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Preface

This book is primarily a textbook for lecturers and graduate and undergradu-
ate students. To this group the book offers a thorough introduction to evolu-
tionary computing (EC). including the basics of all traditional variants (evo-
lution strategies, evolutionary programming. genctic algorithms. and genetic
programming): EC themes of general interest (such as algorithm parameter
control. or constraint handling); a collection of particular EC' techniques (e.g.,
niching. or coevolution): and an outlook to related arcas (evolutionary art).
This book is also meant for those who wish to apply EC to a particular prob-
lem or within a given application arca. To this group the book is valuable be-
cause it presents EC as something to be used. rather than just being studied.
and it contains an explicit treatment of guidelines for good experimentation.
Last. but not least, this book contains information on the current state of the
art in a wide range of subjects that are interesting to fellow researchers as
quick reference on subjects outside of their own specialist field of evolutionary
computing,.

The motivation behind the book is education oriented. Both authors have
many yvears of teaching experience. that is. have taught EC' many times. not
only within the context context of a university. but also at EC-related summer
schools for doctoral students. and at commercial courses for practitioners from
husiness and industry. The lack of one good texthook that covers all necessary
aspects of EC. contains the factual knowledge but also paving attention to
the skills needed to use this technology has been repeatedly experienced. This
resulted in a joint effort to fill this gap and produce the textbook both authors
felt was missing. The educative role of the book is emmphasised by the following
features:

1. There are example applications in each chapter. except the chapter on
theory.

2. Each chapter closes with exercises and a list of recommended further read-
ng.

3. The book has a supporting a Web site with identical copies at:
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e www.cs.vu.nl/ gusz/ecbook/ecbook.html
e www.cems.uwe.ac.uk/ jsmith/ecbook/ecbook.html

4. On this Web site we outline a full academic course based on this material.

5. There are slides to each chapter on the Web in PowerPoint and in PDF
format. These slides can be freely downloaded and used to teach the ma-
terial covered in the book.

6. All illustrations used on the slides are available separately from the Wel
as source (editable), PostScript. and JPG files. These enable readers to
use and reuse them and to create their own versions for their own slides.

7. Furthermore. the Web site offers more exercises. answers to the exercises.
downloadables for easy experimentation, errata. and a discussion group.

Writing this book would not have been possible without the support of
many. In the first place, we wish to express our gratitude to Daphne and
Cally for their patience. understanding. and tolerance. Without their support
this book could not have been written. Furthermore. we acknowledge the help
of our colleagues within EvoNet and the EC community. We are especially
grateful to Larry Bull. Maarten Keijzer, Nat Krasnogor, Ben Paechter. Giinter
Raidl. Rob Smith, and Dirk Thierens for their comments on earlier versions
of this book. The people in our departments also deserve a word of thanks for
their support. Finally, Gusz Eiben wishes to thank Andras Lorinez and the
ELTE University in Budapest for providing the facilities needed to finalise the
camera ready copy during his stay in Hungary.

We wish everybody a pleasant and fruitful time reading and using this book.
Amsterdam, Bristol, Budapest. July 2003
Gusz Eiben and Jim Smith
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1

Introduction

1.1 Aims of this Chapter

This chapter provides the reader with the basics for studying evolutionary
computing (EC) through this book. We give a brief history of the field of evo-
lutionary computing, and an introduction to some of the biological processes
that have served as inspiration and that have provided a rich source of ideas
and metaphors to researchers. We pay a great deal of attention to motivations
for working with and studying evolutionary computing methods. We suggest
a division of the sorts of problems that one might wish to tackle with sophis-
ticated search methods into three main classes. and give an example of where
EC was successfully applied in each of these.

1.2 The Main Evolutionary Computing Metaphor

Evolutionary computing is a research area within computer science. As the
name suggests, it is a special flavour of computing. which draws inspiration
from the process of natural evolution. That some computer scientists have
chosen natural evolution as a source of inspiration is not surprising, for the
power of evolution in nature is evident in the diverse species that mmake up our
world, with each tailored to survive well in its own niche. The fundamental
metaphor of evolutionary computing relates this powerful natural evolution
to a particular style of problem solving — that of trial-and-error.

Descriptions of relevant fragments of evolutionary theory and genetics are
given later on. For the time being let us consider natural evolution simply as
follows. A given environment is filled with a population of individuals that
strive for survival and reproduction. The fitness of these individuals — deter-
mined by the environment — relates to how well they succeed in achieving
their goals, i.e., it represents their chances of survival and multiplying. In the
context of a stochastic trial-and-error (also known as generate-and-test) style
problem solving process, we have a collection of candidate solutions. Their

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

2 1 Introduction

quality (that 15, how well they solve the problem) determines the chance that
they will be kept and used as seeds for constructing further candidate solutions
(Table 1.1).

Evolution Problem solving
Environment —— Problem
Individual — Candidate solution
Fitness —— Quality

Table 1.1. The basic evolutionary computing metaphor linking natural evolution
to problem solving

1.3 Brief History

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the forties, long before the breakthrough of
computers [146]. As early as 1948, Turing proposed “genetical or evolutionary
search”™, and by 1962 Bremermann had actually excecuted computer experi-
ments on “optimization through evolution and recombination™. During the
1960s three different implementations of the basic idea were developed in
different places. In the USA, Fogel, Owens, and Walsh introduced evolution-
ary programming {155, 156], while Holland called his method a genetic
algorithm [98, 202, 204]. Meanwhile, in Germany, Rechenberg and Schwe-
fel invented evolution strategies [317, 342]. For about 15 years these areas
developed separately; but since the early 1990s they have been viewed as
different representatives (“dialects”™) of one technology that has come to be
known as evolutionary computing [22. 27, 28, 120, 271]. In the early 1990s
a fourth stream following the general ideas cierged, genetic programming,
championed by Koza [38, 229, 230]. The contemporary terminology denotes
the whole field by evolutionary computing, the algorithins involved are termed
evolutionary algorithms, and it considers evolutionary programiming, evo-
lution strategies, genetic algorithms, and genetic programming as subareas
belonging to the corresponding algorithm variants.

The development of scientific forums devoted to EC gives an indication of
the field’s past and present. The first international conference specialising in
the subject was the International Conference on Genetic Algorithms (ICGA),
first held in 1985 [180] and repeated every second year until 1997 [182, 333,
43, 158, 137, 23].! In 1999 it merged with the Annual Conference on Genetic
Programming [235, 234, 232] to become the annual Genetic and Evolutionary

! Please note that these and the other conferences are ordered historically rather
than alphabetically by editor.
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1.4 The Inspiration from Biology 3

Computation Conference (GECCO) [37. 116. 381. 242]. At the same time the
Annual Conference on Evolutionary Programming. held since 1992, [150. 151.
344, 268, 154, 12, 307] merged with the IEFEE Conference on Evolutionary
Computation. held since 1994, [210. 211. 212, 213, 214] to form the Congress
on Fvolutionary Computation (CEC) which has been held ammually ever since
(T1. 72, 73. 74].

The first European event (explicitly set up to cmbrace all streams) was the
Parallel Problem Solving from Nature (PPSN) 111 1990 [3-43]. which has became
a biannual conference [259. 90. 410. 116. 337. 187]. It was in a pancl discussion
during the first PPSN that the name evolutionary computing was offered as
an umbrella term for all existing “dialects™. Evolutionary Computation (NI'T
Press). the first scientific journal devoted to this ficld. was launched in 1993. In
1997 the European Commission decided to fund a European research network
in EC. called EvoNet. whose funds are guaranteed until 2003. At the tune
of writing (2003). there are three major EC conferences (CEC, GECCO. and
PPSN) and many smaller ones, including one dedicated exclusively to theoret-
ical analysis and development. Foundations of Genetic Algorithms (FOGA)
held bianmually sinee 1990 [316, 420. 425. 44. 39, 261. 308]. By now there arce
three core scientific EC journals ( Evolutionary Computation. IEEE Transac-
tions on Evolutionary Computation, and Genetic Programming and Fvolvable
Machines) and many with a closely related profile. e.g.. on natural computing.
soft computing, or computational intelligence. We estimate the number of EC
publications in 2003 at somewhere over 1500 many of them in journals and
proceedings of specific application areas.

1.4 The Inspiration from Biology

1.4.1 Darwinian Evolution

Darwin’s theory of evolution [86] offers an explanation of the biological diver-
sity and its underlving mechanisins. In what is sometimes called the macro-
scopic view of evolution. natural selection plavs a central role. Given an en-
vironment that can host only a limited number of individuals. and the ba-
sic instinct of individuals to reproduce, selection becomes inevitable if the
population size is not to grow exponentially. Natural selection favours those
individuals that compete for the given resources most effectively, in other
words, those that are adapted or fit to the environmental conditions best.
This phenomenon is also known as survival of the fittest. Competition-
based selection is one of the two cornerstones of evolutionary progress. The
other primary force identified by Darwin results from phenotypic variations
among members of the population. Phenotypic traits (see also Sect. 1.4.2) are
those behavioural and physical features of an individual that directly affect
its response to the environment (including other individuals), thus determin-
ing its fitness. Each individual represents a unique combination of phenotypic
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4 1 Introduction

traits that is evaluated by the environment. If it evaluates favourably. then it
is propagated via the individual’s offspring. otherwise it is discarded by dying
without offspring. Darwin’s insight was that small, random variations  mu-
tations in phenotypic traits occur during reproduction from generation to
generation. Through these variations. new combinations of traits occur and
get evaluated. The best ones survive and reproduce. and so evolution pro-
oresses. To summarise this basic model. a population consists of a number
of individuals. These individuals are the —units of selection”. that is to sav
that their reproductive success depends on how well they are adapted to their
environment relative to the rest of the population. As the more successful
individuals reproduce. occasional mutations give rise to new individuals to
be tested. Thus. as tiine passes. there is a change in the constitution of the
population. i.e.. the population is the —unit of evolution”.

This process is well captured by the intuitive metaphor of an adaptive
landscape or adaptive surface [431]. On this landscape the height dimension
belongs to fitness: high altitude stands for high fitness. The other two (or
more. in the general case) dinmensions correspond to biological traits as shown
in Fig. 1.1. The x — y-plane holds all possible trait combinations. the z-values
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Fig. 1.1. Illustration of Wright’s adaptive landscape with two traits

show their fitnesses. Hence, each peak represents a range of successful trait
combinations, while troughs belong to less fit combinations. A given popula-
tion can be plotted as a set of points on this landscape, where each dot is one
individual realizing a possible trait combination. Evolution is then the process
of gradual advances of the population to high-altitude areas, powered by vari-
ation and natural selection. Our familiarity with the physical landscape on
which we exist naturally leads us to the concept of multimodal problems.
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1.4 The Inspiration from Biology

These are problems in which there are a number of points that are better than
all their neighbouring solutions. We call each of these points a local opti-
mum and denote the highest of these as the global optimum. A problem in
which there is only one point that is fitter than all of its neighbours is known
as unimodal.

The link with an optimisation process is as straightforward as mislead-
ing. because evolution is not a unidirectional uphill process [99]. Because the
population has a fnite size. and random choices are made i the selection
and variation operators. it is common to observe the phenomenon of genetic
drift. whereby highlv fit individuals may be lost from the population. or the
population may suffer from a loss of variety concerning some traits. One of
the effects of this is that populations can “melt down™ the hill. and enter
low-fitness vallevs. The combined global effects of drift and seclection enable
populations to move uphill as well as downhill. and of course there is no guar-
antee that the population will climb back up the same hill. Escaping from
locally optimal regions is hereby possible. and according to Wright's ~shifting
balance”™ theory the maximum of a fixed landscape can be reached.

1.4.2 Genetics

The microscopic view of natural evolution is offered by the discipline of molec-
ular genetics. It sheds light on the processes below the level of visible pheno-
tyvpic features. in particular relating to heredity. The fundamental observation
from genetics is that each individual is a dual entity: its phenotypic proper-
ties (outside) are represented at a low genotypic level (inside). In other words.
an individual’s genotype encodes its phenotype. Genes are the functional
units of inheritance encoding phenotypic characteristics. In natural systems
this encoding is not one-to-one: one gene might atfect more phenotypic traits
(pleitropy) and in turn. one phenotypic trait can be determined by more
than one gene (polygeny). Phenotypic variations are alwayvs caused by geno-
tyvpic variations. which in turn are the consequences of mutations of genes or
recombination of genes by sexnal reproduction.

Another way to think of this is that the genotype contains all the informa-
tion necessary to build the particular phenotype. The term genome stands for
the complete genetic information of a living being containing its total building
plan. This genetic material. that is, all genes of an organism. is arranged m
several chromosomes; there are 46 in humans. Higher life forms (many plants
and animals) contain a double complement of chromosomes in most of their
cells, and such cells and the host organisms — are called diploid. Thus
the chromosomes in human diploid cells are arranged into 23 pairs. Gametes
(i.c., sperm and egg cells) contain only one single complement of chromousomes
and are called haploid. The combination of paternal and maternal features in
the offspring of diploid organisms is a consequence of fertilisation by a fusion
of such gametes: the haploid sperm cell merges with the haploid egg cell and
forms a diploid cell, the zygote. In the zygote, each chromosome pair is formed
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0 1 Introduction

by a paternal and a maternal half. The new organism develops from this zy-
gote by the process named ontogenesis, which does not change the genetic
information of the cells. Consequently, all body cells of a diploid organism
contain the same genetic information as the zygote it originates froni.

In evolutionary computing. the combination of features from two individ-
uals in offspring is often called crossover. It is important to note that this is
not analogous to the working of diploid organisms. where crossing-over is
not a process during mating and fertilisation. but rather happens during the
formation of gametes. a process called meiosis.

Meiosis is a special type of cell division that ensures that gametes con-
tain only one copy of each chromosome. As said above. a diploid body cell
contains chromosome pairs. where one half of the pair is identical to the pa-
ternal chromosome from the sperm cell. and the other half is identical to the
maternal chromosome from the egg cell. During meiosis a chromosome pair
first aligns physically. that is. the copies of the paternal and maternal chro-
mosomes. which form the pair, move together and stick to each other at a
special position (the centromere, not indicated. see Fig. 1.2, left). In the sec-
ond step the chromosomes double so that four strands (called chromatids) are
aligned (Fig. 1.2, middle). The actual crossing-over takes place between the
two inner strands that break at a random point and exchange parts (Fig. 1.2.
right). The result is four different copies of the chromosome in question, of
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Fig. 1.2. Three steps in the (simplified) meiosis procedure regarding one chromo-
some

which two are identical to the original parental chromosomes, and two are
new recombinations of paternal and maternal material. This provides enough
genetic material to form four haploid gametes, which is done via a random
arrangement of one copy of each chromosome. Thus in the newly created ga-
metes the genome is composed of chromosomes that are either identical to
one of the parent chromosomes, or recombinants. It is clear that the resulting
four haploid gametes are usually different from both original parent genomes,
facilitating genotypic variation in offspring,.

In the late 19th century Mendel first investigated and understood heredity
in diploid organisms. Modern genetics has added many details to his early
picture, but today we are still very far from understanding the whole genetic
process. What we do know is that all life on Earth is based on DNA - the
famous double helix of nucleotides encoding the whole organism be it a plant,
animal, or Homo Sapiens. Triplets of nucleotides form so-called codons, each of
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1.5 Evolutionary Computing: Why? 7

which codes for a specific amino acid. The genetic code (the translation table
from the 43 = 64 possible codons to the 20 amino acids from which proteins
are created) is universal. that is, it is the same for all life on Earth. This fact
is generally acknowledged as strong evidence that the whole biosphere has
the same origin. Genes are larger structures on the DNA. containing many
codons. carrying the code of proteins. The path from DNA to protein consists
of two main components. In the first step. called transcription. information
from the DNA is written to RNA: the step from RNA to protein is called
translation (Fig. 1.3).

franscription fransiation
DNA —  RNA Protein

Fig. 1.3. The pathway from DNA to protein via transcription and translation

It is one of the principal dogmas of molecular genetics that this information
flow is only one-way. Speaking in terms of genotypes and phenotypes, this
means that phenotypic features cannot influence genotypic information. This
refutes earlier theories (for instance, that of Lamarck), which asserted that
features acquired during an individual’s lifetime could be passed on to its
offspring via inheritance. A consequence of this view is that changes in the
genetic material of a population can only arise from random variations and
natural selection and definitely not from individual learning. It is important
to understand that all variations (mutation and recombination) happen at
the genotypic level, while selection is based on actual performance in a given
environment, that is, at the phenotypic level.

1.5 Evolutionary Computing: Why?

Developing automated problem solvers (that is, algorithms) is one of the cen-
tral themes of mathematics and computer science. Similarly to engineering,
where looking at Nature’s solutions has always been a source of inspiration,
copying “natural problem solvers” is a stream within these disciplines. When
looking for the most powerful natural problem solver, there are two rather
straightforward candidates:

e The human brain (that created “the wheel, New York, wars and so
on” [4][chapter 23])
e The evolutionary process (that created the human brain)

Trying to design problem solvers based on the first answer leads to the field of
neurocomputing. The second answer forms a basis for evolutionary computing.
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8 1 Introduction

Another motivation can be identified from a technical perspective. Com-
puterisation in the second half of the twentieth century has created a rapidly
growing demand for problem-solving automation. The growth rate of the re-
search and development capacity has not kept pace with these needs. Hence,
the time available for thorough problem analysis and tailored algorithm design
has been, and still is, decreasing. A parallel trend has been the increase in
the complexity of problems to be solved. These two trends. and the constraint
of limited capacity. imply an urgent need for robust algorithms with satisfac-
tory performance. That is, there is a need for algorithms that are applicable
to a wide range of problems, do not need much tailoring for specific prob-
lems, and deliver good (not necessarily optimal) solutions within acceptable
time. Evolutionary algorithms do all this, and provide therefore an answer to
the challenge of deploying automated solution methods for more and more
problems, which are more and more complex, in less and less time.

A third motivation is one that can be found behind every science: human cu-
riosity. Evolutionary processes are the subjects of scientific studies where the
main objective is to understand how evolution works. From this perspective,
evolutionary computing represents the possibility of performing experiments
differently from traditional biology. Evolutionary processes can be simulated
in a computer, where millions of generations can be executed in a matter of
hours or days and repeated under various circumstances. These possibilities go
far beyond studies based on excavations and fossils, or those possible in vivo.
Naturally, the interpretation of such simulation experiments must be done
very carefully. First, because we do not know whether the computer models
represent the biological reality with sufficient fidelity. Second, it is unclear
whether conclusions drawn in a digital medium, in silico, can be transferred
to the carbon-based biological medium. These caveats and the lack of mutual
awareness between biologists and computer scientists are probably the reason
why there are few computer experimental studies about fundamental issues of
biological evolution. Nevertheless, there is a strong tradition within evolution-
ary computing to “play around” with evolution for the sake of understanding
how it works. Application issues do not play a role here, at least not in the
short term. But of course, learning more about evolutionary algorithms in
general can help in designing better algorithms later.

In the following we illustrate the power of the evolutionary approach to
automated problem solving by a number of application examples from vari-
ous areas. To position these and other applications, let us sketch a systems
analysis perspective to problems. From this perspective we identify three main
components of a working system: inputs, outputs, and the internal model con-
necting these two. Knowing the model means knowing how the system works.
In this case it is possible to compute the systems response — the output — to
any given input. Based on this view we can simply distinguish three types of
problems, depending on which of the three system components is unknown.
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1.5 Evolutionary Computing: Why? 9

e Inan optimisation problem the model is known. together with the desired
output, (or a description of the desired output) and the task is to find the
input(s) leading to this output (Fig. 1.4). An example is the travelling
salesman problem (in which we have to find the shortest tour around a
number of cities). where we have a formula (the model) that for each given
tour (the inputs) will compute the length of the tour (the output). The
desired output propertyv is optimality. that is. minimal length. and we are
looking for inputs realising this.

Model

? —> known ————» specified
Input Output

Fig. 1.4. Optimisation problems

e In a modelling or system identification problem, corresponding sets of
inputs and outputs are known, and a model of the system is sought that
delivers the correct output for each known input (Fig. 1.5). Let us take
the stock exchange as an example, where the Dow-Jones index is seen as
output, and sonme economic and societal indices (e.g., the unemployment
rate, gold price, euro-dollar exchange rate, etc.) form the input. The task
is now to find a formula that links the known inputs to the known outputs.
thereby representing a model of this economic system. If one can find a
correct model for the known data (from the past) and if we have good
reasons to believe that the relationships enclosed in this model remain
true, then we have a prediction tool for the value of the Dow-Jones index
given new data.

Model

known ——» ') >  known
Input Output

Fig. 1.5. Modelling or system identification problems

e In a simulation problem we know the system model and some inputs,
and need to compute the outputs corresponding to these inputs (Fig. 1.6).
As an example, think of an electronic circuit for signal filtering, say a
filter cutting low frequencies. Our model is a complex system of formulas
(equations and inequalities) describing the working of the circuit. For any
given input signal this model can compute the output signal. Using this
model (for instance, to compare two circuit designs) is much cheaper than
building the circuit and measuring its properties in the physical world.
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10 1 Introduction

Model

known —— known ——» ')
Input Output

Fig. 1.6. Simulation problems

A good example of a challenging optimisation task that has successfully
been carried out by evolutionary algorithms is the timetabling of university
classes [70, 296]. Typically. some 2000-5000 events take place during a uni-
versity week. and these must each be given a day, time. and room. The first
optimisation task is to reduce the number of clashes, for example. a student
needing to be in two places at once, or a room being used for two lectures at
the same time. Producing feasible timetables (those with no clashes) is not
an insignificant task. since the vast majority of the space of all timetables is
filled with infeasible solutions. In addition to producing feasible timetables,
we also want to produce timetables that are optimised as far as the users
are concerned. This optimisation task involves considering a large number of
objectives that compete with each other. For example, students may wish to
have no more than two classes in a row, while their lecturers may be more con-
cerned with having whole days free for conducting research. Meanwhile. the
main goal of the university management might be to make room utilisation
more efficient, or to cut down the amount of movement around or between
the buildings.

EC applications in industrial design optimisation can be illustrated with the
case of a satellite dish holder boom. This ladder-like construction connects the
satellite’s body with the dish needed for communication. It is essential that
this boom is stable, in particular vibration resistant, as there is no air in
space that would damp vibrations that could break the whole construction.
Keane et al. [225] optimised this construction by an evolutionary algorithin.
The resulting structure is by 20.000% (!) better than traditional shapes. but
for humans it looks very strange: it exhibits no symmetry, and there is not
any intuitive design logic visible (Fig. 1.7). The final design looks pretty much
like a random drawing, and the crucial thing is this: it is a random drawing,
drawn without intelligence, but evolving through a number of consecutive
generations of improving solutions. This illustrates the power of evolution
as a designer: it is not limited by conventions, aesthetic considerations, or
ungrounded preferences for symmetry. On the contrary, it is purely driven
by quality, and thereby it can come to solutions that lie outside of the scope
of human thinking, with its implicit and unconscious limitations. It is worth
mentioning that evolutionary design often goes hand-in-hand with reverse
engineering. In particular, once a provably superior solution is evolved, it can
be analysed and explained through the eyes of traditional engineering. This
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Forcityg Point Forcing Point

Fig. 1.7. The initial. regular design of the 3D boom (left) and the final design found
by a genetice algorithm (right)

can lead to generalisable knowledge. i.e.. the formulation of new laws. theories,
or design principles applicable to a varietv of other problems of similar type.?

Modelling tasks tvpically occur in data-rich environments. A frequently
encountered situation is the presence of many examples of a certain cvent
or phenomenon without a formal description. For instance. a bank may have
one million client records (profiles) containing their socio-geographical data,
financial overviews of their mortgages, loans, and insurances. details of their
card usage. and so farth. Certainly. the bank also has information about client
behaviour in terms of payving back loans. for instance. In this situation 1t 15 a
reasonable assumption that the profile (facts and known data from the past)
is related to behaviour (future events). In order to understand the repayment
phenomenon, what is needed is a model relating the profile inputs to the
behavioural patterns (outputs). Such a model would have predictive power,
and thus would be very useful when deciding about new loan applicants. This
situation forms a typical application context for the areas of machine learning
and data mining. Evolutionary computing is a possible technology that could
be used to solve such problems [160].

Another example of this type of modelling approach can be seen in [339],
where Schulenberg and Ross use a learning classifier system to evolve sets of
rules modelling the behaviour of stock market traders. As their inputs they
used ten years of trading history, in the form of daily statistics such as volume
of trade, current price, change in price over last few days, whether this price
is a new high (or low), and so on for a given company’s stock. The evolved
traders consisted of sets of condition—action rules. Each day the current
stock market conditions were presented to the trader, triggering a rule that
decided whether stock was bought or sold. Periodically a genetic algorithm

% In case of the satellite dish boom, it is exactly the asymmetric character that
works so well. Namely, vibrations are waves that traverse the boom along the
rungs. If the rungs are of different lengths then these waves meet in a different
phase and cancel each other. This small theory sounds trivial, but it took the
asymmetric evolved solution to come to it. ‘
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is run on the set of (initially random) rules, so that well-performing ones are
rewarded, and poorly performing ones are discarded. It was demonstrated
that the system evolved trading agents that outperformed many well-known
strategies, and varied according to the nature of the particular stock they
were trading. Of particular interest. and benefit, compared to methods such
as neural networks (which are also used for this kind of modelling problem in
time-series forecasting). is the fact that the rule-base of the evolved traders
are casily examinable. that is to say that the models that are evolved are
particularly transparent to the user.

The simulation mode of using evolutionary computing can be applied to
answer what-if questions in a context where the investigated subject matter
is evolving, i.c.. driven by variation and selection. Evolutionary economics
is an established research arca, roughly based on the perception that the
game and the players in the socio-economical arena have much in common
with the game of life. In common parlance, the survival of the fittest prin-
ciple is also fundamental in the economic context. Evolving systems with a
socio—-economical interpretation can differ from biological ones in that the be-
havioural rules governing the individuals play a very strong role in the system.
The term agent-based computational economy is often used to emphasise this
aspect [395, 396]. Academic research into this direction is often based on a
simple model called SugarScape world [135]. This features agent-like inhab-
itants in a grid space, and a commodity (the sugar) that can be consumed,
owned, traded, and so on. by the inhabitants. There are many ways to set
up system variants with an economical interpretation and conduct simulation
experiments. For instance, Back et al. [32] investigate how artificially forced
sugar redistribution (tax) and evolution interact under various circumstances.
Clearly, the outcomes of such experiments must be done very carefully, avoid-
ing ungrounded claims on transferability of results into a real socio—economic
context.

Finally, we note that evolutionary computing experiments with a clear bio-
logical interpretation are also very interesting. Let us mention two approaches
by way of illustration:

1. Trying existing biological features
2. Trying non-existing biological features

In the first approach, simulating a known natural phenomenon is a key is-
sue. This may be motivated by an expectation that the natural trick will also
work for algorithmic problem solving, or by simply willing to try whether the
effects known in carbon would occur in silicon as well. Take incest as an exam-
ple. A strong moral taboo against incest has existed for thousands of years,
and for the last century or two there is also a scientific insight supporting
this: incest leads to degeneration of the population. The results in [139] show
that computer-simulated evolution also benefits from incest prevention. This
confirms that the negative effects of incest are inherent for evolutionary pro-
cesses, independently from the medium in which they take place. The other
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approach to simulations with a biological flavour is the opposite of this: 1t
implements a feature that does not exist in biology. but can be implemented
in a computer. As an illustration. let us take multiparent reproduction, where
more than two parents are required for mating. and offspring inherit genectic
material from cach of them. Eiben et al. [111] have experimented a great deal
with such mechanisms showing the beneficial effects under many different
circuimstances.

To summarise this necessarily brief introduction. evolutionary computing s
a branch of computer science dedicated to the study of a class of algorithims
that are broadly based on the Darwinian principles of natural selection. and
draw inspiration from molecular genetics. Over the history of the world. many
species have arisen and evolved to suit different environments. all using the
same biological machinery. In the same way. if we provide an evolutionary
algorithm with a new environment we hope to see adaptation of the initial
population in a way that better suits the environment. Typically (but not
always) this environment will take the form of a problem to be solved, with
fecdback to the individuals representing how well the solutions they represent
solve the problem, and we have provided some examples of this. However, as
we have indicated. the scarch for optimal solutions to some problem is not the
only use of evolutionary algorithims: their nature as flexible adaptive systes
gives rise to applications varying from economic modelling and simulation to
the study of diverse biological processes during adaptation.

1.6 Exercises

1. Find out when hominids are first thought to have appecared, and estimate
how many generations it has taken for you to evolve.

2. Find out the biological definition of evolution and give at least one example
of how the term is frequently used in non-biological settings.

1.7 Recommended Reading for this Chapter

1. Charles Darwin. The Origin of Species. John Murray, 1859,
The world-famous book introducing the theory of evolution, based on
Darwin’s observations from his trip in the Beagle.

2. R. Dawkins. The Selfish Gene. Oxford University Press, 1976.
A “pop-science” classic, promoting “neo-Darwinism” as a synthesis of
evolution with modern genetics. Its very “gene-centric” view of evolution,
has been questioned by some.
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3. J. Maynard-Smith. The FEwvolution of Sex. Cambridge University Press.
1978.
A good. readable introduction to the biological basics of reproduction in
haploid and diploid organisms.

4. S. Wright.  The roles of mutation. inbreeding. cross-breeding. and
sclection in evolution. In: Proc. of 6th Int. Congr. on Genetics. vol. 1.
pp. 356 366. Ithaca. NY. 1932.

The paper introducing the idea of the adaptive landscapes.

D.B. Fogel. ed. FEuvolutionary Computation: the Fossil Record. 1EEE
Press. 1993.

Fascinating collection of early works in the field, interesting not just for
historical insight.

[V |

6. S.A. Kauffman. Origins of Order: Self-Organization and Selection in Evo-
lution. Oxford University Press, New York. 1993.
Offers a different perspective on the processes that lead to the origins of
life.
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2

What is an Evolutionary Algorithm?

2.1 Aims of this Chapter

The most important aim of this chapter is to describe what an evolutionary al-
gorithm is. This description is deliberately based on a unifying view presenting
a general scheme that forms the common basis of all evolutionary algorithm
(EA) variants. The main components of EAs arc discussed, explaining their
role and related issues of terminology. This is inunediately followed by two
example applications (unlike other chapters, where example applications are
typically given at the end) to make things more concrete. Further on we dis-
cuss general issues of the working of EAs. Finally, we put EAs into a broader
context and explain their relation with other global optimisation techniques.

2.2 What is an Evolutionary Algorithm?

As the history of the field suggests there are many different variants of evolu-
tionary algorithms. The common underlying idea behind all these techniques
is the same: given a population of individuals, the environmental pressure
causes natural selection (survival of the fittest). which causes a rise in the
fitness of the population. Given a quality function to be maximised, we can
randomly create a set of candidate solutions, i.e., elements of the function’s
domain, and apply the quality function as an abstract fitness measure — the
higher the better. Based on this fitness, some of the better candidates are cho-
sen to seed the next generation by applying recombination and/or mutation
to them. Recombination is an operator applied to two or more selected can-
didates (the so-called parents) and results one or more new candidates (the
children). Mutation is applied to one candidate and results in one new candi-
date. Executing recombination and mutation leads to a set of new candidates
(the offspring) that compete - based on their fitness (and possibly age)— with
the old ones for a place in the next generation. This process can be iterated
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16 2 What is an Evolutionary Algorithm?

until a candidate with sufficient quality (a solution) is found or a previously

set, computational limit is reached.

In this process there are two fundamental forces that form the basis of

evolutionary systems:

e Variation operators (recombination and mutation) create the necessary

diversity and thereby facilitate novelty.
e Sclection acts as a force pushing quality.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy (although some-

what misleading) to see such a process as if the evolution is optimising. or at
least “approximising”. by approaching optimal values closer and closer over
its course. Alternatively, evolution it is often seen as a process of adapta-
tion. From this perspective, the fitness is not seen as an objective function to
be optimised, but as an expression of environmental requirements. Matching
these requirements more closely implies an increased viabilitv. reflected in a
higher number of offspring. The evolutionary process makes the population

increasingly better at being adapted to the environment.

Let us note that many components of such an evolutionary process are
stochastic. During selection fitter individuals have a higher chance to be se-
lected than less fit ones, but typically even the weak individuals have a chance
to become a parent or to survive. For recombination of individuals the choice
of which pieces will be recombined is random. Similarly for mutation, the
pieces that will be mutated within a candidate solution, and the new pieces
replacing them, are chosen randomly. The general scheme of an evolutionary
algorithm can is given in Fig. 2.1 in a pseudocode fashion; Fig. 2.2 shows a

diagram.

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 FEVALUATE new candidates;
5 SELECT individuals for the next generation;
0D
END

Fig. 2.1. The general scheme of an evolutionary algorithm in pseudocode
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2.2 What is an Evolutionary Algorithm? 17

It is easy to see that this scheme falls in the category of generate-and-test
algorithms. The evaluation (fitness) function represents a heuristic estimation
of solution quality, and the search process is driven by the variation and the
selection operators. Evolutionary algorithms possess a number of features that
can help to position them within in the family of generate-and-test methods:

e EAs are population based. i.e.. they process a whole collection of candidate
solutions simultancously.

e EAs mostly use recombination to mix information of more candidate so-
lutions into a new one.

e EAs are stochastic.

Parent selection

> Parents
Initialisation
Recombination
— )
Population
% Mutation
' “ |

Termination

Offspring

Survivor selection

Fig. 2.2. The general scheme of an evolutionary algorithm as a flow-chart

The various dialects of evolutionary computing that we have mentioned pre-
viously all follow the above general outlines and differ only in technical details,
as is shown in the overview table in Chap. 15. For instance, the representation
of a candidate solution is often used to characterise different streams. Typi-
cally, the candidates are represented by (i.e., the data structure encoding a
solution has the form of) strings over a finite alphabet in genetic algorithms
(GA), real-valued vectors in evolution strategies (ES), finite state machines in
classical evolutionary programming (EP), and trees in genetic programming
(GP). These differences have a mainly historical origin. Technically, a given
representation might be preferable over others if it matches the given problem
better; that is, it makes the encoding of candidate solutions easier or more
natural. For instance, for solving a satisfiability problem ‘the straightforward
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choice is to use bit-strings of length n., where n is the number of logical vari-
ables. hence the appropriate EA would be a genetic algorithm. To evolve a
computer program that can play checkers. trees are well-suited (nainely, the
parse trees of the syvntactic expressions forming the programs). thus a GP
approach is likely. It is important to note that the recombination and muta-
tion operators working on candidates must match the given representation.
Thus. for instance. in GP the recombination operator works on trees. while
in GAs it operates on strings. As opposed to variation operators. selection
takes only the fitness information into account: hence it works independently
from the actual representation. Differences in the commonly applied selection
mechanisms in cach stream are therefore a tradition rather than a technical
necessity.

2.3 Components of Evolutionary Algorithms

In this section we discuss evolutionary algorithms in detail. EAs have a nuunber
of components, procedures. or operators that must be specified in order to
define a particular EA. The most important components. indicated by italics
in Fig. 2.1, are:

Representation (definition of individuals)
Evaluation function (or fitness function)
Population

Parent selection mechanism

Variation operators, recombination and mutation
Survivor selection mechanism (replacement)

Each of these components must be specified in order to define a particular
EA. Furthermore. to obtain a running algorithm the initialisation procedure
and a termination condition must be also defined.

2.3.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the*real world™ to the "EA world™,
that is, to set up a bridge between the original problem context and the
problem-solving space where evolution takes place. Objects forming possi-
ble solutions within the original problem context are referred to as pheno-
types, while their encoding, that is, the individuals within the EA | are called
genotypes. The first design step is commonly called representation, as it
amounts to specifying a mapping from the phenotypes onto a set of genotypes
that are said to represent these phenotypes. For instance, given an optimi-
sation problem on integers, the given set of integers would form the set of
phenotypes. Then one could decide to represent them by their binary code,
hence 18 would be seen as a phenotype, and 10010 as a genotype representing
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it. It is important to understand that the phenotvpe space can be very dif-
ferent from the genotype space. and that the whole evolutionary search takes
place in the genotype space. A solution - a good phenotype  is obtained by
decoding the best genotype after termination. To this end. it should hold that
the (optimal) solution to the problem at hand — a phenotype  is represented
in the given genotype space.

The common EC terminology uses many svnonyvins for naming the elements
of these two spaces. On the side of the original problem context. candidate
solution, phenotvpe. and individual are used to denote points of the space
of possible solutions. This space itself is commonly called the phenotype
space. On the side of the EA. genotype. chromosome. and again individual
can be used for points in the space where the evolutionary search actually takes
place. This space is often termed the genotype space. There are also many
synonymous terms for the elements of individuals. A place-holder is commonly
called a variable. a locus (plural: loci), a position. or  in a biology-oriented
terminology - a gene. An object on such a place can be called a value or an
allele.

It should be noted that the word “representation” is used in two slightly
different ways. Sometimes it stands for the mapping from the phenotype to
the genotype space. In this sense it is synonymous with encoding. c.g.. one
could mention binary representation or binary encoding of candidate solu-
tions. The inverse mapping from genotypes to phenotvpes is usually called
decoding, and it is required that the representation be invertible: to each
genotype there has to be at most one corresponding phenotype. The word
representation can also be used in a slightly different sense, where the empha-
sis is not on the mapping itself. but on the “data structure™ of the genotype
space. This interpretation is behind speaking about mutation operators for
binary representation, for instance.

2.3.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements to adapt
to. It forms the basis for selection, and thercby it facilitates improvements.
More accurately, it defines what improvement means. From the problem-
solving perspective, it represents the task to solve in the evolutionary con-
text. Technically, it is a function or procedure that assigns a quality measure
to genotypes. Typically, this function is composed from a quality measure
in the phenotype space and the inverse representation. To remain with the
above example, if we were to maximise z2 on integers, the fitness of the geno-
type 10010 could be defined as the square of its corresponding phenotype:
182 = 324. _

The evaluation function is commonly called the fitness function in EC.
This might cause a counterintuitive terminology if the original problem re-
quires minimisation for fitness is usually associated with maximisation. Math-
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ematically. however, it 1s trivial to change minimisation into maximisation,
and vice versa.

Quite often, the original problein to be solved by an EA is an optimisation
problem (treated in more technical detail in Sect. 12.2.1). In this case the
name objective function is often used in the original problem context, and
the evaluation (fitness) function can be identical to. or a simple transformation
of. the given objective function.

2.3.3 Population

The role of the population is to hold (the representation of) possible solu-
tions. A population is a multiset! of genotypes. The population forms the unit
of evolution. Individuals are static objects that do not change or adapt: it is
the population that does. Given a representation, defining a population can be
as simple as specifving how many individuals are in it, that is. setting the pop-
ulation size. In some sophisticated EAs a population has an additional spatial
structure, with a distance measure or a neighbourhood relation. In such cases
the additional structure has to be defined as well to fully specify a population.
As opposed to variation operators that act on the one or two parent individ-
uals, the selection operators (parent selection and survivor selection) work at
population level. In general, they take the whole current population into ac-
count, and choices are always made relative to what we have. For instance, the
best individual of the given population is chosen to seed the next generation,
or the worst individual of the given population is chosen to be replaced by a
new one. In almost all EA applications the population size is constant and
does not change during the evolutionary search.

The diversity of a population is a measure of the number of different solu-
tions present. No single measure for diversity exists. Typically people might
refer to the number of different fitness values present, the number of different
phenotypes present, or the number of different genotypes. Other statistical
measures such as entropy are also used. Note that only one fitness value does
not necessarily imply only one phenotype is present, and in turn only one phe-
notype does not necessarily imply only one genotype. The reverse is, however,
not true: one genotype implies only one phenotype and fitness value.

2.3.4 Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among
individuals based on their quality, in particular, to allow the better individuals
to become parents of the next generation. An individual is a parent if it has
been selected to undergo variation in order to create offspring. Together with
the survivor selection mechanism, parent selection is responsible for pushing
quality improvements. In EC, parent selection is typically probabilistic. Thus,

! A multiset is a set where multiple copies of an element are possible.
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high-quality individuals get a higher chance to become parents than those
with low quality. Nevertheless, low-quality individuals are often given a small,
but positive chance; otherwise the whole search could become too greedy and
get stuck in a local optimum.

2.3.5 Variation Operators

The role of variation operators is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. From the generate-and-test search perspective, variation operators
perform the ~generate” step. Variation operators in EC are divided into two
tvpes based on their arity .

Mutation

} variation operator is commonly called mutation. It is applied to one

genotype and delivers a (slightly) modified mutant. the child or offspring of
it. A mutation operator is always stochastic: its output - the child  depends
on the outcomes of a series of random choices.? It should be noted that an ar-

A unary’

bitrary unary operator is not necessarily seen as mutation. A problem-specific
heuristic operator acting on one individual could be termed as mutation for
being unary. However, in general mutation is supposed to cause a random,
unbiased change. For this reason it might be more appropriate not to call
heuristic unary operators mutation. The role of mutation in EC is different in
various EC dialects; for instance, in genetic programming it is often not used
at all, while in genetic algorithms it has traditionally been seen as a back-
ground operator to fill the gene pool with “fresh blood”, and in evolutionary
programming it is the one and only variation operator doing the whole search
work.

It is worth noting that variatiof operators form the evolutionary imple-
nientation of the elementary steps within the search space. Generating a child
amounts to stepping to a new point in this space. From this perspective, muta-
tion has a theoretical role, too: it can guarantee that the space is connected.
This is important since theorems stating that an EA will (given sufficient
time) discover the global optimum of a given problem often rely on the prop-
erty that each genotype representing a possible solution can be reached by
the variation operators [114]. The simplest way to satisfy this condition is to
allow the mutation operator to “jump” everywhere, for example, by allowing
that any allele can be mutated into any other allele with a nonzero probabil-
ity. However, it should also be noted that many researchers feel these proofs

2 The arity of an operator is the number of objects that it takes as inputs.

3 An operator is unary if it applies to one object as input.

4 Usually these will consist of using a pseudorandom number generator to generate
a series of values from some given probability distribution. We will refer to these
as “random drawings”. :
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have limited practical importance. and many implementations of EAs do not
in fact possess this property.

Recombination

A binary variation operator” is called recombination or crossover. As the
names indicate. such an operator merees information from two parent geno-
types into one or two offspring genotypes. Similarly to mutation. recombi-
nation is a stochastic operator: the choice of what parts of cach parent are
combined. and the wayv these parts are combined. depend on random drawings.
Again. the role of recombination is different in EC' dialects: in genetic pro-
oraimming it is often the only variation operator. while in genetic algorithims
it is seen as the main scarch operator. and in evolutionarv programining it
is never used. Recombination operators with a higher arity (using more than
two parents) are mathematically possible and casy to implement, but have
no biological equivalent. Perhaps this is why they are not commonly used. al-
though several studies indicate that they have positive effects on the evolution
[111].

The principle behind recombination is simple - by mating two individuals
with different but desirable features. we can produce an offspring that com-
bines both of those features. This principle has a strong supporting case: it
is one which has been successfully applied for millennia by breeders of plants
and livestock to produce species that give higher yields or have other desir-
able features. Evolutionary algorithms create a number of offspring by random
recombination, and accept that some will have undesirable combinations of
traits, most may be no better or worse than their parents, and hope that
some have improved characteristics. Although the biology of the planet Earth
(where with a very few exceptions lower organisms reproduce asexually, and
higher organisms reproduce sexually [265. 266]), suggests that recombination
is the superior form of reproduction, recombination operators in EAs arc usu-
ally applied probabilistically. that is. with an existing chance of not being
performed.

It is important to note that variation operators are representation depen-
dent. That is, for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a 0
to a1 (1 to a 0) can be used as a mutation operator. However, if we rep-
resent possible solutions by tree-like structures another mutation operator is
required.

2.3.6 Survivor Selection Mechanism (Replacement)

The role of survivor selection or environmental selection is to distin-
guish among individuals based on their quality. In that it is similar to parent

® An operator is binary if it applies to two objects as input.
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selection. but it is used in a different stage of the evolutionary cvele. The sur-
vivor selection mechanism is called after having having created the offspring of
the sclected parents. As mentioned in Sect. 2.3.3. in EC the population size 1s
almost alwavs constant. thus a choice has to to be made on which individuals
will be allowed in the next gencration. This decision is usually based on their
fitness values. favouring those with higher quality. although the concept of
age s also frequently used. As opposed to parent selection. which is typically
stochastic. survivor selection is often deterministic. for instance. ranking the
unified multiset of parents and offspring and selecting the top segment (fitness
biased). or selecting only from the offspring (age biased).

Survivor selection is also often called replacement or replacement strat-
cgv. In many cases the two terms can be used interchangeably. The choice
between the two is thus often arbitrary. A good reason to use the name sur-
vivor selection is to keep terminology consistent: steps 1 and 5 in Fig. 2.1 are
both named selection, distinguished by an adjective. A preference for using
replacement can be motivated by the skewed proportion of the number of
individuals in the population and the number of newly created children. In
particular. if the number of children is very small with respect to the popu-
lation size. e.g., 2 children and a population of 100. In this case. the survivor
selection step is as simple as to chose the two old individuals that are to be
deleted to make places for the new ones. In other words, it is more efficient
to declare that everybody survives unless deleted and to choose whom to re-
place. If the proportion is not skewed like this. e.g.. 500 children made from
a population of 100, then this is not an option. so using the term survivor
selection is appropriate. In the rest of this book we will be pragmatic about
this issue. We will use survivor selection in the section headers for reasons of
generality and uniformity, while using replacement if it is commonly used n
the literature for the given procedure we are discussing.

2.3.7 Initialisation

Initialisation is kept simple in most EA applications: The first population
is seeded by randomly generated individuals. In principle, problem-specific
heuristics can be used in this step aiming at an initial population with higher
fitness. Whether this is worth the extra computational effort or not very much
depends on the application at hand. There are., however, some general obser-
vations concerning this issue based on the so-called anytime behaviour of EAs.
These are discussed in Sect. 2.5, and we also return to this issue in Chapt. 10.

2.3.8 Termination Condition

We can distinguish two cases of a suitable termination condition. If the
problem has a known optimal fitness level, probably coming from a known
optimum of the given objective function, then reaching this level (perhaps
only with a given precision ¢ > 0) should be used as stopping condition.
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However, EAs are stochastic and mostly there are no guarantees to reach an
optimum, hence this condition might never get satisfied and the algorithm
may never stop. This requires that this condition be extended with one that
certainly stops the algorithm. Commonly used options for this purpose are
the following;:

The maximally allowed CPU tinie elapses.

The total number of fitness evaluations reaches a given linit.

For a given period of time (i.e, for a number of generations or fitness
evaluations). the fitness improvement remains under a threshold value.
4. The population diversity drops under a given threshold.

W -

The actual termination criterion in such cases is a disjunction: optimum
value hit or condition r satisfied. If the problemi does not have a known
optimum. then we need no disjunction. We simply need a condition from the
above list or a similar one that is guaranteed to stop the algorithm. In Sect. 2.5
we return to the issue of when to terminate an EA.

In the coming chapters we describe various types of evolutionary algorithms
by specifying how the EA components are implemented in the given type. That
is, we give a treatment of the representation, variation. and selection operators
specific for that EA variant and give an overview of the typical representatives
in an EA tableau. However, we do not discuss the initialisation procedure and
a termination condition, for they are usually not “dialect” specific. but are
implemented along the general considerations outlined above.

2.4 Example Applications

2.4.1 The Eight-Queens Problem

In the eight-queens problem we are given a regular chessboard (8 by 8) and
eight queens that must be placed on the board in such a way that no 2 queens
can check each other. This problem can be naturally generalised, yielding the
N-queens problem. Many classical artificial intelligence approaches to this
problem work in a constructive, or incremental, fashion: one starts with plac-
ing one queen, and after having placed n queens, one attempts to place the
(n+ 1)th on a feasible position, i.e., a position where the new queen does not
check any others. Typically some sort of backtracking mechanism is applied;
if there is no feasible position for the (n+41)th queen, the nth is moved to
another position.

An evolutionary approach to this problem is drastically different in that
it is not incremental. Our candidate solutions are complete, rather than par-
tial, board configurations where all eight queens are placed. The phenotype
space P is the set of all such configurations. Clearly, most elements of this
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space are infeasible, violating the condition of nonchecking queens. The qual-
ity q(p) of any phenotype p € P can be simply quantified by the number of
checking queen pairs. The lower this measure, the better a phenotype (board
configuration), and a zero value, ¢(p) = 0, indicates a good solution. By this
observation we can formulate a suitable objective function (to be minimised)
with a known optimal value. Even though we have not defined genotypes at
this point. we can state that the fitness (to be maximised) of a genotype ¢
that represents phenotype p is some inverse of ¢(p). There are many possibil-
ities to specify what kind of inverse we wish to use here. For instance, 1/¢(p)
is an option, but it has the disadvantage that division by zero can deliver a
problem. We could circumivent this by adding that when this occurs we have
a solution. or by adding a small value € i.c.. 1/(g(p) + ¢). Another option is
to use —g(p) or M — q(p), where M is a sufficiently large number to make all
fitness values positive, e.g., M = max{ q(p) | p € P }. This fitness function
imherits the property of ¢ that it has a known optimum Al.

To design an EA to search the space P we need to define a representa-
tion of phenotypes from P. The most straightforward idea is to use clements
of P represented as matrices directly as genotypes, mecaning that we design
variation operators acting such matrices. In this example, however, we de-
fine a more clever representation as follows. A genotype, or chromosome. is
a permutation of the numbers 1,...,8, and a given g = (i1,...,1g) denotes
the (unique) board configuration, where the nth column contains exactly one
queen placed on the i,th row. For instance, the permutation g = (1,...,8)
represents a board where the queens are placed along the main diagonal. The
genotype space GG is now the set of all permutations of 1,...,8 and we also
have defined a mapping F : G — P.

[t is easy to see that by using such chromosome we restrict the search to
board configurations where horizontal constraint violations (two queens on
the same row) and vertical constraint violations (two queens on the same
column) do not occur. In other words, the representation guarantees “half”
of the requirements against a solution — what remains to be minimised is the
number of diagonal constraint violations. From a formal perspective we have
chosen a representation that is not surjective, only part of P can be obtained
by decoding elements of G. While in general this could carry the danger of
missing solutions in P, in our present example this is not the case, since those
phenotypes from P \ F(G) can never be solutions.

The next step is to define suitable variation operators (mutation and
crossover), fitting our representation, i.e., working on genotypes being per-
mutations. The crucial feature of a suitable operator is that it does not lead
out of the space G. In common parlance, offspring of a permutation must be
permutations as well. Later in Sects. 3.4.4 and 3.5.4 we treat such operators
in great detail. Here we only give one suitable mutation and one crossover op-
erator for illustration purposes. As for mutation we can use an operator that
selects two positions in a given chromosome randomly and swaps the values
standing on those positions. A good crossover for permutations is less obvi-

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

26 2 What is an Evolutionary Algorithm?

ous, but the mechanism outlined in Fig. 2.3 will create two child permutations
from two parents.

1. Select a random position. the crossover point. 7 € {1..... 7}

2. Cut both parents in two segments after this position

3. Copy the first segment of parent 1 into child 1 and the first segment
of parent 2 into child 2

4. Scan parent 2 from left to right and fill the second segment of child 1

with values from parent 2, skipping those that are already contained

mn it

Do the same for parent 1 and child 2

W]

Fig. 2.3. “Cut-and-crossfill” crossover

The important thing about these variation operators is that mutation causes
a small undirected change, and crossover creates children that inherit genetic
material from both parents. It should be noted though that there can be
large performance differences between operators, e.g.. an EA using mutation A
could find a solution quickly, while using mutation B can result in an algorithm
never finding a solution. The operators we sketch here are not necessarily
efficient; they merely serve as examples of operators that are applicable to the
given representation.

The next step in setting up an EA is deciding about selection and the
population update mechanism. As for managing the population we choose for
a simple scheme. In each evolutionary cycle we select two parents delivering
two children and the new population of size n will contain the best n of the
resulting n + 2 individuals (the old population plus the two new ones).

Parent selection (step 1 in Fig. 2.1) will be done by choosing five individ-
uals randomly from the population and taking the best two as parents that
undergo crossover. This ensures a bias towards using parents with relatively
high fitness. Survivor selection (step 5 in Fig. 2.1) checks which old individ-
uals should be deleted to make place for the new ones — provided the new
ones are better. Following the naming convention discussed from Sect. 2.3.6
we are to define a replacement strategy. The strategy we will use merges the
population and offspring, then ranks them according to fitness, and deletes
the worst two.

To obtain a full specification we can decide to fill the initial population
with randomly generated permutations and terminate the search if we find a
solution or 10,000 fitness evaluations have elapsed. We can furthermore decide
to use a population size of 100, and using the variation operators with a certain
frequency. For instance, we always apply crossover to the two selected parents
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and in 80% of the cases applying mutation to the offspring. Putting this all
together, we obtain an EA as summarised in Table 2.1.

Representation Permutations
Recombination “Cut-and-crossfill” crossover
Recombination probability [100%

Mutation Swap

Mutation probability 80%

Parent selection Best 2 out of random 5
Survival selection Replace worst

Population size 100

Number of Offspring 2

Initialisation Random

Termination condition Solution or 10.000 fitness evaluation

Table 2.1. Description of the EA for the eight-queens problem

2.4.2 The Knapsack Problem

The “0-1 knapsack” problem, a generalisation of many industrial problems.
can be briefly described as follows: Given a set of n of items, each of which has
some value v; attached to it and some cost ¢;. how do we select a subset of those
items that maximises the value whilst keeping the summed cost within some
capacity Cp,qa.? Thus, for example, when packing a backpack for a “round-
the-world” trip, we must balance likely utility of the items we wish to take
against the fact that we have a limited volume (the items chosen must fit in
one bag) and weight (airlines impose fees for luggage over a given weight).

It is a natural idea to represent candidate solutions for this problem as
binary strings of length n, where a 1 in a given position indicates that an
item is included and a 0 that it is omitted. The corresponding genotype space
G is the set of all such strings with size 2". which increases exponentially
with the number of items considered. By this G we fix the representation in
the sense of “data structure”, and next we need to define the mapping from
genotypes to phenotypes.

The first representation (in the sense of a mapping) that we consider takes
the phenotype space P and the genotype space to be identical. The quality of
a given solution p, represented by a binary genotype g, is thus determined by
summing the values of the included items, i.e.: Q, = Z?:l v; - 9;- However,
this simple representation leads us to some immediate problems. By using a
one-to-one mapping between the genotype space G and the phenotype space
P, individual genotypes may correspond to invalid solutions that have an
associated cost greater than the capacity, i.e., Z?’:l ci - g; > Car. This 1ssue
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is typical of a class of problems that we return to in Chapt. 12. and a number
of mechanisms have been proposed for dealing with it.

The second representation that we outline here solves this problem by ei-
ploying a “decoder”™ function that breaks the one-to-one correspondence be-
tween the genotype space GG and the solution space P. In essence. our genotype
representation remains the same. but when ereating a solution we read from
left to right along the binary string. and keep a running tally of the cost of
included items. When we encounter a value 1. we first check to see if including
the item would break our capacity constraint. i.e.. rather than interpreting a
value 1 as meaning wnclude this item. we interpret it as meaning include this
item I[F it does not take us over the cost constraint. The effect of this scheme
is to make the mapping from genotvpe to phenotype space many-to-one. since
once the capacity has been reached, the values of all bits to the right of the
current position are irrelevant as no more items will be added to the solution.
Furthermore, this mapping ensures that all binary strings represent valid so-
lutions with a unique fitness (to be maximised).

Having decided on a fixed-length binary representation, we can now choose
off-the-shelf variation operators from the GA literature, because the bit-string
representation is “standard” there. A suitable (but not necessarily optimal)
recombination operator is one-point crossover, where we align two parents
and pick a random point along their length. The two offspring are created by
exchanging the tails of the parents at that point. We will apply this with 70%
probability, i.e., for each pair of parents we will sclect a random value with
uniform probability between 0 and 1. If it is below 0.7 then we will create
two offspring by crossover. otherwise we will make copies of the parents. A
suitable mutation operator is so-called bit-flipping: in each position we invert
the value with a small probability p,, € [0,1).

In this case we will create the same number of offspring as we have members
our initial population. As noted above, we create two offspring from each two
parents, so we will select that many parents and pair them randomly. We
will use a tournament for selecting the parents, where each time we pick
two members of the population at random (with replacement), and the onc
with the highest value (), wins the tournament and becomes a parent. We
will institute a “generational” scheme for survivor selection. i.e., all of the
population in each iteration are discarded and replaced by their offspring.

Finally we should consider initialisation (which we will do by random choice
of 0 and 1 in each position of our initial population), and termination. In this
case we do not know the maximum value that we can achieve, so we will run
our algorithm until no improvement in the fitness of the best member of the
population has been observed for 25 generations.

We have already defined our crossover probability as 0.7; we will work with
a population size of 500 and a mutation rate of p,, = 1/n, i.e., that will on
average change one value in every offspring. Our evolutionary algorithm to
tackle this problem can be specified as below in Table 2.2.
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Representation Binary strings of length n
Recombination One point crossover

Recombination probability |70%

Mutation Each value inverted with independent probability pa
Mutation probability p,, [1/n

Parent selection Best out of random 2

Survival selection Generational

Population size 500

Number of offspring 500

Initialisation Random

Termination condition No mmprovement in last 25 generations

Table 2.2. Description of the EA for the Knapsack Problem

2.5 Working of an Evolutionary Algorithm

Evolutionary algorithms have some rather general properties concerning how
they work. To illuminate how an EA typically works we assume a one-
dimensional objective function to be maximised. Fig. 2.4 shows three stages
of the evolutionary search. exhibiting how the individuals are distributed in
the beginning, somewhere halfway, and at the end of the evolution. In the first
phase. directly after initialisation, the individuals are randomly spread over
the whole search space (Fig. 2.4, left). Even after a few generations this dis-
tribution changes: because of selection and variation operators the population
abandons low-fitness regions and starts to “climb” the hills (Fig. 2.4, middle).
Yet later (close to the end of the search, if the termination condition is set ap-
propriately), the whole population is concentrated around a few peaks, where
some of these peaks can be suboptimal. In principle it is possible that the
population “climbs the wrong hill” and all individuals are positioned around
a local but not global optimum. Although there is no universally accepted
definition of what the terms mean, these distinct phases of search are often
categorised in terms of exploration (the generation of new individuals i as
vet untested regions of the search space), and exploitation (the concentra-
tion of the search in the vicinity of known good solutions). Evolutionary search
processes are often referred to in terms of a trade-off between exploration and
exploitation, with too much of the former leading to inefficient search, and
too much of the latter leading to a propensity to focus the search too quickly
(see [128] for a good discussion of these issues). Premature convergence
is the well-known effect of losing population diversity too quickly and getting
trapped in a local optimum. This danger is generally present in evolutionary
algorithms; techniques to prevent it are discussed in Chap. 9.

The other effect we want to illustrate is the anytime behaviour of EAs.
We show this by plotting the development of the population’s best fitness
(objective function) value in time (Fig. 2.5). This curve is characteristic for
evolutionary algorithms, showing rapid progress in the beginning and flatten-
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Fig. 2.4. Typical progress of an EA illustrated i terms of population distribution

ing out later on. This is typical for many algorithms that work by iterative
improvements on the initial solution(s). The name “anyvtime™ comes from the
property that the search can be stopped at any time. and the algorithm will
have some solution, even if 1t is suboptimal.

best value in population

time

Fig. 2.5. Typical progress of an EA illustrated in terms of development of the best
fitness (objective function to be maximised) value within population in time

Based on this anytime curve we can make some general observations con-
cerning initialisation and the termination condition for EAs. As for initialisa-
tion, recall the question from Sect. 2.3.7 whether it is worth it to put extra
computational effort into applying some intelligent heuristics to seed the ini-
tial populations with better-than-random individuals. In general, it could be
said that that the typical progress curve of an evolutionary process makes
it unnecessary. This is illustrated in Fig. 2.6. As the figure indicates, using
heuristic initialisation can start the evolutionary search with a better popu-
lation. However, typically a few (k in the figure) generations are enough to
reach this level, making the worth of extra effort questionable. In Chap. 10
we will return to this issue.

The anytime behaviour also has some general indications regarding termi-
nation conditions of EAs. In Fig. 2.7 we divide the run into two equally long
sections, the first and the second half. As the figure indicates, the progress in
terms of fitness increase in the first half of the run (X) is significantly greater
than the achievements in the second half (Y). This provides a general sug-
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Fig. 2.6. Illustration of why heuristic initialisation might not be worth additional
cffort. Level a shows the best fitness in a randomly initialised population. level b

belongs to heuristic initialisation

gestion that it might not be worthwhile to allow very long runs: because of
the anytime behaviour of EAs, efforts spent after a certain time (number of
fitness evaluations) may not result in better solution quality.
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Fig. 2.7. Illustration of why long runs might not be worth performing. X shows
the progress in terms of fitness increase in the first half of the run, while Y belongs
to the second half

We close this review of EA behaviour by looking at EA performance from
a global perspective. That is, rather than observing one run of the algorithm,
we consider the performance of EAs for a wide range of problems. Fig. 2.8
shows the 1980s view after Goldberg [172]. What the figure indicates is that
robust problem solvers —as EAs are claimed to be- show a roughly evenly good
performance over a wide range of problems. This performance pattern can be
compared to random search and to algorithms tailored to a specific problem
type. EAs clearly outperform random search. A problem-tailored algorithm,
however, performs much better than an EA, but only on that type of prob-
lem for which it was designed. As we move away from this problem type to
different problems, the problem-specific algorithm quickly loses performance.
In this sense, EAs and problem-specific algorithms form two antagonistic ex-
tremes. This perception has played an important role in positioning EAs and
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stressing the difference between evolutionary and random search, but it grad-
ually changed in the 1990s based on new insights from practice as well as
from theory. The contemporary view acknowledges the possibility to combine
the two extremes into a hybrid algorithm. This issue is treated in detail in
Chap. 10, where we also present the revised version of Fig. 2.8. As for the-
oretical considerations, the No Free Lunch theorem has shown that (under
some conditions) no blackbox algorithm can outperform random walk when
averaged over “all” problems [430]. That is. showing the EA line always above
that of random search is fundamentally incorrect. This is discussed further in
Chap. 11.

4
F problem tailored
method

evolutionary
algorithm

random search

performance of method

range of problems

Fig. 2.8. 1980s view of EA performance after Goldberg [172]

2.6 Evolutionary Computing and Global Optimisation

In Chap. 1 we mentioned that there has been a steady increase in the complex-
ity and size of problems that are desired to be solved by computing methods.
We also noted that evolutionary algorithms are often used for problem opti-
misation. Of course, EAs are not the only optimisation technique known, and
in this section we explain where EAs fall into the general class of optimisation
methods, and why they are of increasing interest.

In an ideal world, we would possess the technology and algorithms that
could provide a provably optimal solution to any problem that we could suit-
ably pose to the system. In fact, such algorithms exist: an exhaustive enumera-
tion of all of the possible solutions to our problem is clearly such an algorithm.
For many problems that can be expressed in a suitably mathematical formula-
tion, much faster, exact techniques such as branch and bound search are well
known. However, despite the rapid progress in computing technology, and
even if there is no halt to Moore’s Law (which states that the available com-
puting power doubles every one and a half years), it is a sad fact of life that
all too often the types of problems posed by users exceed in their demands
the capacity of technology to answer them.
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2.6 Evolutionary Computing and Global Optimisation 33

Decades of computer science research have taught us that many “real-
world” problems can be reduced in their essence to well-known abstract forms
for which the number of potential solutions grows exponentially with the num-
ber of variables considered. For example. many problemns in transportation can
be reduced to the well-known “travelling sales person” problem, i.e., given a
list of destinations. construct the shortest tour that visits each destination ex-
actly once. If we have n destinations. with svmmetric distances between them.
the number of possible tours is given by n!/2 =n-(n —1)-(n —2)-...- 3.
which is exponential in n. Whilst exact methods whose time complexity scales
linearly (or at least polynomially) with the number of variables exist for some
of these problems (see [195] for an overview), it is widely accepted that for
many tvpes of problems often encountered. no such algorithms exist. Thus
despite the increase in computing power, bevond a certain size of problem
we must abandon the search for provably optimal solutions and look to other
methods for finding good solutions.

We will use the terin global optimisation to refer to the process of at-
tempting to find the solution 2* out of a set of possible solutions S that has
the optimal value for some fitness function f. In other words, if we are try-
ing to find the solution z* such that x # =* = f(z*) > f(z) (here we have
assumed a maximisation probleni, and the inequality is simply reversed for
niinimisation). .

As noted above, a number of deterministic algorithins exist that, if allowed
to run to completion, are guaranteed to find a*. The simplest example is,
of course, complete enumeration of all the solutions in S, which can take
an exponentially long time as the number of variables increases. A variety
of other techniques exist (collectively known as box decomposition) that are
based on ordering the elements of S into some kind of tree, and then reasoning
about the quality of solutions in each branch in order to decide whether to
investigate its elements. Although methods such as branch and bound can
sometimes make very fast progress, in the worst case (caused by searching in
a suboptimal order) the time complexity of the algorithms is still the same as
complete enumeration. '

After exact methods, we find a class of search methods known as heuris-
tics, which may be thought of as sets of rules for deciding which potential
solution out of S should next be generated and tested. For some randomzised
heuristics, such as simulated annealing [2, 227] and certain variants of EAs,
convergence proofs do in fact exist, i.e., they are guaranteed to find z*. Un-
fortunately these algorithms are fairly weak, in the sense that they will not
identify z* as being globally optimal, rather as simply the best solution seen
so far.

An important class of heuristics is based on the idea of using operators
that impose some kind of structure onto the elements of S, such that each
point z has associated with it a set of neighbours N(z). In Fig. 1.1 the vari-
ables (traits) x and y were taken to be real valued, which imposes a natural
structure on .S. The reader should note that for many types of problem where
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each variable takes one of a finite set of values (so-called combinatorial
optimisation) therc are many possible neighbourhood structures. As an ex-
ample of how the landscape “seen” by a local search algorithm depends on
its neighbourhood structure, the reader might wish to consider what a chess-
board would look like if we reordered it so that squares that are possible next
moves for a knight are adjacent to cach other. Note that by its definition. the
global optimum x* will always be fitter than all of its neighbours under any
neighbourhood structure.

So-called local search algorithms [2] and their many variants work by tak-
ing a starting solution . and then searching the candidate solutions in N (x)
for one x’ that performs better than x. If such a solution exists. then this is
accepted as the new incumbent solution, and the search proceeds by exam-
ining the candidate solutions in N (x'). Eventually this process will lead to
the identification of a local optimum: a solution that is superior to all those
in its neighbourhood. Such algorithms (often referred to as hill climbers for
maximisation problenis) have been well studied over the decades, and have the
advantage that they are often quick to identify a good solutions to the prob-
lem. which is in fact sometimes all that is required in practical applications.
However, the downside is that frequently problems will exhibit numerous local
optima. some of which may be significantly worse than the global optimum,
and no guarantees can be offered in the quality of solution found.

A number of methods have been proposed to get around this problem by
changing the search landscape, either by reordering it through a change of
neighbourhood function (e.g., variable neighbourhood search [189]). or by
temporally assigning low fitness to already seen good solutions (e.g., tabu
search [169]). However the theoretical basis behind these algorithms is still
very much in gestation.

There are a number of features of EAs that distinguish them from local
search algorithms, relating principally to their use of a population. The pop-
ulation provides the algorithm with a means of defining a nonuniform prob-
ability distribution function (p.d.f.) governing the generation of new points
from S. This p.d.f. reflects possible interactions between points in the popu-
lation arising from the recombination of partial solutions from two or more
members of the population (parents). This contrasts with the globally uniform
distribution of blind random search, or the locally uniform distribution used
by many other stochastic algorithms such as simulated annealing and various
hill-climbing algorithms.

The ability of EAs to maintain a diverse set of points not only provides
a means of escaping from one local optimum; it provides a means of coping
with large and discontinuous search spaces. If several copies of a solution can
be maintained, it provides a natural and robust way of dealing with problems
where there is noise or uncertainty associated with the assignment of a fitness
score to a candidate solution, as seen in later chapters.
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2.8 Recommended Reading for this Chapter 3!

2.7 Exercises

1. How big is the phenotvpe space for the eight-queens problem?

. Try to design an incremental evolutionary algorithin for the eight-cueens
probleni. That is. a solution must represent a wayv to place the queens on
the chess board one by one. How big is the scarch space in vour design?

3. Explain why the order in which items are listed in the representation is

unimportant for the naive approach to the knapsack problem. but makes
a big difference if we use the decoder approach.

4. Find a problem where EAs would certainly perform very poorly compared

to alternative approaches. Explain why vou expect this to be the case.

[\

2.8 Recommended Reading for this Chapter
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3

Genetic Algorithms

3.1 Aims of this Chapter

[n this chapter we describe the most widely known type of evolutionary algo-
rithm: the genetic algorithm. After presenting a simple example to introduce
the basic concepts. we begin with what is usually the most critical decision in
any application. namely that of deciding how best to represent a candidate so-
lution to the algorithin. We present four possible solutions. that is. four widely
used representations. Following from this we then describe variation operators
(mutation and crossover) suitable for different types of representation, before
turning our attention to the sclection and replacement mechanisms that are
used to manage the populations of solutions.

As will be seen from this treatment. there is no single definitive genetic
algorithm: rather we create algorithms from a suite of operators to suit our
particular applications. Because of the richness of possible representations.
variation. and selection operators, this chapter is necessarily quite long. In
particular it is longer than the following chapters on other evolutionary al-
gorithm dialects. This difference in length is not intended to indicate that
one method is more or less important than any other, mercly that we have
happened to deal with genetic algorithms first. and so many of the issues
that are also relevant to other paradigms occur for the first time, and are
described, here. Finally, the chapter concludes with an example application.
showing more details of the path from a problem to an evolutionary problem
solver.

3.2 Introductory Example
The genetic algorithm was initially conceived by Holland as a means of study-

ing adaptive behaviour, as suggested by the title of the book in which he
drew together his early research: Adaptation in natural and artificial systems
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38 3 Genetic Algorithms

[204]. However. they have largely! been considered as function optimisation
methods, and we begin by sketching the application of what might be con-
sidered a classical genetic algorithm. This has a binary representation. fitness
proportionate sclection. a low probability of mutation. and an emphasis on
genetically inspired recombination as a means of generating new candidate
solutions. This is commonly referred to as the “simple GA™ (SGA). or the
“canonical GA” and 1s summarised 1 Table 3.1.

Representation |Bit-strings
Recombination |1-Point crossover
Mutation Bit flip

Parent selection |Fitness proportional

Survival selection|Generational

Table 3.1. Sketch of the simple GA

To illustrate this, we show the details of one selection- reproduction cycle
on a simple (thus traceable) problem after Goldberg [172], namely that of
maximising the values of x2 for z in the range 0-31. Using a simple 5-bit binary
encoding, Table 3.2 shows a random initial population of four genotypes, the
corresponding phenotypes, and their fitness values. The column Prob; shows
the probability that an individual i € {1,2,3,4} is chosen to be a parent,
which for fitness proportionate selection is Prob; = f;/ > f;. The number of
parents is the same as the size of our population, so the expected number of
copies of each individual after selection is f;/f (displayed values are rounded
up). As can be seen, these numbers are not integers; rather they represent a
probability distribution, and the mating pool is created by making number of
random choices to sample from this distribution. The column “Actual count”
stands for the number of copies in the mating pool, i.e., it shows one possible
outcome.

The selected individuals are paired at random, and for each pair a random
point along the string is chosen. Table 3.3 shows the results of crossover on
the given mating pool for crossover points after the fourth and second gencs,
respectively, together with the corresponding fitness values.

In the SGA mutation works by generating a random number (from a dis-
tribution uniform over the range [0, 1]) in each bit position, and comparing it
to a fixed low (e.g. 0.001 [98]) value, usually called the mutation rate. If the
random number is below that rate, the value of the gene in the corresponding
position is flipped. In our example we have 4 x 5 = 20 genes, and Table 3.4
shows the outcome of mutation when the first and eighteenth values in our se-
quence of random numbers are below the bitwise mutation probability. In this
case, the mutations shown happen to have caused positive changes in fitness,

-1 If perhaps mistakenly — see [99)].
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3.2 Introductory Example 39
but we should emphasise that in later generations, as the number of “ones” in
the population rises, mutation will be on average (but not always) deleterious.
Although manually engineered. this example shows a typical progress: the av-
crage fitness grows from 293 to 588.5. and the best fitness in the population
from 576 to 729 after crossover and mutation.

String Initial | Value! Fitness | Prob; [Expected|Actual
no. population fr) =r? count | count
1 01101 13 169 0.14 0.58 1
2 11000 21 576 .49 1.97 2
3 01000 3 61 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 376 0.49 1.97 2

| 2 « ey e . . . .
Table 3.2. The x° example, 1: initialisation, evaluation, and parent selection

String Mating Crossovef[ Offspring |« Value| Fitness
1no. pool point |after xover flx) = x?
1 0110]1 4 01100 12 144
2 110010 4 11001 25 625
2 11000 2 11011 27 729
4 10011 2 10000 16 256
Sum 1754
Average 439
Max 729

Table 3.3. The z2° example, 2: crossover and offspring evaluation

String | Offspring Offspring |z Value| Fitness
no. after xover|after mutation f(z) = z?
1 01100 11100 26 676
2 11001 11001 25 625
2 11011 11011 27 729
4 10000 10100 18 324
Sum 2354
Average 588.5
Max 729

Table 3.4. The z? example, 3: mutation and offspring evaluation
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10 3 Genetic Algorithms

3.3 Representation of Individuals

As explained in Chap. 2, the the first stage of building any evolutionary algo-
rithm is to decide on a genetic representation of a candidate solution to the
problem. This involves defining the genotype and the mapping from genotype
to phenotype.

When choosing a representation. it is important to choose the “right™ repre-
sentation for the problem being solved. Getting the representation right is one
of the most difficult parts of designing a good evolutionary algorithm. Often
this onlyv comes with practice and a good knowledge of the application do-
main. In the following sections. we look more closely at some commonly used
representations and the genetic operators that might be applied to them. It is
important to stress, however. that while the representations described here are
commonly used. they might not the best representations for vour application.
Equally. although we present the representations and their associate operators
separately, it frequently turns out in practice that using mixed representations
i1s a more natural and suitable way of describing and manipulating a solution
than trying to shochorn different aspects of a problem into a common form.

3.3.1 Binary Representations

The first representation we look at is one of the simplest - the binary one
used in the example above. This is one of the earliest representations, and
historically many GAs have mistakenly used this representation almost inde-
pendently of the problem they were trying to solve. Here the genotype consists
simply of a string of binary digits - a bit-string,.

For a particular application we have to decide how long the string should
be, and how we will interpret it to produce a phenotype. In choosing the
genotype-phenotype mapping for a specific problem, one has to make sure that
the encoding allows that all possible bit strings denote a valid solution to the
given problem? and that, vice versa, all possible solutions can be represented.

For some problems, particularly those concerning Boolean decision vari-
ables, the genotype-phenotype mapping is natural, but frequently (as in our
example) bit-strings are used to encode other nonbinary information. For ex-
ample, we might interpret a bit-string of length 80 as ten 8-bit integers, or
five 16-bit real numbers. Usually this is a mistake, and better results can be
obtained by using the integer or real-valued representations directly.

One of the problems of coding numbers in binary is that different bits have
different significance. This can be helped by using Gray coding, which is a
variation on the way that integers are mapped on bit strings. The standard
method has the disadvantage that the Hamming distance between two con-
secutive integers is often not equal to one. If the goal is to evolve an integer

2 In practice this restriction to validity in not always possible; see Chap. 12 for a
more complete discussion of this issue.
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number. vou would like to have the chance of changing a 7 into a 8 equal to
that of changing it to a 6. The chance of changing 0111 to 1000 by indepen-
dent bit-flips is not the same, however, as that of changing it to 0110. Gray
coding is a representation that ensures that consecutive integers always have
Hamming distance one. Further details can be seen in Appendix A.

3.3.2 Integer Representations

As we hinted in the previous section. binary representations are not always
the most suitable if our problem more naturally maps onto a representation
where different genes can take one of a set of values. One obvious example of
when this might occur is the problem of finding the optimal values for a set of
variables that all take integer values. These values might be unrestricted (i.e..
any integer value is permissible). or might be restricted to a finite set: for ex-
ample. if we are trying to evolve a path on a square grid, we might restrict the
values to the set {0.1.2.3} representing { North. East. South. West}. In either
case an mteger encoding is probably more suitable than a binary encoding.
When designing the encoding and variation operators, it is worth considering
whether there are any natural relations between the possible values that an
attribute can take. This might be obvious for ordinal attributes such as
integers (2 is more like 3 than it is 389), but for cardinal attributes such
as the compass points above, there may not be a natural ordering.

3.3.3 Real-Valued or Floating-Point Representation

Often the most sensible way to represent a candidate solution to a problem is
to have a string of real values. This occurs when the values that we want to
represent as genes come from a continuous rather than a discrete distribution.
Of course, on a computer the precision of these real values is actually limited
by the mmplementation. so we will refer to them as floating-point numbers.
The genotype for a solution with A genes is now a vector (x;.....x;) with
(almost) x; € IR.

3.3.4 Permutation Representations

Many problems naturally take the form of deciding on the order in which a
sequence of events should occur. While other forms do occur (for example
decoder functions based on unrestricted integer representations [28, 186] or
“foating keys” based on real-valued representations [27, 41]), the most natural
representation of such problems is as a permutation of a set of integers. One
immediate consequence is that while an ordinary GA string allows numbers
to occur more than once, such sequences of integers will not represent valid
permutations. It is clear that we need new variation operators to preserve the
permutation property that each possible allele value occurs exactly once in
the solution.
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When choosing appropriate variation operators it is also worth bearing in
mind that there are actually two classes of problems that are represented
by permutations. In the first of these. the order in which events occur is
important. This might happen when the events use limited resources or time.
and a tvpical example of this sort of problem is the ~job shop scheduling”
problem described in Sect. 3.9. As an example. it might be better for widget
1 to be produced before wideets 2 and 3. which i turn might be preferably
produced before widget 4. no matter how far in advance this is done. In this
case it might well be that the sequences [1.2.3.4] and [1.3.2.4] have similar
fitness . and are much better than. for example. [4.3.2.1].

An alternative type of order-basced problems depends on adjacency. and is
typified by the travelling sales person problem (TSP). The problem is to find
a complete tour of n given cities of minimal length. The search space for this
problem is very big: there arve (n—1)! different routes possible for n given cities
(for the asymmetric case counting back and forth as two routes).” For n = 30
there are approximately 1032 different tours. We label the cities 1.2... .. n.
One complete tour is a permutation of the cities, so that for n = 4. the routes
[1.2.3.4] and [3.4.2.1] are both valid. The difference from order-based problems
can clearly be seen if we consider that the starting point of the tour is not
important. thus [1,2.3,4] . [2.3.4,1]. [3.4,1.2]. and [1.1.2.3] are all equivalent.
Many examples of this class are also symumetric. so that [4.3.2.1] and so on
are also equivalent.

Finallv., we should mention that there are two possible ways to encode a
permutation. In the first (most commonly used) of these the (th clement of the
representation denotes the event that happens in that place in the sequence
(or the sth destination visited). In the second, the value of the ith element
denotes the position in the sequence in which the ith event happens. Thus
for the four cities [A,B.C,D], and the permutation [3.1.2.4]. the first encoding
denotes the tour [C,A,B.D] and the second [B.C,A.D]J.

3.4 Mutation

Mutation is the generic name given to those variation operators that use only
one parent and create one child by applyving some kind of randomised change
to the representation (genotype). The form taken depends on the choice of
encoding used, as does the meaning of the associated parameter. which is often
referred to as the mutation rate. In the descriptions below we concentrate on
the choice of operators rather than of parameters. However, the latter can
make a significant difference in the behaviour of the genetic algorithm, and is
discussed in more depth in Chap. 8.

3 These comments about the size of the search space apply to all permutation
problems.
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3.4.1 Mutation for Binary Representations

Although a few other schemes have heen occasionally used, the most common
mutation operator used for binary encodings considers cach gene separately
and allows cach bit to fip (1.c.. from 1 to 0 or 0 to 1) with a small probability
P The actual number of values changed is thus not fixed. but depends on
the sequence of random numbers drawn. so for an encoding of length L. on
average Lep,, values will he changed. In Fig. 3.1 this is illustrated for the case
where the third. fourth. and cighth random values generated are less than the
bhitwise mutation rate p,,.

1]o]1]oJoJoJo1]o0 » [1]/0]/0]1]0]o]o]0]0]

Fig. 3.1. Bitwise mutation for binarv encodings

A number of studies and recommendations have heen made for the choice of
suitable values for the bitwise mutation rate p,,. and it is worth noting at the
outset that the most suitable choice to use depends on the desired outcome.
For example. does the application require a population in which al/l members
have high fitness, or simply that one highly fit individual is found? However.
most binary coded GAs use mutation rates in a range such that on average
between one gene per generation and one gene per offspring is mutated.

3.4.2 Mutation Operators for Integer Representations

For integer encodings there are two principal forms of mutation used. both of
which mutate cach gene independently with user-defined probability p,,, .
Random Resetting

Here the ~bit-flipping” mutation of binary encodings is extended to “random
resetting”, so that with probability p,, a new value is chosen at random from
the set of permissible values in each position. This the most suitable operator
to use when the genes encode for cardinal attributes, since all other gene
values are equally likely to be chosen.

Creep Mutation

This scheme was designed for ordinal attributes and works by adding a small
(positive or negative) value to each gene with probability p. Usually these
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values are sampled randomly for each position. from a distribution that is
symmetric about zero, and is more likely to generate small changes than large
ones. [t should be noted that creep mutation requires a number of parameters
controlling the distribution from which the random numbers are drawn, and
hence the size of the steps that mutation takes in the search space. Finding
appropriate settings for these parameters may not be easy, and it is sometimes
conmon to use more than one mutation operator in tandem from integer-
based problems. For example. in [92] both a “big creep” and a “little creep”
operator are used. Alternatively, random resetting might be used with low
probability. in conjunction with a creep operator that tended to make sniall
changes relative to the range of permissible values,

3.4.3 Mutation Operators for Floating-Point Representations

For floating-point representations. it is normal to ignore the discretisation
imposed by hardware and consider the allele values as coming from a contin-
uous rather than a discrete distribution. so the forms of mutation described
above are no longer applicable. Instead it is common to change the allele value
of each gene randomly within its domain given bv a lower L; and upper U,
bound.? resulting in the following transformation:

(y,. .. k) — (2], ....2)), where x;,2i ¢ [L;. Ul

Two types can be distinguished according to the probability distribution
from which the new gene values are drawn: uniform and nonuniform mutation.

Uniform Mutation

For this operator the values of 2 are drawn uniformly randomly from [L;, U;].
This is the most straightforward option, analogous to bit-flipping for binary
encodings and the random resetting sketched above for integer encodings. It
is normally used with a positionwise mutation probability.

Nonuniform Mutation with a Fixed Distribution

Perhaps the most common form of nonuniform mutation used with floating-
point representations takes a form analogous to the creep mutation for in-
tegers. It is designed so that usually, but not always, the amount of change
introduced is small. This is achieved by adding to the current gene value an
amount drawn randomly from a Gaussian distribution with mean zero and
user-specified standard deviation, and then curtailing the resulting value to
the range [L;,U;] if necessary. The Gaussian (or normal) distribution has the

4 We assume here that the domain of each variable is a single interval [L;, U;] C IR.
The generalisation to a union of disjoint intervals is straightforward.
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property that approximately two thirds of the samples drawn lie within one
standard deviation. This means that most of the changes made will be small.
but there is nonzero probabilitv of generating verv large changes since the
tail of the distribution never reaches zero. It is normal practice to apply this
operator with probability one per gene. and instead the mutation parame-
ter is used to control the standard deviation of the Gaussian and hence the
probability distribution of the step sizes taken.

An alternative to the Gaussian distribution is the use of a Cauchy dis-
tribution. which has a “fatter”™ tail. That is, the probabilities of generating
larger values are slightly higher than for a Gaussian with the same standard
deviation [434].

3.4.4 Mutation Operators for Permutation Representations

For permutation representations. it is no longer possible to consider cach gene
independently. rather finding legal mutations is a matter of moving alleles
around in the genome. This has the immediate consequence that the mutation
parameter is interpreted as the probability that the string undergoes mutation.
rather than that a single gene in the string is altered. The three most common
forms of mutation used for order-hased problems were first described in [390)].
Whereas the first three operators below (in particular insertion mutation)
work by making small changes to the order in which allele values occur. for
adjacency-bascd problems these can cause huge numbers of links to be broken.
and so inversion is more commonly used.

Swap Mutation

This operator works by randomly picking two positions (genes) in the string
and swapping their allele values. This is illustrated in Fig. 3.2. where the
values in positions two and five have been swapped.

[1][2{3]4]5[6]7]8[9] —»  [1]5[3[4]2]6[7]8[9]

Fig. 3.2. Swap mutation

Insert Mutation

This operator works by picking two alleles at random and moving one so
that it is next to the other, shuffling along the others to make room.This is
illustrated in Fig. 3.3, where the values two and five have been chosen.
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[112]3]4]5]6][7[8]9] > [1][2]5]3[4]6]7]8]9]

Fig. 3.3. lusert mutation

Scramble Mutation

Here the entive string. or some randomly chosen subset of values within it.
have their positions scrambled. This is illustrated in Fig. 3.4, where the values
from two to five have bheen chosen.

[1[2]3[4]5]6[7[8]9] » [1]3]5]4]2]6[7][8]9]

Fig. 3.4. Scramble mutation

Inversion Mutation

Inversion mutation works by randomly selecting two positions in the string
and reversing the order in which the values appear between those positions. It
effectively breaks the string into three parts with all links inside a part being
preserved, and only the two links between the parts being broken. The mver-
sion of a randomly chosen substring is the thus smallest change that can be
made to an adjacencyv-based problem The ordering of the search space induced
by this operator thus forms a natural basis for considering this class of prob-
lems, equivalent to the Hamming space for binary problem representations.
It is the basic move behind the 2-opt search heuristic for TSP [249]. and by
extension k-opt. This operator is illustrated in Fig. 3.5, where the substring
between positions two and five was chosen for inversion.

3.5 Recombination

Recombination, the process whereby a new individual solution is created from
the information contained within two (or more) parent solutions, is consid-
ered by many to be one of the most important features in genetic algorithmns.
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[1]2]3]4]5]6]7][8]9] » [1]5]4]3]2]6]7]8]9

Fig. 3.5. Inversion mutation

Much rescarch activity has focused on it as the primary mechanism for cre-

ating diversity. with mutation considered as a background scarch operator.

Regardless of the merits (or otherwise) of this viewpoint. it is certainly one of

the features that most distinguishes GAs  and other EAs using recombination
from other global optimisation algorithins.

Although the term recombination has come to be used for the more general
case. early authors used the terin crossover (also from a biological analogyv
to meiosis. Sect. 1.4.2), and we will occasionally use the terms interchange-
ablv. although crossover tends to refer to the most conunon two-parent. case.
Recombination operators are usually applied probabilistically according to
a crossover rate p.. which is tvpically in the range [0.5.1.0]. Usually two
parents are sclected and-then a random variable is drawn from [0.1) and com-
pared to p.. If the value is lower. two offspring are created via recombination
of the two parents: otherwise thev are created asexually. i.e.. by copying the
parents. The net effect is that in general the resulting set of offspring consists
of some copies of the parents, and other individuals that represent previously
unseen solutions. Thus. in contrast to the mutation probability p,,,, which con-
trols how parts of the chromosome are perturbed independently. the crossover
probability determines the chance that a chosen pair of parents undergoes this
operator.

3.5.1 Recombination Operators for Binary Representations

Three standard forms of recombination are generally used for binary repre-
sentations. They all start from two parents and create two children, although
all of these have been extended to the more general case where a number of
parents may be used [133], and there are also situations in which only one of
the offspring might be considered (Sect. 3.6).

One-Point Crossover

One-point crossover was the original recombination operator proposed in [204]
and examined in [98]. It works by choosing a random number in the range
[0,1 — 1] (with [ the length of the encoding), and then splitting both parents
at this point and creating the two children by exchanging the tails (Fig. 3.6).
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0}10l0}l0jo]o0]0]0]1]

[olofolo}1]0loloi0]

[1][1][0][1]ofo[o]oO[1] (1[1[ol1][1]0[0]00]

Fig. 3.6. One-point crossover

N-Point Crossover

One-point crossover can easily be generalised to n-point crossover, where the
representation is broken into more than two segments of contiguous genes.
and then the offspring are created by taking alternative segments from the
two parents. In practice this neans choosing 7 random crossover points in
(0.1 — 1]. which is illustrated in Fig. 3.7 for n = 2.

[OT0l0l0]710]0T0f0] [oToToT010 [0 [oToTo]

M171]0]1]oJolol0]1] [1]1]0]1

Fig. 3.7. n-point crossover: n = 2

Uniform Crossover

The previous two operators worked by dividing the parents into a number of
sections of contiguous genes and reassembling them to produce offspring. In
contrast to this, uniform crossover [389] works by treating each gene indepen-
dently and making a random choice as to which parent it should be inherited
from. This is implemented by generating a string of L random variables from
a uniform distribution over [0,1]. In each position, if the value is below a pa-
rameter p (usually 0.5), the gene is inherited from the first parent; otherwise
from the second. The second offspring is created using the inverse mapping.
This is illustrated in Fig. 3.8.
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[111]0[1]0]ol0[0[1] (1]o1o[1[1]o]o[0]1]

Fig. 3.8. Uniform crossover. In this example the array [0.35, 0.62, 0.18. 0.42. 0.33.
0.76. 0.39, 0.51, 0.36] of random variables drawn uniformly from [0.1) was used to
decide mheritance

From Figs. 3.6 and 3.7 it should be immediatelv apparent that whereas in
our discussion we suggested that in the absence of prior information, recom-
bination worked by randomly mixing parts of the parents, n-point crossover
has an inherent bias in that it tends to keep together genes that are located
close to each other in the representation. Furthermore, when n is odd (e.g.,
one-point crossover). there is a strong bias against keeping together combina-
tions of genes that are located at opposite ends of the representation. These
effects are known as positional bias and have been extensively studied from
both a theoretical and experimental perspective [138, 378] (see Sect. 11.2.3
for more details). In contrast. uniform crossover does not exhibit any posi-
tional bias, but does have a strong tendency towards transmitting 50% of the
genes from each parent and against transmitting an offspring a large number
of coadapted genes from one parent. This is known as distributional bias.

The general nature of these algorithms (and the No Free Lunch theorem
[430], Sect. 11.8) make it impossible to state that one or the other of these
operators performs best on any given problem. However, an understanding
of the types of bias exhibited by different recombination operators can be
invaluable when designing an algorithm for a particular problem, particularly
if there are known patterns or dependencies in the chosen representation that
can be exploited.

3.5.2 Recombination Operators for Integer Representations

For representations where each gene has a higher number of possible allele
values (such as integers) it is normal to use the same set of operators as for
binary representations. This is because usually it does not make any sense to
consider “blending” allele values of this sort. For example, even if genes repre-
sent integer values, averaging an even and an odd integer yields a nonintegral
result.
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3.5.3 Recombination Operators for Floating-Point Representations

We have two options for recombining two floating-point strings:

e Using an analogous operator to those used for bit-strings. but now split
between floats. In other words. an allele 1s one floating-point value instead
of one bit. This has the disadvantage (shared with all of the recombina-
tion operators described above) that only nmutation can insert new values
into the population, since recombination only gives us new combinations
of existing floats. Recombination operators of this type for Hoating-point
representations are known as diserete recombination and have the prop-
crty that if we are creating an offspring z from parents o+ and y. then the
allele value for gene 7 is given by z; = @; or y; with equal likelihood.

e Using an operator that. in cach gene position. creates a new allele value in
the offspring that lies between those of the parents. Using the terminology
above. we have z; = ax; + (1 — a)y; for some a in [0,1]. In this way,
recombination is now able to create new gene material. but it has the
disadvantage that as a result of the averaging process the range of the
allele values in the population for each gene is reduced. Operators of this
tyvpe are known as intermediate or arithmetic recombination.

Arithmetic Recombination

Three types of arithmetic recombination are described in [271]. In all of these.
the choice of the parameter « is sometimes made at random over [0,1], but
in practice it is common to use a constant value, often 0.5 (in which case we
have uniform arithmetic recombination).

Simple Recombination

First pick a recombination point k. Then, for child 1. take the first k floats
of parent 1 and put them into the child. The rest is the arithmetic average of
parent 1 and 2:

Child 1: {xy...... Uk - Ypp1 + (L — @) - pgpree -y + (1 — ) - ay,).

Child 2 is analogous, with z and y reversed (Fig. 3.9).

Single Arithmetic Recombination

Pick a random allele k. At that position, take the arithmetic average of the
two parents. The other points are the points from the parents, i.e.:

Child 1: (xy,..., 1, yp + (1 — Q) - Tk, Thg1, - -+, Tn)-

The second child is created in the same way with x and y reversed (Fig. 3.10).
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[0.1]0.2]0.3]04]0.5]0.6]0.7]0.8]0.9] [0.1]0.2]0.3]0.4]0.5]0.6]0.5[0.5]0.6]
»
0.3[0.2]0.3[0.2]0.3]0.2]0.3]0.2]0.3] 0.3:0.2]0.3]0.2]0.3]0.2]0.5]0.5]0.6]

Fig. 3.9. Simple arithmetic recombination: & = 8. = 1/2

[0.1]0.2]0.3[0.4]0.5]0.6]0.7]0.8]0.9] [0.1]0.2]0.3]0.4]0.5]0.6]0.7]0.5]0.9]
[0.3]02[0.3[0.2]0.3[0.2]0.3]0.2]0.3] 03]0.20.3]0-2]0.3]0.2[0.3]0.5]0.3]

Fig. 3.10. Single arithimetic recombination: & = 3.0 = 1/2

Whole Arithmetic Recombination

This is the most commonly used operator and works by taking the weighted
sum of the two parental alleles for each gene, 1.e.:

Child 1 =a-7+ (1 —a) - y. Child 2 =a - y+ (1 —«) - T.

This is illustrated in Fig. 3.11. As the example shows, if a = 1/2 the two
offspring will be identical for this operator.

[0:]02[03]04]o5[os[07]08[0.9] [02]02]0.3]0:3]0.4]o4]0 5o 5]0.5]

[0.3[0.2]0.3[0.2]0.3]0.2]0.3]0.2]0.3] [0.2]0.2]0.3]0:3[0.4]0.4[0 5]0.5]0.6]

Fig. 3.11. Whole arithmetic recombination: a = 1/2
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3.5.4 Recombination Operators for Permutation Representations

At first sight, permutation-based representations present particular difficul-
ties for the design of recombination operators, since it is not. generally possible
simply to exchange substrings between parents and still maintain the permu-
tation property. However, this situation is alleviated when we consider what it
is that the solutions actually represent, i.e., either an order in which elements
occur, or a set of moves linking pairs of elements. A number of specialised
recombination operators have been designed for permutations, which aim at
transmitting as much as possible of the information contained in the parents,
especially that held in common. We shall concentrate here on describing two
of the best known and most commonly used operators for each subclass of
permutation problems.

Partially Mapped Crossover

Partially mapped crossover (PMX) was first proposed by Goldberg and Lingle
as a recombination operator for the TSP in [175], and has become one of the
most widely used operators for adjacency-type problems. During the years
many slight variations of the definition of PMX occurred in the literature;
here we use that of Whitley from [415] that works as follows (Figs. 3.12 -
3.14).

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the first crossover point look for elements in that segment
of the second parent (P2) that have not been copied.

3. For each of these (say i), look in the offspring to see what element (say j)
has been copied in its place from P1.

4. Place 7 into the position occupied j in P2, since we know that we will not
be putting j there (as we already have it in our string).

5. If the place occupied by 7 in P2 has already been filled in the offspring by
an element k, put ¢ in the position occupied by k in P2.

6. Having dealt with the elements from the crossover segment, the rest of the
offspring can be filled from P2, and the second child is created analogously
with the parental roles reversed.

Inspection of the offspring created shows that in this case six of the nine
links present in the offspring are present in one or more of the parents. How-
ever, of the two edges {56} and {7-8} common to both parents, only the first
is present in the offspring. Radcliffe [315] suggests that a desirable property
of any recombination operator is that of respect, i.e., that any information
carried in both parents should also be present in the offspring. A moment’s
reflection tells us that this is clearly true for all of the recombination opera-
tors described above for binary and integer representations, and for discrete
recombination for floating-point representations, but as the example above
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» [ [ [ [4]5]6[7] | |

Fig. 3.12. PMNX. step 1: copy randomly selected segment from first parent into
offspring

[112]3]475]

71819]

» | [ [2]4]5]6]7] [8]

Fig. 3.13. PMX, step 2: consider in turn the placement of the clements that occur
in the middle segment of parent 2 but not parent 1. The position that 8 takes in P2
is occupied by 4 in the offspring, so we can put the 8 into the position vacated by
the 4 in P2. The position of the 2 in P2 is occupied by the 5 in the offspring, so we
look first to the place occupied by the 5 in P2. which is position 7. This is already
occupied by the value 7, so we look to where this occurs in P2 and finally find a
slot in the offspring that is vacant — the third. Finally, note that the values 6 and 5
occur in the middle segments of both parents.

> |9]3]2[4]5]6[7]1]8]

Fig. 3.14. PMX, step 3: copy remaining elements from second parent into same
positions in offspring
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shows. is not necessarily true of PMNX. With this issue in mind. several other
operators have been designed for adjacency-based permutation problems. of
which the best known is deseribed next.

Edge Crossover

Edge crossover is based on the idea that an offspring should he created as
far as possible using only cedges that are present in one or more parent. [t
has undergone a number of revisions over the vears. Here we deseribe the
most commonly used version: edge-3 crossover after Whitley [115]. which is
designed to ensure that common edges are preserved.

In order to achieve this. an edge table (also known as adjacency hsts) is
constructed. which for cach element. lists the other elements that are hinked
to it 1 the two parents. A “+7 in the table indicates that the edge is present
in both parents. The operator works as follows:

1. Construct edge table

2. Pick an initial clement at random and put it in the offspring
3. Sct the variable current_element = entry

1. Remove all references to current .clement from the table

5. Examine list for current _clement

e If there is a common edge. pick that to be next element
e Otherwise pick the entry m the list which itself has the shortest list
e Ties are split at random

6. In the case of reaching an empty hst, the other end of the offspring is
examined for extension; otherwise a new element is chosen at random

Clearly only in the last case will so-called foreign edges be introduced.

Edge-3 recombination is illustrated by the following example where the
parents are the same two permutations used in the PMX example [1 2 3 4
56789 and 93782651 4] giving the edge table seen in Table 3.5
and the construction illustrated in Table 3.6. Note that only one child per
recombination is created by this operator.

Element | Edges |Element| Edges
1 2.5.4,9 6 2.5+,7

2 1,3,6,8 7 3,6,8+
3 2,4,7,9 8 2,7+, 9
4 1,3,5,9 9 1,3,4,8
5) 1,4,6+

Table 3.5. Edge crossover: example edge table
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Choices|Element {Reason Partial
selected result
All 1 Random [1]
2.5.4.9 5 Shortest list (1 5]
1.6 6 C'ommon edge (15 6]
2.7 2 Random choice (both have two items in list)|[1 5 6
3.8 3 Shortest list (15628
7.9 T C'ommon edge (156287
3 3 Only item in list (156287
1.9 9 Random choice (1562873
1 1 Last element (156287494

Table 3.6. Edge crossover: example of permutation construction

Order Crossover

The order crossover operator [92] was designed by Davis for order-based per-
mutation problems. It begins in a similar fashion to PMX. bv copying a
randomly chosen segment of the first parent into the offspring. However. it
proceeds differently because the itention is to transmit mformation about
relative order from the second parent.

1. Choose two crossover points at random. and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the sccond crossover point in the second parent, copy the
remaining unused numbers into the first child in the order that they appear
in the second parent, wrapping around at the end of the list.

3. Create the second offspring in an analogous manner. with the parent roles
reversed.

This 1s illustrated i Figs. 3.15 and 3.16.

» | | | J4][5]6[7] [ |

Fig. 3.15. Order crossover, step 1: copy randomly selected segment from first parent
into offspring
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161718[9]

—¥» [3/8]2]4]5]6]7]1]9

[973[7][8[2]6]5]1]4]

Fig. 3.16. Order crossover. step 2: copy rest of alleles in order they appear in second
parent. treating string as toroidal

Cycle Crossover

The final operator that we will consider in this section is cvele crossover [295],
which is concerned with preserving as much information as possible about the
absolute position in which elements occur. The operator works by dividing
the elements into cycles. A cvcle is a subset of elements that has the property
that each element always occurs paired with another element of the same cvele
when the two parents are aligned. Having divided the permutation into cyvcles.
the offspring are created by selecting alternate cycles from each parent. The
procedure for constructing cycles is as follows:

Start with the first unused position and allele of P1

Look at the allele in the same position in P2

Go to the position with the same allele in P1

Add this allele to the cycle

5. Repeat steps 2 through 4 until you arrive at the first allele of P1

Ll

The complete operation of the operator is illustrated by an example in
Figs. 3.17 and 3.18.

Fig. 3.17. Cycle crossover, step 1: identification of cycles
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3[7T4]12]6]5[8]9]

[(913]7]8]2]6]5[1]4] [(912[3[8]5[6]7][1]4]

Fig. 3.18. Cvcle crossover. step 2: construction of offspring

3.5.5 Multiparent Recombination

Looking at variation operators from the perspective of their arity a makes

it a straightforward idea to go beyond the usual ¢ = 1 (mutation) and
a = 2 (crossover). The resulting multiparent recombination operators
for a = 3.4, ... are simple to define and implement. This provides the oppor-

tunity to experiment with evolutionary processes using reproduction schenes
that do not exist in biology. From the technical point of view this offers a
tool for amplifying the effects of recombination. Although such operators are
not widely used in EC, there are many examples that have been proposed
during the development of the field, even as early as 1966 [64]. see [113] for
an overview. These operators can be categorised by the basic mechanisim used
for combining the information of the parent individuals. This mechanisin can
be:

e Based on allele frequencies, e.g., p-sexual voting [288] generalising uniform
Crossover

e Based on segmentation and recombination of the parents. e.g., the diagonal
crossover in [122], generalising n-point crossover

e Based on numerical operations on real-valued alleles, e.g., the center of
mass crossover [399], generalising arithmetic recombination operators

In general, it cannot be claimed that increasing the arity of recombination
has a positive effect on the peformance of an EA — this depends very much
on the type of recombination and the problem at hand. However, systematic
studies on landscapes with tunable ruggedness [127] and a large number of
experimental investigations on various problems clearly show that using more
than two parents is advantageous in many cases.

3.6 Population Models

So far in our discussion of genetic algorithms, we have focused on the way that
potential solutions are represented to give a population of diverse individuals,
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and on the way that variation (recombination and mutation) operators work
on those individuals to yield offspring. These oftspring will generally inherit
some of their parents’ properties but also differ slightly from them, providing
new potential solutions to be evaluated. We now turn our attention to the
second important element of the evolutionary process - that of the differential
survival of individuals to compete for resources and take part in reproduction.
based on their relative fitness.

Two different GA models are discerned in literature: the generational
model and the steady-state model. The generational model is deseribed in
the example in Sect. 3.2. In each generation we begin with a population of size
. from which a mating pool of j1 parents is selected. Next, A (= p) offspring
arc created from the mating pool by the application of variation operators,
and evaluated. After each generation, the whole population is replaced by its
offspring, which is called the “next generation”.”

In the steady state model. the entire population is not changed at once,
but rather a part of it. In this case, A (< p) old individuals are replaced by A
new ones, the offspring. The percentage of the population that is replaced is
called the generational gap, and is equal to A/pu. Since its introduction in
Whitley’s GENITOR algorithin [423], the steady-state model has been widely
studied and applied [101. 320, 407], usually with A = 1 and a corresponding
generation gap of 1/pu.

At this stage it is worth making the point that the operators, selection and
replacement, which are responsible for this competitive element of population
management, work on the basis of an individual’s fitness (evaluated or esti-
mated). This means that our emphasis is now shifting from partial solutions,
to whole solutions. A direct consequence of this is that these operators work
independently of the problem representation chosen.

As was seen in the general description of an evolutionary algorithm at the
start of Chapter 2, there are two points in the evolutionary cycle at which
fitness-based competition can occur: during selection to take part in mating,
and during the selection of individuals to survive into the next generation. We
begin by describing the most commonly used methods for parent selection, but
note that many of these can also be applied during the survival selection phase.
As a final preliminary, please note that we will adopt a convention that we
are trying to maximise fitness, and that fitness values are non-negative. Often
problems are expressed in terms of an objective function to be minimised,
and sometimes negative fitness values occur. However, in all cases these can
be mapped into the desired form by using an appropriate transformation.

> Let us note that there are other frequently used symbols in the literature for
denoting the population size and the number of children, although without any
real standard. By using ;+ and A we adopt the notation of evolution strategies,
wherein these symbols do form a standard, even providing the names of selection
mechanisms, cf. Sects. 4.6 and 4.7.
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3.7 Parent Selection

3.7.1 Fitness Proportional Selection

The principles of fitness proportional selection (FPS) were described in
the simple example in Section 3.2, Recall that for each choice. the probability
that an individual f; is sclected for mating is f;/ _’J.':,] f;- that is to say that
the selection probability depends on the absolutc fitness value of the individual
compared to the absolute fitness values of the rest of the population.

This sclection mechanism was introduced in [204] and was much studied
thercafter. However. it has been recognised that there are some problems
with this selection mechanisin:

e QOutstanding individuals, i.e., individuals that are a lot better than the rest.
take over the entire population very quickly. This is known as premature
convergence.

e When fitness values are all very close together, there is almost no selection
pressure, since the parts of the roulette wheel assigned to the individuals
are more or less the same size, so selection is almost uniformly randomn,
and having a slightly better fitness is not very “useful” to an individual.
Therefore, later in a run, when some convergence has taken place and the
worst individuals-are gone, the performance only increases very slowly.

e The mechanism behaves differently on transposed versions of the same
fitness function.

This last point is illustrated in Fig. 3.19, which shows the changes in selec-
tion probabilities for three points that arise when a random fitness function
y = f(x) is transposed by adding 10.0 to all fitness values. As can be seen the
selective advantage of the fittest point (B) is reduced.

To avoid the second two problems with FPS, a procedure known as win-
dowing is often used. Under this scheme. fitness differentials are maintained
bv subtracted from the raw fitness f(x) a value 3'. which depends in some
wayv on the recent search history. The simplest approach is just to set
3 = minyepr f(y), i.e., to subtract the value of the least-fit member of the cur-
rent. population P?. This value may fluctuate quite rapidly, so one alternative
is to use a running average over the last few generations.

Another well-known approach is Goldberg’s sigma scaling [172], which
incorporates information about the mean f and standard deviation o of
fitnesses in the population:

f'(z) = maz(f(z) — (f — ¢~ 0y),0.0),

where ¢ is a constant value, usually set to 2.
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Pr(BA)'

Fig. 3.19. Example of the susceptibility of fitness proportionate selection to function
transposition. Top: the fitness of three points for fitness functions f(z) and f’ =
f(z)+ 10. Bottom left: selection probabilities of the three points under f(x). Bottom
right: selection probabilities of the three points under f'(x)

3.7.2 Ranking Selection

Rank-based selection is another method that was inspired by the observed
drawbacks of fitness proportionate selection [33]. It preserves a constant se-
lection pressure by sorting the population on the basis of fitness. and then
allocating selection probabilities to individuals according to their rank, rather
than according to their actual fitness values. The mapping from rank number
to selection probability is arbitrary and can be done in many ways, for exam-
ple, linearly or exponentially decreasing, of course with the proviso that the
sum over the population of the probabilities must be unity.

The usual formula for calculating the selection probability for linear rank-
ing schemes is parameterised by a value s (1.0 < s < 2.0). In the case of a
generational GA, where 1 = A, this is the expected number of offspring allot-
ted to the fittest individual. If this individual has rank g, and the worst has
rank 1, then the selection probability for an individual of rank 4 is:
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In Table 3.7 we show an example of how the selection probabilities differ
for a population of three different individuals with fitness proportionate and
rank-based selection with different values of s.

Fitness|Rank Pselpp Pst'lLH (b‘ = 2) I)Sl‘[L]f (s = 15)
A 1 1 0.1 0 0.167
B 5 2 0.5 0.67 0.5
C 4 2 0.4 0.33 0.33
Sum| 10 1.0 1.0 1.0

Table 3.7. Fitness proportionate (F'P) versus linear ranking (LR) selection

When a linear mapping is used from rank to selection probabilities, the
amount of selection pressure that can be applied is limited. This arises from
the assumption that, on average, an individual of median fitness should have
one chance to be reproduced, which in turn imposes a maximum value of
s = 2.0. If a higher selection pressure is required, i.c., more emphasis on
selecting individuals of above-average fitness, an exponential ranking scheme
is often used, of the form:

. 1—e?
Pea:p—rank(l) =

C
The normalisation factor ¢ is chosen so that the sum of the probabilities is

unity, i.e., it is a function of the population size.

3.7.3 Implementing Selection Probabilities

In the discussion above we described two alternative schemes for deciding a
probability distribution that defines the likelihood of each individual in the
population being selected for reproduction. In an ideal world, the mating
pool of parents taking part in recombination would have exactly the same
proportions as this selection probability distribution. However, in practice
this is not possible because of the finite size of the population, i.e., when
we multiply the selection probability by the total number of parents in the
mating pool, we typically find that individuals have an expected number of
copies which is noninteger. In other words, the mating pool of parents is
sampled from the selection probability distribution, but will not in general
accurately reflect it, as seen in the example in Sect. 3.2.

The simplest way of achieving this sampling is known as the roulette
wheel algorithm. Conceptually this is the same as spinning a one-armed
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roulette wheel, where the sizes of the holes reflect the selection probabili-
ties. If we assume that the algorithm is being applied to select A members
from the set of g parents into a mating pool, it is usually implemented as
follows. Assuming some order over the population (ranking or random) from
1 to p. we calculate a list of values [ay. as. . ...«q,] such that a; = 571 P (i).
where P, (7) is defined by the selection distribution fitness proportionate
or ranking. Note that this implies @, = 1.0. The outlines of the algorithm are
given in Fig. 3.20.

BEGIN
set current_member = 1;
WHILE ( current.member < u ) DO
Pick a random value r uniformly from [0.1];
set 1 = 1;
WHILE ( a; <» ) DO
set 1 =1+ 1;
oD
set mating pool [current_member] = parents[i];
set current_member = current_member + 1;
0D
END

Fig. 3.20. Pseudocode for the roulette wheel algorithm

Despite its inherent simplicity, it has been recognised that the roulette
wheel algorithm does not in fact give a particularly good sample of the re-
quired distribution. Whenever more than one sample is to be drawn from
the distribution, the use of the stochastic universal sampling (SUS) algo-
rithm [33] is preferred. Conceptually. this is equivalent to making one spin of
a wheel with j. equally spaced arms, rather than g spins of a one-armed wheel.,
and calculates the list of cumulative selection probabilities [a1, aq.. ... q,] as
described in Fig. 3.21.

Since the value of the variable r is initialised in the range [0,1/u| and
increases by an amount 1/ every time a selection is made, it is guaranteed
that the number of copies made of each parent ¢ is at least the integer part of
it - Pser(2) and is no more than one greater. Finally, we should note that with
minor changes to the code, SUS can be used to make any number of selections
from the parents, and in the case of making just one selection, it is the same
as the roulette wheel.
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BEGIN
set current_member =1 =1;
Pick a random value r uniformly from [0.1/4];
WHILE ( current_member < ) DO
WHILE ( 7 <afi] ) DO
set mating pool[current_member] = parents[i];
set r=r+1/u;
set current_member = current_member + 1;
0D
set i =1+ 1;
0D
END

Fig. 3.21. Pseudocode for the stochastic universal sampling algorithm

3.7.4 Tournament Selection

The previous two selection methods and the algorithms used to sample from
their probability distributions relied on a knowledge of the entire population.
In certain situations, for example, if the population size is very large, or if
the population is distributed in some way (perhaps on a parallel system),
obtaining this knowledge is either highly time consuming or at worst impos-
sible. In yet other cases there might not be a universal fitness definition at
all. Think, for instance, of an application evolving game playing strategies.
In this case we might not be able to quantify the strength of a given individ-
ual. that is, a particular strategy, but we can compare any two of them by
simulating a game played by these strategies as opponents. Similar situations
occur also in evolutionary design and evolutionary art applications [46, 47]. In
such applications it is common that the user subjectively selects among the
individuals representing designs or pieces of art by comparing them. without
using a quantitative measure that assigns a fitness value to each member of
the population, cf. Sect. 13.3.

Tournament selection is an operator with the useful property that it does
not require any global knowledge of the population. Instead it only relies on
an ordering relation that can rank any two individuals. It is therefore con-
ceptually simple and fast to implement and apply. The application of tourna-
ment selection to select y parents works according to the procedure shown in
Fig. 3.22.

Because tournament selection looks at relative rather than absolute fit-
ness, it has the same properties as ranking schemes in terms of invariance
to translation and transposition of the fitness function. The probability that
an individual will be selected as the result of a tournament depends on four
factors, namely:
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BEGIN
set current_member = 1;
WHILE ( current_member < u ) DO
Pick A individuals randomly, with or without replacement;
Select the best of these k comparing their fitness values;
Denote this individual as 1;
set mating pool [current_member] = 1;
set current_member = current_member + 1;
oD
END

Fig. 3.22. Pseudocode for the tournament selection algorithm

e Its rank in the population. Effectively this is estimated without the need
for sorting the whole population.

e The tournament size k. The larger the tournament, the more chance
that it will contain members of above-average fitness, and the less that it
will consist entirely of low-fitness members.

e The probability p that the most fit member of the tournament is selected.
Usually this is 1.0 (deterministic tournaments), but stochastic versions are
also used with p < 1.0. Clearly in this case there is lower selection pressure.

e Whether individuals are chosen with or without replacement. In the second
case, with deterministic tournaments, the k& — 1 least-fit members of the
population can never be selected, whereas if the tournament candidates
are picked with replacement, it is always possible for even the least-fit
member of the population to be selected as a result of a lucky draw.

These properties of tournament selection were characterised in [20, 54],
and it was shown [173] that for binary (kK = 2) tournaments with parameter
p the expected time for a single individual of high fitness to take over the
population is the same as that for linear ranking with s = 2p. However,
since A tournaments are required to produce A selections, it suffers from the
same problems as the roulette wheel algorithm, in that the outcomes can
show a high variance from the theoretical probability distribution. Despite
this drawback, tournament selection is perhaps the most widely used selection
operator in modern applications of GAs, due to its extreme simplicity and the
fact that the selection pressure is easy to control by varying the tournament
size k.

3.8 Survivor Selection

The survivor selection mechanism is responsible for managing the process
whereby the working memory of the GA is reduced from a set of ;1 parents
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and A\ offspring to produce the set of y individuals for the next generation.
As explained in Section 2.3.6. this step in the main evolutionary cycle is
also called replacement. In the present section we often use this latter term
to be consistent with the literature. Over the history of GAs a number of
replacement strategies have been suggested and are widely used. which can
be categorised according to whether they discriminate on the basis of the
fitness or by the age of individuals.

3.8.1 Age-Based Replacement

The basis of these schemes is that the fitness of individuals is not taken into
account during the selection of which individuals to replace in the population.
rather they are designed so that each individual exists in the population for
the same number of GA iterations. This does not preclude the persistent
presence of highly fit solutions in the population, but this is dependent on
their being chosen at least once in the selection phase and then surviving the
recombination and mutation stages.

This is the strategy used in the simple GA. Since the number of offspring
produced is the same as the number of parents (¢ = A), each individual exists
for just one cycle, and the parents are simply discarded and replaced by the
entire set of offspring. This replacement strategy can be implemented simply
in a GA with overlapping populations (A < 1), and at the other extreme where
a single offspring is created and inserted in the population in each cycle. In
this case the strategy takes the form of a first-in-first-out (FIFO) queue.

An alternative method of age-based replacement for steady-state GAs is to
randomly select a parent for replacement, which has the same mean effect.
DeJong and Sarma [101] investigated this strategy experimentally, and found
that the algorithm showed higher variance in performance than a comparable
generational GA, and Smith and Vavak [364] showed that this was because
the random strategy is far more likely to lose the best member of the pop-
ulation than a delete-oldest (FIFO) strategy. For these reasons the random
replacement strategy is not recommended.

3.8.2 Fitness-Based Replacement

A wide number of strategies have been proposed for choosing which g of
the 1 + A\ parents and offspring should go forward to the next GA iteration.
Many of these also include some element of age, so that all of the offspring go
forward, e.g., they use fitness to decide which A of the ;4 > A parents should
be replaced by the offspring.

We have already discussed fitness proportionate and tournament selection,
and the stochastic version of rank-based selection above. Therefore we will
restrict this discussion to mentioning that these are also possible replacement
schemes (based on inverse fitness or rank), and briefly describe two other
common mechanisms.
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Replace Worst (GENITOR)

In this scheme the worst A members of the population are sclected for re-
placement. Although this can lead to very rapid improvements in the mean
population fitness, it can also lead to premature convergence as the popula-
tion tends to rapidly focus on the fittest member currently present. For this
reason it is commonly used in conjunction with large populations and/or a
no duplicates™ policy.

Elitism

This scheme is commonly used in conjunction with age-based and stochastic
fitness-based replacement schemes. in an attempt to prevent the loss of the
current fittest member of the population. In essence a trace is kept of the
current fittest member, and it is alwavs kept in the population. Thus if it is
chosen in the group to be replaced, and none of the offspring being inserted
into the population has equal or better fitness, then it is kept and one of the
offspring is discarded.

3.9 Example Application: Solving a Job Shop Scheduling
Problem

Two examples of applications of genetic algorithms were given in Sections 2.4.1
and 2.4.2. These examples used direct representations, where the genotype
and phenotype have a fairly simple mapping. Another (sometimes very use-
ful) method is to use an indirect representation. Here there is some growth
function that builds the phenotype and uses the genotype as an input pa-
rameter. In the following example, the job shop scheduling problem is solved
by having a heuristic schedule builder and an order-based representation that
specifies in which order to attempt to place the jobs into the schedule.
We define our problem by:

J, a set of jobs

O, a set of operations

M, a set of machines

Able : O — M, a function defining which machine can perform a given

operation

e Pre C O x O, a relation defining which operation should precede other
operations

e d:0 x M — IR, a function defining the duration of o € O on m € M

In general, there could be more machines that are able to perform a given
operation. In this case Able C O x M is a relation, rather than a function. To
keep things simple for this example, we eliminate this dimension and assume
that for each operation there is exactly one machine Able(o) € M it can be
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performed on. Scheduling an operation means to assign a starting time to it
(on the only machine that can perform it), and a schedule is a collection of
such assignments containing an operation at most once. The goal now is to
find a schedule that is:

e Complete: all jobs are scheduled
e C(Correct: all conditions defined by Pre are satisfied
e Optimal: the total duration of the schedule is minimal

We can set up a GA for this problemn by having a population of individuals
that are all permutations of the set of possible operations. Such a permutation
stands for an ordering of all operations, and we are to use a schedule builder
that creates a schedule for any ordering by scheduling cach operation in the
order of occurrence in the given permutation. The schedule builder works in
the following way:

e Take the next (staring with the first) operation as specified in the permu-
tation.
Look up its machine.
Assign the earligst possible starting time on this machine, subject to the
occupation of the machine and to the precedence relations that hold for
this operation in the schedule so far.

By now we have defined the representation, that is, we defined what are
our genotypes (permutations), phenotypes (schedules). and we specified how
a genotype is mapped onto a phenotype (by the schedule builder). It is immpor-
tant to note that our design guarantees the completeness and the correctness
requirements. Completeness is simply a consequence of using permutations
that contain all operations in O. The correctness condition is satisfied by the
schedule builder that assigns starting times, taking the precedence constraints
into account. As for the optimality requirement, the schedule builder uses a
locally optimal heuristic, always assigning the earliest possible starting time to
the given operation. This, however, does not imply that the schedule as a whole
will be optimal. To achieve this goal we define the fitness of an individual.
that is. a genotype, as the duration of the corresponding phenotype (sched-
ule). Obviously, this fitness must be minimised. To complete the design of a
GA for this problem we have to specify the remaining algorithm components:
selection operators (for parent and survivor selection) and variation operators
(mutation and recombination). Finally, we have to define an initialisation pro-
cedure and a termination condition. A very attractive feature of evolutionary
algorithms is that there are many widely applicable operators that can be
simply taken “off the shelf”. Variation operators are strongly related to the
representation, that is, to the used from of genotypes. In our case we can draw
from the collection of order-based mutation and crossover operators. Formally
any of them will do, in the sense that they will be applicable: syntactically cor-
rect parents (permutations) will always result in syntactically correct children.
The difference between them can be their performance in terms of the end
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solution delivered by the GA using them. As for selection operators, the issue
is even more simple as they do not depend on any particular representation,
so they do not have to be matched to the genotypes. Here we can use any of
the mechanisms discussed in this chapter. The only thing we must be aware of
is that we are minimising the durations of the schedules. Concerning the last
two components, initialisation and termination condition, it usually suffices
to use random initialisation aud, for instance. allow a maxinmuum number of
fitness evaluations.

3.10 Exercises

1. Given a function f(x):[0.1] — IR. We want to find an optimal x value
with a required precision of 0.001 of the solution. That is. we want to be
sure that the distance between the found optimum and the real optimum is
at most 0.001. How many bits are needed at least to achieve this precision
when using a bit-string GA?

2. Given the fitness function f(x) = z2. calculate target sampling rates for
RWS for the individuals x = 1, x = 2, x = 3. Calculate the target sampling
rates for a transposed fitness function f + 10.

3. Discuss whether there is survival of the fittest in a generational GA.

4. Calculate the probability that a binary chromosome with length L will
not be changed by applying the usual bit-flip mutation with p,, = 1/L.

5. A generational GA has a population size of 100. uses fitness proportionate
selection without elitism, and after ¢ generations has a mean population
fitness of 76.0. There is one copy of the current best member, which has
fitness 157.0.

e What is the expectation for the number of copies of the best individual
present in the mating pool?

e What is the probability that there will be no copies of that individual
in the mating pool. if selection is implemented using the roulette wheel
algorithm?

e What is the probability if the implementation uses SUS?

6. Given a population of p individuals, which are bit-strings of length L. Let
the frequency of allele 1 be 0.3 at position 7, that is, 30% of all individuals
contains a 1, and 70% a 0. How does this allele frequency change after
performing k crossover operations with one-point crossover? How does it
change if uniform crossover is performed?

7. Write a computer program to implement a generational GA for the One-
Max problem f(z) = ZiLzl z; (see Appendix B) with the following
parameters:

e Representation: binary strings of length L = 25

e [Initialisation: random

e Parent selection: fitness proportionate, implemented via roulette wheel

or SUS.
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Recombination: one-point crossover with probability p. = 0.7
Mutation: bit-flip with probability p,, = 1/L

Replacement: strict generational (no elitism)

Population size = 100

Termination criterion: 100 generations or optimmum found (whichever
quickest )

After every generation find the best. worst. and mean fitness in the pop-
ulation, and plot these on a graph with time as the r-axis. Now do ten
runs and find the mean and standard deviation of the time taken to find
the optimun.

. Repeat the exercise above for a bigger problem, e.g., L = 75. How do your

results change?
Now repeat the exercises 8 and 9 using tournament selection with & = 2.
What difference do you see?

3.11 Recommended Reading for this Chapter

1.

Kenneth De Jong. Genetic algorithins are NOT function optimizers. In
Whitley [420], pages 5H-18. [99]

D.E. Goldberg. Genetic Algorithms in Search, Optimazation and Machine
Learning. Addison-Wesley, 1989. [172]

A classic book that had a great impact in promoting the field. On page 6,
Figure 1.4 it suggests that GAs are robust methods working well across
a broad spectrum of problems.

J.H. Holland. Adaption in natural and artificial systems. MIT Press.
1992. [204] First edition: 1975, The University of Michigan.

. 7. Michalewicz. Genetic Algorithms + Data structures = FEvolution

programs. Springer, Berlin. 3rd edition, 1996. [271]

This book put the EC field into a new perspective, emphasising the
usefulness of problem specific heuristic knowledge within an EA. Compare
Figure 14.3 on page 293 with Goldberg’s view.

. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press,

1996. [280]
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4

Evolution Strategies

4.1 Aims of this Chapter

In this chapter we introduce evolution strategies (ES). another member of
the evolutionary algorithm family. We also use these algorithms to illustrate
a veryv uscful feature in evolutionary computing: self-adaptation of strategy
parameters. In gencral, self-adaptivity means that some parameters of the EA
are varied during a run in a specific manner: the parameters are included in
the chromosomes and coevolve with the solutions. This feature is inherent
in modern evolution strategies. That is, since the procedure was detailed in
1977 [340] most ESs have been self-adaptive, and over the last ten years other
EAs have increasingly adopted self-adaptivity. A summary of ES is given in
Table 4.1.

Representation |Real-valued vectors

Recombination |Discrete or intermediary

Mutation (Gaussian perturbation

Parent selection |Uniform random

Survivor selection|(p, A) or (1 + A)

Speciality Self-adaptation of mutation step sizes

Table 4.1. Sketch of ES

4.2 Introductory Example
Evolution strategies were invented in the early 1960s by Rechenberg and

Schwefel, who were working at the Technical University of Berlin on an ap-
plication concerning shape optimisation (see [52] for a brief history). Here we
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describe the basic algorithm, termed the two-membered evolution strategy, for
the abstract problem of minimising an n-dimensional function IR" — IR [342].
An outline of a simple two-membered evolution strategy is given in Fig. 4.1.

BEGIN

set t =0);

Create an initial point (r},....r,) € IR";

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
draw z; from a normal distr. for all i€ {l...., n} independently;
y! =ax! +2; for all i € {1,....n};

IF (f(2') < f(y')) THEN
P = gt
ELSE

FtHl yt;

FI
set t =1t+1;

oD

END

Fig. 4.1. Outline of simple two-membered evolution strategy

Given a current solution Z' in the form of a vector of length n, a new
candidate Z!*! is created by adding a random number z; for i € {1,...,n} to
each of the n components. A Gaussian, or normal, distribution is used with
zero mean and standard deviation o for drawing the random numbers. This
distribution is symmetric about zero and has the feature that the probability
of drawing a random number with any given magnitude is a rapidly decreasing
function of the standard deviation o. Thus the o value is a parameter of the
algorithm that determines the extent to which given values z; are perturbed
by the mutation operator. For this reason o is often called the mutation
step size. Theoretical studies motivated an on-line adjustment of step sizes
by the famous 1/5 success rule of Rechenberg [317]. This rule states that
the ratio of successful mutations (those in which the child is fitter than the
parent) to all mutations should be 1/5. Hence if the ratio is greater than 1/5
the step size should be increased to make a wider search of the space, and if
the ratio is less than 1/5 then it should be decreased to concentrate the search
more around the current solution. The rule is executed at periodic intervals,
for instance, after k iterations each o is reset by

olc  if ps > 1/5,
g =80-¢C if ps < 1/5,
o if ps = 1/5,
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where p, is the relative frequency of successful mutations measured over a
number of trials, and the parameter ¢ is in the range 0.817 < ¢ < 1 [340].
As is apparent, using this mechanism the step sizes change based on feedback
from the search process.
This example illuminates some essential characteristics of evolution strate-
gles:
1. Evolution strategies are tvpically used for continuous parameter optimi-
sation.
2. There is a strong emphasis on mutation for creating offspring.
3. Mutation is implemented by adding some random noise drawn from a
Gaussian distribution.
4. Mutation parameters are changed during a run of the algorithm.

4.3 Representation

Evolution strategies are typically used for continuous parameter optimisation,
meaning that the problem at hand can be given as an objective function
[R" — IR. Standard representation of the object variables xy...., x, is very
straightforward, where each r; is represented by a floating-point variable.
Disregarding self-adaptivity for the tune being, this implies that the genotype
space 1s identical to the phenotype space IR", hence no special encoding step
is needed. However, since nowadays evolution strategies almost always use
self-adaptation (rather than the 1/5 success rule adaptation), the vector 7 =
(x1,...,2,) forms only part of a typical ES genotype. Individuals contain
some strategy parameters, in particular, parameters of the mutation operator.
Details of mutation are treated in the next section; here we only discuss the
structure of individuals, and specify the meaning of the special genes there.
Strategy parameters can be divided into two sets, the o values and the «
values. The o values represent the mutation step sizes, and their number n,,
is usually either 1 or n. as seen in Sects. 4.4.1 and 4.4.2. For any reasonable
self-adaptation mechanism at least one o must be present. The « values.
which represent interactions between the step sizes used for different variables
(Sect. 4.4.3), are not always used. In the most general case their number

na = (n — & )(n, — 1). Putting this all together, we obtain

<x1a""xnaal""7071(,70511"')&71“)
o\ " \— 7

N

v~ v v
7 — —

a &

as the general form of individuals in ES.

4.4 Mutation

The mutation operator in ES is based on a normal (Gaussian) distribution
requiring two parameters: the mean £ and the standard deviation o. Mutations
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then are realized by adding some Axz; to each x;. where the Ax; values are
randomly drawn using the given Gaussian N(&. o). with the corresponding
probability density function (p.d.f.)

1 (A, -8
p(Ar;) = ——— e 227 . (4.1)
av 2t
In practice. the mean £ is always set to zero, and the vector o is mutated
by replacing .r; values by

xh = x; + N(0.0).

where N(0, o) denotes a randon number drawn from a Gaussian distribution
with zero mean and standard deviation o. By using a Gaussian distribution
here, small mutations arc more likely than large ones. The particular feature of
mutation - and the very basis of self-adaptation - in ES is that the step sizes
are also included in the chromosomes and they themselves undergo variation
and selection. In the simplest case we would have one step size that applied
to all the components x; and candidate solutions of the form (z;....,x,, o).
Mutations are then realized by replacing (z;,....x,,0) by (z},....xz,0"),
where ¢’ is the mutated value of o and

z; = z; + N(0.0").

Details on how to mutate the value of o are given in Sects. 4.4.1. 4.4.2, and
4.4.3. What is important here i1s that the mutation step sizes are not set by
the user; rather the o is coevolving with the solutions (the Z part). In order
to achieve this behaviour it is essential to modify the value of o first, and
then mutate the z; values with the new o value. The rationale behind this
is that a new individual (Z,0’) is effectively evaluated twice. Primarily, it is
evaluated directly for its viability during survivor selection based on f(z').
Second, it is evaluated for its ability to create good offspring. This happens
indirectly: a given step size evaluates favourably if the offspring generated by
using it prove viable (in the first sense). Thus. an individual (z’. o) represents
both a good #’ that survived selection and a good ¢’ that proved successful
in generating this good ' from Z.

The alert reader may have noticed that there is an important underlying
assumption behind the idea of using varying mutation step sizes. Namely,
we assume that under different circumstances different step sizes will behave
differently: some will be better than others. These “circumstances” can be
given various interpretations. For instance, we might consider “time” and dis-
tinguish different stages within the evolutionary search process and expect
that different mutation strategies would be appropriate in different stages.
Self-adaptation can then be a mechanism adjusting the mutation strategy as
the search is proceeding. Alternatively, we can consider “space” and observe
that the local vicinity of an individual, i.e., the shape of the fitness landscape
in its neighbourhood, determines what good mutations are: those that jump
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into the direction of fitness increase. Assigning a separate mutation strategyv
to each individual, which coevolves with it, opens the possibilitv to learn and
use a mutation operator suited for the local topology. Issues related to this
considerations are treated extensively in the chapter on paramecter control.
Chap. 8. In the following we describe three special cases of mutation in evo-
lution strategies in more detail.

4.4.1 Uncorrelated Mutation with One Step Size

In the case of uncorrelated mutation with one step size. the same distribution
1s used to mutate each x;, therefore we only have one strategy parameter o in
each individual. This o is mutated each time step by multiplying it by a term
¢! with I a random variable drawn each time from a normal distribution with
mean 0 and standard deviation 7. Since N(0,7) = 7 - N(0, 1). the mutation
mechanism is thus specified by the following formulas:

o =g e NOD, (4.2)
i = x; + o' - N;(0,1). (4.3)

1

Furthermore, since standard deviations very close to zero are unwanted
(they will have on average a negligible effect), the following boundary rule is
used to force step sizes to be no smaller than a threshold:

o <egg =0 =ey.

In these formulas N(0,1) denotes a draw from the standard normal distri-
bution, while N;(0,1) denotes a separate draw from the standard normal
distribution for each variable 7. The proportionality constant 7 is an external
parameter to be set by the user. It is usually inversely proportional to the
square root of the problem size:

T x 1/Vn.

The parameter 7 can be interpreted as a kind of learning rate. as in neural
networks. Béck [22] explains the reasons for mutating o by multiplying with
a variable with a lognormal distribution as follows:

Smaller modifications should occur more often than large ones.

Standard deviations have to be greater than 0.

The median (0.5-quantile) should be 1, since we want to multiply the o.
Mutation should be neutral on average. This requires equal likelihood of
drawing a certain value and its reciprocal value, for all values.

The lognormal distribution satisfies all these requirements.

In Fig. 4.2 the effects of mutation are shown in two dimensions. That is, we
have an objective function IR?> — IR, and individuals are of the form (x,y,0).
Since there is only one ¢, the mutation step size is the same in each direction
(z and y), and the points in the search space where the offspring can be placed
with a given probability form a circle around the individual to be mutated.
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Local
moximum >

Fig. 4.2. Mutation with n = 2 n, = 1,n, = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form a circle. The probability of
moving along the y-axis (little effect on fitness) is the same as that of moving along
the r-axis (large effect on fitness)

4.4.2 Uncorrelated Mutation with n Step Sizes

The motivation behind using n step sizes is the wish to treat dimensions differ-
ently. In particular, we want to be able to use different step sizes for different
dimensions 7 € {1,...,n}. The reason for this is the trivial observation that
the fitness landscape can have a different slope in one direction (along axis
i) than in another direction (along axis j). The solution is straightforward:
each basic chromosome (xy,...,x,) 1s extended with n step sizes, one for each
dimension, resulting in (ry,...,Z,,01,...,0,). The mutation mechanism is
now specified as follows:

= ;- eTI-N(O,I)—{-T-Ni(O,I), (44)

= I; + a; - Ni((), 1), . (4.5)

H
SN S~

where 7" o< 1/v/2n , and 7 o< 1/+/24/n. Once again a boundary rule is applied

to prevent standard deviations very close to zero.

/ !
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Notice that the mutation formula for o is different from that in Eq. (4.2).
The present mutation mechanism is based on a finer granularity. Instead of
the individual level (each individual z having its own o) it works on the
coordinate level (one g; for each x; in z). The corresponding straightforward
modification of Eq. (4.2) is

N,
0”:0’1.677— '(O'I)

D)

but ES use Eq. (4.4). Technically, this is correct since the sum of two nor-
mally distributed variables is also normally distributed, hence the resulting
distribution is still lognormal. The conceptual motivation is that the com-
mon base mutation e” VO allows for an overall change of the mutability.
guaranteeing the preservation of all degrees of freedom, while the coordinate-
specific e7Ni(01) provides the flexibility to use different mutation strategies
in different directions.

Local
maximum >

2

Fig. 4.3. Mutation with n = 2,n, = 2,n, = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form an ellipse. The probability of
moving along the z-axis (large effect on fitness) is larger than that of moving along
the y-axis (little effect on fitness)

In Fig. 4.3 the effects of mutation are shown in two dimensions. Again, we
have an objective function IR?* — IR, but the individuals now have the form
(x,y,0.,0,). Since the mutation step sizes can differ in each direction (z and
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y), the points in the search space where the offspring can be placed with a
given probability form an ellipse around the individual to be mutated. The
axes of such an ellipse are parallel to the coordinate axes. with the length
along axis ¢ proportional to the value of o;.

4.4.3 Correlated Mutations

The second version of mutation discussed in the previous section introduced
different standard deviations for cach axis. but this only allows ellipses orthog-
onal to the axes. The rationale behind correlated mutations is to allow the
cllipses to have any orientation by rotating them with a rotation (covariance)
matrix ',

The probability density function for Ax replacing Eq. (4.1) now becomes

P S v R

p(Az) = (det C - (2m)m)1/2°

with C' the covariance matrix with entries

2
Ciz = 0, (;-1_6)
0 no correlations,
1
2

Cijitj = (07 — a?) tan(2a;;) correlations. (4.7)

The relation between covariance and rotation angle is as follows:

Qcij

t&ll(Q(l’ij) — '(12—_;2—,
2 J

which explains Eq. (4.7). This formula is derived from the trigonometric prop-
erties of rotations. A rotation in two dimensions is a multiplication with the

(COS(Ozij> - Sin(az‘j)> _

matrix

sin(a;)  cos(ay; )

A rotation in more dimensions can be performed by a successive series of 2D
rotations, i.e., matrix multiplications.
The complete mutation mechanism is described by the following equations:

/
Loyl N(0.1)+7-N(0,1)

j=a;+8-N(0,1),

o
T =T+ N(0,C),

(6

where ng, = %ﬁ, j €1,...,n4. The other constants are usually taken as:
T o< 1/4/2v/n, 7 o< 1/4/2n, and § ~ 5°,
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The object variables T are now mutated by adding Ax drawn from an n-
dimensional normal distribution with covariance matrix C’. The C’ in the
formula is the old C' after mutation of the « values (and re-calculation of
covariances). The g; are mutated in the same way as before: with a multipli-
cation bv a log-normal variable. which consists of a global and an individual
part. The aj are mutated with an additive, normally distributed variation.
similar to mutation of object variables.

We also have a boundary rule for the a; values. The rotation angles should
lie in the range [—m. 7], so the new value is simply mapped circularly into the
feasible range:

lofs| > m = o = o — 27 sign(a}).

Fig. 4.4 shows the effects of correlated mutations in two dimensions. The
individuals now have the form (x,y.0,.0,.a; ), and the points in the search
space where the offspring can be placed with a given probability form a rotated
ellipse around the individual to be mutated, where again the axis lengths are
proportional to the o values.

Local
maximum >

Fig. 4.4. Correlated mutation: n = 2,n, = 2,n, = 1. Part of a fitness landscape
with a conical shape is shown. The black dot indicates an individual. Points where
the offspring can be placed with a given probability form a rotated ellipse. The
probability of generating a move in the direction of the steepest ascent (largest
effect on fitness) is now larger than that for other directions
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Table 4.2 summarises three possible common settings for mutation in evo-
lution strategies regarding the length and structure of the individuals. Simply
considering the size of the representation of the individuals in each scheme.
i.e., the number of values that need to be learned by the algorithin as it evolves
(let alone their complex interrelationships) brings home an important point:
we can get nothing for free! In other words. what we must consider is that as
the ability of the algorithm to adapt the nature of its search according to the
local topology increases, so too does the scale of the learning task. To sim-
plify matters a little, as we increase the precision with which we can specify
the shape of the lines of equiprobable mutations, so we increase the number
of different options which should be tried. Since the merits of these different
possibilities are evaluated indirectly, i.e.. by applying them and gauging the
relative fitness of the individuals created, it is reasonable to conclude that an
increased number of function evaluations will be needed to learn good search
strategies as the complexity of the mutation operator increases,

Whilst this may sound a little pessimistic, it is also worth noting that it is
easy to imagine a situation where the extra complexity is required. for exam-
ple, if the landscape contains a “ridge” of increasing fitness, perhaps running
at an angle to the co-ordinate axis. In short, there are no fixed recommen-
dations about which scheme to use, but a common approach is to start with
uncorrelated mutation with n o values and then try moving to a simpler model
if good results are obtained but too slowly (or if the o; all evolve to similar
values), or to the more complex model if the results are not of good enough

quality.
Ng Nea Structure of individuals Remark
1 0 (1,...,Zn.0) Standard mutation
n 0 (x1,...,Tn.01,...,00,) Standard mutations
nin-(n—1)/2(z1,...,Tn.01,....00,00,...,0,.(n-1),2)|Correlated mutations

Table 4.2. Some possible settings of n, and n, for different mutation operators

4.5 Recombination

The basic recombination scheme in evolution strategies involves two parents
that create one child. To obtain A offspring recombination is performed A
times. There are two recombination variants distinguished by the manner
of recombining parent alleles. Using discrete recombination one of the
parent alleles is randomly chosen with equal chance for either parents. In
intermediate recombination the values of the parent alleles are averaged.
Formally, given two parent vectors Z and g, one child Z is created, where
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(et yi)/2 intermediary recombination
o x; or y; chosen randomly discrete recombination

for all ¢ € {1....,n}.

An extension of this scheme allows the use of more than two recombi-
nants, because the two parents r and y are drawn randomly for each position
e {l..... n} in the offspring anew. These drawings take the whole popu-
lation of y individuals into consideration. and the result is a recombination
operator with possibly more than two individuals contributing to the offspring.
The exact number of parents. however, cannot be defined in advance. This
multiparent variant is called global recombination. To make terminology
unambiguous, the original variant is called local recombination.

Evolution strategies typically use global recombination. Interestingly. dif-
ferent recombination is used for the object variable part (discrete is recom-
mended) and the strategy parameters part (intermediary is recommended).
This scheme preserves diversity within the phenotype (solution) space, allow-
ing the trial of very different combinations of values, whilst the averaging
effect of intermediate recombination assures a more cautious adaptation of
strategy parameters.

4.6 Parent Selection

Parent selection in evolution strategies is not biased by fitness values. When-
ever a recombination operator requires a parent, it is drawn randomly with
uniform distribution from the population of ;1 individuals. It should be noted
that the ES terminology deviates from the GA terminology in its use of the
word “parent”. In ES the whole population is seen as parent - often called
the parent population. In contrast, in GAs the term “parent” denotes a
member of the population that has actually been selected to undergo varia-
tion (crossover or mutation). The reason for this particular terminology in ES
lies in the selection mechanism as described here.

4.7 Survivor Selection

After creating A offspring and calculating their fitness, the best y of them are
chosen deterministically, either from the offspring only, called (i, \) selec-
tion, or from the union of parents and offspring, called (1 + A) selection.
Both the (i, A) and the (i + A) selection schemes are strictly deterministic
and are based on rank rather than an absolute fitness value.

The selection scheme that is generally used in evolution strategies is (u, A)
selection, which is preferred over (u + A) selection for the following reasons:

e The (i, ) discards all parents and is therefore in principle able to leave
(small) local optima, so it is advantageous in the case of multimodal topolo-
gies.
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e [f the fitness function is not fixed, but changes in time. the (y+ \) selection
preserves outdated solutions. so it is not able to follow the moving optimum
well.

e (y1 + A) selection hinders the self-adaptation mechanism with respeet to
strategy parameters to work effectively. because misadapted strategy pa-
rameters may survive for a relatively large number of generations when an
individual has relatively good objeet variables and bad strategy paranme-
ters. In that casc often all its children will be bad. so with elitism, the bhad
strategy parameters may survive.

The selective pressure in evolution strategies is very high because A is tvpi-
cally much higher than g (a 1/7 ratio is reconunended). The takeover time
7* of a given sclection mechanisin is defined as the number of generations it
takes until the application of selection completely fills the population with
copies of the best individual, given one copy initiallv. Goldberg and Deb [173]

showed that
. In A

In(\/p)
For a typical evolution strategy with g = 15 and A = 100, this results in
7* = 2. For proportional sclection in a genetic algorithm it is

7" = Aln A,

resulting in 7% = 460 for population size A = 100.

4.8 Self-Adaptation

One of the main contributions of evolution strategies to the field of EC is self-
adaptation. That is. this feature was introduced first in ES, and its benefits
have been clearly shown by ES research. not only for real-valued. but also
for binary and integer scarch spaces [24]. This has had an inspiring effect
on other EC branches that started incorporate self-adaptive features i other
style EAs. In this section we have a closer look at this phenonienon.

The central claim within ES is that self-adaptation works. Besides exper-
imental evidence, showing that an ES with self-adaptation outperforms the
same ES without self-adaptation, there are also theoretical results backing up
this claim [50]. Theoretical and experimental results can neatly complement
each other in this area if for a (simple) objective function f : IR™ — IR the-
oretically optimal mutation step sizes can be calculated.! If experimentally
obtained data show a good match with the theoretically derived values, then

! The problem and the algorithm must be simple to make the system tractable,
since for a complex problem and/or algorithm a theoretical analysis is infeasible.
Optimal mutation step sizes need to be defined in light of some performance
criteria, e.g., progress rate during a run.
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we can conclude that self-adaptation works in the sense that it is able to find
the near-optimal step sizes.

Theoretical and experimental results agree on the fact that for a successful
run the o values must decrease over time. The ituitive explanation for this
1s that in the beginning of a scarch process a large part of the scarch space
has to be sampled i an explorative fashion to locate promising regions (with
good fitness values). Therefore. large mutations are appropriate in this phasc.
As the search proceeds and optimal values are approached. only fine tuning
of the given individuals is needed: thus smaller mutations are required.

Another kind of convineing evidence for the power of self-adaptation is
provided i the context of changing fitness landscapes. In this case. where
the objective function is changing. the evolutionary process is aiming at a
moving target. When the objective function changes. the present population
needs to be reevaluated. and quite naturally the given individuals mayv have a
low fitness. since they have been adapted to the old objective function. Often
the mutation step sizes will prove ill-adapted: they are too low for the new
exploration phase required. The experiment presented in [201] illustrates how
self-adaptation is able to reset the step sizes after cach change in the objective
function (Fig. 4.5).

10| . o

0.001 | 1

le-05 - ‘ |
* 1% 200 400 600 800 1000 1e-06 1 . ‘ ,

0 200 400 600 800 1000

Fig. 4.5. Moving optimmun ES experiment on the sphere function with n = 30,
n, = 1. The location of the optimum is changed after every 200 gencrations (z-azes)
with a clear effect on the average best objective function values (y-axis, left) in the
given population. Self-adaptation is adjusting the step sizes (y-azes, right) with a
small delay to larger values appropriate for exploring the new fitness landscape,
whereafter the values of o start decreasing again once the population is closing in
on the new optimum

Over the last decades much experience has been gained over self-adaptation
in ES. The accumulated knowledge has identified necessary conditions for self-
adaptation:
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1. 5+ > 1 so that different strategies are present

2. Generation of an offspring surplus: A > p

3. A not too strong selective pressure (heuristic: A/ = 7. e.g., (15.100))

4. (p, A)-selection (to guarantee extinction of misadapted individuals

5. Recombination also on strategv parameters (especially intermediate re-
combination)

4.9 Example Applications

4.9.1 The Ackley Function

The first example we discuss is a typical ES application that concerns the
optimisation of a multidimensional real-valued function. To illustrate how an
ES is applied to such problems we use the Ackley function with n = 30
dimensions (Appendix B). This function is highly multimodal, with a large
number of local minima, but with one global minimum at the origin z = 0
with value 0.0.

To design an ES for this problem one need not consider the representation
issue that is so prominent in GAs. To be more specific. representation of
the object variables is straightforward, therefore one only needs to decide
about the strategy parameters. This is closely related to choosing the mutation
operator. For instance, we can decide to use uncorrelated mutations, thus
omitting the « values from the representation. We can also use a separate
mutation step size for each dimension, implying chromosomes consisting of
sixty real-valued numbers, that is, thirty for £ and thirty for &.

Hereafter, the definition of the variation operators boils down to deciding
what recombination to use, if at all. A possible choice here is to use discrete
reccombination on the object variables and global intermediate recombination
on the strategy parameters — an option that is frequently used in ES.

As for selection, the decision concerns “comma” or “plus”, and following
the general recommendations from Sect. 4.7 we could choose for (u. ). Fur-
thermore, we can set ¢ = 30 and A = 200 and decide to terminate a run after
200.000 function evaluations, or when the optimum is found. This pretty much
completes the specification of our ES, leaving only initialisation open. This
can be performed as simply as creating the initial population of vectors whose
components are chosen uniformly randomly in the range —30.0 < z; < 30.0.

In [30] results are given for the optimisation of this function using an ES as
specified above. The algorithm was run ten times, and in each run the global
optimum was located, 1.e., an individual was found that was on the globally
optimal peak, if not at its very top. The average of the best solution in the
final generation had a function value of just 7.48 - 1078.
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4.9.2 Subjective Evolution of Colour Mixes

In a classic experiment to illustrate the fact that human beings can sometimes
have a role to play within the evolution of good solutions. Herdy [193] describes
how a group of students is used to act as a subjective evaluation function for
an ES. The aim of the evolution is to discover appropriate quantities of clear
water, red. yvellow. and blue dve. that when put in a test tube and mixed
will create 30 ml of liquid with the same colour as a well-known brand of
cherry brandy. The representation chosen is a simple vector of length 4 (one
component representing the quantity of cach ingredient used), and during the
genotype to phenotype mapping the values are scaled to yield the 30-ml final
volume.

When humans are included ~in the loop™ of an evaluation process, a com-
mon finding is that they tend to get bored quickly and do not deliver consistent
judgements. For this reason the algorithm is carefully designed to deliver fast
convergence, and the students are just required to pick the single best oft-
spring for survival. In this way, a relatively high selection pressure is used:
a (1,8) strategy (the students are grouped into cights). Because of the short
run lengths, self-adaptation of step sizes is not used (it would take too long),
and only a single step size is used for each offspring. These are chosen so that
one third have o = 1, one third have a lower value, and one third a higher
value.

The experiment then proceeds as follows:

e Starting from a blue mixture of known proportions, eight offspring recipes
are created by mutation.

e FEach student makes up a test tube according to the specifications for their
offspring.

e The eight mixtures are put up against a light source, and the students
decide which among them is closest to the desired mixture.

e This is repeated until the students are satisfied that the desired colour has
bheen matched.

Tyvpically the cherry brandy colour is found in less than 20 generations.
Fig. 4.6 shows the evolution of a tvpical run.

It is worth noting that since the mixtures are made up by hand, there are
some inevitable experimental errors arising from mismeasurements and so on,
which introduce a source of noise into the evaluation. In order to investi-
gate this effect, the experiment is then run backwards, i.e., the goal colour
is changed to be the original blue for which the correct solution is known.
Herdy reports that typically the blue colour is discovered with a maximum
error of 1.3 ml. Given an estimated error of 4 1 ml in the pipette for filling
the test tubes, this is an impressive result and illustrates the robustness of
the ES approach.
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Fig. 4.6. Evolution of a mixture of dyes to produce a cherry brandy colour using
subjective evaluation

4.10 Exercises

1. Recall Exercise 1 from Chapter 3. How many variables are nceded (what
is the length of individuals) to have the same precision with an evolution
strategy using: a) one a: b) n o’s: and ¢) n ¢’s and all a’s? How many
variables are needed if the objective function is n-dimensional?

2. Discuss why generational GAs and ES form opposites regarding where the
fitness information influences the search.

3. Discuss why steady-state GAs and ES form two extremes regarding off-
spring size.

4. The formula + = r; + N (0.0) may suggest that we can only add a (pos-
itive) number to o, during mutation. Discuss whether this interpretation
Is correct.

5. Create an Evolutionary Strategy for the Ackley function with n=30, us-
ing the set-up in Sect. 4.9.1 and a comma selection strategy. Make 100
independent runs, store the best value of each run and calculate the mean
and standard deviation of these values.

6. Repeat this experiment with the plus selection strategy, and compare the
results.
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5

Evolutionary Programming

5.1 Aims of this Chapter

In this chapter we present evolutionary programming (EP), another historical
member of the EC family. Other EC streams have an algorithim variant that
can be identified as being the “standard”. or typical, version of genctic algo-
rithms, evolution strategies, or genetic programmniing. For EP such a standard
version is hard to define for reasons discussed later in this chapter. The sumn-
mary of EP in Table 5.1 is therefore a representative rather than a standard
algorithm variant.

Representation  |Real-valued vectors
Parent selection |Deterministic (each parent creates one offspring via mutation)

Recombination |None
Mutation Gaussian perturbation

Survivor selection|Probabilistic (p + )
Speciality Self-adaptation of mutation step sizes (in meta-EP)

Table 5.1. Sketch of EP

5.2 Introductory Example

Evolutionary programming was originally developed to simulate evolution as
a learning process with the aim of generating artificial intelligence [145, 156].
Intelligence, in turn, was viewed as the capability of a system to adapt its
behaviour in order to meet some specified goals in a range of environments.
Adaptive behaviour is the key term in this definition, and the capability to
predict the environment was considered to be a prerequisite for adaptivity,
and hence for intelligent behaviour.
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90 5 Evolutionary Programming

In the classical example of EP, predictors were evolved in the form of finite
state machines. A finite state machine (FSM) is a transducer that can be
stimulated by a finite alphabet of input svinbols and can respond in a finite
alphabet of output symbols. It consists of a number of states S and a munber
of state transitions. The state transitions define the working of the FSM:
depending on the current state and the current input syvmbol. they define an
output svmbol and the next state to go to. An example three-state FSM s

shown in Fig. 5.1.

1/b

Fig. 5.1. Example of a finite state machine consisting of three states: A, B, and
C. The input alphabet is I = {0, 1}, and the output alphabet is O = {a,b,c}. The
FSM’s transition function d : S x I — S x O that transforms the input stream to the
output stream is specified by the arrows and their labels indicating the input /output
of the given transition

A simple prediction task to be learned by an FSAM is to guess the following
input symbol in an input stream. That is, considering n inputs. predict the
(n+1)th one. and articulate this prediction by the nth output symbol. In this
case, the performance of an FSM is measured by the percentage of inputs
where input, ;1 = output,. Clearly, this requires the input alphabet and the
output alphabet to be the same. An example is given in Fig. 5.2.

Fogel et al. [156] describe an experiment where predictors were evolved to
tell whether the next input (being an integer) in a sequence is a prime or not.
For this task FSMs were used as individuals with the input alphabet I = IN
and output alphabet O = {0, 1}. The fitness of an FSM was defined as its
prediction accuracy on the input sequence of consecutive integers 1,2,3,...
(minus some penalty for containing too many states). Many technical details
of this application are hardly traceable today, but [145] and personal commu-
nication give some details. Parent selection does not take place, but each FSM
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Fig. 5.2. Finite state machine as a predictor. The initial state of this FSN is €', and
the given input string is 011101, The FSM's response is the output string 110111, On
this string, its prediction performance is 60% (inputs 2. 3. and 6 correctly predicted)

in the given population is mutated once to generate one offspring. There are
five generally usable mutation operators to gencrate new FSNMs:

Changing an output symbol

Changing a state transition (i.e. change the next state)
Adding a state

Deleting a state

Changing the initial state

A choice from these mutation operators is made randomly with a uniform
distribution. Recombination (crossover) is not used, and after having created
/¢ offspring from a population of ;1 FSMs. the top 50% of their union is saved
as the next generation.

The results obtained with this system show that after 202 input symbols
the best FSM is a very opportunistic one. having only one state and always
guessing “no” (output 0). Given the sparcity of primes this strategy is good
enough for accuracies above 81%. Using more sophisticated setups these out-
comes could be improved. However, the main point was not perfect accuracy
(which is theoretically impossible), but the empirical proof that a simulated
evolutionary process is able to create good solutions for an intelligent task.

For historical reasons EP has been long associated with prediction tasks
and the use of finite state machines as their representation. However, since
the 1990s EP variants for optimisation of real valued parameter vectors have
become more frequent and even positioned as “standard” EP [22, 31]. In the
remaining of this chapter we adopt this viewpoint modified by the follow-
ing remark. Today the EP community typically considers EP as a very open
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92 5 Evolutionary Programming

framework in terms of representation and mutation operators. The fundamen-
tal attitude is that the representation should not be fixed in advance and in
general, but derived from the problem to be solved. Likewise, the mutation
operators should be designed to match the representation at hand. This is a
very pragmatic approach indeed. but for a textbook it makes it hard to treat
EP in a way similar to the treatment of the other EC' dialects. Therefore we
adhere to the view summarised i Table 5.1.

5.2.1 Representation

As noted above. EP is used for many different applications, and takes a very
pragmatic approach of choosing the representation based on the problem’s fea-
tures. However, it is most frequently used for optimising functions of the form
f:IR" — IR. and in this case evolutionary programming uses a straightfor-
ward floating-point representation where (xy,...,x,) € IR" form the individ-
uals. Although formerly self-adaptation of mutation parameters was identified
as an extra feature of the so-called meta-EP, nowadays it 1s a frequently used
option. Therefore, we include it as a “standard”™ feature, amounting to adding
strategy parameters to the individuals. Similarly to ES. this leads to

(X0 ey T, O, Tp)
A vy

.~

W v
.t lez

as the general form of individuals in EP.

5.2.2 Mutation

Given the observation that the EP community tends to put an emphasis on
the choice of the most natural representation for the problem at hand. the
obvious follow-on from this is that there is no single EP mutation operator:
rather the choice is determined by the representation as we saw for GAs in
Sect. 3.4.

Here we restrict ourselves to illustrating the mutation operator most widely
associated with what came to become known as “meta-EP” — the variant with
self-adaptation of strategy parameters and a real-valued representation.

Mutation transforms a chromosome (zi,...,z,,01,...,0,) into
(zy,...,20,01,...,0), where

=o;- (1+a- N(0,1)), (5.1)

Q
[ T Y

Here N(0,1) denotes the outcome of a random drawing from a Gaussian
distribution with zero mean and standard deviation 1, and with o« =~ 0.2. A
boundary rule to prevent standard deviations very close to zero, and thereby
allow effective mutations, is also applicable:
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or < gp = 0L =gy, (5.2)

Let us remark that during the history of EP a number of mutation schemes,
such as one in which the step size is inversely related to the fitness of the
solutions, have been proposed. Since the proposal of meta-EP [144, 145],
self-adaptation of step sizes has hecome the norni, however, various formulas
different from that in Eq. (5.1) have also been proposed. These differences
concern

e The formula for modifying the step sizes. e.g., using the lognormal scheme,
as in evolution strategies rather than this additive scheme

e The incorporation of variances rather than standard deviations as strategy
parameters

e The order in which the the o and the x values are mutated.

Of these, the first and second led to problenis wherebyv the scheme frequently
generated negative and therefore invalid values for the offspring variance. For
this reason the boundary condition rule of Eq. (5.2) is frequently called into
play. By comparison, especially since the Gaussian distribution is syminet-
ric about its mean. the signs of negative standard deviations can simply be
reversed.

The third item is the most remarkable. since mutating the o and the «
values in a reversed order would violate the rationale explained in Sect. 4.4
after Egs. (4.2) and (4.4). Tracing the literature on this issue, the paper by
Gehlhaar and Fogel [165] seems to be a turning point. Here the authors explic-
itly compare the “sigma first” and “sigma last” strategies and conclude that
the first one - the standard ES manner — offers a consistent general advantage
over the second one. Notably in a recent paper and book [78. 147], Fogel uses
the lognormal adaptation of n standard deviations o;. followed by the muta-
tion of the object variables x; themselves. suggesting that EP is practically
merging with ES regarding this aspect.

Other ideas from ES have also informed the development of EP algorithms,
and a version with self-adaptation of covariance matrices. called R-meta-EP
is also in use. As was discussed in Section 4.8. the self-adaptation of strat-
egy parameters relies on the association between good strategies and good
solutions in order to evolve suitable operator parameters. One perspective
used to explain this effect with (y, A) selection. where A >> p, is that effec-
tively A/ search strategies are being tried starting from each parent. Several
recent research papers experimented with making this more explicit, with
good results. Thus in Yao’s improved fast evolutionary programming algo-
rithm (IFEP) [436], two offspring are created from each parent, one using a
Gaussian distribution to generate the random mutations, and the other us-
ing the Cauchy distribution. The latter has a fatter tail (i.e., more chance
of generating a large mutation), which the authors suggest gives the overall
algorithm greater chance of escaping from local minima, whilst the Gaussian
distribution (if small step sizes evolve) gives greater ability to fine-tune the
current parents.
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94 5 Evolutionary Programming

5.3 Recombination

The issue of recombination in EP can be handled very briefly since it is not
used. In the beginning recombination of FSNs was proposed, based on a ma-
jority vote mechanism, but this was never incorporated into the EP algorithim
[145]. As of today, the EP arguments against recombination are conceptual
rather than technical. In particular. a point in the search space is not viewed
as an individual of some species. but as the abstraction of a species itself. As
a consequence, recombination does not make sense as it cannot be applied
to different species. Technically. of course. it is possible to design and apply
variation operators merging information from two or more individuals.

The issue of the advantage of using a mutation-only algorithm versus a
recombination and mutation variant has been intensively discussed since the
1990s. Fogel and Atmar [149] compared the results of EP algorithins with and
without recombination on a series of linear functions with parameterisable
interactions between genes. They concluded that improved performance was
obtained froin the version without recombination. This led to intensive periods
of research in both the EP and the GA communities to try and establish the
circumstances under which the availability of a recombination operator yielded
improved performance [140, 153. 205, 374].

As befits a mature research field, the current state of thinking has moved
on to a stable middle ground. The latest results [216] confirm that the ability
of both crossover or Gaussian mutation to produce new oftspring of supe-
rior fitness to their parents depends greatly on the state of the search process.
with mutation better initially but crossover gaining in ability as evolution pro-
gresses. These conclusions agree with theoretical results developed elsewhere
and discussed in more depth in Chap. 8. In particular it is stated that: “the
traditional practice of setting operator probabilities at constant values. ... is
quite limiting and may even prevent the successful discovery of suitable solu-
tions.” However, it is perhaps worth noting that even in these latest studies
the authors did not detect a difference between the performance of different
crossover operators, which they claim casts significant doubt on the “building
block hypothesis™ (Sect. 11.2), so we are not entirely without healthy scientific
debate!

5.4 Parent Selection

The question of selecting parents to create offspring is almost nonissue for
EP, and this distinguishes it from the other EA dialects. In EP every member
of the population creates exactly one offspring via mutation. In this way it
differs from GAs and GP, where selective pressure based on fitness is applied
at this stage. It also differs from ES, since the choice of parents in EP is
deterministic, whereas in ES it is stochastic, i.e., in ES each parent takes part
in, on average, A/ u offspring creation events, but possibly in none.
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5.5 Survivor Selection

The sclection operator is generally (g + g) selection. Typically, the follow-
ing stochastic variant is used. Pairwise tournament competitions are held in
round-robin format involving both parent and offspring populations. Each so-
lution a € P(t)UP’(t) is evaluated against ¢ other randomly chosen solutions.
For each comparison, a “win’™ is assigned if @ is better than its opponent. The
¢ solutions with the greatest number of wins are retained to be the parents
of the next generation. Typically. ¢ = 10 is recomunended.

[t is worth noting that this variant of selection allows for less-fit solutions to
survive into the generation if they had a lucky draw of opponents. As the value
of ¢ increases this chance becomes more and unlikely. until in the limit the
mechanisi becomes deterministic g+ 0 as in the case of evolution strategies.

5.6 Example Application

5.6.1 The Ackley Function

As described in Section 4.9.1, Back et al. evaluated the behaviour of a typical
evolution strategy on a thirty-dimensional version of Ackley's function [30].
They also evaluated the behaviour of an early version on meta-EP on the same
problem. Since the function is one with continuous variables, a floating-point
representation is natural, with one gene per variable (dimension). They used
the “standard™ version of meta-EP at that time, with g = 200, ¢ = 10, and
featuring the self-adaptation of thirty variances, with a lower liinit of 0.02 and
initial values of n = 6.0, where n denotes the step sizes). The mutation of the
function variables occurred before the mutation of the strategy paraimeters.
They reported that the globally optimal basin was located in all ten runs.
but that the mean final best solution had fitness of 1.39- 1072 as opposed to
7.48 - 107% for the ES.

Yao et al. [436] examined the effects of changing the probability distribution
used to generate mutations. They compared algorithims using two mutation
mechanisms. The first was a version of what they called “classical” EP (CEP):
i = x; + ;- Ni(0, 1), (5.3)

)

n. = n; - exp(r'N(0,1) + 7N;(0,1)), (5.4)

where N (0, 1) represents a random variable drawn for each offspring, N;(0, 1)

is a similar variable drawn afresh for each variable, and 7 = (1/2/n)~! and
7" = (v/2n)7! are the learning rates.

The second variant they called “fast-EP” (FEP), which differed from
Eq. (5.3) in that the first line was replaced by
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96 5 Evolutionary Programming

where §; is a drawn from a Cauchy distribution f;(x) = —71;;9—;%5 with the scale

parameter ¢t = 1.

Their algorithm used a population size of ;z = 100, round-robin tournaments
with ¢ = 10, and initial step sizes set to 3.0. They compared performance on a
number of different functions, but we concentrate here on their results for the
Ackley function. For self-adapted Gaussian mutations their results verified
those of Béck et al., but they observed improved results when they used
the Cauchy distribution (fast EP), and the mean final score was reduced to
4.83- 1073 when they tried the IFEP algorithm described in Sect. 5.2.2. Note
that they still performed mutation of the object variables before the strategy
parameters, so it is possible that these results could be nmproved still further.
A recent follow-up on this study with much experimental data and a large
test suite can be found in [435].

5.6.2 Evolving Checkers Players

In [73], which is expanded into a highly readable book [147] and further sum-
marised in [148]. Fogel charts the development of a program for playing the
game of checkers (a.k.a. “draughts™), a board game for children that is also
highly popular on the Internet. In this two-player game a standard 8 x 8
squared board is used, and each player has an (initially fixed) number of pieces
(checkers), which move diagonally on the board. A checker can “take” an op-
ponent’s piece if it is adjacent, and the checker jumps over it into an empty
square (both plavers use the same-coloured squares on the board). If a checker
reaches the opponent’s home side, it becomes a “king” in which case it can
move forwards as well as backwards. Human checker players regularly com-
pete against each other in a variety of tournaments (often Internet-hosted),
and there is a standard scheme for rating a player according to their results.

In order to play the game, the program evaluates the future value of possible
moves. It does this by calculating the likely board state if that move is made,
using an iterative approach that looks a given distance (“ply”) into the future.
A board state is assigned a value by a neural network, whose output is taken
as the “worth” of the board position from the perspective of the player who
had just moved.

The board state is presented to the neural network as a vector of length 32,
since there are 32 possible board sites. Each component comes from the set
{-K,—1,0,1, K}, where the minus sign presents an opponent’s king or piece,
and K takes a value in the range [1.0,3.0].

The neural network thus defines a “strategy” for playing the game, and it is
this strategy that is evolved with EP. A fixed structure is used for the neural
networks, which has a total of 5046 weights and bias terms that are evolved,
along with the importance given to the kings K. An individual solution is
thus a vector of dimension 5047.

The authors used a population size of 15, with a tournament size ¢ = 5.
When programs played against each other they scored +1, 0, -2 points for a
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win, draw, and loss respectively. The 30 solutions were ranked according to
their scores over the 5 games, then the best 15 became the next generation.

The mutation operator used took two forms: the weights/biases were mu-
tated using the addition of Gaussian noise. with lognormal adaptation of the
step sizes before mutation of the variables, i.e.. using standard ES-stvie sclf-
adaptation with n = 5040 strategy parameters. The offspring king weightings
were mutated accorded to K'Y = K + 4. where o is sampled uniformly from
[-0.1.0.1], and the resulting values of A7 are constrained to the range [1.0,3.0].
Weights and biases were initialised randomly over the range [-0.2.0.2]. The i
values were initially set to 2.0, and the strategy parameters were initialised
with value 0.05.

The authors proceeded by having the neural networks compete against each
other for 840 generations (6 months) before taking the best evolved strategy
and testing it against human opponents on the Internet. The results were
highly impressive: over a series of trials the program ecarned an average rank-
ing, which put it in the “expert” class, and better than 99.61% of all rated
players on the Web site. This work is particularly interesting in the context
of artificial intelligence research for the following reasons:

e There is no input of human expertise about good short-term strategies or
endgames.

e There is no input-to tell the evolving programs that in evaluating board
positions, a negative vector sum (that is, the opponent has a higher picce-
count) is worse than a positive vector sum.

e There is no explicit “credit assignment™ mechanism to reward moves that
lead to wins; rather a “top-down” approach is taken that gives a single
reward for an entire game.

e The selection function averages over five gaines, so the effects of strategies
that lead to wins or losses are blurred.

e The strategies evolve by playing against themselves, with no need for hu-
man intervention!

5.7 Exercises

1. Recall Figure 5.2. What is the last state of the given FSM after the input
string 0111017

2. Discuss the similarities and differences between ES and (modern) EP.

Discuss the EP convention on crossover.

4. Why could it be expected that the original order of first mutating the ob-
ject variable (z) and then mutating the mutation parameter (o) is inferior
to the reversed order?

5. Assuming that p parents produce p offspring, of which one has a new best
fitness value for a ¢ value of ten, how many copies of the best solution
would you expect to see in the next set of parents?

o
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6. Now assuine that there are n copies of the best solution and one copy of the
next best in the union of parents and offspring. What is the probability
that in the next generation of parents there will be no copies of this
second-best solution?

Implement an EP for the Ackley function with n=30. Make 100 runs.
storing the best value found in each. and then calculate the mean and
standard deviation of these values. Compare vour results with those from
exercises D and 6 in Chap. 4.

~l
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6

Genetic Programming

6.1 Aims of this Chapter

[n this chapter we present genetic programming, the voungest member of the
cvolutionary algorithm family. Besides the particular representation (using
trees as chromosomes). it differs from other EA strands in its application
area. While the EAs discussed so far are typically applied to optimisation
problems. GP could instead be positioned in machine learning. In terms of
the different problem types as discussed in Chapter 1, most other EAs are for
finding some input realising maximum payoff (Fig. 1.4). whereas GP is used
to seek models with maximum fit (Fig. 1.5). Clearly, once maximisation is
introduced. modelling problems can be seen as special cases of optimisation.
This, in fact. is the basis of using evolution for such tasks: models are treated
as individuals, and their fitness is the model quality to be maximised. The
summary of GP is given in Table 6.1.

Representation Tree structures
Recombination |Exchange of subtrees
Mutation Random change in trees

Parent selection |Fitness proportional
Survivor selection|Generational replacement

Table 6.1. Sketch of GP

6.2 Introductory Example

As an example we consider a credit scoring problem within a bank that lends
money and keeps a track of how its customers pay back their loans. This
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information about the clients can be used to develop a model describing
good versus bad customers. Later on, this model can be used to predict
customers” behaviour and thereby assist in evaluating future loan applicants.
Technically. the classification model is developed based on (historical) data
using personal information along with a creditworthiness index (good or bad)
of customers. The model uses personal data as input. and produces a binary
output. standing for the predicted creditworthiness of the corresponding
person. For instance. the annual salary, the marriage status. and the munber
of children can be used as input. Table 6.2 shows a small data set. A possible

Customer Id|No. of children|Salary|Marital status|Creditworthiness
Id-1 2 45.000 Married 0
Id-2 0 30.000 Single 1
Id-3 1 40.000 Married 1
Id-4 2 60.000| Divorced 1
1d-10000 2 50.000 Married 1

Table 6.2. Data for the credit scoring problem

classification model using these data might be the following:

IF (No. children = 2) AND (Salary > 80000) THEN good ELSE bad  (6.1)

In general, the model will look like this:

IF formula THEN good ELSE bad

Notice, that formula is the only unknown in this rule, and all other elements
are fixed. Our goal is thus to find the optimal formula that forms an optimal
rule classifying a maximum number of known clients correctly.

At this point we have formulated our problem as a search problem in the
space of possible formulas,! where the quality of a formula @ can be defined as
the percentage of customers correctly classified by the model IF @ THEN good
ELSE bad. In evolutionary terms we have defined the phenotypes (formulas)
and the fitness (classification accuracy). In accordance with the typical GP
approach we use parse trees as genotypes representing formulas. Fig. 6.1 shows
the parse tree of the formula in Eq. (6.1).

This representation differs from those used in GAs or ES in two important
aspects:

! Notice that we have not defined the syntax, thus the space of possible formulas,
exactly. For the present treatment this is not needed and Sect. 6.3 treats this
issue in general.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

6.3 Representation 103

AND

N 2 S 80.000

Fig. 6.1. Parse tree

e The chromosomes are nonlinear structures, while in GAs and ES they are
typically lincar vectors of the type ¢ € Dy x ... x D,,., where D; is the
domain of ;.

e The chromosomes can differ in size, measured by the number of nodes of
the tree, while in GAs and ES their size, that is, the chromosome length
n, is usually fixed.

This new type of chromosomes necessitates new variation operators suitable
for trees. Such crossover and mutation operators arc discussed in Sects. 6.4
and 6.5. As for selection, notice that it only relies on fitness information and
therefore it is independent from the chromosome structure. Hence, any selec-
tion scheme known in other EAs, e.g.. (1, A) selection. or fitness proportional
with generational replacement. can be simply applied.

6.3 Representation

As the introductory example has shown, the general idea in GP is to use
parse trees as chromosomes. Such parse trees capture expressions in a given
formal syntax. Depending on the problem at hand. and the users’™ perceptions
on what the solutions must look like, this can be the syntax of arithmetic
expressions, formulas in first-order predicate logic. or code written in a pro-
gramming language. To illustrate the matter. let us consider one of each of
these types of expressions.

e An arithmetic formula:

2-7r+((a:+3)—5—_%—1), (6.2)
e A logical formula:
(x Atrue) = ((zVy)V(z < (zAYy))), (6.3)

e The following program:
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1= 1;
while (i < 20)
{

1 =1+1

Figs. 6.2 and 6.3 show the parse trees belonging to these expressions.

./\— A/\v
N /N N N
2 n/+\ A+ PN /\A
o 5/\ - X/\y

= while
VNN
1 1 < =
VAN
i 20 i +
YN
i 1

Fig. 6.3. Parse tree belonging to the above program

These examples illustrate generally how parse trees can be used and in-
terpreted. Depending on the interpretation GP can be positioned in differ-
ent ways. From a strictly technical point of view, GP is simply a variant
of GAs working with a different data structure: the chromosomes are trees.
This view disregards application-dependent interpretation issues. Neverthe-
less, such parse trees are often given an interpretation. In particular, they can
be envisioned as executable codes, that is, programs. The syntax of functional
programming, e.g., the language LISP, very closely matches the so-called Pol-
ish notation of expressions. For instance, the formula in Eq. (6.2) can be

rewritten in this Polish notation as
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+((2, 1), = (+(2.3). /(y. +(5,1)))).

while the executable LISP code? looks like:

(+(¢27) (= (+23)(/y(+51)).

Adopting this perception. GP can be positioned as the “programming of
computers by means of natural sclection™ [229]. or the “automatic evolution of
computer programs’~ [38]. In the following we describe genetic programming
with a rather technical flavour, that is. we emphasise the mechanisms, rather
than the interpretation and context-specific issues.

Technically speaking, the specification of how to represent individuals in GA
boils down to defining the syntax of the trees, or equivalently the syntax of the
svmbolic expressions (s-expressions) they represent. This is commonly done
by defining a function set and a terminal set. Elements of the terminal set
are allowed as leaves. while symbols from the function set are internal nodes.
For example, a suitable function and terminal set that allow the expression in
Eq. (6.2) as syntactically correct is given in Table 6.3.

Function set|{+, —, ./}
. Terminal set|IR U {z. y}

Table 6.3. Function and terminal set that allow the expression in Eq. (6.2) as
svntactically correct

Strictly speaking, a function symbol from the function set also must be given
an arity, that is, the number of attributes it takes must be specified. For stan-
dard arithmetic or logical functions this is often omitted. Furthermore, for the
complete specification of the syntax a definition of correct expressions (thus
trees) based on the function and terminal set must be given. This definition
follows the general way of defining terms in formal languages and therefore is
also often omitted. For the sake of completeness we provide it below:

All elements of the terminal set T are correct expressions.
It f € Fis a function symbol with arity n and ey,..., e, are correct
expressions, then so is f(ey,...,en).

e There are no other forms of correct expressions.

Note that in this definition we do not distinguish different types of expressions;
each function symbol can take any expression as argument. This feature is
known as the closure property in GP.

2 To be precise we should use PLUS, etc., for the operators, but for the sake of an
easy comparison with Eq. (6.3) we keep the arithmetical symbols.
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In general, it can happen that function svimbols and terminal symbols are
tvped and there are syntactic requirements excluding wrongly tyvped expres-
sions. For instance, one might nced both arithmetic and logical function sym-
bols, e.g.. to allow (N = 2) A (S > 80.000)) as a correct expression. In this
case it must be enforced that an arithmetic (logical) function svmbol only
has arithmetic (logical) arguments. ¢.g.. to exclude N A 80.000 as a correct
expression. This issue is addressed in stronglyv tvped genetic programming
[281].

Before we go into the details of variation operators in GP. let us note that
very often GP uses mutation or crossover in one step. This is in contrast to
GA and ES. where crossover (recombination) and mutation are used in two
consecutive steps. This subtle difference is visible on the GP flowchart given
in Fig. 6.4 after Koza [229]. This chart compares the loop for filling the next
generation in a generational GA with that of GP.

es
next Y i = population size ? <— next yes | ation size 2
) «—i= ulafion size ? |
generation generation PP -
y no
¥ no
-
_Sek?(_:f two select variation op.
individuals probabilistically
v wihp  ———="~=___ wihp
perform crossover select one select two
with probability p individual individuals
perform mutation perform mutation perform crossover
with probability P
y : :
add offspring to add offspring to
add offspring to intermediate pool intermediate pool
intermediate pool ¥ +
+ i=i+1 i=i+2
i=i+2 T L

GA loop GP loop

Fig. 6.4. GP flowchart

6.4 Mutation

In theory, the task of mutation in GP is the same as in all other EC branches,
that is, creating a new individual from an old one through some small random
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variation. The most common implementation works by replacing the subtree
starting at a randomly selected node by a randomly generated tree. The newly
created tree is usuallv generated the same wav as in the initial population.
(Sect. 6.8). Fig. 6.5 illustrates how the parse tree belonging to Eq. (6.2) (left)
is mutated into a parse tree standing for 2 -7 + (( + 3) — y). Note that the
size (tree depth) of the child can exceed that of the parent tree.

N

NN AN
/\ X

parent child

Fig. 6.5. GP mutation illustrated: the node designated by a circle in the tree on
the left is selected for mutation. The subtree staring at that node is replaced by a
randomly generated tree. which is a leaf here

Mutation in GP has two parameters:

e The probability of choosing mutation at the junction with recombination
e The probability of choosing an internal point within the parent as the root
of the subtree to be replaced

It is remarkable that Koza's classic book on GP from 1992 [229] advises
users to set the mutation rate at 0. i.e.. it suggests that GP works without
mutation. More recently Banzhaf et al. recommended 5% [33]. In giving mu-
tation such a limited role. GP differs from other EA streamms. The reason for
this is the generally shared view that crossover has a large shuflling effect, act-
ing in some sense as a macromutation operator [10]. The current GP practice
uses low, but positive, mutation frequencies, even though some studies indi-
cate that the common wisdom favouring an (almost) pure crossover approach
might be misleading [254].

6.5 Recombination

Recombination in GP creates offspring by swapping genetic material among
the selected parents. In technical terms, it is a binary operator creating two
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child trees from two parent trees. The most common implementation is sub-
tree crossover, which works by interchanging the subtrees starting at two
randomly selected nodes in the given parents. Note that the size (tree depth)
of the children can exceed that of the parent trees. In this, recombination
within GP differs from recombination in other EC dialects.

During the development of GP many crossover operators were offered. The
most commonly used one. subtree crossover. is illustrated in Fig. 6.6.

/N

NN

2 Tt +
VN AN
B 37 A a 3 3 t
N N
5 1 y 12
parent 1 parent 2

A A\,
NN N, N,
NN AN

X 3 a 3 5 1 Y 12

child 1 child 2

Fig. 6.6. GP crossover illustrated: the nodes designated by a cirele in the parent
trees are selected to serve as crossover points. The subtrees staring at those nodes
are swapped, resulting in two new trees, which are the children

Recombination in GP has two parameters:

e The probability of choosing recombination at the junction with mutation
e The probability of choosing an internal point within each parent as
crossover point
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6.6 Parent Selection

GP typically uses fitness proportionate selection; however. because of the large
population sizes frequently used (population sizes of several thousands are not
unusual®), a method called over-selection is often used for population sizes
of 1000 and above.

In this method, the population is first ranked by fitness and then divided
into two groups, one containing the top 4 and the other containing the other
(100 — .r)%. When parents arc selected, 80% of the selection operations come
from the first group, and the other 20% from the second group. The values of .«
used are found empirically by “rule of thumb™ and depend on the population
size (Table 6.4).

Population size|Proportion of population in fitter group ()
1000 32 %
2000 16 %
4000 8 %
8000 1%

Table 6.4. Proportion of ranked population in “fitter” subpopulation from which
majoritv of parents are selected

As can be seen, the number of individuals from which the majority of par-
ents are chosen stays constant, i.e.. the selection pressure increases dramati-
cally for larger populations.

6.7 Survivor Selection

Traditional GP typically uses a generational strategy with no elitisin, i.c..
the number of offspring created is the same as the population size, and all
individuals have a life span of one generation. This is, of course, not a technical
necessity; rather it is a convention. In their 1998 book, Banzhaf et al. gave
equal treatment to generational and steady-state GP [38], and the latest trend
appears to be to use a steady-state scheme. This is mainly motivated by the
need for elitism caused by the destructive effects of crossover [10).

6.8 Initialisation

The most common method of initialisation for GP is the so-called ramped
half-and-half method. In this method a maximum initial depth D,,,,, of trees

3 Just as an indication of the population sizes and of how they are growing, in
1994 [231] used 1000; in 1996 [8] used 128,000; and in 1999 [233] used 1,120,000
individuals.
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is chosen. and then cach member of the initial population is created from the
sets of functions F and terminals T using one of the two methods below with
equal probability:

e Full method: here each branch of the tree has depth D,,.,. The contents
of nodes at depth d are chosen from F it d < D,,,,, or from T if d = D, 4,.
e Grow mcthod: here the branches of the tree may have different depths. up
to the limit D,,,,.,.. The tree is constructed beginning from the root. with
the contents of a node being chosen stochastically from FUT if d < D, 4.

6.9 Bloat in Genetic Programming

A special effect of varying chromosome sizes in GP is that these tend to grow
during a GP run. That is, without appropriate countermeasures the average
tree size is growing during the search process. This phenomenon is known
as bloat (sometimes called the “survival of the fattest™). There are many
studies devoted to understanding why bloat occurs and to proposing counter-
measures. see for instance [245, 373]. Although the results and discussions are
not conclusive, one primary suspect is the sheer fact that we have chromo-
somes with variable length. meaning that the possibility for chromosome sizes
to grow along the cvolution already implies that they will actually do so.

Appropriate countermeasures to reduce, or even climinate. tree growth
range from elementarv to highly sophisticated. Probably the simplest way
to prevent bloat is to introduce a maximun tree size and forbid a variation
operator if the child(ren) resulting from its application would exceed this
maximum size. In this case. this threshold can be seen as an additional pa-
rameter of mutation and recombination in GP. Several advanced techniques
have also been proposed over the historv of GP. but practically the only one
that is widely acknowledged is that of parsimony pressure. Such a pressure
towards parsimony (i.e., being “stingy™ or ungenerous) is achieved through
introducing a penalty term in the fitness formula that reduces the fitness of
large chromosomes [209, 372] or using multiobjective techiniques [97].

6.10 Problems Involving “Physical” Environments

An important category of GP applications arises in contexts where executing
a given expression does something, that is, changes the environment, which
in turn affects the execution (and therefore the fitness) of the expression.
The arithmetic examples so far and the symbolic regression application in
Sect. 6.11 do not fall into this category. They are what can be termed data
fitting problems, which form the canonical challenge for many machine learn-
ing algorithms, GP included. This section illustrates another type of problem
that we describe as problems involving “physical” environments. The quotes
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around “physical” indicate that the environment can actually be simulated
which it most often is. Together with data fitting. such problems amount to
the great majority of GP applications.

Paraphrasing Teller [394]. we can say that these problems do not have
solutions that are simple mappings from the inputs to the outputs: some kind
of state information or memory is needed to operate well in these domains. As
a simple example. consider the problem of evolving a robot controller (which
is a computer program) for a robot that must walk down a trajectory and
collect objects on its way. A possible syntax is specified by Table 6.5.

Function set |glue, if-object-found

Terminal set pick, move-on

Table 6.5. Function and terminal set for a simple robot controller

The expressions in the terminal set denote elementary actions that can be
performed by the robot. Executing pick results in collecting the object (if
any) positioned on the present location of the robot. while move-on causes
the robot to shift one position along the trajectory. The functions in the
function set are both_binary. and glue simply concatenates two arguments.
That is, executing glue (x,y) will first perform x and then y. The expression
if-object-found(x,y) represents a conditional action based on the state of
the environment: if there is an object on the present location of the robot then
x is executed, otherwise y.

This syntax allows if-object-found (pick,move) and
if-object-found(move,pick) both be correct expressions (prograims).
The semantics (the environmental effects) tells us that the first one would
work well in performing the object collection task, and the second one would
not be very effective.

What distinguishes this kind of GP application is not the internal EA me-
chanics. Variation. selection. population update. and the like are done the
same way as for all other applications. The difference lies in the fact that a
siimulator is necessary to calculate fitness by measuring achieved performance
in the given environment. In a simple setting, like the above example or the
well-known artificial ant problem [229], this can mean one fitness case only:
one trajectory the robot has to handle. Evaluating the fitness of a given chro-
mosome (where the program is the robot controller) happens by running a
simulator that computes the results of the robot’s actions as driven by this
controller. Technically speaking, this means a fitness evaluation that is com-
putationally expensive. In a more advanced setting it might even be required
that performance be measured within more environments or more initial sit-
uations in the same environment. In this case the fitness evaluations become
very expensive, meaning that one run can take up to months, wall-clock time.
This drawback can be compensated by the quality of the evolved results as
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shown, for instance. by the success of a team of (simulated) robots playing
soccer by an evolved controtler [253].

6.11 Example Application: Symbolic Regression

One of the standard applications of genetic programming is svmbolic regres-
sion. In the one-dimensional case the problem instance to be solved is defined
by a number of pairs (r;.y;) € R x IR (7 € {1..... n}). and the task is to
find a function f : IR — IR such that f(x;) = y; for all 7 € {1..... n}. It is
common to consider the given pairs {(r;.y;) € IR x IR as data points and sce
the whole task as curve fitting. IN other words, we are looking for a function
whose plot curve contains each data point.

To define a GP algorithm for this problem we start by defining the represen-
tation, that is, the syntax of the s-expressions, or parse trees, used as candidate
solutions. Since the problem is arithmetic we can use arithmetic operators as
functions, for instance {+.—,-./ }. but we can also include power. exp, and
elementary geometric functions like sin or cos. As for the terminals, we need
exactly one variable z and some constants. To keep things simple we allow
all elements of IR as constants. Our syntax can now be specified as shown in
Table 6.6.

Function set {{+, —, -, /. exp, sin, cos}
Terminal set RU{z}

Table 6.6. Function and terminal set for a symbolic regression problem

Strictly speaking. we also have to specify the arity of the operators, e.g.. sin
1s unary, and + is binary. but using standard operators as we do. this 1s now
self-evident. The closure property is not a problemn either since all operators
are arithmetical here.

As the following step we define the fitness of an individual f. that is. an
expression in the above syntax. The most natural definition is to base the
fitness of f on some measure of the fitting error. A suitable error measure is,
for instance, the well-known sum of squares

n

err(f) =Y _(f(z:) — ),

=1

which obviously should be minimised.

As for variation operators, we can suffice with using the mutation and re-
combination operators given in Sects. 6.4 and 6.5, respectively. Also the se-
lection mechanisms can be simply chosen from the list of standard options for
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GAs. For parent selection we can use two-tournament, declaring that the win-
ner of the tournament is the individual with the lower err value. Alternatively,
we can follow the GP conventions and use fitness proportionate selection ap-
plied to the normalised fitness function obtained froin err as raw fitness.

Also in line with traditional GP practice, we can choose a generational
population update strategy, where no explicit survivor selection takes place.
What remains to specify is how to start and how to finish. As for starting.
we can use the standard option again, ramped half-and-half initialisation, and
generate 1000 random trees. Note that hereby we defined the population size.
To define when to finish, first we establish the required precision for hitting vy,
by f(x;). say 0.0001. Then we can set the termination condition as having n
hits - that is, having a function f that approximates each y; with the required
precision - or a having reached the maximum nuimber of fitness evaluations.
say 50.000. Given that the population size equals 1000, this amounts to a
maximum of 50 generations.

6.12 Exercises

1. Rewrite Eq. (6.3) in Polish and LISP notation.

2. Give a suitable function and terminal set that allows the expression in
Eq. (6.3) as syntactically correct.

3. The logical operators for negation (—) and conjunction (A) are sufficient to
define other operators, e.g., disjunction (V), implication (—). and equiva-
lence («). Is it a good idea to use the minimal set of operators { =, A }
as function set instead of { =, A, VvV, —, « } for solving a problem
whose solution is a logical formula?

4. Design a GA for the credit score problemn from Sect. 6.2. Discuss the

advantages and disadvantages of this GA versus a GP.

Write, or download. a GP implementation and a standard test problen.

Design and perform some experiments to measure the amount of “bloat™

i.e.. the change in solution size as a function of time. and compare this to

the change in the performance of the solutions over the same time period.

6. Using your solution to the former exercise. investigate the effects of dif-
ferent mutation rates and population sizes.

[}

6.13 Recommended Reading for this Chapter
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2. J.R. Koza. Genetic Programming II. MIT Press, 1994.
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Learning Classifier Systems

7.1 Aims of this Chapter

This chapter introduces an evolutionary approach to machine learning tasks
working with rule sets, rather than parse trees. to represent knowledge. In
learning classifier systems (LCS) the evolutionary algorithm acts as a rule
discovery component. LCS systems are used primarily in applications where
the objective is to evolve a system that will respond to the current state of its
environment (i.e., the inputs to the system) by suggesting a response that in
some way maximises (future) reward from the environment.! Specifically. the
idealised result of running an LCS is the evolution of a rule base that covers the
space of possible inputs and suggests the most appropriate actions for each.
Through LCS algorithms we also demonstrate evolution where cooperation
between the population members (i.e., rules) is crucial. In this aspect LCS
systems differ significantly from the other four members of the evolutionary
algorithm family, where individuals strictly compete with each other.

The summary of LCS is given after the introductory example in Table 7.1.
while Fig. 7.1 illustrates a generic systen.

7.2 Introductory Example

In order to illustrate LCSs. we use as an example a well-known problem: the
multiplexer. A A-bit multiplexer concerns bit-strings of length A treated as
being in two parts: [ address bits followed by 2¢ data bits, i.e., k = [ + 2'. For
[ = 2 we have k£ = 6, and 101011 is a correct string. In a k-bit multiplexer
problem we have to return the value of the data bit specified by the address
part of a given string. Given the input string 101011, the address bits 10
decode to the value 2, and the second data bit from 1011 is 0. The correct.

! This class of problems is often known as reinforcement learning problems;
typical applications range from data-mining to robotics.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

116 7 Learning Classifier Systems

output for 101011 is thus 0. A rule capturing this response can be denoted as
101011 : 0. In general, a rule can be specified by a condition part followed by
a colon (:) and an action part. In the present example actions are suggested
outputs.

There are several possible tasks concerning a A-bit multiplexer. For instance,
one could aim at building a system, a rule set in our case. that returns the
correct output for each input. Alternatively. one might want to know what
response (correct /incorrect) the external system would return in reply to each
possible symbol output for any given input.

Clearly, there are 2% possible input strings. and consequently 2%*1 binary
rules that would completely describe the environment. However. since this
number scales exponentially with the size of the problem. it is casy to see
the attractions of a system that is able to generalise. For instance. by the
very nature of the multiplexer problem, the values in the 2! — 1 data bits
not currently addressed are irrelevant, hence for our 6-multiplexer three of
the four data bits can be ignored at any one time. Now consider adding a
“don’t care” symbol # to the set of values that can occur in the condition
part of the rules and defining that the condition bit © = # always returns
the value “TRUE”, and can therefore be ignored. For example. the condition
140 will read as (bit 1 = 1) AND (bit 3 = 0 ). Then for the instance above,
we can replace eight different rules in the old syntax (only Os and 1s) by the
generalisation 104044 : 0.

Now let us assume that our environment gives us a reward of, say. 100 for the
correct answer and 0 for an incorrect response. Then the rules 101011 : 0 and
101011 : 1 would get payofts of 100 and 0, respectively. To evolve a good rule
set we extend the representation, i.e., the rule syntax, by reward information
separated by an arrow leading from the actual rule. In this notation 101011 :
0 — 100 and 101011 : T — 0 are two possible rules. In general. the reward
part of a rule stands for a predicted payoff of applying that rule.

The working of one possible LCS system (as we show later there are many
variants) for this simple multiplexer problem. where we wish to output the
value for every input string that maximises the pavoff received can be de-
scribed as follows:

e The environment is interfaced to the system as a string of length k£ as the
input message, where a single binary variable serves as the output, and
an integer value from the environment represents the payoff received from
the action.

We have a set of rules forming the population.
There are two main cycles: a rule evaluation cycle and a rule discovery
cycle.

e A rule evaluation cycle works as follows:

—  The condition part of each rule in the rule base is examined to see if
it matches the current input string. Those rules that match are tagged
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as belonging to the match set for this cycle. Note that different rules
in the match set may advocate different actions.
The rules in the match set are grouped according to the action (output)
they advocate. and a predicted payoff for cach action is calculated from
the individual rules’ predictions.
Based on these predictions, an action is chosen. A simple strategy is to
oo for the action with the highest predicted pavoft. All the rules that
advocated the chosen action are tagged as belonging to the action set
for that time step.
The action is posted to the environment. and a reward signal will be re-
ceived. A credit allocation mechanism is used to distribute that reward
amongst the rules in the action set that led to the reward. A natu-
ral way to reward individual rules is to raise their predicted payoft. so
that thev would have more influence on future decisions concerning the
action to be chosen.

e In the rule discovery cycle, the GA is run on the population of rules to

generate new rules and delete poorly performing ones.

Parent selection is performed based on the strength of individual rules
measured by their predicted payoft.
The condition:action parts of the selected rules are recombined and
mutated to create offspring.
Children are given the average of their parents’ strength.
Survivor selection is performed based on the strength of individual
rules to update the population. that is. to create a new rule set.

Let us note that although the notation 101011 : 0 — 100 might suggest
otherwise, technically the predicted payoff is not part of the genotype since
it does not undergo mutation and crossover. In addition, note that the multi-
plexer is a so-called single step problem with immediate reward at each time
step. In general, this need not be the case. A whole chain of rule applications.
partly reacting to actions of previously fired rules, can be performed before
the environmental feedback (and the corresponding reward distribution) takes
place. Tt is in these cases that cooperation among rules (those in the chain
resulting in a rewarded action) occurs by distributing the reward over all rules
in the chain. Finally, notice that rules with an identical action part matching
the same conditions are actually competing. They can be seen as forming an
environmental niche in the sense of having to share resources: the rewards
earned by the action they all advocate. This forms a natural bias against
having too many rules in the same niche, and at the same time favours more
general rules since they may fire in more situations, and receive rewards more
frequently. The hoped-for outcome is the long-term evolution of sufficiently
general rules.

After this introductory example we give the summary of a typical LCS
in Table 7.1. As we will see later, although these details are typical, many
different versions of LCS have been proposed in which the specifics vary.
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Representation  |condition:action:prediction-tuples

conditions use {0.1,#} alphabet

Recombination Omne-point crossover on conditions/actions

Mutation Binary/ternary resetting as appropriate on action/conditions

Parent sclection  [Fitness proportional

with sharing within cnvironmental niches

Survivor sclection{Stochastic. inversely related to

number of rules covering same envirommental niche

Table 7.1. Sketch of a generiec LCS

7.3 General Background

Learning classifier systems were first described by Holland in 1976 [203] as a
framework for studving learning in condition:action rule based systems. using

genetic algorithms as the principal method for the discovery of new rules
and the reinforcement of successful ones. In their broadest form. they can be

considered as an iterative procedure governing the interaction of a set of rules
with an external environment. The action of a generic LCS can be viewed as

follows:

The state of the environment is transmitted to the system via a set of
detectors whosc output is put on a message list.

This message list may also contain other signals posted there by rules that
have fired on previous cycles, or the detector signals from previous cycles.
This means it may act as a form of memory.

The condition part of each rule in the rule base is then examined to see
if it matches the current message list. Those rules that match are tagged
as belonging to the match set for this cvele. Note that different rules in
the match set may advocate different actions.

The rules in the match set are grouped according to the action they ad-
vocate. and a predicted pavoff for cach action is calculated from the indi-
vidual rules” predictions.

Based on these predictions. an action is chosen. and all of the rules that
advocated that action are tagged as belonging to the action set for that
tune step.

The action is posted to the message list. The action consists of instructions
to be read by the effectors (which interact with the environment), and
(optionally) signals to the left on the “internal” message list.

Periodically a reward signal is received from the environment. A credit
allocation mechanism is used to distribute that reward amongst the
rules, usually amongst the chain of action sets that led to the reward.
Periodically the GA isrun on the population of rules to generate new rules
and delete poorly performing ones.

The basic elements of this generic LCS are shown in Fig. 7.1.
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Fig. 7.1. Structure of a learning classifier system
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In the form described above. LCS clearly belong to the field of reinforcement
learning where they share many features with systems such as Q-learning
[413]. However, where they differ. and where they derive their power, is in the
use of # (don’t care) symbols in the condition parts of the rules. This provides
an explicit mechanism via which the system can learn generalisations about

the environment.

Although the idea of adaptive rule based systems has been around for some
decades [329], and Holland’s ideas of using GAs as the rule discovery com-
ponent were well known from 1976 onwards, the systems he described were
quite complex, and have tended to be viewed as a manifesto rather than as
a complete specification for a working algorithm. The 1980s saw experimen-
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tation with a number of variants such as Samuel [183], GOFER-1 [59]. and
ALECSYS [110], as well as some successful applications in fields such as gas
pipeline design [172].

However. most of these systems did not exhibit the hoped-for performance
as a result of problems such as the proliferation of overgeneral rules and dif-
ficultics in maintaining a complete rule base. The concept of overgenerali-
sation can be understood by considering that we are effectively dividing the
input space into a number of discrete subsets and putting different labels on
these. representing actions and possibly payoffs. The role of generalisation is
to permit us to give a compact description of a subset, rather than listing
every separate point. An overgeneral rule is one that matches elements from
more than one of these subsets.

The very complexity of the systems also made these shortcomings difficult
to analyse. as it is with other highly complex systems to which LCS have been
compared, such as artificial neural networks [366]. For these reasons a major
step forward was the development of Wilson’s ZCS system [426]. a minimalist
version of the LCS that, as a result of its simplicity, has the potential for
careful analysis, whilst exhibiting surprisingly good behaviour.

7.4 ZCS: A “Zeroth-Level” Classifier System

As suggested above, ZCS represents a “stripped down” version of the generic
LCS system illustrated in Figure 7.1. The most obvious difference is that it
has no internal message list, and therefore no explicit method for transmitting
information between cycles. An immediate consequence of this is that the
format of the rules is determined entirely by the interface of the system with
its environment, i.e., each rule r consists of a real-valued strength s plus one
condition bit for each (binary) detector and one action bit for each (binary)
effector: r =<c:a— s >.

In cach performance cycle the match set (those members of the rule pop-
ulation whose conditions match the current input from the environment) is
found from the population, and this is then logically subdivided according
to the actions advocated by the matching rules. Action selection uses a fit-
ness proportionate-like method (Sect. 3.7.1) where the fitness of the actions
is given by the the sum of the strengths of those rules advocating that action
in this match set.

If the case occurs that no rules have conditions matching the current input,
i.e., the matchset is empty, ZCS uses a so-called cover operator, which creates
a rule with the condition (augmented with #s) and a random valid action.

The credit assignment component of ZCS works as follows:

e All rules not in the match set M for this cycle t are initially unchanged:

Vrg Mt sl =s,.
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e All those rules in the match set A%, but not the action set A (i.e.. those
advocating weaker actions) have their strengths reduced by multiplication
with a factor 7 € [0, 1):

vre M\ A" & =5, T

e All those rules in the action set have a fraction .3 € [0. 1) of their strengths

removed:

Vre Al s =(1-—.3)s,.

?

e This strength 1s “pooled™ and distributed cqually amongst the members
of the previous action set. after being reduced by a factor v € [0.1); i.c..
let » =" 40 35y, then:

. t—1 "o oL
VY GA S’r AQ’—{-I—'Z{I—I

e Tinally, any feedback P! from the system is reduced by a factor ;3 and
then distributed equally amongst the members of the current action set:
vre M s =35+ 3-P/| A"

This credit assighment method, with strength being moved each action set
to its predecessor, has been called an implicit bucket brigade. The effect
15 to reward sequences of actions that lead to reward from the environment,
and the use of the discounting term « leads to a preference for shorter rather
than longer chains of actions before rewards.

The rule set is repeatedly modified as the system learns new rules by a
genetic algorithm, which is invoked periodically. Two rules are selected from
the rule base using fitness proportionate selection based on rule strength.
One-point, crossover and bitwise mutation (with one of the two/three valid
values chosen at random for the action/condition parts of the rules) are then
used to create two offspring. each of which receives the mean of its parents’
strength as its initial strength. These new rules then replace two of the current
rule set, which are chosen stochastically, this time with probabilities inversely
proportional to their strength.

The fact that the reward received by each action set is divided equally
amongst all of its members, coupled with fitness proportionate selection acting
over the whole population of rules in the GA phase, means that a kind of fitness
sharing is at work. This tends to preserve a number of rules in each niche
(action set) based on the relative frequency of occurrence of the environmental
conditions and the payoff received from the action. Although Wilson’s original
work reported some problems with the persistence of overgeneral classifiers
(which match more than one environmental niche as discussed above), Bull
and Hurst [68] showed theoretically and empirically that in fact ZCS is capable
of evolving optimal behaviour under a variety of conditions.
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Howcver, we should note an important feature of ZCS. Since the GA pre-
serves rules according to their strength, or payoff, it only preserves the rules
in cach niche that lead to maximum reward. Thus, in terms of our multi-
plexer example above. it would preserve the rule 1042044 : 0 — 100. but not
10#04#4# : 1 — 0. A more formal way of expressing this feature is that ZCS
does not evolve a complete mapping from the space of rules to their payoffs.
That 1s. if we denote the set of possible environmental states by S. the set of
possible actions that the LCS can perform by A, and the set of possible reward
values by P, then ZCS does not preserve the complete mapping S x A4 — P.

For many applications this feature is entirely acceptable. and it has the
benefit that the evolved rule bases are much smaller and consequently casier
to analyvse for any given size problem. However, as Wilson noted. the use of fit-
ness proportionate selection. with its well-known problems i the presence of
highly fit initial solutions. can lead ZCS to prematurely converge onto subop-
timal rules before the space can be properly explored and stable populations
formed on each niche. Wilson refers to these as “path habits™. Another issuc
he raises is that. since the GA can create offspring via recombination from
rules belonging to entirely different niches. often these may turn out to have
no value. These considerations. along with the fact that under some circiun-
stances (e.g., dynamic or noisy environments). and for some applications (e.g..
data mining), it might be desirable to obtain a complete mapping led Wilson
to consider other ways in which this might be achieved, leading to the design

of XCS [427].

7.5 XCS

7.5.1 Motivation

As suggested above, ZCS and other previously proposed LCS algorithms ex-
hibit a number of undesirable features, namely:

e The continued presence of rules depends on their being selected by the GA
on the basis of payoft. This biases against:
—  Rules occurring early in a chain of events that lead to a reward, and
thus receiving heavily discounted payoff.
— Rules that lead to relatively low rewards, even if they are the most
appropriate action in the circumstances (although note that Bull and
Hurst have proved that this effect is heavily dependent on the choice
of parameters [68]).
e Running a panmictic GA (i.e., allowing recombination between any rules)
can create rules with little meaning, slowing down the learning process.
e The systems do not have explicit pressure towards evolving a complete
mapping from inputs and actions to payoff predictions.
e The systems often failed to evolve accurate generalisations.
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A nmumber of algorithms had been proposed that address some of these
issues. such as running the GA in the match sets rather than in the whole
population [58]. and using a combination of factors in the calculation of fitness
used by the GA [59. 161]. XCS was novel in tackling all of these issues. in
particular that of the mapping, via the separation of the factors used in action
selection (prediction of payoft for each suggested action) and rule discovery
selection (the fitness of the rule used by the GA).

7.5.2 Description

Like its predecessor. XCS is a reduced version of the generie LCS in Figure 7.1.
In particular, it does not have any memory. so the internal message list does
not cxist. However. its prime distinguishing characteristic is that cach rule
now is a five tuple (¢ : a : p: e F), where ¢. a, and p are the condition.
the action. and the predicted pavoff. respectively. as before, plus a measure of
prediction error £, and a separate fitness £, which is used by the GA. It is vital
that the fitness is a function of prediction accuracy rather than magnitude.

For a complete description, the reader is directed to [427. 428]. We will
restrict ourselves here to listing its major features.

e The match set M is found as before. Let A’ denote the set of actions
present in the rules of Al. Then Al is logically subdivided according to
actions.

e For cach action a € A’, a fitness-weighted average of the rules in that
subset R, 1s used as the predicted pavoft:

F,

Da = E wy - pr. where w, = ————.
Zré R, Fr

TER,

e Action selection can use a number of stochastic schemes (e.g., propor-
tional to pavoff). or choose the action with the highest predicted payoft
deterministically.

e Once the action is posted to the environment and any reward received. the
rules in the previous action sct are updated. This has three components:
—  First, the fitness values are updated using the current errors &, for each

rule r. As stated above, the fitness is based on accuracy k., which is
defined by the prediction error ¢, as:

Ep—€
eln(a) ——QEO

Ky = 3

where the constants g and « are parameters of the system. Thus for
each rule the accuracy «, is calculated, and then the fitness is updated
according to:

Fl=F.+ 3 (k.- F}),
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where /3 is called the learning rate parameter, and ~/ is the relative
accuracy, i.e.. normalised with respect to the other rules in the action

set

/ ho
R

' ZI‘GR,, by
Second, a payoff value P is calculated using the maximum predicted
payoff of all actions in the current match set Al (i.c.. not necessarily
the chosen action). discounted by a factor 5 (as per ZCS), plus any

reward 2 received by the system in the previous time step:
P=~ -mar{p, | ae A} +R.
This payoft value P is used to update the prediction errors:
e =¢e+3 (| P—pr|—cr).

Finally, the pavoff P is used to update the actual predictions p,. in the
previous action set:

pr=pr+08-(P—p).

e The GA is modified to achieve explicit niching by acting on the contents of
the action set (match set in early versions). As noted before, the selection
operator allocates more reproductive opportunities to accurate rules, and
the probability of deletion is set proportional to the size of the action set.

e In addition to the mechanisms above, specialised mechanisnms are used for
initialising and managing the first few updates of the values of p,e, F', as
well as for deciding when and where the GA should run, according to how
recently it has run in each match set, and so on.

It is worth noting that several features of the reinforcement procedure differ
from previous systems, in particular the way in which the payoff P is calcu-
lated using the mazimum predicted payoff of all actions in the match set.
This stems from extensive comparisons with QQ-learning and other reinforce-
ment learning algorithms. for which convergence to optimal solutions can be
proved. Similarly, the use of the update rule is informed by research in other
areas of machine learning.

Although the full version of XCS contains a number of sophisticated mecha-
nisms and a large number of parameters, it has been shown to exhibit excellent
performance in a wide variety of applications and to exhibit a good ability
to evolve a rule set that contains accurate generalisations about the search
space [428]. A further benefit to the interested reader is the fact that several
implementations are freely available on the Internet.

7.6 Extensions

In the previous sections we restricted our attention to binary inputs and out-
puts in order to simplify the description. However, this restriction is purely
arbitrary and is inappropriate in many situations.
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Real-Valued Inputs/Outputs

In many applications the state of the environment is best described by de-
tectors with real-valued outputs. In this case the usual approach is to use
rules in which each part of the conditions consists of a range of values that
the variable can take in order to match. The binary output variables in the
actions may also be replaced by real values, and the GA’s variation operators
arc chosen appropriately.

Wilson [429] recommends that each variable in the condition be represented
by a tuple (centre, spread) representing a range of values centre + spread. It
was recently shown [386] that if the variables are bounded, then this repre-
sentation introduces a bias that worsens performance. and that better results
can be obtained by using a tuple that explicitly contains the endpoints of the
range.

Fuzzy Classifiers

A natural extension in the presence of real-valued or integer-coded variables
is to represent rules using fuzzy rather than crisp matching. Thus, rather than
stating

IF (light_intensity > 8.3) AND (light_source_angle between —15 and +15) THEN
turn_angle= 47.

one might have a rule

IF (light_intensity = quite bright) AND (light_source_angle = nearly forward)
THEN turn left.

Effectively these conditions work by defining a number of fuzzy classes for
cach variable, and then defining a set of overlapping membership functions
(one for each class) over the range of the variable as illustrated for three
concepts “close”. “near”. and “far” concerning a variable “distance” in the

Fig. 7.2.
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Fig. 7.2. Membership of three fuzzy classes as a function of distance
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The action of the fuzzy LCS then starts by the “fuzzification™ process
whereby the real-valued inputs are compared to the membership functions
to find the degree of membership of cach class. The condition parts of the
rules work on the classes. i.e., they take values of the form {close. medium.
far. don’t_care} in the example above. Thus all rules now match to some de-
gree rather than completely or not at all. although typically a threshold is
used to cut off poorly matched rules.

This means that a number of rules are active in the match set. and the
final output is decided by a “defuzzification™ process. whereby the rules are
weighted according to the degree of their match. Similarly, the reinforcement
process usually distributes rewards to rules according to their degree of match
to the environment.

A primary advantage of using fuzzy sets is that they can exhibit extremely
graceful behaviour in the presence of noise compared to “crisp” sets with exact
cut-offs for the menmbership functions. This is very useful when the system’'s
perception of the current environment state may be inaccurate, as typified by
robotics applications where sensor values are notoriously unreliable [57].

S-Classifiers

In our discussion of binary and real-coded inputs to the LCS systems, we
have considered whether the individual inputs match the relevant parts of the
condition of a rule, but we have only considered a rule to match the entire
input 1if all of its parts match. That is. we effectively compute a truth value
for each separate bit/real of the input string and then perform a logical AND
of these truth values. As an example, recall from Sect. 7.2 that the condition
140 is equivalent to saying (bit 1 = 1) AND (bit 3 = 0 ), as # always returns
the value “TRUE” and can be ignored.

A number of authors have proposed and experimented with alternative
representations that would allow different sorts of logical relationships to be
expressed such as (bit 1 = 1) OR (bit 3 = 0 ), using what Wilson termed s-
classifiers [426]. Typically this is done by using LISP s-expressions and evolv-
ing them via GP, rather than using binary strings and evolving them with
GAs. For example, in [5] s-expression-based ZCS systems are used for a num-
ber of classification problems.

7.7 Example Applications

7.7.1 Modelling Financial Market Traders

An example of the use of LCS for data mining and modelling problems can
be seen in [339], where Schulenberg and Ross used XCS to evolve sets of
rules modelling the behaviour of stock market traders. For inputs they used
ten years of trading history, in the form of daily statistics such as volume
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of trade, current price, change in price over last few days, and whether this
price is a new high (or low), and so on. for a given company’s stock. The
evolved traders consisted of sets of rules, and each day the current stock
market conditions were presented to the trader. triggering a rule that decided
whether stock was bought or sold. Periodically a GA is run on the set of initial
random rules so that well-performing ones are rewarded and poorly performing
ones discarded. It was demonstrated that the system evolved trading agents
that outperformed many well-known strategies and varied according to the
nature of the particular stock they were trading. Of particular interest and
benefit. compared to methods such as neural networks, which are also used
for this kind of modelling problem in time-series forecasting, is the fact that
the rule base of the evolved traders is easily examinable, that is to say that
the models that are evolved are particularly transparent to the user and so
have explanatory power.

7.7.2 A Multistep Problem

Like the multiplexer and most data mining applications, the example sketched
above was a single-step problem, i.c., reward is received from the environ-
nment after every step. The design of LCS algorithms also usually permits their
use in so-called multistep problems, where there may be a variable number
of steps before any reward is received.

A nice example of a practical application representing a multistep environ-
ment. can be found in the work of Hurst et al. [215]. who evolved the control
system for a real robot on-line (rather than in simulation). Their robot ran
under the on-board control of a temporal classifier system (TCS). This is a
modified version of LCS, where rather than going through a fixed cycle of
events at each time step, the system inherently learns to generalise over slight
changes in the input sensor values, so as to learn when a significant change
in environmental state has occurred. Thus if for a given state a, two different
actions both lead to to a next state b, but if the time taken for this to happen
is different. then the action taking the least time is rewarded more. This is
achieved by modifying the credit allocation so that the discount factor 7 is
replaced by a term exponentially decreasing according to the time taken.

The problem set for the robot is to move towards a light from any given
starting position. While this may seem a simple problem, it could of course
stand for any number of real-world problems. The robot is equipped with three
light sensors whose outputs represent the inputs to TCS, so an interval coding
is used for the condition parts of the rules. The actions are one of (0,1,2) rep-
resenting the actions mowe-left-continuously, move-ahead-continuously, move-
right-continuously. The robot only receives a reward when it reaches the light.
The system used a maximum of 500 rules, with a crossover probability 0.5, a
mutation rate of 0.05, and the GA firing every four cycles probabilistically.

Under the set of experimental conditions, where the size of the arena and the
speed of the robot are known, it was calculated that a robot under the control
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of an optimal system would reach the light in an average of 6.5 seconds. The

robot undergoing on-line learning with TCS initially spent a lot of time hitting

walls, and so on, as would be expected from a random system, but eventually

learned optimal behaviour. Interestingly, it evidenced three distinct stages of

learning:

e First. the robot learned to reach the light quickly, once it had reached its
neighbourhood by random moves, i.e.. it solved the “end-game”.

e In the second phase it learned to apply the move-forward action once it
was facing the light, and did this farther and farther from the source.

e Finally. it learned to efficiently solve the problem of getting the robot
facing the light source as quickly as possible from any starting position.

This work uses several interesting features and extensions to ZCS, but it
also illustrates some of the ways in which LCS can solve multistep environ-
ments. Initially rules proliferate that quickly lead to rewards, since they are
discounted less. Then the system learns to generalise, i.e.. it discovers that the
move-ahead rule is the best thing to do in much of the search space. Finally.
it fine-tunes the rules early on in the reward chain.

7.8 Exercises

1. Suggest a suitable representation for using a LCS on the credit assessment

example in Chap. 6.
2. Discuss the relative advantages and disadvantages of using ZCS and XCS

for this problem.

3. Why do ZCS and XCS use fitness proportionate selection with a roulette
wheel implementation rather than tournamenet selection?

4. How big is a typical match set in a fuzzy LCS?
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8

Parameter Control in Evolutionary Algorithms

8.1 Aims of this Chapter

The issue of setting the values of various parameters of an evolutionary algo-
rithm is crucial for good performance. In this chapter we discuss how to do
this, beginning with the issue of whether these values are best set in advance
or are best changed during evolution. We provide a classification of different
approaches based on a number of complementary features, and pay special
attention to setting parameters on-the-fly. This has the potential of adjusting
the algorithm to the problem while solving the problem.

This chapter differs from most in this book in that it presents rather more
of a survey than a set of prescriptive details concerning how to implement an
EA for a particular type of problem. For this reason, rather than end with
one or two example applications, we have chosen to interleave a number of
examples throughout the text. Thus we hope to both clarify the points we
wish to raise as we present them, and also to give the reader a feel for some
of the many possibilities available for controlling different parameters.

8.2 Introduction

The previous chapters presented a number of evolutionary algorithms. The
description of a specific EA contains its components, thereby setting a frame-
work while still leaving quite a few items undefined. For instance, a simple GA
might be given by stating it will use binary representation, uniform crossover,
bit-flip mutation, tournament selection, and generational replacement. For a
full specification, however, further details have to be given, for instance, the
population size, the probability of mutation p,, and crossover p., and the
tournament size. These data — called the algorithm parameters or strat-
egy parameters — complete the definition of the EA and are necessary to
produce an executable version. The values of these parameters greatly deter-
mine whether the algorithm will find an optimal or near-optimal solution, and
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whether it will find such a solution efficiently. Choosing the right parameter
values 1s. however. a hard task.

Globally, we distinguish two major forms of setting parameter values: pa-
rameter tuning and parameter control. By parameter tuning we mean
the commonly practised approach that amounts to finding good values for the
paramecters before the run of the algorithm and then running the algorithm
using these values. which remain fixed during the run. Later on in this section
we give arguments that any static set of parameters having the values fixed
during an EA run seems to be inappropriate. Parameter control forms an al-
ternative, as it amounts to starting a run with initial parameter values that
arc changed during the run.

Parameter tuning is a typical approach to algorithm design. Such tuning is
done by experimenting with different values and selecting the ones that give
the best results on the test problems at hand. However. the number of possible
parameters and their different values means that this is a very time-consuming
activity. Considering four parameters and five values for each of them, one has
to test 51 = 625 different setups. Performing 100 independent runs with each
setup. this mplies 62,500 runs just to establish a good algorithm design.

The technical drawbacks to parameter tuning based on experimentation can
be summarised as follows:

e Paramecters are not independent, but trying all different combinations sys-
tematically is practically impossible.

e The process of parameter tuning is time consuming. even if parameters
are optimised one by one, regardless of their interactions.

e For a given problem the selected parameter values are not necessarily
optimal, even if the effort made for setting them was significant.

This picture becomes even more discouraging if one is after a “generally
good” setup that would perform well on a range of problems or problem in-
stances. During the history of EAs considerable effort has been spent on find-
ing parameter values (for a given type of EA, such as GAs). that were good
for a number of test problems. A well-known early example is that of [98]. de-
termining recommended values for the probabilities of single-point crossover
and bit mutation on what is now called the DeJong test suite of five functions.
About this and similar attempts [181, 334], it should be noted that genetic
algorithms used to be seen as robust problem solvers that exhibit approxi-
mately the same performance over a wide range of problems [172, page 6].
The contemporary view on EAs, however, acknowledges that specific prob-
lems (problem types) require specific EA setups for satisfactory performance
[26]. Thus, the scope of “optimal” parameter settings is necessarily narrow.
There are also theoretical arguments that any quest for generally good EA,
thus generally good parameter settings, is lost a priori, cf. the discussion of
the No Free Lunch theorem [430] in Chap. 11.

To elucidate another drawback of the parameter tuning approach recall how
we defined it: finding good values for the parameters before the run of the
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algorithm and then running the algorithim using these values. which remain
fized during the run. However. a run of an EA is an intrinsically dyvnamic.
adaptive process. The use of rigid parameters that do not change their values
is thus in contrast to this spirit. Additionally. it is intuitively obvious. and
has been empirically and theoretically demonstrated. that different values of
paramcters might be optimal at different stages of the evolutionary process
[16G. 17. 18. 91. 194. 216. 335. 341. 349. 359. 360. 384. 391].

For instance. large mutation steps can be good in the carly generations.
helping the exploration of the scarch space. and small mutation steps might
be needed in the late generations to help fine-tune the suboptimal chromo-
somes. This implies that the use of static parameters itself can lead to inferior
algorithm performance.

A straightforward way to overcome the limitations of static parameters
is by replacing a parameter p by a function p(t). where ¢ is the generation
counter (or any other measure of elapsed time). However, as indicated earlier.
the problem of finding optimal static parameters for a particular problen is
alrecady hard. Designing optimal dynamic parameters (that is, functions for
p(t)) may be even more difficult. Another possible drawback to this approach
is that the parameter value p(t) changes are caused by a “blind™ deterministic
rule triggered by the progress of time ¢, without taking any notion of the actual
progress in solving the problem. i.c., without taking into account the current
state of the search. A well-known instance of this problem occurs in simulated
anncaling (Sect. 8.5.5) where a so-called cooling schedule has to be set before
the cxecution of the algorithm.

Mechanisms for modifving parameters during a run in an “informed™ way
were realised quite early in EC history. For instance, evolution strategies
changed mutation parameters on-the-fly by Rechenberg’s 1/5 success rule
(Sect. 4.2) using information on the ratio of successful mutations. Davis exper-
imented within GAs with changing the crossover rate based on the progress
realised by particular crossover operators [91]. The common feature of thesc
and similar approaches is the presence of a hunan-designed feedback mecha-
nism that utilises actual information about the search process for determining
new parameter values.

Yet another approach is based on the observation that finding good param-
cter values for an evolutionary algorithm is a poorly structured, ill-defined,
complex problem. This is exactly the kind of problem on which EAs are often
considered to perform better than other methods. It is thus a natural idea
to use an EA for tuning an EA to a particular problem. This could be done
using two EAs: one for problem solving and another one — the so-called meta-
EA - to tune the first one [162, 181, 220]. It could also be done by using
only one EA that tunes itself to a given problem, while solving that problem.
Self-adaptation, as introduced in evolution strategies for varying the mutation
parameters, falls within this category. In the next section we discuss various
options for changing parameters, illustrated by an example.
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8.3 Examples of Changing Parameters

Let us assume we deal with a numerical optimisation problem to minimise

f(j) = f(‘Ll SR 1LL‘71)~,
subject to some inequality and equality constraints
g(T) <0.i=1....,q.

and
hj(x) =0.j=qg+1,.... m.

where the domains of the variables are given by lower and upper bounds
L <a; <u; for 1 <2< n.

For such a numerical optimisation problem we may consider an evolutionary
algorithm based on a floating-point representation. where each individual Z
in the population is represented as a vector of floating-point numbers 7 =

(T1.....&n).

8.3.1 Changing the Mutation Step Size

Let us assume that offspring for the next generation is produced by arithmeti-
cal crossover and Gaussian mutation, replacing components of the vector T
by

x, = z; + N(0,0),

just like in case of evolution strategies (Chap. 4). The simplest method to
specify the mutation mechanism is to use the same o for all vectors in the
population, for all variables of each vector, and for the whole evolutionary
process, for instance, af = x; + N(0,1). As indicated by many studies [152,
317, 341], it might be beneficial to vary the mutation step size. We shall discuss
several possibilities in turn.

First, we can replace the static parameter ¢ by a dynamic parameter, i.e.,
a function o(¢). This function can be defined by some heuristic rule assigning
different values depending on the number of generations. For example, the
mutation step size may be defined as:

t

o(t)=1-0.9 T
where t is the current generation number varying from 0 to T', which is the
maximum generation number. Here, the mutation step size o(¢), which used
for all for vectors in the population and for all variables of each vector, de-
creases slowly from 1 at the beginning of the run (¢ = 0) to 0.1 as the number
of generations ¢ approaches T'. Such decreases may assist the fine-tuning ca-
pabilities of the algorithm. In this approach, the value of the given parameter
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changes according to a fully deterministic scheme. The user thus has full con-
trol of the parameter. and its value at a given time ¢ is completely determined
and predictable.

Second. it is possible to incorporate feedback from the search process. still
using the same o for all vectors in the population and for all variables of cach
vector. A well-known example of this type of parameter adaptation is Rechen-
berg's 1/5 success rule (Sect. 1.2). which states that the ratio of successful
mutations to all mutations should be 1/5. Hence if the ratio is greater than
1/5 the step size should be increased. and if the ratio is less than 1/5 then it
should be decreased. The rule is exccuted at periodic intervals. for instance.
after A iterations each o is reset by

ofc if pgy>1/5,
o =<K o-cif pg<1/5,
o if ps=1/5.

where py is the relative frequency of successful mutations. measured over a
number of trials, and the parameter ¢ should be 0.817 < ¢ <1 [340)].

Using this mechanism, changes in the parameter values arc now based on
feedback from the search. The influence of the user on the parameter values is
much less direct here than in the deterministic scheme above. Of course. the
mechanism that embodies the link between the secarch process and parameter
values is still a heuristic rule indicating how the changes should be made. but
the values of o(t) are not deterministic (although they do come from a fixed
set.).

Third, it is possible to assign an individual mutation step size to each
solution. that is, extend the representation to individuals of length n + 1
as

(X1....,2pn,0).

and apply some variation operators (e.g.. Gaussian mutation and arithmetical
crossover) to the values of x; as well as to the o value of an individual. In
this way. not only the solution vector values (x;) but also the mutation step
size of an individual undergoes evolution. A possible solution introduced for
evolution strategies in Sect. 4.4 in Eq. (4.2) is:

o =g NOL) (8.1)
= LBZ'-{—O'I-NZ'(O, 1). (82)
Observe that within this self-adaptive scheme the heuristic character of the
mechanism resetting the parameter values is eliminated, and a certain value
of o acts on all values of a single individual.

If we change the granularity of the mutation step-size parameter and use a
separate o; to each x;, then we obtain an extended representation as

<£U1,...,CL'n,O'1,...,(In>.
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T- 4\', ).
- 0-,, e (( l)'

= 140l Ni(0.1).

T

~ N NN

X

This 1s a straightforward extension of Egs. (3.1) and (8.2). and indeed. very
similar to Eq. (4.4) from Sect. 4.4.

8.3.2 Changing the Penalty Coeflicients

In the previous section we deseribed different ways to modify a parameter
controlling mutation. Scveral other components of an EA have natural pa-
rameters. and these parameters are traditionally tuned i one or another way.
Here we show that other components. such as the evaluation function (and
consequently the fitness function) can also be parameterised and thus var-
ied. While this is a less common option than tuning mutation (although it is
practised in the evolution of variable-length structures for parsimony pressure
[433]), it may provide a useful mechanism for increasing the performance of
an evolutionary algorithm.

When dealing with constrained optimisation problems. penalty functions
are often used (see Chap. 12 for more details). A common technique is the
method of static penalties [277], which requires fixed user-supplied penalty
parameters. The main reason for its widespread use is that it is the simplest
technique to implement: it requires only the straightforward modification of
the evaluation function as follows:

eval(T) = f(T) + W - penalty(T).

where f is the objective function. and penalty(T) is zero if no violation oc-
curs, and is positive,! otherwise. Usually, the penalty function is based on the
distance of a solution from the feasible region, or on the effort to “repair™ the
solution, i.e., to force it into the feasible region. In many methods a set of
functions f; (1 < j <n) is used to construct the penalty, where the function
f; measures the violation of the jth constraint in the following way:

_, | max{0.g;(z)} if 1<j <gq, .
13(F) = {|h,j(z)| T ghi<i<m. (8:3)
W is a user-defined weight, prescribing how severely constraint violations are
weighted. In the most traditional penalty approach the weight W does not
change during the evolution process. We sketch three possible methods of
changing the value of W.

First, we can replace the static parameter W by a dynamic parameter, e.g.,
a function W(t). Just as for the mutation parameter o, we can develop a

' For minimisation problems.
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heuristic that modifies the weight W over time. For example. in the method
proposed by Joines and Houck [217], the individuals are evaluated (at the
iteration ¢) by a formula, where

cval(T) = f(T) + (C - ) - penalty(T),
where 7 and a are constants. Since
Wity =(C-H)".

the penalty pressure grows with the evolution time provided 1 < (7. o,
Second. let us consider another option. which utilises feedback from the
scarch process. One example of such an approach was developed by Bean and
Hadj-Alouane [42], where each individual is evaluated by the same formula as
before. but W(#) is updated in every generation ¢ in the following way:

(1/3y) - W(t) if B eF  forallt —k+1 <
Wt+1)=19 5, - W() if) e S—Fforallt —k+1<i<t.
W(t) otherwise.

In this formula, S is the set of all search points (solutions), F C S is a set of all

feasible solutions, b' deiotes the best individual in terms of the function cval
in generation 7, 3.2 > 1, and 3; # 3y (to avoid cyeling). In other words.
the method decreases the penalty component 1V (f 4+ 1) for the generation
t + 1 if all best individuals in the last & generations were feasible (i.e., in
F), and increases penalties if all best individuals in the last k generations
were infeasible. If there are some feasible and infeasible individuals as best
individuals in the last k generations, W (¢ + 1) remains without change.

Third. we could allow self-adaptation of the weight parameter, similarly to
the mutation step sizes in the previous section. For example, it is possible to
extend the representation of individuals into

(..o, W),

where 117 is the weight. The weight component W undergoes the same changes
as any other variable z; (e.g., Gaussian mutation and arithmetic recombina-
tion).

To illustrate this method,which is analogous to using a separate o; for each
z;, we need to redefine the evaluation function. Let us first introduce penalty
functions for each constraint as per Eq. (8.3). Clearly, these penalties are all
non-negative and are at zero if no constraints are violated. Then consider a
vector of weights W = (wy,...,wn), and define

eval(Z) = f(Z) + ijfj (Z),

J=1
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as the function to be minimised and also extend the representation of indi-
viduals into
T N 11 R T N

Variation operators can then be applied to both the ¥ and the @ part of
these chromosomes. realising a self-adaptation of the constraint weights, and
thereby the fitness function.

It is important to note the crucial difference between self-adapting mutation
step sizes and constraint weights. Even if the mutation step sizes are encoded
in the chromosomes, the evaluation of a chromosome is independent from the
actual o values. That 1s.

cval((T,0)) = f(T).

for any chromosome (TF.7). In contrast. if constraint weights are encoded in
the chromosomes. then we have

eval ((Z,w)) = fz(T),

for any chromosome (Z, W). This could enable the evolution to “cheat” in the
sense of making improvements by minimising the weights instead of optimising
f and satistfying the constraints. Eiben et al. investigated this issue in [118§]
and found that using a specific tournament selection mechanism neatly solves
this problem and enables the EA to solve constraints.

8.3.3 Summary

In the previous sections we illustrated how the mutation operator and the
evaluation function can be controlled (adapted) during the evolutionary pro-
cess. The latter case demonstrates that not only can the traditionally adjusted
components, such as mutation, recombination, selection, etc., be controlled by
parameters. but so can other components of an evolutionary algorithm. Ob-
viously. there are many components and parameters that can be changed and
tuned for optimal algorithm performance. In general, the three options we
sketched for the mutation operator and the evaluation function are valid for
any parameter of an evolutionary algorithin, whether it is population size.
mutation step, the penalty coefficient, selection pressure, and so forth.

The mutation example of Sect. 83.1 also illustrates the phenomenon
of the scope of a parameter. Namely, the mutation step size parameter
can have different domains of influence, which we call scope. Using the
(xy,...,Zn,01,...,0n) model, a particular mutation step size applies only to
one variable of a single individual. Thus, the parameter o; acts on a subindi-
vidual, or component, level. In the (zy,...,z,,0) representation, the scope of
o is one individual, whereas the dynamic parameter o(t) was defined to affect
all individuals and thus has the whole population as its scope.

These remarks conclude the introductory examples of this section. We are
now ready to attempt a classification of parameter control techniques for
parameters of an evolutionary algorithm.
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8.4 Classification of Control Techniques

In classifving parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account. For example:

1. What is changed? (e.g., representation, evaluation function, operators. se-

lection process. mutation rate, population size, and so on)

How the change is made (i.e.. deterministic heuristie, feedback-based

heuristic, or self-adaptive)

3. The evidence upon which the change is carried out (e.g., monitoring per-
formance of operators, diversity of the population, and so on)

4. The scope/level of change (e.g.. population-level. individual-level, and so
forth).

8]

In the following we discuss these items in more detail.

8.4.1 What is Changed?

To classify parameter control techniques from the perspective of what com-
ponent or parameter is changed, it is necessary to agree on a list of all major
components of an evolutionary algorithm, which is a difficult task in itself.
For that purpose, let us assume the following components of an EA:

Representation of individuals

Evaluation function

Variation operators and their probabilities

Selection operator (parent selection or mating selection)
Replacement operator (survival selection or environmental selection)
Population (size, topology, etc.)

Note that each component can be parameterised, and that the number of
parameters is not clearly defined. For example, an offspring ¥ produced by an
arithmetical crossover of k parents ;..... 7, can be defined by the following
formula:

T=aT + ...+ apTs.

where a;....,ar, and k£ can be considered as parameters of this crossover. Pa-
rameters for a population can include the number and sizes of subpopulations,
migration rates, and so on for a general case, when more then one population
is involved. Despite the somewhat arbitrary character of this list of compo-
nents and of the list of parameters of each component, we will maintain the
“what-aspect” as one of the main classification features, since this allows us
to locate where a specific mechanism has its effect.
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8.4.2 How are Changes Made?

As discussed and illustrated in Sect. 8.3. methods for changing the value
of a parameter (i.c.. the “how-aspect”) can be classified into one of three
categories.

e Deterministic parameter control
This takes place when the value of a strategy parameter is altered by
some deterministic rule. This rule modifies the strategy parameter in a
fixed. predetermined (i.e.. user-specified) way without using any feedback
from the search. Usually, a time-varying schedule is used, i.c.. the rule is
used when a set number of generations have elapsed since the last time
the rule was activated.

e Adaptive parameter control
This takes place when there is some form of feedback from the search that
serves as inputs to a mechanism used to determine the direction or magni-
tude of the change to the strategy parameter. The assigniment of the value
of the strategy parameter mayv involve credit assignment, based on the
quality of solutions discovered by different operators/parameters, so that
the updating mechanism can distinguish between the merits of compet-
ing strategies. Although the subsequent action of the EA may determine
whether or not the new value persists or propagates throughout the pop-
ulation. the important point to note is that the updating mechanisin used
to control parameter values is externally supplied. rather than being part
of the “standard™ evolutionary cycle.

e Self-adaptive parameter control
The idea of the evolution of evolution can be used to implement the self-
adaptation of parameters (see [24] for a good review). Here the parameters
to be adapted are encoded into the chromosomes and undergo mutation
and recombination. The better values of these encoded parameters lead to
better individuals. which in turn are more likely to survive and produce
offspring and hence propagate these better parameter values. This is an
important distinction between adaptive and self-adaptive schemes: 1 the
latter the mechanisiis for the credit assignment and updating of different
strategy parameters are entirely implicit, i.e., they are the selection and
variation operators of the evolutionary cycle itself.

This terminology leads to the taxonomy illustrated in Fig. 8.1.

Some authors have introduced a different terminology. Angeline [9] dis-
tinguished “absolute” and “empirical” rules, which correspond to the “un-
coupled” and “tightly-coupled” mechanisms of Spears [376]. Let us note
that the uncoupled/absolute category encompasses deterministic and adap-
tive control, whereas the tightly-coupled/empirical category corresponds to
self-adaptation. We feel that the distinction between deterministic and adap-
tive parameter control is essential, as the first one does not use any feed-
back from the search process. However, we acknowledge that the terminology
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Parameter setting

before the run during the run

Parameter tuning Parameter control
Deterministic Adaptive Self-adaptive

Fig. 8.1. Gilobal taxonomy of parameter setting in EAs

proposcd here is not perfeet either. The term “deterministic” control might
not be the most appropriate, as it is not determinism that matters. but the
fact that the parameter-altering transformations take no input variables re-
lated to the progress of the search process. For example. one might randomly
change the mutation probability after every 100 generations. which is not a
deterministic process. The name “fixed” parameter control might provide an
alternative that also covers this latter example. Also. the terms ~adaptive”
and “self-adaptive™ could be replaced by the equally meaningful “explicitly
adaptive” and “mmplicitly adaptive”™ controls. respectively. We have chosen to
usc “adaptive” and “self-adaptive” for the widely accepted usage of the latter
term.

8.4.3 What FEwvidence Informs the Change?

The third criterion for classification concerns the evidence nsed for determin-
ing the change of parameter value [348. 361]. Most commonly, the progress
of the search is monitored. e.g.. by looking at the performance of operators.
the diversity of the population. and so on. The mformation gathered by such
a monitoring process is used as feedback for adjusting the parameters. From
this perspective. we can make further distincetion between the following two
CASCS:

e Absolute evidence
We speak of absolute evidence when the value of a strategy parameter is
altered by some rule that is applied when a predefined event occurs. The
difference from deterministic parameter control lies in the fact that in de-
terministic parameter control a rule fires by a deterministic trigger (e.g.,
time elapsed), whereas here feedback from the search is used. For instance,
the rule can be applied when the measure being monitored hits a previ-
ously set threshold - this is the event that forms the evidence. Examples
of this type of parameter adjustment include increasing the mutation rate
when the population diversity drops under a given value [250], changing
the probability of applying mutation or crossover according to a fuzzy rule
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set using a variety of population statistics [248], and methods for resiz-
ing populations based on estimates of schemata fitness and variance [370].
Such mechanisms require that the user has a clear ituition about how
to steer the given parameter into a certain direction in cases that can be
specified in advance (e.g., they determine the threshold values for trigger-
ing rule activation). This intuition may be based on the encapsulation of
practical experience. data-mining and empirical analysis of previous runs.
or theoretical considerations (in the order of the three examples above).
but all rely on the implicit assumption that changes that were appropriate
to make on another scarch of another problem are applicable to this run
of the EA on this problem.
e Relative evidence

In the case of using relative evidence, parameter values are compared ac-
cording to the fitness of the offspring that they produce, and the better
values get rewarded. The direction and/or magnitude of the change of
the strategy parameter is not specified deterministically, but relative to
the performance of other values. i.e.. it 1s necessary to have more than
one value present at any given time. Here, the assignment of the value of
the strategy parameter involves credit assignment, and the action of the
EA may determine whether or not the new value persists or propagates
throughout the population. As an example, consider an EA using more
crossovers with crossover rates adding up to 1.0 and being reset based
on the crossovers performance measured by the quality of offspring they
create. Such methods may be controlled adaptively, typically using “book-
keeping~ to momnitor performance and a user-supplied update procedure
(91, 219. 3306], or self-adaptively [17, 145, 240, 340, 357, 376] with the se-
lection operator acting indirectly on operator or parameter frequencies via
their association with “fit” solutions.

8.4.4 What is the Scope of the Change?

As discussed carlier. any change within any component of an EA mayv affect
a gene (paramecter). whole chromosomes (individuals), the entire population.
another component (e.g., selection), or even the evaluation function. This is
the aspect of the scope or level of adaptation [9, 197, 361]. Note, however.
that the scope or level is not an independent dimension, as it usually depends
on the component of the EA where the change takes place. For example, a
change of the mutation step size may affect a gene, a chromosome, or the entire
population, depending on the particular implementation (i.e., scheme used).
but a change in the penalty coefficients typically affects the whole population.
In this respect the scope feature is a secondary one, usually depending on the
given component and its actual implementation.

It should be noted that the issue of the scope of the parameter might be
more complicated than indicated in Sect. 8.3.3. First of all, the scope depends
on the interpretation mechanism of the given parameters. For example, an
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individual might be represented as

Iy .
\L1s v sl Oy - oo Oy Oy e ﬁ(ln(n—])/2>1

where the vector @ denotes the covariances between the variables o.....0,.
In this case the scope of the strategy parameters in @ is the whole individual.
although the notation might suggest that theyv act on a subindividual level.

The next example illustrates that the same parameter (encoded in the chro-
mosomes) can be interpreted in different ways, leading to different algorithim
variants with different scopes of this parameter. Spears [376], folowing [149].
experimented with individuals containing an extra bit to determine whether
one-point crossover or uniform crossover is to be used (bit 1/0 standing for
one-point /uniform crossover. respectively). Two interpretations were consid-
cred. The first interpretation was based on a pairwise operator choice: If both
parental bits are the same, the corresponding operator is used: otherwise. a
random choice is made. Thus. this parameter in this interpretation acts at an
individual level. The second interpretation was based on the bit distribution
over the whole population: If, for example. 73% of the population had bit
1, then the probability of one-point crossover was 0.73. Thus this parameter
under this interpretation acts on the population level. Spears noted that there
was a definite impact on performance. with better results arising from the indi-
vidual level scheme, and more recently Smith [353] compared three versions of
a self-adaptive recombination operator. concluding that the component-level
version significantly outperformed the individual or population-level versions.

However. the two interpretations of Spears™ scheme can be easily combined.
For instance, similar to the first interpretation, if both parental bits are the
same, the corresponding operator is used, but if they differ, the operator is
selected according to the bit distribution, just as in the second interpretation.
The scope/level of this parameter in this interpretation is neither individual
nor population. but rather both. This example shows that the notion of scope
can be ill-defined and very complex. This. combined with the arguments that
the scope or level entity is primarily a feature of the given parameter and only
secondarily a feature of adaptation itself. motivates our decision to exclude it
as a major classification criterion.

8.4.5 Summary

In conclusion, the main criteria for classifying methods that change the values
of the strategy parameters of an algorithm during its execution are:

1. What component/parameter is changed?
2. How is the change made?
3. Which evidence is used to make the change?

Our classification is thus three-dimensional. The component dimension con-
sists of six categories: representation, evaluation function, variation opera-
tors (mutation and recombination), selection, replacement, and population.
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The other dimensions have respectively three (deterministic. adaptive. self-
adaptive) and two categories (absolute. relative). Their possible combinations
are given in Table 8.1. As the table indicates. deterministic parameter con-
trol with relative evidence is impossible by definition. and so is self-adaptive
parameter control with absolute evidence. Within the adaptive scheme both
options are possible and are indeed used in practice.

Deterministic] Adaptive|Self-adaptive
Absolute + +
| Relative . + +

Table 8.1. Refined taxonomy of parameter setting in EAs: tvpes of parameter
control along the type and evidence dimensions. The - entries represent meaningless
(nonexistent) combinations

8.5 Examples of Varying EA Parameters

Here we review some illustrative examples from the literature concerning all
major components. For a more comprehensive overview the reader is referred
to [117].

8.5.1 Representation

The choice of representation forms an important distinguishing feature be-
tween different streams of evolutionary computing. From this perspective GAs
and ES can be distinguished from (historical) EP and GP according to the
data structure used to represent individuals. In the first group this data struc-
ture is linear. and its length is fixed. that is, it does not change during a run
of the algorithm. For (historical) EP and GP this does not hold: finite state
machines and parse trees are nonlinear structures. and their size (the number
of states, respectively nodes) and shape can change during a run. It could be
argued that this implies an intrinsically adaptive representation in traditional
EP and GP. On the other hand, the main structure of the finite state machines
does not change during the search in traditional EP, nor do the function and
terminal sets in GP (without automatically defined functions, ADFs). If one
identifies “representation” with the basic syntax (plus the encoding mecha-
nism), then the differently sized and shaped finite state machines, respectively
trees, are only different expressions in this unchanging syntax. Based on this
view we do not consider the representations in traditional EP and GP intrin-
sically adaptive.

We illustrate variable representations with the delta coding algorithm of
Mathias and Whitley [424], which effectively modifies the encoding of the
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function parameters. The motivation behind this algorithm is to maintain a
good balance between fast scarch and sustaining diversity. In our taxonomy
it can be categorised as an adaptive adjustment of the representation based
on absolute evidence.

The GA is used with multiple restarts: the first run is used to find an interim
solution. and subscquent runs decode the genes as distances (delta values)
from the last interim solution. This wav cach restart forms a new hypercube
with the interimm solution at its origin. The resolution of the delta values can
also be altered at the restarts to expand or contract the scarch space. The
restarts are triggered when population diversity (mecasured by the Hamming
distance between the best and worst strings of the current population) is not
greater than one. The sketch of the algorithm showing the main idea is given
in Fig. 8.2

BEGIN
/* given a starting population and genotype-phenotype encoding */
WHILE ( HD >1 ) DO
RUN_GA with A& bits per object variable;
0D
REPEAT UNTIL ( global termination is satisfied ) DO
save best solution as INTERIM;
reinitialise population with new coding;
/* k-1 bits as the distance J to the object value in */
/* INTERIM and one sign bit */
WHILE ( HD >1 ) DO
RUN_GA with this encoding;
0D
0D
END

Fig. 8.2. Outline of the delta coding algorithm

Note that the number of bits for 4 can be increased if the same solution
INTERIM is found. This technique was further refined in [262, 263] to cope
with deceptive problems.

8.5.2 Evaluation function

Evaluation functions are typically not varied in an EA because they are of-
ten considered as part of the problem to be solved and not as part of the
problem-solving algorithm. In fact, an evaluation function forms the bridge
between the two, so both views are at least partially true. In many EAs the
evaluation function is derived from the (optimisation) problem at hand with
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a simple transformation of the objective function. In the class of constraint
satisfaction problems, however. there is no objective function in the prob-
lem definition [112]. Rather. these are normally posed as decision problems
with an Boolean outcome ¢ denoting whether a given assignment of variables
represents a valid solution (Chap. 12). One possible approach using EAs is
to treat these as minimisation problems where the evaluation function is de-
fined as the amount of constraint violation by a given candidate solution.
This approach, commonly known as the penalty approach, can be formalised

as follows. Let us assume that we have constraints ¢; (i = {1....,m}) and
variables v; (j = {1,....n}) with the same domain S. The task is to find one

variable assignment § € S satisfving all constraints. Then the penalties can
be defined as follows:

m
f(s) = Zw,- X x(5.¢;).
i=1
where
(5.¢;) = 1 if 5 violates ¢;.
X5 €= 0 otherwise.

Obviously, for each 5§ € S we have that ¢(5) = true if and only if f(5) = 0.
and the weights specify how severely the violation of a certain constraint is
penalised. The setting of these weights has a large impact on the EA perfor-
mance, and ideally w; should reflect how hard ¢; is to satisfy. The problem
is that finding the appropriate weights requires much insight into the given
problem instance, and therefore it might not be practicable.

The stepwise adaptation of weights (SAW) mechanism, introduced by Eiben
and van der Hauw [130] as an improved version of the weight adaptation
mechanism of Eiben, Raué, and Ruttkay [123, 125], provides a simple and
effective way to set these weights. The basic idea behind the SAW mechanism
is that constraints that are not satisfied after a certain number of steps (fitness
evaluations) must be difficult. and thus must be given a high weight (penalty).
SAW-ing changes the evaluation function adaptively in an EA by periodically
checking the best individual in the population and raising the weights of
those constraints this individual violates. Then the run continues with the
new evaluation function. A nice feature of SAW-ing is that it liberates the
user from seeking good weight settings, thereby eliminating a possible source
of error. Furthermore, the used weights reflect the difficulty of constraints
for the given algorithm on the given problem instance in the given stage of
the search [132]. This property is also valuable since, in principle, different
weights could be appropriate for different algorithms.

8.5.3 Mutation

A large majority of work on adapting or self-adapting EA parameters concerns
variation operators: mutation and recombination (crossover). As we discussed
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in Chap. 4. the 1/5 rule of Rechenberg constitutes a classical example for
adaptive mutation step size control in ES. In the same chapter we also showed
that self-adaptive control of mutation step sizes is traditional in ES.

Hesser and Manner [194] derived theoretically optimal schedules within GAs
for deterministically changing p,, for the counting-ones function. They sug-
gest:

0 a  oxp (=)
fm o MWL
where a. 3.4 are constants, L 1s the chromosome length. A is the population
size. and t is the time (generation counter). This is a purely deterministic
parameter control mechanism.

A self-adaptive mechanism for controlling mutation in a bit-string GA is
given by Béck [16]. This technique works by extending the chromosomes by
an additional 20 bits that together encode the individuals® own p,,,. Mutation
then works by:

1. Decoding these bits first to p,,

2. Mutating the bits that encode p,, with mutation probability p,,

3. Decoding these (changed) bits to p),

4. Mutating the bits that encode the solution with mutation probability p’,

This approach is highly self-adaptive since even the rate of variation of the
search parameters is given by the encoded value. as opposed to the use of an
external parameter like 7 in Eqgs. (4.2) and (4.4), and « in Eq. (5.1). Nore
recently Smith [354] showed theoretical predictions, verified experimentally.
that this scheme gets “stuck” in suboptimal regions of the search space with
a low, or zero, mutation rate attached to each member of the population. He
showed that a more robust problem-solving mechanism can simply be achieved
by ignoring the first step of the algorithm above. and instead using a fixed
learning rate as the probability of applying bitwise mutation to the encoding
of the strategy parameters in the second step.

8.5.4 Crossover

The classical example for adapting crossover rates in GAs is Davis’s adaptive
operator fitness. The method adapts the rates of crossover operators by re-
warding those that are successful in creating better offspring. This reward is
diminishingly propagated back to operators of a few generations back, who
helped setting it all up; the reward is a shift up in probability at the cost
of other operators [92]. This, actually, is very close in spirit to the “implicit
bucket brigade” credit assignment principle used in classifier systems [172].
The GA using this method applies several crossover operators simultane-
ously within the same generation, each having its own crossover rate p.(op;).
Additionally, each operator has its “local delta” value d; that represents the
strength of the operator measured by the advantage of a child created by us-
ing that operator with respect to the best individual in the population. The
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local deltas are updated after every use of operator 7. The adaptation mech-

anisim recalculates the crossover rates after K generations. The main idea is

to redistribute 15% of the probabilities biased by the accumulated operator

strengths. that is. the local deltas. To this end. these d; values are normalised

so that their sum equals 15, vielding d""" for each 7. Then the new value for

cach po(op;) is 85% of its old value and its normalised strength:
pe(op;) = 085 p(op;) + 1

(learly, this method is adaptive based on relative evidence.

8.5.5 Selection

[t is interesting to note that neither the parent selection nor the survivor se-
lection (replacement) component of an EA has been commonly used in an
adaptive manner. even though there are selection methods whose parameters
can be easily adapted. For example, in linear ranking (Sect. 3.7.2) the pa-
rameter s represents the expected number of offspring to be allocated to the
best individual. By changing this parameter within the range of [1...2] the
sclective pressure of the algorithm can be varied easily. Similar possibilities
exist for tournament selection. where the tournament size provides a natural
parameter.

Most existing mechanisms for varying the selection pressure are based on
the so-called Boltzmann selection mechanisim, which changes the selection
pressure during evolution according to a predefined “cooling schedule™ [257].
The name originates from the Boltzmann trial from condensed matter physics,
where a miniimal cnergyv level is sought by state transitions. Being in a state
! the chance of accepting state j is

1 if E > E,.

E,—F .
C.\'p(ﬁ) if E,’<EJ‘.

Placcept j] =

where E;. L, are the cnergy levels. Ky i1s a parameter called the Boltz-
mann constant. and T is the temperature. This acceptance rule is called the
Metropolis criterion.

We illustrate variable selection pressure in the survivor selection (replace-
ment) step by simulated annealing (SA). SA is a generate-and-test search
technique based on a physical, rather than a biological analogy [2]. Formally,
however, SA can be envisioned as an evolutionary process with population
size of 1, undefined (problem-dependent) representation and mutation, and a
specific survivor selection mechanism. The selective pressure changes during
the course of the algorithm in the Boltzmann style. The main cycle in SA is
given in Fig. 8.3.

In this mechanismn the parameter ci, the temperature, decreases accord-
ing to a predefined scheme as a function of time, making the probability of
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BEGIN
/¥ given a current solution i€ S */
/* given a function to generate the set of neighbours N, of / */
generate j € N;;
IF (f(i) < f(j)) THEN

set | = J;
ELSE
IF ( exp (1&)’141_)) > random|(). 1)) THEN
set ( = j;
FI
ESLE
FI

END

Fig. 8.3. Outlinc of the simulated annealing algorithm

accepting inferior solutions smaller and smaller (for minimisation problems).
From an evolutionary point of view. we have here a (14+1) EA with increasing
sclection pressure.

A successful example of applyving Boltzmann acceptance is that of Smith
and Krasnogor [239], who used it in the local scarch part of a memetic algo-
rithm (MA) (Chap. 10), with the temperature inversely related to the fitness
diversity of the population. If the population contains a wide spread of fit-
ness values. the “temperature” is low, so only fitter solutions found by local
scarch are likely to be accepted, concentrating the search on good solutions.
However, when the spread of fitness values is low. indicating a converged pop-
ulation which is a common problem in MAs. the “temperature”™ is higher.
making it more likely that an inferior solution will be aceepted, thus reintro-
ducing diversity and offering a potential means of escaping from local optima.

8.5.6 Population

An innovative way to control the population size is offered by Arabas et
al. [13, 271] in their GA with variable population size (GAVaPS). In fact.
the population size parameter is removed entirely from GAVaPS, rather than
adjusted on-the-fly. Certainly, in an evolutionary algorithm the population
always has a size, but in GAVaPS this size is a derived measure, not a con-
trollable parameter. The main idea is to assign a lifetime to each individual
when it is created, and then to reduce its remaining lifetime by one in each
consecutive generation. When the remaining lifetime becomes zero, the indi-
vidual is removed from the population. Two things must be noted here. First,
the lifetime allocated to a newborn individual is biased by its fitness: fitter in-
dividuals are allowed to live longer. Second, the expected number of offspring
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of an individual is proportional to the number of generations it survives. Con-
sequently, the resulting system favours the propagation of good genes.

Fitting this algorithin into our general classification scheme is not straight-
forward because it has no explicit mechanism that sets the value of the popu-
lation size parameter. However, the procedure that implicitly determines how
many individuals are alive works in an adaptive fashion using information
about the status of the scarch. In particular. the fitness of a newborn indi-
vidual is related to the fitness of the present generation. and its lifetime is
allocated accordingly. This amounts to using relative evidence.

8.5.7 Varying Several Parameters Simultaneously

One of the studies explicitly devoted to adjusting more parameters (and also
on more than one level) is that of Hinterding et al. on a —self-adaptive GA”
[198]. This GA uses self-adaptation for mutation rate control. plus relative-
based adaptive control for the population size.? The mechanism for controlling
mutation is similar to that from Béck [16]. (Sect. 8.5.3), except that mutating
the bits encoding the mutation strength is not based on the bits in question,
but is done by a universal mechanism fixed for all individuals and all genera-
tions. In other words, the self-adaptive mutation parameter is only used for the
genes encoding a solution. As for the population size, the GA works with three
subpopulations: a small. a medium, and a large one, P1, P2, and P3. respec-
tively (the initial sizes respectively being 50, 100. and 200). These populations
are evolved in parallel for a given number of fitness evaluations (an epoch)
independently by the same GA setup. After each epoch, the subpopulations
are resized based on some heuristic rules, maintaining a lower and an upper
bound (10 and 1000) and keeping P2 always the medium-sized subpopulation.
There are two categories of rules. Rules in the first category are activated when
the fitnesses in the subpopulations converge and try to move the populations
apart. For instance, if P2 and P3 have the same fitness. the size of P3 is dou-
bled. Rules from another set are activated when the fitness values are distinct
at the end of an epoch. These rules aim at maximising the performance of
P2. An example of one such rule is: if the performance of the subpopulations
ranks them as P2 < P3 < P1 then size(P3) = (size(P2) + size(P3))/2. In
our taxonomy, this population size control mechanism is adaptive, based on
relative evidence.

Lis and Lis [251] also offer a parallel GA setup to control the mutation
rate, the crossover rate, and the population size during a run. The idea here
is that for each parameter a few possible values are defined in advance, say
lo, med, hi, and only these values are allowed in any of the GAs, that is, in

2 Strictly speaking, the authors’ term “self-adaptive GA” is only partially correct.
However, this paper is from 1996, and the contemporary terminology distinguish-
ing dynamic, adaptive, and self-adaptive schemes as we do it here was only pub-
lished in 1999 [117].
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the subpopulations evolved in parallel. After each epoch the performances of
the applied parameter values are compared by averaging the fitnesses of the
best individuals of those GAs that use a given value. If the winning parameter
value is:

1. hi then all GAs shift one level up concerning this parameter in the next
epoch:

2. med. then all GAs use the same value concerning this parameter in the
next epoch:

3. lo. then all GAs shift one level down concerning this parameter in the
next epoch.

Clearly. the adjustment mechanism for all parameters here is adaptive. based
on relative evidence.

Mutation, crossover, and population size are all controlled on-the-fly in the
GA “without parameters” of Back et al. in [25]. Here, the self-adaptive mu-
tation from [16] (Sect. 8.5.3) is adopted without changes, a new sclf-adaptive
technique is invented for regulating the crossover rates of the individuals,
and the GAVaPS lifetime idea (Sect. 8.5.6) is adjusted for a steady-state GA
model. The crossover rates are included in the chromosomes, much like the
mutation rates. If a pair of individuals is sclected for reproduction, then their
individual crossover rates are compared with a random number r € [0. 1] and
an individual is seen as ready to mate if its p. > r. Then there are three
possibilities:

1. 1f both individuals are ready to mate then uniform crossover is applied.
and the resulting offspring is mutated.

2. If neither is ready to mate then both create a child by mutation only.

3. If exactly one of them is ready to mate, then the one not ready creates a
child by mutation only (which is inserted into the population immediately
through the steady-state replacement). the other is put on the hold. and
the next parent selection round picks only one other parent.

This study differs from those discussed before in that it explicitly com-
pares GA variants using onlv one of the (sclf-)adaptive mechanisms and the
GA applying them all. The experiments show remarkable outcomes: the com-
pletely (self-)adaptive GA wins, closely followed by the one using only the
adaptive population size control, and the GAs with self-adaptive mutation
and crossover are significantly worse. These results suggest that putting ef-
fort into adapting the population size could be more effective than trying to
adjust the variation operators. This is truly surprising considering that tra-
ditionally the on-line adjustment of the variation operators has been pursued
and the adjustment of the population size received relatively little attention.
The subject certainly requires more research.
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8.6 Discussion

Summarising this chapter a number of things can be noted. First. parameter
control in an EA can have two purposes. It can be done to avoid suboptimal
algorithm performance resulting from suboptimal parameter values set by the
uscer. The basic assumption here is that the applied control mechanisms arc
intelligent enough to do this job better than the user could. or that thev can do
it approximately as good. but they liberate the user from doing it. Either way.
they are beneficial. The other motivation for controlling paramecters on-the-
flv is the assumption that the given parameter can have a different ~optimal”
value in different phases of the search. If this holds, then there is simply no
optimal static paranmeter value: for good EA performance one must vary this
parameter.

The second thing we want to note is that making a parameter (self-)adaptive
does not necessarily mean that we have an EA with fewer parameters. For in-
stance. in GAVaPS the population size parameter is eliminated at the cost
of introducing two new ones: the minimum and maximum lifetime of new-
born individuals. If the EA perforinance is sensitive to these new parameters
then such a parameter replacement can make things worse. This problem
also occurs on another level. One could say that the procedure that allocates
lifetimes in GAVaPS. the probability redistribution mechanism for adaptive
crossover rates (Scct. 8.5.4). or the function specifying how the o values are
mutated in ES (Eq. (8.3)) are also (meta) parameters. It is in fact an as-
sumption that these are intelhigently designed and their effect is positive. In
many cases there are more possibilities, that is, possibly well-working proce-
dures one can design. Comparing these possibilities implies experimental (or
theoretical) studies very much like comparing different parameter values in a
classical setting. Here again, it can be the case that algorithm performance is
not so sensitive to details of this (meta) parameter, which fully justifies this
approach.

Finally. let us place the issue of parameter control in a larger perspective.
Over the last 20 years the EC community shifted from believing that EA per-
formance is to a large extent independent from the given problem instance
to realising that it is. In other words, it is now acknowledged that EAs need
more or less fine-tuning to specific problemns and problen instances. Ideally.
it should be the algorithin that perforins the necessary problem-specific ad-
justments. Parameter control as discussed here is a step towards this.

8.7 Exercises

1. Give arguments why mutation strength (e.g., p,,, or o) should be increased
during a run. Give arguments why it should be decreased.

2. It could be argued that there is no survivor selection (replacement) step
in GAVaPS, Sect. 8.5.6. Discuss this issue.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

8.8 Recommended Reading for this Chapter 151

3. Why is it not possible to have self-adaptation operating at the population
level?

8.8 Recommended Reading for this Chapter
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Multimodal Problems and Spatial Distribution

9.1 Aims of this Chapter

So far in our discussion of evolutionary algorithms we have considered the
entire population to act as a common genepool, with fitness as the primary
feature affecting the likelihood of an individual taking part in the creation of
new offspring, and surviving to the next generation. However we know that
evolution in vivo is also affected by another major parameter, namely that of
the physical space within which evolution occurs, which imposes a sense of
locality on genetic opef'ators. However beautiful (i.e., highly fit) the lowers in
the municipal garden, it is extremely unlikely that they will be fertilised with
pollen from a garden on the opposite side of the world.

This separation brings with it several benefits, one of which is that it can aid
the preservation of diversity within the population. As a result, different sub-
groups of the same global population may be adapted to their local conditions.
as was famously described concerning finches on islands of the Galapagos
archipelago by Charles Darwin [86]. One theory holds that the phenomenon
of speciation arises as an end result of increasingly specialised adaptation to
particular environmental niches. so that eventually distinct subpopulations
have evolved so differently that their offspring are no longer viable. even if
mating is physically possible at all.

Ideas such as that of a global population being subdivided into smaller.
infrequently communicating subpopulations, along with related concepts such
as speciation and other mating restrictions, have been widely investigated by
EA practitioners as a means of preserving diversity and aiding the search
for different high—quality solutions in multimodal problems. In this chapter
we provide an overview of these approaches, ending with a description of
two areas of optimisation in which EAs are currently showing great promise,
namely multiobjective and dynamic problems.
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9.2 Introduction: Multimodal Problems and the Need
for Diversity

9.2.1 Multimodal Problems

The discussions of adaptive landscapes in Section 1.4.1. (as illustrated by
Figure 1.1) and local optima. give raise to the concept of multimodal prob-
lems. i.c., problems in which there are a number of points that are better
than all their neighbouring solutions, but do not have as good a fitness as the
globally optimal solution.! In physical landscapes. features such as mountain
ranges and ridges act as “watersheds™ dividing them into a number discrete
rainfall catchment areas. which are usually drained to occans via rivers. In an
exactly analogous fashion. we can divide multimodal problems into “basins of
attraction” around local optima. defined as the set of points from which a local
search algorithm would end up at the given local optima. Just as on physical
landscapes, these are usually of different sizes and profiles, and it is not nec-
essarily the case that the global optimum has the largest basin of attraction.
Figure 9.1 illustrates this point for a one-dimensional landscape. Commonly
the disjoint (i.c., unconnected) regions of high fitness are known as niches, a
terminology we will adopt since it is more general than the alternatives (peaks
and so on).

»
>

fitness

Fig. 9.1. Landscape features: There are three optima with different sizes of basins
of attraction, and different “shapes™. The global optimum is in the middle, and the
leftmost local optimum has a broader peak than the rightmost, despite having a
smaller basin of attraction

Multimodality is a typical aspect of the type of problems for which EAs are
often employed, either in attempt to locate the global optimum (particularly
when a local optimum has the largest basin of attraction), or to identify a
number of high-fitness solutions corresponding to various local optima. The

I Note that a landscape definition requires both a set of solution points and a
neighbourhood structure. This may be obvious for, say, real-valued problems, but
for combinatorial problems the number of local optima depends on the choice of
neighbourhood structure, i.e., on the variation operators used.
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latter situation can often arise. for example. when the fitness function used
by the EA does not completelv specify the underlving problem. An example
of this might be in the design of a new “widget™. where the parameters of
the fitness function may change during the design process. as progressively
more refined and detailed models are used as decisions such as the choice of
materials. ete.. are made. In this situation it is valuable to be able to examine
a munber of possible options. first so as to permit room for hmman acsthetic
judgements. and second because it 1s probably desirable to use solutious from
niches with broader peaks rather than from a sharp peak. This is because
the latter mayv be overfitted (that is overly specialised) to the current fitness
function and mav not be as good once the fitness function is refined.

9.2.2 Genetic Drift

The population-based nature of EAs holds out much promise for identifving
multiple optima. however, in practice the finite population size. when coupled
with recombination between any parents (known as panmictic mixing) leads
to the phenomenon known as genetic drift and eventual convergence around
one optimum. The reasons for this can easily be seen: imagine that we have
two equally fit niches, and a population of 100 individuals originally equally
divided between them. Eventually, because of the random cffects in selection.
it is likely that we will obtain a parent population consisting of 49 of onc sort
and 51 of the other. Ignoring the effects of recombination and mutation. in the
next generation the probabilities of selecting individuals from the two niches
are now 0.49 and 0.51 respectively, i.e., we are increasingly likely to select
individuals from the second niche. This effect increases as the two subpopu-
lations become unbalanced, until eventually we end up with only one niche
represented in the population. In terms of the fitness landscape metaphor. the
subpopulation in the first niche “melted down™ the hill, crossed the valley. and
climbed the other hill.

9.2.3 Biological Motivations and Algorithmic Approaches

As described in Sect. 9.1, biological evolution provides us with a number of
metaphors to act as inspiration. These include:

e Speciation
This i1s the process whereby different species adapt to occupy different
environmental niches. The important feature here is that species only re-
produce with other members of the same species, i.e., there are mat-
ing restrictions. Since environmental niches necessarily contain finite
resources, individuals are in competition with individuals from their own
species for survival and resources, and the effect of this combination of
competition and restricted mating is to focus the evolutionary exploration
on a particular environmental niche, with the outcome that it tends to
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vield phenotypic homogeneity within species. It is worth noting that even
highly specialised species may also be in competition with other species
for resources and survival. for example, plants growing in the same vicinity
compete for light and fertile soil.

¢ Punctuated Equilibria
This is the theory that periods of evolutionary stasis are interrupted by
rapid growth when the main population is “invaded” by individuals from
previously spatially isolated group of individuals from same species [134].
Clearly this process requires that the main population be spatially sep-
arated into a number of isolated subpopulations (or demes). with only
occasional migrations of individuals between them. It also requires that
individuals from separate demes still retain the ability to successfully mate
if incoming differences are to be integrated.

e Local Adaptation
This is the effect that occurs within a spatially distributed population
when geographically separated sub-populations of the same species show
adaptations to their local environments. Examples of this might include
birds or animals developing slightly different feeding habits or mouth or
bill shapes in response to the presence of different food types in different
regions.

Based on these ideas a number of mechanisms have been proposed to aid
the use of EAs on multimodal problems. These can be broadly separated
into two camps: explicit approaches, in which specific changes are made to
operators in order to preserve diversity, and implicit approaches. in which a
framework is used that permits, but does not gquarantee, the preservation of
diverse solutions. However. before describing these we will briefly digress to
discuss the issue of what exactly we mean by “space” in greater depth.

9.2.4 Algorithmic Versus Genetic Versus Solution Space

Just as biological evolution takes place on a geographic surface. but can also
be considered to occur on an adaptive landscape (Sect. 1.4.1), so we can define
and think about a number of spaces within which the evolutionary algorithms
operate:

e Algorithmic Space
This is the equivalent of the geographical space on which life on earth
has evolved. Effectively we are considering that the working memory of
the EA can be structured in some way. A number of different forms of
structure and communication have been proposed, and many of these take
advantage of the fact that the population might be practically as well as
conceptually distributed, for example, over a number of processors in a
parallel computing environment.

e Genotype space
Botanists, zoologists, and nowadays geneticists have categorised different
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species into a taxonomy based on their evolutionary history and closeness,
which effectively defines a neighbourhood structure in the space of DNA se-
quences via phylogenetic trees. In a similar way we may define a “genotype
space”, using distance metrics based on some fundamental move operator
to define a neighbourhood structure over the set of representable solutions.
Typical move operators include a single bit-flip for binary spaces, a single
inversion for adjacency-based permutation problems and a single swap for
order-based permutations problems.
e Phenotype space

This is the end result: a search space whose structure is based on distance
metrics between solutions. The neighbourhood structure in this space may
bear little relationship to that in the genotvpe space according to the
complexity of the representation solution mapping.

9.2.5 Summary

We have identified a number of mechanisms present in biological evolution that
permit the simultancous exploration of a number of different environmental
niches. These include explicit measures, such as the formation of species with
no interspecies mating. Here the survival chances of an individual depend on
the amount of resources available within its particular environmental niche,
the extent to which its physical attributes and behaviour arc matched to that
niche. and on the competition for those resources. They also include implicit
measures arising from the fact that “real” individuals exist on a geographical
surface with physical distance also imposing implicit restrictions on mating
and competition for survival, even within the same species. One effect of this
can be that the same phenotypic “solution” can evolve in different places
within different species with different genotypes.

Turning our attention to optimisation problems, we have seen that there are
a number of reasons why it might be desirable to attempt to explore several
different high—fitness regions in a multimodal problem. In the metaphor of
Sewal-Wright's adaptive landscapes, these niches represent different environ-
mental niches that species could inhabit, and so we are interested in how the
forces that permit simultaneous exploration of different environmental niches
i biological evolution can be harnessed with EAs.

Finally, we noted that EAs can be considered to operate within three dis-
tinct spaces, namely algorithmic, representation, and solution, which are con-
ceptually equivalent to geographical, genotype, and phenotype spaces in bio-
logical evolution. We will now turn our attention to the different ways in which
these insights and inspirations have been harnessed with evolutionary search.
The reader should note that although we will describe these separately, many
of them can of course be used together in tandem, just as they are in nature.
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9.3 Implicit Measures

Therc are a number of possible options for attempting to find a diverse set of
good solutions for a multimodal problem. without explicitly enforcing diver-
sity. Some of the most common of these are:

e Run a standard EA many times. and save good solutions. This has the
merits of being an extremely simple approach. but can have problems if
onc optimum has a large basin of attraction. since lots of runs may end
up converging to the same solution.

e Run several standard EAs in tandem and let them periodically share infor-
mation. This model is clearly inspired by the punctuated cquilibria theories
of evolution and has been widely investigated as is described in Sect. 9.3.1.

e Introduce a sense of spatial distribution into a single population. In this
scheme “local” operators are used for parent and survivor selection so as
to conceptually divide the population into a number of smaller overlapping
subpopulations. As with the previous item, this works by imposing sense
of algorithinic space, but here the communication model is different.

e Maintain different “species” within a single population. Here the repre-
sentation of solutions is extended to include information that is used to
identify different “species”™. and recombination is restricted to happen be-
tween members of the same species.

Of these approaches, the first (1nultiple runs) does not require any modifi-
cation of the particular form of EA chosen, so we will concentrate on the last
three.

9.3.1 Multiple Populations in Tandem: Island Model EAs

The idea of evolving multiple populations in tandem is also known as island
model EAs, parallel EAs and. more precisely coarse—grain parallel EAs.
These schemes attracted great interest in the 1980s when parallel computing
became popular [82, 83. 252. 306. 322, 392] and are still applicable on NMIND
systems such as computing clusters. Of course they can equally well be imple-
mented on a single-processor architecture, without the performance speed-up
(in terms of time at least).

The essential idea 1s to run multiple populations in parallel, in some kind of
communication structure. The communication structure is usually a ring or a
torus, but in principle any form is possible, and sometimes this is determined
by the architecture of the parallel system, e.g., a hypercube [392]. After a
(usually fixed) number of generations (known as an epoch), a number of
individuals are selected from each population to be exchanged with others
from neighbouring populations — this can be thought of as migration.

In [260] this approach is discussed in the context of Eldredge and Gould’s
theory of punctuated equilibria [134] and Holland’s original formulation of
the GA as a trade-off between ezploration of unexplored regions of the search
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space and exploitation of knowledge gained via search in the vicinity of known
high -quality solutions. They suggest that during the epochs between commu-
nication. when each subpopulation is evolving independently of the others.
exploitation occurs, so that the subpopulations each explore the search space
around the fitter solutions that theyv contain. When communication takes
place. the injection of individuals of potentiallv high fitness. and with (pos-
sibly) radically different genotypes. facilitates exploration. particularly as re-
conibination happens between the two different solutions.

Whilst extremely attractive in theory, and possessing the highly desirable
quality of explicit parallelism. it is obvious that there are no guarantees per
se that the different subpopulations are actually exploring different regions of
the search space. One possibility is clearly to achieve a start at this through
a careful initialisation process, but even if this is used. there are a number
of parameters that have been shown to affect the ability of this technique
to explore different peaks and obtain good results even when only a single
solution is desired as the end result.

A number of detailed studies have been made of the effects of different pa-
rameters and implementations of this basic scheme (see. e.g., carlier references
in this section), but of course we must bear in mind that the results obtained
may be problem dependent, and so we will restrict ourselves to commenting
on a few important facets:

e How often to exchange individuals ? The essential problem here is that
if the communication occurs too frequently. then all sub-populations will
converge to the same solution. Equally if it is done too infrequently, and
one or more sub-populations has converged quickly in the vicinity of a
peak, then significant amounts of computational effort may be wasted.
Most authors have used epoch lengths of the range 25 - 150 generations. An
elegant alternative strategy proposed in [260] is to organise communication
adaptively, that is to say to stop the evolution in each sub-population when
no improvement has been observed for, say. 25 generations.

e How many, and which individuals to exchange? Many authors have found
that in order to prevent too rapid convergence to the same solution, it is
better to exchange a small number of solutions between subopulations -
usually 2-5. Once the amount of communication has been decided, it is
necessary to specify which individuals are selected from each population
to be exchanged. Clearly this can be done either by some fitness-based se-
lection mechanism (e.g., “copy-best” [306], “pick-from-fittest-half” [392])
or at random [82]. It must also be decided whether the individuals being
exchanged are effectively “moved” from one population to another, thus
(assuming a symmetrical communication structure) maintaining subpop-
ulation sizes, or whether they are merely copied, in which case each sub-
population must then undergo some kind of survivor selection mechanism.
The choices of how many and which individuals to exchange will evidently
affect the tendency of the subpopulations to converge to the same solu-
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tion. Random, rather than fitness based, selection strategy is less likely to
lead to takeover of one population by a new high-fitness migrant, and ex-
changing more solutions also leads to faster mixing and possible takeover.
However, the extent to which these factors affect the behaviour is clearly
tied to the epoch length. since if this is long enough to permit fitness con-
vergence then all of the solutions contained within a given subpopulation
are likely to be genotypically very similar, so the selection method used
becomes less important.

e How to divide the population into subpopulations? The general rule here
appears to be that provided a certain (problem -dependent) minimum sub-
population size is respected, then more subpopulations usually gives better
results. This clearly fits in with our understanding, since if each subpop-
ulation is exploring a different peak (the ideal scenario), the more peaks
explored, the likely it is that one of them will contain the global optimum.

Finally. it is worth mentioning that it is perfectly possible to use different
algorithmic parameters on different “islands”. Thus in the injection island
models the subpopulations are arranged hierarchically with each level oper-
ating at a different. granularity of representation. Equally, parameters such as
the choice of recombination or mutation operator and associated parameters,
or even subpopulation sizes, might be different between different subpopula-
tions [129, 336].

9.3.2 Spatial Distribution Within One Population: Diffusion
Model EAs

In the previous section we described the implementation of a population
structure in the form of a number of subpopulations with occasional com-
munication. In this section we describe an alternative model whereby a single
population is considered to be split into a larger number of smaller overlap-
ping subpopulations (demes) by being distributed within algorithmic space.
We can consider this to be equivalent to the situation whereby biological in-
dividuals are separated, only mating and competing for survival with those
within a certain distance to them. To take a simple example from the days of
less-rapid transport, a person might only have been able to marry and have
children with someone from their own or surrounding villages. Thus should a
new gene for say, telekinesis, evolve, even if it offers huge evolutionary advan-
tage, at first it will only spread to surrounding villages. In the next generation
it might spread to those surrounding them, and so on, only slowly diffusing
or percolating throughout the society.

This effect is implemented by considering each member of the population
to exist on a different point on a grid, and only permitting recombination and
selection with neighbours, hence the common names of fine-grain parallel
EAs [258], diffusion model EAs [414], distributed EAs [208] or cellular
EAs[419] as well as parallel EAs [178, 288]. We will refer to these algorithms as
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diffusion model EAs since we feel that this best describes the communication
structure, although the terin cellular EAs is also particularly apt since Whitley
has shown that EAs in this form are equivalent to cellular automata [419]. As
suggested by the multiplicity of names, there have been a great many differing
implementations of this form of EA, but we can broadly outline the algorithim
as follows:

1. The current population is conceptually distributed on a (usually toroidal)
grid, with one individual per node.

2. For each node we have defined a deme (neighbourhood). This is usually
the same for all nodes, e.g.. for a neighbourhood size of nine on a squarce
lattice, we take the node and all of its immediate neighbours.

3. In each gencration we consider each deme in turn and perform the follow-
ing operations within it:

e Select two solutions from the nodes in the deme that will act as parents.

e Generate an offspring via recombination.

e Mutate, then evaluate the offspring.

e Select one solution residing on a node in the deme and replace it with
the new offspring.

Within this general structure there is scope for considerable differences in
implementation such as:

e The ASPARAGOS algorithm [178, 288] uses a ladder topology rather than
a lattice, and also performs a hill-climbing step after mutation.

e Several algorithms implemented on massively parallel SIMD or SPMD
machines use asynchronous updates in step 3 rather than the sequential
mode suggested in the third step above (a good discussion of this issue
can be found in [305]).

e The selection of parents might be fitness based [89] or random (or one of
each [258]), and often one parent is taken to be that residing on the central
node of the deme. When fitness-based selection is used it is usually a local
implementation of a well-known global scheme such as fitness proportion-
ate or tournament. DeJong and Sarma [102] analysed a number of such
schemes and found that local selection techniques generally exhibited less
selection pressure than their global versions.

e Wihilst it is common to replace the central node of the deme, again fitness-
based or random selection have been used to select the individual to be
replaced, or a combination such as “replace current solution if better”
[178]. White and Pettey reported results suggesting that the use of fitness
in the survivor selection is preferred [414].

9.3.3 Automatic Speciation Using Mating Restrictions

The two forms of parallel EAs described above attempt to preserve diversity
by imposing a mating (and replacement) restriction based on an analogy of
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physical distance creating separately evolving subpopulations. In contrast to
this, the “automatic speciation” approach imposes mating restrictions based
on some aspect. of the candidate solutions (or their genotypes) defining them
as belonging to different species. The population contains multiple species.
and during parent selection for recombination, individuals will only mate with
others from the sanie (or similar) species. The biological analogy hecomes par-
ticularly clear when we note that some authors refer to the aspect controlling
reproductive opportunities as an individual's “phunage™ [365].

A nunber of schemes have been proposed to implement speciation. which
can be divided into two main approaches. In the first speciation is based on the
solution (or its representation). c.g.. Deb’s phenotype (genotvpe) restricted
mating [105, 108. 365]. The alternative approach is to add some elements such
“tags” to the genotype that code for the individual’s species, rather than rep-
resenting part of the solution. See [58, 105, 375] for implementations. noting
that many of these ideas were previously suggested by other authors. These
are usually randomly initialised and subject to recombination and mutation.
Common to both approaches is the idea that once an individual has been
selected to be a parent, then the choice of mate involves the use of a pair-
wise distance metric (in phenotype or genotype space as appropriate). with
potential mates being rejected beyond a certain distance.

Note that in the “tag” scheme, there is initially no guarantee that individ-
uals with similar tags will represent similar solutions, although after a few
generations selection will usually take care of this problem. Neither is there
any guarantee that different species will contain different solutions, although
Spears goes some way towards rectifying this by also using the tags to perform
fitness sharing [375], and even without this Deb reported improved perfor-
mance compared to a standard GA [105]. Similarly, although the phenotypic-
based speciation scheme does not guarantee diversity maintenance. when used
in conjunction with fitness sharing, it was reported to give better results than
fitness sharing on its own [108].

9.4 Explicit Diversity Maintenance

Explicit schemes are based on the idea of forcing the population to maintain
different niches when doing either selection or replacement. Two forms are
most commonly used, namely fitness sharing [176], in which the fitnesses of
individuals are adjusted prior to selection in an attempt to allocate individuals
to niches in proportion to the niche fitness, and crowding [98, 256|, in which
a distance-based survivor selection policy is used in an attempt to distribute
individuals uniformly amongst niches. It should be noted that in both cases the
choice of parents is global, i.e. there is nothing to prevent the recombination
of parents from different niches. Although a possible source of good solutions,
this is often thought to be more likely to produce low-fitness solutions (so-
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called ~lethals™). hence the frequent use of these schemes with some speciation
scheme as noted above.

9.4.1 Fitness Sharing

This scheme is based upon the idea that the number of individuals within a
given niche is controlled by “sharing™ their fitness immediately prior to se-
lection. In practice the scheme works by considering each possible pairing of
individuals / and j within the population (including ¢ with itself) and cal-
culating a distance d(i. j) between them according to some distance metric
(phenotypic is preferred if possible, else genotypic. c.g.. Hamming distance for
binary representations). The fitness F' of cach individual 7 is then adjusted ac-
cording to the number of individuals falling within some prespecified distance
Oshare Using a power-law distribution:

F (i)
ZJ. sh(d(i.j))

where the sharing function sh(d) is a function of the distance d given by

F'(i) =

. - 1 — (d/ash,m‘c)a if d S Oshare:
sh(d) = { 0 otherwise .

As can be seen the constant value o determines the shape of the sharing
function: for a=1 the function is linear, but for values greater than this the
effect of similar individuals in reducing a solution’s fitness falls off more rapidly
with distance.

The other parameter that needs to be set, and the one that decides both
how many niches can be maintained and the granularity with which different
niches can be discriminated, is the share radius ogp4r0.. Deb [108] gives some
suggestions for how this might be set if the number of niches is known in
advance. but clearly this is not always the case. In [106] he suggests that a
default value in the range 5-10 should be used.

Finally, we should point out that the use of fitness proportionate selection is
implicit within the fitness-sharing method. Studies have indicated that the use
of alternative selection methods does not lead to the formation and preserva-
tion of stable subpopulations in niches [294]. However, if fitness proportionate
selection is used, then there exists a stable distribution of solutions amongst
the niches when solutions from each peak have the same effective fitness F”.
This means that in each niche £ the number of solutions present nj is pro-
portional to the niche fitness Fy, so that F} = Fj/ny is constant and equal
for all niches?. This point is illustrated in Fig. 9.2.

2 This assumes for the sake of ease that all solutions within a given niche lie at its
optimal point, at zero distance from each other.
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9.4.2 Crowding

The crowding algorithin was first suggested in DeJong’s thesis [98] as a way of
preserving diversity by ensuring that new individuals replaced similar mem-
bers of the population. The original scheme worked in a steady-state setting
(the number of new individuals generated in each step was 20% of the popula-
tion size). When an new offspring is inserted into the population, C'F' (DeJong
used CF=2) members of the parent population are chosen at random, and then
the offspring replaces the most similar of those parents. A number of problems
were found with this approach, and Mahfoud has suggested an improvement
called deterministic crowding [2506].

This algorithm relies on the fact that offspring are likely to be similar to
their parents as follows:

1. The parent population is randomly paired.

2. Each pair produces two offspring via recombination.

3. These offspring are mutated and then evaluated.

4. The four pairwise distances between offspring and parents are calculated.
5. Each offspring then competes for survival in a tournament with one par-

ent, so that the intercompetition distances are minimised. In other words,
denoting the parents as p, the offspring as o, and using the subscript to
indicate tournament pairing, d(py,01) + d(p2.02) < d(p1.02) + d(p2.01).

The net result of all this is that offspring tend to compete for survival
with the most similar parent, so subpopulations are preserved in niches but
their size does not depend on fitness; rather it is equally distributed amongst
the peaks available. Figure 9.2 illustrates this point in comparison with the
distribution achieved under crowding.

9.5 Multiobjective Evolutionary Algorithms

In this section we describe the application of some of the techniques detailed
above to a particular class of problems, namely multiobjective optimisation.
We begin by introducing this class of problems and the particularly important
notion of Pareto optimality. We then look at some of the current state-of-the-
art mMultiobjective EAs (MOEAs) for this class of problems and examine
the ways in which they make use of concepts of different evolutionary spaces
and techniques for promoting and preserving diversity within the population.

9.5.1 Multiobjective Optimisation Problems

In the majority of our discussions in previous chapters we have made free use
of analogies such as adaptive landscapes under the assumption that the goal of
the EA in an optimisation problem is to find a single solution that maximises a
fitness value that is directly related to a single underlying measure of quality.
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Fig. 9.2. Idealised population distributions under fitness sharing (upper) and crowd-
ing (lower). There are five peaks in the landscape with fitnesses (5.4,3,2.1) and the
population size is 15. Fitness sharing allocates individuals to peaks in proportion to
their fitness. whereas crowding distributes the population evenly amongst the peaks

In this chapter we introduced a number of modifications to EAs that arc
aimed at preserving diversity so that a set of solutions are maintained, which
represent niches of high fitness, but we have still maintained the conceptual
link to an adaptive landscape defined via the assignment of a single quality
metric (objective) to each of the set of possible solutions.

We now turn our attention to a class of problems that are currently receiving
a lot of interest within the optimisation community, and in practical appli-
cations. These are the so-called multiobjective problems (MOPs), where
the quality of a solution is defined by its performance in relation to several,
possibly conflicting, objectives. In practice it turns out that a great many
applications that have traditionally been tackled by defining a single objec-
tive function (quality function) have at their heart a multiobjective problem
that has been transformed into a single-objective function in order to make
optimisation tractable.

To give a simple illustration (inspired by [301]), imagine that we have moved
to a new city and are in the process of looking for a house to buy. There are
a number of factors that we will probably wish to take into account such
as: number of rooms, style of architecture, commuting distance and method
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to work, provision of local amenitics, access to pleasant countryside, and of
course price. NMany of these factors work against cach other (particularly
price), and so the final decision will almost inevitably bear a compromise.
based on trading-off the house’s rating on different factors.

The example we have just presented is a particularly subjective one. with
some factors that are hard to quantifv numerically. It does exhibit a feature
that is common to multiobjective problems. namely that it is desirable to
present the user with a diverse set of possible solutions. representing a vange
of different trade-offs between objectives.

The alternative is to assign a nuncerical quality function to cach objective,
and then combine these scores into a single fitness score using some (usually
fixed) weighting. This approach, often called scalarisation has been used for
many years within the operations rescarch and heuristic optimisation conimu-
nities (sce [81, 106] for good reviews). but suffers from a number of drawbacks:

e The use of a weighting function implicitly assumes that we can capture
all of the users preferences, even before we know what range of possible
solutions exist.

e For applications where we are repeatedly solving different instances of the
same problem, the use of a weighting function assumes that the user’s
preferences remain static, unless we explicitly seek a new weighting every
time.

For these reasons optimisation methods that simultaneously find a diverse
set of high-quality solutions are attracting increasing interest.

9.5.2 Dominance and Pareto Optimality

The concept of dominance is a simple one: given two solutions. both of
which have scores according to some set of objective values (which without
loss of generality we will assume to be maximised), one solution is said to
dominate the other if its score is at least as high for all objectives. and is
strictly better for at least one. We can represent the scores that a solution
A gets for n objectives as a n-dimensional vector a. Using the > symbol to
indicate domination, we can define A > B formally as:

A= B Vie{l,...,n} a; >b;, and Fi € {1,...,n}, a; > b;.

For conflicting objectives, there exists no single solution that dominates all
others, and we will call a solution nondominated if it is not dominated by
any other. All nondominated solutions possess the attribute that their quality
cannot be increased with respect to any of the objective functions without
detrimentally affecting one of the others. In the presence of constraints, such
solutions usually lie on the edge of the feasible regions of the search space.
The set of all nondominated solutions is called the Pareto set or the Pareto
front.
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f

2

Fig. 9.3. [llustration of the Pareto front. The quality of solutions is represented by
their positions relative to the x- and y-axes which represent two conflicting objectives
subject to constraints. The line represents the Pareto set, of which point A4 is an
example. Solutions above and to the right of the line arc infeasible. The shaded area
represents the set of points dominated by A.

In Figure 9.3 this front is illustrated for two conflicting objectives that are
both to be maximised. This figure also illustrates some of the features, such as
nonconvexity and discontinuities, frequently observed in real applications that
can cause particular problems for traditional optimisation techniques using
often sophisticated variants of scalarisation to identify the Pareto set. EAs
have a proven ability to identify high-quality solutions in high-dimensional
search spaces containing difficult features such as discontinuities and multiple
constraints. When coupled with their population-based nature and well-known
methods for finding and preserving diverse sets of good solutions (as described
in this chapter), it is not surprising that EA-based methods are currently the
state of the art in many multiobjective optimisation problems.

9.5.3 EA Approaches to Multiobjective Optimisation

There have been many approaches to multiobjective optimisation using EAs,
beginning with Schaffer’s vector-evaluated genetic algorithm (VEGA) in 1984
(332]. In this algorithm the population was randomly divided into subpop-
ulations that were then each assigned a fitness (and subject to selection)
according to a different objective function, but parent selection and recombi-
nation were performed globally. This modification was shown to be enough to
preserve an approximation to the Pareto front for a few generations, but not
indefinitely.

Subsequent to this, Goldberg suggested the use of fitness based on dom-
inance rather than on absolute objective scores [172], coupled with niching
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and /or speciation methods to preserve diversity. and this breakthrough trig-
gered a dramatic increase in research activity in this area. We briefly describe
some of the best-known algorithms below, noting that the choice of represen-
tation, and hence variation operators. are entirely problem dependent. and
so we concentrate on the way that fitness assignment and selection are per-
formed.

Nonelitist Approaches

Amongst the first algorithms to explicitly exert selection pressure towards the
discovery of nondominated solutions were:

e Fonseca and Fleming's multiobjective genetic algorithm (MOGA) [157].
This assigns a raw fitness to each solution equal to the number of members
of the current population that it dominates, plus one. It uses fitness sharing
amongst solutions of the same rank, coupled with fitness proportionate
selection to help promote diversity.

e Srinivas and Deb’s nondominated sorting genetic algorithm (NSGA) [383].
This works in a similar way, but assigns fitness based on dividing the
population into a number of “fronts” of equal domination. To achieve
this. the algorithm iteratively seeks all the nondominated points in the
population that have not been labelled as belonging to a previous front. It
then labels the new set as belonging to the current front, and increments
the front count, repeating until all solutions have been labelled. Each point
in a given front gets as its raw fitness the count of all solutions in inferior
fronts. Again fitness sharing is implemented to promote diversity, but this
time it is calculated considering only members from that individual’s front.

e Horn et al.’s niched Pareto genetic algorithm (NPGA) [206]. This algo-
rithm differs in that it uses a modified version of tournament selection
rather than fitness proportionate with sharing. The tournament opera-
tor works by comparing two solutions first on the basis of whether they
dominate each other. and then second on the number of similar solutions
already in the new population.

Although all three of these algorithims show good performance on a number
of test problems, they share two common features. The first of these is that
the performance they achieve is heavily dependent on a suitable choice of
parameters in the sharing/niching procedures. The second is that they can
potentially lose good solutions.

Elitist Approaches

During the 1990s much work was done elsewhere in the EA research com-
munity, developing methods for reducing dependence on parameter settings
(Chap. 8). Theoretical breakthroughs were achieved showing that single-
objective EAs converge to the global optimum on some problems, providing
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that an elitist strategy (Sect. 3.8.2) is used. In the light of this research Deb
and coworkers proposed the revised NSGA-II {107], which still uses the idea
of non-dominated fronts. but incorporates the following changes:

e A crowding distance metric is defined for each point as the average side
length of the cuboid defined by its nearest neighbours in the same front.
The larger this value. the fewer solutions reside in the vicinity of the point.

e A (yu+ A) survivor selection strategy is used (with g = A). The two pop-
ulations are merged and fronts assigned. The new population is obtained
by accepting individuals from progressively inferior fronts until it is full.
If not all of the individuals in the last front considered can be accepted.
they arc chosen on the basis of their crowding distance.

e Parent selection uses a modified tournament operator that considers first
dominance rank then crowding distance.

As can be seen this achieves elitism (via the plus strategy) and an explicit
diversity maintenance scheme. as well as reduced dependence on parameters.

Two other prominent algorithins, the strength Pareto evolutionary algo-
rithm (SPEA-2) [439] and the Pareto archived evolutionary strategy (PAES)
[228]. both achieve the elitist effect in a slightly different way by using an
archive containing a fixed number of nondominated points discovered dur-
ing the search process. Both maintain a fixed sized archive. and consider the
number of archived points close to a new solution, as well as dominance in-
formation, when updating the archive.

Diversity Maintenance in MOEAs

To finish our discussion on MOEAs it is appropriate to return our thoughts
to the initial aims of this chapter, namely to considering how sets of diverse
solutions can be maintained during evolution. It should be clear from the
descriptions of the MOEAs above that all of them use explicit methods to en-
force preservation of diversity. rather than relying simply on implicit measures
such as parallelisin (in one form or another) or artificial speciation.

In single-objective optimisation, explicit diversity maintenance methods are
often combined with implicit speciation methods to permit the search for
optimal solutions within the preserved niches. The outcome of this is a few
highly fit diverse solutions, often with multiple copies of each (Fig. 9.2). In
contrast to this, the aim of MOEAs is to attempt to distribute the population
evenly along the current approximation to the Pareto front. This partially
explains why speciation techniques have not been used in conjunction with the
explicit measures. Finally, it is worth noting that the more modern algorithms
discussed have abandoned fitness sharing in favour of direct measures of the
distance to the nearest nondominating solution, more akin to crowding.
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9.6 Example Application: Distributed Coevolution of
Job Shop Schedules

An interesting application. which makes use of many of the ideas in this
chapter. (and also some in Section13.2) can be seen in Husbands's distributed
cocvolutionary approach to multiobjective problems [208]. In this approach
he uses a coevolutionary model to tackle a complex multiobjective. multi-
constraint probleni. naimely a generalised version of job shop scheduling. Here
a number of items need to be manufactured. cach requiring a number of
operations on different machines. Each item may need a different number of
operations. and in general the order of the operations may be varied. so that
the problem of finding an optimal production plan for one item is itself NP-
hard. The usual approach to the multiple task problem is to optimisce each plan
individually, and then use a heuristic scheduler to mterleave the plans so as to
obtain an overall schedule. However. this approach is inherently flawed becausce
it optimises the plans in isolation rather than taking into consideration the
availability of machines, etc.

Husbands approach is different: he uses a separate population to evolve
plans for each item and optimises these concurrently. In this sense we have
a MOP, although the desired final output is a single set of plans (one for
each item) rather than a set of diverse schedules. A candidate plan for one
item gets evaluated in the context of a member from each other population.
i.e., the fitness value (related to time and machining costs) is for a complete
production schedule. An additional population is used to evolve “arbitrators™.
which resolve conflicts during the production of the complete schedule.

Early experiments experienced problems with premature loss of diversity.
and this is clearly a highly multimodal problem space. These problems are
treated by the use of an implicit approach to diversity preservation, namely
the use of a diffusion model EA. Furthermore, by colocating one individual
from each population in each grid location, the problem of partner (Sect. 13.2)
is neatly solved: a complete solution for evaluation corresponds to a grid cell.

We will not give details of his representation and variation operators here.
as these are highly problem specific. Rather we will focus on the details of his
algorithm that were aimed at aiding the search for high-class solutions. The
first of these is, of course, the use of a coevolutionary approach. If a single
population were used. with a solution representing the plans for all items,
there would be a greater likelihood of genetic hitchhiking (see Sect. 11.2 for a
description), whereby a good plan for one item in the initial population would
take over, even if the plans for the other items were poor. By contrast, the
decomposition into different subpopulations means that the good plan can at
worst take over one population.

The second feature that aids the search over diverse local optima is the use
of a diffusion model approach. The implementation uses a 15-by-15 square
toroidal grid, thus a population size of 225. Plans for 5 items, each needing
between 20 and 60 operations were evolved, so in total there were 6 popula-
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tions. and cach cell contained a plan for cach of the 5 items plus an arbitrator.
A generational approach is used: within each generation each cell’s popula-
tions are “bhred”. with a random permutation to decide the order in which

cells are considered.

The breeding process within cach cell is iterated for each population and

consists of the following steps:

—

1

-

6.

Generate a set of points to act as neighbours by tteratively generating
random lateral and vertical offsets from the current position. A binomial
approximation to a Gaussian distribution is used, which falls off sharply
for distances more than 2 and is truncated to distance 4.

Rank the cells in this neighbourhood according to cost. and select one
using linear ranking with s = 2.

Take the member of the current population from the selected cell and the
member in the current cell, and generate an offspring via recombination
and mutation.

Choose a cell from the neighbourhood using inverse linear ranking.
Replace the member of the current population in that cell with the newly
created offspring.

Re-evaluate all the individuals in that cell using the newly created off-
spring.

The results presented from this technigue showed that the system managed

to evolve low-cost plans for each item, together with a low total schedule time.

Notably, even after several thousand iterations. the system had still preserved
a number of diverse solutions.

9.7 Exercises

()

Given a function with 5 optima with fitness 8.12.16.20.24 and a population
of size 200, what would be the hoped-for distributions of mdividuals to
peaks under fitness sharing and deterministic crowding?

In a tag-mediated speciation scheme. how does the length of the speciation
tag affect the number of different niches in which we can hope to maintain
solutions?

Discuss the factors that atfect the rate of convergence of an island model
EA to a single solution.

Describe the main components necessary to add to a “standard” EA in
order to tackle a multiobjective problem.

What is a nondominated point?

A simple multiobjective problem has two objective functions f,(z) = z;
and fo(Z) = z3, and is subject to the constraints z? + z2 < 10. What will
the Pareto front for this problem look like?
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9.8 Recommended Reading for this Chapter
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2000
Presents several applications of EAs to multimodal and multiobjective
applications within an overall practice-orientated philosophy
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Hybridisation with Other Techniques: Memetic
Algorithms

10.1 Aims of this Chapter

In the preceding chapters we described the main varieties of evolutionary
algorithms and described various examples of how they might be suitably
implemented for different applications. In this chapter we turn our attention to
systems in which, rather than existing as “stand-alone” algorithms. EA-based
approaches are either incorporated within larger systems, or alternatively have
other methods or data structures incorporated within them. This category of
algorithms is very successful in practice and forms a rapidly growing research
area with great potential. This area and the algorithms that form its subject
of study are named memetic algorithms (MA). In this chapter we explain
the rationale behind MAs, outline a number of possibilities for combining
EAs with other techniques, and give some guidelines for designing successful
hybrid algorithms.

10.2 Motivation for Hybridising EAs

There are a number of factors that motivate the hybridization of evolutionary
algorithms with other techniques. In the following we discuss some of the most
salient of these. Many complex problems can be decomposed into a number of
parts, for some of which exact methods, or very good heuristics, may already
be available. In these cases it makes sense to use a combination of the most
appropriate methods for different subproblems.

Overall successful and efficient general problem solvers do not exist. The
rapidly growing body of empirical evidence and some theoretical results, like
the No Free Lunch theorem (NFL),! strongly support this view. From an

! The NFL is treated in detail in Chap. 11, including a discussion about what it
really says. For the present we interpret it as stating that all stochastic algorithms
have the same performance when averaged over all discrete problems.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com
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EC perspective this fact implies that EAs do not exhibit the performance
as sugegested in the 1980°s, ¢f. Fig. 2.8 in Sect. 2.5. An alternative view on
this issue is given Fig. 10.1. The figure considers the possibility to combine
problem-specific heuristics and an EA into a hybrid algorithm. Furthermore.
it is assumed that the amount of problemi-specific knowledge is variable and
can be adjusted. Depending on the amount of problem-specifiec knowledge in
the hvbrid algorithm. the global performance curve will eradually change from
roughly flat (pure EA) to a narrow peak (problenm-specific method).

problem tailored method
————— pure EA
EA enriched with knowledge

performance of method

range of problems

Fig. 10.1. 1990s view of EA performance after Nichalewicz [271]

In practice we frequently apply an evolutionary algorithm to a problem
where there is a considerable amount of hard-won user experience and knowl-
edge available. In such cases performance benefits can often arise from utilis-
ing this information in the form of specialist operators and/or good solutions.
provided that care is taken not to bias the scarch too much away from the
generation of novel solutions. In these cases it is commonly experienced that
the combination of an evolutionary and a heuristic method a hybdrid EA

performs better than either of its “parent™ algorithms alone. Note. that in
this sense Figure 10.1 is misleading as it does not indicate this effect.

There is a body of opinion that whilst EAs are very good at rapidly iden-
tifving good arcas of the search space (exploration). they are less good at
the “endgame” of fine-tuning solutions (exploitation), partly as a result of the
stochastic nature of the variation operators. To illustrate this point, as anyone
who has implemented a GA to solve the “One-Max” problem? knows, the al-
gorithni is quick to reach near-optimal solutions. but the process of mutation
finding the last few bits to change can be slow, since the choice of which genes
are mutated is random. A more eflicient method might be to incorporate a
more systematic search of the vicinity of “good” solutions by adding a local
search improvement step to the evolutionary cycle (in this case. a bit-flipping
hill-climber).

2 A binary coded maximisation problem, where the fitness is simply the count of
the number of genes set to “1” (Appendix B).

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

10.3 A Brief Introduction to Local Search 175

A final concept. which is often used as a motivation by rescarchers in this
ficld. is Dawkin's idea of “memes™[94] . These can be viewed as units of “cul-
tural transmission™, in the same way that genes are the units of biological
transmission. Thev are sclected for replication according to their perceived
utility or popularity. and then copied and transmitted via interperson coni-
munication.

Examples of memes are tunes. ideas. catch-phrases. clothes fashions.
ways of making pots or of building arches. Just as genes propagate
themselves in the gene pool by leaping from body to body via sperm
or eggs. so mees propagate themselves in the meme pool by leaping
from brain to brain via a process which. in the broad sense. can be
called imitation [94. p. 192].

Since the idea of memes was first proposed by Dawkins, it has been extended
by other authors (e.g.. [53. 67]). From the point of view of the study of adaptive
svstems and optimisation techniques. it is the idea of memes as agents that
can transform a candidate solution that is of direct interest. We can consider
the addition of a “learning” phase to the evolutionary cyele as a form of
meme gene interaction. whereby the problem representation (genotype) is
now considered to be “plastic”, and the influence of the learning mechanisin
(meme) can be thought of as a developmental process.

As this short selection of motivating considerations suggests. there are a
number of diverse reasons why the hybridization of evolutionary algorithms
with other technigques is of interest to both the researcher and the practi-
tioner. Concerning the use of other techniques and knowledge to augment the
EA (as opposed to the use of EAs within large systems). these have been
given various names in research papers such as: hybrid GAs, Baldwinian FAs.
Lamarckian EAs. genetic local search algorithms. and others. Moscato [280)]
coined the name memetic algorithm to cover a wide range of techniques where
evolutionarv-based search is angmented by the addition of one or more phases
of local search. or by the use of problem-specific information. The ficld is now
sufficiently mature and distinct to have its own annual workshop and special
issues of major journals dedicated to it. and a comprehensive on-line bibliog-
raphy is maintained at [285].

10.3 A Brief Introduction to Local Search

In Section 2.6 we briefly described local search as an iterative process of
examining the set of points in the neighbourhood of the current solution, and
replacing it with a better neighbour if one exists. In this section we give a
brief introduction to local search in the context of memetic algorithms. For
more information there are a number of books on optimisation that cover local
search in more detail, such as [3]. A local search algorithm can be illustrated
by the pseudocode given in Fig. 10.2.
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BEGIN
/* given a starting solution ¢ and a neighbourhood function n */
set best =1;
set iterations = (;
REPEAT UNTIL ( depth condition is satisfied ) DO
set count = (0;
REPEAT UNTIL ( pivot rule is satisfied ) DO
generate the next neighbour j € n(i);
set count = count + 1;
IF (f(j) is better than f(best)) THEN
set best = J;
FI
0D
set 1 = best;
set iterations = iterations + 1;
0D
END

Fig. 10.2. Pseudocode of a local search algorithm

There are three principal components that affect the workings of this local

search algorithm.

The first is the choice of pivot rule, which can be steepest ascent or
greedy ascent (also known as first ascent). In the former the condition
for terminating the inner loop is that the entire neighbourhood n(i) has
been searched, i.e., count =| n(i) |, whereas in the latter the termination
condition is ((count =| n(z) |) or (best # 1)), i.e., it stops as soon as an
improvement is found. In practice it is sometimes necessary to only con-
sider a randomly drawn sample of size N <<| n(i) | if the neighbourhood
is too large to search.

The second component is the depth of the local search, i.e., the termina-
tion condition for the outer loop. This lies in the continuum between only
one improving step being applied (¢terations = 1) to the search continuing
to local optimality: ((count =| n(i) |) and (best = i)). Considerable atten-
tion has been paid to studying the effect of changing this parameter within
MAs [192], and it can be shown to have an effect on the performance of
the local search algorithm, both in terms of time taken, and in the quality
of solution found.

The third, and primary, factor that affects the behaviour of the local search
is the choice of neighbourhood generating function. In practice n(i) is often
defined in a operational way, that is, as a set of points that can be reached
by the application of some move operator to the point 2. An equivalent
representation is as a graph G = (v, e), where the set of vertices v are the
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points in the search space, and the edges relate to applications of the move
operator i.e., e;; € G <= j € n(i). The provision of a scalar fitness value
f defined over the search space means that we can counsider the graphs
defined by different move operators as fitness landscapes [218]. Merz and
Freisleben [270] present a number of statistical measures that can be used
to characterise fitness landscapes. and that have been proposed by various
authors as potential measures of problem difficulty. They show that the
choice of move operator can have a dramatic effect on the efficiency and
effectiveness of the local search, and hence of the resultant NA.

[n some cases. domain-specific information may be used to guide the choice
of neighbourhood structure within the local search algorithins. However. it
has recently been shown that the optimal choice of operators can be not
only instance specific within a class of problems [270, pp. 254 258], but also
dependent on the state of the evolutionary search [240]. This result is not
surprising when we consider that points that are locally optimal with respect
to one neighbourhood structure may not be with respect to another, unless of
course thev are globally optimal. Thus if a set of points has converged to the
state where all are locally optimal with respect to the current neighbourhood
operator, then changing the neighbourhood operator may provide a means
of progression, in addition to recombination and mutation. This observation
has also been applied in other fields of optimisation and forms the heart of
methods such as the variable neighbourhood search algorithm [189].

10.3.1 Lamarckianism and the Baldwin Effect

The framework of the local search algorithm outlined above works on the
assumption that the current incumbent solution is always replaced by the
fitter neighbour when found. Within a memetic algorithm, we can consider
the local search stage to occur as an improvement, or developmental learning
phase within the evolutionary cycle. and (taking our cue from biology) we
should consider whether the changes made to the individual (acquired traits)
should be kept. or whether the resulting improved fitness should be awarded
to the original (pre-local search) member of the population.

The issue of whether acquired traits could be inherited by an individual’s
offspring was a major issue in nineteenth century, with Lamarck arguing in
favour, whereas the Baldwin effect [34] suggests a mechanism whereby evo-
lutionary progress can be guided towards favourable adaptation without the
changes in individuals’ fitness arising from learning or development being re-
flected in changed genetic characteristics. Modern theories of genetics strongly
favour the latter viewpoint. Pragmatically, we saw in Sect. 1.4.2 that the map-
ping from DNA to protein is highly complex and non-linear, let alone the
complexity of the developmental process by which the mature phenotype is
created. In the light of this, it is hardly credible to believe that a process of
reverse engineering could go on, coding the effects of phenotypically acquired
traits back into the genotype.
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Luckily. working within the medium of computer algorithms we are not
restricted by these biological constraints, and so in practice both schemes are
usually possible to implement within a memetic algorithm. In general MAs
are referred to as Lamarckian if the result of the local search stage replaces
the individual in the population, and Baldwinian if the original member is
kept. but has as its fitness the value belonging to the outcome of the local
search process. In a classic carly study, Hinton and Nowlan [199] showed that
the Baldwin effect could be used to mprove the evolution of artificial neural
networks. and a number of researchers have studied the relative benefits of
Baldwinian versus Lamarckian algorithms [207. 264. 100. 421. 422]. In practice
most recent work has tended to use either a pure Lamarckian approach. or
a probabilistic combination of the two approaches. such that the improved
fitness is always used. and the improved individual replaces the original with
a given probability.

10.4 Structure of a Memetic Algorithm

There are a number of ways in which an EA can be used in conjunction with
other operators and/or domain-specific knowledge as illustrated by Fig 10.3.

10.4.1 Heuristic or Intelligent Initialisation

The most obvious way in which existing knowledge about the structure of
a problem or potential solutions can be incorporated into an EA is in the
initialisation phase. In our discussion of this issue in Sect. 2.5 we gave reasons
why this might not be worth the efforts in general. cf. Fig. 2.6. However,
starting the EA by using existing solutions can offer interesting benefits:

1. It is possible to avoid “reinventing the wheel”™ by using existing solutions.
Preventing waste of computational efforts can vield increased efficiency
(speed).

2. A nonrandom initial population can direct the search into particular re-
gions of the search space that contain good solutions. Biasing the scarch
can result in increased effectivity (quality of end solution).

3. Allin all, a given total amount of computational effort divided over heuris-
tic initialisation and evolutionary search might deliver better results than
spending it all on “pure” evolutionary search, or an equivalent multistart
heuristic.

There are a number of possible ways in which the initialisation function can
be changed from simple random creation, such as:

e Seeding the population with one or more previously known good solu-
tions arising from other techniques. These techniques span the range from
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Known solutions
Initial Pop. é— Constructive heuristics

Selective initialisation
Local search

Mating pool

L Use of problem-specific
T information in operator
Use of problem-specific
S information in operator
Offspring e Local search
Modified selection
. operators

Fig. 10.3. Possible places to incorporate knowledge or other operators within the
evolutionary cycle

human trial and error to the use of highly specialised greedy construc-
tive heuristics using instance-specific information. Examples of the latter
include ‘“nearest-neighbour™ heuristics for TSP-like problems. ~schedule
hardest first™ for scheduling and planning probleins, and a wealth of other
techniques for different problems. which can be found in the operations
rescarch literature.

e In selective initialisation a large number of random solutions are cre-
ated and then the initial population is sclected from these. Bramlette [61]
suggests that this should be done as a series of N k-way tournaments rather
than by selecting the best N from k- N solutions. Other alternatives in-
clude selecting a set based not only on fitness but also on diversity so as
to maximise the coverage of the search space.

e Performing a local search starting from each member of initial population,
so that the initial population consists of a set of points that are locally
optimal with respect to some move operator.

e Using one or more of the above methods to identify one (or possibly more)
good solutions, and then cloning them and applying mutation at a high
rate (mass mutation) to produce a number of individuals in the vicinity
of the start point.
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All of these methods have been tried and have exhibited performance gains
for certain problems. However, the important issue of providing the EA with
sufficient diversity for evolution to occur must also be considered. In [388]
Surry and Radcliffe examined the effect of varying the proportion of the ini-
tial population of a GA that was derived from known good solutions. Their
conclusions were:

e The use of a small proportion of derived solutions in the initial population
aided genetic search.
As the proportion was increased, the average performance improved.

e The best performance came about fromm a more random initial population.

In other words, as the proportion of solutions derived from heuristics used
increased, so did the mean performance, but the variance in performance
decreased. This meant that there were not the occasional really good runs
resulting from the EA searching completely new regions of space and coming
up with novel solutions. For a certain type of problems (in particular. design
problems as discussed in Chap. 14) this is an undesirable property.

10.4.2 Hybridisation Within Variation Operators: Intelligent
Crossover and Mutation

A number of authors have proposed so-called “intelligent” variation oper-
ators, which incorporate problem- or instance-specific knowledge. At their
most simple, these might take the form of introducing bias into the operators.
To give a simple example, if a binary-coded GA is used to select features for
use in another classification algorithm, one might attempt to bias the search
towards more compact features sets via the use of a greater probability for
mutating from the allele value “use” to “don’t use” rather than vice versa. A
related approach can be seen in [355], where genes encode for microprocessor
instructions, which group naturally into sets with similar effects. The muta-
tion operator was then biased to incorporate this expert knowledge. so that
mutations were more likely to occur between instructions in the same set than
between sets.

A slightly different example of the use of problem-specific (rather than
instance-specific) knowledge can be seen in the modified one-point crossover
operator used for protein structure prediction in [401]. Here the authors re-
alised that the heritable features being combined by recombination were folds,
or fragments of three-dimensional structure. A property of the problem is that
during folding protein structures can be free to rotate about peptide bonds.
The modified operator made good use of this knowledge by explicitly testing
all the possible different orientations of the two fragments, (accomplished by
trying all the possible allele values in the gene at the crossover point) in or-
der to find the most energetically favourable. If no feasible conformation was
found, then a different crossover point was selected and the process repeated.
This can be seen as a simple example of the incorporation of a local search

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

10.4 Structure of a Memetic Algorithm 181

phase into the recombination operator. Note that this should be distinguished
from the simpler “crossover hill-climber™ proposed in [218]. in which all of the
[-1 possible offspring arising from one-point crossover are constructed and the
best chosen.

At the other end of the scale. at their most complex. the operators can be
modified to incorporate highly specific heuristics, which make use of instance-
specific knowledge. A good example of this is Merz and Friesleben's distance-
preserving crossover (DPX) operator for the TSP [163]. This operator has two
motivating principles: making use of instance specific knowledge, whilst at the
same time preserving diversity within the population to prevent premature
convergence. Diversity is maintained by ensuring that the offspring inherits
all of the edges common to both parents, but none of the edges that are present
in only one parent. and is thus at the same distance to each parent as they
are to each other. The “intelligent™ part of the operator comes from the use of
a nearcst-neighbour heuristic to join together the subtours inherited from the
parents, thus explicitly exploiting instance-specific edge length information.
[t is easy to see how this type of scheme could be adapted to other problems,
via the usc of suitable heuristics for completing the partial solutions after
inheritance of the common factors from both parents.

10.4.3 Local Search Acting on the Output from Variation
Operators

The most common use of hybridisation within EAs, and that which fits best
with Dawkin’s concept of the meme, is via the application of one or more
phases of improvement to individual members of the population during the
EA cycle, i.e., local search acting on whole solutions created by mutation or
recombination. As is suggested from Fig. 10.3 this can occur in different places
in cycle i.c., before or after selection or after crossover and/or mutation. but
a typical implementation might take the form given in Fig. 10.4

The natural analogies between human evolution and learning, and EAs and
artificial neural networks (ANNs) prompted a great deal of research into the
use of EAs to evolve the structure of ANNs. which were then trained using
back-propagation or similar means during the 1980s and early 1990s. This
research gave a great deal of insight into the role of learning, Lamarckianism,
and the Baldwin effect to guide evolution (e.g. [199, 207, 264, 400, 421, 422]
amongst many others), and served to reinforce messages that were proposed
by “real-world” practitioners for several years as to the usefulness of incorpo-
rating local search and domain-based heuristics. Since then a number of PhD
theses [192, 236, 241, 269, 287] have provided the beginnings of a theoretical
analysis, and both theoretical and empirical results to justify an increased
interest in these algorithms.

One recent result of particular interest to the practitioner is Krasnogor’s
formal proof that, in order to reduce the worst-case run times, it is necessary
to choose a local search method whose move operator is not the same as
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BEGIN
INITIALISE population;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
SELECT parents;
RECOMBINE to produce offspring;
MUTATE offspring;
EVALUATE offspring;
IMPROVE offspring via Local Search;
SELECT individuals for next generation;
oD
END

. Fig. 10.4. Pscudocode for a simple memetic algorithm

those of the recombination and mutation operators [236]. This formalises the
intuitive point that within a MA recombination. and particularly mutation.
have valuable roles in generating points that lie in different basins of attraction
with respect to the local search operator. This diversification is best done
either by an aggressive mutation rate, or preferably by the use of a variation
operators that have different neighbourhood structures.

10.4.4 Hybridisation During Genotype to Phenotype Mapping

A widely used hybridisation of memetic algorithms with other heuristics is
during the genotype- phenotype mapping prior to evaluation. A good exam-
ple of this is the use of instance-specific knowledge within decoder or repair
function. as seen in Sect. 2.4.2 where we can consider the decoder function
for the knapsack problem as being a packing algorithm that takes its inputs
in the order suggested by the EA.

This approach, where the EA is used to provide the inputs controlling the
application of another heuristic, is frequently used: another typical example of
this was seen in Sect. 3.9, where a GA was used to suggest the order in which
tasks were scheduled using a problem-specific heuristic in a job shop schedul-
ing problem. Similar approaches have been used to great effect for timetabling
and scheduling problems [191], and in the “sector first-order second” approach
to the vehicle routing problem [397].

As can be seen, there is a common thread to all of these approaches, which
is to make use of existing heuristics and domain information wherever pos-
sible. The role of the EA is often that of enabling a less biased application
of the heuristics, or of problem decomposition, so as to permit the use of so-
phisticated, but badly scaling heuristics when the overall problem size would
preclude their use.
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10.5 Design Issues for Memetic Algorithms

So far we have discussed the rationale for the use of problem-specific knowlege
or heuristies within EAs. and some possible wavs in which this can he done.
However. as ever we must aceept the caveat that like any other technigne.
MAs are not some “magie solution™ to optimisation problems, and care must
bhe taken in their implementation. In the sections bhelow we briefly discuss
some of the issues that have arisen from experience and theoretical reasoning.

10.5.1 Preservation of Diversity

The problem of premature convergence. whereby the population converges
around some suboptimal point. is recognised within EAs but is exacerbated
in MAs by the effect of local search. If the local search phase continues until
cach point has heen moved to a local optimun. then this leads to an inevitable
loss of diversity within the population.? A number of approaches have been
developed to combat this problem such as:

e When initialising the population with known good individuals. onlv using
a relatively small proportion of them

e Using recombination operators such as Merz's DPX, which are designed
to preserve diversity

e Modifying the sclection operator to prevent duplicates as in CHC [1306]

e Nlodifving the selection operator or local search acceptance criteria to use
a Boltzmann method so as to preserve diversity

This last method bears natural analogics to simulated anncaling [2. 227].
where worsening moves can be accepted with nonzero probability. to aid es-
cape from local optima, and naturally so. since a number of hybrids of sim-
ulated annecaling with EAs have been proposed. A promising method that
tackles the diversity issue explicitly is proposed in [239]. where during the
local secarch phase a less-fit neighbour may be accepted with a probability
that increases exponentially as the range of fitness values in the population
decreases:

1 if AF >0,
P(accept) = ¢ _kae_ .
e Fmar=Fara - otherwise,
where £ is a normalisation constant and we assume a maximisation problem,
AE = F neighbour — I original-

3 Apart from the exceptional case where each member of the population lies within
the basin of attraction of a different local optimum.
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10.5.2 Choice of Operators

Probably the most important factor in the design of a memetic agorithm
incorporating local search or heuristic improvement is the choice of improving
heuristic or local search move operator, that is to say, the way that the set of
neighbouring points to be examined when looking for an improved solution is
generated.

There has been a large body of theoretical and empirical analysis of the
utility of various statistical measures of landscapes for predicting problem
difficulty. The interested reader can find a good summary in [221]. Merz and
Freisleben [270] consider a number of these measures in the context of memetic
algorithims, and show that the choice of move operator can have a dramatic
effect on the efficiency and effectiveness of the local search. and hence of
the resultant NA. We have already mentioned Krasnogor's PLS complexity
analysis result, which suggests that to reduce the worst-case time complexity
of the algorithmn it is desirable for the move operator of the LS to define a
different landscape to the mutation and crossover operators.

In gencral then, it is worth giving careful consideration to the choice of
move operators used when designing a MA: for example, using 2-opt for
a TSP problem might yield better improvement if not used in conjunction
with the inversion mutation operator described in Sect. 3.4.4. In some cases,
domain-specific information may be used to guide the choice of neighbourhood
structure within the local search algorithms. However, it was recently shown
that the optimal choice of operators can be not only instance specific within
a class of problems [270, pp. 254-258], but also dependant on the state of the
evolutionary search [240]. This result is not surprising when we consider that
points that are locally optimal with respect to one neighbourhood structure
may not be with respect to another (unless, of course, they are globally opti-
mal). Thus if a set of points has converged to the state where all are locally
optimal with respect to their current neighbourhoods, then changing the move
operator may provide a means of progression in addition to recombination and
mutation.

One simple way to surmount these problems. is the use of multiple local
search operators in tandem, in a similar fashion to the use of multiple vari-
ation operators seen in Sect. 3.4 and Chapter 8. An example of this can be
seen in [237],where a range of problem specific move operators, such as lo-
cal stretches, rotations and reflections, each tailored to different stages of the
folding process, are used for a protein structure prediction problem within the
context of what is called a multimemetic algorithm [240].

The use of a set of possible local search strategies has the pleasing advantage
that they are easily seen to be analagous to Dawkin’s memes. The extension
of this approach to allow the adaptation of the local search “memes” in the
form of a coevolving population, amd the implications for search is currently
under way in different research groups [67, 238, 351, 350].
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10.5.3 Use of Knowledge

A final point that might be taken into consideration when designing a new
memetic algorithm concerns the use and reuse of knowledge gained during
the optimisation process. To a certain extent this is done automatically by
recombination. but generallv speaking explicit mechanisms are not used.

One possible hvbridisation that explicitly nses knowledge about points al-
ready scarched to guide optimisation is with tabu search [168]. In this al-
cgorithm a ~tabu” list of visited points is maintained. which the algorithm is
forbidden to return to. Such methods appear to offer promise for maintaining
diversity. Similarly. it is easy to imagine extensions to the Boltzimann accep-
tance/sclection schemes that utilise information about the spread of genotypes
in the current population, or even past populations. when deciding whether
to accept new solutions.

10.6 Example Application: Multistage Memetic
Timetabling

In order to illustrate some of the ways that EAs can be combined with other
techniques, we take as our example an application to examination timetabling
described in [69]. Timetabling is in general an NP-complete problem, and the
examination timetabling application is particularly beloved of academic re-
searchers, not least because they are regularly made aware of its inportance
and difficulty. The general form that the problem takes is of a set of exami-
nations F, each of which has a number of seats required s;. to schedule over a
set of time periods P. Usually a co-occurrence matrix €' is provided, where ¢;;
gives the number of students sitting both exams 2 and j. If feasible solutions
exist, then this is a constraint satisfaction problem, but in general this might
not be the case, so it is more common to take an indirect approach and treat
it as a constrained optimisation problem via the use of a penalty function.?
This function considers a number of terms

e Exains cannot be scheduled in a room that does not have adequate capac-
1ty.

e [t is highly undesirable to timetable two exams ¢ and j at the same time
if ¢;; > 0 since this requires quaranteening those students until they can
sit the second paper.

e It is desirable not to have students sitting two exams on the same day.

It is preferable not to have students sitting exams in consecutive periods,
even if there is a night between them.

This timetabling problem has been well studied, and many heuristic ap-
proaches have been proposed, but a common problem has been that they do

4 See Chap. 12.
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not always scale well. The approach documented by Biurke and Newell is par-
ticularly interesting and is relevant to this chapter because it has the following
features:

e A decomposition approach is taken, whereby a heuristic scheduler breaks
down the problem into smaller parts that can be more easily solved by an
optinmisation technique.

e The optimisation heuristic used is an EA.

The EA itself incorporates other heuristics, i.e.. it is an MA in its own
right.

The heuristic scheduler divides the set E into a number of equal-sized
smaller sub-groups, which are scheduled in turn. Thus when scheduling the
clements of the nth subgroup. the elements of the previous n-1 subgroups are
already in place and cannot be altered. The set E is partitioned by using a
metric to estimate the difficulty of scheduling each exam, and then ranking
the exams so that the most difficult ones are scheduled first. Three different
metrics are considered, based on the number of conflicts with other events,
the number of conflicts with previously scheduled events. and the number of
valid periods for an event left in the timetable. The authors also consider the
use of “look-aliead“ techniques in which two subsets are counsidered, but only
one timetabled.

This strategy could of course be used with any one of a number of techniques
cmbedded within it to handle the timetabling of each subset in turn. The
heuristic chosen is itself a memetic algorithm with the parameters listed in

Table 10.1.
Representation Set of linked lists of exams, each encoding for one period
Recombination None
Mutation Random choice of “light” or “heavy” mutation
Mutation probability |100%
Parent selection Exponential ranking
Survival selection Best 50 of 100 offspring
Population size 50
Initialisation Randomly generated then local search applied to each
Termination condition(Five generations with no improvement in best fitness
Special Features Local search (to local optimum) applied after mutation

Table 10.1. Table describing MA embedded with multistage timetabling algorithm

As can be seen, there are several points worth commenting on. Each member
of the initial population is created by generating a random permutation of the
exams, and then (in that order) assigning each one to the first valid period.
The local search algorithm is always applied until a locally optimal solution
1s reached, but it uses a greedy ascent mechanism so there is some variability
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in the output. It is applied to each initial solution, and to each offspring. thus
the EA is always working with solutions that are locally optimal. at least with
respect to this operator.

The authors reported that previous experiments motivated them against the
use of recombination for this problem. but instead cacht offspring is created
via the use of one of two problem-specific mutation operators. The —light™
operator is a version of scramble mutation that checks for the feasibility of
the solutions it produces. The “heavy” mutation operator is highly instance
specifie. Tt looks at the parent and calculates a probability of “disrupting™ the
events in cach period based on the amount of penalty it scems to be causing.
However, this operator also makes use of knowledge from other solutions.
since these probabilities of disruption are modified by reference to the best-
performing solution in the current population.

The results obtained by this algorithm are impressive. both in terms of
speed and quality of solutions. It is worth emphasising the following points
that have led to this success:

e The combination of heuristic sequencing with an EA-based approach finds
better results faster than either approach does on its own.

e The algorithuin uses local scarch so that its initial population is alreadyv
considerably better than random:.

e Strong selection pressure is applied: both exponential ranking for parent
selection plus (50.100) survivor selection.

e Intelligent mutation operators are used. One uses instance-specific infor-
mation to prevent it from producing solutions that violate the most impor-
tant constraints. The second is highly problem specific. aimed at disrupting
“poor” periods.

e The “heavy” mutation operator makes use of information from the rest of
the population to decide how likely it is to disrupt a period.

e The depth of local search is always maximal, i.e.. the parent population
will only come from the set of local optima of the local search landscape.

e Despite the strong selection pressure, and the point above. the fact that
mutation is always applied, and that all the search operators have different
underlying move mechanisms. means that a premature loss of diversity is
avoided.

e As detailed in the paper, there is major use of a variety of coding and
algorithmic strategies to avoid full evaluation of solutions and to speed up
the manipulation of partial solutions.

10.7 Exercises
1. Describe how the use of Lamarkian and Baldwinian versions of local search
methods in memetic algorithms change the size of the search space ex-

plored by the underlying EA.
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2. Implement a simple memetic algorithm using a single iteration of a bit-
flipping local search within the code for the SGA you developed for One-
Max in Chapter 3. Before you run the experiment, justify whether you
think steepest or greedy ascent will be most efficient on this problem.

10.8 Recommended Reading for this Chapter

1. P. Moscato. Memetic algorithms’ home page.
http://www.densis.fee.unicamp.br/ moscato/memetic_home.html
A Web site containing a huge bibliography and lsts of memetic algorithms
and related works, plus links to the home pages of researchers in this area.

2. S. Blackmore. The Meme Machine. Oxford University Press. Oxford UK.
1999.

3. Corne, Dorigo and Glover (editors). New Ideas in Optimization, Chapters
14-18. pages 217--294 McGraw Hill, London 1999
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11

Theory

11.1 Aims of this Chapter

In this chapter we present a brief overview of some of the approaches taken
to analysing and modelling the behaviour of Evolutionary Algorithins. The
“Holy Grail” of these efforts is the formulation of predictive models describing
the behaviour of an EA on arbitrary problems, and permitting the specifica-
tion of the most efficient form of optimiser for any given problem. However,
(at least in the authors’ opinions) this is unlikely ever to be realised, and most
researchers will currently happily settle for techniques that provide any veri-
fiable insights into EA behaviour, even.on simple test problems. The reason
for what might seem like limited ambition lies in one simple fact: evolution-
ary algorithms are hugely complex systems, involving many random factors.
Moreover, while the field of EAs is fairly young, it is worth noting that the
field of population genetics and evolutionary theory has a head start of more
than a hundred years, and is still battling against the barrier of complexity.

Full descriptions and analysis of the various techniques currently used to
develop EA theory would require both an amount of space and an assump-
tion of prior knowledge of mathematics and statistics that are unsuitable
here. We therefore restrict ourselves to a fairly brief description of the prin-
cipal methods and results. For further details, we point the interested reader
to the suggested texts at the end of this chapter, ranging from “bird’s eye
overviews” [124] to extensive monographs [50, 411]. We begin by describing
some of the approaches taken to modelling EAs using a discrete representation
(i.e., for combinatorial optimisation problems), before moving on to describe
the techniques used for continuous representations. This chapter finishes with
a description of an important theoretical result concerning all optimisation
algorithms, the No Free Lunch (NFL) theorem.
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11.2 Competing Hyperplanes in Binary Spaces: the
Schema Theorem

11.2.1 What is a Schema?

Since Holland's initial analysis. two related concepts have dominated much
of the theoretical analysis and thinking about GAs. These are the concepts
of schema (plural schemata) and building blocks. A schema is simply a
hyperplane in the search space, and the common representation of these for
binary alphabets uses a third symbol — # the “don't care™ symbol. Thus for a
five-bit problem. the schema 11##4 is the hyperplane defined by having ones
in its first two positions. All strings meeting this criterion are instances. or
examples. of this schema (in this case there are 28 = 8 of them). The fitness of
a schema is the mean fitness of all strings that are examples of it: in practice
this is often estimated from samples when there are a lot of such strings.
Global optimisation can be seen as the search for the schema with zero “don’t
care’ svinbols, which has the highest fitness.

Holland's initial work showed that the analysis of GA behaviour was far
simpler if carried out in terms of schemata. This 1s an example of aggregation
in which rather than model the evolution of all possible strings. they are
grouped together in some way and the evolution of the aggregated variables
is modelled. He showed that a string of length [ is an example of 2! schemata.
Although in general there will not be as many as p-2! distinct schemata in
a population of size yi. he derived an estimate that a population will usefully
process O(y3) schemata. This result, known as implicit parallelism is widely
quoted as being one of the main factors in the success of GAs.

Two features are used to describe schemata: the order, that is. the number
of positions in the schema that do not have the # sign, and the defining
length. that is. the distance between the outermost defined positions (which
equals the number of possible crossover points between these positions). Thus
the schema H=1##04#1#0 has order o(H) = 4 and defining length d(H) =
8—1=T7.

The number of examples of a schema in an evolving population depends on
the effects of variation operators. While selection operators can only change
the relative frequency of pre-existing examples, variation operators such as re-
combination and mutation can both create new examples and disrupt current
examples. In what follows we will use the notation Pd(H.z) to denote that
probability that the action of an operator z on an instance of a schema H is
to destroy it, and Ps(H) to denote the probability that a string containing
an instance of schema H is selected.

11.2.2 Holland’s Formulation for the SGA

Holland’s analysis applied to the standard genetic algorithm (SGA) using
fitness proportionate parent selection, one-point crossover (1X), and bitwise
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mutation. with a generational scheme for survivor selection. Considering a
genotype of length [ that contains an example of a schema H, the schema
may be disrupted if the crossover point falls between the ends, which happens
with probability

d(H)

T-1)

The probability that bitwise mutation with probability 2, will disrupt the
schema H is proportional to the order of the schema: Pd(H. mutation) =
1—(1- P,,,)“(H). which after expansion. and ignoring high-order terms in P2, .
approximates to

Pd(H.1X) =

Pd(H, mutation) = o(H) - I,,.

The probability of a schema being selected depends on the fitness of the
individuals in which it appears relative to the total population fitness, and the
number of examples present n(H.t). Using f(H) to represent the fitness of
the schema H, defined as the mean fitness of individuals that are examples
of schema H. and < f > to denote the mean population fitness, we obtain:

n(H.1t) - f(H)
< f>

Ps(H,t) =

Noting that p independent samples are taken to create the next set of par-
ents, the expected number of instances of H in the population after selection
is then
n(H.t)- f(H)

n'(H.t)=u- Ps(H,t) =
n'(H.t) = p- Ps(H,t) 7>

After normalising by p (to make the result population-size independent), al-
lowing for the disruptive effects of recombination and mutation derived above,
and using an inequality to allow for the creation of new instances of H by the
variation operators, the proportion m(H) of individuals representing schema
H at subscquent time-steps is given by:

(ot 4 1) = m(i.0) - LD [1 _ (pc | ;l(jil)

<f>

where p. and p,, are the probabilities of applying crossover, and the bitwise
mutation probability, respectively.

This is the schema theorem, and the original understanding of this result
was that schemata of above-average fitness would increase their number of in-
stances within the population from generation to generation. We can quantify
this by noting that the condition for a schema to increase its representation
is m(H,t+ 1) > m(H,t) which is equivalent to:

SH) [1 - (pc d(H))} (1= pm - o(H)].

<f> -1

)J 1= pm - o(H)], (11.1)
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11.2.3 Schema-Based Analysis of Variation Operators

Holland’s original formulation of the schema theorem was for one-point
crossover and bitwise mutation as we have seen above. Following the rapid
proliferation of alternative variation (particularly recombination) operators
as the field of genetic algorithms expanded and diversified. a considerable
body of results was developed in order to try and understand why some op-
erators gave improved performance on certain problems. Particularly worthy
of mention within this were two long-term research programs. Over a num-
ber of vears, Spears and De Jong developed analytical results for Pd(H.x)
as function of defining length d(H) and order o(H) for a number of different
recombination and mutation operators [103, 104, 374. 378. 379. 380], which
are brought together in [377].

Meanwhile, Eshelman and Schaffer conducted a series of empirical studies
[138, 140. 141, 335] in which they compared the effects of mutation with
various crossover operators on the performance of a GA. They introduced
the notion of operator bias to describe the interdependence of Pd(H,x) on
d(H),o(H) and x, which takes two forms:

e If an operator z displays positional bias it is more likely to keep together
bits that are close together in the representation. This has the effect that
given two schemata Hy, Hy with f(H)= f(H2) and d(H,) <d(H2), then
Pd(H,,x) < Pd(Ha, x).

e By contrast, if an operator displays distributional bias then the prob-
ability that it will transmit a schema is a function of o(H). One example
of this is bitwise mutation, where as we have seen the probability of dis-
ruption increases with the order: Pd(H, mutation) ~ Pm - o(H). Another
example is Uniform Crossover which will on average select half of the genes
from one parent, and so is increasingly likely to disrupt a schema as the
ratio o( H)/l increases beyond 0.5.

Although these results provided valuable insight and have informed many
practical implementations. it is worth bearing in mind that they are only con-
sidering the disruptive effects of operators. Analysis of the constructive effects
of operators in creating new instances of a schema H are harder, since these
effects depend heavily on the constitution of the current population. However,
under some simplifying assumptions, Spears and DeJong [380] developed the
surprising result that the expected number of instances of a schema destroyed
by a recombination operator is equal to the expected number of instances
created, for all recombination operators!

11.2.4 Walsh Analysis and Deception

If we return our attention to the derivation of the schema theorem, we can
immediately see from an examination of the disruption probabilities given
above that all other things being equal, short low-order schema have a greater
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chance of being transmitted to the next generation than longer or higher order
schema of the same mean fitness. This analysis has led to what has become
known as the building block hypothesis [172, pp. 41 45|, which is that GAs
begin by selecting amongst competing short low-order schemata. and then
progressively combine them to create higher order schemata, repeating this
process until (hopefully) a schema of length /-1 and order [. i.c.. the globally
optimal string. is created and selected for. Note that for two schemata to
compete they must have fixed bits (1 or 0) in the same positions. Thinking
along these lines raised the obvious question: “What happens if the global
optimum is not an example of the low-order schemata that have the highest
mean fitness?".

To give an immediate example. let us consider a four-bit problem that
has 0000 as its global optimum. It turns out that it is relatively simple to
create the situation where all of the order-n schemata containing a 0's in
their defining positions are less fit than the corresponding schemata with 1°s
in those position, i.e., f(O#H#H#) < fO1H#HH). f(FHO#H) < [(F#1#4#), cte.,
right up to f(#000) < f(#111), f(0#00) < f(1#11), cte. All that is required
to achieve this is that the fitness of globally optimal string is sufficiently
greater than all the other strings in every schema of which 1t is a member. In
this case we might expect that every time the GA makes a decision between
two order-n schemata, it is likely make the “wrong” decision unless n=4.

This type of problem is known as deceptive and has been of great inter-
est since it would appear to make life hard for a GA, in that the necessary
building blocks for successful optimisation are not present. However, it has
been postulated that if a fitness function is composed of a number of decep-
tive problems, then at least a GA using recombination offers the possibility
that these can be solved independently and “mixed” via crossover. By com-
parison, an optimisation technique relying on local search continuously makes
decisions on the basis of low order-schema, and so is far more likelv to be
“fooled”. Note that we have not provided a formal definition of the conditions
necessary for a function to be deceptive; much work has been done on this
subject and slightly differing definitions exist [185, 368, 418].

The importance of deceptive problems to GA theory and analysis is de-
batable. At various stages some eminent practitioners have made claims that
“the only challenging problems are deceptive”[87], (although this view may
have been modified with hindsight), but others have argued forcibly against
the relevance of deception. Grefenstette showed that it is simple to circumn-
navigate the problem of deception in GAs by looking for the best solution
in each new generation and then creating its inverse [185]. Moreover, Smith
and Smith created an abstract randomised test problem generator (NKPRS)
in which the probability of that a landscape was deceptive could be directly
manipulated [369]. Their findings did not demonstrate that there was a cor-
relation between the likelihood of deception and the ability of a standard GA
to discover the global optimum.
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Much of the work in this area makes use of Walsh functions to analyse
fitnesses. This technique was first used for GA analysis in [49], but became
more widely known after a series of important papers by Goldberg [170, 171].
Essentially these are a set of functions that provide a natural basis for the
decomposition of a binary search landscape. This can be thought of as equiva-
lent to the way that Fourier transforms provide a natural way of decomposing
a complex signal in the time domain into a weighted sum of sinusoidal waves.
which can be represented and manipulated in the frequency domain. Just as
Fourier transforms form a vital part in a huge range of signal processing and
other enginecring applications, because sine functions are so easily manipula-
ble. so Walsh transforms form an easily manipulable way of analysing binary
search landscapes. with the added bonus that there is a natural correspon-
dence between Walsh partitions (the equivalent of harmonic frequencies) and
schemata. For more details on Walsh analysis the reader is directed to [170)

or [318].

11.2.5 Criticisms and Recent Extensions of the Schema Theorem

Despite the attractiveness of the schema theorem as a description for how
GAs work, it is important to note that it has come in for a good amount of
criticism, and quantities of experimental evidence and theoretical arguments
have been produced to dispute its importance. This is perhaps inevitable given
that early on some rather extravagant claims were made by its adherents, and
given the perhaps natural tendency of humans to take pot-shots at “sacred
cows’ .

Ironically, empirical counterevidence was provided by Holland himself, in
conjunction with Mitchell and Forrest, who created the Royal Road func-
tions based on schema ideas (see Appendix B for a description) in order
to demonstrate the superiority of GAs over local search methods. Unfortu-
nately, their results demonstrated that the opposite was in fact true [159],
although they did lead to the understanding of the phenomenon of hitch-
hiking whereby an unfavourable allele becomes established in the population
because of an earlyv association with an instance of a high-fitness schema.

Theoretical arguments against the value of the schema theorem and asso-
ciated analysis have included:

e Findings that Holland’s idea that fitness proportionate selection allocated
optimal amounts of trials to competing schemata is incorrect [255, 325].

e Observations that the rate of increase in representation of any given
schema is not exponential, since its selective advantage f(H)/ < f > de-
creases as its share of the population increases and the mean fitness rises
accordingly.

e The observation that Eq. (11.1) applies to the estimated fitness of a given
schema as averaged over all the instances in the current population, which
might not be representative of the schema as a whole. Thus although
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the schema theorem is correct in predicting the frequency of a schema in
the next generation, it can tell us almost nothing about the frequency in
future generations, since as the proportions of other schema change, so
will the composition of the set of strings which represent H. and hence the
estimates of f(H).

e The fact that the schema theorem ignores the constructive effects of op-
crators. Altenberg [6] showed that in fact the schema theorem is a special
casce of Price’s theorem in population genetics. This latter includes both
constructive and disruptive terms. Whilst exact versions of the schema
theorem have recently been derived [385]. these currently remain some-
what intractable even for relatively simple test problems. although their
use is starting to offer interesting new perspectives.

These arguments and more are summarised eloquently in [318, pp. 74 90].
We should point out that despite these criticisms. schemata represent a useful
tool for understanding some of how GAs work, and we would wish to stress
the vital role that Holland's insights into the importance of schemata have
had in the development of genetic algorithims.

11.2.6 Gene Linkage: Identifying and Recombining Building
Blocks

As noted in Sect. 11.2.4, the Building Block Hyvpothesis offers an explanation
of the operation of GAs as a process of discovering and putting together
blocks of coadapted genes of increasing higher orders. In order to do this,
it 1s necessary for the GA to discriminate between competing schemata on
the basis of their estimated fitness. The Messy GA [174] was an attempt to
explicitly construct an algorithm that worked in this fashion. The use of a
representation that allowed variable length strings and removed the need to
manipulate strings in the order of their expression began a focus on the notion
of gene linkage (in this context gene is taken to mean the combination of a
particular allele value in a particular locus).

Munetomo and Goldberg [291] identify three approaches to the identifica-
tion of linkage groups. The first of these they refer to as the “direct detection
of bias in probability distributions”™, and is exemplified by what Bosman and
Thierens [60] refer to as distribution estimation algorithms (DEAs). Ex-
amples of this approach include [35, 109, 142, 289, 290, 302, 304],a good review
is given in [303]. Common to all of these approaches is the notion of first iden-
tifying a factorisation of the problem into a number of subgroups, such that a
given statistical criterion is minimised, based on the current population. This
corresponds to learning a linkage model of the problem. Once these models
have been derived, conditional probabilities of gene frequencies within the
linkage groups are calculated, and a new population is generated based on
these, replacing the traditional recombination and mutation steps of an EA.
It should be emphasised that these DEA approaches are based on statistical
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modelling rather than on a schema-based analysis. However, since they im-
plicitly construct a linkage analysis of the problem, it would be inappropriate
not to mention them here.

The other two approaches identified by Munetomo and Goldberg use more
traditional recombination and mutation stages, but bias the recombination
operator to use linkage information.

In [223. 291] first-order statistics based on pairwise perturbation of allele
values are used to identify the blocks of linked genes that algorithms manip-
ulate. Similar statistics are used in a number of other schemes such as [403].

The third approach identified does not calculate statistics on the gene
interactions based on perturbations, but rather adapts linkage groups ex-
plicitly or implicitly via the adaptation of recombination operators. Exam-
ples of this approach that explicitly adapt linkage models can be seen in
(190, 328. 356, 358, 359]. A mathematical model of the linkage models of
different operators, together with an investigation of how the adaptation of
linkage must happen at an appropriate level (see Sect. 8.4.4 for a discussion
of the issue of the scope of adaptation) can be found in [353].

11.3 Dynamical Systems

The dynamical systems approach to modelling EAs in finite search spaces
has principally been concerned with genetic algorithms because of their (rela-
tive) simplicity. The principal contributor to this branch of analysis has been
Michael Vose, who established the basic formalisms and results in a string of
papers culminating in the publication of his book [411]. This work has been
taken on and extended by a number of authors (see, for example, the proceed-
ings of the Foundations of Genetic Algorithms workshops [39, 261, 308]). The
approach can be characterised as follows:

e Start with an n-dimensional vector p, where n is the size of the search
space. and the component p! represents the proportion of the population
that is of type ¢ at iteration f.

e Construct a mixing matrix A representing the effects of recombination
and mutation, and a selection matrix F' representing the effects of the
selection operator on each string for a given fitness function.

e Compose a “genetic operator” G = F'o M as the matrix product of these
two functions.

e The action of the GA to generate the next population can then be char-
acterised as the application of this operator GG to the current population:
1—9t+1 — GI_Ot.

Under this scheme the population can be envisaged as a point on what
is known as the “simplex”: a surface in n-dimensional space made up of all
the possible vectors whose components sum to 1.0 and are nonnegative. The
form of G governs the way that a population will trace a trajectory on this
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surface as it evolves. A common way of visualising this approach is to think
of GG as defining a “force-field™ over the simplex describing the direction and
intensity of the forces of evolution acting on a population. The form of G alone
determines which points on the surface act as attractors towards which the
population is drawn, and analvtical analysis of G. and its constituents F and
Al has led to many insights into GA behaviour.

Vose and Liepens [412] presented models for Fand A7 under fitness propor-
tionate selection. one-point crossover and bitwise mutation. and these have
been extended to other operators in [4111]. One of the insights gained by
analvsing the form of A is that schemata provided a natural way of ag-
gregating strings into equivalence classes under recombination and mutation,
which provides a nice tie-in to Holland's ideas.

Other authors have examined a number of alternative ways of aggregating
the elements in the search space into a smaller number of equivalence classes,
so as to make the models more amenable to solution. Using this approach. a
number of important results have been derived, explaining facets of behaviour
such as the punctuated equilibria effect (described qualitatively in [412] but
expanded and including for the first time accurate predictions of the time
spent between the discovery of new fitness levels in [404]). These ideas have
also been extended to model extensions to binary coded GAs, for example,
different forms of self-adaptive mutation [349, 354].

It is worth pointing out that while this model exactly predicts the expected
proportions of different individuals present in evolving populations, these val-
ues can only be attained if the population size is infinite. For this reason this
approach falls into a class known as infinite population models. For finite
populations, the evolving vectors p can be thought of as representing the prob-
ability distribution from which p independent samples are drawn to generate
the next population. Because the smallest proportion that can be present in
a real population has a size 1/p. this effectively constrains the population to
move between a subset of points on the simplex representing a lattice of size
1/p. This means that given an initial population. the trajectory predicted may
not actually be attainable, and corrections must be made for finite population
effects. This work is still ongoing.

11.4 Markov Chain Analysis

Markov chain analysis is a well-established technique that is used to study
the properties and behaviour of stochastic systems. A good description can
be found in many textbooks on stochastic processes [200]. For our purposes it
is sufficient to note that we can describe a system as a discrete-time Markov
chain provided that the following conditions are met:

e The system can be characterised at any given time by being in one of a
finite number (N) of states.
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e The probability that the system will be in any given state X1 in the
next iteration is solelv determined by the state that it is in at the current
iteration X, regardless of the previous sequence of states.

The impact of the second condition is that we can define a transition
matrix () where the entry @), contains the probability of moving from state
i to state j in a single step (i.j € {1.....N}). It is simple to show that the
probability that after n steps the system has moved from state ¢ to state j is
given by the (7. j)th entry of matrix Q". A number of well-known theoremns
and proofs exist for making predictions of the behaviour of Markov chains.
such as the mean time to reach a given set of states. ete.

There are a finite number of ways in which we can select a finite sized
population from a finite scarch space. so we can treat any EA working within
a such a representation as a Markov chain whose states represent the different
possible populations, and a number of authors have used these techniques to
study evolutionary algorithmns.

As early as in 1989 Eiben et al. [1. 114] proposed a model for the abstract
genetic algorithm built from a choice, a production, and a selection function.
and used it to establish convergence properties through Markov chain anal-
ysis. In contemporary terminology it is a general framework for EAs based
on parent selection. variation, and survivor selection. respectively. It has been
proved that an EA optimising a function over an arbitrary finite space con-
verges to an optimum with probability 1 under some rather permissive con-
ditions. Simplifving and reformulating the results, it is shown that if in any
given population

e Every individual has a nonzero probability to be selected as a parent, and

e Every individual has a nonzero probability to be selected as a survivor,
and
The survival selection mechanism is elitist, and

e Any solution can be created by the action of variation operators with a
nonzero probability

then the nth generation would certainly contain the global optimum for some
n.

Rudolph [323] tightened the assumptions and showed that a genetic algo-
rithm with nonzero mutation and elitism will always converge to the globally
optimal solution, but that this would not necessarily happen if elitism was
not used. In [324] the convergence theorems are extended to EAs working in
arbitrary (e.g., continuous) search spaces.

A number of authors have proposed exact formulations for the transition
matrices @ of binary coded genetic algorithms with fitness proportionate se-
lection, one-point crossover, and bit-flipping mutation [93, 292]. They essen-
tially work by decomposing the action of a GA into two functions, one of
which encompasses recombination and mutation (and is purely a function of
the crossover probability and mutation rate), and the other that represents
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the action of the selection operator (which encompasses information about
the fitness function). These represent a significant step towards developing
a general theory; however, their usefulness is limited by the fact that the
associated transition matrices are enormous: for an /-bit problem there are

20 -1
in the transition matrix.
It 1s left as an exercise for the reader to calculate the size of the transition
matrix for a ten-bit problem with ten members in the population. in order to
give a feel for how likely it is that advances in computing will make it possible

(420 — : : : :
possible populations of size yr and this many rows and columns

to manipulate these matrices.

11.5 Statistical Mechanics Approaches

The statistical mechanics approach to modelling EA behaviour was inspired
by the way that complex systems consisting of ensembles of many smaller parts
have been modelled in physics. Rather than trying to trace the behaviour of all
the elements of a system (the microscopic approach), this approach focuses
on modelling the behaviour of a few variables that characterise the systemn.
This is known as the macroscopic approach. There are obvious links to
the aggregating versions of the dynamical systems approach described above;:
however, the quantities modelled are related to the cumulants of the variables
of interest [311. 312, 314, 320, 345].

Thus if we are interested in the fitness of an evolving population, equations
are derived that yield the progress of the “moments” of fitness < f >, < f2>
.< f3>, and so on (where the braces <> denote that the mean is taken over
the set of possible populations) under the effects of selection and variation.
From these properties, cumulants such as the mean (< f > by definition),
variance. skewness. etc.. of the evolving population can be predicted as a
function of time. Note that these predictions are necessarily approximations
whose accuracy depends on the number of moments modelled.

The equations derived rely on various “tricks” from the statistical mechan-
ics literature and are predominantly for a particular form of selection (Boltz-
mann selection). The approach does not pretend to offer predictions other
than of the population mean, variance and so on, so it cannot be used for
all the aspects of behaviour one might desire to model. This techniques are
nevertheless impressively accurate at predicting the behaviour of “real” GAs
on a variety of simple test functions. In [313] Priigel-Bennett compares this
approach with a dynamical systems approach based on aggregating fitness
classes and concludes that the latter approach is less accurate at predicting
dynamic behaviour of the population mean fitness (as opposed to the long-
term limit) because the variables that it tracks are not representative as a
result of the averaging process. Clearly this work deserves further study.
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11.6 Reductionist Approaches

So far we have described a number of methods for modelling the behaviour
of EAs that attempt to make predictions about the composition of the next
population by considering the effect of all the genetic operators on the cur-
rent population. We could describe these as holistic approaches. since they
explicitly recognise that there will be interactions between the effects of dif-
ferent operators on the evolving population. An unfortunate side effect of this
holistic approach is that either the resulting systems become very difficult to
manipulate, as a result of their sheer size, or necessarily involve approxima-
tions and may not model all of the variables that we would like to predict.

An alternative methodologyv is to take a reductionist approach. in which
parts of the system are examined separately. Although ultimately flawed in
neglecting interaction effects, this approach is common to many branches of
physics and engineering. where it has been used to yield frequently accurate
predictions and insights, provided that a suitable decomposition of the system
is made.

The advantage of taking a reductionist approach is that frequently it is
possible to derive analytical results and insights when only a part of the
problem is considered. A typical division is between selection and variation.
A great deal of work has been done on characterising the effects of different
selection operators, which can be thought of as complementary to the work
described in Section 11.2.3.

Goldberg and Deb [173] introduced the concept of takeover time, which
is the number of generations needed for a single copy of the fittest string to
completely take over the population in a “selecto-EA” (i.e.. one in which no
are variation operators used). This work has been extended to cover a variety
of different mechanisms for parental and survivor selection. using a variety
of theoretical tools such as difference equations, order statistics, and Markov
chains [19, 20, 21, 54, 75, 76, 326, 364].

Parallel to this, Goldberg, Thierens, and others examined what they called
the mixing time, which characterises the speed at which recombination
brings together building blocks initially present in different members of a pop-
ulation [398]. Their essential insight is that in order to build a well-performing
EA, in particular a GA, it is necessary for the mixing time to be less than the
takeover time, so that all possible combinations of the building blocks present
can be tried before one fitter string takes over the population and removes
some of them. While the rigour of this approach can be debated, it does have
the immense benefit of providing practical guidelines for population sizing,
operator probabilities, choice of selection methods and so on, which can be
used to help design an effective EA for new applications.
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11.7 Analysing EAs in Continuous Search Spaces

In contrast to the situation with discrete search spaces. the state of theory for
continuous search spaces, and evolution strategies in particular, is fairly ad-
vanced. As noted in Section 11.4. Rudolph has shown the existence of global
proofs of convergence also in such spaces [324]. since the evolution of the
population is iiself a Markov process. Unfortunately. it turns out that the
Chapman-Kohnogorov equation describing this is intractable. so the popu-
lation probability distribution as a function of time cannot be determined
directly. However. it turns out that much of the dyvnamics of ESs can be
recovered from simpler models concerning the evolution of two macroscopic
variables. and many theoretical results have been obtained on this basis.

The first of the variables modelled is the progress rate, which measures
the distance of the centre of mass of the population from the global optimuin
(in variable space) as a function of time. The second is the quality gain.
which measures the expected mmprovement in fitness between generations.

Most of the modelling approaches have concerned two fitness functions, the
sphere model,: f(Z) = ).« for somc power n, and the corridor model
[342]. The latter takes various forms but essentially contains a single direction
in which fitness is improving, hence the name. Variants of these are also used.
Since an arbitrary fitness function in a continuous space can be usually be
expanded (using a Tavlor expansion) to a sum of simpler terms, the vicinity
of a local optimum one of these models 1s often a good approximation to the
local landscape.

The continuous nature of the search space, coupled with the use of normally
distributed mutations and well-known results from order statistics, have per-
mitted a relatively straightforward derivation of equations describing the mo-
tion of the two macroscopic variables over time as a function of the values of
f. A, and o. starting with Rechenberg’s analysis of the (141) ES on the sphere
model, from which he derived the 1/5 success rule [317]. Following from this,
the principles of self-adaptation and multimembered strategies have also been
analysed. A thorough overview of these results is given by Bever and Arnold
in [51].

11.8 No Free Lunch Theorems

By now we hope the reader will have realised that the search for a mathe-
matical model of EAs, which will permit us to make accurate predictions of
a given algorithm on any given problem, is still a daunting distance from its
goal. Whilst the tools are now in place to make some accurate predictions of
some aspects of behaviour on some problems, these are usually restricted to
those such as OneMax (discrete spaces, see Appendix B) or the sphere model
(continuous spaces) for which an EA is almost certainly not the most efficient
algorithm anyway.
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However. a recent line of work has come up with a result that allows us
to make some statements about the comparative performance of different
algorithis across all problem: they are all the same! This result is known as
the No Free Lunch theorem (NFL) by Wolpert and Macrcady [430]. and
in layperson’s terms it sayvs that if we average over the space of all possible
problems, then all nonrevisiting black box algorithms will exhibit the same
performance.

By nonrevisiting we mean that the algorithm does not generate and test
the same point in the search space twice. Although not typically a feature
of EAs. this can simply be achieved by implementing an archive of all so-
lutions ever seen, and then cach time we generate an offspring discarding it
and repeating the process if it already exists in the archive. An alternative
approach (taken by Wolpert and Macready in their analysis) is to view per-
formance as the number of distinct calls to the evaluation function. In this
case we still need an archive, but can allow duplicates in the population. By
black box algorithms we mean those that do not incorporate any problem or
instance-specific knowledge.

There has been some considerable debate about the utility of the No Free
Lunch theorem, often centred around the question of whether the set of prob-
lems that we are likelv to try to tackle with EAs is representative of all prob-
lems, or forms some special subset. However, they have come to be widely
accepted. and the following lessons can be drawn:

e If we invent a new algorithm and it appears to be the best ever at solving
some particular class of problems, then it will pay for this by performing
poorly at some others. This suggests that a careful strategy is required to
evaluate new operators and algorithms as discussed in Chap. 14,

e For a given problern we can circumvent the NFL theorem by incorporat-
ing problem-specific knowledge. This of course leads us towards memetic
algorithms (cf. Chap. 10).

11.9 Exercises

1. Let S;=*0%*x11**xx0x* and Sy=x*****x0*x1**** be two schemata.

a) Give the order and the defining length of S, and 5;.

b) What is the probability for one-point crossover with crossover rate p,
that crossover breaks Sp, respectively S27 (i.e., the probability that
the child created by the operator does not belong to the given schema.)

c) What is the probability that mutation with mutation rate p,, breaks
S1, respectively S3?

d) What is the probability that S; respectively Sy survives the applica-
tion of both crossover and mutation?

e) Is it correct to call one of these two schemata a “building block”?
Explain why, or why not.
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2. Whilst optimising a three-bit problem. vou notice that vour population,
of size 100. consists of 25 copies each of strings 100 (with fitness 10). 111
(with fitness 20). 011 (with fitness 15). and 010 (with fitness 15).

a) What is the estimated fitness of schema 14# 7

b) Assuming fitness proportionate selection with no crossover or muta-
tion. show one way by which vou could calculate the estimated fitness
of that schema in the next generation.

3. In a simple two-dimensional model of protein structure prediction. a
solution consists of a sequence of moves (north/cast /west /south) on a
square grid. The amino acid residues. which compose the protein. are
then mapped onto this path. giving the structure of the folded protein.
Good solutions tvpically exhibit a high degree of local structure. That is
to say that thev can be seen as the concatenation of secondary structure
“motifs”. Explain how this domain knowledge mav be used to euide the
choice of recombination operators for this problem.
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Constraint Handling

12.1 Aims of this Chapter

In this chapter we consider the issue of constraint handling by evolutionary
algorithms. This issue has great practical relevance because many practical
problems are constrained. It is also a theoretically challenging subject since
a great deal of intractable problems (NP-hard, NP-complete, etc.) are con-
strained. The presence of constraints has the effect that not all possible com-
binations of variable values represent valid solutions to the problem at hand.
Unfortunately, constraint handling is not straightforward in an EA, because
the variation operators (mutation and recombination) are typically “blind” to
constraints. That is. there is no guarantee that even if the parents satisfy some
constraints, the offspring will satisfy them as well. In this chapter we elabo-
rate on the notion of constrained problems and distinguish two different types:
constrained optimisation problems and constraint satisfaction problems. (This
elaboration requires clarifying some basic notions, leading to definitions that
implicitely have been used in earlier chapters.) Based on this classification
of constrained problems, we discuss what constraint handling means from an
EA perspective. and review the most commonly applied EA techniques to
treat constraints. Analysing these techniques. we identify a nuunber of com-
mon features and arrive at the conclusion that the presence of constraints is
not harmful, but rather helpful in that it provides extra information that EAs
can utilise.

12.2 Constrained Problems

To facilitate a clear discussion, let us have a look at the very notion of a
constrained problem. For instance, consider the travelling salesman problem
for n cities C' = {c1, ..., ¢, } and the distance function d. Is this a constrained
problem? The answer should be independent from the algorithm we are to
apply to solve this problem, but at the first glance this is not the case. To
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illustrate this. asswune that we chose for an iterative scarch algorithm that

cither:

1. Operates in the scarch space Sy = (" and seeks a solution s € S that
minimises the tour length f(3) = Y77 d(s;.s,41) with s, defined as
St

2. Operates i the scarch space So={pcrmutations of ... .. ¢, } and secks
a solution s € Sy that mimmises the tour length f(5) defined as above.

Note that in the first case we 1eed a constraint requiring uniqueness of each
citv in a solution § € Sy. while in the second case we do not as every s € Sy
satisfies this condition by the definition of S5. Thus. the notion of a constrained
problem seems to depend on what we take as search space.

To clarifv this matter we mtroduce some terminology. In the further dis-
cussion we assume that a problem is given in terms of its variables v;. .. .. -
cach having its own domain Dy..... D,. where the domains can be discrete
or continuous.! We will call a Cartesian product of sets S = D x ... x D,, a
free search space. The most lmportant property of free secarch spaces is that
testing the membership relation of such a space can be done independently
on each coordinate, taking the conjunction of the results. Note that the usual
mutation and recombination operators for bit, integer. and floating-point rep-
resentation keep the offspring in the search space. In our perception requiring
that a solution be within a free search space has nothing to do with con-
straints, instead it is merely the specification of the domains of the variables.
In the further discussion we distinguish problems (over a free scarch space)
by the presence or absence of

1. An objective function
2. Constraints
The resulting four categories are shown in Table 12.1. Next we will discuss
these problem types more precisely.

Objective function

Constraints Yes [ No
Constrained | Constraint
Yes optimisation{satisfaction
problem problem
Free
No optimisation No
problem problem

Table 12.1. Problem types

! However, we might require that if D; is continuous, then it is convex.
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12.2.1 Free Optimisation Problems

A free optimisation problem (FOP) is a pair (S.f), where S is a free
scarch space and f is a real-valued objective function on S. which has to be
optimised (minimised or maximised). A solution of a free optimisation
problem is an s € S with an optimal f value.

Examples of FOP’s abound in any literature related to optimisation. and
some comimon examples using a variety of domains (binary, discrete. contin-
uous) are given in Appendix B. FOPs do not pose specific challenges to EAs
from our present perspective since EAs have a “basic instinct™ to optimise.
This 1s, of course. not to say that solving any FOP is casy with an EA, but
the absence of constraints implies free search in the sense that the common
variation operators do not generate values outside of the domains of the vari-
ables.

12.2.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a pair (S, ¢), where S is a
free scarch space and ¢ is a formula (Boolean function on S). A solution
of a constraint satisfaction problem is an s € S with ¢(5) = truc. The
formula ¢ is often called the feasibility condition, and it is typically a
composed entity, derived from more elementary constraints. A constraint is
a restriction on the possible value combinations of certain variables.

A well known CSP example is the graph three-colouring problem, where
the nodes of a given graph G = (N, E), £ C N x N have to be coloured by
three colours in such a way that no neighbouring nodes. i.e., nodes connected
by an edge. have the same colour. This problem can be formalised by means
of a CSP (5. 0) as follows:

e S =D"with D= {1.2.3} being the same domain for each of the n = | ¥
variables.

e o is composed of constraints that belong to edges. That is, for cach edge ¢ €

E. the corresponding constraint ¢, is defined by ¢.((sy1.....5,)) = true if
an only if ¢ = (k.l) and sg # s;. Then the feasibility condition is the
conjunction of all constraints ¢(5) = A ce(5)-

The main EA challenge in treating CSPs is the absence of an objective
function that could be naturally used to define fitness. The feasibility condition
imposes only a very simple landscape on candidate solutions having a large flat
plateau at zero level (¢ is false) with some singular peaks (¢ is true). This is an
extreme case of a needle in a haystack problem. The basis of all approaches to
design an EA for a CSP is to transform constraints into optimisation objectives
and rely on the optimisation power of EAs to achieve these objectives, and
thereby to satisfy the constraints. If all constraints of a CSP are handled this

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

208 12 Constraint Handling

way then such a transformation amounts to turning the CSP into an FOP. It
should be noted, however, that this is not the only option.

Recall the eight-queens example from Section 2.4.1, which is clearly a CSP
(see excercise at the end of this chapter). The evolutionary approach we have
outlined uses permutations as chromosomes. These chromosomes represent
board configurations where horizontal constraint violations (two queens on the
same row ) and vertical constraint violations (two queens on the same column)
do not occur. Thus. if we can enforce that these constraints are respected at
initialisation and remain maintained during the evolutionary search process
then the only thing that remains to be achieved is the satisfaction of diagonal
constraints. These have been treated by defining the number of such violations
as an objective function to be minimised. With our present terminology we
can describe this solution as transforming the given CSP into a problem that
still has some explicitly present constraints to be satisfied (the horizontal and
vertical constraints) together with some objectives to be achieved (number of
diagonal constraint violations minimised).

12.2.3 Constrained Optimisation Problems

A constrained optimisation problem (COP) is combination of an FOP
and a CSP. It is a triple (S, f, ¢), where S is a free search space, f is a real-
valued objective function on S, and ¢ is a formula (Boolean function on S).
A solution of a constrained optimisation problem is an s € S with
o(5) = true and an optimal f value.

To illustrate COPs we use the Travelling Salesman Problem for n cities
C = {c1....,¢,} which can be formalised by (S, f, ®).

e The free search space is S = C".
e The objective function to be minimised is f(5) = > 1", d(s;,si4+1). with
sp+1 defined as sy.
o The feasibility condition ¢ = ¢. A ¢, 1s the conjunction of the following
two conditions:
¢c(8) = true if and only if for each ¢ € ' there is an 7 € {1..... n}
such that ¢ = s; (completeness condition).
¢ (8) = true if and only if for each k1 € {1....,n} si # s (unicity
condition).

With the aid of this framework we can now unambiguously classify the TSP
as a constrained problem, a COP, since its definition involves a feasibility
condition restricting the free search space.

Treating COPs by EAs poses very similar questions to those regarding
CSPs, namely, the constraints must be handled. Transforming (some of ) them
into optimisation objectives is again a most straightforward option, although
not as essential as for CSP, since a COP does have a natural fitness definition
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by the given f. If one is to leave constraints as constraints (i.e., not trans-
forming them into optimisation objectives), then these constraints have to be
treated explicitly in order to make sure that the candidate solutions satisfy
them.

12.3 Two Main Types of Constraint Handling

Various technical options for constraint handling are discussed in Sect. 12.4.
Without going into details yet, here we distinguish two conceptually different
possibilities. If all constraints in a CSP or COP are replaced by optimisation
objectives, then the given problem is transformed into an FOP. Formally
we have (S,e,¢) — (S, f,e), respectively (S, f,9) — (S, g,e), where the e
is a place-holder for the absent component of the given problem type. In
these cases “constraint handling” means “constraint transformation” before
running the EA. After the transformation is done, the EA can perform free
search without paying any further attention to constraints. It is the algorithm
designer’s responsibility (and one of the main design guidelines) to ensure that
solutions to the transformed FOP represent solutions to the original CSP or
COP.

If not all constraints are replaced by optimisation objectives, then the prob-
lem that should be solved by the EA still has constraints — it is a COP. This
can be the case if:

1. Some constraints of a CSP are not incorporated into the objective func-
tion, but left as constraints making up a new, weakened feasibility condi-
tion: (S, e, @) — (S, f,1), which was the case in our eight-queens example.

2. The original COP is not transformed, so we are to design an EA for the
given (S, f, ®).

3. Some but not all constraints in a given COP are transformed into opti-
misation objectives, while the others are left as constraints making up a
new, weakened feasibility condition: (S, f,#) — (S, g,¥).

In cases 1 and 3 we have constraint handling in the sense of constraint
transformation and in all of these cases we are facing “constraint handling” as
“constraint enforcement” during the run of the EA because the (transformed)
problem still has a feasibility condition.

Based on these observations we can eliminate an often-occurring ambiguity
about constraint handling and identify the following two forms:

e In the case of indirect constraint handling constraints are transformed
into optimisation objectives. After the transformation, they effectively
practically disappear, and all we need to care about is optimising the re-
sulting objective function. This type of constraint handling is done before
the EA run.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

210 12 Constraint Handling

e As an alternative to this option we distinguish direct constraint han-
dling, meaning that the problem offered to the EA to solve has constraints
(is a COP) that are enforced explicitly during the EA run.

It should be clear from the previous discussion that these options are not
exclusive: for a given constrained problem (CSP or COP) some constraints
might be treated directly and some others indirectly.

It is also important to note that even when all constraints are treated in-
directly, so that we apply an EA for an FOP, this does not mean that the
EA is necessarily ignoring the constraints. In theory one could fully rely on
the general optimisation power of EAs and try to solve the given FOP with-
out taking note of how f is obtained. However, it is also possible that one
does take the specific origin of f into account, i.e., the fact that it is con-
structed from constraints. In this case one can try to make use of specific
constraint-based information within the EA by, for instance, special mutation
or crossover operators that explicitly aim at satisfying constraints by using
some heuristics.

Finally, let us reiterate that indirect constraint handling is always part of
the preparation of the problem before offering it to an EA to solve. However,
direct constraint handling is an issue within the EA constituting methods that
enforce satisfaction of the constraints.

12.4 Ways to Handle Constraints in EAs

In the discussion so far, we have not considered the nature of the domains of
the variables. In this respect there are two extremes: they are all discrete or
all continuous. Continuous CSPs are almost nonexistent, so by default a CSP
is discrete. For COPs this is not the case as we have discrete COPs (com-
binatorial optimisation problems) and continuous COPs as well. Much of
the evolutionary literature on constraint handling is restricted to either of
these cases, but the ways for handling constraints are practically identical —
at least at the conceptual level. In the following treatment of constraint han-
dling methods we will be general, considering discrete and continuous cases
together. The commonly shown list of available options is the following:

1. The use of penalty functions that reduce the fitness of infeasible solutions,
preferably so that the fitness is reduced in proportion to the number of
constraints violated, or to the distance from the feasible region.

2. The use of mechanisms that take infeasible solutions and “repair” them,
i.e., return a feasible solution, which one would hope is close to the infea-
sible one.

3. The use of a specific alphabet for the problem representation, plus suit-
able initialisation, recombination, and mutation operators such that the
feasibility of a solution is always ensured, and there is an unambiguous
mapping from genotype to phenotype.
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4. The use of “decoder” functions to manage the mapping from genotype
to phenotype so that solutions (i.e., phenotypes) are guaranteed to be
feasible. This approach differs from the previous one in that typically a
number of potentially radically different genotypes may be mapped onto
the same phenotype. It has the strong advantage of permitting the use of
more standard variation operators.

Notice that the last option amounts to manipulating the search space S. In
the discussion so far, within the (S, f, ¢) framework, we have only considered
problem transformations regarding the f and the ¢ component. Using decoder
functions means that a constrained problem (CSP (S, e, ¢) or COP (S, f, ¢))
is transformed into one with a different search space S’. Taking a COP-FOP
transformation as an example, this is formally (S, f, ¢) — (S’, g, e), where the
EA to solve (S, f, ) actually works on (S’,g,e). Here, constraint handling
is neither transformation nor enforcement, but is carried out through the
mapping (decoder) between S and S’. In a way one could say that in this
case we do not handle constraints, instead we simply avoid the question by
ensuring that a genotype in S’ always mapped onto a feasible phenotype in
S. For this reason we call this mapping constraint handling.

Within our framework we can arrange the above options as follows:

1. Indirect constraint handling (transformation) coincides with penalising
constraint violations. | _

2. Direct constraint handling (enforcement) can be carried out in two differ-
ent ways:

a) Allowing the generation of candidate solutions that violate con-
straints: repairing infeasible candidates.

b) Not allowing the generation of candidate solutions that violate con-
straints: preserving feasibility by suitable operators (and initialisa-
tion).

3. Mapping constraint handling is the same as decoding, i.e., transforming
the search space into another one.

In general the presence of constraints will divide the space of potential so-
lutions into two or more disjoint regions, the feasible region (or regions)
F C S, containing those candidate solutions that satisfy the given feasibility
condition, and the infeasible region containing those that do not. In prac-
tice, it is common to utilise as much domain-specific knowledge as possible, in
order to reduce the amount of time spent generating infeasible solutions. As is
pointed out in [277], the global optimum of a COP with continuous variables
often lies on, or very near to, the boundary between the feasible and infeasible
regions, and promising results are reported using algorithms that specifically
search along that boundary. However, we concentrate here on the more gen-
eral case, since the domain knowledge required to specify such operators may
not be present.

In the following sections we briefly describe the above approaches, focusing
on the facets that have implications for the applications of EAs in general.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

212 12 Constraint Handling

For a fuller review of work in this area, the reader is referred to [112, 126,
275, 277, 352]. Furthermore, [85, 273, 276, 327] are especially recommended
because they contain descriptions of problem instance generators for binary
CSPs ([85]), continuous COPs ({273, 276]), or a large collection of continuous
COP test landscapes [327]), together with detailed experimental results. One
general point worth noting is that in [277] it was reported that for problems in
the continuous domain, use of a real-valued rather than binary representation
consistently gave better results.

12.4.1 Penalty Functions

Assuming a minimisation problem, the use of penalty functions constitutes
a mapping from the objective function such that f'(Z) = f(Zz) + P(d(z, F))
where F' is the feasible region as before, d(Z, F')) is a distance metric of the
infeasible point to the feasible region (this might be simply a count of the
number of constraints violated) and the penalty function P is monotonically
increasing nonnegatively such that P(0) = 0.

It should be noted at the outset that this assumes that it is possible to
evaluate an infeasible point; although for many problems this may be so (for
example, the knapsack problem), for many others this is not the case. This
discussion is also confined to exterior penalty functions, where the penalty
is only applied to infeasible solutions, rather than interior penalty functions,
where a penalty is applied to feasible solutions in accordance to their distance
from the constraint boundary in order to encourage exploration of this region.

The conceptual simplicity of penalty function methods means that they are
widely used, and they are especially suited to problems with disjoint feasible
regions, or where the global optimum lies on (or near) the constraint boundary.
However, their successful use depends on a balance between exploration of the
infeasible region and not wasting time, which places a lot of emphasis on the
form of the penalty function and the distance metric.

If the penalty function is too severe, then infeasible points near the con-
straint boundary will be discarded, which may delay, or even prevent, ex-
ploration of this region. Equally, if the penalty function is not sufficient in
magnitude, then solutions in infeasible regions may dominate those in feasible
regions, leading to the algorithm spending too much time in the infeasible
regions and possibly stagnating there. In general, for a system with m con-
straints, the form of the penalty function is a weighted sum

P(d(@,F) = Y wi - d5(2)

where k is a user defined constant, often taking the value 1 or 2. The
function d;(Z) is a distance metric from the point Z to the boundary for that
constraint ¢, whose form depends on the nature of the constraint, but may
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be a simple binary value according to whether the constraint is satisfied, or a
metric based on “cost of repair”.

Many different approaches have been proposed, and a good review is given
in in [346], where penalty functions are classified as constant, static, dynamic,
or adaptive. This classification closely matches the options discussed in the
example given in Sect. 8.3.2.

Static Penalty Functions

Three methods have commonly been used with static penalty functions,
namely extinctive penalties (where all of the w; are set so high as to pre-
vent the use of infeasible solutions), binary penalties (where the value d; is 1
if the constraint is violated, and zero otherwise), and distance-based penalties.

It has been reported that of these three the latter give the best results [172],
and the literature contains many examples of this approach. This approach
relies on the ability to specify a distance metric that accurately reflects the
difficulty of repairing the solution, which is obviously problem dependent, and
may also vary from constraint to constraint. The usual approach is to take
the square of the Euclidean distance (i.e., set k = 2) .

However, the main problem in using static penalty functions remains the
setting of the values of w;. In some situations it may be possible to find these
by experimentation, using repeated runs and incorporating domain specific
knowledge, but this is a time-consuming process that is not always possible.

Dynamic Penalty Functions

An alternative approach to setting fixed values of w; by hand is to use dy-
namic values, which vary as a function of time. A typical approach is that of
[217], in which the static values w; were replaced with a simple function of the
form s;(t) = (w;t)*, where it was found that for best performance « € {1, 2}.
Although possibly less brittle as a result of not using fixed (possibly inappro-
priate) values for the w,, this approach still requires the user to decide on the
initial values.

An alternative approach, which can be seen as the logical extension of this
approach, is the behavioural memory algorithm of [338, 387]. In this approach
a population is evolved in a number of stages — the same number as there are
constraints. In each stage ¢, the fitness function used to evaluate the popula-
tion is a combination of the distance function for constraint ¢ with a death
penalty for all solutions violating constraints j < ¢ . In the final stage all con-
straints are active, and the objective function is used as the fitness function.
It should be noted that different results may be obtained, depending on the
order in which the constraints are dealt with.
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Adaptive Penalty Functions

Adaptive penalty functions represent an attempt to remove the danger of poor
performance resulting from an inappropriate choice of values for the penalty
weights w;. An early approach described in {42, 188] was discussed in Sect.
8.3.2.

A second approach is that of [347, 393|, in which adaptive scaling (based
on population statistics of the best feasible and infeasible raw fitnesses yet
discovered) is coupled with the distance metrics for each constraint based on
the notion of “near feasible thresholds”. These latter are scaling factors for
each distance metric, which can vary with time.

The Stepwise Adaptation of Weights (SAW) algorithm of [130, 131, 132] can
be seen as a population-level adaptation of the search space. In this method
the weights w; are adapted according to whether the best individual in the
current population violates constraint ¢. In contrast to the mechanism of Bean
and Hadj-Alouane above ([42, 188]), the updating function is much simpler. In
this case a fixed penalty increment Aw is added to the penalty values for each
of the constraints violated in the best individual of the generation at which
the updating takes place. This algorithm was able to adapt weight values that
were independent of the GA operators and the initial weight values, suggesting
that this is a robust technique.

In the following two sections we discuss direct constraint handling methods.
To this end, let us reiterate from Section 12.3 that indirect constraint han-
dling, thus defining penalties, is always part of the preparation of the problem
before offering it to an EA to solve. This can be part of solving a CSP or a
COP. In contrast to this, direct constraint handling is an issue within the
EA, constituting methods that enforce satisfaction of the constraints in the
transformed problem. Therefore, the scope of the next two sections is handling
COPs with EAs, where the COP might be the result of an earlier problem
transformation CSP—COP or COP—COP.

12.4.2 Repair Functions

The use of repair algorithms for solving COPs with GAs can be seen as a
special case of adding local search to the GA, where the aim of the local search
in this case is to reduce (or remove) the constraint violation, rather than (as
is usually the case) to simply improve the value of the fitness function. The
use of local search has been intensively researched, with attention focusing on
the benefits of so-called Baldwinian versus Lamarkian learning (Sect. 10.3.1).
In either case, the repair algorithm works by taking an infeasible point and
generating a feasible solution based on it. In the Baldwinian case, the fitness
of the repaired solution is allocated to the infeasible point, which is kept,
whereas with Lamarkian learning, the infeasible solution is overwritten with
the new feasible point.
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Although this debate has not been settled within unconstrained learning,
many COP algorithms reach a compromise by introducing some stochasticity,
for example Michalewicz’s GENOCOP algorithm uses the repaired solution
around 15% of the time [274].

To illustrate the use of repair functions we will first consider the binary
knapsack problem described in Sect. 2.4.2. Although specifying a repair al-
gorithm at first seems simple — simply change gene values from 1 to 0 until
the weight constraint is satisfied — it raises some interesting questions. One
of these is the replacement question just discussed; the second is whether the
genes should be selected for altering in a predetermined order, or at random.
In [271] it was reported that using a greedy deterministic repair algorithm
gave the best results, and certainly the use of a nondeterministic repair al-
gorithm will add noise to the evaluation of every individual, since the same
potential solution may yield different fitnesses on separate evaluations. How-
ever, it has been found by some authors [362] that the addition of noise can
assist the GA in avoiding premature convergence. In practice it is likely that
the best method is not only dependent on the problem instance, but on the
size of the population and the selection pressure.

The binary case above is relatively simple, however, in general defining
a repair function may be as complex as solving the problem itself. One al-
gorithm that eases this problem (and incidentally uses stochastic repair), is
Michalewicz’s GENOCOP III algorithm for optimisation in continuous do-
mains [274].

This works by maintaining two populations, one Ps of so-called “search
points” and one P, of “reference points”, with all of the latter being feasible.
Points in P, and feasible points from P; are evaluated directly. When an
infeasible point is generated in P; it is “repaired” by picking a point in Py
and drawing a line segment from it to the infeasible point. This is then sampled
until a “repaired” feasible point is found. If the new point is superior to that
used from P,, the new point replaces it. With a small probability (which
represents the balance between Lamarkian and Baldwinian search) the new
point replaces the infeasible point in Ps. It is worth noting that although two
different methods are available for selecting the reference point used in the
repair, both are stochastic, so the evaluation is necessarily noisy.

12.4.3 Restricting Search to the Feasible Region

In many COP applications it may be possible to construct a representation
and operators so that the search is confined to the feasible region of the
search space. In constructing such an algorithm, care must be taken in order
to ensure that all of the feasible region is capable of being represented. It is
equally desirable that any feasible solution can be reached from any other by
(possibly repeated) applications of the mutation operator. The classic example
of this is permutation problems. In Sect. 2.4.1 we showed an illustration for
the eight-queens Problem and in Sects., 3.4.4 and 3.5.4 we described a number

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

216 12 Constraint Handling

of variation operators that are guaranteed to deliver feasible offspring from
feasible parents.

It should be noted that this approach to solving COP, although attractive,
is not suitable for all types of constraints. In many cases it is difficult to find
an existing or design a new operator that guarantees that the offspring are
feasible. Although one possible option is simply to discard any infeasible points
and reapply the operator until a feasible solution is generated, the process of
checking that a solution is feasible may be so time consuming as to render
this approach unsuitable. However, there remains a large class of problems
where this approach is valid and with suitable choice of operators can be very
successfully applied.

12.4.4 Decoder Functions

Decoder functions are a class of mappings from the genotype space S’ to the
feasible regions F' of the solution space S that have the following properties:

e Every z € S must map to a single solution s € F'.

e Every solution s € F' must have at least one representation s’ € S".

e Every s € F must have the same number of representations in S’ (this
need not be 1).

The use of decoder functions can be illustrated on the knapsack problem
again. A simple approach here to sort the items by profit/weight ratio, and
then represent a potential solution as a binary string of length [ where a gene
with allele value 1 is included in the subset. It can immediately be seen that
this representation permits the creation of infeasible solutions from feasible
ones if normal variation operators are used, and that constructing operators
that guarantee feasible solutions is decidedly non-trivial. Therefore some form
of pruning is needed.

One such decoder approach would start at the left hand end of the string
and interpret a 1 as take this item if possible.... Although a providing relatively
simple way of using EAs for this type of problem, such decoder functions are
not without their drawbacks. These are centred around the fact that they
generally introduce a lot of redundancy into the genotype space. In the first
example given, if the weight limit is reached after considering say 5 of 10
genes, then it is irrelevant what values the rest take, and so 2° strings all map
onto the same solution.

In some cases it may be possible to devise a decoder function that permits
the use of relatively standard representation and operators whilst preserving
a one-to-one mapping between genotype and phenotype. One such example
is the decoder for the TSP problem proposed by Grefenstette, and well de-
scribed by Michalewicz in [272]. In this case a simple integer representation
was used with each gene a; € {1,...,l + 1 — i}. This representation permits
the use of “standard” crossover operators and a bitwise mutation operator
that randomly resets a gene value to one of its permitted allele values. The
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outcome of both of these operators is guaranteed to be valid. The decoder
function works by considering an ordered list of cities, {ABCDFE}, and using
the genotype to index into this.

For example, with a genotype {4,2,3,1,1} the first city in the constructed
tour is the fourth item in the list, i.e., D. This city is then removed from the list
and the second gene is considered, which in this case points to B. This process
is continued until a complete tour is constructed: {4,2.3,1,1} - DBFAC.

Although the one to one mapping means that there is no redundancy in
the genotype space, and permits the use of straightforward crossover and mu-
tation operators, the complexity of the mapping function means that a small
mutation can have a large effect, e.g., {3,2,3,1,1} —» CBDAE. Equally,
it can be easily shown that recombination operators no longer respect and
propagate all features common to both solutions. Thus if the two solutions
{1,1,1,1,1} —» ABCDE and {5,1,2,3,1} — EACDB, which share the
common feature that C occurs in the third position and D in the fourth
undergo 1-point crossover between the third and fourth loci, the solution
{5,1,2,1,1} — EACBD is obtained, which does not possess this feature.
If the crossover occurs in other positions, the edge CD may be preserved, but
in a different position in the cycle.

In both of the examples given, the complexity of the genotype—phenotype
mapping makes it very difficult to ensure locality and makes the fitness land-
scape associated with the search space highly complex, since the potential
effects in fitness of changes at the left-hand end of the string are much bigger
than those at the right-hand end [179]. Equally, it can become very difficult
to specify exactly the common features the recombination operators are sup-
posed to be preserving.

12.5 Application Example: Graph Three-Colouring

We illustrate the approaches outlined above via the description of two different
ways of solving a well-known CSP problem, graph three-colouring as defined
in Section 12.2.2.

12.5.1 Indirect Approach

In this section we take an indirect approach, transforming the problem from
a CSP to a FOP by means of penalty functions. The most straightforward
representation is using ternary strings of length n, where each variable stands
for one node, and the integers 1, 2, and 3 denote the three colours. Using this
standard GA representation has the advantage that all standard variation
operators are immediately applicable. We now define two objective functions
(penalty functions) that measure the amount of “incorrectness” of a chromo-
some. The first function is based on the number of “incorrect edges” that
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connect two nodes with the same colour, while the second relies on count-
ing the “incorrect nodes” that have a neighbour with the same colour. For
a formal description let us denote the constraints belonging to the edges as
ci (i ={1,...,m}), and let C"® be the set of constraints involving variable v,
(edges connecting to node 7). Then the penalties belonging to the two options
above described can be expressed as follows:

f1(3) = Zwi x x(5, ¢:),

B 1 if 5 violates ¢;,
where x(8,¢;) = 0 otherwise.

respectively,

f2(38) = Zwi x x(5,C"),
1=1

1 if 5 violates at least one ¢ € C?,
0 otherwise.

where x(5,C") = {

Note that both functions are correct transformations of the constraints in
the sense that for each 5§ € S we have that ¢(35) = true if and only if f;(5) =0
(i = 1,2). The motivation to use weighted sums in this example, and in
general, is that they provide the possibility of emphasising certain constraints
(variables) by giving them a higher weight. This can be beneficial if some
constraints are more important or known to be harder to satisfy. Assigning
them a higher weight gives a higher reward to a chromosome, hence the EA
naturally focuses on these. Setting the weights can be done manually by the
user, but can also be done by the EA itself on-the-fly as in the stepwise
adaptation of weights (SAW) mechanism [132].

Now the EA for the graph three-colouring problem can be composed from
standard components. For instance, we can apply a steady state GA with
population size 100, binary tournament selection and worst fitness deletion,
using random resetting mutation with p,, = 1/n and uniform crossover with
p. = 0.8. Notice that this EA really ignores constraints; it only tries to min-
imise the given objective function (penalty function).

12.5.2 Mixed Mapping — Direct Approach

We now present another EA for this problem, illustrating how constraints
can be handled by a decoder. The main idea is to use permutations of the
nodes as chromosomes. The phenotype (colouring) belonging to a genotype
(permutation) is determined by a procedure that assigns colours to nodes in
the order they occur in the given permutation, trying the colours in increasing
order (1,2,3), and leaving the node uncoloured if all three colours would lead to
a constraint violation. Formally, we shift from the search space S = {1, 2, 3}"
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toS"={5€S5|s;#s; t,j=1,...,n}, and the colouring procedure (the
decoder) is the mapping from S’ to S. At the first glance this might not seem
a good idea as we still have constraints in the transformed problem. However,
we know from Chapter 3 that working in a permutation space using a direct
approach is easy, as there are many suitable variation operators keeping the
search in this space. In other words, we have various operators preserving the
constraints defining this space.

An appropriate objective function for this representation can simply be
defined as the number (weighted sum) of nodes that remain uncoloured after
decoding. This function also has the property that an optimal value (0) implies
that all constraints are satisfied, i.e., all nodes are coloured correctly. The rest
of the EA can again use off-the-shelf components: a steady-state GA with
population size 100, binary tournament selection and worst fitness deletion,
using swap mutation with p,, = 1/n and order crossover with p. = 0.8.

Looking at this solution at a conceptual level we can note that there are
two constraint handling issues. Primary constraint handling concerns han-
dling the constraints of the original problem, the graph three-colouring CSP.
This is done by the mapping approach via a decoder. However, the trans-
formed search space S’ in which the EA has to work in is not free, rather
it is restricted by the constraints defining permutations. This constitutes the
secondary constraint handling issue that is solved by a (direct) preserving
approach using appropriate variation operators.

12.6 Exercises

1. Specify the eight-queens problem as a CSP (S, ¢).

2. Is it true that solving a COP with an EA always implies indirect constraint
handling?

3. Is it true that solving a CSP with an EA never involves direct constraint
handling?

4. Design an EA for solving a 3-SAT problem. In a propositional satisfiability
problem (SAT) a propositional formula is given, and a truth assignment
for its variables is sought that makes the formula true. Without loss of
generality it can be assumed that the given formula is in conjunctive
normal form (CNF), i.e., it is a conjunction of clauses where a clause is
a disjunction of literals. In the 3-SAT version of this problem it is also
assumed that the clauses consist of exactly three literals. In the common
notation, a formula has { clauses (L, ..., L;) and n variables (vy, ..., v,).

12.7 Recommended Reading for this Chapter

1. T. Back, D.B. Fogel, and Z. Michalewicz, editors. FEwolutionary Com-
putation 2: Advanced Algorithms and Operators Part 1I: Chapters 6-12,
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pages 38-86. Institute of Physics Publishing, Bristol, 2000
A series of chapters providing comprehensive reviews of different EA
approaches to constraint handling, written by experts in the field

2. B.G.W. Craenen, A.E. Eiben, and J.I. van Hemert. Comparing evolu-
tionary algorithms on binary constraint satisfaction problems. IEEFE
Transactions on Evolutionary Computation, 2003 (in press)

3. A.E. Eiben. Evolutionary algorithms and constraint satisfaction: Defini-
tions, survey, methodology, and research directions. In Kallel, Naudts,
Rogers, Eds. [222], 2001
Clear definitions and a good overview of evolutionary constraint handling
methods from the CSP point of view

4. J. Smith. Handbook of Global Optimization Volume 2, Chap. Genetic
Algorithms, pages 275-362. Kluwer Academic Publishers, Boston, 2002
A good overview of constraint handling methods in GAs from the COP
point of view

5. Z. Michalewicz and M. Schoenauer. FEvolutionary algorithms for con-

strained parameter optimisation problems. Ewvolutionary Computation,
4:1 pp.1-32, 1996.
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13

Special Forms of Evolution

13.1 Aims of this Chapter

In this chapter we discuss special forms of evolution that in some sense de-
viate from the standard evolutionary algorithms. In particular, we present
coevolution and interactive evolution that both work under “external influ-
ence”’. In coevolution the influence comes from another population, whose
members affect the fitness of the main population. In turn, the main popu-
lation also influences the fitness of the other one; hence the two populations
evolve together. In interactive evolution this influence comes from a user who
defines the fitness values by subjective preferences. In both of these cases, the
fitness that is awarded to a solution may vary. In the first case because the
fitness is dependent on the evolutionary state of the second population, and in
the second because users often display inconsistencies. We finish this chapter
by describing evolutionary approaches to problems where changing evalua-
tion criteria form the very feature defining them: nonstationary optimisation
problems.

13.2 Coevolution

Previously in this book we made extensive use of Sewall-Wright’s analogy
of the adaptive landscape where an evolving population is conceptualised as
moving on a surface whose points represent the set of possible solutions. This
metaphor ascribes a vertical dimension to the search space that denotes the
fitness of a particular solution, and the combined effects of selection and vari-
ation operators move the set of points into high-fitness regions.!

Whilst this is an attractive metaphor, it can also be profoundly misleading
when we consider the adaptation of a biological species. This is because it
tends to lead to the implicit notion that solutions have a fitness value per

! Although it can be shown that the reverse can sometimes happen [321].
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se. Of course, in life the adaptive value (that is, fitness) of an organism is
entirely determined by the environmental niche in which it finds itself. The
characteristics of this niche are predominantly determined by the presence
and character of other organisms from the same and, in particular, different
species.?

The effect of other species in determining the fitness of an organism can be
positive — for example, the pollination of plants by insects feeding on their
nectar — or negative — for example, the eating of rabbits by foxes. Biologists
tend to use the terms mutualism and symbiosis to refer to the coadaptation
of species in a mutually beneficial way, and the terms predation or para-
sitism to refer to relationships in which one species has a negative effect on
the survival and reproductive success of the other (antagonism).

If all of the other species in an environmental niche remained the same, and
only one species was evolving, then the notion of a fixed adaptive landscape
would be valid for that species. However, since evolution affects all species,
the net effect is that the landscape “seen” by each species is affected by the
configuration of all the other interacting species, i.e., it will move. This process
is known as coevolution. To give a concrete example, the adaptive value to a
rabbit of being able to run at, say 20 kph depends entirely on whether the fox
that preys on it has a maximum top speed of 15 kph or 30 kph. The “height”
on the landscape of a “20-kph phenotype” is reduced over time from a high
value to a low value as the fox evolves the ability to run faster.

Despite the additional complications of coevolutionary models, they hold
some significant advantages that have been exploited within EAs to aid the
generation of solutions to a range of difficult problems. One of the most obvi-
ous of these is the modelling and evolution of gameplaying strategies, such as
the overly popular iterated prisoner’s dilemma [14, 15]. In this case evolv-
ing solutions play against each other to get their fitness, i.e., only one species
is used and the model is competitive in the sense defined in Section 13.2.2.
Since computers provide the freedom to use a number of different models, and
biology is serving as an inspiration rather than a strict blueprint, a number of
different models have been used successfully. Coevolutionary EAs have been
implemented using both cooperation and competition, and both single and
multiple species models as we shall now describe.

13.2.1 Cooperative coevolution

Coevolutionary models in which a number of different species, each represent-
ing part of a problem, cooperate in order to come with a solution to a larger
problem have been proposed by a number of authors. Examples of this in-
clude high-dimensional function optimisation [309], job shop scheduling [208],
among many others.

2 With the possible exception of some extremely simple organisms.
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The advantage of this approach is that it permits effective function de-
composition; each subpopulation is effectively solving a much smaller, more
tractable problem. The disadvantage, of course, is that it relies on the user
to provide a suitable partition of the problem if it is not obvious from the
overall specification. In nature, mutually beneficial relationships have as their
ultimate expression so-called endosymbiosis, where the two species become
so interdependent that they end up inextricably physically linked - for ex-
ample, the various gut bacteria that live entirely within a host’s body and
are passed from mother to offspring. The equivalent in the artificial world of
optimisation is where the different parts of a problem are so interdependent
that they are not amenable to division.

Bull [65] conducted a series of more general studies on cooperative coevolu-
tion using Kauffmann’s static NKC model [224] (see Appendix B) in which the
amount of effect that the species have on each other can be varied systemati-
cally. In [66] he examined the evolution of coevolving symbiotic systems that
had the ability to evolve “linkage flags” denoting that solutions from different
populations should stay together. He showed that the strategies that emerge
depend heavily on the extent to which the two populations affect each other’s
fitness landscape, with linkage preferred in highly interdependent situations.

When cooperating populations are used, a major issue is that of deciding
how a solution from one population should be paired with the necessary others
in order to gain a fitness evaluation.

e Potter and DeJong [309] used a generational GA in each subpopulation,
with the different species taking it in turns to undergo a round of selection,
recombination, and mutation. Evaluation was performed using the current
best from each of the other species.

e Paredis examined the coevolution of solutions and their representations
in a steady state generational model using what he terms lifetime fitness
evaluation (LTFE) [298]. In the most general form of this algorithm a
new individual undergoes 20 “encounters” with solutions selected from
the other population. The fitness of the new individual is initially set
as the mean fitness from these encounters. The effect of this scheme is
that individuals from each population are continuously undergoing new
encounters, and the fitness of an individual is given by the running average
of its performance in the last 20 encounters. The benefit of this running-
average approach is that it effectively slows down the rate at which each
fitness landscape changes in response to changes in the composition of the
other populations.

e An alternative approach was taken by Husbands [208], who solved the
pairing problem and also effectively changed the rate at which the com-
position of the different populations are perceived to change by using a
diffusion model EA (Sect. 9.3.2) with one member of each species located
on each grid point.
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e Bull [66] examined the use of a range of different pairing strategies: best,
random, stochastic fitness-based, joined and distributed as per [208]. His
results showed that no one strategy performed better across the range of
different interaction strengths and generational models, but random was
robust in a generational GA, and distributed did best in a steady-state
GA. When fitness sharing was added to prevent premature convergence,
“hest” became the most robust solution.

Finally, within the field of cooperative coevolution it is worth mentioning
the use of automatically defined functions within GP [230]. In this ex-
tension of GP, the function set is extended to include calls to functions that
are themselves being evolved in parallel, in separate populations. The great
advantage of this is in permitting the evolution of modularity and code reuse.

13.2.2 Competitive coevolution

In the competitive coevolution paradigm individuals compete against each
other to gain fitness at each other’s expense. These individuals may belong
to the same or different species, in which case it is arguably more accurate to
say that the different species are competing against each other.

As noted above, the classic example of this that generated much interested
in the paradigm was Axelrod’s work on the iterated prisoner’s dilemma (IPD)
[14, 15], aablelthough early work can be traced back as far as 1962 [40]. This is
a two-player game, where each participant must decide whether to cooperate
or defect in each iteration. The payoff received depends on the actions of the
other player as determined by a matrix of which Table 13.1 represents an

example.

Player B
Player A |Cooperate Defect
Cooperate 3,3 0,5
Defect 9,0 1,1

Table 13.1. Example payoff matrix for iterated prisoner’s dilemma. Payoff to player
A is first of pair

Axelrod organised tournaments in which human-designed strategies com-
peted against each other, with strategies only allowed to “see” the last three
actions of their opponent. He then set up experiments in which strategies were
evolved using as their fitness the mean score attained against a set of eight
human strategies. He was able to illustrate that the system evolved the best
strategy (tit-for-tat), but there was some brittleness according to the set of
human strategies chosen. In a subsequent experiment he demonstrated that
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a strategy similar to tit-for-tat could also be evolved if a coevolutionary ap-
proach was used with each solution playing against every other in its current
generation in order to assess its quality.

In another groundbreaking study, Hillis [196] used a two-species model with
the pairing strategy determined by colocation on a grid in a diffusion model
EA. Note that this parallel model is similar to, and in fact was a precursor
of, Husbands’s cooperative algorithm described above. Hillis’ two populations
represented sorting networks, whose task it was to sort a number of inputs
numerically, and sets of test cases for those networks. Fitness for the networks
is assigned according to how many of the test cases they sort correctly. Using
the antagonistic approach, fitness for the individuals representing sets of test
cases is assigned according to how many errors they cause in the network’s
output. His study caused considerable attention as it found correct sorting
networks that were smaller than any previously known.

This two-species competitive model has been used by a number of authors
to coevolve classification systems [164, 300]. The approach of Paredis is worth
noting as it solves the pairing strategy problem by using a variant of the LTFE
method sketched above.

As with cooperative coevolution, the fitness landscapes will change as the
different populations evolve, and the choice of pairing strategies can have a
major effect on the observed behaviour. When the competition arises within a
single population, the most common approaches are to either pair each strat-
egy against each other, or just against a randomly chosen fixed-size sample of
the others. Once this has been done, the solutions can be ranked according
to the number of wins they achieve and any rank-based selection mechanism
chosen.

If the competition arises between different populations, then a pairing strat-
egy must be chosen in order to evaluate fitness, as it is for cooperative coevo-
lution. Given that the NKC model essentially assigns random effects to the
interactions between species, i.e., it is neither explicitly cooperative nor com-
petitive, it is likely that Bull’s results summarised above will also translate to
this paradigm.

The main engine behind coevolution is sometimes called “competitive fit-
ness evaluation”. As Angeline states in [11], the chief advantage of the method
is that it is self-scaling: early in the run relatively poor solutions may survive,
for their competitors are not strong either. But as the run proceeds and the
average strength of the population increases, the difficulty of the fitness func-
tion is continually scaled.

A particular type of problems is formed by “test-solution problems” as
termed by Paredis [299]. These are illustrated by constraint satisfaction prob-
lems in the following section.
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13.2.3 Example Application: Coevolutionary Constraint
Satisfaction

A competitive coevolutionary system to solve CSP problems is described by
Paredis in [297]. The main idea is to have two populations, one consisting
candidate solutions for the given CSP and one containing constraints, and
define the fitness of an individual in one population by the extent it can
“frustrate”? individuals in the other population. Quite naturally, a candidate
solution s frustrates a constraint c if s satisfies ¢, and a constraint ¢ frustrates
a candidate solution s if s violates ¢. This idea is implemented by arrang-
ing random “encounters” between constraints and candidate solutions, where
each encounter matches the given ¢ and s to determine whether c satisfies s.
The fitness of an individual (in any population) is based on 20 encounters,
where fitter individuals of the other population have a higher chance to be se-
lected for an encounter. By this mechanism, the randomised champions of the
respective populations are fighting each other, giving rise to an arms race. It
is expected that this arms race will be won by the solution population yielding
an individual that not only frustrates all its opponents in an encounter, but
satisfies the other constraints as well.

It is important to understand here that the two populations are inher-
ently different from the perspective of evolution. The population of candidate
solutions really evolves, since it undergoes variation and selection resulting
in ever-new population members (disregarding accidental creation of clones).
However, the constraint population cannot evolve, since its elements must
not be varied as the set of constraints is part of the problem specification
that does not change. Thus, the dynamics within the constraint population
is restricted to reranking the given members after each evaluation without
effectively changing the composition.

The other algorithmic components of this application are not essential for
the present example, hence the reader is referred to [297] for the details. We
want to remark, however, that this coevolutionary approach to solving CSPs
proved to be inferior to many others in an extensive experimental comparison
on randomly generated binary CSP [85].

13.3 Interactive Evolution

The defining feature of the type of evolutionary systems discussed in this
section is that the user effectively becomes part of the system by acting as
a guiding oracle to control the evolutionary process. A trivial example of
such a system is agricultural breeding, where human interference changes the
reproductive process. Based on functional (faster horses) or aesthetic (nicer
cats) judgements, the individuals to reproduce are selected by the human

3 Term from the authors of this book.
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supervisor. The result is the emergence of new types of individuals that meet
the human expectations better than their ancestors.

As mentioned in Section 2.2, variation and selection are the two corner-
stones of any evolutionary process. If the latter one is influenced by the user’s
subjective judgement, then we talk about interactive evolution (IE) or col-
laborative evolution. In fact, these terms are broad enough to also encom-
pass influencing the variation step. This is not an impossible option; consider,
for instance, a planner making a timetable with a GA and inspecting the best
solution from time to time. If planners interchange two events by hand in
the inspected timetable and place the resulting solution back to the popula-
tion, they actually influence variation.* However, human-EA interaction in
this sense 1s seldom, and therefore we follow this limited interpretation of the
terms interactive evolution and collaborative evolution as offered in [36, 48].

In general, the user can influence selection in various ways. The influence can
be very direct, for example, actually choosing the individuals that are allowed
to reproduce. Alternatively, it can be indirect by defining the fitness values
or perhaps only sorting the population, and have an automated probabilistic
selection mechanism to appoint parents for the next generation. In all cases
(even in the indirect one) the user’s influence is named sub jective selection,
and in an evolutionary art context the term aesthetic selection is often used.

Incorporating human guidance into an evolutionary process implies advan-
tages as well as disadvantages. The advantages are summarised by Bentley
and Corne in [48] as follows:

e Handling situations with no clear fitness function. If the reasons to prefer
certain solutions cannot be formalised, no fitness function can be specified
and implemented within the EA code. Subjective user selection circum-
vents this problem. It is also helpful if the objectives and preferences are
variable, since changing preferences will not imply the necessity to rewrite
the fitness function.

e Improved search ability. If evolution gets stuck, the user can redirect search
by changing his guiding principle.

e Increased exploration and diversity. The longer the user “plays” with the
system, the more and more diverse solutions will be encountered.

The disadvantages include:

e Slowness. Compared to the automated execution of an evaluation function,
humans are extremely slow in inspecting and judging solutions. This causes
long evolutions (measured by wall-clock time).

e Inconsistency. Humans can (and do) change their minds on-the-fly, altering
their preferences, and causing inconsistency in their guidance.

e Limited coverage. Time constraints and human cognitive limitations typ-
ically only allow small populations and a few generations. Consequently,

4 The real-life example could be, for instance, genetic manipulation of corn.
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only a small fraction of the search space is covered by an interactive evo-
lutionary search process.

13.3.1 Optimisation, Design, Exploration

Interactive evolution is often related to evolutionary design and evolutionary
art, which can be seen as a specific form of evolutionary design. In particular
cases IE is applied to perform optimisation, as the cherry brandy experiment
in Sect. 4.9.2 illustrates. From a conceptual perspective it can even be ar-
gued that evolution is design, rather than optimisation. From this perspective
the canonical task of (natural or computer) evolution is to design good so-
lutions for specific challenges. The field of evolutionary design by computers
naturally touches upon such conceptual issues and has arrived ta a view that
distinguishes parameter optimisation and exploration [46, 47]. The main un-
derlying difference between these two lies in the representation of a problem.
Many problems can be solved by defining a parameterised model of possible
solutions and seeking the parameter values that encode an optimal solution.
This encoding is “knowledge-rich” in the sense that the appropriate parame-
ters must be chosen intelligently — if there is no parameter for a feature that
influences solution quality that feature can never be modified, different values
cannot be compared, and possibly good solutions will be overlooked. An alter-
native to such parameterised representations is formed by component-based
representations. Here a set of low-level components is defined, and solutions
are constructed from these components. This is a “knowledge-lean” represen-
tation with possibly no, or only weak, assumptions of relationships between
components and the ways they can be assembled.

Optimisation is related to the first type of representations. Propagating
improvements along successive generations, an EA behaves much like an op-
timiser in the parameter space. Component-based representations give rise
to exploration, aiming at identifying novel and good solutions, where novelty
can be more important than optimality (which might not even be definable).
Within this framework, evolution works as a discovery engine and not only for
discovering new designs, but even aiding in identifying new design principles
by analysing the evolved designs [278].

13.3.2 Interactive Evolutionary Design and Art

As mentioned above IE is typically associated with evolutionary design. The
common approach relies on component-based representations and is explo-
ration oriented. The basic template for interactive evolutionary design systems
consists of five components [48]:

1. A phenotype representation defining the application-specific kind of ob-
jects we are to evolve
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2. A genotype representation, where the genes represent (directly or indi-
rectly) a variable number of components that make up a phenotype

3. A decoder, often called growth function of embriogeny, defining the map-
ping process from genotypes to phenotypes

4. A solution evaluation facility allowing the user to perform (art of the
selection within the evolutionary cycle in an interactive way

5. An evolutionary algorithm to carry out the search

This scheme can be used to evolve objects with an amazing variety, includ-
ing Dawkins’ pioneering Biomorphs [95], coffee tables [45], images imitating
works of the artist M.C. Escher [121], scenes of medieval towns [371], and
music [284]. The basics of such evolutionary art systems are the same as those
of evolutionary design in general: some evolvable genotype is specified that
encodes a visually or auditively interpretable phenotype. Visual phenotypes
include two-dimensional images, animations, and three-dimensional objects;
and auditive phenotypes amount to pieces of music. The main feature that
distinguishes evolutionary art applications from other forms of evolutionary
design lies in the intention: the evolved objects are simply to please the user,
that is, they need not serve any practical purpose.

13.3.3 Example Application: The Mondriaan Evolver

To give a detailed illustration we use an existing application example: the
Mondriaan evolver aimed at the creation of images in the style of the Dutch
artist Piet Mondriaan [402]. In this case the phenotype space is rather simple,
consisting of “paintings” containing straight lines and (blocks of) primary
colours. Figure 13.1 shows a screenshot of the user interface exhibiting nine
images/phenotypes, here in black and white.

Such phenotypes must be represented by some corresponding genotypes
that allow variation through mutation and recombination. Using one of the
common EA representations, that is, a standard ES, EP, GA, or GP genotype
form, has the advantage that no application-specific variation operators need
to be developed; one can simply choose from the existing options. Figure 13.2
illustrates one possible representation for Mondriaan-like images by showing
three example genotypes and their corresponding phenotypes. The exact spec-
ification of this representation is left to the reader as an exercise, see Exercises
at the end of this chapter. Here we only want to stress the importance of this
step in setting up a evolutionary design system: if the representation is too
narrow possibly interesting solutions may be out of reach of the system. For
instance, even without giving the formal specification of the Mondriaan rep-
resentation here, it should be clear that in principle the Dutch flag can be
evolved by this system. However, to evolve the British flag is impossible, sim-
ply because it contains diagonal lines, which cannot be represented by the
combination of the present genotypes and the decoding function.

So far we have illustrated the components 1 through 4 of the interactive
evolutionary design framework, where the user interface in Figure 13.1 realises
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Fig. 13.1. A screenshot of the Mondriaan evolver showing a population of pheno-
types, see http://www.cs .vu.nl/ci/Mondriaan/

the solution evaluation facility component. This interface allows users to grade
each image according to their likings, and a traditional selection mechanism,
for instance, tournament selection, takes these grades into account. It is an
interesting empirical fact that a too finely graded system is unsuited for most
human users as they find it difficult to express their preferences very accu-
rately. For instance, it can be hard to decide whether a given image should
be given a mark of 50 or 51 out of 100. A system with just three grades (low,
medium, high) could be sufficient in many cases, and even a simple binary
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