. 1Tm
Android

Programming

Tutorials

Android Programming Tutorials

by Mark L. Murphy

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Android Programming Tutorials
by Mark L. Murphy

Copyright © 2010 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Jul 2010: Version 2.9 ISBN: 978-0-9816780-3-0

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Table of Contents

Welcome to the Warescription!...........ccovvueeivivuueiiiinnneeiiiciiniiiininnnnnne xvii
Preface.....co ittt xix
Welcome to the BOOK!........cceiiriiiiiiirieieeceeeesee et Xix
PrereqUISIteS.cccueeiirierieeieeteeteee ettt ettt st sttt s Xix
Using the Tutorials.........coeverierieiininineeeneeeeeeeene e XX
WareSCIIPHION. ..ceeueieiierieeteeteete ettt ettt st ettt s e st e st e s mreesemeeeenns xxi
WHhat's INEW....ceiiiiiiiieieteee ettt ettt et xxii
About the "Further Reading" Sections...........ccccvvevevieveevenenenenienieenee. xxii
Errata and Book Bug Bounty.........ccccecvevrvcnenencnennineneeeneeceee xxiii
Source Code LICENSE.........coeruiruerieririrenienieieeeesesiesee sttt XXiv
Creative Commons and the Four-to-Free (42F) Guarantee................. XXiv
Lifecycle of a CommonsWare BooK..........ccceeerevnenenenieneenenrieneenienne XXV
Roster of TULOTIalS......ccceererierieriiinereeere et XXVi
Your First ANAToid APP...cccceeeeerrrnvunnnnneneeeeetieeeeieeiinnniseeeennsssssssssesnsnsesses 1
Step-By-Step INStrUCtIONS.cccveeiieiiiiieieetee ettt 1
Step #1: Choose a Place For Your Applications........c.ccceeveercueeneennennne. 1

Step #2: Check Your Java Environment..........cocceeevererneenenenenneenennne 2

Step #3: Download and Install the Android SDK..........cccccecveriernnns 3

Step #4: Generate the Application Files.......cc.ccocevveevinenenneneenncnnneen. 5

iii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Step #5: Examine and Modify the Layout File........cccocccevirieninnnnnee. 5

Step #6: Examine the Activity Java SOUTCe.........cccvvereereenersieneenenne 6
Step #7: InStall ANt....cc.ooiriiiiiiiiie e 7
Step #8: Compile the Application........ccceceoevueerieeneeennereerneeeeeneene 7
Step #9: Configure and Start Your Emulator.........c.cccecevenennnneennens 8
Step #10: Install the Application in Your Emulator.......c..ccccceeueneen.e. 10
Step #11: Run the Application in Your Emulator..........ccceceveecvennennee. 1
EXETQ CTOAIL..cueventeieieeeieeiertetete ettt ettt ettt 13
Further Reading........ccccoeveeererinienieiinncetcee et 14
DN 510 5] U 203 TN 15
Step-By-Step INStIrUCtiONS.oocuiiiiiieeieeieeie et 15
Step #1: Generate the Application Skeleton...........cceceeevevererrieceneenns 15
Step #2: Modify the Layout.......ccceeveeieieerenienieineseseneeeeeee e 16
Step #3: Compile and Install the Application........ccceceevveverceeciennneenns 17
Step #4: Run the Application in the Emulator.........cccccoceeveeviernnennen. 18
Step #5: Create @ Model Class.......ccoceveevierereenieneneeierieseeeeeesee e 18
Step #6: Save the Form to the Model..........ccoouevievirinenenenieieienne 19
EXEIa CTedit..cueeuiieieieieiieieneieteeeeei ettt ettt se e st ne e 20
Further Reading........cocuevevueiririniinieietetreseet ettt 21
N0 2= 10 T (3 G 03 0 DA ON 23
Step-By-Step INStIUCHIONS.eoviirieriieieeiente ettt 23
Step #1: Switch to a TableLayout.......cccececerererienieniriereneniereeeeeeenee 23
Step #2: Add @ RadioGroup.......ccceeeveevievirenenienieieeeeeeeetesee e 25
Step #3: Update the Model.........cccooevenenirnininiineecreeeeee, 27
Step #4: Save the Type to the Model.........cccocevevieiiiinnininiinieene 28
EXETa CTOAIL. ueuieuieieeiieeeeiesteeietesteste et e e ste e e saetesse e e esessesseessessaesseesnseanns 30
Further Reading........coeeuevereruiriinieieinreseeeeeet et 31
iv

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding @ LiSt....uuueeiiiiiiiinieeeiiiiiiieeecciniineeeesssssssseeeessssssssssssssssssssssnes 33

Step-By-Step INStIUCHIONS.eivveriiieiieieeieeeeeteeeeee et 33
Step #1: Hold a List of Restaurants.........c.cceceeevevereereeneseneeseeseeseennns 33
Step #2: Save AddS 0 LiStu....cccivererieririrerierieieeeereseseeteeee e 34
Step #3: Implement tOSEring().......cceereruerteenirienirenreeee e 35
Step #4: Add a ListView Widget........ccecverenienirninenenenieneeenenesieneene 35
Step #5: Build and Attach the Adapter........cocceccevevveecieneneeceerieenen. 37

0 = Y < L TSRS 39

Further Reading........ccceoeeeeriinienieirinincceeeeeeeteee e 40

Making Our List Be Fancy........cccovviivueeiiiiiiiiineciiiniiiniinincnnnnccccccceeeeeees 41

Step-By-Step INStruCtionsS.cc.eeviuiiiiiiiiieitteeee et 41
Step #1: Create a Stub Custom Adapter........cecceeceveeceenenerieeneneneenne 42
Step #2: Design Our ROW.......cooiiiiiiiiiiiieteeeeeeeeeeeeee e 42
Step #3: Override getView(): The Simple Way.......ccocoveevererreennene 44
Step #4: Create a RestaurantHolder.........cccocevveivinenviineniinieenienne. 45
Step #5: Recycle Rows via RestaurantHolder..........cccoceevvernennnnnne 46

0 B 8 =Y | PR 49

Further Reading.........ceeeveriiiiininiiiienesteeeseeteesee et 49

Splitting the Tab.........ccoviiiiiiiiiiiiiiiiiiinccec e 51

Step-By-Step INSEIUCHIONS. ... ceiviiiieiiieieeieee ettt 51
Step #1: Rework the Layout........ccceueeeniereneineeniceneeneeereeeesenenee 51
Step #2: Wire In the Tabs........cccocvivenenienriereneereeeeeeeeeese e 53
Step #3: Get Control On List EvVents.......cccceceveeenenenieneenenseencennenne 55
Step #4: Update Our Restaurant Form On Clicks.......ccccecererruennnnnee. 55
Step #5: Switch Tabs On ClickS......cccoevievirerienienieinnereeeceeeene 56

EXEIA CTOIt. cueveeeeeerreieieerieeete ettt 60

Further Reading........coceoueeeerienienieireneeeece ettt 60

v

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and MeSSQZES.......uueeiiriiiiiinreeiiiiiiiiinreeeiniininreeeesssssssssssssssssssssses 61

Step-By-Step INStIUCHIONS.cocverieeeiieieeieeeeteeeeee ettt 61
Step #1: Add Notes to the Restaurant.........c.cceceeveeeercieeneeeceereeennnnn. 61

Step #2: Add Notes to the Detail Form........ccoceeeevrevnervensecncnnenne. 62

Step #3: Define the Option MenU.........ccceeveeeevienenercieneneeeeseseeeens 64

Step #4: Show the Notes as @ TOaSt.......ccecererueriererienenierierieeieneeiene 65

EXETA CTOAIEc.ueiiuiiitieeiieeiiecieeiteee ettt e e te e e e e e e e et e e aesreesraeeaaesane e nseeennns 71
Further Reading........coceevevueieininiiniieieeeee et 71
Sitting in the Background............cccovviivuneiiiiiiiiinneeiiinniiiiiiiiiininiinne, 73
Step-By-Step INStIUCHIONS.evviiriiriieierieree e 73
Step #1: Initialize the Progress Bar........ccocoovievevernienenenieieneeeeee 73

Step #2: Create the Work Method..........ccoevvevevirviinenieieieieeee 74

Step #3: Fork the Thread from the Menu........cccccocevceivenenvenneneennnen. 75

Step #4: Manage the Progress Bar.........cccccecevenenennienencncnienencnnnn 77

0 B 8 =Y | TSRS 79
Further Reading.........ceoeverieiiininieiiieseeteeeeeete et 8o
Life and Times......ccccceviiueiiiiiniiiniiiiiniitcieccenneec e cssssaee s ssasenees 81
Step-By-Step INSIUCHIONS.ciiuiiiiiiieieeiteeet ettt 81
Step #1: Lengthen the Background Work.......c.cccoeoeveinenicncncnennen. 81

Step #2: Pause in ONPAUSE()....ceovereirreinieirieenieeieeieeeeeeeeeeeenennes 82

Step #3: Resume in 0NRESUME().......ccevveirieinieirieeieesieeeeeeeeeeeenes 83

0 B 8 <Y | PR 90
Further Reading.........ocoeveveeirinenienieietncreeee et 90

A Few GOOd RESOUTCES......cccciiiiiiiiiiiiiiiiieiieiiiieesrnnnnnnnnnnneseeeeeeeeeeeeeaasssanes 91
Step-By-Step INStIUCHIONS.cocierieeriieieeieeeeteeee et o1
Step #1: Review our Current Resources..........ccceceviiviininiiniincnnennen. o1

Step #2: Create a Landscape Layout.......ccccceeeevereneneniencnncenieneennenne 92

Vi

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

EXETQ CTOAIL..c.uerueteieieieieeieeietetet ettt sttt sa e st sbe b 95

Further Reading........cocoevevieieuininiinieieieeseeeteee et 96
The ReStaurant StOTe.........ccvvveeiiiiiiiiiiinirrirrsrrsssnnnnesscessssesrsnssssssssssssnnns 97
Step-By-Step INStIUCHIONS.eevierieriieieniereeeeeeeenee et 97
Step #1: Create a Stub SQLiteOpenHelper...........cccecevenennncnencnenne 97
Step #2: Manage our Schema.........cceeeererenieninieneneneseeeeeceeee 98
Step #3: Remove Extraneous Code from LunchList.........ccccceeueeueennne 99
Step #4: Get Access to the Helper.........cccccooeeviinncnncncncnceeeene 99
Step #5: Save a Restaurant to the Database..........ccceeveverercvenienenne. 100
Step #6: Get the List of Restaurants from the Database.................. 101
Step #7: Change our Adapter and Wrapper.........ccccoceeueveeverenennenene 103
Step #8: Clean Up Lingering ArrayList References..........cccccecuenee... 105
Step #9: Refresh Our LiSt......ccceceeviereneriieninenieenescetee e 106
EXEIa CTOIL. cuerveeeieieieiiei ettt ettt et 1m
Further Reading........ocoveveevienininieienieeeesceeeeetee e 111
Getting More ACHIVE......cccovviiiiiiiinntiniiniinntttneeeeeeceeceeeceeeesssssssssssssesseeeee 13
Step-By-Step INSEIUCHIONS.covviiiiieiieieeieeie ettt 13
Step #1: Create a Stub ACtiVIty.....cccevereevierereeeeeseetee et 13
Step #2: Launch the Stub Activity on List Click........cccccvvereruenencnne. 114
Step #3: Move the Detail Form Ul........cccoccovininiinininiineninienieene 15
Step #4: Clean Up the Original Ul........cccccocvvininenennieeninienceenee, u8
Step #5: Pass the Restaurant _ID........ccocooevievirinenenieninencneneeeene 19
Step #6: Load the Restaurant Into the Form........c.cccceveeerevcnencnnen. 120
Step #7: Add an "Add" Menu Option.........ccceeeecevererersieneeneereenens 122
Step #8: Detail Form Supports Add and Edit.......cc.cccceevvereenuennenen. 123
0 = Y 8 Y | TSRS 136
Further Reading........coccouevieirininiieiineeseeeee et 136
vii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's YOUr Preference?.........eeeeeeeeeeiiiiiiiniiiiieiiinieiieinninnssesssssesennsnnes 137

Step-By-Step INStIUCHIONS.cevueiiiirieiieteeeeeeee e e 137
Step #1: Define the Preference XML.......c.cccovveeievienenierieeneeeieeeeenns 137
Step #2: Create the Preference AcCtivity.......ccccocerereveereeneriereneneeeene 138
Step #3: Connect the Preference Activity to the Option Menu......139
Step #4: Apply the Sort Order on Startup.......c..ccceeeerveeerecerecnnenenn 143
Step #5: Listen for Preference Changes.........ccccecevereeneevcnnicneeneene 144
Step #6: Re-Apply the Sort Order on Changes.......cc.cocevvevererueennnne. 145

EXETA CTOAIE.c.vietietieiieieeie ettt et ete et et eeteeteeaeete e teeateeateeaseenteeaseenneens 146

Further Reading........ccceoueeeeruirienieirneeeeeeee e 147

Turn, TUrm, TUIL....o. et reecrerereeereeeeecencrnceaesscenssacsncassncansacans 149

Step-By-Step INStruCtions.cc.ceiiiiiiiiriieeteeeeeeee ettt 149
Step #1: Add a Stub onSavelnstanceState().......coceevrreveereeeereeeennnns 149
Step #2: Pour the Form Into the Bundle..........ccccoovevvirvienenrinennnenn. 150
Step #3: Repopulate the FOrm........cccooeveviirvieneniniinennceeceee, 150
Step #4: Fix Up the Landscape Detail Form.........ccccecevveruerniennne 150

0 B 8 =Y | USSR 152

Further Reading.........ceveviiiinininieieeieeteeeeeceeee et 153

Raising (Something Like) @ TWeet.......ccccccevveerirureriecrnnecrirecinneeresnnnee 157

Step-By-5tep INSIUCHIONS.cocutiiiiiieiieeeeeeee ettt 157
Step #1: Set Up an Identi.ca ACCOUNt.......ccceceririerierieirereneieeeeaeen 157
Step #2: Create a Stub Application and Activity.......c.cceecerrvervenneene 158
Step #3: Create @ LayouUt......coceeveevieiieesiieieieeeeeeeee e 158
Step #4: Listen for Send ACtionS.........ceceveveeieierereeneeriesieneeseeeens 160
Step #5: Make the Status Post Request..........ccccceveverienienenvenenennennee. 161

EXETA CTOAI cuveevieirieereereeeteeeteeereeeteeeteeereeereeeteeereeeteeseeereebeeneeseenseereenneenn 164

Further Reading........cccoueererinienieirinneee et 165

viii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR......iiiiiiiiiii 167

Step-By-Step INStIUCHIONS.ciiieriiiienitenieereeseeeesee ettt e e 167
Step #1: Obtain the JTwitter JAR......cooooeeieeirieeeeeeeeeeeee e 167

Step #2: Switch from HttpClient to JTwitter........ccooeeeveereceeernnne 168

Step #3: Create Preferences for Account Information..................... 169

Step #4: Use Account Information from Preferences...................... 172

EXETA CTOAIE c.uietierieetieeieecieecieecte ettt ettt e ste e e e ste e be e e e beesseesreesbeeseeeeanes 176
Further Reading........coccovevieirininiiniiieeneeee et 177
Listening To Your Friends........cccccoevvuuieiiiiiiiinneciinniiiiiniiiinininiiinnnnnnn. 179
Step-By-Step INStIUCHIONS.eiivieriiiieeeeeeeeceereenee e e 179
Step #1: Create a Service Stub........ccccecveveverieenenineecieseeee e 179

Step #2: Set Up a Background Thread.........ccccoceveverienenncnnienenncnne 180

Step #3: Poll Your Friends........ccceceeveevieneninnieneniiieneneseeeseseeenn 181

Step #4: FINd NeW StatUusSes.......ceeereereerierierienieneeeenieneeseeeessseeseens 182

Step #5: Set up the Public APL.......ccccovimirinieiininieeeeeeeeeeeeeeen 183

| B 8 =Y | SO OO U U U U PR 184
Further Reading.........cccoeverieniininiiiinieeteeeteteeseete st 184
No, Really Listening To Your Friends.......cccccovvuuueeeiiiiiiiiiiiiiiiniiiiiiennnes 185
Step-By-Step INSIUCHIONS.ciitiiiiiieitertereeeeeene ettt 185
Step #1: Define the Callback.........coceevieveniniininiieieeceeeeeeen 185

Step #2: Enable Callbacks in the Service........ccocceverervriieencnnenne. 186

Step #3: Manage the Service and Register the Account.................. 188

Step #4: Display the Timeline...........ccccecerineneninieninenenerenenieee 190

EXEIA CTOite.cueueeeeeirreieieirieeeteerieest ettt ettt ae 202
Further Reading........ccceouevereruinenieiiinenieeeecseseeet e 202
Your Friends Seem Remote..........cccceiiiiiiiiiiiiiiiiiieiiienneenssssnnennnssenssnnees 203
Step-By-Step INStIUCHIONS. ..c..eeiierieieieereereeceeeeeesee e e 203

ix

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Step #1: Back Up or Branch Your Project........cccoeceeeeeeeevcnecnennenn 203

Step #2: Create a Fresh Project........ccecceeevreencnnenesiencncncnennne 204

Step #3: Move the Service to the New Project........cc.ccccevereruereennen. 204

Step #4: Implement and Copy the AIDL.......ccccocevevenirviniensienennienne 205

Step #5: Implement the Client Side.........ccceeeevvevenerseecinieeeeeieene 206

Step #6: Implement the Service Side........ccccceververenenennicneneneennen. 208

Step #7: Restore Your Project.......cc.ccceveriieiiininiiniieieeececeeee 217

EXETA CTOAIE e vieivieirieerieeteeeteeeteeeteeete et eeteeeteeeteeeveesteeere e beereenbeenseesnreeesaraeann 217
Further Reading........coccovevueirerininiiieeeeeetee e 217

A Subtle NotifiCation........eeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniisssssssnnsseseeeeseeeseseees 219
Step-By-Step INStructions.......cccoveeeeiierieeniieeieeeeeeee e 219
Step #1: Pick @ Word and [€ON........coeecievieveeieiereeeceeeeeeieeee 219

Step #2: Raise the Notification........cccceceevererirnienenienienenceieeee 220

Step #3: Watch for the Keyword.........cccoeveverienenenieeniineneeeieeeens 221

Step #4: Clearing the Notification.......c.ccocevveevieneneniennieneneneeeenen. 223

EXETa CTe@dit. . eeueeierieeieeieienieeteienieee ettt sttt eae s et e st e sbeesaeeeneens 225
Further Reading.........ccoeevirvienininiiienieteieseeeeteseseete et 225
PoOSts On LOCAtION.....cieuuiiieeeieinieiienieeteeeretaeeteneeeeeaneesenseeeeanesssassnnssnns 227
Step-By-Step INStIrUCHIONS.ceovveriirieeieeienie ettt 227
Step #1: Get the LocationManager.........coceeeeeevienenerneessieeneenieenne 227

Step #2: Register for Location Updates.........cccoceeeereverereeneenenennenne. 228

Step #3: Add "Insert Location" Menu...........cccceeueeeerenenerceeneennenne 229

Step #4: Insert the Last Known Location.........coccceeeeneeeeeneenennnn. 230

| = 8 Y | TSRS 232
Further Reading........cccoeeeruerenieiiinineeeteeeete e 233
Here a Post, There a PoSt.....ccccciiiiiiiiiiiiiiiirieenennnneeeeeeeeeeeeeeeeeeesssessaeees 235
Step-By-Step INStIUCHIONS.eecverieiriieiereeeeeeeeee e 235

X

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Step #1: Register for a Map API Key......coccoevirinenineneniiiieeeeee 235

Step #2: Create a Basic MapACtIVILY.....cccoververversienieceieceieeeeenn 236

Step #3: Launch the Map on Location-Bearing Status Click........... 237

Step #4: Show the Location Via a Pin.....ccceceeevienieneneninnncncnenen. 240

G = G < L TS RRPRRRTSRPN 243
Further Reading........coeoeeeeerinienieirereeeee et 243
MeEdia..cciiiiiiiiiiiiiiiiiiiiiiiiiienseeeeeeeeseeeettettettenssssssssssssssssssssssssssssnne 245
Step-By-Step INStIUCHIONS.eecvieieieiiecieeeeeeeeeieee et 245
Step #1: Obtain and Install a Video Clip.......cccceevervirvienenerceeniennennne. 245

Step #2: Create the Stub Helpcast ACtivity.......cocceverereeneencenieneennen. 246

Step #3: Launch the Helpcast from the Menu..........ccccecerverneenneen. 247

5 = 8 < L RS RPRSURSRS 249
Further Reading........cccovevieviininieienieteeeeceteestet et s 250
Browsing Some POStS.........cccccvviiiiiiiiiiiiniiinniiinnnnnneteneenn 251
Step-By-Step INSIUCHIONS.coiuiiiiiiieiieteeetee ettt 251
Step #1: Add Auto-Linking........ceceevvevererieniininienienieeeeeieesie e 251

Step #2: Draft and Package the Help HTML.......ccccccocevininieneennnnnee. 252

Step #3: Create a Help ACtiVity....ccocevervieneneniieneeeeeeeeeeeneen 252

Step #4: Splice In the Help ACtiVity......ccooeeevcerenenenieeeneeieeceeee 253

EXETa CTeAt . ceuieieieriieieienieeteie ettt sttt et sttt e st s b e saneas 255
Further Reading.........oceouevieirininiinieieineseseeteee et 256
High-Priced Help........cccoovuiiiiiiiiiniiiiiiiiiiieccninnccncnneseeeceeenn 257
Step-By-Step INStIUCHIONS.eovverieriieierienieeeeeeeeee e e 257
Step #1: Enable Javascript......coceeevecererenenienieieesenesieeeeeeee e 257

Step #2: Create the Java Object to Inject........ccecevveuevevenerrenecnennene 258

Step #3: Inject the Java ODbject.....ccccvevveverrerenerneenenereneeeeeeenee 258

Step #4: Leverage the Java Object from Javascript........cccceceeueennenne 259

Xi

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

EXETQ CTOIt o eeeeee e e e e ee et ee e e e e e e eereeeeeaanennereeeseaasnnnnnnnnnnn 260

Further Reading........cccecveireruinienieieireneiee ettt 261
Now Your Friends Seem Animated.........cccccueeeeeeeeeeeeeeeennineeeennnnnaenennns 265
Step-By-Step INStIUCHIONS.eecveeiieiieieeeeieeieeeeeeee et 265
Step #1: Set Up the Option MenU........ccceecvevereeieseeeneeeieenieeseeeees 265

Step #2: Show and Hide the Status Entry Widgets..........cccceeueeneen. 268

Step #3: Fading In and OUt........cceceirenenenennneneneeeeencncenes 270

EXETA CTOAIE cuvievierierieeieeie et et eeteeete et et e eteeteeteeateeteebeeeeaveeeeaseeesareeans 272
Further Reading........coceoueveeeriniinienieinineeeees e 272
Messages From The Great Beyond..............ueeeiiiiiinneciiiniiiiiiiiiinnnnnnn. 273
Step-By-Step INStIUCtiONS. ...ccouiiiiieeiieiieete et e e 273
Step #1: Broadcast the Intent........ceceecvevererceeniereneecieseeeeee e 273

Step #2: Catch and Use the Intent.........cccceeveveevienienienneenseenienieenne 275

EXETA CTOAIE.c.veitieiietiecieeie ettt ete e teeteeteeteeeteetesae e saeeensreeennns 276
Further Reading.........ccooevieiiinininiiienieeeeeeteeseeee et 276
Contacting Our Friends........ccooovueeiiiiiiiineeeiiiniiinneccccnnninneneeeeeennenne. 277
Step-By-Step INStIrUCHIONS. ... ceovieriirieeieeienieeteeteete ettt 277
Step #1: Fake the Contact Data........cecceveerererienenenienieneeeeeeseeeneenn 277

Step #2: Design the Highlight.........ccocoviniiniiiiininieieeeceee 282

Step #3: Find and Highlight Matching Contacts.........ccccccevueeruenee. 283

EXETA CTOAIEc.veiiveiiveeereeeteeieecteeeteeeeeeeeeteeeteeeteeeereeteeeareeaeerreerneenneesaresesnrnes 284
Further Reading.........ccoeeeiiiiininieniinirieieeeeeteeseeteeseet et 285
Android Would Like Your Attention.......ccccceeeeererrrunnennnecceeeeeeennnnnnees 287
Step-By-Step INStIUCHIONS.eicveiiiieiieieeieeieeteeeeeeeee et 287
Step #1: Track the Battery State.........cccceveveveveennensenieneeieeeeene 287

Step #2: Use the Battery State.......c..cccoeeereveneneneeneneneeneencnennens 289

G = Y < L TSRS 289

Xii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Further Reading........coccouevieiieriininieieinneeeete et 290

Now, Your Friends Are Alarmed..........cccceeeveeerernneeernnieernneeeenneeernsecennenns 201
Step-By-Step INStIUCHIONS.eeiteriiiieieeieeeeeeeeree et 201
Step #1: Import a Reusable Component............ccccecvevenenenencnnenne. 201

Step #2: Create the Alarm BroadcastReceiver.............cccevvveecueennnnne 202

Step #3: Doing the Work........ccccoeviviniiinininiceeeeeeteeeee 203

5 = Y 8 < L PSSR 300
Further Reading........ccceceerereniinieinineseete ettt 300
Searching FOor FOOd.........ccouuiiiiiiiiiniiiiiinniiecccniee 301
Step-By-Step INStIUCHIONS.eicveriireieieriereeeeee e 301
Step #1: Have the List Conduct the Search.........cccocevvevriiniinnnnnnen. 301

Step #2: Integrate the Search in the Application........c.cccceceeeruenee. 304

EXETa CTedit. . cuieieieeiieieienieeiteteiesieet ettt ste st sae s e s b e saee s 306
Further Reading........ccccoueeeeriinienieinineeeeeeeeeen e 306
Look Inside Yourself...........ccccceerieiiiriniiiiiniiiiineennnnncsnneeessssssssneeeennes 307
Step-By-Step INStructions.......ccuceveeeeiieeiieniiereeeteetee et 307
Step #1: Create a Stub Project.......cccovevevvieneneniinnenenecieneneeeee 307

Step #2: Create @ LayOut......ccoceeieeieniienieeieeteeteete ettt 308

Step #3: Find the Correct Contact Urli......ccceeueverereneneenerenenienieene. 309

Step #4: Attach the Button to the Contacts........cccceeveevervienenenneeene 309

Step #5: Populate the List........ccocevererienienininienenieieeeeneseseieeeeens 310

5 B8 =Y | USSP 314
Further Reading........cocooveviriririnieieirneeeeteteeee e 315

A Restaurant In Your Own Home.........ccocvvueriiriiieneiirinreniicnneenesreennnes 317
Step-By-Step INStIUCHIONS.ceveiiieiieceeieeeeeeeeeeee e e 317
Step #1: Find An App Widget Background and Icon..........ccccuee.ce. 317

Step #2: Design the App Widget Layout.........cccccceveeereneneenieneennene 318

xiii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Step #3: Add an (Empty) AppWidgetProvider..........ccccceeueveeruennne. 318

Step #4: Add the Widget Metadata.......cccceeveerererenenenieseenieeieneenn 319

Step #5: Update the Manifest.........ccceeveverereecienireeeeceseeeesee e 320

Step #6: Show a Random Restaurant...........cccceeveeverenenienieseeneenienne 323

EXEIa CTe@At. . ceuieiereeeieienieeeeiesieeee e steseete e sae s essesae s e esaesseeeseesnseensnenns 326
Further Reading........coecueeeeriinienieiiirieeee ettt 326
More Home CooKing.......cccoceeiiiiiiinuneiiiiiniiinnnecciiniineeecccsssnneececenens 327
Step-By-Step INStIUCHIONS.eocveeieieiieierieeeeeeeeere e 327
Step #1: Find a Button GraphiC........ccceceveeeevienerienieneneeeesee e 327

Step #2: Add the Button to the Layout.......ccccoceeveveeveneneneniencneenen. 328

Step #3: Migrate Update Logic to an IntentService..........cccceueunen.... 329

Step #4: Get Control on Button Clicks........cccceevevveevievenenceeceniennenne 332

Step #5: Get Control on Name Clicks........cocceveveinierneiniienneeniennne. 333

EXETa CTe@dt. . eueeieriereeeieienieeiteiesie ettt seesae st e saesse s eeesaeseeeaenaesseeas 335
Further Reading.........ceoeverviiniineniiieineetceseeeeeeee et 335
Take a Monkey to Lunch........ueeiiiiiiinneciiiniiinieeccinniinneecccnccnnnee 337
Step-By-Step INStIUCHIONS.covveiiieriieieeieeieeteete ettt 337
Step #1: Prep LUnChLiSt......cooviivieniniiieeeceeeeeeceeeeee e 337

Step #2: Run the Monkey..........ccocoveiriininineneininereeeceeeeene 337

5 v B 8 =Y | PP 338
Further Reading........ccecueeeirienienieiiireeeeee ettt 339
Asking Permission to Place a Call...........ccoevueiivieiiinineciiininiiiinnnnnne 341
Step-By-Step INStIUCHIONS.eovverieriieieeiene ettt 341
Step #1: Add a Phone Number to the Database Schema................. 341

Step #2: Intelligently Handle Database Updates........c.ccccoceruennnee. 342

Step #3: Add Phone Number Support to the Rest of the Helper...342

Step #4: Collect the Phone Number on the Detail Form................ 344

Xiv

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Step #5: Ask for Permission to Make Calls.........ccccecevenievinvenennennen. 345

Step #6: Dial the NUmber..........ccectvirinenieererereeeeeseeee e 346

Step #7: Make the Call........ccooeeieierieieeeseeeeeee e 348

L = Y 8 Y | TP 349
Further Reading........cceoeeeeriinienieineneeeeeeet et 349
Photographic Memory........ccoceeiiiiiiiiiereiiinniniieeecinnininsnssssssssssnnesneenes 351
Step-By-Step INStructions.......cc.covueeeiiieiieniiiecteeteeeeeee e 351
Step #1: Adjust the Manifest........ccccecevevievirienenenenenereneeeeeeeee 351

Step #2: Create the Photographer Layout........cccccceceeveevenncneenncne 353

Step #3: Create the Photographer Class.......ccccoccevevenueeneneenceneenee. 354

Step #4: Tie In the Photographer Class.........ccccecevvvevenverviersieeneenne. 356

G = 8 < L TSR 357
Further Reading.........ccoeeviiviininiiniieeteeecteeeseetee et 357
Sensing a Disturbance............ccevviiineiiiiiiiiiinieciiniiieeee 359
Step-By-5tep INSIUCHIONS.ciiuiiiiiiieieiiteeetetete et 359
Step #1: Implement a ShaKer..........ccooevivirreneniniieneneceeeeee 359

Step #2: Hook Into the Shaker.........cccoeviecirvinininenieneienceeeeeen 362

Step #3: Make a Random Selection on a Shake...........ccccceevureuennee. 363

0 = 8 Y | USRS 364
Further Reading.........ccooeviriiineniniieienteceseteeeee et 364
Getting the Word OUt.........cciiiiiiieeiiiiiiiiiinecciinnieneecessssssnsseeseseens 365
Step-By-Step INStIUCHIONS.ceiuiiiiirieieeteeeiteeeteee et 365
Step #1: Add a "Send SMS" Option MenU.......ccccceceerueereereeneenuennee. 366

Step #2: Find Contacts' Mobile Numbers..........cccccevevereeniecenennennen. 367

Step #3: Pick @ Person........coceevuevienienirineneetececseseeeece e 368

Step #4: Send the MeSSage........cecuverererienienirienenenientesee st 368

G = Y 8 < | TSRS 371

xv

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Further Reading........coccouevieirirenienieieneneeetee et 372

Seeking the Proper Level...........cccoviiiviiiiiiiiiiiiiiiniiiineeccnneneieneeennns 373
Step-By-Step INStIUCHIONS.eecvereeriieiereeee e 373
Step #1: Define an Interface for Mobile Numbers............cccoueenene 373

Step #2: Implement the Interface: the New Way......cccccoceeveeene. 374

Step #3: Implement the Interface: the Old Way.........cccecccvrenennenne. 375

Step #4: Choose and Use the Bridge........c.cccceeeverenenenencnnicnecnnen. 376

EXETA CTOAI c.vievieitieerieeieeeieeeteeete ettt et et eete e e eeteebeeteeeeavaeeeraeeeareeeearees 377
Further Reading........coccoevveererinenieineneeeee e 377

xvi

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Welcome to the Warescription!

We hope you enjoy this digital book and its updates - keep tabs on the
Warescription feed off the CommonsWare site to learn when new editions
of this book, or other books in your Warescription, are available.

Each Warescription digital book is licensed for the exclusive use of its
subscriber and is tagged with the subscribers name. We ask that you not
distribute these books. If you work for a firm and wish to have several
employees have access, enterprise Warescriptions are available. Just contact
us at enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license — more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links..

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and
your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

Some notes for first-generation Kindle users:

« You may wish to drop your font size to level 2 for easier reading

xvii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://www.pdfsam.org/
mailto:enterprise@commonsware.com

« Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

xviii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Preface

Welcome to the Book!

If you come to this book after having read its companion volumes, The
Busy Coder's Guide to Android Development and The Busy Coder's Guide to
Advanced Android Development, thanks for sticking with the series!
CommonsWare aims to have the most comprehensive set of Android
development resources (outside of the Open Handset Alliance itself), and
we appreciate your interest.

If you come to this book having learned about Android from other sources,
thanks for joining the CommonsWare community!

Prerequisites

This book is a collection of tutorials, walking you through developing
Android applications, from the simplest "Hello, world!" to applications
using many advanced Android APIs.

Since this book only supplies tutorials, you will want something beyond
it as a reference guide. That could be simply the Android SDK
documentation, available with your SDK installation or online. It could be
the other books in the CommonsWare Android series. Or, it could be
another Android book - a list of currently-available Android books can be
found on the Android Programming knol. What you do not want to do is

Xix

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://knol.google.com/k/-/android-programming
http://commonsware.com/AdvAndroid/
http://commonsware.com/AdvAndroid/
http://commonsware.com/Android/
http://commonsware.com/Android/

attempt to learn all of Android solely from these tutorials, as they will
demonstrate the breadth of the Android API but not its depth.

Also, the tutorials themselves have varying depth. Early on, there is more
"hand-holding" to explain every bit of what needs to be done (e.g., classes
to import). As the tutorials progress, some of the simpler Java bookkeeping
steps are left out of the instructions - such as exhaustive lists of import
statements — so the tutorials can focus on the Android aspects of the code.

You can find out when new releases of this book are available via:

« The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

« The commonsguy Twitter feed
+ The CommonsBlog

« The Warescription newsletter, which you can subscribe to off of
your Warescription page

Using the Tutorials

Each tutorial has a main set of step-by-step instructions, plus an "Extra
Credit" section. The step-by-step instructions are intended to guide you
through creating or extending Android applications, including all code you
need to enter and all commands you need to run. The "Extra Credit"
sections, on the other hand, provide some suggested areas for
experimentation beyond the base tutorial, without step-by-step
instructions.

If you wish to start somewhere in the middle of the book, or if you only
wish to do the "Extra Credit" work, or if you just want to examine the
results without doing the tutorials directly yourself, you can download the
results of each tutorial's step-by-step instructions from the book's github
repository. You can either clone the repository, or click the Download
Source button in the upper-right to get the source as a ZIP file. The source
code is organized by tutorial number, so you can readily find the project(s)
associated with a particular tutorial from the book.

XX

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://github.com/commonsguy/cw-andtutorials
http://github.com/commonsguy/cw-andtutorials
http://wares.commonsware.com/
http://commonsware.com/blog
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android

The tutorials do not assume you are using Eclipse, let alone any other
specific editor or debugger. The instructions included in the tutorials will
speak in general terms when it comes to tools outside of those supplied by
the Android SDK itself.

The code for the tutorials has been tested most recently on Android 2.2. It
should work on older versions as well, on the whole.

The tutorials include instructions for both Linux and Windows XP. OS X
developers should be able to follow the Linux instructions in general,
making slight alterations as needed for your platform. Windows Vista users
should be able to follow the Windows XP instructions in general, tweaking
the steps to deal with Vista's directory structure and revised Start menu.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Also, please note that the tutorials are set up to work well on HVGA and
larger screen sizes. Using them on QVGA or similar sizes is not
recommended.

Warescription

This book will be published both in print and in digital form. The digital
versions of all CommonsWare titles are available via an annual subscription
— the Warescription.

The Warescription entitles you, for the duration of your subscription, to
digital forms of all CommonsWare titles, not just the one you are reading.

XXi

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Presently, CommonsWare offers PDF and Kindle; other digital formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in digital form. That way, your digital books are never out of date
for long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, including not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
free four-month Warescription.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

What's New

For those of you who have a Warescription, or otherwise have been keeping
up with this book, here is what is new in this version:

« The Patchy examples were tweaked to use identi.ca instead of
Twitter, due to the latter's change in authentication schemes

« The tutorials were tested on Android 2.2

About the "Further Reading" Sections

Each tutorial has, at the end, a section named "Further Reading". Here, we
list places to go learn more about the theory behind the techniques
illustrated in the preceding tutorial. Bear in mind, however, that the
Internet is fluid, so links may not necessarily work. And, of course, there is
no good way to link to other books. Hence, the "Further Reading" section
describes where you can find material, but actually getting there may

xXii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/warescription.html
http://commonsware.com/trade-in.html

require a few additional clicks on your part. We apologize for the
inconvenience.

Errata and Book Bug Bounty

Books updated as frequently as CommonsWare's inevitably have bugs.
Flaws. Errors. Even the occasional gaffe, just to keep things interesting. You
will find a list of the known bugs on the errata page on the CommonsWare
Web site.

But, there are probably even more problems. If you find one, please let us
know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

NOTE: Books with version numbers lower than o.9 are ineligible for the
bounty program, as they are in various stages of completion. We appreciate
bug reports, though, if you choose to share them with us.

We appreciate hearing about "softer" issues as well, such as:

XXili

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AndTutorials/errata

« Places where you think we are in error, but where we feel our
interpretation is reasonable

« Places where you think we could add sample applications, or
expand upon the existing material

- Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to CommonsWare.

Source Code License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as
of the fourth anniversary of its publication date, or when 4,000 copies of
the edition have been sold, whichever comes first. That means that, once
four years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on June 1, 2014. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

XXiv

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-andtutorials
mailto:bounty@commonsware.com

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Lifecycle of a CommonsWare Book

CommonsWare books generally go through a series of stages.

First are the pre-release editions. These will have version numbers below
0.9 (e.g., 0.2). These editions are incomplete, often times having but a few
chapters to go along with outlines and notes. However, we make them
available to those on the Warescription so they can get early access to the
material.

Release candidates are editions with version numbers ending in ".9" (0.9,
1.9, etc.). These editions should be complete. Once again, they are made
available to those on the Warescription so they get early access to the
material and can file bug reports (and receive bounties in return!).

Major editions are those with version numbers ending in ".0" (1.0, 2.0, etc.).
These will be first published digitally for the Warescription members, but
will shortly thereafter be available in print from booksellers worldwide.

Versions between a major edition and the next release candidate (e.g., 1.1,
1.2) will contain bug fixes plus new material. Each of these editions should
also be complete, in that you will not see any "TBD" (to be done) markers
or the like. However, these editions may have bugs, and so bug reports are
eligible for the bounty program, as with release candidates and major
releases.

A book usually will progress fairly rapidly through the pre-release editions
to the first release candidate and Version 1.0 - often times, only a few
months. Depending on the book's scope, it may go through another cycle of
significant improvement (versions 1.1 through 2.0), though this may take

XXV

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

several months to a year or more. Eventually, though, the book will go into
more of a "maintenance mode", only getting updates to fix bugs and deal
with major ecosystem events - for example, a new release of the Android
SDK will necessitate an update to all Android books.

Roster of Tutorials

Here is what you can expect in going through the tutorials in this book:

1.

10.

We start off with a simple throwaway project, just to make sure you
have the development tools all set up properly.

We then begin creating LunchList, an application to track
restaurants where you might wish to go for lunch. In this tutorial,
we set up a simple form to collect basic information about a
restaurant, such as a name and address.

We expand the form to add radio buttons for the type of restaurant
(e.g., takeout).

Instead of tracking just a single restaurant, we add support for a list
of restaurants — but each restaurant shows up in the list only
showing its name.

We extend the list to show the name and address of each restaurant,
plus an icon for the restaurant type.

To give us more room, we split the Ul into two tabs, one for the list
of restaurants, and one for the detail form for a restaurant.

We experiment with an option menu (the kind that appears when
you press the MENU button on a phone) and display a pop-up
message.

We learn how to start a background thread and coordinate
communications between the background thread and the main
("UT") thread.

We learn how to find out when the activity is going off-screen,
stopping and restarting our background thread as needed.

We create a separate Ul description for what the tabs should look
like when the phone is held in a landscape orientation.

XXvi

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

We finally add database support, so your restaurant data persists
from run to run of the application.

We eliminate the tabs and split the Ul into two separate screens
("activities"), one for the list of restaurants, and one for the detail
form to add or edit a restaurant.

We establish a shared preference - and an activity to configure it —
to allow the user to specify the sort order of the restaurants in the
list.

We re-establish the landscape version of our Ul (lost when we
eliminated the tabs in Tutorial 12) and experiment with how to
handle the orientation changing during execution of our
application.

We put LunchList on hold and start up a brand new project, Patchy,
for accessing identi.ca.

We integrate the JTwitter JAR - an open source Java API for Twitter
and things supporting the Twitter API - into our application.

We add a partial implementation of a service to the application, one
that will periodically poll identi.ca for timeline updates.

We fully integrate the service from Tutorial 17 into the application,
showing the timeline updates in a list in the main activity.

We split the service out into a separate project, accessed as a
"remote service" using inter-process communication (IPC).

We add logic to the service to watch for posts from specific people
- our "BFFs" - and display an icon in the status bar when we see
such a post.

We add a menu choice to allow the user to inject their current
location (latitude and longitude) into the status update they are
editing.

We watch for locations embedded in posts - akin to those created
in Tutorial 21 - and, if the user clicks on a post in the timeline with
such a location, we display that location on a map.

We add a "helpcast” video to our application, to demonstrate video
playback integration.

xxvii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

We supplement the "helpcast” with a more traditional help page, in
HTML format, show in an embedded WebKit browser.

We extend the help page to pull our identi.ca screen name in for
customization, by building a bridge between the Javascript in the
Web page and the Android Java environment.

We give the user a menu option to hide and show the widgets
associated with updating the identi.ca status, then arrange to
animate hiding and showing those widgets.

We replace the callback system used previously in our application
with one that uses broadcast Intent objects.

We integrate our application into the contacts engine, so posts
from people who also our in our contacts database are highlighted.

Back in Patchy, we start monitoring for when Android says the
battery level changes, so when it gets low enough, we scale back the
frequency of our polls for timeline updates.

We have Ppatchy's service monitor for timeline updates via a
scheduled "alarm" rather than via a background thread sleeping for
a certain amount of time.

We tie LunchList's restaurant database into the Android search
framework, so you can find a restaurant by name.

We create another project, one that will allow us to pick a contact
out of the contact database, then find out what activities can be
launched that know how to do something with that contact.

We create a simple app widget (i.e., interactive element for the
home screen) for LunchList, one that displays the name of a
randomly-selected restaurant.

We extend the app widget to allow the user to click a button to
choose a different restaurant and click the name of the restaurant to
pull up the LunchList detail form for that restaurant.

We test the LunchList application using the Test Monkey,
simulating random input into the UI.

We allow users to provide phone numbers for restaurants, then add
in phone-dialing capability to LunchList.

xxviii

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

37. We (pretend to) allow users to take pictures of restaurants using
the device's built-in camera.

38. We wrap up by allowing users to randomly select a restaurant by
shaking their phone while running the LunchList application.

39. We allow users to send the name and address of a restaurant to
others via SMS.

40. We fix up the SMS code to support both Android 1.x and Android
2.X.

XXix

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

PART | - Introductory Tutorials

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 1

Your First Android App

This tutorial will help you get your very first Android application up and
running, using just the files generated by Android's development tools.

Step-By-Step Instructions

Here is how you can create this application:

Step #1: Choose a Place For Your Applications

You will need a spot on your development machine to store all of the
projects that you will create via the tutorials in this book.

Linux

If you are running Linux, open up a terminal window (e.g., Applications >
Accessories > Terminal in Ubuntu) and execute the following commands:

cd ~
mkdir AndroidTutorials
cd AndroidTutorials

This will create an AndroidTutorials directory in your home directory and
move you into it.

1

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

Windows XP

If you are running Windows XP, create an AndroidTutorials directory
somewhere, inside which you can put your tutorial projects. Note that the
Android 2.1 SDK seems to have some problems with directories with spaces

in them, so you may wish to take that into account when choosing a spot
for your AndroidTutorials directory.

Step #2: Check Your Java Environment

You need to have Sun's Java SE version 1.5 or 1.6 in order to compile
Android applications.

Linux

Using the terminal, execute the following command:

|javac -version |

If the output includes a line akin to javac 1.6.0_10, your Java version should
be fine. If you do not believe you have the proper Java version, you should
install the correct one, either through your Linux distribution or through
Sun's Java site.

Windows XP

Open a Command Prompt by clicking on the Start menu, choosing Run...,
entering cmd in the Open: field, and clicking OK. Then, execute the
following command:

|javac -version |

You should see output akin to:

2

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://java.sun.com/javase/downloads

Your First Android App

o C\WINDOWS\system32\cmd.exe

Microsoft Windows BP [Version 5.1.2688]
{C> Copyright 1985-2881 Microsoft Corp.

C:~Documents and Settings“userl>javac —version
javac 1.6.8_12

C:~Documents and Settings“userl’

Figure 1. Output from Java compiler version test

If you do not, you will need to install the Java SE SDK from Sun's Java site.
You should also be sure to add the directory for the Java commands to your
PATH by:

1.

N

A L

Finding where the Java commands are (e.g.,, C:\Program
Files\Java\jdk1.6.8_12\bin).

Go to your Control Panel (Start > Settings > Control Panel).
Double-click on the System applet.

Click the Advanced tab.

Click the Environment Variables button.

If there is a PATH value in the User variables area at the top, add
your path to the end by double-clicking the existing one, scrolling
to the end, typing a semicolon (;) and the path from step #1 above.
If there is no such PATH value, click the New button, fill in PATH as
the Variable name and the path from step #1 above as the Variable
value.

Step #3: Download and Install the Android SDK

The Android SDK is available from http://developer.android.com - just
follow the download link and choose the ZIP file appropriate for your
platform, and follow your platform's installation instructions on that site.

3

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/
http://java.sun.com/javase/downloads

Your First Android App

When you download the actual SDK components for different Android API

levels, be sure to install the "Google Inc.:Google APIs:7" package (Android
2.1 with Google APIs).

NOTE: While Android 2.2 is available at the time of this writing, there are
bugs in the current emulator environment that will cause you problems
with two of the tutorials. Moreover, nothing in these tutorials is specific to
Android 2.2. You are welcome to download and install the Android 2.2 (API
level 8) components as well, for your own experiments, but we recommend
you use Android 2.1 for the tutorials.

Optional for All Platforms

Per the Android documentation: "Optionally, you can add the path to the
SDK tools directory to your path. The tools/ directory is located in the SDK
directory.

« On Linux, edit your ~/.bash_profile or ~/.bashrc file. Look for a line
that sets the PATH environment variable and add the full path to the
tools/ directory to it. If you don't see a line setting the path, you can
add one: export PATH = ${PATH}:<your_sdk_dir>/tools. Then, close
and reopen the terminal window.

« On a Mac, look in your home directory for .bash_profile and
proceed as for Linux. You can create the .bash_profile, if you
haven't already set one up on your machine.

« On Windows, right click on My Computer, and select Properties.
Under the Advanced tab, hit the Environment Variables button, and
in the dialog that comes up, double-click on Path under System
Variables. Add the full path to the tools/ directory to the path."

Eclipse

You are welcome to use Eclipse for developing your Android projects. This
book does not assume Eclipse, and the author does not use Eclipse on a
regular basis.

4

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

For instructions on setting up Eclipse with Android, visit the Android
developer documentation. You might also consider just skipping this
tutorial in favor of doing the standard Android Hello, World tutorial, then
moving on to Tutorial 2.

Step #4: Generate the Application Files

Next, we need to create a project.

Eclipse

Use the new-project wizard to create an empty Android project named
FirstApp, as described in the Android developer documentation. This will
create an application skeleton for you, complete with everything you need
to build your first Android application: Java source code, build instructions,
etc.

Outside of Eclipse

Inside your terminal (e.g., Command Prompt for Windows), move back
into the AndroidTutorials directory you created in step #1. Then, run the
following command:

android create project --target "Google Inc.:Google APIs:7" --path ./FirstApp
--activity FirstApp --package apt.tutorial

This will create an application skeleton for you, complete with everything
you need to build your first Android application: Java source code, build
instructions, etc.

Step #5: Examine and Modify the Layout File

Using Eclipse or your favorite text editor, look at
FirstApp/res/layout/main.xml. It should look a bit like this:

5

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/guide/developing/eclipse-adt.html#CreatingAProject
http://developer.android.com/resources/tutorials/hello-world.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

Your First Android App

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"

>
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, FirstApp"
/>
</LinearLayout>

You will see an XML element for a LinearLayout wrapping an XML element
for a Textview. Inside the Textview, you will see an attribute named
android:text with a value of Hello World, FirstApp. Change that value to
Hello, plus your name (e.g., Hello, Mark). Save your changes to this file.

Step #6: Examine the Activity Java Source

Next, take a look at FirstApp/src/apt/tutorial/FirstApp.java. It should look
like this:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;

public class FirstApp extends Activity

{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
¥
¥

Notice how the activity class does not have a constructor, only an
onCreate() method. Also notice that the oncCreate() method calls
setContentView(R.layout.main), which is how Android knows to load the
layout you saw in step #5 and display it on the screen.

You do not need to make any changes to this file for this tutorial.

6

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

Step #7: Install Ant

To build applications outside of Eclipse, you will need the Apache Ant build
tool. This can be downloaded from the Ant Web site, and instructions for
installing it can be found at the Ant online manual.

If you are using Eclipse, you can skip this step.

Linux users: You may be able to install Ant through your Linux
distribution's package management system (e.g., Synaptic in Ubuntu).
However, that version of Ant may be set up to use the GNU gcj Java
environment rather than Sun's, which may cause you problems. Make sure
that however you set up Ant, it uses the Sun JDK you installed in step #2.

Step #8: Compile the Application

Next, we should compile the application. Eclipse users usually wind up with
"Build Automatically” turned on for their projects, so as long as you do not
have any warnings or errors in the source code, you are already OK.

For developers not using Eclipse, in your terminal, change into the FirstApp
directory, then run the following command:

|ant debug |

This will compile the application. It should emit a list of steps involved in
the installation process, which look like this:

Buildfile: build.xml

[setup] Android SDK Tools Revision 6

[setup] Project Target: Google APIs

[setup] Vendor: Google Inc.

[setup] Platform Version: 2.0.1

[setup] API level: 6

[setup] WARNING: No minSdkVersion value set. Application will install on all
Android versions.

[setup] Importing rules file: platforms/android-
2.0.1/templates/android_rules.xml

-compile-tested-if-test:

7

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://ant.apache.org/manual/install.html
http://ant.apache.org/bindownload.cgi

Your First Android App

-dirs:
[echo] Creating output directories if needed...

-resource-src:
[echo] Generating R.java / Manifest.java from the resources...

-aidl:
[echo] Compiling aidl files into Java classes...

compile:

[javac] Compiling 1 source file to
/home/mmurphy/stuff/CommonsWare/books/AndTutorials/samples/01-
FirstApp/FirstApp/bin/classes

-dex:

[echo] Converting compiled files and external libraries into
/home/mmurphy/stuff/CommonsWare/books/AndTutorials/samples/01-
FirstApp/FirstApp/bin/classes.dex...

[echo]

-package-resources:
[echo] Packaging resources
[aaptexec] Creating full resource package...

-package-debug-sign:

[apkbuilder] Creating FirstApp-debug-unaligned.apk and signing it with a debug
key...

[apkbuilder] Using keystore: /home/mmurphy/.android/debug.keystore

debug:

[echo] Running zip align on final apk...

[echo] Debug Package:
/home/mmurphy/stuff/CommonsWare/books/AndTutorials/samples/01-
FirstApp/FirstApp/bin/FirstApp-debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Note the BUILD successruL at the bottom - that is how you know the
application compiled successfully.

Step #9: Configure and Start Your Emulator

Android developers typically use the Android emulator to test and debug
their applications. This is a copy of the Android firmware set up to run in a
virtual machine on your development workstation. Note that running the
emulator for the first time will take longer than subsequent runs, and you
can usually just keep the emulator up and running - you do not need to

8

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

stop and restart it after every rebuild of your application. In particular, you
need to create an Android Virtual Device (AVD) that describes the specific
Android environment you wish to emulate - Android API level, SD card
size, screen size, etc.

Eclipse users can create an AVD following the instructions in the Android
developer documentation.

The easiest way to work with the Android emulator, outside of Eclipse, is to
use the AVD Manager. You can open this by running android in a terminal
window. You might consider adding a shortcut to this command to your
desktop, as you will use it often, and it ties up the terminal window when in
use.

You will see a window containing an empty list of Android virtual devices.
Click the New... button to add a new virtual device:

Name: |Test
Target: v
SD Card: I ————
O Size: ‘32 MiB |~
File:
skin: o
QO Built-in:
Resolution: X
Hardware:
Property Value New...

® A target must be selected in order to create an AVD.

N

Cancel

Figure 2. Create new AVD dialog

9

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/guide/developing/eclipse-adt.html#CreatingAnAvd
http://developer.android.com/guide/developing/eclipse-adt.html#CreatingAnAvd

Your First Android App

Enter a name (e.g., 2_1_HVGA), then choose "Google APIs (Google Inc.) -
API Level 7" as the target. Give yourself a 32MB SD card by filling in 32 in
the Size field. Choose the "Default (HVGA)" screen size, then click Create
AVD. This will add your new AVD to the main window.

At this point, select your AVD in the list and click Start... Accept all of the
defaults and click Launch. The first time you start up an emulator for a new
AVD, it will take a fair amount of time.

Your emulator should look something like this:

5554:2.1-HVGA

Android

1:11 -

Thursday, January 14
€ Charging (50%)

— et oo o o
o B

=

Figure 3. Android emulator

Step #10: Install the Application in Your Emulator

Next, we need to put the application into the emulator.

10

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

Eclipse

You can simply run your application and have it automatically start up your
AVD in the emulator, install your app, and run it, as is described in the

Android developer documentation.

Outside of Eclipse

Back in your terminal window, run the following command:

|ant install

Step #11: Run the Application in Your Emulator

Click the [MENU] button in the emulator window to bring up the Android

home screen:

5554:2.1-HVGA

M| mEErEEEE
7w e W AnonaEmEe
A ls o e e [0y Jk|e |8
2]z x [c v s v]| |&
oo il

Figure 4. Android emulator home screen

Phone ontacts er Maps

11

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/guide/developing/eclipse-adt.html#RunningAnApplication

Your First Android App

Then, click on the grey button at the bottom of the emulator screen, just
above the [MENU] button, to open up the application launcher:

TH @ 12:24Pm

@.-zﬁ

Alarm Clock APIDemos Browser Calculator

H& % 8 8

Camcorder Camera Contacts ContactsCo

L3

& W &\ mEmEEmEmn
= e i
a . a5l e o[L i i |2
oo A A O W 2 | |c (v (s n v | |

=Bl e .

Figure 5. Android emulator application launcher

Notice there is an icon for your FirstApp application. Click on it to open it
and see your first activity in action:

12

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

o000

' ('v"né

1 0o fa lals s o lols Jo |
o fu e {afr [y Jo Js Jo |o |

i J
{50 Je-JoJ |y o
2z [x [c v o [n . |es
- o

Figure 6. Your FirstApp

To leave the application and return to the launcher, press the "BACK
button", located to the right of the [MENU] button, and looks like an arrow
pointing to the left.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

Instead of using the console tools as documented above, try using
Eclipse. You will need to download Eclipse, install the Android plug-
in, and use it to create your first project.

If you have an Android device, try installing the app on the device
and running it there. The easiest way to do this is to shut down your
emulator, plug in your device, and run ant install again. You may
need to install drivers (Windows) or adjust some USB settings
(Linux) to get the device recognized by the Android build system.

Play around with the values for android:layout_width and
android:layout_height. You might also add android:background =
"#FFFFOE00" to the FirstApp/res/layout/main.xml file, to give the

13

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your First Android App

screen a red background, so you can see where the widget ends and
the rest of the screen begins.

Further Reading

The best place to learn the basics of setting up a project, at least for Eclipse,
can be found in the Android developer documentation. You may also wish
to look at the first three chapters of The Busy Coder's Guide to Android
Development ("The Big Picture”, "Projects and Targets", and "Creating a
Skeleton Application").

14

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android
http://developer.android.com/resources/tutorials/hello-world.html

TUTORIAL 2

A Simple Form

This tutorial is the first of several that will build up a "lunch list"
application, where you can track various likely places to go to lunch. While
this application may seem silly, it will give you a chance to exercise many
features of the Android platform. Besides, perhaps you may even find the
application to be useful someday.

Step-By-Step Instructions

Here is how you can create this application:

Step #1: Generate the Application Skeleton

First, we need to create a new project.

Eclipse

Use the new-project wizard to create an empty Android project named
LunchList, as described in the Android developer documentation. This will
create an application skeleton for you, complete with everything you need
to build your first Android application: Java source code, build instructions,
etc.

15

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/guide/developing/eclipse-adt.html#CreatingAProject

A Simple Form

Outside of Eclipse

Inside your terminal (e.g., Command Prompt for Windows), move back
into the AndroidTutorials directory you created in step #1 of the first
tutorial. Then, run the following command:

android create project --target "Google Inc.:Google APIs:6" --path ./LunchlList
--activity LunchList --package apt.tutorial

This will create an application skeleton for you, complete with everything
you need to start building the LunchList application.

Step #2: Modify the Layout

Using your text editor, open the LunchList/res/layout/main.xml file.
Initially, that file will look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill_parent"

>
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, LunchList"
/>
</LinearLayout>

Change that layout to look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent”
>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<TextView
android:layout_width="wrap_content"

16

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Simple Form

android:layout_height="wrap_content”
android:text="Name:"
/>
<EditText android:id="@+id/name"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
</LinearLayout>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Address:"
/>
<EditText android:id="@+id/addr"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
</LinearLayout>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Save"
/>
</LinearLayout>

This gives us a three-row form: one row with a labeled field for the
restaurant name, one with a labeled field for the restaurant address, and a
big Save button.

Step #3: Compile and Install the Application

Compile and install the application in the emulator by running the
following commands in your terminal:

|ant install |

Or, from Eclipse, just run the project.

17

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Simple Form

Step #4: Run the Application in the Emulator

In your emulator, in the application launcher, you will see an icon for your
LunchList application. Click it to bring up your form:

LunchList

6 (=) &
e
Ao '

1022 {a.]s o [r-Ja.|s Jo |

o w e [r |7 |v Julifolp
A ls [o [Fle [nly [k [u |&
TTTTTTTTTW

Figure 7. The first edition of LunchlList

Use the directional pad (D-pad) below the [MENU] button to navigate
between the fields and button. Enter some text in the fields and click the
button, to see how those widgets behave. Then, click the BACK button to
return to the application launcher.

Step #5: Create a Model Class

Now, we want to add a class to the project that will hold onto individual
restaurants that will appear in the LunchList. Right now, we can only really
work with one restaurant, but that will change in a future tutorial.

So, using your text editor, create a new file named
LunchList/src/apt/tutorial/Restaurant.java with the following contents:

18

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Simple Form

package apt.tutorial;

public class Restaurant {
private String name="";
private String address="";

public String getName() {
return(name);

}

public void setName(String name) {
this.name=name;

}

public String getAddress() {
return(address);

}

public void setAddress(String address) {
this.address=address;

}

}

This is simply a rudimentary model, with private data members for the
name and address, and getters and setters for each of those.

Of course, don't forget to save your changes!

Step #6: Save the Form to the Model

Finally, we want to hook up the Save button, such that when it is pressed,
we update a restaurant object based on the two EditText fields. To do this,
open up the LunchList/src/apt/tutorial/LunchList.java file and replace the
generated Activity implementation with the one shown below:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LunchList extends Activity {
Restaurant r=new Restaurant();

@0Override

19

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Simple Form

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button save=(Button)findViewById(R.id.save);

save.setOnClickListener (onSave);

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress (address.getText().toString());

1

Here, we:

« Create a single local restaurant instance when the activity is
instantiated

+ Get our Button from the Activity via findviewById(), then connect it
to a listener to be notified when the button is clicked

+ In the listener, we get our two EditText widgets via findviewById(),
then retrieve their contents and put them in the restaurant

This code sample shows the use of an anonymous inner class
implementation of a View.0OnClickListener, named onsave. This technique is
used in many places throughout this book, as it is a convenient way to
organize bits of custom code that go into these various listener objects.

Then, run the ant install command to compile and update the emulator.
Run the application to make sure it seems like it runs without errors,
though at this point we are not really using the data saved in the restaurant
object just yet.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

20

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Simple Form

 Instead of using the console tools as documented above, try using
Eclipse. You will need to download Eclipse, install the Android plug-
in, and use it to create your first project.

« Try replacing the icon for your application. To do this, you will need
to find a suitable 48x48 pixel image, create a drawable/ directory
inside your res/ directory in the project, and adjust the
AndroidManifest.xml file to contain an android:icon =
"@drawable/my_icon" attribute in the application element, where
my_icon is replaced by the base name of your image file.

« Try playing with the fonts for use in both the Textview and EditText
widgets. The Android SDK documentation will show a number of
XML attributes you can manipulate to change the color, make the
text boldface, etc.

Further Reading

You can learn more about XML layouts in the "Using XML-Based Layouts"
chapter of The Busy Coder's Guide to Android Development. Similarly, you
can learn more about simple widgets, like fields and buttons, in the
"Employing Basic Widgets" chapter of the same book, where you will also
find "Working with Containers" for container classes like LinearLayout.

21

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 3

A Fancier Form

In this tutorial, we will switch to using a TableLayout for our restaurant data
entry form, plus add a set of radio buttons to represent the type of
restaurant.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 02-simpleForm edition of LunchList to use as a starting point.

Step #1: Switch to a TableLayout

First, open LunchList/res/layout/main.xml and modify its contents to look
like the following:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent”
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name" />
</TableRow>
<TableRow>

23

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

<TextView android:text="Address:" />
<EditText android:id="@+id/addr" />

</TableRow>

<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Save"

/>

</TablelLayout>

Notice that we replaced the three LinearLayout containers with a
TableLayout and two TableRow containers. We also set up the EditText
column to be stretchable.

Recompile and reinstall the application, then run it in the emulator. You
should see something like this:

Ml @ 8:04am

Figure 8. Using a TableLayout

Notice how the two EditText fields line up, whereas before, they appeared
immediately after each label.

24

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

NOTE: At this step, or any other, when you try to run your application, you
may get the following screen:

A Sorry!

The application LunchList

(process apt.tutorial) has
stopped unexpectedly. Please
try again.

Force close

Figure 9. A "force-close" dialog

If you encounter this, first try to do a full rebuild of the project. In Eclipse,
this would involve doing Project > Force Clean. At the command line, use
ant clean or delete the contents of your bin/ and gen/ directories, then ant
install. If the problem persists after this, then there is a bug in your code
somewhere. You can use adb logcat, DDMS, or the DDMS perspective in
Eclipse to see the Java stack trace associated with this crash, to help you
perhaps diagnose what is going on.

Step #2: Add a RadioGroup

Next, we should add some RadioButton widgets to indicate the type of
restaurant this is: one that offers take-out, one where we can sit down, or
one that is only a delivery service.

To do this, modify LunchList/res/layout/main.xml once again, this time to
look like:

25

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent”
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name" />
</TableRow>
<TableRow>
<TextView android:text="Address:" />
<EditText android:id="@+id/addr" />
</TableRow>
<TableRow>
<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">
<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
</TableRow>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Save"
/>
</TablelLayout>

Our RadioGroup and RadioButton widgets go inside the TableLayout, so they
will line up with the rest of table - you can see this once you recompile,
reinstall, and run the application:

26

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

5 Ml @ 8:04am

.Sit—Down
. Delivery

Figure 10. Adding radio buttons

Step #3: Update the Model

Right now, our model class has no place to hold the restaurant type. To
change that, modify LunchList/src/apt/tutorial/Restaurant.java to add in a
new private String type data member and a getter/setter pair, like these:

public String getType() {
return(type);

public void setType(String type) {
this.type=type;

}

When you are done, your restaurant class should look something like this:

package apt.tutorial;

public class Restaurant {
private String name="";
private String address="";

27

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

private String type="";

public String getName() {
return(name);

}

public void setName(String name) {
this.name=name;

}

public String getAddress() {
return(address);

}

public void setAddress(String address) {
this.address=address;

}

public String getType() {
return(type);

public void setType(String type) {
this.type=type;

Step #4: Save the Type to the Model

Finally, we need to wire our RadioButton widgets to the model, such that
when the user clicks the Save button, the type is saved as well. To do this,
modify the onsave listener object to look like this:

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

RadioGroup types=(RadioGroup)findViewById(R.id.types);

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");

28

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

break;

case R.id.delivery:
r.setType("delivery");
break;
¥
}
}s

Note that you will also need to import android.widget.RadioGroup for this to
compile. The full activity will then look like this:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;

public class LunchList extends Activity {
Restaurant r=new Restaurant();

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button save=(Button)findViewById(R.id.save);

save.setOnClickListener(onSave);

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

RadioGroup types=(RadioGroup)findViewById(R.id.types);

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");
break;

29

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

case R.id.delivery:
r.setType("delivery");
break;

1

Recompile, reinstall, and run the application. Confirm that you can save the
restaurant data without errors.

If you are wondering what will happen if there is no selected RadioButton,
the RadioGroup call to getCheckedRadioButtonId() will return -1, which will
not match anything in our switch statement, and so the model will not be

modified.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« If you have an Android device, try installing the app on the device
and running it there. The easiest way to do this is to shut down your
emulator, plug in your device, and run ant reinstall.

« Set one of the three radio buttons to be selected by default, using
android:checked = "true".

« Try creating the RadioButton widgets in Java code, instead of in the
layout. To do this, you will need to create the RadioButton objects
themselves, configure them (e.g., supply them with text to display),
then add them to the RadioGroup via addview().

« Try adding more RadioButton widgets than there are room to display
on the screen. Note how the screen does not automatically scroll to
show them. Then, wrap your entire layout in a Scrollview container,
and see how the form can now scroll to accommodate all of your
widgets.

30

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Fancier Form

Further Reading

You can learn more about radio buttons in the "Employing Basic Widgets"
chapter of The Busy Coder's Guide to Android Development. Also, you will
find material on TableLayout in the "Working with Containers" chapter of

the same book.

31

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 4

Adding a List

In this tutorial, we will change our model to be a list of restaurants, rather
than just one. Then, we will add a Listview to view the available restaurants.
This will be rather incomplete, in that we can only add a new restaurant,
not edit or delete an existing one, but we will cover those steps too in a later
tutorial.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 03-FancierForm edition of LunchList to use as a starting point.

Step #1: Hold a List of Restaurants

First, if we are going to have a list of restaurants in the Ul, we need a list of
restaurants as our model. So, in LunchList, change:

|Restaurant r=new Restaurant(); |

to:

List<Restaurant> model=new ArraylList<Restaurant>();

33

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

Note that you will need to import java.util.List and java.util.Arraylist
as well.

Step #2: Save Adds to List

Note that the above code will not compile, because our onsave Button click
handler is still set up to reference the old single restaurant model. For the
time being, we will have onsave simply add a new restaurant.

All we need to do is add a local restaurant r variable, populate it, and add it
to the list:

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
Restaurant r=new Restaurant();
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

RadioGroup types=(RadioGroup)findViewById(R.id.types);

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");
break;

case R.id.delivery:
r.setType("delivery");
break;
¥
}
}s

At this point, you should be able to rebuild and reinstall the application.
Test it out to make sure that clicking the button does not cause any
unexpected errors.

34

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

You will note that we are not adding the actual restaurant to anything - r is
a local variable and so goes out of scope after onClick() returns. We will
address this shortcoming later in this exercise.

Step #3: Implement toString()

To simplify the creation of our Listview, we need to have our restaurant
class respond intelligently to tostring(). That will be called on each
restaurant as it is displayed in our list.

For the purposes of this tutorial, we will simply use the name - later
tutorials will make the rows much more interesting and complex.

So, add a tostring() implementation on restaurant like this:

public String toString() {
return(getName());
¥

Recompile and ensure your application still builds.

Step #4: Add a ListView Widget

Now comes the challenging part — adding the Listview to the layout.

The challenge is in getting the layout right. Right now, while we have only
the one screen to work with, we need to somehow squeeze in the list
without eliminating space for anything else. In fact, ideally, the list takes up
all the available space that is not being used by our current details form.

One way to achieve that is to use a RelativelLayout as the over-arching
layout for the screen. We anchor the details form to the bottom of the
screen, then have the list span the space from the top of the screen to the
top of the details form.

35

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

To make this change, replace your current LunchList/res/layout/main.xml
with the following:

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TablelLayout android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name" />
</TableRow>
<TableRow>
<TextView android:text="Address:" />
<EditText android:id="@+id/addr" />
</TableRow>
<TableRow>
<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">
<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
</TableRow>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Save"
/>
</TableLayout>
<ListView android:id="@+id/restaurants”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_above="@id/details"
/>
</Relativelayout>

If you recompile and rebuild the application, then run it, you will see our
form slid to the bottom, with empty space at the top:

36

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

&5 Ml @ 8:08am

.Sit—Down
. Delivery

Save

Figure 11. Adding a list to the top and sliding the form to the bottom

Step #5: Build and Attach the Adapter

The Listview will remain empty, of course, until we do something to
populate it. What we want is for the list to show our running lineup of
restaurant objects.

Since we have our ArrayList<Restaurant>, we can easily wrap it in an
ArrayAdapter<Restaurant>. This also means, though, that when we add a
restaurant, we need to add it to the ArrayAdapter via add() - the adapter
will, in turn, put it in the ArrayList. Otherwise, if we add it straight to the
ArrayList, the adapter will not know about the added restaurant and
therefore will not display it.

Here is the new implementation of the LunchList class:

package apt.tutorial;

import android.app.Activity;

37

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.RadioGroup;
import java.util.Arraylist;

import java.util.List;

public class LunchList extends Activity {
List<Restaurant> model=new ArrayList<Restaurant>();
ArrayAdapter<Restaurant> adapter=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener(onSave);
ListView list=(ListView)findViewById(R.id.restaurants);

adapter=new ArrayAdapter<Restaurant>(this,
android.R.layout.simple_list_item_1,
model);

list.setAdapter(adapter);

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
Restaurant r=new Restaurant();
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

RadioGroup types=(RadioGroup)findViewById(R.id.types);

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");
break;

case R.id.delivery:
r.setType("delivery");
break;

38

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

}

adapter.add(r);

}
1

}

The magic value android.R.layout.simple_list_item_1 is a stock layout for a
list row, just displaying the text of the object in white on a black
background with a reasonably large font. In later tutorials, we will change
the look of our rows to suit our own designs.

If you then add a few restaurants via the form, it will look something like
this:

&5 Ml @ 8:09am

Foo Bar

Sir Lunch-A-Lot's

That Other Placd

d 1313 Mockingbird Lane

.Sit—Down
e Delivery

Save

Figure 12. Our LunchlList with a few fake restaurants added

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

39

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Adding a List

« See what the activity looks like if you use a Spinner instead of a
ListView.

« Make the address field, presently an EditText widget, into an
AutoCompleteTextView, using the other addresses as values to possibly
reuse (e.g., for multiple restaurants in one place, such as a food
court or mall).

Further Reading

Information on Listview and other selection widgets can be found in the
"Using Selection Widgets" chapter of The Busy Coder's Guide to Android
Development.

40

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 5
Making Our List Be Fancy

In this tutorial, we will update the layout of our Listview rows, so they show
both the name and address of the restaurant, plus an icon indicating the
type. Along the way, we will need to create our own custom ListAdapter to
handle our row views and a RestaurantHolder to populate a row from a
restaurant.

Regarding the notion of adapters and ListAdapter, to quote from The Busy
Coder's Guide to Android Development:

In the abstract, adapters provide a common interface to
multiple disparate APIs. More specifically, in Android's case,
adapters provide a common interface to the data model
behind a selection-style widget, such as a listbox...Android's
adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data
into specific views to be displayed inside the selection widget.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 04-Listview edition of LunchList to use as a starting point.

41

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

Step #1: Create a Stub Custom Adapter

First, let us create a stub implementation of a RestaurantAdapter that will be
where we put our logic for creating our own custom rows. That can look
like this, implemented as an inner class of LunchList:

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this,
android.R.layout.simple_list_item_1,
model);

We hard-wire in the android.R.layout.simple_list_item_1 layout for now,
and we get our Activity and model from LunchList itself.

We also need to change our adapter data member to be a RestaurantAdapter,
both where it is declared and where it is instantiated in onCreate(). Make
these changes, then rebuild and reinstall the application and confirm it
works as it did at the end of the previous tutorial.

Step #2: Design Our Row

Next, we want to design a row that incorporates all three of our model
elements: name, address, and type. For the type, we will use three icons,
one for each specific type (sit down, drive-through, delivery). You can use
whatever icons you wish, or you can get the icons used in this tutorial from
the tutorial ZIP file that you can download. They need to be named
ball red.png, ball yellow.png, and ball green.png, all located in
res/drawable/ in your project.

NOTE: If your project has no res/drawable/ directory, but does have
res/drawable-1dpi/ and others with similar suffixes, remove all of those and
create a res/drawable/ directory for use in this project.

The general layout is to have the icon on the left and the name stacked atop
the address to the right:

42

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

bird Lane

Figure 13. A fancy row for our fancy list

To achieve this look, we use a nested pair of LinearLayout containers. Use
the following XML as the basis for LunchList/res/layout/row.xml:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="4px"
>
<ImageView android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:layout_alignParentTop="true"
android:layout_alignParentBottom="true"
android:layout_marginRight="4px"
/>
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="vertical"
>
<TextView android:id="@+id/title"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:layout_weight="1"
android:gravity="center_vertical”
android:textStyle="bold"
android:singlelLine="true"
android:ellipsize="end"
/>
<TextView android:id="@+id/address"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="center_vertical"
android:singlelLine="true"
android:ellipsize="end"
/>
</LinearLayout>
</LinearLayout>

Some of the unusual attributes applied in this layout include:

43

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

+ android:padding, which arranges for some whitespace to be put
outside the actual widget contents but still be considered part of the
widget (or container) itself when calculating its size

+ android:textStyle, where we can indicate that some text is in bold
or italics

+ android:singleLine, which, if true, indicates that text should not
word-wrap if it extends past one line

+ android:ellipsize, which indicates where text should be truncated
and ellipsized if it is too long for the available space

Step #3: Override getView(): The Simple Way

Next, we need to use this layout ourselves in our RestaurantAdapter. To do
this, we need to override getview() and inflate the layout as needed for
rOwWS.

Modify RestaurantAdapter to look like the following:

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this,
android.R.layout.simple_list_item_1,
model) ;
}

public View getView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, null);

}

Restaurant r=model.get(position);

((TextView)row.findViewById(R.id.title)).setText(r.getName());
((TextView)row.findViewById(R.id.address)).setText(r.getAddress());

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

a4

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

else if (r.getType().equals("take_out")) {
icon.setImageResource(R.drawable.ball_yellow);

}
else {
icon.setImageResource(R.drawable.ball_green);

}

return(row);

Notice how we create a row only if needed, recycling existing rows. But, we
still pick out each Textview and Imageview from each row and populate it
from the restaurant at the indicated position.

Step #4: Create a RestaurantHolder

To improve performance and encapsulation, we should move the logic that
populates a row from a restaurant into a separate class, one that can cache
the Textview and Imageview widgets.

To do this, add the following static inner class to LunchList:

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Restaurant r) {
name.setText(r.getName());
address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

else if (r.getType().equals("take_out")) {
icon.setImageResource(R.drawable.ball_yellow);

45

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

¥
else {
icon.setImageResource(R.drawable.ball_green);
¥
}

}

Step #5: Recycle Rows via RestaurantHolder

To take advantage of the new RestaurantHolder, we need to modify
getView() in RestaurantAdapter. Following the holder pattern, we need to
create a RestaurantHolder when we inflate a new row, cache that wrapper in
the row via setTag(), then get it back later via getTag().

Change getview() to look like the following:

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this, R.layout.row, model);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
RestaurantHolder holder=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
holder=new RestaurantHolder(row);
row.setTag(holder);

¥
else {
holder=(RestaurantHolder)row.getTag();

}

holder.populateFrom(model.get(position));

return(row);

This means the whole LunchList class looks like:

package apt.tutorial;

46

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TextView;
import java.util.Arraylist;

import java.util.List;

public class LunchList extends Activity {
List<Restaurant> model=new ArraylList<Restaurant>();
RestaurantAdapter adapter=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener (onSave);
Listview list=(ListView)findViewById(R.id.restaurants);

adapter=new RestaurantAdapter();
list.setAdapter(adapter);
}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
Restaurant r=new Restaurant();
EditText name=(EditText)findViewById(R.id.name);
EditText address=(EditText)findViewById(R.id.addr);

r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

RadioGroup types=(RadioGroup)findViewById(R.id.types);

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");
break;

47

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

case R.id.delivery:
r.setType("delivery");
break;

}

adapter.add(r);
¥
s

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this, R.layout.row, model);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
RestaurantHolder holder=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
holder=new RestaurantHolder (row);
row.setTag(holder);

}

else {
holder=(RestaurantHolder)row.getTag();

¥

holder.populateFrom(model.get(position));

return(row);
}
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Restaurant r) {
name.setText(r.getName());
address.setText(r.getAddress());

48

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Making Our List Be Fancy

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

else if (r.getType().equals("take_out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball_green);

¥

¥
}

}

Rebuild and reinstall the application, then try adding several restaurants
and confirm that, when the list is scrolled, everything appears as it should -
the name, address, and icon all change.

Note that you may experience a problem, where your EditText widgets
shrink, failing to follow the android:stretchColumns rule. This is a bug in
Android that will hopefully be repaired one day.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Customize the rows beyond just the icon based on each restaurant,
such as applying different colors to the name based upon certain
criteria.

« Use three different layouts for the three different restaurant types.
To do this, you will need to override getItemviewType() and
getViewTypeCount() in the custom adapter to return the appropriate
data.

Further Reading

Using custom Adapter classes and creating list rows that are more than
mere strings is covered in the "Getting Fancy with Lists" chapter of The
Busy Coder's Guide to Android Development.

49

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android
http://code.google.com/p/android/issues/detail?id=6089
http://code.google.com/p/android/issues/detail?id=6089

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 6

Splitting the Tab

In this tutorial, we will move our Listview onto one tab and our form onto a
separate tab of a Tabview. Along the way, we will also arrange to update our
form based on a Listview selections or clicks, even though the Save button
will still only add new restaurants to our list.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the @5-FancyList edition of LunchList to use as a starting point.

Step #1: Rework the Layout

First, we need to change our layout around, to introduce the tabs and split
our Ul between a list tab and a details tab. This involves:

« Removing the RelativeLayout and the layout attributes leveraging it,
as that was how we had the list and form on a single screen

+ Add in a TabHost, TabWidget, and FrameLayout, the latter of which is
parent to the list and details

To accomplish this, replace your current LunchList/res/layout/main.xml
with the following:

51

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FrameLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ListView android:id="@+id/restaurants”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
<TableLayout android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:stretchColumns="1"
android:paddingTop="4px"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name" />
</TableRow>
<TableRow>
<TextView android:text="Address:" />
<EditText android:id="@+id/addr" />
</TableRow>
<TableRow>
<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">
<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
</TableRow>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Save"
/>

52

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

</TableLayout>
</FrameLayout>
</LinearLayout>
</TabHost>

Step #2: Wire In the Tabs

Next, we need to modify the LunchList itself, so it is a TabActivity (rather
than a plain Activity) and teaches the TabHost how to use our FrameLayout
contents for the individual tab panes. To do this:

1. Add imports to LunchList for android.app.TabActivity and
android.widget.TabHost

2. Make LunchList extend TabActivity

3. Obtain 32px high icons from some source to use for the list and
details tab icons, place them in LunchList/res/drawable as list.png
and restaurant.png, respectively

4. Add the following code to the end of your onCreate() method:

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()

.getDrawable(R.drawable.list));
getTabHost () .addTab(spec);

spec=getTabHost () .newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost () .addTab(spec);

getTabHost().setCurrentTab(9);

At this point, you can recompile and reinstall the application and try it out.
You should see a two-tab UI like this:

53

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

5 Ml @ 8:10am

- Details

.‘ Foo Bar
L 1313 Mockingbird Lane

. Sir Lunch-A-Lot's
1525 Wilson Blvd.

Figure 14. The first tab of the two-tab LunchlList

Ml @ 8:11am

.Sit—Down
. Delivery

Figure 15. The second tab of the two-tab LunchlList

54

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

Step #3: Get Control On List Events

Next, we need to detect when the user clicks on one of our restaurants in
the list, so we can update our detail form with that information.

First, add an import for android.widget.AdapterView to LunchList. Then,
create an AdapterView.OnItemClickListener named onListClick:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
3

};

Finally, call setonItemClickListener() on the Listview in the activity's
onCreate() to connect the Listview to the onListClick listener object
(1ist.setOnItemClickListener(onListClick);)

Step #4: Update Our Restaurant Form On Clicks

Next, now that we have control in a list item click, we need to actually find
the associated restaurant and update our details form.

To do this, you need to do two things. First, move the name, address, and
types variables into data members and populate them in the activity's
onCreate() — our current code has them as local variables in the onsave
listener object's onclick() method. So, you should have some data members
like:

EditText name=null;
EditText address=null;
RadioGroup types=null;

And some code after the call to setContentview() in onCreate() like:

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
types=(RadioGroup)findviewById(R.id.types);

55

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

Then, add smarts to onListClick to update the details form:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
Restaurant r=model.get(position);

name.setText(r.getName());
address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
types.check(R.id.sit_down);

else if (r.getType().equals("take_ out")) {
types.check(R.id.take_out);

¥

else {
types.check(R.id.delivery);

}

}
}s

Note how we find the clicked-upon restaurant via the position parameter,
which is an index into our ArrayList of restaurants.

Step #5: Switch Tabs On Clicks

Finally, we want to switch to the details form when the user clicks a
restaurant in the list.

This is just one extra line of code, in the onItemClick() method of our
onListClick listener object:

|getTabHost().setCurrentTab(l); |

This just changes the current tab to the one known as index 1, which is the
second tab (tabs start counting at o).

At this point, you should be able to recompile and reinstall the application
and test out the new functionality.

56

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

Here is the complete source code to our LunchList activity, after all of the
changes made in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import java.util.Arraylist;

import java.util.List;

public class LunchList extends TabActivity {
List<Restaurant> model=new ArraylList<Restaurant>();
RestaurantAdapter adapter=null;
EditText name=null;
EditText address=null;
RadioGroup types=null;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
types=(RadioGroup)findviewById(R.id.types);
Button save=(Button)findViewById(R.id.save);
save.setOnClickListener(onSave);

ListView list=(ListView)findViewById(R.id.restaurants);

adapter=new RestaurantAdapter();
list.setAdapter(adapter);

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");
spec.setContent(R.id.restaurants);

spec.setIndicator("List", getResources()
.getDrawable(R.drawable.list));

getTabHost () .addTab(spec);

57

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

spec=getTabHost().newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost () .addTab(spec);

getTabHost().setCurrentTab(9);

list.setOnItemClickListener (onListClick);
}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
Restaurant r=new Restaurant();
r.setName(name.getText().toString());
r.setAddress(address.getText().toString());

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
r.setType("sit_down");
break;

case R.id.take_out:
r.setType("take_out");
break;

case R.id.delivery:
r.setType("delivery");
break;

}

adapter.add(r);
¥
s

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
Restaurant r=model.get(position);

name.setText(r.getName());
address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
types.check(R.id.sit_down);

else if (r.getType().equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);

58

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

}

getTabHost().setCurrentTab(1);
¥
s

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this, R.layout.row, model);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
RestaurantHolder holder=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
holder=new RestaurantHolder (row);
row.setTag(holder);

}

else {
holder=(RestaurantHolder)row.getTag();

}

holder.populateFrom(model.get(position));

return(row);
¥
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Restaurant r) {
name.setText(r.getName());
address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

}

59

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Splitting the Tab

else if (r.getType().equals("take_out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball_green);

¥

¥
}

}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Add a date in the restaurant model to note the last time you visited
the restaurant, then use either DatePicker or DatePickerDialog to
allow users to set the date when they create their restaurant objects.

« Try making a version of the activity that uses a viewFlipper and a
Button to flip from the list to the detail form, rather than using two
tabs.

Further Reading

The use of tabs in an Android activity is covered in the "Employing Fancy
Widgets" chapter of The Busy Coder's Guide to Android Development.

60

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

TUTORIAL 7

Menus and Messages

In this tutorial, we will add a EditText for a note to our details form and
restaurant model. Then, we will add an options menu that will display the
note as a Toast.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 06-Tabs edition of LunchList to use as a starting point.

Step #1: Add Notes to the Restaurant

First, our restaurant model does not have any spot for notes. Add a String
notes data member plus an associated getter and setter. Your resulting class
should look like:

package apt.tutorial;

public class Restaurant {
private String name="";
private String address="";
private String type="";
private String notes="";

public String getName() {
return(name);

61

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

}

}

public void setName(String name) {
this.name=name;

}

public String getAddress() {
return(address);

}

public void setAddress(String address) {
this.address=address;

}

public String getType() {
return(type);
}

public void setType(String type) {
this.type=type;

public String getNotes() {
return(notes);

}

public void setNotes(String notes) {
this.notes=notes;

}

public String toString() {
return(getName());
}

Step #2: Add Notes to the Detail Form

Next, we need LunchList to make use of the notes. To do this, first add the
following TableRow above the Save button in our TableLayout in
LunchList/res/layout/main.xml:

<TableRow>

<TextView android:text="Notes:" />

<EditText android:id="@+id/notes"
android:singlelLine="false"
android:gravity="top"
android:lines="2"
android:scrollHorizontally="false"
android:maxLines="2"
android:maxWidth="200sp"

62

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

/>
</TableRow>

Then, we need to modify the LunchList activity itself, by:

1. Adding another data member for the notes EditText widget defined
above

2. Find our notes EditText widget as part of onCreate(), like we do with
other EditText widgets

Save our notes to our restaurant in onsave
4. Restore our notes to the EditText in onListClick

At this point, you can recompile and reinstall the application to see your
notes field in action:

QSit—Down
. Delivery

\GIESM The food is excellent but the
wait staff is a bit strange...

Save

Figure 16. The notes field in the details form

63

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

Step #3: Define the Option Menu

Now, we need to create an option menu and arrange for it to be displayed
when the user clicks the [MENU] button.

The menu itself can be defined as a small piece of XML. Enter the following
as LunchList/res/menu/option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/toast"
android:title="Raise Toast"
android:icon="@drawable/toast"
/>
</menu>

This code relies upon an icon stored in LunchList/res/drawable/toast.png.
Find something suitable to use, preferably around 32px high.

Then, to arrange for the menu to be displayed, add the following method to
LunchlList:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

Note that you will also need to define imports for android.view.Menu and
android.view.MenuInflater for this to compile cleanly.

At this point, you can rebuild and reinstall the application. Click the
[MENU] button, from either tab, to see the option menu with its icon:

64

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

5 Ml @ 8:13am

.. Details

O‘ Foo Bar
1313 Mockingbird Lane

Raise Toast
Figure 17. The LunchList option menu, displayed, with one menu choice

Step #4: Show the Notes as a Toast

Finally, we need to get control when the user selects the Raise Toast menu
choice and display the notes in a Toast.

The problem is that, to do this, we need to know what restaurant to show.
So far, we have not been holding onto a specific restaurant except when we
needed it, such as when we populate the details form. Now, we need to
know our current restaurant, defined as the one visible in the detail
form...which could be none, if we have not yet saved anything in the form.

To make all of this work, do the following:

1. Add another data member, restaurant current, to hold the current
restaurant. Be sure to initialize it to null.

2. In onsave and onListClick, rather than declaring local restaurant
variables, use current to hold the restaurant we are saving (in

65

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

onsave) or have clicked on (in onListClick). You will need to change
all references to the old r variable to be current in these two objects.

3. Add imports for android.view.MenuItem and android.widget.Toast.

4. Add the following implementation of onOptionsItemSelected() to
your LunchList class:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();

}

Toast.makeText(this, message, Toast.LENGTH_LONG).show();

return(true);

}

return(super.onOptionsItemSelected(item));

}

Note how we will either display "No restaurant selected” (if current is null)
or the restaurant's notes, depending on our current state.

You can now rebuild and reinstall the application. Enter and save a
restaurant, with notes, then choose the Raise Toast option menu item, and
you will briefly see your notes in a Toast:

66

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

5 Ml @ 8:13am

Details

1313 Mockingbird Lane

The food is excellent but the wait staff is a
bit strange...

Figure 18. The Toast displayed, with some notes

The LunchList activity, as a whole, is shown below, incorporating all of the
changes outlined in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;

import android.view.Menu;

import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import android.widget.Toast;

import java.util.Arraylist;

import java.util.List;

67

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

public class LunchList extends TabActivity {
List<Restaurant> model=new ArrayList<Restaurant>();
RestaurantAdapter adapter=null;
EditText name=null;
EditText address=null;
EditText notes=null;
RadioGroup types=null;
Restaurant current=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findviewById(R.id.types);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener (onSave);
ListView list=(ListView)findViewById(R.id.restaurants);

adapter=new RestaurantAdapter();
list.setAdapter(adapter);

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()

.getDrawable(R.drawable.list));
getTabHost().addTab(spec);

spec=getTabHost().newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost () .addTab(spec);

getTabHost().setCurrentTab(9);

list.setOnItemClickListener (onListClick);
}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

68

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();

¥
Toast.makeText (this, message, Toast.LENGTH_LONG).show();

return(true);

}

return(super.onOptionsItemSelected(item));

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
current=new Restaurant();
current.setName(name.getText().toString());
current.setAddress(address.getText().toString());
current.setNotes(notes.getText().toString());

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
current.setType("sit_down");
break;

case R.id.take_out:
current.setType("take_out");
break;

case R.id.delivery:
current.setType("delivery");
break;

}

adapter.add(current);

}
1

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
current=model.get(position);

name.setText(current.getName());
address.setText(current.getAddress());
notes.setText(current.getNotes());

69

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

if (current.getType().equals("sit_down")) {
types.check(R.id.sit_down);

else if (current.getType().equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);

}

getTabHost().setCurrentTab(1);

}
1

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this, R.layout.row, model);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
RestaurantHolder holder=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
holder=new RestaurantHolder (row);
row.setTag(holder);

¥

else {
holder=(RestaurantHolder)row.getTag();

}

holder.populateFrom(model.get(position));

return(row);
}
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

70

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Menus and Messages

void populateFrom(Restaurant r) {
name.setText(r.getName());
address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball _red);

else if (r.getType().equals("take out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball green);

¥

¥
}
¥

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Try using an AlertDialog instead of a Toast to display the message.

« Try adding a menu option to switch you between tabs. In particular,
change the text and icon on the menu option to reflect the other tab
(i.e., on the List tab, the menu should show "Details" and the details
tab icon; on the Details tab, the menu should show "List" and the
List tab icon).

« Try creating an ErrorDialog designed to display exceptions in a
"pleasant” format to the end user. The ErrorDialog should also log
the exceptions via android.util.Log. Use some sort of runtime
exception (e.g., division by zero) for generating exceptions to pass
to the dialog.

Further Reading

You can learn more about menus - both option menus and context menus
- in the "Applying Menus" chapter of The Busy Coder's Guide to Android
Development. The use of a Toast is covered in the "Showing Pop-Up
Messages" chapter of the same book.

71

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 8
Sitting in the Background

In this tutorial, we will simulate having the LunchList do some background
processing in a secondary thread, updating the user interface via a progress
bar. While all of these tutorials are somewhat contrived, this one will be
more contrived than most, as there is not much we are really able to do in a
LunchList that would even require long processing in a background thread.
So, please forgive us if this tutorial is a bit goofy.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 07-MenusMessages edition of LunchList to use as a starting point.

Step #1: Initialize the Progress Bar

For this application, rather than use a ProgressBar widget, we will use the
progress bar feature of the Activity window. This will put a progress bar in
the title bar, rather than clutter up our layouts.

This requires a bit of initialization. Specifically, we need to add a line to
onCreate() that will request this feature be activated. We have to do this
before calling setContentview(), so we add it right after chaining to the
superclass:

73

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_PROGRESS) ;
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findviewById(R.id.types);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener(onSave);
ListView list=(ListView)findViewById(R.id.restaurants);

adapter=new RestaurantAdapter();
list.setAdapter(adapter);

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()

.getDrawable(R.drawable.list));
getTabHost().addTab(spec);

spec=getTabHost().newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost().addTab(spec);

getTabHost().setCurrentTab(0);

list.setOnItemClickListener (onListClick);

Also, add another data member, an int named progress.

Step #2: Create the Work Method

The theory of this demo is that we have something that takes a long time,
and we want to have that work done in a background thread and update
the progress along the way. So, the first step is to build something that will
run a long time.

74

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

To do that, first, implement a doSomeLongWork() method on LunchList as
follows:

private void doSomeLongWork(final int incr) {
SystemClock.sleep(250); // should be something more useful!
¥

Here, we sleep for 250 milliseconds, simulating doing some meaningful
work.

Then, create a private Runnable in LunchList that will fire off
doSomeLongWork() a number of times, as follows:

private Runnable longTask=new Runnable() {
public void run() {
for (int i=0;i<20;i++) {
doSomeLongWork (5600) ;
}
}
}s

Here, we just loop 20 times, so the overall background thread will run for 5
seconds.

Step #3: Fork the Thread from the Menu

Next, we need to arrange to do this (fake) long work at some point. The
easiest way to do that is add another menu choice. Update the
LunchList/res/menu/option.xml file to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/toast"
android:title="Raise Toast"
android:icon="@drawable/toast"
/>
<item android:id="@+id/run"
android:title="Run Long Task"
android:icon="@drawable/run"
/>
</menu>

75

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

This requires a graphic image in LunchList/res/drawable/run.png — find
something that you can use that is around 32px high.

Since the menu item is in the menu XML, we do not need to do anything
special to display the item - it will just be added to the menu automatically.
We do, however, need to arrange to do something useful when the menu
choice is chosen. So, update onOptionsItemSelected() in LunchList to look
like the following:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();

}

Toast.makeText (this, message, Toast.LENGTH_LONG).show();

return(true);

}
else if (item.getItemId()==R.id.run) {
new Thread(longTask).start();

}

return(super.onOptionsItemSelected(item));

}

You are welcome to recompile, reinstall, and run the application. However,
since our background thread does not do anything visible at the moment,
all you will see that is different is the new menu item:

76

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

5l @ 8:24am

.. Details

y i
Raise Toast Run Long Task
Figure 19. The Run Long Task menu item

Step #4: Manage the Progress Bar

Finally, we need to actually make use of the progress indicator. This
involves making it visible when we start our long-running task, updating it
as the task proceeds, and hiding it again when the task is complete.

First, make it visible by updating onOptionsItemSelected() to show it:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();
}
Toast.makeText(this, message, Toast.LENGTH_LONG).show();

return(true);

else if (item.getItemId()==R.id.run) {

77

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

setProgressBarVisibility(true);
progress=0;
new Thread(longTask).start();

return(true);

}

return(super.onOptionsItemSelected(item));

}

Notice the extra line that makes progress visible.

Then, we need to update the progress bar on each pass, so make this
change to doSomeLonghork():

private void doSomeLongWork(final int incr) {
runOnUiThread (new Runnable() {
public void run() {
progress+=incr;
setProgress(progress);

}
s

SystemClock.sleep(250); // should be something more useful!

}

Notice how we use runonuiThread() to make sure our progress bar update
occurs on the UI thread.

Finally, we need to hide the progress bar when we are done, so make this
change to our longTask Runnable:

private Runnable longTask=new Runnable() {
public void run() {
for (int i=0;i<20;i++) {
doSomeLongWork (500) ;

}

runOnUiThread (new Runnable() {
public void run() {
setProgressBarVisibility(false);
¥
1
}

s

78

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

At this point, you can rebuild, reinstall, and run the application. When you
choose the Run Long Task menu item, you will see the progress bar appear
for five seconds, progressively updated as the "work" gets done:

il @ 8:24am

Details

Figure 20. The progress bar in action

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Have the background thread also update some Ul element when the
work is completed, beyond dismissing the progress bar. Make sure
you arrange to update the Ul on the UI thread!

+ Instead of using Activity#runOnUiThread(), try using a Handler for
communication between the background thread and the UI thread.

« Instead of starting a Thread from the menu choice, have the Thread
be created in onCreate() and have it monitor a LinkedBlockingQueue
(from java.util.concurrent) as a source of work to be done. Create a
FakeJob that does what our current long-running method does, and

79

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sitting in the Background

a KillJob that causes the Thread to fall out of its queue-monitoring
loop.

Further Reading

Coverage of the Android concept of "the Ul thread" and tools like the
Handler for managing communication between threads can be found in the
"Dealing with Threads" chapter of The Busy Coder's Guide to Android
Development. You will also learn about AsyncTask in that chapter, which is
another important means of coordinating background and UI thread
operations.

If you are interested in Java threading in general, particularly the use of the
java.util.concurrent set of thread-management classes, the book Java
Concurrency in Practice is a popular source of information.

80

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601
http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 9

Life and Times

In this tutorial, we will make our background task take a bit longer, then
arrange to pause the background work when we start up another activity
and restart the background work when our activity regains control. This
pattern — stopping unnecessary background work when the activity is
paused - is a good design pattern and is not merely something used for a
tutorial.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 08-Threads edition of LunchList to use as a starting point.

Step #1: Lengthen the Background Work

First, let us make the background work take a bit longer, so we have a
bigger "window" in which to test whether our pause-and-resume logic
works. It is also helpful, in our case, to synchronize our loop with our
progress, so rather than counting e to 20 by 1, we should count from e to
10000 by 200, so the loop counter and progress are the same.

In the longTask Runnable, change the loop to look like this:

81

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

for (int i=progress;
i<10000;
i+=200) {
doSomeLonglWork (200) ;

}

Step #2: Pause in onPause()

Now, we need to arrange to have our thread stop running when the activity
is paused (e.g., some other activity has taken over the screen). Since threads
are relatively cheap to create and destroy, we can simply have our current
running thread stop and start a fresh one, if needed, in onResume().

While there are some deprecated methods on Thread to try to forcibly
terminate them, it is generally better to let the Thread stop itself by falling
out of whatever processing loop it is in. So, what we want to do is let the
background thread know the activity is not active.

To do this, first import java.util.concurrent.atomic.AtomicBoolean in
LunchList and add an AtomicBoolean data member named isActive, initially
set to true (new AtomicBoolean(true);).

Then, in the longTask Runnable, change the loop to also watch for the state
of isActive, falling out of the loop if the activity is no longer active:

for (int i=progress;
i<10000 && isActive.get();
i+=200) {
doSomeLongWork (200) ;
¥

Finally, implement onPause() to update the state of isActive:

@0verride
public void onPause() {
super.onPause();

isActive.set(false);

}

82

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

Note how we chain to the superclass in onPause() - if we fail to do this, we
will get a runtime error.

With this implementation, our background thread will run to completion
or until isActive is false, whichever comes first.

Step #3: Resume in onResume()

Now, we need to restart our thread if it is needed. It will be needed if the
progress is greater than e, indicating we were in the middle of our
background work when our activity was so rudely interrupted.

So, add the following implementation of onResume():

@Override
public void onResume() {
super.onResume();

isActive.set(true);

if (progress>0) {
startWork();
}
¥

This assumes we have pulled out our thread-starting logic into a
startWork () method, which you should implement as follows:

private void startWork() {
setProgressBarVisibility(true);
new Thread(longTask).start();

}

And you can change our menu handler to also use startWork():

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();

}

83

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

Toast.makeText(this, message, Toast.LENGTH_LONG).show();
return(true);

}
else if (item.getItemId()==R.id.run) {
startWork();

return(true);

}

return(super.onOptionsItemSelected(item));

}

Finally, we need to not reset and hide the progress indicator when our
background thread ends if it ends because our activity is not active.
Otherwise, we will never restart it, since the progress will be reset to e every
time. So, change longTask one more time, to look like this:

private Runnable longTask=new Runnable() {
public void run() {
for (int i=progress;
i<10000 && isActive.get();
i+=200) {
doSomeLongWork (200) ;
}

if (isActive.get()) {
runOnUiThread(new Runnable() {
public void run() {
setProgressBarVisibility(false);
progress=0;
}
3
¥
}
}s

What this does is reset the progress only if we are active when the work is
complete, so we are ready for the next round of work. If we are inactive, and
fell out of our loop for that reason, we leave the progress as-is.

At this point, recompile and reinstall the application. To test this feature:

1. Use the [MENU] button to run the long task.

84

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

2. While it is running, click the green phone button on the emulator
(lower-left corner of the "phone"). This will bring up the call log
activity and, as a result, pause our LunchList activity.

3. After a while, click the BACK button - you should see the LunchList
resuming the background work from the point where it left off.

Here is the full LunchList implementation, including the changes shown
above:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;

import android.os.SystemClock;
import android.view.Menu;

import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.view.Window;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import android.widget.Toast;

import java.util.Arraylist;

import java.util.List;

import java.util.concurrent.atomic.AtomicBoolean;

public class LunchList extends TabActivity {
List<Restaurant> model=new ArrayList<Restaurant>();
RestaurantAdapter adapter=null;
EditText name=null;
EditText address=null;
EditText notes=null;
RadioGroup types=null;
Restaurant current=null;
AtomicBoolean isActive=new AtomicBoolean(true);
int progress=0;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window. FEATURE_PROGRESS) ;

85

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener (onSave);
Listview list=(ListView)findViewById(R.id.restaurants);

adapter=new RestaurantAdapter();
list.setAdapter(adapter);

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()

.getDrawable(R.drawable.list));
getTabHost () .addTab(spec);

spec=getTabHost().newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost () .addTab(spec);

getTabHost().setCurrentTab(9);

list.setOnItemClickListener (onListClick);
}

@0verride
public void onPause() {

super.onPause();

isActive.set(false);

}

@0verride

public void onResume() {
super.onResume();

isActive.set(true);

if (progress>0) {
startWork();
¥

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {

86

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.toast) {
String message="No restaurant selected";

if (current!=null) {
message=current.getNotes();

¥
Toast.makeText (this, message, Toast.LENGTH_LONG).show();
return(true);

else if (item.getItemId()==R.id.run) {
startWork();

return(true);

}

return(super.onOptionsItemSelected(item));

}

private void startWork() {
setProgressBarVisibility(true);
new Thread(longTask).start();

}

private void doSomeLongWork(final int incr) {
runOnUiThread(new Runnable() {
public void run() {
progress+=incr;
setProgress(progress);
¥
s

SystemClock.sleep(250); // should be something more useful!
}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
current=new Restaurant();
current.setName(name.getText().toString());
current.setAddress(address.getText().toString());
current.setNotes(notes.getText().toString());

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
current.setType("sit_down");

87

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

break;

case R.id.take_out:
current.setType("take_out");
break;

case R.id.delivery:
current.setType("delivery");
break;

}

adapter.add(current);
¥
s

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
current=model.get(position);

name.setText(current.getName());
address.setText(current.getAddress());
notes.setText(current.getNotes());

if (current.getType().equals("sit_down")) {
types.check(R.id.sit_down);

else if (current.getType().equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);

}

getTabHost().setCurrentTab(1);

}
1

private Runnable longTask=new Runnable() {
public void run() {
for (int i=progress;
i<10000 && isActive.get();
i+=200) {
doSomeLongWork (200) ;
¥

if (isActive.get()) {
runOnUiThread (new Runnable() {
public void run() {
setProgressBarVisibility(false);
progress=0;

}

88

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

s
}
}
};

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
RestaurantAdapter() {
super(LunchList.this, R.layout.row, model);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
RestaurantHolder holder=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
holder=new RestaurantHolder(row);
row.setTag(holder);

¥

else {
holder=(RestaurantHolder)row.getTag();

}

holder.populateFrom(model.get(position));

return(row);
¥
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Restaurant r) {
name.setText(r.getName());

address.setText(r.getAddress());

if (r.getType().equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

else if (r.getType().equals("take_out")) {

89

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Life and Times

icon.setImageResource(R.drawable.ball_yellow);
¥
else {
icon.setImageResource(R.drawable.ball_green);
¥
}
}

}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Have the progress position be persisted via onSaveInstanceState().
When the activity is started in onCreate(), see if the background
work was in progress when the activity was shut down (i.e., progress
further than), and restart the background thread immediately if it
was. To test this, you can press <Ctrl>-<F12> to simulate opening the
keyboard and rotating the screen - by default, this causes your
activity to be destroyed and recreated, with onSaveInstanceState()
called along the way.

« Try moving the pause/resume logic to onStop() and onStart().

Further Reading

You can find material on the topics shown in this tutorial in the "Handling
Activity Lifecycle Events" chapter of The Busy Coder's Guide to Android
Development.

You are also strongly encouraged to read the class overview for Activity in
the JavaDocs.

20

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 10

A Few Good Resources

We have already used many types of resources in the preceding tutorials.
After reviewing what we have used so far, we set up an alternate layout for
our LunchList activity to be used when the activity is in landscape
orientation instead of portrait.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 09-Lifecycle edition of LunchList to use as a starting point.

Step #1: Review our Current Resources

Now that we have completed ten tutorials, this is a good time to recap what
resources we have been using along the way. Right now, LunchList has:

+ Seven icons in LunchList/res/drawable/, all PNGs

« Two XML files in LunchList/res/layout/, representing the main
LunchList Ul and the definition of each row

« One XML file in LunchList/res/menu/, containing our option menu
definition

91

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Few Good Resources

« The system-created strings.xml file in LunchList/res/values/, which
presently just holds the name of our application:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name">LunchList</string>

</resources>

Step #2: Create a Landscape Layout

In the emulator, with LunchList running and showing the details form, press
<Ctrl>-<F12>. This simulates opening and closing the keyboard, causing the
screen to rotate to landscape and portrait, respectively. Our current layout
is not very good in landscape orientation:

Ml @ s:25am

Details

[FNT
Figure 21. The LunchlList in landscape orientation

So, let us come up with an alternative layout that will work better.

First, create a LunchList/res/layout-1land/ directory in your project. This will
hold layout files that we wish to use when the device (or emulator) is in the

landscape orientation.

Then, copy LunchList/res/layout/main.xml into LunchList/res/layout-land/,
so we can start with the same layout we were using for portrait mode.

Then, change the layout to look like this:

92

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Few Good Resources

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill parent">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<FrameLayout android:id="@android:id/tabcontent”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ListView android:id="@+id/restaurants”
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
</LinearLayout>
<TablelLayout android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:stretchColumns="1,3"
android:paddingTop="4px"

>
<TableRow>
<TextView
android:text="Name:"
android:paddingRight="2px"
/>
<EditText
android:id="@+id/name"
android:maxWidth="140sp"
/>
<TextView
android:text="Address:"
android:paddinglLeft="2px"
android:paddingRight="2px"
/>
<EditText
android:id="@+id/addr"
android:maxWidth="140sp"
/>
</TableRow>
<TableRow>

<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">

93

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Few Good Resources

<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
<TextView
android:text="Notes:"
android:paddinglLeft="2px"
/>
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:orientation="vertical”
>
<EditText android:id="@+id/notes"
android:singlelLine="false"
android:gravity="top"
android:1lines="3"
android:scrollHorizontally="false"
android:maxLines="3"
android:maxWidth="140sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Save"
/>
</LinearLayout>
</TableRow>
</TableLayout>
</FrameLayout>
</LinearLayout>
</TabHost>

In this revised layout, we:

« Switched to four columns in our table, with columns #1 and #3 as
stretchable

+ Put the name and address labels and fields on the same row

+ Put the type, notes, and Save button on the same row, with the
notes and Save button stacked via a LinearLayout

« Made the notes three lines instead of two, since we have the room

94

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Few Good Resources

« Fixed the maximum width of the EditText widgets to 140 scaled
pixels (sp), so they do not automatically grow outlandishly large if
we type a lot

« Added a bit of padding in places to make the placement of the
labels and fields look a bit better

If you rebuild and reinstall the application, then run it in landscape mode,
you will see a form that looks like this:

Ml & 8:25m

Details

Notes:

‘Delivery

Figure 22. The LunchlList in landscape orientation, revised

Note that we did not create a LunchList/res/layout-1land/ edition of our row
layout (row.xml). Android, upon not finding one in LunchList/res/layout-
land/, will fall back to the one in LunchList/res/layout/. Since we do not
really need our row to change, we can leave it as-is.

Note that when you change the screen orientation, your existing
restaurants will vanish. That is because we are not persisting them
anywhere, and rotating the screen by default destroys and recreates the
activity. These issues will be addressed in later tutorials.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Find some other icons to use and create a LunchList/res/drawable-
land directory with the replacement icons, using the same names as

95

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Few Good Resources

found in LunchList/res/drawable. See if exposing the keyboard
swaps the icons as well as the layouts.

« Change the text of the labels in our main layout file to be string
resources. You will need to add those values to
LunchList/res/values/strings.xm1 and reference them in
LunchList/res/layout/main.xml.

+ Use onSaveInstanceState() to save the current contents of the details
form, and restore those contents in oncCreate() if an instance state is
available (e.g., after the screen was rotated). Note how this does not
cover the list - you will still lose all existing restaurants on a
rotation event. However, in a later tutorial, we will move that data
to the database, which will solve that problem.

Further Reading

You can learn more about resource sets, particularly with respect to Ul
impacts, in the "Working with Resources" chapter of The Busy Coder's
Guide to Android Development.

You will also find "Table 2" in the Alternate Resources section of the
Android developer guide to be of great use for determining the priority of
different resource set suffixes.

96

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://developer.android.com/guide/topics/resources/resources-i18n.html#AlternateResources
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 11

The Restaurant Store

In this tutorial, we will create a database and table for holding our
restaurant data and switch from our ArrayAdapter to a CursorAdapter, to
make use of that database. This will allow our restaurants to persist from
run to run of LunchList.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 10-Resources edition of LunchList to use as a starting point.

Step #1: Create a Stub SQLiteOpenHelper

First, we need to be able to define what our database name is, what the
schema is for the table for our restaurants, etc. That is best wrapped up in a
SQLiteOpenHelper implementation.

So, create LunchList/src/apt/tutorial/RestaurantHelper.java, and enter in
the following code:

package apt.tutorial;

import android.content.Context;
import android.database.SQLException;

97

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME="lunchlist.db";
private static final int SCHEMA_VERSION=1;

public RestaurantHelper (Context context) {
super(context, DATABASE_NAME, null, SCHEMA_ VERSION);
}

@0verride
public void onCreate(SQLiteDatabase db) {
}

@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

}

}

This says that our database name is lunchlist.db, we are using the first
version of the schema...and not much else. However, the project should still
compile cleanly after adding this class.

Step #2: Manage our Schema

Next, we need to flesh out the oncCreate() and onUpgrade() methods in
RestaurantHelper, to actually create the schema we want.

To do this, add an import for android.database.Cursor and use the following
implementation of onCreate():

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL ("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");
}

We are seeing if there already is a restaurant table, and if not, executing a
SQL statement to create it.

For onuUpgrade(), there is nothing we really need to do now, since this
method will not be executed until we have at least two schema versions. So

98

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

far, we barely have our first schema version. So, just put a comment to that
effect in onUpgrade (), perhaps something like this:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
// no-op, since will not be called until 2nd schema
// version exists

}

In a production system, of course, we would want to make a temporary
table, copy our current data to it, fix up the real table's schema, then
migrate the data back.

Step #3: Remove Extraneous Code from LunchList

With our menu and thread samples behind us, we can get rid of our option
menu and simplify the code. Get rid of the following items from your
implementation of LunchList:

+ The isActive and progress data members
+ The call to requestwindowFeature() in onCreate()

« The implementations of onPause(), onResume(),
onCreateOptionsMenu(), and onOptionsItemSelected()

« The startWork() and doSomeLongWork() methods, along with the
longTask Runnable

Step #4: Get Access to the Helper

We will be using RestaurantHelper as our bridge to the database. Hence,
LunchList will need a RestaurantHelper, to retrieve existing restaurants and
add new ones.

In order to really use the database, though, we need to open and close
access to it from LunchList.

First, create a RestaurantHelper data member named helper.

929

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

Then, in onCreate() in LunchList, after the call to setContentview(), initialize
RestaurantHelper like this:

|he1per:new RestaurantHelper(this); |

Finally, implement onDestroy() on LunchList as follows:

@Override
public void onDestroy() {
super.onDestroy();

helper.close();

}

All we do in onDestroy(), besides chain to the superclass, is close the helper

we opened in onCreate(). This will close the underlying SQLite database as
well.

Step #5: Save a Restaurant to the Database

We are going to be replacing our restaurant object model (and its
associated ArrayList) with the database and a cursor representing the roster
of restaurants. This will involve adding some more logic to RestaurantHelper
to aid in this process, while also starting to use it from LunchList.

First, add an import statement for android.content.Contentvalues to
RestaurantHelper.

Then, implement insert() on RestaurantHelper as follows:

public void insert(String name, String address,
String type, String notes) {
ContentValues cv=new ContentValues();

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put("notes", notes);

getWritableDatabase().insert("restaurants”, "name", cv);

100

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

With this code, we pour the individual pieces of a restaurant (e.g., its name)
into a Contentvalues and tell the sQLiteDatabase to insert it into the
database. We call getwritableDatabase() to get at the sQLiteDatabase. Our
helper will automatically open the database in write mode if it has not
already been opened by the helper before.

Finally, we need to actually call insert() at the appropriate time. Right
now, our Save button adds a restaurant to our RestaurantAdapter — now, we
need it to persist the restaurant to the database. So, modify the onsave
object in LunchList to look like this:

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;
case R.id.take_out:
type="take_out";
break;
case R.id.delivery:
type="delivery";
break;

}

helper.insert(name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
¥
s

We simply get the four pieces of data from their respective widgets and call
insert().

Step #6: Get the List of Restaurants from the
Database

This puts restaurants into the database. Presumably, it would be useful to
get them back out sometime. Hence, we need some logic that can query the
database and return a cursor with columnar data from our restaurant table.
A cursor in Android is much like a cursor in other database access libraries

101

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

- it is an encapsulation of the result set of the query, plus the query that
was used to create it.

To do this, add the following method to RestaurantHelper:

public Cursor getAll() {
return(getReadableDatabase()
.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",

}

null));

Here, we get access to the underlying sqQLiteDatabase (opening it in read
mode if it is not already open) and call rawQuery(), passing in a suitable
query string to retrieve all restaurants, sorted by name.

We will also need to have some way to get the individual pieces of data out
of the cursor (e.g., name). To that end, add a few getter-style methods to
RestaurantHelper that will retrieve the proper columns from a cursor
positioned on the desired row:

public String getName(Cursor c) {
return(c.getString(1));
¥

public String getAddress(Cursor c) {
return(c.getString(2));
¥

public String getType(Cursor c) {
return(c.getString(3));

}

public String getNotes(Cursor c) {
return(c.getString(4));
¥

102

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

Step #7: Change our Adapter and Wrapper

Of course, our existing RestaurantAdapter extends ArrayAdapter and cannot
use a cCursor very effectively. So, we need to change our RestaurantAdapter
into something that can use a Cursor...such as a CursorAdapter. Just as an
ArrayAdapter creates a View for every needed item in an array or List,
CursorAdapter creates a View for every needed row in a Cursor.

A cCursorAdapter does not use getview(), but rather bindview() and
newview(). The newview() method handles the case where we need to inflate
a new row; bindview() is when we are recycling an existing row. So, our
current getview() logic needs to be split between bindview() and newview().

Replace our existing RestaurantAdapter implementation in LunchList with
the following:

class RestaurantAdapter extends CursorAdapter {
RestaurantAdapter(Cursor c) {
super(LunchList.this, c);

}

@0verride
public void bindView(View row, Context ctxt,
Cursor c) {
RestaurantHolder holder=(RestaurantHolder)row.getTag();

holder.populateFrom(c, helper);
}

@0Override
public View newView(Context ctxt, Cursor c,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
RestaurantHolder holder=new RestaurantHolder(row);

row.setTag(holder);

return(row);

Then, you need to make use of this refined adapter, by changing the model
in LunchList from an ArrayList to a Cursor. After you have changed that data

103

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

member, replace the current onCreate() code that populates our
RestaurantAdapter with the following:

model=helper.getAll();
startManagingCursor (model);
adapter=new RestaurantAdapter(model);
list.setAdapter(adapter);

After getting the cursor from getAll(), we call startManagingCursor(), so
Android will deal with refreshing its contents if the activity is paused and
resumed. Then, we hand the cursor off to the RestaurantAdapter.

Also, you will need to import android.content.Context and
android.widget.CursorAdapter in LunchlList.

Then, we need to update RestaurantHolder to work with cursor objects
rather than a restaurant directly. Replace the existing implementation with
the following:

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Cursor c, RestaurantHelper helper) {
name.setText(helper.getName(c));
address.setText(helper.getAddress(c));

if (helper.getType(c).equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

¥

else if (helper.getType(c).equals("take out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball_green);

}

104

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

Step #8: Clean Up Lingering ArrayList References

Since we changed our model in LunchList from an ArrayList to a Cursor,
anything that still assumes an ArrayList will not work.

Notably, the onListClick listener object tries to obtain a restaurant from the
ArrayList. Now, we need to move the cursor to the appropriate position and
get a restaurant from that. So, modify onListClick to use the cursor and the
property getter methods on RestaurantHelper instead:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
model .moveToPosition(position);
name.setText (helper.getName(model));
address.setText(helper.getAddress(model));
notes.setText (helper.getNotes(model));

if (helper.getType(model).equals("sit_down")) {
types.check(R.id.sit_down);

}
else if (helper.getType(model).equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);

}

getTabHost().setCurrentTab(1);
}
}s

At this point, you can recompile and reinstall your application. If you try
using it, it will launch and you can save restaurants to the database.
However, you will find that the list of restaurants will not update unless you
exit and restart the LunchList activity.

105

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

Step #9: Refresh Our List

The reason the list does not update is because neither the cursor nor the
CursorAdapter realize that the database contents have changed when we
save our restaurant. To resolve this, add model.requery(); immediately after
the call to insert() in the onsave object in LunchList. This causes the cursor
to reload its contents from the database, which in turn will cause the
CursorAdapter to redisplay the list.

Rebuild and reinstall the application and try it out. You should have all the
functionality you had before, with the added benefit of restaurants living
from run to run of LunchList.

Here is an implementation of LunchList that incorporates all of the changes
shown in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.content.Context;
import android.database.Cursor;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.view.LlLayoutInflater;
import android.widget.AdapterView;
import android.widget.CursorAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;

public class LunchList extends TabActivity {
Cursor model=null;
RestaurantAdapter adapter=null;
EditText name=null;
EditText address=null;
EditText notes=null;
RadioGroup types=null;
RestaurantHelper helper=null;

@0verride
public void onCreate(Bundle savedInstanceState) {

106

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findviewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findvViewById(R.id.types);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener(onSave);
ListView list=(ListView)findViewById(R.id.restaurants);

model=helper.getAll();
startManagingCursor (model);
adapter=new RestaurantAdapter(model);
list.setAdapter(adapter);

TabHost.TabSpec spec=getTabHost().newTabSpec("tagl");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()

.getDrawable(R.drawable.list));
getTabHost () .addTab(spec);

spec=getTabHost().newTabSpec("tag2");

spec.setContent(R.id.details);

spec.setIndicator("Details", getResources()
.getDrawable(R.drawable.restaurant));

getTabHost().addTab(spec);

getTabHost().setCurrentTab(9);

list.setOnItemClickListener (onListClick);
}

@0verride
public void onDestroy() {
super.onDestroy();

helper.close();

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;

107

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

case R.id.take_out:
type="take_out";
break;

case R.id.delivery:
type="delivery";
break;

}

helper.insert(name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
model.requery();
}
s

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
model.moveToPosition(position);
name.setText(helper.getName(model));
address.setText(helper.getAddress(model));
notes.setText (helper.getNotes(model));

if (helper.getType(model).equals("sit_down")) {
types.check(R.id.sit_down);

else if (helper.getType(model).equals("take out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);
¥

getTabHost().setCurrentTab(1);
¥
s

class RestaurantAdapter extends CursorAdapter {
RestaurantAdapter(Cursor c) {
super(LunchList.this, c);

}

@Override
public void bindView(View row, Context ctxt,
Cursor c¢) {
RestaurantHolder holder=(RestaurantHolder)row.getTag();

holder.populateFrom(c, helper);
b

@Override
public View newView(Context ctxt, Cursor c,

108

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
RestaurantHolder holder=new RestaurantHolder(row);

row.setTag(holder);

return(row);
¥
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Cursor c, RestaurantHelper helper) {
name.setText(helper.getName(c));
address.setText(helper.getAddress(c));

if (helper.getType(c).equals("sit_down")) {
icon.setImageResource(R.drawable.ball _red);

}

else if (helper.getType(c).equals("take out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball green);

¥

¥
}
¥

Similarly, here is a full implementation of RestaurantHelper that contains
the modifications from this tutorial:

package apt.tutorial;

import android.content.Context;

import android.content.ContentValues;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteOpenHelper;

109

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME="lunchlist.db";
private static final int SCHEMA_VERSION=1;

public RestaurantHelper (Context context) {
super(context, DATABASE_NAME, null, SCHEMA_VERSION);

}

@0verride
public void onCreate(SQLiteDatabase db) {
db.execSQL ("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");

}

@0verride

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
// no-op, since will not be called until 2nd schema
// version exists

}

public Cursor getAll() {
return(getReadableDatabase()
.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",
null));
}

public void insert(String name, String address,
String type, String notes) {
ContentValues cv=new ContentValues();

cv.put(“name", name);
cv.put("address", address);
cv.put(“"type", type);
cv.put("notes"”, notes);

getWritableDatabase().insert("restaurants", "name", cv);

}

public String getName(Cursor c) {
return(c.getString(1));
3

public String getAddress(Cursor c) {
return(c.getString(2));
}

public String getType(Cursor c) {
return(c.getString(3));
}

110

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

The Restaurant Store

public String getNotes(Cursor c) {
return(c.getString(4));

}

}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Download the database off the emulator (or device) and examine it
using a SQLite client program. You can use adb pull to download
/data/data/apt.tutorial/databases/lunchlist.db, or use Eclipse or
DDMS to browse the emulator graphically to retrieve the same file.

« Use adb shell and the sqlite3 program built into the emulator to
examine the database in the emulator itself, without downloading
it.

Further Reading

You can learn more about how Android and SQLite work together in the
"Managing and Accessing Local Databases" chapter of The Busy Coder's
Guide to Android Development.

However, if you are looking for more general documentation on SQLite
itself, such as it's particular flavor of SQL, you will want to use the SQLite
site, or perhaps The Definitive Guide to SQLite.

111

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://www.amazon.com/Definitive-Guide-SQLite-Mike-Owens/dp/1590596730
http://sqlite.org/
http://sqlite.org/
http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 12

Getting More Active

In this tutorial, we will add support for both creating new restaurants and
editing ones that were previously entered. Along the way, we will get rid of
our tabs, splitting the application into two activities: one for the list, and
one for the detail form.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 11-Database edition of LunchList to use as a starting point.

Also, for this specific tutorial, since there is a lot of cutting and pasting, you
may wish to save off a copy of your current work before starting in on the
modifications, so you can clip code from the original and paste it where it is
needed.

Step #1: Create a Stub Activity

The first thing we need to do is create an activity to serve as our detail form.
In a flash of inspiration, let's call it DetailForm. So, create a
LunchList/src/apt/tutorial/DetailForm.java file with the following content:

113

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;

public class DetailForm extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// setContentView(R.layout.main);
}
)

This is just a stub activity, except it has the setContentview() line
commented out. That is because we do not want to use main.xml, as that is
the layout for LunchList. Since we do not have another layout ready yet, we
can just comment out the line. As we will see, this is perfectly legal, but it
means the activity will have no Ul

Step #2: Launch the Stub Activity on List Click

Now, we need to arrange to display this activity when the user clicks on a
LunchList list item, instead of flipping to the original detail form tab in
LunchlList.

First, we need to add DetailForm to the AndroidManifest.xml file, so it is
recognized by the system as being an available activity. Change the
manifest to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".DetailForm">
</activity>

114

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

</application>
</manifest>

Notice the second <activity> element, referencing the DetailForm class.
Also note that it does not need an <intent-filter>, since we will be
launching it ourselves rather than expecting the system to launch it for us.

Then, we need to start this activity when the list item is clicked. That is
handled by our onListClick listener object. So, replace our current
implementation with the following:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent,
View view, int position,
long id) {
Intent i=new Intent(LunchList.this, DetailForm.class);

startActivity(i);
}

s

Here we create an Intent that points to our DetailForm and call
startActivity() on that Intent. You will need to add an import for
android.content.Intent to LunchList.

At this point, you should be able to recompile and reinstall the application.
If you run it and click on an item in the list, it will open up the empty
DetailForm. From there, you can click the BACK button to return to the
main LunchList activity.

Step #3: Move the Detail Form Ul

Now, the shredding begins — we need to start moving our detail form
smarts out of LunchList and its layout to DetailForm.

First, create a LunchList/res/layout/detail_form.xml, using the detail form
from LunchList/res/layout/main.xml as a basis:

115

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name" />
</TableRow>
<TableRow>
<TextView android:text="Address:" />
<EditText android:id="@+id/addr" />
</TableRow>
<TableRow>
<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">
<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
</TableRow>
<TableRow>
<TextView android:text="Notes:" />
<EditText android:id="@+id/notes"
android:singlelLine="false"
android:gravity="top"
android:lines="2"
android:scrollHorizontally="false"
android:maxLines="2"
android:maxWidth="200sp"
/>
</TableRow>
<Button android:id="@+id/save"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Save"
/>
</TablelLayout>

This is just the detail form turned into its own standalone layout file.

Next, un-comment the setContentVview() call in onCreate() in DetailForm and
have it load this layout:

|setContentView(R.layout.detail_form); |

116

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

Then, we need to add all our logic for accessing the various form widgets,
plus an onsave listener for our Save button, plus all necessary imports.

Set the import list for betailForm to be:

import android.app.Activity;
import android.database.Cursor;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;

Then, add the following data members to the DetailForm class:

EditText name=null;

EditText address=null;
EditText notes=null;
RadioGroup types=null;
RestaurantHelper helper=null;

Then, copy the widget finders and stuff from onCreate() in LunchList into
the same spot in DetailForm:

helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findvViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

Button save=(Button)findViewById(R.id.save);

Finally, add the onsave listener object with a subset of the implementation
from LunchList:

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;
case R.id.take_out:

117

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

type="take_out";
break;

case R.id.delivery:
type="delivery";
break;

¥
}
}s

Step #4: Clean Up the Original Ul

Now we need to clean up LunchList and its layout to reflect the fact that we
moved much of the logic over to betailForm.

First, get rid of the tabs and the detail form from
LunchList/res/layout/main.xml, and alter the Listview's android:id to
something suitable for ListActivity, leaving us with:

<?xml version="1.0" encoding="utf-8"?>

<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/1list"
android:layout_width="fill_parent"
android:layout_height="fill_parent”

/>

Next, delete LunchList/res/layout_land/main.xml, as we will revisit
landscape layouts in a later tutorial.

At present, LunchList extends TabActivity, which is no longer what we need.
Change it to extend ListActivity instead, adding an import for
android.app.ListActivity.

Finally, get rid of the code from oncCreate() that sets up the tabs and the
Save button, since they are no longer needed. Also, you no longer need to
find the Listview widget, since you can call setListAdapter() on the
ListActivity to associate your RestaurantAdapter with the ListActivity's
Listview. The resulting onCreate() implementation should look like:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

118

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

setContentView(R.layout.main);
helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

model=helper.getAll();
startManagingCursor (model);
adapter=new RestaurantAdapter(model);
setListAdapter(adapter);

Step #5: Pass the Restaurant _ID

Now, let's step back a bit and think about what we are trying to achieve.

We want to be able to use DetailForm for both adding new restaurants and
editing an existing restaurant. DetailForm needs to be able to tell those two
scenarios apart. Also, DetailForm needs to know which item is to be edited.

To achieve this, we will pass an "extra" in our Intent that launches
DetailForm, containing the ID (_id column) of the restaurant to edit. We will
use this if the DetailForm was launched by clicking on an existing
restaurant. If DetailForm receives an Intent lacking our "extra", it will know
to add a new restaurant.

First, we need to define a name for this "extra", so add the following data
member to LunchList:

|public final static String ID_EXTRA="apt.tutorial._ID"; |

We use the apt.tutorial namespace to ensure our "extra" name will not
collide with any names perhaps used by the Android system.

Next, convert the onListClick object to an onListItemClick() method
(available to us on ListActivity) and have it add this "extra" to the Intent it
uses to start the DetailForm:

119

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

public void onListItemClick(ListView list, View view,
int position, long id) {
Intent i=new Intent(LunchList.this, DetailForm.class);

i.putExtra(ID_EXTRA, String.valueOf(id));
startActivity(i);

}

The _id of the restaurant happens to be provided to us as the fourth
parameter to onListItemClick(). We turn it into a String because DetailForm
will want it in string format, as we will see shortly.

Next, add the following data member to DetailForm:

|String restaurantId=null; |

This will be null if we are adding a new restaurant or the string form of the
ID if we are editing an existing restaurant.

Finally, add the following line to the end of onCreate() in DetailForm:

|restaurantId:getIntent().getStringExtra(LunchList.ID_EXTRA);

This will pull out our "extra", or leave restaurantId as null if there is no
such "extra".

Step #6: Load the Restaurant Into the Form

In the case where we are editing an existing restaurant, we need to load that
restaurant from the database, then load it into the DetailForm.

Since we created a RestaurantHelper in onCreate(), we need to close it again,
so add an onDestroy() implementation to DetailForm as follows:

@Override
public void onDestroy() {
super.onDestroy();

helper.close();

}

120

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

Now that we have a handle to the database, we need to load a restaurant
given its ID. So, add the following method to RestaurantHelper:

public Cursor getById(String id) {
String[] args={id};

return(getReadableDatabase()
.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
WHERE _ID=?",
args));

}

Then, add the following lines to the bottom of onCreate() in DetailForm, to
load in the specified restaurant into the form if its ID was specified in the
Intent:

if (restaurantId!=null) {
load();

}

The code snippet above references a load() method, which we need to add
to DetailForm, based off of code originally in LunchList:

private void load() {
Cursor c=helper.getById(restaurantId);

c.moveToFirst();
name.setText(helper.getName(c));
address.setText(helper.getAddress(c));
notes.setText (helper.getNotes(c));

if (helper.getType(c).equals("sit_down")) {
types.check(R.id.sit_down);

}
else if (helper.getType(c).equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);
}

c.close();

}

121

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

Step #7: Add an "Add" Menu Option

We have most of the logic in place to edit existing restaurants. However, we
still need to add a menu item for adding a new restaurant.

To do this, change LunchList/res/menu/option.xml to replace the existing
options with one for add:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add"
/>
</menu>

Note that the add menu item references an icon supplied by Android. You
can find a copy of this icon in your Android SDK. Go to the directory where
you installed the SDK, and go into the platforms/ directory inside of it.
Then, go into the directory for some version of Android (e.g., android-8/),
and into data/res/drawable-mdpi/. You will find ic_menu_add.png in there.

Now that we have the menu option, we need to adjust our menu handling
to match. Restore our older implementation of onCreateOptionMenu() to
LunchList:

public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

Then, add an onoptionsItemSelected() implementation in LunchList with the
following:

public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.add) {
startActivity(new Intent(LunchList.this, DetailForm.class));

return(true);

}

122

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

return(super.onOptionsItemSelected(item));

}

Here, we launch the DetailfForm activity without our "extra", signalling to
DetailForm that it is to add a new restaurant. You will need imports again for
android.view.Menu, android.view.MenuInflater, and android.view.MenuItem.

Step #8: Detail Form Supports Add and Edit

Last, but certainly not least, we need to have DetailForm properly do useful
work when the Save button is clicked. Specifically, we need to either insert
or update the database. It would also be nice if we dismissed the DetailForm
at that point and returned to the main LunchList activity.

To accomplish this, we first need to add an update() method to
RestaurantHelper that can perform a database update:

public void update(String id, String name, String address,
String type, String notes) {
ContentValues cv=new ContentValues();
String[] args={id};

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put(“notes", notes);

getWritableDatabase().update("restaurants”, cv, "_ID=?",
args);

Then, we need to adjust our onSave listener object in DetailForm to call the
right method (save() or update()) and finish() our activity:

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;
case R.id.take_out:
type="take_out";

123

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

s

}

break;

case R.id.delivery:
type="delivery";
break;

}

if (restaurantId==null) {
helper.insert(name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
¥
else {
helper.update(restaurantId, name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());

}

finish();

At this point, you should be able to recompile and reinstall the application.
When you first bring up the application, it will no longer show the tabs:

Za Ml & 8:53am

Foo Bar
1313 Mockingbird Lane

Sir Lunch-A-Lot's
1525 Wilson Blvd.

Figure 23. The new-and-improved LunchlList

124

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

However, it will have an "add" menu option:

&5 Ml @ 8:53 am

..‘ Foo Bar
b 1313 Mockingbird Lane

. Sir Lunch-A-Lot's
1525 Wilson Blvd.

Add
Figure 24. The LunchList option menu, with Add

If you choose the "add" menu option, it will bring up a blank petailForm:

125

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

&5 Ml @ 8:53 am

.Sit—Down

Figure 25. The DetailForm activity

If you fill out the form and click Save, it will return you to the LunchList and
immediately shows the new restaurant (courtesy of our using a managed
Cursor in LunchList):

126

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

5 Ml @ 8:54am

Foo Bar
1313 Mockingbird Lane

Sir Lunch-A-Lot's
1525 Wilson Blvd.

Third Time's the Charm
Behind You, On Your Left. No, Your Ot...

Figure 26. The LunchList with an added Restaurant

If you click an existing restaurant, it will bring up the betailfForm for that
object:

127

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

&5 Ml @ 8:54 am

eSit-Down

Figure 27. The DetailForm on an existing Restaurant

Making changes and clicking Save will update the database and list:

128

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

&5 Ml @ 8:55 am

Foo Bar!!!
1313 Mockingbird Lane

Sir Lunch-A-Lot's
1525 Wilson Blvd.

Third Time's the Charm
Behind You, On Your Left. No, Your Ot...

Figure 28. The LunchList with an edited Restaurant

Here is one implementation of LunchList that incorporates all of this
tutorial's changes:

package apt.tutorial;

import android.app.ListActivity;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.os.Bundle;

import android.view.Menu;

import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;

import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.CursorAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;

129

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

public class LunchList extends ListActivity {
public final static String ID_EXTRA="apt.tutorial._ID";
Cursor model=null;
RestaurantAdapter adapter=null;
EditText name=null;
EditText address=null;
EditText notes=null;
RadioGroup types=null;
RestaurantHelper helper=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

model=helper.getAll();
startManagingCursor (model);
adapter=new RestaurantAdapter(model);
setListAdapter(adapter);

}

@Override
public void onDestroy() {
super.onDestroy();

helper.close();
}

@0verride
public void onListItemClick(ListView list, View view,
int position, long id) {
Intent i=new Intent(LunchList.this, DetailForm.class);

i.putExtra(ID_EXTRA, String.valueOf(id));
startActivity(i);

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@0verride
public boolean onOptionsItemSelected(MenuItem item) {

130

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

if (item.getItemId()==R.id.add) {
startActivity(new Intent(LunchList.this, DetailForm.class));

return(true);

}

return(super.onOptionsItemSelected(item));

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;
case R.id.take_out:
type="take_out";
break;
case R.id.delivery:
type="delivery";
break;

}

helper.insert(name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
model.requery();
¥
s

class RestaurantAdapter extends CursorAdapter {
RestaurantAdapter(Cursor c) {
super(LunchList.this, c);

}

@Override
public void bindView(View row, Context ctxt,
Cursor c¢) {
RestaurantHolder holder=(RestaurantHolder)row.getTag();

holder.populateFrom(c, helper);
}

@Override
public View newView(Context ctxt, Cursor c,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
RestaurantHolder holder=new RestaurantHolder(row);

row.setTag(holder);

131

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

return(row);

}
}

static class RestaurantHolder {
private TextView name=null;
private TextView address=null;
private ImageView icon=null;
private View row=null;

RestaurantHolder (View row) {
this.row=row;

name=(TextView)row.findViewById(R.id.title);
address=(TextView)row.findViewById(R.id.address);
icon=(ImageView)row.findViewById(R.id.icon);

}

void populateFrom(Cursor c, RestaurantHelper helper) {
name.setText(helper.getName(c));
address.setText(helper.getAddress(c));

if (helper.getType(c).equals("sit_down")) {
icon.setImageResource(R.drawable.ball_red);

¥

else if (helper.getType(c).equals("take_ out")) {
icon.setImageResource(R.drawable.ball_yellow);

¥

else {
icon.setImageResource(R.drawable.ball_green);

¥

b
}
¥

Here is one implementation of DetailForm that works with the revised
LunchlList:

package apt.tutorial;

import android.app.Activity;
import android.database.Cursor;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;

public class DetailForm extends Activity {
EditText name=null;
EditText address=null;

132

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

EditText notes=null;
RadioGroup types=null;
RestaurantHelper helper=null;
String restaurantId=null;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.detail_form);

helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findvViewById(R.id.types);

Button save=(Button)findViewById(R.id.save);
save.setOnClickListener(onSave);
restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

if (restaurantId!=null) {
load();
¥
}

@0verride
public void onDestroy() {
super.onDestroy();

helper.close();

}

private void load() {
Cursor c=helper.getById(restaurantId);

c.moveToFirst();

name.setText (helper.getName(c));
address.setText(helper.getAddress(c));
notes.setText (helper.getNotes(c));

if (helper.getType(c).equals("sit_down")) {
types.check(R.id.sit_down);

}
else if (helper.getType(c).equals("take_out")) {
types.check(R.id.take_out);

else {
types.check(R.id.delivery);
¥

c.close();

133

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

}

private View.OnClickListener onSave=new View.OnClickListener() {
public void onClick(View v) {
String type=null;

switch (types.getCheckedRadioButtonId()) {
case R.id.sit_down:
type="sit_down";
break;
case R.id.take_out:
type="take_out";
break;
case R.id.delivery:
type="delivery";
break;

}

if (restaurantId==null) {
helper.insert(name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
¥
else {
helper.update(restaurantId, name.getText().toString(),
address.getText().toString(), type,
notes.getText().toString());
¥

finish();

1

And, here is an implementation of RestaurantHelper with the
needed by DetailForm:

changes

package apt.tutorial;

import android.content.Context;

import android.content.ContentValues;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME="1lunchlist.db";
private static final int SCHEMA_VERSION=1;

public RestaurantHelper(Context context) {

134

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

super(context, DATABASE_NAME, null, SCHEMA VERSION);
}

@Override
public void onCreate(SQLiteDatabase db) {
db.execSQL ("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");
}

@0verride

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
// no-op, since will not be called until 2nd schema
// version exists

}

public Cursor getAll() {
return(getReadableDatabase()

.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",

}

public Cursor getById(String id) {
String[] args={id};

null));

return(getReadableDatabase()
.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
WHERE _ID=?",
args));
}

public void insert(String name, String address,
String type, String notes) {
ContentValues cv=new ContentValues();

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put("notes", notes);

getWritableDatabase().insert("restaurants”, "name", cv);

}

public void update(String id, String name, String address,
String type, String notes) {
ContentValues cv=new ContentValues();
String[] args={id};

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put("notes", notes);

getWritableDatabase().update("restaurants", cv, "_ID=?",

135

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting More Active

args);

}

public String getName(Cursor c) {
return(c.getString(1));
}

public String getAddress(Cursor c) {
return(c.getString(2));
}

public String getType(Cursor c) {
return(c.getString(3));
}

public String getNotes(Cursor c) {
return(c.getString(4));

}

}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Have the database hold a URL for the restaurant's Web site. Update
the Ul to collect this address in the detail form. Launch that URL
via startActivity() via an option menu choice from the restaurant
list, so you can view the restaurant's Web site.

« Add an option menu to delete a restaurant . Raise an AlertDialog to
confirm that the user wants the restaurant deleted. Delete it from
the database and refresh the list if the user confirms the deletion.

Further Reading

You can read up on having multiple activities in your application, or linking
to activities supplied by others, in the "Launching Activities and Sub-
Activities" chapter of The Busy Coder's Guide to Android Development.

136

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

TUTORIAL 13
What's Your Preference?

In this tutorial, we will add a preference setting for the sort order of the
restaurant list. To do this, we will create a PreferenceScreen definition in
XML, load that into a PreferenceActivity, connect that activity to the
application, and finally actually use the preference to control the sort order.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 12-Activities edition of LunchList to use as a starting point.

Step #1: Define the Preference XML

First, add a LunchList/res/xml/preferences.xml file as follows:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<ListPreference
android:key="sort_order"
android:title="Sort Order"
android:summary="Choose the order the list uses"
android:entries="@array/sort_names"
android:entryValues="@array/sort_clauses"
android:dialogTitle="Choose a sort order" />
</PreferenceScreen>

137

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

This sets up a single-item PreferenceScreen. Note that it references two
string arrays, one for the display labels of the sort-order selection list, and
one for the values actually stored in the SharedPreferences.

So, to define those string arrays, add a LunchList/res/values/arrays.xml file
with the following content:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="sort_names">
<item>By Name, Ascending</item>
<item>By Name, Descending</item>
<item>By Type</item>
<item>By Address, Ascending</item>
<item>By Address, Descending</item>
</string-array>
<string-array name="sort_clauses">
<item>name ASC</item>
<item>name DESC</item>
<item>type, name ASC</item>
<item>address ASC</item>
<item>address DESC</item>
</string-array>
</resources>

Note we are saying that the value stored in the SharedPreferences will
actually be an orDER BY clause for use in our SQL query. This is a convenient
trick, though it does tend to make the system a bit more fragile - if we
change our column names, we might have to change our preferences to
match and deal with older invalid preference values.

Step #2: Create the Preference Activity

Next, we need to create a PreferenceActivity that will actually use these
preferences. To do this, add a PreferenceActivity implementation, stored as
LunchList/src/apt/tutorial/EditPreferences.java:

package apt.tutorial;

import android.app.Activity;

import android.os.Bundle;

import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {

138

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

}

}

We also need to update AndroidManifest.xml to reference this activity, so we
can launch it later:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
<activity android:name=".DetailForm">
</activity>
<activity android:name=".EditPreferences">
</activity>

</application>

</manifest>

Step #3: Connect the Preference Activity to the Option
Menu

Now, we can add a menu option to launch the EditPreferences activity.

We need to add another <item> to our LunchList/res/menu/option.xml file:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add"
/>
<item android:id="@+id/prefs"
android:title="Settings"
android:icon="@drawable/ic_menu_preferences"

139

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

/>
</menu>

We reference an ic_menu_preferences.png file, which you can obtain from

the same directory where you got ic_menu_add.png.

Of course, if we modify the menu XML, we also need to modify the
LunchList implementation of onOptionsItemSelected() to match, so replace

the current implementation with the following:

@Override

public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.add) {

startActivity(new Intent(LunchList.this, DetailForm.class));

return(true);

else if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}

return(super.onOptionsItemSelected(item));

}

All we are doing is starting up our EditPreferences activity.

If you recompile and reinstall the application, you will see our new menu

option:

140

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

&5 Ml @ 8:55 am

Foo Bar!!!
1313 Mockingbird Lane

Sir Lunch-A-Lot's
1525 Wilson Blvd.

Third Time's the Charm
Behind You, On Your Left. No, Your Ot...

Add Settings
Figure 29. The LunchList with the new menu option

And if you choose that menu option, you will get the EditPreferences
activity:

141

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

&5 Ml @ 8:55am

|Lattidilebie
Sort Order @

Choose the order the list uses

Figure 30. The preferences activity

Clicking the Sort Order item will bring up a selection list of available sort
orders:

142

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

&5 Ml @ 8:56 am

@ Choose a sort order

By Name, Ascending

By Name, Descending

By Type

By Address, Ascending |

By Address,
Descending

Cance

Figure 31. The available sort orders

Of course, none of this is actually having any effect on the sort order itself,
which we will address in the next section.

Step #4: Apply the Sort Order on Startup

Now, given that the user has chosen a sort order, we need to actually use it.
First, we can apply it when the application starts up - the next section will
handle changing the sort order after the user changes the preference value.

First, the getAl1() method on RestaurantHelper needs to take a sort order as

a parameter, rather than apply one of its own. So, change that method as
follows:

public Cursor getAll(String orderBy) {
return(getReadableDatabase()

.rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY "+orderBy,

}

null));

143

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

Then, we need to get our hands on our SharedPreferences instance. Add
imports to LunchList for android.content.SharedPreferences and
android.preference.PreferenceManager, along with a SharedPreferences data
member named prefs.

Next, add this line near the top of onCreate() in LunchList, to initialize prefs
to be the SharedpPreferences our preference activity uses:

|pre-Fs=Pre-FerenceManager.getDefaultSharedPre-Ferences(this);

Finally, change the call to getA11() to use the SharedPreferences:

| model=helper.getAll(prefs.getString("sort_order", "name")); |

Here, we use name as the default value, so if the user has not specified a sort
order yet, the sort order will be by name.

Now, if you recompile and reinstall the application, then set a sort order
preference, you can see that preference take effect if you exit and reopen
the application.

Step #5: Listen for Preference Changes

That works, but users will get annoyed if they have to exit the application
just to get their preference choice to take effect. To change the sort order on
the fly, we first need to know when they change the sort order.

SharedPreferences has the notion of a preference listener object, to be
notified on such changes. To take advantage of this, add the following line
at the end of onCreate() in LunchList:

| prefs.registerOnSharedPreferenceChangeListener (prefListener); |

This snippet refers to a prefListener object, so add the following code to
LunchList to create a stub implementation of that object:

144

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

private SharedPreferences.OnSharedPreferenceChangelListener preflListener=
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs, String
key) {
if (key.equals("sort_order")) {

}
};

All we are doing right now is watching for our specific preference of interest
(sort_order), though we are not actually taking advantage of the changed
value.

Step #6: Re-Apply the Sort Order on Changes

Finally, we actually need to change the sort order. For simple lists like this,
the easiest way to accomplish this is to get a fresh cursor representing our
list (from getAll() on RestaurantHelper) with the proper sort order, and use
the new cursor instead of the old one.

First, pull some of the list-population logic out of onCreate(), by
implementing an initList() method as follows:

private void initList() {
if (model!=null) {
stopManagingCursor (model);
model.close();

}

model=helper.getAll(prefs.getString("sort_order", "name"));
startManagingCursor(model);

adapter=new RestaurantAdapter(model);
setListAdapter(adapter);

Note that we call stopManagingCursor() so Android will ignore the old
cursor, then we close it, before we get and apply the new cursor. Of course,
we only do those things if there is an old cursor.

The oncCreate() method needs to change to take advantage of initList():

145

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

helper=new RestaurantHelper(this);
prefs=PreferenceManager.getDefaultSharedPreferences(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findviewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

initList();
prefs.registerOnSharedPreferenceChangeListener (preflListener);

Also, we can call initList() from prefListener:

private SharedPreferences.OnSharedPreferenceChangelListener preflListener=
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs,
String key) {
if (key.equals("sort_order")) {
initList();
¥
}
}s

At this point, if you recompile and reinstall the application, you should see
the sort order change immediately as you change the order via the
preferences.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Add a preference for the default type of restaurant (e.g., take-out).
Use that preference in detail forms when creating a new restaurant.

« Add an option menu to the detail form activity and have it be able
to start the preference activity the way we did from the option
menu for the list.

« Rather than use preferences, store the preference values in a JSON
file that you read in at startup and re-read in onResume() (to find out

146

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

What's Your Preference?

about changes). This means you will need to create your own
preference Ul, rather than rely upon the one created by the
preference XML.

Further Reading

Learn more about setting up preference XML files and reading shared
preferences in the "Using Preferences" chapter of The Busy Coder's Guide
to Android Development.

147

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 14

Turn, Turn, Turn

In this tutorial, we will make our application somewhat more intelligent
about screen rotations, ensuring that partially-entered restaurant
information remains intact even after the screen rotates.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 13-pPrefs edition of LunchList to use as a starting point.

Step #1: Add a Stub onSavelnstanceState()

Since we are not holding onto network connections or other things that
cannot be stored in a Bundle, we can use onSaveInstanceState() to track our
state as the screen is rotated.

To that end, add a stub implementation of onSaveInstanceState() to
DetailForm as follows:

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {
super.onSaveInstanceState(savedInstanceState);

¥

149

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Turn, Turn, Turn

Step #2: Pour the Form Into the Bundle

Now, fill in the details of onSaveInstancestate(), putting our widget
contents into the supplied Bundle:

@0verride
public void onSaveInstanceState(Bundle state) {
super.onSaveInstanceState(state);

state.putString("name", name.getText().toString());
state.putString("address", address.getText().toString());
state.putString("notes"”, notes.getText().toString());
state.putInt("type", types.getCheckedRadioButtonId());

Step #3: Repopulate the Form

Next, we need to make use of that saved state. We could do this in
onCreate(), if the passed-in Bundle is non-null. However, it is usually easier
just to override onRestoreInstancesState(). This is called only when there is
state to restore, supplying the Bundle with your state. So, add an
implementation of onRestoreInstanceState() to DetailForm:

@Override
public void onRestoreInstanceState(Bundle state) {
super.onRestoreInstanceState(state);

name.setText(state.getString("name"));
address.setText(state.getString("address"));
notes.setText(state.getString("notes"));
types.check(state.getInt("type"));

At this point, you can recompile and reinstall the application. Use <Ctrls-
<F12> to simulate rotating the screen of your emulator. If you do this after
making changes (but not saving) on the petailForm, you will see those
changes survive the rotation.

Step #4: Fix Up the Landscape Detail Form

As you tested the work from the previous section, you no doubt noticed
that the DetailForm layout is not well-suited for landscape - the notes text

150

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Turn, Turn, Turn

area is chopped off and the Save button is missing. To fix this, we need to
create a LunchList/res/layout-land/detail_form.xml file, derived from our
original, but set up to take advantage of the whitespace to the right of the
radio buttons:

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:stretchColumns="1,3"
>
<TableRow>
<TextView android:text="Name:" />
<EditText android:id="@+id/name"
android:layout_span="3"
/>
</TableRow>
<TableRow>
<TextView android:text="Address:" />
<EditText android:id="@+id/addr"
android:layout_span="3"
/>
</TableRow>
<TableRow>
<TextView android:text="Type:" />
<RadioGroup android:id="@+id/types">
<RadioButton android:id="@+id/take_out"
android:text="Take-Out"
/>
<RadioButton android:id="@+id/sit_down"
android:text="Sit-Down"
/>
<RadioButton android:id="@+id/delivery"
android:text="Delivery"
/>
</RadioGroup>
<TextView android:text="Notes:" />
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill _parent”
android:orientation="vertical"
>
<EditText android:id="@+id/notes"
android:singlelLine="false"
android:gravity="top"
android:lines="4"
android:scrollHorizontally="false"
android:maxLines="4"
android:maxWidth="140sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/save"

151

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Turn, Turn, Turn

android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Save"
/>
</LinearLayout>
</TableRow>
</TablelLayout>

Now, if you recompile and reinstall the application, you should see a better
landscape rendition of the detail form:

5 Ml @ 9:00am
Foo Bar
1313 MockingBird Lane
e-0 Foodisexce”entbutthe
wait staff is a bit strange...
® Do
Delive Save

Figure 32. The new landscape layout

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Try switching to onRetainNonConfigurationInstance() instead of
onSaveInstanceState().

« Try commenting out onSaveInstanceState(). Does the activity still
retain its instance state? Why or why not?

« Have the application automatically rotate based on physical
orientation instead of keyboard position. Hint: find a place to apply
android:screenOrientation = "sensor".

152

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Turn, Turn, Turn

Further Reading

Additional coverage of screen rotations and how to control what happens
during them can be found in the "Handling Rotation" chapter of The Busy
Coder's Guide to Android Development.

153

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

PART Il - Network Application
Tutorials

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 15
Raising (Something Like) a
Tweet

In this tutorial, we will experiment with the Apache HttpClient library in
Android, using it to post a status update to our identi.ca account. The
identi.ca service, powered by StatusNet, is a microblogging service similar
to Twitter. In fact, this book used to profile a Twitter client. However,
Twitter's new authentication models, while good for Twitter, are a bit too
complicated to implement for this book.

Over the course of several tutorials, we will focus on microblog-related
functionality in an application we will call patchy (which used to be short
for "Patchy: Another Twitter Client? Heck, Yeah!").

Step-By-Step Instructions
This tutorial starts a new application, independent from the LunchList

application developed in the preceding tutorials. Hence, we will have you
create a new application from scratch.

Step #1: Set Up an Identi.ca Account

Twitter is a micro-blogging service that you may have heard about. On the
other hand, you may not have an identi.ca account.

157

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://identi.ca/

Raising (Something Like) a Tweet

If you have such an account and do not mind using it for creating a patchy
application, feel free to stick with it. Otherwise, create an identi.ca account
that you can use for your experimentation. Visit the identi.ca Web site and
sign up. Note that identi.ca will send a confirmation email to you, and you
must click the link on that email in order to be able to work with the REST
APL.

Step #2: Create a Stub Application and Activity

Using Eclipse or android create project, make a project named Patchy with
a stub activity named apt.tutorial.two.Patchy. The generated activity class
should resemble the following:

package apt.tutorial.two;

import android.app.Activity;
import android.os.Bundle;

public class Patchy extends Activity

{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
¥

Step #3: Create a Layout
Next, we need a layout for use with the patchy activity. At the outset, we
want:

« A field for your identi.ca user name

« A field for your identi.ca password, needed to use much of the
identi.ca REST API

« A multi-line field for a status update you want to publish

« A Send button that will send the status update

158

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://identi.ca/

Raising (Something Like) a Tweet

Here is a simple TableLayout containing those items, one that looks a bit
like the DetailForm from the LunchList tutorial earlier in this book:

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="User Name:" />
<EditText android:id="@+id/user" />
</TableRow>
<TableRow>
<TextView android:text="Password:" />
<EditText android:id="@+id/password"
android:password="true"
/>
</TableRow>
<TableRow>
<TextView android:text="Status:" />
<EditText android:id="@+id/status”
android:singlelLine="false"
android:gravity="top"
android:lines="5"
android:scrollHorizontally="false"
android:maxLines="5"
android:maxWidth="200sp"
/>
</TableRow>
<Button android:id="@+id/send"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Send"
/>
</TablelLayout>

If you compile and reinstall this application, you will see the layout in
action:

159

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Raising (Something Like) a Tweet

Ml @ 9:01am

Send

Figure 33. The initial Patchy layout, in landscape

Step #4: Listen for Send Actions

Next, we need to get control when the user clicks the Send button. This
involves finding the Send button in our layout and attaching a listener to it.

Replace the stock implementation of patchy with the following:

package apt.tutorial.two;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class Patchy extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button send=(Button)findViewById(R.id.send);

send.setOnClickListener(onSend);

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
¥
¥
}

160

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Raising (Something Like) a Tweet

Step #5: Make the Status Post Request

With all that done, we can actually invoke the identi.ca REST API. This is
somewhat tedious, for a few reasons:

+ identi.ca requires HTTP Basic authentication to pass over the user
name and password, rather than embedding them as values in, say,
an HTTP POST request. HttpClient does not handle preemptive
HTTP authentication very well.

« HTTP Basic authentication requires Base64 encoding, and Android
(before 2.2) lacks a publicly-visible Base64 encoder.

Here is what you need to do to get past all of this and make patchy work:

First, find a suitable Base64 encoder, such as this public domain one. Put
the Base64 class in your project in Patchy/src/apt/tutorial/two/ and add the
matching package line to the top of the file, so it is available to your pPatchy
implementation. Note that Android 2.2 has a Bases4 encoder class, though
that has not been tried as a part of this tutorial.

Next, replace your existing Patchy implementation with the following:

package apt.tutorial.two;

import android.app.Activity;

import android.app.AlertDialog;

import android.os.Bundle;

import android.view.View;

import android.util.log;

import android.widget.Button;

import android.widget.EditText;

import java.io.IOException;

import java.util.Arraylist;

import java.util.List;

import org.apache.http.NameValuePair;

import org.apache.http.HttpVersion;

import org.apache.http.client.ResponseHandler;

import org.apache.http.client.HttpClient;

import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.message.BasicNameValuePair;
import org.apache.http.protocol.HTTP;

161

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://iharder.sourceforge.net/current/java/base64/

Raising (Something Like) a Tweet

import org.json.JSONObject;

public class Patchy extends Activity {
private DefaultHttpClient client=null;
private EditText user=null;
private EditText password=null;
private EditText status=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
user=(EditText)findViewById(R.id.user);
password=(EditText)findViewById(R.id.password);
status=(EditText)findviewById(R.id.status);
Button send=(Button)findViewById(R.id.send);
send.setOnClickListener(onSend);

client=new DefaultHttpClient();
}

@Override
public void onDestroy() {
super.onDestroy();

client.getConnectionManager().shutdown();

}

private String getCredentials() {
String u=user.getText().toString();
String p=password.getText().toString();

return(Base64.encodeBytes((u+":"+p).getBytes()));
}

private void updateStatus() {
try {
String s=status.getText().toString();
HttpPost post=new HttpPost("https://identi.ca/api/statuses/update.json");

post.addHeader ("Authorization",
"Basic "+getCredentials());

List<NameValuePair> form=new ArrayList<NameValuePair>();
form.add(new BasicNameValuePair("status", s));
post.setEntity(new UrlEncodedFormEntity(form, HTTP.UTF_8));

ResponseHandler<String> responseHandler=new BasicResponseHandler();

162

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Raising (Something Like) a Tweet

String responseBody=client.execute(post, responseHandler);
JSONObject response=new JSONObject(responseBody);

b

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", null)
.show();

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
updateStatus();
¥
3

Here, we:

« Set up an DefaultHttpClient instance for accessing the Apache
HttpClient engine

+ Get access to our EditText widgets from the layout
+ Ona Send button click, call updateStatus()

« In updateStatus(), we create an HttpPost object to represent the
request, fill in the authentication credentials, fill in the status as a
form element, turn the whole thing into a valid HTTP POST
operation, execute it, and parse the response as a JSON object

If things work, at present, we do nothing to update the activity; if an
Exception is raised, we log it to the Android log and raise an AlertDialog.

You also need to add the INTERNET permission to your AndroidManifest.xml

file:

163

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Raising (Something Like) a Tweet

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial.two"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<application android:label="@string/app_name">
<activity android:name=".Patchy"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

If you recompile and reinstall the application, you should now be able to
update your identi.ca status by filling in the fields and clicking the Send
button.

You will notice that we are making this HTTP request on the main
application thread. That is not a good practice - it can freeze the user
interface, and if the request takes too long, Android will display the
dreaded "application not responding” dialog box. However, we will address
that problem in the next tutorial (or in an Extra Credit item, if you prefer).

If you work in a facility that requires a proxy server, your emulator may be
unhappy (as might Android devices operating on WiFi behind the proxy).
You may need to add the following snippet of code to work past that,
adjusting the parameters to suit your office's setup:

Properties systemSettings=System.getProperties();

systemSettings.put("http.proxyHost", "your.proxy.host.here");
systemSettings.put("http.proxyPort", "8080"); // use actual proxy port

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Process the post request in a background thread and display a Toast
when the request is complete and successful.

164

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Raising (Something Like) a Tweet

« Add logic to check for the 140-character message limit before
sending the request. If the message is too long, display an
AlertDialog.

« Make the Alertdialog from the previous point obsolete by adding
the android:maxLength attribute to the EditText for the message, to
constrain it to 140 characters.

« Add in TinyURL support by adding a field for a URL to append to
the end of the message, then using the TinyURL REST API
(http://tinyurl.com/api-create.php?url = ... returns the shortened
URL as a response) to generate the shortened URL, then attach it to
the message before making the request.

« Experiment with the Android 2.2 AndroidHttpClient class, as an
alternative to DefaultHttpClient.

Further Reading

Additional examples of interacting with HttpClient from Android can be
found in the "Communicating via the Internet" chapter of The Busy Coder's
Guide to Android Development.

However, the definitive resource for HttpClient is the Apache site for
HttpClient itself. In particular, their samples show a number of techniques
we will not be using here.

165

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://hc.apache.org/httpcomponents-client/examples.html
http://hc.apache.org/httpcomponents-client/index.html
http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 16

Opening a JAR

Writing our own identi.ca API seems silly, considering that there are so
many of them available as open source, including three for Java. In this
tutorial, we will replace our HttpClient with JTwitter, an LGPL
Twitter/identi.ca API that works with Android.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 15-HttpClient edition of Patchy to use as a starting point.

Step #1: Obtain the JTwitter JAR

The current official JTwitter distribution appears to drop support for
identi.ca. Hence, this tutorial will have you use a patched version of an
identi.ca-compatible JTwitter distribution.

Download the modified JTwitter JAR. Then, put the JAR in the patchy/1ibs/
directory, so it is available to your application. Or, you can obtain the same
modified JTwitter JAR from the tutorial results.

167

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AndTutorials/jtwitter.jar
http://www.winterwell.com/software/jtwitter.php

Opening a JAR

NOTE: Eclipse users will also need to add the jtwitter.jar file to their build
path.

The source code to this modified JTwitter implementation can be found on
the CommonsWare Web site.

Step #2: Switch from HttpClient to JTwitter

Now, we can get rid of most of our previous Patchy implementation,
including all of the HttpClient code, and replace it with the delightfully
simply JTwitter API.

Replace the current implementation of patchy with the following:

package apt.tutorial.two;

import android.app.Activity;

import android.app.AlertDialog;
import android.os.Bundle;

import android.view.View;

import android.util.Log;

import android.widget.Button;
import android.widget.EditText;
import winterwell.jtwitter.Twitter;

public class Patchy extends Activity {
private EditText user=null;
private EditText password=null;
private EditText status=null;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

user=(EditText)findViewById(R.id.user);
password=(EditText)findViewById(R.1id.password);
status=(EditText)findViewById(R.id.status);
Button send=(Button)findViewById(R.id.send);

send.setOnClickListener (onSend);

}

private void updateStatus() {
try {

168

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AndTutorials/jtwitter.zip

Opening a JAR

Twitter client=new Twitter(user.getText().toString(),
password.getText().toString());

client.setAPIRootUrl("https://identi.ca/api");
client.updateStatus(status.getText().toString());

¥

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("0OK", null)
.show();

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
updateStatus();
¥
s

Besides getting rid of all HttpClient references, we reimplemented
updateStatus() to create a Twitter object (with our user name and
password), then called its own updateStatus() method with the typed-in
status.

If you rebuild and reinstall patchy, you can once again update your status,
just with half of the lines of code.

Step #3: Create Preferences for Account Information

Rather than have the user enter their account information every time they
run Patchy, we should store that information in user preferences, so it can
be entered only on occasion.

First, we need a preference XML file, so create a new file,
Patchy/res/xml/preferences.xml, with the following contents:

169

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="User Account">
<EditTextPreference
android:key="user"
android:title="User Name"
android:summary="Your identi.ca screen name"
android:dialogTitle="Enter your identi.ca user name" />
<EditTextPreference
android:key="password"
android:title="Password"
android:summary="Your identi.ca account password"
android:password="true"
android:dialogTitle="Enter your identi.ca password" />
</PreferenceCategory>
</PreferenceScreen>

Note the use of android:password = "true" to turn the second one into a
password-style preference. Any EditText attributes found in the
EditTextPreference element are passed through to the EditText used in the
popup dialog.

Then, we need another EditPreference activity akin to the one we used in
LunchList — call it Patchy/src/apt/tutorial/two/EditPreferences.java:

package apt.tutorial.two;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

}

}

We must not forget to update our AndroidManifest.xml file to reference the
new activity, so amend yours to look like:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial.two"
android:versionCode="1"
android:versionName="1.0">

170

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

<uses-permission android:name="android.permission.INTERNET" />
<application android:label="@string/app_name">
<activity android:name=".Patchy"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".EditPreferences">
</activity>
</application>
</manifest>

Then, we want to have an option menu to trigger editing the preferences, so
create Patchy/res/menu/option.xml with the following XML:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/prefs"
android:title="Settings"
android:icon="@drawable/ic_menu_preferences"
/>
</menu>

You will need an ic_menu_preferences.png drawable resource, perhaps the
one you used in the LunchList tutorials.

Finally, we need to clone the code from LunchList that opens our option
menu using the above XML and routes the item click to the EditPreference
activity. Paste the following methods into Patchy:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(getApplication())
.inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}

171

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

return(super.onOptionsItemSelected(item));

}

You will also need to add some imports (Intent, Menu, MenuInflater,
MenuItem) to allow this to compile.

At this point, you can recompile and reinstall the application and see our
preference activity in action, even though the values are not being used yet:

Ea Ml @ 9:02am

Patchy

User Account

User Name
Your identi.ca screen name

Password
Your identi.ca account password

Figure 34. The preference screen for Patchy

Step #4: Use Account Information from Preferences

Now, we can get rid of the extraneous widgets on our layout and use the
preferences for our account information. We can even arrange to update
our Twitter object when the user changes account information.

First, go into Patchy/res/layout/main.xml and get rid of the first two
TableRow elements, leaving you with:

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Status:" />
<EditText android:id="@+id/status"
android:singlelLine="false"
android:gravity="top"
android:lines="5"

172

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

android:scrollHorizontally="false"
android:maxLines="5"
android:maxWidth="200sp"
/>
</TableRow>
<Button android:id="@+id/send"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Send"
/>
</TablelLayout>

Then, eliminate references to the removed widgets from the list of data
members and from onCreate().

Next, create a private SharedPreferences data member named prefs and set
it up in onCreate():

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangeListener (preflListener);

The aforementioned code references an prefListener object, so define it as
follows:

private SharedPreferences.OnSharedPreferenceChangelListener preflListener=
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs, String
key) {
if (key.equals("user") || key.equals("password")) {
resetClient();
¥
}

};

Basically, when the preference changes, we want to reset our Twitter client.
This, of course, assumes we have a Twitter client hanging around, so create
a private Twitter data member named client, and add two methods to work
with it as follows:

synchronized private Twitter getClient() {
if (client==null) {
client=new Twitter(prefs.getString("user", ""),
prefs.getString("password”, ""));

client.setAPIRootUrl("https://identi.ca/api");

173

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

}

return(client);

}

synchronized private void resetClient() {
client=null;

}

Finally, in updatestatus(), get rid of the references to the former widgets
and use getClient() to lazy-create our Twitter object, as follows:

private void updateStatus() {

try {
getClient().updateStatus(status.getText().toString());

}

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

The net is that we will use one Twitter object, on our first status update,
until the application is closed or the user changes credentials.

If you rebuild and reinstall the application, you should now be able to
update your status, yet only enter the status information, using the user
name and password from the preferences.

Here is the complete implementation of Patchy after completing this
tutorial:

package apt.tutorial.two;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.preference.PreferenceManager;
import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.util.log;

import android.widget.Button;

174

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

import android.widget.EditText;
import winterwell.jtwitter.Twitter;

public class Patchy extends Activity {
private EditText status=null;
private SharedPreferences prefs=null;
private Twitter client=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

status=(EditText)findViewById(R.id.status);
Button send=(Button)findViewById(R.id.send);
send.setOnClickListener(onSend);

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangelListener (prefListener);

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(getApplication())
.inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@0verride
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}

return(super.onOptionsItemSelected(item));

}

synchronized private Twitter getClient() {
if (client==null) {
client=new Twitter(prefs.getString("user", ""),
prefs.getString("password", ""));

client.setAPIRootUrl("https://identi.ca/api");
}

return(client);

}

synchronized private void resetClient() {

175

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

client=null;

}

private void updateStatus() {

try {
getClient().updateStatus(status.getText().toString());

¥

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", null)
.show();

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
updateStatus();
}
s

private SharedPreferences.OnSharedPreferenceChangelListener preflListener=
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs, String
key) {
if (key.equals("user") || key.equals("password")) {
resetClient();
¥
}
s

}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Add a checkbox to toggle whether the activity is creating a direct
message or a status update. If the checkbox is checked, enable a
Spinner containing the list of the user's followers (obtained from
getFollowers()). For a direct message, use sendMessage() on the

176

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Opening a JAR

Twitter object. You may need to "follow" some classmates for
everyone to have followers in their accounts to direct message.

« Use the getstatus() method on Twitter to display the user's current
status at the top of the activity when the activity is opened. Re-fetch
the status one second after submitting a status update, so the
current status shows identi.ca's rendition of your status - a good
way to make sure the round-trip of status information is working as
you expect.

« Store the password in an encrypted form in the user preferences, so
that if somebody hacked a user's phone and got the preference
store, they would still need the encryption key to find out the user's
account password.

Further Reading

You can learn more about the rules for what third-party code will work with
Android in the "Leveraging Java Libraries" chapter of The Busy Coder's
Guide to Android Development.

177

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 17
Listening To Your Friends

In this tutorial, we will start watching our friends' timelines, polling them
for updates in a background thread managed by a service.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 16-3JAR edition of Patchy to use as a starting point.

Step #1: Create a Service Stub

Since we are creating a service to monitor information related to our
account, let us create a service named PostMonitor (so named because
identi.ca supports the original Twitter API). Create a file named
Patchy/src/apt/tutorial/two/PostMonitor.java with the following content:

package apt.tutorial.two;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class PostMonitor extends Service {
@0verride
public void onCreate() {
super.onCreate();

179

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Listening To Your Friends

}

@0verride
public IBinder onBind(Intent intent) {
return(null);

}

@0Override
public void onDestroy() {
super.onDestroy();

}

}

We also need to add our service to AndroidManifest.xml, so add <service
android:name = ".PostMonitor" /> inside the <application> element.

At this point, your project will still compile and run, though our service is
not yet doing anything.

Step #2: Set Up a Background Thread

Next, we need a well-managed background thread that can do our timeline
polling for us.

First, add an import for java.util.concurrent.atomic.AtomicBoolean, along
with a private AtomicBoolean data member named active. Initialize this to
true.

Also, define a static int value named POLL_PERIOD to be the amount of time
you want between timeline polling operations. Please make this no less
than 60000 (one minute in milliseconds).

Then, create a Runnable named threadBody that will loop, sleeping
POLL_PERIOD each pass, until active is toggled to false:

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
// do something with Twitter

SystemClock.sleep(POLL_PERIOD);

180

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Listening To Your Friends

}
3
s

In onCreate(), add a statement to start up our background thread on
threadBody:

@Override
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
¥

Finally, in onDestroy(), set the active flag to false. Once the background
thread wakes up from its current sleep cycle, it will see the false flag and
fall out of its loop, terminating its thread:

@Override
public void onDestroy() {
super.onDestroy();

active.set(false);

}

Step #3: Poll Your Friends

Now, we have a service that will do work in the background. We just need
to set up the work itself.

What we want to do is load our timeline (with our status and those from
our friends) every poll period and find out those that are new. To do this,
we need to create a Twitter object, use it to load the timeline, track the
already-seen status messages, and identify the new ones. Right now, let us
focus on loading the timeline.

First, add an import to winterwell.jtwitter.Twitter SO we can create
Twitter objects. We will also need java.util.List in a moment, so add an
import for it as well.

181

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Listening To Your Friends

Then, in our threadBody loop, add a call to a po11() method:

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
poll();
SystemClock.sleep(POLL_PERIOD);
¥
}
}s

Finally, add this as the implementation of pol1() in PostMonitor:

private void poll() {
Twitter client=new Twitter(); // need credentials!
List<Twitter.Status> timeline=client.getFriendsTimeline();

}

While this will compile, it will not run, since we do not have our user name
or password. We will get that from the patchy client of our service in the
next tutorial.

Right now, all we are doing in poll() is creating a fresh Twitter object and
using it to load the timeline via getFriendsTimeline().

Step #4: Find New Statuses

Once we have our timeline, we need to figure out which of the statuses are
new. On the first poll, all will be new; subsequent polls should have a
handful of new statuses, if any.

For the time being, let us track the already-seen status IDs via a Set<Long>,
so add the following data member (and the Hashset and Set imports to
match):

|pr‘ivate Set<Long> seenStatus=new HashSet<Long>(); |

Then, we can walk the timeline, see if each status ID is in the set, and
process those that are not, via this change to pol1():

182

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Listening To Your Friends

private void poll() {
Twitter client=new Twitter(); // need credentials!
List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
// found a new one!
seenStatus.add(s.id);
¥
}
¥

Of course, eventually, we will need to alert patchy to the new statuses, but
we can leave that for the next tutorial.

Step #5: Set up the Public API

Finally, we need to begin the process of adding a public API that the patchy
activity will be able to access.

First, we should define a Java interface that will represent our public API.
Create a src/apt/tutorial/IPostMonitor.java file with the following content:

package apt.tutorial;

public interface IPostMonitor {

}

Then, we need to create a "binder" that implements this API. The binder
will be supplied to Patchy when it binds to the PostMonitor service. So, add
the following inner class to PostMonitor:

public class LocalBinder extends Binder implements IPostMonitor {
void registerAccount(String user, String password) {

}

}

Next, create an instance of our LocalBinder as part of initializing our
PostMonitor instance:

|private final Binder binder=new LocalBinder(); |

183

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Listening To Your Friends

Finally, return that binder from onBind():

@Override
public IBinder onBind(Intent intent) {
return(binder);

}

Of course, this API does not do much, but we will expand it shortly.

At this point, you can compile your project, but it will not run properly,
because we have not provided account information to the JTwitter API.
That is fine for now, as we will correct that flaw in the next tutorial.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Add a preference for the timeline polling period. Use that polling
period in the service, including changing the polling period when
the preference changes.

« If you added direct-message support in the previous tutorial, have
the service also poll for changes to the list of followers, to eventually
control the contents of your direct-message Spinner.

Further Reading

You can learn more about the roles of services and how to create them in
the "Creating a Service" chapter of The Busy Coder's Guide to Android
Development.

184

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 18

No, Really Listening To Your
Friends

In the previous tutorial, we set up a service to watch for new timeline
entries from our friends. The service merely finds out about these new
statuses — now we need to get those someplace for our activity to display
them.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 17-CreateService edition of Patchy to use as a starting point.

Step #1: Define the Callback

We need to provide some sort of callback to the service, so our activity can
be notified when new status updates are available. With that in mind,
create an Patchy/src/apt/tutorial/IPostListener.java interface as follows:

package apt.tutorial;

public interface IPostListener {
void newFriendStatus(String friend, String status,
String createdAt);

185

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

Step #2: Enable Callbacks in the Service

Now we need to set up a means for the service client (Patchy) to start the
service and register an IPostListener that will be invoked when a new status
arrives. The callback will be associated with a user name and password, so
we have the credentials with which to call identi.ca via its API.

First, let us create an inner class in PostMonitor to represent the callback
and login credentials. Add this implementation of Account to your
PostMonitor:

class Account {
String user=null;
String password=null;
IPostListener callback=null;

Account(String user, String password,
IPostListener callback) {
this.user=user;
this.password=password;
this.callback=callback;

}

}

Next, import java.util.Map and java.util.concurrent.ConcurrentHashMap and
set up a private data member representing the roster of outstanding
accounts:

private Map<IPostListener, Account> accounts=
new ConcurrentHashMap<IPostListener, Account>();

Now, we can set up public APIs on our binder for our client to use to
register and remove an account, by extending IPostMonitor:

package apt.tutorial;
import apt.tutorial.IPostListener;

public interface IPostMonitor {
void registerAccount(String user, String password,
IPostListener callback);
void removeAccount(IPostListener callback);

}

186

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

...and by augmenting its implementation:

public class LocalBinder extends Binder implements IPostMonitor {
public void registerAccount(String user, String password,
IPostListener callback) {

Account l=new Account(user, password, callback);

poll(1);
accounts.put(callback, 1);
}

public void removeAccount(IPostListener callback) {
accounts.remove(callback);

}

}

Notice that we call pol1() with our Account when it is registered. This will
fetch our current timeline right away, rather than wait for our polling loop
to cycle back around. The downside is that this pol1() is called on the main
thread rather than a background thread - we will address this in a later
tutorial.

Next, update our threadBody to make use of our roster of Account objects:

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1l);
¥

SystemClock.sleep(POLL_PERIOD);
}
}
}s

This too calls pol1() with the Account information. Hence, we need to
update poll() to use the Account and call the callback on new status

messages:

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, l.password);

client.setAPIRootUrl("https://identi.ca/api");

187

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
1.callback.newFriendStatus(s.user.screenName, s.text,
s.createdAt.toString());
seenStatus.add(s.id);
¥
¥

}
catch (Throwable t) {
android.util.Log.e("PostMonitor",
"Exception in poll()", t);

Step #3: Manage the Service and Register the Account

Next, we need to take steps in Patchy to connect to the PostMonitor service
and arrange to get callbacks when new timeline entries are ready.

First, modify onCreate() in Patchy to call bindService(), which will auto-
create our PostMonitor service and give us control when it has been started
and bound:

bindService(new Intent(this, PostMonitor.class), svcConn,
BIND_AUTO_CREATE);

Specifically, it gives us control via a ServiceConnection object, which you will
need to add as a data member of Patchy:

private ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder binder) {
service=(IPostMonitor)binder;

try {
service.registerAccount(prefs.getString("user"”, null),
prefs.getString("password”, null),
listener);

¥

catch (Throwable t) {
Log.e("Patchy", "Exception in call to registerAccount()", t);
goBlooey(t);

188

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

public void onServiceDisconnected(ComponentName className) {
service=null;
}
}s

Notice how it will obtain our IPostMonitor API via the "binder" object
passed to it - since this is a local service, in the same VM, this is the actual
LocalBinder object from PostMonitor. Also note that we register our account
information and an IPostListener instance at this point.

We need to unbind our service, after removing our account, when we are
done, so add an implementation of onDestroy() to Patchy as follows:

@Override
public void onDestroy() {
super.onDestroy();

service.removeAccount(listener);
unbindService(svcConn);

}

Our code in onCreate() refers to a listener instance, so add a definition of it
as an IPostListener implementation to Patchy:

private IPostListener listener=new IPostListener() {
public void newFriendStatus(String friend, String status,
String createdAt) {
}

s

Right now, this listener does not do anything - we will address that minor
shortcoming in the next section.

At this point, we register our account at startup and remove it on
shutdown. What we are missing is account changes. If the user, via the
preferences, adjusts the user name or password, we need to get that
information to the service. The cleanest way to do that is to remove our
current account and register a fresh one.

With that in mind, modify resetClient() to handle that chore:

189

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

synchronized private void resetClient() {
client=null;
service.removeAccount(listener);
service.registerAccount(prefs.getString("user", ""),
prefs.getString("password", ""),
listener);

Step #4: Display the Timeline

At this point, Patchy is fully integrated with the service and should receive
callbacks on timeline changes. However, it does not do anything with those
changes. So, we need to add something to our Ul to actually display the
timeline. One easy way to do that is via a Listview and custom row layout -
that way, the timeline can be as long as we want, and it will scroll to show
all of the entries.

So, modify Patchy/res/layout/main.xml to add a ListView, as shown below:

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:stretchColumns="1"
>
<TableRow>
<TextView android:text="Status:" />
<EditText android:id="@+id/status”
android:singlelLine="false"
android:gravity="top"
android:lines="5"
android:scrollHorizontally="false"
android:maxLines="5"
android:maxWidth="200sp"
/>
</TableRow>
<Button android:id="@+id/send"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:text="Send"
/>
<ListView android:id="@+id/timeline"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
</TableLayout>

190

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

We also need to create a layout for our rows. We have three pieces of
information to display: the screen name of the friend, the status message,
and the date the status was modified. Create Patchy/res/layout/row.xml
with the following layout to display all three of those pieces:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="vertical"
android:padding="4px"
>
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
android:layout_weight="1"
android:gravity="center_vertical”
>
<TextView android:id="@+id/friend"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="1left"
android:textStyle="bold"
android:singlelLine="true"
android:ellipsize="end"
/>
<TextView android:id="@+id/created_at"
android:layout_width="0px"
android:layout_height="wrap_content”
android:layout_weight="1"
android:gravity="right"
android:singlelLine="true"
android:ellipsize="end"
/>
</LinearLayout>
<TextView android:id="@+id/status"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="center_vertical”
android:singlelLine="false"
/>
</LinearLayout>

Now we need to replicate a lot of the logic from LunchList to populate this
custom list in Patchy.

Add a TimelineEntry inner class to Patchy to hold a single timeline entry:

191

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

class TimelineEntry {
String friend="";
String createdAt="";

String status="";

TimelineEntry(String friend, String createdAt,
String status) {
this.friend=friend;
this.createdAt=createdAt;
this.status=status;

}

}

Now, add an ArrayList of TimelineEntry objects to serve as the timeline
itself, as a private data member of Patchy:

|private List<TimelineEntry> timeline=new ArraylList<TimelineEntry>();

Then, add a TimelineEntrywWrapper that will update one of our rows with the
contents of a TimelineEntry:

class TimelineEntryWrapper {
private TextView friend=null;
private TextView createdAt=null;
private TextView status=null;
private View row=null;

TimelineEntryWrapper (View row) {
this.row=row;

}

void populateFrom(TimelineEntry s) {
getFriend().setText(s.friend);
getCreatedAt().setText(s.createdAt);
getStatus().setText(s.status);

}

TextView getFriend() {
if (friend==null) {
friend=(TextView)row.findViewById(R.id.friend);
¥

return(friend);

}

TextView getCreatedAt() {
if (createdAt==null) {
createdAt=(TextView)row.findViewById(R.id.created_at);
¥

192

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

return(createdAt);

}

TextView getStatus() {
if (status==null) {
status=(TextView)row.findViewById(R.id.status);
¥

return(status);
}
¥

Next, add a TimelineAdapter implementation that will display our timeline:

class TimelineAdapter extends ArrayAdapter<TimelineEntry> {
TimelineAdapter() {

super(Patchy.this, R.layout.row, timeline);

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;

TimelineEntryWrapper wrapper=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
wrapper=new TimelineEntryWrapper(row);
row.setTag(wrapper);

}

else {

wrapper=(TimelineEntryWrapper)row.getTag();
}

wrapper.populateFrom(timeline.get(position));

return(row);

We need to have a TimelineAdapter as a private data member, so add one
(initialized to null), then instantiate the adapter in onCreate():

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

status=(EditText)findViewById(R.id.status);

193

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

Button send=(Button)findViewById(R.id.send);
send.setOnClickListener (onSend);

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangeListener (prefListener);

bindService(new Intent(this, PostMonitor.class), svcConn,
BIND_AUTO_CREATE);

adapter=new TimelineAdapter();
((ListView)findViewById(R.id.timeline)).setAdapter(adapter);

Finally, add logic to our listener object to create a TimelineEntry and add it
to the top of the TimelineAdapter, so new entries are added to the head of
the list:

private IPostListener listener=new IPostListener() {
public void newFriendStatus(final String friend, final String status,
final String createdAt) {
runOnUiThread (new Runnable() {
public void run() {
adapter.insert(new TimelineEntry(friend,
createdAt,
status),
9);

3
3
};

With all that behind you, recompile and reinstall the application. Now,
patchy will display your timeline and should keep the timeline current as
new entries roll in:

194

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

Ml @ 0:03am

welcomebot Sunjul 11 08 4 EDT 2010
Welcome to Identi.ca, @topteevee!

welcomebot Sunjul 11 08:18:39 EDT 2010
Welcome to Identi.ca, @charlessbrown!

Figure 35. The timeline as displayed in Patchy

Most likely, you will find that some poll requests fail with a
"TwitterException: -1" recorded in LogCat. This is due to some issue with
the identi.ca Web service disconnecting some API requests. It should
succeed much of the time, and so these sporadic failures are not your fault.

Here is a full implementation of patchy after all of the above changes:

package apt.tutorial.two;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ComponentName;
import android.content.Intent;

import android.content.ServiceConnection;
import android.content.SharedPreferences;
import android.os.Bundle;

import android.os.IBinder;

import android.preference.PreferenceManager;
import android.view.LlLayoutInflater;
import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.util.log;

import android.widget.ArrayAdapter;
import android.widget.Button;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.TextView;

import java.util.Arraylist;

import java.util.List;

import winterwell.jtwitter.Twitter;
import apt.tutorial.IPostListener;

import apt.tutorial.IPostMonitor;

195

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

public class Patchy extends Activity {
private EditText status=null;
private SharedPreferences prefs=null;
private Twitter client=null;
private List<TimelineEntry> timeline=new ArrayList<TimelineEntry>();
private TimelineAdapter adapter=null;
private IPostMonitor service=null;
private ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder binder) {
service=(IPostMonitor)binder;

try {
service.registerAccount(prefs.getString("user", null),
prefs.getString("password”, null),
listener);

¥
catch (Throwable t) {
Log.e("Patchy", "Exception in call to registerAccount()", t);
goBlooey(t);
¥
}

public void onServiceDisconnected(ComponentName className) {
service=null;
b
s

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

status=(EditText)findviewById(R.id.status);
Button send=(Button)findViewById(R.id.send);
send.setOnClickListener(onSend);

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangeListener (preflListener);

bindService(new Intent(this, PostMonitor.class), svcConn,
BIND_AUTO_CREATE);

adapter=new TimelineAdapter();
((ListView)findViewById(R.id.timeline)).setAdapter(adapter);
}

@0Override
public void onDestroy() {
super.onDestroy();

196

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

service.removeAccount(listener);
unbindService(svcConn);

}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(getApplication())
.inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@0verride
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

return(super.onOptionsItemSelected(item));

}

synchronized private Twitter getClient() {
if (client==null) {
client=new Twitter(prefs.getString("user", ""),
prefs.getString("password”, ""));
client.setAPIRootUrl("https://identi.ca/api");

}

return(client);

}

synchronized private void resetClient() {
client=null;
service.removeAccount(listener);
service.registerAccount(prefs.getString("user", ""),
prefs.getString("password”, ""),
listener);

}

private void updateStatus() {

try {
getClient().updateStatus(status.getText().toString());

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

197

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("0OK", null)
.show();

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
updateStatus();
¥
s

private SharedPreferences.OnSharedPreferenceChangelListener preflListener=
new SharedPreferences.OnSharedPreferenceChangelListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs,
String key) {
if (key.equals("user") || key.equals("password")) {
resetClient();
¥
¥
s

private IPostListener listener=new IPostListener() {
public void newFriendStatus(final String friend, final String status,
final String createdAt) {
runOnUiThread(new Runnable() {
public void run() {
adapter.insert(new TimelineEntry(friend,
createdAt,
status),
0);
}
1)
}
s

class TimelineEntry {
String friend="";
String createdAt="";

String status="";

TimelineEntry(String friend, String createdAt,
String status) {
this.friend=friend;
this.createdAt=createdAt;
this.status=status;
}
}

class TimelineAdapter extends ArrayAdapter<TimelineEntry> {
TimelineAdapter() {
super(Patchy.this, R.layout.row, timeline);

}

198

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
TimelineEntryWrapper wrapper=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);
wrapper=new TimelineEntryWrapper(row);
row.setTag(wrapper);

¥

else {
wrapper=(TimelineEntryWrapper)row.getTag();

¥

wrapper.populateFrom(timeline.get(position));

return(row);

}
}

class TimelineEntryWrapper {
private TextView friend=null;
private TextView createdAt=null;
private TextView status=null;
private View row=null;

TimelineEntryWrapper (View row) {
this.row=row;

}

void populateFrom(TimelineEntry s) {
getFriend().setText(s.friend);
getCreatedAt().setText(s.createdAt);
getStatus().setText(s.status);

¥

TextView getFriend() {
if (friend==null) {
friend=(TextView)row.findViewById(R.id.friend);

}

return(friend);

}

TextView getCreatedAt() {
if (createdAt==null) {
createdAt=(TextView)row.findViewById(R.id.created_at);
¥

return(createdAt);

}

199

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

TextView getStatus() {
if (status==null) {
status=(TextView)row.findViewById(R.id.status);
¥

return(status);

}

Similarly, here is a full implementation of PostMonitor as of this point:

package apt.tutorial.two;

import android.app.Service;

import android.content.Intent;

import android.os.Binder;

import android.os.IBinder;

import android.os.SystemClock;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicBoolean;
import winterwell.jtwitter.Twitter;

import apt.tutorial.IPostListener;

import apt.tutorial.IPostMonitor;

public class PostMonitor extends Service {
private static final int POLL_PERIOD=60000;
private AtomicBoolean active=new AtomicBoolean(true);
private Set<Long> seenStatus=new HashSet<Long>();
private Map<IPostListener, Account> accounts=
new ConcurrentHashMap<IPostListener, Account>();
private final Binder binder=new LocalBinder();

@0verride
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
}

@0Override
public IBinder onBind(Intent intent) {
return(binder);

}

@0verride
public void onDestroy() {
super.onDestroy();

200

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

active.set(false);

}
private void poll(Account 1) {
try {
Twitter client=new Twitter(l.user, 1l.password);
client.setAPIRootUrl("https://identi.ca/api");
List<Twitter.Status> timeline=client.getFriendsTimeline();
for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
1.callback.newFriendStatus(s.user.screenName, s.text,
s.createdAt.toString());
seenStatus.add(s.id);
}
}
¥
catch (Throwable t) {
android.util.Log.e("PostMonitor"”,
"Exception in poll()", t);
}
}

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1);
}

SystemClock.sleep(POLL_PERIOD);

}
}
1

class Account {
String user=null;
String password=null;
IPostListener callback=null;

Account (String user, String password,
IPostListener callback) {
this.user=user;
this.password=password;
this.callback=callback;

}
}

public class LocalBinder extends Binder implements IPostMonitor {
public void registerAccount(String user, String password,
IPostListener callback) {

201

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

No, Really Listening To Your Friends

public void removeAccount(IPostListener callback) {
accounts.remove(callback);

}

}

}

Account l=new Account(user, password, callback);

poll(1l);
accounts.put(callback, 1);
¥

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

Switch to using a database as the storage mechanism for statuses,
rather than RAM. The service can insert new statuses into the
database and keep the table trimmed to some maximum number of
statuses (to keep storage requirements down). The callback would
notify the activity that there were updates requiring a refresh of the
activity's CursorAdapter on the database. Consider using a preference
to allow the user to control the maximum number of statuses to
track.

Right now, when several timeline entries are added through one API
call (e.g., the initial poll), they are put in the list in the wrong order.
Change patchy and PostMonitor to have them appear in the proper
order, no matter how many entries are retrieved in a single poll.

If you added direct-message support in the previous tutorials, have
the service also invoke the callback on a change to the follower
roster, and have that affect the follower Spinner contents.

Have the background thread running only if there is one or more
registered listeners.

Further Reading

For more coverage of the local binding pattern and connecting to a service
that way, you will want to look at the "Creating a Service" and "Invoking a
Service" chapters of The Busy Coder's Guide to Android Development.

202

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

TUTORIAL 19
Your Friends Seem Remote

In the previous example, we implemented the friends timeline via a local
service. Now, let us re-implement this as a remote service, so we can allow
other applications to possibly use our service.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 18-LocalService edition of Patchy to use as a starting point.

Step #1: Back Up or Branch Your Project

This tutorial is a branch off of the main flow of the tutorials. The next
tutorial will have you pick up where the last tutorial left off, so that you do
not need to keep dealing with the remote service throughout the entire rest
of the book. Hence, you may want to back up or otherwise keep a copy of
your code as it exists, so you can return to it later.

203

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

Step #2: Create a Fresh Project

First, we should create a separate project for the PostMonitor, to simulate it
being some third-party component and to force it to run in a separate
process as a separate user.

So, via android create project or Eclipse, create a TMonitor project peer of
Patchy, using the package apt.tutorial.three (so TMonitor and Patchy can
both be on the emulator at the same time).

Step #3: Move the Service to the New Project

Now, let us move the PostMonitor code from Patchy into the new TMonitor
project.

First, move Patchy/src/apt/tutorial/two/PostMonitor.java to
TMonitor/src/apt/tutorial/two, replacing the automatically-generated
PostMonitor.java. Also, go in and fix up the package statement, reflecting
that the new PostMonitor is in apt.tutorial.three.

Then, since both patchy and PostMonitor need the JTwitter JAR, copy that jar
from Patchy/libs/ to TMonitor/libs/.

Next, modify TMonitor/AndroidManifest.xml to get rid of the <activity>
element (since TMonitor has no activity) and replace it with the <service>
element from Patchy/AndroidManifest.xml. While you have
Patchy/AndroidManifest.xml open, get rid of that <service> element after you
have put it in the TMonitor/AndroidManifest.xml file.

Finally, since we removed the PostMonitor class from Patchy, we need to get
rid of the compiled edition of that class. If you are using Eclipse, force a
rebuild of your project; otherwise, get rid of Patchy/bin/, so on the next
recompile, it will not have any of the old code lying around.

204

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

At this point, if you recompile each project, you will see they both have
compiler errors — PostMonitor cannot find IPostListener and Patchy cannot
find pPostMonitor, for example.

Step #4: Implement and Copy the AIDL

Now, we need to implement AIDL to represent the interface that the
service exposes to the client and the callback that the client exposes to the
service.

We already almost have the callback AIDL, since AIDL closely resembles
Java interfaces. Move Patchy/src/apt/tutorial/two/IPostListener.java to
Patchy/src/apt/tutorial/IPostListener.aidl, moving it up one directory
and changing the file extension to .aidl. Then, remove the public
keywords, and the AIDL is set. Repeat this process with IPostMonitor.java
as well.

Then, copy the new IPostListener.aidl and IPostMonitor.aidl files to the
corresponding directory in TMonitor (TMonitor/src/apt/tutorial). We also
have to deal with the possibility of an android.os.RemoteException when
using the callback, since the calling process might have unexpectedly
terminated. So, we need to wrap our callback use in a try/catch block as
follows:

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, 1l.password);

client.setAPIRootUrl("https://identi.ca/api");
List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
try {
1.callback.newFriendStatus(s.user.screenName, s.text,
s.createdAt.toString());
seenStatus.add(s.id);

}
catch (Throwable t) {
Log.e("PostMonitor", "Exception in callback", t);

}

205

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

}
}

}
catch (Throwable t) {

Log.e("PostMonitor", "Exception in poll()", t);
}

}

Step #5: Implement the Client Side

Next, we need to fix up the patchy client, so it uses the remote service
interface instead of attempting to access a local PostMonitor.

Then, we need to make one slight modification to our IPostListener
implementation: our anonymous inner class actually has to implement
IPostListener.Stub instead of IPostListener. So, change the 1listener
implementation to:

private IPostListener listener=new IPostListener.Stub() {
public void newFriendStatus(final String friend,
final String status,
final String createdAt) {
runOnUiThread (new Runnable() {
public void run() {
adapter.insert(new TimelineEntry(friend,
createdAt,
status), 9);

}
1)
}
};

Next, modify your ServiceConnection data member named svcConn to have
following implementation, to change the way we access our service
interface:

private ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder binder) {
service=IPostMonitor.Stub.asInterface(binder);

try {
service.registerAccount(prefs.getString("user", null),

prefs.getString("password", null),
listener);

206

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

catch (Throwable t) {
Log.e("Patchy", "Exception in call to registerAccount()", t);
goBlooey(t);

}

public void onServiceDisconnected(ComponentName className) {
service=null;

}

};

Then, in onDestroy(), wrap the removecCallback() in a try/catch block, to deal
with the possibility that our connection to the PostMonitor service has been
broken for some reason:

@Override
public void onDestroy() {
super.onDestroy();

try {
service.removeAccount(listener);

}
catch (Throwable t) {

Log.e("Patchy", "Exception in call to removeAccount()", t);
goBlooey(t);

unbindService(svcConn);

We also need to change resetClient() to wrap its service API calls in a
try/catch block, as follows:

synchronized private void resetClient() {
client=null;

try {
service.removeAccount(listener);
service.registerAccount (prefs.getString("user", ""),
prefs.getString("password", ""),
listener);

catch (Throwable t) {
Log.e("Patchy", "Exception in resetClient()", t);
goBlooey(t);

207

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

At this point, the patchy project should compile cleanly. It will not run,
though, without the corresponding service.

Step #6: Implement the Service Side

Finally, we need to make similar sorts of changes on the PostMonitor service.

First, modify TMonitor/AndroidManifest.xml to add an <intent-filter> (so
Patchy can reference it from another process and package) and add the
INTERNET permission that JTwitter will need:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial.three"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<application android:label="@string/app_name">
<service android:name=".PostMonitor">
<intent-filter>
<action android:name="apt.tutorial.IPostMonitor" />
</intent-filter>
</service>
</application>
</manifest>

Next, change our binder object from being an instance of LocalBinder to
being an instance of an IPostMonitor.Stub anonymous inner class instance
as follows:

private final IPostMonitor.Stub binder=new IPostMonitor.Stub() {
public void registerAccount(String user, String password,
IPostListener callback) {
Account l=new Account(user, password, callback);

poll(1l);
accounts.put(callback, 1);
}

public void removeAccount(IPostListener callback) {
accounts.remove(callback);

}

};

208

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

The easiest way to make the above change is to change the first line of the
LocalBinder definition to the first line in the above listing, add the
semicolon at the end, and get rid of the separate declaration and initializer
of binder.

Then, we need to do something about our polling logic, so when we register
an account we do not tie up the Ul thread of the client doing an immediate
poll(), yet we still quickly get status updates rather than waiting a full
minute. To help resolve this, we will use two polling periods: a one-second
period when we have no accounts, and the original one-minute period for
when we do have accounts. That way, we will find out about our first
account within one second of it being registered; only then will we slow
down, so as not to abuse the service.

To that end, add the following data members to PostMonitor:

private static final int INITIAL_POLL_PERIOD=1000;
private int pollPeriod=INITIAL_POLL_PERIOD;

Also, change threadBody to use the new polling logic:

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1l);
pollPeriod=POLL_PERIOD;
¥

SystemClock.sleep(pollPeriod);
¥
}
}s

Now, you should be able to recompile and reinstall both projects.
Launching patchy will give you similar results as before - the difference
being that now it is using the remote PostMonitor service, rather than a local
one.

Here is an implementation of Patchy after making this tutorial's
modifications:

209

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

package apt.tutorial.two;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;
import android.content.SharedPreferences;
import android.os.Bundle;

import android.os.IBinder;

import android.preference.PreferenceManager;
import android.view.LlLayoutInflater;
import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.util.log;

import android.widget.ArrayAdapter;
import android.widget.Button;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.TextView;

import java.util.Arraylist;

import java.util.List;

import winterwell.jtwitter.Twitter;
import apt.tutorial.IPostListener;

import apt.tutorial.IPostMonitor;

public class Patchy extends Activity {
private EditText status=null;
private SharedPreferences prefs=null;
private Twitter client=null;
private List<TimelineEntry> timeline=new ArraylList<TimelineEntry>();
private TimelineAdapter adapter=null;
private IPostMonitor service=null;
private ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder binder) {
service=IPostMonitor.Stub.asInterface(binder);

try {
service.registerAccount(prefs.getString("user", null),

prefs.getString("password”, null),
listener);

catch (Throwable t) {

Log.e("Patchy", "Exception in call to registerAccount()", t);
goBlooey(t);

}

public void onServiceDisconnected(ComponentName className) {

210

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

service=null;

}
1

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

status=(EditText)findviewById(R.id.status);
Button send=(Button)findViewById(R.id.send);
send.setOnClickListener(onSend);

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangeListener (prefListener);

bindService(new Intent(IPostMonitor.class.getName()),
svcConn, Context.BIND_AUTO_CREATE);

adapter=new TimelineAdapter();
((ListView)findViewById(R.id.timeline)).setAdapter(adapter);

}

@Override
public void onDestroy() {
super.onDestroy();

try {
service.removeAccount(listener);

catch (Throwable t) {
Log.e("Patchy", "Exception in call to removeAccount()", t);
goBlooey(t);

unbindService(svcConn);

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(getApplication())
.inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

211

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

}

return(super.onOptionsItemSelected(item));

}

synchronized private Twitter getClient() {
if (client==null) {
client=new Twitter(prefs.getString("user", ""),
prefs.getString("password", ""));
client.setAPIRootUrl("https://identi.ca/api");
¥

return(client);

}

synchronized private void resetClient() {
client=null;

try {
service.removeAccount(listener);
service.registerAccount(prefs.getString("user", ""),
prefs.getString("password", ""),
listener);

catch (Throwable t) {
Log.e("Patchy", "Exception in resetClient()", t);
goBlooey(t);

}

private void updateStatus() {

try {
getClient().updateStatus(status.getText().toString());

catch (Throwable t) {
Log.e("Patchy", "Exception in updateStatus()", t);
goBlooey(t);

}

private void goBlooey(Throwable t) {
AlertDialog.Builder builder=new AlertDialog.Builder(this);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("0OK", null)
.show();

}

private View.OnClickListener onSend=new View.OnClickListener() {
public void onClick(View v) {
updateStatus();
¥

212

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

1

private SharedPreferences.OnSharedPreferenceChangelListener prefListener=
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences sharedPrefs, String
key) {
if (key.equals("user") || key.equals("password")) {
resetClient();
¥
¥
s

private IPostListener listener=new IPostListener.Stub() {
public void newFriendStatus(final String friend,
final String status,
final String createdAt) {
runOnUiThread (new Runnable() {
public void run() {
adapter.insert(new TimelineEntry(friend,
createdAt,
status), 0);
}
1
}
s

class TimelineEntry {
String friend="";
String createdAt="";

String status="";

TimelineEntry(String friend, String createdAt,
String status) {
this.friend=friend;
this.createdAt=createdAt;
this.status=status;
¥
}

class TimelineAdapter extends ArrayAdapter<TimelineEntry> {
TimelineAdapter() {
super(Patchy.this, R.layout.row, timeline);
}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
TimelineEntryWrapper wrapper=null;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, null);
wrapper=new TimelineEntryWrapper (row);

213

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

row.setTag(wrapper);
¥
else {
wrapper=(TimelineEntryWrapper)row.getTag();
¥

wrapper.populateFrom(timeline.get(position));

return(row);
}
}

class TimelineEntryWrapper {
private TextView friend=null;
private TextView createdAt=null;
private TextView status=null;
private View row=null;

TimelineEntryWrapper (View row) {
this.row=row;
¥

void populateFrom(TimelineEntry s) {
getFriend().setText(s.friend);
getCreatedAt().setText(s.createdAt);
getStatus().setText(s.status);

TextView getFriend() {
if (friend==null) {
friend=(TextView)row.findViewById(R.id.friend);
¥

return(friend);

}

TextView getCreatedAt() {
if (createdAt==null) {
createdAt=(TextView)row.findViewById(R.id.created_at);
}

return(createdAt);

}

TextView getStatus() {
if (status==null) {
status=(TextView)row.findViewById(R.id.status);
}

return(status);
b
}
¥

214

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

And here is an implementation of PostMonitor after making this tutorial's
modifications:

package apt.tutorial.three;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.SystemClock;

import android.util.log;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicBoolean;
import winterwell.jtwitter.Twitter;

import apt.tutorial.IPostListener;

import apt.tutorial.IPostMonitor;

public class PostMonitor extends Service {
private static final int POLL_PERIOD=60000;
private static final int INITIAL_POLL_PERIOD=1000;
private int pollPeriod=INITIAL_POLL_PERIOD;
private AtomicBoolean active=new AtomicBoolean(true);
private Set<Long> seenStatus=new HashSet<Long>();
private Map<IPostListener, Account> accounts=

new ConcurrentHashMap<IPostListener, Account>();

@Override
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
}

@0verride
public IBinder onBind(Intent intent) {
return(binder);

}

@0verride
public void onDestroy() {
super.onDestroy();

active.set(false);

}

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, l.password);

client.setAPIRootUrl("https://identi.ca/api");

215

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
try {
1.callback.newFriendStatus(s.user.screenName, s.text,
s.createdAt.toString());
seenStatus.add(s.id);

}
catch (Throwable t) {
Log.e("PostMonitor", "Exception in callback", t);
¥
}
¥

}
catch (Throwable t) {
Log.e("PostMonitor", "Exception in poll()", t);

}

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1);
pollPeriod=POLL_PERIOD;
}

SystemClock.sleep(pollPeriod);
¥
b
s

class Account {
String user=null;
String password=null;
IPostListener callback=null;

Account(String user, String password,
IPostListener callback) {
this.user=user;
this.password=password;
this.callback=callback;
¥
}

private final IPostMonitor.Stub binder=new IPostMonitor.Stub() {
public void registerAccount(String user, String password,
IPostListener callback) {
Account l=new Account(user, password, callback);

poll(1l);
accounts.put(callback, 1);

216

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Your Friends Seem Remote

}

public void removeAccount(IPostListener callback) {
accounts.remove(callback);
¥
s
¥

Step #7: Restore Your Project

In Step #1, you should have backed up or otherwise saved a copy of your
project. After doing any desired "extra credit” items, restore that project, so
you are in position to continue with the rest of the tutorials. You can also
get rid of the TMonitor application from your device or emulator, via going
into the Settings application in the launcher, choosing Applications, then
choosing Manage Applications and uninstalling TMonitor.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Design two other applications that could use identi.ca services
(perhaps beyond those you have already implemented) and could
take advantage of a common identi.ca component.

« If you added direct-message support in the previous tutorials,
convert the follower roster callback to use AIDL as well.

Further Reading

Learn more about remote services and AIDL in the "Your Own (Advanced)
Services" chapter of The Busy Coder's Guide to Advanced Android
Development.

217

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 20

A Subtle Notification

Right now, the only way you find out about status updates from your
friends is by looking at your application. However, perhaps there is a
certain keyword that you want to specifically watch for - perhaps your
company name. In this tutorial, we augment Patchy and PostMonitor to
watch for such a keyword, putting a Notification in the status bar when
there is a match.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 18-LocalService edition of Patchy to use as a starting point.

Step #1: Pick a Word and Icon

PostMonitor will watch for posts containing some word (or phrase) that you
choose...but you need to choose it. Determine what you want to watch for,
then add it as a NOTIFY_KEYWORD value in PostMonitor:

|pr‘ivate static final String NOTIFY_KEYWORD="snicklefritz"; |

You will also need an icon, named status.png, in your res/drawable/
resource directory, that will be used with the Notification. You can grab

219

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

something suitable from the Android SDK (look for status_* icons), draw
one yourself, or use the one supplied in the source code for this book.

Step #2: Raise the Notification

Next, we need to add a method to PostMonitor that will use the
NotificationManager and raise a Notification. Add the following
showNotification() method to PostMonitor:

private void showNotification() {
final NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION_SERVICE);
Notification note=new Notification(R.drawable.status,
"New matching post!",
System.currentTimeMillis());
Intent i=new Intent(this, Patchy.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP|
Intent.FLAG_ACTIVITY_SINGLE_TOP);

PendingIntent pi=PendingIntent.getActivity(this, 0,
i:
0);
note.setLatestEventInfo(this, "Identi.ca Post!",

"Found your keyword: "+NOTIFY_KEYWORD,
pi);

mgr.notify (NOTIFICATION_ID, note);

Here we get access to the NotificationManager via getSystemService(), create
an configure a Notification object, and tell the NotificationManager to show
the Notification.

The one part of this that is a bit tricky is the work with the Intent and
PendingIntent. A PendingIntent is a wrapper around an Intent, stating how it
should be used (in our case, to start an Activity) and allowing some other
process to execute this Intent using our security profile. In this case, this
means that the operating system will call startActivity() on the Intent
using the pPatchy application's set of permissions, not the permissions of the
operating system itself.

220

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

The 1Intent has a pair of flags added, FLAG_ACTIVITY_CLEAR_TOP and
FLAG_ACTIVITY_SINGLE_TOP. The combination of these means that if there is a
copy of Patchy presently active, it will be brought to the foreground, rather
than start a new copy of patchy.

To use this new method, you will also need to declare the NOTIFICATION_ID
value in PostMonitor:

|public static final int NOTIFICATION_ID=1337;

You will also need to add imports for android.app.Notification,
android.app.NotificationManager, and android.app.PendingIntent.

Step #3: Watch for the Keyword

Armed with the implementation of showNotification(), we can now modify
the poll() method to watch for hits on the keyword, so make your
implementation of pol1() in PostMonitor look like this:

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, 1l.password);

client.setAPIRootUrl("https://identi.ca/api");
List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
1.callback.newFriendStatus(s.user.screenName, s.text,
s.createdAt.toString());
seenStatus.add(s.id);

if (s.text.indexOf (NOTIFY_KEYWORD)>-1) {
showNotification();
}
¥
¥

}
catch (Throwable t) {
android.util.Log.e("PostMonitor",
"Exception in poll()", t);

221

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

At this point, if you compile and reinstall the application, then update your
own status containing your keyword, you will see the notification icon
appear:

5 Ml @ 8:58am

d This is a test post containing
the word snicklefritz]

cwtest ThuJun 24 08:57:01 E...
This is a test post containing the word snicklefritz.

welcomebot ThuJun 24 04:35:39 E...
Welcome to Identi.ca, @whitepixel!

welcomebot ThuJun 24 04:42:23 E...
Welcome to Identi.ca, @askmeaks!

welcomebot ThuJun 24 04:57:18 E...
Welcome to Identi.ca, @alsajee!

welcomebot ThuJun 24 05:06:09 E...
Bienvenue a Identi.ca, @webdif !

welcomebot ThuJun 24 05:10:23 E...
Herzlich willkommen bei Identi.ca, @bdpgmbh!

Th 294 NE-12-EN E

Figure 36. The Patchy notification icon

And, if you slide down the notification drawer, you will see the event
information:

222

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

June 24, 2010 &5 Ml @ 8:59 am

Android Clear

Identi.ca Post!

Found your keyword: snicklefritz 8:58 AM

Figure 37. The Patchy notification event information

If you tap on that event, you will be returned to patchy, even if you had
closed out of it earlier. However, the icon will stick around, even after re-
opening Patchy, unless you manually clear it using the Clear button in the
notification drawer.

Step #4: Clearing the Notification

What would be nice is to clear the Notification automatically once the user
clicks on it. To do this, first implement a clearNotification() method in
Patchy:

private void clearNotification() {
NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION_SERVICE);

mgr.cancel(PostMonitor .NOTIFICATION_ID);

}

Then, make a call to clearNotification() from onCreate():

223

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
status=(EditText)findViewById(R.id.status);
Button send=(Button)findViewById(R.id.send);

send.setOnClickListener (onSend);

prefs=PreferenceManager.getDefaultSharedPreferences(this);
prefs.registerOnSharedPreferenceChangeListener (preflListener);

bindService(new Intent(this, PostMonitor.class), svcConn,
BIND_AUTO_CREATE);

adapter=new TimelineAdapter();
((ListVview)findViewById(R.id.timeline)).setAdapter(adapter);

clearNotification();

If you try this, it will work...if patchy had been closed. If, however, Patchy
were open, and you click on the event, the icon would remain intact.

The reason is that if patchy were open, the currently-running patchy is being
brought to the foreground. Since a new Patchy instance is not being
created, onCreate() does not get called.

However, in this case, a separate callback method, onNewIntent(), will be
called. So, override onNewIntent() In Patchy and call clearNotification()
from there:

@Override
public void onNewIntent(Intent i) {
super.onNewIntent(i);

clearNotification();

}

Now, the icon should go away even if patchy were already running when
you click on the event.

224

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Subtle Notification

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« If you exit and re-open Patchy, you will notice that the timeline
appears to vanish. That would occur if PostMonitor had not yet been
destroyed, and the new Patchy instance reconnects to it. Modify
PostMonitor to always send over the first timeline on the initial

poll().

+ Support a user-configurable keyword (or set of keywords) via a
Preference.

« Use the count field on a Notification to indicate how many matches
on the keyword were found in between taps on the event
information in the notification drawer.

Further Reading

Notifications are covered in the "Alerting Users Via Notifications" chapter
of The Busy Coder's Guide to Android Development.

225

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 21

Posts On Location

In this tutorial, we will integrate location tracking, such that we can
optionally embed our location in our status updates following the
Twittervision convention.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 20-Notifications edition of Patchy to use as a starting point.

Step #1: Get the LocationManager

First, we need to arrange to have access to Android location services
through the LocationManager.

This requires a permission, either ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION. Since the emulator simulates GPS, which needs
ACCESS_FINE_LOCATION, modify Patchy/AndroidManifest.xml to add this
permission:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial.two"
android:versionCode="1"

227

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://twittervision.com/maps/faq.html

Posts On Location

android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application android:label="@string/app_name">
<activity android:name=".Patchy"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".EditPreferences">
</activity>
<service android:name=".PostMonitor" />
</application>
</manifest>

Then, add some imports to pPatchy for location-related classes that we will
need:

import android.location.LlLocation;
import android.location.LocationListener;
import android.location.LocationManager;

Next, add a LocationManager data member named locMgr in Patchy, then
initialize it in onCreate():

|1ocMgr:(LocationManager)getSystemService(LOCATION_SERVICE); |

At this point, we can start using the LocationManager for getting the location
to embed in the status update.

Step #2: Register for Location Updates

Next, we need to do something to cause Android to actually activate GPS
and get fixes. Just having access to LocationManager is insufficient. The
simplest answer is to register for location updates, even if we will use
another way to get our current fix, as you will see later in this tutorial.

So, add the following statement to onCreate() in Patchy, after you have

initialized locMgr as shown in the preceding section:

228

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Posts On Location

locMgr.requestLocationUpdates (LocationManager.GPS_PROVIDER,
10000, 10000.0f,
onLocationChange);

This refers to an onLocationChange object, which is a LocationListener. We
do not truly care about the updates (though, in principle, our application
could do something with them). Hence, for this tutorial's purpose, all you

need is a stub implementation of LocationListener. Add the following to
Patchy:

private LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
// required for interface, not used

public void onProviderDisabled(String provider) {
// required for interface, not used

public void onProviderEnabled(String provider) {
// required for interface, not used

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used
}
}s

Finally, since we registered for location updates in onCreate(), we should

remove that request in onDestroy(). Modify onDestroy() in Patchy to look
like this:

@Override
public void onDestroy() {
super.onDestroy();

locMgr.removeUpdates (onLocationChange);
service.removeAccount(listener);
unbindService(svcConn);

}

Step #3: Add "Insert Location" Menu

Now, we need to give the user a way to inject the current location into the
status update being written. The simplest way to do that is by adding a
menu item to Patchy/res/menu/option.xml:

229

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Posts On Location

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/prefs"
android:title="Settings"
android:icon="@drawable/ic_menu_preferences"
/>
<item android:id="@+id/location”
android:title="Insert Location"
android:icon="@drawable/ic_menu_compass"
/>

</menu>

You will also need a suitable icon, such as ic_menu_compass.png from the
Android SDK.

If you recompile and reinstall the application, you will see the new menu
option, even though it does not do anything just yet:

welcomebot Thu Jun

Welcome to Identi.ca, @askmeaks!

welcomebot ThuJun 24 04:57:18 E...
Welcome to Identi.ca, sajee!

welcomebot Thu Jun 24 05:06:09 E...
Bienvenue a Identi.ca ebdif !

welcomebot Thu Jun 24 05:10:2
Herzlich willkommen bei Identi.ca

welcomebot ThuJun 24 05:13:50 E...
[Jlo6po noxanosatkb Ha Identi.c oinaclay!

(=t g:‘\

O \/
Settings Insert Location

Figure 38. The Insert Location menu item in Patchy

Step #4: Insert the Last Known Location
Finally, we need to do something to add the location to our status message.

230

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Posts On Location

Change onoptionsItemSelected() in Patchy to look like this:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}
else if (item.getItemId()==R.id.location) {
insertLocation();

return(true);

}

return(super.onOptionsItemSelected(item));

}

Then, add in the following implementation of insertLocation() in Patchy:

private void insertLocation() {
Location loc=locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);

if (loc==null) {

Toast
.makeText(this, "No location available", Toast.LENGTH_SHORT)
.show();
}
else {
StringBuilder buf=new StringBuilder(status
.getText()
.toString());

buf.append(" L:");
buf.append(String.valueOf(loc.getLatitude()));
buf.append(",");
buf.append(String.valueOf(loc.getLongitude()));
status.setText(buf.toString());

You will need to add an import for android.widget.Toast, used to handle the
case where we do not have a GPS fix yet. Otherwise, if we have a fix, we
create a piece of text in Twittervision format, using the Location object, and
inject that into the EditText for the status.

Now, if you recompile and reinstall Patchy, and if you use DDMS to supply a
fake location (assuming you are running this on an emulator), the location

231

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Posts On Location

will be appended to the end of the status update when you choose the
Insert Location option menu item:

O B @ o014

; ‘L:37,422006,—122.084095

welcomebot ThuJun 24 04:42:23 E...
Welcome to Identi.ca, @askmeaks!

welcomebot ThuJun 24 04:57:18 E...
Welcome to Identi.ca, @alsajee!

welcomebot ThuJun 24 05:06:09 E...
Bienvenue a Identi.ca, @webdif !

welcomebot ThuJun 24 05:10:23 E...
Herzlich willkommen bei Identi.ca, @bdpgmbh!

welcomebot ThuJun 24 05:13:50 E...
[Jlo6po noxanoeatb Ha Identi.ca, @boinaclay!

welcomebot ThuJun 24 05:17:19 E...
Welcome to Identi.ca, @mariasantos!

walramahat Thirliin 24 NE-20N5 E

Figure 39. The results from the Insert Location menu item in Patchy

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Allow the user to choose the LocationProvider via a set of
preferences that specify the attributes of a criteria object, then
using that cCriteria object to get the best-matching
LocationProvider.

« Use onkeybown() to add "hot-key" support, such that some key (e.g.,
<Alt>-<X>) will inject the location, instead of having to use the
option menu.

232

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Posts On Location

Further Reading

Location tracking, via GPS or other technologies, is covered in the
"Accessing Location-Based Services" chapter of The Busy Coder's Guide to
Android Development.

233

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 22
Here a Post, There a Post

In this tutorial, we will integrate maps, so we can plot the location for
status updates that provide such information. Along the way, we will add
support to view the public timeline to pPatchy.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 21-Location edition of Patchy to use as a starting point.

For this application to work, you will need to have a device or emulator
AVD set up with the Google APIs, and you will need to have your project set
up to build with the Google APIs. If you followed the instructions in the
first tutorial, this will already be done.

Step #1: Register for a Map API Key

First, you need to register for an API key to use with the mapping services
and set it up in your development environment with your debug certificate.
Full instructions for doing this can be found on the Android developer site.

235

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://code.google.com/android/add-ons/google-apis/mapkey.html

Here a Post, There a Post

Step #2: Create a Basic MapActivity

Next, we need to create a stub MapActivity implementation that we can
then use in Patchy.

Create Patchy/res/layout/status_map.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>

<com.google.android.maps.MapView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:apiKey="00yHjoOk7_7vzHbUFXzY2j941YYCqW3NAIWSEEEW"
android:clickable="true" />

Note that you will need to substitute your API key for the one shown in
android:apikey in the above code listing.

Next, create Patchy/src/apt/tutorial/two/StatusMap.java with the following
content:

package apt.tutorial.two;

import android.app.Activity;

import android.os.Bundle;

import android.view.ViewGroup;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

public class StatusMap extends MapActivity {
private MapView map=null;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.status_map);

map=(MapView)findViewById(R.id.map);

map.getController().setZoom(17);
}

@0verride
protected boolean isRouteDisplayed() {
return(false);

236

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

All we do here is create a map and set the initial zoom level.

Then, we need to make two changes to our AndroidManifest.xml file: we
need to add the statusMap activity, and we need to indicate that we are
using the mapping services library. Alter Patchy/AndroidManifest.xml to look
like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial.two"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application android:label="@string/app_name">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".Patchy"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".EditPreferences">
</activity>
<activity android:name=".StatusMap">
</activity>
<service android:name=".PostMonitor" />
</application>
</manifest>

Step #3: Launch the Map on Location-Bearing Status
Click

Now, we need to tie Patchy and StatusMap together, such that a click on a
status that has an embedded location triggers the display of the map.

To do this, first we need to get control when a status is clicked. Right now,
the onCreate() in Patchy has a line that looks like:

|((ListView)findViewById(R.id.timeline)).setAdapter(adapter);

237

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

Remove that line and replace it with:

ListView list=(ListView)findViewById(R.id.timeline);

list.setAdapter(adapter);
list.setOnItemClickListener (onStatusClick);

That gives control on a click to an onstatusClick object. In there, we need to
get the TimelineEntry corresponding with the click, scan the status to find

the location (if any), and pass that information to StatusMap
startActivity().

Add the following onstatusClick implementation to Patchy:

via

private AdapterView.OnItemClickListener onStatusClick=
new AdapterView.OnItemClickListener() {
public void onItemClick(AdapterView<?> parent, View view,
int position, long id) {
TimelineEntry entry=timeline.get(position);
Matcher r=regexLocation.matcher(entry.status);

if (r.find()) {
double latitude=Double.valueOf(r.group(1l));
double longitude=Double.valueOf(r.group(4));

Intent i=new Intent(Patchy.this, StatusMap.class);

i.putExtra(LATITUDE, latitude);
i.putExtra(LONGITUDE, longitude);
i.putExtra(STATUS_TEXT, entry.status);

startActivity(i);
b
}
}s

This requires a few constants to be added to patchy as well:

public static final String LATITUDE="apt.tutorial.latitude";
public static final String LONGITUDE="apt.tutorial.longitude";
public static final String STATUS_TEXT="apt.tutorial.statusText";

We also need the Pattern that defines the regular expression we are

searching for:

238

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

private Pattern regexLocation=Pattern.compile("L\\:((\\-)?[0-9]+(\\.[0-9]+)?)
((\\-)?[0-9]+(\\.[8-9]+)?)");

E}

That regular expression is ugly, but it effectively matches any string of the
form L:AAA,000, where AAA and 000 are floating-point numeric values.

You will also need to add imports for android.widget.AdaptervView,
java.util.regex.Matcher, and java.util.regex.Pattern.

Now, when we click on a location-bearing status, StatusMap will open - you
can test this via the post you may have added from the previous tutorial,
containing your location. However, we need to add some logic to StatusMap
to unpack the latitude and longitude and center the map on that position.

Change statusMap to look like the following:

package apt.tutorial.two;

import android.app.Activity;

import android.os.Bundle;

import android.view.ViewGroup;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

public class StatusMap extends MapActivity {
private MapView map=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.status_map);
map=(MapView)findViewById(R.id.map);
map.getController().setZoom(17);

double lat=getIntent().getDoubleExtra(Patchy.LATITUDE, 0);
double lon=getIntent().getDoubleExtra(Patchy.LONGITUDE, 0);

GeoPoint status=new GeoPoint((int)(lat*1000000.0),
(int)(lon*1000000.0));

map.getController().setCenter(status);
map.setBuiltInZoomControls (true);

239

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

@Override
protected boolean isRouteDisplayed() {
return(false);
}
¥

Now, if you rebuild and reinstall Patchy (and TMonitor!), and you click on a
status that has a location (L:nnn.nn,nnn.nn - you may need somebody to
update their status with a location for you!), it will open the map on that
location.

Step #4: Show the Location Via a Pin

Finally, it would be good to put a pin on the map at the spot identified by
the status. Not only will this help the user find the location again after
panning around the map, but we can also have the pin respond to a click by
displaying the text of the status update.

First, find yourself a suitable pin image, probably on the order of 32x32
pixels. In this code, we assume that the pin image is called marker.

Next, add the following lines to onCreate() in StatusMap:

String statusText=getIntent().getStringExtra(Patchy.STATUS_TEXT);
Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds (0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(new StatusOverlay(marker, status,
statusText));

This requires an implementation of statusoverlay — add the following inner
class to StatusMap:

private class StatusOverlay extends ItemizedOverlay<OverlayItem> {
private OverlayItem item=null;
private Drawable marker=null;

public StatusOverlay(Drawable marker, GeoPoint status,
String statusText) {

240

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

super(marker);
this.marker=marker;

item=new OverlayItem(status, "Tweet!", statusText);

populate();
}

@0verride
protected OverlayItem createItem(int i) {
return(item);

}

@0verride
public void draw(Canvas canvas, MapView mapView,
boolean shadow) {
super.draw(canvas, mapView, shadow);

boundCenterBottom(marker);

}

@0verride
protected boolean onTap(int i) {
Toast.makeText (StatusMap.this,
item.getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

}

@0verride
public int size() {
return(1);

}

}

Now, when you view the map, you will see the pin at the spot of the
location:

241

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

\\\ % m 9:42 Am
%
b
iy s
P
X
A
& Amphitheatre Piwy
gle -
00 g Google Googh
E Bidg 41 Bldq‘l
gle &
1950 | ™
Google
Bidg 42 Google
Bidg 43
Charleston Rgq
Google
Bldg 1098 Google Google
’ Bldg 44 Bldg 45
&
' z o
E 3 > | cooge 89947
~ 5 Bldg 46
=
&

Google
Figure 40. The StatusMap, showing a location in New York City

Clicking on the pin will display a Toast with the text of the status update

itself:

242

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Here a Post, There a Post

OB @ 9:43am

S

Pl
A
Amphitheatre Prwy
gle

1900
Google

-, Google
Bldg 41 gigg 4i

Google
Bldg 42 Google
Bldg 43

Permanente cp,
ok 1,
ray

gle
1950
Charfeston Rq

Google ® Googh
. oogle Googie
Bldg 1098 i 4d Bidg 45

Iam not here: 1:37.422006,-122.084095

............ S
5| Bidg46

="
&
»
=

Goggle

Figure 41. The StatusMap, showing a Toast of the status update associated
with the location

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Support other map perspectives, such as street view or terrain
mode.

+ Allow the user to control the initial zoom level via a preference.

+ Enable the compass rose, via MyLocationOverlay.

Further Reading

Integration with Google Maps is covered in the "Mapping with MapView
and MapActivity" chapter of The Busy Coder's Guide to Android

Development.

243

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

Here a Post, There a Post

Also, bear in mind that the documentation for Android's mapping code is
not found in the Android developer guide directly, but rather at the site for
the Google add-on for Android.

244

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://code.google.com/android/add-ons/google-apis

TUTORIAL 23

Media

In this tutorial, we will integrate a video clip, to serve as a placeholder for
some sort of future "helpcast” to assist users with patchy.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 22-Maps edition of Patchy to use as a starting point.

Step #1: Obtain and Install a Video Clip

First, we need a suitable video clip to serve as our helpcast placeholder. A
320x240 MP4 video file should do nicely. Please, though, respect creators'
copyrights - consider using a Creative Commons-licensed clip, such as one
of these.

For something the size of your typical video clip, you should store it in an
SD card, since space in on-board flash memory is at a premium. We need to
upload the MP4 file there as helpcast.mpa. To do that, either use Eclipse's
file-browsing tools, or use DDMS, or use the adb push command from the
command line. The SD card can be found at either /sdcard or /mnt/sdcard,
depending on your emulator or device.

245

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://www.law.duke.edu/cspd/contest/finalists/
http://www.law.duke.edu/cspd/contest/finalists/

Media

Step #2: Create the Stub Helpcast Activity

Now, we need to add an activity that will use the videoview widget to
display our video clip.

First, add the following layout as Patchy/res/layout/helpcast.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<VideoView
android:id="@+id/video"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
/>
</LinearlLayout>

Then, create patchy/src/apt/tutorial/two/HelpCast.java with the following
code:

package apt.tutorial.two;

import android.app.Activity;

import android.graphics.PixelFormat;
import android.os.Bundle;

import android.os.Environment;

import android.view.View;

import android.widget.MediaController;
import android.widget.VideoView;
import java.io.File;

public class HelpCast extends Activity {
private VideoView video;
private MediaController ctlr;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
getWindow().setFormat(PixelFormat. TRANSLUCENT);
setContentView(R.layout.helpcast);

File clip=new File(Environment.getExternalStorageDirectory(),
"helpcast.mp4");

if (clip.exists()) {
video=(VideoView)findViewById(R.id.video);

246

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Media

video.setVideoPath(clip.getAbsolutePath());

ctlr=new MediaController(this);
ctlr.setMediaPlayer(video);
video.setMediaController(ctlr);
video.requestFocus();
video.start();

Here, we simply configure the videoview, including the MediaController to
give us buttons to control playback of the video. At the end, we call start(),
to begin playback automatically.

And, as always, when we add an activity to our project, we need to add it to
AndroidManifest.xml, so add the following <activity> element alongside the
others:

<activity android:name=".HelpCast">
</activity>

Step #3: Launch the Helpcast from the Menu

Finally, we need to integrate HelpCast into Patchy overall, so users can
display the help video. As we have done in previous tutorials, we will
accomplish this by extending the option menu with another menu item.

First, add the following <item> to Patchy/res/menu/option.xml:

<item android:id="@+id/help"
android:title="Help"
android:icon="@drawable/ic_menu_help"
/>

You will also need a suitable menu icon, such as the ic_menu_help.png image
from the Android SDK.

Then, update onOptionsItemSelected() in Patchy to launch HelpCast when
our item is selected:

247

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Media

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}

else if (item.getItemId()==R.id.location) {
insertLocation();

return(true);

}
else if (item.getItemId()==R.id.help) {
startActivity(new Intent(this, HelpCast.class));

return(true);

}

return(super.onOptionsItemSelected(item));

With all that complete, we have our helpcast ready to go. Rebuild and
reinstall the application, and you will see the new help menu item:

O FH Ml @ 9:02am

welcomebot ThuJun 2 57:18 E...
Welcome to Identi.ca, @alsajee!

welcomebot ThuJun 24 05:06:09 E...
Bienvenue a Identi.ca, @webdif !

welcomebot Thu Jun

Herzlich willkommen bei Identi.ca

welcomebot
Jo6po noxanosatk Ha Identi.c

welcomebot ThuJun 24 05:17:19 E...
Welcome to Identi.ca, @mariasantos!

Settings Insert Location Help
Figure 42. The new option menu item in Patchy

248

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Media

Clicking on it will bring up our "helpcast” video clip, though you will need
to tap on the top portion of the screen to get the media controls to appear,
so you can play it back:

OB @ 9:03am

oo:31 (R

Figure 43. The "helpcast" placeholder

Note, however, that playback may or may not work, depending on the
version of the emulator you are using, the file you are using, and the speed
of the development machine hosting the emulator instance.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Experiment with streaming video. Note that the requirements for
Android streaming video are rather arcane and ill-documented.

« If you can find several media clips that work, put a Spinner on the
HelpcastActivity to allow the user to switch between video clips.

249

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Media

Further Reading

Instruction on how to integrate media - audio and video, local and
streaming - to your Android app can be found in the "Media" chapter of
The Busy Coder's Guide to Advanced Android Development.

250

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 24

Browsing Some Posts

In this tutorial, we will support clicking on links found in status updates,
popping those up in the Browser application. We will also add a help screen
that loads a local help HTML file, by integrating WebKit into Patchy.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 23-Media edition of Patchy to use as a starting point.

Step #1: Add Auto-Linking

We can start by letting Android "do the heavy lifting for us" in making links
in status updates click-able. That is merely a matter of adding
android:autoLink = "all" to the Textview for the status text in
Patchy/res/layout/row.xml. With a value of "all", we are saying that we
want all recognized patterns to be converted to links: Web URLs, email
addresses, phone numbers, etc.

If you make this change, then recompile and reinstall the application, you
will notice two things:

251

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Browsing Some Posts

1. All of the click-able items show up in blue underlined text, and
when clicked they pop up the appropriate application (e.g., clicking
a Web URL brings up the Browser application).

2. Clicking on a row with a location, as we introduced in a previous
tutorial, does not spawn our StatusMap.

Step #2: Draft and Package the Help HTML

Next, we need some placeholder HTML to serve as our help prose. This
does not need to be terribly fancy - in fact, simpler HTML works better,
because it loads faster.

So, write a Web page that will serve as the placeholder for the patchy help.
The key is where you put the page: create an assets/ directory in your
project and store it as help.html in there. That will line up with the URL we
will use in the next section to reference that help file.

Step #3: Create a Help Activity

Now, we can create a help activity class that will load our Web page and do
some other useful things.

First, create Patchy/res/layout/help.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill parent”
>
<WebView android:id="@+id/webkit"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="1"
/>
</LinearLayout>

Then, create patchy/src/apt/tutorial/two/HelpPage.java with the following
code:

252

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Browsing Some Posts

package apt.tutorial.two;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.webkit.WebView;

public class HelpPage extends Activity {
private WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.help);

browser=(WebView)findViewById(R.id.webkit);
browser.loadUrl("file:///android_asset/help.html");

}

}

Note how we use file:///android_asset/help.html as the URL syntax to
reach into our APK's assets to load the desired Web page.

Finally, as normal, we need to add another <activity> element to our
AndroidManifest.xml file:

<activity android:name=".HelpPage">
</activity>

Step #4: Splice In the Help Activity

Right now, the option menu in patchy for help launches the Helpcast
activity. We want to change that so Patchy launches HelppPage instead, then
augment HelpPage to display HelpCast on demand.

Making the change to display HelpPage is easy - just replace the HelpcCast
reference with HelpPage in onOptionsItemSelected():

|startActivity(new Intent(this, HelpPage.class)); |

At this point, if you rebuild and reinstall the application, then click on the
help menu item, you will see your help page in a full-screen browser.

253

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Browsing Some Posts

To get to HelpCast, let us add a Button to the HelpPage layout and wire it up
so, when clicked, the Button launches Helpcast.

First, add a suitable Button to Patchy/res/layout/help.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
>
<WebView android:id="@+id/webkit"
android:layout_width="fill_parent"
android:layout_height="0px"
android:layout_weight="1"
/>
<Button android:id="@+id/helpcast"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="View Helpcast"
/>
</LinearLayout>

Then, add logic to HelpPage to find the Button and set the on-click listener
to an object that will call startActivity() on HelpCast:

package apt.tutorial.two;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.webkit.WebView;
import android.widget.Button;

public class HelpPage extends Activity {
private WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.help);

browser=(WebView)findViewById(R.id.webkit);
browser.loadUrl("file:///android_asset/help.html");

Button cast=(Button)findvViewById(R.id.helpcast);

cast.setOnClickListener(onCast);

254

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Browsing Some Posts

private View.OnClickListener onCast=new View.OnClickListener() {
public void onClick(View v) {
startActivity(new Intent(HelpPage.this, HelpCast.class));
}
s

}

Now, if you recompile and reinstall the application, clicking the help menu
item brings up HelpPage with both help content and the "View HelpCast"
button:

Patchy Online Help

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Ut risus velit, consequat
eu, scelerisque id, interdum tincidunt,
sem. Nulla est. Donec porttitor, magna
et tristique accumsan, lectus turpis
vestibulum felis, nec congue odio lorem
eget enim. Cum sociis natoque penatibus
et magnis dis parturient montes,
nascetur ridiculus mus. Fusce rutrum
metus ac mi. Class aptent taciti sociosqu
ad litora torquent per conubia nostra,
per inceptos himenaeos. Morbi sagittis
suscipit ante. Aliquam at dolor. Ut
sollicitudin massa vitae mauris. Nulla in
justo in enim sagittis sollicitudin.
Vestibulum sed lorem. Donec dapibus
lectus quis magna. Nunc quam ligula,
viverra tempor, luctus sit amet, varius
quis, felis. Morbi pharetra, velit nec

1 ol 1 H H

T H ot £

View Helpcast

Figure 44. The HelpPage activity

Clicking the button, in turn, will display the "helpcast" video clip.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Support multiple pages of help text, by using WebviewClient and
shouldOverrideUrlLoading().

255

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Browsing Some Posts

« Experiment with adding images or CSS stylesheets to the help page.

« Support the notion of the help being updated separately from the
APK. Search some URL for help updates, downloading them in the
background, and using them if available, falling back to the in-APK
edition if there are no such updates.

« Instead of detecting locations when statuses are clicked upon,
detect locations in the constructor for TimelineEntry. Then, add a
"Map" button to the row layout, set to GoNE if there is no location, or
vIsIBLE if there is one. Then, arrange to have clicking the Map
button bring up the statusMap.

Further Reading

You can learn more about the basics of integrating a webview widget into
your activities in the "Embedding the WebKit Browser" chapter of The Busy
Coder's Guide to Android Development.

256

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 25

High-Priced Help

In this tutorial, we will extend our help system to embed user details, such
as their identi.ca screen name, in the help text itself on the fly, by way of
injecting Java objects into the webview Javascript engine.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 24-webkit edition of Patchy to use as a starting point.

Step #1: Enable Javascript

By default, webview widgets have Javascript disabled. Since our current help
page does not use Javascript, that was not a problem in the previous
tutorial. Now, however, we are looking to add a script to the page, so we
need to enable Javascript in our wWebView.

Add this line to onCreate() in HelpPage:

| browser.getSettings().setJavaScriptEnabled(true);

That is all you need to enable basic Javascript operation.

257

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

High-Priced Help

Step #2: Create the Java Object to Inject

Next, we need to create a Java object from a public class with a public
method that we can inject into the Javascript environment of our Webview
that will give us access to the user's idenit.ca screen name.

To that end, add the following inner class to Helppage:

public class CustomHelp {
SharedPreferences prefs=null;

CustomHelp() {
prefs=PreferenceManager
.getDefaultSharedPreferences (HelpPage.this);

}

public String getUserName() {
return(prefs.getString("user", "<no account>"));

}

}

Step #3: Inject the Java Object

Just because we created the CustomHelp inner class does not mean Javascript
has access to it. Instead, we need to give the webview an instance of
CustomHelp and associate it with a name that will be used to make the
CustomHelp instance look like a global variable in Javascript.

Add the following lines to onCreate() in HelpPage:

browser.addJavascriptInterface(new CustomHelp(),
"customHelp");

The entirety of onCreate() in HelpPage should now look like this:

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.help);

browser=(WebView)findViewById(R.id.webkit);
browser.getSettings().setJavaScriptEnabled(true);
browser.addJavascriptInterface(new CustomHelp(),

258

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

High-Priced Help

"customHelp");
browser.loadUrl("file:///android_asset/help.html");

Button cast=(Button)findViewById(R.id.helpcast);

cast.setonClickListener (onCast);

}

In particular, we need to enable Javascript in the webview and inject our
CustomHelp object (under the name customHelp) before we load our help Web

page.

Step #4: Leverage the Java Object from Javascript

With all that done, we can take advantage of the customHelp object in our
Web page.

Somewhere on your page, add a <div> or with an id of userName, such
as:

<p>Your Twitter account name is:
<i>unknown</i>!</p>

Then, add a global Javascript function that will replace the default contents
of the userName element with the value obtained from customHelp, such as:

<script language="javascript">
function updateUserName() {
document
.getElementById("userName")
.innerHTML=customHelp.getUserName();

}

</script>

Finally, add an onLoad attribute to your <body> element to trigger calling the
global Javascript function, such as:

|<b0dy onLoad="updateUserName()"> |

259

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

High-Priced Help

If you do all of that, then rebuild and reinstall the application, the patchy
help page should show your Twitter user name where you placed it on the

page:

ORI @ 9:45am

Patchy Online Help

Your Twitter account name is: cwtest!

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Ut risus velit, consequat
eu, scelerisque id, interdum tincidunt,
sem. Nulla est. Donec porttitor, magna
et tristique accumsan, lectus turpis
vestibulum felis, nec congue odio lorem
eget enim. Cum sociis natoque penatibus
et magnis dis parturient montes,
nascetur ridiculus mus. Fusce rutrum
metus ac mi. Class aptent taciti sociosqu
ad litora torquent per conubia nostra,
per inceptos himenaeos. Morbi sagittis
suscipit ante. Aliquam at dolor. Ut
sollicitudin massa vitae mauris. Nulla in
justo in enim sagittis sollicitudin.
Vestibulum sed lorem. Donec dapibus
lectus quis magna. Nunc quam ligula,

vivorra tomnar liictiie cit amot variiie

View Helpcast

Figure 45. The HelpPage activity, showing the results of our injected Java
object

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Embed a link in the help HTML that will pop open the Browser
application on the user's own identi.ca page

« Have the help page optionally show the user's current location as an
example of what would be injected into a status message. On a
location update, call a global Javascript function in the page, so it
can update the help to match the current location.

260

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

High-Priced Help

Further Reading

Connecting Java and Javascript in a webview widget is part of what is covered
in the "WebView, Inside and Out" chapter of The Busy Coder's Guide to

Advanced Android Development.

261

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

PART Ill - Advanced Tutorials

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 26

Now Your Friends Seem
Animated

Most of the time, we are reading status updates, not updating our own
status. Hence, having the status entry widgets always around takes up a lot
of screen space. It would be nice to have them appear or disappear at the
user's request.

This tutorial will cover that very process. We will give the user an option
menu choice to show or hide the status entry widgets. Initially, we will
simply hide and show the widgets without any animation. Then, we will use
an AlphaAnimation to have the widgets fade in or out.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 25-AdviebKit edition of Patchy to use as a starting point.

Step #1: Set Up the Option Menu

Let us start by giving the user the option to show and hide the status entry
row. That can be handled by just another entry in our option

265

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

menu...though we will need to do a little work to toggle the menu item
from "show" to "hide" mode and back again.

First, modify Patchy/res/layout/main.xml to replace our TableLayout with
some LinearLayout containers:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
>
<LinearLayout android:id="@+id/status_row"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
>
<TextView android:text="Status:"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<EditText android:id="@+id/status”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:singlelLine="false"
android:gravity="top"
android:lines="5"
android:scrollHorizontally="false"
android:maxLines="5"
android:maxWidth="200sp"
/>
<Button android:id="@+id/send"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Send"
/>
</LinearLayout>
<ListView android:id="@+id/timeline"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
</LinearLayout>

Partially, we did this because we really were not using much of the
TableLayout functionality anymore. More importantly, though, we need to
isolate our collection of widgets we want to animate into a single container
- in this case, the innermost nested LinearLayout.

Next, add a statusRow vView data member to Patchy:

266

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

|private View statusRow=null;

...and initialize it somewhere late in onCreate():

|statusRow:findViewById(R.id.status_row);

Then, add a status_entry menu option to Patchy/res/menu/option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/prefs"
android:title="Settings"
android:icon="@drawable/ic_menu_preferences"
/>
<item android:id="@+id/status_entry"
android:title="Hide Status Entry"
android:icon="@drawable/status_hide"
/>
<item android:id="@+id/location”
android:title="Insert Location"
android:icon="@drawable/ic_menu_compass"
/>
<item android:id="@+id/help"
android:title="Help"
android:icon="@drawable/ic_menu_help"
/>
</menu>

You will need to supply some PNG image to serve as the menu icon,
preferably 32px tall.

The menu option is initially set up in "hide" mode. However, when the user
pops up the menu, we want to change that menu option to "show" mode if
the statusentryview is already hidden. To do this, we can use
onPrepareOptionsMenu() — add the following method to patchy:

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
MenuItem statusItem=menu.findItem(R.id.status_entry);

if (statusRow.getVisibility()==View.VISIBLE) {
statusItem.setIcon(R.drawable.status_hide);
statusItem.setTitle("Hide Status Entry");

}

else {
statusItem.setIcon(R.drawable.status_show);

267

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

statusItem.setTitle("Show Status Entry");
}

return(super.onPrepareOptionsMenu(menu));

}

Here, we see if the status entry row is visible and set our menu item
accordingly.

At this point, if you recompile and reinstall Patchy, you will see the new
menu item, though it will not do anything just yet:

O H Ml @ 9:22am

Send

welcomebot ThuJun 24 04:57:18 E...
Welcome to , @alsajee!

welcomebot ThuJun 24 05:06:09 E...
Bienvenue a , @webdif !

welcomebot ThuJu
Herzlich willkommen bei

Settings Hide Status Entry
R @
LA gl
\y/
Insert Location Help

Figure 46. The "Hide Status Entry” menu option in Patchy

Step #2: Show and Hide the Status Entry Widgets

It would be nice, of course, if the newly-created menu item actually did
something.

So, we need to add another case to onOptionsItemSelected() in Patchy to
handle this new menu item:

268

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

}

else if (item.getItemId()==R.id.location) {
insertLocation();

return(true);

}
else if (item.getItemId()==R.id.help) {
startActivity(new Intent(this, HelpPage.class));

return(true);

}
else if (item.getItemId()==R.id.status_entry) {
toggleStatusEntry();

return(true);

}

return(super.onOptionsItemSelected(item));

Here, we merely delegate to a toggleStatustntry() method, so add that
method to Patchy as shown below:

private void toggleStatusEntry() {
if (status.getVisibility()==View.VISIBLE) {
status.setVisibility(View.GONE);
}
else {
status.setVisibility(View.VISIBLE);

}

}

All we do here is make the status entry row hidden (GONE) or visible
(visiBLE), depending on its current state.

Now, when you hide the status entry row, the timeline gets more room:

269

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

OB @ 9:22am
Patchy
welcomebot ThuJun 24 04:57:18 E...
Welcome to , @alsajee!

welcomebot ThuJun 24 05:06:09 E...
Bienvenue a , @webdif !

welcomebot ThuJun 24 05:10:23 E...
Herzlich willkommen bei , @bdpgmbh!

welcomebot ThuJun 24 05:13:50 E...
[o6po noxanosatb Ha , @boinaclay!

welcomebot ThuJun 24 05:17:19 E...
Welcome to , @mariasantos!

welcomebot Thu Jun 24 05:30:05 E...
Welcome to , @igeos!

welcomebot ThuJun 24 05:30:24 E...
Welcome to , @herbalsmoke!

welcomebot ThuJun 24 05:52:53 E...
Herzlich willkommen bei , @virusgerm!

welcomebot ThuJun 24 06:07:44 E...
Bienvenue a , @wype !

welcomebot ThuJun 24 06:23:30 E...
Welcome to , @grandblond!

Figure 47. Patchy with a hidden status entry

Step #3: Fading In and Out

Of course, we have not yet used an animation, which is the point of this
exercise.

First, we need to define our animations. In this case, we will use ones
declared in animation XML files.

Create a Patchy/res/anim directory, then create
Patchy/res/anim/fade_out.xml as follows:

<?xml version="1.0" encoding="utf-8"?>

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
android:fromAlpha="1.0"
android:toAlpha="0.0"
android:duration="500" />

Also create Patchy/res/anim/fade_in.xml:

270

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

<?xml version="1.0" encoding="utf-8"?>

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
android:fromAlpha="0.0"
android:toAlpha="1.0"
android:duration="500"/>

These set up 500-millisecond alpha animations that fade out and fade in,
respectively.

Next, we need to declare Animation objects as data members in Patchy, to
hold these once we load them:

private Animation fadeOut=null;
private Animation fadeIn=null;

Then, we can use AnimationUtils to load our animation XML resources into
the Animation objects. Add the following statements sometime late in the
onCreate() method in Patchy:

fadeOut=AnimationUtils.loadAnimation(this, R.anim.fade_out);
fadeOut.setAnimationListener (fadeOutListener);
fadeIn=AnimationUtils.loadAnimation(this, R.anim.fade_in);

You will note that in addition to loading the animation resources, we
attached an AnimationListener to the fadeOut Animation. That way, we get
notified when the animation is done, so we can make the widget fully
"gone". Add the following implementation of fadeoutListener to Patchy:

Animation.AnimationListener fadeOutListener=new Animation.AnimationListener() {
public void onAnimationEnd(Animation animation) {
statusRow.setVisibility(View.GONE);
}
public void onAnimationRepeat(Animation animation) {
// not needed
}
public void onAnimationStart(Animation animation) {
// not needed
}
}s

Now, all that remains is to wuse fadeout and fadeIn in our
toggleStatusEntry() method:

271

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now Your Friends Seem Animated

private void toggleStatusEntry() {
if (statusRow.getVisibility()==View.VISIBLE) {
statusRow.startAnimation(fadeOut);
}
else {
statusRow.setVisibility(View.VISIBLE);
statusRow.startAnimation(fadelIn);
}
)

You will also need to add imports for android.view.animation.Animation and
android.view.animation.AnimationUtils.

At this point, you can rebuild and reinstall patchy, and you will see your
status entry area fade out when you hide it, then fade back in when you
show it again.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Have the status entry widget slide out rather than fade out, either
sliding out to the top or sliding out to one side.

« Usean AnimationsSet to have the widget both fade and slide.

Further Reading

So-called "tweened" animations, such as the AlphaAnimation used in this
chapter, are covered in the "Animating Widgets" chapter of The Busy
Coder's Guide to Advanced Android Development. This includes coverage
of other types of tweened animations (slides, spins, etc.), how to apply
several animations in parallel or sequence, etc.

272

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 27

Messages From The Great
Beyond

In this tutorial, we will replace the callback system we used in previous
editions of patchy with a broadcast Intent. This allows PostMonitor to alert
applications about new status updates without there having to be an
explicit connection between them.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 26-Animation edition of Patchy to use as a starting point.

Step #1: Broadcast the Intent

Sending a broadcast Intent is rather simple, particularly for an application
like PostMonitor that already collects the information to broadcast (in this
case, friend, status, and creation date).

First, we need to choose a name for the action of the broadcast Intent. We
need something that will not collide with other such names, so it is best to
use something that has our namespace in it. Similarly, we need to have

273

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Messages From The Great Beyond

names for any values we are going to store as "extras" in our Intent, and
ideally those are "namespaced" as well.

With that in mind, add the following data members to PostMonitor:

public static final String STATUS_UPDATE="apt.tutorial.three.STATUS_UPDATE";
public static final String FRIEND="apt.tutorial.three.FRIEND";

public static final String STATUS="apt.tutorial.three.STATUS";

public static final String CREATED_AT="apt.tutorial.three.CREATED_AT";

Then, we need to actually broadcast the Intent, instead of calling the
callback. To do that, replace your existing poll() implementation with the
following:

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, 1l.password);

client.setAPIRootUrl("https://identi.ca/api");
List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
try {
Intent broadcast=new Intent(STATUS_UPDATE);
broadcast.putExtra(FRIEND, s.user.screenName);
broadcast.putExtra(STATUS, s.text);
broadcast.putExtra(CREATED_AT,
s.createdAt.toString());
sendBroadcast (broadcast);
}
catch (Throwable t) {
Log.e("PostMonitor", "Exception in callback", t);

}
seenStatus.add(s.id);

if (s.text.indexOf(NOTIFY_KEYWORD)>-1) {
showNotification();
}
¥
}

catch (Throwable t) {
android.util.Log.e("PostMonitor",
"Exception in poll()", t);

274

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Messages From The Great Beyond

We create a fresh Intent on our defined action, populate our variable data
as "extras", and call sendBroadcast() to send it off.

Step #2: Catch and Use the Intent

Receiving a broadcast Intent is similarly simple.

First, we need to decide when we want our receiver to be active and alive. In
some situations, where the broadcasts are merely advisory, we can enable
them in onResume() and disable them in onPause(), so we consume no CPU
time processing broadcasts when our activity is not visible. In this case, so
we do not miss an all-important tweet, we should ensure the receiver is
active whenever our account registered with PostMonitor is active.

First, we need to register a receiver in onCreate() before we bind to our
service:

|registerReceiver(receiver, new IntentFilter(PostMonitor.STATUS_UPDATE)); |

And, we need to unregister said receiver after we unbind from the service:

|unregisterReceiver(receiver); |

Of course, none of this will work without a receiver itself. We want the
receiver to do what our callback object does, except that instead of getting
the data as method parameters, we get it as "extras" on the broadcast
Intent. Here is one implementation of receiver that will accomplish this
end:

private BroadcastReceiver receiver=new BroadcastReceiver() {
public void onReceive(Context context,
final Intent intent) {
String friend=intent.getStringExtra(PostMonitor.FRIEND);
String createdAt=intent.getStringExtra(PostMonitor.CREATED_AT);
String status=intent.getStringExtra(PostMonitor.STATUS);

adapter.insert(new TimelineEntry(friend, createdAt, status),
0);

s

275

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Messages From The Great Beyond

If we intend to keep support for both the callback and the broadcast Intent,
we might consider refactoring our code, such that the TimelineEntry
addition is centrally defined.

You will need to add imports for android.content.BroadcastReceiver,
android.content.Context, and android.content.IntentFilter.

At this point, recompile and reinstall patchy. Patchy should run as it did
before, just via broadcast Intent objects instead of the callback.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Get rid of the callback API. Since the service tracks accounts by the
callback object (it is the key to the Map), you will need to restructure
how the service tracks those accounts, such as using the screen
name.

« Create a separate "sniffer" project that listens for the same
broadcast Intent. Confirm that it too receives the broadcasts from
PostMonitor.

Further Reading

The use of 1ntent filters for broadcast Intent objects is covered briefly in the
"Creating Intent Filters" chapter of The Busy Coder's Guide to Android
Development.

276

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 28
Contacting Our Friends

In this tutorial, we tie Android contacts to Patchy, storing identi.ca screen
names in the contacts engine and highlighting those status updates that
come from our contacts.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 27-IntentFilters edition of Patchy to use as a starting point.

Also note that this tutorial will work with an Android 2.0 device or
emulator but will not work with an Android 1.6 or older environment.
Furthermore, the Android 2.2 emulator presently seems to have a bug,
whereby if you add a contact, it does not appear on the list of contacts, even
though the contact is actually there.

Step #1: Fake the Contact Data

Android's contact database does not have a built-in spot to record the
Twitter screen name of the contact.

277

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

Hopefully, you have gotten over the horror of that news. Fortunately,
Android 1.5 added the ability to track IM addresses, and so we will use that
for our contacts' identi.ca screen names.

To do this, pick a contact, or create a new one if you do not have any. Fill in
the person's display name, then scroll down to the IM area, which may be
on this form directly or hidden under a "More" category:

W 5 Ml & 10:03am

Postal address

Organization

° More

IM

l Done l Revert }

Figure 48. The contact detail form, scrolled to the "More" category, showing
the IM option

Click the green plus button, which will add a blank IM set of widgets to
your contact detail form:

278

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

O G & 10:034am

= E ©

Postal address 9

Organization 9
o More

Lo | e

Figure 49. The contact detail form, showing the blank IM field

Click the AIM button to bring up the roster of available IM types:

279

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

< @l @ 1004w

@ Select label

AIM

Windows Live
Yahoo

Skype

QQ

Google Talk

Figure 50. The dialog of IM types for contacts

Choose "Custom...", then fill in "identi.ca" (sans quotes) as the IM type:

280

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

< @l @ 1004w

@ Custom label name

I identi.ca\ |

N

Figure 51. The IM type dialog, with "identi.ca" entered

Click OK, then fill in the identi.ca screen name for this contact in the IM
field:

281

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

O G @ 10:05am

SN ©

Postal address 9

Organization o
o More

IM e
[o

Done Revert

Figure 52. The contact detail form, showing the "identi.ca" IM type and
"thescreename" as the screen name

Click the Done button, and you are set. You will need one or more contacts
set up with screen names. In particular, you need contacts that will have
status updates in your timeline.

Step #2: Design the Highlight

Next, we need to decide how we wish to highlight those friends who are in
our contacts database. A simple highlight that we can apply is to put a
background color on the friend's name - that will help friends who are
contacts to stand out from the rest.

To do that, we first need to amend TimelineEntry, so it knows whether or
not it is a contact — add the following data member to the TimelineEntry
inner class of Patchy:

| boolean isContact=false;

282

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

Then, we need to modify TimelineEntryWrapper so it looks at the isContact
property of TimelineEntry and sets the background accordingly, so change
populateFrom() in TimelineEntryWrapper to be:

void populateFrom(TimelineEntry s) {
getFriend().setText(s.friend);
getCreatedAt().setText(s.createdAt);
getStatus().setText(s.status);

if (s.isContact) {
getFriend().setBackgroundColor (0xFFOOOOFF) ;

else {
getFriend().setBackgroundColor (0x00000000) ;
}

}

You might think that we only need to set the background when the friend is
a contact. However, since rows get recycled, if we do not reset the
background when the friend is not a contact, soon all our rows will be
highlighted, mostly in error.

Step #3: Find and Highlight Matching Contacts

Of course, our isContact property in TimelineEntry is always set to be false,
which is not terribly helpful. Instead, we need to do a lookup to see if a
friend is actually a contact, so we can set that flag appropriately. We do not
need any data about the contact - all we need to know is if there exists a
contact with the appropriate Twitter "organization" and screen name.

First, add the READ_CONTACTS permission to the AndroidManifest.xml file for
Patchy. Without this, we cannot find out if a friend is a contact.

Next, add a PROJECTION to Patchy:

private static final String[] PROJECTION=new String[] {
ContactsContract.Contacts._ID,

};

283

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

This just says that the only column we want back is the contact's ID. Also,
add imports to android.provider.ContactsContract and
android.provider.ContactsContract.CommonDataKinds.

Finally, modify the TimelineEntry constructor to be as follows:

TimelineEntry(String friend, String createdAt,
String status) {
this.friend=friend;
this.createdAt=createdAt;
this.status=status;

String[] args={friend};
StringBuilder query=new StringBuilder (CommonDataKinds.Im.CUSTOM_PROTOCOL);

query.append("="identi.ca' AND ");
query.append(CommonDataKinds.Im.DATA);
query.append("=?");
Cursor c=managedQuery(ContactsContract.Data.CONTENT_URI,
PROJECTION,
query.toString(),
args, null);

if (c.getCount()>0) {
this.isContact=true;

}
¥

We use managedQuery() to get a Cursor representing our contact, if any. All
we do is look to see if we got one (or, conceivably, more) matches on our
screen name, and use that information to set the value of iscontact.

The net result is that any friends whose screen names are in our contacts
will show up with their screen names on a blue background.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Provide a means from the patchy Ul to see the contact information
for a contact from whom we have received a status update.

« Cache the matching contacts for a short period of time, to reduce
contact lookups when new status updates come in.

284

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Contacting Our Friends

+ Provide a means from the patchy Ul to "re-tweet" both inside
identi.ca and by forwarding the post (and its URL) to contacts via
email or SMS.

Further Reading

Using content providers in general is covered in the "Using a Content
Provider" chapter of The Busy Coder's Guide to Android Development.
Using the ContactsContract content provider specifically is covered in "The
Contacts Content Provider”, found in The Busy Coder's Guide to Advanced

Android Development.

285

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 29

Android Would Like Your
Attention

From time to time, Android can tell you things that may be of interest, such
as when the battery gets low. This allows you to take action based on those
system events, such as reducing the amount of background work you do
while the battery is low. In this tutorial, we will update the PostMonitor
service to be gentler while the battery is low, by polling less frequently.

NOTE: This tutorial requires an actual Android device, as the emulator
does not fully emulate a battery.

Step-By-Step Instructions

First, you need to have completed the previous patchy tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 28-UsingCP edition of Patchy to use as a starting point.

Step #1: Track the Battery State

We need to register a BroadcastListener from PostMonitor to be informed of
changes in state in the battery.

First, add the registerReceiver() call to onCreate() in PostMonitor:

287

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Android Would Like Your Attention

@Override
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
registerReceiver (onBatteryChanged,
new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

We set the receiver's IntentFilter to watch for ACTION_BATTERY_CHANGED
events, routing them to an onBattery object.

You will need to add an import for android.content.IntentFilter.

Next, call unregisterReceiver() in onDestroy() in PostMonitor:

@Override
public void onDestroy() {
super.onDestroy();

unregisterReceiver(onBatteryChanged);
active.set(false);

}

If we do not do this, our service will keep running and getting battery
events even after it would ordinarily have shut down.

Both of these rely on an onBattery BroadcastReceiver implementation,
which you should add to PostMonitor:

BroadcastReceiver onBatteryChanged=new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
int pct=100
*intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 1)
/intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

isBatteryLow.set(pct<=25);
}
}s

All we do is examine the battery level (as measured on the battery level
scale) and, if it hits 25% or lower, we set an isBatteryLow object to true;
otherwise, we set it to false.

288

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Android Would Like Your Attention

You will need to add imports for android.os.BatteryManager,
android.content.Context, and android.content.BroadcastReceiver.

The isBatteryLow object is actually an AtomicBoolean, which you should add
to the data members for PostMonitor:

|private AtomicBoolean isBatterylLow=new AtomicBoolean(false); |

At this point, we are watching for battery events and setting isBatteryLow,
but we are not making use of that information anywhere.

Step #2: Use the Battery State

Then, all we need to do is look at isBatteryLow in our polling loop. Modify
threadBody in PostMonitor to look like this:

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1l);
¥

int pollPeriod=POLL_PERIOD;

if (isBatteryLow.get()) {
pollPeriod*=10;
¥

SystemClock.sleep(pollPeriod);
}
}
}s

All we do is multiply our normal polling period by a factor of 16 when the
battery is low.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

289

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Android Would Like Your Attention

« Offer a user preference whereby PostMonitor will only poll if there is
a WiFi connection available. Then, monitor the WiFi connection
state and enable/disable polling as appropriate.

« Offer a user preference whereby PostMonitor will start collecting
timeline updates on boot and will buffer some number of updates,
so when Patchy connects, updates are available immediately and
fewer are missed in between Patchy runs.

Further Reading

Additional coverage of Android-generated broadcast Intent objects can be
found in the "Handling System Events" chapter of The Busy Coder's Guide
to Advanced Android Development.

290

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 30
Now, Your Friends Are Alarmed

One current flaw with Patchy is that if your device goes to sleep, you will
not get status updates on your timeline. Clearly, this must be corrected.

In this tutorial you will have PostMonitor use AlarmManager, instead of its
own polling loop, to wake it up as needed. You will also use a wakeLock
ensure PostMonitor stays awake long enough to do a poll of the timeline.
Fortunately, much of this is wrapped up in a resuable component that you
will employ.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 29-SysEvents edition of Patchy to use as a starting point.

Step #1: Import a Reusable Component

Some guy wrote WakefulIntentService, which is covered in some detail in
The Busy Coder's Guide to Advanced Android Development.
WakefulIntentService is an ideal component to use in this application, to
ensure that if the device wakes up in the middle of the night to poll Twitter
for updates, that the device does not fall back asleep in the middle of doing
that poll.

291

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

To obtain the JAR containing WakefulIntentService, you can either
download the source code from its GitHub repository and run ant jar to
build it, or you can download a pre-compiled JAR from that GitHub
repository's "Downloads" area, or you can get the JAR out of the source
code for this book in the 30-syssvcs edition of the patchy project.

Either way, once you have the JAR, put it in your 1ibs/ directory.

Step #2: Create the Alarm BroadcastReceiver

In order to receive alarms from the AlarmManager, we need a
BroadcastReceiver registered in our AndroidManifest.xml file. This
BroadcastReceiver, in turn, needs to start our PostMonitor service, in case it
is not running, and to let it know that a poll is required.

Create Patchy/src/apt/tutorial/two/OnAlarmReceiver.java with the
following implementation:

package apt.tutorial.two;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.util.log;

import com.commonsware.cwac.wakeful.WakefulIntentService;

public class OnAlarmReceiver extends BroadcastReceiver {
@0verride
public void onReceive(Context context, Intent intent) {
Intent i=new Intent(context, PostMonitor.class);

i.setAction(PostMonitor.POLL_ACTION);

WakefulIntentService.sendWakefulWork(context, i);

}

}

Then, add it to AndroidManifest.xml, along with the WAKE_LOCK permission we
need in order to use a WakeLock:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

292

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://github.com/commonsguy/cwac-wakeful

Now, Your Friends Are Alarmed

package="apt.tutorial.two"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<application android:label="@string/app_name">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".Patchy"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".EditPreferences">
</activity>
<activity android:name=".StatusMap">
</activity>
<activity android:name=".HelpCast">
</activity>
<activity android:name=".HelpPage">
</activity>
<service android:name=".PostMonitor" />
<receiver android:name=".OnAlarmReceiver">
</receiver>
</application>
</manifest>

onAlarmReceiver tells WakefulIntentService to sendwWakefulWork(), which will:

« Acquire a static WakeLock, then

+ (Call startService() on our PostMonitor service

This means all wWakeLock management can be encapsulated in
WakefulIntentService.

Step #3: Doing the Work

Now, we need to arrange for PostMonitor to respond to those polling
Intents.

First, change postMonitor to have it extend wakefulIntentService, adding an
import for com.commonsware. cwac.wakeful.WakefulIntentService.

293

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

Next, add a couple of private data members, one for an AlarmManager and
one for a PendingIntent, with suitable imports:

private AlarmManager alarm=null;
private PendingIntent pi=null;

You will need to add an import for android.app.AlarmManager. The
AlarmManager is the gateway to scheduled tasks in Android, while the
PendingIntent will be invoked each time the alarm goes off.

Then, update onCreate() to obtain the AlarmManager system service and to
set up the PendingIntent that AlarmManager should invoke every polling
cycle, plus schedule the initial alarm:

@Override
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
registerReceiver (onBatteryChanged,

new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
alarm=(AlarmManager)getSystemService (Context.ALARM_SERVICE);

Intent i=new Intent(this, OnAlarmReceiver.class);

pi=PendingIntent.getBroadcast(this, 0, i, 0);
setAlarm(INITIAL_POLL_PERIOD);

Note that we also get rid of our statement to schedule the threadBody
Runnable as a background thread, because an IntentService (parent class of
WakefulIntentService) automatically lets us do our work on a background
thread.

This requires a setAlarm() method to actually schedule the alarm:

private void setAlarm(long period) {
alarm.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+period,

pi);

294

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

The setAlarm() implementation tells AlarmManager to schedule a one-shot
alarm (rather than a recurring alarm), using the time-base of

SystemClock.elapsedRealtime(), to go off in period milliseconds from now,
invoking our pendingIntent at that point.

We now need to do the actual work itself. According to the protocol for
WakefulIntentService, we need to override a dowakefulWork() method, which
will be invoked inside a partial wakeLock every time the service is started.
For those that are actual polling Intents, we want to poll the Twitter
accounts, then schedule the next alarm:

@0verride
protected void doWakefulWork(Intent i) {
if (i.getAction().equals(POLL_ACTION)) {
for (Account 1 : accounts.values()) {
poll(1);
}
}

setAlarm(isBatteryLow.get() ? POLL_PERIOD*10 : POLL_PERIOD);

}

You will recognize some of this functionality as mimicking the threadBody
Runnable that we are no longer using.

Note that while AlarmManager supports recurring alarms, since our polling

period may change based upon battery state, we are manually scheduling
successive alarms here.

We also need to cancel the outstanding alarm when the service is
destroyed:

@Override
public void onDestroy() {
super.onDestroy();

alarm.cancel(pi);
unregisterReceiver (onBatteryChanged);
active.set(false);

}

295

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

Finally, wakefulIntentService requires a constructor, because IntentService
(supplied by Android) does. The wakefulIntentService's constructor takes a
String parameter that is the "name" of the service. What role this name
plays is unclear. So, add a functional constructor:

public PostMonitor() {
super("PostMonitor");

Now you can get rid of the isActive and threadBody data members, along
with all references to them (which you will find in oncreate() and
onDestr‘oy()).

Now, if you rebuild and reinstall the project, patchy should work as before.
The exception is that if you have patchy on a device, and you let the device
fall asleep while Patchy is still active, you should still receive status updates.

Here is the entire listing of PostMonitor after all of these changes:

package apt.tutorial.two;

import android.app.AlarmManager;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.app.Service;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.BatteryManager;

import android.os.Binder;

import android.os.IBinder;

import android.os.SystemClock;

import android.util.log;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicBoolean;
import winterwell.jtwitter.Twitter;

import apt.tutorial.IPostListener;

import apt.tutorial.IPostMonitor;

import com.commonsware.cwac.wakeful.WakefulIntentService;

296

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

public class PostMonitor extends WakefulIntentService {
public static final int NOTIFICATION_ID=1337;
public static final String STATUS_UPDATE="apt.tutorial.three.STATUS_UPDATE";
public static final String FRIEND="apt.tutorial.three.FRIEND";
public static final String STATUS="apt.tutorial.three.STATUS";
public static final String CREATED_AT="apt.tutorial.three.CREATED_AT";
public static final String POLL_ACTION="apt.tutorial.three.POLL_ACTION";
private static final String NOTIFY_KEYWORD="snicklefritz";
private static final int INITIAL_POLL_PERIOD=1000;
private static final int POLL_PERIOD=60000;
private AtomicBoolean active=new AtomicBoolean(true);
private Set<Long> seenStatus=new HashSet<Long>();
private Map<IPostListener, Account> accounts=
new ConcurrentHashMap<IPostListener, Account>();
private final Binder binder=new LocalBinder();
private AtomicBoolean isBatteryLow=new AtomicBoolean(false);
private AlarmManager alarm=null;
private PendingIntent pi=null;

public PostMonitor() {
super("PostMonitor");

}

@0verride
public void onCreate() {
super.onCreate();

new Thread(threadBody).start();
registerReceiver(onBatteryChanged,
new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

alarm=(AlarmManager)getSystemService (Context.ALARM_SERVICE);
Intent i=new Intent(this, OnAlarmReceiver.class);

pi=PendingIntent.getBroadcast(this, 0, i, 9);
setAlarm(INITIAL_POLL_PERIOD);
}

@0verride
public IBinder onBind(Intent intent) {
return(binder);

}

@Override
public void onDestroy() {
super.onDestroy();

alarm.cancel(pi);
unregisterReceiver(onBatteryChanged);
active.set(false);

}

@Override

297

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

protected void doWakefulWork(Intent i) {
if (i.getAction().equals(POLL_ACTION)) {
for (Account 1 : accounts.values()) {
poll(1l);
¥
¥

setAlarm(isBatteryLow.get() ? POLL_PERIOD*10 : POLL_PERIOD);
}

private void setAlarm(long period) {
alarm.set(AlarmManager.ELAPSED REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+period,
pi);
}

private void poll(Account 1) {

try {
Twitter client=new Twitter(l.user, 1l.password);

client.setAPIRootUrl("https://identi.ca/api");
List<Twitter.Status> timeline=client.getFriendsTimeline();

for (Twitter.Status s : timeline) {
if (!seenStatus.contains(s.id)) {
try {
Intent broadcast=new Intent(STATUS_UPDATE);
broadcast.putExtra(FRIEND, s.user.screenName);
broadcast.putExtra(STATUS, s.text);
broadcast.putExtra(CREATED_AT,
s.createdAt.toString());
sendBroadcast (broadcast);

catch (Throwable t) {
Log.e("PostMonitor", "Exception in callback", t);

}

seenStatus.add(s.id);

if (s.text.indexOf (NOTIFY_KEYWORD)>-1) {
showNotification();
}

}
}

}
catch (Throwable t) {
android.util.Log.e("PostMonitor",
"Exception in poll()", t);
¥
}

private void showNotification() {
final NotificationManager mgr=

298

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

(NotificationManager)getSystemService (NOTIFICATION_SERVICE);
Notification note=new Notification(R.drawable.status,
"New matching post!",
System.currentTimeMillis());
Intent i=new Intent(this, Patchy.class);

i.setFlags(Intent.FLAG ACTIVITY CLEAR TOP|
Intent.FLAG_ACTIVITY_SINGLE_TOP);

PendingIntent pi=PendingIntent.getActivity(this, 0,
i,
9);

note.setLatestEventInfo(this, "Identi.ca Post!",
"Found your keyword: "+NOTIFY_KEYWORD,

pi);

mgr.notify (NOTIFICATION_ID, note);
}

private Runnable threadBody=new Runnable() {
public void run() {
while (active.get()) {
for (Account 1 : accounts.values()) {
poll(1l);
}

int pollPeriod=POLL_PERIOD;

if (isBatteryLow.get()) {
pollPeriod*=10;
}

SystemClock.sleep(pollPeriod);
¥
}
3

BroadcastReceiver onBatteryChanged=new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
int pct=100
*intent.getIntExtra(BatteryManager .EXTRA_LEVEL, 1)
/intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

isBatterylLow.set(pct<=25);

}
};

class Account {
String user=null;
String password=null;
IPostListener callback=null;

Account(String user, String password,

299

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Now, Your Friends Are Alarmed

IPostListener callback) {
this.user=user;
this.password=password;
this.callback=callback;

¥
}

public class LocalBinder extends Binder implements IPostMonitor {
public void registerAccount(String user, String password,
IPostListener callback) {
Account l=new Account(user, password, callback);

poll(1l);
accounts.put(callback, 1);
¥

public void removeAccount(IPostListener callback) {
accounts.remove(callback);
¥
}
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Offer a user preference whereby PostMonitor will start collecting
timeline updates on boot and will buffer some number of updates,
so when Patchy connects, updates are available immediately and
fewer are missed in between Patchy runs. This will require the initial
alarm to be set from the on-boot receiver, rather than from the
service's onCreate().

- Extend the above extra credit component by offering a user
preference to have PostMonitor raise a Notification if certain sorts of
status updates are received while Patchy itself is not running.

Further Reading

You can learn more about the AlarmManager and the wakefulIntentService in
the "Using System Services" chapter of The Busy Coder's Guide to Advanced
Android Development.

300

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 31

Searching For Food

In this tutorial, we will enable searching of the restaurant list, so you can
find one in the vast array of restaurants you surely will maintain in this
application.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting from scratch here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
14-Rotation edition of LunchList to use as a starting point.

Step #1: Have the List Conduct the Search

First, we need to be able to trigger the local search. To do this, add another
item to our LunchList/res/menu/options.xml menu definition:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add"
/>
<item android:id="@+id/search"
android:title="Search"
android:icon="@drawable/ic_menu_search"
/>
<item android:id="@+id/prefs"

301

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Searching For Food

android:title="Settings"
android:icon="@drawable/ic_menu_preferences"
/>
</menu>

You will need a suitable icon, such as ic_menu_search.png from the Android
SDK.

Then, add the corresponding segment to onOptionsItemSelected() in
LunchList to handle our new item:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.add) {
startActivity(new Intent(LunchList.this, DetailForm.class));

return(true);

else if (item.getItemId()==R.id.prefs) {
startActivity(new Intent(this, EditPreferences.class));

return(true);

else if (item.getItemId()==R.id.search) {
onSearchRequested();

return(true);

}

return(super.onOptionsItemSelected(item));

This triggers onSearchRequested(), which tells Android that we would like to
conduct a search in this application.

Finally, in initList() in LunchList, we need to see if our activity was
launched via a search and, if so, use the search string entered by the user.

Here is a revised initList() implementation for LunchList that does just
that:

private void initList() {
if (model!=null) {
stopManagingCursor (model);
model.close();

}

302

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Searching For Food

String where=null;

if (Intent.ACTION_SEARCH.equals(getIntent().getAction())) {
where="name LIKE \"%"+getIntent().getStringExtra(SearchManager.QUERY)+"%
}

model=helper.getAll(where, prefs.getString("sort_order", "name"));
startManagingCursor (model);

adapter=new RestaurantAdapter(model);

setListAdapter (adapter);

The ACTION_SEARCH Intent will be sent to our activity if the activity was
started as the result of a search request. Here, we are having the same
activity be the "normal” presentation and display search results - this
approach may or may not be appropriate for any given application. The
search is simply a WHERE clause, searching for the search term
(getIntent().getStringExtra(SearchManager.QUERY)) anywhere in the
restaurant's name.

You will need to add an import for android.app.SearchManager.

This also means we need to accept a possible WHERE clause in the getAll()
method of RestaurantHelper:

public Cursor getAll(String where, String orderBy) {
StringBuilder buf=new StringBuilder("SELECT _id, name, address, type, notes
FROM restaurants");

if (where!=null) {
buf.append(" WHERE ");
buf.append(where);

3

if (orderBy!=null) {
buf.append(" ORDER BY ");
buf.append(orderBy);

}

return(getReadableDatabase().rawQuery(buf.toString(), null));

}

303

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Searching For Food

Step #2: Integrate the Search in the Application

Now we need to tell Android that this application is searchable and how to
do the search.

First, we need to overhaul our AndroidManifest.xml file to indicate that the
LunchList activity is both searchable and the activity to launch to conduct a
search:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
<meta-data android:name="android.app.default_searchable"
android:value=".LunchList" />
</activity>
<activity android:name=".DetailForm">
</activity>
<activity android:name=".EditPreferences">
</activity>
</application>
</manifest>

The second <intent-filter> indicates that the LunchList activity will handle
any local search requests. The android.app.searchable metadata element
names @xml/searchable as being the configuration details for the search
itself. So, add a LunchList/res/xml/searchable.xml file with the following
content:

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/searchLabel"
android:hint="@string/searchHint" />

304

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Searching For Food

That file, in turn, references a pair of string resources, so we need to add
them to LunchList/res/values/strings.xml:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name">LunchList</string>
<string name="searchLabel">Restaurants</string>
<string name="searchHint">lorem</string>

</resources>

At this point, you can recompile and reinstall your application. Choosing
the option menu will display our new search item:

O R & 9244w

Foo Bar!!!
1313 Mockingbird Lane

Sir Lunch-A-Lot's
1525 Wilson Blvd.

Third Time's the Charm
Behind You, On Your Left. No, Your Ot...

Add Search Settings
Figure 53. The new option menu

Choosing the search brings up the search field:

305

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Searching For Food

OB @ 9:24am

: | lorem |O\

1525 Wilson Blvd.

Third Time's the Charm
Behind You, On Your Left. No, Your Ot...

Figure 54. The search field

Entering in some value will give us a new LunchList with just the matching
subset — those restaurants whose names contain the typed-in string.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Extend the search to search all relevant attributes of the data model,
including address, notes, and the phone number.

« Support the Quick Search Box, by implementing another content
provider, this one to provide search suggestions.

Further Reading

There is much more you can do to integrate with the Android search
system. You will learn how in the "Searching with SearchManager" chapter
of The Busy Coder's Guide to Advanced Android Development.

306

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 32

Look Inside Yourself

In this tutorial, we will use the packageManager to find out what operations
are all possible on a contact pulled out of the contacts database on the
device or emulator.

Step-By-Step Instructions

This tutorial starts a new application, independent from the LunchList and
Patchy applications developed in the preceding tutorials. Hence, we will
have you create a new application from scratch.

Note that this tutorial will not work on the Android 2.2 emulator due to
some sort of a bug, whereby contacts can be added but do not show up in
the contacts list.

Step #1: Create a Stub Project

Using Eclipse or android create project, make a project named Contacter
with a stub activity named apt.tutorial.four.Contacter. The generated
activity class should resemble the following:

package apt.tutorial.four;

import android.app.Activity;
import android.os.Bundle;

307

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

public class Contacter extends Activity

/** Called when the activity is first created. */
@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

}

Then, change it to be a ListActivity instead of an ordinary Activity, as we
will be using some ListActivity-specific methods and support in this
tutorial.

Step #2: Create a Layout

The goal of contacter is to allow you to choose a contact, then show a list of
possible actions on that contact via a Listview. That means we need a layout
that lets us accomplish those ends.

With that in mind, create Contacter/res/layout/main.xml with the following
content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<Button
android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="Gimme a contact!"
android:layout_weight="1"
/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
/>
</LinearLayout>

308

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

Step #3: Find the Correct Contact Uri

Since we want this particular code to run on a variety of Android releases,
we need to figure out the right uri to use to wrap in an ACTION_PICK Intent
to let the user pick a contact. In Android 2.0 and newer, the uri is
android.provider.ContactsContract.Contacts.CONTENT URI, while in Android
1.6 and earlier, the uri is android.provider.Contacts.People.CONTENT_URI.

Fortunately, this value will not change during the execution of our
application, so we can find out the right value via a static initializer, then
use the value throughout the application.

Hence, add the following static data member and initializer block to
Contacter, along with the required imports:

private static Uri CONTENT_URI=null;

static {
int sdk=new Integer(Build.VERSION.SDK).intValue();

if (sdk>=5) {

try {
Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);

}
catch (Throwable t) {

Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
¥

3
else {
CONTENT_URI=Contacts.People.CONTENT_URI;

}

}

Step #4: Attach the Button to the Contacts

Next, we want to arrange to let the user pick a contact when the button is
clicked.

To do this, add the following implementation of onCreate() to Contacter:

309

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

if (CONTENT_URI==null) {

Toast
.makeText(this, "We are experiencing technical difficulties...",
Toast.LENGTH_LONG)
.show();
finish();
return;

}

setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.pick);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {

Intent i=new Intent(Intent.ACTION_PICK, CONTENT_URI);

startActivityForResult (i, PICK_REQUEST);
}
s
¥

We first check to ensure our derived CONTENT_URI value is found; if not, we
shut down the application, since there is nothing we can do. Otherwise, we
load the layout, get the Button, and have it startActivityForResult() on the
ACTION_PICK Intent on a button click.

We also need an implementation of PICK_REQUEST:

|private static final int PICK_REQUEST=1337;

Step #5: Populate the List

We are not doing anything presently after the user makes their selection.
What we want to do is display a roster of possible actions in the Listview in
our layout.

First, create a layout to use with our rows, as Contacter/res/layout/row.xml:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"

310

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

>

android:
android:
android:
android:
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
android:
android:
android:
/>

android:layout_width="fill_parent"
android:layout_height="wrap_content”

<ImageView android:id="@+id/icon"

layout_width="wrap_content"
layout_height="wrap_content"
layout_alignParentLeft="true"
paddingLeft="2px"
paddingTop="2px"
paddingBottom="2px"
paddingRight="5px"

id="@+id/label"
layout_width="fill_parent”
layout_height="wrap_content"
layout_toRightOf="@id/icon"
textSize="11pt"
paddingTop="2px"
paddingBottom="2px"

</RelativelLayout>

Then, let's implement onActivityResult() on Contacter to get the selected
contact, get access to the packageManager, craft an empty Intent on the
selected contact, and query the PackageManager for available activities that
work with that Intent. Finally, we sort the resulting list of ResolveInfo

objects and

pour them into an ActionAdapter:

@Override

Intent data) {

if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
Uri contact=data.getData();
Intent stub=new Intent();

stub.setData(contact);

PackageManager pm=getPackageManager();
List<ResolveInfo> actions=pm.queryIntentActivities(stub,

Collections.sort(actions,
new ResolveInfo.DisplayNameComparator(pm));

setListAdapter (new ActionAdapter(pm, actions));

protected void onActivityResult(int requestCode, int resultCode,

0);

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

311

Look Inside Yourself

ActionAdapter is a class we need to implement, to pour a ResolveInfo into
the row layouts for our Listview. Hence, add the following ActionAdapter
implementation as an inner class of Contacter:

class ActionAdapter extends ArrayAdapter<ResolveInfo> {
private PackageManager pm=null;

ActionAdapter (PackageManager pm, List<ResolveInfo> apps) {
super(Contacter.this, R.layout.row, apps);
this.pm=pm;

}

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
if (convertView==null) {
convertView=newView(parent);

}
bindView(position, convertView);

return(convertView);

}

private View newView(ViewGroup parent) {
return(getLayoutInflater().inflate(R.layout.row, parent, false));

private void bindView(int position, View row) {
TextView label=(TextView)row.findViewById(R.id.label);
label.setText(getItem(position).loadLabel(pm));
ImageView icon=(ImageView)row.findViewById(R.id.icon);
icon.setImageDrawable(getItem(position).loadIcon(pm));

}
¥

At this point, you can compile and install your contacter application.
Initially, the list is empty, so the screen just shows the button:

312

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

M€ 1:05pm

Gimme a contact!

Figure 55. The Contacter application, as initially launched

Then, if you click the button and choose a contact, you will get a list of
possible actions at the bottom:

313

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Look Inside Yourself

O G @ 10:074am
Contacter

Gimme a contact!

m Contacts
. Contacts

‘ Edit contact

B Messaging

Bl \/iovw rontact
Figure 56. The Contacter application, after the user chooses a contact

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Arrange to get control on a list item click and display more details
about the possible action, by getting details out of the ResolveInfo
object (in particular, the ActivityInfo object held onto by the
ResolveInfo object).

« Find a way to launch an actual activity from the information held in
the ResolvelInfo that starts up the desired action. You might want to
take a peek at the source code to addIntentOptions() in the
Android source code for ideas on how to accomplish this.

314

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://www.google.com/codesearch/p?hl=en#uX1GffpyOZk/core/java/com/android/internal/view/menu/MenuBuilder.java&q=addIntentOptions&sa=N&cd=1&ct=rc

Look Inside Yourself

Further Reading

Other facets of PackageManager for introspection are covered in the
"Introspection and Integration" chapter of The Busy Coder's Guide to
Advanced Android Development.

315

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 33

A Restaurant In Your Own
Home

In this tutorial, we will create an "app widget", the term Android uses for
interactive elements a user can add to their home screen. In particular, we
will create an app widget that shows a random restaurant out of the
LunchList database.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting from scratch here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
31-Search edition of LunchList to use as a starting point.

Step #1: Find An App Widget Background and Icon

We are going to need a background to use for our app widget, so its
contents do not seem to float in empty space in the home screen. Ideally,
this background is resizeable, so we have a choice of using an XML-defined
drawable resource, or a nine-patch PNG.

If you examine the 33-AppwWidget project in the book's source code
repository, you will see that there is a widget_background.9.png file in
LunchList/res/drawable. That nine-patch image works nicely for your app

317

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

widget. It is actually a clone of the nine-patch used as the background for
the Toast class, culled from the Android open source project. You are
welcome to use this image or find (or create) another of your choosing.

You will also need an icon, which will go alongside the LunchList name in
Android's list of available widgets. Find some likely icon (32px square or so)
and add it as LunchList/res/drawable/icon.png.

Step #2: Design the App Widget Layout

Next, we need to define a layout for our app widgets. App widgets are
created via layout files, no different than activities, Listview rows, and the
like. Right now, all we want is to show the name of the app widget, inside of
something to serve as the widget's background.

So, create a LunchList/res/layout/widget.xml file with the following content:

<?xml version="1.0" encoding="utf-8"?>

<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill _parent"
android:background="@drawable/widget_frame"

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:textSize="10pt"
android:textColor="#FFFFFFFF"

/>

</RelativelLayout>

Step #3: Add an (Empty) AppWidgetProvider

Next, we need to create an AppWidgetProvider. AppWidgetProvider, a subclass
of BroadcastReceiver, provides the base implementation for an app widget
and gives us lifecycle methods like onupdate() we can override to add
custom behavior.

318

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

For now, though, just create an empty AppWidgetProvider implementation,
with the truly unique name of Appwidget:

package apt.tutorial;
import android.appwidget.AppWidgetProvider;

public class AppWidget extends AppWidgetProvider {
¥

Step #4: Add the Widget Metadata

As part of wiring our app widget into our application, we need to create a
"widget metadata” XML document. This file provides additional
configuration definitions for the app widget, for things that cannot readily
go into the manifest.

So, create a LunchList/res/xml/widget_provider.xml file with the following
content:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="300dip"
android:minHeight="79dip"
android:updatePeriodMillis="1800000"
android:initiallayout="@layout/widget"
/>

Here, we provide a height and width suggestion, which Android will
convert into a number of "cells" given the actual screen size and density.
Our height and width will give us a 4x1 cell widget, which means it will take
up the entire width of a portrait mode screen.

The metadata also indicates the starting layout to use (the one we created
earlier in this tutorial) and an "update period”, which tells Android how
frequently to ask us to update the app widget's contents (set to 30 minutes,
in milliseconds).

319

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

Step #5: Update the Manifest

Now, we can add our widget to the manifest file. Edit AndroidManifest.xml
to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
<meta-data android:name="android.app.default_searchable"
android:value=".LunchList" />

</activity>

<activity android:name=".DetailForm">
</activity>

<activity android:name=".EditPreferences">
</activity>

<receiver android:name=".AppWidget"
android:label="@string/app_name"
android:icon="@drawable/icon">
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider" />
</receiver>
</application>
</manifest>

In particular, note the <receiver> element towards the bottom - that is
where we are teaching Android where our code and metadata resides for
this app widget. The intent filter for APPWIDGET_UPDATE means that we will
get control when Android wants us to update the app widget's contents,
such as when the app widget is first added to the home screen.

320

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

At this point, you can compile and install the updated version of the
application. Then, long-tap somewhere on the background of your home
screen, to bring up the list of options for things to add to it:

O S & 10:094am

@ Add to Home screen

fV Shortcuts

&ﬂ Widgets

Folders

E/ Wallpapers

Figure 57. The list of things to add to the home screen

Choose Widgets, to bring up the list of available widgets:

321

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

O G @ 10:094m

(@ Choose widget
o Analog clock

l%l Home screen tips

Latitude

LunchlList

Music

Picture frame

Figure 58. The list of available widgets

Then, choose our LunchList widget. It will show up, but have no contents,
because we have not defined any contents yet:

322

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

O G @ 10:094m

Figure 59. The very boring LunchList widget

Step #6: Show a Random Restaurant

Finally, we need to add some smarts that will actually display a random
restaurant in the app widget. To do this, we will override the onupdate()
method in our Appwidget class and have it do the database I/O to find a
random restaurant.

With that in mind, add the following onupdate() implementation to
AppWidget:

@Override
public void onUpdate(Context ctxt,
AppWidgetManager mgr,
int[] appWidgetIds) {
ComponentName me=new ComponentName(ctxt, AppWidget.class);
RemoteViews updateViews=new RemoteViews("apt.tutorial",
R.layout.widget);
RestaurantHelper helper=new RestaurantHelper(ctxt);

try {
Cursor c=helper

323

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

.getReadableDatabase()
.rawQuery("SELECT COUNT(*) FROM restaurants", null);

c.moveToFirst();
int count=c.getInt(0);
c.close();

if (count>0) {
int offset=(int)(count*Math.random());
String args[]={String.valueOf(offset)};

c=helper
.getReadableDatabase()
.rawQuery("SELECT name FROM restaurants LIMIT 1 OFFSET ?", args);
c.moveToFirst();
updateViews.setTextViewText(R.id.name, c.getString(0));
¥
else {
updateViews.setTextViewText (R.id.name,
ctxt.getString(R.string.empty));

}

}

finally {
helper.close();

}

mgr.updateAppWidget (me, updateViews);
¥

Here, we:

« Create a Remoteviews object, which represents a set of GUI
"commands" to invoke on the home screen that defines how to
modify the app widget

« Open up a database connection
« Find out how many restaurants there are via a SQL query
« Load a random restaurant via another SQL query

+ Set the name Textview in the app widget (via the Remoteviews) to have
either the name of the restaurant or an error message

« Update the app widget itself

324

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home

You will also need to add a new string resource, named empty, that will go
into the app widget if there is no restaurant available (e.g., the database is

empty).

Make sure you have at least two restaurants in LunchList — we will need
more than one to show the random effects, particularly starting with the
next tutorial.

At this point, compile and reinstall the application. Also, if you got rid of
the empty app widget, add a new one to your home screen. You should see
the name of one of your restaurants:

O Bl @ 10:12am

Figure 60. The app widget, showing the random restaurant

As app widgets go, this one is very unimpressive. However, we will make it
somewhat better in the next tutorial.

325

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

A Restaurant In Your Own Home
Extra Credit

Here are some things you can try beyond those step-by-step instructions:

Add other widgets to the app widget layout, such as a logo icon

Reduce the font size of the name and add a second TextVview to the
layout to show the restaurant's address

Experiment with other widget sizes instead of the 4x1 cell format
used in the widget metadata

Further Reading

App widgets are covered in a chapter of The Busy Coder's Guide to
Advanced Android Development.

326

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 34

More Home Cooking

In this tutorial, we will add a few more features to our existing app widget,
such as a button to choose another random restaurant. Also, if the user taps
on the name of the restaurant, we will open up the detail form activity for
that restaurant.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 33-AppWidget edition of LunchList to use as a starting point.

Step #1: Find a Button Graphic

Next, you will need an image to go on an ImageButton that will serve to
change the restaurant shown by the app widget to another random
restaurant.

If you examine the 34-AdvAppWidget project in the book's source code
repository, you will see that there is a ff.png file there, culled from the
Android open source project, that you could use. Or, substitute your own
graphic as you see fit — just name it ff.png to match how it is used later in
this tutorial.

327

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

Step #2: Add the Button to the Layout

Next, we want to modify the app widget layout to incorporate this
ImageButton. Revise LunchList/res/layout/widget.xml to look like the
following:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent”
android:background="@drawable/widget_frame"
>
<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:layout_toLeftOf="@+id/next"
android:textSize="10pt"
android:textColor="#FFFFFFFF"
/>
<ImageButton android:id="@id/next"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/ff"
/>
</RelativelLayout>

At this point, if you compile and reinstall the application, then remove and
re-add the app widget from your home screen, you will see the ImageButton
appear:

328

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

O G @ 10:50am

Foo Bar

Figure 61. The app widget with the newly-added button

Step #3: Migrate Update Logic to an IntentService

Right now, we are doing our database I/O right in our AppwWidgetProvider
implementation's onupdate() method. That is probably fine, but if we add
too much logic, we run the risk of timing out, as onupdate() is called on the
main application thread. Since we can wupdate our app widget
asynchronously without issue, it is safer if we can delegate this work to
something that can be done off the main thread, such as an Intentservice.

With that in mind, create an IntentService named WidgetService in the
LunchList project, with the following implementation:

package apt.tutorial;

import android.app.IntentService;

import android.app.PendingIntent;

import android.appwidget.AppWidgetManager;
import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

329

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.widget.RemoteViews;

public class WidgetService extends IntentService {
public WidgetService() {
super("WidgetService");

}

@0verride
public void onHandleIntent(Intent intent) {
ComponentName me=new ComponentName(this, AppWidget.class);
RemoteViews updateViews=new RemoteViews("apt.tutorial”,
R.layout.widget);
RestaurantHelper helper=new RestaurantHelper(this);
AppWidgetManager mgr=AppWidgetManager.getInstance(this);

try {
Cursor c=helper
.getReadableDatabase()
.rawQuery("SELECT COUNT(*) FROM restaurants", null);

c.moveToFirst();

int count=c.getInt(0);

c.close();

if (count>0) {
int offset=(int)(count*Math.random());
String args[]={String.valueOf (offset)};
c=helper

.getReadableDatabase()
.rawQuery("SELECT _ID, name FROM restaurants LIMIT 1 OFFSET ?",

args);
c.moveToFirst();
updateViews.setTextViewText (R.id.name, c.getString(0));
¥
else {
updateViews.setTextViewText(R.id.title,
this.getString(R.string.empty));
}
}
finally {
helper.close();
}

mgr.updateAppWidget(me, updateViews);
}
¥

330

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

You will notice that the onHandleIntent() method is almost identical to the
current onUpdate() method in Appwidget. The differences are that all
references to ctxt are replaced with this (since the IntentService is a
Context) and that we need to obtain an AppwidgetManager rather than use one
passed into us. But, since onHandleIntent() is run on a background thread,
we can take as much time as is necessary.

Then, add widgetService to the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
<meta-data android:name="android.app.default_searchable"
android:value=".LunchList" />

</activity>

<activity android:name=".DetailForm">
</activity>

<activity android:name=".EditPreferences">
</activity>

<receiver android:name=".AppWidget"
android:label="@string/app_name"
android:icon="@drawable/icon">
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider" />
</receiver>
<service android:name=".WidgetService" />
</application>
</manifest>

331

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

Finally, remove all of the code from the onupdate() implementation in
AppWidget, and replace it with a single call to startService():

package apt.tutorial;

import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.database.Cursor;

import android.widget.RemoteViews;

import android.database.sqlite.SQLiteDatabase;

public class AppWidget extends AppWidgetProvider {
@Override
public void onUpdate(Context ctxt,
AppWidgetManager mgr,
int[] appWidgetIds) {
ctxt.startService(new Intent(ctxt, WidgetService.class));
}
¥

At this point, if you rebuild and reinstall the project, you will see that things
work as they did before, despite this fairly radical implementation shift.

Step #4: Get Control on Button Clicks

Now, we need to arrange to execute some code when the user presses our
new button. Specifically, we want to simply update the app widget itself, so
we get a new random restaurant.

Since we pulled our updating logic into the widgetService, we need to have
that button call startService() to request WidgetService to do another
update. However, this is an app widget, so we cannot simply add an
OonClickListener to the button - the button is not in our code, but is in the
home screen, configured via the Remoteviews object.

Instead, we can register a PendingIntent, to tell Android what to do when
the button is clicked.

332

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

Add the following lines to the end of the onHandleIntent() method in
WidgetService:

Intent i=new Intent(this, WidgetService.class);
PendingIntent pi=PendingIntent.getService(this, 0, i, 0);

updateViews.setOnClickPendingIntent(R.id.next, pi);
mgr.updateAppWidget (me, updateViews);

Here, we create a service PendingIntent and register it as the click handler
for the button.

Now, if you recompile and reinstall the project, you will see that pressing
the button gives you a new restaurant (unless it happens to randomly select
the current one again).

Step #5: Get Control on Name Clicks

Finally, we want to bring up the DetailForm activity on the currently-visible
restaurant if the user taps on the restaurant's name. To do this, we will need
another pendingIntent, but we also need a bit more data from the content
provider first.

Replace the current implementation of onHandleIntent() in WidgetService
with the following:

@Override
public void onHandleIntent(Intent intent) {
ComponentName me=new ComponentName(this, AppWidget.class);
RemoteViews updateViews=new RemoteViews("apt.tutorial”,
R.layout.widget);
RestaurantHelper helper=new RestaurantHelper(this);
AppWidgetManager mgr=AppWidgetManager.getInstance(this);

try {
Cursor c=helper
.getReadableDatabase()
.rawQuery("SELECT COUNT(*) FROM restaurants", null);

c.moveToFirst();

int count=c.getInt(0);

333

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

c.close();

if (count>0) {
int offset=(int)(count*Math.random());
String args[]={String.valueOf(offset)};

c=helper

.getReadableDatabase()

.rawQuery("SELECT _ID, name FROM restaurants LIMIT 1 OFFSET ?", args);
c.moveToFirst();
updateViews.setTextViewText(R.id.name, c.getString(1));

Intent i=new Intent(this, DetailForm.class);
i.putExtra(LunchList.ID_EXTRA, c.getString(90));

PendingIntent pi=PendingIntent.getActivity(this, 0, i,
PendingIntent .FLAG_UPDATE_CURREN
;5

updateViews.setOnClickPendingIntent(R.id.name, pi);

else {
updateViews.setTextViewText (R.id.title,
this.getString(R.string.empty));
¥

¥
finally {
helper.close();

}

Intent i=new Intent(this, WidgetService.class);
PendingIntent pi=PendingIntent.getService(this, 0, i, 0);

updateViews.setOnClickPendingIntent (R.id.next, pi);
mgr.updateAppWidget (me, updateViews);

You will notice a few changes:

« We now get the _ID column out of our content provider, in addition
to the name, and we adjust the code that fills in the name widget's
text to match.

« We create an activity PendingIntent for the DetailForm activity.
However, we add in the ID_EXTRA "extra", so DetailForm knows which
restaurant to show. And, since we are changing extras on an
otherwise-unchanging Intent, we need to add the
FLAG_UPDATE_CURRENT flag in our getActivity() call, so the new extra
takes effect

334

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

More Home Cooking

« We then attach the pendingIntent to the name widget in the app
widget

Now, if you recompile and reinstall the project, you will see that pressing
the name of the restaurant brings up the restaurant's betailForm.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Rather than show a random restaurant, keep track of the last
restaurant viewed and cycle through them in progression, looping
back to the first in the list when you reach the end. Consider adding
a second ImageButton to move backwards through the list.

« Add another button that, when clicked, displays a Toast of the notes
for the currently-viewed restaurant.

Further Reading

App widgets are covered in a chapter of The Busy Coder's Guide to
Advanced Android Development.

335

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 35
Take a Monkey to Lunch

In this tutorial, we will use the Monkey utility to stress test the LunchList
application.

Step-By-Step Instructions
First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,

you can download a ZIP file with all of the tutorial results, and you can copy
the 34-AdvAppWidget edition of LunchList to use as a starting point.

Step #1: Prep LunchList

Ensure your LunchList has a few restaurants, of different types. Then, leave
the LunchList at the LunchList activity itself (i.e., the list of available
restaurants).

Step #2: Run the Monkey

Launch a command prompt or shell, and run the following command:

|adb shell monkey -p apt.tutorial -v --throttle 100 600 |

337

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Take a Monkey to Lunch

Note that if you did not add your SDK's tools/ directory to your system
PATH, you may need to change to that directory to get this command to
execute properly.

This command indicates:

« You want to run the Monkey

+ You want the Monkey to limit itself to testing your application (-p
apt.tutorial), so if the Monkey attempts to do something that
would exit your application (e.g., click the HOME button), that
simulated input will be skipped

« You want the Monkey to execute one event every 100 milliseconds
(--throttle 100)

« You want the Monkey to be verbose and report what events it
simulates (-v)

« You want the Monkey to perform 600 simulated events

What you should see is the LunchList application running amok, as if some
monkey were trying out different UI operations (clicking buttons, typing in
fields, choosing menu options). If all goes well, LunchList will survive
without errors. If something goes wrong, you will get an exception, and can
use the log information (via DDMS or adb logcat) to see what failed and,
possibly, how to fix it.

Your shell will show a running tally of what has been done, such as
simulating screen taps or key presses.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

+ Try updating your test process to be repeatable, so if you encounter
some sort of exception, you can make it happen again. To do this,
you will need to save vyour database file (stored in
/data/data/apt.tutorial/databases/lunchlist.db) before running
Monkey with the -s switch to provide a known seed value. Each test

338

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Take a Monkey to Lunch

run should back up the database, run Monkey with a fresh seed, and
restore the database. If you got a crash or some other problem, re-
run the process with the same seed, and you should be able to
reproduce the failure.

- Experiment with additional options to configure the Monkey's
operation, as described in the Monkey documentation.

« Experiment with Android's built-in copy of the JUnit test
framework to exercise the restaurant model class programmatically.

Further Reading

More about Android's test-related features, including more on the Monkey,
can be found in the "Testing" chapter of The Busy Coder's Guide to
Advanced Android Development.

339

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://developer.android.com/guide/developing/tools/monkey.html

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 36

Asking Permission to Place a
Call

In this tutorial, we will add a bit of code that asks permission to place a call,
and we will add a phone number to our restaurant data model and detail
form. Then, we will actually place the call.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 35-AdvAppWidget edition of LunchList to use as a starting point.

Step #1: Add a Phone Number to the Database
Schema

If we want our phone numbers to stick around, we need to put them in the
database.

With that in mind, update RestaurantHelper to use the following
implementation of onCreate():

@Override
public void onCreate(SQLiteDatabase db) {

341

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

db.execSQL ("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, phone TEXT);");
}

Any time you make a material modification to the schema, you also need to
increment the schema version number. For RestaurantHelper, that is held in
SCHEMA_VERSION, so increment to 2:

[private static final int SCHEMA_VERSION=2; |

Step #2: Intelligently Handle Database Updates

When the schema version increments, onUpgrade() is called on
RestaurantHelper rather than oncreate(). It is our job to update the schema,
preferably without losing any user data. Here, we just use an ALTER TABLE
SQL statement, since all we are doing is adding a column:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
if (oldVersion==1 && newVersion==2) {
db.execSQL("ALTER TABLE restaurants ADD phone TEXT;");
}

}

Step #3: Add Phone Number Support to the Rest of
the Helper

We also need to update our insert() method on RestaurantHelper to accept
a phone number:

public void insert(String name, String address,
String type, String notes,
String phone) {
ContentValues cv=new ContentValues();

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put("notes", notes);
cv.put("phone", phone);

getWritableDatabase().insert("restaurants”, "name", cv);

342

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

and the corresponding update() method, also to accept a phone number:

public void update(String id, String name, String address,
String type, String notes, String phone) {
ContentValues cv=new ContentValues();
String[] args={id};

cv.put("name", name);
cv.put("address", address);
cv.put("type", type);
cv.put("notes", notes);
cv.put("phone", phone);

getWritableDatabase().update("restaurants”, cv, " _ID=?",
args);

The two query methods, getAll() and getById(), also should return the
phone number from each of their respective queries:

public Cursor getAll(String where, String orderBy) {
StringBuilder buf=new StringBuilder("SELECT _id, name, address, type, notes,
phone FROM restaurants");

if (where!=null) {
buf.append(" WHERE ");
buf.append(where);

}

if (orderBy!=null) {
buf.append(" ORDER BY ");
buf.append(orderBy);

}

return(getReadableDatabase().rawQuery(buf.toString(), null));
¥

public Cursor getById(String id) {
String[] args={id};

return(getReadableDatabase()
.rawQuery("SELECT _id, name, address, type, notes, phone FROM
restaurants WHERE _ID=?",

args));

}

343

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

Step #4: Collect the Phone Number on the Detail Form

If we actually want to have phone numbers, though, we need to actually
collect them on DetailForm.

First, update LunchList/res/layout/detail_form.xml to add the following
after the address row in our TableLayout:

<TableRow>

<TextView android:text="Phone:" />

<EditText android:id="@+id/phone" android:inputType="phone" />
</TableRow>

Notice that we are using android:inputType="phone" on the new EditText
widget. This will cause Android to use a soft keyboard set up for entering a
phone number (where available), rather than a standard keyboard layout.

Similarly, add the following after the address row in LunchList/res/layout-
land/detail_form.xml:

<TableRow>
<TextView android:text="Phone:" />
<EditText android:id="@+id/phone"
android:inputType="phone"
android:layout_span="3"
/>
</TableRow>

Then, as in the previous section, clone all references to address in
DetailForm to make references to our phone widgets, such as:

EditText address=null;
EditText phone=null;

and:

address=(EditText)findViewById(R.id.addr);
phone=(EditText)findViewById(R.id.phone);

Also, it is safe for you to go ahead and get rid of the implementations of
onSaveInstanceState() and onRestoreInstanceState().

344

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

At this point, you can recompile and reinstall the application. When you
first run it, there will be a tiny pause as the database is updated. After that
point, you can use the new field to add phone numbers to whichever
restaurants you want:

O & 10:51am

.Sit—Down

Figure 62. The new DetailForm layout

Step #5: Ask for Permission to Make Calls

Then, we can update AndroidManifest.xml to put in a permission request to
be able to place phone calls:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.CALL_PHONE"/>
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

345

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
<meta-data android:name="android.app.default_searchable"
android:value=".LunchList" />

</activity>

<activity android:name=".DetailForm">
</activity>

<activity android:name=".EditPreferences">
</activity>

<receiver android:name=".AppWidget"
android:label="@string/app_name"
android:icon="@drawable/icon">
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider" />
</receiver>
<service android:name=".WidgetService" />
</application>
</manifest>

Step #6: Dial the Number

Next, let us set up DetailForm with its own option menu that contains a Call
item. When chosen, we dial the phone number, assuming there is one.

First, create LunchList/res/menu/option_detail.xml with the following
content:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/call"
android:title="Call"
android:icon="@drawable/ic_menu_call"
/>
</menu>

Then, add the following methods to DetailForm:

346

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(getApplication())
.inflate(R.menu.option_detail, menu);

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.call) {
String toDial="tel:"+phone.getText().toString();

if (toDial.length()>4) {
startActivity(new Intent(Intent.ACTION_DIAL,
Uri.parse(toDial)));
}
}

return(super.onOptionsItemSelected(item));

}

Note that you will need to add a number of imports (Intent, Menu,
MenuInflater, MenuItem, and Uri) to get this to compile cleanly.

In the new code, we check to see if there is a phone number. If so, we wrap
the phone number in a tel: uUri, then put that in an ACTION_DIAL Intent and
start an activity on that Intent. This puts the phone number in the dialer.

If you rebuild and reinstall the application and try out the new menu choice
on some restaurant with a phone number, you will see the pialer appear:

347

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

O S @ 10:524m

1-703-555-1212

2 ABC 3 DEF
4 cHI 5 JKL 6 MNO

7 PQRrs 8 Tuv 9 wxvz

Figure 63. The Dialer

Step #7: Make the Call

Suppose we want to take advantage of the CALL_PHONE permission we
requested earlier in this tutorial. All that we need to do is switch our Intent

from ACTION_DIAL to ACTION_CALL:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.call) {
String toDial="tel:"+phone.getText().toString();

if (toDial.length()>4) {
startActivity(new Intent(Intent.ACTION_CALL,
Uri.parse(toDial)));

return(true);

}
}

return(super.onOptionsItemSelected(item));

}

348

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Asking Permission to Place a Call

Now, if you rebuild and reinstall the application, and try choosing the Call
option menu item, you will immediately "call" the phone number...which
will actually place a phone call if you are trying this on a device. The
emulator, of course, cannot place phone calls.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Add a preference to display the phone number instead of the
address in the restaurant list. Have the list detect the preference
and fill in the second line of the restaurant rows accordingly.

« Push your APK file to a Web site that is configured to support the
proper MIME type for Android application downloads (e.g.,
Amazon S3). Try installing your APK onto a device from the
published location, to see how your requested permission appears
to end users at install time.

+ Find a revision to the layout-land version of detail_form.xml that
does not clip the bottom radio button.

Further Reading

Permissions in general are covered in the "Requesting and Requiring
Permissions” chapter of The Busy Coder's Guide to Android Development.
Working with the telephony features of Android is briefly covered in the
"Handling Telephone Calls" chapter of the same book.

349

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 37

Photographic Memory

One logical thing to add to the restaurant information in LunchList would
be photos: the exterior of the restaurant, favorite dishes, wait staff to avoid,
etc. This tutorial will bring us partway there, by allowing users to take a
picture while in LunchList.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 36-PermsPhone edition of LunchList to use as a starting point.

Step #1: Adjust the Manifest

To date, we have been able to skate by without a number of elements in our
manifest that many applications need. At this point, though, we need to
make some adjustments. So, make your LunchList/AndroidManifest.xml file
look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="apt.tutorial”
android:versionCode="1"
android:versionName="1.0">
<uses-sdk
android:minSdkVersion="3"

351

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

android:targetSdkVersion="7"
/>
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
/>
<uses-feature android:name="android.hardware.camera" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.CALL_PHONE"/>
<application android:label="@string/app_name">
<activity android:name=".LunchList"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
<meta-data android:name="android.app.default_searchable"
android:value=".LunchList" />

</activity>

<activity android:name=".DetailForm">
</activity>

<activity android:name=".EditPreferences">
</activity>

<activity android:name=".Photographer"
android:configChanges="keyboardHidden|orientation"
android:screenOrientation="1andscape"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
</activity>
<receiver android:name=".AppWidget"
android:label="@string/app_name"
android:icon="@drawable/icon">
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider" />
</receiver>
<service android:name=".WidgetService" />
</application>
</manifest>

You will need to add:

352

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

« The <uses-sdk> element, indicating that while the code should run
on Android 1.5 and newer (android:minSdkversion="3"), that we are
targeting Android 2.1 (android:targetSdkversion="7").

« The <supports-screens> element, indicating that our application
supports both large (4" or higher) and normal (3-4") screens, but
not small screens.

« The <uses-feature> element, indicating that we are going to be
using the camera from this point forward. This will tell the system
to prevent installation of our application on devices that lack a
camera.

+ Another <uses-permission> element, this time to tell the user that
we want to use the camera.

+ An <activity> element for a Photographer class, that we will be
adding shortly. Note that we set Photographer to be always
landscape and use a theme that makes it full-screen, removing the
title bar and the status bar.

Step #2: Create the Photographer Layout

We need a layout with a full-screen Surfaceview to use as the space to
display the "preview" — what the camera currently sees.

Create LunchList/res/layout/photographer.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>

<android.view.SurfaceView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/preview"
android:layout_width="fill_parent"
android:layout_height="fill parent”

/>

This is merely a full-screen surfaceview, the space on which the camera will
draw its preview frames.

353

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

Step #3: Create the Photographer Class

Next, we need a class that will both connect the live preview to the
Surfaceview, plus intercept the camera button for use in taking an actual
picture. To keep things simple, we will hold off for now on doing anything
"for real" with the actual picture.

With that in mind, add a Photographer class that looks like the following:

package apt.tutorial;

import android.app.Activity;

import android.graphics.PixelFormat;
import android.hardware.Camera;
import android.os.Bundle;

import android.os.Environment;
import android.util.log;

import android.view.KeyEvent;

import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.widget.Toast;

public class Photographer extends Activity {
private SurfaceView preview=null;
private SurfaceHolder previewHolder=null;
private Camera camera=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.photographer);

preview=(SurfaceView)findViewById(R.id.preview);
previewHolder=preview.getHolder();
previewHolder.addCallback(surfaceCallback);
previewHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

}

@0Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode==KeyEvent.KEYCODE_CAMERA ||
keyCode==KeyEvent.KEYCODE_SEARCH) {
takePicture();

return(true);

}

return(super.onKeyDown (keyCode, event));

}

354

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

private void takePicture() {
camera.takePicture(null, null, photoCallback);

}

SurfaceHolder.Callback surfaceCallback=new SurfaceHolder.Callback() {
public void surfaceCreated(SurfaceHolder holder) {
camera=Camera.open();

try {
camera.setPreviewDisplay(previewHolder);

¥
catch (Throwable t) {
Log.e("Photographer",
"Exception in setPreviewDisplay()", t);
Toast
.makeText (Photographer.this, t.getMessage(),
Toast.LENGTH_LONG)
.show();
}
¥

public void surfaceChanged(SurfaceHolder holder,
int format, int width,
int height) {
Camera.Parameters parameters=camera.getParameters();

parameters.setPreviewSize(width, height);
parameters.setPictureFormat (PixelFormat.JPEG);

camera.setParameters(parameters);
camera.startPreview();

}

public void surfaceDestroyed(SurfaceHolder holder) {
camera.stopPreview();
camera.release();
camera=null;
¥
s

Camera.PictureCallback photoCallback=new Camera.PictureCallback() {
public void onPictureTaken(byte[] data, Camera camera) {
// do something with the photo JPEG (data[]) here!
camera.startPreview();
}
1

}

Here, we initialize our SurfaceView in onCreate(). When the surfaceview has
been created, we connect the camera to it. When the Surfaceview size has
been set (in surfaceChanged()), we configure the camera to work with the

355

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

size of the Surfaceview. When the camera button is clicked, we take a
picture, re-enabling the preview in the Photocallback.

Step #4: Tie In the Photographer Class

Finally, we need to allow the user to take a picture. Since we (theoretically)
want our photos taken with Photographer to be associated with the
restaurant, we can add an option menu choice to our DetailForm. Here is the
revised LunchList/res/menu/option_detail.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/call"
android:title="Call"
android:icon="@drawable/ic_menu_call"
/>
<item android:id="@+id/photo"
android:title="Take a Photo"
android:icon="@drawable/ic_menu_camera"
/>
</menu>

We also need to update onOptionsItemSelected() in DetailForm to watch for
this new menu choice, so modify yours to look like:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId()==R.id.call) {
String toDial="tel:"+phone.getText().toString();

if (toDial.length()>4) {
startActivity(new Intent(Intent.ACTION_CALL,
Uri.parse(toDial)));

return(true);

}

}
else if (item.getItemId()==R.id.photo) {
startActivity(new Intent(this, Photographer.class));

return(true);

}

return(super.onOptionsItemSelected(item));

}

356

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Photographic Memory

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Store the photos on the SD card. Remember: the emulator does not
emulate an SD card by default, so you will need to create an SD card
image and tell the emulator to mount it.

« Store the photos on the SD card in a background thread, so the user
regains control more quickly.

+ Associate photos with the current restaurant and be able to view
them later (perhaps via a Gallery).

Further Reading

More on the camera class for taking still pictures can be found in the "Using
the Camera" chapter of The Busy Coder's Guide to Advanced Android
Development.

357

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

TUTORIAL 38

Sensing a Disturbance

Continuing our additions to LunchList, we really need a solution to the age-
old problem of deciding where to go for lunch. For that, a good old-
fashioned random selection would be a fine starting point. But, to make it
more entertaining, we should trigger the selection by shaking the device.
Shake the phone when on the list of restaurants, and a randomly-selected
restaurant will be shown via its DetailForm.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 37-cCamera edition of LunchList to use as a starting point.

Step #1: Implement a Shaker

We need something that hooks into the SensorManager and watches for
shaking events, where a "shake" is defined as a certain percentage over
Earth's gravity, as determined by calculating the total force via the square
root of the sum of the squares of all three dimensional forces.

And if that was total gibberish to you, this is why humankind has developed
encapsulation and copy-and-paste.

359

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sensing a Disturbance

Create LunchList/src/apt/tutorial/Shaker.java with the following source:

package apt.tutorial;

import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.SystemClock;

import java.util.Arraylist;

import java.util.List;

public class Shaker {
private SensorManager mgr=null;
private long lastShakeTimestamp=0;
private double threshold=1.0d;
private long gap=0;
private Shaker.Callback cb=null;

public Shaker(Context ctxt, double threshold, long gap,
Shaker.Callback cb) {

this.threshold=threshold*threshold;

this.threshold=this.threshold
*SensorManager.GRAVITY_EARTH
*SensorManager.GRAVITY_EARTH;

this.gap=gap;

this.cb=cb;

mgr=(SensorManager)ctxt.getSystemService (Context.SENSOR_SERVICE);
mgr.registerListener(listener,
mgr . getDefaultSensor (Sensor.TYPE_ACCELEROMETER),
SensorManager .SENSOR_DELAY _UI);
}

public void close() {
mgr.unregisterListener(listener);

}

private void isShaking() {
long now=SystemClock.uptimeMillis();

if (lastShakeTimestamp==0) {
lastShakeTimestamp=now;

if (cb!=null) {
cb.shakingStarted();
¥
¥
else {
lastShakeTimestamp=now;
¥

}

360

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sensing a Disturbance

private void isNotShaking() {
long now=SystemClock.uptimeMillis();

if (lastShakeTimestamp>0) {
if (now-lastShakeTimestamp>gap) {
lastShakeTimestamp=0;

if (cb!=null) {
cb.shakingStopped();
}
¥
}
}

public interface Callback {
void shakingStarted();
void shakingStopped();

}

private SensorEventListener listener=new SensorEventListener() {
public void onSensorChanged(SensorEvent e) {
if (e.sensor.getType()==Sensor.TYPE_ACCELEROMETER) {
double netForce=e.values[@]*e.values[0@];

netForce+=e.values[1]*e.values[1];
netForce+=e.values[2]*e.values[2];

if (threshold<netForce) {
isShaking();

else {
isNotShaking();
}
¥
¥

public void onAccuracyChanged(Sensor sensor, int accuracy) {
// unused
}
s
¥

The shaker class takes four parameters: a Context (used to get the
SensorManager), the percentage of Earth's gravity that is considered a
"shake”, how long the acceleration is below that level before a shaking
event is considered over, and a callback object to alert somebody about
shaking starting and stopping. The math to figure out if, for a given amount
of acceleration, we are shaking, is found in the SensorListener callback
object.

361

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sensing a Disturbance

As The Busy Coder's Guide to Advanced Android Development explains:

The Shaker simply converts the three individual acceleration
components into a combined acceleration value (square root
of the sum of the squares), then compares that value to
Earth's gravity. If the ratio is higher than the supplied
threshold, then we consider the device to be presently
shaking, and we call the shakingStarted() callback method if
the device was not shaking before. Once shaking ends, and
time elapses, we call shakingStopped() on the callback object
and assume that the shake has ended. A more robust
implementation of Shaker would take into account the
possibility that the sensor will not be updated for a while
after the shake ends, though in reality, normal human
movement will ensure that there are some sensor updates, so
we can find out when the shaking ends.

Step #2: Hook Into the Shaker

Given that you magically now have a shaker object, we need to tie it into
the LunchList activity.

First, implement a Shaker.Callback object named onShake in LunchList:

private Shaker.Callback onShake=new Shaker.Callback() {
public void shakingStarted() {
}

public void shakingStopped() {
}
}s

Right now, we do not do anything with the shake events, though we will
address that shortcoming in the next section.

Then, add a shaker data member to LunchList, called shaker.

362

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sensing a Disturbance

We do not want to be tying up the accelerometer when LunchList does not
have the foreground. One way to do this is to override onResume() and
initialize our Shaker there:

@Override
public void onResume() {
super.onResume();

shaker=new Shaker(this, 1.45d, 500, onShake);
¥

...then release our shaker in an implementation of onPause():

@0verride
public void onPause() {
super.onPause();

shaker.close();

}

Now when you shake the device, it will invoke our do-nothing callback.

Step #3: Make a Random Selection on a Shake

To actually choose a restaurant, we need to ask our RestaurantAdapter how
many restaurants there are, then use Math.random() to pick one. We can
then package that in an Intent and start our DetailForm on that restaurant.
In particular, we ask our adapter for the _id value (getItemId()) of the
randomly-chosen restaurant, which gets used as the primary key when
DetailForm looks for it in the database.

With that in mind, here is a revised implementation of the onshake callback
object:

private Shaker.Callback onShake=new Shaker.Callback() {
public void shakingStarted() {
// no-op - only care when the shaking stops

}

public void shakingStopped() {
int selection=(int)(adapter.getCount()*Math.random());
Intent i=new Intent(LunchList.this, DetailForm.class);

363

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Sensing a Disturbance

i.putExtra(ID_EXTRA,
String.valueOf(adapter.getItemId(selection)));
startActivity(i);
}
}s

If you rebuild and reinstall the application on a device, you can randomly
choose a restaurant by giving the phone a solid shake.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Store the GPS coordinates of the restaurant via the DetailForm.
Then, given your current position and the location of the
restaurant, present a compass to help point you in the right
direction, in case you forget where the restaurant is. WARNING:
this may involve icky math.

« Attempt to use the accelerometer to measure your current speed
while walking or jogging. Remind yourself partway through why,
exactly, you elected not to be a physics major in college. If you were
a physics major in college, the author offers his sincere condolences.

Further Reading

More information about accessing and leveraging the orientation and
acceleration sensors in Android is found in the "Sensors" chapter of The
Busy Coder's Guide to Advanced Android Development.

364

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 39

Getting the Word Out

If we are getting together with others for lunch, they may not be familiar
with every one of the vast array of restaurants that we are tracking in
LunchList. Hence, it would be nice to be able to send details about the
restaurant to people, so that they can find it if they are getting there
separately. One likely approach to do this is to send an SMS with the name
and address of the restaurant, so that is what we will add to LunchList in
this tutorial.

This tutorial will only work on Android 2.x, and there is a bug in the
Android 2.2 emulator that will make doing this tutorial a bit difficult.
Hence, you are best served using Android 2.1 right now. The next tutorial,
though, will add backwards compatibility to what we do here, so you can
use this feature on earlier versions of Android.

And, of course, to actually send the message, you will need an actual
Android phone, not just the emulator.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 38-Sensors edition of LunchList to use as a starting point.

365

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

Step #1: Add a "Send SMS" Option Menu

The most likely place to add an option to send an SMS about a restaurant
would be the DetailForm activity, since that is where we have our per-
restaurant operations (e.g., call the restaurant). And, since we already have
an option menu for DetailForm, all we need to do is add another entry to it
for sending an SMS:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/call"
android:title="Call"
android:icon="@drawable/ic_menu_call"
/>
<item android:id="@+id/sms"
android:title="Send SMS"
android:icon="@drawable/ic_menu_send"
/>
<item android:id="@+id/photo"
android:title="Take a Photo"
android:icon="@drawable/ic_menu_camera"
/>
</menu>

Note that you will need a suitable icon, such as ic_menu_send.png from the
Android SDK.

Then, add a corresponding case to onOptionsItemSelected() in DetailForm,
routing SMS menu requests to an as-yet-unimplemented sendsms() method:

@Override
public boolean onOptionsItemSelected(MenuIltem item) {
if (item.getItemId()==R.id.call) {
String toDial="tel:"+phone.getText().toString();

if (toDial.length()>4) {
startActivity(new Intent(Intent.ACTION_CALL,
Uri.parse(toDial)));

return(true);

}

else if (item.getItemId()==R.id.photo) {
startActivity(new Intent(this, Photographer.class));

return(true);

}

366

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

else if (item.getItemId()==R.id.sms) {
sendSMS () ;

return(true);

}

return(super.onOptionsItemSelected(item));

}

Step #2: Find Contacts' Mobile Numbers

To send an SMS, we could just have Android handle the whole thing, by
passing control to the user's choice of SMS client application. There, they
could pick the contact to send the message to and compose the message,
perhaps starting with some prose supplied by LunchList.

In this case, though, we are going to send the SMS directly. To do that, we
need a phone number of the person to which we should send the message.

The contactsContract content provider in Android 2.x is the way to find out
these phone numbers. Specifically, we can query it to find all names and
phone numbers, filtering based upon phone type to only get those flagged
as mobile numbers.

With that in mind, add this preliminary implementation of the sendsms()
method to DetailForm:

private void sendSMS() {
String[] PROJECTION=new String[] { Contacts._ID,
Contacts .DISPLAY_NAME,
Phone . NUMBER

s
String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
final Cursor c=managedQuery(Phone.CONTENT_URI,
PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME);

This gives us a cursor, containing the ID, name, and mobile phone number
of everyone in our contacts database, sorted by name. The reason why the
cursor is declared as final will become apparent later in the tutorial.

367

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

Note that you will need to add the READ_CONTACTS permission to get this to
work, since we are directly accessing the contacts' data. Also, you will need
to add imports for android.provider.ContactsContract.Contacts and
android.provider.ContactsContract.CommonDataKinds.Phone.

Step #3: Pick a Person

Now, we need to let the user pick to whom we should send the SMS. Given
the cursor, we can display a ListView, or a Spinner, or something to let the
user make a selection. However, those typically imply another Activity, and
that seems a bit much for just picking a person by name. Instead, we will
use an AlertDialog.

So, add the following to the end of sendsms():

new AlertDialog.Builder(this)
.setTitle("Pick a Person")
.setCursor(c, onSMSClicked, Contacts.DISPLAY_NAME)
.show();

Here, we pop up an AlertDialog, supplying the cursor, indicating that the
entries in the AlertDialog's list should be made from the DISPLAY NAME
column. We will find out the user's selection, if any, in an onsSMsClicked
listener object that will be defined in the next section.

You will need to add an import to android.app.AlertDialog for this to
compile.

Step #4: Send the Message

Now, we can add the code to find out the user's choice of recipient and send
the SMS message.

First, add the onsMscClicked object definition to sendsMs(), giving us:

private void sendSMS() {
String[] PROJECTION=new String[] { Contacts._ID,

368

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

Contacts .DISPLAY_NAME,
Phone .NUMBER

s
String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
final Cursor c=managedQuery(Phone.CONTENT_URI,
PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME);
DialogInterface.OnClickListener onSMSClicked=
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int position) {
c.moveToPosition(position);

noReallySendSMS(c.getString(2));
}
s

new AlertDialog.Builder(this)
.setTitle("Pick a Person")
.setCursor(c, onSMSClicked, Contacts.DISPLAY_NAME)
.show();

The onsmMsclicked listener will find out the phone number for the selected
person (given the clicked-upon cursor position), then call noreallySendsMs()
to create and deliver the SMS message.

Then, add noReallySendSMS() to DetailForm as follows:

private void noReallySendSMS(String phone) {
StringBuilder buf=new StringBuilder("We are going to ");

buf.append(name.getText());
buf.append(" at ");
buf.append(address.getText());
buf.append(" for lunch!");

SmsManager
.getDefault()
.sendTextMessage(phone, null, buf.toString(), null, null);

Here, we build up a message, incorporating the name and address from the
EditText widgets. Then, we use SmsManager to send the message to its
desired target.

You will need to add the SEND_SMS permission to your manifest and add
imports for:

369

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

* android.content.DialogInterface

* android.telephony.SmsManager

If you compile and install LunchList on a phone and choose a restaurant,
you can bring up the option menu:

e Sit-Down

Call Send SMS Take a Photo
Figure 64. The new option menu on the detail form

Click on the "Send SMS" option, and you will get a dialog with a list of
numbers to choose from:

370

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

O | 9:29am

@ Pick a Person

Jane Smith

John Doe

Figure 65. The dialog of contacts with mobile phone numbers

Pick the number, and the SMS is sent.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Also give the user an option to send a restaurant by other means, by

using an ACTION_SEND Intent and the createChooser() method on
Intent.

- Experiment with the pPendingIntent objects you can supply on the
call to sendTextMessage(), to be notified of the message's progress
through the system.

371

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Getting the Word Out

Further Reading

More information about working with SMS in Android is found in the
"Working with SMS" chapter of The Busy Coder's Guide to Advanced
Android Development.

372

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 40
Seeking the Proper Level

The problem with the preceding tutorial is that it only works on Android
2.x. Specifically, our way of getting the mobile phone numbers will have
some issues on previous editions of Android, due to the way the contacts
engine was overhauled for Android 2.0.

That being said, we can fix this.

This tutorial will revamp the way we get the mobile numbers, to use
separate implementations that work on Android 1.x and Android 2.x.
Moreover, we will choose the proper implementation at runtime, ensuring
that a 1.x device does not accidentally use the 2.x APIs, or vice versa.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 39-sMs edition of LunchList to use as a starting point.

Step #1: Define an Interface for Mobile Numbers

We need two pieces of information from the contacts database:

373

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Seeking the Proper Level

A cCursor containing the contact's ID, name, and mobile phone
number

The name of the field that is the contact's name, so we can supply
this to the AlertdDialog.Builder, so it knows how to display the list

With that in mind, let us define a Java interface, for which we will create
implementations using the old and new contacts API. Add the following as
LunchList/src/apt/tutorial/MobileContactsBridge.java:

package apt.tutorial;

import android.app.Activity;
import android.database.Cursor;

interface MobileContactsBridge {
Cursor getMobileNumbers(Activity host);
String getDisplayNameField();

}

Step #2: Implement the Interface: the New Way

The existing code we added to DetailForm in the previous tutorial can be
largely copied-and-pasted into a NewMobileContacts class that implements
this interface. Add the

following as
LunchList/src/apt/tutorial/NewMobileContacts. java:

package apt.tutorial;

import android.app.Activity;

import android.database.Cursor;

import android.provider.ContactsContract.Contacts;

import android.provider.ContactsContract.CommonDataKinds.Phone;

class NewMobileContacts implements MobileContactsBridge {
public Cursor getMobileNumbers(Activity host) {
String[] PROJECTION=new String[] { Contacts._ID,
Contacts .DISPLAY_NAME,
Phone .NUMBER
s
String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};

return(host.managedQuery (Phone.CONTENT_URI,
PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME));

374

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Seeking the Proper Level

public String getDisplayNameField() {
return(Contacts.DISPLAY_NAME);
}
¥

We simply generate and return the cursor using the same query as before,
and indicate that Contacts.DISPLAY_NAME is what should be used from the
cursor for the dialog.

Step #3: Implement the Interface: the Old Way

We also need an implementation of this interface that used the old
Contacts content provider, as opposed to the new ContactsContract
content provider. The good news is that while the classes changed, the
general concepts are still the same. It is still a content provider, which we
can query against to get the data we need. All we need is the proper content

Uri, the proper set of projection columns, the right WHERE clause, and so
on.

With that in mind, add the following as
LunchList/src/apt/tutorial/OldMobileContacts. java:

package apt.tutorial;

import android.app.Activity;
import android.database.Cursor;
import android.provider.Contacts;

class OldMobileContacts implements MobileContactsBridge {
public Cursor getMobileNumbers(Activity host) {
String[] PROJECTION=new String[] { Contacts.Phones._ID,
Contacts.Phones.NAME,
Contacts.Phones.NUMBER

};
String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};

return(host.managedQuery(Contacts.Phones.CONTENT_URI,
PROJECTION,
Contacts.Phones.TYPE+"=?", ARGS,
Contacts.Phones.NAME));

}

public String getDisplayNameField() {
return(Contacts.Phones.NAME) ;

375

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Seeking the Proper Level

Step #4: Choose and Use the Bridge

With all that behind us, now we need to actually pick the right
implementation of the MobileContactsBridge interface and use it, replacing
our former hard-wired Android 2.x API usage in sendSMs().

One way to determine which implementation to use is to see what SDK we
are running. To do that, we can use the sbk property of the android.os.Build
class (which you will need to add as in import to betailForm). This contains
a string representation of our API level, with 5 being Android 2.0, 4 being
Android 1.6, and so on. Note that while there is an SDK_INT property that
would save us the string-to-integer conversion, it is not available on
Android 1.5.

So, replace your current implementation of sendsMS() in DetailForm to:

private void sendSMS() {
MobileContactsBridge bridge=buildBridge();
final Cursor c=bridge.getMobileNumbers(this);

DialogInterface.OnClickListener onSMSClicked=
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int position) {
c.moveToPosition(position);

noReallySendSMS(c.getString(2));

}
1

new AlertDialog.Builder(this)
.setTitle("Pick a Person")
.setCursor(c, onSMSClicked, bridge.getDisplayNameField())
.show();

This delegates the creation of the actual MobileContactsBridge to a
buildBridge() method, which you will also need to add to DetailForm:

private static MobileContactsBridge buildBridge() {
int sdk=new Integer(Build.VERSION.SDK).intValue();

376

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Seeking the Proper Level

if (sdk<5) {
return(new OldMobileContacts());
}

return(new NewMobileContacts());

}

The buildBridge() method looks at the SDK value and chooses an
implementation to use. The sendsMs() message takes the cursor and field
name from the bridge and pours that information into the
AlertDialog.Builder.

You can now compile and run LunchList on both Android 2.x and Android
1.X.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

« Rather than determining which API to use by looking at the SDK
version, check to see if the contactsContract class exists, since that
class does not exist on Android 1.x.

« Experiment with using pure reflection to get at the uri for the
content provider based on the version of Android the code is
running on.

Further Reading

More information about supporting multiple API levels in Android is found
in the "Handling Platform Changes" chapter of The Busy Coder's Guide to
Android Development.

377

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

http://commonsware.com/Android
http://commonsware.com/Android

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

ClaSS..ccvuuuueeeereeeeenneeeeeeeeernnneeeenneesenes ATQYLIStcocvecc 37, 56, 100, 103, 105, 192
ACCOUNL. ..o 186, 187 AsyncTask 80
ActionAdapter 31,312 AtomicBoolean....82,180, 289
Activity....... 19, 20, 42, 53, 73, 90, 220, 308, 368 AutoCompleteTextView.........cococovevvireevrennne 40
ACHVItYINFO. .o 314 BASEO vt 161
Adapter 49 BroadcastListener...........cccceuvviviciiinieicinns 287
AdapterView.OnltemClickListener.. BroadcastReceiver............ccccevveuennenn. 288, 292, 318
AlarmManager................. 291, 292, 294, 295, 300 BUDIE s 149, 150
AlertDialog.......ceevereveereenenee 71, 136, 163, 165, 368 BULLON. . 20, 34, 60, 254, 310
AlertDialog.Builder..........cccocveuuerenceennnce. 374, 377 CAMETA s 355 357
AlphaAnimation...........coeueevereeeereeinennns 265, 272 CONEACERT e 307-309, 311, 312
AndroidHttpClient..........c.cveceeceuerereeecnnes 165 ContactsContract. . mmmssnsssssss 285,367,377
ANIMALION. ..ttt 271 CONEENEVAIUES. ..o 101
ANimationLiStener.........cucuueveeveeeeererererennes 271 COMERKE v 331, 361
AnimationSet 272 Criteria - R B IR 232
AnimationULlS........ceeevereremereniiniieeieincienens 271 Cursor. 100, 102-106, 126, 145, 284, 367, 368, 374,

375, 377
AppWidget......c.ccceeueinineinenne 319, 323, 331, 332 CUrsOrAdapter. ..o 47,103, 106, 202
APPWIdgetManager. ... 3 CustomHelp........oovvvrenneiicccccennen 258, 259
AppWidgetProvider..........cccccceeunnes 318, 319, 329 DatePicker 6o
ArrayAdapter.........ocoeveeeeieccccinnenns 37, 97, 103

379

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

DatePickerDialog, .60
DefaultHttpClient..........ccococuvvvcueueieerenneees 163, 165
DetailForm..113-121, 123, 125, 127, 132, 134, 149-151,

159, 333-335, 344, 346, 347, 356, 359, 363, 364,
366, 367, 369, 374, 376

DHAler...c. v 347
EditPreference.........cccoeeueeeeevnensieieenns 170, 171
EditPreferences.... ..139-141

EditText19-21, 24, 40, 49, 61, 63, 95, 163, 165, 170,
231, 344, 369

EditTextPreference..........cccoveveeviriereeeeniennens 170
ErrorDialog 71
Exception ..163
FaKeJOD......ooveieieiiieieieiieiee e 79
FrameLayout 51, 53
Gallery.....ccvuieinierecirccececee e 357
Handler.......c.ovvnccccccceeeeeeeee 79
HaShSet .. 182
HelpCast......covveueeieeenieeeiricreienenns 247, 253, 254
HelpcastActivity.. ..249
HelpPage 253-255, 257, 258
HEtpPOSE.....oviiiiiiiicicccc 163
ImageButton........c.cccceevvevucinnenennnnnn. 327,328, 335
ImageView. 45

Intent....xxviii, 115, 119, 121, 172, 220, 221, 273-276,
303, 309-311, 334, 347, 348, 363, 371

IntentFilter.....c.ccovvvivivnriccccceeeeen 288
INEENES..cvieeeieeeieeeeeeteeee e 293, 295
IntentService........c.coeeerirueunnn. 294, 295, 329, 331
[PostListener..............cccceveuenene 186, 189, 205, 206
IPostListener.Stub.........ccccceunecurreececernienencnn. 206
IPostMonitor....186, 189

380

[PoStMONitor.Stub...........ccccvceceiniciiiens 208
KAIJOD..oeveeteeee e 80
LinearLayout........coceeveveeuvennene 21, 24, 43, 94, 266
LinkedBlockingQueue .79
LSttt 103
LiStACEIVILY....oveviierevceeiererccieciecne u8, 119, 308
ListAdapter.... g1
ListView.....33, 35, 37, 40, 41, 51, 55, 118, 190, 308,
310, 312, 318, 368

LocalBinder.........ccccooveveieveeeeinennns 183, 189, 208
Location . . e 231
LocationListener.........cccoeeveerenieneeeneenveens 229
LocationManager.............ccccoeuvrieicinnns 227, 228
LocationProvider...........ovveveeenecccececccenenne 232

LunchlList...xxvi-29, 33, 37, 42, 45, 46, 53, 55, 57,
62-64, 66, 67, 73, 75, 76, 82, 85, 91, 92, 97, 99-
101, 103-106, 114, 115, 117-119, 121-123, 126, 129, 132,
140, 144, 157, 159, 170, 171, 191, 301, 302, 304, 306,
307, 317, 318, 325, 329, 337, 338, 351, 359, 362,
365, 367, 370, 377

MaP...coiiiiiic s 276
MapACHIVILY.....coooviiiiiiiiccccccccccce 236
MediaController...........cocevierereeriniereirinrenens 247
MENU....einiinieiiieieeeeseee e 172, 347
Menulnflater. 172,347
Menultem.......cccovveerenenieienenierieneesieeies 172, 347
MobileContactsBridge............cccccovueviiiinnnnnnes 376
MyLocationOverlay..........ccccorueurerrrecrnennnes 243
NewMobileContacts374
Notification....................... 219, 220, 223, 225, 300
NotificationManager............ceeeveurereueureccuenns 220
OnAlarmReceiver 203
OnClLCKLIStENeT.......ccueviuviciciicicceeieccnn 332

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

PackageManager.........cccoveeveeceuruenencne 307, 311, 315

Patchy....xxvii, 28, 157, 158, 160, 161, 168, 169, 171,
174, 182, 183, 186, 188-192, 194, 195, 202, 204-209,
219-221, 223-225, 228, 229, 231, 235-238, 240,
245, 247, 251-253, 260, 266-269, 271-273, 276,
277, 282-285, 287, 290, 291, 296, 300, 307

Pattern.......coeerenieneieeeeeeeee e 238
PendingIntent............ 220, 294, 295, 332-335, 371
PhotoCallback ...356
Photographer..........coccoeuvivcuvnecunnae 353, 354, 356

PostMonitor179, 182, 183, 186, 188, 189, 200, 202,
204-209, 214, 219-221, 225, 273-276, 287-293,
296, 300

Preference...... . T 225
PreferenceACtivity........ococveeeeveeecerrnecunenes 137,138
PreferenceScreen...........coovevevenveereneennns 137, 138
ProgressBar

RadioButton........cccceeveeevevveereereennenn. 25, 26, 28, 30
RadioGroup......c.ccvvcueureeeeeicirieereeieeennes 26, 30
RelativeLayout . IR 35, 51
RemoteViews.........ccccoveiviiniiiicniicnnnnn. 324, 332
Resolvelnfo.......ccoceeurrrnnnninnccenes 311, 312, 314

RestaurantAdapter...42, 44, 46, 101, 103, 104, 118,
363

RestaurantHelper...98-100, 102, 105, 109, 120, 121,
123, 134, 143, 145, 303, 341, 342

RestaurantHolder...........cccooveveririnenne 41, 46,104
Runnable............. 75, 78, 81, 82, 99, 180, 294, 295
SCIOIIVIEW ..o 30
SensorListener..........ccoeveereeenieenieenienieee 361
SensorManager............cccoceeueivieiniiiniiinnns 359, 361
ServiceConnection...........cccoceceeveviuennnnnne 188, 206
Set.

Shaker

381

Shaker.Callback 362
SharedPreferences...........cocovvueeruene 138, 144, 173
SMSMaNAET.......c.ceeuvirueeiiereeiierceineeeneee 369
Spinner.........cccceeuenen. 40, 176, 184, 202, 249, 368
SQLiteDatabase ..101, 102
SQLiteOpenHelper..........c.cccccoeeueeueueeeenneenne 97
StatusEntryView. 267
StatusMap........ccccoceeiiiinieins 237-240, 252, 256
StatusSOVerlay.......ocvvevereeeeccecceciceereereeenes 240
SEIING..cviiiciiiiicice 61, 120, 296, 305, 376
SurfaceView........covvevvnencncncncccneeeees 353-356
TaDACHVILY.cvveveeeee e 53, 18
TabHost 51, 53
TableLayout......... 23, 24, 26, 31, 62, 159, 266, 344
TableRow.... 24, 62, 172
TabView ...51
TabWidget .51
TextView......cccoevecinerecnnne 21, 45, 251, 324, 326
Thread........coooeeeeeeeeeeeeeeeeeee e 79, 80, 82
TimelineAdapter..........ccoceoenieirinuecnnnns 193, 194

TimelineEntry.. .191, 192, 194, 238, 256, 276, 282-
284

Toast

Twitter

Uri

VideoVIeW....c.covvieueeieriieiieieesieeeeee s 246, 247
VIBW ...t 103, 266
View.OnClickListener...........ccccoeeevvvveiiuicnnns 20
ViewFlipper60
WakefullntentService..........cccovenene. 291-295, 300

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

‘WakeLock .291-293, 295
WeEDVIeW.....c.cueumiieieieieieinirrieeeee 256-259, 261
WebViewClient . . .e255
WidgetService.......ccvueuerneeeenecunnnes 329, 331-333

Command......ccceeeeeeeiiririeeeeennnnnnnnee.
Adb 108CAL....ucueveeneeeerecereiree e 25,1338
adb pull.....ccuiiiiiiiiiii e m
AdD PUSH....oeicec e 245
adb shell L1l
ANAIOId. .. 9
android create project............cccc....

android update project -p ...

ANt CleAN.....iiii e 25
ant install........ccooeveieeeeeeieeeeeeeee e 13, 20, 25
ant jar 202
ant reinstall......... .30
CIN. e 2
S T 7
pdftk *.pdf cat output combined.pdf............. xvii
SQLIEES et 11
Method........cccceeveiiiiinmmnnneeeecennnnnnn.
add().......... 37
addIntentOptions().......oceevreeeverreeerrereeeereerene 314
AdAVIEW()..eveveveeiiereeeeeee e 30
bindService().... ...188
bINAVIEW()...oveueveeeeiereeeeeeeeeeeeee e 103
buildBridge() .-376,377

clearNotification() 223,224

createChooser() 371

382

doSomeLongWork().......ccoecereeuereennnnes 75, 78, 99
doWakefulWork().......ceueeevrieeerreerriniieeenenes 205
ANAViewById()...c.ovvevveeeeirieieeeieieereeiesine 20
FNISH() v 123
getActivity() 334
GetAll().oeeeeiccccne 104, 143-145, 303, 343
EtBYIA().vneerenceieecteiccnecieece e 343

getCheckedRadioButtonId()....

GELCHENE().evvvrerereeeciereieieireeeeee e 174
EtFOLIOWETS()...ouvueireriiciiccerecieee e 176
getFriendsTimeline().......ccocveeeeeeernceneereenncnes 182
getltemlId()....
getltemVIeWTyPe()...ccvvcuerrrecreenecenirecrrierenenns 49
ELSLALUS() oo 177
getSystemService() ... eerrmevernieerireereieiereenenes 220
getTag()

getView() ...46, 103
2etViewTypeCount().......ceevreeverrieereeersrenenenns 49
getWritableDatabase()........c.ccureeeeurevcrernecnene 101
initList() 145, 146, 302
INSETE().vveviererereeieerereeeereeeerens 100, 101, 106, 342
insertLocation().......cceeveeveverereeeererereereereeneens 231
10AA().cererereeeeeeieieieierere et 121
managedQuery()

NEWVIEW().vvieeeieieeeeereeeeee ettt 103
noReallySendSMS()......cveueeremeuernierirenererenenes 369
ONACEIVIEYRESUIE()..cvveevernieiricieireeiecies 31
ONBINA()..vivieiieieiieeeeeee s 184
ONCHCK() eveveeereeiinrieirieieisee e 35, 55

onCreate(). .42, 53, 55, 63, 73, 79, 99, 96, 98-100,
104, 116-118, 120, 121, 144, 145, 150, 173, 181, 188,

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

189, 193, 223, 224, 228, 229, 237, 240, 257, 258,
267, 271, 288, 294, 296, 300, 309, 341, 342, 355

onCreateOptionMenu()........coccerevceeererrevenenn 122
onCreateOptionsMenu().........ceeeeeeererreerercenees 99

onDestroy().100, 120, 181, 189, 207, 229, 288, 296

onHandlelntent()... ...331, 333
onItemMCICK()..ooveveeiierereieereeeeeceeee e 56
ONKeyDOWN().vvuievrereeeieneieiieeinireeeeeieeeea 232
onListltemClick()...oevevererririririeireiiieeens 19, 120
ONNEWINtENt()...cucveveveriieieriecieieeeee e 224
onOptionsltemSelected()....... 66, 76, 77, 99, 122,

140, 231, 247, 253, 269, 302, 356, 366

onPause() 82, 83,99, 363
onPrepareOptionsMenu().........ccveeeveeieenenne 267
onRestorelnstanceState()........c.cccvvevevene 150, 345
onResume()......ccoeeueveueueuenennen 82, 83, 99, 146, 362

onRetainNonConfigurationInstance()...........152

onSavelnstanceState(). .90, 96, 149, 150, 152, 345

onSearchRequested()........ccovueeeurecueunecnennene 302
ONSEATE().cvvvveverererererereeeee e 90
onStop()

onUpdate()......ocerrureeureenes 318, 323, 329, 331, 332
onUpgrade()......cceeeereerevreereererneennnes 98, 99, 342
POLO e 182,187, 209, 221, 274
populateFrom()... ...283
FAWQUETY().veereereererrerieerereeeeereee e ieeene 102
1egisterReCeiver()......coovuevrreeereireeerreererreenene 288
removeCallback().......ccoeeeverereiereieiieieeens 207
requestWindowFeature().........ccceevrveurieunennes 99
resetClient().......ccccvveveeerereeeeeereree e 189, 207

383

runOnUiThread().......cccovvveveeevereeeeiereecreenenee. 78
save() 123
sendBroadcast() ..275
SENAMESSAZE().vuvvverrerrevnceereirieeireeeereeeeveenaee 176
SeNdSMS()...vcvevevereiiieieiieas 366-368, 376, 377
sendTextMessage() 371
sendWakefulWork().........ccovevereeereeeeeeneininnnns 293
setAlarm() ...204, 205
setContentView().........c.......... 55, 73, 100, 114, 116
setListAdapter() 1u8
setOnltemClickLiStener().......cocevvvevreeuerreeennes 55
setTag().. .46
shakingStarted() 362
shakingStopped()........cceereeeeeerrerrerneereereenene 362
shouldOverrideUrlLoading().......cccceueveueunne 255
showNotification()

SEATE() . rvrveeeeeveverererererere et 247
StartACtivity()......covveenneee. 115, 136, 220, 238, 254
startActivityFOrResult()........cooeeurereuerrrcucunennns 310

startManagingCursor()

SArtService(). .o eeeeruerererreremrereereeeerneenen 203, 332
startWork() 83,99
stopManagingCursor().......c..eeeeeeeverrerererenenes 145
surfaceChanged()....
toggleStatuSENtry().....cccevveecrrecvernecennncne
LOSELING()-vvveeeerrrmeeeresereerereeeeeessere e 35
unregisterReceiver().......coevreerrecrererrrenenenns 288
UPAAte().eevneerencecirieeeirecreeeiee e 123, 343
UPdateStatus().....coeerevereeeeererreeererenes 163, 169, 174

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

Keyword Index

384

This document is licensed for Keith Rasmussen's exclusive use by CommonsWare, LLC

	Android Programming Tutorials

	Welcome to the Book!
	Prerequisites
	Using the Tutorials
	Warescription
	What's New
	About the "Further Reading" Sections
	Errata and Book Bug Bounty
	Source Code License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	Roster of Tutorials
	Your First Android App
	Step-By-Step Instructions
	Step #1: Choose a Place For Your Applications
	Step #2: Check Your Java Environment
	Step #3: Download and Install the Android SDK
	Step #4: Generate the Application Files
	Step #5: Examine and Modify the Layout File
	Step #6: Examine the Activity Java Source
	Step #7: Install Ant
	Step #8: Compile the Application
	Step #9: Configure and Start Your Emulator
	Step #10: Install the Application in Your Emulator
	Step #11: Run the Application in Your Emulator

	Extra Credit
	Further Reading

	A Simple Form
	Step-By-Step Instructions
	Step #1: Generate the Application Skeleton
	Step #2: Modify the Layout
	Step #3: Compile and Install the Application
	Step #4: Run the Application in the Emulator
	Step #5: Create a Model Class
	Step #6: Save the Form to the Model

	Extra Credit
	Further Reading

	A Fancier Form
	Step-By-Step Instructions
	Step #1: Switch to a TableLayout
	Step #2: Add a RadioGroup
	Step #3: Update the Model
	Step #4: Save the Type to the Model

	Extra Credit
	Further Reading

	Adding a List
	Step-By-Step Instructions
	Step #1: Hold a List of Restaurants
	Step #2: Save Adds to List
	Step #3: Implement toString()
	Step #4: Add a ListView Widget
	Step #5: Build and Attach the Adapter

	Extra Credit
	Further Reading

	Making Our List Be Fancy
	Step-By-Step Instructions
	Step #1: Create a Stub Custom Adapter
	Step #2: Design Our Row
	Step #3: Override getView(): The Simple Way
	Step #4: Create a RestaurantHolder
	Step #5: Recycle Rows via RestaurantHolder

	Extra Credit
	Further Reading

	Splitting the Tab
	Step-By-Step Instructions
	Step #1: Rework the Layout
	Step #2: Wire In the Tabs
	Step #3: Get Control On List Events
	Step #4: Update Our Restaurant Form On Clicks
	Step #5: Switch Tabs On Clicks

	Extra Credit
	Further Reading

	Menus and Messages
	Step-By-Step Instructions
	Step #1: Add Notes to the Restaurant
	Step #2: Add Notes to the Detail Form
	Step #3: Define the Option Menu
	Step #4: Show the Notes as a Toast

	Extra Credit
	Further Reading

	Sitting in the Background
	Step-By-Step Instructions
	Step #1: Initialize the Progress Bar
	Step #2: Create the Work Method
	Step #3: Fork the Thread from the Menu
	Step #4: Manage the Progress Bar

	Extra Credit
	Further Reading

	Life and Times
	Step-By-Step Instructions
	Step #1: Lengthen the Background Work
	Step #2: Pause in onPause()
	Step #3: Resume in onResume()

	Extra Credit
	Further Reading

	A Few Good Resources
	Step-By-Step Instructions
	Step #1: Review our Current Resources
	Step #2: Create a Landscape Layout

	Extra Credit
	Further Reading

	The Restaurant Store
	Step-By-Step Instructions
	Step #1: Create a Stub SQLiteOpenHelper
	Step #2: Manage our Schema
	Step #3: Remove Extraneous Code from LunchList
	Step #4: Get Access to the Helper
	Step #5: Save a Restaurant to the Database
	Step #6: Get the List of Restaurants from the Database
	Step #7: Change our Adapter and Wrapper
	Step #8: Clean Up Lingering ArrayList References
	Step #9: Refresh Our List

	Extra Credit
	Further Reading

	Getting More Active
	Step-By-Step Instructions
	Step #1: Create a Stub Activity
	Step #2: Launch the Stub Activity on List Click
	Step #3: Move the Detail Form UI
	Step #4: Clean Up the Original UI
	Step #5: Pass the Restaurant _ID
	Step #6: Load the Restaurant Into the Form
	Step #7: Add an "Add" Menu Option
	Step #8: Detail Form Supports Add and Edit

	Extra Credit
	Further Reading

	What's Your Preference?
	Step-By-Step Instructions
	Step #1: Define the Preference XML
	Step #2: Create the Preference Activity
	Step #3: Connect the Preference Activity to the Option Menu
	Step #4: Apply the Sort Order on Startup
	Step #5: Listen for Preference Changes
	Step #6: Re-Apply the Sort Order on Changes

	Extra Credit
	Further Reading

	Turn, Turn, Turn
	Step-By-Step Instructions
	Step #1: Add a Stub onSaveInstanceState()
	Step #2: Pour the Form Into the Bundle
	Step #3: Repopulate the Form
	Step #4: Fix Up the Landscape Detail Form

	Extra Credit
	Further Reading

	Raising (Something Like) a Tweet
	Step-By-Step Instructions
	Step #1: Set Up an Identi.ca Account
	Step #2: Create a Stub Application and Activity
	Step #3: Create a Layout
	Step #4: Listen for Send Actions
	Step #5: Make the Status Post Request

	Extra Credit
	Further Reading

	Opening a JAR
	Step-By-Step Instructions
	Step #1: Obtain the JTwitter JAR
	Step #2: Switch from HttpClient to JTwitter
	Step #3: Create Preferences for Account Information
	Step #4: Use Account Information from Preferences

	Extra Credit
	Further Reading

	Listening To Your Friends
	Step-By-Step Instructions
	Step #1: Create a Service Stub
	Step #2: Set Up a Background Thread
	Step #3: Poll Your Friends
	Step #4: Find New Statuses
	Step #5: Set up the Public API

	Extra Credit
	Further Reading

	No, Really Listening To Your Friends
	Step-By-Step Instructions
	Step #1: Define the Callback
	Step #2: Enable Callbacks in the Service
	Step #3: Manage the Service and Register the Account
	Step #4: Display the Timeline

	Extra Credit
	Further Reading

	Your Friends Seem Remote
	Step-By-Step Instructions
	Step #1: Back Up or Branch Your Project
	Step #2: Create a Fresh Project
	Step #3: Move the Service to the New Project
	Step #4: Implement and Copy the AIDL
	Step #5: Implement the Client Side
	Step #6: Implement the Service Side
	Step #7: Restore Your Project

	Extra Credit
	Further Reading

	A Subtle Notification
	Step-By-Step Instructions
	Step #1: Pick a Word and Icon
	Step #2: Raise the Notification
	Step #3: Watch for the Keyword
	Step #4: Clearing the Notification

	Extra Credit
	Further Reading

	Posts On Location
	Step-By-Step Instructions
	Step #1: Get the LocationManager
	Step #2: Register for Location Updates
	Step #3: Add "Insert Location" Menu
	Step #4: Insert the Last Known Location

	Extra Credit
	Further Reading

	Here a Post, There a Post
	Step-By-Step Instructions
	Step #1: Register for a Map API Key
	Step #2: Create a Basic MapActivity
	Step #3: Launch the Map on Location-Bearing Status Click
	Step #4: Show the Location Via a Pin

	Extra Credit
	Further Reading

	Media
	Step-By-Step Instructions
	Step #1: Obtain and Install a Video Clip
	Step #2: Create the Stub Helpcast Activity
	Step #3: Launch the Helpcast from the Menu

	Extra Credit
	Further Reading

	Browsing Some Posts
	Step-By-Step Instructions
	Step #1: Add Auto-Linking
	Step #2: Draft and Package the Help HTML
	Step #3: Create a Help Activity
	Step #4: Splice In the Help Activity

	Extra Credit
	Further Reading

	High-Priced Help
	Step-By-Step Instructions
	Step #1: Enable Javascript
	Step #2: Create the Java Object to Inject
	Step #3: Inject the Java Object
	Step #4: Leverage the Java Object from Javascript

	Extra Credit
	Further Reading

	Now Your Friends Seem Animated
	Step-By-Step Instructions
	Step #1: Set Up the Option Menu
	Step #2: Show and Hide the Status Entry Widgets
	Step #3: Fading In and Out

	Extra Credit
	Further Reading

	Messages From The Great Beyond
	Step-By-Step Instructions
	Step #1: Broadcast the Intent
	Step #2: Catch and Use the Intent

	Extra Credit
	Further Reading

	Contacting Our Friends
	Step-By-Step Instructions
	Step #1: Fake the Contact Data
	Step #2: Design the Highlight
	Step #3: Find and Highlight Matching Contacts

	Extra Credit
	Further Reading

	Android Would Like Your Attention
	Step-By-Step Instructions
	Step #1: Track the Battery State
	Step #2: Use the Battery State

	Extra Credit
	Further Reading

	Now, Your Friends Are Alarmed
	Step-By-Step Instructions
	Step #1: Import a Reusable Component
	Step #2: Create the Alarm BroadcastReceiver
	Step #3: Doing the Work

	Extra Credit
	Further Reading

	Searching For Food
	Step-By-Step Instructions
	Step #1: Have the List Conduct the Search
	Step #2: Integrate the Search in the Application

	Extra Credit
	Further Reading

	Look Inside Yourself
	Step-By-Step Instructions
	Step #1: Create a Stub Project
	Step #2: Create a Layout
	Step #3: Find the Correct Contact Uri
	Step #4: Attach the Button to the Contacts
	Step #5: Populate the List

	Extra Credit
	Further Reading

	A Restaurant In Your Own Home
	Step-By-Step Instructions
	Step #1: Find An App Widget Background and Icon
	Step #2: Design the App Widget Layout
	Step #3: Add an (Empty) AppWidgetProvider
	Step #4: Add the Widget Metadata
	Step #5: Update the Manifest
	Step #6: Show a Random Restaurant

	Extra Credit
	Further Reading

	More Home Cooking
	Step-By-Step Instructions
	Step #1: Find a Button Graphic
	Step #2: Add the Button to the Layout
	Step #3: Migrate Update Logic to an IntentService
	Step #4: Get Control on Button Clicks
	Step #5: Get Control on Name Clicks

	Extra Credit
	Further Reading

	Take a Monkey to Lunch
	Step-By-Step Instructions
	Step #1: Prep LunchList
	Step #2: Run the Monkey

	Extra Credit
	Further Reading

	Asking Permission to Place a Call
	Step-By-Step Instructions
	Step #1: Add a Phone Number to the Database Schema
	Step #2: Intelligently Handle Database Updates
	Step #3: Add Phone Number Support to the Rest of the Helper
	Step #4: Collect the Phone Number on the Detail Form
	Step #5: Ask for Permission to Make Calls
	Step #6: Dial the Number
	Step #7: Make the Call

	Extra Credit
	Further Reading

	Photographic Memory
	Step-By-Step Instructions
	Step #1: Adjust the Manifest
	Step #2: Create the Photographer Layout
	Step #3: Create the Photographer Class
	Step #4: Tie In the Photographer Class

	Extra Credit
	Further Reading

	Sensing a Disturbance
	Step-By-Step Instructions
	Step #1: Implement a Shaker
	Step #2: Hook Into the Shaker
	Step #3: Make a Random Selection on a Shake

	Extra Credit
	Further Reading

	Getting the Word Out
	Step-By-Step Instructions
	Step #1: Add a "Send SMS" Option Menu
	Step #2: Find Contacts' Mobile Numbers
	Step #3: Pick a Person
	Step #4: Send the Message

	Extra Credit
	Further Reading

	Seeking the Proper Level
	Step-By-Step Instructions
	Step #1: Define an Interface for Mobile Numbers
	Step #2: Implement the Interface: the New Way
	Step #3: Implement the Interface: the Old Way
	Step #4: Choose and Use the Bridge

	Extra Credit
	Further Reading

