use here as well.

First, import the headers you need by adding the bolded code in Listing 12-1
to MasterViewController.m.

Listing 12-1: Updating the MasterViewController Implementation

#import "MasterViewController.h"
#import "DetailViewController.h"
#import "AppDelegate.h"
#import "Trip.h"

Now add the bolded code in Listing 12-2 to the viewDidLoad method in
MasterViewController.m and delete the commented out code in bold,
underline, and italic.

Listing 12-2: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];

//self.title = @"Road Trip";
 AppDelegate* appDelegate = [[UIApplication
 sharedApplication] delegate];
 self.title = appDelegate.trip.destinationName;
 UIImageView* imageView = [[UIImageView alloc]
 initWithImage:[appDelegate.trip destinationImage]];
 self.tableView.backgroundView = imageView;
_

}

320 Part IV: The Model and the App Structure

You want to add two features to the MasterViewController’s view. The
first makes the title in the Navigation bar the name of the destination, and the
second adds a background image to the view. This data is owned by the Trip
model, so you’re finally getting to use the model.

To get the information the Master View controller needs from the (Trip)
model, it needs to send a message to the Trip object. You may recall
that in Chapter 11, when you created and initialized the Trip object in
AppDelegate, you assigned its pointer to the trip property to make it
accessible to the view controllers.

You find AppDelegate just like you previously did: by sending the class mes-
sage sharedApplication to the UIApplication class and then sending
the delegate message to the UIApplication object.

You use the following two methods to place your background image and dis-
play the destination name:

 ✓ destinationImage is a Trip method that returns a UIImage pointer.

 ✓ destinationName is a Trip method that returns an NSString pointer
that contains the destination name.

There’s one final step: Beginning with iOS 7, the background color of all table
cells is white (although the Interface Builder interface may lead you to think
otherwise). You need to set the background color of the table cells to clear so
that your background image will show through. Do this by adding the code in
Listing 12-3 to MasterViewController.m.

Listing 12-3: Setting a Clear Background for the Table Cells

- (void)tableView:(UITableView *)tableView
 willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath
{
 cell.backgroundColor = [UIColor clearColor];
}

Run the app now and select Travel. Be prepared to be impressed with your
work, as evidenced by what you see in Figure 12-12.

As I mention in the preceding section, because you deleted the Test Drive
cell, the segue was deleted as well. That means you can no longer select
Test Drive and have the view slide into place. But you’ll fix that in the next
chapter.

321 Chapter 12: Implementing the Master View Controller

Figure 12-12:
The Master

View con-
troller user

interface for
iPad.

Updating the iPhone Storyboard File
You can reuse the iPad code you just developed for the iPhone version, but
you will have to update the iPhone storyboard file with the same kind of
changes you just did for the iPad storyboard. Remember, both the iPhone
and iPad versions are your children, and you don’t want to hurt the iPhone
app’s feelings by neglecting it.

The simplest way to update the iPhone storyboard is to review all the direc-
tions in this chapter that described how to update the iPad storyboard, and
repeat those steps for the iPhone storyboard. But you do not need to repeat
the code changes — the ones made in this chapter work fine for both iPad
and iPhone.

322 Part IV: The Model and the App Structure

The iPhone Master View controller interface should now look like
Figure 12-13.

Figure 12-13:
The Master

View con-
troller inter-
face for the

iPhone.

Chapter 13

Working with Split View Controllers
and the Master View

In This Chapter
▶ Working with Split View controllers

▶ Checking out the versatile Table view

▶ Making the table look good

▶ Ensuring that your app is usable worldwide

▶ Peeking behind the Table View screen

▶ Using model objects

T
his chapter is primarily about the iPad user interface because Split
View controllers aren’t supported on the smaller iPhone. In Chapter 5, I

explain a bit about iPad navigation using the example of a Navigation control-
ler within a Split View controller. But the iPad has some even slicker ways to
navigate, which I get to in this chapter. You’ll be happy to know that you’re
going to be replacing the Navigation controller style of navigation with some-
thing more appropriate to the RoadTrip app.

The Problem with Using a Navigation
Controller in Detail View

As I explain in Chapter 5, the Master-Detail Application template you’re using
sets up the iPad’s Split View controller in such a way that, when a cell in the
Master view is tapped (Test Drive, for example), the Navigation controller
pushes the next view controller onto the stack. The new view controller’s
view slides into place, and the Navigation bar items are updated appropri-
ately. The result, as you can see on the right side of Figure 13-1, is a Back
button (labeled Detail) in the Detail view that enables you to return to the
previous Detail view. (I’m using the pre–Chapter 12 version of RoadTrip
because it is easier to show you the flow in Figure 13-1.)

324 Part IV: The Model and the App Structure

Figure 13-1:
On the iPad,
it’s back and
forth using a

Navigation
control-
ler and

Navigation
bar.

Although the user experiences on the iPhone and iPad have similarities, in
some ways, the experiences are quite different. And one major and very obvi-
ous difference is the screen size — a difference that can have a major impact
on the ways you can navigate and display information.

On the iPhone, you go from one view to another using the navigator approach
you see in Figure 13-2.

Figure 13-2:
Navigating

with a
Navigation

control-
ler on the

iPhone.

325 Chapter 13: Working with Split View Controllers and the Master View

The only difference is that, with the increased real estate on the iPad, you can
show both the Table view that you use for navigation as well as the associ-
ated content you want to display at the same time, as you see in Figure 13-3.

But while you can take advantage of the larger display using the Navigation
controller approach, a problem is lurking in the background that I want to
call your attention to.

The process doesn’t initially appear to be particularly problematic if you
stick to Landscape orientation, but when you switch to Portrait orientation,
you soon realize that you’re in a bit of a bind. You can see the outlines of
that bind in the sequence in Figure 13-4. Again, in the current (unimproved)
version of RoadTrip, when you’re in Portrait orientation, tapping the Master
button displays the Master view in a popover. If you then tap the Test Drive
cell, the Test Drive view slides into place. (You also need to tap anywhere in
the Test Drive view to dismiss the popover — you’ll fix that so it’s automati-
cally dismissed when a new view is displayed.)

Figure 13-3:
Master view

and Detail
view using a

Split view.

326 Part IV: The Model and the App Structure

Figure 13-4:
Navigating

in a Split
view using a

Navigation
controller.

At that point, you see a Back button (Detail) that’s designed to get you back
to the original view. This is the essence of a navigation interface: You move
through the sequence of views drilling deeper and deeper into details and
then stepping back up until you’re at the starting point.

When you are using a Split View controller on the iPad, you can keep the top
level of choices visible in the Master view controller at all times. Typically,
you leave that view in place and vary the views shown in the detail view in
response to choices made in the Master view controller. This gives you two
ways to traverse the data. You can use the navigation controller in the Detail
view to drill down (and then back up), and you can use the Master View con-
troller to switch from one top-level view to another.

Using a Navigation Controller
in the Master View

You might want to use a Navigation controller in the Master view. I’ll show
you how to do that by creating a segue — a storyboard object that creates a
transition from one view controller to another — so that when you select Test
Drive in the Master view, the Test Drive view will slide into place, Back button
and all, in the Master view (as opposed to the Detail view, which had been the
case). Then, when you tap the Back button, you’ll be back in the Master view.

327 Chapter 13: Working with Split View Controllers and the Master View

The technique for replacing a view controller with another is the same
whether you’re working in the Master or the Detail view, and that’s what I’m
showing you in this section — replacing the Detail view controller. After I
explain it, I’ll have you go back to having the Test Drive view display in the
Detail view.

Here is how to create a push segue that allows your Test Drive button to dis-
play the Test Drive controller in the Master view.

 1. Select Main_iPad.storyboard in the Project navigator.

 The storyboard will appear.

 2. Select the Test Drive cell, control-drag it to the Test Drive controller,
as I have done in Figure 13-5, and then release the mouse button.

 You’ll see the pop-up menu that allows you to select the Storyboard
Segues type, as shown in Figure 13-6.

Figure 13-5:
Control-drag

to create a
segue.

328 Part IV: The Model and the App Structure

Figure 13-6:
Create a

push segue.

 3. Choose Push from the Selection Segue menu items.

 Let me remind you that I explained the difference between Selection
Segues and Accessory Actions in Chapter 5. You’ll notice that the Test
Drive view resizes to the same size as the Master view.

 Select the segue in the Document Outline, as I have done in Figure 13-7.
The Attributes inspector shows you that the Destination is set to Current.
(Current is in fact the default.) That means that the Destination view for
this segue — the view that is displayed by the Test Drive controller — is
the view that the segue is from, or the Master view.

 4. Enter TestDrive in the Identifier field, as I have in Figure 13-7.

 5. Select the Table View cell and, in the Attributes inspector, change the
Accessory field from Disclosure Indicator to None.

 I’m of the opinion that a disclosure indicator isn’t necessary here, but
feel free to reject my opinion if you so desire.

If you click the Run button now and then tap Test Drive in the Master view,
you get to test drive the 1959 Cadillac Eldorado Biarritz in the Master view;
tapping the New York City button (as you recall, what appears in the Back
button is the title of the previous view controller, and you made that your
destination in Chapter 12) in the Test Drive view takes you back to the Master
view. This works even in Portrait orientation, as you can see in Figure 13-8.

329 Chapter 13: Working with Split View Controllers and the Master View

Figure 13-8:
Using a

Navigation
controller in
the Master

view.

Figure 13-7:
The

Destination
is Current —

the Master
View.

330 Part IV: The Model and the App Structure

If you tap Road Trip to return to the Master view, you may notice that the
Test Drive cell stays highlighted; not to worry, you’ll fix that soon.

Adding a Gesture Recognizer
If you want to truly understand the iOS user experience, you need to understand
the importance of gestures, as I explain in Chapter 1.

UIKit includes gesture recognizers that you can use in your app. In this sec-
tion, you’ll use UIKit to add a gesture recognizer to the Main view so that
the user can swipe to the left to make the Test Drive view appear.

Adding the gesture recognizer is easy for both the iPhone and iPad. In
MasterViewController.m, add the bolded code in Listing 13-1 to
viewDidLoad.

Listing 13-1: Adding a Gesture Recognizer

- (void)viewDidLoad
{
 [super viewDidLoad];
 AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
 self.title = appDelegate.trip.destinationName;
 UIImageView* imageView = [[UIImageView alloc]
 initWithImage:[appDelegate.trip

destinationImage]];
 self.tableView.backgroundView = imageView;

_detailViewController = (DetailViewController *)
 [[self.splitViewController.viewControllers
 lastObject] topViewController];

 UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc] initWithTarget:self
 action:@selector(handleSwipeGesture:)];
 swipeGesture.direction =
 UISwipeGestureRecognizerDirectionLeft;
 [self.view addGestureRecognizer:swipeGesture];
}

UISwipeGestureRecognizer is a subclass of UIGestureRecognizer —
the abstract base class for concrete gesture-recognizer classes. The gesture
recognizer does the hard work of recognizing a specific gesture and then
sends an action message (that you specify) to the target (that you also spec-
ify) to go ahead and do something.

331 Chapter 13: Working with Split View Controllers and the Master View

In addition to UISwipeGesture, you have gesture recognizers for

 ✓ Tap: UITapGestureRecognizer

 ✓ Pinch: UIPinchGestureRecognizer

 ✓ Rotate: UIRotationGestureRecognizer

 ✓ Pan: UIPanGestureRecognizer

 ✓ Touch and hold: UILongPressGestureRecognizer

A window delivers touch events to a gesture recognizer before it delivers
them to the hit-tested view — the view where it determined the user has
touched — attached to the gesture recognizer. (Note that the gesture recog-
nizer is attached to the view and isn’t part of the responder chain.) Generally,
if a gesture recognizer doesn’t recognize its gesture, the touches are passed on
to the view. If a gesture recognizer does recognize its gesture, the remaining
touches for the view are canceled.

UISwipeGestureRecognizer is a concrete subclass of UIGesture
Recognizer that looks for swiping gestures in one or more directions.
Because a swipe is a discrete gesture, the action message is sent only once
per gesture.

UISwipeGestureRecognizer recognizes a gesture as a swipe when the
specified number of touches (numberOfTouchesRequired) have moved
mostly in an allowable direction (direction) far enough to be considered
a swipe. You can configure the UISwipeGestureRecognizer recognizer
for the number of touches (the default is 1) and the direction (the default is
right), as follows:

UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc] initWithTarget:self
 action:@selector(handleSwipeGesture:)];

Here, you create a swipe gesture with a target of self and an action of
handleSwipeGesture:. This means that when the gesture recognizer
determines it is a swipe, it will send the handleSwipeGesture: to the
MasterViewController (self in this case).

Next, because we want the user to swipe to the left to make the Test Drive
view appear, you set the direction to left from the default right, as follows:

swipeGesture.direction =

 UISwipeGestureRecognizerDirectionLeft;

To handle the swipe — in effect program the response you want to
come up with when the swipe occurs — add the code in Listing 13-2 to
MasterViewController.m.

332 Part IV: The Model and the App Structure

Listing 13-2: Adding handleSwipeGesture to MasterViewController.m

 - (IBAction)handleSwipeGesture:(id)sender {

 UIStoryboard *storyboard =
 [UIStoryboard storyboardWithName:@"Main_iPad"

 bundle:nil];
 UIViewController *viewController =
 [storyboard instantiateViewControllerWithIdentifier:

 @"TestDrive"];
 [[self navigationController]
 pushViewController:viewController

animated:YES];
}

What you do here is first find the storyboard in the bundle — in iOS (and OS
X), a bundle is a directory that appears to be a single file and contains the
executable code, resources such as images and sound, and the nib (story-
board) files.

UIStoryboard *storyboard =
 [UIStoryboard storyboardWithName:
 @"Main_iPad"
 bundle:nil];

Then the code in Listing 13-2 creates TestDriveController. This is the
same thing that the storyboard does (in the segue logic) when you tap the
Test Drive button:

UIViewController *viewController =
 [storyboard instantiateViewControllerWithIdentifier:

 @"TestDrive"];

Here’s where that identifier I told you to enter is needed. It’s the only way you
can find the view controller that you’ve configured in the storyboard.

Next, you tell the Navigation controller to push the View controller onto the
stack (note that this method also updates the Navigation bar) and have it
slide its view into place. (If the animated parameter is YES, the view is ani-
mated into position; otherwise, the view is simply displayed in place.)

[[self navigationController] pushViewController:
 viewController animated:YES];

This is what would’ve been done for you in the segue logic generated by the
storyboard.

333 Chapter 13: Working with Split View Controllers and the Master View

 Oh, and by the way — you’ve only installed the Swipe gesture in the Master
View controller. When you are in the Test Drive view, you can only go back by
using the Back (New York City) button. In designing an interface, consistency
and symmetry are good features to strive for. If you swipe into a view, maybe
you should swipe out of a view. That’s how you build powerful, intuitive, and
easy-to-learn interfaces. Unfortunately, that’s not a great way to write a book.
I want to show you as many different ways of working with Cocoa Touch as
possible. Sometimes that means swiping into a new view and getting back
out of it with a button instead of a matching swipe. Many developers like to
show off all of the features and interface elements they’ve added to their apps.
Many others (including the authors of some of the best apps) like to show off
how few features and interface elements they’ve used to build a wide swath of
functionality.

So, rather than push view controllers here, there, and everywhere, in the next
few sections, you find out how to replace one view controller with another.
And the place to start is with the Split View controller.

The Split View Controller
The UISplitViewController class is an iPad-only view controller that
simply manages the presentation of two side-by-side view controllers in
Landscape orientation — it is a container controller. It has no interface —
its job is to coordinate the presentation of its two view controllers and to
manage the transitions between different orientations.

Using this class, a view controller is created on the left, which is referred to as
the Master view (and is named that in the template), which presents a list of
items, and another view controller on the right, which presents the details, or
content, of the selected item and which is referred to as the Detail view (and
is named that in the template).

After you create and initialize a UISplitViewController object, you
assign two view controllers to it by using the viewControllers property —
an array that contains the two (and only the two) controllers. The first view
controller (index 0) is displayed on the left side (in the case of RoadTrip, the
MasterViewController), and the second view controller (index 1) is dis-
played on the right side (the RTDetailViewController).

All of this is set up for you in the storyboard (see Figure 13-9). You’ll notice
that both of the view controllers managed by the Split View controllers are
embedded in Navigation controllers, which is why when you select a cell in
the MasterViewController view, a Navigation bar appears with a Back
button (in either the Master or Detail view).

334 Part IV: The Model and the App Structure

Figure 13-9:
The Master

and Detail
View con-

trollers in the
storyboard.

As you have seen, when the iPad is in Landscape orientation, you can see
both view controllers’ views side by side. When you rotate to Portrait ori-
entation, however, the MasterViewController’s view is hidden, and
the DetailViewController displays a button in the Navigation bar that
enables you to see the MasterViewController’s view in a popover. Adding
the button is done in the UISplitViewControllerDelegate protocol
method of the template (you don’t have to do anything to implement it).
And if you look at the DetailViewController interface file, you see it has
adopted the protocol — the popover sends its delegate messages at the right
time so that the delegate can add and remove the button.

The user interface I want to show you now uses a toolbar instead of a
Navigation bar, and has the Detail View controller be responsible for man-
aging the toolbar. In fact, I’ll show you how to implement the delegate to
use either a toolbar or a Navigation bar when you choose a cell in the
MasterViewController. I’m doing both because some of the features I
want to implement (like the UIPageViewController page transitions in
the EventsController) require a Navigation bar. In addition, at some point
you may want to implement some functionality where a Navigation controller
is the right way to go. Remember my caution about using a limited number
of interface tools. This mixture of Navigation bar and toolbar is designed

335 Chapter 13: Working with Split View Controllers and the Master View

primarily to show you different ways of designing the interface; you may well
decide to choose one rather than mix them together to possibly befuddle
your users. On the other hand, remember that if your user interface makes
sense to the user, the fact that behind the scenes you’re using two different
types of objects doesn’t matter.

To start with, you’ll add a toolbar to the TestDriveController and make
TestDriveController a UISplitViewController delegate. But first I
want to explain a little more about how the UISplitViewController
delegate works.

The UISplitViewController delegate
The UISplitViewController does what you’d expect a class doing delega-
tion to do: It sends its delegate messages at the appropriate times to add and
remove the button that enables the user to display the Master View control-
ler in the popover you see in Figure 13-10. The Master button is displayed in
Portrait view until the user touches it. Then it is covered by the Master view,
which slides in from the left.

Figure 13-10:
 The Road

Trip button
that displays

the Master
view in
Portrait

orientation.

336 Part IV: The Model and the App Structure

If you look at the DetailViewController interface (DetailViewController.h)
in your project, you can see that this whole delegation business has already
been done for you. Listing 13-3 gives the details.

Listing 13-3: The RTDetailViewController Interface

#import <UIKit/UIKit.h>

@interface RTDetailViewController : UIViewController

 <UISplitViewControllerDelegate>

@property (strong, nonatomic) id detailItem;
@property (strong, nonatomic)
 IBOutlet UILabel

*detailDescriptionLabel;

@end

You see that DetailViewController adopts the UISplitViewController
Delegate protocol, and as you see in Figure 13-10, it already adds a button
to the Navigation bar when the user moves into Portrait orientation. It also
removes the button when the iPad is rotated back from Portrait to Landscape
orientation.

All you’ll need to do is modify what the UISplitViewControllerDelegate
already does and have it place the button in a toolbar or a Navigation bar, depend-
ing on which you’re using. You’ll do all of that in the DetailViewController,
and then, if you end up deriving all your view controllers (including the TestDrive
Controller you’ve already implemented) from DetailViewController, voilà,
all your view controllers will be able to add a button to the toolbar or a Navigation
bar when the iPad is in Landscape orientation, dutifully display the popover when
the user selects the button, and then remove the button when the user rotates the
iPad to Portrait orientation.

To prepare for that occurrence, you’ll start by getting rid of the “sample”
code that was included by the template to display something in the Detail
view — you won’t use the Detail View controller to actually display anything;
that will be done in the individual view controllers you’ll create to display the
Road Trip content (the weather, for example, or a map) as well as the Test
Drive controller you’ve already created.

Start by pruning two properties used by the Master View controller that you
definitely won’t need. Delete the commented out bold, underline, and italic
lines in Listing 13-4 in DetailViewController.h, and add the code in bold.
(You’ll add some properties that will be used in managing the popover.)

337 Chapter 13: Working with Split View Controllers and the Master View

Listing 13-4: Update DetailViewController.h Interface

#import <UIKit/UIKit.h>

@interface DetailViewController : UIViewController

 <UISplitViewControllerDelegate>

//@property (strong, nonatomic) id detailItem;
//@property (strong, nonatomic)
 IBOutlet UILabel

*detailDescriptionLabel;

@property (weak, nonatomic) IBOutlet UIToolbar *toolbar;
@property (weak, nonatomic)
 UIBarButtonItem

* popOverButton;
@property (strong, nonatomic)
 UIPopoverController

*masterPopoverController;
@end

I’ll explain these new properties as you use them, but it’s worth noting here that
you’re adding a toolbar as a home for the button the user will use to display the
Master View controller in Portrait orientation.

You have more things to prune in the DetailViewController implementa-
tion file. To do that, delete the commented out code in bold, underline, and
italic in Listing 13-5 from the DetailViewController.m implementation file.

Listing 13-5: Update the DetailViewController.m Implementation File

#import "DetailViewController.h"

@implementation DetailViewController

Here you’re mostly getting rid of the class extension and instance variables you
no longer need. In Listing 13-4, you also moved the masterPopoverController
property to the interface file from where it was to the implementation file. As
you’ll soon see, you had to do that because the Master View controller will
need to access the masterPopoverController property in order to dismiss
the popover after the user makes a selection in the Master View controller in
the popover.

338 Part IV: The Model and the App Structure

Finally you can delete the methods that display “content” in the Detail view —
that means the two methods in bold, underline, and italic in Listing 13-6 in
DetailViewController.m.

Listing 13-6: Delete the Unnecessary Methods

#pragma mark - Managing the detail item

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem) {
 _detailItem = newDetailItem;

 // Update the view.
 [self configureView];
 }

 if (self.masterPopoverController != nil) {
 [self.masterPopoverController
 dismissPopoverAnimated:YES];
 }
}

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text =
 [self.detailItem description];
 }
}

You’ll need to delete the message sent to configure the view. In DetailView
Controller.m, delete the commented out code in bold, underline, and italic
in viewDidLoad, as shown in Listing 13-7.

Listing 13-7: Delete the Unnecessary Code in viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
// Do any additional setup after loading the view,

typically from a nib.
// [self configureView];
}

Now, I look at how the delegate mechanism works and how the button is added
when the iPad is rotated from Landscape to Portrait orientation and then
removed when it is rotated back. In DetailViewController.m, the code in

339 Chapter 13: Working with Split View Controllers and the Master View

this template already does what you need to do to display the kind of popover
I just explained. It does so by implementing two UISplitViewController
delegate methods:

splitViewController:willHideViewController:

 withBarButtonItem:forPopoverController:

and

splitViewController:willShowViewController:

 invalidatingBarButtonItem:

The first of these methods is invoked when the Split View controller rotates
from a Landscape to Portrait orientation and hides the Master View control-
ler. When that happens, the Split View controller sends a message to add a
button to the Navigation bar (or toolbar) of the Detail View controller. If you
look in Listing 13-8, this is how it works in DetailViewController.m:

Listing 13-8: Adding the Button

- (void)splitViewController:
 (UISplitViewController *)splitController
 willHideViewController:
 (UIViewController

*)viewController
 withBarButtonItem:
 (UIBarButtonItem

*)barButtonItem
 forPopoverController:
 (UIPopoverController *)popoverController
{
 barButtonItem.title =
 NSLocalizedString(@"Master", @"Master");
 [self.navigationItem setLeftBarButtonItem:
 barButtonItem animated:YES];
 self.masterPopoverController = popoverController;
}

In this method, you are passed a button that you can use to display the pop-
over. This is no ordinary button, however; its target is a selector implemented
for you that can display the popover. The way the app works now, only one
view controller displays a popover — but in the final version of the RoadTrip
app, all the view controllers will be able to display a popover, so you’ll need to
pass that button to the view controller that’s replacing the current one.

You’ll notice the presence of NSLocalizedString in Listing 13-8. NSLocalized
String is a macro that can be used to localize the text you display. And because I
let the term localize drop here, I might as well explain about localization.

340 Part IV: The Model and the App Structure

Localization
When you localize an app, you display the text the user sees on the screen in
the user’s preferred language (and even a language-specific image).

Localizing an app isn’t difficult, just tedious. To localize your app, you create
a folder in your application bundle (I’ll get to that) for each language you
want to support. Each folder has the app’s translated resources.

For example, if the user’s language is Spanish, available regions range from Spain
to Argentina to the United States and lots of places in between. When a localized
app needs to load a resource (such as an image, property list, or nib), the app
checks the user’s language and region and looks for a localization folder that cor-
responds to the selected language and region. If it finds one, it loads the localized
version of the resource instead of the base version — the one you’re working in.

Looking up such values in the table is handled by the NSLocalizedString
macro in your code.

As you can see, the text Master button will change based on the user’s pre-
ferred language.

barButtonItem.title =
 NSLocalizedString(@"Master", @"Master");

The macro has two inputs. The first key to an associated string value,
and the second is the general comment for the translator. At runtime,
NSLocalizedString looks for a strings file named localizable.
strings in the language that has been set: Spanish, for example. (A user
would’ve done that by going to Settings and selecting General➪Internatio
nal➪Language➪Español.) If NSLocalizedString finds the strings file,
it searches the file for a line that matches the first parameter. If the macro
doesn’t find the file or a specified string, it returns its first parameter — and
the string will appear in the base language.

To create the localizable.strings file, you run a command-line program
named genstrings, which searches your code files for the macro and places
them all in a localizable.strings file (which it creates), ready for the
(human) translator. genstrings is beyond the scope of this book, but it’s
well documented. When you’re ready, I leave you to explore it on your own.

Back to the main feature
After absorbing that little localization detour, you then add the longed-for
button to the Navigation bar:

 [self.navigationItem setLeftBarButtonItem:
 barButtonItem animated:YES];

341 Chapter 13: Working with Split View Controllers and the Master View

Passing in YES to animated animates the adding of the button. Specifying NO
sets the item immediately, without animating the change. In this case, it really
makes no difference.

Finally, you save a reference to the popover controller that you’ll dismiss
when the user makes a selection:

 self.masterPopoverController = popoverController;

As I said, when the user selects a new view in the popover, you’ll need to pass this
button on to the new view controller so it can display it as well. (You’ll do that
later in this chapter in a method called prepareForSegue: in Listing 13-15.) In
addition, as I explained, you’ll also use toolbars in addition to Navigation bars to
display the button; adding the button to a toolbar is done differently than adding
it to the Navigation bar. To do that, enter the code in bold in Listing 13-9 and
delete the bold, underline, and italic code in DetailViewController.m.

Listing 13-9: Extending the splitViewController: willHideViewController:
withBarButtonItem:forPopoverController:

- (void)splitViewController:
 (UISplitViewController *)splitController
 willHideViewController:
 (UIViewController

*)viewController
 withBarButtonItem:
 (UIBarButtonItem

*)barButtonItem
 forPopoverController:
 (UIPopoverController

*)popoverController
{
// barButtonItem.title = NSLocalizedString(@"Master",

@"Master");
 barButtonItem.title =
 NSLocalizedString(@"Road Trip", @"Road Trip");
 if ([[self.splitViewController.viewControllers

lastObject]
isKindOfClass:[UINavigationController class]])

 [self.navigationItem
 setLeftBarButtonItem:barButtonItem

animated:YES];
 else {
 NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
 [itemsArray insertObject:barButtonItem atIndex:0];
 [self.toolbar setItems:itemsArray animated:YES];
 }
 self.masterPopoverController = popoverController;
 self.popOverButton = barButtonItem;
}

342 Part IV: The Model and the App Structure

Listing 13-9 starts off by changing the title of the button from Master to Road
Trip — I think it’s less ominous-sounding and more descriptive — indicating
the view controller that you’d see if you tap the button:

//barButtonItem.title =
 NSLocalizedString(@"Master", @"Master");
 barButtonItem.title =
 NSLocalizedString(@"Road trip", @"Road

Trip");

You then check to see whether you’re dealing with a Navigation bar or toolbar.

 if ([[self.splitViewController.viewControllers
lastObject]
isKindOfClass:[UINavigationController class]])

As I mention earlier, the Split View controller manages two view controllers, with
the last one in its list of controllers corresponding to what’s displayed in the
Detail view. You check if the Detail View controller is embedded in a Navigation
controller by sending it the isKindOfClass: message. This method returns a
Boolean indicating whether it is, in this case, a UINavigationController.

As you know, classes in Objective-C are first-class objects in and of them-
selves, so you can use a class method to determine what class something is.
This method is defined in the NSObject class, from which all your classes
are (ultimately) derived.

If you’re dealing with a Navigation controller, you do what you’ve already
been doing and set the left bar button.

[self.navigationItem
 setLeftBarButtonItem:barButtonItem

animated:YES];

If you’re not dealing with a Navigation controller, you go through some similar
logic to add the button to the toolbar.

NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
[itemsArray insertObject:barButtonItem atIndex:0];
[self.toolbar setItems:itemsArray animated:NO];

On a toolbar, the buttons are specified in the items property as an array. So
you make a copy of the array and add the button you’re passed to the top of
the array. The items — instances of UIBarButtonItem — are shown on the
toolbar in the order they appear in this array. You then take that array and
assign it as the items property.

You’ll notice that you first make a copy of the toolbar items, insert the
button, and then assign the items property. You do it this way because
there may be other buttons on the toolbar that you’ll want to keep there.

343 Chapter 13: Working with Split View Controllers and the Master View

Then you save a reference to the button that you’ll use later.

 self.popOverButton = barButtonItem;

The second of the delegate methods is invoked when the view controller
rotates from Portrait to Landscape orientation and the “hidden” Master View
controller is displayed.

When the iPad is rotated back to Landscape orientation, the splitViewCon
troller:willShowViewController:invalidatingBarButtonItem:
message is sent.

If you added the button to your toolbar to allow the user to display the
Master View controller in a popover, you remove the button in the splitVi
ewController:willShowViewController:invalidatingBarButton
Item: method. Listing 13-10 shows how splitViewController:willSh
owViewController:invalidatingBarButtonItem: is currently imple-
mented in DetailViewController.m:.

Listing 13-10: splitViewController:willShowViewController:
invalidatingBarButtonItem:

- (void)splitViewController:
 (UISplitViewController *)splitController

willShowViewController:
 (UIViewController *)viewController

invalidatingBarButtonItem:
 (UIBarButtonItem *)barButtonItem
{
 // Called when the view is shown again in the split

view, invalidating the button and popover
controller.

 [self.navigationItem
 setLeftBarButtonItem:nil animated:YES];
 self.masterPopoverController = nil;
}

This method as implemented sets the leftBarButtonItem and the master
PopoverController (the reference to the popover controller) to nil.

Here you’ve simply reversed what you did earlier — you’ve removed the button
from the toolbar and set the self.popoverController property to nil.

As with the splitViewController:willHideViewController:withBa
rButtonItem: forPopoverController: method, you’ll now have to deal
with both a toolbar and a Navigation controller. So add the code in bold in
Listing 13-11 to splitViewController:willShowViewController:inva
lidatingBarButtonItem: in DetailViewController.m.

344 Part IV: The Model and the App Structure

Listing 13-11: Update splitViewController:willShowViewController:
invalidatingBarButtonItem:

- (void)splitViewController:
 (UISplitViewController *)splitController

willShowViewController:
 (UIViewController *)viewController

invalidatingBarButtonItem:
 (UIBarButtonItem *)barButtonItem
{
 if
 ([[self.splitViewController.viewControllers

lastObject]
 isKindOfClass:[UINavigationController

class]])
 [self.navigationItem setLeftBarButtonItem:nil
 animated:YES];
 else {
 NSMutableArray *itemsArray =
 [self.toolbar.items

mutableCopy];
 [itemsArray removeObject:barButtonItem];
 [self.toolbar setItems:itemsArray animated:YES];
 }
 self.popOverButton = nil;
 self.masterPopoverController = nil;
}

The logic here determines whether it’s a Navigation controller or a toolbar,
with managing the toolbar identical to what you did in Listing 13-9, when you
extended the splitViewController:willHideViewController: with
BarButtonItem:forPopoverController: method.

While you have the button saved, you still need to transfer the button — and
have it displayed — when the user taps the Road Trip button and selects
an entry (Weather, for example) that results in a new view controller being
instantiated to display its view.

The display part will be done in the viewDidLoad method of the new controller.

Currently, the viewDidLoad method does nothing but send its superclass the
same viewDidLoad message (you removed the configureView message in
Listing 13-7).

- (void)viewDidLoad
{
 [super viewDidLoad];
// Do any additional setup after loading the view,

typically from a nib.
}

345 Chapter 13: Working with Split View Controllers and the Master View

Add the code in bold in Listing 13-12 to viewDidLoad in DetailView
Controller.m.

Listing 13-12: Update viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];

 if (self.popOverButton) {
 if ([[self.splitViewController.viewControllers
 lastObject]
 isKindOfClass:[UINavigationController class]])
 {
 [self.navigationItem

setLeftBarButtonItem:self.popOverButton
 animated:YES];
 }
 else {
 NSMutableArray *itemsArray =
 [self.toolbar.items

mutableCopy];
 [itemsArray
 insertObject:self.popOverButton

atIndex:0];
 [self.toolbar setItems:itemsArray animated:NO];
 }
 }
}

When the view is loaded, it’s checked to see whether it contains a popover
button. If it does, it simply uses the same logic you see in splitView
Controller: willHideViewController:withBarButtonItem:forPo
poverController: (Listing 13-9) using the button that you saved in split
ViewController:willHideViewController: withBarButtonItem:f
orPopoverController: in the popOverButton property.

Finally, you can add what you’ve done to the TestDriveController. Update
the TestDriveController.h interface to make the TestDrive Controller
a subclass of the DetailViewController by deleting the commented out
bold, underline, and italic code and adding the bolded code in Listing 13-13.

Listing 13-13: Update the TestDriveController.h Interface

#import <UIKit/UIKit.h>
#import "DetailViewController.h"

//@interface TestDriveController : UIViewController
@interface TestDriveController : DetailViewController

@end

346 Part IV: The Model and the App Structure

Adding the Toolbar
Finally, to eliminate the Navigation controller in the Detail view and set it up
so that you always see the button to display the Master view in a popover
(Road Trip, in this case), you’ll need to add the toolbar to the Test Drive
controller in the storyboard and create an outlet to the toolbar. The outlet
is needed to be able to add and remove the Road Trip button (and other but-
tons you’ll add along the way).

Follow these steps to add the toolbar that supports the RoadTrip button
(needed by the popover) to the Test Drive controller.

 1. In the Project navigator, select Main_iPad.storyboard, and in the View
selector, display the Utility area.

 2. Select the segue from the Master View controller (it is really from the
Table View cell, but you can’t see that) to the Test Drive controller in
the Canvas to display it in the Attributes inspector.

 Optionally, you could select Push Segue from Table View Cell to
TestDrive in the Master View Controller – Master Scene in the Document
Outline.

 If the Attributes inspector isn’t visible, select it in the Inspector selector.

 3. In the Attributes inspector, choose Replace from the Style drop-down
menu, choose Detail Split from the Destination drop-down menu, and
enter TestDrive in the Identifier field, as I have in Figure 13-11.

 You’ll notice that doing so resizes the view so it can display in the Detail
view. That means Test Drive will no longer be displayed in the Master
view. If you really want Test Drive to still display in the Master view, you
can take that on as your personal exercise.

 4. In the Document Outline (or in the Canvas — as you can see you can
use either), select the SeeTheUSA Image View in Test Drive Controller –
TestDrive Scene.

 5. Pin the image view to the edges of the screen with Editor➪Pin using
these four subcommands: Leading Space to Superview, Trailing
Space to Superview, Top Space to Superview, and Bottom Space to
Superview.

 6. Drag in a toolbar from the Library in the Utility area and delete the Item
button (it’s included in the toolbar by default), as I have in Figure 13-12.

 In the Library, the toolbar item is way down at the bottom of the gallery.
Don’t confuse the toolbar item with a Navigation bar.

 You’re getting there, but now you’ll need to connect the toolbar to the
outlet in the DetailViewController base class.

347 Chapter 13: Working with Split View Controllers and the Master View

Figure 13-12:
The new

toolbar.

Figure 13-11:
Update the

segue.

348 Part IV: The Model and the App Structure

 7. Select the Test Drive controller in the Document Outline and open the
Connections inspector.

 You’d open the Connections inspector as you’d open any inspector: by
clicking its icon in the Inspector selector.

 8. In the Connections inspector, drag from the Toolbar outlet to the tool-
bar on the canvas, as I have in Figure 13-13.

 You may remember that you added the Toolbar outlet to the Detail
ViewController base class in Listing 13-4.

Because you deleted the DetailViewController’s detailDescription
Label outlet in Listing 13-4, you’ll have to delete it in the storyboard as
well. (If you don’t, you get a runtime error. Just Control-click the Detail View
controller entry in the Document Outline to open the Connections window,
as I have in Figure 13-14.) You’ll see a yellow warning triangle next to the
detailDescriptionLabel line in the Outlets section of the window. Simply
delete that outlet by clicking the x in front of the Label – Detail view
content goes here line.

Because you’ve added the toolbar, you’ll have to change the math controlling
the route your car takes in the TestDriveController.

Update the TestDriveController’s testDrive: method in TestDrive
Controller.m with the code in bold in Listing 13-14.

Figure 13-13:
Set the tool-

bar outlet.

349 Chapter 13: Working with Split View Controllers and the Master View

Figure 13-14:
An unused

outlet.

Listing 13-14: Take the Toolbar into Account

- (IBAction)testDrive:(id)sender {

 AudioServicesPlaySystemSound(burnRubberSoundID);
 [self performSelector:@selector(playCarSound)
 withObject:self afterDelay:.2];

 CGPoint center = CGPointMake(car.center.x,

self.view.frame.origin.y +
car.frame.size.height/2
+ self.toolbar.frame.size.height);

 void (^animation)() = ^(){

 car.center = center;
 };

 void (^completion)(BOOL) = ^(BOOL finished){
 [self rotate];
 };

 [UIView animateWithDuration:3 animations:animation
 completion:completion];
}

350 Part IV: The Model and the App Structure

Adding the button when the view
controller is replaced
While all of this gets you close to wrapping up the whole toolbar business,
you still need to do one more important thing — and a couple of minor
things. The first of these — the important one — I cover in this section.
Because you’re replacing the view controller with a new one — albeit one
from the same base class — the new view controller has no access to the
button it needs to display or the popover it needs to dismiss. Fortunately, the
folks at Apple provide a perfect place to do that.

When a segue is triggered — which you do when you tap a Table entry —
but before the new controller slides its view into place, the storyboard
runtime calls the current view controller’s method so that it can pass data
to the view controller that’s about to be displayed. That means that you can
pass the button information on to the new view controller before it even
gets launched. Then, prepareForSegue:sender:, the method you over-
ride in Listing 13-15, will both assign the button to be used in viewDidLoad
(Listing 13-12) and (if necessary) dismiss the view controller as well.

 prepareForSegue:sender: is a view controller method that notifies a view
controller that a segue is about to be performed. segue is the UIStoryboard
Segue object, and it contains information about the view controllers involved
in the segue.

Although default implementation of this method does nothing, UIView
Controller subclasses can override it and pass data to the view controller
that’s about to be displayed. The segue object has properties that point
to the source view controller as well as the destination view controller. The
segue is the only object that simultaneously knows about both the source
and the destination view controllers.

sender is the object that caused the segue, but you won’t need to use it here.

You add the code to the prepareForSegue:sender: method to make the
DestinationController the UISplitViewController delegate and
assign the popOverButton and masterPopoverController properties.

You’ll also dismiss the popover when it’s present so the user doesn’t have to
touch in the view to get rid of it.

To do all that, add the code in Listing 13-15 to MasterViewController.m.

351 Chapter 13: Working with Split View Controllers and the Master View

Listing 13-15: Overriding prepareForSegue:sender:

- (void)prepareForSegue:
 (UIStoryboardSegue *)segue sender:(id)sender
 {
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad)
 {
 DetailViewController *currentDetailViewController;
 if ([[self.splitViewController.viewControllers
 lastObject]

isKindOfClass:[UINavigationController class]])
 currentDetailViewController =
 (DetailViewController *) ((UINavigationController

*)
 [self.splitViewController.viewControllers

 lastObject]).topViewController;
 else
 currentDetailViewController =

[self.splitViewController.viewControllers

 lastObject];
 if(currentDetailViewController.masterPopover

 Controller
 != nil)

 [currentDetailViewController.masterPopover
 Controller

 dismissPopoverAnimated:YES];

 DetailViewController

 *destinationDetailViewController;

 if ([segue.destinationViewController

isKindOfClass:[UINavigationController class]])
 destinationDetailViewController =
 (DetailViewController *)
 ((UINavigationController *)

 segue.destinationViewController).topViewController;
 else
 destinationDetailViewController =

 segue.destinationViewController;
 self.splitViewController.delegate =
 destinationDetailViewController;
 destinationDetailViewController.popOverButton =

(continued)

352 Part IV: The Model and the App Structure

Listing 13-15 (continued)
 currentDetailViewController.popOverButton;
 destinationDetailViewController.
 masterPopoverController

=
 currentDetailViewController.masterPopoverController;
 }
}

You start by finding the current Detail View controller because it has the
button and popover properties the new view controller needs.

This code appears more complicated than it is. You use the very same
logic you used earlier (say, in Listing 13-8) to decide whether you’re faced
with a Navigation bar or toolbar. That means I first check to see whether
I’m running on an iPad. If I am, I get the current Detail View controller by
accessing the list of view controllers in the splitViewController’s
viewController array. Fortunately, the UIViewController class has a
splitViewController property to make that easy for me.

I then check to see whether a Navigation controller is in the viewControllers
array and, if one is there, I get the Navigation controller’s topViewController
(the current view controller); if not, I simply use the controller in the array.
(You’ll notice a whole lot of casting going on here; I leave it to you to work your
way through it.)

if ([[self.splitViewController.viewControllers
lastObject]

 isKindOfClass:[UINavigationController
class]])

 currentDetailViewController =
 (RTDetailViewController *)((UINavigationController *)
 [self.splitViewController.viewControllers

 lastObject]).topViewController;
 else
 currentDetailViewController =

[self.splitViewController.viewControllers
 lastObject];

Next, if I see a popover, I want to dismiss it. I check to see whether a popover
controller (that’s why you had to make the masterPopoverController
property accessible by moving it into the header file in Listing 13-4) is cur-
rently there, and if I see one, I dismiss it.

if (currentDetailViewController.masterPopoverController
 != nil)
 [currentDetailViewController.masterPopoverController

 dismissPopoverAnimated:YES];

353 Chapter 13: Working with Split View Controllers and the Master View

Next, I find the new destination controller (the one being transitioned to)
using logic similar to the logic I used to find the current Detail View controller.

if ([segue.destinationViewController
isKindOfClass:[UINavigationController class]])

destinationDetailViewController =
 (DetailViewController *)((UINavigationController *)

 segue.destinationViewController).topViewController;
else
 destinationDetailViewController =
 segue.destinationViewController;

Then I simply set the Split View Controller delegate to the new view control-
ler, so it will get the splitViewController:willHideViewController:
withBarButtonItem:forPopoverController: and splitViewCont
roller:willShowViewController:invalidatingBarButtonItem:
messages.

self.splitViewController.delegate =

 destinationDetailViewController;

Finally, I assign the popOverButton and masterPopoverController
properties in the new view controller.

destinationDetailViewController.popOverButton =
currentDetailViewController.popOverButton;

destinationDetailViewController.masterPopoverController =

 currentDetailViewController.masterPopoverController;

Admittedly, this just dismisses the popover and assigns the properties,
but doesn’t do anything to display the button. That actually gets done in
viewDidLoad — which you added earlier in Listing 13-12.

 You also can specify the size of the popover window by assigning a value to
the preferredContentSize property. You should be aware that the actual
size may be reduced so that the popover fits on the screen and that the pop-
over does not overlap a keyboard when a keyboard is presented. You can see
the code that does that in the MasterViewController’s awakeFromNib
method.

- (void)awakeFromNib
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad)

{
 self.clearsSelectionOnViewWillAppear = NO;

354 Part IV: The Model and the App Structure

 self.preferredContentSize =
 CGSizeMake(320.0, 600.0);
 }
 [super awakeFromNib];
}

The awakeFromNib message is sent to an object that has been instantiated
from the storyboard after all the objects have been loaded and initialized.
When the message is sent, all its outlet and action connections have been set.

If you decide to ignore the advice in this section and don’t dismiss the popover
controller, taps outside the popover window will cause the popover to be dis-
missed. You can, however, allow the user to interact with the specified views
and not dismiss the popover, using the passthroughViews property (although
you won’t be doing that here). You’d then have to dismiss the popover yourself.

A Few More Tweaks to the
MasterViewController

You’re almost, but not quite, done. Right now, when you make a selection in the
Table view, it stays highlighted. To fix that, you’ll need to implement a Table
view method tableView:didSelectRowAtIndexPath:. Add the method in
Listing 13-16 to MasterViewController.m to unhighlight a selected cell.

Listing 13-16: Deselect the Cell

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
 {

 [tableView deselectRowAtIndexPath:indexPath

 animated:YES];
}

This is a Table View Delegate method that is invoked when the user selects a
cell. Normally, you’d launch a view controller here or do something else.
(I explain more about this method and other Table View Delegate and Data Source
methods in Chapter 20.) But because you’re using a segue, the only thing you
need to do is deselect the cell that was tapped, which will remove the highlight.

A partner in crime here is the self.clearsSelectionOnViewWill
Appear = NO; statement you see in the MasterViewController’s
awakeFromNib method I mention in the previous section. If that were set to
YES, a highlighted selection wouldn’t stay highlighted when a view appeared.
I have you deselect it here so you begin to get a feel of how things are con-
nected in a Table view — and that I explain in detail in Chapter 20.

355 Chapter 13: Working with Split View Controllers and the Master View

And (a Little Extra) One More Thing
Although tapping the Test Drive cell now replaces the Detail View controller
with the Test Drive controller, the gesture recognizer still works. The only
problem with it is that now you have both a Navigation bar and a toolbar.

To fix that, you’ll need to duplicate the Test Drive controller in the story-
board (select it and then choose Edit➪Duplicate from the main menu) and
give it a different identifier (TestDriveNavigation, for example). Remove
the toolbar and change the image view origin and size in the Size inspector
back to where it was when you started this chapter (origin of x = 0, y = 0,
and height of 1004 — the change in height has to do with the fact that this is
now just a view controller without any segues that influence the size). Then
change handleSwipeGesture in Listing 13-2 to instantiate the new view
controller in MasterViewController.m.

Delete

UIViewController *viewController =
 [storyboard instantiateViewControllerWithIdentifier:

 @"TestDrive"];

and replace it with

UIViewController *viewController =
 [storyboard instantiateViewControllerWithIdentifier:

 @"TestDriveNavigation"];

You should also add the following to TestDriveController to keep the
popover the right size in Portrait orientation:

- (void)awakeFromNib
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 self.preferredContentSize =
 CGSizeMake(320.0, 600.0);
 }
 [super awakeFromNib];
}

Well, that concludes your long and winding tour of Split View controllers.
Although it may have been a bit arduous, at this point you have a firm under-
standing of how Split views and popovers work together — one that you can
apply to whatever you want to do in your own app.

356 Part IV: The Model and the App Structure

Before you do that, however, you’ll want to complete the storyboard so you
can start adding features and functionality to RoadTrip (besides the Test
Drive functionality). You’ll also want to change the Detail view that appears
when you launch the RoadTrip app.

Don’t Forget the iPhone
This chapter was primarily about how to handle the Split View controller
used in the iPad user interface. The iPhone doesn’t use a Split view, but it
does use the TestDriveController. In the last section of this chapter, you
added another TestDriveController scene to the iPad storyboard with a
TestDriveNaviagtion identifier. This second scene does not need a tool-
bar, because it is launched with a swipe gesture.

Well, you need that same "toolbarless" scene for using swipe gestures on the
iPhone. In fact, the handleSwipeGesture: method shown in Listing 13-2
still works fine on the iPhone, so you don’t have to do any extra work. It’s a bit
odd, because it uses part of the iPad storyboard on the iPhone, but it works.

Chapter 14

Finishing the Basic
App Structure

In This Chapter
▶ Laying out the basic app structure in the storyboard

▶ Adding and formatting the rest of the view controllers for the RoadTrip app

▶ Creating the segues

▶ Adding a gesture recognizer to the Content controller

I
n earlier chapters, I’ve waxed poetic about storyboards but I haven’t
really (completely) shown you why I find them so appealing. Now it’s time

for you to experience the reason yourself.

As I say earlier in the book, the storyboard is basically about working with
view controllers. You might imagine yourself laying out your storyboard at
the beginning of app development, and, in fact, that is how many develop-
ers begin. Just as with storyboards for movies, commercials, and games, a
storyboard for an app can be understood and discussed by a wide range of
people. Developers can recognize the Cocoa Touch components it will use,
but potential users, backers, graphic designers, and others can also relate to
the simplicity of a storyboard.

Many developers do start with a storyboard, but they often only start with
the basics. In an iterative process, they implement the functionality of the
basic storyboard and then add another layer of storyboarding and then
implement that functionality. This type of iterative development can be very
productive because you test each step of the way.

What it does mean, though, is that your storyboard isn’t fully designed until
you reach the end of app development. How you develop your app is up to
you. Do what makes sense to you and don’t think that there’s a single “right”
way to develop your app and your storyboards. (Of course, if you are work-
ing on a development team, there may be a single “right” way to keep every-
one on the same page.)

358 Part IV: The Model and the App Structure

In this chapter, I show you how to extend your storyboard to lay out the flow,
or the user experience architecture, of most of your app — or at least the big
pieces of the app, such as the structure for the user to find out the weather
forecast for the destination, find events that are happening at the destination,
bring up a map, and find a location on a map.

I start by explaining the Weather view controller and then have you move
on to complete most of the rest of the view controllers. I also have you
replace the Detail View controller that’s now displayed at app launch with the
Weather controller.

Extending the iPad Storyboard to Add
More Functionality to Your App

 You start the day’s work by selecting Main_iPad.storyboard in the Project
navigator and showing the Utility area by selecting its icon in the Xcode
toolbar’s View selector. Next, hide the Project navigator by deselecting it in
the Xcode toolbar’s View selector (remember, as I explain in Chapter 2, it’s a
toggle). Doing so gives you a little more real estate onscreen. (If you have an
extra-large monitor, though, you can keep the Project navigator open.)

 Continuing with your prep work, go ahead and select the Attributes inspec-
tor in the Inspector selector bar in the Utility area. Close all the disclosure
triangles in the Document Outline to give you a little more room to work in.

Adding the Weather view controller
Here’s where the rubber meets the road. To add the Weather view controller —
complete with a web view for displaying the weather — you need to do the
following:

 1. Select Objects in the Utility area’s Library pane and then select a
view controller from the pane and drag it onto your storyboard (see
Figure 14-1).

 A new scene is created. (If you’re a bit hazy on how storyboards work,
check out Chapter 5.)

 2. Select the new view controller on the storyboard.

 Doing so reveals its attributes in the (already opened) Attributes
inspector.

359 Chapter 14: Finishing the Basic App Structure

Figure 14-1:
Drag in
a view

controller.

 3. In the View Controller section of the Attributes inspector, enter
Weather in the Title field, as shown in Figure 14-2. Also enter Weather
in the Storyboard ID field in the Identity inspector.

 Be sure to press Return when entering text in a text field in the
Attributes inspector.

 The field in the storyboard isn’t updated until you press Return, or
sometimes until you click in another field in that inspector.

 Adding an identifier isn’t a requirement, but it’s a good habit to get into.
For example, you used an identifier in the handleSwipeGesture:
method in Chapter 13, and you’ll need the Weather identifier in
prepareForSegue later in this book to pass some data to the
Destination Controller. As for the Title field, giving anything a title
always makes it easier to figure out what’s what in the storyboard.

 4. Drag a toolbar from the Utility area’s Library pane and position it at
the top of the view.

 5. Delete the Item button (the button that comes by default with the tool-
bar when you drag it in from the Library) as shown in Figure 14-3.

 You did the very same thing for the toolbar you added to the
TestDriveController in Chapter 13.

360 Part IV: The Model and the App Structure

Figure 14-2:
Set the

title and
identifier.

Figure 14-3:
Add the
toolbar.

361 Chapter 14: Finishing the Basic App Structure

 6. Select the Weather cell in the Master View controller (it’s there
under the Table View heading) and Control-drag from there to View
Controller – Weather Scene, as shown in Figure 14-4.

 You can do this either in the canvas or in the Document Outline or both,
as you see in Figure 14-4. You may also want to rearrange the canvas so
that your new view controller is near the Weather cell while you draw
the connection.

 If you haven’t done so already, as you work through the cells in the
Master View Controller, add an Xcode-specific label to the Table View
Cell for each one. It makes your life a lot easier.

 7. Select Replace from the Selection Segue pop-up menu that appears, as
shown in Figure 14-5.

 As I explain in Chapter 5, you use a segue whenever you want to create
a transition from one view controller to another. A segue performs the
visual transition between two view controllers and supports push (navi-
gation), modal, and custom transitions. All you have to do (as you just
saw) is Control-drag from a button or Table View cell to the view control-
ler you want to be displayed.

Figure 14-4:
Drag from

the Weather
cell to the
view con-

troller in the
Document

Outline.

362 Part IV: The Model and the App Structure

 A push segue causes the new view controller (with a Back button) to
slide into place when the user taps a button; the Navigation bar items
are updated appropriately. (See Chapter 5 for more about adding a
Navigation controller.)

 In contrast to a push segue, a modal segue presents the view controller
modally, with the transition style you specify, and requires the user to
do something (tap Save or Cancel, for example) to get back to the previ-
ous view controller. (This requirement that the user do something is the
modal part of a modal segue.) Segues support the standard visual transi-
tion styles, such as Cover Vertical, Flip Horizontal, Cross Dissolve, and
Partial Curl.

 In addition, segue objects are used to prepare for the transition from
one view controller to another. Segue objects contain information about
the view controllers involved in a transition. When a segue is triggered,
but before the visual transition occurs, the storyboard runtime calls the
current view controller’s prepareForSegue:sender: method so that
it can pass any needed data to the view controller that’s about to be
displayed.

 A Replace segue causes the existing view controller to be replaced by a
new one.

 You’ll notice that the view resizes itself. It defaults to a Destination that’s
the same as the originating view. You’ll need to fix that. (The Destination
here is the Master view.)

Figure 14-5:
Creating

a Replace
segue.

363 Chapter 14: Finishing the Basic App Structure

 8. Select the segue on the storyboard Canvas or in the Document Outline
and, back in the Attributes inspector, make sure that Replace appears
in the Style menu in the Attribute inspector; then enter Weather in the
Identifier field and press Return.

 Again, you won’t always use the identifier, but it’s good practice to name
it so that you can identify it, as shown in Figure 14-6.

 9. If necessary, choose Detail Split from the Destination drop-down
menu.

 Notice that the segue is selected in the Document Outline as well as on
the Canvas (it turns from gray to white), and the view controller has
resized its view.

 10. Select the Table View cell containing the Weather label in either the
Canvas or the Document Outline and, in the Attributes inspector’s
Accessory field, make sure that the Accessory has been set to None.

In the rest of this section, I show you how to add the rest of the scenes you
need in your storyboard for the RoadTrip app. Some other view controllers in
the storyboard aren’t launched by segues, and you’ll add those as needed.

Figure 14-6:
Setting the

destination.

364 Part IV: The Model and the App Structure

Adding the Events controller
The next view controller I have you add is the Events controller, which
will display events that you might be interested in at your destination.
Interestingly enough, as you’ll find in Chapter 16, for the Events controller
to work properly, you’ll need to have it embedded in a Navigation controller.
Fortunately, you have that covered because the work you did in Chapter 13
enables you to handle either a Navigation controller or a toolbar in the Detail
View controller’s UISplitViewControllerDelegate delegate methods.

To add an Events controller, do the following:

 1. Select a new view controller from the Objects section of the Library
pane and drag it onto your storyboard.

 2. In the Attributes inspector, enter Events in the view controller’s Title
field, as well as in the Identity inspector’s Storyboard ID field.

 3. With the new Events view controller selected, choose Editor➪Embed
In➪Navigation Controller from the main menu, as shown in Figure 14-7.

 A navigation controller scene is added to your storyboard, along with
something called a Relationship from UINavigationController to
View Controller. The navigator and related Events view controller
are linked by the relationship, but, at this time, they have no other con-
nections to other view controllers.

Figure 14-7:
Embedding
the Events

controller in
a Navigation

controller.

365 Chapter 14: Finishing the Basic App Structure

 4. Select the Navigation controller in the canvas, and in the Attributes
inspector, enter EventsNavigation in the Title field as well as in the
Identity inspector’s Storyboard ID field for the Navigation controller
so you can find it for the next step.

 You can see in Figure 14-8 that, in the Document Outline and on the Canvas,
the Navigation controller is now identified as EventsNavigation.

 Now you’ll want to create a segue from the Events cell to the Navigation
controller.

 5. In the Document Outline, select the Events cell in the Master View
controller (it’s there under the TableView Section – At My Destination
under the Table View heading) and Control-drag to the Navigation
controller you just added — the one in which you embedded the
Events controller and named in Step 4.

 You can see all the action in Figure 14-9. Note that you may need to rear-
range things to connect the table cell to the view controller. After con-
nection is made, you can rearrange things.

 I find it is easier to do this from the Document Outline.

Figure 14-8:
Naming the
Navigation
controller.

366 Part IV: The Model and the App Structure

Figure 14-9:
Drag from
the Events
cell to the

Navigation
control-

ler within
which the

Events
controller is
embedded.

 6. Select Replace from the Storyboard Segues pop-up menu that appears.

 For iPhone, you will use Push rather than Replace.

 7. Select the segue on the Canvas and, in the Attributes inspector,
enter Events in the Identifier field and choose Detail Split from the
Destination drop-down menu.

 Your storyboard should look like Figure 14-10 when you’re done.
Figure 14-10 also shows the segue you created in the Attributes
inspector. (Note that for iPhone, you will use a Push segue and not
use Detail Split.)

 8. Select the Events Table View cell, and in the Attributes inspector’s
Accessory field, make sure the Accessory has been set to None.

367 Chapter 14: Finishing the Basic App Structure

Figure 14-10:
The story-

board thus
far with a
Weather

controller,
an Events

control-
ler, and a

Navigation
controller.

Adding the remaining controllers
The remaining controllers will be added in pretty much the same way, with a
little twist when it comes to the Destination controller.

 1. Repeat the steps that you went through when you added the Weather
controller to the storyboard in the earlier section “Adding the
Weather view controller” to add the Map controller. Be sure to enter
Map in the view controller’s Title and Identifier fields. Enter Map in
the segue Identifier as well.

 2. Add the Find controller by repeating Steps 1–5 you followed to add the
Weather controller to the storyboard in the earlier section “Adding the
Weather view controller.” Enter Find in the view controller’s Title and
Identifier fields, respectively.

 You won’t be using a segue for the Find controller. I’ll show you a differ-
ent way to launch a view controller in Chapter 20.

368 Part IV: The Model and the App Structure

 3. Add the Destination controller by repeating Steps 1–3 and 6–10 (don’t
add a toolbar) that you followed when adding the Weather controller
to the storyboard in the earlier section “Adding the Weather view con-
troller.” Enter Destination in the view controller’s Title and Identifier
fields, respectively.

 4. For the Destination controller, in Step 7, create a segue but make
it modal. Select the segue and, in the Attributes inspector, enter
Destination in the Identifier field and choose Form Sheet from the
Presentation pop-up menu.

Changing the Split View Controller to a
Detail View Controller Relationship

At this point, because it really doesn’t do anything, you can delete the
Detail View controller object from the iPad storyboard (but be sure
not to delete the DetailView controller class files in the Project navigator).
You’ll replace the relationship between the Split View controller and the
Detail View controller with one to the Weather controller. I chose Weather
controller arbitrarily here — you could just as easily have replaced it with
any of the other view controllers. This is the Detail view the user will see
when the app is launched.

The following steps show you how to replace the Detail View controller.

 1. In the Document Outline or on the canvas, select the Navigation con-
troller associated with the Detail View controller (see Figure 14-11)
and press Delete.

 It may be easiest to select the Detail View controller in the Document
Outline in order to highlight it. Then you can probably find the
Navigation controller right next to it.

 2. Select the Detail View controller in the Document Outline or canvas
(see Figure 14-12) and press Delete as well.

 You’ll need to create a new relationship between the Split View control-
ler and the Weather controller.

 3. Select the Split View controller on the storyboard or Document
Outline, Control-drag to the Weather controller, and then select
Relationship – Detail View Controller from the pop-up menu that
appears (as I have in Figure 14-13).

 The final result of what has been added to the storyboard so far should
look like Figure 14-14. I’ve rearranged things a bit for the sake of clar-
ity. Make certain that everything is named as you rearrange the view
controllers. Then you can zoom in and out to see what makes the most
logical arrangement.

369 Chapter 14: Finishing the Basic App Structure

Figure 14-11:
Select the

Navigation
control-

ler in the
Document

Outline.

Figure 14-12:
Select the

Detail View
control-

ler in the
Document

Outline.

370 Part IV: The Model and the App Structure

Figure 14-13:
A new

Detail View
controller

relationship.

Figure 14-14:
The nearly

complete
storyboard.

371 Chapter 14: Finishing the Basic App Structure

You’re also going to have to make some changes in application:didFinish
LaunchingWithOptions:. Add the code in bold shown in Listing 14-1 to that
method in AppDelegate.m.

Listing 14-1: Updating application:didFinishLaunchingWithOptions:
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 UISplitViewController *splitViewController =
 (UISplitViewController
 *)self.window.rootViewController;
 if ([splitViewController.viewControllers[1]
 isKindOfClass:[UINavigationController class]]) {
 UINavigationController *detailNavigationController =
 [splitViewController.viewControllers
 lastObject];
 splitViewController.delegate =
 (id)navigationController.topViewController;
 }
 else
 splitViewController.delegate =
 [splitViewController.viewControllers lastObject];

... the rest of the method
}

The change you make here is in how you get the Detail View controller that
you will assign as the Split View controller delegate.

As I mention earlier, the Split View controller manages two view controllers,
with the last one in its list of controllers corresponding to what’s displayed
in the Detail view. You check the last view controller to see whether it’s a
Navigation controller (that contains the Detail View controller) by sending
it the isKindOfClass: message. This method returns a Boolean indicating
whether it is a UINavigationController.

 if ([splitViewController.viewControllers[1]
 isKindOfClass:[UINavigationController class]]) {
 UINavigationController *detailNavigationController =
 [splitViewController.viewControllers lastObject];
 splitViewController.delegate =
 (id)detailNavigationController.topViewController;
 }

372 Part IV: The Model and the App Structure

If it is a Navigation controller, you need to find its view controller (it’s the
one that has adopted the SplitViewControllerDelegate protocol,
implemented the protocol methods, and can become the Split View con-
troller’s delegate), which you get by accessing the Navigation controller’s
topViewController property. (It points to the first and only view control-
ler on its stack.) Then you’ll assign it as the delegate.

If it’s a view controller, rather than a Navigation controller (which it will be
because you just made the Weather controller the Detail View controller, and
it has no Navigation controller), you just assign that view controller as the
delegate.

else
 splitViewController.delegate =
 [splitViewController.viewControllers lastObject];

If you build and run your project now, it looks like you’ve taken a step back-
ward; all you’ll see is a blank screen — in Portrait orientation no less (unless
you’ve kept the Test Drive controller as the initial Detail View controller).
You’ll fix that in the next chapter.

Repeat for iPhone
You now need to update the iPhone storyboard file with the same kind of
view controllers you just added to the iPad storyboard file. They are as
follows:

 ✓ WeatherController with a Push segue (instead of the iPad’s
Replace segue)

 ✓ EventsController with a Push segue (instead of the iPad’s Replace
segue)

 ✓ MapController with a Push segue (instead of the iPad’s Replace segue)

 ✓ FindController

 ✓ DestinationController with a Modal segue

The iPhone storyboard uses Push segues because you are pushing a
new view controller onto the stack when the user touches a cell such as
“Weather” in the tableView in iPhone’s Master View controller.

Part V
Adding the App Content

 Visit www.dummies.com/extras/iosappdevelopment for more features
you can add to your iOS app.

http://www.dummies.com/extras/iosappdevelopment

In this part . . .
 ✓ Working with web views

 ✓ Geocoding

 ✓ Finding a location

 ✓ Selecting a destination

Chapter 15

How’s the Weather? Working
with Web Views

In This Chapter
▶ Having your app actually deliver content

▶ Displaying a web page

▶ Understanding the ins and outs of Web views

▶ Encountering some interesting runtime errors

G
etting the framework (no pun intended) in place for a new app is certainly
a crucial part of the development process, but in the grand scheme of

things, it’s only the spadework that prepares the way for the really cool stuff.
After all is said and done, you still need to add the content that the users see or
interact with. Content (and functionality) is, after all, the reason they will buy
the app.

Now that you have created the storyboard scenes by specifying the view
controllers and have spiffed up the Master View controller, it’s time to make
those new view controllers earn their keep. As I’ve explained more than once,
view controllers are the key elements here. They’re the ones that get the
content from the Trip model object and send it to the view to display. In this
chapter, you create a view controller that lets the Weather view know where
to get the weather information it needs.

The Plan
You will be adding a custom view controller for displaying the weather, which is
actually pretty easy. As is always the case, the view controller will be interacting
with a view (actually a hierarchy of views) in a storyboard. There’s one view
controller and two storyboards — one for iPad and one for iPhone.

376 Part V: Adding the App Content

The iPad storyboard
The Weather-related part of the iPad storyboard is shown in Figure 15-1.

The control flow through the iPad storyboard goes like this:

 1. The iPad user interface is controlled by an instance of Apple’s
UISplitViewController, which manages a Master View controller
and a Detail View controller.

 2. The Master View controller, displayed on the left in Landscape orientation,
has a relationship to a UINavigationController. This relationship is
shown as an object in the storyboard file.

 3. The Detail View controller, which is always displayed, has a relationship
with the custom WeatherController that you’ll develop in this chapter.

 4. You need a navigation controller as a wrapper around the Table view that
is displayed in the Master View controller (there is another navigation
controller used with the Events controller).

What is content? What is functionality?
Hundreds of pages into this book, it may seem a
little late to be asking about content and function-
ality, but it’s not. Up to this moment, you’ve seen
the basics of how to put an app together — how
to design an interface with storyboards, how
to use built-in classes and how to create new
classes based on them, and how to work with
animation, sound, and navigation. Although
content and functionality are the two most basic
issues you deal with in starting to build an app,
until now, you’ve needed to become familiar with
the tools and features of iOS and Cocoa Touch.

What is the purpose of your app? Is it to show
off your development skills just to prove that
you can do it, or are you deliberately building
a portfolio that can lead to gainful employment
in the app world? Have you been tasked with
building an app for a specific purpose or client?
And is the app supposed to make money?

Don’t let the technology get in the way of your
content and functionality. Users don’t really
care about what you need to worry about with
view controllers and classes. They want to use
your app and make it their own. At the 2013
Worldwide Developers Conference, speaker
after speaker stressed that the purpose of the
major revisions to the interface in iOS 7 was to
get the interface out of the way and to focus
on the content and functionality of your apps.
To paraphrase a saying from the political world,
“It’s the content, stupid.”

But to present the content simply and clearly,
you need to do your hard work of coding and
designing the interface. So now it’s back to that
part of the story.

377 Chapter 15: How’s the Weather? Working with Web Views

 5. The first navigation controller has a relationship to your custom
MasterViewController.

 6. The MasterViewController manages the Table view that you provide
to let the user decide what should be displayed in the Detail view.

 7. You’ll create a Replace segue to connect the first (Weather) item in the
Table view to your weather scene.

 8. You’ll use a UIWebView to display the contents of a web page inside
your custom WeatherController. Voilà — the user can see a weather
forecast.

The iPhone storyboard
The Weather-related part of the iPhone storyboard is shown in Figure 15-2.

Figure 15-1:
Weather-

related part
of the iPad

storyboard.

378 Part V: Adding the App Content

Figure 15-2:
Weather-

related
part of the

iPhone
storyboard.

The control flow through the iPhone storyboard goes like this:

 1. The iPhone user interface is controlled by an instance of Apple’s
UINavigationController. The Navigation controller is needed to
allow the user to pop (for example, return from) any view controller that
is pushed using the Push segue in Step 4.

 2. Your UINavigationController has a relationship to your Master
View controller.

 3. The MasterViewController manages the Table view that you are
using to let the user decide what should be displayed when a table ele-
ment is selected.

 4. You’ll connect the first item in your MasterViewController to your
WeatherController using a Push segue.

 5. You’ll use a UIWebView to display the contents of a web page inside
your custom WeatherController. Voilà — the user can see a weather
forecast.

379 Chapter 15: How’s the Weather? Working with Web Views

Setting Up the Weather Controller
If the user selects Weather from the Master view in the RoadTrip app, he
comes face-to-face with an Internet site displaying weather information.
(You’ll start with the URL specified in the Destination.plist, but you can
use any site that you’d like.)

In this section, you add the initial Objective-C code for WeatherController
class, and then add the logic it needs to get the right URL for the weather
from the Trip object and send it on to the Weather (Web) view to load.

You’ll use the same WeatherController class in both the iPad and iPhone
storyboard files. Add the WeatherController to the iPad storyboard first.
After that, you can use the same class in the iPhone storyboard.

Adding the custom view controller
Although you have a view controller defined in the storyboard, it’s a generic
view controller — in this case, a UIViewController — and it’s clueless
about what you want to display in a view, much less the model it will need
to get the data from. In this section, you create a custom controller that does
know about its view and the model. Replace the generic controller with a
custom one. Follow these steps:

 1. In the Project navigator, select the ViewController Classes group and
then right-click and choose New File from the contextual menu that
appears.

 Or choose File➪New➪File from the main menu (or press ⌘+N).

 Whatever method you choose, the New File dialog appears.

 2. In the left column of the New File dialog, select Cocoa Touch under
the iOS heading, select the Objective-C class template in the top-right
pane, and then click Next.

 You’ll see a dialog that will enable you to choose the options for
your file.

 3. In the Class field of the dialog, enter WeatherController, choose or
enter DetailViewController in the Subclass Of field, make sure that the
Target for iPad check box is selected and that the With XIB for User
Interface is deselected, and then click Next.

 4. In the Save sheet that appears, click Create.

 You’ve got yourself a new a custom view controller.

380 Part V: Adding the App Content

Setting Up WeatherController in
the Main_iPad.storyboard file
Adding a new custom view controller is a good start, but you still need to
tell the storyboard that you want it to load the new custom view controller
rather than a UIViewController. Follow these steps:

 1. In the Project navigator, select Main_iPad.storyboard and, in the
Document Outline, select View Controller – Weather in the View
Controller – Weather Scene.

 The Weather View controller is selected on the canvas.

 2. Open the Utility area and then click the Identity Inspector icon in the
Inspector selector bar to open the Identity inspector in the Utility area.
Choose WeatherController from the Class drop-down menu (replacing
UIViewController) in the Custom Class section, as I have in Figure 15-3.

 Doing so means that, when Weather is selected in the Master View con-
troller, WeatherController will now be instantiated and initialized and
will receive events from the user and connect the view to the Trip model.

Figure 15-3:
Now the

storyboard
Weather

controller is
connected

to Weather
Controller.

381 Chapter 15: How’s the Weather? Working with Web Views

 3. Drag in a Web view from the Utility area’s Library pane and position it
to fill the Weather controller’s view, as shown in Figure 15-4.

 In iOS 7, part of the focus on content includes using the full screen. Make
certain that the toolbar is translucent so that the Web view can be seen
dimly through it when the app runs.

 For the RoadTrip app, you want to use a UIWebView to display the
weather information. This makes sense because you’ll be using a web-
site to display the weather.

 As I explain in Chapter 4, the UIWebView class provides a way to display
HTML content. These views can be used as the Main view, or as a sub-
view of another view; wherever they’re used, they can access websites.

 4. With the Web view selected, use the Editor menu to pin it to the
superview by choosing

 Editor➪Pin➪Leading Space to Superview

 Editor➪Pin➪Trailing Space to Superview

 Editor➪Pin➪Top Space to Superview

 Editor➪Pin➪Bottom Space to Superview

Figure 15-4:
Adding the
Web view.

382 Part V: Adding the App Content

 You need to set up two outlets: one to the Web view so that Weather
Controller can tell the Web view what website to load and a second
one to the toolbar so it can place the button there.

 5. Close the Utility area and select the Assistant from the Editor selector
in the Xcode toolbar.

 6. If the WeatherController.h file isn’t the one that’s displayed in the
Assistant editor, go up to the Assistant’s Jump bar and select it, as I
have done in Figure 15-5.

 7. Control-drag from the Web view (either on the Canvas or in the
Document Outline) to the WeatherController interface and create
an IBOutlet named weatherView.

 8. Control-drag from the Web view in the storyboard Canvas (or in
the Document Outline) to the WeatherController object in the
Document Outline and then choose Delegate (see Figure 15-6) from
the Outlets menu that appears.

 I’m showing you this to illustrate that you can do all this dragging either
on the Canvas or in the Document Outline.

Figure 15-5:
Displaying

the correct
file in the

Assistant.

383 Chapter 15: How’s the Weather? Working with Web Views

 You must set WeatherController to be a delegate of the view, but you can
do so either using code or using the storyboard steps described here.
You’ll do it in code in the next chapter, so you can take your choice. If, like
me, you have a tendency to forget to connect the delegate, you may want
to pick one technique to do consistently. (I connect delegates in story-
boards as soon as I create the object that’s going to be the delegate.)

 You still need to connect the toolbar to the DetailViewController, the
WeatherController’s superclass. You take care of that in the next step.

 9. Select the Standard editor in the Editor selector on the toolbar,
select Weather Controller in the Document Outline, and open the
Connections inspector using the Inspector selector, as I have in
Figure 15-7.

 You could also right-click or Control-click WeatherController in the
Document Outline to get a similar menu.

Figure 15-6:
Make the
Weather

Controller
a Web view

delegate.

384 Part V: Adding the App Content

Figure 15-7:
Connecting

the toolbar to
the Detail

View
Controller

base class.

 10. Drag from the toolbar Outlet in the Connections inspector to the toolbar
in the Document Outline. (See Figure 15-7.)

 You have to use the Document Outline because the Web view is on top of
the toolbar on the canvas so you can’t see it. You didn’t need to create
the toolbar Outlet because it had already been created along with
UIViewController. The idea here is that you can use the same click-
and-drag technique you used to create an outlet to modify which object
an existing outlet connects to.

If you were to compile and run the RoadTrip project, you’d see the blank
screen displayed at app launch. You could select Weather or Test Drive in the
Master View controller (in Portrait or Landscape orientation, mind you), but
you’d just see a blank screen if you selected Weather. You’ll fix that next.

But keep in mind this is a major step forward. You now have a fully function-
ing application structure that can, with equal aplomb, use a Navigation con-
troller and its Navigation bar (as you’ll see in the next chapter), or simply
replace the controller in the Detail view and use a toolbar.

At this point, you have the WeatherController class set up and you’ve
arranged for the storyboard to create a UIWebView object and set all the out-
lets (the toolbar and weatherView) for you when the user selects Weather
for the view he wants to see.

385 Chapter 15: How’s the Weather? Working with Web Views

Because the Trip object owns the data — in this case, the data is provided
by the website you’re using to display the weather information, but the infor-
mation about the website is managed by the Trip object— you add the meth-
ods necessary to the Trip model to provide this to WeatherController.

 Select the Standard editor in the Editor selector on the toolbar and select
Trip.h in the Project navigator. (If you managed to close the Project naviga-
tor at some point in your travels, select its icon in the View selector or choose
View➪Navigators➪Show Project Navigator to open it again.)

Add the declaration for the weather method (the bolded code) to the Trip
interface in Trip.h, as shown in Listing 15-1.

Listing 15-1: Updating the Trip.h Interface

#import <Foundation/Foundation.h>
#import <mapKit/MapKit.h>

@interface Trip : NSObject

- (id)initWithDestinationIndex:(int)destinationIndex;
- (UIImage *)destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;
- (NSString *)weather;

@end

Add the weather method in Listing 15-2 to Trip.m.

Listing 15-2: Adding the weather Method

- (NSString *)weather {

 return _destinationData[@"Weather"];
}

All the Trip object does here is return the URL that the Web view will
use to download the weather HTML page for the site. It got the URL for
that site from the dictionary you create in Chapter 11 when you load the
Destination plist that provides the data for this destination.

The Weather Controller
Now that you have the Trip object set up to deliver the data you need, the
WeatherController needs to pass on to the view to load the web page.

386 Part V: Adding the App Content

You need to add some #import compiler directives so that Weather
Controller can access AppDelegate to get the Trip reference and
request the data it needs.

To do that, add the bolded code in Listing 15-3 to WeatherController.m.

Listing 15-3: Updating the WeatherController Implementation

#import "DetailViewController.h"
#import "AppDelegate.h"
#import "Trip.h"

You’re going to need a Back button so add this line to the class extension at
the top of WeatherController.m.

@property (strong, nonatomic) UIBarButtonItem *backButton;

The template provides a viewDidLoad method stub when you create the
controller file. You may recall from previous chapters that this is where you
want to have the Web view (or any other view) load its data. Add the bolded
code in Listing 15-4.

Listing 15-4: Adding to viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.title = @"Weather";
 self.weatherView.scalesPageToFit = YES;
 AppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 self.backButton = [[UIBarButtonItem alloc]
 initWithTitle:[NSString stringWithFormat:
 @"Back to %@", self.title]
 style:UIBarButtonItemStyleBordered
 target:self

 action:@selector(goBack:)]; [self.weatherView
 loadRequest: [NSURLRequest requestWithURL:
 [NSURL URLWithString:
 [appDelegate.trip weather]]]];
}

The first thing you do in Listing 15-4 is set the title to Weather.

The title won’t be showing up on the toolbar, however, because this just
sets the title in the Navigation bar. I’ll use it when I add a Return to Whatever
button in the next section.

387 Chapter 15: How’s the Weather? Working with Web Views

Because what gets loaded is going to be a website, you set self.weatherView.
scalesPageToFit to YES.

scalesPageToFit is a UIWebView property. If it’s set to YES, the web page
is scaled to fit inside your view, and the user can zoom in and out. If it’s set to
NO, the page is displayed in the view, and zooming is disabled.

I might set it to NO when I’m not displaying a web page and the HTML page
I created fits just fine and I don’t want it to be scalable. You may want to do
something else here, of course; I did it this way to show you how (and where)
you have control of web page properties.

Next, you create the Back button that will be used to navigate the Web view.
As you’ll see, you will alternately add and remove this button from the
toolbar or navigation bar when there is or isn’t a page to go back to. You
create the Back to Whatever button using the view controller title, and
return YES to tell the Web view to load from the Internet. The action:@
selector(goBack:) argument is the standard way to specify Target-Action.
It says that when the button is tapped, you need to send the goBack: mes-
sage to the target:self, which is the WeatherController.

UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
 initWithTitle:[NSString stringWithFormat:
 @"Back to %@", self.title]
 style:UIBarButtonItemStylePlain target:self
 action:@selector(goBack:)];
self.navigationItem.rightBarButtonItem = backButton;
return YES;

 You may want to adjust the title depending on whether you are on an iPad or
iPhone. Because there is more space on an iPad, you may want to go with the
title suggested here (Back to <title>). On iPhone, you may want to just use the
Back chevron and the title or name.

You then create the NSURLRequest object that the Web view needs to load
the data. To do that, you first create an NSURL object (an object that includes
the utilities necessary for downloading files or other resources from web and
FTP servers) using the URL you get from Trip. The code uses this NSURL
and creates an NSURLRequest from it. The NSURLRequest is what the
WeatherController needs to send to the Web view in the loadRequest:
message, which tells it to load the data associated with that particular NSURL.

 The NSURLRequest class encapsulates a URL and any protocol-specific
properties, all the time keeping things protocol-independent. It also provides
a number of other things that are beyond the scope of this book but are part
of the URL loading system — the set of classes and protocols that provide the
underlying capability for an app to access the data specified by a URL. This is
the preferred way to access files both locally and on the Internet.

388 Part V: Adding the App Content

The loadRequest message is sent to the Web view, and the Weather website
is displayed in the window. This causes the Web view to load the data and
display it in the window.

Managing links in a Web view
An interesting thing about the Weather view — or any other view that does (or
can) load real web content into your app instead of using a browser — is that
the links are live and users can follow those links from that view if you let them.

After the user is at the weather website, as you can see in Figure 15-8, the
user might want to look at the NWS New York, NY link in the upper-left
corner. If the user were to follow that link, though, he wouldn’t have a way to
get back to the originating page.

Hmm.

To be able to navigate back to the originating view, you need to create another
button and label it Back to Weather (or whatever the previous controller
is) so that the user knows that she can use it to get back to the previous view.
Creating this button is pretty easy to do, as you’ll see in Listing 15-6.

Figure 15-8:
You can

select a link
(left) to look
at National

Weather
Service info

for New York
(right) — but
you have no

way to get
back to the
originating

view.

389 Chapter 15: How’s the Weather? Working with Web Views

Of course, I don’t want to have that button pop up if the user is at the origi-
nating web page because, at that point, there’s no going back. So, how do
you keep track of who’s where in the whole navigational link structure? Here,
you’re assisted by two Web view delegate methods, webView:shouldStart
LoadWithRequest:navigationType: and webViewDidFinishLoad:.

webView:shouldStartLoadWithRequest:navigationType: is a
UIWebView delegate method. It’s called before a Web view begins loading
content to see whether the user wants the load to proceed.

First, adopt the UIWebViewDelegate protocol by adding the bolded code in
Listing 15-5 to WeatherController.h.

Listing 15-5: Updating the WeatherController Interface

#import "DetailViewController.h"

@interface WeatherController : DetailViewController
 <UIWebViewDelegate>

@property (weak, nonatomic)
 IBOutlet UIWebView *weatherView;

@end

Remember that when you adopt a delegate protocol, the compiler will then
check to make sure that all required methods are in fact there and that all
types are correct — so do it!

Next, add the code in Listing 15-6 to WeatherController.m.

Listing 15-6: Implementing the webView:shouldStartLoadWithRequest:
navigationType: Method

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:
 (NSURLRequest *)request navigationType:
 (UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked){

 if ([[UIDevice currentDevice]
 userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 if (![self.toolbar.items
 containsObject:self.backButton])
 { NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];

(continued)

390 Part V: Adding the App Content

 [itemsArray addObject:self.backButton];
 [self.toolbar setItems:itemsArray animated:NO];
 }
 else {
 self.navigationItem.rightBarButtonItem =
 self.backButton;
 }
 }
 return YES;
}

Early on in Listing 15-6, you check to see whether the user has touched an
embedded link. (You have to see whether a link is clicked because this mes-
sage is sent to the delegate under several different circumstances.)

if (navigationType == UIWebViewNavigationTypeLinkClicked){

Then, you check to see if you’re on an iPad or not. If you’re on an iPad, you’ll
be using a toolbar, but on an iPhone, you’ll use a navigation bar.

if ([[UIDevice currentDevice]
 userInterfaceIdiom] == UIUserInterfaceIdiomPad) {

If you’re on an iPad and the user has clicked a link, you want to have a Back
button (the one you created in viewDidLoad) so that the user can get back.
Note that I said "have" a Back button and not "add" a Back button. If there’s
one there, you don’t want to add a second. So you look at the items array in
the toolbar to see if self.backButton is already there.

if (![self.toolbar.items
 containsObject: self.backButton])

If there isn’t a Back button there, add it with the standard code for doing this:
you copy the toolbar’s items array into a mutable array called itemsArray.
Then you add the Back button to it and replace the toolbar’s items array
with the mutable array.

{
 NSMutableArray *itemsArray = [self.toolbar.items
 mutableCopy];
 [itemsArray addObject:self.backButton];
 [self.toolbar setItems:itemsArray animated:NO];
}

Next, add the goBack: method in Listing 15-7 to the WeatherController.m
file. This is the message sent when the Back to Whatever button is tapped.

Listing 15-6 (continued)

391 Chapter 15: How’s the Weather? Working with Web Views

Listing 15-7: Adding the goBack: Method

- (void)goBack:(id)sender {
 [self.weatherView goBack];
}

 Note that you don’t need to declare this method in WeatherController.h
because it’s used within WeatherController.m for the target-action code
in Listings 15-6 and 15-7. The UIWebView actually implements much of the
behavior you need here. The Web view keeps a Backward and Forward list.
When you send the UIWebView the message (goBack:), it reloads the
 previous page.

Finally, you want to get rid of the Back to Whatever button when you’re
 displaying the original page. The code to do that is shown in Listing 15-8.

Listing 15-8: Implementing webViewDidFinishLoad:

- (void)webViewDidFinishLoad:(UIWebView *) webView {

 if ([self.weatherView canGoBack] == NO) {
 NSUInteger backButtonIndex = [self.toolbar.items
 indexOfObject: self.backButton];

 if (([[UIDevice currentDevice] userInterfaceIdiom]
 == UIUserInterfaceIdiomPad) &&
 (backButtonIndex != NSNotFound)
 {
 NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
 [itemsArray removeObject:self.backButton];
 [self.toolbar setItems:itemsArray animated:NO];

 }
 else {
 self.navigationItem.rightBarButtonItem = nil;
 }
 }
}

The delegate is sent the webViewDidFinishLoad: message after the view
has loaded. At this point, you check to see whether there’s anything to go
back to (the Web view keeps track of those sorts of things). If not, remove the
button from the toolbar or Navigation bar.

 That being said, the Apple Human Interface Guidelines say it’s best to avoid
creating an app that looks and behaves like a mini web browser. As far as I’m
concerned, making it possible to select links in a Web view doesn’t do that.
The Back button comes close. The choice is up to you.

392 Part V: Adding the App Content

But if you really don’t want to enable the user to follow links (either because
of Apple’s suggestion that you not make your app act as a mini-browser or if
you’d just prefer that your app users stick around for a bit and don’t go gal-
livanting around the Internet), you have to disable the links that are available
in the content. You can do that in the shouldStartLoadWithRequest:
method in the WeatherController.m file by replacing the code you added
in Listing 15-6 with the code shown in Listing 15-9.

Listing 15-9: Disabling Links

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked){
 return NO;
 }
 else return YES;
}

More Opportunities to Use the Debugger
A couple of runtime errors are easy to get. Two that pop up frequently are
unrecognized selector sent to instance and NSUnknownKey
Exception. Although the former error is pretty easy to track down if you
actually read the error message, the latter can be a real mystery (it was to
me), especially the first time you encounter it. So I want to explain both of
them now.

Unrecognized selector sent to instance
The unrecognized selector sent to instance runtime error is prob-
ably the most common one I get e-mails about; it (understandably) throws
many people for a loop. But if you take time to read the error message, you
can make sense of it.

2013-12-07 19:34:07.166 RoadTrip[1202:12503] ***
Terminating app due to uncaught exception
'NSInvalidArgumentException', reason: '-[WeatherController
goBack]: unrecognized selector sent to instance 0xb7331f0'

This error occurs when you thought you created a selector in your code but
it’s not (really) there.

393 Chapter 15: How’s the Weather? Working with Web Views

If, in the webView shouldStartLoadWithRequest:navigationType:
method, you mistakenly typed goBack (without a colon, designating a
method with no arguments) rather than goBack: (a method with a single
argument) when you allocated and initialized the backButton:

UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
 initWithTitle:[NSString stringWithFormat:
 @"Back to %@", self.title]
 style:UIBarButtonItemStylePlain target:self
 action:@selector(goBack)];

and then you ran the app, selected Weather, selected a link, and then tapped
the Back to Weather button, what you will see in the Debugger Console pane is

2013-12-07 19:34:07.166 RoadTrip[1202:12503] ***
Terminating app due to uncaught exception
'NSInvalidArgumentException', reason: '-[WeatherController
goBack]: unrecognized selector sent to instance 0xb7331f0'

You get this error message because you’re sending the goBack message (not
the goBack: message) to the target — the WeatherController. The
WeatherController does have a fully functional goBack: method imple-
mented, but it doesn’t have a goBack method implemented — as the debugger
so clearly informs you.

Repeat for the iPhone Storyboard
The good news is that you can use the same custom WeatherController
class in your iPhone storyboard as you used in the iPad storyboard file. You
can also reuse the changes you made to the Trip model. You can update the
iPhone storyboard file the same way that you did in Chapter 12.

Adding the WeatherController
to the iPhone storyboard file
The following steps show how to update the iPhone storyboard file.

 1. Select the MainStoryboard_iPhone.storyboard file in the Project
Navigator.

 2. Select the generic UIViewController scene in the Library and drag
it onto your storyboard.

 3. Open the Utility area and select the Identity inspector.

394 Part V: Adding the App Content

 4. Change the class name to WeatherController in the Class drop-
down menu, just as you did in Figure 15-3.

 5. With the WeatherController scene selected in the storyboard file,
select the view in the document outline.

 6. Change the class name of the view from UIView to UIWebView.

 7. In the Document Outline, Control-drag from the WeatherController
to the Web view and select weatherView from the pop-up menu.

This step connects the weatherView outlet in the WeatherController
class to the instance of UIWebView that you’ll use to display the weather.

Test in the iPhone Simulator
Run the iPhone app in the Simulator. You should see the web page displayed
in Figure 15-9.

Figure 15-9:
The

Weather
Controller

display on
the iPhone.

Chapter 16

Displaying Events Using a Page
View Controller

In This Chapter
▶ Displaying HTML pages in a Web view

▶ Creating page transitions with a UIPageViewController

▶ Understanding how Page View controllers work and implementing page turns

A
fter you have finished this chapter, when the user selects Events from
the Master view in the RoadTrip application, he will come face-to-face

with a series of pages that describes the latest activities happening at his
destination. In this chapter, I’ll show you how to use a feature, first intro-
duced in iOS 5, that will allow you to create a view controller that enables a
user to “turn pages” in the same way as she can in an iBook.

You will also find out how to use a Web view again to display data, but this
time you will download an HTML page stored on my website, rather than con-
nect to the website itself.

The best part of what you discover in this chapter is page-turn transitions.
These transitions are implemented by Apple’s UIPageViewController
class — a new container view controller (first provided in iOS 5) that creates
page-turn transitions between view controllers. Just as a Navigation control-
ler animates the transitions between, say, the Master View controller and the
Test Drive controller, the Page View controller does its thing between two
view controllers — in this case, two EventPageControllers.

You implement this functionality by adding a UIPageViewController to
your view controller — EventsController — in your code and then creat-
ing a view controller (EventPageController) for each page.

396 Part V: Adding the App Content

The UIPageViewController needs a Navigation bar. You need it if you
want to be able to display the Road Trip button. Because of the way the class
is implemented, tapping a button on a toolbar is intercepted and interpreted
by the UIPageViewController as a page turn. Fortunately, you made it
possible for the delegate methods to deal with both Navigation bars and tool-
bars with equal aplomb.

The Plan
The Events feature actually requires that you add a number of interrelated
components to each storyboard file. The components used in the iPad story-
board are shown in Figure 16-1.

The key components for the Events feature include

 ✓ The “Events” Table view cell in the MasterViewController’s Table view.

 ✓ A Replace segue from the “Events” Table view cell to a Navigation con-
troller that displays a Navigation bar-equipped view controller in the
detail view. This bar contains a RoadTrip button used by the user to
return from the Events display to the MasterViewController.

Figure 16-1:
Components

used in
the iPad

storyboard
file for the

Events
feature.

397 Chapter 16: Displaying Events Using a Page View Controller

 ✓ A custom EventsController container.

 ✓ An instance of UIPageViewController embedded in the
EventsController container, responsible for managing transitions
(such as page curls) between events pages, where each page is managed
by an instance of EventPageController.

 ✓ A custom EventPageController, responsible for displaying
event information in an HTML web page rendered by an instance of
UIWebView.

Setting Up the EventsController
In this section, you need to do the same thing you did in Chapter 15 to create
and connect the WeatherController object. The way you develop a story-
board is rather formulaic. I review it:

 1. Lay out the view controllers you need for the user experience
architecture.

 2. Add the custom view controller to your app.

 3. Tie the two together in your storyboard.

 4. Add the code you need to the custom view controller.

After you get into the routine of how to do it, your life as a developer
becomes much easier.

You’ll also add another view controller to the storyboard (the afore-
mentioned EventPageController) that will be used by the
UIPageViewController.

Adding the custom view controller
To add the EventsController to the RoadTrip project, follow these steps:

 1. In the Project navigator, select the View Controller Classes group
and then either right-click the selection and choose New File from
the menu that appears or choose File➪New➪File from the main menu
(or press ⌘+N).

 Whatever method you choose, you’re greeted by the New File dialog.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

398 Part V: Adding the App Content

 3. Enter EventsController in the Class field, choose or enter
DetailViewController in the Subclass Of field, make sure that the Target
for iPad check box is selected and that With XIB for User Interface is
deselected, and then click Next.

 4. In the Save sheet that appears, click Create.

You’ll also need to create a controller that manages each event page. Follow
these steps:

 1. In the Project navigator, select the View Controller Classes group
and then either right-click the selection and choose New File from
the menu that appears or choose File➪New➪File from the main menu
(or press ⌘+N).

 Say hello again to the New File dialog box.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your
file.

 3. Enter EventPageController in the Class field, choose or enter
UIViewController in the Subclass Of drop-down menu, and make sure
that the Target for iPad check box is selected and that With XIB for
User Interface is deselected. Click Next.

 4. In the Save sheet that appears, click Create.

Setting up the EventsController
in the MainStoryboard
You need to tell the storyboard to load your custom view controller rather
than a UIViewController. Follow these steps:

 1. In the Project navigator, select Main_iPad.storyboard and, in the
Document Outline, select View Controller – Events in the View
Controller – Events Scene.

 The Events view controller will be selected on the Canvas.

 2. Open the Utility area and then click the Identity Inspector icon in the
Inspector selector to open the Identity inspector in the Utility area.

 3. Choose EventsController from the Class drop-down menu (replacing
UIViewController) in the Custom Class section.

399 Chapter 16: Displaying Events Using a Page View Controller

While in WeatherController, you added a Web view, but you won’t
be doing that here. You also created an outlet, but you don’t need that
here, either. Instead, you’ll use a Web view and create an outlet in the
EventPageController. The EventPageController is what you’ll need
to add to implement a UIPageViewController. You do that in the next
section.

Adding and setting up the
EventPageController in
the MainStoryboard
You need a view controller to manage each view within the Page View con-
troller. Although you could’ve added this view controller when you extended
the storyboard, I didn’t have you do so because I didn’t want my coverage of
the topic to get lost among the discussion about segues.

To add the EventPageController to the storyboard, follow these steps:

 1. Add another view controller to the storyboard by dragging in a
view controller from the Library pane and placing it next to the
EventsController on the Canvas.

 (You don’t have to put it there, but doing so hints that a relationship
may exist; it also makes it easier to draw that relationship if you want to
do so — and you will want to do so in a moment.)

 2. Open the Identity inspector in the Utility area using the Inspector
selector bar, and in the Class drop-down menu in the Custom Class
section, choose EventPageController (replacing UIViewController).

 3. Switch to the Attributes inspector and use its text fields to give the
controller the Title of Event Page. Then add Event Page to the Identity
inspector’s Storyboard ID field.

 4. Add a Web view to the EventPageController by dragging in a Web
view from the Library pane and into the Event Page controller.

 The Event Page view will be a Web view because you’ll want it to down-
load and then display an HTML page.

 The UIWebView class provides a way to display HTML content and has
the built-in functionality to download HTML content from the web.

 5. Click the Size inspector icon in the Inspector selector to open the Size
inspector in the Utility area.

 Set the X and Y origins to zero and 64 and then resize the Web view to
fill the view. The standard for iOS 7 is that views should appear through
a translucent navigation bar dimly (iOS 7 takes care of this for you).

400 Part V: Adding the App Content

In this case, when the iPad split view controller is visible in the master
view controller, a navigation bar is shown there (with the title), and I
think it looks better to have that space visible in the detail view control-
ler right next to it. Depending on what is behind the translucent bar, the
visual effect varies. When it’s a map that’s scrollable, in many ways each
part of the map is the same so placing it behind the translucent bar is
fine (and suggested). When you’re loading a web page as in this case,
you may not know what is going to be seen (the format of the weather
page is not under your control, for example), and in a case such as that,
I prefer to place the web view lower down so it is not shown behind the
navigation bar. That’s what happens here: 64 = status bar (20) + naviga-
tion bar (44).

 6. Drag in an Activity Indicator view from the Library pane and center it
in the view.

 Because these pages can be large and take some amount of time to
download, you want to have some kind of Activity Indicator view to let
the user know that the application is still running but busy, as opposed
to frozen.

 As you can see by looking at the Document Outline in Figure 16-2, both
the Web view and Activity Indicator view are siblings — and subviews
of the view. It’s important that both are siblings, and that the Activity
Indicator view is below the Web view in order for it to display. (Remember
the Last-One-In-Is-On-Top principle when it comes to subviews.) If that’s
not the case, rearrange the views in the Document Outline.

Figure 16-2:
A Web

view with
an activity
indicator.

401 Chapter 16: Displaying Events Using a Page View Controller

 7. Switch to the Size inspector in the Utility area using the Inspector
selector, and then use Editor➪Align➪Horizontal Center in Container
and Editor➪Align➪Vertical Center in Container to center the activity
indicator.

 8. Close the Utility area and select the Assistant from the Editor selector
in the toolbar. If the EventPageController.m implementation file
isn’t the one that’s displayed, go up to the Assistant’s Jump bar and
select it.

 9. Control-drag from the Web view in either the Canvas or the Document
Outline to the EventPageController class extension and create an
IBOutlet (just as you do in Chapter 15) named eventDataView.

 10. Control-drag from the Activity Indicator view to the
EventPageController class extension at the top of the file and
create an IBOutlet named activityIndicator.

 11. Working within the Document Outline, control-drag from the Web
view to the Event Page controller, and then select Delegate from the
Outlets menu that appears.

 This will make EventPageController the Web view delegate.

Extending the Trip Model
The EventsController will need two pieces of information from the Trip
model: the number of events and the URL for a specific event.

Add the declaration for the two Events methods (bolded) to the Trip inter-
face in Trip.h, as shown in Listing 16-1.

Listing 16-1: Update the Trip Interface

@interface Trip : NSObject

- (id)initWithDestinationIndex:(int)destinationIndex;
- (UIImage *) destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;
- (NSString *)weather;
- (NSUInteger)numberOfEvents;
- (NSString *)getEvent:(NSUInteger)index;

But Trip isn’t going to go at this alone (as it did with Weather). It will use an
Events object (which you’ll create shortly). So that Trip can use the Event
object, add the bolded code in Listing 16-2 to Trip.m.

402 Part V: Adding the App Content

Listing 16-2: Updating the Trip Implementation

#import "Trip.h"
#import "Destination.h"
#import "Events.h"

@interface Trip ()
 @property (strong, nonatomic)
 NSDictionary *destinationData;
 @property (strong, nonatomic)
 Destination *destination;
 @property (strong, nonatomic)
 Events * events;

@end

 Until you add the Events class in the next section, you’ll see some Live Issues
errors.

The EventsController, as you will see, will need to know the number of
events and also get the event information.

Add the implementation of methods you need in Listings 16-3 and 16-4 to
Trip.m.

Listing 16-3: The Number of Events

- (NSUInteger)numberOfEvents {

 return [self.events numberOfEvents];
}

Listing 16-4: Get an Event

- (NSString *)getEvent:(NSUInteger)index {

 return [self.events getEvent:index];
}

To have Trip create the required Events object, add the bolded code in
Listing 16-5 to initWithDestinationIndex: in Trip.m.

Listing 16-5: Updating initWithDestinationIndex:

- (id)initWithDestinationIndex:
 (NSUInteger)destinationIndex {
 self = [super init];
 if (self) {

 NSString *filePath = [[NSBundle mainBundle]

403 Chapter 16: Displaying Events Using a Page View Controller

 pathForResource:@"Destinations" ofType:@"plist"];
 NSDictionary *destinations = [NSDictionary

dictionaryWithContentsOfFile: filePath];
 NSArray *destinationsArray =
 destinations[@"DestinationData"];
 _destinationData = destinationsArray[destinationIndex];
 _destination = [[Destination alloc] initWithDestinatio

nIndex:destinationIndex];
 events = [[Events alloc]

 initWithDestinationIndex:destinationIndex];
}
 return self;
}

Trip is a composite object that uses other objects to carry out its responsi-
bilities. Whereas you put the Weather logic in the Trip object itself, in this
case, you create a new model object to handle the events’ responsibilities.
That’s because handling the events is a bit more complex and deserving of its
own model object to encapsulate the logic. Hiding the Events object behind
Trip makes things more loosely coupled — a very good thing, which you’ll
find as you extend and enhance your app. (See Chapter 11 for an explanation
of loose coupling.)

Adding the Events Class
If Trip is to use an Events object, you had better create the class. Follow
these steps:

 1. In the Project navigator, select the Model Classes group and then
either right-click the selection and choose New File from the menu
that appears or choose File➪New➪File from the main menu (or
press ⌘+N).

 Whatever method you choose, you’re greeted by the New File dialog.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C Class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

 3. Enter Events in the Class field.

 4. Choose or enter NSObject in the Subclass Of field and then click Next.

 The iPad and With XIB for User Interface check boxes are dimmed
because they are not relevant here — Events is derived from
NSObject, and not from any type of view controller.

 5. In the Save sheet that appears, click Create.

404 Part V: Adding the App Content

The Events class is the model object that manages the events. Earlier, I
said that I’m creating this model object to encapsulate the event logic, and
although doing so may seem to be an overreaction here given that the logic
isn’t that complex, I mainly want to show you how to do that. And in real-
ity, you can imagine that the Events class could be expanded to do a lot
more — such as return the location, process events from multiple sources,
or even allow a user to add her own events.

To start adding the Events class, add the bolded code in Listing 16-6 to
Events.h.

Listing 16-6: Updating the Events Interface

@interface Events : NSObject

- (id)initWithDestinationIndex:

 (NSUInteger)destinationIndex;
- (NSUInteger)numberOfEvents;
- (NSString *)getEvent:(NSUInteger)index;
@end

This code has three methods: an initialization method and two methods to
process the Trip requests.

Next, you need to add a property. Add the code in bold in Listing 16-7 to
Events.m to create a class extension with a property. (The basic class exten-
sion without the property may already be in your project.)

Listing 16-7: Updating the Events Implementation

#import "Events.h"

@interface Events ()
 @property (strong, nonatomic) NSMutableArray *events;

@end

@implementation Events

As you can see, Listing 16-6 has an initialization method (which is used by Trip
when it creates the Events object). Add the code in Listing 16-8 to Events.m
to implement the initWithDestinationIndex: initialization method.

405 Chapter 16: Displaying Events Using a Page View Controller

Listing 16-8: Initializing the Events Object

- (id)initWithDestinationIndex:
 (NSUInteger)destinationIndex {
 self = [super init];
 if (self) {

 NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];
 NSDictionary *destinations = [NSDictionary
 dictionaryWithContentsOfFile: filePath];
 NSArray *destinationsArray =
 destinations[@"DestinationData"];
NSDictionary *data =
 destinationsArray[destinationIndex];
 self.events = [NSMutableArray arrayWithArray:
 data[@"Events"]];
 }
 return self;
}

All this method does at this point is get the array of URLs for the HTML pages
I created and you entered in the Destinations plist. It puts these URLs in an
array that you create — for more efficient retrieval later. (I make this a mutable
array because in the future you may want to allow a user to add his own events.)

The EventsController, as you will see, will need to know the number
of events and the event information. You’ve added the methods to Trip in
Listings 16-3 and 16-4, but Trip will actually be getting that information from
Events. Add the code in Listing 16-9 to Events.m to implement the method
that returns the number of events.

Listing 16-9: The Number of Events

- (NSUInteger)numberOfEvents {

 return [self.events count];
}

To get the number of events, you return the count of the array.

The EventsController will also need to have a list of the event URLs. Add
the code in Listing 16-10 to Events.m to implement that method.

Listing 16-10: Getting an Event

- (NSString *)getEvent:(NSUInteger)index {

 return self.events[index];
}

406 Part V: Adding the App Content

To return an Event, you return the URL based on the index into the array.
This will make more sense when you go through the EventsController
and EventPageController code, which you do next.

The EventsController and Its
PageViewController

At the start of this chapter, I promised to show you how to enable users to
turn the page between one view controller and another. To implement this
cool page-turning stuff, you need a UIPageViewController. You create
that in the EventsController in its viewDidLoad method.

To start, though, you need to make the EventsController a
UIPageViewController data source and delegate. (Actually, in this imple-
mentation, you won’t need to use any of the delegate methods, but it’s good
for you to know about them.) Add the bolded code in Listing 16-11 (which
includes the declaration of another method that you’ll use shortly) to
EventsController.h.

Listing 16-11: Updating the EventsController Interface

#import "DetailViewController.h"
@class EventPageController;

@interface EventsController : DetailViewController
 < UIPageViewControllerDelegate,
 UIPageViewControllerDataSource >

- (EventPageController *)viewControllerAtIndex:
 (NSUInteger)index storyboard:(UIStoryboard *)storyboard;

@end

Now read on to find out about the data source and delegate.

Data sources and delegates
You’ve used delegates a few times already, such as when you add the code
to the app delegate in Chapter 8. A data source is really just another kind
of delegate that supplies the data that a framework object needs. When

407 Chapter 16: Displaying Events Using a Page View Controller

you implement a dynamic Table view, you do that as well, and data sources
are also used in many other places in the framework — in picker views, for
 example, when you select a time or date in the Calendar application.

Data source
The UIPageViewController is a new Container View controller for creat-
ing page-turn transitions between view controllers first implemented in iOS 5.
This means that for every page, you create a new view controller.

The UIPageViewControllerDataSource protocol is adopted by an object
that provides view controllers (you’ll be using the PageDataController) to
the Page View controller as needed, in response to navigation gestures.

UIPageViewControllerDataSource has two required methods:

 ✓ pageViewController:viewControllerAfterViewController:
returns the view controller after the current view controller.

 ✓ pageViewController:viewControllerBeforeViewController:
returns the view controller before the current view controller.

 Although it is easiest to use a separate page controller for each page, you can
actually reuse page view controllers by replacing the data on the page view con-
troller’s view with data for the new page. If you are building something along
the lines of an ebook with perhaps hundreds of pages, that would be the way
to go. With a limited number of pages such as is the case with RoadTrip, sepa-
rate page view controllers work just fine.

Delegate
The delegate of a Page View controller must adopt the UIPageView
ControllerDelegate protocol. The methods in this protocol allow you to
receive a notification when the device orientation changes or when the user
navigates to a new page. In the implementation in this book, you don’t need
to be concerned with either of those two situations.

The EventsController
Before you add any code, update EventsController.m with the bolded
code in Listing 16-12.

408 Part V: Adding the App Content

Listing 16-12: Updating the EventsController Implementation

#import "EventsController.h"
#import "AppDelegate.h"
#import "Trip.h"
#import "EventPageController.h"

@interface EventsController ()
 @property (strong, nonatomic)
 UIPageViewController *pageViewController;
 @property (nonatomic) NSUInteger pageCount;
 @property (nonatomic) NSUInteger currentPage;
@end

@implementation EventsController

The viewDidLoad method is where most of the work is done. Add the
bolded code in Listing 16-13 to viewDidLoad in EventsController.m.

Listing 16-13: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];

 AppDelegate *delegate =
 [[UIApplication sharedApplication] delegate];
 self.pageCount = [delegate.trip numberOfEvents];
 self.pageViewController = [[UIPageViewController alloc]
 initWithTransitionStyle:
 UIPageViewControllerTransitionStylePageCurl
 navigationOrientation:
 UIPageViewControllerNavigationOrientationHorizontal
 options:nil];
 self.pageViewController.dataSource = self;
 EventPageController *startingViewController =
 [self viewControllerAtIndex:0
 storyboard:self.storyboard];
 NSArray *viewControllers = @[startingViewController];
 [self.pageViewControllsetViewControllers:viewControllers
 direction:
 UIPageViewControllerNavigationDirectionForward
 animated:NO completion:NULL];
 [self addChildViewController:self.pageViewController];

409 Chapter 16: Displaying Events Using a Page View Controller

 [self.pageViewController didMoveToParentViewController:
self];

 [self.view addSubview:self.pageViewController.view];
 self.view.gestureRecognizers =

 self.pageViewController.gestureRecognizers;
}

Next, you get the number of events from the Trip model so that you know
how many pages you’ll have:

 AppDelegate *delegate = [[UIApplication
 sharedApplication] delegate];
 pageCount = [delegate.trip numberOfEvents];

Then you allocate and initialize the PageViewController and make
yourself the data source. I have commented out the delegate assignment
because you aren’t implementing any of the delegate methods, but here’s
where you would do it:

self.pageViewController = [[UIPageViewController alloc]
 initWithTransitionStyle:
 UIPageViewControllerTransitionStylePageCurl
 navigationOrientation:
 UIPageViewControllerNavigationOrientationHorizontal
 options:nil];
 self.pageViewController.dataSource = self;

You’re using a UIPageViewControllerTransitionStylePageCurl (which
gives the appearance of turning a page) and you use a Navigation orientation of
horizontal, which gives you left-to-right page turning (UIPageViewControll
erNavigationOrientationVertical gives you pages turning up and down).

You then request the first view controller (I show this method in Listing 16-14
and explain it there), create an array, add the first view controller to the
array, and pass that array to the pageViewController:

EventPageController *startingViewController = [self
 viewControllerAtIndex:0 storyboard:self.storyboard];
NSArray *viewControllers =
 [@startingViewController];
[self.pageViewController setViewControllers:viewControllers
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO completion:NULL];

410 Part V: Adding the App Content

This array will hold the view controllers that the UIPageController man-
ages. You specify the direction as Forward. You set animated to NO for this
transition (setting the view controller array, not the page turning) and you
specify no completion block.

Although this approach is pretty simple, you can get way more sophisticated
and include features such as double pages and even two-sided pages, and so
on. You won’t be doing that here.

Next, you add the pageViewController as a child view controller, inform
the pageViewController that it’s now the child of another view control-
ler, and make its view a subview so that it’s displayed. The idea behind
a Container View controller (which the UIPageViewContainer and
UINavigationController both are) is that it manages the presentation of
the content from its child view controllers (contained view controllers).

[self addChildViewController:self.pageViewController];
[self.pageViewController
 didMoveToParentViewController:self];
[self.view addSubview:pageViewController.view];

Finally, add the Page View controller’s gesture recognizers to the
EventsController view so that the gestures are started farther up the
chain. (I explain gesture recognizers in Chapter 13.)

self.view.gestureRecognizers =
 self.pageViewController.gestureRecognizers;

As a supplier of view controllers, you’ll be responsible for creating, managing,
and returning the right view controller for a page. You’ll do that in the view
ControllerAtIndex:storyboard: method.

Add the viewControllerAtIndex:storyboard: method in Listing 16-14
to EventsController.m.

 You’ll see some Live Issues errors until you add the page property in the next
section.

Listing 16-14: Adding the viewControllerAtIndex:storyboard: Method

- (EventPageController *)viewControllerAtIndex:
 (NSUInteger)index
 storyboard:(UIStoryboard *)storyboard {

411 Chapter 16: Displaying Events Using a Page View Controller

 if ((self.pageCount == 0) || (index >= self.pageCount))
{

 return nil;
 }
 EventPageController *eventPageController = [storyboard
 instantiateViewControllerWithIdentifier:@"Event

Page"];
 eventPageController.page = index;
 return eventPageController;
}

With Listing 16-14, you’re simply doing some error checking to make sure
that both pages are available and that the page for the view controller you’re
supposed to return is available:

 if ((self.pageCount == 0) || (index >= self.pageCount))
{

 return nil;
 }

You then allocate and initialize the view controller for that page, setting its
page (relative number of the URL to display) so that it knows which event
URL to load:

 EventPageController *eventPageController = [storyboard
 instantiateViewControllerWithIdentifier:@"Event

Page"];
 eventPageController.page = index;

 You have more efficient ways to do this. You could create a cache of controllers
that you’ve created and reuse them as needed. (As you’ll see in Chapter 19, that’s
how I do it with Table View cells.) I’ll leave you to explore that topic on your own.

You also need to add the required data source methods in Listing 16-15 to
EventsController.m.

Listing 16-15: Implementing pageViewController:viewControllerAfterView
Controller: and pageViewController:viewControllerBeforeViewController

- (UIViewController *)pageViewController:
 (UIPageViewController *)pageViewController
 viewControllerBeforeViewController:
 (UIViewController *)viewController {
 NSUInteger index =
 ((EventPageController *)viewController).page;
 if (index == 0)
 return nil;

(continued)

412 Part V: Adding the App Content

 index--;
 self.currentPage = index;
return [self viewControllerAtIndex:index
 storyboard:viewController.storyboard];
 }

- (UIViewController *)pageViewController:
 (UIPageViewController *)pageViewController
 viewControllerAfterViewController:
 (UIViewController *)viewController {
 NSUInteger index =
 ((EventPageController *)viewController).page;
 index++;
 if (index == self.pageCount)
 return nil;
 self.currentPage = index;
return [self viewControllerAtIndex:index
 storyboard:viewController.storyboard];
 }

Both of these methods return an EventDisplayController initialized
with the right page (relative event number) to display. They use the view
ControllerAtIndex:storyboard: method that you add in Listing 16-14
and indicate which view controller is required by taking the current view
controller’s page number and then either incrementing or decrementing it
appropriately. It then does some error checking to be sure that the page
requested is within bounds. If it’s not, the method returns nil, and the
UIPageViewController inhibits the page turn.

These data source methods are used by the UIPageViewController to
get the view controllers that can display the next or previous page, depend-
ing on the way the user is turning the page. As mentioned previously, the
UIPageViewController just manages controllers and the transitions
between them. The view controllers that you return operate like the run-of-
the-mill view controller you’ve been using, such as the Weather controller
that displays a website.

The next section gives you a look at how these controllers work.

The EventPageController
The EventPageController is almost identical to the WeatherController
that you implemented in Chapter 15.

To follow along in this section, you need to close the Assistant, display the
Project navigator, and select EventPageController.m.

Listing 16-15 (continued)

413 Chapter 16: Displaying Events Using a Page View Controller

I have you add the same functionality to this controller as you did to the
WeatherController so that you can select a link and navigate back from
it. You could’ve created an abstract class — a WebViewController, for
example — that both WeatherController and EventPageController were
derived from, but because the EventPageController is contained by the
UIPageViewController, having an abstract class gets to be a bit more complex.

The EventPageController is what actually displays the event and works
exactly the same as the WeatherController.

First, add the page property, which is set by the viewController
AtIndex:storyboard: method, by adding the bolded code to the
EventPageController.h interface in Listing 16-16.

Listing 16-16: Updating the EventPageController Interface

#import <UIKit/UIKit.h>

@interface EventPageController : UIViewController
 <UIWebViewDelegate>

@property (readwrite, nonatomic) NSUInteger page;
@end

Here’s where you make the page (number) a property to enable you to deter-
mine which URL to load. You also have the EventPageController adopt
the UIWebViewDelegate protocol.

Add the bolded code to the EventPageController.m implementation in
Listing 16-17.

Listing 16-17: Updating the EventPageController Implementation

#import "EventPageController.h"
#import "AppDelegate.h"
#import "Trip.h"

@interface EventPageController ()
@property (weak, nonatomic) IBOutlet UIWebView

*eventDataView;
@property (weak, nonatomic) IBOutlet

UIActivityIndicatorView *activityIndicator;
@end

@implementation EventPageController

All the work is done in viewDidLoad and the other methods you add. These
methods are the same as the code and methods you added to create the
WeatherController. If you are hazy on what each does, refer to Chapter 15.

414 Part V: Adding the App Content

Add the bolded code in Listing 16-18 to EventPageController.m.

Listing 16-18: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.eventDataView.delegate = self;
 [self.activityIndicator startAnimating];
 self.activityIndicator.hidesWhenStopped = YES;
 [self.eventDataView setScalesPageToFit:YES];
 AppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 [self.eventDataView loadRequest:
 [NSURLRequest requestWithURL:
 [NSURL URLWithString:
 [appDelegate.trip getEvent:self.page]]]];
}

Next, add the rest of the Web View Delegate methods in Listing 16-19, just as
you do in Chapter 15.

Listing 16-19: Implementing webView:shouldStartLoadWithRequest:
 navigationType:, webViewDidFinishLoad:, and add goBack

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked) {
 UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
 initWithTitle:[NSString stringWithFormat:
 @"Back to %@", self.parentViewController.
 parentViewController.title]
 style:UIBarButtonItemStylePlain target:self
 action:@selector(goBack:)];
 self.parentViewController.parentViewController.
 navigationItem.rightBarButtonItem = backButton;

 return YES;
 }
 else return YES;
}
- (void)goBack:(id)sender {

 [self.eventDataView goBack];
}

415 Chapter 16: Displaying Events Using a Page View Controller

- (void)webViewDidFinishLoad:(UIWebView *)webView {

 [self.activityIndicator stopAnimating];
 if ([self.eventDataView canGoBack] == NO) {
 self.parentViewController.parentViewController.
 navigationItem.rightBarButtonItem = nil;
 }
}

This code enables you to click a link in an event and then return to the origi-
nal event page. This is similar to the WeatherController functionality, but
here you’re adding a button to the Navigation bar rather than to a toolbar.

Adding Events Support to
the iPhone Storyboard

The Events-related parts of storyboard file for the iPhone is simpler than the
one you just did for the iPad, because you don’t start with a Navigation con-
troller. The necessary components for the iPhone are shown in Figure 16-3.
This figure includes both a Push segue and an Embed segue.

Figure 16-3:
Components

used in
the iPhone
storyboard
file for the

Events
feature.

416 Part V: Adding the App Content

Your Objective-C code doesn’t have to change at all. The key components
for the Events feature on the iPhone only require that you add components
to the iPhone Storyboard file, connect them to the appropriate Objective-C
classes, and connect them to work together. Your small task is summarized
in the following. See Figure 16-3 for a diagram of how these components fit
together.

 ✓ You must add a new Events controller to the iPhone Storyboard. This
Events controller must be set to use the custom EventsController class.

 ✓ The “Events” Table view cell in the MasterViewController’s Table
view must be connected with a push segue to the new Events controller.

 ✓ An instance of UIPageViewController must be embedded in the
EventsController container. This UIPageViewController is
responsible for managing transitions (such as page curls) between
events pages.

 ✓ A custom Event Page controller must be added to the iPhone
Storyboard. It is responsible for displaying event information in an
HTML web page rendered by an instance of UIWebView. This Event
Page controller must be set to use the custom EventPageController
class.

You can assemble this the same way that you added the Events-related com-
ponent to your iPad storyboard earlier in this chapter, except that you can
skip the Navigation controller and connect a Push segue directly to your
Events controller scene.

Chapter 17

Finding Your Way
In This Chapter
▶ Using the MapKit framework

▶ Specifying and changing the type, location, and zoom level of a map

▶ Identifying the iPad’s current location

▶ Annotating significant locations on the map

T
here’s an old saying that there are three keys to a profitable real estate
venture: location, location, and location. When it comes to today’s mobile

devices and the apps we write for them, you can point to the same three
keys. Location awareness can allow an app to not only help a user navigate,
but it can also open a whole new world of app opportunities. Location-aware
apps have the ability to work on their own rather than at a user’s command.
And that’s a major change in our thinking about devices, apps, and ourselves.

When an app is aware of location, your movements can control the app. You
can see this in the Reminders app that’s built into OS X and iOS. You can
enter a reminder for a date and time, but you can also enter a reminder for a
place. When you are at that place, the reminder pops up. You don’t have to
check your calendar or your notes: Once you’ve set it up, the app takes the
initiative. This is the type of interaction that traditional apps such as word
processors simply don’t have. Even more modern apps such as iTunes don’t
do this. Yes, they have many automated features, but does iTunes play your
favorite song on your birthday? Automatically? (Actually, you can do this
with AppleScript fairly easily, but it’s not a built-in feature.)

When an app can take the initiative without your intervention, all sorts of
new possibilities emerge. For example, to take the reminder example, you can
set the reminder to be triggered when you are at a place, but you still have
to set it up manually. Apps that work with derived location data are totally
doable. If you have a big demo for your terrific new app scheduled for next
week, an app can remind you of that demo as you walk by your hair stylist’s
shop. Many people believe that such connections and inferences are the next
great (very great) set of opportunities for app developers.

And much of it all starts with location awareness and mapping.

418 Part V: Adding the App Content

In this chapter, I show you how to center your map on an area you want to
display (New York, for example), add annotations (those pins in the map that
display a callout to describe that location when you touch them), and even
show the user’s current location.

The Plan
Your tasks in this chapter are summarized in the following list:

 1. First, you define a new custom view controller class, MapController,
which will be used to display an instance of Apple’s MKMapView.
MKMapView is a very useful class because it does most of the hard work
involved in displaying maps and allowing users to find their way. You
will, however, have to add some code to your MapController class,
so that users can control exactly what map data is displayed. In later
chapters, you will even allow users to find specific locations — or them-
selves — on the map.

 2. You will add the MapController scene to your iPad storyboard.

 3. In your iPad storyboard, you’ll use a Replace segue to connect
the Map table cell in your MasterViewController to your new
MapController. The result will be as shown in Figure 17-1.

Figure 17-1:
The Map

Controller
scene on

your iPad.

419 Chapter 17: Finding Your Way

 4. You will also need to add Apple’s MapKit framework to your project, so
that the MKMapView actually can work.

 5. Then you add a MapController scene to your iPhone storyboard file.

 6. In your iPhone storyboard, you’ll use a Push segue to connect the Map
table cell in your MasterViewController to the MapController.
The result is shown in Figure 17-2.

Figure 17-2:
The Map

Controller
scene on

your iPhone.

Setting Up the Map Controller
In this section, you will use the same approach for adding a new view con-
troller that you did in Chapter 16. In this chapter, you will create a new
MapController class and use it with a new Map controller scene that you
will add to your storyboard. Here we go again!

420 Part V: Adding the App Content

Adding the custom view controller
To add the MapController to the RoadTrip project, follow these steps:

 1. In the Project navigator, select the View Controller Classes group
and then either right-click the selection and choose New File from the
menu that appears or choose File➪New➪File from the main menu (or
press ⌘+N).

 Whatever method you choose, you’re greeted by the New File dialog.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

 3. Enter MapController in the Class field, choose or enter DetailView
Controller in the Subclass Of field, make sure that the Target for iPad
check box is selected and that With XIB User Interface is deselected,
and then click Next.

 4. In the Save sheet that appears, click Create.

Setting up the MapController in
the Main_iPad.Storyboard
Now that you have a custom view controller, you need to tell the iPad story-
board to load your custom view controller rather than a UIViewController.
Follow these steps:

 1. In the Project navigator, select Main_iPad.storyboard and then select View
Controller in the View Controller – Map Scene in the Document Outline.

 2. Using the Inspector selector, open the Identity inspector in the Utility
area and then choose MapController from the Custom Class section’s
Class drop-down menu.

 Now when Map is selected in the Master View controller, MapController
will be instantiated and initialized and will receive events from the user
and connect the view to the Trip model.

 3. In the Library pane, scroll back up and drag a Map view onto the Map
controller in the Canvas.

 The MKMapView class provides a way to display maps and has a lot of
functionality that I describe later in this chapter.

421 Chapter 17: Finding Your Way

 Starting with iOS 7, views typically cover the entire screen. At the top,
the view is dimly visible through tool or navigation bars. This is differ-
ent from the previous standards in which views were placed below the
bars. For views that are scrollable (and map views definitely are), this
provides the best user experience. For views that display constrained
data such as a formatted data entry form, you can still place the view
behind the bars, but you would leave the top part blank. Alternatively,
place the view below the bars. Web views are a special case if you don’t
know what the web page will look like. If you will be displaying a web
page that has a title, logo, or other image at the top of the page, consider
placing the web view below the bars so as not to obscure the title, logo,
or other top image. Or better still, if it’s possible, create or use a version
of the web page where the top of the web view does not contain critical
information.

 4. Open the main disclosure triangle next to Map Controller in the
Document Outline (notice that the name changed from View Controller
to Map Controller) and then open the sub-disclosure triangle next to
View (see Figure 17-3).

 Notice in Figure 17-3 how the name of the view in the Document Outline
is now Map View.

Figure 17-3:
Making sure

the Web
view is sized

correctly
for the

orientation.

422 Part V: Adding the App Content

 5. With the Map View still selected, choose Editor➪Pin and pin the top,
bottom, leading, and trailing spaces to the superview as you see in
Figure 17-3.

 This setting will result in the map being resized to fill the view as the
iPad is rotated.

 6. Open the Size inspector in the Inspector selector, select the Map View,
and make certain that it is sized to fill the View. In particular, make
certain the X and Y origin points are zero.

 7. Drag a Toolbar from the Library in the Utilities area onto the Map
View and set its origin to 0, 20 in the Size inspector.

 This places it just below the status bar. Delete the Item bar button item
that’s part of the Toolbar.

 You still need to connect the toolbar to the view controller in
DetailViewController, the MapController’s superclass.

 8. Select Map Controller on the Document Outline, click the Connections
icon in the Inspector selector bar to open the Connections inspector,
and then just drag from the toolbar Outlet in the inspector to the tool-
bar in the MapController in the Canvas or the Document Outline.

 You could also right- or Control-click the Map controller in the Document
Outline to open the Connections window and then click and drag from
there.

I want to have a nice segmented control in the toolbar to allow the user to
select a particular Map type — standard, satellite, or hybrid. Fortunately,
the code that implements the Split View Delegate methods that add the
Road Trip button won’t get in the way of that. It will just insert the Road Trip
button on the extreme left of the toolbar.

But what if I want the Type selector to be aligned right (and I do)? All I have
to do is add in Interface Builder (or in the code itself) a Flexible Space Bar
button item — space that’s distributed equally between the other Bar Button
items on the toolbar and the segmented control. This is shown in Figure 17-4.

To do that, do the following:

 1. To set up a segmented control (the Map Type selector on the tool-
bar), drag a Flexible Space Bar button item onto the toolbar in the
MapController, as I have in Figure 17-4.

 This item will expand appropriately to make your segmented control aligned
right (along with any other button you may add subsequently — look ahead
to Figure 17-8).

 2. Drag a Segmented Control from the Library onto the toolbar and place
it to the right of the Flexible Space Bar button item (see Figure 17-5).

423 Chapter 17: Finding Your Way

Figure 17-4:
A Flexible

Space Bar
button item

is added.

Figure 17-5:
A seg-

mented con-
trol on the

right side of
the toolbar.

 3. With the Segmented Control selected in the Canvas or the Document
Outline (it’s inside a new bar button item in the Document Outline),
click the Attributes Inspector icon in the Inspector selector bar to
open the Attributes inspector; in the Segmented Control section,
change the number of segments to 3.

424 Part V: Adding the App Content

 4. Still in the Segmented Control section, make sure that Segment – 0 is
selected in the Segment menu, enter Standard in the Title field, and
then press Return.

 The Segment menu should change to Segment – 0 Standard.

 5. Now select Segment – 1 in the Segment menu and enter Satellite in the
Title field; then select Segment – 2 and enter Hybrid in the Title field.

 Be sure to press Return after each change.

With your Map selector taken care of, it’s time to create an outlet so that
MapController has access to the Map view to center the map and have the
annotations display. Follow these steps:

 1. Close the Utility area and select the Assistant from the Editor selector
on the Xcode toolbar.

 If the MapController.m file isn’t the one that’s displayed, go up to the
Assistant’s Jump bar and select it.

 2. Control-drag from the Map view in the Canvas or the Document
Outline to the MapController class extension (the private interface
at the top of the file) and create an IBOutlet named mapView.

 You’ll notice a compiler (Live Issue) error (see Figure 17-6) — Unknown
type name ’MKMapView’.

Figure 17-6:
Whoops!

425 Chapter 17: Finding Your Way

 3. Because you’ll be using the MapKit framework that you added in
Chapter 11 and have a property of type MKMapView, you need to
update the MapController public interface (in the MapController.h
file) with the bolded code in Listing 17-1 that follows. (You have it
adopt the MKMapViewDelegate protocol as well.)

 4. Select and then Control-drag from the segmented control (in this
case, it is easier to select and drag from the Document Outline) to the
MapController private interface between the @interface and @end
statements.

 5. In the dialog that appears, choose Action from the Connection drop-
down menu.

 6. In the same dialog, leave Value Changed as the selection in the Event
drop-down menu.

 Value Changed is the event that is generated when the user touches a
segment to change the selection.

 7. Still in the same dialog, name this action mapType by entering
 mapType in the Name field, as shown in Figure 17-7; then click
Connect.

 This action will provide to your code the type of map selected by the
user making a choice using the segmented control.

Figure 17-7:
Connecting

the seg-
mented
control.

426 Part V: Adding the App Content

 Because you now have an outlet set up, you’ll make the Map controller a
delegate in your code as opposed to doing it in Interface Builder as you
have been doing previously. Either way is fine. You’ll do this delegating
business a bit later — in Listing 17-2, to be precise.

Listing 17-1: Updating the MapController Interface

#import "DetailViewController.h"
#import <MapKit/MapKit.h>

@interface MapController : RTDetailViewController
 <MKMapViewDelegate>
@end

Test
Go ahead and run the project.

Presto change-o! If you select the Map entry in the Content controller, you’ll
see a map centered in the United States as shown in Figure 17-8 (at least you
will if you’re in the United States). It’s as easy as that.

Figure 17-8:
Your first

map.

427 Chapter 17: Finding Your Way

Cute — and pretty impressive given how little work you’ve done. The seg-
mented control doesn’t count because you still have to implement it, and, as
you can see in Figure 17-8, the default width isn’t quite big enough, so you’ll
need to widen it the next time you’re in the storyboard.

Furthermore, notice that the status bar at the top of the screen containing
the time and battery indicator (as well as the network connection status if it’s
shown) isn’t right. The map view should not be showing through it. I’ll show
you how to handle that issue later in this chapter.

But first, you need to do some more work to make the map really useful.

 This is the general approach that you follow when you add more functionality
to your application — add the new controller classes, update the storyboard,
and so on.

But you — and your users — want and deserve more than a map centered on
the United States. Figure 17-9 shows what you’d like to see on your road trip,
rather than the standard Map view you get right out of the box.

Figure 17-9:
New York,
New York,
a helluva

town.

428 Part V: Adding the App Content

Putting MapKit through Its Paces
You’ve done the groundwork for some great map functionality, and now it’s
time to put the code in place to get that done. Apple’s MapKit.framework
provides all the heavy lifting to make this actually function. MapKit enables
you to bring up a simple map and also do things with your map without
having to do much work at all.

The map looks like the maps in iOS’s built-in apps and creates a seamless
mapping experience across multiple applications.

MKMapView
The essence of mapping in iOS is the MKMapView. It’s a UIView subclass, and
as you saw in the previous section, you can use it out of the box to create a
map. You use this class as is to display map information and to manipulate
the map contents from your application. It enables you to center the map on a
given coordinate, specify the size of the area you want to display, and annotate
the map with custom information (by becoming a Map View delegate).

When you initialize a Map view, you can specify the initial region for that map
to display. You do this by setting the region property of the map. A region is
defined by a center point and a horizontal and vertical distance, referred to
as the span. The span defines how much of the map will be visible and also
determines the zoom level. The smaller the span, the greater the zoom.

The Map view supports these standard map gestures:

 ✓ Scroll

 ✓ Pinch (to zoom)

 ✓ Double-tap (to zoom in)

 ✓ Two-finger tap (to zoom out)

In addition, for 3D Flyover maps you can use two-finger gestures to change
the viewing angle. You can also specify the Map type — regular, satellite, or
hybrid — by changing a single property.

Because MapKit.framework was written from scratch, it was developed
with the limitations of the iPhone (and later the iPad) in mind. As a result, it
optimizes performance on iOS devices by caching data as well as managing
memory and seamlessly handling connectivity changes (such as moving from
a cellular network to Wi-Fi, for example).

429 Chapter 17: Finding Your Way

The map data itself is network-hosted, so network connectivity is required.

Although you shouldn’t subclass the MKMapView class itself, you can
tailor a Map view’s behavior by providing a delegate object. The delegate
object can be any object in your application, as long as it conforms to the
MKMapViewDelegate protocol.

Enhancing the map
Having this nice global map centered on the United States is kind of interesting,
but not very useful if you’re planning to go to New York. The following sections
show you what you have to do to make the map more useful.

To get things started, you need to close the Assistant, show the Project
 navigator, and select MapController.m.

The current location
What about showing the user’s location on the map? That’s almost as easy!

In the MapController.m file, add the code in bold shown in Listing 17-2 to
viewDidLoad in MapController.m.

Listing 17-2: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapView.delegate = self;
 self.mapView.showsUserLocation = YES;
}

Your additions in Listing 17-2 start by making the MapController the Map
View delegate. showsUserLocation is a MKMapView property that tells the
Map view whether to show the user location. If YES, you get that same blue
pulsing dot you see displayed in the built-in Maps application.

If you were to compile and run the application as it stands now on your iPad,
you’d be asked if it were okay to use your current location, and if you tapped
OK, you’d get what you see in Figure 17-10 — a U.S. map in Landscape orien-
tation with a blue dot that represents the iPad’s current location. (You may
have to pan the map to see it; a lag may occur while the iPad determines that
location, but you should see it eventually.) Of course, to see it in Landscape
orientation, you have to turn the iPad, or choose Hardware➪Rotate Right
(or Rotate Left) from the Simulator menu.

430 Part V: Adding the App Content

Figure 17-10:
Displaying

a map in
Landscape
orientation
with a user

location.

That’s what happens on your iPad. On the Simulator, the story is different.

After launching the application in the Simulator (see Figure 17-11), I’ve
chosen San Francisco by showing the Debug area in the View selector on
the toolbar, clicking the Simulate Location icon (it looks like the standard
Location icon) in the Debug bar in the Workspace window, and then selecting
San Francisco from the menu that appears. I didn’t choose New York because
later you’re going to add some code to shift your map back and forth from
the current location to your destination. You can also add more locations
(but you don’t do that in this book).

You also can simulate the location (with some interesting choices) on the
Simulator Debug menu — choose Debug➪Location. Check out City Run for
example, or even enter the GPS coordinates for any location (choose Custom
Location).

 If you don’t see the current location, you might want to check to make sure
that you’ve created the mapView outlet and connected it to the Map view in
the storyboard.

Touching the blue dot also displays what’s called an annotation, and I tell
you how to customize the text to display whatever you cleverly devise —
 including, as you discover in Chapter 18, the address of the current location.

431 Chapter 17: Finding Your Way

Figure 17-11:
Simulating a

location.

It’s about the region
Okay, now you’ve got a blue dot on a map. Cute, but still not that useful for
the purposes of the app.

Ideally, when you get to New York (or wherever), you should see a map that
centers on where you are as opposed to the entire United States. To get
there from here, however, is also pretty easy. First, you need to look at how
you center the map. To do that, you need to add the method declaration
setInitialRegion to MapController.m.

First, update the class extension by adding the bolded code in Listing 17-3 to
the class extension in MapController.m.

Listing 17-3: Updating the MapController’s Class Extension

@interface MapController ()
@property (weak, nonatomic) IBOutlet MKMapView *mapView;
- (IBAction)mapType:(id)sender;
- (void)setInitialRegion;
@end

Because the Map controller will get its data from the Trip object, as it
should, you have to update the implementation to import the Trip class as
well. Add the bolded code in Listing 17-4 to MapController.m.

432 Part V: Adding the App Content

Listing 17-4: Updating the MapController Implementation

#import "MapController.h"
#import "AppDelegate.h"
#import "Trip.h"

Finally, add the setInitialRegion method in Listing 17-5 to
MapController.m.

Listing 17-5: Add setInitialRegion

- (void) setInitialRegion {

 AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
 MKCoordinateRegion region;
 CLLocationCoordinate2D initialCoordinate =
 [appDelegate.trip destinationCoordinate];
 region.center.latitude = initialCoordinate.latitude;
 region.center.longitude = initialCoordinate.longitude;
 region.span.latitudeDelta = .05;
 region.span.longitudeDelta = .05;
 [self.mapView setRegion:region animated:NO];
}

You then need to update viewDidLoad to use this method. Add the code
in bold in Listing 17-6 to viewDidLoad in MapController.m to send this
message.

Listing 17-6: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapView.delegate = self;
 self.mapView.showsUserLocation = YES;
 [self setInitialRegion];
}

If you run this now, you see more or less the region you see back in Figure 17-9
(but not the annotations . . . at least not yet).

Setting the region is how you center the map and set the zoom level. You
accomplish all this with the following statement:

[self.mapView setRegion:region animated:NO];

A region is a Map view property that specifies four pieces of information
(as illustrated in Figure 17-12):

433 Chapter 17: Finding Your Way

 ✓ region.center.latitude: Specifies the latitude of the center of the map.

 ✓ region.center.longitude: Specifies the longitude of the center of
the map.

 For example, the center of the map would be New York if I were to set
those values as

region.center.latitude = 40.712756;
region.center.longitude = -74.006047;

 ✓ region.span.latitudeDelta: Specifies the north-to-south dis-
tance (in latitudinal degrees) to display on the map. One degree of
latitude is approximately 111 kilometers (69 miles). A region.span.
latitudeDelta of 0.0036 would specify a north-to-south distance on
the map of about a quarter of a mile. Latitudes north of the equator have
positive values, whereas latitudes south of the equator have negative
values.

 ✓ region.span.longitudeDelta: Specifies the east-to-west distance
(in longitudinal degrees) to display on the map. Unfortunately, the
number of miles in one degree of longitude varies based on the latitude.
For example, one degree of longitude is approximately 69 miles at the
equator, but shrinks to 0 miles at the poles. Longitudes east of the zero
meridian (by international convention, the zero or prime meridian passes
through the Royal Observatory, Greenwich, in east London) have positive
values, and longitudes west of the zero meridian have negative values.

Figure 17-12:
How regions

work and
determine
what you

see on the
map.

434 Part V: Adding the App Content

Although the span values provide an implicit zoom value for the map, the
actual region you see displayed may not equal the span you specify because
the map will go to the zoom level that best fits the region that’s set. This also
means that even if you just change the center coordinate in the map, the
zoom level may change because distances represented by a particular span
may change at different latitudes and longitudes. To account for that, those
smart developers at Apple included a property you can set that changes the
center coordinate without changing the zoom level:

@property (nonatomic)
 CLLocationCoordinate2D centerCoordinate

When you change the value of this property with a new CLLocation
Coordinate2D, the map is centered on the new coordinate, and the span
values are updated to maintain the current zoom level.

That CLLocationCoordinate2D type is something you’ll be using
a lot, so I’d like to explain that before I take you any further. The
CLLocationCoordinate2D type is a structure that contains a geographi-
cal coordinate using the WGS 84 reference frame (the reference coordinate
system used by the Global Positioning System):

typedef struct {
CLLocationDegrees latitude;
CLLocationDegrees longitude;
} CLLocationCoordinate2D;

Here’s a little explanation:

 ✓ latitude: The latitude in degrees. This is the value you set in the code
you just entered (region.center.latitude = latitude;).
Positive values indicate latitudes north of the equator. Negative values
indicate latitudes south of the equator.

 ✓ longitude: The longitude in degrees. This is the value you set in the code
you just entered (region.center.longitude = longitude;).
Measurements are relative to the zero meridian, with positive values
extending east of the meridian and negative values extending west of the
meridian.

CLLocationDegrees represents a latitude or longitude value specified in
degrees and is a double.

To center the map display on New York, you send the setInitialRegion
message (the code you just entered) when the view is loaded in the
viewDidLoad: method.

 The actual values come from the Destinations plist you entered in “Adding the
Model Data” in Chapter 11.

435 Chapter 17: Finding Your Way

Dealing with network failure
But what if the Internet isn’t available? The Apple Human Interface Guidelines
(and common sense) say that you should keep the user informed of what’s going
on. By virtue of the fact that you’ve made the MapController an MKMapView
delegate, your app is in the position to send a message in the event of a load
failure, because if a failure occurs, you’re notified, provided you implement the
mapViewDidFailLoadingMap: method. You can respond to a load failure by
adding the code in Listing 17-7 to MapController.m.

Listing 17-7: Implementing mapViewDidFailLoadingMap:

- (void)mapViewDidFailLoadingMap:(MKMapView *)mapView
 withError:(NSError *)error {

 NSLog(@"Unresolved error %@, %@", error,
 [error userInfo]);

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Unable to load the map"
 message:@"Check to see if you have internet access"
 delegate:self cancelButtonTitle: @"Thanks"
 otherButtonTitles:nil];
 [alert show];
}

 Testing this failure business requires disconnecting from the Internet after you
have launched RoadTrip. And because of map caching, you might have to pan
the map to get the warning. The simplest way to disconnect from the Internet
is to turn Airplane Mode on.

Changing the Map Type
MapKit supports three Map types — standard, satellite, and hybrid.

The Map type is a Map View property and is represented as an enumerated
type, which I have cleverly made the segment numbers in the segmented
 control correspond to

enum {
 MKMapTypeStandard,
 MKMapTypeSatellite,
 MKMapTypeHybrid
};

436 Part V: Adding the App Content

Add the code in bold in Listing 17-8 to the mapType: method stub that was
created when you added the action in Interface Builder. The code ensures
that, when the user selects a new value in the segmented control, it will
change the Map type based on the selection.

Listing 17-8: Updating mapType:

- (IBAction)mapType:(id)sender {

 self.mapView.mapType =
 ((UISegmentedControl *)sender).selectedSegmentIndex;
}

When the user selects a segment in the segmented control, a value-changed
event is generated. This is the event (Value Changed) that you specified when
you created the action in Step 4 in the “Setting up the MapController in the
MainStoryboard_iPad” section, earlier in this chapter.

The segmented control has a selectedSegmentIndex property, which
 contains the value of the selected segment.

I had to do a cast here because the sender is of type id — a pointer to an
object — which doesn’t have a selectedSegmentIndex property.

Avoiding the cast
Because I know that the sender in the mapType:
method is a UISegmentedControl, I could
have been clever and instead changed the
Sender type in the method declaration:

- (IBAction)mapType:
(UISegmentedControl *)
sender {

 self.mapView.

mapType = sender.
selectedSegmentIndex;

}

I could’ve changed the Sender type because
you have the option to specify the Sender type
when you create the action. (Just be sure you’ve
got the right type.) In fact, I could’ve changed it
by changing the type in the dialog back in Step
6 in the “Setting up the MapController in the
MainStoryboard_iPad” section earlier in this
chapter, where I first created the action.

437 Chapter 17: Finding Your Way

Adding Annotations
The MKMapView class supports the capability to annotate the map with
custom information. The annotation has two parts: the annotation itself,
which contains the data for the annotation, and the Annotation view, which
displays the data.

Creating the annotation
Any object that conforms to the MKAnnotation protocol is an Annotation
object; typically, Annotation objects are existing classes in your application’s
model. The job of an Annotation object is to know its location (coordinates) on
the map along with the text to be displayed in the callout. The MKAnnotation
protocol requires a class that adopts that protocol to implement the
coordinate property. It can also optionally implement title and subtitle
properties. In that case, that text will be displayed in the annotation callout
when the user taps the annotation.

Actually, you already have one class that meets that criteria — Destination.

And that’s why, when you create the Destination class in Chapter 11 (I told
you that I would explain this), I have you add the property with the attributes
in the way I do. Annotations are required by the protocol to have the properties
I have bolded in the following code:

@property (nonatomic, readwrite)
 CLLocationCoordinate2D coordinate;
@property (nonatomic, readwrite, copy) NSString *title;
@property (nonatomic, readwrite, copy) NSString *subtitle;

That’s it. You already have the properties in place and initialized (see Chapter
12 if you need to review why that’s the case).

Also, in Chapter 11, you include some point-of-interest data in your plist.
Although in this example, you only have one point of interest (annotation),
you can imagine that in a complete RoadTrip app, you’d have quite a few. You
want your points of interest to be annotations as well.

You’re going to need to go back to the Trip object to create the annotations,
but first you have to add an Annotation class to the Model Classes group
by following these steps:

 1. In the Project navigator, select the Model Classes group, and then
either right-click the selection and choose New File from the menu
that appears or choose File➪New➪File from the main menu (or press
⌘+N) to open the New File dialog.

438 Part V: Adding the App Content

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C Class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

 3. Enter Annotation in the Class field.

 4. Choose or enter NSObject in the Subclass Of field and then click Next.

 Note that the Target for iPad and With XIB for User Interface check
boxes are dimmed because they are not relevant here — Events is
derived from NSObject, and not any type of view controller.

 5. In the Save sheet that appears, click Create.

Next, you need to add the code necessary for an annotation.

Add the code in bold in Listing 17-9 to Annotation.h.

Listing 17-9: Updating the Annotation Interface

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface Annotation: NSObject <MKAnnotation>

@property (nonatomic, readwrite)
 CLLocationCoordinate2D coordinate;
@property (nonatomic, readwrite, copy) NSString *title;
@property (nonatomic, readwrite, copy) NSString *subtitle;

@end

 I’m using a generic Annotation class to display the points of interest. As you
build out the app, you could also include more information about the points
of interest and other information, and create a PointOfInterest class.
Then you could make it and Destination subclasses of Annotation. In an
annotation, you can also have a right and left Callout Accessory view, which
display on the right and left side of the standard callout bubble, respectively.

The Callout view is typically used to link to more detailed information about the
annotation. Also, you could link to something such as the EventController
to display information about a PointOfInterest. Just food for thought.

You need to update the Trip initialization method to create the annotation,
but first you have to import the headers you need. Add the bolded code in
Listing 17-10 to Trip.m.

439 Chapter 17: Finding Your Way

Listing 17-10: Updating the Trip Implementation

#import "Trip.h"
#import "Destination.h"
#import "Events.h"
#import "Annotation.h"

 @interface Trip ()
 @property (strong, nonatomic) NSDictionary
 *destinationData;
 @property (strong, nonatomic) Destination *destination;
 @property (strong, nonatomic) Events *events;
 @property (strong, nonatomic) NSMutableArray *pois;

@end

Now you can add the bolded code in Listing 17-11 to initWith DestinationIndex:
in Trip.m. This will turn the point-of-interest data in the plist (the POIs) into
 annotations (okay, just one) and add the destination as an annotation to boot.

Listing 17-11: Updating initWithDestinationIndex:

- (id)initWithDestinationIndex:(int)destinationIndex {
 self = [super init];
 if (self)) {

 NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];
 NSDictionary *destinations =
 [NSDictionary dictionaryWithContentsOfFile:filePath];
 NSArray *destinationsArray =
 [destinations objectForKey:@"DestinationData"];
 _destinationData =
 [destinationsArray objectAtIndex:destinationIndex];
 _destination = [[Destination alloc]
 initWithDestinationIndex:destinationIndex];
 events = [[Events alloc]
 initWithDestinationIndex:destinationIndex];
 NSArray *poiData = self.destinationData[@"POIs"];
 _pois = [[NSMutableArray alloc]
 initWithCapacity:[poiData count]+1];
 [_pois addObject: self.destination];

 for (NSDictionary *aPOI in poiData) {
 Annotation *annotation = [[Annotation alloc] init];

(continued)

440 Part V: Adding the App Content

 CLLocationCoordinate2D coordinate;
 coordinate.latitude =
 [aPOI[@"Latitude"] doubleValue];
 coordinate.longitude =
 [aPOI[@"Longitude"] doubleValue];

 annotation.coordinate = coordinate;
 annotation.title = aPOI[@"Title"];
 annotation.subtitle = aPOI[@"Subtitle"];
 [self.pois addObject:annotation];
 }
 }
return self;
}

As you can see, you’re creating an Annotation for each point of interest (aPOI)
in the poiData array and adding it to a pois array you create — an array that
will hold all the annotations I want to display on the map. poiData is the POIs
array in the Destinations.plist you created in Chapter 11. Note that instead
of adding an initialization method to Annotation, you’re simply assigning the
properties directly rather than sending them as parameters in an initialization
method.

If you look closely, you can see that I’m adding Destination to the pois
array as well. That way, it, too, will display on the map.

You have to add some new methods to the interface so that Trip can return
the annotations (and a map title). You also need to update the Trip interface.
To do that, add the bolded code in Listing 17-12 to Trip.h.

Listing 17-12: Updating the Trip Interface

@interface Trip : NSObject

- (UIImage *) destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;

- (id)initWithDestinationIndex:(int)destinationIndex;
- (NSString *)weather;
- (NSUInteger)numberOfEvents;
- (NSString *)getEvent:(NSUInteger)index;
- (NSArray *)createAnnotations;
- (NSString *)mapTitle;
@end

Listing 17-11 (continued)

441 Chapter 17: Finding Your Way

Now you get to add all the Trip methods that will be used by the
MapController. Start by adding the createAnnotations method shown
in Listing 17-13 to Trip.m.

Listing 17-13: Adding createAnnotations

- (NSArray *)createAnnotations {

 return self.pois;
}

Even though pois is a mutable array, I return it as a basic array because that’s
all that is needed. MapController won’t be adding any annotations to it.

You also need to add a method to return the map title. Add the mapTitle
method in Listing 17-14 to Trip.m.

Listing 17-14: Add mapTitle

- (NSString *)mapTitle {

 return self.destination.destinationName;
}

All that’s really left at this point is to add the code to MapController to get
the annotations and send them to the Map view. The next section walks you
through that.

Displaying the map title and annotations
Start by adding the bolded code in Listing 17-15 to update the private interface
in MapController.m. As you can see, you’ll be adding two methods — one
to add the annotations, and another to provide the map title. I explain both as
you go along.

Listing 17-15: Updating the MapController Private Interface

@interface MapController ()
- (IBAction)mapType:(id)sender;
- (void)setInitialRegion;
- (void)addAnnotations;
- (NSString *)mapTitle;
@end

442 Part V: Adding the App Content

With these code additions, you’ll display the annotations by sending yourself
the addAnnotations message in viewDidLoad. But another thing I would
like to do is display the title of the destination either on the Navigation bar or
the toolbar, and I’ll do that in viewDidLoad as well.

Displaying a title in the Navigation bar is really easy, as you can see in
Listing 17-17 — all you need to do is assign whatever you want it to be to the
view controller’s title property. But if you have a toolbar, your task isn’t
quite as easy. But it does give me a chance to show you a little more about
how to work with toolbar items, so that’s a good thing.

Update viewDidLoad by adding the bolded code in Listing 17-16 to
viewDidLoad in MapController.m.

Listing 17-16: Update viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapView.delegate = self;
 self.mapView.showsUserLocation = YES;
 [self setInitialRegion];
 AppDelegate* appDelegate = [[UIApplication
 sharedApplication] delegate];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 UILabel * titleLabel = [[UILabel alloc]
 initWithFrame:CGRectMake (0,0,250,44)];
 titleLabel.font = [UIFont boldSystemFontOfSize:17];
 titleLabel.textAlignment = NSTextAlignmentCenter;
 titleLabel.backgroundColor = [UIColor clearColor];
 titleLabel.text = [self mapTitle];
 UIBarButtonItem *titleView = [[UIBarButtonItem alloc]
 initWithCustomView:titleLabel];
 UIBarButtonItem *flexibleSpace=
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:
 UIBarButtonSystemItemFlexibleSpace
 target:nil action:nil];
 flexibleSpace.width = 1.0;
 NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
 [itemsArray insertObject:flexibleSpace atIndex:
 [itemsArray count]-2];
 [itemsArray insertObject:titleView atIndex:
 [itemsArray count]-2];

443 Chapter 17: Finding Your Way

 [self.toolbar setItems:itemsArray animated:NO];
 }
 else
 self.title = [appDelegate.trip mapTitle];
[self addAnnotations];
}

You begin by determining whether you’re on the iPad or the iPhone. If you’re
on the iPad, I make the assumption that you have a toolbar. (You could add
the logic to see whether it is a toolbar or a Navigation bar on the iPad if you
need to, just as you do in Chapter 8.)

If you’re on an iPad, you create a Label object with a clear background, a
bold system font of size 17, aligned center, and with a width of 250. (You
could determine the actual size you need by using a number of methods in
NSString, but that’s pretty complicated and outside the scope of this book.)
You also send the mapTitle message to get the title, which I get to next.

 UILabel * titleLabel = [[UILabel alloc]
 initWithFrame:CGRectMake (0,0,250,44)];
 titleLabel.textColor = [UIColor yellowColor];
 titleLabel.font = [UIFont boldSystemFontOfSize:17];
 titleLabel.textAlignment = NSTextAlignmentCenter;
 titleLabel.backgroundColor = [UIColor clearColor];
 titleLabel.text = [self mapTitle];

You then create a UIBarButtonItem by initializing it with the view
(UILabel) you just created. This enables you to add virtually whatever you
want to the toolbar, as long as it’s a view.

UIBarButtonItem *titleView = [[UIBarButtonItem alloc]
 initWithCustomView:titleLabel];

Then you create a flexible space of the kind you used earlier in this chapter —
doing so adds a space that’s distributed equally between the other Bar Button
items on the toolbar — so the title will be centered between the Map-type seg-
mented control on the right (which already has a flexible space item in front
of it) and the Road Trip button (if there is one) or the left side of the toolbar
(if there isn’t).

UIBarButtonItem *flexibleSpace=
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:
 UIBarButtonSystemItemFlexibleSpace
 target:nil action:nil];
flexibleSpace.width = 1.0;

444 Part V: Adding the App Content

You then add the items to the toolbar’s items array just as you do in Chapter 13.

[itemsArray insertObject:flexibleSpace atIndex:
 [itemsArray count]-2];
[itemsArray insertObject:titleView atIndex:
 [itemsArray count]-2];
[self.toolbar setItems:itemsArray animated:NO];

The [itemsArray count]-2 index means that you’ll add this item before
the two existing items (the existing flexible space and the segmented control).

If you are not on the iPad, you just assign whatever you want the title to
be to the title property of the view controller and it is displayed on the
Navigation bar.

else
 self.title = [appDelegate.trip mapTitle];

With the title taken care of, you send yourself the addAnnotations
message.

[self addAnnotations];

Before I get to the addAnnotations method you’ll need to add, I’ll have
you finish up the title by adding the mapTitle method in Listing 17-17 to
MapController.m.

Listing 17-17: Add mapTitle

- (NSString *)mapTitle {

 AppDelegate* appDelegate = [[UIApplication
 sharedApplication] delegate];

 return [appDelegate.trip mapTitle];
}

mapTitle gets the map title by sending the mapTitle message to the
Trip object — another model responsibility. (This also gives you a chance,
as you’ll see in Chapter 19, to title the map based on whatever criteria you
would like, such as the current location.)

With your title taken care of, it’s time to add the annotations. Start by adding
the addAnnotations method in Listing 17-18 to MapController.m.

445 Chapter 17: Finding Your Way

Listing 17-18: Add addAnnotations
- (void)addAnnotations {

 AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
 [self.mapView addAnnotations:
 [appDelegate.trip createAnnotations]];
}

I make this a separate method because I want to be able to add more anno-
tations after the view is loaded. Although you won’t be adding additional
annotations here, you take advantage of this method when you implement the
FindController in Chapter 19 to display locations the user wants to see
on a map.

To add an annotation to a Map view, just send the addAnnotations message
with an array of annotations that have adopted the MKAnnotation protocol;
that is, each one has a coordinate property and an optional title (and
subtitle) method — if it turns out you want to actually display something
in the annotation callout.

The Map view places annotations on the screen by sending its delegate the
mapView:viewForAnnotation: message. This message is sent for each
annotation object in the array. Here you can create a custom view or return nil
to use the default view. (If you don’t implement this delegate method — which
you won’t, in this case — the default view is also used.)

Creating your own (customized) Annotation views is beyond the scope of
this book (although I can tell you that the most efficient way to provide the
content for an Annotation view is to set its image property). Fortunately, the
default Annotation view is fine for your purposes. It displays a pin in the loca-
tion specified in the coordinate property of the Annotation delegate. When
the user touches the pin, the optional title and subtitle text will display if the
title and subtitle methods are implemented in the Annotation delegate.

 You can also add callouts to the Annotation view, such as a Detail Disclosure
or the Info button (like the one you see in many of the utility apps), by using
the built-in MKPinAnnotationView — you don’t have to create your own
Annotation view, in other words.

If you compile and build your project, your map is going to proudly display
the annotations you added, as shown in Figure 17-13. Notice the Map view is
beginning to look more and more like the one back in Figure 17-9.

446 Part V: Adding the App Content

Figure 17-13:
Displaying
an annota-
tion and its

callout.

Going to the Current Location
Although you require the user to pan to the user location on the map if he
wants to see it, it’s kind of annoying in this particular case unless you’re actu-
ally coding this in or around New York City. To remove at least that annoyance
from your life, I show you how easy it is to add a button to the toolbar bar
to zoom in to the current location and then back to the map region and span
you’re currently displaying.

Add the bolded code in Listing 17-19 to add the button in the MapController
method viewDidLoad.

Listing 17-19: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapView.delegate = self;
 self.mapView.showsUserLocation = YES;

 [self setInitialRegion];
 RTAppDelegate* appDelegate = [[UIApplication

447 Chapter 17: Finding Your Way

 sharedApplication] delegate];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 UILabel * titleLabel = [[UILabel alloc]
 initWithFrame:CGRectMake (0,0,250,44)];
 titleLabel.textColor = [UIColor yellowColor];
 titleLabel.font = [UIFont boldSystemFontOfSize:17];
 titleLabel.textAlignment = NSTextAlignmentCenter;
 titleLabel.backgroundColor = [UIColor clearColor];
 titleLabel.text = [self mapTitle];
 UIBarButtonItem *titleView = [[UIBarButtonItem alloc]
 initWithCustomView:titleLabel];
 UIBarButtonItem *flexibleSpace=
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:
 UIBarButtonSystemItemFlexibleSpace
 target:nil action:nil];
 flexibleSpace.width = 1.0;
 NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
 [itemsArray insertObject:flexibleSpace atIndex:
 [itemsArray count]-2];
 [itemsArray insertObject:titleView atIndex:
 [itemsArray count]-2];
 [self.toolbar setItems:itemsArray animated:NO];
 }
 else {
 self.title = [appDelegate.trip mapTitle];
}
[self addAnnotations];
 UIBarButtonItem *locateButton = [[UIBarButtonItem alloc]
 initWithTitle:@"Locate"
 style:UIBarButtonItemStyleBordered target:self
 action:@selector(goToLocation:)];;
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 NSMutableArray *itemsArray =
 [self.toolbar.items mutableCopy];
 [itemsArray insertObject:locateButton
 atIndex:[itemsArray count]];
 [self.toolbar setItems:itemsArray animated:NO];
 }
 else {
 self.navigationItem.rightBarButtonItem = locateButton;
 }
}

448 Part V: Adding the App Content

This may look familiar because it’s what you did to add the Back button in
Chapter 15. When the user taps the Locate button you create here, you’ve
specified that the goToLocation: message is to be sent [action:@
selector(goToLocation:)] to the MapController (target:self).

UIBarButtonItem *locateButton =
 [[UIBarButtonItem alloc] initWithTitle: @"Locate"
 style:UIBarButtonItemStylePlain target:self
 action:@selector(goToLocation:)];
self.navigationItem.rightBarButtonItem = locateButton;

Notice that I don’t check to see whether this is a Navigation bar or a toolbar.
I’m assuming a toolbar, but if you think you may want to someday, for some
reason, make this a Navigation bar, I leave this as an exercise for the reader.

Don’t forget, to go back to a location you need to choose a simulated location
if you are using the Simulator, as you did in the earlier section “Enhancing
the map.”

Next, add the goToLocation: method in Listing 17-20 to MapController.m.

Listing 17-20: Adding goToLocation:

- (void)goToLocation:(id)sender {

 MKUserLocation *annotation = self.mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,500);
 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance, distance);
 [self.mapView setRegion:region animated:NO];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 NSArray *itemsArray = self.toolbar.items;

 UIBarButtonItem *locateButton = [itemsArray
 objectAtIndex:[itemsArray count]-1];
 locateButton.action = @selector(goToDestination:);
 locateButton.title = @"Destination";
 }
 else {
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToDestination:);
 self.navigationItem.rightBarButtonItem.title =
 @"Destination";
 }
}

449 Chapter 17: Finding Your Way

When the user taps the Locate button, your app first checks to see whether
the location is available. (It may take a few seconds after the application
starts for the location to become available.) If not, you simply return from
the method without changing the region. (You could, of course, show an alert
informing the user what’s happening and to try again in 10 seconds or so — I
leave that up to you.)

If the location is available, your app computes the span for the region the
user is moving to. In this case, the following code

CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,500);

computes the span to be four times the horizontalAccuracy of the device
(but no less than 1,000 meters). horizontalAccuracy is a radius of uncer-
tainty given the accuracy of the device; that is, the user is somewhere within
that circle.

You then call the MKCoordinateRegionMakeWithDistance function that
creates a new MKCoordinateRegion from the specified coordinate and dis-
tance values. distance and distance correspond to latitudinalMeters
and longitudinalMeters, respectively. (I’m using the same value for both
parameters here.)

If you didn’t want to change the span, you could’ve simply set the Map view’s
centerCoordinate property to userLocation, and as I said earlier in
the “It’s about the region” section, that would’ve centered the region at the
userLocation coordinate without changing the span.

When the user taps the Location button, you change the title on the button
to the Map title and change the @selector to (goToDestination:). You
access the button on the iPad in the toolbar itemsArray and on the iPhone
via the navigationItem.

This means that the next time the user touches the button, the
goToDestination: message will be sent, so you’d better add the code
in Listing 17-21 to MapController.m. This sets the region back to the
Destination region and toggles the button title back to Locate.

Listing 17-21: Adding goToDestination:

- (void)goToDestination:(id)sender {

 [self setInitialRegion];
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 NSArray *itemsArray = self.toolbar.items;

(continued)

450 Part V: Adding the App Content

 UIBarButtonItem *locateButton = [itemsArray
 objectAtIndex:[itemsArray count]-1];
 locateButton.action = @selector(goToLocation:);
 locateButton.title = @"Locate";
 }
 else {
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToLocation:);
 self.navigationItem.rightBarButtonItem.title =
 @"Locate";
 }
}

Now run your app (and if you’re running on the Simulator, choose your
default location as explained in the section “Enhancing the map,” earlier in
this chapter). Because you already have two annotations on the map of New
York, you might want to set the Simulator to use a distant location such as
San Francisco. That way, you can easily see that the map is working.

You can see the result of tapping the Locate button in Figure 17-14.

Figure 17-14:
Go to the

current
location.

Listing 17-21 (continued)

451 Chapter 17: Finding Your Way

 Because you have the user location, you might be tempted to use that to
center the map, and that would work fine, as long as you start the location-
finding mechanism stuff as soon as the program launches. The problem is that
the hardware may take a while to find the current location, and if you don’t
wait long enough, you get an error. You can add the code to center the map to
a method that executes later, such as

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object change:(NSDictionary *)change
 context:(void *)context {

This message is sent as soon as the map starts getting location information,
but you’ll see an initial view and then a redisplay of the centered view. For
aesthetic reasons, you really need to initialize MapController and MapView
at program startup — an exercise for the reader.

Fixing the Status Bar
Things are really, really close to being done. There’s that status bar issue
to worry about. I’ve saved it for now because although it’s really not dif-
ficult, it helps to have worked with views and their settings in order to
 understand it.

In iOS 7, the status bar is transparent, and that’s where the issue arises. The
issue is that the Web view is showing through the transparent status bar.
That’s a no-no. It distracts from the status bar information, it destroys the
consistency of the iOS interface, and it looks strange to most people.

There are three standard solutions. The easiest is to use a navigation control-
ler to display your content (your main view). A navigation controller has the
logic built into it to display an appropriate background for the status bar and
to position its content views so that they are not behind the status bar. (This
is one of the reasons that the problem doesn’t occur so frequently on iPhone
apps: they’re already using navigation controllers in many cases.)

You also can create a nondistracting background image to place under the
status bar and above your view’s content.

The most robust solution is to use Auto Layout. So far, you’ve mostly used
Auto Layout for pinning views and embedding them in other views. There’s a
great deal more to Auto Layout, and here’s how you can use it in this case.

First of all, as you can easily find out, the Status Bar is 20 points high. You can
go into the Size inspector in the Utility area, and manually set the origin of
your top view to 0, 20 so it will be placed below the Status bar.

452 Part V: Adding the App Content

And next week when Apple introduces an iOS device with a new form factor on
which the Status bar is not 20 points high, your app will break. Now there’s no
guarantee that such as device will be introduced next week, but the odds are
pretty good that it will happen (and probably at the most inconvenient time
for you).

Start by recognizing that the Status bar is transparent and it’s going to be at
the top of the screen. (You can hide it for full-screen content, but it should
generally not be hidden for a long period of time.) In the case of your Map
controller, you have that transparent Status bar at the top of the screen. You
want your toolbar below it, and you want your Web view directly below the
bottom of the toolbar. (When I say "below" here I mean lower down on the
screen and not behind.)

Now that you’ve recognized that the Status bar is going to be at the top of
the screen unless you hide it, here are the steps to position the other views
properly.

 1. In the storyboard, open the Document Outline and the Map Controller –
Map Scene.

 You can see it at the left of Figure 17-7.

 2. Notice that you have Top Layout Guide and a Bottom Layout
Guide inside the scene.

 They are placed there automatically.

 3. Control-drag from the Toolbar to the Top Layout Guide.

 4. Select Vertical Spacing in the popover that appears, as shown in
Figure 17-15.

Figure 17-15:
Choose
Vertical

Spacing.

 5. With the Toolbar still selected, choose the Size inspector in the Utility
area. In the list of constraints, you’ll set Top Space to: Top Layout
Guide, as shown in Figure 17-16.

 That is the constraint that you just created.

453 Chapter 17: Finding Your Way

Figure 17-16:
 Verify

the new
constraint.

 6. Click the Gear Wheel on that constraint and choose Select and Edit.

 7. The constraint should have been set as shown in Figure 17-16.

 Verify that the pop-up menu is set to Equal, the Constant is set to 0, and
the Priority is set to 1,000. That is the highest value, and it means that no
other constraint can override this one.

 8. If you have any other constraints, use the Gear wheel to delete them.

 These extra constraints can accumulate as you are experimenting.

 9. Using Editor➪Pin, pin the leading and trailing spaces to the
superview.

 10. Use the Size inspector to verify that the Toolbar height remains 44.

 You may want to run the app now to verify that the toolbar no longer
overlaps the status bar.

 11. Control-drag from Map View to Toolbar.

 12. Select Vertical Spacing as you did in Step 4.

454 Part V: Adding the App Content

 13. Choose Editor➪Resolve Auto Layout Issues➪Add Missing Constraints.

 If the command is grayed out, just verify that you have top, bottom, leading,
and trailing constraints for the Web view. If not, make certain the tool-
bar is selected and then use Editor➪Resolve Auto Layout Issues➪Clear
Constraints to try again.

 Xcode pins the bottom space to the superview and aligns leading, trail-
ing, and top to the toolbar. The Web view is pinned to the toolbar, which
is pinned to the superview.

 14. Verify that the constraints are working by rotating the simulator using
the Hardware menu.

 Rotating the simulator is the acid test of Auto Layout. Use the keyboard equiv-
alents as you are working on your storyboard to constantly check that your
beautiful landscape layout is equally beautiful in portrait.

You should have the results shown previously in Figure 17-9.

Update the iPhone Storyboard
The iPhone storyboard for maps is very similar to the iPad storyboard. In
fact, the quick and easy way to update your iPhone storyboard is as follows:

 1. Select the iPad storyboard file in the Project Navigator.

 2. Click the mouse on the Map Controller – Map Scene to select it. Make
sure that the whole Map Scene is selected and highlighted.

 3. Copy the Map Controller Scene by choosing Edit➪Copy.

 4. Select your iPhone storyboard file in the Project Navigator.

 5. Paste the Map Controller Scene into the iPhone storyboard file.

 6. Control-drag from the Map item in the Master View controller over
to the Map Controller Scene, and choose the Push segue from the
pop-up menu.

 7. Test your new map capabilities in the iPhone simulator.

 8. Congratulate yourself on a job well done.

Chapter 18

Geocoding
In This Chapter
▶ Understanding geocoding

▶ Getting a feel for reverse geocoding

▶ Displaying the address of the user’s current location

T
here are two basic ways of identifying where you are on Earth. You can
describe your location in coordinates of latitude and longitude, or you

can describe your location in terms of an address. The latitude and longitude
coordinates are based on geometry (remember Euclid) and on the assump-
tion that the Earth is a regular sphere.

Addresses are based on history and politics. The geographic coordinates
of the city now known as St. Petersburg have not changed over time (yes, I
know that continental drift has an effect, but to all intents and purposes, it
has been in the same place since its founding by Tsar Peter the Great on
May 27, 1703). However, St. Petersburg’s name was changed to Petrograd,
then to Leningrad, and after that back to St. Petersburg.

Despite the fact that geographic coordinates of a spot on Earth are essen-
tially unchanging and the addresses are subject to change, most people com-
monly use addresses to describe locations on Earth. Most software that deals
with mapping works with geographic coordinates, and it converts back and
forth between them and addresses. This process is known as geocoding, and
it comes in two flavors: forward and reverse geocoding.

This chapter shows you how to use iOS geocoding tools in your apps.

Understanding Geocoding on the iPad
Converting an address to a set of map coordinates is called forward geocod-
ing, whereas converting from a set of coordinates to an address is called
reverse geocoding. Both forward and reverse geocoding are supported in

456 Part V: Adding the App Content

Apple’s CLGeocoder class — which is part of Apple’s CoreLocation
framework. I showed you how to add the CoreLocation framework to the
RoadTrip project way back in Chapter 11.

The CLGeocoder class provides services for converting between a coordi-
nate (specified as a latitude and longitude) and the address of that coordi-
nate. The CLGeocoder class also provides services for the reverse: returning
the coordinate value for a text string that is the user-friendly representation
of that coordinate.

To use a CLGeocoder object, first create it and then send it a forward- or
reverse-geocoding message.

 ✓ Reverse-geocoding: These requests take a latitude and longitude value
and find a user-readable address.

 ✓ Forward-geocoding: These requests take a user-readable address and
find the corresponding latitude and longitude value. Forward-geocoding
requests may also return additional information about the specified
location, such as a point of interest or building at that location.

For both types of request, the results are returned as an array of CLPlacemark
objects to a completion handler block. In the case of forward-geocoding
requests, multiple placemark objects may be returned if the provided infor-
mation yields multiple possible locations.

A CLPlacemark object contains, among other things, the following
properties:

 ✓ location: Very useful for forward geocoding, which I explain in
Chapter 19

 ✓ name: The name of the placemark

 ✓ addressDictionary: A dictionary containing the Address Book keys
and values for the placemark

 ✓ ISOcountryCode: The abbreviated country name

 ✓ country: The name of the country

 ✓ postalCode: The postal code

 ✓ administrativeArea: The state or province

 ✓ subAdministrativeArea: Additional administrative area information
(such as county)

 ✓ locality: The city

457 Chapter 18: Geocoding

 ✓ subLocality: Additional city-level information such as neighborhood
or a common name for the location

 ✓ thoroughfare: The street

 ✓ subThoroughfare: Additional street-level information, such as the
building number

 ✓ region: The CLRegion

Landmark and geographic information may also be available in the
CLPlacemark object in the following properties:

 ✓ areasOfInterest: The relevant areas of interest associated with the
placemark

 ✓ inlandWater: The name of the inland water body associated with the
placemark

 ✓ ocean: The name of the ocean associated with the placemark

To make smart decisions about what types of information to return, the
geocoder server uses all the information provided to it when processing the
request. For example, if the user is moving quickly along a highway, the geo-
coder might return the name of the overall region rather than the name of a
small park that the user is passing through.

Here are some rather loose rules (Apple’s) for using the CLGeocoder object:

 ✓ Send at most one geocoding request for any single user action. That is,
don’t start another request until the first one has completed.

 ✓ If the app needs the geocoded location in more than one map loca-
tion, save and then reuse the results from the initial geocoding request
instead of doing another one.

 ✓ When you want to update the user’s current location automatically
(such as when the user is moving), issue new geocoding requests only
when the user has moved a significant distance, a reasonable amount of
time has passed, or both. For example, in a typical situation, you should
not send more than one geocoding request per minute.

 ✓ Do not start a geocoding request if your app is inactive or in the
background.

 ✓ An iOS-based device must have access to the network in order for the
CLGeocoder object to return detailed placemark information. Although
iOS stores enough information locally to report the localized country
name and ISO country code for many locations, if country information
is not available for a specific location, the CLGeocoder object may still
report an error.

458 Part V: Adding the App Content

As you can probably surmise, geocoding is expensive — that’s why these
rules emphasize caching data and not updating unless it’s necessary.

 You can use a CLGeocoder object either in conjunction with, or independent
of, the classes of the MapKit framework.

In this chapter, I show you how to add the code to do a reverse geocode.
Essentially, you are going to update the goToLocation: method to use
reverse geocoding to display the address of the current location in the anno-
tation. In the next chapter, you get to do pretty much the same thing in order
to set up a forward geocode, although you send a different message and pro-
cess the placemark differently.

Reverse Geocoding
You’ll begin the process of implementing reverse geocoding by adding a
new instance variable to MapController.m to store a reference to the
CLGeocoder object. You do all this by adding the bolded code in Listing 18-1
to MapController.m. As you’ll see later, you’ll need that reference to cancel
a request.

Listing 18-1: Updating the MapController Implementation

#import "MapController.h"
#import "RTAppDelegate.h"
#import "Trip.h"

@interface MapController ()
@property (weak, nonatomic) IBOutlet MKMapView *mapView;
@property (strong, nonatomic) CLGeocoder *geocoder;

- (IBAction)mapType:(id)sender;
- (void)setInitialRegion;
- (NSString *)mapTitle;
- (void)addAnnotations;
@end

Next, you allocate and initialize the CLGeocoder and send it a message to
return the information for the current location. Adding the bolded code in
Listing 18-2 to goToLocation in MapController.m does that for you.

459 Chapter 18: Geocoding

Listing 18-2: Updating goToLocation

- (void)goToLocation:(id)sender {

void (^clGeocodeCompletionHandler)(NSArray *, NSError *)
 =
 ^(NSArray *placemarks, NSError *error){

 CLPlacemark *placemark = [placemarks
 objectAtIndex:0];
 if (error!= nil || placemark == nil) {
 NSLog(@"Geocoder failure! Error code: %u,
 description: %@, and reason: %@", error.code,
 [error localizedDescription],
 [error
 localizedFailureReason]);
 }
 else {
 self.mapView.userLocation.subtitle =
 [NSString stringWithFormat: @" lat:%f lon:%f",
 placemark.location.coordinate.latitude,

 placemark.location.coordinate.longitude];
 if ([placemark.areasOfInterest objectAtIndex:0]) {
 self.mapView.userLocation.title =
 [placemark.areasOfInterest
 objectAtIndex:0];
 }
 else {
 if (placemark.thoroughfare) {
 if (placemark.subThoroughfare)
 self.mapView.userLocation.title =
 [NSString stringWithFormat:@"%@ %@",
 placemark.subThoroughfare,

 placemark.thoroughfare];
 else
 self.mapView.userLocation.title =
 [NSString stringWithFormat:@"%@",

 placemark.thoroughfare];
 }
 else {
 if (placemark.locality) {
 self.mapView.userLocation.title =

(continued)

460 Part V: Adding the App Content

Listing 18-2 (continued)
 placemark.locality;
 }
 else
 self.mapView.userLocation.title = @"Your
 location";
 }
 }
 }
 };

 MKUserLocation *annotation = self.mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,500);
 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance,
 distance);
 [self.mapView setRegion:region animated:NO];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 NSArray *itemsArray = self.toolbar.items];
 UIBarButtonItem *locateButton = [itemsArray
 objectAtIndex:[itemsArray count]-1];
 locateButton.action = @selector(goToDestination:);
 locateButton.title = @"Destination";
 }
 else {
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToDestination:);
 self.navigationItem.rightBarButtonItem.title =
 @"Destination";
 }
 self.geocoder = [[CLGeocoder alloc]init];
 [self.geocoder reverseGeocodeLocation:location
 completionHandler:clGeocodeCompletionHandler];

}

The code you’ve added allocates and initializes the CLGeocoder, sends it the
message to reverse geocode, and provides it with a completion handler block
(just as you did with the animation you did in Chapter 10).

 self.geocoder = [[CLGeocoder alloc]init];
 [self.geocoder reverseGeocodeLocation:location
 completionHandler:clGeocodeCompletionHandler];

461 Chapter 18: Geocoding

Sending the reverseGeocodeLocation:completionHandler: message is
how you make a reverse-geocoding request for the specified location.

This method submits the location data to the geocoding server asynchro-
nously and returns. Your completion handler block will be executed on the
main thread. (The main thread encompasses the app’s main run loop — apps
can add [spawn] additional threads, which is beyond the scope of this book.)

After initiating a reverse-geocoding request, you shouldn’t make another
reverse- or forward-geocoding request until the first request is completed.

For both types of requests, the results are returned to the completion block
in a CLPlacemark object. In the case of forward-geocoding requests, multi-
ple placemark objects may be returned if what you submitted results in more
than one possible location.

 Note that the block is called whether or not the request is successful. It’s invoked
when the CLGeocoder either finds placemark information for its coordinate
or receives an error. The CLPlacemark object, as you previously saw in the
“Understanding Geocoding on the iPad” section, earlier in this chapter, will
contain placemark data for a given latitude and longitude. Placemark data
includes the properties that hold the country, state, city, and so on.

The completion handler is a block that appears in the following form:

void (^CLGeocodeCompletionHandler)
 (NSArray *placemark, NSError*error);

As you can see, placemark contains an array of CLPlacemark objects. For
most geocoding requests, this array should contain only one entry. However,
forward-geocoding requests may return multiple placemark objects in situa-
tions in which the specified address couldn’t be resolved to a single location.

If the request was canceled or an error in obtaining the placemark informa-
tion occurred, placemark is nil.

error contains a pointer to an error object (if any) indicating why the
placemark data wasn’t returned.

if (error!= nil || placemark == nil) {
 NSLog(@"Geocoder failure! Error code:%u, description:
 %@, and reason: %@", error.code,
 [error localizedDescription],
 [error localizedFailureReason]);
 }

462 Part V: Adding the App Content

 The CLGeocoder can fail for a variety of reasons, such as the service is down
or it can’t find an address for the coordinate. If the CLGeocoder fails, you get
back an error object that can have some useful information. I’ll leave it to
you to explore the details of the error information on your own.

Although I simply log a message here, you may want to expand the user inter-
face to inform the user what’s happening. Doing so isn’t important in this
case because you can always just leave the annotation as Current Location,
but when you start dragging annotations (which you can do, but won’t in this
book), you might want to develop a plan for what to display in the annotation
if the CLGeocoder fails.

If the CLGeocoder is successful, you update the userLocation annotation —
provided, as always by the Map view (if you set the showsUserLocation
property to YES as you did in Chapter 17) — in the completion handler. user
Location is a Map View property representing the user’s current location.

As I explain earlier, the CLPlacemark object returned when the block is
invoked stores placemark data for a given latitude and longitude. To update
what’s displayed in the annotation using the information you get back from
the geocoder, you start by setting the subtitle using the coordinate in the
Placemark Location property:

self.mapView.userLocation.subtitle =
 [NSString stringWithFormat: @" lat:%f lon:%f",
 placemark.location.coordinate.latitude,
 placemark.location.coordinate.longitude];

If an areasOfInterest exists in the placemark, you set the title to that:

if ([placemark.areasOfInterest objectAtIndex:0]) {
 self.mapView.userLocation.title =
 [placemark.areasOfInterest
 objectAtIndex:0];
}

Otherwise, you see whether you have a thoroughfare and use that for the
title (along with a subthoroughfare; together they provide the “street
address”). Occasionally, however, you may find that a thoroughfare (street)
exists, but no sub-thoroughfare (street number). When that’s the case, you
just display the thoroughfare.

463 Chapter 18: Geocoding

if (placemark.thoroughfare) {
 if (placemark.subThoroughfare)
 self.mapView.userLocation.title =
 [NSString stringWithFormat:@"%@ %@",
 placemark.subThoroughfare,
 placemark.thoroughfare];
 else
 self.mapView.userLocation.title =
 [NSString stringWithFormat:@"%@",

 placemark.thoroughfare];
}

If no thoroughfare exists, you try for a locality, and if all else fails, you
use a general-purpose location string.

if (placemark.locality) {
 self.mapView.userLocation.title = placemark.locality;
}
else
 self.mapView.userLocation.title = @"Your location";

Because the CLGeocoder operates asynchronously, the user might tap the
button to return to the Destination map before the CLGeocoder has com-
pleted the request. If that’s the case, you’ll want to cancel the CLGeocoder
request. To do so, add the bolded code in Listing 18-3 to goToDestination:
in MapController.m.

Listing 18-3: Updating goToDestination:

- (void)goToDestination:(id)sender {

 [self.geocoder cancelGeocode];
 self.geocoder = nil;

 [self setInitialRegion];
 self.navigationItem.rightBarButtonItem.title =
 @"Locate";
 self.navigationItem.rightBarButtonItem.action =
 @selector(goToLocation:);
}

The cancelGeocode message cancels a pending geocoding request, which
causes the completion handler block to be called.

You cancel the CLGeocoder request in this method because although you
start the CLGeocoder in the goToLocation: method, it actually doesn’t
return the information in that method. It operates asynchronously when
it constructs the placemark, gives up, or sends an error. You also set the
instance variable to nil so that ARC will release the CLGeocoder.

464 Part V: Adding the App Content

But not only might the user return to the Destination map before the geo-
coder request completes, he might also leave the Map view entirely and
return to the Content controller. This means that you’ll want to cancel the
request when the view disappears as well, and the logical place to do that is in
viewWillDisappear:, which notifies the view controller that its view is about
to be dismissed, covered, or otherwise hidden from view. In the Map controller,
that will happen only if the user taps the Back button to return to the Main view.

Add viewWillDisappear: to MapController.m with the code in Listing 18-4.
(If you added the capability to track user location changes in Chapter 17,
viewWillDisappear will already be there.)

Listing 18-4: Overriding viewWillDisappear:

- (void) viewWillDisappear:(BOOL)animated {

 [self.geocoder cancelGeocode];
 self.geocoder = nil;
 [super viewWillDisappear:animated];
}

 After initiating a forward-geocoding request, don’t make another forward- or
reverse-geocoding request until the first one completes or you cancel it.

Figure 18-1 shows the result of your adventures in reverse geocoding.

Figure 18-1:
Reverse

geocoding.

Chapter 19

Finding a Location
In This Chapter
▶ Setting up and implementing the Find controller

▶ Finding map coordinates from an address

▶ Displaying the found location on the map

▶ Using blocks in your own code

I
t’s pretty useful when traveling to be able to enter a location and have that
display on a map. Although you can do that in many of the map apps cur-

rently available, it does take you out of the app you are in. What’s more, you
can’t take that information and then do something with it in your own app,
such as display it with all your other annotations.

As I explain in the previous chapter, geocoding allows you to take an address
and turn it into a map coordinate. This enables you to add a feature to
RoadTrip that allows the user to enter an address, or even just the name of a
well-known landmark, and display it on the map. (Reverse geocoding, demon-
strated in the previous chapter, allows you to take a map coordinate — your
current location, for example — and turn it into an address.) In this chapter,
you find out how to enter a location (an address or point of interest) and
 display it on a map as an annotation.

Setting Up the Find Controller
You already have one piece of the geocoding puzzle in place on your story-
board; I’m talking about the appropriately named Find controller. The trick
now is to add the custom controller that will implement the Find features
you want.

466 Part V: Adding the App Content

Adding the custom view controller
To add to the RoadTrip project, follow the same steps you have several times
before:

 1. In the Project navigator, select the View Controller Classes group and
then either right-click the selection and choose New File from the
menu that appears or choose File➪New➪File from the main menu
(or press ⌘+N).

 Whatever method you choose, you’re greeted by the New File dialog.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

 3. Enter FindController in the Class field, choose MapController from
the Subclass Of drop-down menu (FindController is a subclass of
MapController with a little more functionality), and make sure that
the Target for iPad check box is selected and that With XIB for User
Interface is deselected. Click Next.

 4. In the Save sheet that appears, click Create.

Setting up FindController
in the Main_iPad File
Because FindController’s user interface is identical to the Map Controller’s,
setting up the Find controller in the storyboard is virtually the same as set-
ting up the Map controller in Chapter 17. You do, however, have two choices
here. First, you can simply duplicate what you did in Chapter 17 to create the
MapController user interface, or you can duplicate MapController in the
 storyboard and adjust a few values in the Identity and Attribute inspectors.

Personally, I vote for the latter, but feel free to go with the former if you feel
the need. Follow these steps to do the latter — for example, duplicate the
Map controller and convert the copy to a Find controller.

 1. In the Project navigator, select the iPad’s Main_iPad.storyboard file
and then select MapController in the MapController – Map Scene in
the Document Outline. Then select the MapController scene in the
actual Storyboard Canvas.

 The Map controller on the Storyboard Canvas will be highlighted at the
end of Step 1.

467 Chapter 19: Finding a Location

 2. Chose Edit➪Copy and then Edit➪Paste from the main menu (or press
⌘+C and then ⌘+V).

 In Figure 19-1, I’ve moved the duplicate a bit off to the side so you can
see it. I’ve also highlighted the entry for it in the Document Outline.

 3. Delete the old Find controller (I know I told you to add it, but it really
was just a placeholder) by selecting it either on the Canvas or in the
Document Outline and then dragging the duplicated Map to the old
Find controller’s place on the Canvas (see Figure 19-2).

 4. Select the duplicated Map controller on the Canvas or in the
Document Outline, open the Identity inspector by clicking its icon in
the Inspector selector bar, and then select FindController from the
Inspector Class drop-down menu, as I have in Figure 19-3.

 5. Move to the Attributes inspector by clicking its icon in the Inspector
selector bar and then enter Find in the inspector’s Title field, as
well as in the Identity inspector’s Storyboard ID field, as shown in
Figure 19-4.

Figure 19-1:
The copied
and pasted

Map
controller.

468 Part V: Adding the App Content

Figure 19-2:
Delete the
Find-

Control-
ler

and move
the dupli-

cated Map
Control-
ler to its

place on the
Canvas.

Figure 19-3:
Make this

use the
Find-

Control-
ler class.

469 Chapter 19: Finding a Location

Figure 19-4:
The new
Find-

Control-
ler in the

storyboard.

You’ll find that all the required connections to the MapView and toolbar
outlets as well as the mapType action are (fortunately or maybe even
miraculously) in place.

Implementing the Find Controller
For your geocoding functionality to work, you’re going to need to do several
things in the Find controller. Most of what you need to do revolves around
getting the text the user enters. You’ll also have to have the text geocoded
and have the geocoded location implemented as an Annotation by the
Trip model object, which the Find controller will then add to the map.

Adding the Map View
The Find controller is a subclass of MapController. MapController
declares a MapView property for the map that you create in the storyboard. If
you declare that property in MapView.h, it is inherited by FindController.
However, if as you did previously, you declare it in the MapController class
extension, it’s not visible to FindController.

470 Part V: Adding the App Content

You can move the property declaration from the class extension in Map
View.m to MapView.h or you can declare a new mapView property in Find
Controller.h. There are pros and cons to each approach. This type of
situation is common as your app evolves and you begin to subclass classes
you hadn’t thought of subclassing before.

Here is the line of code in question. Either add it to the FindController
class extension or move it from MapView.m to MapView.h.

@property (weak, nonatomic) IBOutlet MKMapView *mapView;

Getting the text
In Chapter 14, you format the Find cell with a label and a Text field. In this
chapter, you set things up so that the Master View controller can get the text
a user enters and pass it on to the Find controller to, well, find that location.

To access the text, you first need to create an outlet for the Text field. Follow
these steps:

 1. Select Main_iPad.storyboard in the Project navigator.

 2. Select the Master View controller in the Document Outline.

 3. Select the Assistant in the Editor selector, and if the
MasterViewController.h file doesn’t appear, navigate to it using
the Jump bar.

 4. In the Document Outline, open the disclosure triangle for the second
Table View section in the Master View Controller – Master Scene to get
to the Table View cell.

 5. Open the Table View Cell to reveal the Content View holding the Find
label and text.

 6. Open that cell’s disclosure triangle to display the Text field, and then
control-drag from the No Border Style Text field to the Master View
controller interface (in the Assistant editor) between the @interface
and @end compiler directives, and add an outlet named findText.

 You can see it in Figure 19-5 (actually both steps — naming the property
and the finished property are shown simultaneously).

Yes, you could have dragged from the Text field in the cell on the Canvas, but
in case you can’t find it, this is another way to create the outlet.

A UITextField object is a control that displays editable text and sends a mes-
sage to its delegate when the user presses the Return key. You typically use
a UITextField object to enable the user to enter small amounts of text and
then do something with it — like search for something or add a new contact.

471 Chapter 19: Finding a Location

Figure 19-5:
Creating a

textField
outlet.

 Select the Text field, select the Standard editor in the Editor selector on the
Xcode toolbar, and then open the Utility area. You can set a number of Text
field properties in the Attributes inspector, as you see in Figure 19-6. Here, I’ve
selected the Appears While Editing option from the Clear Button drop-down
menu, I’ve selected the Clear When Editing Begins check box, and I’ve selected
Go from the Return Key drop-down menu to change what’s displayed in the
Return key. Go will provide a visual clue to the user on how to get RoadTrip to
go find that location.

You may be thinking that, for all this to work, you’d need some kind of Target-
Action design pattern that would make sure that some event gets triggered
when text gets entered. Otherwise, how would you know when the user has
entered some text? Also, how do you get the keyboard to show, and then
hide? To answer that, I explain what happens with a UITextField.

When a user taps in a UITextField, it becomes the first responder (explained
in Chapter 4), and the keyboard automatically rises to allow the user to enter
text — you don’t have to do a thing to make that happen. Although normally
you’re responsible for scrolling the view if the keyboard will cover the text
field — which in this case will only happen when running the app on the
iPhone — because the text field is in a Table View cell, scrolling the view is
done by the Table view.

472 Part V: Adding the App Content

Figure 19-6:
Change the
Return key

to Go.

When the user is done entering text, he taps the Return key — the Return key
whose label you managed to change to Go.

When the Go (née Return) key is tapped, the text field determines whether
it has a delegate and whether the delegate has implemented a textField
ShouldReturn: method — one of the optional UITextFieldDelegate
protocol methods. If the delegate has done so, it sends the delegate the
textFieldShouldReturn: message. So textFieldShouldReturn: is
the place to capture the text.

Long story short: To capture the text and send it on to the FindController,
you need to become the text field’s delegate and implement the textField
ShouldReturn: method. But before you do that, you need to do one more
thing in Interface Builder.

You start by making the MasterViewController a UITextFieldDelegate.
Update MasterViewController.h with the bolded code in Listing 19-1 to
have it adopt the UITextFieldDelegate protocol.

473 Chapter 19: Finding a Location

Listing 19-1: Updating the MasterViewController Interface

#import <UIKit/UIKit.h>

@interface MasterViewController : UITableViewController

 <UITextFieldDelegate>

@property (strong, nonatomic)
 DetailViewController *detailViewController;
@property (weak, nonatomic)
 IBOutlet UITextField *findText;

@end

The heavy lifting will be done in the TextField’s textFieldShould
Return: delegate method. The delegate will be passed the Text field being
edited as an argument, and the Master View controller (the delegate) will
pass that on to the Find controller.

First, you have to update the MasterViewController implementation by
adding the bolded code in Listing 19-2 to MasterViewController.m.

Listing 19-2: Updating the MasterViewController Implementation

#import "MasterViewController.h"
#import "DetailViewController.h"
#import "AppDelegate.h"
#import "Trip.h"
#import "FindController.h"

@implementation MasterViewController

You’ll need to make MasterViewController the textField delegate.
To do that, add the code in bold in Listing 19-3 to viewDidLoad in
MasterViewController.m.

Scrolling a view
The way to be notified that the keyboard is
about to appear is to register for the UIKeyb
oardWillShowNotification. That noti-
fication is posted by the UIWindow class. You
pass a block object to the Notification Center

and tell it to execute the block when the noti-
fication is posted. In that block, you determine
the amount you’ll need to scroll the view, and
you scroll the view by assigning a new frame in
an animation block.

474 Part V: Adding the App Content

Listing 19-3: Make the MasterViewController the textField Delegate

- (void)viewDidLoad
{
 [super viewDidLoad];
 AppDelegate* appDelegate =
 [[UIApplication sharedApplication] delegate];
 self.title = appDelegate.trip.destinationName;
 UIImageView* imageView = [[UIImageView alloc]
 initWithImage:[appDelegate.trip destinationImage]];
 self.tableView.backgroundView = imageView;

 UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc] initWithTarget:self

action:@selector(handleSwipeGesture:)];
 swipeGesture.direction =

UISwipeGestureRecognizerDirectionLeft;
 [self.view addGestureRecognizer:swipeGesture];
 self.findText.delegate = self;
}

Now you can implement the textFieldShouldReturn: delegate method
by adding the code in Listing 19-4 to MasterViewController.m.

By the way, you’ll notice some Live Issue errors here. You’ll need to add the
findLocation property to the FindController, which you will do in the
“Finding the Location” section, later in the chapter.

Listing 19-4: Implementing textFieldShouldReturn:

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

 [textField resignFirstResponder];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

UIUserInterfaceIdiomPad){
 FindController * findController =
 [[UIStoryboard
 storyboardWithName:@"Main_iPad" bundle:nil]

 instantiateViewControllerWithIdentifier:@"Find"];
 findController.findLocation = textField.text;

 DetailViewController *currentDetailViewController;
 currentDetailViewController =
 [self.splitViewController.viewControllers lastObject];
 if (
 currentDetailViewController.masterPopoverController

!= nil)
 [currentDetailViewController.
 masterPopoverController

 dismissPopoverAnimated:YES];

475 Chapter 19: Finding a Location

 self.splitViewController.delegate = findController;
 findController.popOverButton =

 currentDetailViewController.popOverButton;
 findController.masterPopoverController =
 currentDetailViewController.

 masterPopoverController;

 NSMutableArray* controllers =
 [NSMutableArray arrayWithObjects:
 (self.splitViewController.viewControllers)[0],
 findController, nil];
 self.splitViewController.viewControllers =

 controllers;

 }
 else {
 FindController *findController =
 [[UIStoryboard
 storyboardWithName:@"Main_iPhone"

 bundle:nil]

 instantiateViewControllerWithIdentifier:@"Find"
];
 findController.findLocation = textField.text;
 [self.navigationController
 pushViewController:findController animated:YES];
 }
 return YES;
}

The first thing Listing 19-4 does for you is to send a message to the Text field
asking it to resign as first responder:

[textField resignFirstResponder];

This has the side effect of dismissing the keyboard.

What you do next is another case where what happens depends on whether
your app is running on an iPad or iPhone.

If you’re running on an iPad, you instantiate FindController from Main_iPad.
storyboard, just as you instantiate the Event Page controller in Chapter 16.

FindController * findController =
 [[UIStoryboard storyboardWithName:
 @"Main_iPad" bundle:nil]

 instantiateViewControllerWithIdentifier:@"Find"];

476 Part V: Adding the App Content

You then assign the text from textField to the FindController find
Location property (which you’ll add shortly to the FindController).

findController.findLocation = textField.text;

You then dismiss the popover if it’s present.

DetailViewController *currentDetailViewController;
 currentDetailViewController =
 [self.splitViewController.viewControllers lastObject];
if (currentDetailViewController.masterPopoverController
 != nil)
 [currentDetailViewController.
 masterPopoverController

 dismissPopoverAnimated:YES];

Then you assign the popOverButton and masterPopoverController
properties and make FindController the Split View controller delegate.

self.splitViewController.delegate = findController;
 findController.popOverButton =

 currentDetailViewController.popOverButton;
 findController.masterPopoverController =
 currentDetailViewController.

 masterPopoverController;

Then you simply make FindController the new Detail View controller in
the Split View controller’s viewControllers property.

NSMutableArray* controllers =
 [NSMutableArray arrayWithObjects:
 (self.splitViewController.viewControllers)[0],
 findController, nil];
self.splitViewController.viewControllers = controllers;

Note that if it’s an iPhone you’re dealing with, you instantiate the Find
Controller, assign the findLocation property, and push it on the
Navigation controller stack, which causes the view to slide into place.

FindController *findController =
 [[UIStoryboardstoryboardWithName:
 @"Main_iPhone" bundle:nil]

 instantiateViewControllerWithIdentifier:@"Find"];
 findController.findLocation = textField.text;
 [self.navigationController
 pushViewController:findController animated:YES];

477 Chapter 19: Finding a Location

You finally return YES to have the Text field implement its default behavior
for the Go-Key-Formerly-Known-As-Return.

If you look back to Chapter 13, this is pretty much the same logic you added
to prepareForSegue:sender:. As an exercise, you might want to create a
new method that includes the common code.

Disabling cell highlighting
You do have a problem, though. If the user touches outside the label, the cell
is automatically highlighted when selected, and it stays selected. The solu-
tion is to disable the blue highlight when a cell is selected. To do that, you’ll
need to do the following:

 1. Select the Main_iPad.storyboard in the Project navigator.

 2. Select the Master View controller in the Document Outline, open all
the disclosure triangles, and select the No Border Style Table View
Cell for Find.

 3. In the Table View Cell section of the Attributes inspector, choose None
from the Selection pop-up menu.

Now you’re ready to add the FindController methods.

Finding the Location
In Listing 19-3, you assigned the text that the user entered into the Text
field to a FindController property. Now you need to update the
FindController interface to declare the property by adding the bolded
code in Listing 19-5.

Listing 19-5: Updating the FindController Interface

#import "MapController.h"

@interface FindController : MapController

@property (strong, nonatomic) NSString *findLocation;

@end

Next, add the bolded code in Listing 19-6 to the FindController.m file to
synthesize it and import the header files of the classes you’ll use.

478 Part V: Adding the App Content

Listing 19-6: Updating the FindController Implementation

#import "FindController.h"
#import "AppDelegate.h"
#import "Trip.h"
#import "Annotation.h"

@implementation FindController

In my discussion of geocoding in Chapter 18, I point out that MapController
sends the CLGeocoder the reverseGeocodeLocation: message to con-
vert a coordinate to an address. The idea now is for you to send the geocode
AddressString: message to convert an address or point of interest into a
coordinate.

This time, however, you go about it in a very interesting way. When the user
enters a location she wants to find, you want to create an annotation for that
found location and display it on the map. The problem here is that you really
don’t want the FindController (or any other controller) to start creating
annotations — that’s the Trip model’s job.

Instead, based on the principles of encapsulation and loose coupling, you’ll
have the Trip object add the found location as additional model data.
Therefore, you want the Trip object to create the Annotation object and
send it to the FindController to add as a Map annotation.

Although you could create view controller methods to be used by the Trip
object to add the annotation, a more interesting (and better) way is to use
the block design pattern. Blocks actually can make your code less complex,
and here’s an opportunity for you to see why.

Add the code in bold in Listing 19-7 to viewDidLoad in FindController.m.

Listing 19-7: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.title = self.findLocation;

 void (^addFindLocationCompletionHandler)
 (Annotation *, NSError *) = ^(Annotation *annotation,
 NSError *error){
 if (error!= nil || annotation == nil) {
 NSLog(@"Geocoder Failure! Error code: %u,
 description: %@, and reason: %@", error.code,

479 Chapter 19: Finding a Location

 [error localizedDescription],
 [error localizedFailureReason]);
 }
 else {
 MKCoordinateRegion region;
 region.center.latitude =

 annotation.coordinate.latitude;
 region.center.longitude =

 annotation.coordinate.longitude;
 region.span.latitudeDelta = .05;
 region.span.longitudeDelta = .05;
 [self.mapView setRegion:region animated:NO];
 [self.mapView addAnnotation:annotation];
 }
 };
 AppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];
 [appDelegate.trip addLocation:self.findLocation

 completionHandler:addFindLocationCompletionHandler];
}

You get a compiler error when adding this code, but you fix that by declaring
the completion handler method in the Trip interface, which is covered in the
following section.

You set the title to the string the user entered:

 self.title = self.findLocation;

You then send the Trip object the addLocation:completionHandler:
message. The completion handler is the block you declared. It’s defined in
Trip, as you’ll see, as

 (void (^)(Annotation *annotation, NSError* error))

That’s a block that has no return value and two parameters, an Annotation
and an NSError. The block’s logic is actually quite straightforward. First, you
check for an error:

if (error!= nil || annotation == nil) {

 NSLog(@"Geocoder Failure! Error code: %u, description:
 %@, and reason: %@", error.code,
 [error localizedDescription],
 [error localizedFailureReason]);
}

480 Part V: Adding the App Content

You’re passed in an Annotation (which will be created in the Trip
method addLocation:completionHandler:), which conforms to the
MKAnnotation protocol, and you set the region based on the annotation’s
coordinates:

MKCoordinateRegion region;
region.center.latitude = annotation.coordinate.latitude;
region.center.longitude = annotation.coordinate.longitude;
region.span.latitudeDelta = .05;
region.span.longitudeDelta = .05;
[mapView setRegion:region animated:NO];

Next, you add the annotation to the map:

 [mapView addAnnotation:annotation];

addAnnotation: is an MKMapView method that adds an object that con-
forms to the MKAnnotation protocol to the map. This is similar to what
you did in MapController when you sent the addAnnotations: message
to add an array of annotations. Doing this, as you see on the map, is addi-
tive; that is, adding a new annotation doesn’t replace the array you added in
MapController.

Next, you add the addLocation:completionHandler: method (the one
that will create the Annotation) to Trip.m. But first, you need to update
the Trip.m implementation, so add the bolded code in Listing 19-8 to
Trip.h.

Listing 19-8: Updating the Trip Interface

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
@class Annotation;

@interface Trip : NSObject

- (UIImage *) destinationImage;
- (NSString *) destinationName;
- (CLLocationCoordinate2D) destinationCoordinate;
- (id)initWithDestinationIndex:(int)destinationIndex;
- (NSString *)weather;
- (int)numberOfEvents;
- (NSString *)getEvent:(int)index;
- (NSArray *)createAnnotations;
- (NSString *)mapTitle;
- (void)addLocation:(NSString *)findLocation
 completionHandler:
 (void (^)(Annotation *annotation, NSError* error))

 completion;
@end

481 Chapter 19: Finding a Location

This code adds the addLocation:completionHandler: method declara-
tion, and because one of its parameters is an Annotation, you need to add
the @class statement as well.

void (^foundLocationCompletionHandler) (Annotation
annotation, NSError error); is a type just like int or Find
Controller. It’s a block object with the name of foundLocation
CompletionHandler that has no return value and two parameters:
Annotation and NSError.

I’m going to save FindController’s completion block in the foundLocation
CompletionHandler instance variable. I really don’t need to, because, as
you’ll see, the addLocation:completionHandler: has access to it as a
parameter. I did it this way to show you how to do that. It took me some time
to really get my head around blocks and passing them as parameters, and I
wanted to show you how easy it is after you see how it’s done. You can use
this example as a model for your own apps. I know that it may seem a bit
overwhelming now, but I promise you that you’ll find yourself using blocks in
this way (as I do) as you gain more experience in your own app development.

Add the foundLocationCompletionHandler instance variable to Trip.m by
adding the code in bold in Listing 19-9. Note that because the block is assigned
to an instance variable, it goes in brackets at the top of the class extension.

Listing 19-9: Updating the Trip Implementation

#import "Trip.h"
#import "Destination.h"
#import "Events.h"
#import "Annotation.h"

@interface Trip () { void
 (^foundLocationCompletionHandler)
 (Annotation *annotation, NSError* error);
}

@property (strong, nonatomic) NSDictionary
*destinationData;

@property (strong, nonatomic) Destination *destination;
@property (strong, nonatomic) Events *events;
@property (strong, nonatomic) NSMutableArray *pois;

}

Next, add the addLocation:completionHandler: in Listing 19-10 to
Trip.m.

482 Part V: Adding the App Content

Listing 19-10: Adding the addLocation:completionHandler: Method

- (void)addLocation:(NSString *)findLocation
 completionHandler:
 (void (^)(Annotation *annotation, NSError* error))
 completion

{

 void (^clGeocodeCompletionHandler)(NSArray *, NSError *)

= ^(NSArray *placemarks, NSError *error){
CLPlacemark *placemark = placemarks[0];
 Annotation *foundAnnotation;
 if (error!= nil || placemark == nil) {
 NSLog(@"Geocoder Failure! Error code: %u",
 error.code);
 }
 else {
 foundAnnotation = [[Annotation alloc]init];
 foundAnnotation.coordinate =

 placemark.location.coordinate;
 foundAnnotation.subtitle =
 [NSString stringWithFormat:@" Lat:%f Lon:%f",

placemark.location.coordinate.latitude,

 placemark.location.coordinate.longitude];
if (placemark.areasOfInterest[0]) {
 foundAnnotation.title =
 placemark.areasOfInterest[0];
 }
 else {
 if (placemark.thoroughfare) {
 foundAnnotation.title =
 [NSString stringWithFormat:@"%@ %@",
 placemark.subThoroughfare,

 placemark.thoroughfare];
 }
 else {
 if (placemark.locality) {
 foundAnnotation.title = placemark.locality;
 }
 else
 foundAnnotation.title =
 @"Your location";
 }
 }

 }
 foundLocationCompletionHandler(
 foundAnnotation, error);
 };

483 Chapter 19: Finding a Location

 foundLocationCompletionHandler = completion;
 CLGeocoder* geocoder = [[CLGeocoder alloc] init];
 [geocoder geocodeAddressString:findLocation

 completionHandler:clGeocodeCompletionHandler];
}

First (skipping past the block declarations to the bottom of the method for a
moment), you save a reference to the block that was sent as a parameter:

foundLocationCompletionHandler = completion;

 You really don’t need to save a reference to the block here, but I want to
 illustrate that blocks are treated like any other variable.

Then you allocate and initialize CLGeocoder just as you do in Chapter 18:

CLGeocoder* geocoder = [[CLGeocoder alloc] init];
 [geocoder geocodeAddressString:findLocation

completionHandler:clGeocodeCompletionHandler];

This time, however, you send the geocodeAddressString:completion
Handler: message after you initialize the CLGeocoder (rather than the
reverseGeocodeLocation:location completionHandler: message
you sent in Chapter 18).

This message submits a forward-geocoding request using the text the user
entered and describes the location you want to look up. For example, you
could specify the string “1 Infinite Loop, Cupertino, CA” to locate Apple
headquarters.

In the completion block, you check for a successful completion and then
create a new Annotation. When you’re done, you call the completion block
that the FindController sent you, using the block you had assigned to the
foundLocationCompletionHandler variable earlier:

foundLocationCompletionHandler(foundAnnotation, error);

Finally, if you decide that you don’t want the destination and the point of
interest annotations you display in the MapController displayed, just
override the method that adds the annotations in the MapController
superclass:

- (void) addAnnotations {
}

484 Part V: Adding the App Content

Making the Map Title the Found Location
In Chapter 17, I show you how to add the map title to the toolbar. In that
discussion, I add a method named mapTitle, which in the case of the
MapController, sends a message to the Trip object to get the map’s title.
In the case of the FindController, I want to use the text the user entered
as the title, so all I do is override mapTitle. Add the code in Listing 19-11 to
FindController.m to display the title as the found location.

Listing 19-11: Override mapTitle

- (NSString *)mapTitle {

 return self.findLocation;
}

If you build and run RoadTrip, and enter Radio City Music Hall in the Find
field in the Master view and tap the annotation, you should see the screen
displayed in Figure 19-7. (Notice I did not go down the road of displaying the
Destination and the Point of Interest annotations, but even if you did, you’d
still see the Radio City Music Hall annotation.)

Figure 19-7:
Radio City

Music Hall
annotation.

485 Chapter 19: Finding a Location

 If you wanted to, you could even create a typedef for the addLocation:comp
letionHandler:. The purpose of typedef is to assign another name to a type
whose declaration is unwieldy. You’d want to use a typedef if you were going to
have to type void (^foundLocationCompletionHandler) (Annotation
annotation, NSError error); more than once. And while that is not
true for RoadTrip, I wanted to show you how to create a typedef for a block
that you could use in your own projects. Type the following code:

typedef void (^addLocationCompletionHandler)
 (Annotation *annotation, NSError* error);

Add the instance variable as

addLocationCompletionHandler

 addFindLocationCompletionHandler;

and then save the block in the new instance variable

addFindLocationCompletionHandler = completion;

and (finally) call the block in this way instead:

addFindLocationCompletionHandler(foundAnnotation, error);

Adding the FindController
to the iPhone Storyboard

The iPhone storyboard, fortunately, uses the same Objective-C Find
Controller class that you just defined for the iPad storyboard. But you still
have some work to do because you need to add a FindController scene to
your iPhone storyboard.

One approach is to copy the Find scene from the iPad storyboard file and
paste it into the iPhone storyboard file. This will work, but the iPad version
has the Toolbar at the top of the view, which is the right answer for the iPad
but not for the iPhone.

You should rearrange the view elements in the iPhone version by dragging
the toolbar to the bottom of the view and moving the Map view to the top of
the enclosing view. Be sure to adjust the location of the iPhone toolbar in the
Attributes inspector, as shown in Figure 19-8. You may also need to connect the
Master View Controller as the delegate of the text field in the iPhone storyboard.

The Find operation in the iPhone is shown in Figure 19-9.

486 Part V: Adding the App Content

Figure 19-8:
Adjusting

the tool-
bar in the
Find-

Control-
ler scene

in the
iPhone

storyboard.

Figure 19-9:
The Find

function on
the iPhone.

Chapter 20

Selecting a Destination
In This Chapter
▶ Finding an address for a map coordinate and displaying it on the map

▶ Finding the map coordinate from an address and displaying it on the map

I
n this chapter, you are down to the final parts needed for the RoadTrip
app to be complete. Back in Chapter 11, you added multiple destinations

to the Destinations.plist, and now it would be nice if the user could
select any of the ones you added.

Providing the user with the ability to select a destination is what you imple-
ment in this chapter. You also discover more about Table views along the
way. I also show you how to work with modal controllers (which present
views that require the user to do something) by creating your own protocol.

The Plan
You’re going to add a new view controller that manages a modal Table view that
allows the user to select a destination — such as New York or San Francisco.
Figure 20-1 shows the results for both the iPad and iPhone.

488 Part V: Adding the App Content

Figure 20-1:
The

Destinations
modal Table

view on
both the

iPad and
iPhone.

Setting Up the DestinationController
for the iPad Storyboard

If you’ve followed along throughout this book, by now you should know the drill.
As you might expect, you need a view controller to implement the Selecting a
Destination interface.

Adding the custom view controller
Follow these steps to add a new Objective-C DestinationController
class to the RoadTrip project.

 1. In the Project navigator, select the View Controller Classes group and
then either right-click the selection and choose New File from the menu
that appears or choose File➪New➪File from the main menu (or
press ⌘+N).

 Whatever method you choose, you’re greeted by the New File dialog.

 2. In the left column of the dialog, select Cocoa Touch under the iOS
heading, select the Objective-C class template in the top-right pane,
and then click Next.

 You’ll see a dialog that will enable you to choose the options for your file.

489 Chapter 20: Selecting a Destination

 3. Enter DestinationController in the Class field, enter or choose
UIViewController from the Subclass Of drop-down menu, make sure
that the Target for iPad check box is selected and that With XIB for
User Interface is deselected, and then click Next.

 4. In the Save sheet that appears, click Create.

The Destination controller will be using a Table view, but it won’t use a Table
View Controller class. That’s because I show you how to use a Table view with
dynamically generated cells (as well as cell selection handled by the controller)
as only one element in the view. This is a handy thing to know if you want to take
advantage of the power of a Table view without letting a Table view take over the
entire screen.

Setting up the DestinationController
in the Main_iPad.storyboard
Now that you have a custom view controller, you need to tell the storyboard
to load your custom view controller rather than a UIViewController.
Follow these steps:

 1. In the Project navigator, select the Main_iPad.storyboard file, and in
the Document Outline, select View Controller in the View Controller –
Destination Scene.

 2. Open the Identity inspector in the Utility area using the Inspector
selector bar and then choose DestinationController from the Custom
Class section’s Class drop-down menu.

 Now when Destination is selected in the Master View controller,
DestinationController will be instantiated and initialized and will
receive events from the user and connect the view to the Trip model.

 In Chapter 14, you left this segue style as modal, and I said I would
explain a little more about that in Chapter 20. Well, here we are.

 3. Select the segue to the Destination controller on the Canvas.

 4. Select the Attributes inspector for the Inspector selector bar.

 A modal dialog requires the user to do something (tap a Table View cell
or the Cancel button, for example) before returning to the app.

 When you have a modal segue, you can choose a transition style.

 5. Choose Flip Horizontal in the Transition pop-up menu in the
Attributes inspector for the segue.

 Actually, you can select whatever transition you’d like, but I’d go for Flip
Horizontal.

490 Part V: Adding the App Content

Make sure that Form Sheet is selected in the Presentation pop-up menus. The
Presentation choices include

 ✓ Full Screen: The modal view covers the screen.

 ✓ Page Sheet: The height and width are set to the height and width of the
screen in Portrait orientation, with the background view dimmed.

 ✓ Form Sheet: The width and height of the modal view are smaller than
those of the screen, with the modal view centered on the screen and the
background view dimmed.

 ✓ Current Context: The modal view is the same style as its presenting
view controller. But if the presenting view controller is in a popover, you
can use this presentation style only when the transition style is UIModal
TransitionStyleCoverVertical. If not, you’ll get an exception.

After you have the Presentation and the Transition selected in the Attributes
inspector, you can get on with formatting the Destination Controller view,
which will have a Table view, a Label view, and a very spiffy image as well
after you follow these steps:

 1. Select the Destination controller in the storyboard Canvas and then
drag in a Navigation bar from the Library.

 You’re going to need someplace to put the Cancel button. Place the
Navigation bar at the top of the view.

 2. In the Navigation bar on the Canvas, select the Title (field). Still in
the Attributes inspector, enter Destinations in the Title field for the
selected element (Navigation bar, in this case).

 3. Drag a Bar Button item from the Library and place it on the left side of
the Navigation bar on the Canvas.

 4. Choose Cancel from the Identifier drop-down menu in the Bar Button
section of the Attributes Inspector.

 You’ll use this button to cancel selecting a new destination.

 You don’t have to select a tint for the button in the Bar Button Tint sec-
tion of the Attributes inspector. The app-wide tint color will be used for
the button.

 5. Drag an Image view from the Library in the Utility area and place it in
the Destination controller on the Canvas so that it takes up the entire
view.

 6. Control-drag from the Image view in the Canvas or the Document
Outline to the Top Layout Guide in the Document Outline and select
Vertical Spacing.

 7. With the Image view selected, choose Editor➪Resolve Auto Layout
Issues➪Add Missing Constraints.

491 Chapter 20: Selecting a Destination

 If you have any warnings, use Editor➪Resolve Auto Layout Issues
subcommands to fix them. You may need to use Editor➪Resolve Auto
Layout Issues➪Clear Constraints if you have to start over.

 8. In the Image View section of the Attributes inspector, select Destination
Image from the Image drop-down menu.

 The appropriate image from the asset catalog will be used automatically.
You downloaded those images in Chapter 3.

 9. Drag a Label from the Library and add it to the view toward the top of
the Image view.

 10. With the Label selected, enter Pick a place in the Text field in the
Label section of the Attributes inspector.

 11. Still in the Attributes inspector, change the style to Text Styles –
Headline by selecting the Text icon in the Font field (which opens
a window in which you can change the font size) as shown in
Figure 20-2.

 12. Select the label and then choose Editor➪Size Fit to Content from the
Xcode main menu.

 The label will expand to fit the text.

 13. Change the text color to white in the Text Color drop-down menu.

Figure 20-2:
Set the text

style.

492 Part V: Adding the App Content

 14. Position the Pick a place label, as shown in Figure 20-3.

 A word of warning: You need to follow the next set of steps exactly.
You can get the look you want in other ways, but this is the most
straightforward. The Table view won’t be transparent; you’ll fix that
in viewDidLoad in the “Creating the Table View” section, later in the
chapter.

 15. Drag a Table view (not Table View controller) from the Library onto
the Image view and position it as shown in Figure 20-4.

 This is the area in which the Table view will display. If you have more
selections than can fit in the visible area, the user will be able to scroll
the Table view.

 16. With the Table view selected, scroll down the Attributes inspector to
reach the View section and then select Clear Color from the Background
drop-down menu.

 17. Still in the Attributes inspector, scroll back up to the Table View sec-
tion and choose Grouped from the Style menu.

 18. Enter 1 in the Prototype Cells field (or just use the stepper control to
get to 1).

 Leave these as prototype cells because you’ll provide the content for the
cells programmatically.

Figure 20-3:
Set the

color.

493 Chapter 20: Selecting a Destination

 19. Select the prototype Table View Cell, either on the Canvas or in the
Document Outline, and then choose Basic from the inspector’s Style
menu and enter DestinationCell in the Identifier field.

 You will need to have a reuse identifier (which I explain in the section
“Displaying the cell,” later in this chapter).

 20. Still in the Attributes inspector, scroll down to the View section and
select Clear Color from the Background drop-down menu.

 21. Select the Table View cell in the Document Outline, open the disclo-
sure triangle, and select the label.

 22. In the Attributes inspector, scroll down and then choose Clear Color
from the Background drop-down menu.

 23. Close the Utility area and select the Assistant in the Editor selector.

 24. If the DestinationController.h file doesn’t appear, select it in the
Jump bar.

 25. Control-drag from the Table view in Document Outline or on the Canvas
to the DestinationController.h Interface. Release the mouse button,
and in the dialog that pops up, enter outlet and destinationTableView.

Figure 20-4:
Add a Table

view.

494 Part V: Adding the App Content

 26. Control-drag from the Cancel button in Document Outline or in the
Navigation bar on the Canvas to the DestinationController.h
Interface. Release the mouse button, and in the dialog that pops up,
select Action in the Connection drop-down menu and enter cancel in
the Name field.

When all is said and done, you should see a screen that looks like Figure 20-5.

Figure 20-5:
Ready to

code.

Adding a Modal View
Most of the time, the user can control what is happening in the app. You pro-
vide the buttons and other interface elements, but the user chooses what to
do and what interface elements to tap. Modal views interrupt that user con-
trol. They are presented on the screen and, although the user can tap within
them, they remain front and center until the user dismisses them. They are
used when you want the user to do something or resolve an issue before
continuing to use the rest of the app. The device is not locked up because the
user can use the Home button to move to another app, but as far as your app
is concerned, it’s frozen until the modal view is dismissed.

The most common way to manage Modal views is by creating an Objective-C
protocol that’s adopted by the controller presenting the Modal view. The
Modal view, when the user has selected an action or Cancel, sends a message

495 Chapter 20: Selecting a Destination

to the presenting controller’s delegate method. The requesting controller
then dismisses the Modal controller. Using this approach means that before it
dismisses the Modal controller, the presenting controller can get any data it
needs from it. That is the pattern that you will implement here.

You start implementing the Modal view by declaring the protocol and a few other
properties you’ll need, as well as the protocols the DestinationController
needs to adopt.

To get things started, add the bolded code in Listing 20-1 to Destination
 Controller.h.

Listing 20-1: Updating the Destination Interface

#import <UIKit/UIKit.h>
@protocol DestinationControllerDelegate;

@interface DestinationController : UIViewController
 <UITableViewDelegate, UITableViewDataSource>

@property (weak, nonatomic) IBOutlet UITableView
*destinationTableView;

@property (strong, nonatomic) id
 <DestinationControllerDelegate> delegate;
@property (nonatomic, readonly) NSUInteger

selectedDestination;
- (IBAction)cancel:(id)sender;
@end

@protocol DestinationControllerDelegate
@required
- (void)destinationController:
 (DestinationController *)controller
 didFinishWithSave:(BOOL)save;
@end

The Objective-C language provides a way to formally declare a list of methods
(including declared properties) as a protocol. You’ve used framework-supplied
protocols extensively in this book, and now you’re defining your own protocol.

You declare formal protocols with the @protocol directive. In Listing 20-1,
you declared a DestinationControllerDelegate protocol with one
method, destinationController:didFinishWithSave:, which is
required. Required is the default; if you wanted to declare optional methods,
you would use the keyword @optional, and all methods following that key-
word would be optional. For example, consider this:

@protocol SimpleDelegate
@optional
- (void)doNothing;
@end

496 Part V: Adding the App Content

You can have both @required and @optional methods in a protocol. It is
common to group them together, but you can intersperse them if you want.

 If neither @required or @optional is specified, @required is assumed.
However, it is better to be specific about what is required and what is optional.
The @protocol DestinationControllerDelegate: statement (at the
top) tells the compiler that a protocol is on the way. Like the @class state-
ment, it says, “Trust me, you’ll find the protocol.” You need this here only
because you added this:

@property (strong, nonatomic) id
 <DestinationControllerDelegate> delegate;

This statement tells the compiler to type check whatever it is you assign to
delegate to make sure that it implements the DestinationController
Delegate protocol.

You also added the selectedDestination property, which you’ll use in the
ViewController to determine which destination the user selected. Notice
that you have made it read-only because there is no reason for any other
object to be able to set it.

You also adopted two protocols from the Cocoa Touch framework, UITable
ViewDelegate and UITableViewDataSource, which you’ll use to manage
the Table view.

Next, you’re going to need to update the DestinationController imple-
mentation in Listing 20-2 with the bolded code for some header files you’ll
need to use later.

Listing 20-2: Updating the DestinationController Implementation

#import "DestinationController.h"
#import "DetailViewController.h"
#import "AppDelegate.h"

@interface DestinationController ()
@end

@implementation DestinationController

Now that you have the plumbing in, you can look at what will go on in the
DestinationController.

497 Chapter 20: Selecting a Destination

Implementing a Table View
The functionality in the DestinationController is in the Table view. You’ve
worked with Table views before — but those used static cells, and all the work
was done in the storyboard. Now it’s time to branch out on your own and under-
stand what the storyboard was doing for you behind the scenes, as it were.

It’s a good thing to know how Table views work, because Table views are
front and center in many apps that come with the iOS devices out of the box;
they play a major role in many of the apps that you can download from the
App Store. (Obvious examples: Almost all the views in the Settings, Mail,
Music, and Contacts apps are Table views.) Table views take on such a signifi-
cant role because, in addition to displaying data, they can also serve as a way
to navigate structured data.

If you take a look at an app such as Mail or Settings, you find that Table views
present a scrollable list of items (or rows or entries — I use all three terms
interchangeably) that may be divided into sections. A row can display text or
images. It may have an accessory such as a disclosure triangle, so that when
you select a row, you may be presented with another Table view or with some
other view that may display a web page or even controls such as buttons and
Text fields. (You can see an illustration of this diversity back in Chapter 4,
where Figure 4-6 shows how selecting Map leads to a Map view displaying a
map of San Francisco, which is very handy when you roll into town.)

 It’s worth noting that iOS Table views only provide a single column of data — not
the two-dimensional tables that you might build in a Numbers spreadsheet. The
OS X Cocoa framework does provide a multi-column NSTableView class, but the
IOS UITableView only supports a single column.

To kick off the Table view creation process, you first need to decide what you
want to have happen when the user selects a particular row in the Table view
of your app. As you saw with static cells, you can have virtually anything
happen. You can display a Web view as you do in Weather or even display
another Table view.

In this case, however, the Destination View controller will be dismissed, and
the user will find herself in the master view, ready to make another selection.

 A Table view is an instance of the class UITableView, where each visible row of
the table uses a UITableViewCell to draw its contents. Think of a Table view as
the object that creates and manages the table structure, and the Table View cell as
being responsible for displaying the content of a single cell of the table.

498 Part V: Adding the App Content

Creating the Table View
Although powerful, Table views are surprisingly easy to work with. To create a
Table view, you follow only four — count ’em, four — steps, in the following order:

 1. Create and format the view itself.

 This includes specifying the Table style and a few other parameters,
most of which you do in Interface Builder.

 2. Specify the Table view configuration.

 Not too complicated, actually. You let UITableView know how many
sections you want, how many rows you want in each section, and what
you want to call your section headers. You do that with the help of the
numberOfSectionsInTableView:, tableView:numberOfRowsIn
Section:, and tableView:titleForHeaderInSection: methods,
respectively.

 3. Supply the text (or graphic) for each row.

 You return that from the implementation of the tableView:cellForRow
AtIndexPath: method. This message is sent for each visible row in the
Table view, and you return a Table View cell to display the text or graphic.

 4. Respond to a user selection of the row.

 You use the tableView:didSelectRowAtIndexPath: method to take
care of this task. In this method, you can create a view controller and push
it onto the stack (as the storyboard does in a segue), or you can even send
a message to the controller that presented a Modal View controller (or any
other object).

 A UITableView object must have a data source and a delegate:

 ✓ The data source supplies the content for the Table view.

 ✓ The delegate manages the appearance and behavior of the Table view.

The data source adopts the UITableViewDataSource protocol, and the
delegate adopts the UITableViewDelegate protocol — no surprises there.
Of the preceding methods, only tableView:didSelectRowAtIndexPath:
is included in the UITableViewDelegate protocol. All the other methods
that I list earlier are included in the UITableViewDataSource protocol.

The data source and the delegate are often (but not necessarily) implemented
in the same object, which is often a subclass of UITableViewController.
UITableViewController adopts the necessary protocols and even fur-
nishes some method stubs for you. In this case, the Table view is just another
object in the DestinationController view. I had you do that when creating

499 Chapter 20: Selecting a Destination

DestinationController earlier in the chapter so I could explain the real
guts of Table views and because I wanted you to be able to display that Pick a
Place label.

 There’s another way to display a label such as Pick a Place using a UITable
ViewController. UITableView has a tableHeaderView property which
is a view. You could create a view with the label, one or more images, and
maybe another label and then assign that view to tableHeaderView in a
UITableView either standing alone as is the case here or situated within a
UITableViewController.

Implementing these five (count ’em, five) methods (in the four steps earlier)
is all you need to do to implement a Table view.

Not bad.

I already had you adopt the Table View delegate and Data Source protocols in
Listing 20-1, so you are already partway there.

Add the bolded code in Listing 20-3 to the DestinationController.m file’s
viewDidLoad method.

Listing 20-3: Updating viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.destinationTableView.delegate = self;
 self.destinationTableView.dataSource = self;
}

As you might surmise, this makes the DestinationController both the
delegate and the data source.

Adding sections
In a grouped Table view, each group is referred to as a section.

The two methods you need to implement to start things off are as follows:

numberOfSectionsInTableView:(UITableView *)tableView

tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

Each of these methods returns an integer, and that integer tells the Table
view something — the number of sections and the number of rows in a given
section, respectively.

500 Part V: Adding the App Content

Add the methods in Listing 20-4 to DestinationController.m to create a
Table view that has one section with the number of rows equal to the number
of destinations you have in your Destinations.plist. You will get com-
piler errors that you will fix with code in the next Listing.

Listing 20-4: Implementing numberOfSectionsInTableView: and
table View:numberOfRowsInSection:

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 NSString *filePath = [[NSBundle mainBundle]
 pathForResource:@"Destinations" ofType:@"plist"];
NSDictionary *destinations =
 [NSDictionary dictionaryWithContentsOfFile: filePath];
 self.destinationsArray = destinations[@"DestinationData"];
 return [destinationsArray count];
}

The numberOfSectionsInTableView: method is obvious. In the table
View:numberOfRowsInSection: method, you do what you did in both the
Trip and Events classes — you access Destination.plist to extract
what you need. In this case, it’s the DestinationData array, which, to
refresh your memory, is an array of dictionaries that have the data for each
destination and return the count.

 Keep in mind that the first section is zero, as is the first row. This means, of
course, that whenever you want to use an index to get to the first row or sec-
tion, you need to use 0, not 1 — and an index of 1 for the second row and so on.

You’ll get an Xcode Live Issue error here because you need to add the new
destinationsArray property (you’ll use this same array later in table
View:cellForRowAtIndexPath:). In addition, remember that you declared
the selectedDestination property in DestinationController.h as
readonly. That is fine for the public interface, but you need to be able to set it
from within DestinationController.m. You can do that by overriding the
public property. (This is a very common pattern for a property — readonly
to the public but readwrite within the implementation of the class that
declares it.)

To do those things, add the bolded code in Listing 20-5 to Destination
Controller.m.

501 Chapter 20: Selecting a Destination

Listing 20-5: Updating the DestinationController Implementation

#import "DestinationController.h"

@interface DestinationController ()
 @property (strong, nonatomic)
 NSArray *destinationsArray;
 @property (nonatomic, readwrite)
 NSUInteger selectedDestination;

@end

Displaying the cell
To display the cell content, your delegate is sent the tableView:cellFor
RowAtIndexPath: message. Add this method in Listing 20-6 to
DestinationController.m.

Listing 20-6: Implementing tableView:cellForRowAtIndexPath:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"DestinationCell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 NSDictionary * destinationData = self.destinationsArray

[indexPath.row];

 NSAttributedString *attributedString =

[[NSAttributedString alloc]

 initWithString:destinationData[@"Destination
Name"]

 attributes:@{ NSFontAttributeName : [UIFont

systemFontOfSize:17.0f],

 NSForegroundColorAttributeName: [UIColor
whiteColor]}];

 cell.textLabel.attributedText = attributedString;
 return cell;
}

Walking through Listing 20-6, you see that one of the first things you do is
determine whether any cells that you can use are lying around. You may
remember that although a Table view can display quite a few rows at a time
on the iPad’s screen, the table itself can conceivably hold a lot more. A large

502 Part V: Adding the App Content

table can eat up a lot of memory, however, if you create cells for every row.
Fortunately, Table views are designed to reuse cells. As a Table view’s cells
scroll off the screen, they’re placed in a queue of cells available to be reused.

 If the system runs low on memory, the Table view gets rid of the cells in the
queue, but as long as it has some available memory for them, it holds on to
them in case you want to use them again.

You create a string to use as a cell identifier to indicate what cell type you’re
using:

static NSString *CellIdentifier = @"DestinationCell";

You recall that this is what you entered in the Identifier field of the Prototype cell
in Step 18 in the “Setting up the DestinationController in the MainStoryboard_iPad”
section, earlier in this chapter.

 It is critical that the CellIdentifier and the Identifier field of the
Prototype cell in Step 18 are the same. If they are not, you won’t get the trans-
parent prototype cell you specified in the storyboard.

 Table views support multiple cell types, which makes the identifier necessary.
In this case, you need only one cell type, but sometimes you may want more
than one to accommodate cells with different layouts and formats. For exam-
ple, if only some cells should have a disclosure triangle, you would probably
use two prototypes — one with and one without the disclosure triangle.

You ask the Table view for a specific reusable cell object by sending it a
dequeueReusableCellWithIdentifier: message:

UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

This determines whether any cells of the type you want are available. If no
cells are lying around, this method will create a cell using the cell identifier
that you specified. You now have a Table View cell that you can return to the
Table view.

You have several choices on how to format the Table View cell. Although
you’re going to be using UITableViewCellStyleDefault, you can choose
from a number of different styles, listed as follows (the keywords in the Style
pop-up menu in the Attributes tab of Interface Builder are shown in brackets):

 ✓ UITableViewCellStyleDefault: Gives you a simple cell with a Text
label (black and left-aligned) and an optional Image view. [Basic]

 ✓ UITableViewCellStyleValue1: Gives you a cell with a left-aligned black
Text label on the left side of the cell and a right-aligned Text label with
smaller gray text on the right side. (The Settings app uses this style of cell.)
[Right Detail]

503 Chapter 20: Selecting a Destination

 ✓ UITableViewCellStyleValue2: Gives you a cell with a right-aligned
blue Text label on the left side of the cell and a left-aligned black Text
label on the right side of the cell. [Left Detail]

 ✓ UITableViewCellStyleSubtitle: Gives you a cell with a left-aligned
Text label across the top and a left-aligned Text label below it in smaller
gray text. (The Music app uses cells in this style.) [Subtitle]

With the formatting out of the way, you then set the Label properties that
you’re interested in.

You pluck out the name for each destination you’ve stored by accessing the
DestinationName in each Destination dictionary. You do that by accessing
the dictionary in the (saved) destinationsArray corresponding to the
sections and row in indexPath, which contains the section and row informa-
tion in a single object. To get the row or the section out of an NSIndexPath,
you just have to invoke its section method (indexPath.section) or its row
method (indexPath.row), either of which returns an int:

NSDictionary * destinationData =
 destinationsArray[indexPath.row];

Next, create an attributed string, which can manage both the character
strings and attributes such as fonts, colors, and even kerning:

NSAttributedString *attributedString =
[[NSAttributedString alloc]

 initWithString:destinationData[@"Destination
Name"]

 attributes:@{ NSFontAttributeName : [UIFont
systemFontOfSize:17.0f],

 NSForegroundColorAttributeName: [UIColor
whiteColor]}];

Now, use this attributed string to format the cell’s text label:

cell.textLabel.attributedText = attributedString;

Finally, return the formatted cell with the text it needs to display in that row:

return cell;

Working with user selections
Now you can look at what happens when the user selects a row with a desti-
nation displayed.

504 Part V: Adding the App Content

When the user taps a Table View entry, what happens next depends on what
you want your Table view to do for you.

If you’re using the Table view to display data (as the Albums view in the
Music app does, for example), you want a user’s tap to show the next level in
the hierarchy, such as a list of songs or a detail view of an item (such as infor-
mation about a song).

In the case of the RoadTrip app, you want a user’s tap to take you back to the
Master view and, behind the scenes, create the correct model so that when
you tap the Travel button, the right data is there.

To do that, add the final delegate method you need to implement, table View:
didSelectRowAtIndexPath:. Add the code in Listing 20-7 to Destination
Controller.m.

Listing 20-7: Implementing tableView:didSelectRowAtIndexPath:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:
 indexPath animated:YES];
 self.selectedDestination = indexPath.row;
 [self.delegate destinationController:self

didFinishWithSave:YES];
}

You set the selectedDestination property to the selected row. Then you
send the delegate the destinationController:didFinishWithSave:
message with a value of YES.

Before I explain the destinationController:didFinishWithSave:
method, implement the last part of the DestinationController. Add the
bolded code in Listing 20-8 to the cancel method (generated when you cre-
ated the action) in DestinationController.m.

Listing 20-8: Adding cancel:

- (IBAction)cancel:(id)sender {
 self.delegate destinationController:self
 didFinishWithSave:NO];
}

When the user taps Cancel, the DestinationController sends the
 destinationController:didFinishWithSave: message with a value of
NO to its delegate — which will be the MasterViewController. Now
you’ll go back to the MasterViewController and implement the
 destinationController:didFinishWithSave: message.

505 Chapter 20: Selecting a Destination

You also need to have the MasterViewController adopt the Destination
ControllerDelegate protocol and declare the destinationController:
didFinishWithSave: method. To do that, add the bolded code in Listing 20-9
to MasterViewController.h.

Listing 20-9: Updating the MasterViewController Interface

#import <UIKit/UIKit.h>
#import "DestinationController.h"
@class DetailViewController;

@interface RTMasterViewController : UITableViewController
 <UITextFieldDelegate, DestinationControllerDelegate>

@property (strong, nonatomic) RTDetailViewController
*detailViewController;

@property (weak, nonatomic) IBOutlet UITextField
*findText;

- (void)destinationController:(DestinationController *)
 controller didFinishWithSave:(BOOL)save;

Next, add the destinationController:didFinishWithSave: method in
Listing 20-10 to MasterViewController.m.

Listing 20-10: Adding destinationController:didFinishWithSave:

- (void)destinationController:(DestinationController *)
 controller didFinishWithSave:(BOOL)save {

 AppDelegate *appDelegate =
 [[UIApplication sharedApplication] delegate];

 if (save) {
 [appDelegate createDestinationModel:
 controller.selectedDestination];
 [self viewDidLoad];
 DetailViewController* currentDetailViewController;
 if ([[self.splitViewController.viewControllers
 lastObject]
 isKindOfClass:[UINavigationController class]]) {
 UINavigationController *navigationController =

[self.splitViewController.viewControllers
 lastObject];
 currentDetailViewController = (DetailViewController *)
 navigationController.topViewController;
 }
 else
 currentDetailViewController =

[self.splitViewController.viewControllers
 lastObject];
 [currentDetailViewController viewDidLoad];

(continued)

506 Part V: Adding the App Content

 if (currentDetailViewController.popOverButton) {
 if (![[self.splitViewController.viewControllers
 lastObject]
 isKindOfClass:[UINavigationController class]]) {
 NSMutableArray *itemsArray =

[currentDetailViewController.toolbar.items
 mutableCopy];
 [itemsArray removeObjectAtIndex:0];
 [currentDetailViewController.toolbar
 setItems:itemsArray animated:NO];
 }
 }
 if ([currentDetailViewController

isKindOfClass:[MapController class]]) {
 NSMutableArray *itemsArray =
 [currentDetailViewController.toolbar.items
 mutableCopy];
 [itemsArray removeLastObject];
 [currentDetailViewController.toolbar
 setItems:itemsArray animated:NO];
 }
 }
 if (appDelegate.trip == nil)
 [appDelegate createDestinationModel:0];
 [self dismissViewControllerAnimated:YES completion:nil];
}

If the user has chosen a new destination, you send the app delegate a mes-
sage to create that model:

[appDelegate
 createDestinationModel:controller.selectedDestination];

It determines the selection the user made by accessing the selected
Destination property you set in the tableView:didSelectRowAtIndex
Path: method.

As you may recall, createDestinationModel: is an already existing
method in the app delegate. The createDestinationModel: method will
actually be creating the model, and I made this a separate method because
you’ll have to be able to send the AppDelegate a message to create a new
Trip when the user chooses a new destination in Chapter 20. Well, here it is,
Chapter 20, and that’s exactly what you’re doing.

You reload the Master view based on the new destination so you can change
the Background image.

[self viewDidLoad];

Listing 20-10 (continued)

507 Chapter 20: Selecting a Destination

You’ll also need to update the Detail view.

DetailViewController* currentDetailViewController;
if ([[self.splitViewController.viewControllers lastObject]
 isKindOfClass:[UINavigationController class]]) {
 UINavigationController *navigationController =
 [self.splitViewController.viewControllers lastObject];
 currentDetailViewController = (DetailViewController *)
 navigationController.topViewController;
}
else
 currentDetailViewController =
 [self.splitViewController.viewControllers lastObject];
[currentDetailViewController viewDidLoad];

}

You’ll need to determine whether the current Detail view is embedded in a
Navigation controller. Then you get the current Detail view and simply send it
the viewDidLoad message, which will cause it to reload all its data.

You also need to take a nuance here into account. If the current view control-
ler isn’t embedded in a Navigation controller, that means it has a toolbar. If it
already has a Road Trip button, to keep things in sync, you’ll need to remove
the Road Trip button, which will then be added back in when the view
reloads.

if (currentDetailViewController.popOverButton) {
 if (![[self.splitViewController.viewControllers
 lastObject] isKindOfClass:
 [UINavigationController class]]) {
 NSMutableArray *itemsArray =
 [currentDetailViewController.toolbar.items
 mutableCopy];
 [itemsArray removeObjectAtIndex:0];
 [currentDetailViewController.toolbar
 setItems:itemsArray animated:NO];
 }
}

And yet another thing: If the current Detail view is a Map view, you’ll also
need to remove the Locate button if it’s on the toolbar:

if ([currentDetailViewController
isKindOfClass:[MapController class]]) {

 NSMutableArray *itemsArray =
 [currentDetailViewController.toolbar.items
 mutableCopy];
 [itemsArray removeLastObject];
 [currentDetailViewController.toolbar
 setItems:itemsArray animated:NO];
 }

508 Part V: Adding the App Content

If the user hasn’t chosen a new destination but no model exists yet (when the
user first launches the program, for example, no model exists yet — you’ll
see how that works in a second), you’ll have the app delegate create a model
using a default destination. I have arbitrarily chosen the first one.

You then send the dismissModalViewControllerAnimated: message,
which, as you might expect, dismisses the view controller using the transi-
tion you specified in the “Setting up the DestinationController in the
MainStoryboard_iPad” section, earlier in this chapter.

If the user has canceled, you simply send the dismissViewController
Animated: completion: message, and the user finds herself back in the
Master view.

But you still have some more work to do.

Previously, you added a delegate property to the Destination
Controller, which it uses when it sends the destinationController:
didFinishWithSave: message when the user selects a cell or taps Cancel.

The problem is, how do you set that property? Because you use a segue to take
care of creating and initializing the controller, how do you assign the delegate
property? If you recall from Chapter 19, when setting up FindController,
you didn’t use a segue, so you could assign any property you wanted after
you created (but before you added) the FindController to the Split View
controller viewControllers in textFieldShouldReturn: (I’ve bolded
where you do that in the MasterViewController.m code).

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

 [textField resignFirstResponder];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad){
 FindController * findController =
 [[UIStoryboard storyboardWithName:@"Main_iPad"
 bundle:nil]
 instantiateViewControllerWithIdentifier:@"Find"];
 findController.findLocation = textField.text;
...
)

Fortunately, you have a way to use a segue and still be able to pass some data
on to the view controller that’s being instituted by the segue.

509 Chapter 20: Selecting a Destination

prepareForSegue:sender: is a view controller method used to notify the
view controller that a segue is about to be performed. segue is the UIStoryboard
Segue object that contains information about the view controllers involved in
the segue. You’ve already used prepareForSegue:sender: to dismiss the
popover and assign the popOverButton and master PopoverController
properties. Now you need to add the code in bold in Listing 20-11 to prepare
ForSegue:sender: in MasterViewController.m. (I’ve omitted the code
that was already there.)

Listing 20-11: Update prepareForSegue:sender:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender {

 if ([segue.identifier isEqualToString:@"Destination"]) {

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 DetailViewController *currentDetailViewController;

 DestinationController *destinationController =

(DestinationController *)
 segue.destinationViewController;
 destinationController.delegate = self;

 if ([[self.splitViewController.viewControllers
 lastObject]
 isKindOfClass:[UINavigationController class]]) {
 UINavigationController *navigationController =

[self.splitViewController.viewControllers
 lastObject];
 currentDetailViewController =
 (DetailViewController *)
 navigationController.topViewController;
 }
 else
 currentDetailViewController = [self.

splitViewController.viewControllers
 lastObject];
 if (currentDetailViewController.
 masterPopoverController != nil)

 [currentDetailViewController.
 masterPopoverController
 dismissPopoverAnimated:YES];
 }

(continued)

510 Part V: Adding the App Content

 else {
 DestinationController *destinationController =

(DestinationController *)
 segue.destinationViewController;
 destinationController.delegate = self;
 }
 return;
 }
... // previous code here
}

You first check to see whether the segue is the Destination segue (see,
those identifiers are really useful):

if ([destinationSegue.identifier
 isEqualToString:@"Destination"])

If it’s the Destination segue, you check to see whether the device is
an iPad. If it is, you go through the usual logic to find the Detail View
(Destination) controller and assign its delegate to self.

DetailViewController *currentDetailViewController;

DestinationController *destinationController =
 (DestinationController *)
 [segue.destinationViewController topViewController];
 destinationController.delegate = self;

You then go through the usual logic and find the current Detail View control-
ler and dismiss the popover, if one exists.

if ([[self.splitViewController.viewControllers lastObject]
 isKindOfClass:[UINavigationController class]]) {
UINavigationController *navigationController =
 [self.splitViewController.viewControllers lastObject];
currentDetailViewController = (DetailViewController *)
 navigationController.topViewController;
}
else
 currentDetailViewController =
 [self.splitViewController.viewControllers lastObject];
if (currentDetailViewController.
 masterPopoverController != nil)

 [currentDetailViewController.masterPopoverController
 dismissPopoverAnimated:YES];

If you’re on the iPhone, you simply assign the delegate to the segue’s
destinationViewController.

Listing 20-11 (continued)

511 Chapter 20: Selecting a Destination

DestinationController *destinationController =
 destinationSegue.destinationViewController;
destinationController.delegate = self;

Saving the Destination Choice and
Selecting a Destination

At this point, if you were to run your project, you would be able to tap the
Destination button, choose a destination, and see the data for either New
York or San Francisco.

But you’re not done yet.

First, if the app is terminated (and I mean terminated, not running in the
background and relaunched), the user will find that the destination she
selected has reverted to being the default one. You would like RoadTrip to
be in position to save, and then restore, the user’s destination preference.
(In Chapter 11, you see how to default to the first destination in the plist.
I mention in that chapter that I show you how to allow the user to select a
destination in Chapter 20, and here you are.)

Start by adding the destinationPreference property to AppDelegate by
adding the bolded code in Listing 20-12 to AppDelegate.h.

Listing 20-12: Updating the AppDelegate Interface

#import <UIKit/UIKit.h>
@class Trip;

@interface AppDelegate : UIResponder
 <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;
@property (nonatomic, strong) Trip *trip;
@property (nonatomic, strong) NSString *
 destinationPreference;

- (void) createDestinationModel:(int)destinationIndex;

@end

Apple provides an NSUserDefaults object — available to any app — that you
can use to store user preferences, or any small data values that should be saved
by your app. In this section, you use the NSUserDefaults object to save the
destination preference, so if the user chooses “San Francisco” the first time
they use the app, “San Francisco” will be the location used when the app is
next launched.

512 Part V: Adding the App Content

Data is stored in the user defaults object as a key-value pair. The value will be
the destinationPreference string (which will be the index of the destina-
tion — @“0” or @“1” at this point). The key will be the static Destination
PreferenceKey that you should now add to AppDelegate.m, as shown by
the bolded code in Listing 20-13.

Listing 20-13: Updating the AppDelegate Implementation

#import "AppDelegate.h"
#import "Reachability.h"
#import "Trip.h"

static NSString *DestinationPreferenceKey =
 @"DestinationPreferenceKey";
@implementation AppDelegate

You’re adding a key (string) that you’ll need to use when you save the
preference.

What you would like to do is direct the user to select a destination rather
than using the default one. I’ll have you post an alert to the users that they
need to do that. More elegant ways are available to get the users to select the
initial destination, but I’ll leave that as an exercise for the reader.

Start by adding the bolded code in Listing 20-14 to viewDidLoad in Master
ViewController.m.

Listing 20-14: Adding to viewDidLoad

- (void)viewDidLoad
{
 [super viewDidLoad];
 AppDelegate* appDelegate = [[UIApplication

sharedApplication] delegate];
 self.title = appDelegate.trip.destinationName;
 UIImageView* imageView = [[UIImageView alloc]
 initWithImage:[appDelegate.trip destinationImage]];
 self.tableView.backgroundView = imageView;

 UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc] initWithTarget:self
 action:@selector(handleSwipeGesture:)];
 swipeGesture.direction =

UISwipeGestureRecognizerDirectionLeft;
 [self.view addGestureRecognizer:swipeGesture];
 self.findText.delegate = self;

 if(appDelegate.destinationPreference == nil) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Welcome to Road Trip"

513 Chapter 20: Selecting a Destination

 message:@"Please select a Destination from the
 Road Trip Menu"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 }
}

As you can see, if the appDelegate.destinationPreference property
is nil, you’ll post the Please select a destination from the Road
Trip menu alert.

Unfortunately, every time you compile and run your app (or launch it), you’ll
see the alert because you will never have anything other than nil in the
appDelegate.destinationPreference property.

In Listing 20-15, you fix that problem. At application launch, you’ll check
to see whether a user preference is saved. If one is, you assign it to
destinationPreference. If no preference is saved, you leave that prefer-
ence as nil, and the alert to the user to select a destination will be posted by
the MasterViewController.

Add the bolded code in Listing 20-15 to application:didFinishLaunching
WithOptions: in AppDelegate.m and delete the one line of code that’s
commented out in bold, italic, and underline.

Listing 20-15: Updating application:didFinishLaunchingWithOptions:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:
 (NSDictionary *)launchOptions
{
 ... // previous code here
 self.destinationPreference = [[NSUserDefaults

standardUserDefaults]
objectForKey:DestinationPreferenceKey];

 if (self.destinationPreference == nil) {
 NSDictionary *currentDestinationDict =

@{DestinationPreferenceKey: @"0"};
 [[NSUserDefaults standardUserDefaults]
 registerDefaults:currentDestinationDict];
 }
 else
 [self createDestinationModel:
 [self.destinationPreference intValue]];
//[self createDestinationModel:0];

 return YES;
}

514 Part V: Adding the App Content

At app launch, you check an NSUserDefaults object to see whether an
entry exists with a key of DestinationPreferenceKey (you added this
previously in Listing 20-13):

self.destinationPreference =
 [[NSUserDefaults standardUserDefaults]
 objectForKey:DestinationPreferenceKey];

You use NSUserDefaults to read and store preference data to a defaults data
base, using a key value, just as you access keyed data from an NSDictionary.
In this case, the preference is the destination.

NSUserDefaults is implemented as a singleton, meaning that only one
instance of NSUserDefaults is running in your app. To get access to that
one instance, I invoke the class method standardUserDefaults:

[NSUserDefaults standardUserDefaults]

standardUserDefaults returns the NSUserDefaults object. As soon as
you have access to the standard user defaults, you can store data there and
then get it back when you need it.

objectForKey: is an NSUserDefaults method that returns the object
associated with the specified key, or nil if the key wasn’t found.

 You can add your app’s preferences to Settings and then retrieve the values
in the same way you are doing here. That is appropriate for settings that you
want the user to set directly as opposed to a setting such as the last destina-
tion viewed that is managed automatically. Obviously, the first time the app is
launched, no data is there, so you create a dictionary with the default value:

NSDictionary *currentDestinationDict =
 @{DestinationPreferenceKey: @"0"};

Note that you save the value as an NSString. That’s because the NSUser
Defaults requires a property list object.

You then send the NSUserDefaults object the registerDefaults mes-
sage. This creates a new entry in the NSUserDefaults database that you
can later access and update using the key you provided in the dictionary.

Because destinationPreference is still nil, when viewDidLoad exe-
cutes, it will launch the Destination controller.

If a value exists in NSUserDefaults, you create the Destination model by
sending the createDestinationModel: message with the value you had
stored — which will be, as you will see, the index of the destination in the
Destinations plist:

515 Chapter 20: Selecting a Destination

[self createDestinationModel:
 [self.destinationPreference intValue]];

Note that you use an NSString method intValue. This method returns the
value in a string as an int, which is handy because that’s what the create
DestinationModel: method expects.

You also could’ve made the currentDestinationIndex an NSNumber. It’s
an object wrapper for any C scalar (numeric) type. It defines a set of methods
that allow you to set and access the value in many different ways, including
as a signed or unsigned int, double, float, BOOL, and others. Also,
NSNumber defines a compare: method to determine the ordering of two
NSNumber objects.

 Using the index number of the destination rather than the name is a common
coding practice. You need to be able to quickly go to a specific destination in
the array of destinations. Each one has a title and a subtitle for use in displays.

If no destinationPreference exists, the user will see a blank Detail view
with a default Master view (it looks a little different on the iPhone) and the
alert asking her to select a destination. As I said, you have more elegant ways
of doing this.

The last step in saving the Destination preference is actually storing destination
Preference itself, and you do that in createDestinationModel:. Add the
bolded code in Listing 20-16 to create DestinationModel: in AppDelegate.m.

Listing 20-16: Updating createDestinationModel:

- (void) createDestinationModel:(int)destinationIndex {

 NSString *selectedDestinationIndex =
 [NSString stringWithFormat: @"%i",destinationIndex];
 if(![selectedDestinationIndex
 isEqualToString:self.destinationPreference]) {
 self.destinationPreference = selectedDestinationIndex;
 [[NSUserDefaults standardUserDefaults]
 setObject:self.destinationPreference
 forKey:DestinationPreferenceKey];
 }
self.trip = [[Trip alloc] initWithDestinationIndex:destina

tionIndex];
}

You start out in Listing 20-16 by converting the destinationIndex param-
eter to a string and comparing it to see whether the Destination preference is
the same as the one just selected by the user. (The user may have chosen the
same destination again in the Destination controller.)

516 Part V: Adding the App Content

NSString *selectedDestinationIndex =
 [NSString stringWithFormat: @"%i",destinationIndex];
if(![selectedDestinationIndex
 isEqualToString:self.destinationPreference]) {

If the destination isn’t the same, you assign the new value to the
destinationPreference:

self.destinationPreference = selectedDestinationIndex;

and then you save the new value in NSUserDefaults:

 [[NSUserDefaults standardUserDefaults]
 setObject:self.destinationPreference
 forKey:DestinationPreferenceKey];

To store data, you use the setObject:forKey: method. The first argu-
ment, setObject:, is the object I want NSUserDefaults to save. This
object must be NSData, NSString, NSNumber, NSDate, NSArray, or
NSDictionary. In this case, savedData is an NSString, so you’re in good
shape.

The second argument is forKey:. To get the data back (and for NSUser
Defaults to know where to save it), you have to be able to identify it to
NSUserDefaults. You can, after all, have a number of preferences stored in
the NSUserDefaults database, and the key tells NSUserDefaults which
one you’re interested in.

Next, you create the model passing in the destination index:

self.trip = [[Trip alloc]
 initWithDestinationIndex:destinationIndex];

Displaying the Destination table
One remaining problem is that the Destination table should appear automati-
cally when the user dismisses the UIAlertView — the one that displays the
“Welcome to Road Trip” message the first time the app is launched. The best
way to handle this is to provide a method that will be called when the Alert is
dismissed by the user, and then display the Destination table in that method.
Here are the steps to do that:

 1. Add UIAlertViewDelegate to the MasterViewController’s
comma-separated list of delegates in MasterViewController.h.

 2. Designate the MasterViewController as the UIAlertViewDelegate
by adding the line of code shown in Listing 20-17 to the viewDidLoad
method in MasterViewController.m.

517 Chapter 20: Selecting a Destination

 3. Add the alertView:clickedButtonAtIndex: method to MasterView
Controller.m. The simple code shown in Listing 20-18 displays the
Destination table as desired.

Listing 20-17: Designating the Master View Controller
as the Alert Delegate

- (void) createDestinationModel:(int)destinationIndex {
... // previous code
if(appDelegate.destinationPreference == nil) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Welcome to Road Trip"
 message:@"Please select a Destination from the
 Road Trip Menu"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 alert.delegate = self;
 [alert show];
 }

Listing 20-18: Displaying the Destination Table

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

[self performSegueWithIdentifier:@"Destination"
sender:self];

}

Testing
You’re done. Run your app and test your work.

 To test this part of your app, you need to first stop it in the Simulator (or
device) by clicking the Stop button on the Xcode toolbar. Then remove
RoadTrip from the background by following these steps:

 1. Double-click the Home button Hardware➪Home to display the apps
running in the background.

 2. Drag the RoadTrip view up and out of the horizontal list of back-
ground apps. If it’s not there, it’s not running in the background.

 3. Run your app.

518 Part V: Adding the App Content

To test this part of your app again later, you need to first stop it in the Simulator
(or device) by clicking the Stop button on the Xcode toolbar. Then remove
RoadTrip and its user defaults from the device by following these steps:

 1. Press and hold the RoadTrip icon until it wiggles.

 2. Click the app Delete icon, the circle with the X that appears in the
upper-left corner of the icon.

 3. Press the Delete button when asked if you should delete the app and
all of its data.

 4. Build and run your app again, with the default destination
Preference again set to nil. This gives you a fresh start.

Adding Destination Support to the
iPhone Storyboard

Your goal is to add a Destination scene to your iPhone storyboard in the
same way that you added one to your iPad storyboard file. Follow the same
directions for creating the Destination Controller scene for iPad storyboard.
Steps include the following:

 1. Drag a UIViewController into the iPhone storyboard.

 2. Use the Inspector to change the class name to Destination
Controller as well as the Storyboard ID and Title to Destination.

 3. Drag a Modal segue from the Destination table cell in the
MasterViewController to the DestinationController. Set the
segue ID to Destination.

 4. Add the Navigation bar, and then place a Cancel button in it.

 5. Choose the DestinationController’s cancel action for the Cancel
button.

 6. Add a UIImageView with an image.

 7. Add a Label “Pick a Place, Anyplace.”

 8. Add a Table view.

 9. Set the Table view’s delegate and dataSource to be the
DestinationController.

 10. Connect the Table view to the destinationTableView property in
Destination.m.

 11. Format the Table View cell as described earlier in the chapter.

519 Chapter 20: Selecting a Destination

The resulting layout is shown in Figure 20-6.

The good news is that you don’t have to change your Objective-C code at
all — the same DestinationController code works fine.

Figure 20-6:
The

Destination
scene in

the iPhone
storyboard.

A Word about Adding Settings
Although space doesn’t allow me to show you how to implement settings —
for example, letting the user choose whether she wants to hear the car sound
when she taps the Test Drive button, or to change the speed of the car — you
implement such settings in exactly the same way that you just implemented the
Destination preference. You add a setting to NSUserDefaults and create an
AppDelegate property that you check in the car animation messages, for exam-
ple, before you play the sound. To get even more sophisticated, you could create
a Preferences class, in the same way you create a Trip class, that manages all
preferences and uses that rather than the AppDelegate to provide Preference
data to the rest of your app.

What’s Next?
Although this point marks the end of your guided tour of iOS app develop-
ment, it should also be the start — if you haven’t started already — of your
own development work.

Developing for iOS is one of the most exciting opportunities I’ve come across
in a long time. I’m hoping that it ends up being as exciting for you.

520 Part V: Adding the App Content

Do keep in touch, though. Check out my website, www.northcountry
consulting.com, on a regular basis. There you can find the completed
RoadTrip Xcode project as well as any updates.

Finally, keep having fun. I hope I have the opportunity to download one of
your apps from the App Store soon.

http://www.northcountryconsulting.com
http://www.northcountryconsulting.com

Part VI
The Part of Tens

 Visit www.dummies.com/extras/iosappdevelopment for ten ways to make
your app development life easier.

http://www.dummies.com/extras/iosappdevelopment

In this part . . .
 ✓ Ten ways to be successful with apps

 ✓ Ten ways to be a happy developer

Chapter 21

Ten Ways to Be Successful
with Apps

In This Chapter
▶ Demolishing the magic

▶ Ways to make money

▶ Ways to use your skills and interests in the app world

W
hen the App Store opened in July 2008, it’s safe to say that no one
imagined the world of apps we have today. From the launch of the

iPhone in June 2007 until July 2008 when iOS 2.0 (it was still called iPhone
OS then, but in retrospect we call it iOS 2.0) was released and the App Store
opened, the only native apps on the iPhone were written by Apple. Within
a year, there were 55,000 apps in the App Store accounting for more than a
billion downloads. As of this writing, there are well over a million apps with
many billions of downloads.

Particularly with the advent of the iPad and more mature versions of iOS, the
world of app development has taken shape. Here are ten suggestions for how
you can make money from apps using your own skills and experience as well
as what you’ve learned in this book.

I start with a bonus way to make money. It doesn’t count as one of the ten, for
reasons you’ll soon understand.

Make a Million Dollars in a Week
Take a weekend off, write an app, and watch it become a top seller on
the App Store. Yes, and winning the lottery is also a possibility. This does
happen, but it’s not as common as the other ways listed here.

524 Part VI: The Part of Tens

Build a Portfolio
A resume has traditionally been considered the key to getting a good job or
even a temporary position. If you have a handful of apps (three to five) in the
App Store, you don’t need a resume: You have your work to speak for you.
They don’t have to be best-sellers, but they should demonstrate what it is
that you know how to do.

The mere fact that they’re in the App Store will demonstrate that you under-
stand at least the basics of the app review process. You may want a variety
of apps or you may want a variety of a specific type of app such as a game. A
real-world app may help, so this might be a good time to volunteer for a non-
profit or for a friend or relative’s business.

Build App Icons
You don’t actually have to build apps, you know. Think about it. As you’ve
worked on the apps in this book, have any parts of the development process
really interested you? You don’t have to build the whole app yourself. With
the understanding of the app development process that you now have, you
may want to specialize based on your skills and interests. The next few items
suggest areas to focus on.

App icons are a very specific type of graphic design. If you have the ability to
synthesize an app into a very tiny image that suggests what the app can do,
app icons may be the place for you. This means that you need to understand
the rules from Apple for app icons. You also need to be able to quickly and
accurately understand what an app does. (And you may need to form this
understanding long before the app is written.)

Design User Interfaces
By now, you should have a basic understanding of app design. You’ve seen
toolbars, navigation bars, segues, buttons, and many of the basics (and even
some advanced) techniques for controlling an app. Does this play to your
strengths? Not every app developer is great at interfaces, so you may find
developers who welcome (and will pay for) your expertise. Being able to
understand what the main developer is doing can help you be a better user
interface designer.

525 Chapter 21: Ten Ways to Be Successful with Apps

Build Back Ends
Is data management your forte? Or are you into designing web pages that
provide data on demand to users? If JSON and http are the acronyms you
work with, and if the use of quickly scalable web resources (such as Amazon
Web Services) are your game, you’ve seen in this book how to start integrat-
ing them into apps, and you can bring your data management expertise to
developers who need someone to help in that area.

Socialize with Apps
Apps and social media are intertwined today. If you have skills in both areas,
you have a leg up. Start by looking at the Apple APIs for integration with
social media and add a social media app to your portfolio. That’s a highly
valuable skill.

Talk About Apps with People
Who Want Them

There are many business owners who want to have apps built for them. If you
know a particular business well, consider helping people in that line of work
find the right app developer even if it’s not you. Twenty years ago, it seemed
as if every business owner wanted a website. Today, they want apps. And, to
be perfectly honest, many of them know as much about apps today as they
knew about websites 20 years ago. If you can translate from the specific busi-
ness world to the tech world, and if you are honest and reliable, there are
opportunities for you.

Promote Apps
If you have a background or interest in promotion and media relations, your
background in apps can help you promote apps and businesses that use
them. Knowing the words to use (and which ones to explain) can help you
help businesses make their points and get people to download their apps. It’s
difficult to promote an app if you don’t know what it does and how it does it.
You now know how apps work.

526 Part VI: The Part of Tens

Provide Support to Users
Many apps are built for a specific company or organization to use to provide
services to clients. As is the case with any customer service operation, this
process often needs support people who are familiar with the business as
well as with the app. A demonstrated ability to understand apps and work on
a help desk to support a business’s app can open doors to you either where
you work now or at a new company.

Fix Bugs
For some developers, a clean build or compile is the end of the road, but
you know that it’s only the beginning. There’s almost always room for code
improvements. Even if an app doesn’t crash, does it leak memory or behave
in unpredictable ways from time to time? For some people, finding these
issues is a wonderful multi-dimensional puzzle. If that’s you, then there are
opportunities waiting for you.

Chapter 22

Ten Ways to Be a Happy
Developer

In This Chapter
▶ Finding out how not to paint yourself into a corner

▶ Keeping it simple

▶ Having fun

▶ Avoiding “There’s no way to get there from here”

T
hink of all the things you know you’re supposed to do but don’t because
you think they’ll never catch up with you. Not that many people probably

enjoy balancing the checkbook or cleaning out gutters, and after all, not floss-
ing won’t cause you problems until your teeth fall out years from now, right?

But in iOS app development, those mañana gotchas will catch up with you
early and often, so I want to tell you about what I’ve learned to pay attention
to from the very start in app development, as well as give you a few tips and
tricks that lead to happy and healthy users.

Keep Things Loosely Coupled
A loosely coupled system is one in which each of its components has little or
no knowledge (or makes no use of any knowledge it may have) of other com-
ponents. And because loose coupling refers to the degree of direct knowledge
that one class has of another, it’s not about encapsulation or to one class’s
knowledge of another class’s attributes or implementation, just knowledge of
that other class itself.

I explain loose coupling more in Chapter 11.

528 Part VI: The Part of Tens

Remember Memory
iOS does not store “changeable” memory (such as object data) on disk to
free space and then read it back in later when needed. This means that run-
ning out of memory is easy, and you should use automatic reference counting
(ARC) to make the most of the memory available to you. All you have to do is
follow the rules:

 ✓ Rule 1: Follow the naming conventions. This is really important. Good
naming conventions help your code to be self-documenting. Sloppy, lazy,
lethargic, sluggish, careless programmers who don’t take the time to
follow the naming conventions will be dealt with harshly!

 ✓ Rule 2: Do not send retain, release, or autorelease messages.

 ✓ Rule 3: Do not store object pointers in C structures.

 ✓ Rule 4: Inform the compiler about ownership when using Core
Foundation–style objects.

 ✓ Rule 5: Use the @autoreleasepool keyword to mark the start of an
autorelease block.

If you follow the rules, all you have to worry about is the retain cycle. This
cycle occurs when one object has a back pointer to the object that creates it,
either directly or through a chain of other objects, each with a strong refer-
ence to the next leading back to the first. Use the weak lifetime qualifiers for
objects and the weak property attribute.

But even if you do everything correctly, in a large app, you may simply run
out of memory and need to implement the methods that UIKit provides to
respond to low-memory conditions, as follows:

 ✓ Override the viewDidUnload and didReceiveMemoryWarning
 methods in your custom UIViewController subclass.

 ✓ Implement the applicationDidReceiveMemoryWarning: method of
your application delegate.

 ✓ Register to receive the UIApplicationDidReceiveMemoryWarning
Notification: notification.

Don’t Reinvent the Wheel
The iPhone and iPad are cutting-edge enough that opportunities to expand their
capabilities are plentiful, and many of them are (relatively) easy to implement.
You’re also working with a very mature framework. So if you think that some-
thing you want your app to do is going to be really difficult, check the frame-
work; somewhere there you may find an easy way to do what you have in mind.

529 Chapter 22: Ten Ways to Be a Happy Developer

For example, I once needed to compute the distance between two points
on a map. So I got out my trusty trig books, only to find out later that the
distanceFromLocation: method did exactly what I needed.

Understand State Transitions
The UIApplication object provides the application-wide control and coor-
dination for an iOS app. It is responsible for handling the initial routing of
incoming user events (touches, for example) as well as dispatching action
messages from control objects (such as buttons) to the appropriate target
objects. The app object sends messages to its Application Delegate to allow
you to respond, in an app-unique way, when your app is executing, to things
such as app launch, low-memory warnings, and state transitions, such as
moving into background and back into foreground.

You should implement the following UIApplicationDelegate methods in
your app. Most of these methods are already basically implemented in the
code provided by Apple’s templates, complete with comments explaining
their purposes.

Method What You Do with It
application:didFinish
LaunchingWith
Options:

In this method, do what you need to do to initialize
your app after it’s launched.

applicationWillResign
Active:

This message is sent when the app is about to
move from the active to inactive state. Use this
method to do things such as pause ongoing
tasks and anything based on a timer (such as a
game). Using this method doesn’t mean that you
will be entering background, but it does mean
that your app won’t be executing.

applicationDidEnter
Background:

This message is sent when your app is going
to be entering background. At this point, you
need to assume that your app may eventually be
terminated without warning, so save user data,
invalidate timers, and store enough app state
information.

applicationWillEnter
Foreground:

This message is sent when your app has been
rescued from background. In this method,
reverse what you did in applicationDidEnter
Background:.

applicationDid
BecomeActive:

Your app is now active. You should reverse
whatever you did in applicationWill
ResignActive:. You also might want to refresh
the user interface.

530 Part VI: The Part of Tens

Do the Right Thing at the Right Time
When it comes to the view controller, you need to be aware of two methods,
and you need to know what to do in each method.

The viewDidLoad message is sent to a view controller when the view has
been loaded and initialized by the system. It is sent only when the view is
created — and not, for example, when your app returns from background or
when a view controller is returned to after another view controller has been
“dismissed.”

The viewWillAppear: message, on the other hand, is sent whenever the
view appears, including when the view reappears after another view control-
ler is “dismissed.”

Do view initialization in viewDidLoad, but make sure that anything you do
to refresh a view whenever it appears is done in viewWillAppear:.

Avoid Mistakes in Error Handling
Opportunities for errors abound; use common sense in figuring out which
ones you should spend time on. For example, don’t panic over handling a
missing bundle resource in your code. If you included it in your project, it’s
supposed to be there; if it’s not, look for a bug in your program. If it’s really
not there, the user has big problems, and you probably won’t be able to do
anything to avert the oncoming catastrophe.

Having said that, here are two big potential pitfalls you do have to pay
 attention to:

 ✓ Your app goes out to load something off the Internet, and (for a variety
of reasons) the item isn’t there, or the app can’t get to it. You especially
need to pay attention to Internet availability and what you’re going to do
when the Internet isn’t available.

 ✓ A geocoder may fail for any number of reasons. For example, the service
may be down, a certain GPS coordinate may not have a street address,
or the user may access the data before the geocoder has returned.

531 Chapter 22: Ten Ways to Be a Happy Developer

Use Storyboards
Storyboards are a great way to examine the flow of the app as a whole. In
addition, they require you to use less code.

Remember the User
I’ve been singing this song since Chapter 1, and I’m still singing it now: Keep
your app simple and easy to use. Don’t build long pages that take lots of
scrolling to get through, and don’t create really deep hierarchies. Focus on
what the user wants to accomplish, and be mindful of the device limitations,
especially battery life. And don’t forget international roaming charges.

In other words, try to follow the Apple iOS Human Interface Guidelines,
found with all the other documentation in the iOS Dev Center website at
http://developer.apple.com/devcenter/ios in the iOS Developer
Library section. Don’t even think about bending those rules until you really,
really understand them.

Keep in Mind That the Software Isn’t
Finished Until the Last User Is Dead

One thing that I can guarantee about app development is that nobody gets it
right the first time. The design for RoadTrip (the example app in this book)
evolved over time as I learned the capabilities and intricacies of the platform
and the impact of my design changes. Object orientation makes extending your
app (not to mention fixing bugs) easier, so pay attention to the principles.

Keep It Fun
When I started programming for the iPhone and iPad, it was the most fun I’d
had in years. Keep things in perspective: Except for a few tedious tasks, expect
that developing iOS apps will be fun for you, too. So don’t take it too seriously.

 Especially remember the fun part at 4 a.m., when you’ve spent the last five
hours looking for a bug.

http://developer.apple.com/devcenter/ios

532 Part VI: The Part of Tens

Index

• Special Characters •
. (dot) syntax, 177–178
^ (caret) operator, 257–258
{ } (curly braces), 191, 299

• A •
abstract classes

complexity, 413
defined, 174
gesture recognizers, 330

accelerometer
battery life, 23
general discussion, 16
limitations of Simulator, 69
orientation and motion tracking, 18

accessor methods
accessing instance variables with, 181
atomicity, 180
declared properties and, 186
invoking, 177–178
naming, 179–180
purpose of, 177
setter semantics and ownership, 179
writability, 179
writing, 180

Action sheets, 100
action:@selector(goBack:)

argument, 387
actions

defined, 230
logging, 64–65
at runtime, 244
Target-Action design pattern, 241–244
viewing, 39, 116

active state, 160
Activity Indicator view, 400–401
Activity viewer, Workspace window toolbar,

Xcode 5, 41, 60–61, 65, 192
ad hoc distribution, 32
addAnnotations: method, 442, 480

addLocation:completionHandler:
method, 479–483, 485

addressDictionary property, 456
administrativeArea property, 456
affine transformations, 260
Alert views, 95, 100–101
alertView:clickedButtonAtIndex:

method, 517
All display option, Workspace window,

Xcode 5, 40, 218, 222
All Output display option, Workspace

window, Xcode 5, 40, 218, 222
alpha property, 252
animatedImageNamed: method, 273
animatedImageNamed:duration:

message, 273
animateWithDuration:animations:

completion: method, 254–255, 258
animation

adjustments for iPhone, 273
animating view properties, 251–252
Auto Layout system, 250–251
blocks, 256–259
constraints, 251
coordinate systems, 248
data structures, 250
general discussion, 248
of images “in place”, 272–273
method implementation, 252–256
points versus pixels, 248–249
rotating views, 259–261
view geometry, 248
view position, 249
view size, 249

Annotation class, 293, 437–438,
440, 469, 478–481, 483

Annotation views, 437, 445
annotations

creating, 437–441
displaying locations on map as, 300, 418,

469, 478–485
displaying map title and, 441–446

iOS App Development For Dummies 534
anyObject method, 270
app icons

adding, 75
designing, 524
overview, 71
specifying location of, 51

App Store
distribution through, 24, 32
general discussion, 2–3
opening of, 2, 13

AppDelegate class, 153–154, 303–305,
320, 506, 511, 529

AppDelegate files
AppDelegate.h, 56, 303, 511
AppDelegate.m, 56, 208, 303–305, 371,

512–513, 515
Apple Human Interface Guidelines, 88
AppleScript, 38
application delegate
applicationWillTerminate:

message, 163
defined, 105–106, 153
low-memory warnings, 172, 528
UIApplication object, 153–154, 156, 175

application development
building apps, 61
careers in, 25–26
coding, 31–32
debugging, 32
distribution, 32
performance tuning, 32
project creation, 31, 45–49
running apps, 32, 61–63
running apps in Simulator, 66–70
SDK support for, 29–30
storyboarding for interface, 31

application life cycle
event handling, 158–159
interruption handling, 160–163
main function, 152–153
UIApplicationMain function

application-wide control, 153–154
launch, 156–158
storyboard loading, 155–156

view controller life cycle, 163–164
applicationDidBecomeActive:

method, 157, 161, 529
applicationDidEnterBackground:

method, 161–162, 529

application:didFinishLaunching
With Options: method

application life cycle, 154, 156–158
destination selection, 513
Detail View controller, 371
network availability, 208
state transitions, 529
Trip interface, 304

applicationDidReceiveMemory
Warning: method, 172, 528

applications
financial issues, 25–26
free, 25
making money through

app icon design, 524
app promotion, 525
back end construction, 525
bug fixing, 526
helping find developers, 525
portfolio building, 524
social media integration, 525
user interface design, 524
user support, 526

qualities of great apps
disappearing interface, 15–16
location awareness, 15
networking, 15
overview, 14
performance, 14–15
social media integration, 15

types of
immersive apps, 25
productivity apps, 24
utility apps, 25

applicationWillEnterForeground:
method, 161–162, 529

applicationWillResignActive:
method, 160–162, 529

applicationWillTerminate: method,
163, 174

ARC (automatic reference counting)
memory, 528
naming conventions, 168–169
overview, 166
retain cycle, 170–172
rules for, 167–168
variable types, 169–170

Archives organizer, Xcode 5, 43, 198
areasOfInterest property, 457, 462

535 IndexiOS App Development For Dummies 535
asset catalogs

adding images to, 72–73
creating, 73
defined, 70
error messages, 72
idioms, 70
representations, 70
selecting images from, 70–71
sets, 70
types of images

app icons, 71
images, 72
launch images, 71–72
OS X icons, 72

Assistant editor, Xcode 5. See also Source editor
adding actions, 241–242
Jump bar, 189
opening, 232–234
overview, 184–186
purpose of, 35

asynchronous processing
audio, 268
geocoding, 461, 463
overview, 20

atomicity, 180
Attributes inspector, Xcode 5

purpose of, 39, 116
Text fields, 471
user interface objects, 131
view controllers, 128

Audacity, 263
audio

adding frameworks, 263
adjustments for iPhone, 273
AVAudioPlayer class, 262
creating audio player instance, 265
general discussion, 261–262
importing audio player and system

sound services headers, 263
playing sounds, 266–268
setting up audio player and system

sound services, 263–264
stopping sounds, 268
System Sound Services, 262

AudioToolbox framework, 107, 262
Auto display option, Workspace window,

Xcode 5, 40, 218, 222
Auto Layout system

animation, 250–251
constraints, 138–141, 251

leading and trailing space, 138–139
selecting images for autosizing, 136
Size inspector settings, 137–138
turning on, 138
view layouts, 130–131

automatic closing braces, 191
automatic formatting, 191
automatic indenting, 191
automatic reference counting (ARC)

memory, 528
naming conventions, 168–169
overview, 166
retain cycle, 170–172
rules for, 167–168
variable types, 169–170

autorelease method, 167, 528
autorelease pool, 153, 168, 528
_autoreleasing variables, 170
autorotation, 214
autosizing, 39, 116, 130, 136–141
AVAudioPlayer class, 262–265
AVFoundation framework, 107, 262
awakeFromNib method, 353–354

• B •
Back button

creating, 387, 390–391
iPad navigation, 117–119
Navigation controller, 323, 326, 328
push segues, 362
view controller life cycle,

163–164
background processing, 20, 157
background state, 160–163
backgroundColor property, 252
backing variables, 296–297
basic classes, 279–280
battery life, limitations of, 23
block literals, 259
Block Objects design pattern,

92, 256–259
blocks

accessing variables, 257
asynchronous processing, 20
defined, 256
finding locations, 478–483
syntax for defining animations as,

257–259

iOS App Development For Dummies 536
Bluetooth, 15
bounds property, 252
Breakpoint navigator, Xcode 5, 37, 219
breakpoints

in Debug area, 216–217, 222–223
defined, 37, 218
disabling, 219
editing, 219–221
setting, 218, 305
turning on/off, 225–226

_bridge cast, 168, 265
bundle, 264, 332
bundle identifiers, 51
bundled executables, 52
buttons

adding, 141–142
Back button

creating, 387, 390–391
iPad navigation, 117–119
Navigation controller, 323, 326, 328
push segues, 362
view controller life cycle, 163–164

blinking, 272–273
centering, 143
creating custom, 141–143
naming, 143
resizing, 143–144

• C •
Calendar app, 19
call stack, 37, 224
cancelGeocode message, 463
cancelPerformSelectorsWith

Target: method, 267
caret (^) operator, 257–258
case sensitivity, 5
cell identifiers, 502
center property, 249, 252–253, 261
CFURLRef object, 265
CGAffineTransform struct, 260–261
CGPoint struct, 250, 253
CGPointMake function, 253
CGRect struct, 250
CGRectContainsPoint function, 270
child-level entries, 283
@class compiler directive, 303–305

class extensions, 182
class references, 195–197
classes

abstract
complexity, 413
defined, 174
gesture recognizers, 330

defined, 95
naming conventions, 105, 118
subclassing, 174

CLGeocoder class, 456–458, 460–463, 483
CLLocationCoordinate2d

property, 300, 434
CLLocationDegrees property, 434
CLPlacemark object, 456–457, 461–462
code completion, 191
code folding, 191–192
Code snippets library, Xcode 5, 39, 116
compass, 16
compiler directives, 267, 303–305, 386, 470
composition, 293–294
concrete instances, 174
concurrent processing, 92, 256
Connections inspector, Xcode 5

checking status of Target-Action
connections, 243–244

creating outlets, 237–239
purpose of, 39, 116

consistent system environment, 17
Console pane, Workspace window, Xcode 5

overview, 216, 222–223
purpose of, 35
Scope bar, 40, 218

Contacts app, 19
Container views, 98, 118, 251
containers, 280
Content views, 96, 101
continueRotation method, 261
controls, 99
coordinate property, 300
coordinate systems, 248–249
Copy, Cut, and Paste operations, 20
copy property, 179
Core Data framework, 105
Core Data model editor, Xcode 5, 38, 184
Core Image framework, 20, 118
CoreFoundation framework, 168, 265

537537 IndexiOS App Development For Dummies

CoreGraphics framework, 106
CoreLocation framework, 107, 291, 456
country property, 456
createAnnotations method, 441
createDestinationModel:

method, 506, 514–515
cross-promotion, 25
curly braces ({ }), 191, 299
currentDestinationIndex method, 515
currentReachabilityStatus

message, 209
Custom B2B Apps, 32

• D •
dangling references, 169
dealloc message, 165–167
Debug area, Workspace window, Xcode 5

All display option, 40, 218, 222
All Output display option, 40, 218, 222
Auto display option, 40, 218, 222
breakpoints, 216–217, 222–223
Console pane

overview, 216, 222–223
purpose of, 35
Scope bar, 40, 218

Debug bar, 216, 225–226
Debug pane, 35
Debugger Output display option,

40, 218, 222
Local display option, 40, 218, 222
overview, 35–36
Scope bar, 35, 40, 216–218
Target Output display option, 40, 218, 222
Variables pane, 35, 40, 216, 218, 222

Debug bar, Xcode 5, 216, 225–226
Debug navigator, Xcode 5, 37, 216–217,

223–224
Debug pane, Workspace window,

Xcode 5, 35
Debugger Output display option, Workspace

window, Xcode 5, 40, 218, 222
debugging

archiving debugging information, 32
breakpoints

in Debug area, 216–217, 222–223
defined, 37, 218
disabling, 219

editing, 219–221
setting, 218, 305
turning on/off, 225

Debug area, 215–218, 222–223
Debug navigator, 216–217, 223–224
examining variables in Source editor,

224–225, 306–308
general discussion, 215
NSUnknownKeyException runtime

error, 392
overview, 32
stepping through program, 225–226
unrecognized selector sent to

instance runtime error, 392–393
declared properties

declaration, 176
dot syntax, 177–178
implementation, 177
initializing objects, 296–297
instance variables versus, 186
methods versus, 176
naming conventions, 105
setting attributes for

accessor method names, 179–180
atomicity, 180
setter semantics and ownership, 179
writability, 179

delegate property, 508
delegation, 154, 175
Delegation design pattern, 92
dequeueReusableCellWith

Identifier: message, 502
design patterns

Block Objects, 92, 256–259
defined, 80
Delegation, 92
Managed Memory Model

general discussion, 92
reference counting, 165–172
virtual memory, 165

Model-View-Controller, 89, 92–95
overview, 91–92
Target-Action

actions, 241–244
controls, 99, 239–241
general discussion, 92, 239
view controllers, 102

Threads and Concurrency, 92

538 iOS App Development For Dummies

Destination class, 291, 295, 300–303
Destination Controller, 353, 368, 489–490,

514, 518
DestinationController class

setting up, 488–494
updating implementation, 496, 500–501

destinationController:didFinish
WithSave: method, 495, 504–506, 508

destinationPreference property,
511–516

destinationsArray property, 500, 503
Detail View controller, 368–372
DetailViewController class,

334, 336–337
device rotation (device orientation changes)

autorotation, 214
in Simulator, 66
tracking, 16, 18
view controllers and, 103
view layout options, 130–131

Devices organizer, Xcode 5, 43, 198
dictionary entries, 283–289
dictionaryWithContentsOfFile:

method, 298
didReceiveMemoryWarning method,

172, 528
disappearing interface, 15–16
dismissModalViewController

Animated: message, 508
display

limitations of Simulator, 70
recommendations for artwork, 17
Retina display

image sets for, 71–72
points versus pixels, 131, 248–249

taking advantage of, 17, 20
Display views, 99
distribution

ad hoc, 32
through App Store, 24, 32
through Custom B2B Apps, 32

documentation
accessing through Organizer window,

198–199
accessing through Quick Help section,

195–197
accessing through Help menu, 199

document-based apps, 105

dot (.) syntax, 177–178
double tap gesture, in Simulator, 67
drag gesture, in Simulator, 68
Dynamic Prototype cells, 122–123, 492, 502

• E •
Edit Breakpoint window, Xcode 5, 220–221
Edit menu, 20
Editor area, Workspace window, Xcode 5

Assistant editor
adding actions, 241–242
Jump bar, 189
opening, 232–234
overview, 184–186
purpose of, 35

configuring, 183–184
Core Data model editor, 38, 184
Interface Builder editor

adding user elements, 113–115
Attributes inspector, 39, 116, 128, 131, 471
Connections inspector, 39, 116, 237–239,

243–244
defined, 184
Identity inspector, 39, 116
opening storyboard files in, 82, 112
overview, 31
purpose of, 37
Size inspector, 39, 116, 130, 137–138, 143

Mapping model editor, 38
Project editor, 37, 50–52, 184

Build Phases tab, 52
Build Rules tab, 52
Build Settings tab, 52
Capabilities tab, 52
defined, 184
General tab, 51–52
Info tab, 52
Project heading, 50
purpose of, 37
Targets heading, 51

Property list editor, 38, 278, 283
Rich text editor, 38
Script editor, 38
Scripting dictionary editor, 38
Source editor

automatic closing braces, 191
automatic formatting, 191

539539 IndexiOS App Development For Dummies

automatic indenting, 191
code completion, 191
code folding, 191–192
compiler warnings, 193
examining variables in, 224–225, 306–308
Fix-it feature, 192–193
general discussion, 190
Live Issues feature, 192
purpose of, 31–32, 37, 184

Standard editor, 34, 184–189
Version editor, 35
Viewer, 38

@end compiler directive, 470
error handling, avoiding mistakes in, 530
event handling

responder objects, 158–159
timeline of touch events, 159

EventPageController class, 399–401,
412–415

Events class, 293, 403–406
EventsController class, 364–367,

397–401, 406–415
external display, in Simulator, 67

• F •
File inspector, Xcode 5, 38, 115, 138, 212
File templates library, Xcode 5, 39, 116
fileURLWithPath method, 264
Filter bar, Workspace window, Xcode 5, 54,

65, 117, 195
Find command, 199–200
Find controller

accessing text, 470–477
adding custom view controller, 466
adding Map view, 469–470
disabling cell highlighting, 477
finding locations, 477–483
making map title the found location,

484–485
setting up in iPad storyboard file, 466–469
setting up in iPhone storyboard file,

485–486
Find navigator, Xcode 5, 37, 200–201
FindController class, 367, 466–469, 472,

477–483, 485
findLocation property, 474, 476

first responders, 110, 158, 471, 475
Fix-it feature, Xcode 5, 31, 192–193, 215
Flexible Space Bar button item, 422–424
flick gesture, in Simulator, 67
Flow controls, 41, 60
flow of control, 90
Focus ribbon, 191–192
forward geocoding, 455–456, 461, 464, 483
Foundation framework, 106
foundLocationCompletionHandler

variable, 481, 483
frame property, 249, 252–253
frameworks. See also location awareness;

user interface
AudioToolbox, 107, 262
AVFoundation, 107, 262
Core Image, 20, 118
CoreData, 105
CoreFoundation, 168, 265
CoreGraphics, 106
CoreLocation, 107, 291, 456
Foundation, 106
functionality supplied by, 90
MapKit, 107

adding, 291
centering map, 431–434
changing map type, 435–436
general discussion, 107, 426–427
MKMapView class, 428–429
network failures, 435
showing current location, 429–431

MediaPlayer, 107
overview, 79
SystemConfiguration, 107, 206–207
UIKit

class names, 118
coordinate system, 248
design patterns, 91
functionality supplied by, 90
general discussion, 79
view controllers, 101–104
views, 96–100
windows, 95

Frameworks folder, 56
free apps, 25
freemium model, 87
functionality, 376

540 iOS App Development For Dummies

• G •
garbage collection, 166
geocodeAddressString: message, 478
geocodeAddressString:completion

Handler: message, 483
geocoding
CLGeocoder class, 456–458, 460–463
CLPlacemark object, 456–457, 461–462
forward, 455–456, 461, 464, 483
general discussion, 455
reverse

canceling requests, 463–464
general discussion, 455
returning information for current

location, 458–461
storing references to CLGeocoder

object, 458
successful requests and errors,

461–462, 530
gestures

fat fingers, 22
gesture recognizers, 330–333, 410
map views, 428
Multi-Touch capability, 16, 19, 22
need for Undo mechanism, 22
recommended minimum button size, 22
in Simulator, 67–69
tracking, 18, 269–272

getter methods, 177, 179–180
Git, 49
goBack: method, 390–391, 393, 414
goToDestination: method, 449–450, 463
goToLocation: method, 447–448,

458–460, 463
GPS

errors, 530
limitations of Simulator, 69
location awareness, 15

Grand Central Dispatch feature, 92, 256
grouped Table views, 311, 499
gyroscope, 16, 18

• H •
.h (interface) header files, 108, 185
handleSwipeGesture: method,

331–332, 355

Help menu, accessing documentation
through, 199

hit-tested views, 331

• I •
IBAction tag, 240–241
iBeacon, 15
IBOutlet tag, 231, 382, 401, 424
iCloud, 26
Identity inspector, Xcode 5, 39, 116
if statement, 297
image resources

adding, 75
asset catalogs

adding images to, 72–73
creating, 73
defined, 70
error messages, 72
idioms, 70
representations, 70
selecting images from, 70–71
sets, 70
types of images, 71–72

immersive apps, 25
implementation (.m) code files, 108, 186
#import compiler directive, 386
inactive state, 157, 160, 529
in-app purchasing, 25
indexPath property, 503
Info.plist file (information property

list file), 52, 56, 155, 264
init method, 297
initialization, defined, 296
initWithContentsOfFile: method,

279, 298
initWithFormat: method, 279
inlandWater property, 457
insertNewObject: method, 147
Inspector pane, Workspace window, Xcode 5,

38–39, 115–116
instance variables

accessing with accessor methods, 181
declared properties versus, 186
examining in Source editor, 224–225
hiding, 108, 181–182
initialization, 296–299
naming conventions, 105

541541 IndexiOS App Development For Dummies

instancetype return type, 297,
299–300

interface (.h) header files, 108, 185
Interface Builder editor, Xcode 5

adding user elements, 113–115
Attributes inspector

purpose of, 39, 116
Text fields, 471
user interface objects, 131
view controllers, 128

Connections inspector
checking status of Target-Action

connections, 243–244
creating outlets, 237–239
purpose of, 39, 116

defined, 184
Identity inspector, 39, 116
opening storyboard files in, 82, 112
overview, 31
purpose of, 37
Size inspector

autosizing, 130, 137–138
purpose of, 39, 116
resizing buttons, 143

Internet access
adding code to check for, 208–209
adding SystemConfiguration

framework, 206–207
checking for, 209–211
downloading Reachability sample,

205–206
general discussion, 16–18

interruption handling
in application lifecycle, 161–163
multitasking, 163
state transitions, 160
types of interruptions, 160

intValue method, 515
iOS 7

advantages of app development with
App Store distribution, 24
audio/video playback, 19
background processing, 20
consistent system environment, 17
developer program, 24
display, 17, 20
free SDK, 23
gesture tracking, 18

inter-application Copy, Cut, and Paste
operations, 20

Internet access, 16–18
keyboards, 16
location awareness, 18
motion tracking, 16, 18
multifinger gestures, 16
multitasking, 20
notifications, 20
orientation tracking, 16, 18
sensor information collection, 16, 18
simplicity, 23
Split views, 16
television/projection system

connection, 17
user information access, 19–20

device limitations
fat fingers, 22
limited battery life, 23
limited memory, 22
multifinger gestures, 22
overview, 21–22
Undo mechanism, 22

general discussion, 4
resolution of content loss issue, 212–213
updated interface, 211–212

iOS Dev Center, 30
iOS Developer Program

Company version, 24
cost of, 24
Enterprise version, 24
Individual version, 24
need for joining, 30
University version, 24

iOS Simulator
general discussion, 32
gestures, 66–69
Hardware menu, 66–67
limitations of, 69–70
resetting device, 68
running apps in

gestures, 67–68
interacting with, 66–67
opening Simulator, 61–62
overview, 66

testing Web views in, 394
uninstalling apps, 68
using Apple ID in, 69

542 iOS App Development For Dummies

iOS Software Development Kit (SDK),
23, 42–43

iPad
introduction of, 3, 13
navigation

Back button functionality, 117
Navigation controllers, 118–120

iPhone
animation, 273
audio, 273
display, 20
finding locations, 485–486
introduction of, 1
Master View controller, 321
outlets and actions, 244–245
Page View controllers, 415–416
Split View controller, 356
user interface, 148–149
view controllers, 368–372

iPhone Software Development Kit (SDK), 2
isKindOfClass: message, 342, 371
ISOcountryCode property, 456
Issue navigator, Xcode 5, 37, 193–195

• J •
Jobs, Steve, 1–2
Jump bar

Assistant editor, 189
basic configuration of, 234
defined, 37, 186
Standard editor, 186–188

• K •
keyboards

displaying/hiding, 471–473, 475
popovers overlapping, 353
in Simulator, 67
special, 16, 21

Keynote app, 20

• L •
launch images, 71–72, 157
Library pane, Workspace window, Xcode 5,

38–39, 116–117

links
disabling, 392
managing in Web views, 388–392

List views, 98
lists, 21, 98
Live Issues feature, Xcode 5, 31, 192, 215
loadRequest message, 388
Local display option, Workspace window,

Xcode 5, 40, 218, 222
local notifications, purpose of, 20
locality property, 456, 463
localization

leading and trailing space, 139
NSLocalizedString macro, 339–340
storyboards, 130–131

location awareness
annotations

creating, 437–441
displaying the map title and, 441–446

destination selection
adding custom view controller, 488–489
adding Modal view, 494–496
adding sections, 499–501
creating Table view, 498–499
displaying cell content, 501–503
displaying Destination table, 516–517
general discussion, 487–488
implementing Table view, 497
saving destination choice, 511–516
setting up in iPad storyboard file,

489–494
setting up in iPhone storyboard file,

517–518
testing, 517–518
user selections, 503–511

finding locations
accessing text, 470–477
adding custom view controller, 466
adding Map view, 469–470
disabling cell highlighting, 477
finding locations, 477–483
making map title the found location,

484–485
setting up in iPad storyboard file, 466–469
setting up in iPhone storyboard file,

485–486
general discussion, 15, 18, 417–418

543543 IndexiOS App Development For Dummies

geocoding
CLGeocoder class, 456–458, 460–463
CLPlacemark object, 456–457, 461–462
forward, 455
general discussion, 455
reverse, 455, 458–464

going to current location, 446–451
iPhone adjustments, 454
latitude and longitude information,

433–434, 455, 462
MapKit framework

adding, 291
centering map, 431–434
changing map type, 435–436
general discussion, 107, 426–427
MKMapView class, 428–429
network failures, 435
showing current location,

429–431
status bar transparency, 451–452
testing, 426–427
view controllers

adding, 420
Flexible Space Bar button item, 422–424
setting up in iPad storyboard file, 420–422
setting up outlet, 424–426

location property, 456
locationInView: message, 270
Log navigator, Xcode 5

purpose of, 37
Session log, 65
Task log, 65
viewing logs, 64

loose coupling, 293–294, 527
low-memory warnings
applicationDidReceive

MemoryWarning: method, 172
didReceiveMemoryWarning

method, 172
general discussion, 528
in Simulator, 67
UIApplicationDidReceive

MemoryWarningNotification:
notification, 173

• M •
.m (implementation) code files, 108, 186
M7 chip, 16
main event loop, 153

main function, 223–224
Managed Memory Model design pattern

general discussion, 92
reference counting, 165–172
virtual memory, 165

Manual mode, Assistant editor, Xcode
5, 189

Map controller, 419–426
MapController class, 419–426
MapKit framework

adding, 291
centering map, 431–434
changing map type, 435–436
general discussion, 107, 426–427
MKMapView class, 428–429
network failures, 435
showing current location, 429–431

Mapping model editor, Xcode 5, 38
Maps app, 15
mapTitle method, 484
mapType: method, 436
mapView property, 470
mapViewDidFailLoadingMap:

method, 435
Master View controller

adding buttons when view controller
is replaced, 350–355

customizing
adjustments for iPhone, 321
background images, 319–320
color, 314–316
general discussion, 309–310
labels, 313–316
overview, 311–312
titles, 213–214, 319–320

examining view of, 108, 111
setting title, 213–214

Master-Detail Application template
frameworks, 52, 56
launch images, 71
Navigation controllers, 119
selecting, 46–47, 50
source elements, 54
Split views, 63–64
timestamps, 144

masterPopoverController property,
337, 352–353, 476, 509

MasterViewController class, 213–214,
309, 333–334, 354

544 iOS App Development For Dummies

media
adding frameworks, 263
adjustments for iPhone, 273
AVAudioPlayer class, 262
creating audio player instance, 265
general discussion, 261–262
importing audio player and system sound

services headers, 263
playback, 19, 266–268
setting up audio player and system sound

services, 263–264
stopping sounds, 268
System Sound Services, 262

Media files library, Xcode 5, 39, 116
memory

garbage collection, 166
limitations of, 22
limitations of Simulator, 69
low-memory warnings
applicationDidReceive
MemoryWarning: method, 172

didReceiveMemoryWarning
method, 172

general discussion, 528
in Simulator, 67
UIApplicationDidReceive
MemoryWarningNotification:
notification, 173

Managed Memory Model design pattern
general discussion, 92
reference counting, 165–172
virtual memory, 165

rules for, 528
selecting strategy for management of, 173–174

methods
declared properties versus, 176
naming conventions, 105

MKAnnotation protocol, 437, 480
MKCoordinateRegion class, 449
MKCoordinateRegion

MakeWithDistance class, 449
MKMapView class, 418, 420, 428–429
MKMapViewDelegate protocol, 425, 429
MKPinAnnotationView class, 445
Modal views

defined, 103
managing, 494–496
presentation options, 490

modality, 20
model objects

adding classes, 290–291
creating, 303–305
implementing interface functionality
init method, 297
Initializing instance variables, 298–299
initializing objects, 296–297
overview, 294–296
returning self variable, 299–300

initializing classes, 300–303
model interface, 292–294
overview, 93, 104–105
property lists

adding to project, 280–290
modifying to store data, 290
overview, 278–280

purpose of, 88, 277
sources of data for, 278

Model-View-Controller (MVC) design
pattern. See also model objects;
view controllers; views

application architecture, 94
class assignment, 293
classes and objects, 95
controller objects, 94
general discussion, 89
model objects, 93
object-oriented programming, 92–93
view objects, 93–94
viewing infrastructure, 108–110

motion tracking, 16, 18
multiple inheritance problem, 174
multipleTouchEnabled property, 271
multitasking, 20, 163
Multi-Touch capability, 16, 19, 22
MVC (Model-View-Controller) design

pattern. See also model objects;
view controllers; views

application architecture, 94
class assignment, 293
classes and objects, 95
controller objects, 94
general discussion, 89
model objects, 93
object-oriented programming, 92–93
view objects, 93–94
viewing infrastructure, 108–110

545545 IndexiOS App Development For Dummies

• N •
name property, 456
naming conventions, 6, 105, 118, 168–169
Navigation bars

adding buttons to, 340–345
displaying title in, 442–445
setting title for, 213–214
view controllers and, 100, 118–119

Navigation controller
iPad navigation, 118–120
using in Detail view, 323–326
using in Master view, 326–330

Navigation views, 100
Navigator area, Workspace window,

Xcode 5
Breakpoint navigator, 37, 219
Debug navigator, 37, 216–217,

223–224
Filter bar, 54, 65, 117, 195
Find navigator, 37, 200–201
Issue navigator, 37, 193–195
Log navigator, 37, 64–65
overview, 35–36, 53–54
Project navigator

AppDelegate files, 56
Filter bar, 54
Frameworks folder, 56
group structure, 54–55
Help menu, 53
hiding, 121
Products folder, 57
purpose of, 37, 54
storyboard files, 56
Supporting Files folder, 56
view controllers, 56

Symbol navigator
purpose of, 37
searching with, 201–202

Test navigator, 37
network availability

adding code to check for, 208–209
adding SystemConfiguration

framework, 206–207
checking for, 209–211
downloading Reachability sample,

205–206
networking, defined, 15

nib (.xib) files
defined, 83, 155, 244
interface design, 31

nonatomic attribute, 180
Notification Center, 173, 473
notifications, 20
NSArray class, 279, 298
NSData class, 279–280
NSDate class, 279
NSDictionary class, 279, 298
NSError parameter, 479
NSIndexPath class, 503
NSLocalizedString macro, 339–340
NSLog statements, 174, 223
NSMutableArray class, 279, 298
NSMutableData class, 279–280
NSMutableDictionary class, 279, 298
NSMutableString class, 279
NSNumber class, 279
NSString class, 169, 279
initWithFormat: method, 169
NSUnknownKeyException runtime

error, 392
NSURLRequest class, 387
NSUserDefaults object, 511, 514, 516, 519
numberOfSectionsInTableView:

method, 498, 500
Numbers app, 20

• O •
object graphs, 83–84, 244
objectForKey: method, 514
Objective-C

case sensitivity, 5
naming conventions, 6

object-oriented programming
loose coupling, 293–294
Model-View-Controller design pattern, 92–93
objects, 83
subclassing, 174

objects, defined, 95
Objects library, Xcode 5, 39, 116
ocean property, 457
OpenGL ES (Open Graphics Library for

Embedded Systems), 69–70
@optional directive, 495–496

546 iOS App Development For Dummies

Organizer window, Xcode 5
accessing documentation through,

198–199
Archives organizer, 43, 198
derived data, 43
Devices organizer, 43, 198
displaying, 43
Projects organizer, 43, 198
purpose of, 42
snapshots, 43

orientation
autorotation, 214
in Simulator, 66
tracking, 16, 18
view controllers and, 103
view layout options, 130–131

OS X Finder, 278
OS X icons, 72
outlets

adding, 232–233
creating

with Connections inspector, 237–239
by dragging, 234–237

defined, 230–231
opening Assistant editor, 232–233
public versus private references, 237
at runtime, 244

ownership
defined, 166
memory, 528
reference counting, 165–169
retain cycle, 170
setter semantics and, 179

• P •
Page View controllers

adding and setting up in storyboard,
399–401

creating and adding classes, 403–404
custom view controllers

adding, 397–398
setting up in storyboard, 398–399
updating, 407–412

data sources and delegates, 406–407
extending model, 401–403
general discussion, 395–397
initializing objects, 404–405

iPhone adjustments, 415–416
updating, 412–415

pageViewController:viewController
AfterViewController: method, 407,
411–412

pageViewController:viewControl
lerBeforeViewController:
method, 407, 411–412

pathForResource: method, 265
PC (process counter), 225
performance tuning, 32
performSelector:withObject:after

Delay: method, 267–268
Photos app, 19
pinch gesture, in Simulator, 68
pixels

defined, 131
points versus, 131, 248–249

plain Table views, 311
play message, 268
plists (property lists)

adding to project, 280–290
defined, 279–280
information property list file, 52, 264
location of, 56
modifying to store data, 290
overview, 278–280
processing of, 52
property list containers, 279–280, 298
property list objects, 279–280, 298
purpose of, 105, 278

plumbing code, 81
.PNG format, 17, 133
points

defined, 131
pixels versus, 131, 248–249

popOverButton property, 476, 509
popovers

defined, 103
Split views, 334–337, 339, 341, 343, 345
toolbars, 346, 350, 352–354

pops, defined, 118
postalCode property, 456
pragma mark statement, 190
Preferences window, Xcode 5, 57–59
preferredContentSize property, 353
prepareForSegue: method, 145, 341

547547 IndexiOS App Development For Dummies

prepareForSegue:sender: method,
126, 350–352, 362, 476, 509–510

prepareToPlay method, 265
process counter (PC), 225
productivity apps, defined, 24
Products folder, 57
project creation

class prefix, 48
general discussion, 31
launching Xcode, 45
naming projects, 47
project options, 47–48
save location, 49
template selection, 46–47

Project editor, Xcode 5
Build Phases tab, 52
Build Rules tab, 52
Build Settings tab, 52
Capabilities tab, 52
defined, 184
General tab

App Icons section, 51
Deployment Info section, 51
Identity section, 51
Launch Images section, 52
Linked Frameworks and Libraries section, 52

Info tab, 52
Project heading, 50
purpose of, 37
Targets heading, 51

Project navigator, Xcode 5
AppDelegate files, 56
Filter bar, 54
Frameworks folder, 56
group structure, 54–55
Help menu, 53
hiding, 121
Products folder, 57
purpose of, 37, 54
storyboard files, 56
Supporting Files folder, 56
view controllers, 56

Projects organizer, Xcode 5, 43, 198
@property keyword, 176
Property list editor, Xcode 5, 38, 278, 283
property lists (plists)

adding to project, 280–290
defined, 279–280

information property list file, 52, 264
location of, 56
modifying to store data, 290
overview, 278–280
processing of, 52
property list containers, 279–280, 298
property list objects, 279–280, 298
purpose of, 105, 278

@protocol directive, 495–496
protocols, defined, 175
Prototype cells, 122–123, 492, 502
push notifications, 20, 156
pushes, defined, 118–119

• Q •
Quick Help pane, Workspace window,

Xcode 5
accessing documentation through,

195–197
purpose of, 38–39, 115

• R •
Reachability sample app

adding code to check for network
availability, 208–209

adding SystemConfiguration
framework, 206–207

checking for network availability,
209–211

downloading, 205–206
reachabilityForInternetConnection

initializer, 209
readonly attribute, 179
readwrite attribute, 179
reference counting

automatic
memory, 528
naming conventions, 168–169
overview, 166–167
retain cycle, 170–172
rules for, 167–168
variable types, 169–170

memory leakage, 166
retain count management, 165–166

region property, 457

548 iOS App Development For Dummies

relationships, view controller, 364, 368,
370, 376–377

release method, 166–167
Reminders app, 417–419
@required directive, 496
responder chain, 110, 158, 271
responder objects

event handling, 158–159
first responders, 110, 158, 471, 475

retain cycle, 170–172, 528
retain method, 166–167
Retina display

image sets for, 71–72
points versus pixels, 131, 248–249

reverse geocoding
canceling requests, 463–464
general discussion, 455
returning information for current location,

458–461
storing references to CLGeocoder

object, 458
successful requests and errors,

461–462, 530
reverseGeocodeLocation:

message, 478
reverseGeocodeLocation:comple

tion Handler: message, 460–461
Rich text editor, Xcode 5, 38
rich text (.rtf) files, 38
RoadTrip app

actions
defined, 230
at runtime, 244
Target-Action design pattern, 241–244

animation
adjustments for iPhone, 273
animating view properties, 251–252
Auto Layout system, 250–251
blocks, 256–259
constraints, 251
coordinate systems, 248
data structures, 250
general discussion, 248
of images “in place”, 272–273
method implementation, 252–256
points versus pixels, 248–249
rotating views, 259–261
view geometry, 248
view position, 249
view size, 249

audio
adding frameworks, 263
adjustments for iPhone, 273
AVAudioPlayer class, 262
creating audio player instance, 265
general discussion, 261–262
importing audio player and system sound

services headers, 263
playing sounds, 266–268
setting up audio player and system sound

services, 263–264
stopping sounds, 268
System Sound Services, 262

clearing Table view selection, 354
debugging, 226
destination selection

adding custom view controller, 488–489
adding Modal view, 494–496
adding sections, 499–501
creating Table view, 498–499
displaying cell content, 501–503
displaying Destination table, 516–517
general discussion, 487–488
implementing Table view, 497
saving destination choice, 511–516
setting up in iPad storyboard file,

489–494
setting up in iPhone storyboard file,

517–518
testing, 517–518
user selections, 503–511

file structure, 54–57
finding locations

accessing text, 470–477
adding custom view controller, 466
adding Map view, 469–470
disabling cell highlighting, 477
finding locations, 477–483
making map title the found location,

484–485
setting up in iPad storyboard file,

466–469
setting up in iPhone storyboard file,

485–486
geocoding
CLGeocoder class, 456–458, 460–463
CLPlacemark object, 456–457, 461–462
reverse, 458–464

gesture recognizers, 330–333
gesture tracking, 269–272

549549 IndexiOS App Development For Dummies

image and sound resources, 74–75
information property list file, 52
location awareness

annotations, 437–446
centering map, 431–434
changing map type, 435–436
going to current location, 446–451
iPhone adjustments, 454
MapKit framework, 426–436
network failures, 435
status bar transparency, 451–452
testing, 426–427
view controllers, 420–426

model
adding model classes, 290–291
creating model object, 303–305
implementing interface functionality,

294–300
initializing classes, 300–303
model interface, 292–294
property lists, 278–290

MVC design pattern
model objects, 93, 104–105
view controllers, 101–103
views, 98, 100

Navigation controller, 323–330
outlets

adding, 232–233
creating, 234–239
defined, 230–231
public versus private references, 237
at runtime, 244

outline of development steps, 3–4
overview, 27
Page View controllers

adding and setting up in storyboard,
399–401

creating and adding classes, 403–404
data sources and delegates, 406–407
extending model, 401–403
initializing objects, 404–405
iPhone adjustments, 415–416
updating, 412–415
view controllers, 397–399, 407–412

project creation
class prefix, 48
launching Xcode, 45

naming projects, 47
project options, 47–48
save location, 49
template selection, 46–47

purpose of, 84
Split View controller

adding buttons to toolbar, 340–343
general discussion, 85, 333–335
removing buttons from toolbar,

343–344
transferring button, 344
UISplitViewController delegate,

335–339
storyboards, 80–82
Target-Action design pattern, 239–244
task list for, 85, 87
toolbar

adding buttons to, 340–343
adding buttons when view controller

is replaced, 350–355
adding to views, 346–349

user interface
adding objects, 131–144
adding view controllers, 121–129
adjustments for iPhone, 148–149
iPad navigation, 117–120
removing unwanted functionality,

144–147
responding to warnings, 148
view layout options, 130–131

view controllers
adding, 359–368
custom, 228–230

viewing Info.plist file, 155
Web views

link management, 388–392
storyboards, 376–378
testing in Simulator, 394
view controller, 379–388, 393–394

Root view controller, 119
rotate method, 255, 259
.rtf (rich text) files, 38
Run button, Workspace window toolbar,

Xcode 5, 41, 60–61
run loop, 153, 159

550 iOS App Development For Dummies

• S •
scalesPageToFit property, 387
Scheme menu, Workspace window toolbar,

Xcode 5, 41, 60
schemes, defined, 40–41, 60–61
SCM (software control management)

systems, 49
Scope bar, Workspace window, Xcode 5, 35,

40, 216–218
Script editor, Xcode 5, 38
Scripting dictionary editor, Xcode 5, 38
SDK (iOS Software Development Kit), 23,

42–43
SDK (iPhone Software Development Kit), 2
search

using Find command, 199–200
using Find navigator, 200–201
using Symbol navigator, 201–202

segues
creating, 113, 124, 126–128, 361–363,

365–366
defined, 126, 361
Embed, 415
modal, 126, 362
Push

creating, 126–128, 327–328
defined, 126, 362
iPhone storyboard, 366, 372, 378

selectedDestination property,
496, 504

selectedSegmentIndex property, 436
@selector compiler directive, 267
selectors, defined, 267
self variable, 297, 299–300, 331
sender parameter, 241
sensor information collection, 16, 18
serializable objects, defined, 279
setBackgroundImage:forState:

message, 273
setInitialRegion method, 431–432, 434
setObject:forKey: method, 516
setter methods

naming conventions, 177, 179–180
semantics and ownership, 179

Settings app, in Simulator, 69
shake gesture, in Simulator, 66
sharedApplication message, 154

shouldStartLoadWithRequest:
method, 391

show message, 209
showsUserLocation method, 429, 462
sibling-level entries, 283
Simulator

general discussion, 32
gestures, 66–69
Hardware menu, 66–67
limitations of, 69–70
resetting device, 68
running apps in

gestures, 67–68
interacting with, 66–67
opening Simulator, 61–62
overview, 66

testing Web views in, 394
uninstalling apps, 68
using Apple ID in, 69

singletons, 153–154, 514
Single-View Application template, 155
Size inspector, Xcode 5

autosizing, 130, 137–138
purpose of, 39, 116
resizing buttons, 143

Smalltalk, 93
social media integration, 15, 525
software control management (SCM)

systems, 49
sound resources, adding, 75
Source editor, Xcode 5

automatic closing braces, 191
automatic formatting, 191
automatic indenting, 191
code completion, 191
code folding, 191–192
compiler warnings, 193
examining variables in, 224–225, 306–308
Fix-it feature, 192–193
general discussion, 190
Live Issues feature, 192
purpose of, 31–32, 37, 184

Split views and Split View controller
adding buttons to toolbar, 340–343
changing to Detail View controller

relationship, 368–372
Detail view, 46, 323–326
general discussion, 16, 63–64, 333–335
localization, 340

551551 IndexiOS App Development For Dummies

Master view, 46, 326–330
Master-Detail Application template, 46–47
removing buttons from toolbar, 343–344
transferring button, 344
UISplitViewController delegate,

335–339
splitViewController property, 352
splitViewController:willHideView

Controller:withBarButtonItem:
for PopoverController: method,
341, 353

splitViewController:willShowView
Controller:invalidatingBarBut
tonItem: method, 343–344, 353

stack, defined, 118
stack frame, 224
Standard editor, Xcode 5, 34, 184–189.

See also Source editor
standardUserDefaults: method, 514
Stanislavski, Constantin, 80
state transitions

general discussion, 154
interruption handling, 160–162
UIApplicationDelegate methods, 529

Static cells, 123–124, 311–312
status bar, 95, 249, 427, 451–454
Stop button, Workspace window toolbar,

Xcode 5, 41, 60–61
storyboard files

adding scenes, 113
adding user elements, 113–115
interface design, 31
loading of by UIApplicationMain

function, 155–156
localization, 130–131
object graphs, 83–84
overview, 56, 80–81
Using Interface Builder to add the user

elements, 113–115
view controllers

adding, 121–128
expanding to see view, 111
initial, 112
segues, 113
setting up custom, 229–230

Web views
setting up in iPad file, 376–377, 380–385
setting up in iPhone file, 377–378, 393–394

strong property, 179
_strong variables, 169–170
subAdministrativeArea property, 456
subclassing, 174
subLocality property, 457
subThoroughfare property, 457, 462–463
subviews, 96–97
superviews, 96–97
Supporting Files folder, 56
swipe gesture, in Simulator, 67
Symbol navigator, Xcode 5

purpose of, 37
searching with, 201–202

SystemConfiguration framework, 107,
206–207

• T •
Tab bar, Workspace window, Xcode 5

displaying/hiding, 41–42
overview, 41
reordering tabs, 41

Tab bars, 100, 104
Table views

adding sections, 499–501
clearing selection, 354
creating, 498–499
customizing

adjustments for iPhone, 321
background images, 319–320
color, 314–316
labels, 313–316, 361
overview, 311–312
setting number of rows and sections with

headers, 312–313
titles, 319–320

data sources and delegates, 311, 498
displaying cell content, 501–503
general discussion, 98
grouped, 311
implementing, 497
plain, 311
user selections, 503–511

tableHeaderView property, 499
tableView:cellForRowAtIndexPath:

method, 498, 501
tableView:didSelectRowAtIndex

Path: method, 498, 504

552 iOS App Development For Dummies

tableView:numberOfRowsInSection:
method, 498, 500

tableView:titleForHeaderInSec
tion: method, 498

tap gesture, in Simulator, 67
Target Output display option, Workspace

window, Xcode 5, 40, 218, 222
Target-Action design pattern

actions, 241–244
controls, 99, 239–241
general discussion, 92, 239
view controllers, 102

telephony, limitations of Simulator, 70
television/projection system

connection, 17
templates. See also design patterns

asset catalogs, 72–73
class creation, 292
File templates library, 39, 116
initial view controller, 155
Master-Detail Application

frameworks, 52, 56
launch images, 71
Navigation controllers, 119
selecting, 46–47, 50
source elements, 54
Split views, 63–64
timestamps, 144

Single-View Application, 250
Test navigator, Xcode 5, 37
Text views, 100
textFieldShouldReturn: method,

472–475, 508
thoroughfare property, 457, 462–463
threads, 223–224
Threads and Concurrency design

pattern, 92
timestamps, 144
tint color, setting, 212–213
toolbar, Workspace window, Xcode 5

Activity viewer, 41, 60–61, 65, 192
displaying/hiding, 42
Flow controls

Run button, 41, 60–61
Scheme menu, 41, 60
Stop button, 41, 60–61

overview, 40–41
Workspace Configuration section, 41, 60–61

toolbars
adding buttons to, 340–343
adding buttons when view controller is

replaced, 350–355
adding to views, 346–349, 382
removing, 355
removing buttons from, 343–344

topViewController property, 372
touch and hold gesture, in Simulator, 67
touchesBegan:withEvent: message,

269–271
touchesCancelled:withEvent:

message, 269
touchesEnded:withEvent:

message, 269
touchesMoved:withEvent: message,

269, 271
Tracking (Automatic) mode, Assistant editor,

Xcode 5, 189
transform property, 252
two-finger tap gesture, in Simulator, 67
typedef property, 485

• U •
UIActivityIndicatorView class, 99
UIAlertView class, 516
UIApplication class, 105–106, 153–154
UIApplicationDelegate protocol,

154, 529
UIApplicationDidReceive

MemoryWarningNotification:
notification, 173, 528

UIApplicationExitsOnSuspend
key, 163

UIApplicationMain function
application:didFinishLaunching

With Options: message, 156–158
application-wide control, 153–154
storyboard loading, 155–156

UIBarButtonItem class, 342, 443
UIButton object, 98
UIControl superclass, 99
UIDocument class, 105
UIEvent class, 158–159
UIGestureRecognizer class, 330–331

553553 IndexiOS App Development For Dummies

UIImagePickerController class, 104
UIImageView class, 99, 148
UIKeyboardWillShowNotification

notification, 473
UIKit framework. See also user interface

class names, 118
coordinate system, 248
design patterns, 91
functionality supplied by, 90
general discussion, 79
view controllers, 101–104
views, 96–100
windows, 95

UILabel class, 99
UILongPressGestureRecognizer

class, 331
UINavigationBar class, 100
UINavigationController class,

104, 118, 376, 378
UIPageViewController class

data source methods, 407, 412
implementing functionality of, 395–396, 406
purpose of, 104, 395, 397, 416

UIPageViewControllerDataSource
protocol, 407

UIPageViewControllerDelegate
protocol, 407

UIPageViewControllerNavigation
OrientationVertical class, 409

UIPageViewController
TransitionStylePageCurl
class, 409

UIPanGestureRecognizer class, 331
UIPinchGestureRecognizer class, 331
UIProgressView class, 99
UIResponder class, 154, 158
UIRotationGestureRecognizer

class, 331
UIScrollView class, 98
UISegmentedControl class, 436
UISlider object, 98
UISplitViewController class, 104, 333,

335–339, 376
UISplitViewControllerDelegate

protocol, 334–339, 364
UISwipeGestureRecognizer class,

330–331

UITabBar class, 100
UITabBarController class, 104
UITableView class, 98
UITableViewCell class, 497–498
UITableViewCellStyleDefault

class, 502
UITableViewCellStyleSubtitle

class, 503
UITableViewCellStyleValue1

class, 502
UITableViewCellStyleValue2

class, 503
UITableViewController class, 104, 144,

498–499
UITableViewDataSource protocol,

496, 498
UITableViewDelegate protocol, 496, 498
UITapGestureRecognizer class, 331
UITextField object, 470–471
UITextFieldDelegate protocol, 472
UITextView class, 100
UIToolbar class, 98
UITouch class, 158–159
UIView class, 97–98
UIViewController class, 104, 148,

214, 379
UIWebView class, 100, 377–378, 387,

399, 416
UIWebViewDelegate protocol, 389
UIWindow class, 95, 158, 473
Undo mechanism, need for, 22
universal apps

defined, 3
project settings to create, 48
storyboard files, 56, 103, 112

unrecognized selector sent to
instance runtime error, 392–393

_unretained variables, 170
_unsafe variables, 170
user information access, 19–20
user interface

adding objects
Auto Layout system, 136–141
background color, 131–132
background images, 132–134
buttons, 141–144
images, 135–136
viewing properties, 132

554 iOS App Development For Dummies

adding view controllers
adding identifiers, 129
preparing canvas for, 121
process for, 122–128

adjustments for iPhone, 148–149
application architecture, 88–89
design patterns, overview of, 91–92
designing, 524
disappearing, 15–16
frameworks
AudioToolbox, 107
AVFoundation, 107
CoreGraphics, 106
CoreLocation, 107
Foundation, 106
functionality supplied by, 90
MapKit, 107
MediaPlayer, 107
purpose of, 90
SystemConfiguration, 107

iPad navigation
Back button functionality, 117
Navigation controllers, 118–120

Model-View-Controller design pattern
application architecture, 94
classes and objects, 95
model objects, 93, 104–105
object-oriented programming, 92–93
view controllers, 94, 101–104
viewing infrastructure, 107–110
views, 93–94, 96, 97–101

overview, 79–80
quick initialization, 157
removing unwanted functionality,

144–147
responding to warnings, 148
storyboards

accessing, 81
adding user elements, 113–115
object graphs, 83–84
opening, 82
overview, 31, 80–81
view controllers, 111–113

UIApplication class, 105–106
Utility area (Workspace window)

Inspector pane, 38–39, 115–116
Library pane, 38–39, 116–117
Quick Help pane, 38–39, 115, 195–197

view layout options, 130–131
windows, 95, 100

utility apps, defined, 25
Utility area, Workspace window, Xcode 5

Attributes inspector, Xcode 5
purpose of, 39, 116
Text fields, 471
user interface objects, 131
view controllers, 128

Code snippets library, 39
Connections inspector, Xcode 5

checking status of Target-Action
connections, 243–244

creating outlets, 237–239
purpose of, 39, 116

File inspector, 38, 115, 138, 212
File templates library, 39
Identity inspector, 39, 116
Inspector pane, 38–39, 115–116
Library pane, 38–39, 116–117
Media library, 39
Objects library, 39
overview, 36, 113–114
Quick Help pane

accessing documentation through,
195–197

purpose of, 38–39, 115
Size inspector

autosizing, 130, 137–138
purpose of, 39, 116
resizing buttons, 143

• V •
value-changed events, 436
Variables pane, Workspace window, Xcode

5, 35, 40, 216, 218, 222
Version editor, Xcode 5, 35
view controllers. See also names of specific

view controllers
adding, 359–368
adding identifiers, 129, 359–360, 365
adding toolbar, 359–360
classes, 104
expanding to see view, 111
finding classes associated with,

108–109
initial, 112, 244
multiple functions of, 103–104

user interface (continued)

555555 IndexiOS App Development For Dummies

onscreen control response, 102–103
overview, 94
preparing canvas for adding, 121
process for adding, 122–128
purpose of, 83, 89, 101–102

viewControllerAtIndex:story
board: method, 410–413

viewControllers property, 333
viewDidLoad method

audio, 265
custom view controllers, 229
destination selection, 499, 507, 512–513
finding locations, 473, 478–479
gesture recognizers, 330
location awareness, 432, 442, 446–447
map views, 429
Master View controller title, 213–214
overview, 530
Page View controllers, 408–409, 413–414
retain cycle, 170
Split View controllers, 338, 344–345
toolbars, 353
user interface, 147
view controller life cycle, 164
Web views, 386

viewDidUnload method, 528
Viewer, Workspace window, Xcode 5, 38
views

Action sheets, 100
Alert views, 95, 100–101
animation

geometry, 248
position, 249
properties, 251–252
rotating, 259–261
size, 249

Annotation views, 437, 445
changing background color, 131–132
Container views, 98, 118, 251
Content views, 96, 101
Controls, 99
Display views, 99
fixing misplaced, 148
function of, 96
hierarchy of, 96–97
hit-tested views, 331
layout options, 130–131

List views, 98
Modal views

defined, 103
managing, 494–496
presentation options, 490

Navigation views, 100
overview, 93–94
purpose of, 81, 88
scrolling, 473
Split views

adding buttons to toolbar, 340–343
changing to Detail View controller

relationship, 368–372
Detail view, 46, 323–326
general discussion, 16, 63–64, 333–335
localization, 340
Master view, 46, 326–330
Master-Detail Application template,

46–47
removing buttons from toolbar, 343–344
transferring button, 344
UISplitViewController delegate,

335–339
subviews, 96–97
superviews, 96–97
Table views

adding sections, 499–501
clearing selection, 354
creating, 498–499
customizing, 311–316, 319–320, 321, 361
data sources and delegates, 311, 498
displaying cell content, 501–503
general discussion, 98
grouped, 311
implementing, 497
plain, 311
user selections, 503–511

Text views, 100
Web views

general discussion, 100, 375
link management, 388–392
storyboards, 376–378
testing in iPhone Simulator, 394
view controller, 379–388, 393–394

viewWillAppear: message, 164, 530
viewWillDisappear: method, 464
virtual memory, 165

556 iOS App Development For Dummies

• W •
weak property, 179
_weak variables, 170, 172
Web views

general discussion, 100, 375
link management, 388–392
storyboards

iPad, 376–377
iPhone, 377–378

testing in iPhone Simulator, 394
view controller

adding, 379
implementing, 385–388
setting up in iPad storyboard file, 380–385
setting up in iPhone storyboard file,

393–394
websites for further information

Apple iOS Developer site, 24
author’s, 520
Cheat Sheet (companion to book), 10
iOS Dev Center, 30, 152, 531
iOS Developer Library, 107
online articles (companion to book), 10
sample code (companion to book), 10
updates to book, 10
Xcode 5 developer registration, 30

webViewDidFinishLoad: method, 389,
391, 414–415

webView:shouldStartLoadWith
Request: navigationType:
method, 389–390, 393, 414

windows
defined, 100
UIWindow class, 95

wireframe sequence sketches, 14
Workspace Configuration section, Workspace

window toolbar, Xcode 5, 41, 60–61
Workspace window, Xcode 5. See also

Interface Builder editor
Debug area

All display option, 40, 218, 222
All Output display option, 40, 218, 222
Auto display option, 40, 218, 222
breakpoints, 216–217, 222–223
Console pane, 35, 40, 216, 218, 222–223
Debug bar, 216, 225–226
Debug pane, 35

Debugger Output display option,
40, 218, 222

Local display option, 40, 218, 222
overview, 35–36
Scope bar, 35, 40, 216–218
Target Output display option,

40, 218, 222
Variables pane, 35, 40, 216, 218, 222

Editor area
Assistant editor, 35, 184–186, 189,

232–234, 241–242
configuring, 183–184
Core Data model editor, 38, 184
Mapping model editor, 38
Project editor, 37, 50–52, 184
Property list editor, 38, 278, 283
Rich text editor, 38
Script editor, 38
Scripting dictionary editor, 38
Source editor, 31–32, 37, 184, 190–193,

224–225, 306–308
Standard editor, 34, 184–189
Version editor, 35
Viewer, 38

Navigator area
Breakpoint navigator, 37, 219
Debug navigator, 37, 216–217, 223–224
Filter bar, 54, 65, 117, 195
Find navigator, 37, 200–201
Issue navigator, 37, 193–195
Log navigator, 37, 64–65
overview, 35–36, 53–54
Project navigator, 37, 53–57, 121
Symbol navigator, 37, 201–202
Test navigator, 37

overview, 33–34
Tab bar

displaying/hiding, 41–42
overview, 41
reordering tabs, 41

toolbar
Activity viewer, 41, 60–61, 65, 192
displaying/hiding, 42
Flow controls, 41, 60–61
overview, 40–41
Run button, 41, 60–61
Scheme menu, 41, 60
Stop button, 41, 60–61
Workspace Configuration section,

41, 60–61

557557 IndexiOS App Development For Dummies

Utility area
Attributes inspector, 39, 116, 128,

131, 471
Code snippets library, 39
Connections inspector, 39, 116, 237–239,

243–244
File inspector, 38, 115, 138, 212
File templates library, 39
Identity inspector, 39, 116
Inspector pane, 38–39, 115–116
Library pane, 38–39, 116–117
Media library, 39
Objects library, 39
overview, 36, 113–114
Quick Help pane, 38–39, 115, 195–197
Size inspector, 39, 116, 130, 137–138, 143

View selector, 113–114
wrappers, defined, 279
writeToFile: method, 279
writeToFile:atomically:

method, 298

• X •
Xcode 5

app performance and, 14
application development process

building apps, 61
coding, 31–32
debugging, 32
distribution, 32
performance tuning, 32
project creation, 31, 45–49
running apps, 32, 61–63
running in Simulator, 66–70
SDK support for, 29–30
storyboarding for interface, 31

context-based help, 53
defined, 29
downloading, 30
Fix-it feature, 31
general discussion, 4
Interface Builder editor

adding user elements, 113–115
Attributes inspector, 39, 116, 128,

131, 471
Connections inspector, 39, 116, 237–239,

243–244

defined, 184
Identity inspector, 39, 116
opening storyboard files in, 82, 112
overview, 31
purpose of, 37
Size inspector, 39, 116, 130, 137–138, 143

Live Issues feature, 31
Organizer window

accessing documentation through,
198–199

Archives organizer, 43, 198
derived data, 43
Devices organizer, 43, 198
displaying, 43
Projects organizer, 43, 198
purpose of, 42
snapshots, 43

Preferences window, 57–59
registering as developer, 30
Source editor, 31–32
updating, 57–59
Workspace window

Activity viewer, 41, 60–61, 65, 192
All display option, 40, 218, 222
All Output display option, 40, 218, 222
Assistant editor, 35, 184–186, 189,

232–234, 241–242
Attributes inspector, 39, 116, 128, 131, 471
Auto display option, 40, 218, 222
Breakpoint navigator, 37, 219
Code snippets library, 39
Connections inspector, 39, 116, 237–239,

243–244
Console pane, 35, 40, 216, 218, 222–223
Core Data model editor, 38, 184
Debug bar, 216, 225–226
Debug navigator, 37, 216–217, 223–224
Debug pane, 35
Debugger Output display option, 40,

218, 222
File inspector, 38, 115, 138, 212
File templates library, 39
Filter bar, 54, 65, 117, 195
Find navigator, 37, 200–201
Flow controls, 41, 60–61
Identity inspector, 39, 116

558 iOS App Development For Dummies

Inspector pane, 38–39, 115–116
Issue navigator, 37, 193–195
Library pane, 38–39, 116–117
Local display option, 40, 218, 222
Log navigator, 37, 64–65
Mapping model editor, 38
Media library, 39
Objects library, 39
overview, 33–34, 40–41
Project editor, 37, 50–52, 184
Project navigator, 37, 53–57, 121
Property list editor, 38, 278, 283
Quick Help pane, 38–39, 115, 195–197
Rich text editor, 38
Run button, 41, 60–61
Scheme menu, 41, 60
Scope bar, 35, 40, 216–218
Script editor, 38
Scripting dictionary editor, 38

Size inspector, 39, 116, 130, 137–138, 143
Source editor, 31–32, 37, 184, 190–193,

224–225, 306–308
Standard editor, 34, 184–189
Stop button, 41, 60–61
Symbol navigator, 37, 201–202
Tab bar, 41–42
Target Output display option,

40, 218, 222
Test navigator, 37
toolbar, 40–42, 60–61, 65, 192
Variables pane, 35, 40, 216, 218, 222
Version editor, 35
View selector, 113–114
Viewer, 38
Workspace Configuration section,

41, 60–61
.xib (nib) files

defined, 83, 155, 244
interface design, 31

Xcode 5 (continued)

About the Author
Jesse Feiler has designed and managed software for companies and organiza-
tions such as the Federal Reserve Bank of New York, Young & Rubicam, Yale
University Press, and a wide variety of small businesses and non-profits. He
is the creator of Minutes Machine for iPad, an app for managing meetings
and minutes (it is available at the App Store). Minutes Machine combines
technology with Jesse’s real-life experience with organizations such as the
Mid-Hudson Library System, the Philmont Village Library, the Plattsburgh
Planning Board, Spectra Arts, the Philmont Main Street Committee, the
Philmont Comprehensive Plan Board, and HB Studio. He received the Velma
K. Moore award for exemplary service and dedication to libraries from the
New York State Association of Library Boards.

Jesse is also software architect for the PlattInfo network of walk-up touchscreen
kiosks in downtown Plattsburgh, N.Y. In addition to Minutes Machine, Jesse
developed the Saranac River Trail app for iPhone, iPad, and iPod touch. It is
available as a free download from the App Store.

He has written widely on new technologies and on Apple’s OS X (Mac) and
iOS (iPad, iPhone, and iPod touch) operating systems. His database expertise
covers products such as FileMaker, MySQL, DB2, and Apple’s Core Data (which
is used in Minutes Machine). Jesse lives in Plattsburgh. He can be reached at
his website, www.northcountryconsulting.com.

Author’s Acknowledgments
Thanks to my acquisitions editor Kyle Looper, my project editor Linda
Morris, and my technical editor Aaron Crabtree.

As always, Carole Jelen at Waterside Productions has been a stalwart supporter
and guide through the world of publishers and publishing.

http://www.northcountryconsulting.com

Publisher’s Acknowledgments

Acquisitions Editor: Kyle Looper

Project Editor: Linda Morris

Copy Editor: Linda Morris

Technical Editor: Aaron Crabtree

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Phil Midkiff

Cover Image: ©iStockphoto.com/boris64
©iStockphoto.com/chris_lemmens
©iStockphoto.com/AndrewJohnson
©iStockphoto.com/Samarskaya

http://iStockphoto.com/boris64
http://iStockphoto.com/chris_lemmens
http://iStockphoto.com/AndrewJohnson
http://iStockphoto.com/Samarskaya

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

www.facebook.com/fordummies
www.twitter.com/fordummies

	Table of Contents
	Introduction
	A Bit of History
	The Plan for This Book
	iOS and Xcode Game Changers
	About This Book
	Conventions Used in This Book
	Icons Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started
	Chapter 1: What Makes a Great iOS App
	Figuring Out What Makes a Great iOS App
	Using the iOS Platform to the Fullest
	Embracing Device Limitations
	Why Develop iOS Apps?
	Developing with Apple’s Expectations in Mind
	Thinking About You, Apps, and Money
	Enter the Cloud
	Developing an App the Right Way Using the Example App in This Book
	What’s Next

	Chapter 2: Getting to Know the SDK
	Developing Using the SDK
	Using Xcode to Develop an App
	The Workspace Window

	Chapter 3: The Nuts and Bolts of an Xcode Project
	Creating Your Project
	Exploring Your Project
	Setting Your Xcode Preferences
	Building and Running Your Application
	Running in the Simulator
	Using Asset Catalogs
	Adding the Image and Sound Resources and an App Icon

	Part II: Building RoadTrip
	Chapter 4: Storyboards and the User Experience
	Introducing the Storyboard
	Defining What You Want an App to Do: The RoadTrip App
	Creating the Application Architecture
	What You Add Where
	Using Frameworks
	Using Design Patterns
	Working with Windows and Views
	View Controllers — the Main Storyboard Players
	What About the Model?
	It’s Not That Neat
	Taking a Look at Other Frameworks
	Understanding the MVC in the Project

	Chapter 5: Creating the RoadTrip User Interface
	Creating Your User Interface in the iPad Storyboard
	Working within the Utility Area
	Understanding iPad Navigation
	Adding a New View Controller
	View Layout
	Adding the User Interface Objects
	Massaging the Template Code
	Getting Rid of Warnings
	Creating the iPhone User Interface

	Chapter 6: The Runtime, Managing Memory, and Using Properties
	Stepping Through the App Life Cycle
	Working within the Managed Memory Model Design Pattern
	Automatic Reference Counting (ARC)
	Observing Low-Memory Warnings
	Customizing the Behavior of Framework Classes
	Understanding Declared Properties
	Hiding Instance Variables

	Chapter 7: Working with the Source Editor
	Navigating in the Xcode Source Editors
	Using the Xcode Source Editor
	Accessing Documentation
	Finding and Searching in Your Project
	You’re Finally Ready to Write Code!

	Part III: Getting Your Feet Wet: Basic Functionality
	Chapter 8: It’s (Finally) Time to Code
	Checking for Network Availability
	Exploring the Changes in iOS 7
	Setting the Master View Controller Title
	Understanding Autorotation
	Writing Bug-Free Code

	Chapter 9: Adding Outlets and Actions to Your RoadTrip Code
	Using Custom View Controllers
	Understanding Outlets
	Adding Outlets
	Working with the Target-Action Design Pattern
	How Outlets and Actions Work

	Chapter 10: Adding Animation and Sound to Your App
	Understanding iOS Animation
	Coordinating Auto Layout, Frames, and Constraints
	Animating a View
	Finally, More Code
	Implementing the testDrive Method
	Understanding Block Objects
	Rotating the Object
	Working with Audio
	Tracking Touches
	Animating a Series of Images “In Place”
	iPhone versus iPad

	Part IV: The Model and the App Structure
	Chapter 11: The Trip Model
	What the Model Contains
	Adding the Model Data
	Adding the First Two Model Classes
	Understanding the Trip Interface
	Implementing the Trip Class
	Initializing the Destination Class
	Creating the Trip Object
	More Debugger Stuff

	Chapter 12: Implementing the Master View Controller
	Setting Up a Custom View Controller for the iPad
	Adding a Background Image and Title
	Updating the iPhone Storyboard File

	Chapter 13: Working with Split View Controllers and the Master View
	The Problem with Using a Navigation Controller in Detail View
	Using a Navigation Controller in the Master View
	Adding a Gesture Recognizer
	The Split View Controller
	Adding the Toolbar
	A Few More Tweaks to the MasterViewController
	And (a Little Extra) One More Thing
	Don’t Forget the iPhone

	Chapter 14: Finishing the Basic App Structure
	Extending the iPad Storyboard to Add More Functionality to Your App
	Changing the Split View Controller to a Detail View Controller Relationship
	Repeat for iPhone

	Part V: Adding the App Content
	Chapter 15: How’s the Weather? Working with Web Views
	The Plan
	Setting Up the Weather Controller
	The Weather Controller
	More Opportunities to Use the Debugger
	Repeat for the iPhone Storyboard

	Chapter 16: Displaying Events Using a Page View Controller
	The Plan
	Setting Up the EventsController
	Extending the Trip Model
	Adding the Events Class
	The EventsController and Its PageViewController
	Adding Events Support to the iPhone Storyboard

	Chapter 17: Finding Your Way
	The Plan
	Setting Up the Map Controller
	Putting MapKit through Its Paces
	Changing the Map Type
	Adding Annotations
	Going to the Current Location
	Fixing the Status Bar
	Update the iPhone Storyboard

	Chapter 18: Geocoding
	Understanding Geocoding on the iPad
	Reverse Geocoding

	Chapter 19: Finding a Location
	Setting Up the Find Controller
	Implementing the Find Controller
	Finding the Location
	Making the Map Title the Found Location
	Adding the FindController to the iPhone Storyboard

	Chapter 20: Selecting a Destination
	The Plan
	Setting Up the DestinationController for the iPad Storyboard
	Adding a Modal View
	Implementing a Table View
	Creating the Table View
	Saving the Destination Choice and Selecting a Destination
	Adding Destination Support to the iPhone Storyboard
	A Word about Adding Settings
	What’s Next?

	Part VI: The Part of Tens
	Chapter 21: Ten Ways to Be Successful with Apps
	Make a Million Dollars in a Week
	Build a Portfolio
	Build App Icons
	Design User Interfaces
	Build Back Ends
	Socialize with Apps
	Talk About Apps with People Who Want Them
	Promote Apps
	Provide Support to Users
	Fix Bugs

	Chapter 22: Ten Ways to Be a Happy Developer
	Keep Things Loosely Coupled
	Remember Memory
	Don’t Reinvent the Wheel
	Understand State Transitions
	Do the Right Thing at the Right Time
	Avoid Mistakes in Error Handling
	Use Storyboards
	Remember the User
	Keep in Mind That the Software Isn’t Finished Until the Last User Is Dead
	Keep It Fun

	Index
	About the Author

