
Ant Colony
Optimization

Marco Dorigo and Thomas Stützle

Ant Colony Optimization Marco Dorigo and Thomas Stützle

The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that

these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to

develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest

paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic

technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception

to practical applications, including descriptions of many available ACO algorithms and their uses.

The book first describes the translation of observed ant behavior into working optimization algorithms. The ant

colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed

by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book

surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioin-

formatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The

authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends

with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony

Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to

learn how to implement ACO algorithms.

Marco Dorigo is research director of the IRIDIA lab at the Université Libre de Bruxelles and the inventor of the ant

colony optimization metaheuristic for combinatorial optimization problems. He has received the Marie Curie Excellence

Award for his research work on ant colony optimization and ant algorithms. He is the coauthor of Robot Shaping (MIT

Press, 1998) and Swarm Intelligence. Thomas Stützle is Assistant Professor in the Computer Science Department at

Darmstadt University of Technology.

A Bradford Book

Marco Dorigo and Thomas Stützle impressively demonstrate that the importance of ant behavior reaches far beyond the

sociobiological domain. Ant Colony Optimization presents the most successful algorithmic techniques to be developed

on the basis of ant behavior. This book will certainly open the gates for new experimental work on decision making,

division of labor, and communication; moreover, it will also inspire all those studying patterns of self-organization.”

Bert Hölldobler, Professor of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Germany

Inspired by the remarkable ability of social insects to solve problems, Dorigo and Stützle introduce highly creative new

technological design principles for seeking optimized solutions to extremely difficult real-world problems, such as network

routing and task scheduling. This is essential reading not only for those working in artificial intelligence and optimization,

but for all of us who find the interface between biology and technology fascinating.”

Iain D. Couzin, Princeton University and University of Oxford

The MIT Press Massachusetts Institute of Technology Cambridge, Massachusetts 02142 http://mitpress.mit.edu 0-262-04219-3

,!7IA2G2-aecbjc!:t;K;k;K;k

A
nt C

olony O
ptim

ization
D

origo and Stützle

“

“

Ant Colony.qxd 6/9/04 12:15 PM Page 1

Ant Colony Optimization

Ant Colony Optimization

Marco Dorigo
Thomas Stützle

A Bradford Book

The MIT Press

Cambridge, Massachusetts

London, England

6 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

This book was set in Times New Roman on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in
the United States of America.

Library of Congress Cataloging-in-Publication Data

Dorigo, Marco.
Ant colony optimization / Marco Dorigo, Thomas Stützle.

p. cm.
‘‘A Bradford book.’’
Includes bibliographical references (p.).
ISBN 0-262-04219-3 (alk. paper)
1. Mathematical optimization. 2. Ants–Behavior–Mathematical models. I. Stützle, Thomas. II. Title.
QA402.5.D64 2004
519.6—dc22 2003066629

10 9 8 7 6 5 4 3 2 1

To Serena and Roberto

To Maria José and Alexander

Contents

Preface ix

Acknowledgments xiii

1 From Real to Artificial Ants 1

1.1 Ants’ Foraging Behavior and Optimization 1

1.2 Toward Artificial Ants 7

1.3 Artificial Ants and Minimum Cost Paths 9

1.4 Bibliographical Remarks 21

1.5 Things to Remember 22

1.6 Thought and Computer Exercises 23

2 The Ant Colony Optimization Metaheuristic 25

2.1 Combinatorial Optimization 25

2.2 The ACO Metaheuristic 33

2.3 How Do I Apply ACO? 38

2.4 Other Metaheuristics 46

2.5 Bibliographical Remarks 60

2.6 Things to Remember 61

2.7 Thought and Computer Exercises 63

3 Ant Colony Optimization Algorithms for the Traveling Salesman

Problem 65

3.1 The Traveling Salesman Problem 65

3.2 ACO Algorithms for the TSP 67

3.3 Ant System and Its Direct Successors 69

3.4 Extensions of Ant System 76

3.5 Parallel Implementations 82

3.6 Experimental Evaluation 84

3.7 ACO Plus Local Search 92

3.8 Implementing ACO Algorithms 99

3.9 Bibliographical Remarks 114

3.10 Things to Remember 117

3.11 Computer Exercises 117

4 Ant Colony Optimization Theory 121

4.1 Theoretical Considerations on ACO 121

4.2 The Problem and the Algorithm 123

4.3 Convergence Proofs 127

4.4 ACO and Model-Based Search 138

4.5 Bibliographical Remarks 149

4.6 Things to Remember 150

4.7 Thought and Computer Exercises 151

5 Ant Colony Optimization for NP-Hard Problems 153

5.1 Routing Problems 153

5.2 Assignment Problems 159

5.3 Scheduling Problems 167

5.4 Subset Problems 181

5.5 Application of ACO to Other NP-Hard Problems 190

5.6 Machine Learning Problems 204

5.7 Application Principles of ACO 211

5.8 Bibliographical Remarks 219

5.9 Things to Remember 220

5.10 Computer Exercises 221

6 AntNet: An ACO Algorithm for Data Network Routing 223

6.1 The Routing Problem 223

6.2 The AntNet Algorithm 228

6.3 The Experimental Settings 238

6.4 Results 243

6.5 AntNet and Stigmergy 252

6.6 AntNet, Monte Carlo Simulation, and Reinforcement Learning 254

6.7 Bibliographical Remarks 257

6.8 Things to Remember 258

6.9 Computer Exercises 259

7 Conclusions and Prospects for the Future 261

7.1 What Do We Know about ACO? 261

7.2 Current Trends in ACO 263

7.3 Ant Algorithms 271

Appendix: Sources of Information about the ACO Field 275

References 277

Index 301

viii Contents

Preface

Ants exhibit complex social behaviors that have long since attracted the attention of

human beings. Probably one of the most noticeable behaviors visible to us is the for-

mation of so-called ant streets. When we were young, several of us may have stepped

on such an ant highway or may have placed some obstacle in its way just to see how

the ants would react to such disturbances. We may have also wondered where these

ant highways lead to or even how they are formed. This type of question may be-

come less urgent for most of us as we grow older and go to university, studying other

subjects like computer science, mathematics, and so on. However, there are a con-

siderable number of researchers, mainly biologists, who study the behavior of ants in

detail.

One of the most surprising behavioral patterns exhibited by ants is the ability of

certain ant species to find what computer scientists call shortest paths. Biologists

have shown experimentally that this is possible by exploiting communication based

only on pheromones, an odorous chemical substance that ants may deposit and

smell. It is this behavioral pattern that inspired computer scientists to develop algo-

rithms for the solution of optimization problems. The first attempts in this direction

appeared in the early ’90s and can be considered as rather ‘‘toy’’ demonstrations,

though important for indicating the general validity of the approach. Since then,

these and similar ideas have attracted a steadily increasing amount of research—and

ant colony optimization (ACO) is one outcome of these research e¤orts. In fact,

ACO algorithms are the most successful and widely recognized algorithmic tech-

niques based on ant behaviors. Their success is evidenced by the extensive array of dif-

ferent problems to which they have been applied, and moreover by the fact that ACO

algorithms are for many problems among the currently top-performing algorithms.

Overview of the Book

This book introduces the rapidly growing field of ant colony optimization. It gives a

broad overview of many aspects of ACO, ranging from a detailed description of the

ideas underlying ACO, to the definition of how ACO can generally be applied to a

wide range of combinatorial optimization problems, and describes many of the avail-

able ACO algorithms and their main applications. The book is divided into seven

chapters and is organized as follows.

Chapter 1 explains how ants find shortest paths under controlled experimental

conditions, and illustrates how the observation of this behavior has been translated

into working optimization algorithms.

In chapter 2, the ACO metaheuristic is introduced and put into the general context

of combinatorial optimization. Basic notions of complexity theory, such as NP-
hardness, are given and other major metaheuristics are briefly overviewed.

Chapter 3 is dedicated to the in-depth description of all the major ACO algorithms

currently available in the literature. This description, which is developed using the

traveling salesman problem as a running example, is completed by a guide to imple-

menting the algorithms. A short description of a basic C implementation, as well

as pointers to the public software available at www.aco-metaheuristic.org/aco-code/,

is given.

Chapter 4 reports on what is currently known about the theory of ACO algorithms.

In particular, we prove convergence for a specific class of ACO algorithms and we

discuss the formal relation between ACO and other methods such as stochastic gra-

dient descent, mutual-information-maximizing input clustering, and cross-entropy.

Chapter 5 is a survey of current work exploiting ACO to solve a variety of combi-

natorial optimization problems. We cover applications to routing, assignment, sched-

uling, and subset problems, as well as a number of other problems in such diverse

fields as machine learning and bioinformatics. We also give a few ‘‘application prin-

ciples,’’ that is, criteria to be followed when attacking a new problem using ACO.

Chapter 6 is devoted to the detailed presentation of AntNet, an ACO algorithm

especially designed for the network routing problem, that is, the problem of building

and maintaining routing tables in a packet-switched telecommunication network.

Finally, chapter 7 summarizes the main achievements of the field and outlines some

interesting directions for future research.

Each chapter of the book (with the exception of the last chapter) ends with the

following three sections: bibliographical remarks, things to remember, and exercises.

9 Bibliographical remarks, a kind of short annotated bibliography, contains pointers

to further literature on the topics discussed in the chapter.

9 Things to remember is a bulleted list of the important points discussed in the

chapter.

9 Exercises come in two forms, thought exercises and computer exercises, depending

on the material presented in the chapter.

Finally, there is a long list of references about ACO algorithms that gives a lot of

pointers to more in-depth literature.

Overall, this book can be read easily by anyone with a college-level scientific back-

ground. The use of mathematics is rather limited throughout, except for chapter 4,

which requires some deeper knowledge of probability theory. However, we assume

x Preface

that the reader is familiar with some basic notions of graph theory, programming,

and probabilities. The book is intended primarily for (1) academic and industry

researchers in operations research, artificial intelligence, and computational intelli-

gence; (2) practitioners willing to learn how to implement ACO algorithms to solve

combinatorial optimization problems; and (3) graduate and last-year undergraduate

students in computer science, management science, operations research, and artificial

intelligence.

Preface xi

Acknowledgments

The field of ant colony optimization has been shaped by a number of people who

have made valuable contributions to the development and success of the field.

First of all, we wish to acknowledge the contributions of Alberto Colorni and

Vittorio Maniezzo. Alberto and Vittorio collaborated closely with Marco Dorigo

in the definition of the first ACO algorithms while Marco was a doctoral student

at Politecnico di Milano, in Milan, Italy. Without their contribution, there would

probably be no ACO research to describe. Our thoughts turn next to Jean-Louis

Deneubourg and Luca Maria Gambardella. Jean-Louis, a recognized expert in the

study of social insects, provided the inspiration (as described in chapter 1 of this

book) for the ACO work. Luca, a computer scientist with a strong feeling for prac-

tical applications, was the one who most helped in transforming ACO from a fasci-

nating toy into a competitive metaheuristic.

More generally, many researchers have written papers on ACO (applications,

theoretical results, and so on). This book is clearly influenced by their research and

results, which are reported in chapter 5.

Several colleagues and students of ours have checked large parts of the book. We

appreciated very much the comments by Maria Blesa, Christian Blum, Julia Handl,

Elena Marchiori, Martin Middendorf, Michael Samples, and Tommaso Schiavinotto.

In addition, we would like to thank those colleagues who checked parts of the book:

Mauro Birattari, Roberto Cordone, Gianni Di Caro, Karl Dörner, Alex Freitas,

Luca Maria Gambardella, Jose Antonio Gámez, Walther Gutjahr, Richard Hartl,

Holger Hoos, Joshua Knowles, Guillermo Leguizamón, John Levine, Helena

Lourenço, Max Manfrin, Vittorio Maniezzo, Daniel Merkle, José Miguel Puerta,

Marc Reimann, Andrea Roli, Alena Shmygelska, Krzysztof Socha, Christine Solnon,

and Mark Zlochin. Our special thanks goes to Cristina Versino, for providing the ant

drawings used in figures 1.7 and 3.2, and to all the people at the IRIDIA and Intel-

lectics groups, for providing a stimulating scientific and intellectual environment in

which to work.

People at MIT Press, and in particular Robert Prior, have greatly helped to make

this project successful. We thank all of them, and in particular Bob, for gently

pressing us to deliver the draft of this book.

Final thanks go to our families, in particular to our wives Laura and Maria José,

who have constantly provided the comfortable environment conducive to success-

fully completing this book, and to our children Luca, Alessandro, and Alexander,

who give meaning to our lives.

Marco Dorigo acknowledges support from the Belgian FNRS, of which he is a

senior research associate. The writing of this book has been indirectly supported by

the numerous institutions who funded the research of the two authors through the

years. We wish to thank the Politecnico di Milano, Milan, Italy; the International

Computer Science Institute, Berkeley, California; IDSIA, Lugano, Switzerland; the

Intellectics Group at Darmstadt University of Technology, Germany; the IRIDIA

group at the Université Libre de Bruxelles, Brussels, Belgium; and the Improving

Human Potential programme of the CEC, who supported this work through grant

HPRN-CT-1999-00106 to the Research Training Network ‘‘Metaheuristics Net-

work.’’ The information provided is the sole responsibility of the authors and does

not reflect the community’s opinion. The community is not responsible for any use

that might be made of data appearing in this publication.

xiv Acknowledgments

1From Real to Artificial Ants

I am lost! Where is the line?!

—A Bug’s Life, Walt Disney, 1998

Ant colonies, and more generally social insect societies, are distributed systems that,

in spite of the simplicity of their individuals, present a highly structured social orga-

nization. As a result of this organization, ant colonies can accomplish complex tasks

that in some cases far exceed the individual capabilities of a single ant.

The field of ‘‘ant algorithms’’ studies models derived from the observation of real

ants’ behavior, and uses these models as a source of inspiration for the design of

novel algorithms for the solution of optimization and distributed control problems.

The main idea is that the self-organizing principles which allow the highly coordi-

nated behavior of real ants can be exploited to coordinate populations of artificial

agents that collaborate to solve computational problems. Several di¤erent aspects of

the behavior of ant colonies have inspired di¤erent kinds of ant algorithms. Ex-

amples are foraging, division of labor, brood sorting, and cooperative transport. In

all these examples, ants coordinate their activities via stigmergy, a form of indirect

communication mediated by modifications of the environment. For example, a for-

aging ant deposits a chemical on the ground which increases the probability that

other ants will follow the same path. Biologists have shown that many colony-level

behaviors observed in social insects can be explained via rather simple models in

which only stigmergic communication is present. In other words, biologists have

shown that it is often su‰cient to consider stigmergic, indirect communication to

explain how social insects can achieve self-organization. The idea behind ant algo-

rithms is then to use a form of artificial stigmergy to coordinate societies of artificial

agents.

One of the most successful examples of ant algorithms is known as ‘‘ant colony

optimization,’’ or ACO, and is the subject of this book. ACO is inspired by the for-

aging behavior of ant colonies, and targets discrete optimization problems. This in-

troductory chapter describes how real ants have inspired the definition of artificial

ants that can solve discrete optimization problems.

1.1 Ants’ Foraging Behavior and Optimization

The visual perceptive faculty of many ant species is only rudimentarily developed

and there are ant species that are completely blind. In fact, an important insight of

early research on ants’ behavior was that most of the communication among indi-

viduals, or between individuals and the environment, is based on the use of chemicals

produced by the ants. These chemicals are called pheromones. This is di¤erent from,

for example, what happens in humans and in other higher species, whose most im-

portant senses are visual or acoustic. Particularly important for the social life of some

ant species is the trail pheromone. Trail pheromone is a specific type of pheromone

that some ant species, such as Lasius niger or the Argentine ant Iridomyrmex humilis

(Goss, Aron, Deneubourg, & Pasteels, 1989), use for marking paths on the ground,

for example, paths from food sources to the nest. By sensing pheromone trails for-

agers can follow the path to food discovered by other ants. This collective trail-laying

and trail-following behavior whereby an ant is influenced by a chemical trail left by

other ants is the inspiring source of ACO.

1.1.1 Double Bridge Experiments

The foraging behavior of many ant species, as, for example, I. humilis (Goss et al.,

1989), Linepithema humile, and Lasius niger (Bonabeau et al., 1997), is based on in-

direct communication mediated by pheromones. While walking from food sources to

the nest and vice versa, ants deposit pheromones on the ground, forming in this way

a pheromone trail. Ants can smell the pheromone and they tend to choose, proba-

bilistically, paths marked by strong pheromone concentrations.

The pheromone trail-laying and -following behavior of some ant species has been

investigated in controlled experiments by several researchers. One particularly bril-

liant experiment was designed and run by Deneubourg and colleagues (Deneubourg,

Aron, Goss, & Pasteels, 1990; Goss et al., 1989), who used a double bridge connect-

ing a nest of ants of the Argentine ant species I. humilis and a food source. They ran

experiments varying the ratio r ¼ ll=ls between the length of the two branches of the

double bridge, where ll was the length of the longer branch and ls the length of the

shorter one.

In the first experiment the bridge had two branches of equal length (r ¼ 1; see

figure 1.1a). At the start, ants were left free to move between the nest and the food

source and the percentage of ants that chose one or the other of the two branches

were observed over time. The outcome was that (see also figure 1.2a), although in the

initial phase random choices occurred, eventually all the ants used the same branch.

This result can be explained as follows. When a trial starts there is no pheromone on

the two branches. Hence, the ants do not have a preference and they select with the

same probability any of the branches. Yet, because of random fluctuations, a few

more ants will select one branch over the other. Because ants deposit pheromone

while walking, a larger number of ants on a branch results in a larger amount of

pheromone on that branch; this larger amount of pheromone in turn stimulates more

ants to choose that branch again, and so on until finally the ants converge to one

2 Chapter 1 From Real to Artificial Ants

Nest Food600

15 cm

Nest Food1 2

(a) (b)

Figure 1.1
Experimental setup for the double bridge experiment. (a) Branches have equal length. (b) Branches have
di¤erent length. Modified from Goss et al. (1989).

0

50

100

0-20 20-40 40-60 60-80 80-100

 % of traffic on one of the branches

0

50

100

0-20 20-40 40-60 60-80 80-100

(a) (b)

%
 o

f e
xp

er
im

en
ts

%
 o

f e
xp

er
im

en
ts

 % of traffic on the short branch

Figure 1.2
Results obtained with Iridomyrmex humilis ants in the double bridge experiment. (a) Results for the case in
which the two branches have the same length (r ¼ 1); in this case the ants use one branch or the other in
approximately the same number of trials. (b) Results for the case in which one branch is twice as long as
the other (r ¼ 2); here in all the trials the great majority of ants chose the short branch. Modified from
Goss et al. (1989).

1.1 Ants’ Foraging Behavior and Optimization 3

single path. This autocatalytic or positive feedback process is, in fact, an example of

a self-organizing behavior of the ants: a macroscopic pattern (corresponding to the

convergence toward one branch) emerges out of processes and interactions taking

place at a ‘‘microscopic’’ level (Camazine, Deneubourg, Franks, Sneyd, Theraulaz,

& Bonabeau, 2001; Haken, 1983; Nicolis & Prigogine, 1977). In our case the con-

vergence of the ants’ paths to one branch represents the macroscopic collective be-

havior, which can be explained by the microscopic activity of the ants, that is, by the

local interactions among the individuals of the colony. It is also an example of stig-

mergic communication (for a definition of stigmergy, see section 1.4): ants coordinate

their activities, exploiting indirect communication mediated by modifications of the

environment in which they move.

In the second experiment, the length ratio between the two branches was set to

r ¼ 2 (Goss et al., 1989), so that the long branch was twice as long as the short one

(figure 1.1b shows the experimental setup). In this case, in most of the trials, after

some time all the ants chose to use only the short branch (see figure 1.2b). As in the

first experiment, ants leave the nest to explore the environment and arrive at a deci-

sion point where they have to choose one of the two branches. Because the two

branches initially appear identical to the ants, they choose randomly. Therefore, it

can be expected that, on average, half of the ants choose the short branch and the

other half the long branch, although stochastic oscillations may occasionally favor

one branch over the other. However, this experimental setup presents a remarkable

di¤erence with respect to the previous one: because one branch is shorter than the

other (see figure 1.1b), the ants choosing the short branch are the first to reach the

food and to start their return to the nest. But then, when they must make a decision

between the short and the long branch, the higher level of pheromone on the short

branch will bias their decision in its favor. Therefore, pheromone starts to accumu-

late faster on the short branch, which will eventually be used by all the ants because

of the autocatalytic process described previously. When compared to the experiment

with the two branches of equal length, the influence of initial random fluctuations

is much reduced, and stigmergy, autocatalysis, and di¤erential path length are the

main mechanisms at work. Interestingly, it can be observed that, even when the long

branch is twice as long as the short one, not all the ants use the short branch, but a

small percentage may take the longer one. This may be interpreted as a type of ‘‘path

exploration.’’

It is also interesting to see what happens when the ant colony is o¤ered, after

convergence, a new shorter connection between the nest and the food. This situation

was studied in an additional experiment in which initially only the long branch was

4 Chapter 1 From Real to Artificial Ants

o¤ered to the colony and after 30 minutes the short branch was added (see figure

1.3). In this case, the short branch was only selected sporadically and the colony was

trapped on the long branch. This can be explained by the high pheromone concen-

tration on the long branch and by the slow evaporation of pheromone. In fact, the

great majority of ants choose the long branch because of its high pheromone con-

centration, and this autocatalytic behavior continues to reinforce the long branch,

even if a shorter one appears. Pheromone evaporation, which could favor explora-

tion of new paths, is too slow: the lifetime of the pheromone is comparable to the

duration of a trial (Goss et al., 1989), which means that the pheromone evaporates

too slowly to allow the ant colony to ‘‘forget’’ the suboptimal path to which they

converged so that the new and shorter one can be discovered and ‘‘learned.’’

1.1.2 A Stochastic Model

Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) proposed a

simple stochastic model that adequately describes the dynamics of the ant colony as

observed in the double bridge experiment. In this model, c ants per second cross the

bridge in each direction at a constant speed of v cm/s, depositing one unit of phero-

mone on the branch. Given the lengths ls and ll (in cm) of the short and of the long

branch, an ant choosing the short branch will traverse it in ts ¼ ls=v seconds, while

an ant choosing the long branch will use r � ts seconds, where r ¼ ll=ls.

The probability piaðtÞ that an ant arriving at decision point i A f1; 2g (see figure

1.1b) selects branch a A fs; lg, where s and l denote the short and long branch re-

spectively, at instant t is set to be a function of the total amount of pheromone jiaðtÞ

Nest Food

30 min

Nest Food

(a)

0

50

100

0-20 20-40 40-60 60-80 80-100

% of traffic on the short branch

(b)

%
 o

f e
xp

er
im

en
ts

Figure 1.3
In this experiment initially only the long branch was o¤ered to the colony. After 30 minutes, when a stable
pheromone trail has formed on the only available branch, a new shorter branch is added. (a) The initial
experimental setup and the new situation after 30 minutes, when the short branch was added. (b) In the
great majority of the experiments, once the short branch is added the ants continue to use the long branch.

1.1 Ants’ Foraging Behavior and Optimization 5

on the branch, which is proportional to the number of ants that used the branch until

time t. For example, the probability pisðtÞ of choosing the short branch is given by

pisðtÞ ¼
ðts þ jisðtÞÞ

a

ðts þ jisðtÞÞ
a þ ðts þ jilðtÞÞ

a ; ð1:1Þ

where the functional form of equation (1.1), as well as the value a ¼ 2, was derived

from experiments on trail-following (Deneubourg et al., 1990); pilðtÞ is computed

similarly, with pisðtÞ þ pilðtÞ ¼ 1.

This model assumes that the amount of pheromone on a branch is proportional to

the number of ants that used the branch in the past. In other words, no pheromone

evaporation is considered by the model (this is in accordance with the experimental

observation that the time necessary for the ants to converge to the shortest path has

the same order of magnitude as the mean lifetime of the pheromone (Goss et al.,

1989; Beckers, Deneubourg, & Goss, 1993)). The di¤erential equations that describe

the evolution of the stochastic system are

djis=dt ¼ cpjsðt� tsÞ þ cpisðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:2Þ

djil=dt ¼ cpjlðt� r � tsÞ þ cpilðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:3Þ

Equation (1.2) can be read as follows: the instantaneous variation, at time t, of

pheromone on branch s and at decision point i is given by the ants’ flow c, assumed

constant, multiplied by the probability of choosing the short branch at decision point

j at time t� ts plus the ants’ flow multiplied by the probability of choosing the short

branch at decision point i at time t. The constant ts represents a time delay, that is,

the time necessary for the ants to traverse the short branch. Equation (1.3) expresses

the same for the long branch, except that in this case the time delay is given by r � ts.
The dynamic system defined by these equations was simulated using the Monte

Carlo method (Liu, 2001). In figure 1.4, we show the results of two experiments

consisting of 1000 simulations each and in which the branch length ratio was set to

r ¼ 1 and to r ¼ 2. It can be observed that when the two branches have the same

length (r ¼ 1) the ants converge toward the use of one or the other of the branches

with equal probability over the 1000 simulations. Conversely, when one branch is

twice as long as the other (r ¼ 2), then in the great majority of experiments most of

the ants choose the short branch (Goss et al., 1989).

In this model the ants deposit pheromone both on their forward and their back-

ward paths. It turns out that this is a necessary behavior to obtain convergence of the

ant colony toward the shortest branch. In fact, if we consider a model in which ants

deposit pheromone only during the forward or only during the backward trip, then

6 Chapter 1 From Real to Artificial Ants

the result is that the ant colony is unable to choose the shortest branch. The obser-

vation of real ant colonies has confirmed that ants that deposit pheromone only

when returning to the nest are unable to find the shortest path between their nest and

the food source (Deneubourg, 2002).

1.2 Toward Artificial Ants

The double bridge experiments show clearly that ant colonies have a built-in opti-

mization capability: by the use of probabilistic rules based on local information they

can find the shortest path between two points in their environment. Interestingly, by

taking inspiration from the double bridge experiments, it is possible to design artifi-

cial ants that, by moving on a graph modeling the double bridge, find the shortest

path between the two nodes corresponding to the nest and to the food source.

As a first step toward the definition of artificial ants, consider the graph of figure

1.5a, which is a model of the experimental setup shown in figure 1.1b. The graph

consists of two nodes (1 and 2, representing the nest and the food respectively) that

are connected by a short and a long arc (in the example the long arc is r times longer

than the short arc, where r is an integer number). Additionally, we assume the time

to be discrete ðt ¼ 1; 2; . . .Þ and that at each time step each ant moves toward a

neighbor node at constant speed of one unit of length per time unit. By doing so, ants

add one unit of pheromone to the arcs they use. Ants move on the graph by choosing

the path probabilistically: pisðtÞ is the probability for an ant located in node i at time

t to choose the short path, and pilðtÞ the probability to choose the long path. These

probabilities are a function of the pheromone trails jia that ants in node i ði A f1; 2gÞ

0

50

100

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

(a) (b)

% of traffic on the short branch % of traffic on one of the branches

%
 o

f e
xp

er
im

en
ts

%
 o

f e
xp

er
im

en
ts

0

50

100

Figure 1.4
Results of 1000 Monte Carlo simulations of the model given by equations (1.1), (1.2), and (1.3), with
c ¼ 0:5 ant per second. Ants were counted between the 501st and 1000th ant crossing the bridge. (a) The
ratio between the long and the short branch was set to r ¼ 1. (b) The ratio between the long and the short
branch was set to r ¼ 2. Modified from Goss et al. (1989).

1.2 Toward Artificial Ants 7

encounter on the branch a, ða A fs; lgÞ:

pisðtÞ ¼
½jisðtÞ�

a

½jisðtÞ�
a þ ½jilðtÞ�

a ; pilðtÞ ¼
½jilðtÞ�

a

½jisðtÞ�
a þ ½jilðtÞ�

a : ð1:4Þ

Trail update on the two branches is performed as follows:

jisðtÞ ¼ jisðt� 1Þ þ pisðt� 1Þmiðt� 1Þ þ pjsðt� 1Þmjðt� 1Þ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:5Þ

jilðtÞ ¼ jilðt� 1Þ þ pilðt� 1Þmiðt� 1Þ þ pjlðt� rÞmjðt� rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:6Þ

where miðtÞ, the number of ants on node i at time t, is given by

miðtÞ ¼ pjsðt� 1Þmjðt� 1Þ þ pjlðt� rÞmjðt� rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:7Þ

This model di¤ers from the one presented in section 1.1.2 in two important

aspects:

9 It considers the average behavior of the system, and not the stochastic behavior of

the single ants.

9 It is a discrete time model, whereas the previous one was a continuous time model;

accordingly, it uses di¤erence instead of di¤erential equations.

1

2

1

2

3

(a) (b)

Figure 1.5
The graphs are two equivalent models of the experimental setup shown in figure 1.1b. In both cases, ants
move from the nest to the food and back either via a short or via a long branch. (a) In this model the long
branch is r times longer than the shorter one. An ant entering the long branch updates the pheromone on it
r time units later. (b) In this model, each arc of the graph has the same length, and a longer branch is
represented by a sequence of arcs. Here, for example, the long branch is twice as long as the short branch.
Pheromone updates are done with one time unit delay on each arc.

8 Chapter 1 From Real to Artificial Ants

Another way of modeling the experimental apparatus of figure 1.1b with a graph

is shown in figure 1.5b. In this model each arc of the graph has the same length, and

a longer branch is represented by a sequence of arcs. In the figure, for example, the

long branch is twice as long as the short branch. Pheromone updates are done with

one time unit delay on each arc. The two models are equivalent from a computa-

tional point of view, yet the second model permits an easier algorithmic implemen-

tation when considering graphs with many nodes.

Simulations run with this discrete time model give results very similar to those

obtained with the continuous time model of equations (1.1) to (1.3). For example, by

setting the number of ants to twenty, the branch length ratio to r ¼ 2, and the pa-

rameter a to 2, the system converges rather rapidly toward the use of the short

branch (see figure 1.6).

1.3 Artificial Ants and Minimum Cost Paths

In the previous section we have shown that a set of di¤erence equations can repro-

duce rather accurately the mean behavior of the continuous model of Deneubourg

et al. Yet, our goal is to define algorithms that can be used to solve minimum cost

problems on more complicated graphs than those representing the double bridge ex-

periment (see, e.g., the graph in figure 1.7).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

C
ho

ic
e

pr
ob

ab
ili

tie
s p(1,2)

p(1,3)
p(2,3)

Figure 1.6
Result of the simulation of the model described by equations (1.4) through (1.7). The figure shows the
probability of choosing the three branches of the graph in figure 1.5b. After a short transitory period the
probabilities of choosing the long branch (ðpð1; 3Þ1 p1l and (pð2; 3Þ1 p2l) become vanishingly small (in
the graph they are superimposed after a few iterations from the start), while the probability of choosing
the short branch (pð1; 2Þ1 p1s 1 p2s) tends to 1. Note that probabilities are symmetric: pði; jÞ ¼ pð j; iÞ.
Parameter settings: a ¼ 2, r ¼ 2, t ¼ 100.

1.3 Artificial Ants and Minimum Cost Paths 9

With this goal in mind, let us consider a static, connected graph G ¼ ðN;AÞ, where
N is the set of n ¼ jNj nodes and A is the set of undirected arcs connecting them. The

two points between which we want to establish a minimum cost path are called

source and destination nodes, as typically done in the literature on minimum cost

path problems (when the cost of arcs is given by their length, the minimum cost

path problem is the same as the shortest-path problem); sometimes, in analogy to

the shortest-path–finding behavior of real ants, we will also call them nest and food

source.

Unfortunately, if we try to solve the minimum cost path problem on the graph G

using artificial ants whose behavior is a straightforward extension of the behavior of

the ants described in the previous section, the following problem arises: the ants,

while building a solution, may generate loops. As a consequence of the forward

pheromone trail updating mechanism, loops tend to become more and more attrac-

tive and ants can get trapped in them. But even if an ant can escape such loops, the

overall pheromone trail distribution becomes such that short paths are no longer

favored and the mechanism that in the simpler double bridge situation made the ant

choose the shortest path with higher probability does not work anymore. Because

this problem is due to forward pheromone trail updating, it might seem that the

simplest solution to this problem would be the removal of the forward updating

mechanism: in this way ants would rely only on backward updating. Still, this is not

a solution: as was said before (see section 1.1.2, but see also exercise 1.1 at the end of

this chapter), if the forward update is removed the system does not work anymore,

not even in the simple case of the double bridge experiment.

We therefore need to extend the capabilities of the artificial ants in a way that,

while retaining the most important characteristics of real ants, allows them to solve

minimum cost path problems on generic graphs. In particular, artificial ants are

Source

Destination

Figure 1.7
Ants build solutions, that is, paths from a source to a destination node.

10 Chapter 1 From Real to Artificial Ants

given a limited form of memory in which they can store the partial paths they have

followed so far, as well as the cost of the links they have traversed. Via the use of

memory, the ants can implement a number of useful behaviors that allow them to

e‰ciently build solutions to the minimum cost path problem. These behaviors are (1)

probabilistic solution construction biased by pheromone trails, without forward

pheromone updating; (2) deterministic backward path with loop elimination and

with pheromone updating; and (3) evaluation of the quality of the solutions gen-

erated and use of the solution quality in determining the quantity of pheromone to

deposit (note that while in the simple case of minimum cost path search an estimate

of the solution quality can be made by the ant also during the solution construction,

this is not necessarily true in other problems, in which there may not exist an easy

way to evaluate partial solutions).

Additionally, we show that by taking into account pheromone evaporation,

which was not necessary to explain real ants’ behavior, performance can be greatly

improved.

In the following we briefly explain how the above-mentioned ants’ behavior, as

well as pheromone evaporation, is implemented in an algorithm that we call Simple-

ACO (S-ACO for short). It should be noted that, although it represents a significant

step toward the definition of an e‰cient algorithm for the solution of minimum cost

problems on graphs, S-ACO should be taken for what it is: a didactic tool to explain

the basic mechanisms underlying ACO algorithms.

Probabilistic forward ants and solution construction. S-ACO ants can be thought of

as having two working modes: forward and backward. They are in forward mode

when they are moving from the nest toward the food, and they are in backward

mode when they are moving from the food back to their nest. Once an ant in forward

mode reaches its destination, it switches to backward mode and starts its travel back

to the source. In S-ACO, forward ants build a solution by choosing probabilistically

the next node to move to among those in the neighborhood of the graph node on

which they are located. (Given a graph G ¼ ðN;AÞ, two nodes i; j A N are neighbors

if there exists an arc ði; jÞ A A.) The probabilistic choice is biased by pheromone trails

previously deposited on the graph by other ants. Forward ants do not deposit any

pheromone while moving. This, together with deterministic backward moves, helps

in avoiding the formation of loops.

Deterministic backward ants and pheromone update. The use of an explicit memory

allows an ant to retrace the path it has followed while searching the destination

node. Moreover, S-ACO ants improve the system performance by implementing

loop elimination. In practice, before starting to move backward on the path they

1.3 Artificial Ants and Minimum Cost Paths 11

memorized while searching the destination node (i.e., the forward path), S-ACO ants

eliminate any loops from it. While moving backward, S-ACO ants leave pheromone

on the arcs they traverse.

Pheromone updates based on solution quality. In S-ACO the ants memorize the

nodes they visited during the forward path, as well as the cost of the arcs traversed if

the graph is weighted. They can therefore evaluate the cost of the solutions they

generate and use this evaluation to modulate the amount of pheromone they deposit

while in backward mode. Making pheromone update a function of the generated

solution quality can help in directing future ants more strongly toward better solu-

tions. In fact, by letting ants deposit a higher amount of pheromone on short paths,

the ants’ path searching is more quickly biased toward the best solutions. Interest-

ingly, the dependence of the amount of pheromone trail deposit on the solution

quality is also present in some ant species: Beckers et al. (1993) found that in the ant

species Lasius niger the ants returning from rich food sources tend to drop more

pheromone than those returning from poorer food sources.

Pheromone evaporation. In real ant colonies, pheromone intensity decreases over

time because of evaporation. In S-ACO evaporation is simulated by applying an ap-

propriately defined pheromone evaporation rule. For example, artificial pheromone

decay can be set to a constant rate. Pheromone evaporation reduces the influence of

the pheromones deposited in the early stages of the search, when artificial ants can

build poor-quality solutions. Although in the experiments run by Deneubourg and

colleagues (Deneubourg et al., 1990; Goss et al., 1989) pheromone evaporation did

not play any noticeable role, it can be very useful for artificial ant colonies, as we will

show in the following sections.

1.3.1 S-ACO

We now present the details of the S-ACO algorithm which adapts the real ants’ be-

havior to the solution of minimum cost path problems on graphs. To each arc ði; jÞ
of the graph G ¼ ðN;AÞ we associate a variable tij called artificial pheromone trail,

shortened to pheromone trail in the following. Pheromone trails are read and written

by the ants. The amount (intensity) of a pheromone trail is proportional to the util-

ity, as estimated by the ants, of using that arc to build good solutions.

Ants’ Path-Searching Behavior

Each ant builds, starting from the source node, a solution to the problem by applying

a step-by-step decision policy. At each node, local information stored on the node

itself or on its outgoing arcs is read (sensed) by the ant and used in a stochastic way

to decide which node to move to next. At the beginning of the search process, a

12 Chapter 1 From Real to Artificial Ants

constant amount of pheromone (e.g., tij ¼ 1, Eði; jÞ A A) is assigned to all the arcs.

When located at a node i an ant k uses the pheromone trails tij to compute the

probability of choosing j as next node:

pk
ij ¼

taijP
l AN k

i
tail

; if j A N k
i ;

0; if j B N k
i ;

8><
>: ð1:8Þ

where N k
i is the neighborhood of ant k when in node i. In S-ACO the neighbor-

hood of a node i contains all the nodes directly connected to node i in the graph

G ¼ ðN;AÞ, except for the predecessor of node i (i.e., the last node the ant visited

before moving to i). In this way the ants avoid returning to the same node they

visited immediately before node i. Only in case N k
i is empty, which corresponds to

a dead end in the graph, node i’s predecessor is included into N k
i . Note that this

decision policy can easily lead to loops in the generated paths (recall the graph of

figure 1.7).

An ant repeatedly hops from node to node using this decision policy until it even-

tually reaches the destination node. Due to di¤erences among the ants’ paths, the

time step at which ants reach the destination node may di¤er from ant to ant (ants

traveling on shorter paths will reach their destinations faster).

Path Retracing and Pheromone Update

When reaching the destination node, the ant switches from the forward mode to the

backward mode and then retraces step by step the same path backward to the source

node. An additional feature is that, before starting the return trip, an ant eliminates

the loops it has built while searching for its destination node. The problem of loops is

that they may receive pheromone several times when an ant retraces its path back-

ward to deposit pheromone trail, leading to the problem of self-reinforcing loops.

Loop elimination can be done by iteratively scanning the node identifiers position by

position starting from the source node: for the node at the i-th position, the path is

scanned starting from the destination node until the first occurrence of the node is

encountered, say, at position j (it always holds that ia j because the scanning pro-

cess stops at position i at the latest). If we have j > i, the subpath from position i þ 1

to position j corresponds to a loop and can be eliminated. The scanning process is

visualized in figure 1.8. The example also shows that our loop elimination procedure

does not necessarily eliminate the largest loop. In the example, the loop 3 -4 -5 -3 of

length 3 is eliminated. Yet, the longest loop in this example, the loop 5 -3 -2 -8 -5 of

length 4, is not eliminated because it is no longer present after eliminating the first

loop. In general, if the path contains nested loops, the final loop-free path will

1.3 Artificial Ants and Minimum Cost Paths 13

depend on the sequence in which the loops are eliminated. In S-ACO, loop elimina-

tion is implemented so that loops are eliminated in the same order as they are created.

During its return travel to the source the k-th ant deposits an amount Dtk of

pheromone on arcs it has visited. In particular, if ant k is in the backward mode and

it traverses the arc ði; jÞ, it changes the pheromone value tij as follows:

tij tij þ Dtk: ð1:9Þ

By this rule an ant using the arc connecting node i to node j increases the proba-

bility that forthcoming ants will use the same arc in the future.

An important aspect is the choice of Dtk. In the simplest case, this can be the same

constant value for all the ants. In this case, only the di¤erential path length works in

favor of the detection of short paths: ants which have detected a shorter path can

deposit pheromone earlier than ants traveling on a longer path. In addition to the

deterministic backward pheromone trail update, the ants may also deposit an

amount of pheromone trail which is a function of the path length—the shorter the

path the more pheromone is deposited by an ant. Generally, we require the amount

of pheromone deposited by an ant to be a nonincreasing function of the path length.

Pheromone Trail Evaporation

Pheromone trail evaporation can be seen as an exploration mechanism that avoids

quick convergence of all the ants toward a suboptimal path. In fact, the decrease in

 0 - 1 - 3 - 4 - 5 - 3 - 2 - 8 - 5 - 6 - 9

First node to scan

Source Destination

Scanning direction

.

.

 0 - 1 - 3 - 4 - 5 - 3 - 2 - 8 - 5 - 6 - 9

Scanning for node 3

Source Destination

First occurrence of node
3 when scanning from
destination node

Eliminated loop

 0 - 1 - 3 - 2 - 8 - 5 - 6 - 9

Final loop free path

Figure 1.8
Illustration of the scanning process for loop elimination.

14 Chapter 1 From Real to Artificial Ants

pheromone intensity favors the exploration of di¤erent paths during the whole search

process. In real ant colonies, pheromone trails also evaporate, but, as we have seen,

evaporation does not play an important role in real ants’ shortest-path finding. The

fact that, on the contrary, pheromone evaporation seems to be important in artificial

ants is probably due to the fact that the optimization problems tackled by artificial

ants are much more complex than those real ants can solve. A mechanism like

evaporation that, by favoring the forgetting of errors or of poor choices done in the

past, allows a continuous improvement of the ‘‘learned’’ problem structure seems

therefore to be necessary for artificial ants. Additionally, artificial pheromone evap-

oration also plays the important function of bounding the maximum value achiev-

able by pheromone trails.

Evaporation decreases the pheromone trails with exponential speed. In S-ACO,

the pheromone evaporation is interleaved with the pheromone deposit of the ants.

After each ant k has moved to a next node according to the ants’ search behavior

described earlier, pheromone trails are evaporated by applying the following equa-

tion to all the arcs:

tij ð1� rÞtij ; Eði; jÞ A A; ð1:10Þ

where r A ð0; 1� is a parameter. After pheromone evaporation has been applied to

all arcs, the amount of pheromone Dtk is added to the arcs. We call an iteration

of S-ACO a complete cycle involving ants’ movement, pheromone evaporation, and

pheromone deposit.

1.3.2 Experiments with S-ACO

We have run experiments to evaluate the importance of some aspects of S-ACO:

evaporation, number of ants, and type of pheromone update (function of the solution

quality or not).

In the experiments presented in the following the behavior of S-ACO is judged

with respect to convergence toward the minimum cost (shortest) path, in a way sim-

ilar to what was done for the outcome of the simulation experiments of Deneubourg

et al. and for the experiments with the discrete model introduced in section 1.2. In-

formally, by convergence we mean that, as the algorithm runs for an increasing

number of iterations, the ants’ probability of following the arcs of a particular path

increases—in the limit to a point where the probability of selecting the arcs of this

path becomes arbitrarily close to 1 while for all the others, it becomes arbitrarily

close to 0.

The experiments have been run using two simple graphs: the double bridge of

figure 1.5b and the more complex graph called extended double bridge given in figure

1.3 Artificial Ants and Minimum Cost Paths 15

1.9. This second graph is designed in such a way that converging to the minimum

cost path is not a trivial task for S-ACO. The di‰culty of the graph is given by the

fact that, in order to find the minimum cost path, an ant has to make a number of

‘‘correct’’ choices and if some of these choices are wrong, the ant generates sub-

optimal paths. To understand why, consider the graph of figure 1.9: ants exiting the

source node have to choose between the loop-free, but worse than optimal, upper

path of the graph, and the set of paths in the lower part of the same graph that con-

tains two optimal paths of length 5, as well as many longer loop-free paths and infi-

nitely many, much longer ‘‘loopy’’ paths. There is a trade-o¤ between converging

toward the use of an ‘‘easy’’ but suboptimal path, and searching for the optimal path

in a region of the search space where suboptimal paths can easily be generated. In

other words, to obtain convergence to the optimal solutions the ants need to choose

the lower part of the graph, but then the greater number of decisions to be taken

makes converging to the minimum cost path a di‰cult task.

Note that the choice of judging the algorithm using convergence as defined above

instead of using more standard performance indices, such as the time or the number

of iterations necessary to find the optimal solution, is consistent with our goals, that

is, studying and understanding the relationship between design choices and the algo-

Source

Destination

Figure 1.9
Extended double bridge. An ant starting in the source node can choose between the upper and the lower
parts of the graph. The upper part consists of a single path of length 8 leading directly to the destination
node. Di¤erently, the lower part of the graph consists of a set of paths (which includes many paths shorter
than eight steps) and the ant has many decisions to do before reaching the destination node. Therefore,
ants choosing the upper part will always find a path of length 8, while ants choosing the lower part may
find paths shorter than 8, but they may also enter loops and generate very long paths.

16 Chapter 1 From Real to Artificial Ants

rithm’s behavior. In fact, such a study requires working on simple graphs like those

discussed above so that simulation times remain reasonably short and the behavior

of ants can be easily observed. But in simple graphs the shortest path is always found

very quickly because of the large number of ants compared to the relatively small

search space. Therefore, a performance index based on the time (or number of iter-

ations) necessary to find the optimal solution would not be very meaningful. In fact,

convergence as defined above, by requiring that all the ants do use the same path, is a

more reasonable index for our purposes.

On the contrary, as we will see in the forthcoming chapters, when attacking more

complex problems like NP-hard optimization problems or routing in dynamic net-

works, the way experimental results are judged is di¤erent. In NP-hard optimization

problems the main goal is to find quickly very high-quality solutions and therefore

we are interested mainly in the solution quality of the best solution(s) found by the

ACO algorithm. In dynamic networks routing the algorithm has to be able to react

rapidly to changing conditions and to maintain exploration capabilities so that it can

e¤ectively evaluate alternative paths which, due to the dynamics of the problem, may

become more desirable; in both cases we will need a di¤erent definition of algorithm

convergence.

Number of Ants and Types of Pheromone Update: Experiments with the Double Bridge

We ran a first set of experiments in which we studied the influence that the number of

ants used and the way the amount of pheromone to be deposited is determined by

ants have on the behavior of S-ACO. The experiments were run using the double

bridge (see figure 1.5b). The choice of the double bridge was due to the desire of

comparing the results obtained with S-ACO to those obtained with the model of real

ants’ behavior described in section 1.2. Note that a major di¤erence between that

model and S-ACO is that equations (1.4) through (1.7) describe the average behavior

of the system, whereas in S-ACO a fixed number of ants move autonomously on the

graph. Intuitively, an increasing number of ants in S-ACO should approximate better

and better the average behavior given by equations (1.4) through (1.7).

In the following we report the results of two experiments:

1. Run S-ACO with di¤erent values for the number m of ants and with ants depos-

iting a constant amount of pheromone on the visited arcs [i.e., Dtk ¼ constant in

equation (1.9)].

2. Same as in 1. above, except that the ants deposit an amount of pheromone which

is inversely proportional to the length of the path they have found (i.e., Dtk ¼ 1=Lk,

where Lk is the length of ant k’s path).

1.3 Artificial Ants and Minimum Cost Paths 17

For each experiment we ran 100 trials and each trial was stopped after each ant

had moved 1000 steps. Evaporation [see equation (1.10)] was set to r ¼ 0, and the

parameter a [see equation (1.8)] was set to 2, as in equation (1.1) of Deneubourg

et al. approximating real ants’ behavior. At the end of the trial we checked whether

the pheromone trail was higher on the short or on the long path. In table 1.1, which

gives the results of the two experiments, we report the percentage of trials in which

the pheromone trail was higher on the long path. We found that, for the given pa-

rameter settings, S-ACO showed convergence behavior after 1000 ant steps so that

the reported percentage is significant for understanding the algorithm behavior.

Let us focus first on the results of experiment 1. For a small number of ants (up

to 32), S-ACO converged relatively often to the longer path. This is certainly due to

fluctuations in the path choice in the initial iterations of the algorithm which can lead

to a strong reinforcement of the long path. Yet, with an increasing number of ants,

the number of times we observed this behavior decreased drastically, and for a large

number of ants (here 512) we never observed convergence to the long path in any of

the 100 trials. The experiments also indicate that, as could be expected, S-ACO per-

forms poorly when only one ant is used: the number of ants has to be significantly

larger than one to obtain convergence to the short path.

The results obtained in experiment 2 with pheromone updates based on solution

quality are much better. As can be observed in table 1.1, S-ACO converged to the

long path far less frequently than when pheromone updates were independent of the

solution quality. With only one ant, S-ACO converged to the long path in only 18

out of 100 trials, which is significantly less than in experiment 1, and with eight ants

or more it always converged to the short path.

In additional experiments, we examined the influence of the parameter a of equa-

tion (1.8) on the convergence behavior of S-ACO, in particular investigating the

cases where a was changed in step sizes of 0.25 from 1 to 2. Again, the behavior was

dependent on whether pheromone updates based on solution quality were used or

Table 1.1
Percentage of trials in which S-ACO converged to the long path (100 independent trials for varying values
of m, with a ¼ 2 and r ¼ 0)

m 1 2 4 8 16 32 64 128 256 512

without path length 50 42 26 29 24 18 3 2 1 0

with path length 18 14 8 0 0 0 0 0 0 0

Column headings give the number m of ants in the colony. The first row shows results obtained performing
pheromone updates without considering path length; the second row reports results obtained performing
pheromone updates proportional to path length.

18 Chapter 1 From Real to Artificial Ants

not. In the first case we found that increasing a had a negative e¤ect on the con-

vergence behavior, while in the second case the results were rather independent of

the particular value of a. In general, we found that, for a fixed number of ants, the

algorithm tended to converge to the shortest path more often when a was close to 1.

This is intuitively clear because large values of a tend to amplify the influence of

initial random fluctuations. If, by chance, the long path is initially selected by the

majority of ants, then the search of the whole colony is quickly biased toward it. This

happens to a lower extent when the value of a is close to 1.

These results show that, as in the case of real ants, in S-ACO both autocatalysis

and di¤erential path length are at work to favor the emergence of short paths. While

the results with S-ACO indicate that di¤erential path length alone can be enough to

let S-ACO converge to the optimal solution on small graphs, they also show that

relying on this e¤ect as the main driving force of the algorithm comes at the price of

having to use large colony sizes, which results in long simulation times. In addition,

the e¤ectiveness of the di¤erential path length e¤ect strongly decreases with increas-

ing problem complexity. This is what is shown by the experiments reported in the

next subsection.

Pheromone Evaporation: Experiments with the Extended Double Bridge

In a second set of experiments, we studied the influence that pheromone trail evapo-

ration has on the convergence behavior of S-ACO. Experiments were run using the

extended double bridge graph (see figure 1.9).

In these experiments the ants deposit an amount of pheromone that is the inverse

of their path length (i.e., Dtk ¼ 1=Lk); also, before depositing it, they eliminate loops

using the procedure described in figure 1.8.

To evaluate the behavior of the algorithm we observe the development of the path

lengths found by the ants. In particular, we plot the moving averages of the path

lengths after loop elimination (moving averages are calculated using the 4 �m most

recent paths found by the ants, where m is the number of ants). In other words, in the

graph of figure 1.10 a point is plotted each time an ant has completed a journey from

the source to the destination and back (the number of journeys is on the x-axis), and

the corresponding value on the y-axis is given by the length of the above-mentioned

moving average after loop elimination.

We ran experiments with S-ACO and di¤erent settings for the evaporation rate

r A f0; 0:01; 0:1g (a ¼ 1 and m ¼ 128 in all experiments). If r ¼ 0, no pheromone

evaporation takes place. Note that an evaporation rate of r ¼ 0:1 is rather large,

because evaporation takes place at each iteration of the S-ACO algorithm: after ten

iterations, which corresponds to the smallest number of steps that an ant needs to

1.3 Artificial Ants and Minimum Cost Paths 19

build the shortest path and to come back to the source, roughly 65% of the pher-

omone on each arc evaporates, while with r ¼ 0:01 this evaporation is reduced to

around 10%.

Figure 1.10 gives the observed moving averages. Although the graphs only show

results of a single run of the algorithm, they are representative of the typical algo-

rithm behavior. If no evaporation is used, the algorithm does not converge, which

can be seen by the fact that the moving average has approximately the value 7.5,

which does not correspond to the length of any path (with these parameter settings,

this result typically does not change if the run lasts a much higher number of itera-

tions). With pheromone evaporation, the behavior of S-ACO is significantly di¤er-

ent. After a short transitory phase, S-ACO converges to a single path: either the

shortest one (the moving average takes the value 5 for r ¼ 0:01) or the path of length

6 for r ¼ 0:1. A closer examination of the results revealed that in both cases at con-

vergence all the ants had built loop-free paths of the indicated length.

In further experiments with S-ACO on this graph we made the following general

observations:

9 Without pheromone updates based on solution quality, S-ACO performance is

much worse. In particular, the algorithm converges very often to the suboptimal so-

4.5

5

5.5

6

6.5

7

7.5

8

8.5

100 1000 10000 100000

M
ov

in
g

av
er

ag
e

of
 th

e
pa

th
 le

ng
th

Number of shortest paths found

ρ = 0
ρ = 0.01

ρ = 0.1

Figure 1.10
The graph plots the moving averages (given on the y-axis) of the ants’ path length for the graph of figure
1.9 as a function of the number of completed paths (given on the x-axis). We give plots for not using
evaporation (r ¼ 0), low evaporation (r ¼ 0:01), and high evaporation (r ¼ 0:1). The trials were stopped
after 5000 iterations; a ¼ 1 and m ¼ 128.

20 Chapter 1 From Real to Artificial Ants

lution of length 8; the larger the parameters a or r, the faster S-ACO converges to

this suboptimal solution.

9 The pheromone evaporation rate r can be critical. In particular, we observed that

S-ACO often converged to suboptimal paths when evaporation was set to a value

that was too high. For example, in fifteen trials with r set to 0:2, S-ACO converged

once to a path of length 8, once to a path of length 7, and twice to a path of length 6.

Setting r to 0.01 S-ACO converged to the shortest path in all trials.

9 Large values of a generally result in a worse behavior of S-ACO because they ex-

cessively emphasize the initial random fluctuations.

Discussion

We have seen that in real ant colonies the emergence of high-level patterns like

shortest paths is only possible through the interaction of a large number of individ-

uals. It is interesting that experimental results show that the same is true to a large

extent for S-ACO: the use of a colony of ants is important to exploit the di¤erential

path length e¤ect and to increase the robustness of the algorithm and reduce its de-

pendence on parameter settings. As we have seen, a colony size larger than one is

necessary to solve even simple problems like the double bridge.

In general, we noticed that as problems become more complex, the parameter set-

tings of S-ACO become increasingly important to obtain convergence to the optimal

solution. In particular, the experimental results presented above support the follow-

ing conclusions: (1) the di¤erential path length e¤ect, although important, is not

enough to allow the e¤ective solution of large optimization problems; (2) pheromone

updates based on solution quality are important for fast convergence; (3) large values

for parameter a lead to a strong emphasis of initial, random fluctuations and to bad

algorithm behavior; (4) the larger the number of ants, the better the convergence be-

havior of the algorithm, although this comes at the cost of longer simulation times;

and (5) pheromone evaporation is important when trying to solve more complex

problems. These observations will be of importance in the following chapters, where

design decisions will be made both to define the ACO metaheuristic and to apply it

to a multitude of di¤erent discrete optimization problems.

1.4 Bibliographical Remarks

The term stigmergy was introduced by Grassé to describe a form of indirect com-

munication mediated by modifications of the environment that he observed in the

workers caste of two species of termites, Bellicositermes natalensis and Cubitermes sp.

1.4 Bibliographical Remarks 21

The original definition of stigmergy (see Grassé, 1959, p. 79), was: ‘‘Stimulation of

workers by the performance they have achieved.’’

Termite nest building is the typical example of stigmergy, and is also the original

example used by Grassé to introduce the concept. Termite workers build their nest

using soil pellets, which they impregnate with a di¤using chemical substance called

pheromone. They start nest construction (Grassé, 1959) by randomly depositing pel-

lets on the ground. The deposits of soil pellets stimulate workers to accumulate more

material on top of them through a positive feedback mechanism, since the accumu-

lation of material reinforces the attraction of deposits by means of the di¤using

pheromone emitted by the pellets (Bruinsma, 1979). This process works only if the

density of the termites is above a given threshold. In fact, if the density is too low,

pheromones are not added quickly enough and the positive feedback mechanism is

inhibited by pheromone evaporation.

Although Grassé introduced the term stigmergy to explain the behavior of termite

societies, the same term has later been used to indicate indirect communication

mediated by modifications of the environment that can be observed also in other so-

cial insects. As we have seen, the foraging behavior of ant colonies described in this

chapter is an example of stigmergy: ants stimulate other ants by modifying the envi-

ronment via pheromone trail updating. A brief history of the notion of stigmergy can

be found in Theraulaz & Bonabeau (1999).

1.5 Things to Remember

9 Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) have

shown in controlled experimental conditions that foraging ants can find the shortest

path between their nest and a food source by marking the path they follow with a

chemical called pheromone.

9 The foraging behavior of ant colonies can be replicated in simulation and inspires a

class of ant algorithms known as ‘‘ant colony optimization’’ (ACO). ACO, the sub-

ject of this book, is currently one of the most successful examples of ant algorithms.

9 In experiments with foraging ants, it was shown that the pheromone evaporation

rate is so slow compared to the time necessary for the ant colony to converge to the

short path that, for modeling purposes, it can be neglected. When considering artifi-

cial ants things are di¤erent. Experimental results show that on very simple graphs,

like the ones modeling the double bridge or the extended double bridge setups,

pheromone evaporation is also not necessary. On the contrary, it improves the algo-

rithm’s performance in finding good solutions to the minimum cost path problem on

more complex graphs.

22 Chapter 1 From Real to Artificial Ants

9 Biologists have found that stigmergy is a useful concept to help explain the self-

organizing capabilities of social insects (Theraulaz & Bonabeau, 1999; Dorigo,

Bonabeau, & Theraulaz, 2000a).

1.6 Thought and Computer Exercises

Exercise 1.1 Prove by hand calculation that artificial ants using only forward (or

only backward) pheromone update do not converge toward the common use of the

minimum cost path in the double bridge experiment.

Exercise 1.2 Prove by hand calculation that, if artificial ants are given the capabil-

ity (through the use of memory) to retrace their path to the destination node (recall

section 1.3), then they are able to find the minimum cost path in the double bridge

experiment even when they use only backward pheromone update.

Exercise 1.3 Implement a computer program that simulates the artificial ants in the

double bridge experiment. You can do this in two ways: either by numerically solv-

ing equations (1.4) through (1.7), in this way obtaining the expected behavior of the

system, or by running simulations. Is there any di¤erence in the results? What hap-

pens if you only use a few ants in the simulation?

Exercise 1.4 Using the program above, study what happens when you change the

a and r parameters. In particular, if you set a ¼ 1, does the probability of choosing

the short branch still converge to 1? And how do the convergence properties of the

algorithm change when increasing the branch length ratio r?

Exercise 1.5 An alternative model of the double bridge experiment to the one pre-

sented in section 1.2 [equations (1.4)–(1.7)] is the following. Let the amount of pher-

omone on a branch be proportional to the number of ants that used the branch in the

past and let msðtÞ and mlðtÞ be the numbers of ants that have used the short and the

long branches after a total of t ants have crossed the bridge, with msðtÞ þmlðtÞ ¼ t.

The probability psðtÞ with which the ðtþ 1Þ-th ant chooses the short branch can then

be written as

psðtÞ ¼
msðtÞa

msðtÞa þmlðtÞa
¼ 1� plðtÞ: ð1:11Þ

The number of ants choosing the short branch is given by

msðtþ 1Þ ¼ msðtÞ þ 1; if qa psðtÞ;
msðtÞ; otherwise;

�
ð1:12Þ

1.6 Thought and Computer Exercises 23

and the number of ants choosing the long branch by

mlðtþ 1Þ ¼ mlðtÞ þ 1; if q > plðtÞ;
mlðtÞ; otherwise;

�
ð1:13Þ

where q is a uniform random number drawn from the interval ½0; 1�.
Run Monte Carlo simulations of the dynamic system defined by the above equa-

tions and compare the results with those obtained in the first and second computer

exercise.

Exercise 1.6 The ants’ path-marking and foraging behavior can also be studied in

unconstrained settings. Consider the following experimental setup: a squared envi-

ronment contains three food sources and one nest. Ants leave the nest to search for

food and, once food has been found, they go back to the nest depositing a pher-

omone trail on the ground. When they are looking for food, ants move stochastically

using a probabilistic rule biased by pheromones they sense in the environment (see

also Resnick, 1994). Implement a program which simulates the system described

above and study how the ants’ performance changes for di¤erent implementation

choices. For example, you can study di¤erent forms of the probabilistic rules used by

the ants, di¤erent ways of depositing pheromone on the ground (only while searching

for food, only when going back to the nest, in both cases), di¤erent pheromone

evaporation rates, and so on. (Hint: You may want to use Mitchel Resnick’s Star-

Logo programming language, available at education.mit.edu/starlogo/).

Exercise 1.7 Develop an outline for the implementation of S-ACO (section 1.3.1).

Consider the following issues:

9 How do you build a structure which represents the individual ants?

9 How do you represent the graph, the pheromone trails, and the heuristic informa-

tion?

9 How do you implement the solution construction policy?

9 How do you implement loop elimination?

9 How do you implement pheromone update?

Once you have implemented the algorithm, run it on a number of graphs. What are

your experiences with the algorithm? How do you judge the quality and the conver-

gence of the algorithm? Would you use this algorithm for attacking large minimum

cost path problems? (Consider that there exist algorithms, such as the one proposed

by Dijkstra [1959], that solve the minimum cost (shortest) path problem in Oðn2Þ).

24 Chapter 1 From Real to Artificial Ants

2 The Ant Colony Optimization Metaheuristic

A metaheuristic refers to a master strategy that guides and modifies other heuristics to produce

solutions beyond those that are normally generated in a quest for local optimality.

—Tabu Search, Fred Glover and Manuel Laguna, 1998

Combinatorial optimization problems are intriguing because they are often easy to

state but very di‰cult to solve. Many of the problems arising in applications are

NP-hard, that is, it is strongly believed that they cannot be solved to optimality

within polynomially bounded computation time. Hence, to practically solve large

instances one often has to use approximate methods which return near-optimal solu-

tions in a relatively short time. Algorithms of this type are loosely called heuristics.

They often use some problem-specific knowledge to either build or improve solutions.

Recently, many researchers have focused their attention on a new class of algo-

rithms, called metaheuristics. A metaheuristic is a set of algorithmic concepts that

can be used to define heuristic methods applicable to a wide set of di¤erent problems.

The use of metaheuristics has significantly increased the ability of finding very high-

quality solutions to hard, practically relevant combinatorial optimization problems

in a reasonable time.

A particularly successful metaheuristic is inspired by the behavior of real ants.

Starting with Ant System, a number of algorithmic approaches based on the very

same ideas were developed and applied with considerable success to a variety of

combinatorial optimization problems from academic as well as from real-world

applications. In this chapter we introduce ant colony optimization, a metaheuristic

framework which covers the algorithmic approach mentioned above. The ACO

metaheuristic has been proposed as a common framework for the existing applica-

tions and algorithmic variants of a variety of ant algorithms. Algorithms that fit

into the ACO metaheuristic framework will be called in the following ACO

algorithms.

2.1 Combinatorial Optimization

Combinatorial optimization problems involve finding values for discrete variables

such that the optimal solution with respect to a given objective function is found.

Many optimization problems of practical and theoretical importance are of combi-

natorial nature. Examples are the shortest-path problems described in the previous

chapter, as well as many other important real-world problems like finding a mini-

mum cost plan to deliver goods to customers, an optimal assignment of employees

to tasks to be performed, a best routing scheme for data packets in the Internet, an

optimal sequence of jobs which are to be processed in a production line, an alloca-

tion of flight crews to airplanes, and many more.

A combinatorial optimization problem is either a maximization or a minimization

problem which has associated a set of problem instances. The term problem refers to

the general question to be answered, usually having several parameters or variables

with unspecified values. The term instance refers to a problem with specified values

for all the parameters. For example, the traveling salesman problem (TSP), defined

in section 2.3.1, is the general problem of finding a minimum cost Hamiltonian cir-

cuit in a weighted graph, while a particular TSP instance has a specified number of

nodes and specified arc weights.

More formally, an instance of a combinatorial optimization problem P is a triple

ðS; f ;WÞ, where S is the set of candidate solutions, f is the objective function which

assigns an objective function value f ðsÞ to each candidate solution s A S, and W is a

set of constraints. The solutions belonging to the set ~SSJS of candidate solutions

that satisfy the constraints W are called feasible solutions. The goal is to find a glob-

ally optimal feasible solution s�. For minimization problems this consists in finding a

solution s� A ~SS with minimum cost, that is, a solution such that f ðs�Þa f ðsÞ for all
s A ~SS; for maximization problems one searches for a solution with maximum objec-

tive value, that is, a solution with f ðs�Þb f ðsÞ for all s A ~SS. Note that in the follow-

ing we focus on minimization problems and that the obvious adaptations have to be

made if one considers maximization problems.

It should be noted that an instance of a combinatorial optimization problem is

typically not specified explicitly by enumerating all the candidate solutions (i.e., the

set S) and the corresponding cost values, but is rather represented in a more concise

mathematical form (e.g., shortest-path problems are typically defined by a weighted

graph).

2.1.1 Computational Complexity

A straightforward approach to the solution of combinatorial optimization problems

would be exhaustive search, that is, the enumeration of all possible solutions and the

choice of the best one. Unfortunately, in most cases, such a naive approach becomes

rapidly infeasible because the number of possible solutions grows exponentially with

the instance size n, where the instance size can be given, for example, by the num-

ber of binary digits necessary to encode the instance. For some combinatorial opti-

mization problems, deep insight into the problem structure and the exploitation of

problem-specific characteristics allow the definition of algorithms that find an opti-

mal solution much quicker than exhaustive search does. In other cases, even the best

algorithms of this kind cannot do much better than exhaustive search.

26 Chapter 2 The Ant Colony Optimization Metaheuristic

When attacking a combinatorial optimization problem it is useful to know how

di‰cult it is to find an optimal solution. A way of measuring this di‰culty is given

by the notion of worst-case complexity. Worst-case complexity can be explained as

follows (see also box 2.1): a combinatorial optimization problem P is said to have

worst-case complexity OðgðnÞÞ if the best algorithm known for solving P finds an

optimal solution to any instance of P having size n in a computation time bounded

from above by const � gðnÞ.
In particular, we say that P is solvable in polynomial time if the maximum

amount of computing time necessary to solve any instance of size n of P is bounded

from above by a polynomial in n. If k is the largest exponent of such a polynomial,

then the combinatorial optimization problem is said to be solvable in OðnkÞ time.

Although some important combinatorial optimization problems have been shown

to be solvable in polynomial time, for the great majority of combinatorial problems

no polynomial bound on the worst-case solution time could be found so far. For

these problems the run time of the best algorithms known increases exponentially

with the instance size and, consequently, so does the time required to find an optimal

solution. A notorious example of such a problem is the TSP.

An important theory that characterizes the di‰culty of combinatorial problems is

that of NP-completeness. This theory classifies combinatorial problems in two main

classes: those that are known to be solvable in polynomial time, and those that are

not. The first are said to be tractable, the latter intractable.

Combinatorial optimization problems as defined above correspond to what are

usually called search problems. Each combinatorial optimization problem P has an

Box 2.1
Worst-Case Time Complexity and Intractability

The time complexity function of an algorithm for a given problem P indicates, for each possible
input size n, the maximum time the algorithm needs to find a solution to an instance of that size.
This is often called worst-case time complexity.

The worst-case time complexity of an algorithm is often formalized using the Oð�Þ notation. Let
gðnÞ and hðnÞ be functions from the positive integers to the positive reals. A function gðnÞ is said to
be OðhðnÞÞ if two positive constants const and n0 exist such that gðnÞa const � hðnÞ for all nb n0. In
other words, the Oð�Þ notation gives asymptotic upper bounds on the worst-case time complexity of
an algorithm.

An algorithm is said to be a polynomial time algorithm if its time complexity function is OðgðnÞÞ
for some polynomial function gð�Þ. If an algorithm has a time complexity function that cannot be
bounded by a polynomial, it is called an exponential time algorithm. Note that this includes also
functions such as n log n, which are sometimes referred to as subexponential; in any case, sub-
exponential functions grow faster than any polynomial. A problem is said to be intractable if there
is no polynomial time algorithm capable of solving it.

2.1 Combinatorial Optimization 27

associated decision problem defined as follows: given P, that is, the triple ðS; f ;WÞ,
and a parameter %, does a feasible solution s A ~SS exist such that f ðsÞa %, in case P

was a minimization problem? It is clear that solving the search version of a combi-

natorial problem implies being able to give the solution of the corresponding decision

problem, while the opposite is not true in general. This means that P is at least as

hard to solve as the decision version of P and proving that the decision version is

intractable implies intractability of the original search problem.

The theory of NP-completeness distinguishes between two classes of problems of

particular interest: the class P for which an algorithm outputs in polynomial time the

correct answer (‘‘yes’’ or ‘‘no’’), and the class NP for which an algorithm exists that

verifies for every instance, independently of the way it was generated, in polynomial

time whether the answer ‘‘yes’’ is correct. (Note that formally, the complexity classes

P and NP are defined via idealized models of computation: in the theory of NP-
completeness, typically Turing machines are used. For details, see Garey & Johnson

(1979).) It is clear that PJNP, while nothing can be said on the question whether

P ¼ NP or not. Still, an answer to this question would be very useful because prov-

ing P ¼ NP implies proving that all problems in NP can be solved in polynomial

time.

On this subject, a particularly important role is played by polynomial time reduc-

tions. Intuitively, a polynomial time reduction is a procedure that transforms a prob-

lem into another one by a polynomial time algorithm. The interesting point is that if

problem PA can be solved in polynomial time and problem PB can be transformed

into PA via a polynomial time reduction, then also the solution to PB can be found

in polynomial time. We say that a problem is NP-hard, if every other problem in

NP can be transformed to it by a polynomial time reduction. Therefore, an NP-
hard problem is at least as hard as any of the other problems in NP. However,

NP-hard problems do not necessarily belong to NP. An NP-hard problem that is

in NP is said to be NP-complete. Therefore, the NP-complete problems are the

hardest problems in NP: if a polynomial time algorithm could be found for an NP-
complete problem, then all problems in the NP-complete class (and consequently all

the problems in NP) could be solved in polynomial time. Because after many years

of research e¤orts no such algorithm has been found, most scientists tend to accept

the conjecture P0NP. Still, the ‘‘P ¼ NP ?’’ question remains one of the most im-

portant open questions in theoretical computer science.

Until today, a large number of problems have been proved to be NP-complete,

including the above-mentioned TSP; see Garey & Johnson (1979) for a long list of

such problems.

28 Chapter 2 The Ant Colony Optimization Metaheuristic

2.1.2 Solution Methods for NP-Hard Problems

Two classes of algorithms are available for the solution of combinatorial optimiza-

tion problems: exact and approximate algorithms.

Exact algorithms are guaranteed to find the optimal solution and to prove its opti-

mality for every finite size instance of a combinatorial optimization problem within

an instance-dependent run time. In the case of NP-hard problems, exact algorithms

need, in the worst case, exponential time to find the optimum. Although for some

specific problems exact algorithms have been improved significantly in recent years,

obtaining at times impressive results (Applegate, Bixby, Chvátal, & Cook, 1995,

1998), for most NP-hard problems the performance of exact algorithms is not satis-

factory. So, for example, for the quadratic assignment problem (QAP) (to be dis-

cussed in chapter 5), an important problem that arises in real-world applications and

whose goal is to find the optimal assignment of n items to n locations, most instances

of dimension around 30 are currently the limit of what can be solved with state-

of-the-art exact algorithms (Anstreicher, Brixius, Goux, & Linderoth, 2002; Hahn,

Hightower, Johnson, Guignard-Spielberg, & Roucairol, 2001; Hahn & Krarup,

2001). For example, at the time of writing, the largest, nontrivial QAP instance from

QAPLIB, a benchmark library for the QAP, solved to optimality has 36 locations

(Brixius & Anstreicher, 2001; Nyström, 1999). Despite the small size of the instance,

the computation time required to solve it is extremely high. For example, the solu-

tion of instance ste36a from a backboard wiring application (Steinberg, 1961) took

approximately 180 hours of CPU time on a 800 MHz Pentium III PC. This is to be

compared to the currently best-performing ACO algorithms (see section 5.2.1, for

how to apply ACO to the QAP), which typically require an average time of about

10 seconds to find the optimal solution for this instance on a comparable machine.

In addition to the exponential worst-case complexity, the application of exact algo-

rithms to NP-hard problems in practice also su¤ers from a strong rise in compu-

tation time when the problem size increases, and often their use quickly becomes

infeasible.

If optimal solutions cannot be e‰ciently obtained in practice, the only possibility

is to trade optimality for e‰ciency. In other words, the guarantee of finding optimal

solutions can be sacrificed for the sake of getting very good solutions in polynomial

time. Approximate algorithms, often also loosely called heuristic methods or simply

heuristics, seek to obtain good, that is, near-optimal solutions at relatively low com-

putational cost without being able to guarantee the optimality of solutions. Based on

the underlying techniques that approximate algorithm use, they can be classified as

being either constructive or local search methods (approximate methods may also be

2.1 Combinatorial Optimization 29

Box 2.2
Constructive Algorithms

Constructive algorithms build a solution to a combinatorial optimization problem in an incremen-
tal way. Step by step and without backtracking, they add solution components until a complete
solution is generated. Although the order in which to add components can be random, typically
some kind of heuristic rule is employed. Often, greedy construction heuristics are used which at
each construction step add a solution component with maximum myopic benefit as estimated by a
heuristic function. An algorithmic outline of a greedy construction heuristic is given below.

procedure GreedyConstructionHeuristic

sp ChooseFirstComponent

while (sp is not a complete solution) do
c GreedyComponent(sp)
sp sp n c

end-while
s sp
return s

end-procedure

Here, the function ChooseFirstComponent chooses the first solution component (this is done at ran-
dom or according to a greedy choice depending on the particular construction heuristic) and
GreedyComponent returns a solution component c with best heuristic estimate. The addition of
component c to a partial solution sp is denoted by the operator n. The procedure returns a com-
plete solution s.

An example of a constructive algorithm for the TSP is the nearest-neighbor procedure, which
treats the cities as components. The procedure works by randomly choosing an initial city and by
iteratively adding the closest among the remaining cities to the solution under construction (ties are
broken randomly).

In the example tour below the nearest-neighbor procedure starts from city a and sequentially
adds cities b, c, d, e, and f .

c

b

a d

e

f

30 Chapter 2 The Ant Colony Optimization Metaheuristic

obtained by stopping exact methods before completion (Bellman, Esogbue, & Nabe-

shima, 1982; Jünger, Reinelt, & Thienel, 1994), for example, after some given time

bound; yet, here, this type of approximate algorithm will not be discussed further).

Usually, if for an approximate algorithm it can be proved that it returns solutions

that are worse than the optimal solution by at most some fixed value or factor, such

an algorithm is also called an approximation algorithm (Hochbaum, 1997; Hrom-

kovic, 2003; Vazirani, 2001).

Constructive algorithms (see box 2.2) generate solutions from scratch by iteratively

adding solution components to an initially empty solution until the solution is com-

plete. For example, in the TSP a solution is built by adding city after city in an in-

cremental way. Although constructive algorithms are typically the fastest among the

approximate methods, the quality of the solutions they generate is most of the time

inferior to the quality of the solutions found by local search algorithms.

Local search starts from some initial solution and repeatedly tries to improve the

current solution by local changes. The first step in applying local search is the defi-

nition of a neighborhood structure (see box 2.3) over the set of candidate solutions. In

Box 2.3
Local Search

Local search is a general approach for finding high-quality solutions to hard combinatorial opti-
mization problems in reasonable time. It is based on the iterative exploration of neighborhoods of
solutions trying to improve the current solution by local changes. The types of local changes that
may be applied to a solution are defined by a neighborhood structure.

Definition 2.1 A neighborhood structure is a function N : S 7! 2S that assigns a set of neighbors
NðsÞJS to every s A S. NðsÞ is also called the neighborhood of s.

The choice of an appropriate neighborhood structure is crucial for the performance of a local
search algorithm and is problem-specific. The neighborhood structure defines the set of solutions
that can be reached from s in one single step of a local search algorithm. Typically, a neighborhood
structure is defined implicitly by defining the possible local changes that may be applied to a solu-
tion, and not by explicitly enumerating the set of all possible neighbors.

The solution found by a local search algorithm may only be guaranteed to be optimal with re-
spect to local changes and, in general, will not be a globally optimal solution.

Definition 2.2 A local optimum for a minimization problem (a local minimum) is a solution s such
that Es 0 A NðsÞ : f ðsÞa f ðs 0Þ. Similarly, a local optimum for a maximization problem (a local
maximum) is a solution s such that Es 0 A NðsÞ : f ðsÞb f ðs 0Þ.

A local search algorithm also requires the definition of a neighborhood examination scheme that
determines how the neighborhood is searched and which neighbor solutions are accepted. While the
neighborhood can be searched in many di¤erent ways, in the great majority of cases the acceptance
rule is either the best-improvement rule, which chooses the neighbor solution giving the largest im-
provement of the objective function, or the first-improvement rule, which accepts the first improved
solution found.

2.1 Combinatorial Optimization 31

practice, the neighborhood structure defines for each current solution the set of pos-

sible solutions to which the local search algorithms can move. One common way of

defining neighborhoods is via k-exchange moves that exchange a set of k components

of a solution with a di¤erent set of k components (see box 2.4).

In its most basic version, often called iterative improvement, or sometimes hill-

climbing or gradient-descent for maximization and minimization problems, respec-

tively, the local search algorithm searches for an improved solution within the

neighborhood of the current solution. If an improving solution is found, it replaces

the current solution and the local search is continued. These steps are repeated until

no improving solution is found in the neighborhood and the algorithm terminates in

a local optimum. A disadvantage of iterative improvement is that the algorithm may

stop at very poor-quality local optima.

2.1.3 What Is a Metaheuristic?

A disadvantage of single-run algorithms like constructive methods or iterative im-

provement is that they either generate only a very limited number of di¤erent

solutions, which is the case for greedy construction heuristics, or they stop at poor-

quality local optima, which is the case for iterative improvement methods. Unfortu-

Box 2.4
k–Exchange Neighborhoods

An important class of neighborhood structures for combinatorial optimization problems is that of
k–exchange neighborhoods.

Definition 2.3 The k–exchange neighborhood of a candidate solution s is the set of candidate solu-
tions s 0 that can be obtained from s by exchanging k solution components.

Example 2.1: The 2–exchange and k–exchange neighborhoods in the TSP Given a candidate solu-
tion s, the TSP 2–exchange neighborhood of a candidate solution s consists of the set of all the
candidate solutions s 0 that can be obtained from s by exchanging two pairs of arcs in all the possible
ways. The figure below gives an example of one specific 2–exchange: the pair of arcs ðb; cÞ and
ða; f Þ is removed and replaced by the pair ða; cÞ and ðb; f Þ.

c

b

a

e

f

c

b

a d

e

f

d

The k–exchange neighborhood is the obvious generalization in which a set of k arcs is replaced by a
di¤erent set of k arcs.

32 Chapter 2 The Ant Colony Optimization Metaheuristic

nately, the obvious extension of local search, that is, to restart the algorithm several

times from new starting solutions, does not produce significant improvements in

practice (Johnson & McGeoch, 1997; Schreiber & Martin, 1999). Several general

approaches, which are nowadays often called metaheuristics, have been proposed

which try to bypass these problems.

A metaheuristic is a set of algorithmic concepts that can be used to define heuristic

methods applicable to a wide set of di¤erent problems. In other words, a meta-

heuristic can be seen as a general-purpose heuristic method designed to guide an

underlying problem-specific heuristic (e.g., a local search algorithm or a construc-

tion heuristic) toward promising regions of the search space containing high-quality

solutions. A metaheuristic is therefore a general algorithmic framework which can be

applied to di¤erent optimization problems with relatively few modifications to make

them adapted to a specific problem.

Examples of metaheuristics include simulated annealing (Cerný, 1985; Kirk-

patrick, Gelatt, & Vecchi, 1983), tabu search (Glover, 1989, 1990; Glover & Laguna,

1997), iterated local search (Lourenço, Martin, & Stützle, 2002), evolutionary com-

putation (Fogel, Owens, & Walsh, 1966; Holland, 1975; Rechenberg, 1973; Schwefel,

1981; Goldberg, 1989), and ant colony optimization (Dorigo & Di Caro, 1999b;

Dorigo, Di Caro, & Gambardella, 1999; Dorigo, Maniezzo, & Colorni, 1996; Dorigo

& Stützle, 2002) (see Glover & Kochenberger [2002] for a comprehensive overview).

The use of metaheuristics has significantly increased the ability of finding very

high-quality solutions to hard, practically relevant combinatorial optimization prob-

lems in a reasonable time. This is particularly true for large and poorly understood

problems. A detailed description of the ant colony optimization metaheuristic is given

in the next section; the other metaheuristics mentioned above are briefly described in

section 2.4.

2.2 The ACO Metaheuristic

Ant colony optimization is a metaheuristic in which a colony of artificial ants coop-

erate in finding good solutions to di‰cult discrete optimization problems. Coopera-

tion is a key design component of ACO algorithms: The choice is to allocate the

computational resources to a set of relatively simple agents (artificial ants) that com-

municate indirectly by stigmergy, that is, by indirect communication mediated by the

environment (see chapter 1, section 1.4). Good solutions are an emergent property of

the agents’ cooperative interaction.

ACO algorithms can be used to solve both static and dynamic combinatorial

optimization problems. Static problems are those in which the characteristics of the

2.2 The ACO Metaheuristic 33

problem are given once and for all when the problem is defined, and do not change

while the problem is being solved. A paradigmatic example of such problems is the

TSP (Johnson & McGeoch, 1997; Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1985;

Reinelt, 1994), in which city locations and their relative distances are part of the

problem definition and do not change at run time. On the contrary, dynamic prob-

lems are defined as a function of some quantities whose value is set by the dynamics

of an underlying system. The problem instance changes therefore at run time and the

optimization algorithm must be capable of adapting online to the changing environ-

ment. An example of this situation, which we discuss at length in chapter 6, are net-

work routing problems in which the data tra‰c and the network topology can vary

in time.

In this section we give a formal characterization of the class of problems to which

the ACO metaheuristic can be applied, of the behavior governing the artificial ants,

and of the general structure of the ACO metaheuristic.

2.2.1 Problem Representation

An artificial ant in ACO is a stochastic constructive procedure that incrementally

builds a solution by adding opportunely defined solution components to a partial

solution under construction. Therefore, the ACO metaheuristic can be applied to

any combinatorial optimization problem for which a constructive heuristic can be

defined.

Although this means that the ACO metaheuristic can be applied to any interesting

combinatorial optimization problems, the real issue is how to map the considered

problem to a representation that can be used by the artificial ants to build solutions.

In the following we give a formal characterization of the representation that the

artificial ants use and of the policy they implement.

Let us consider the minimization problem ðS; f ;WÞ, where S is the set of candidate

solutions, f is the objective function which assigns an objective function (cost) value

f ðs; tÞ to each candidate solution s A S, and WðtÞ is a set of constraints. The pa-

rameter t indicates that the objective function and the constraints can be time-

dependent, as is the case, for example, in applications to dynamic problems (e.g., in

telecommunication network routing problems the cost of links is proportional to

tra‰c, which is time-dependent; and constraints on the reachable nodes can also

change with time: think of a network node that suddenly becomes unreachable).

The goal is to find a globally optimal feasible solution s�, that is, a minimum cost

feasible solution to the minimization problem.

The combinatorial optimization problem ðS; f ;WÞ is mapped on a problem that

can be characterized by the following list of items:

34 Chapter 2 The Ant Colony Optimization Metaheuristic

9 A finite set C ¼ fc1; c2; . . . ; cNC
g of components is given, where NC is the number of

components.

9 The states of the problem are defined in terms of sequences x ¼ hci; cj; . . . ; ch; . . .i
of finite length over the elements of C. The set of all possible states is denoted by X .
The length of a sequence x, that is, the number of components in the sequence, is

expressed by jxj. The maximum length of a sequence is bounded by a positive con-

stant n < þy.

9 The set of (candidate) solutions S is a subset of X (i.e., SJX).
9 A set of feasible states ~XX , with ~XXJX , defined via a problem-dependent test that

verifies that it is not impossible to complete a sequence x A ~XX into a solution satisfy-

ing the constraints W. Note that by this definition, the feasibility of a state x A ~XX
should be interpreted in a weak sense. In fact, it does not guarantee that a completion

s of x exists such that s A ~XX .
9 A non-empty set S� of optimal solutions, with S�J ~XX and S�JS.
9 A cost gðs; tÞ is associated with each candidate solution s A S. In most cases

gðs; tÞ1 f ðs; tÞ, Es A ~SS, where ~SSJS is the set of feasible candidate solutions, ob-

tained from S via the constraints WðtÞ.
9 In some cases a cost, or the estimate of a cost, Jðx; tÞ can be associated with states

other than candidate solutions. If xj can be obtained by adding solution components

to a state xi, then Jðxi; tÞa Jðxj; tÞ. Note that Jðs; tÞ1 gðs; tÞ.

Given this formulation, artificial ants build solutions by performing randomized

walks on the completely connected graph GC ¼ ðC;LÞ whose nodes are the com-

ponents C, and the set L fully connects the components C. The graph GC is called

construction graph and elements of L are called connections.

The problem constraints WðtÞ are implemented in the policy followed by the arti-

ficial ants, as explained in the next section. The choice of implementing the con-

straints in the construction policy of the artificial ants allows a certain degree of

flexibility. In fact, depending on the combinatorial optimization problem considered,

it may be more reasonable to implement the constraints in a hard way, allowing the

ants to build only feasible solutions, or in a soft way, in which case the ants can build

infeasible solutions (i.e., candidate solutions in Sn ~SS) that can be penalized as a func-

tion of their degree of infeasibility.

2.2.2 Ants’ Behavior

As we said, in ACO algorithms artificial ants are stochastic constructive procedures

that build solutions by moving on the construction graph GC ¼ ðC;LÞ, where the set

2.2 The ACO Metaheuristic 35

L fully connects the components C. The problem constraints WðtÞ are built into the

ants’ constructive heuristic. In most applications, ants construct feasible solutions.

However, sometimes it may be necessary or beneficial to also let them construct

infeasible solutions. Components ci A C and connections lij A L can have associated

a pheromone trail t (ti if associated with components, tij if associated with con-

nections), and a heuristic value h (hi and hij , respectively). The pheromone trail en-

codes a long-term memory about the entire ant search process, and is updated by the

ants themselves. Di¤erently, the heuristic value, often called heuristic information,

represents a priori information about the problem instance or run-time information

provided by a source di¤erent from the ants. In many cases h is the cost, or an esti-

mate of the cost, of adding the component or connection to the solution under con-

struction. These values are used by the ants’ heuristic rule to make probabilistic

decisions on how to move on the graph.

More precisely, each ant k of the colony has the following properties:

9 It exploits the construction graph GC ¼ ðC;LÞ to search for optimal solutions

s� A S�.
9 It has a memoryMk that it can use to store information about the path it followed

so far. Memory can be used to (1) build feasible solutions (i.e., implement constraints

W); (2) compute the heuristic values h; (3) evaluate the solution found; and (4) retrace

the path backward.

9 It has a start state xk
s and one or more termination conditions ek. Usually, the start

state is expressed either as an empty sequence or as a unit length sequence, that is, a

single component sequence.

9 When in state xr ¼ hxr�1; ii, if no termination condition is satisfied, it moves to a

node j in its neighborhood N kðxrÞ, that is, to a state hxr; ji A X . If at least one of the
termination conditions ek is satisfied, then the ant stops. When an ant builds a can-

didate solution, moves to infeasible states are forbidden in most applications, either

through the use of the ant’s memory, or via appropriately defined heuristic values h.

9 It selects a move by applying a probabilistic decision rule. The probabilistic deci-

sion rule is a function of (1) the locally available pheromone trails and heuristic

values (i.e., pheromone trails and heuristic values associated with components and

connections in the neighborhood of the ant’s current location on graph GC); (2) the

ant’s private memory storing its current state; and (3) the problem constraints.

9 When adding a component cj to the current state, it can update the pheromone

trail t associated with it or with the corresponding connection.

9 Once it has built a solution, it can retrace the same path backward and update the

pheromone trails of the used components.

36 Chapter 2 The Ant Colony Optimization Metaheuristic

It is important to note that ants act concurrently and independently and that

although each ant is complex enough to find a (probably poor) solution to the prob-

lem under consideration, good-quality solutions can only emerge as the result of the

collective interaction among the ants. This is obtained via indirect communication

mediated by the information ants read or write in the variables storing pheromone

trail values. In a way, this is a distributed learning process in which the single agents,

the ants, are not adaptive themselves but, on the contrary, adaptively modify the way

the problem is represented and perceived by other ants.

2.2.3 The Metaheuristic

Informally, an ACO algorithm can be imagined as the interplay of three procedures:

ConstructAntsSolutions, UpdatePheromones, and DaemonActions.

ConstructAntsSolutions manages a colony of ants that concurrently and asynchro-

nously visit adjacent states of the considered problem by moving through neighbor

nodes of the problem’s construction graph GC . They move by applying a stochastic

local decision policy that makes use of pheromone trails and heuristic information.

In this way, ants incrementally build solutions to the optimization problem. Once

an ant has built a solution, or while the solution is being built, the ant evaluates the

(partial) solution that will be used by the UpdatePheromones procedure to decide how

much pheromone to deposit.

UpdatePheromones is the process by which the pheromone trails are modified. The

trails value can either increase, as ants deposit pheromone on the components or

connections they use, or decrease, due to pheromone evaporation (see also section

1.3 of chapter 1). From a practical point of view, the deposit of new pheromone

increases the probability that those components/connections that were either used by

many ants or that were used by at least one ant and which produced a very good

solution will be used again by future ants. Di¤erently, pheromone evaporation imple-

ments a useful form of forgetting: it avoids a too rapid convergence of the algorithm

toward a suboptimal region, therefore favoring the exploration of new areas of the

search space.

Finally, the DaemonActions procedure is used to implement centralized actions

which cannot be performed by single ants. Examples of daemon actions are the acti-

vation of a local optimization procedure, or the collection of global information that

can be used to decide whether it is useful or not to deposit additional pheromone to

bias the search process from a nonlocal perspective. As a practical example, the

daemon can observe the path found by each ant in the colony and select one or a few

ants (e.g., those that built the best solutions in the algorithm iteration) which are then

allowed to deposit additional pheromone on the components/connections they used.

2.2 The ACO Metaheuristic 37

In figure 2.1, the ACO metaheuristic is described in pseudo-code. The main proce-

dure of the ACO metaheuristic manages the scheduling of the three above-discussed

components of ACO algorithms via the ScheduleActivities construct: (1)

management of the ants’ activity, (2) pheromone updating, and (3) daemon actions.

The ScheduleActivities construct does not specify how these three activities

are scheduled and synchronized. In other words, it does not say whether they should

be executed in a completely parallel and independent way, or if some kind of syn-

chronization among them is necessary. The designer is therefore free to specify the

way these three procedures should interact, taking into account the characteristics of

the considered problem.

Nowadays numerous successful implementations of the ACO metaheuristic are

available and they have been applied to many di¤erent combinatorial optimization

problems. These applications are summarized in table 2.1 and they are discussed in

the forthcoming chapters of this book.

2.3 How Do I Apply ACO?

Probably, the best way of illustrating how the ACO metaheuristic operates is by de-

scribing how it has been applied to combinatorial optimization problems. This is

done with a full and detailed description of most of the current applications of ACO

in chapter 5. Here we limit ourselves to a brief description of the main points to

consider when applying ACO algorithms to a few examples of problems representa-

tive of important classes of optimization problems.

First, we illustrate the application to permutation problems in their unconstrained

and constrained forms: the TSP and the sequential ordering problem. Then we con-

sider generalized assignment as an example of assignment problems, and multiple

procedure ACOMetaheuristic

ScheduleActivities

ConstructAntsSolutions

UpdatePheromones

DaemonActions % optional

end-ScheduleActivities

end-procedure

Figure 2.1
The ACO metaheuristic in pseudo-code. The procedure DaemonActions is optional and refers to centralized
actions executed by a daemon possessing global knowledge.

38 Chapter 2 The Ant Colony Optimization Metaheuristic

Table 2.1
Current applications of ACO algorithms listed according to problem types and chronologically

Problem type Problem name Main references

Routing Traveling salesman Dorigo, Maniezzo, & Colorni (1991a,b, 1996)

Dorigo (1992)

Gambardella & Dorigo (1995)

Dorigo & Gambardella (1997a,b)

Stützle & Hoos (1997, 2000)

Bullnheimer, Hartl, & Strauss (1999c)

Cordón, de Viana, Herrera, & Morena (2000)

Vehicle routing Bullnheimer, Hartl, & Strauss (1999a,b)

Gambardella, Taillard, & Agazzi (1999)

Reimann, Stummer, & Doerner (2002)

Sequential ordering Gambardella & Dorigo (1997, 2000)

Assignment Quadratic assignment Maniezzo, Colorni, & Dorigo (1994)

Stützle (1997b)

Maniezzo & Colorni (1999)

Maniezzo (1999)

Stützle & Hoos (2000)

Graph coloring Costa & Hertz (1997)

Generalized assignment Lourenço & Serra (1998, 2002)

Frequency assignment Maniezzo & Carbonaro (2000)

University course
timetabling

Socha, Knowles, & Sampels (2002)

Socha, Sampels, & Manfrin (2003)

Scheduling Job shop Colorni, Dorigo, Maniezzo, & Trubian (1994)

Open shop Pfahringer (1996)

Flow shop Stützle (1998a)

Total tardiness Bauer, Bullnheimer, Hartl, & Strauss (2000)

Total weighted tardiness den Besten, Stützle, & Dorigo (2000)

Merkle & Middendorf (2000, 2003a)

Gagné, Price, & Gravel (2002)

Project scheduling Merkle, Middendorf, & Schmeck (2000a, 2002)

Group shop Blum (2002a, 2003a)

Subset Multiple knapsack Leguizamón & Michalewicz (1999)

Max independent set Leguizamón & Michalewicz (2000)

Redundancy allocation Liang & Smith (1999)

Set covering Leguizamón & Michalewicz (2000)

Hadji, Rahoual, Talbi, & Bachelet (2000)

Weight constrained graph
tree partition

Cordone & Ma‰oli (2001)

Arc-weighted l-cardinality
tree

Blum & Blesa (2003)

Maximum clique Fenet & Solnon (2003)

2.3 How Do I Apply ACO? 39

knapsack as an example of subset problems. Finally, applications to two dynamic

problems, network routing and dynamic TSP, are briefly discussed.

2.3.1 The Traveling Salesman Problem

Intuitively, the traveling salesman problem is the problem faced by a salesman who,

starting from his home town, wants to find a shortest possible trip through a given

set of customer cities, visiting each city once before finally returning home. The TSP

can be represented by a complete weighted graph G ¼ ðN;AÞ with N being the set

of n ¼ jNj nodes (cities), A being the set of arcs fully connecting the nodes. Each arc

ði; jÞ A A is assigned a weight dij which represents the distance between cities i and

j. The TSP is the problem of finding a minimum length Hamiltonian circuit of the

graph, where a Hamiltonian circuit is a closed walk (a tour) visiting each node of

G exactly once. We may distinguish between symmetric TSPs, where the distances

between the cities are independent of the direction of traversing the arcs, that is,

dij ¼ dji for every pair of nodes, and the asymmetric TSP (ATSP), where at least for

one pair of nodes i; j we have dij 0 dji.

Table 2.1
(continued)

Problem type Problem name Main references

Other Shortest common
supersequence

Michel & Middendorf (1998, 1999)

Constraint satisfaction Solnon (2000, 2002)

2D-HP protein folding Shmygelska, Aguirre-Hernández, & Hoos (2002)

Bin packing Levine & Ducatelle (2003)

Machine learning Classification rules Parpinelli, Lopes, & Freitas (2002b)

Bayesian networks de Campos, Gámez, & Puerta (2002b)

Fuzzy systems Casillas, Cordón, & Herrera (2000)

Network routing Connection-oriented
network routing

Schoonderwoerd, Holland, Bruten, &
Rothkrantz (1996)

Schoonderwoerd, Holland, & Bruten (1997)

White, Pagurek, & Oppacher (1998)

Di Caro & Dorigo (1998d)

Bonabeau, Henavy, Guérin, Snyers, Kuntz, &
Theraulaz (1998)

Connectionless network
routing

Di Caro & Dorigo (1997, 1998c,f)

Subramanian, Druschel, & Chen (1997)

Heusse, Snyers, Guérin, & Kuntz (1998)

van der Put (1998)

Optical network routing Navarro Varela, & Sinclair (1999)

40 Chapter 2 The Ant Colony Optimization Metaheuristic

A solution to an instance of the TSP can be represented as a permutation of the

city indices; this permutation is cyclic, that is, the absolute position of a city in a tour

is not important at all but only the relative order is important (in other words, there

are n permutations that map to the same solution).

Construction graph. The construction graph is identical to the problem graph: the

set of components C corresponds to the set of nodes (i.e., C ¼ N), the connections

correspond to the set of arcs (i.e., L ¼ A), and each connection has a weight which

corresponds to the distance dij between nodes i and j. The states of the problem are

the set of all possible partial tours.

Constraints. The only constraint in the TSP is that all cities have to be visited and

that each city is visited at most once. This constraint is enforced if an ant at each

construction step chooses the next city only among those it has not visited yet (i.e.,

the feasible neighborhood N k
i of an ant k in city i, where k is the ant’s identifier,

comprises all cities that are still unvisited).

Pheromone trails and heuristic information. The pheromone trails tij in the TSP

refer to the desirability of visiting city j directly after i. The heuristic information hij
is typically inversely proportional to the distance between cities i and j, a straight-

forward choice being hij ¼ 1=dij . In fact, this is also the heuristic information used in

most ACO algorithms for the TSP.

Solution construction. Each ant is initially put on a randomly chosen start city and

at each step iteratively adds one still unvisited city to its partial tour. The solution

construction terminates once all cities have been visited.

General comments. The TSP is a paradigmatic NP-hard combinatorial optimiza-

tion problem which has attracted a very significant amount of research (Johnson &

McGeoch, 1997; Lawler et al., 1985; Reinelt, 1994). The TSP has played a central

role in ACO, because it was the application problem chosen when proposing the first

ACO algorithm called Ant System (Dorigo, 1992; Dorigo, Maniezzo, & Colorni,

1991b, 1996) and it was used as a test problem for almost all ACO algorithms pro-

posed later. Chapter 3 gives a detailed presentation of the ACO algorithms available

for the TSP.

2.3.2 The Sequential Ordering Problem

The sequential ordering problem (SOP) consists in finding a minimum weight Ham-

iltonian path on a directed graph with weights on the arcs and the nodes, subject to

precedence constraints between nodes. It is easy to remove weights from nodes and

to add them to the arcs, obtaining a kind of asymmetric traveling salesman problem

2.3 How Do I Apply ACO? 41

in which, once all the nodes have been visited, the path is not closed (i.e., it does not

become a tour as in the ATSP).

Construction graph. Similar to the TSP, the set of components C contains all the

nodes. Solutions are permutations of the elements of C, and costs (lengths) are asso-

ciated with connections between nodes.

Constraints. The only significant di¤erence between the applications of ACO to the

SOP and to the TSP is the set of constraints: while building solutions, ants choose

components only among those that have not yet been used and, if possible, satisfy all

precedence constraints.

Pheromone trails and heuristic information. As in the TSP case, pheromone trails

are associated with connections, and the heuristic information can, for example, be

chosen as the inverse of the costs (lengths) of the connections.

Solution construction. Ants build solutions iteratively by adding, step by step, new

unvisited nodes to the partial solution under construction. They choose the new node

to add by using pheromone trails, heuristic, and constraint information.

2.3.3 The Generalized Assignment Problem

In the generalized assignment problem (GAP) a set of tasks i A I , has to be assigned

to a set of agents j A J. Each agent j has only a limited capacity aj and each task i

assigned to agent j consumes a quantity rij of the agent’s capacity. Also, the cost dij
of assigning task i to agent j is given. The objective then is to find a feasible task

assignment with minimum cost.

Let yij be 1 if task i is assigned to agent j and 0 otherwise. Then the GAP can

formally be defined as

min f ðyÞ ¼
Xm
j¼1

Xn
i¼1

dijyij ð2:1Þ

subject to

Xn
i¼1

rijyij a aj; j ¼ 1; . . . ;m; ð2:2Þ

Xm
j¼1

yij ¼ 1; i ¼ 1; . . . ; n; ð2:3Þ

yij A f0; 1g; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m: ð2:4Þ

42 Chapter 2 The Ant Colony Optimization Metaheuristic

The constraints in equation (2.2) implement the limited resource capacity of the

agents, while the constraints given by equations (2.3) and (2.4) impose that each task

is assigned to exactly one agent and that a task cannot be split among several agents.

Construction graph. The GAP can easily be cast into the framework of the ACO

metaheuristic. For example, the problem could be represented on the construction

graph GC ¼ ðC;LÞ in which the set of components comprises the set of tasks and

agents, that is, C ¼ I W J. Each assignment, which consists of n couplings ði; jÞ of
tasks and agents, corresponds to at least one ant’s walk on this graph and costs dij
are associated with all possible couplings ði; jÞ of tasks and agents.

Constraints. Walks on the construction graph GC have to satisfy the constraints

given by equations (2.3) and (2.4) to obtain a valid assignment. One particular way

of generating such an assignment is by an ant’s walk which iteratively switches from

task nodes (nodes in the set I) to agent nodes (nodes in the set J) without repeating

any task node but possibly using an agent node several times (several tasks may be

assigned to an agent). Moreover, the GAP involves resource capacity constraints that

can be enforced by an appropriately defined neighborhood. For example, for an

ant k, N k
i could be defined as consisting of all those agents to which task i can be

assigned without violating the agents’ resource capacity. If no agent meets the task’s

resource requirement, then the ant is forced to build an infeasible solution; in this

case N k
i becomes the set of all agents. Infeasibilities can then be handled, for exam-

ple, by assigning penalties proportional to the amount of resource violations.

Pheromone trails and heuristic information. During the construction of a solution,

ants repeatedly have to take the following two basic decisions: (1) choose the task to

assign next and (2) choose the agent the task should be assigned to. Pheromone trail

information can be associated with any of the two decisions: it can be used to learn

an appropriate order for task assignments or it can be associated with the desirability

of assigning a task to a specific agent. In the first case, tij represents the desirability of

assigning task j directly after task i, while in the second case it represents the desir-

ability of assigning agent j to task i.

Similarly, heuristic information can be associated with any of the two decisions.

For example, heuristic information could bias task assignment toward those tasks

that use more resources, and bias the choice of agents in such a way that small as-

signment costs are incurred and the agent only needs a relatively small amount of its

available resource to perform the task.

Solution construction. Solution construction can be performed as usual, by choosing

the components to add to the partial solution from among those that, as explained

2.3 How Do I Apply ACO? 43

above, satisfy the constraints with a probability biased by the pheromone trails and

heuristic information.

2.3.4 The Multiple Knapsack Problem

Given a set of items i A I with associated a vector of resource requirements ri and a

profit bi, the knapsack problem (KP) is the problem of selecting a subset of items

from I in such a way that they fit into a knapsack of limited capacity and maximize

the sum of profits of the chosen items. The multiple knapsack problem (MKP), also

known as multidimensional KP, extends the single KP by considering multiple

resource constraints. Let yi be a variable associated with item i, which has value 1 if i

is added to the knapsack, and 0 otherwise. Also, let rij be the resource requirement of

item i with respect to resource constraint j, aj the capacity of resource j, and m be

the number of resource constraints. Then the MKP can be formulated as

max f ðyÞ ¼
Xn
i¼1

biyi; ð2:5Þ

subject to

Xn
i¼1

rijyi a aj; j ¼ 1; . . . ;m; ð2:6Þ

yi A f0; 1g; i ¼ 1; . . . ; n: ð2:7Þ

In the MKP, it is typically assumed that all profits bi and all weights rij take posi-

tive values.

Construction graph. In the construction graph GC ¼ ðC;LÞ, the set of components

C corresponds to the set of items and, as usual, the set of connections L fully con-

nects the set of items. The profit of adding items can be associated with either the

connections or the components.

Constraints. The solution construction has to consider the resource constraints

given by equation (2.6). During the solution construction process, this can be easily

done by allowing ants to add only those components that, when added to their cur-

rent partial solution, do not violate any resource constraint.

Pheromone trails and heuristic information. The MKP has the particularity that

pheromone trails ti are associated only with components and refer to the desirability

of adding an item i to the current partial solution. The heuristic information, intui-

44 Chapter 2 The Ant Colony Optimization Metaheuristic

tively, should prefer items which have a high profit and low resource requirements.

One possible choice for the heuristic information is to calculate the average resource

requirement ri ¼
Pm

j¼1 rij=m for each item and then to define hi ¼ bi=ri. Yet this

choice has the disadvantage that it does not take into account how tight the single

resource constraints are. Therefore, more information can be provided if the heuristic

information is also made a function of the aj. One such possibility is to calculate

ri
0 ¼ 1=m �

Pm
j¼1 aj=rij and to compute the heuristic information as h 0i ¼ bi=ri

0.

Solution construction. Each ant iteratively adds items in a probabilistic way biased

by pheromone trails and heuristic information; each item can be added at most once.

An ant’s solution construction ends if no item can be added anymore without vio-

lating any of the resource constraints. This leads to one particularity of the ACO

application to the MKP: the length of the ants’ walks is not fixed in advance and

di¤erent ants may have solutions of di¤erent length.

2.3.5 The Network Routing Problem

Let a telecommunications network be defined by a set of nodes N, a set of links be-

tween nodes Lnet, and the costs dij associated with the links. Then, the network rout-

ing problem (NRP) is the problem of finding minimum cost paths among all pairs of

nodes in the network. It should be noted that if the costs dij are fixed, then the NRP

is reduced to a set of minimum cost path problems, each of which can be solved

e‰ciently via a polynomial time algorithm like Dijkstra’s algorithm (Dijkstra, 1959).

The problem becomes interesting for heuristic approaches once, as happens in real-

world applications like routing in communications networks, costs (e.g., data tra‰c

in links) or the network topology varies in time.

Construction graph. The construction graph is the graph GC ¼ ðC;LÞ, where C

corresponds to the set of nodes N, and L fully connects GC . Note that Lnet JL.

Constraints. The only constraint is that ants use only connections lij A Lnet.

Pheromone trails and heuristic information. Because the NRP is, in reality, a set

of minimum cost path problems, each connection lij A L should have many di¤erent

pheromone trails associated. For example, each connection lij could have associated

one trail value tijd for each possible destination node d an ant located in node i

can have. Each arc can also be assigned a heuristic value hij independent of the final

destination. The heuristic value hij can be set, for example, to a value inversely pro-

portional to the amount of tra‰c on the link connecting nodes i and j.

Solution construction. Solution construction is straightforward. In fact, the S-ACO

algorithm presented in chapter 1, section 1.3.1, is an example of how to proceed.

2.3 How Do I Apply ACO? 45

Each ant has a source node s and a destination node d, and moves from s to d hop-

ping from one node to the next, until node d has been reached. When ant k is

located at node i, it chooses the next node j to move to using a probabilistic decision

rule which is a function of the ant’s memory, of local pheromones, and heuristic

information.

2.3.6 The Dynamic Traveling Salesman Problem

The dynamic traveling salesman problem (DTSP) is a TSP in which cities can be

added or removed at run time. The goal is to find as quickly as possible the new

shortest tour after each transition.

Construction graph. The same as for the TSP: GC ¼ ðC;LÞ, where C ¼ CðtÞ is the
set of cities and L ¼ LðtÞ completely connects GC . The dependence of C and L on

time is due to the dynamic nature of the problem.

Constraints. As in the TSP, the only constraint is that a solution should contain

each city once and only once.

Pheromone trails and heuristic information. As in the TSP: pheromone trails are

associated with connections, and heuristic values can be given by the inverse of the

distances between cities. An important question is how to handle the problem of con-

nections that disappear and appear in case a city is removed or a new city is added.

In the first case the values no longer used can simply be removed, while in the second

case the new pheromone values could be set, for example, either to values propor-

tional to the length of the associated connections or to the average of the other

pheromone values.

Solution construction. Solution construction follows the same rules as in the TSP.

2.4 Other Metaheuristics

The world of metaheuristics is rich and multifaceted and, besides ACO, a number of

other successful metaheuristics are available in the literature. Some of the best known

and most widely applied metaheuristics are simulated annealing (SA) (Cerný, 1985;

Kirkpatrick et al., 1983), tabu search (TS) (Glover, 1989, 1990; Glover & Laguna,

1997), guided local search (GLS) (Voudouris & Tsang, 1995; Voudouris, 1997),

greedy randomized adaptive search procedures (GRASP) (Feo & Resende, 1989,

1995), iterated local search (ILS) (Lourenço et al., 2002), evolutionary computation

(EC) (Fogel et al., 1966; Goldberg, 1989; Holland, 1975; Rechenberg, 1973; Schwefel,

1981), and scatter search (Glover, 1977).

46 Chapter 2 The Ant Colony Optimization Metaheuristic

All metaheuristics have in common that they try to avoid the generation of poor-

quality solutions by introducing general mechanisms that extend problem-specific,

single-run algorithms like greedy construction heuristics or iterative improvement

local search. Di¤erences among the available metaheuristics concern the techniques

employed to avoid getting stuck in suboptimal solutions and the type of trajectory

followed in the space of either partial or full solutions.

A first important distinction among metaheuristics is whether they are constructive

or local search based (see boxes 2.2 and 2.3). ACO and GRASP belong to the first

class; all the other metaheuristics belong to the second class. Another important dis-

tinction is whether at each iteration they manipulate a single solution or a population

of solutions. All the above-mentioned metaheuristics manipulate a single solution,

except for ACO and EC. Although constructive and population-based metaheuristics

can be used without recurring to local search, very often their performance can be

greatly improved if they are extended to include it. This is the case for both ACO and

EC, while GRASP is defined from the very beginning to include local search.

One further important dimension for the classification of metaheuristics concerns

the use of memory. Metaheuristics that exploit memory to direct future search are

TS, GLS, and ACO. TS either explicitly memorizes previously encountered solutions

or memorizes components of previously seen solutions; GLS stores penalties asso-

ciated with solution components to modify the solutions’ evaluation function; and

ACO uses pheromones to maintain a memory of past experiences.

It is interesting to note that, for all metaheuristics, there is no general termination

criterion. In practice, a number of rules of thumb are used: the maximum CPU time

elapsed, the maximum number of solutions generated, the percentage deviation from

a lower/upper bound from the optimum, and the maximum number of iterations

without improvement in solution quality are examples of such rules. In some cases,

metaheuristic-dependent rules of thumb can be defined. An example is TS which can

be stopped if the set of solutions in the neighborhood is empty; or SA, where the

termination condition is often defined by an annealing schedule.

In conclusion, we see that ACO possesses several characteristics which in their

particular combination make it a unique approach: it uses a population (colony) of

ants which construct solutions exploiting a form of indirect memory called artificial

pheromones. The following sections describe in more detail the metaheuristics we

mentioned above.

2.4.1 Simulated Annealing

Simulated annealing (Cerný, 1985; Kirkpatrick et al., 1983) is inspired by an analogy

between the physical annealing of solids (crystals) and combinatorial optimization

2.4 Other Metaheuristics 47

problems. In the physical annealing process a solid is first melted and then cooled

very slowly, spending a long time at low temperatures, to obtain a perfect lattice

structure corresponding to a minimum energy state. SA transfers this process to local

search algorithms for combinatorial optimization problems. It does so by associating

the set of solutions of the problem attacked with the states of the physical system, the

objective function with the physical energy of the solid, and the optimal solutions

with the minimum energy states.

SA is a local search strategy which tries to avoid local minima by accepting worse

solutions with some probability. In particular, SA starts from some initial solution s

and then proceeds as follows: At each step, a solution s 0 A NðsÞ is generated (often

this is done randomly according to a uniform distribution). If s 0 improves on s, it is

accepted; if s 0 is worse than s, then s 0 is accepted with a probability which depends on

the di¤erence in objective function value f ðsÞ � f ðs 0Þ, and on a parameter T , called

temperature. T is lowered (as is also done in the physical annealing process) during

the run of the algorithm, reducing in this way the probability of accepting solutions

worse than the current one. The probability paccept to accept a solution s 0 is often

defined according to the Metropolis distribution (Metropolis, Rosenbluth, Rosen-

bluth, Teller, & Teller, 1953):

pacceptðs; s 0;TÞ ¼
1; if f ðs 0Þ < f ðsÞ;

exp
f ðsÞ � f ðs 0Þ

T

� �
; otherwise.

8><
>: ð2:8Þ

Figure 2.2 gives a general algorithmic outline for SA. To implement an SA algo-

rithm, the following parameters and functions have to be specified:

9 The function GenerateInitialSolution, that generates an initial solution

9 The function InitializeAnnealingParameters that initializes several parameters used in

the annealing schedule; the parameters comprise

� an initial temperature T0

� the number of iterations to be performed at each temperature (inner loop criterion

in figure 2.2)

� a termination condition (outer loop criterion in figure 2.2)

9 The function UpdateTemp that returns a new value for the temperature

9 The function GenerateNeighbor that chooses a new solution s 0 in the neighborhood

of the current solution s

9 The function AcceptSolution that implements equation (2.8); it decides whether to

accept or not the solution returned by GenerateNeighbor

48 Chapter 2 The Ant Colony Optimization Metaheuristic

SA has been applied to a wide variety of problems with mixed success (Aarts,

Korst, & van Laarhoven, 1997). It is of special appeal to mathematicians due to the

fact that under certain conditions the convergence of the algorithm to an optimal

solution can be proved (Geman & Geman, 1984; Hajek, 1988; Lundy & Mees, 1986;

Romeo & Sangiovanni-Vincentelli, 1991). Yet, to guarantee convergence to the op-

timal solution, an impractically slow annealing schedule has to be used and theoreti-

cally an infinite number of states has to be visited by the algorithm.

2.4.2 Tabu Search

Tabu search (TS) (Glover, 1989, 1990; Glover & Laguna, 1997) relies on the sys-

tematic use of memory to guide the search process. It is common to distinguish

between short-term memory, which restricts the neighborhood NðsÞ of the current

solution s to a subset N 0ðsÞJNðsÞ, and long-term memory, which may extend NðsÞ
through the inclusion of additional solutions (Glover & Laguna, 1997).

TS uses a local search that, at every step, makes the best possible move from s to a

neighbor solution s 0 even if the new solution is worse than the current one; in this

latter case, the move that least worsens the objective function is chosen. To prevent

local search from immediately returning to a previously visited solution and, more

procedure SimulatedAnnealing

s GenerateInitialSolution

InitializeAnnealingParameters

sbest s

n 0

while (outer-loop termination condition not met) do

while (inner-loop termination condition not met) do

s 0 GenerateNeighbor(s)

s AcceptSolution(Tn; s; s
0)

if (f ðsÞ < f ðsbestÞ) then
sbest s

end-if

end-while

UpdateTemp(n); n nþ 1

end-while

return sbest
end-procedure

Figure 2.2
High-level pseudo-code for simulated annealing (SA).

2.4 Other Metaheuristics 49

generally, to avoid cycling, TS can explicitly memorize recently visited solutions and

forbid moving back to them. More commonly, TS forbids reversing the e¤ect of

recently applied moves by declaring tabu those solution attributes that change in the

local search. The tabu status of solution attributes is then maintained for a num-

ber tt of iterations; the parameter tt is called the tabu tenure or the tabu list length.

Unfortunately, this may forbid moves toward attractive, unvisited solutions. To

avoid such an undesirable situation, an aspiration criterion is used to override the

tabu status of certain moves. Most commonly, the aspiration criterion drops the tabu

status of moves leading to a better solution than the best solution visited so far.

The use of a short-term memory in the search process is probably the most widely

applied feature of TS. TS algorithms that only rely on the use of short-term memory

are called simple tabu search algorithms in Glover (1989). To increase the e‰ciency

of simple TS, long-term memory strategies can be used to intensify or diversify the

search. Intensification strategies are intended to explore more carefully promising

regions of the search space either by recovering elite solutions (i.e., the best solutions

obtained so far) or attributes of these solutions. Diversification refers to the explora-

tion of new search space regions through the introduction of new attribute com-

binations. Many long-term memory strategies in the context of TS are based on the

memorization of the frequency of solution attributes. For a detailed discussion of

techniques exploiting long-term memory, see Glover & Laguna (1997).

An algorithmic outline of a simple TS algorithm is given in figure 2.3. The func-

tions needed to define it are the following:

9 The function GenerateInitialSolution, which generates an initial solution

9 The function InitializeMemoryStructures, which initializes all the memory structures

used during the run of the TS algorithm

9 The function GenerateAdmissibleSolutions, which is used to determine the subset of

neighbor solutions which are not tabu or are tabu but satisfy the aspiration criterion

9 The function SelectBestSolution, which returns the best admissible move

9 The function UpdateMemoryStructures, which updates the memory structures

To date, TS appears to be one of the most successful and most widely used

metaheuristics, achieving excellent results for a wide variety of problems (Glover &

Laguna, 1997). Yet this e‰ciency is often due to a significant fine-tuning e¤ort of a

large collection of parameters and di¤erent implementation choices (Hertz, Taillard,

& de Werra, 1997). However, there have been several proposals such as reactive TS,

which try to make TS more robust with respect to parameter settings (Battiti & Tec-

chiolli, 1994). Interestingly, some theoretical proofs about the behavior of TS exist.

50 Chapter 2 The Ant Colony Optimization Metaheuristic

Faigle & Kern (1992) presented a convergence proof for probabilistic TS; Hanafi

and Glover proved that several deterministic variants of TS implicitly enumerate the

search space and, hence, are also guaranteed to find the optimal solution in finite

time (Hanafi, 2000; Glover & Hanafi, 2002).

2.4.3 Guided Local Search

One alternative possibility to escape from local optima is to modify the evaluation

function while searching. Guided local search (Voudouris, 1997; Voudouris & Tsang,

1995) is a metaheuristic that makes use of this idea. It uses an augmented cost func-

tion hðsÞ, h : s 7! R, which consists of the original objective function f ð�Þ plus addi-
tional penalty terms pni associated with each solution feature i. The augmented

cost function is defined as hðsÞ ¼ f ðsÞ þ o �
Pn

i¼1 pni � IiðsÞ, where the parameter o

determines the influence of the penalties on the augmented cost function, n is the

number of solution features, pni is the penalty cost associated with solution feature i,

and IiðsÞ is an indicator function that takes the value 1 if the solution feature i is

present in the solution s and 0 otherwise. A solution feature, for example, in the TSP

is an arc and the indicator function tells if a specific arc is used or not.

GLS uses the augmented cost function for choosing local search moves until it

gets trapped in a local optimum ŝs with respect to hð�Þ. At this point, a utility value

ui ¼ IiðŝsÞ � ci=ð1þ pniÞ is computed for each feature, where ci is the cost of feature i.

Features with high costs will have a high utility. The utility values are scaled by pni

procedure SimpleTabuSearch

s GenerateInitialSolution

InitializeMemoryStructures

sbest s

while (termination condition not met) do

A GenerateAdmissibleSolutions(s)

s SelectBestSolution(A)
UpdateMemoryStructures

if (f ðsÞ < f ðsbestÞ) then
sbest s

end-if

end-while

return sbest
end-procedure

Figure 2.3
High-level pseudo-code for a simple tabu search (TS).

2.4 Other Metaheuristics 51

to avoid the same high cost features from getting penalized over and over again and

the search trajectory from becoming too biased. Then, the penalties of the features

with maximum utility are incremented and the augmented cost function is adapted

by using the new penalty values. Last, the local search is continued from ŝs, which,

in general, will no longer be locally optimal with respect to the new augmented cost

function.

Note that during the local search all solutions encountered must be evaluated with

respect to both the original objective function and the augmented cost functions. In

fact, the two provide di¤erent types of information: the original objective function

f ð�Þ determines the quality of a solution, while the augmented cost function is used

for guiding the local search.

An algorithmic outline of GLS is given in figure 2.4. The functions to be defined

for the implementation of a GLS algorithm are the following:

9 The function GenerateInitialSolution, which generates an initial solution

9 The function InitializePenalties, which initializes the penalties of the solution

features

9 The function ComputeAugmentedObjectiveFunction, which computes the new aug-

mented evaluation function after an update of the penalties

9 The function LocalSearch, which applies a local search algorithm using the aug-

mented evaluation function

9 The function UpdatePenalties, which, once the local search is stuck in a locally

optimal solution, updates the penalty vector

procedure GuidedLocalSearch

s GenerateInitialSolution

InitializePenalties

sbest s

while (termination condition not met) do

h ComputeAugmentedObjectiveFunction

ŝs LocalSearch(ŝs; h)

UpdatePenalties(ŝs)

end-while

return sbest
end-procedure

Figure 2.4
High-level pseudo-code for guided local search (GLS).

52 Chapter 2 The Ant Colony Optimization Metaheuristic

GLS has been derived from earlier approaches which dynamically modified the

evaluation function during the search like the breakout method (Morris, 1993) and

GENET (Davenport, Tsang, Wang, & Zhu, 1994). More generally, GLS has tight

connections to other weighting schemes like those used in local search algorithms

for the satisfiability problem in propositional logic (SAT) (Selman & Kautz, 1993;

Frank, 1996) or adaptations of Lagrangian methods to local search (Shang & Wah,

1998). In general, algorithms that modify the evaluation function at computation

time are becoming more widely used.

2.4.4 Iterated Local Search

Iterated local search (Lourenço et al., 2002; Martin, Otto, & Felten, 1991) is a simple

and powerful metaheuristic, whose working principle is as follows. Starting from an

initial solution s, a local search is applied. Once the local search is stuck, the locally

optimal solution ŝs is perturbed by a move in a neighborhood di¤erent from the one

used by the local search. This perturbed solution s 0 is the new starting solution for

the local search that takes it to the new local optimum ŝs 0. Finally, an acceptance

criterion decides which of the two locally optimal solutions to select as a starting

point for the next perturbation step. The main motivation for ILS is to build a

randomized walk in a search space of the local optima with respect to some local

search algorithm.

An algorithmic outline of ILS is given in figure 2.5. The four functions needed to

specify an ILS algorithm are as follows:

9 The function GenerateInitialSolution, which generates an initial solution

9 The function LocalSearch, which returns a locally optimal solution ŝs when applied

to s

9 The function Perturbation, which perturbs the current solution s generating an in-

termediate solution s 0

9 The function AcceptanceCriterion, which decides from which solution the search is

continued at the next perturbation step

Additionally, the functions Perturbation and AcceptanceCriterion may also exploit

the search history to bias their decisions (Lourenço et al., 2002).

The general idea of ILS was rediscovered by many authors, and has been given

many di¤erent names, such as iterated descent (Baum, 1986), large-step Markov

chains (Martin et al., 1991), chained local optimization (Martin & Otto, 1996), and so

on. One of the first detailed descriptions of ILS was given in Martin et al. (1991),

although earlier descriptions of the basic ideas underlying the approach exist (Baum,

2.4 Other Metaheuristics 53

1986; Baxter, 1981). Some of the first ILS implementations have shown that the ap-

proach is very promising and current ILS algorithms are among the best-performing

approximation methods for combinatorial optimization problems like the TSP

(Applegate, Bixby, Chvátal, & Cook, 1999; Applegate, Cook, & Rohe, 2003; Johnson

& McGeoch, 1997; Martin & Otto, 1996) and several scheduling problems (Brucker,

Hurink, & Werner, 1996; Balas & Vazacopoulos, 1998; Congram, Potts, & de Velde,

2002).

2.4.5 Greedy Randomized Adaptive Search Procedures

Greedy randomized adaptive search procedures (Feo & Resende, 1989, 1995) ran-

domize greedy construction heuristics to allow the generation of a large number of

di¤erent starting solutions for applying a local search.

GRASP is an iterative procedure which consists of two phases, a construction

phase and a local search phase. In the construction phase a solution is constructed

from scratch, adding one solution component at a time. At each step of the con-

struction heuristic, the solution components are ranked according to some greedy

function and a number of the best-ranked components are included in a restricted

candidate list; typical ways of deriving the restricted candidate list are either to take

the best g% of the solution components or to include all solution components that

have a greedy value within some d% of the best-rated solution component. Then, one

procedure IteratedLocalSearch

s GenerateInitialSolution

ŝs LocalSearch(s)

sbest ŝs

while (termination condition not met) do

s 0 Perturbation(ŝs)

ŝs 0 LocalSearch(s 0)

if (f ðŝs 0Þ < f ðsbestÞ) then
sbest ŝs 0

end-if

ŝs AcceptanceCriterion(ŝs; ŝs 0)

end-while

return sbest
end-procedure

Figure 2.5
High-level pseudo-code for iterated local search (ILS).

54 Chapter 2 The Ant Colony Optimization Metaheuristic

of the components of the restricted candidate list is chosen randomly, according to a

uniform distribution. Once a full candidate solution is constructed, this solution is

improved by a local search phase.

A general outline of the GRASP procedure is given in figure 2.6. For the imple-

mentation of a GRASP algorithm we need to define two main functions:

9 The function ConstructGreedyRandomizedSolution, which generates a solution

9 The function LocalSearch, which implements a local search algorithm

The number of available applications of GRASP is large and several extensions of

the basic GRASP algorithm we have presented here have been proposed; see Festa &

Resende (2002) and Resende & Ribeiro (2002) for an overview. Regarding theoreti-

cal results, it should be mentioned that standard implementations of GRASP use

restricted candidate lists and therefore may not converge to the optimal solution

(Mockus, Eddy, Mockus, Mockus, & Reklaitis, 1997). One way around this problem

is to allow choosing the parameter g randomly according to a uniform distribution

so that occasionally all the solution components are eligible (Resende, Pitsoulis, &

Pardalos, 2000).

2.4.6 Evolutionary Computation

Evolutionary computation has become a standard term to indicate problem-solving

techniques which use design principles inspired from models of the natural evolution

of species.

Historically, there are three main algorithmic developments within the field of EC:

evolution strategies (Rechenberg, 1973; Schwefel, 1981), evolutionary programming

procedure GRASP

while (termination condition not met) do

s ConstructGreedyRandomizedSolution

ŝs LocalSearch(s)

if f ðŝsÞ < f ðsbestÞ then
sbest ŝs

end-if

end-while

return sbest
end-procedure

Figure 2.6
High-level pseudo-code for greedy randomized adaptive search procedures (GRASP).

2.4 Other Metaheuristics 55

(Fogel et al., 1966), and genetic algorithms (Holland, 1975; Goldberg, 1989). Com-

mon to these approaches is that they are population-based algorithms that use oper-

ators inspired by population genetics to explore the search space (the most typical

genetic operators are reproduction, mutation, and recombination). Each individual in

the algorithm represents directly or indirectly (through a decoding scheme) a solution

to the problem under consideration. The reproduction operator refers to the process

of selecting the individuals that will survive and be part of the next generation. This

operator typically uses a bias toward good-quality individuals: The better the objec-

tive function value of an individual, the higher the probability that the individual will

be selected and therefore be part of the next generation. The recombination operator

(often also called crossover) combines parts of two or more individuals and generates

new individuals, also called o¤spring. The mutation operator is a unary operator that

introduces random modifications to one individual.

Di¤erences among the di¤erent EC algorithms concern the particular representa-

tions chosen for the individuals and the way genetic operators are implemented. For

example, genetic algorithms typically use binary or discrete valued variables to rep-

resent information in individuals and they favor the use of recombination, while

evolution strategies and evolutionary programming often use continuous variables

and put more emphasis on the mutation operator. Nevertheless, the di¤erences be-

tween the di¤erent paradigms are becoming more and more blurred.

A general outline of an EC algorithm is given in figure 2.7, where pop denotes the

population of individuals. To define an EC algorithm the following functions have to

be specified:

9 The function InitializePopulation, which generates the initial population

9 The function EvaluatePopulation, which computes the fitness values of the indi-

viduals

9 The function BestOfPopulation, which returns the best individual in the current

population

9 The function Recombination, which repeatedly combines two or more individuals to

form one or more new individuals

9 The function Mutation, which, when applied to one individual, introduces a (small)

random perturbation

9 The function Reproduction, which generates a new population from the current one

EC is a vast field where a large number of applications and a wide variety of

algorithmic variants exist. Because an overview of the EC literature would fill an

56 Chapter 2 The Ant Colony Optimization Metaheuristic

entire book, we refer to the following for more details on the subject: Fogel et al.,

1966; Fogel, 1995; Holland, 1975; Rechenberg, 1973; Schwefel, 1981; Goldberg,

1989; Michalewicz, 1994; Mitchell, 1996.

Still, one particular EC algorithm, called population-based incremental learning

(PBIL) (Baluja & Caruana, 1995), is mentioned here because of its similarities to

ACO. PBIL maintains a vector of probabilities called the generating vector. Starting

from this vector, a population of binary strings representing solutions to the problem

under consideration is randomly generated: each string in the population has the i-th

bit set to 1 with a probability given by the i-th value on the generating vector. Once

a population of solutions is created, the generated solutions are evaluated and this

evaluation is used to increase (or decrease) the probabilities of each separate com-

ponent in the generating vector with the hope that good (bad) solutions in future

generations will be produced with higher (lower) probability. It is clear that in ACO

the pheromone trail values play a role similar to PBIL’s generating vector, and

pheromone updating has the same goal as updating the probabilities in the generat-

ing vector. A main di¤erence between ACO and PBIL consists in the fact that in

PBIL all the components of the probability vector are evaluated independently, so

that PBIL works well only when the solution is separable in its components.

procedure EvolutionaryComputationAlgorithm

pop InitializePopulation

EvaluatePopulation(pop)

sbest BestOfPopulation(pop)

while (termination condition not met) do

pop’ Recombination(pop)

pop’’ Mutation(pop’)

EvaluatePopulation(pop’’)

s BestOfPopulation(pop’’)

if f ðsÞ < f ðsbestÞ then
sbest s

end-if

pop Reproduction(pop’’)

end-while

return sbest
end-procedure

Figure 2.7
High-level pseudo-code for an evolutionary computation (EC) algorithm.

2.4 Other Metaheuristics 57

2.4.7 Scatter Search

The central idea of scatter search (SS), first introduced by Glover (1977), is to keep a

small population of reference solutions, called a reference set, and to combine them to

create new solutions.

A basic version of SS proceeds as follows. It starts by creating a reference set. This

is done by first generating a large number of solutions using a diversification genera-

tion method. Then, these solutions are improved by a local search procedure. (Typi-

cally, the number of solutions generated in this way is ten times the size of the

reference set [Glover, Laguna, & Martı́, 2002], while the typical size of a reference

set is usually between ten and twenty solutions.) From these improved solutions, the

reference set rs is built. The solutions to be put in rs are selected by taking into ac-

count both their solution quality and their diversity. Then, the solutions in rs are

used to build a set c_cand of subsets of solutions. The solutions in each subset, which

can be of size 2 in the simplest case, are candidates for combination. Solutions within

each subset of c_cand are combined; each newly generated solution is improved by

local search and possibly replaces one solution in the reference set. The process of

subset generation, solution combination, and local search is repeated until the refer-

ence set does not change anymore.

A general outline of a basic SS algorithm is given in figure 2.8, where pop denotes

a population of candidate solutions. To define an SS algorithm, the following func-

tions have to be specified:

9 The function GenerateDiverseSolutions, which generates a population of solutions

as candidates for building the first reference set. These solutions must be diverse in

the sense that they must be spread over the search space

9 The function LocalSearch, which implements an improvement algorithm

9 The function BestOfPopulation, which returns the best candidate solution in the

current population

9 The function GenerateReferenceSet, which generates the initial reference set

9 The function GenerateSubsets, which generates the set c_cand

9 The function SelectSubset, which returns one element of c_cand

9 The function CombineSolutions, which, when applied to one of the subsets in

c_cand, returns one or more candidate solutions

9 The function WorstOfPopulation, which returns the worst candidate solution in the

current population

58 Chapter 2 The Ant Colony Optimization Metaheuristic

9 The function UpdateReferenceSet, which decides whether a candidate solution

should replace one of the solutions in the reference set, and updates the reference set

accordingly

SS is a population-based algorithm that shares some similarities with EC algo-

rithms (Glover, 1977; Glover et al., 2002; Laguna & Martı́, 2003). Solution combi-

nation in SS is analogous to recombination in EC algorithms; however, in SS solution

combination was conceived as a linear combination of solutions that can lead to both

convex and nonconvex combinations of solutions in the reference set (Glover, 1977);

procedure ScatterSearch

pop GenerateDiverseSolutions

pop LocalSearch(pop)

sbest BestOfPopulation(pop)

rs GenerateReferenceSet(pop)

new_solution true

while (new_solution ¼ true) do

new_solution false

c_cand GenerateSubsets(rs)

while (c_cand0q) do

cc SelectSubset(c_cand)

s CombineSolutions(cc)

ŝs LocalSearch(s)

sworst WorstOfPopulation(rs)

if ŝs B rs and f ðŝsÞ < f ðsworstÞ then
UpdateReferenceSet(ŝs)

new_solution true

end-if

if (f ðŝsÞ < f ðsbestÞ) then
sbest ŝs

end-if

c_cand c_cand\cc

end-while

end-while

return sbest
end-procedure

Figure 2.8
High-level pseudo-code for scatter search (SS).

2.4 Other Metaheuristics 59

nonconvex combination of solutions allows the generation of solutions that are

external to the subspace spanned by the original reference set. See Laguna & Martı́

(2003) for an overview of implementation principles and of current applications.

2.5 Bibliographical Remarks

Combinatorial Optimization

Combinatorial optimization is a widely studied field for which a large number of

textbooks and research articles exist. One of the standard references is the book by

Papadimitriou & Steiglitz (1982). There also exist a variety of other textbooks which

give rather comprehensive overviews of the field. Examples are books by Lawler

(1976), by Nemhauser & Wolsey (1988), and the more recent book by Cook, Cun-

ningham, Pulleyblank & Schrijver (1998). For readers interested in digging into the

huge literature on combinatorial optimization, a good starting point is the book of

annotated bibliographies edited by Dell’Amico, Ma‰oli, & Martello (1997).

The standard reference on the theory of NP-completeness is the excellent book by

Garey & Johnson (1979). A question of particular interest for researchers in meta-

heuristics concerns the computational complexity of approximation algorithms. A

recent detailed overview of the current knowledge on this subject is given in Hoch-

baum (1997) and in Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, &

Protasi (1999). Of particular interest also is the recently developed complexity theory

for local search algorithms, introduced in an article by Johnson, Papadimitriou, &

Yannakakis (1988).

ACO Metaheuristic

The first algorithm to fall into the framework of the ACO metaheuristic was Ant

System (AS) (Dorigo, 1992; Dorigo, Maniezzo, & Colorni, 1991a, 1996). AS was

followed by a number of di¤erent algorithmic variants that tried to improve its

performance. The ACO metaheuristic, first described in the articles by Dorigo &

Di Caro (1999a,b) and Dorigo, Di Caro, & Gambardella (1999), is the result of

a research e¤ort directed at building a common framework for these algorithmic

variants. Most of the available ACO algorithms are presented in chapter 3 (up-to-

date information on ACO is maintained on the Web at www.aco-metaheuristic.org).

To be mentioned here is also the international workshop series ‘‘ANTS: From Ant

Colonies to Artificial Ants’’ on ant algorithms, where a large part of the contribu-

tions focus on di¤erent aspects of the ACO metaheuristic (see the Web at iridia.ulb.

ac.be/~ants/ for up-to-date information on this workshop series). The proceedings

of the most recent workshop of this series in 2002 are published in the Lecture

60 Chapter 2 The Ant Colony Optimization Metaheuristic

Notes in Computer Science series of Springer-Verlag (Dorigo, Di Caro, & Sampels,

2002a).

Other Metaheuristics

The area of metaheuristics has now become a large field with its own conference

series, the Metaheuristics International Conference, which has been held biannually

since 1995. After each conference, an edited book covering current research issues in

the field is published (Hansen & Ribeiro, 2001; Osman & Kelly, 1996; Voss, Mar-

tello, Osman, & Roucairol, 1999).

Single-authored books which give an overview of the whole metaheuristics field

are few. An inspiring such book is the recent one by Michalewicz & Fogel (2000).

Two other books which cover a number of di¤erent metaheuristics are those of Sait

& Youssef (1999) and Karaboga & Pham (2000). A recent survey paper is that of

Blum & Roli (2003).

As far as single metaheuristics are concerned, we gave basic references to the

literature in section 2.4. A large collection of references up to 1996 is provided by

Osman & Laporte (1996). A book that gives an extensive overview of local search

methods is that edited by Aarts & Lenstra (1997), which contains a number of con-

tributions by leading experts. Another book which gives an overview of a number

of metaheuristics (including some variants not covered in this chapter) was edited

by Reeves (1995). Recent new metaheuristic ideas are collected in a book edited by

Corne, Dorigo, & Glover (1999). Currently, the best overview of the field is the

Handbook of Metaheuristics, edited by Glover & Kochenberger (2002).

2.6 Things to Remember

9 Combinatorial optimization problems arise in many practical and theoretical

problems. Often, these problems are very hard to solve to optimality. The theory

of NP-completeness classifies the problems according to their di‰culty. For many

combinatorial optimization problems it has been shown that they belong to the class

of NP-hard problems, which means that in the worst case the e¤ort needed to find

optimal solutions increases exponentially with problem size, unless P ¼ NP.
9 Exact algorithms try to find optimal solutions and additionally prove their opti-

mality. Despite recent successes, for many NP-hard problems the performance of

exact algorithms is not satisfactory and their applicability is often limited to rather

small instances.

9 Approximate algorithms trade optimality for e‰ciency. Their main advantage is

that in practice they often find reasonably good solutions in a very short time.

2.6 Things to Remember 61

9 A metaheuristic is a set of algorithmic concepts that can be used to define heuristic

methods applicable to a wide set of di¤erent problems. In other words, a meta-

heuristic can be seen as a general algorithmic framework which can be applied to

di¤erent optimization problems with relatively few modifications to make them

adapted to a specific problem.

9 The ACO metaheuristic was inspired by the foraging behavior of real ants. It has

a very wide applicability: it can be applied to any combinatorial optimization prob-

lem for which a solution construction procedure can be conceived. The ACO meta-

heuristic is characterized as being a distributed, stochastic search method based on

the indirect communication of a colony of (artificial) ants, mediated by (artificial)

pheromone trails. The pheromone trails in ACO serve as a distributed numerical

information used by the ants to probabilistically construct solutions to the problem

under consideration. The ants modify the pheromone trails during the algorithm’s

execution to reflect their search experience.

9 The ACO metaheuristic is based on a generic problem representation and the defi-

nition of the ants’ behavior. Given this formulation, the ants in ACO build solutions

to the problem being solved by moving concurrently and asynchronously on an ap-

propriately defined construction graph. The ACO metaheuristic defines the way the

solution construction, the pheromone update, and possible daemon actions—actions

which cannot be performed by a single ant because they require access to nonlocal

information—interact in the solution process.

9 The application of ACO is particularly interesting for (1) NP-hard prob-

lems, which cannot be e‰ciently solved by more traditional algorithms; (2) dynamic

shortest-path problems in which some properties of the problem’s graph representa-

tion change over time concurrently with the optimization process; and (3) problems

in which the computational architecture is spatially distributed. The versatility of the

ACO metaheuristic has been shown using several example applications.

9 The ACO metaheuristic is one out of a number of metaheuristics which have

been proposed in the literature. Other metaheuristics, including simulated anneal-

ing, tabu search, guided local search, iterated local search, greedy randomized adap-

tive search procedures, and evolutionary computation, have been discussed in this

chapter. Several characteristics make ACO a unique approach: it is a constructive,

population-based metaheuristic which exploits an indirect form of memory of pre-

vious performance. This combination of characteristics is not found in any of the

other metaheuristics.

62 Chapter 2 The Ant Colony Optimization Metaheuristic

2.7 Thought and Computer Exercises

Exercise 2.1 We have exemplified the application of the ACO metaheuristic to a

number of di¤erent combinatorial optimization problems. For each of these prob-

lems, do the following (for this exercise and the next, consider only the static example

problems introduced in this chapter):

1. Define the set of candidate solutions and the set of feasible solutions.

2. Define a greedy construction heuristic. (Answering the following questions may be

of some help: What are appropriate solution components? How do you measure the

objective function contribution of adding a solution component? Is it always possible

to construct feasible candidate solutions? How many di¤erent solutions can be gen-

erated with the constructive heuristic?)

3. Define a local search algorithm. (Answering the following questions may be of

some help: How can local changes be defined? How many solution components are

involved in each local search step? How do you choose which neighboring solution to

move to? Does the local search always maintain feasibility of solutions?)

Exercise 2.2 Implement the construction heuristics and the local search algorithms

defined in the first exercise in your favorite programming language.

Evaluate the performance of the resulting algorithms using test instances. Test

instances that have already been used by other researchers are available, for ex-

ample, at ORLIB mscmga.ms.ic.ac.uk/info.html. Another possibility is to look at

www.metaheuristics.org.

How strongly do the local search algorithms improve the solution quality if they

are applied to the solutions generated by the construction heuristics?

Exercise 2.3 Develop a description of how to apply the ACO metaheuristic to the

combinatorial optimization problems you are familiar with. To do so, answer the fol-

lowing questions: What are the solution components? Are there di¤erent ways of

defining the solution components? If yes, in which aspects do the definitions di¤er?

How is the construction graph defined? How are the pheromone trails and the heu-

ristic information defined? Are there di¤erent ways of defining the heuristic infor-

mation? How are the constraints treated? How do you implement the ants’ behavior

and, in particular, how do you construct solutions?

Exercise 2.4 We have introduced three criteria to classify metaheuristics. One is the

use of solution construction versus the use of local search; another is the use, or not,

of a population of solutions; and the last the use, or not, of a memory within the

2.7 Thought and Computer Exercises 63

search process. Additional criteria concern whether the evaluation function is modi-

fied during the search or not, whether an algorithm uses several neighborhoods or

only a single one, and whether the metaheuristics are inspired by some process occur-

ring in nature. Recapitulate the classification of section 2.4, for the metaheuristics

discussed in this chapter. Extend this classification to also include the three addi-

tional criteria given above.

Exercise 2.5 There are a number of additional metaheuristics available, some of

which are described in New Ideas in Optimization (Corne et al., 1999). Develop short

descriptions of these metaheuristics in a format similar to that used in this chapter.

To do so, first consider the general principles underlying the metaheuristics, develop

a general algorithmic outline for the metaheuristic, and describe the functions that

need to be defined to implement the metaheuristic. Finally, consider the range of

available applications of that metaheuristic and find out about the theoretical knowl-

edge on the convergence behavior of these metaheuristics.

64 Chapter 2 The Ant Colony Optimization Metaheuristic

3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

But you’re sixty years old. They can’t expect you to keep traveling every week.

—Linda in act 1, scene 1 of Death of a Salesman, Arthur Miller, 1949

The traveling salesman problem is an extensively studied problem in the literature

and for a long time has attracted a considerable amount of research e¤ort. The TSP

also plays an important role in ACO research: the first ACO algorithm, called Ant

System, as well as many of the ACO algorithms proposed subsequently, was first

tested on the TSP.

There are several reasons for the choice of the TSP as the problem to explain the

working of ACO algorithms: it is an important NP-hard optimization problem that

arises in several applications; it is a problem to which ACO algorithms are easily

applied; it is easily understandable, so that the algorithm behavior is not obscured

by too many technicalities; and it is a standard test bed for new algorithmic ideas—

a good performance on the TSP is often taken as a proof of their usefulness. Addi-

tionally, the history of ACO shows that very often the most e‰cient ACO algorithms

for the TSP were also found to be among the most e‰cient ones for a wide variety of

other problems.

This chapter is therefore dedicated to a detailed explanation of the main members

of the ACO family through examples of their application to the TSP: algorithms are

described in detail, and a guide to their implementation in a C-like programming

language is provided.

3.1 The Traveling Salesman Problem

Intuitively, the TSP is the problem of a salesman who, starting from his hometown,

wants to find a shortest tour that takes him through a given set of customer cities and

then back home, visiting each customer city exactly once. More formally, the TSP

can be represented by a complete weighted graph G ¼ ðN;AÞ with N being the set of

nodes representing the cities, and A being the set of arcs. (Note that if the graph is

not complete, one can always add arcs to obtain a new, complete graph G 0 with ex-

actly the same optimal solutions as G; this can be achieved by assigning to the addi-

tional arcs weights that are large enough to guarantee that they will not be used in

any optimal solution.) Each arc ði; jÞ A A is assigned a value (length) dij, which is the

distance between cities i and j, with i; j A N. In the general case of the asymmetric

TSP, the distance between a pair of nodes i; j is dependent on the direction of tra-

versing the arc, that is, there is at least one arc ði; jÞ for which dij 0 dji. In the sym-

metric TSP, dij ¼ dji holds for all the arcs in A. The goal in the TSP is to find a

minimum length Hamiltonian circuit of the graph, where a Hamiltonian circuit is a

closed path visiting each of the n ¼ jNj nodes of G exactly once. Thus, an optimal

solution to the TSP is a permutation p of the node indices f1; 2; . . . ; ng such that the

length f ðpÞ is minimal, where f ðpÞ is given by

f ðpÞ ¼
Xn�1
i¼1

dpðiÞpðiþ1Þ þ dpðnÞpð1Þ: ð3:1Þ

In the remainder of this chapter we try to highlight di¤erences in performance among

ACO algorithms by running computational experiments on instances available from

the TSPLIB benchmark library (Reinelt, 1991), which is accessible on the Web at

www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. TSPLIB instances

have been used in a number of influential studies of the TSP (Grötschel & Holland,

1991; Reinelt, 1994; Johnson & McGeoch, 2002) and, in part, they stem from prac-

tical applications of the TSP such as drilling holes for printed circuit boards (Reinelt,

1994) or the positioning of X-ray devices (Bland & Shallcross, 1989). Most of the

TSPLIB instances are geometric TSP instances, that is, they are defined by the co-

ordinates of a set of points and the distance between these points is computed

according to some metric. Figure 3.1 gives two examples of such instances. We refer

the reader to the TSPLIB website for a detailed description of how the distances

are generated. In any case, independently of which metric is used, in all TSPLIB in-

stances the distances are rounded to integers. The main reason for this choice is of

a historical nature: in early computers integer computations were much quicker to

perform than computations using floating numbers.

Figure 3.1
Examples of TSP: The figure on the left shows the TSP instance att532, which comprises 532 cities in
the United States. The figure on the the right shows instance pcb1173, which represents the location of
1173 holes to be drilled on a printed circuit board. Each point gives the localization of cities or holes to be
drilled, respectively. Both instances are taken from TSPLIB.

66 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3.2 ACO Algorithms for the TSP

ACO can be applied to the TSP in a straightforward way, as described in section

2.3.1; the construction graph G ¼ ðC;LÞ, where the set L fully connects the compo-

nents C, is identical to the problem graph, that is, C ¼ N and L ¼ A; the set of states

of the problem corresponds to the set of all possible partial tours; and the constraints

W enforce that the ants construct only feasible tours that correspond to permutations

of the city indices. This is always possible, because the construction graph is a com-

plete graph and any closed path that visits all the nodes without repeating any node

corresponds to a feasible tour.

In all available ACO algorithms for the TSP, the pheromone trails are associated

with arcs and therefore tij refers to the desirability of visiting city j directly after city

i. The heuristic information is chosen as hij ¼ 1=dij , that is, the heuristic desirability

of going from city i directly to city j is inversely proportional to the distance between

the two cities. In case dij ¼ 0 for some arc ði; jÞ, the corresponding hij is set to a very

small value. As we discuss later, for implementation purposes pheromone trails are

collected into a pheromone matrix whose elements are the tij ’s. This can be done

analogously for the heuristic information.

Tours are constructed by applying the following simple constructive procedure to

each ant: (1) choose, according to some criterion, a start city at which the ant is

positioned; (2) use pheromone and heuristic values to probabilistically construct a

tour by iteratively adding cities that the ant has not visited yet (see figure 3.2), until

all cities have been visited; and (3) go back to the initial city. After all ants have

completed their tour, they may deposit pheromone on the tours they have followed.

We will see that, in some cases, before adding pheromone, the tours constructed by

i

j

k

g

τ ij η ij

?
,

Figure 3.2
An ant arriving in city i chooses the next city to move to as a function of the pheromone values tij and of
the heuristic values hij on the arcs connecting city i to the cities j the ant has not visited yet.

3.2 ACO Algorithms for the TSP 67

the ants may be improved by the application of a local search procedure. This high-

level description applies to most of the published ACO algorithms for the TSP, one

notable exception being Ant Colony System (described in chapter 3, section 3.4.1), in

which pheromone evaporation is interleaved with tour construction. In fact, when

applied to the TSP and to virtually any other static combinatorial optimization

problem (see chapter 2, section 2.2), most ACO algorithms employ a more specific

algorithmic scheme than the general one of the ACO metaheuristic given in figure

2.1. This algorithm’s scheme is shown in figure 3.3; after initializing the parameters

and the pheromone trails, these ACO algorithms iterate through a main loop, in

which first all of the ants’ tours are constructed, then an optional phase takes place in

which the ants’ tours are improved by the application of some local search algorithm,

and finally the pheromone trails are updated. This last step involves pheromone

evaporation and the update of the pheromone trails by the ants to reflect their search

experience. In figure 3.3 the DaemonActions procedure of figure 2.1 is replaced by

the ApplyLocalSearch procedure, and by a routine (not shown in the figure and most

often integrated in the UpdatePheromones procedure to facilitate implementation)

that helps selecting the ants that should be allowed to deposit pheromone.

As already mentioned, the first ACO algorithm, Ant System (Dorigo, 1992;

Dorigo et al., 1991a, 1996), was introduced using the TSP as an example application.

AS achieved encouraging initial results, but was found to be inferior to state-of-the-art

algorithms for the TSP. The importance of AS therefore mainly lies in the inspiration

it provided for a number of extensions that significantly improved performance and

are currently among the most successful ACO algorithms. In fact, most of these ex-

tensions are direct extensions of AS in the sense that they keep the same solution

construction procedure as well as the same pheromone evaporation procedure. These

extensions include elitist AS, rank-based AS, andMAX–MIN AS. The main dif-

procedure ACOMetaheuristicStatic

Set parameters, initialize pheromone trails

while (termination condition not met) do

ConstructAntsSolutions

ApplyLocalSearch % optional

UpdatePheromones

end

end

Figure 3.3
Algorithmic skeleton for ACO algorithms applied to ‘‘static’’ combinatorial optimization problems. The
application of a local search algorithm is a typical example of a possible daemon action in ACO algorithms.

68 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

ferences between AS and these extensions are the way the pheromone update is per-

formed, as well as some additional details in the management of the pheromone

trails. A few other ACO algorithms that more substantially modify the features of

AS were also proposed in the literature. These extensions, presented in section 3.4,

include Ant-Q and its successor Ant Colony System (ACS), the ANTS algorithm,

which exploits ideas taken from lower bounding techniques in mathematical pro-

gramming, and the hyper-cube framework for ACO. We note that not all available

ACO algorithms have been applied to the TSP: exceptions are Maniezzo’s ANTS

(see section 3.4.2) and ACO implementations based on the hyper-cube framework

(see section 3.4.3).

As a final introductory remark, let us note that we do not present the available

ACO algorithms in chronological order of their first publication but rather in the

order of increasing complexity in the modifications they introduce with respect to

AS. The chronological order of the first references and of the main publications on

the available ACO algorithms is indicated in table 3.1. Striking is the relatively large

gap between 1991–92 and 1995–96. In fact, the seminal publication on AS in IEEE

Transactions on Systems, Man, and Cybernetics, although submitted in 1991, ap-

peared only in 1996; starting from that publication the interest in ACO has grown

very quickly.

3.3 Ant System and Its Direct Successors

In this section we present AS and those ACO algorithms that are largely similar to

AS. We do not consider the use of the optional local search phase; the addition of

local search to ACO algorithms is the topic of section 3.7.

Table 3.1
ACO algorithms according to chronological order of appearance

ACO algorithm TSP Main references

Ant System (AS) yes Dorigo (1992); Dorigo, Maniezzo, & Colorni (1991a,b, 1996)

Elitist AS yes Dorigo (1992); Dorigo, Maniezzo, & Colorni (1991a,b, 1996)

Ant-Q yes Gambardella & Dorigo (1995); Dorigo & Gambardella (1996)

Ant Colony System yes Dorigo & Gambardella (1997a,b)

MAX–MIN AS yes Stützle & Hoos (1996, 2000); Stützle (1999)

Rank-based AS yes Bullnheimer, Hartl, & Strauss (1997, 1999c)

ANTS no Maniezzo (1999)

Hyper-cube AS no Blum, Roli, & Dorigo (2001); Blum & Dorigo (2004)

In the column TSP we indicate whether this ACO algorithm has already been applied to the traveling
salesman problem.

3.3 Ant System and Its Direct Successors 69

3.3.1 Ant System

Initially, three di¤erent versions of AS were proposed (Dorigo et al., 1991a; Colorni,

Dorigo, & Maniezzo, 1992a; Dorigo, 1992). These were called ant-density, ant-

quantity, and ant-cycle. Whereas in the ant-density and ant-quantity versions the ants

updated the pheromone directly after a move from one city to an adjacent city, in the

ant-cycle version the pheromone update was only done after all the ants had con-

structed the tours and the amount of pheromone deposited by each ant was set to be

a function of the tour quality. Nowadays, when referring to AS, one actually refers

to ant-cycle since the two other variants were abandoned because of their inferior

performance.

The two main phases of the AS algorithm constitute the ants’ solution construc-

tion and the pheromone update. In AS a good heuristic to initialize the pheromone

trails is to set them to a value slightly higher than the expected amount of pheromone

deposited by the ants in one iteration; a rough estimate of this value can be obtained

by setting, Eði; jÞ, tij ¼ t0 ¼ m=Cnn, where m is the number of ants, and Cnn is the

length of a tour generated by the nearest-neighbor heuristic (in fact, any other rea-

sonable tour construction procedure would work fine). The reason for this choice is

that if the initial pheromone values t0’s are too low, then the search is quickly biased

by the first tours generated by the ants, which in general leads toward the explora-

tion of inferior zones of the search space. On the other side, if the initial pheromone

values are too high, then many iterations are lost waiting until pheromone evapora-

tion reduces enough pheromone values, so that pheromone added by ants can start

to bias the search.

Tour Construction

In AS, m (artificial) ants concurrently build a tour of the TSP. Initially, ants are put

on randomly chosen cities. At each construction step, ant k applies a probabilistic

action choice rule, called random proportional rule, to decide which city to visit next.

In particular, the probability with which ant k, currently at city i, chooses to go to

city j is

pk
ij ¼

½tij�a½hij �
bP

l AN k
i
½til �a½hil �

b
; if j A N k

i ; ð3:2Þ

where hij ¼ 1=dij is a heuristic value that is available a priori, a and b are two pa-

rameters which determine the relative influence of the pheromone trail and the heu-

ristic information, and N k
i is the feasible neighborhood of ant k when being at city i,

that is, the set of cities that ant k has not visited yet (the probability of choosing a

70 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

city outside N k
i is 0). By this probabilistic rule, the probability of choosing a partic-

ular arc ði; jÞ increases with the value of the associated pheromone trail tij and of the

heuristic information value hij. The role of the parameters a and b is the following. If

a ¼ 0, the closest cities are more likely to be selected: this corresponds to a classic

stochastic greedy algorithm (with multiple starting points since ants are initially ran-

domly distributed over the cities). If b ¼ 0, only pheromone amplification is at work,

that is, only pheromone is used, without any heuristic bias. This generally leads to

rather poor results and, in particular, for values of a > 1 it leads to the rapid emer-

gence of a stagnation situation, that is, a situation in which all the ants follow the

same path and construct the same tour, which, in general, is strongly suboptimal

(Dorigo, 1992; Dorigo et al., 1996). Good parameter values for the algorithms pre-

sented in this section are summarized in box 3.1.

Box 3.1
Parameter Settings for ACO Algorithms without Local Search

Our experimental study of the various ACO algorithms for the TSP has identified parameter set-
tings that result in good performance. For the parameters that are common to almost all the ACO
algorithms, good settings (if no local search is applied) are given in the following table.

ACO algorithm a b r m t0

AS 1 2 to 5 0.5 n m=Cnn

EAS 1 2 to 5 0.5 n ðeþmÞ=rCnn

ASrank 1 2 to 5 0.1 n 0:5rðr� 1Þ=rCnn

MMAS 1 2 to 5 0.02 n 1=rCnn

ACS — 2 to 5 0.1 10 1=nC nn

Here, n is the number of cities in a TSP instance. All variants of AS also require some additional
parameters. Good values for these parameters are:

EAS: The parameter e is set to e ¼ n.

ASrank: The number of ants that deposit pheromones is w ¼ 6.

MMAS: The pheromone trail limits are tmax ¼ 1=rCbs and tmin ¼ tmaxð1�
ffiffiffiffiffiffiffiffiffi
0:05n
p

Þ=ððavg� 1Þ �ffiffiffiffiffiffiffiffiffi
0:05n
p

Þ, where avg is the average number of di¤erent choices available to an ant at each step while
constructing a solution (for a justification of these values see Stützle & Hoos (2000). When applied
to small TSP instances with up to 200 cities, good results are obtained by using always the iteration-
best pheromone update rule, while on larger instances it becomes increasingly important to alter-
nate between the iteration-best and the best-so-far pheromone update rules.

ACS: In the local pheromone trail update rule: x ¼ 0:1. In the pseudorandom proportional action
choice rule: q0 ¼ 0:9.

It should be clear that in individual instances, di¤erent settings may result in much better per-
formance. However, these parameters were found to yield reasonable performance over a signifi-
cant set of TSP instances.

3.3 Ant System and Its Direct Successors 71

Each ant k maintains a memory Mk which contains the cities already visited, in

the order they were visited. This memory is used to define the feasible neighborhood

N k
i in the construction rule given by equation (3.2). In addition, the memory Mk

allows ant k both to compute the length of the tour T k it generated and to retrace the

path to deposit pheromone.

Concerning solution construction, there are two di¤erent ways of implementing it:

parallel and sequential solution construction. In the parallel implementation, at each

construction step all the ants move from their current city to the next one, while in

the sequential implementation an ant builds a complete tour before the next one

starts to build another one. In the AS case, both choices for the implementation of

the tour construction are equivalent in the sense that they do not significantly influ-

ence the algorithm’s behavior. As we will see, this is not the case for other ACO

algorithms such as ACS.

Update of Pheromone Trails

After all the ants have constructed their tours, the pheromone trails are updated.

This is done by first lowering the pheromone value on all arcs by a constant factor,

and then adding pheromone on the arcs the ants have crossed in their tours. Phero-

mone evaporation is implemented by

tij ð1� rÞtij ; Eði; jÞ A L; ð3:3Þ

where 0 < ra 1 is the pheromone evaporation rate. The parameter r is used to

avoid unlimited accumulation of the pheromone trails and it enables the algorithm to

‘‘forget’’ bad decisions previously taken. In fact, if an arc is not chosen by the ants,

its associated pheromone value decreases exponentially in the number of iterations.

After evaporation, all ants deposit pheromone on the arcs they have crossed in their

tour:

tij tij þ
Xm
k¼1

Dtkij ; Eði; jÞ A L; ð3:4Þ

where Dtkij is the amount of pheromone ant k deposits on the arcs it has visited. It is

defined as follows:

Dtkij ¼
1=Ck; if arc ði; jÞ belongs to T k;

0; otherwise;

�
ð3:5Þ

where Ck, the length of the tour T k built by the k-th ant, is computed as the sum of

the lengths of the arcs belonging to T k. By means of equation (3.5), the better an

72 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

ant’s tour is, the more pheromone the arcs belonging to this tour receive. In general,

arcs that are used by many ants and which are part of short tours, receive more

pheromone and are therefore more likely to be chosen by ants in future iterations of

the algorithm.

As we said, the relative performance of AS when compared to other metaheuristics

tends to decrease dramatically as the size of the test-instance increases. Therefore, a

substantial amount of research on ACO has focused on how to improve AS.

3.3.2 Elitist Ant System

A first improvement on the initial AS, called the elitist strategy for Ant System

(EAS), was introduced in Dorigo (1992) and Dorigo et al., (1991a, 1996). The idea is

to provide strong additional reinforcement to the arcs belonging to the best tour

found since the start of the algorithm; this tour is denoted as T bs (best-so-far tour) in

the following. Note that this additional feedback to the best-so-far tour (which can

be viewed as additional pheromone deposited by an additional ant called best-so-far

ant) is another example of a daemon action of the ACO metaheuristic.

Update of Pheromone Trails

The additional reinforcement of tour T bs is achieved by adding a quantity e=Cbs to

its arcs, where e is a parameter that defines the weight given to the best-so-far tour

T bs, and Cbs is its length. Thus, equation (3.4) for the pheromone deposit becomes

tij tij þ
Xm
k¼1

Dtkij þ eDtbsij ; ð3:6Þ

where Dtkij is defined as in equation (3.5) and Dtbsij is defined as follows:

Dtbsij ¼
1=Cbs; if arc ði; jÞ belongs to T bs;

0; otherwise:

�
ð3:7Þ

Note that in EAS, as well as in all other algorithms presented in section 3.3, phero-

mone evaporation is implemented as in AS.

Computational results presented in Dorigo (1992) and Dorigo et al. (1991a, 1996)

suggest that the use of the elitist strategy with an appropriate value for parameter e

allows AS to both find better tours and find them in a lower number of iterations.

3.3.3 Rank-Based Ant System

Another improvement over AS is the rank-based version of AS ðASrankÞ, proposed by

Bullnheimer et al. (1999c). In ASrank each ant deposits an amount of pheromone that

3.3 Ant System and Its Direct Successors 73

decreases with its rank. Additionally, as in EAS, the best-so-far ant always deposits

the largest amount of pheromone in each iteration.

Update of Pheromone Trails

Before updating the pheromone trails, the ants are sorted by increasing tour length

and the quantity of pheromone an ant deposits is weighted according to the rank r

of the ant. Ties can be solved randomly (in our implementation they are solved by

lexicographic ordering on the ant name k). In each iteration only the ðw� 1Þ best-
ranked ants and the ant that produced the best-so-far tour (this ant does not nec-

essarily belong to the set of ants of the current algorithm iteration) are allowed to

deposit pheromone. The best-so-far tour gives the strongest feedback, with weight w

(i.e., its contribution 1=Cbs is multiplied by w); the r-th best ant of the current itera-

tion contributes to pheromone updating with the value 1=Cr multiplied by a weight

given by maxf0;w� rg. Thus, the ASrank pheromone update rule is

tij tij þ
Xw�1
r¼1
ðw� rÞDtrij þ wDtbsij ; ð3:8Þ

where Dtrij ¼ 1=Cr and Dtbsij ¼ 1=Cbs. The results of an experimental evaluation by

Bullnheimer et al. (1999c) suggest that ASrank performs slightly better than EAS and

significantly better than AS.

3.3.4 MAX–MIN Ant System

MAX–MIN Ant System (MMAS) (Stützle & Hoos, 1997, 2000; Stützle, 1999)

introduces four main modifications with respect to AS. First, it strongly exploits the

best tours found: only either the iteration-best ant, that is, the ant that produced the

best tour in the current iteration, or the best-so-far ant is allowed to deposit phero-

mone. Unfortunately, such a strategy may lead to a stagnation situation in which all

the ants follow the same tour, because of the excessive growth of pheromone trails

on arcs of a good, although suboptimal, tour. To counteract this e¤ect, a second

modification introduced byMMAS is that it limits the possible range of pheromone

trail values to the interval ½tmin; tmax�. Third, the pheromone trails are initialized to

the upper pheromone trail limit, which, together with a small pheromone evapora-

tion rate, increases the exploration of tours at the start of the search. Finally, in

MMAS, pheromone trails are reinitialized each time the system approaches stagna-

tion or when no improved tour has been generated for a certain number of consecu-

tive iterations.

74 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Update of Pheromone Trails

After all ants have constructed a tour, pheromones are updated by applying evapo-

ration as in AS [equation (3.3)], followed by the deposit of new pheromone as

follows:

tij tij þ Dtbestij ; ð3:9Þ

where Dtbestij ¼ 1=Cbest. The ant which is allowed to add pheromone may be either

the best-so-far, in which case Dtbestij ¼ 1=Cbs, or the iteration-best, in which case

Dtbestij ¼ 1=Cib, where Cib is the length of the iteration-best tour. In general, in

MMAS implementations both the iteration-best and the best-so-far update rules are

used, in an alternate way. Obviously, the choice of the relative frequency with which

the two pheromone update rules are applied has an influence on how greedy the

search is: When pheromone updates are always performed by the best-so-far ant, the

search focuses very quickly around T bs, whereas when it is the iteration-best ant that

updates pheromones, then the number of arcs that receive pheromone is larger and

the search is less directed.

Experimental results indicate that for small TSP instances it may be best to use

only iteration-best pheromone updates, while for large TSPs with several hundreds of

cities the best performance is obtained by giving an increasingly stronger emphasis to

the best-so-far tour. This can be achieved, for example, by gradually increasing the

frequency with which the best-so-far tour T bs is chosen for the trail update (Stützle,

1999).

Pheromone Trail Limits

InMMAS, lower and upper limits tmin and tmax on the possible pheromone values

on any arc are imposed in order to avoid search stagnation. In particular, the im-

posed pheromone trail limits have the e¤ect of limiting the probability pij of selecting

a city j when an ant is in city i to the interval ½ pmin; pmax�, with 0 < pmin a pij a

pmax a 1. Only when an ant k has just one single possible choice for the next city,

that is jN k
i j ¼ 1, we have pmin ¼ pmax ¼ 1.

It is easy to show that, in the long run, the upper pheromone trail limit on any arc

is bounded by 1=rC �, where C � is the length of the optimal tour (see proposition 4.1

in chapter 4). Based on this result,MMAS uses an estimate of this value, 1=rCbs, to

define tmax: each time a new best-so-far tour is found, the value of tmax is updated.

The lower pheromone trail limit is set to tmin ¼ tmax=a, where a is a parameter

(Stützle, 1999; Stützle & Hoos, 2000). Experimental results (Stützle, 1999) suggest

that, in order to avoid stagnation, the lower pheromone trail limits play a more

3.3 Ant System and Its Direct Successors 75

important role than tmax. On the other hand, tmax remains useful for setting the

pheromone values during the occasional trail reinitializations.

Pheromone Trail Initialization and Reinitialization

At the start of the algorithm, the initial pheromone trails are set to an estimate of the

upper pheromone trail limit. This way of initializing the pheromone trails, in combi-

nation with a small pheromone evaporation parameter, causes a slow increase in the

relative di¤erence in the pheromone trail levels, so that the initial search phase of

MMAS is very explorative.

As a further means of increasing the exploration of paths that have only a

small probability of being chosen, inMMAS pheromone trails are occasionally re-

initialized. Pheromone trail reinitialization is typically triggered when the algorithm

approaches the stagnation behavior (as measured by some statistics on the phero-

mone trails) or if for a given number of algorithm iterations no improved tour is

found.

MMAS is one of the most studied ACO algorithms and it has been extended in

many ways. In one of these extensions, the pheromone update rule occasionally uses

the best tour found since the most recent reinitialization of the pheromone trails in-

stead of the best-so-far tour (Stützle, 1999; Stützle & Hoos, 2000). Another variant

(Stützle, 1999; Stützle & Hoos, 1999) exploits the same pseudorandom proportional

action choice rule as introduced by ACS [see equation (3.10) below], an ACO algo-

rithm that is presented in section 3.4.1.

3.4 Extensions of Ant System

The ACO algorithms we have introduced so far achieve significantly better perfor-

mance than AS by introducing minor changes in the overall AS algorithmic structure.

In this section we discuss two additional ACO algorithms that, although strongly

inspired by AS, achieve performance improvements through the introduction of new

mechanisms based on ideas not included in the original AS. Additionally, we present

the hyper-cube framework for ACO algorithms.

3.4.1 Ant Colony System

ACS (Dorigo & Gambardella, 1997a,b) di¤ers from AS in three main points. First,

it exploits the search experience accumulated by the ants more strongly than AS

does through the use of a more aggressive action choice rule. Second, pheromone

evaporation and pheromone deposit take place only on the arcs belonging to the

best-so-far tour. Third, each time an ant uses an arc ði; jÞ to move from city i to city

76 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

j, it removes some pheromone from the arc to increase the exploration of alternative

paths. In the following, we present these innovations in more detail.

Tour Construction

In ACS, when located at city i, ant k moves to a city j chosen according to the so-

called pseudorandom proportional rule, given by

j ¼ argmax
l AN k

i
ftil ½hil �

bg; if qa q0;

J; otherwise;

�
ð3:10Þ

where q is a random variable uniformly distributed in ½0; 1�, q0 ð0a q0 a 1Þ is a pa-

rameter, and J is a random variable selected according to the probability distribution

given by equation (3.2) (with a ¼ 1).

In other words, with probability q0 the ant makes the best possible move as indi-

cated by the learned pheromone trails and the heuristic information (in this case, the

ant is exploiting the learned knowledge), while with probability ð1� q0Þ it performs a

biased exploration of the arcs. Tuning the parameter q0 allows modulation of the

degree of exploration and the choice of whether to concentrate the search of the sys-

tem around the best-so-far solution or to explore other tours.

Global Pheromone Trail Update

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after each

iteration. Thus, the update in ACS is implemented by the following equation:

tij ð1� rÞtij þ rDtbsij ; Eði; jÞ A T bs; ð3:11Þ

where Dtbsij ¼ 1=Cbs. It is important to note that in ACS the pheromone trail update,

both evaporation and new pheromone deposit, only applies to the arcs of T bs, not to

all the arcs as in AS. This is important, because in this way the computational com-

plexity of the pheromone update at each iteration is reduced from Oðn2Þ to OðnÞ,
where n is the size of the instance being solved. As usual, the parameter r represents

pheromone evaporation; unlike AS’s equations (3.3) and (3.4), in equation (3.11) the

deposited pheromone is discounted by a factor r; this results in the new pheromone

trail being a weighted average between the old pheromone value and the amount of

pheromone deposited.

In initial experiments, the use of the iteration-best tour was also considered for

the pheromone updates. Although for small TSP instances the di¤erences in the

final tour quality obtained by updating the pheromones using the best-so-far or the

iteration-best tour was found to be minimal, for instances with more than 100 cities

the use of the best-so-far tour gave far better results.

3.4 Extensions of Ant System 77

Local Pheromone Trail Update

In addition to the global pheromone trail updating rule, in ACS the ants use a local

pheromone update rule that they apply immediately after having crossed an arc ði; jÞ
during the tour construction:

tij ð1� xÞtij þ xt0; ð3:12Þ

where x, 0 < x < 1, and t0 are two parameters. The value of t0 is set to be the same

as the initial value for the pheromone trails. Experimentally, a good value for x was

found to be 0:1, while a good value for t0 was found to be 1=nCnn, where n is the

number of cities in the TSP instance and Cnn is the length of a nearest-neighbor tour.

The e¤ect of the local updating rule is that each time an ant uses an arc ði; jÞ its
pheromone trail tij is reduced, so that the arc becomes less desirable for the following

ants. In other words, this allows an increase in the exploration of arcs that have not

been visited yet and, in practice, has the e¤ect that the algorithm does not show a

stagnation behavior (i.e., ants do not converge to the generation of a common path)

(Dorigo & Gambardella, 1997b). It is important to note that, while for the previously

discussed AS variants it does not matter whether the ants construct the tours in par-

allel or sequentially, this makes a di¤erence in ACS because of the local pheromone

update rule. In most ACS implementations the choice has been to let all the ants

move in parallel, although there is, at the moment, no experimental evidence in favor

of one choice or the other.

Some Additional Remarks

ACS is based on Ant-Q, an earlier algorithm proposed by Gambardella & Dorigo

(1995) (see also Dorigo & Gambardella, 1996). In practice, the only di¤erence be-

tween ACS and Ant-Q is in the definition of the term t0, which in Ant-Q is set to

t0 ¼ g max
j AN k

i
ftijg, where g is a parameter and the maximum is taken over the set

of pheromone trails on the arcs connecting the city i on which ant k is positioned to

all the cities the ant has not visited yet (i.e., those in the neighborhood N k
i).

This particular choice for t0 was motivated by an analogy with a similar formula

used in Q-learning (Watkins & Dayan, 1992), a well-known reinforcement learning

algorithm (Sutton & Barto, 1998). Because it was found that setting t0 to a small

constant value resulted in a simpler algorithm with approximately the same perfor-

mance, Ant-Q was abandoned.

There also exists an interesting relationship betweenMMAS and ACS: they both

use pheromone trail limits, although these are explicit in MMAS and implicit in

ACS. In fact, in ACS implementations the pheromone trails can never drop below

t0 because both pheromone update rules [equations (3.11) and (3.12)] always add an

78 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

amount of pheromone greater than or equal to t0, and the initial pheromone trail

value is set to the value t0. On the other hand, as discussed in section 4.3.5.2 of

chapter 4, it can easily be verified that the pheromone trails can never have a value

higher than 1=Cbs. Therefore, in ACS it is implicitly guaranteed that Eði; jÞ : t0 a
tij a 1=Cbs.

Finally, it should be mentioned that ACS was the first ACO algorithm to use

candidate lists to restrict the number of available choices to be considered at each

construction step. In general, candidate lists contain a number of the best rated

choices according to some heuristic criterion. In the TSP case, a candidate list con-

tains for each city i those cities j that are at a small distance. There are several ways

to define which cities enter the candidate lists. ACS first sorts the neighbors of a city

i according to nondecreasing distances and then inserts a fixed number cand of

closest cities into i’s candidate list. In this case, the candidate lists can be built before

solving a TSP instance and they remain fixed during the whole solution process.

When located at i, an ant chooses the next city among those of i’s candidate list that

are not visited yet. Only if all the cities of the candidate list are already marked as

visited, is one of the remaining cities chosen. In the TSP case, experimental results

have shown that the use of candidate lists improves the solution quality reached by

the ACO algorithms. Additionally, it leads to a significant speedup in the solution

process (Gambardella & Dorigo, 1996).

3.4.2 Approximate Nondeterministic Tree Search

Approximate nondeterministic tree search (ANTS) (Maniezzo, 1999) is an ACO

algorithm that exploits ideas from mathematical programming. In particular, ANTS

computes lower bounds on the completion of a partial solution to define the heuristic

information that is used by each ant during the solution construction. The name

ANTS derives from the fact that the proposed algorithm can be interpreted as an

approximate nondeterministic tree search since it can be extended in a straightfor-

ward way to a branch & bound (Bertsekas, 1995a) procedure. In fact, in Maniezzo

(1999) the ANTS algorithm is extended to an exact algorithm; we refer the interested

reader to the original reference for details; here we only present the ACO part of the

algorithm.

Apart from the use of lower bounds, ANTS also introduces two additional mod-

ifications with respect to AS: the use of a novel action choice rule and a modified

pheromone trail update rule.

Use of Lower Bounds

In ANTS, lower bounds on the completion cost of a partial solution are used to

compute heuristic information on the attractiveness of adding an arc ði; jÞ. This is

3.4 Extensions of Ant System 79

achieved by tentatively adding the arc to the current partial solution and by estimat-

ing the cost of a complete tour containing this arc by means of a lower bound. This

estimate is then used to compute the value hij that influences the probabilistic deci-

sions taken by the ant during the solution construction: the lower the estimate the

more attractive the addition of a specific arc.

The use of lower bounds to compute the heuristic information has the advantage

in that otherwise feasible moves can be discarded if they lead to partial solutions

whose estimated costs are larger than the best-so-far solution. A disadvantage is that

the lower bound has to be computed at each single construction step of an ant and

therefore a significant computational overhead might be incurred. To avoid this as

much as possible, it is important that the lower bound is computed e‰ciently.

Solution Construction

The rule used by ANTS to compute the probabilities during the ants’ solution con-

struction has a di¤erent form than that used in most other ACO algorithms. In

ANTS, an ant k that is situated at city i chooses the next city j with a probability

given by

pk
ij ¼

ztij þ ð1� zÞhijP
l AN k

i
ztil þ ð1� zÞhil

; if j A N k
i ; ð3:13Þ

where z is a parameter, 0a za 1, and N k
i is, as before, the feasible neighborhood

(as usual, the probability of choosing an arc not belonging to N k
i is 0).

An advantage of equation (3.13) is that, when compared to equation (3.2), only

one parameter is used. Additionally, simpler operations that are faster to compute,

like sums instead of multiplications for combining the pheromone trail and the heu-

ristic information, are applied.

Pheromone Trail Update

Another particularity of ANTS is that it has no explicit pheromone evaporation.

Pheromone updates are implemented as follows:

tij tij þ
Xm
k¼1

Dtkij : ð3:14Þ

In the above equation (3.14), Dtkij is given by

Dtkij ¼
Q 1� Ck � LB

Lavg � LB

� �
; if arc ði; jÞ belongs to T k;

0; otherwise;

8<
: ð3:15Þ

80 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

where Q is a parameter, LB is the value of a lower bound on the optimal solution

value computed at the start of the algorithm and we have LBaC �, where C � is the

length of the optimal tour, and Lavg is the moving average of the last l tours gen-

erated by the ants, that is, it is the average length of the l most recent tours

generated by the algorithm (with l being a parameter of the algorithm). If an ant’s

solution is worse than the current moving average, the pheromone trail of the arcs

used by the ant is decreased; if the ant’s solution is better, the pheromone trail is

increased. The additional e¤ect of using equation (3.15) is a dynamic scaling of the

objective function di¤erences which may be advantageous if in later stages of the

search the absolute di¤erence between the ant’s solution qualities becomes smaller

and, consequently, Ck moves closer to Lavg. (Note that once a solution with objective

function value equal to LB is found, the algorithm can be stopped, because this

means that an optimal solution is found.)

As said before, ANTS has not been applied to the TSP so far, although some

limited experiments were performed for the asymmetric TSP (Maniezzo, 2000). The

first and main publication of ANTS concerns the quadratic assignment problem

(Maniezzo, 1999), for which it obtained very good results (see chapter 5, section

5.2.1).

3.4.3 Hyper-Cube Framework for ACO

The hyper-cube framework for ACO was introduced by Blum, Roli, & Dorigo (2001)

to automatically rescale the pheromone values in order for them to lie always in the

interval ½0; 1�. This choice was inspired by the mathematical programming formula-

tion of many combinatorial optimization problems, in which solutions can be repre-

sented by binary vectors. In such a formulation, the decision variables, which can

assume the values f0; 1g, typically correspond to the solution components as they are

used by the ants for solution construction. A solution to a problem then corresponds

to one corner of the n-dimensional hyper-cube, where n is the number of decision

variables. One particular way of generating lower bounds for the problem under

consideration is to relax the problem, allowing each decision variable to take values

in the interval ½0; 1�. In this case, the set of feasible solutions Srx consists of all vectors
~vv A Rn that are convex combinations of binary vectors ~xx A Bn:

~vv A Srx ,~vv ¼
X

~xxi AB n

gi �~xxi; gi A ½0; 1�;
X

gi ¼ 1:

The relationship with ACO becomes clear once we normalize the pheromone

values to lie in the interval ½0; 1�. In this case, the pheromone vector~tt ¼ ðt1; . . . ; tnÞ

3.4 Extensions of Ant System 81

corresponds to a point in ~SS; in case~tt is a binary vector, it corresponds to a solution

of the problem.

When applied to the TSP, a decision variable xij can be associated with each arc

ði; jÞ. This decision variable is set to xij ¼ 1 when the arc ði; jÞ is used, and to xij ¼ 0

otherwise. In this case, a pheromone value is associated with each decision variable.

In fact, the reader may have noticed that this representation corresponds to the

standard way of attacking TSPs with ACO algorithms, as presented before.

Pheromone Trail Update Rules

In the hyper-cube framework the pheromone trails are forced to stay in the interval

½0; 1�. This is achieved by adapting the standard pheromone update rule of ACO

algorithms. Let us explain the necessary change considering the pheromone update

rule of AS [equations (3.3) and (3.4)]. The modified rule is given by

tij ð1� rÞtij þ r
Xm
k¼1

Dtkij ; ð3:16Þ

where, to compute the rightmost term, instead of equation (3.7) we use

Dtkij ¼
1=CkPm

h¼1ð1=ChÞ ; if arc ði; jÞ is used by ant k;

0; otherwise:

8><
>: ð3:17Þ

This pheromone trail update rule guarantees that the pheromone trails remain

smaller than 1; the update rule is also illustrated in figure 3.4: The new pheromone

vector can be interpreted as a shift of the old pheromone vector toward the vector

given by the weighted average of the solutions used in the pheromone update.

3.5 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or

population domains. In particular, many parallel models used in other population-

based algorithms can be easily adapted to ACO. Most parallelization strategies can

be classified into fine-grained and coarse-grained strategies. Characteristic of fine-

grained parallelization is that very few individuals are assigned to single processors

and that frequent information exchange among the processors takes place. In coarse-

grained approaches, on the contrary, larger subpopulations or even full populations

are assigned to single processors and information exchange is rather rare. See, for

example, Cantú-Paz (2000) for an overview.

82 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Fine-grained parallelization schemes have been investigated with parallel versions

of AS for the TSP on the Connection Machine CM-2 adopting the approach of

attributing a single processing unit to each ant (Bolondi & Bondanza, 1993). Exper-

imental results showed that communication overhead can be a major problem with

this approach, since ants end up spending most of their time communicating the

modifications they made to pheromone trails. Similar negative results have been re-

ported by Bullnheimer, Kotsis, and Strauss (1998).

As shown by several researches (Bolondi & Bondanza, 1993; Bullnheimer et al.,

1998; Krüger, Merkle, & Middendorf, 1998; Middendorf, Reischle, & Schmeck,

2002; Stützle, 1998b), coarse-grained parallelization schemes are much more prom-

ising for ACO. In this case, p colonies run in parallel on p processors.

Stützle (1998b) has considered the extreme case in which there is no communica-

tion among the colonies. It is equivalent to the parallel independent run of many

ACO algorithms, and is the easiest way to parallelize randomized algorithms. The

computational results presented in Stützle (1998b) show that this approach is very

e¤ective.

A number of other researchers have considered the case in which information

among the colonies is exchanged at certain intervals. For example, Bullnheimer et al.

(1998) proposed the partially asynchronous parallel implementation (PAPI). In PAPI,

pheromone information was exchanged among the colonies every fixed number of

iterations and a high speedup was experimentally observed. Krüger et al. (1998)

investigated the type of information that should be exchanged among the colonies

(0,1,1)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)

Solution
of ant 1

Solution
of ant 2

(0,1,1)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)

d

τ

Figure 3.4
Left: Assume that the set of feasible solutions consists of the three vectors ð0; 0; 0Þ; ð1; 1; 0Þ, and ð0; 1; 1Þ.
Then, the pheromone vector ~tt moves over the gray shaded area. Right: The two solutions ð0; 0; 0Þ and
ð1; 1; 0Þ have been generated by the ants and are used for the pheromone trail update: ~tt will be shifted
toward ~dd. Note that ~dd is the weighted average of the two solutions, so that it belongs to the segment con-
necting them [in the example ð0; 0; 0Þ is considered of higher quality than ð1; 1; 0Þ, and therefore~tt is closer
to ð0; 0; 0Þ than to ð1; 1; 0Þ].

3.5 Parallel Implementations 83

and how this information should be used to update the colonies’ pheromone trail in-

formation. Their results showed that it is better to exchange the best solutions found

so far and to use them in the pheromone update rather than to exchange complete

pheromone matrices. Middendorf et al. (2002), extending the original work of Michel

& Middendorf (1998), investigated di¤erent ways of exchanging solutions among m

ant colonies. They let colonies exchange information every fixed number of itera-

tions. The information exchanged is (1) the best-so-far solution that is shared among

all colonies, and (2) either the locally best-so-far solutions or the w iteration-best

ants, or a combination of the two, that are sent to neighbor colonies, where the

neighborhood was organized as a directed ring. Their main observation was that the

best results were obtained by limiting the information exchange to the locally best

solutions.

Some preliminary work on the parallel implementation of an ACO algorithm on

a shared memory architecture using OpenMP (Chandra, Dagum, Kohr, Maydan,

McDonald, & Menon, 2000) is presented in Delisle, Krajecki, Gravel, & Gagné

(2001).

3.6 Experimental Evaluation

In order to establish a meaningful comparison of the di¤erent versions of ACO dis-

cussed in the previous sections, we have reimplemented all of them using the TSP as

an application problem, with the exception of ANTS, for which no application to

the TSP has been reported in the literature. The resulting software package is avail-

able for download at www.aco-metaheuristic.org/aco-code/. We used this software

package to study the dependence of the ACO algorithms’ behavior on particular

configurations or parameters. All the experiments were performed either on a 700

MHz Pentium III double-processor machine with 512 MB of RAM or on a 1.2 GHz

Athlon MP double-processor machine with 1 GB of RAM; both machines were

running SUSE Linux 7.3. These experiments should be understood as giving an in-

dication of the general behavior of the available ACO algorithms when applied to

NP-hard combinatorial optimization problems and as an illustration of what hap-

pens when ACO algorithms are combined with local search algorithms. On the con-

trary, the experiments are not meant to present results competitive with current

state-of-the-art algorithms for the TSP. In fact, current state-of-the-art algorithms for

the TSP exploit complex data structures and local search routines that have not been

implemented for ACO. Nevertheless, the results of our study are interesting because

most of our findings remain true when ACO is applied to other NP-hard problems.

84 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3.6.1 The Behavior of ACO Algorithms

Artificial ants iteratively sample tours through a loop that includes a tour construc-

tion biased by the artificial pheromone trails and the heuristic information. The main

mechanism at work in ACO algorithms that triggers the discovery of good tours is

the positive feedback given through the pheromone update by the ants: the shorter

the ant’s tour, the higher the amount of pheromone the ant deposits on the arcs of its

tour. This in turn leads to the fact that these arcs have a higher probability of being

selected in the subsequent iterations of the algorithm. The emergence of arcs with

high pheromone values is further reinforced by the pheromone trail evaporation that

avoids an unlimited accumulation of pheromones and quickly decreases the phero-

mone level on arcs that only very rarely, or never, receive additional pheromone.

This behavior is illustrated in figure 3.5, where AS is applied to the 14-city TSP

instance burma14 from TSPLIB. The figure gives a visual representation of the

pheromone matrix: pheromone trail levels are translated into gray scale, where black

Figure 3.5
A visual representation of the pheromone matrix. The pheromone values on the arcs, stored in the phero-
mone matrix, are translated into gray-scale values; the darker an entry, the higher the associated phero-
mone trail value. The plots, from upper left to lower right, show the pheromone value for AS applied to
TSPLIB instance burma14 with 14 cities after 0, 5, 10, and 100 iterations. Note the symmetry with respect
to the main diagonal, which is due to the fact that burma14 is a symmetric TSP instance.

3.6 Experimental Evaluation 85

represents the highest pheromone trails and white the lowest ones. The four plots

give snapshots of the pheromone matrix after 0, 5, 10, and 100 iterations (from upper

left to lower right). At the beginning, all the matrix’s cells are black except for those

on the diagonal which are always white because they are initialized to zero and never

updated. After five iterations, the di¤erences between the pheromone trails are still

not very manifest; this is due to the fact that pheromone evaporation and pheromone

update could be applied only five times and therefore large di¤erences between the

pheromone trails could not be established yet. Also, after five iterations the phero-

mone trails are still rather high, which is due to the large initial pheromone values.

As the algorithm continues to iterate, the di¤erences between the pheromone values

become stronger and finally a situation is reached in which only few connections

have a large amount of pheromone associated with them (and therefore a large

probability of being chosen) and several connections have pheromone values close to

zero, making a selection of these connections very unlikely.

With good parameter settings, the long-term e¤ect of the pheromone trails is to

progressively reduce the size of the explored search space so that the search concen-

trates on a small number of promising arcs. Yet, this behavior may become undesir-

able, if the concentration is so strong that it results in an early stagnation of the

search (remember that search stagnation is defined as the situation in which all the

ants follow the same path and construct the same solution). In such an undesirable

situation the system has ceased to explore new possibilities and no better tour is

likely to be found anymore.

Several measures may be used to describe the amount of exploration an ACO

algorithm still performs and to detect stagnation situations. One of the simplest

possibilities is to compute the standard deviation sL of the length of the tours the

ants construct after every iteration—if sL is zero, this is an indication that all the

ants follow the same path (although sL can go to zero also in the very unlikely case

in which the ants follow di¤erent tours of the same length).

Because the standard deviation depends on the absolute values of the tour lengths,

a better choice is the use of the variation coe‰cient, defined as the quotient between

the standard deviation of the tour lengths and the average tour length, which is in-

dependent of the scale.

The distance between tours gives a better indication of the amount of exploration

the ants perform. In the TSP case, a way of measuring the distance distðT ;T 0Þ be-
tween two tours T and T 0 is to count the number of arcs contained in one tour but

not in the other. A decrease in the average distance between the ants’ tours indicates

that preferred paths are appearing, and if the average distance becomes zero, then

86 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

the system has entered search stagnation. A disadvantage of this measure is that it is

computationally expensive: there are Oðn2Þ possible pairs to be compared and each

single comparison has a complexity of OðnÞ.
While these measures only use the final tours constructed by the ants, the l-

branching factor, 0 < l < 1, introduced in Dorigo & Gambardella (1997b), measures

the distribution of the pheromone trail values more directly. Its definition is based on

the following notion: If for a given city i the concentration of pheromone trail on

almost all the incident arcs becomes very small but is large for a few others, the

freedom of choice for extending partial tours from that city is very limited. Conse-

quently, if this situation arises simultaneously for all the nodes of the graph, the part

of the search space that is e¤ectively searched by the ants becomes relatively small.

The l-branching factor for a city i is defined as follows: If t imax is the maximal and

t imin the minimal pheromone trail value on arcs incident to node i, the l-branching

factor is given by the number of arcs incident to i that have a pheromone trail value

tij b t imin þ lðt imax � t iminÞ. The value of l ranges over the interval ½0; 1�, while the

values of the l-branching factors range over the interval ½2; n� 1�, where n is the

number of nodes in the construction graph (which, in the TSP case, is the same as

the number of cities). The average l-branching factor l is the average of the l-

branching factors of all nodes and gives an indication of the size of the search space

e¤ectively being explored by the ants. If, for example, l is very close to 3, on average

only three arcs for each node have a high probability of being chosen. Note that in

the TSP the minimal l is 2, because for each city there must be at least two arcs used

by the ants to reach and to leave the city while building their solutions.

A disadvantage of the l-branching factor is that its values depend on the setting of

the parameter l. Another possibility for a measure of stagnation would be to use the

average E ¼
Pn

i¼1 Ei=n of the entropies Ei of the selection probabilities at each node:

Ei ¼ �
Xl

j¼1
pij log pij ; ð3:18Þ

where pij is the probability of choosing arc ði; jÞ when being in node i, and l, 1a

la n� 1, is the number of possible choices. Still another way to measure stagnation

is given by the following formula:P
tij AT

minftmax � tij; tij � tming
n2

; ð3:19Þ

whose value tends to 0 as the algorithm moves toward stagnation.

3.6 Experimental Evaluation 87

Behavior of AS

In this section we show the typical behavior of the average l-branching factor and

of the average distance among tours when AS has parameter settings that result in

either good or bad algorithm performance. The parameter settings are denoted by

good and bad in figure 3.6, and the values used are a ¼ 1, b ¼ 2, m ¼ n and to a ¼ 5,

b ¼ 0, m ¼ n respectively. Figure 3.6 shows that for bad parameter settings the l-

branching factor converges to its minimum value much faster than for good param-

eter settings (l is set to 0.05). A similar situation occurs when observing the average

distance between tours. In fact, the experimental results of Dorigo et al. (1996) sug-

gest that AS enters stagnation behavior if a is set to a large value, and does not find

high-quality tours if a is chosen to be much smaller than 1. Dorigo et al. (1996) tested

values of a A f0; 0:5; 1; 2; 5g. An example of bad system behavior that occurs if the

amount of exploration is too large is shown in figure 3.7. Here, good refers to the

same parameter setting as above and bad to the setting a ¼ 1, b ¼ 0, and m ¼ n. For

both stagnation measures, average l-branching factor and average distance between

tours, the algorithm using the bad parameter setting is not able to focus the search on

the most promising parts of the search space.

The overall result suggests that for AS good parameter settings are those that find

a reasonable balance between a too narrow focus of the search process, which in the

worst case may lead to stagnation behavior, and a too weak guidance of the search,

which can cause excessive exploration.

0

20

40

60

80

100

1 10 100 1000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

good
bad

0

5

10

15

20

25

30

1 10 100 1000

A
ve

ra
ge

λ-
br

an
ch

in
g

fa
ct

or

Number of iterations

good
bad

Figure 3.6
Bad behavior because of early stagnation: The plots give (left) the average l-branching factor, l ¼ 0:05,
and (right) the average distance among the tours generated by AS on the symmetric TSPLIB instance
kroA100. ‘‘Good’’ system behavior is observed setting parameters to a ¼ 1, b ¼ 2, m ¼ n. ‘‘Bad’’ system
behavior is observed setting parameters a ¼ 5, b ¼ 0, m ¼ n.

88 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Behavior of Extensions of AS

One particularity of AS extensions is that they direct the ants’ search in a more ag-

gressive way. This is mainly achieved by a stronger emphasis given to the best tours

found during each iteration (e.g., inMMAS) or the best-so-far tour (e.g., in ACS).

We would expect that this stronger focus of the search is reflected by statistical

measures of the amount of exploration. Figure 3.8 indicates the development of the

l-branching factor and the average distance between tours as observed in AS, EAS,

ASrank, MMAS, and ACS. For this comparison we used the same parameter set-

tings as in box 3.1, except for the value of b which was set to 2 for all algorithms.

The various ACO algorithms show, in part, strongly di¤erent behaviors, which

gives an indication that there are substantial di¤erences in their ways of directing

the search. While ACS shows a low l-branching factor and small average distances

between the tours throughout the algorithm’s entire run, for the others a transi-

tion from a more explorative search phase, characterized by a rather high average

l-branching factor, to an exploitation phase, characterized by a very low average

l-branching factor, can be observed. While this transition happens very soon in AS

and ASrank, it occurs only later in MMAS. On the other hand, ASrank is the only

algorithm that enters stagnation when run for a su‰ciently high number of itera-

tions. This observation also suggests that ASrank could profit from occasional phero-

mone trail reinitializations, as was proposed forMMAS (Stützle & Hoos, 2000).

It is interesting to note that, although MMAS also converges to the minimum

average l-branching factor, which suggests stagnation behavior, the average distance

0

20

40

60

80

100

1 10 100 1000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

good
bad

0

5

10

15

20

25

30

1 10 100 1000

A
ve

ra
ge

λ-
br

an
ch

in
g

fa
ct

or

Number of iterations

good
bad

Figure 3.7
Bad behavior because of excessive exploration: The plots give (left) the average l-branching factor,
l ¼ 0:05, and (right) the average distance among the tours generated by AS on the symmetric TSPLIB
instance kroA100. ‘‘Good’’ system behavior is observed setting parameters to a ¼ 1; b ¼ 2;m ¼ n. ‘‘Bad’’
system behavior is observed setting parameters a ¼ 1, b ¼ 0, m ¼ n.

3.6 Experimental Evaluation 89

between the tours it generates remains significantly higher than zero. The reason for

this apparently contradictory result is thatMMAS uses pheromone trail limits tmax

and tmin. So, even when the pheromone trails on the arcs of a tour reach the value

tmax and all others have the value tmin, new tours will still be explored.

A common characteristic of all of the AS extensions is that their search is focused

on a specific region of the search space. An indication of this is given by the lower l-

branching factor and the lower average distance between the tours of these exten-

sions when compared to AS. Because of this, AS extensions need to be endowed with

features intended to counteract search stagnation.

It should be noted that the behavior of the various ACO algorithms also de-

pends strongly on the parameter settings. For example, it is easy to forceMMAS to

converge much faster to good tours by making the search more aggressive through

the use of only the best-so-far update or by a higher evaporation rate. Nevertheless,

the behavior we show in figure 3.8 is typical for reasonable parameter settings (see

box 3.1).

In the following, we discuss the behavior ofMMAS and ACS in more detail. This

choice is dictated by the fact that these two algorithms are the most used and often

the best-performing of ACO algorithms.

Behavior ofMMAS

Of the ACO algorithms considered in this chapter,MMAS has the longest explor-

ative search phase. This is mainly due to the fact that pheromone trails are ini-

tialized to the initial estimate of tmax, and that the evaporation rate is set to a low

0

20

40

60

80

100

1 10 100 1000 10000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

AS
EAS

AS-RANK
MMAS

ACS

2

4

6

8

10

12

14

16

1 10 100 1000 10000

A
ve

ra
ge

λ-
br

an
ch

in
g

fa
ct

or

Number of iterations

AS
EAS

AS-RANK
MMAS

ACS

Figure 3.8
Comparing AS extensions: The plots give (left) the average l-branching factor, l ¼ 0:05, and (right)
the average distance among the tours for several ACO algorithms on the symmetric TSPLIB instance
kroA100. Parameters were set as in box 3.1, except for b which was set to b ¼ 2 for all the algorithms.

90 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

value (a value that gives good results for long runs of the algorithm was found to be

r ¼ 0:02). In fact, because of the low evaporation rate, it takes time before significant

di¤erences among the pheromone trails start to appear.

When this happens,MMAS behavior changes from explorative search to a phase

of exploitation of the experience accumulated in the form of pheromone trails. In this

phase, the pheromone on the arcs corresponding to the best-found tour rises up to

the maximum value tmax, while on all the other arcs it decreases down to the mini-

mum value tmin. This is reflected by an average l-branching factor of 2.0. Neverthe-

less, the exploration of tours is still possible, because the constraint on the minimum

value of pheromone trails has the e¤ect of giving to each arc a minimum probability

pmin > 0 of being chosen. In practice, during this exploitation phase MMAS con-

structs tours that are similar to either the best-so-far or the iteration-best tour, de-

pending on the algorithm implementation.

Behavior of ACS

ACS uses a very aggressive search that focuses from the very beginning around the

best-so-far tour T bs. In other words, it generates tours that di¤er only in a relatively

small number of arcs from the best-so-far tour T bs. This is achieved by choosing a

large value for q0 in the pseudorandom proportional action choice rule [see equation

(3.10)], which leads to tours that have many arcs in common with the best-so-far

tour. An interesting aspect of ACS is that while arcs are traversed by ants, their as-

sociated pheromone is diminished, making them less attractive, and therefore favor-

ing the exploration of still unvisited arcs. Local updating has the e¤ect of lowering

the pheromone on visited arcs so that they will be chosen with a lower probability by

the other ants in their remaining steps for completing a tour. As a consequence, the

ants never converge to a common tour, as is also shown in figure 3.8.

3.6.2 Comparison of Ant System with Its Extensions

There remains the final question about the solution quality returned by the various

ACO algorithms. In figure 3.9 we compare the development of the average solution

quality measured in twenty-five trials for instance d198 (left side) and in five trials

for instance rat783 (right side) of several ACO algorithms as a function of the com-

putation time, which is indicated in seconds on the x-axis. We found experimentally

that all extensions of AS achieve much better final solutions than AS, and in all cases

the worst final solution returned by the AS extensions is better than the average final

solution quality returned by AS.

In particular, it can be observed that ACS is the most aggressive of the ACO

algorithms and returns the best solution quality for very short computation times.

3.6 Experimental Evaluation 91

Di¤erently,MMAS initially produces rather poor solutions and in the initial phases

it is outperformed even by AS. Nevertheless, its final solution quality, for these two

instances, is the best among the compared ACO algorithms.

These results are consistent with the findings of the various published research

papers on AS extensions: in all these publications it was found that the respective

extensions improved significantly over AS performance. Comparisons among the

several AS extensions indicate that the best performing variants are MMAS and

ACS, closely followed by ASrank.

3.7 ACO plus Local Search

The vast literature on metaheuristics tells us that a promising approach to obtaining

high-quality solutions is to couple a local search algorithm with a mechanism to

generate initial solutions. As an example, it is well known that, for the TSP, iterated

local search algorithms are currently among the best-performing algorithms. They

iteratively apply local search to initial solutions that are generated by introducing

modification to some locally optimal solutions (see chapter 2, section 2.4.4, for a

detailed description of iterated local search).

ACO’s definition includes the possibility of using local search (see figure 3.3); once

ants have completed their solution construction, the solutions can be taken to their

local optimum by the application of a local search routine. Then pheromones are

updated on the arcs of the locally optimized solutions. Such a coupling of solution

0

5

10

15

20

25

30

35

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

AS
EAS

AS-RANK
MMAS

ACS

0
2
4
6
8

10
12
14
16
18
20
22

0.1 1 10 100

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

AS
EAS

AS-RANK
MMAS

ACS

Figure 3.9
Comparing AS extensions: The plots give the development of the average percentage deviation from the
optimum as a function of the computation time in seconds for AS, EAS, ASrank ,MMAS, and ACS for the
symmetric TSPLIB instances d198 (left), and rat783 (right). Parameters were set as indicated in box 3.1,
except for b, which was set to b ¼ 5 for all algorithms.

92 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

construction with local search is a promising approach. In fact, because ACO’s so-

lution construction uses a di¤erent neighborhood than local search, the probability

that local search improves a solution constructed by an ant is quite high. On the

other hand, local search alone su¤ers from the problem of finding good starting so-

lutions; these solutions are provided by the artificial ants.

In the following, we study how the performance of one of the ACO algorithms

presented before, MMAS, is improved when coupled with a local search. To do

so, we implemented three of the most used types of local search for the TSP: 2-opt,

2.5-opt, and 3-opt. 2-opt was explained in box 2.4 (with the name 2-exchange), while

2.5-opt and 3-opt are explained in box 3.2. All three implementations exploit three

standard speedup techniques: the use of nearest-neighbor lists of limited length (here

20), the use of a fixed radius nearest-neighbor search, and the use of don’t look bits.

These techniques together make the computation time increase subquadratically with

the instance size. See Bentley (1992) and Johnson & McGeoch (1997) for details on

these speedup techniques.

3.7.1 How to Add Local Search to ACO Algorithms?

There exist a large number of possible choices when combining local search with

ACO algorithms. Some of these possibilities relate to the fundamental question of

how e¤ective and how e‰cient the local search should be. In fact, in most local

search procedures, the better the solution quality returned, the higher the computa-

tion time required. This translates into the question whether for a given computation

time it is better to frequently apply a quick local search algorithm that only slightly

improves the solution quality of the initial solutions, or whether a slow but more

e¤ective local search should be used less frequently.

Other issues are related to particular parameter settings and to which solutions the

local search should be applied. For example, the number of ants to be used, the

necessity to use heuristic information or not, and which ants should be allowed to

improve their solutions by a local search, are all questions of particular interest

when an ACO algorithm is coupled with a local search routine. An interesting ques-

tion is whether the implementation choices done and the parameter values chosen in

the case of ACO algorithms are still the best once local search is added. In general,

there may be significant di¤erences regarding particular parameter settings. For

example, for MMAS it was found that when applied without local search, a good

strategy is to frequently use the iteration-best ant to update pheromone trails. Yet,

when combined with local search a stronger emphasis of the best-so-far update

seemed to improve performance (Stützle, 1999).

3.7 ACO plus Local Search 93

Box 3.2
2.5-opt and 3-opt

The 3-opt neighborhood consists of those tours that can be obtained from a tour s by replacing at
most three of its arcs. The removal of three arcs results in three partial tours that can be recombined
into a full tour in eight di¤erent ways. However, only four of these eight ways involve the intro-
duction of three new arcs, the other four reduce to 2-opt moves (see box 2.4 for details on the 2-opt

neighborhood). (Note that in a 3-opt local search procedure 2-opt moves are also examined.) The
figure below gives one particular example of a 3-opt exchange move.

h-1

jj+1

i+1

h

i+1

h-1

jj+1

i+1

h

i+1

2.5-opt is a local search algorithm that includes a strongly restricted version of a 3-opt move on top
of a 2-opt local search. When checking for an improving 2-opt move, it is also checked whether
inserting the city between a city i and its successor, as illustrated in the figure below, results in an
improved tour.

h-1

ii+1

h+1h h-1

ii+1

h+1h

2.5-opt leads only to a small, constant overhead in computation time over that required by a 2-opt

local search but, as experimental results show (Bentley, 1992), it leads to significantly better tours.
However, the tour quality returned by 2.5-opt is still significantly worse than that of 3-opt. Imple-
mentations of the above-mentioned local search procedures not using any speedup techniques result
in the following time complexities for a single neighborhood search: Oðn2Þ for 2-opt and 2.5-opt, and
Oðn3Þ for 3-opt.

94 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

In the following, we give some exemplary results, focusing our attention on

MMAS and ACS. In particular, we examine the influence that the strength of the

local search, the number of ants, and the use of heuristic information have on the

algorithms’ performance.

Strength of the Local Search

We combined MMAS with 2-opt, 2.5-opt, and 3-opt local search procedures. While

the solution quality returned by these local search algorithms increases from 2-opt to

3-opt, the same is true for the necessary computation time to identify local optima

(Reinelt, 1994; Johnson & McGeoch, 2002).

Figure 3.10 plots the solution quality as a function of the CPU time. For the

largest amount of computation time, MMAS combined with 3-opt gives the best

average solution quality. The fact that for a short interval of timeMMAS combined

with 2-opt or 2.5-opt gives slightly better results than MMAS combined with 3-opt

can be explained as follows. First, remember (see section 3.6.2 and figure 3.9) that

MMAS moves from an initial explorative phase to an exploitation phase by in-

creasing over time the relative frequency with which the best-so-far pheromone up-

date is applied with respect to the iteration-best pheromone update. Second, we have

seen (see box 3.2) that 3-opt has a higher time complexity than 2-opt and 2.5-opt. This

means that an iteration of theMMAS with 3-opt algorithm requires more CPU time

than an iteration ofMMAS with 2-opt or 2.5-opt. Therefore, the explanation for the

observed temporary better behavior ofMMAS with 2-opt or 2.5-opt is that there is a

0

1

2

3

4

5

6

7

8

9

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

2-opt
2.5-opt

3-opt

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

2-opt
2.5-opt

3-opt

Figure 3.10
Comparing local search procedures: The plots give the average percentage deviation from the optimal tour
as a function of the CPU time in seconds for MMAS using a 2-opt, a 2.5-opt, and a 3-opt local search
procedure for the symmetric TSPLIB instances pcb1173 (left) and pr2392 (right). Parameters are set to
the values given in box 3.3.

3.7 ACO plus Local Search 95

period of time in which while MMAS with 3-opt is still in the explorative phase,

MMAS with 2-opt andMMAS with 2.5-opt are already in the exploitation phase.

In any case, once the final tour quality obtained by the di¤erent variants is taken

into account, the computational results clearly suggest that the use of more e¤ective

local searches improves the solution quality ofMMAS.

Number of Ants

In a second series of experiments we investigated the role of the number of ants m

on the final performance of MMAS. We ran MMAS using parameter settings of

m A f1; 2; 5; 10; 25; 50; 100g leaving all other choices the same. The result was that on

small problem instances with up to 500 cities, the number of ants did not matter very

Box 3.3
Parameter Settings for ACO Algorithms with Local Search

The only ACO algorithms that have been applied with local search to the TSP are ACS and
MMAS. Good settings, obtained experimentally (see, e.g., Stützle & Hoos [2000] forMMAS and
Dorigo & Gambardella [1997b] for ACS), for the parameters common to both algorithms are indi-
cated below.

ACO algorithm a b r m t0

MMAS 1 2 0.2 25 1=rCnn

ACS — 2 0.1 10 1=nC nn

The remaining parameters are:

MMAS: tmax is set, as in box 3.1, to tmax ¼ 1=ðrCbsÞ, while tmin ¼ 1=ð2nÞ. For the pheromone
deposit, the schedule for the frequency with which the best-so-far pheromone update is applied is

fbs ¼

y if ia 25

5 if 26a ia 75

3 if 76a ia 125

2 if 126a ia 250

1 otherwise

8>>>>><
>>>>>:

ð3:20Þ

where fbs is the number of algorithm iterations between two updates performed by the best-so-far
ant (in the other iterations it is the iteration-best ant that makes the update) and i is the iteration
counter of the algorithm.

ACS: We have x ¼ 0:1 and q0 ¼ 0:98.

Common to both algorithms is also that after each iteration all the tours constructed by the ants are
improved by the local search. Additionally, inMMAS occasional pheromone trail reinitializations
are applied. This is done when the average l-branching factor becomes smaller than 2.00001 and if
for more than 250 iterations no improved tour has been found.

Note that on individual instances di¤erent settings may result in much better performance.

96 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

much with respect to the best final performance. In fact, the best trade-o¤ between

solution quality and computation time seems to be obtained when using a small

number of ants—between two and ten. Yet, on the larger instances, the usefulness of

having a population of ants became more apparent. For instances with more than

500 cities the worst computational results were always obtained when using only one

ant and the second worst results when using two ants (see figure 3.11).

Heuristic Information

It is well known that when ACO algorithms are applied to the TSP without local

search, the heuristic information is essential for the generation of high-quality tours.

In fact, in the initial phases of the search, the pheromones, being set to initial random

values, do not guide the artificial ants, which end up constructing (and reinforcing)

tours of very bad quality. The main role of the heuristic information is to avoid this,

by biasing ants so that they build reasonably good tours from the very beginning.

Once local search is added to the ACO implementation, the randomly generated

initial tours become good enough. It is therefore reasonable to expect that heuristic

information is no longer necessary.

Experiments withMMAS and ACS on the TSP confirmed this conjecture: when

used with local search, even without using heuristic information, very high-quality

tours were obtained. For example, figure 3.12 plots the average percentage devia-

tion from the optimal tour as a function of CPU time obtained with MMAS and

ACS with local search on the symmetric TSPLIB instance pcb1173. The figure

shows thatMMAS without heuristic information converged in most cases somewhat

0

1

2

3

4

5

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

1 ant
2 ants
5 ants

10 ants
25 ants
50 ants

100 ants

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

1 ant
2 ants
5 ants

10 ants
25 ants
50 ants

100 ants

Figure 3.11
Varying the number of ants used: The plots give the average percentage deviation from the optimal tour as
a function of the CPU time in seconds forMMAS with 3-opt using a number of ants varying from 1 ant to
100 ants on the symmetric TSPLIB instances pcb1173 (left) and pr2392 (right). Parameters are set to
the values given in box 3.3.

3.7 ACO plus Local Search 97

slower to tours that were slightly worse than those obtained using heuristic infor-

mation, while in most cases ACS’s final tour length with heuristic information was

slightly worse than without.

One might argue that the question whether heuristic information is used or not is

just a matter of parameter settings (not using heuristic information is simply achieved

by setting b ¼ 0). Yet, the importance of our computational results is somewhat

more far-reaching. While in the TSP the distance between cities is an obvious and

computationally inexpensive heuristic to use, in other problems it may be much more

di‰cult to find, or expensive to compute, meaningful heuristic information which

helps to improve performance. Fortunately, if no such obvious heuristic information

exists, our computational results suggest that using an ACO algorithm incorporating

local search may be enough to achieve good results.

Lamarckian versus Darwinian Pheromone Updates

Let us reconsider the choice of the tour that is used to deposit pheromones after a

local search: Each ant produces a tour, say s1, which is then transformed into an-

other tour, say s2, by the local search. Then the pheromones are updated. As our

goal is to maximize the quality of the final tour s2, pheromone updates must be pro-

portional to the quality of s2, not s1. Once this is accepted, there are still two ways of

updating the pheromones:

9 We reinforce the pheromones corresponding to the final tour s2, or

9 we reinforce the pheromones corresponding to the intermediate tour s1.

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

heuristic
no heuristic

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

heuristic
no heuristic

Figure 3.12
The role of heuristic information when using local search: The plots give the average percentage deviation
from the optimal tour as a function of the CPU time in seconds forMMAS (left) and ACS (right) with
local search on the symmetric TSPLIB instance pcb1173, with and without the use of heuristic informa-
tion during tour construction.

98 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

By analogy with similar procedures in the area of genetic algorithms (Whitley,

Gordon, & Mathias, 1994), we call the first alternative the Lamarckian approach,

and the second the Darwinian approach.

The main argument supporting the Lamarckian approach is that it is reasonable to

think that, if the search of the ACO algorithm can be biased by the better tour s2,

then it would be stupid to use the worse tour s1. In fact, in published ACO imple-

mentations, only the Lamarckian alternative has been used. On the other hand, the

main argument in favor of the Darwinian approach is the view that what ACO

algorithms with local search really do is to learn a way to generate good initial solu-

tions for the local search, where ‘‘good’’ means that the initial solutions allow local

search to reach good local optima.

In figure 3.13, we report some results we obtained withMMAS and ACS on one

of our test instances. As can be observed, for the TSP case, the Lamarckian approach

outperforms by far the Darwinian approach. Analogous tests on other TSP instances

and other problems, like the quadratic assignment problem, confirmed this obser-

vation and we conjecture that for most combinatorial optimization problems the

Lamarckian approach is preferable.

3.8 Implementing ACO Algorithms

This section describes in detail the steps that have to be taken to implement an

ACO algorithm for the TSP. Because the basic considerations for the implementa-

tion of di¤erent ACO algorithm variants are very similar, we mainly focus on AS

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

Lamarckian
Darwinian

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

Lamarckian
Darwinian

Figure 3.13
Lamarckian versus Darwinian pheromone updates: The plots give the average percentage deviation from
the optimal tour as a function of the CPU time in seconds for MMAS (left) and ACS (right) using
Lamarckian and Darwinian pheromone updates on the symmetric TSPLIB instance pcb1173.

3.8 Implementing ACO Algorithms 99

and indicate, where appropriate, the necessary changes for implementing other ACO

algorithms.

A first implementation of an ACO algorithm can be quite straightforward. In fact,

if a greedy construction procedure like a nearest-neighbor heuristic is available, one

can use as a construction graph the same graph used by the construction procedure,

and then it is only necessary to (1) add pheromone trail variables to the construction

graph and (2) define the set of artificial ants to be used for constructing solutions in

such a way that they implement, according to equation (3.2), a randomized version

of the construction procedure. It must be noted, however, that in order to have an

e‰cient implementation, often additional data structures are required, like arrays to

store information which, although redundant, make the processing much faster. In

the following, we describe the steps to be taken to obtain an e‰cient implementa-

tion of AS. We will give a pseudo-code description of a possible implementation in a

C-like notation. This description is general enough to allow a reader with some pre-

vious experience in procedural or object-oriented programming (a university-level

first-year programming course should su‰ce) to implement an e‰cient version of

any of the ACO algorithms presented in this chapter. Additionally, a C code of sev-

eral ACO algorithms is available online at www.aco-metaheuristic.org/aco-code/.

3.8.1 Data Structures

As a first step, the basic data structures have to be defined. These must allow storing

the data about the TSP instance and the pheromone trails, and representing artificial

ants.

Figure 3.14 gives a general outline of the main data structures that are used for the

implementation of an ACO algorithm, which includes the data for the problem rep-

resentation and the data for the representation of the ants, as explained below.

Problem Representation

Intercity Distances. Often a symmetric TSP instance is given as the coordinates of a

number of n points. In this case, one possibility would be to store the x and y coor-

dinates of the cities in two arrays and then compute on the fly the distance between

the cities as needed. However, this leads to a significant computational overhead:

obviously, it is more reasonable to precompute all intercity distances and to store

them in a symmetric distance matrix with n2 entries. In fact, although for symmetric

TSPs we only need to store nðn� 1Þ=2 distinct distances, it is more e‰cient to use an

n2 matrix to avoid performing additional operations to check whether, when access-

ing a generic distance dði; jÞ, entry ði; jÞ or entry ð j; iÞ of the matrix should be used.

100 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Note that for very large instances it may be necessary to compute distances on the

fly, if it is not possible (or too expensive) to keep the full distance matrix in the main

memory. Fortunately, in these cases there exist some intermediate possibilities, such

as storing the distances between a city and the cities of its nearest-neighbor list, that

greatly reduce the necessary amount of computation. It is also important to know

that, for historical reasons, in almost all the TSP literature, the distances are stored

as integers. In fact, in old computers integer operations used to be much faster than

operations on real numbers, so that by setting distances to be integers, much more

e‰cient code could be obtained.

Nearest-Neighbor Lists. In addition to the distance matrix, it is convenient to store

for each city a list of its nearest neighbors. Let di be the list of the distances from a

city i to all cities j, with j ¼ 1; . . . n and i0 j (we assume here that the value dii is

assigned a value larger than dmax, where dmax is the maximum distance between any

two cities). The nearest-neighbor list of a city i is obtained by sorting the list di
according to nondecreasing distances, obtaining a sorted list d 0i ; ties can be broken

randomly. The position r of a city j in city i’s nearest-neighbor list nn_list½i� is the

index of the distance dij in the sorted list d 0i , that is, nn_list½i�½r� gives the identifier

(index) of the r-th nearest city to city i (i.e., nn_list½i�½r� ¼ j). Nearest-neighbor lists

% Representation of problem data

integer dist[n][n] % distance matrix

integer nn_list[n][nn] % matrix with nearest neighbor lists of depth nn

real pheromone[n][n] % pheromone matrix

real choice_info[n][n] % combined pheromone and heuristic information

% Representation of ants

structure single_ant

begin

integer tour_length % the ant’s tour length

integer tour[nþ 1] % ant’s memory storing (partial) tours

integer visited [n] % visited cities

end

single_ant ant[m] % structure of type single_ant

Figure 3.14
Main data structures for the implementation of an ACO algorithm for the TSP.

3.8 Implementing ACO Algorithms 101

for all cities can be constructed in Oðn2 log nÞ (in fact, you have to repeat a sorting

algorithm over n� 1 cities for each city).

An enormous speedup is obtained for the solution construction in ACO algo-

rithms, if the nearest-neighbor list is cut o¤ after a constant number nn of nearest

neighbors, where typically nn is a small value ranging between 15 and 40. In this

case, an ant located in city i chooses the next city among the nn nearest neighbors of

i; in case the ant has already visited all the nearest neighbors, then it makes its se-

lection among the remaining cities. This reduces the complexity of making the choice

of the next city to Oð1Þ, unless the ant has already visited all the cities in nn_list½i�.
However, it should be noted that the use of truncated nearest-neighbor lists can

make it impossible to find the optimal solution.

Pheromone Trails. In addition to the instance-related information, we also have to

store for each connection ði; jÞ a number tij corresponding to the pheromone trail

associated with that connection. In fact, for symmetric TSPs this requires storing

nðn� 1Þ=2 distinct pheromone values, because we assume that tij ¼ tji, Eði; jÞ.
Again, as was the case for the distance matrix, it is more convenient to use some re-

dundancy and to store the pheromones in a symmetric n2 matrix.

Combining Pheromone and Heuristic Information. When constructing a tour, an ant

located on city i chooses the next city j with a probability which is proportional to

the value of ½tij �a½hij�
b. Because these very same values need to be computed by each

of the m ants, computation times may be significantly reduced by using an additional

matrix choice_info, where each entry choice_info½i�½ j� stores the value ½tij�a½hij �
b.

Again, in the case of a symmetric TSP instance, only nðn� 1Þ=2 values have to be

computed, but it is convenient to store these values in a redundant way as in the case

of the pheromone and the distance matrices. Additionally, one may store the h
b
ij

values in a further matrix heuristic (not implemented in the code associated with the

book) to avoid recomputing these values after each iteration, because the heuristic

information stays the same throughout the whole run of the algorithm (some tests

have shown that the speedup obtained when no local search is used is approximately

10%, while no significant di¤erences are observed when local search is used). Finally,

if some distances are zero, which is in fact the case for some of the benchmark

instances in the TSPLIB, then one may set them to a very small positive value to

avoid division by zero.

Speeding Up the Pheromone Update. Further optimization can be introduced by

restricting the computation of the numbers in the choice_info matrix to the connec-

tions between a city and the cities of its nearest-neighbor list. In fact, this technique,

102 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

which is exploited in the implementation of the various ACO algorithms in the ac-

companying code, strongly reduces the computation time when ACO algorithms are

applied to large TSP instances with several hundreds or thousands of cities.

Representing Ants

An ant is a simple computational agent which constructs a solution to the problem at

hand, and may deposit an amount of pheromone Dt on the arcs it has traversed. To

do so, an ant must be able to (1) store the partial solution it has constructed so far,

(2) determine the feasible neighborhood at each city, and (3) compute and store the

objective function value of the solutions it generates.

The first requirement can easily be satisfied by storing the partial tour in a su‰-

ciently large array. For the TSP we represent tours by arrays of length nþ 1, where

at position nþ 1 the first city is repeated. This choice makes easier some of the other

procedures like the computation of the tour length.

The knowledge of the partial tour at each step is su‰cient to allow the ant to

determine whether a city j is in its feasible neighborhood: it is enough to scan the

partial tour for the occurrence of city j. If city j has not been visited yet, then it is

member of the feasible neighborhood; otherwise it is not. Unfortunately, this simple

way of determining the feasible neighborhood involves an operation of worst-case

complexity OðnÞ for each city i, resulting in a high computational overhead. The

simplest way around this problem is to associate with each ant an additional array

visited whose values are set to visited½ j� ¼ 1 if city i has already been visited by the

ant, and to visited½ j� ¼ 0 otherwise. This array is updated by the ant while it builds a

solution.

Finally, the computation of the tour length, stored by the ant in the tour_length

variable, can easily be done by summing the length of the n arcs in the ant’s tour.

Hence, an ant may be represented by a structure that comprises one variable

tour_length to store the ant’s objective function value, one ðnþ 1Þ-dimensional array

tour to store the ant’s tour, and one n-dimensional array visited to store the visited

cities (note that in figure 3.14, the array visited, part of the data structure single_ant,

is declared of type integer; however, to save memory, it could be declared of type

Boolean).

Overall Memory Requirement

For representing all the necessary data for the problem we need four matrices of

dimension n� n for representing the distance matrix, the pheromone matrix, the

heuristic information matrix, and the choice_info matrix, and a matrix of size n� nn

for the nearest-neighbor lists. Additionally, for each of the ants we need two arrays

of size ðnþ 1Þ and n to store, respectively, the tour and the visited cities, as well as an

3.8 Implementing ACO Algorithms 103

integer for storing the tour’s length. Finally, we need a variable for representing each

of the m ants. Since the number of ants is typically either a small constant (this is the

case for ACS and Ant-Q or for most ACO algorithms with local search) or on the

order of n (this is the case for AS variants without use of local search), the overall

memory requirement is Oðn2Þ. In addition to these main data structures, it is also

necessary to store intermediate results, such as the best solution found so far, and

statistical information about the algorithm performance; nevertheless, these addi-

tional data require only a very minor amount of memory when compared to the data

for representing the colony of ants and the problem.

To derive a more exact estimate of the memory requirements, we can assume that

representing an integer value on a computer takes 4 bytes and representing a ‘‘real’’

number takes 8 bytes. Additionally, we assume the number of ants to be m ¼ n, and

we do not consider the heuristic information matrix. The estimate is obtained as

follows (see figure 3.14): 24n2 bytes are necessary for the problem data (4n2 for the

distance matrix, 4n2 for the matrix nn_list, 8n2 for the pheromone matrix, and 8n2

for the matrix choice_info), while 8n2 bytes are needed for the representation of the

ants (there are m ¼ n ants and each ant requires two integer arrays of length n). The

overall memory requirement can therefore be assumed to be roughly 32n2 bytes,

which is a slight underestimate of the real memory consumption. Memory require-

ments increase strongly with problem size, because the memory requirement is qua-

dratic in n. However, the memory requirements are reasonable when considering the

memory available in current computers (using the above 32n2 estimate, instances of

up to 4000 cities can be tackled by ACO algorithms with a computer with 512 MB of

RAM), and the fact that the problem instances of most combinatorial optimization

problems to which ACO has been applied (see chapter 5 for an overview) are typi-

cally much smaller than those of the TSP, so that memory consumption is rarely an

issue.

3.8.2 The Algorithm

The main tasks to be considered in an ACO algorithm are the solution construction,

the management of the pheromone trails, and the additional techniques such as local

search. In addition, the data structures and parameters need to be initialized and

some statistics about the run need to be maintained. In figure 3.15 we give a high-

level view of the algorithm, while in the following we give some details on how to

implement the di¤erent procedures of AS in an e‰cient way.

Data Initialization

In the data initialization, (1) the instance has to be read; (2) the distance matrix has

to be computed; (3) the nearest-neighbor lists for all cities have to be computed; (4)

104 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

the pheromone matrix and the choice_info matrix have to be initialized; (5) the ants

have to be initialized; (6) the algorithm’s parameters must be initialized; and (7) some

variables that keep track of statistical information, such as the used CPU time, the

number of iterations, or the best solution found so far, have to be initialized. A pos-

sible organization of these tasks into several data initialization procedures is indi-

cated in figure 3.16.

Termination Condition

The program stops if at least one termination condition applies. Possible termination

conditions are: (1) the algorithm has found a solution within a predefined distance

from a lower bound on the optimal solution quality; (2) a maximum number of tour

constructions or a maximum number of algorithm iterations has been reached; (3) a

maximum CPU time has been spent; or (4) the algorithm shows stagnation behavior.

procedure ACOforTSP

InitializeData

while (not terminate) do

ConstructSolutions

LocalSearch

UpdateStatistics

UpdatePheromoneTrails

end-while

end-procedure

Figure 3.15
High-level view of an ACO algorithm for the TSP.

procedure InitializeData

ReadInstance

ComputeDistances

ComputeNearestNeighborLists

ComputeChoiceInformation

InitializeAnts

InitializeParameters

InitializeStatistics

end-procedure

Figure 3.16
Procedure to initialize the algorithm.

3.8 Implementing ACO Algorithms 105

Solution Construction

The tour construction is managed by the procedure ConstructSolutions, shown in

figure 3.17. The solution construction requires the following phases.

1. First, the ants’ memory must be emptied. This is done in lines 1 to 5 of procedure

ConstructSolutions by marking all cities as unvisited, that is, by setting all the entries

of the array ants.visited to false for all the ants.

2. Second, each ant has to be assigned an initial city. One possibility is to assign each

ant a random initial city. This is accomplished in lines 6 to 11 of the procedure. The

function random returns a random number chosen according to a uniform distribu-

tion over the set f1; . . . ; ng.

procedure ConstructSolutions

1 for k ¼ 1 to m do

2 for i ¼ 1 to n do

3 ant[k].visited [i] false

4 end-for

5 end-for

6 step 1

7 for k ¼ 1 to m do

8 r randomf1; . . . ; ng
9 ant[k].tour[step] r

10 ant[k].visited [r] true

11 end-for

12 while (step < n) do

13 step stepþ 1

14 for k ¼ 1 to m do

15 ASDecisionRule(k, step)

16 end-for

17 end-while

18 for k ¼ 1 to m do

19 ant[k].tour[nþ 1] ant[k].tour[1]

20 ant[k].tour_length ComputeTourLength(k)

21 end-for

end-procedure

Figure 3.17
Pseudo-code of the solution construction procedure for AS and its variants.

106 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3. Next, each ant constructs a complete tour. At each construction step (see the pro-

cedure in figure 3.17) the ants apply the AS action choice rule [equation (3.2)]. The

procedure ASDecisionRule implements the action choice rule and takes as parameters

the ant identifier and the current construction step index; this is discussed below in

more detail.

4. Finally, in lines 18 to 21, the ants move back to the initial city and the tour length

of each ant’s tour is computed. Remember that, for the sake of simplicity, in the tour

representation we repeat the identifier of the first city at position nþ 1; this is done in

line 19.

As stated above, the solution construction of all of the ants is synchronized in such

a way that the ants build solutions in parallel. The same behavior can be obtained,

for all AS variants, by ants that construct solutions sequentially, because the ants do

not change the pheromone trails at construction time (this is not the case for ACS, in

which case the sequential and parallel implementations give di¤erent results).

While phases (1), (2), and (4) are very straightforward to code, the implementation

of the action choice rule requires some care to avoid large computation times. In the

action choice rule an ant located at city i probabilistically chooses to move to an

unvisited city j based on the pheromone trails taij and the heuristic information h
b
ij

[see equation (3.2)].

Here we give pseudo-codes for the action choice rule with and without considera-

tion of candidate lists. The pseudo-code for the first variant ASDecisionRule is given

in figure 3.18. The procedure works as follows: first, the current city c of ant k is de-

termined (line 1). The probabilistic choice of the next city then works analogously

to the roulette wheel selection procedure of evolutionary computation (Goldberg,

1989): each value choice_info½c�½ j� of a city j that ant k has not visited yet determines

a slice on a circular roulette wheel, the size of the slice being proportional to the

weight of the associated choice (lines 2–10). Next, the wheel is spun and the city to

which the marker points is chosen as the next city for ant k (lines 11–17). This is

implemented by

1. summing the weight of the various choices in the variable sum_probabilities,

2. drawing a uniformly distributed random number r from the interval ½0; sum_

probabilities�,
3. going through the feasible choices until the sum is greater or equal to r.

Finally, the ant is moved to the chosen city, which is marked as visited (lines 18

and 19).

3.8 Implementing ACO Algorithms 107

These construction steps are repeated until the ants have completed a tour. Since

each ant has to visit exactly n cities, all the ants complete the solution construction

after the same number of construction steps.

When exploiting candidate lists, the procedure ASDecisionRule needs to be

adapted, resulting in the procedure NeighborListASDecisionRule, given in figure 3.19.

A first change is that when choosing the next city, one needs to identify the appro-

priate city index from the candidate list of the current city c. This results in changes

of lines 3 to 10 of figure 3.18: the maximum value of index j is changed from n to nn

in line 3 and the test performed in line 4 is applied to the j-th nearest neighbor given

by nn_list½c�½ j�. A second change is necessary to deal with the situation in which all

the cities in the candidate list have already been visited by ant k. In this case, the

variable sum_probabilities keeps its initial value 0.0 and one city out of those not in

procedure ASDecisionRule(k; i)

input k % ant identifier

input i % counter for construction step

1 c ant[k].tour[i � 1]

2 sum_probabilities ¼ 0.0

3 for j ¼ 1 to n do

4 if ant[k].visited [j] then

5 selection_probability[j] 0.0

6 else

7 selection_probability[j] choice_info[c][j]

8 sum_probabilities sum_probabilitiesþ selection_probability[j]

9 end-if

10 end-for

11 r random[0, sum_probabilities]

12 j 1

13 p selection_probability[j]

14 while (p < r) do

15 j j þ 1

16 p pþ selection_probability[j]

17 end-while

18 ant[k].tour[i] j

19 ant[k].visited [j] true

end-procedure

Figure 3.18
AS without candidate lists: pseudo-code for the action choice rule.

108 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

procedure NeighborListASDecisionRule(k; i)

input k % ant identifier

input i % counter for construction step

1 c ant[k].tour[i � 1]

2 sum_probabilities 0.0

3 for j ¼ 1 to nn do

4 if ant[k].visited [nn_list[c][j]] then

5 selection_probability[j] 0.0

6 else

7 selection_probability[j] choice_info[c][nn_list[c][j]]

8 sum_probabilities sum_probabilitiesþ selection_probability[j]

9 end-if

10 end-for

11 if (sum_probabilities ¼ 0.0) then

12 ChooseBestNext(k; i)

13 else

14 r random[0, sum_probabilities]

15 j 1

16 p selection_probability[j]

17 while (p < r) do

18 j j þ 1

19 p pþ selection_probability[j]

20 end-while

21 ant[k].tour[i] nn_list[c][j]

22 ant[k].visited [nn_list[c][j]] true

23 end-if

end-procedure

Figure 3.19
AS with candidate lists: pseudo-code for the action choice rule.

3.8 Implementing ACO Algorithms 109

the candidate list is chosen: the procedure ChooseBestNext (see pseudo-code in figure

3.20) is used to identify the city with maximum value of ½tij�a½hij �
b as the next to

move to.

It is clear that by using candidate lists the computation time necessary for the ants

to construct solutions can be significantly reduced, because the ants choose from

among a much smaller set of cities. Yet, the computation time is reduced only if

the procedure ChooseBestNext does not need to be applied too often. Fortunately,

as also suggested by the computational results presented in Gambardella & Dorigo

(1996), this seems not to be the case.

Local Search

Once the solutions are constructed, they may be improved by a local search proce-

dure. While a simple 2-opt local search can be implemented in a few lines, the imple-

mentation of an e‰cient variant is somewhat more involved. This is already true to

some extent for the implementation of the 3-opt local search, and even more for the

Lin-Kernighan heuristic. Since the details of the local search are not important for

understanding how ACO algorithms can be coded e‰ciently, we refer to the accom-

panying code (available at www.aco-metaheuristic.org/aco-code/) for more informa-

tion on the local search implementation.

procedure ChooseBestNext(k; i)

input k % ant identifier

input i % counter for construction step

v 0.0

c ant[k].tour[i � 1]

for j ¼ 1 to n do

if not ant[k].visited [j] then

if choice_info[c][j] > v then

nc j % city with maximal tahb

v choice_info[c][j]

end-if

end-if

end-for

ant[k].tour[i] nc

ant[k].visited [nc] true

end-procedure

Figure 3.20
AS: pseudo-code for the procedure ChooseBestNext.

110 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Pheromone Update

The last step in an iteration of AS is the pheromone update. This is implemented by

the procedure ASPheromoneUpdate (figure 3.21), which comprises two pheromone

update procedures: pheromone evaporation and pheromone deposit. The first one,

Evaporate (figure 3.22), decreases the value of the pheromone trails on all the arcs

ði; jÞ by a constant factor r. The second one, DepositPheromone (figure 3.23), adds

pheromone to the arcs belonging to the tours constructed by the ants. Additionally,

the procedure ComputeChoiceInformation computes the matrix choice_info to be used

in the next algorithm iteration. Note that in both procedures care is taken to guar-

antee that the pheromone trail matrix is kept symmetric, because of the symmetric

TSP instances.

When attacking large TSP instances, profiling the code showed that the phero-

mone evaporation and the computation of the choice_info matrix can require a con-

siderable amount of computation time. On the other hand, when using candidate lists

in the solution construction, only a small part of the entries of the pheromone

procedure ASPheromoneUpdate

Evaporate

for k ¼ 1 to m do

DepositPheromone(k)

end-for

ComputeChoiceInformation

end-procedure

Figure 3.21
AS: management of the pheromone updates.

procedure Evaporate

for i ¼ 1 to n do

for j ¼ i to n do

pheromone[i][j] ð1� rÞ � pheromone[i][j]

pheromone[j][i] pheromone[i][j] % pheromones are symmetric

end-for

end-for

end-procedure

Figure 3.22
AS: implementation of the pheromone evaporation procedure.

3.8 Implementing ACO Algorithms 111

matrix are ever required. Therefore, the exploitation of candidate lists speeds up also

the pheromone update. In fact, the use of candidate lists with a constant number of

nearest neighbors reduces the complexity of these two procedures to OðnÞ, although
with a large constant hidden in the Oð�Þ notation.

Concerning pheromone depositing, we note that, di¤erently from AS, the best-

performing ACO algorithms typically allow only one or, at most, very few ants to

deposit pheromone. In this case, the complexity of the pheromone deposit is of order

OðnÞ. Therefore, only for AS and EAS is the complexity of the pheromone trail de-

posit procedure Oðn2Þ if the number of ants m is set to be proportional to n, as sug-

gested in the original papers (Dorigo et al., 1991a,b, 1996; Bauer et al., 2000).

Note that this type of speedup technique for the pheromone trail update is not

necessary for ACS, because in ACS only the pheromone trails of arcs that are

crossed by some ant have to be changed and the number of ants in each iteration is a

low constant.

Statistical Information about ACO Algorithm Behavior

The last step in the implementation of AS is to store statistical data on algorithm

behavior (examples are the best-found solution since the start of the algorithm run,

or the iteration number at which the best solution was found). Details about these

procedures are available at www.aco-metaheuristic.org/aco-code/.

3.8.3 Changes for Implementing Other ACO Algorithms

When implementing AS variants, most of the above-described procedures remain

unchanged. Some of the necessary adaptations are described in the following:

procedure DepositPheromone(k)

input k % ant identifier

Dt 1/ant[k].tour_length

for i ¼ 1 to n do

j ant[k].tour[i]

l ant[k].tour[i þ 1]

pheromone[j][l] pheromone[j][l]þ Dt

pheromone[l][j] pheromone[j][l]

end-for

end-procedure

Figure 3.23
AS: implementation of the pheromone deposit procedure.

112 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

9 When depositing pheromone, the solution may be given some weight, as is the case

in EAS and ASrank. This can be accomplished by simply adding a weight factor as an

additional argument of the procedure DepositPheromone.

9 MMAS has to keep track of the pheromone trail limits. The best way to do so is

to integrate this into the procedure ASPheromoneUpdate.

9 Finally, the search control of some of the AS variants may need minor changes.

Examples are occasional pheromone trail reinitializations or the schedule for the

frequency of the best-so-far update according to equation (3.20) inMMAS.

Unlike AS variants, the implementation of ACS requires more significant changes,

as listed in the following:

9 The implementation of the pseudorandom proportional action choice rule [see

equation (3.10)] requires the generation of a random number q uniformly distributed

in the interval ½0; 1� and the application of the procedure ChooseBestNext if q < q0, or

of the procedure ASDecisionRule otherwise.

9 The local pheromone update [equation (3.12)] can be managed by the procedure

ACSLocalPheromoneUpdate (see figure 3.24) that is always invoked immediately after

an ant moves to a new city.

9 The implementation of the global pheromone trail update [equation (3.11)] is sim-

ilar to the procedure for the local pheromone update except that pheromone trails

are modified only on arcs belonging to the best-so-far tour.

9 Note that the integration of the computation of new values for the matrix choice_

info into the local and the global pheromone trail update procedures avoids having

to modify this matrix in any other part of the algorithm except for the initialization.

procedure ACSLocalPheromoneUpdate(k; i)

input k % ant identifier

input i % counter for construction step

h ant[k].tour[i � 1]

j ant[k].tour[i]

pheromone[h][j] ð1� xÞpheromone[h][j]þ xt0
pheromone[j][h] pheromone[h][j]

choice_info[h][j] pheromone[h][j] � exp(1/dist[h][j]; b)
choice_info[j][h] choice_info[h][j]

end-procedure

Figure 3.24
Implementation of the local pheromone update in ACS.

3.8 Implementing ACO Algorithms 113

3.9 Bibliographical Remarks

The Traveling Salesman Problem

The TSP is one of the oldest and most studied combinatorial optimization problems.

The first references to the TSP and closely related problems date back to the 19th

century (see the overview paper on the history of combinatorial optimization by

Schrjiver [2002] and the webpage Solving TSPs accessible at www.math.princeton.

edu/tsp/ for more details). The TSP has been studied intensively in both operations

research and computer science since the ’50s. Therefore, it is not surprising that a

large number of di¤erent algorithmic techniques were either applied to the TSP or

developed because of the challenge posed by this problem. Up to the early ’80s

these approaches comprised mainly construction heuristics (Clarke & Wright, 1964;

Christofides, 1976; Golden & Stewart, 1985; Bentley, 1992), iterative improvement

algorithms (Flood, 1956; Croes, 1958; Lin, 1965; Lin & Kernighan, 1973), and exact

methods like branch & bound or branch & cut (Dantzig, Fulkerson, & Johnson,

1954; Grötschel, 1981; Padberg & Grötschel, 1985; Grötschel & Holland, 1991;

Applegate et al., 1995). An in-depth overview of these early approaches is given in

Lawler et al. (1985). Extensive experimental evaluations of construction heuristics

and iterative improvement algorithms may be found in Bentley (1992), Reinelt

(1994), and Johnson & McGeoch (1997, 2002).

Since the beginning of the ’80s, more and more metaheuristics have been tested

on the TSP. In fact, the TSP was the first problem to which simulated annealing, one

of the first metaheuristic approaches, was applied (Cerný, 1985; Kirkpatrick, Gelatt,

& Vecchi, 1983). Following SA, virtually any metaheuristic used the TSP as a test

problem. These include tabu search (Knox, 1994; Zachariasen & Dam, 1996), guided

local search (Voudouris & Tsang, 1999), evolutionary algorithm (Merz & Freisle-

ben, 1997; Walters, 1998), ACO algorithms (see this chapter and Stützle & Dorigo,

1999b), and iterated local search (ILS) (Baum, 1986; Martin et al., 1991; Johnson &

McGeoch, 1997; Applegate et al., 2003).

The state of the art (until 1997) for solving symmetric TSPs with heuristics is sum-

marized in the overview article by Johnson & McGeoch (1997). This article contains

a discussion of the relative performance of di¤erent metaheuristic approaches to the

TSP and concludes that ILS algorithms using fine-tuned implementations of the Lin-

Kernighan heuristic (Lin & Kernighan, 1973) are the most successful. The most re-

cent e¤ort in collecting the state of the art for TSP solving by heuristic methods was

undertaken by the ‘‘8th DIMACS Implementation Challenge on the TSP’’; details of

this benchmark challenge can be found at www.research.att.com/~dsj/chtsp/ and the

114 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

results as of February 2002, including construction heuristics, iterative improvement

algorithms, metaheuristics, and more TSP-specific approaches, are summarized in a

paper by Johnson & McGeoch (2002). The conclusion of this recent undertaking is

that, when running time is not much of a concern, the best-performing algorithms

appear to be the tour-merging approach (a TSP-specific heuristic) of Applegate et al.

(1999) and the iterated version of Helsgaun’s Lin-Kernighan variant (Helsgaun,

2000). In this context, it is interesting to note that the iterated version of Helsgaun’s

implementation of the Lin-Kernighan heuristic uses a constructive approach (as does

ant colony optimization) to generate the initial tours for the local searches, where the

best-so-far solution strongly biases the tour construction.

Finally, let us note that the results obtained with exact algorithms for the TSP are

quite impressive. As of spring 2002, the largest instance provably solved to opti-

mality comprises 15112 cities. Solving such a large instance required a network of

110 processors and took a total time estimated to be equivalent to 22.6 CPU-years

on a 500 MHz, EV6 Alpha processor (more details on optimization algorithms for

the TSP, the most recent results, and the source code of these algorithms are avail-

able at www.math.princeton.edu/tsp/). Although these results show the enormous

progress that has been made by exact methods, they also divert attention from the

fact that these results on the TSP are not really representative of the performance of

exact algorithms on many other combinatorial optimization problems. There are in

fact a large number of problems that become intractable for exact algorithms, even

for rather small instances.

ACO Algorithms

The currently available results obtained by ACO algorithms applied to the TSP are

not competitive with the above-mentioned approaches. By adding more sophisticated

local search algorithms like the implementation of the Lin-Kernighan heuristic avail-

able at www.math.princeton.edu/tsp/ or Helsgaun’s variant of the Lin-Kernighan

heuristic, ACO’s computational results on the TSP can certainly be strongly im-

proved, but it is an open question whether the results of the best algorithms available

can be reached. Nevertheless, as already stated in the introduction, the main impor-

tance of the TSP for the ACO research field is that it is a problem on which the be-

havior of ACO algorithms can be studied without obscuring the algorithm behavior

by many technicalities. In fact, the best-performing variants of ACO algorithms on

the TSP often reach world-class performance on many other problems (see chapter 5

for several such applications).

In addition to the ACO algorithms discussed in this chapter, recently a new

variant called best-worst Ant System (BWAS) was proposed (Cordón et al., 2000;

3.9 Bibliographical Remarks 115

Cordón, de Viana, & Herrera, 2002). It introduces three main variations with

respect to AS. First, while using, in a way similar toMMAS and ACS, an aggres-

sive update rule in which only the best-so-far ant is allowed to deposit pheromone, it

also exploits the worst ant of the current iteration to subtract pheromone on the arcs

it does not have in common with the best-so-far solution. Second, BWAS relies

strongly on search diversification through the frequent reinitialization of the phero-

mone trails. Third, as an additional means for diversifying the search, it introduces

pheromone mutation, a concept borrowed from evolutionary computation. The in-

fluence of these three features was systematically analyzed in Cordón et al. (2002).

The currently available results, however, are not fully conclusive, so that it is not

possible to judge BWAS’s performance with respect to the currently best-performing

ACO algorithms for the TSP:MMAS and ACS.

ACO algorithms have also been tested on the asymmetric TSP (Dorigo & Gam-

bardella, 1997b; Stützle & Hoos, 2000; Stützle & Dorigo, 1999b), where the distance

between a pair of nodes i; j is dependent on the direction of traversing the arc. ACO

algorithms for the symmetric TSP can be extended very easily to the asymmetric

case, by taking into account that in general tij 0 tji, because the direction in which

the arcs are traversed has to be taken into account. Experimental results suggest

that ACO algorithms can find optimal solutions to ATSP instances with up to a few

hundred nodes. In the ATSP case, at the time the research was done, results com-

petitive with those obtained by other metaheuristics were obtained. However, recent

results on algorithmic approaches to the ATSP (see Johnson, Gutin, McGeoch, Yeo,

Zhang, & Zverovitch, 2002) suggest that current ACO algorithms do not reach state-

of-the-art performance for the ATSP.

It is also worth mentioning that there are at least two ant algorithms not fitting

into the ACO metaheuristic framework that have been applied to combinatorial

optimization problems. These are Hybrid Ant System (HAS) by Gambardella, Tail-

lard, & Dorigo (1999b) and Fast Ant System (FANT) by Taillard (1998). HAS does

not use pheromone trails to construct solutions but to guide a solution modifica-

tion process similar to perturbation moves as used in ILS. FANT di¤ers from ACO

algorithms mainly in the pheromone management process and in the avoidance of

explicit evaporation of pheromones, which are decreased by occasional reinitializa-

tions. Both HAS and FANT were applied to the quadratic assignment problem and

were found to yield good performance. However, adaptations of both to the TSP

resulted in significantly worse performance than, for example, MMAS (Stützle &

Linke, 2002).

The combination of ACO algorithms with local search was considered for the first

time by Maniezzo et al. (1994) for the application of AS to the quadratic assignment

116 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

problem. When applied to the TSP, local search was combined for the first time with

ACS by Dorigo & Gambardella (1997b) and with MMAS by Stützle & Hoos

(1996). For a detailed experimental investigation of the influence of parameter set-

tings on the final performance of ACO algorithms for the TSP, see those papers.

3.10 Things to Remember

9 The TSP was the first combinatorial optimization problem to be attacked by ACO.

The first ACO algorithm, called Ant System, achieved good performance on small

TSP instances but showed poor scaling behavior to large instances. The main role of

AS was that of a ‘‘proof-of-concept’’ that stimulated research on better-performing

ACO algorithms as well as applications to di¤erent types of problems.

9 Nowadays, a large number of di¤erent ACO algorithms are available. All of these

algorithms include a strong exploitation of the best solutions found during the search

and the most successful ones add explicit features to avoid premature stagnation of

the search. The main di¤erences between the various AS extensions consist of the

techniques used to control the search process. Experimental results show that for the

TSP, but also for other problems, these variants achieve a much better performance

than AS.

9 When applying ACO algorithms to the TSP, the best performance is obtained

when the ACO algorithm uses a local optimizer to improve the solutions constructed

by the ants. As we will see in chapter 5, this is typical for the application of ACO to

NP-hard optimization problems.

9 When using local search, it is typically su‰cient to apply a small constant number

of ants to achieve high performance, and experimental results suggest that in this

case the role played by the heuristic information becomes much less important.

9 The implementation of ACO algorithms is often rather straightforward, as shown

in this chapter via the example of the implementation of AS for the TSP. Neverthe-

less, care should be taken to make the code as e‰cient as possible.

9 The implementation code for most of the ACO algorithms presented in this chap-

ter is available at www.aco-metaheuristic.org/aco-code/.

3.11 Computer Exercises

Exercise 3.1 In all ACO algorithms for the TSP the amount of pheromone depos-

ited by an ant is proportional to the ant’s tour length. Modify the code in such a way

3.11 Computer Exercises 117

that the amount of pheromone deposited is a constant and run tests with the various

ACO algorithms.

For which ACO algorithms would you expect that this change does not influence

the performance very strongly? Why?

Exercise 3.2 Use a profiler to identify how much computation time is taken by the

di¤erent procedures (solution construction, pheromone evaporation, local search,

etc.) of the ACO algorithms. Identify the computationally most expensive parts.

Exercise 3.3 There exist some ACO algorithms that were proposed in the literature

but that have never been applied to the symmetric TSP. These ACO algorithms in-

clude the ANTS algorithm (Maniezzo, 1999) and the hyper-cube framework for

ACO (Blum et al., 2001; Blum & Dorigo, 2004). Extend the implementation of the

ACO algorithms that is available at www.aco-metaheuristic.org/aco-code/ to include

these two ACO algorithms.

Hint: For ANTS care has to be taken that the computation of the lower bounds is

as e‰cient as possible, because this is done at each construction step of each ant.

Exercise 3.4 ACO algorithms have mainly been tested on Euclidean TSP instances

available from TSPLIB. Many TSP algorithms are experimentally tested on random

distance matrix instances, where each entry in the distance matrix is a random num-

ber sampled from some interval. Download a set of such instances from the webpage

of the 8th DIMACS Implementation Challenge on the TSP (www.research.att.com/

~dsj/chtsp/) and test the ACO algorithms on these types of instances.

Exercise 3.5 The implementations described in this chapter were designed for at-

tacking symmetric TSP problems. Adapt the available code to solve ATSP instances.

Exercise 3.6 Compare the results obtained with the ACO algorithms to those ob-

tained with the approaches described in the review paper on heuristics for the asym-

metric TSP by Johnson et al. (2002).

Exercise 3.7 The solution construction procedure used in all ACO algorithms is a

randomized form of the nearest-neighbor heuristic, in which at each step the closest,

still unvisited, city to the current city is chosen and becomes the current city. How-

ever, a large number of other solution construction procedures exist (e.g., see Bent-

ley, 1992; Reinelt, 1994; Johnson & McGeoch, 2002). Promising results have been

reported among others for the savings heuristic, the greedy heuristic, and the insertion

heuristic.

Adapt the ACO algorithms’ code so that these construction heuristics can be used

in place of the nearest-neighbor heuristic.

118 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Exercise 3.8 Combine the available ACO algorithms with implementations of the

Lin-Kernighan heuristic. You may adapt the publicly available Lin-Kernighan codes

of the Concorde distribution (available at www.math.princeton.edu/tsp/concorde.

html) or Keld Helsgaun’s Lin-Kernighan variant (available at www.dat.ruc.dk/

~keld/research/LKH/) and use these to improve the solutions generated by the

ants (do not forget to ask the authors of the original code for permission to modify/

adapt it).

Exercise 3.9 Extend the available code for the TSP to the sequential ordering

problem (see chapter 2, section 2.3.2, for a definition of the problem). For a descrip-

tion of an ACO approach to the SOP, see chapter 5, section 5.1.1.

3.11 Computer Exercises 119

4 Ant Colony Optimization Theory

In theory, there is no di¤erence between theory and practice. But in practice, there is a di¤erence!

—Author unknown

The brief history of the ant colony optimization metaheuristic is mainly a history of

experimental research. Trial and error guided all early researchers and still guides

most of the ongoing research e¤orts. This is the typical situation for virtually all

existing metaheuristics: it is only after experimental work has shown the practical

interest of a novel metaheuristic that researchers try to deepen their understanding of

the metaheuristic’s functioning not only through more and more sophisticated ex-

periments but also by means of an e¤ort to build a theory. Typically, the first theo-

retical problem considered is the one concerning convergence: will the metaheuristic

find the optimal solution if given enough resources? Other questions that are often

investigated are the speed of convergence, principled ways of setting the metaheur-

istic’s parameters, relations to existing approaches, identification of problem charac-

teristics that make the metaheuristic more likely to be successful, understanding the

importance of the di¤erent metaheuristic components, and so on. In this chapter we

address those problems for which we have an answer at the time of writing. In par-

ticular, we discuss the convergence of some types of ACO algorithms to the optimal

solution and the relationship between ACO and other well-known techniques such as

stochastic gradient ascent.

4.1 Theoretical Considerations on ACO

When trying to prove theoretical properties for the ACO metaheuristic, the re-

searcher faces a first major problem: ACO’s very general definition. Although gen-

erality is a desirable property—it allows putting in the same framework ant-based

algorithms applied to discrete optimization problems that range from static problems

such as the traveling salesman problem to time-varying problems such as routing

in telecommunications networks—it makes theoretical analysis much more compli-

cated, if not impossible. A rapid look at the ACO metaheuristic description in figure

2.1 of chapter 2, should convince the reader that ACO as such is not amenable to a

theoretical analysis of the type necessary to prove, for example, convergence. Even

the simplified version of ACO shown in figure 3.3 of chapter 3, which can be applied

only to static combinatorial optimization problems, is too loosely defined to allow

for theoretical work. It is for this reason that the convergence proofs presented in the

forthcoming sections do not apply to the metaheuristic itself, but to particular ACO

algorithms, such as the MAX–MIN Ant System or the Ant Colony System (see

sections 3.3.4 and 3.4.1 of chapter 3).

The first theoretical aspect of ACO that we consider in this chapter is the conver-

gence problem: Does the algorithm considered eventually find the optimal solution?

This is an interesting question, because ACO algorithms are stochastic search proce-

dures in which the bias due to the pheromone trails could prevent them from ever

reaching the optimum. It is important to note that, when considering a stochastic

optimization algorithm, there are at least two possible types of convergence: conver-

gence in value and convergence in solution. Informally, and making the hypothesis

that in case of problems with more than one optimal solution we are interested in

convergence toward any of them, when studying convergence in value we are inter-

ested in evaluating the probability that the algorithm will generate an optimal solu-

tion at least once. On the contrary, when studying convergence in solution we are

interested in evaluating the probability that the algorithm reaches a state which keeps

generating the same optimal solution. In the following, we discuss both types of

convergence for some subsets of ACO algorithms. Note, however, that although in

general convergence in solution is a stronger and more desirable result to prove than

convergence in value, in optimization we are interested in finding the optimal solu-

tion once (after it has been found the problem is solved and the algorithm can be

stopped), so that convergence in value is all that we need.

In the following, we define two ACO algorithms called ACObs; tmin
and

ACObs; tminðyÞ, and we prove convergence results for both of them: convergence in

value for ACO algorithms in ACObs; tmin
and convergence in solution for ACO algo-

rithms in ACObs; tminðyÞ. Here, y is the iteration counter of the ACO algorithm and

tminðyÞ indicates that the tmin parameter may change during a run of the algorithm.

We then show that these proofs continue to hold when typical elements of ACO,

such as local search and heuristic information, are introduced. Finally, we discuss the

meaning of these results and we show that the proof of convergence in value applies

directly to two of the experimentally most successful ACO algorithms: MMAS

and ACS.

Unfortunately, no results are currently available on the speed of convergence of

any ACO algorithm. Therefore, although we can prove convergence, we currently

have no other way to measure algorithmic performance than to run extensive exper-

imental tests.

Another theoretical aspect that is investigated in this chapter is the formal rela-

tionship between ACO and other approaches. In particular, following Dorigo et al.

(2002c) and Zlochin, Birattari, Meuleau, & Dorigo (2001), we put ACO in the more

general framework of model-based search, so that it is possible to better understand

the relations between ACO, stochastic gradient ascent, and the more recent cross-

entropy method (De Bonet, Isbell, & Viola, 1997; Rubinstein, 2001).

122 Chapter 4 Ant Colony Optimization Theory

4.2 The Problem and the Algorithm

In this section we briefly summarize the problem description and the algorithms that

we have encountered in chapters 2 and 3. As in chapter 2, we consider an instance of

a minimization problem ðS; f ;WÞ, where S is the set of (candidate) solutions, f is the

objective function, which assigns an objective function (cost) value f ðsÞ to each can-

didate solution s A S, and W is a set of constraints, which defines the set of feasible

candidate solutions. The goal is to find an optimal solution s�, that is, a feasible

candidate solution of minimum cost.

An important di¤erence with chapter 2, however, is that here we consider only

static problems for which topology and costs remain fixed in time; in fact, the con-

vergence proofs we present in the following are meaningless in the case of time-

varying problems where an algorithm must be able to follow the dynamics inherent

to the problem.

The instance ðS; f ;WÞ is mapped on a problem that can be characterized by the

following list of items:

9 A finite set C ¼ fc1; c2; . . . ; cNC
g of components.

9 A finite set X of states of the problem, defined in terms of all possible sequences

x ¼ hci; cj; . . . ; ch; . . .i over the elements of C. The length of a sequence x, that is, the

number of components in the sequence, is expressed by jxj. The maximum possible

length of a sequence is bounded by a positive constant n < þy.

9 The set of (candidate) solutions S is a subset of X (i.e., SJX). (In other words,

candidate solutions are identified with specific states.)

9 A set of feasible states ~XX , with ~XXJX , defined via a problem-dependent test that

verifies that it is not impossible to complete a sequence x A ~XX into a solution satisfy-

ing the constraints W.

9 A non-empty set S� of optimal solutions, with S�J ~XX and S�JS.

Additionally, as was discussed in chapter 2, section 2.2.1, a cost gðsÞ is associated

with each candidate solution s A S. In the following, we set gðsÞ1 f ðsÞ Es A ~SS, where
~SSJS is the set of feasible candidate solutions defined via the constraints W. Note

that in the current definitions the time t does not appear, because in this chapter we

consider only static (i.e., not time-varying) problems.

As we have seen in previous chapters, given the above formulation, artificial ants

build candidate solutions by performing randomized walks on the construction graph,

that is, the completely connected graph GC ¼ ðC;LÞ, where the nodes are the com-

ponents C, and the set L fully connects these components. The random walk of the

4.2 The Problem and the Algorithm 123

artificial ants is biased by pheromone trails t, gathered in a vector T . As in previous

chapters, we restrict our attention to the case in which pheromone trails are asso-

ciated with connections, so that tij is the pheromone associated with the connection

between components i and j. It is straightforward to extend algorithms and proofs to

the other cases.

The algorithm is initialized by setting the pheromone trails to an initial value

t0 > 0 (remember that t0 is a parameter of the algorithm). At each iteration of

the algorithm, ants are positioned on nodes chosen according to some problem-

dependent criterion. While moving from one node to another of the graph GC , con-

straints W are used to prevent ants from building infeasible solutions. The solution

construction behavior of a generic ant k, called AntSolutionConstruction, is described

in figure 4.1.

In this procedure, the function SelectNextNodeðxh; T Þ returns the next node j

chosen according to the following probability:

PT ðchþ1 ¼ j j xhÞ ¼
FijðtijÞP

ði; lÞ AN k
i
FilðtilÞ

; if ði; jÞ A N k
i ;

0; otherwise;

8><
>: ð4:1Þ

where ði; jÞ belongs to N k
i i¤ the sequence xhþ1 ¼ hc1; c2; . . . ; ch; ji built by ant k

satisfies the constraints W (i.e., xhþ1 A ~XX) and FijðzÞ is some nondecreasing, mono-

procedure AntSolutionConstruction

Select a start node c1 according to some problem dependent criterion

h 1

xh hc1i
while (xh B S and N k

i 0q) do

j SelectNextNode(xh; T)
xh xh n j

end-while

if xh A S then

return xh
else abort

end-if

end-procedure

Figure 4.1
High-level pseudo-code for the procedure AntSolutionConstruction applied by ant k. The operatorn denotes
the addition of a component j to the partial solution xh. The procedure either returns a full solution s, or is
aborted. The SelectNextNodeðxh; T Þ is given by equation (4.1).

124 Chapter 4 Ant Colony Optimization Theory

tonic function. Note that by writing FijðzÞ instead of F ðzÞ we indicate that the func-

tion FðzÞ may be di¤erent on each arc. In practice, in all ACO implementations we

are aware of, the dependence on the arc is due to the fact that pheromone values are

composed with some function of an arc-specific information hij called ‘‘heuristic vis-

ibility.’’ As we have seen in chapter 3, most commonly FijðzÞ ¼ zah
b
ij , where a; b > 0

are parameters [a notable exception is equation (3.13), used in Maniezzo’s ANTS].

If it happens during solution construction that xh B S and N k
i ¼q, that is, the

construction process has reached a dead end, the AntSolutionConstruction procedure is

aborted and the current state xh is discarded. (This situation may be prevented by

allowing artificial ants to build infeasible solutions as well. In such a case a penalty

term reflecting the degree of infeasibility is usually added to the cost function.)

For certain problems, it can be useful to use a more general scheme, where F

depends on the pheromone values of several ‘‘related’’ connections, rather than just a

single one. Moreover, instead of the random proportional rule above, di¤erent selec-

tion schemes, such as the pseudorandom proportional rule [see equation (3.10)], may

be considered.

Once all the ants have terminated their AntSolutionConstruction procedure, a pher-

omone update phase is started in which pheromone trails are modified. Let sbs be the

best-so-far solution (i.e., the best feasible solution found since the first iteration of the

algorithm) and sy be the iteration-best solution (i.e., the best feasible solution ob-

tained in the current iteration y); f ðsbsÞ and f ðsyÞ are the corresponding objective

function values. The pheromone update procedure decreases the value of the pher-

omone trails on all connections in L by a small factor r, called the evaporation rate,

and then increases the value of the pheromone trails on the connections belonging to

sbs (in the literature, adding pheromone only to those arcs that belong to the best-so-

far solution is known as the global-best pheromone update (Dorigo & Gambardella,

1997b), but is more appropriately referred to as best-so-far update in the following).

All the di¤erent schemes for pheromone update discussed in chapter 3, section 3.3

(i.e., AS’s and its extensions’ pheromone update rules) can be described using the

GenericPheromoneUpdate procedure shown in figure 4.2. Here y is the index of the

current iteration, Si is the set of solutions generated in the i-th iteration, r is the

evaporation rate ð0 < ra 1Þ, and qf ðs jS1; . . . ;SyÞ is some ‘‘quality function,’’ which

is typically required to be nonincreasing with respect to f (i.e., f ðs1Þ > f ðs2Þ)
qf ðs1Þa qf ðs2Þ), and is defined over the ‘‘reference set’’ ŜSy, as discussed in the

following.

Di¤erent ACO algorithms may use di¤erent quality functions and reference sets.

For example, in AS the quality function is simply 1= f ðsÞ and the reference set

ŜSy ¼ Sy. In many of the extensions of AS, either the iteration-best update or the

4.2 The Problem and the Algorithm 125

best-so-far update is used: in the first case the reference set is a singleton containing

the best solution within Sy (if there are several iteration-best solutions, one of them

is chosen randomly). In the best-so-far update, the reference set contains the best

among all the iteration-best solutions (and if there is more than one, the earliest one

is chosen). In some cases a combination of the two update methods is used.

In case a good lower bound on the optimal solution cost is available, one may use

the following quality function, as done in ANTS (Maniezzo, 1999) [see also equation

(3.15)]:

qf ðs jS1; . . . ;SyÞ ¼ t0 1� f ðsÞ � LB

favg � LB

� �
¼ t0

favg � f ðsÞ
favg � LB

; ð4:2Þ

where favg is the average of the costs of the last k solutions and LB is a lower bound

on the optimal solution cost. With this quality function, the solutions are evaluated

by comparing their cost to the average cost of the other recent solutions, rather than

by using the absolute cost values. In addition, the quality function is automatically

scaled based on the proximity of the average cost to the lower bound, and no explicit

pheromone evaporation is performed.

As we have seen (see chapter 3, section 3.4.1), the pheromone update used in ACS

di¤ers slightly from the generic update described above. In ACS there is no general

pheromone evaporation applied to all connections as in AS and its extensions. On

the contrary, the only pheromones that evaporate are those associated with the arcs

of the best-so-far solution: the best-so-far update computes a weighted sum between

procedure GenericPheromoneUpdate

foreach (i; j) A L do

tij ð1� rÞtij
end-foreach

foreach s A ŜSy do

foreach ði; jÞ A s do

tij tij þ qf ðs jS1; . . . ;SyÞ
end-foreach

end-foreach

end-procedure

Figure 4.2
High-level pseudo-code for the procedure GenericPheromoneUpdate. y is the index of the current iteration,
Si is the sample (i.e., the set of generated solutions) in the i-th iteration, r, 0 < ra 1, is the evaporation
rate, and qf ðs jS1; . . . ;SyÞ is some ‘‘quality function,’’ which is typically required to be nonincreasing with
respect to f and is defined over the ‘‘reference set’’ ŜSy, as discussed in the text.

126 Chapter 4 Ant Colony Optimization Theory

the old pheromone trail and the amount deposited, where the evaporation rate r de-

termines the weights of the two values [see equation (3.11)]. Additionally, the phero-

mones are decreased by the ants during solution construction by means of the local

pheromone update rule [see equation (3.12)].

Two additional modifications of the generic update are found in MAX–MIN
Ant System and in the hyper-cube framework for ACO (see chapter 3, sections 3.3.4

and 3.4.3, respectively). MMAS puts limits on the minimum value of pheromone

trails. With this modification, the probability of generating any particular solution is

kept above some positive threshold, which helps prevent search stagnation and pre-

mature convergence to suboptimal solutions. In the hyper-cube framework for ACO,

an automatic scaling of the pheromone values is implemented.

4.3 Convergence Proofs

In this section, we study the convergence properties of some important subsets of

ACO algorithms. First, we define the ACObs; tmin
algorithm and we prove its conver-

gence in value with probability 1. Then, we define the ACObs; tminðyÞ algorithm and we

prove its convergence in solution. After showing that both proofs continue to hold

when local search and heuristic information are added, we discuss the meaning of the

proofs and show that the convergence in value proof applies to the experimentally

most successful ACO algorithms.

Using the notation of the previous section, ACObs; tmin
is defined as follows. First,

in the ant solution construction procedure the initial location of each ant is chosen in

a problem-specific way (often this is done using a uniform random distribution), and

FijðtijÞ1FðtijÞ [i.e., we remove the dependence of the function F on the arc ði; jÞ to
which it is applied; for the algorithms presented in chapter 3, this corresponds to

removing the dependence on the heuristic h; this dependence is reintroduced in sec-

tion 4.3.3]. Additionally, to ease the following derivations, we assume FðtijÞ to be of

the form used in almost all ACO algorithms: FðtijÞ ¼ taij , where 0 < a < þy is a

parameter. The probabilistic construction rule of equation (4.1) applied by the ants

to build solutions becomes

PT ðchþ1 ¼ j j xhÞ ¼
taijP

ði; lÞ AN k
i
tail

; if ði; jÞ A N k
i ;

0; otherwise.

8><
>: ð4:3Þ

Second, the pheromone update procedure is implemented by choosing ŜSy ¼ sbs

(i.e., the reference set contains only the best-so-far solution) and, additionally, a

4.3 Convergence Proofs 127

lower limit tmin > 0 is put on the value of pheromone trails. In practice, the Generic-

PheromoneUpdate procedure of figure 4.2 becomes the ACObs; tmin
PheromoneUpdate

procedure shown in figure 4.3.

The value tmin is a parameter of ACObs; tmin
; in the following we assume that

tmin < qf ðs�Þ. This can be achieved by setting, for example, t0 ¼ qf ðs 0Þ=2, where s 0 is
a solution used to initialize ACObs; tmin

.

The choice of the name ACObs; tmin
for this algorithm is due to the fact that the

best-so-far solution is used to update pheromones and that a lower limit tmin on the

range of feasible pheromone trails is introduced. (Note that in the original paper in

which ACObs; tmin
was introduced [Stützle & Dorigo, 2002], the algorithm was called

ACOgb; tmin
.)

4.3.1 Convergence in Value

In this subsection we prove that ACObs; tmin
is guaranteed to find an optimal solution

with a probability that can be made arbitrarily close to 1 if given enough time (con-

vergence in value). However, as we indicate in section 4.3.2, we cannot prove con-

vergence in solution for ACObs; tmin
.

Before proving the first theorem, it is convenient to show that, due to phero-

mone evaporation, the maximum possible pheromone level tmax is asymptotically

bounded.

procedure ACObs; tmin
PheromoneUpdate

foreach (i; j) A L do

tij ð1� rÞtij
end-foreach

if f ðsyÞ < f ðsbsÞ then
sbs sy

end-if

foreach ði; jÞ A sbs do

tij tij þ qf ðsbsÞ
end-foreach

foreach (i; j) do

tij maxftmin; tijg
end-foreach

end-procedure

Figure 4.3
High-level pseudo-code for the ACObs; tmin

PheromoneUpdate procedure. sy and sbs are the iteration-best and
best-so-far solutions respectively, while tmin is a parameter.

128 Chapter 4 Ant Colony Optimization Theory

Proposition 4.1 For any tij it holds:

lim
y!y

tijðyÞa tmax ¼
qf ðs�Þ

r
: ð4:4Þ

Proof The maximum possible amount of pheromone added to any arc ði; jÞ after
any iteration is qf ðs�Þ. Clearly, at iteration 1 the maximum possible pheromone trail

is ð1� rÞt0 þ qf ðs�Þ, at iteration 2 it is ð1� rÞ2t0 þ ð1� rÞqf ðs�Þ þ qf ðs�Þ, and so

on. Hence, due to pheromone evaporation, the pheromone trail at iteration y is

bounded by

tmax
ij ðyÞ ¼ ð1� rÞyt0 þ

Xy
i¼1
ð1� rÞy�iqf ðs�Þ:

As 0 < ra 1, this sum converges asymptotically to

tmax ¼
qf ðs�Þ

r
: r

Proposition 4.2 Once an optimal solution s� has been found, it holds that

Eði; jÞ A s� : lim
y!y

t�ijðyÞ ¼ tmax ¼
qf ðs�Þ

r
;

where t�ij is the pheromone trail value on connections ði; jÞ A s�.

Proof Once an optimal solution has been found, remembering that Eyb 1, t�ijðyÞb
tmin and that the best-so-far update rule is used, we have that t�ijðyÞ monotonically

increases. The proof of proposition 4.2 is basically a repetition of the proof of prop-

osition 4.1, restricted to the connections of the optimal solution (t0 is replaced by

t�ijðy
�Þ in the proof of proposition 4.1, where y� is the iteration in which the first

optimal solution was found). r

Proposition 4.1 implies that, for the following proof of theorem 4.1, the only es-

sential point is that tmin > 0, because tmax will anyway be bounded by pheromone

evaporation. Proposition 4.2 additionally states that, once an optimal solution has

been found, the value of the pheromone trails on all connections of s� converges to

tmax ¼ qf ðs�Þ=r.
We can now prove the following theorem.

Theorem 4.1 Let P�ðyÞ be the probability that the algorithm finds an optimal solution

at least once within the first y iterations. Then, for an arbitrarily small e > 0 and for a

su‰ciently large y it holds that

4.3 Convergence Proofs 129

P�ðyÞb 1� e;

and, by definition, limy!y P�ðyÞ ¼ 1.

Proof Due to the pheromone trail limits tmin and tmax we can guarantee that any

feasible choice in equation (4.3) for any partial solution xh is made with a probability

pmin > 0. A trivial lower bound for pmin is given by

pmin b p̂pmin ¼
tamin

ðNC � 1Þtamax þ tamin

; ð4:5Þ

where NC is the cardinality of the set C of components. (For the derivation of this

bound we consider the following ‘‘worst-case’’ situation: the pheromone trail asso-

ciated with the desired decision is tmin, while all the other feasible choices—there are

at most NC � 1—have an associated pheromone trail of tmax.) Then, any generic

solution s 0, including any optimal solution s� A S�, can be generated with a proba-

bility p̂pb p̂pn
min > 0, where n < þy is the maximum length of a sequence. Because

it is su‰cient that one ant finds an optimal solution, a lower bound for P�ðyÞ is
given by

P̂P�ðyÞ ¼ 1� ð1� p̂pÞy:

By choosing a su‰ciently large y, this probability can be made larger than any value

1� e. Hence, we have that limy!y P̂P�ðyÞ ¼ 1. r

4.3.2 Convergence in Solution

In this subsection we prove convergence in solution for ACObs; tminðyÞ, which di¤ers

from ACObs; tmin
by allowing a change in value for tmin while solving a problem. That

is, we prove that, in the limit, any arbitrary ant of the colony will construct the

optimal solution with probability 1. This cannot be proved if we impose, as done in

ACObs; tmin
, a small, positive lower bound on the lower pheromone trail limits because

in this case at any iteration y each ant can construct any solution with a nonzero

probability. The key of the proof is therefore to allow the lower pheromone trail

limits to decrease over time toward zero, but making this decrement slow enough to

guarantee that the optimal solution is eventually found. We call ACObs; tminðyÞ the

modification of ACObs; tmin
obtained in this way, where tminðyÞ indicates the depen-

dence of the lower pheromone trail limits on the iteration counter.

The proof of convergence in solution is organized in two theorems. First, in theo-

rem 4.2 (in a way analogous to what was done in the proof of theorem 4.1) we prove

that it can still be guaranteed that an optimal solution is found with a probability

130 Chapter 4 Ant Colony Optimization Theory

converging to 1 when lower pheromone trail limits of the ACObs; tminðyÞ algorithm de-

crease toward 0 at not more than logarithmic speed (in other words, we prove that

ACObs; tminðyÞ converges in value). Next, in theorem 4.3 we prove, under the same

conditions, convergence in solution of ACObs; tminðyÞ.

Theorem 4.2 Let the lower pheromone trail limits in ACObs; tminðyÞ be

Eyb 1; tminðyÞ ¼
d

lnðyþ 1Þ ;

with d being a constant, and let P�ðyÞ be the probability that the algorithm finds an

optimal solution at least once within the first y iterations. Then it holds that

lim
y!y

P�ðyÞ ¼ 1:

Proof Di¤erently from what was done in the proof of theorem 4.1, here we prove

that an upper bound on the probability of not constructing the optimal solution is 0

in the limit (i.e., the optimal solution is found in the limit with probability 1). Let the

event Ey denote that iteration y is the iteration in which an optimal solution is found

for the first time. The event 5y
y¼1 sEy that no optimal solution is ever found, implies

that also one arbitrary, but fixed, optimal solution s� is never found. Therefore, an

upper bound to the probability Pð5y
y¼1 sEyÞ is given by Pðs� is never traversedÞ,

that is:

P 5
y

y¼1
sEy

 !
aPðs� is never traversedÞ: ð4:6Þ

Now, in a way similar to what was done for theorem 4.1, we can guarantee that at a

generic iteration y any feasible choice according to equation (4.3) can be made with a

probability pmin bounded as follows:

pmin b p̂pminðyÞ ¼
taminðyÞ

ðNC � 1Þtamax þ taminðyÞ

b
taminðyÞ
NCtamax

¼ p̂p 0minðyÞ:

Then, a lower bound on the probability that a fixed ant k is constructing the optimal

solution s� is given by p̂pðyÞb ð p̂p 0minðyÞÞ
n, where n < þy is the maximum length of a

sequence. This bound is independent of what happened before iteration y. Therefore,

we can give the following upper bound on the right side of equation (4.6):

4.3 Convergence Proofs 131

Pðs� is never traversedÞa
Yy
y¼1
ð1� ð p̂p 0minðyÞÞ

nÞ

¼
Yy
y¼1

1� taminðyÞ
NCtamax

� �n� �
: ð4:7Þ

We now must prove that this product is equal to 0. To do so, we consider its

logarithm

Xy
y¼1

ln 1� taminðyÞ
NCtamax

� �n� �
;

and we show that the resulting series, starting from some finite number l, grows

quicker than the harmonic series, so that it diverges to �y, which implies that the

original product is equal to 0. First, remember that tminðyÞ ¼ d=lnðyþ 1Þ. Then

Xy
y¼1

ln 1� taminðyÞ
NCtamax

� �n� �
¼
Xy
y¼1

ln 1�

d

lnðyþ 1Þ

� �a
NCtamax

0
B@

1
CA
n

2
664

3
775

¼
Xy
y¼1

ln 1� d1

ðlnðyþ 1ÞÞa
� �n� �

a�d n
1

Xy
y¼1

1

lnðyþ 1Þ

� �an
¼ �y;

where d1 ¼ d a=NCt
a
max.

The inequality holds because for any x < 1, lnð1� xÞa�x. The equality holds

because
P

xðln xÞ�i is a diverging series. To see the latter, note that for each positive

constant d > 0 and for su‰ciently large x, ðln xÞ i a d � x, and therefore d=ðln xÞ i b
1=x. It then su‰ces to remember that

P
x 1=x is the harmonic series, which is known

to diverge to y.

These derivations say that an upper bound for the logarithm of the product

given in equation (4.7) and, hence, the logarithm on the right side of equation (4.6),

is �y; therefore, the product given in equation (4.7) and the right side of equation

(4.6) have to be 0, that is, the probability of never finding the optimal solution

ðPð5y
y¼1 sEyÞÞ is 0. This proves that an optimal solution will be found with proba-

bility 1. r

132 Chapter 4 Ant Colony Optimization Theory

In the limiting case, once the optimal solution has been found, we can estimate an

ant’s probability of constructing an optimal solution when following the stochastic

policy of the algorithm. In fact, it can be proved that any ant will in the limit con-

struct the optimal solution with probability 1—that is, we can prove convergence in

solution. Before the proof of this assertion, it is convenient to show that the phero-

mone trails of connections that do not belong to the optimal solution asymptotically

converge to 0.

Proposition 4.3 Once an optimal solution has been found and for any tijðyÞ such that

ði; jÞ B s� it holds that

lim
y!y

tijðyÞ ¼ 0:

Proof After the optimal solution has been found, connections not belonging to the

optimal solution do not receive pheromone anymore. Thus, their value can only

decrease. In particular, after one iteration tijðy� þ 1Þ ¼ maxftminðyÞ; ð1� rÞtijðy�Þg,
after two iterations tijðy� þ 2Þ ¼ maxftminðyÞ; ð1� rÞ2tijðy�Þg, and so on (y� is the

iteration in which s� was first found). Additionally, we have that limy!y d=lnðy� þ
yþ 1Þ ¼ 0 and limy!yð1� rÞytijðy� þ yÞ ¼ 0. Therefore, limy!y tijðy� þ yÞ ¼ 0.

r

Theorem 4.3 Let y� be the iteration in which the first optimal solution has been found

and Pðs�; y; kÞ be the probability that an arbitrary ant k constructs s� in the y-th iter-

ation, with y > y�. Then it holds that

lim
y!y

Pðs�; y; kÞ ¼ 1:

Proof Let ant k be located on component i and ði; jÞ be a connection of s�. A lower

bound p̂p�ijðyÞ for the probability p�ijðyÞ that ant k makes the ‘‘correct choice’’ ði; jÞ is
given by the term

p̂p�ijðyÞ ¼
ðt�ijðyÞÞ

a

ðt�ijðyÞÞ
a þ

P
ði;hÞ B s� ðtihðyÞÞ

a :

Because of propositions 4.2 and 4.3 we have

p̂p�ij ¼ lim
y!y

p̂p�ijðyÞ ¼
limy!yðt�ijðyÞÞ

a

limy!yðt�ijðyÞÞ
a þ

P
ði;hÞ B s� limy!yðtihðyÞÞa

¼ tamax

tamax þ
P
ði;hÞ B s � 0

a
¼ 1:

4.3 Convergence Proofs 133

Hence, in the limit any fixed ant will construct the optimal solution with proba-

bility 1, because at each construction step it takes the correct decision with prob-

ability 1. r

4.3.3 Additional Features of ACO Algorithms

As we have seen in chapter 3, many ACO algorithms include some features that are

present neither in ACObs; tmin
nor in ACObs; tminðyÞ. The most important are the use of

local search algorithms to improve the solutions constructed by the ants and the use

of heuristic information in the choice of the next component. Therefore, a natural

question is how these features a¤ect the convergence proof for ACObs; tmin
. Note that

here and in the following, although the remarks made about ACObs; tmin
in general

also apply to ACObs; tminðyÞ, for simplicity we often refer only to ACObs; tmin
.

Let us first consider the use of local search. Local search tries to improve an ant’s

solution s by iteratively applying small, local changes to it. Typically, the best solu-

tion s 0 found by the local search is returned and used to update the pheromone

trails. It is rather easy to see that the use of local search neither a¤ects the conver-

gence properties of ACObs; tmin
, nor those of ACObs; tminðyÞ. In fact, the validity of both

convergence proofs depends only on the way solutions are constructed and not on

the fact that the solutions are taken or not to their local optima by a local search

routine.

A priori available information on the problem can be used to derive heuristic

information that biases the probabilistic decisions taken by the ants. When incor-

porating such heuristic information into ACObs; tmin
, the most common choice is

FijðtijÞ ¼ ½tij �a½hij�
b, as explained in section 4.2. In this case equation (4.3), becomes

PT ðchþ1 ¼ j j xhÞ ¼
½tij�a½hij �

bP
ði; lÞ AN k

i
½til �a½hil �

b
; if ði; jÞ A N k

i ;

0; otherwise;

8>><
>>: ð4:8Þ

where hij measures the heuristic desirability of adding solution component j. In

fact, neither theorem 4.1 nor theorems 4.2 and 4.3 are a¤ected by the heuristic

information, if we have 0 < hij < þy for each ði; jÞ A L and b < y. In fact, with

these assumptions h is limited to some (instance-specific) interval ½hmin; hmax�, with
hmin > 0 and hmax < þy. Then, the heuristic information has only the e¤ect of

changing the lower bounds on the probability pmin of making a specific decision

[see, e.g., equation (4.5), or the analogous estimates in the proofs of theorems 4.2 and

4.3].

134 Chapter 4 Ant Colony Optimization Theory

4.3.4 What Does the Proof Really Say?

It is instructive to understand what theorems 4.1 to 4.3 really tell us. First, theorem

4.1 says that, when using a fixed positive lower bound on the pheromone trails,

ACObs; tmin
is guaranteed to find the optimal solution. Theorem 4.2 extends this result

by saying that we essentially can keep this property for ACObs; tminðyÞ algorithms, if we

decrease the bound tmin to 0 slowly enough. (Unfortunately, theorem 4.2 cannot be

proved for the exponentially fast decrement of the pheromone trails obtained by a

constant pheromone evaporation rate, which most ACO algorithms use.) However,

the proofs do not say anything about the time required to find an optimal solution,

which can be astronomically large. A similar limitation applies to other well-known

convergence proofs, such as those formulated for simulated annealing by Hajek

(1988) and by Romeo & Sangiovanni-Vincentelli (1991). Finally, theorem 4.3 shows

that a su‰ciently slow decrement of the lower pheromone trail limits leads to the

e¤ect that the algorithm converges to a state in which all the ants construct the opti-

mal solution over and over again. In fact, for this latter result it is essential that in

the limit the pheromone trails go to 0. If, as is done in ACObs; tmin
, a fixed lower

bound tmin is set, it can only be proved that the probability of constructing an opti-

mal solutions is larger than 1� êeðtmin; tmaxÞ, where êe is a function of tmin and tmax

(Stützle & Dorigo, 2002).

Because in practice we are more interested in finding an optimal solution at least

once than in generating it over and over again, let us have a closer look at the role

played by tmin and tmax in the proof of theorem 4.1: the smaller the ratio tmax=tmin,

the larger the lower bound p̂pmin given in the proof. This is important, because the

larger the p̂pmin, the smaller the worst-case estimate of the number of iterations y

needed to assure that an optimal solution is found with a probability larger than

1� e. In fact, the tightest bound is obtained if all pheromone trails are the same, that

is, for the case of uniformly random solution construction; in this case we would

have p̂pmin ¼ 1=NC (note that this fact is independent of the tightness of the lower

bounds used in theorem 4.1). This somewhat counterintuitive result is due to the fact

that our proof is based on a worst-case analysis: we need to consider the worst-case

situation in which the bias in the solution construction introduced by the pheromone

trails is counterproductive and leads to suboptimal solutions; that is, we have to

assume that the pheromone trail level associated with the connection an ant needs

to pass for constructing an optimal solution is tmin, while on the other connections

it is much higher—in the worst case corresponding to tmax. In practice, however, as

shown by the results of many published experimental works (see Dorigo & Di Caro,

1999b; Dorigo et al., 1999; Dorigo & Stützle, 2002, as well as chapter 5 of this book,

4.3 Convergence Proofs 135

for an overview), this does not happen, and the bias introduced by the pheromone

trails does indeed help to speed up convergence to an optimal solution.

4.3.5 Convergence of Some ACO Algorithms

As mentioned, from the point of view of the researcher interested in applications of

the algorithm, the interesting part of the discussed convergence proofs is theorem 4.1,

which guarantees that ACObs; tmin
will find an optimal solution if run long enough.

It is therefore interesting that this theorem also applies to ACO algorithms that

di¤er from ACObs; tmin
in the way the pheromone update procedure is implemented.

In general, theorem 4.1 applies to any ACO algorithm for which the probability PðsÞ
of constructing a solution s A S always remains greater than a small constant e > 0.

In ACObs; tmin
this is a direct consequence of the fact that 0 < tmin < tmax < þy,

which was obtained by (1) explicitly setting a minimum value tmin for pheromone

trails, (2) limiting the amount of pheromone that the ants may deposit after each it-

eration, that is, Es, gðsÞ < z < þy, (3) letting pheromone evaporate over time, that

is, by setting r > 0, and (4) by the particular form of the function F ðtijÞ chosen. We

call the subset of ACO algorithms that satisfy these conditions ACOtmin
. ACObs; tmin

di¤ers from ACOtmin
in that it additionally imposes the use of the best-so-far update

rule. Therefore, ACObs; tmin
can be seen as a particular case of ACOtmin

. By definition,

theorem 4.1 holds for any algorithm in ACOtmin
. In the following, we show that

MMAS and ACS, two of the experimentally most successful ACO algorithms, be-

long to ACOtmin
.

MAX–MIN Ant System

It is easy to show that MMAS, described in detail in chapter 3, section 3.3.4, be-

longs to ACOtmin
. In fact, there are only two minor di¤erences betweenMMAS and

ACObs; tmin
. First,MMAS uses an explicit value for tmax instead of an implicit one as

ACObs; tmin
does. In fact, this is a very minor di¤erence, because MMAS uses the

upper pheromone trail limit defined by proposition 4.1 as an estimate of tmax.

Second, MMAS uses a somewhat more general pheromone update rule than

ACObs; tmin
. Like ACObs; tmin

,MMAS uses only one solution to select the connections

on which to add pheromone, but it allows a choice between the iteration-best solu-

tion sy and the best-so-far solution sbs. During the run the best-so-far solution is

chosen more and more often, until reaching a situation in which pheromone is added

only to connections belonging to sbs. It is therefore clear that theorem 4.1 holds for

MMAS.

Ant Colony System

Ant Colony System also belongs to ACOtmin
, although this is more di‰cult to see.

ACS di¤ers in three main points from ACObs; tmin
. First, it uses the pseudorandom

136 Chapter 4 Ant Colony Optimization Theory

proportional rule [see equation (3.10), section 3.4.1]: at each construction step an ant

either chooses, with probability q0, the connection with the largest pheromone trail

value, or it performs, with probability ð1� q0Þ, a biased exploration according to

equation (4.3). Second, ACS does not apply pheromone evaporation to all connec-

tions, but only to those belonging to the best-so-far solution. The update rule used in

ACS is given by the ACSGlobalPheromoneUpdate procedure shown in figure 4.4.

Third, during the construction of the solution each ant in ACS uses a local pher-

omone trail update rule that it applies immediately after having crossed a connection

ði; jÞ. Consider the situation in which an ant has built a partial solution xh ¼
hc1; c2; . . . ; ch�1; ii and it adds a component j so that the new partial solution is

xhþ1 ¼ hc1; c2; . . . ; i; ji. Then, the pheromone trail on connection ði; jÞ is updated

according to the rule:

tij ð1� xÞtij þ xt0: ð4:9Þ

That is, a fraction x of the trail is evaporated and a small amount t0 is added. In

practice, the e¤ect of the local updating rule is to decrease the pheromone trail on the

visited connection, making in this way the connection less desirable for the following

ants.

It is convenient to remark that the two pheromone update rules used in ACS are of

the form ahþ1 ¼ ð1� cÞah þ cb for hb 1, where ahþ1 and ah are tijðyþ 1Þ and tijðyÞ,
and, respectively, b ¼ qf ðsbsÞ; t0, and c ¼ r; x. Thus we have

ah ¼ ð1� cÞha0 þ b½1� ð1� cÞh�; ð4:10Þ

which is b in the limit as h!y. The sequence decreases for a0 > b (with maximum

a0) and increases for a0 < b (with maximum b).

Now the question is: How does the convergence in value result of ACObs; tmin

transfer to ACS? First, we observe that in ACS the maximum amount of pheromone

procedure ACSGlobalPheromoneUpdate

if f ðsyÞ < f ðsbsÞ then
sbs sy

end-if

foreach ði; jÞ A sbs do

tij ð1� rÞtij þ rqf ðsbsÞ
end-foreach

end-procedure

Figure 4.4
High-level pseudo-code for the ACSGlobalPheromoneUpdate procedure. r is the pheromone evaporation.

4.3 Convergence Proofs 137

is limited by tmax ¼ tACS
max ¼ qf ðs�Þ (this bound is obtained without considering the

local pheromone update). Second, because t0 is chosen to be smaller than qf ðsbsÞ, no
pheromone trail value can fall below t0 and therefore t0 gives a lower bound on the

pheromone trail of any solution component ði; jÞ.
The next step is to show that any feasible solution can be constructed with a non-

zero probability. The easiest way to see this is to rewrite the probability of making

some fixed choice ði; jÞ in ACS. Let us assume that connection ði; jÞ does not have
the largest pheromone trail associated. Then the probability of choosing connection

ði; jÞ can be calculated as the product of the probability of making a randomized

choice, which is 1� q0, and the probability of choosing connection ði; jÞ in this

randomized choice. A bound for the latter is given by p̂pmin in equation (4.5). There-

fore, a lower bound for the probability of making any specific choice at any con-

struction step is ð1� q0Þ � p̂pmin and theorem 4.1 directly applies to ACS.

It is interesting, however, to note that AS, as well as some of its variants (e.g.,

EAS, section 3.3.2, and the rank-based AS, section 3.3.3) do not belong to ACOtmin
.

In fact, in these three algorithms there is no lower bound to the value of pheromone

trails and therefore the pheromones can become null much faster than imposed by

the bounds of theorem 4.2.

In any case, ACS and MMAS were shown to perform better than AS and its

variants on many standard benchmark problems such as the TSP and the QAP.

Therefore, we are in the fortunate case in which ACO algorithms for which conver-

gence can be proven theoretically show a better performance in practice.

4.4 ACO and Model-Based Search

Up to now we have taken the classic view in which the ACO metaheuristic is seen as

a class of stochastic search procedures working in the space of the solutions of a

combinatorial optimization problem. Under this interpretation, artificial ants are

stochastic constructive heuristics that build better and better solutions to a combina-

torial optimization problem by using and updating pheromone trails. In other words,

our attention has been directed to the stochastic constructive procedure used by the

ants and to how the ants use the solutions they build to bias the search of future ants

by changing pheromone values.

In this section we change perspective and interpret ACO algorithms as methods

for searching in the space of pheromone values with the goal of maximizing the prob-

ability of generating good solutions. In other terms, we interpret the construction

graph GC and the associated pheromones T as a parametric probability distribution

138 Chapter 4 Ant Colony Optimization Theory

used by ACO to generate solutions to the considered problem. And we interpret the

set of solutions generated by the artificial ants as a sample used to update the pa-

rameters of the probability distribution, that is, the pheromone trails. Adopting this

view, it is natural to understand ACO as a member of model-based search algori-

thms, as explained in the following. This view of ACO allows drawing interesting

analogies with methods such as stochastic gradient ascent and cross-entropy.

4.4.1 Model-Based Search

In the field of metaheuristics for combinatorial optimization, following a classifica-

tion similar to the one found in machine learning (Quinlan, 1993b), two antithetic

approaches can be identified: the instance-based and the model-based approach.

Most of the classic search methods may be considered instance-based, since they

generate new candidate solutions using solely the current solution or the current

‘‘population’’ of solutions. Typical representatives of this class are evolutionary com-

putation algorithms (Fogel et al., 1966; Holland, 1975; Rechenberg, 1973; Schwefel,

1981; Goldberg, 1989) or local search and its variants, such as, for example, simu-

lated annealing (Kirkpatrick et al., 1983; Cerný, 1985; Hajek, 1988) and iterated

local search (Lourenço et al., 2002) (an exception is tabu search (Glover, 1989),

which uses additional information in the form of tabu lists).

On the other hand, in the last decade several new methods, which are classified as

model-based search (MBS) algorithms in Zlochin et al. (2001), have been proposed,

the best-known example being estimation of distribution algorithms (Mühlenbein &

Paass, 1996; Pelikan, Goldberg, & Lobo, 1999; Larrañaga & Lozano, 2001). In

model-based search algorithms, candidate solutions are generated using a parame-

terized probabilistic model that is updated using the previously seen solutions in such

a way that the search will concentrate on the regions containing high-quality solu-

tions. The general approach is described schematically in figure 4.5.

At a very general level, the MBS approach attempts to solve the minimization

problem defined in section 4.2 by repeating the following two steps:

9 Candidate solutions are constructed using some parameterized probabilistic model,

that is, a parameterized probability distribution over the solution space.

9 Candidate solutions are evaluated and then used to modify the probabilistic model

in a way that is deemed to bias future sampling toward low-cost solutions. Note that

the model’s structure may be fixed in advance, with solely the model’s parameters

being updated, or alternatively, the structure of the model may be allowed to change

as well.

4.4 ACO and Model-Based Search 139

For any algorithm belonging to this general scheme, two components, corre-

sponding to the two steps above, need to be instantiated:

9 A parameterized probabilistic model that allows an e‰cient generation of the can-

didate solutions.

9 An update rule for the model’s parameters or structure, or both.

It is important to note that the term ‘‘model’’ is used here to denote an adaptive

stochastic mechanism for generating candidate solutions, and not an approximate

description of the environment, as done, for example, in reinforcement learning

(Sutton & Barto, 1998). There is, however, a rather close connection between these

two usages of the term ‘‘model,’’ as the model adaptation in combinatorial opti-

mization may be considered an attempt to model (in the reinforcement learning

sense) the structure of the ‘‘promising’’ solutions. For a formal interpretation of

ACO in terms of the reinforcement learning literature, see Birattari, Di Caro, &

Dorigo (2002a).

It is easy to see that the ACO metaheuristic belongs to the MBS framework. First,

the probabilistic model used is the coupling of the construction graph with the set

of stochastic procedures called artificial ants, where the model parameters are the

pheromone trails associated with the construction graph. Second, the model update

rules are the rules used to update pheromone trails.

As discussed in chapter 3, the pheromone update rules proposed in the literature

are of a somewhat heuristic nature and lack a theoretical justification. In the follow-

ing, we show how stochastic gradient ascent (SGA) (Robbins & Monroe, 1951;

Mitchell, 1997) and the cross-entropy (CE) method (De Bonet et al., 1997; Rubin-

stein, 2001) can be used to derive mathematically well-founded model update rules.

We start with a discussion of the use of SGA and CE within the MBS framework,

without being restricted to a particular type of probabilistic model. Then, we cast

both SGA and the CE method into the ACO framework, and we show that some

existing ACO updates approximate SGA while others can be rederived as a particu-

lar implementation of the CE method.

Model Sample

Learning

Figure 4.5
Schematic description of the model-based search (MBS) approach.

140 Chapter 4 Ant Colony Optimization Theory

4.4.2 SGA and CE in the MBS Framework

In this section we discuss two systematic approaches to the update of the model’s

parameters in the MBS framework, namely SGA and the CE method. As in section

4.2, we consider a minimization problem ðS; f ;WÞ, where S is the set of (candidate)

solutions, f is the objective function, which assigns an objective function (cost) value

f ðsÞ to each candidate solution s A S, and W is a set of constraints, which defines the

set of feasible candidate solutions. The goal of the minimization problem is to find an

optimal solution s�, that is, a feasible candidate solution of minimum cost. The set of

all optimal solutions is denoted by S�.
Throughout the remainder of this section we assume that a space M of possible

probabilistic models is given and that it is expressive enough. More formally, this

means that we assume that for every possible solution s, the distribution dsð�Þ, defined
as dsðs 0Þ ¼ 1, if s 0 ¼ s, and dsðs 0Þ ¼ 0 otherwise, belongs toM [note that this condi-

tion may be relaxed by assuming that dsð�Þ is in the closure ofM, that is, that there

exists a sequence Pi AM for which limi!y Pi ¼ dsð�Þ]. This ‘‘expressiveness’’ as-

sumption is needed in order to guarantee that the sampling can concentrate in the

proximity of any solution, the optimal solution in particular.

Additionally, we assume that the model structure is fixed, and that the model

spaceM is parameterized by a vector T A FHRw, where F is a w-dimensional pa-

rameter space. In other words,M¼ fPT ð�Þ j T A Fg and for any s A S the function

PT ðsÞ is continuously di¤erentiable with respect to T .
The original optimization problem may be replaced by the following equivalent

continuous maximization problem:

T � ¼ argmax
T

EðT Þ; ð4:11Þ

where EðT Þ ¼ ET ðqf ðsÞÞ, ET denotes expectation with respect to PT , and qf ðsÞ is a
fixed quality function, which is strictly decreasing with respect to f , that is: qf ðs1Þ <
qf ðs2Þ , f ðs1Þ > f ðs2Þ.

It may be easily verified that, under the ‘‘expressiveness’’ assumption we made

about the model space, the support of PT � (i.e., the set fs jPT �ðsÞ > 0g) is necessarily
contained in S�. This implies that solving the problem given by equation (4.11) is

equivalent to solving the original combinatorial optimization problem.

Stochastic Gradient Ascent

A possible way of searching for a (possibly local) optimum of the problem given by

equation (4.11) is to use the gradient ascent method. In other words, gradient ascent

may be used as a heuristic to change T with the goal of solving equation (4.11). The

4.4 ACO and Model-Based Search 141

gradient ascent procedure, shown in figure 4.6, starts from some initial T (possibly

randomly generated). Then, at each iteration it calculates the gradient ‘EðT Þ and
updates T to become T þ a‘EðT Þ, where a is a step-size parameter (which, in a

more sophisticated implementation, could be made a function of the iteration

counter y: a ¼ ay).

The gradient can be calculated (bearing in mind that ‘ ln f ¼ ‘ f = f) as follows:

‘EðT Þ ¼ ‘ET ðqf ðsÞÞ ¼ ‘
X
s

qf ðsÞPT ðsÞ ¼
X
s

qf ðsÞ‘PT ðsÞ

¼
X
s

PT ðsÞqf ðsÞ
‘PT ðsÞ
PT ðsÞ

¼
X
s

PT ðsÞqf ðsÞ‘ ln PT ðsÞ

¼ ET ðqf ðsÞÞ‘ ln PT ðsÞ: ð4:12Þ

However, the gradient ascent algorithm cannot be implemented in practice, be-

cause for its evaluation a summation over the whole search space is needed. A more

practical alternative is the use of stochastic gradient ascent (Baird & Moore, 1999;

Bertsekas, 1995b; Williams, 1992), which replaces the expectation in equation (4.12)

by an empirical mean of a sample generated from PT .

The update rule for the stochastic gradient then becomes

T yþ1 ¼ T y þ a
X
s ASy

qf ðsÞ‘ ln PT yðsÞ; ð4:13Þ

where Sy is the sample at iteration y.

In order to derive a practical algorithm from the SGA approach, we need a model

for which the derivatives of the ln PT ð�Þ can be calculated e‰ciently. In section 4.4.3

procedure GradientAscent

InitializeAlgorithmParameters

T InitializeModelParameters

while (termination condition not met) do

‘EðT Þ CalculateGradient(T)
T T þ a‘EðT Þ

end-while

end-procedure

Figure 4.6
High-level pseudo-code for the GradientAscent procedure. The CalculateGradientðT Þ procedure is given by
equation (4.12).

142 Chapter 4 Ant Colony Optimization Theory

we show how this can be done in the context of the iterative construction scheme

used in the ACO metaheuristic.

Cross-Entropy Method

The basic ideas behind the CE method for combinatorial optimization were origi-

nally proposed in the mutual-information-maximizing input clustering (MIMIC)

algorithm of De Bonet et al. (1997). They were later further developed by Rubinstein

(1999, 2001), who was the first to use the cross-entropy name to denote this class of

algorithms. For the derivation of the CE method in this section we follow Dorigo

et al. (2002) and Zlochin et al. (2001).

Starting from some initial distribution P0 AM, the CE method inductively builds

a series of distributions Py AM, in an attempt to increase the probability of gen-

erating low-cost solutions after each iteration. A tentative way to achieve this goal is

to set Pyþ1 equal to P̂P, where P̂P is a value proportional to Py as follows:

P̂PzPyqf ; ð4:14Þ

where qf is, again, some quality function, depending on the cost value.

If this were possible, then, for time-independent quality functions, after y iterations

we would obtain Py zP0ðqf Þy. Consequently, as y!y, Py would converge to a

probability distribution restricted to S�. Unfortunately, even if the distribution Py

belongs to the family M, the distribution P̂P as defined by equation (4.14) does not

necessarily remain inM, hence some sort of projection is needed (see exercise 4.2).

Accordingly, a natural candidate for the projection Pyþ1 is the distribution P AM
that minimizes the Kullback-Leibler divergence (Kullback, 1959), which is a com-

monly used measure of the di¤erence between two distributions:

DðP̂PkPÞ ¼
X
s

P̂PðsÞ ln P̂PðsÞ
PðsÞ ; ð4:15Þ

or equivalently the cross-entropy:

�
X
s

P̂PðsÞ ln PðsÞ: ð4:16Þ

Since P̂PzPyqf , the CE minimization is equivalent to the following maximization

problem:

Pyþ1 ¼ argmax
P AM

X
s

PyðsÞqf ðsÞ ln PðsÞ: ð4:17Þ

4.4 ACO and Model-Based Search 143

It should be noted that, unlike SGA, in the CE method the quality function is only

required to be nonincreasing with respect to the cost and may also depend on the

iteration index, either deterministically or stochastically. For example, it might

depend on the points sampled so far. One common choice is qf ðsÞ ¼ Ið f ðsÞ < fyÞ,
where Ið�Þ is an indicator function, and fy is, for example, some quantile (e.g., lower

10%) of the cost distribution during the last iteration. (We remind the reader that

the indicator function Ið f ðsÞ < fyÞ is such that Ið f ðsÞ < fyÞ ¼ 1 if f ðsÞ < fy and 0

otherwise.)

In a way similar to what happened with the gradient of equation (4.12), the max-

imization problem given by equation (4.17) cannot be solved in practice, because the

evaluation of the function
P

s PyðsÞqf ðsÞ ln PðsÞ requires summation over the whole

solution space. Once again, a finite sample approximation can be used instead:

Pyþ1 ¼ argmax
P AM

X
s ASy

qf ðsÞ ln PðsÞ; ð4:18Þ

where Sy is a sample from Py.

Note that if the quality function is of the form Ið f ðsÞ < constÞ, then equation

(4.18) defines a maximum-likelihood model, with the sample used for estimation be-

ing restricted to the top-quality solutions. With other quality functions, equation

(4.18) may be interpreted as defining a weighted maximum-likelihood estimate.

In some relatively simple cases, some of which are discussed in section 4.4.3, the

problem [equation (4.18)] can be solved exactly. In general, however, the analytic

solution is unavailable. Still, even if the exact solution is not known, some iterative

methods for solving this optimization problem may be used.

A natural candidate for the iterative solution of the maximization problem given

by equation (4.18) is SGA, as shown in figure 4.7.

It should be noted that, since the new vector T yþ1 is a random variable, depending

on a sample, there is no use in running the SGA process till full convergence. Instead,

in order to obtain some robustness against sampling noise, a fixed number of SGA

updates may be used. One particular choice, which is of special interest, is the use of

a single gradient ascent update, leading to the update rule

T yþ1 ¼ T y þ a
X
s ASy

qf ðsÞ‘ ln PT y
ðsÞ; ð4:19Þ

which is identical to the SGA update [equation (4.13)]. However, as already men-

tioned, the CE method imposes fewer restrictions on the quality function (e.g.,

144 Chapter 4 Ant Colony Optimization Theory

allowing it to change over time), hence the resulting algorithm may be seen as a

generalization of SGA.

As with SGA, in order to have an e‰cient algorithm, a model is needed, for which

the calculation of the derivatives can be carried out in reasonable time. In the next

section, we show that this is indeed possible for the models typically used in ACO.

4.4.3 ACO, SGA, and CE

So far we have limited our discussion to the generic approaches for updating the

model. However, this is only one of the components needed in any model-based

search algorithm. In the following, we show how ACO implements the other com-

ponent, that is, the probabilistic model.

As we said, the particular type of probabilistic model used by ACO algorithms is

the coupling of the structure called construction graph with a set of stochastic pro-

cedures called artificial ants. The artificial ants build solutions in an iterative manner

using local information stored in the construction graph. In this section we present

the pheromone updates derived from the SGA algorithm and the CE method.

The SGA Update in ACO

In section 4.4.2 an update rule for the stochastic gradient was derived:

T yþ1 ¼ T y þ a
X
s ASy

qf ðsÞ‘ ln PT y
ðsÞ; ð4:20Þ

where Sy is the sample at iteration y.

As was shown by Meuleau & Dorigo (2002), in case the distribution is implicitly

defined by an ACO-type construction process, parameterized by the vector of the

pheromone values, T , the gradient ‘ ln PT ðsÞ can be e‰ciently calculated. The

procedure SGAforCrossEntropy

T 0 Ty
while (termination condition not met) do

T 0 T 0 þ a
P

s ASy
qf ðsÞ‘ ln PT 0 ðsÞ

end-while

return Tyþ1 ¼ T 0
end-procedure

Figure 4.7
High-level pseudo-code for the SGAforCrossEntropy procedure. The procedure starts by setting T 0 ¼ T y;
other starting points are possible, but this is the most natural one, since we may expect T yþ1 to be close to
T y. In case the while loop is iterated only once, the procedure coincides with equation (4.19).

4.4 ACO and Model-Based Search 145

following calculation (Zlochin et al., 2001) is a generalization of the one in Meuleau

& Dorigo (2002).

From the definition of AntSolutionConstruction, it follows that, for a solution s ¼
hc1; c2; . . . ; cjsji built by ant k, we have

PT ðsÞ ¼
Yjsj�1
h¼1

PT ðchþ1 j prefhðsÞÞ; ð4:21Þ

where prefhðsÞ is the h-prefix of s (i.e., the sequence formed by the first h components

of s), and consequently

‘ ln PT ðsÞ ¼
Xjsj�1
h¼1

‘ ln PT ðchþ1 j prefhðsÞÞ: ð4:22Þ

Finally, given a pair of components ði; jÞ A C2, using equation (4.1), it can be

verified that:

9 if i ¼ ch and j ¼ chþ1, then

q

qtij
fln PT ðchþ1 j prefhðsÞÞg ¼

q

qtij
ln F ðtijÞ

,X
ði;yÞ AN k

i

Fðti;yÞ

0
@

1
A

8<
:

9=
;

¼ q

qtij
ln F ðtijÞ � ln

X
ði;yÞ AN k

i

Fðti;yÞ

8<
:

9=
;

¼ F 0ðtijÞ=FðtijÞ � F 0ðtijÞ
,X
ði;yÞ AN k

i

F ðti;yÞ

¼ 1� F ðtijÞ
,X
ði;yÞ AN k

i

Fðti;yÞ

8<
:

9=
;F 0ðtijÞ

FðtijÞ

¼ f1� PT ð j j prefhðsÞÞgDðtijÞ;

where Dð�Þ ¼ F 0ð�Þ=Fð�Þ and the subscripts of F were omitted for the clarity of

presentation;

9 if i ¼ ch and j0 chþ1, then (by a similar argument)

q lnðPT ðchþ1 j prefhðsÞÞÞ
qtij

¼ �PT ð j j prefhðsÞÞDðtijÞ;

146 Chapter 4 Ant Colony Optimization Theory

9 if i0 ch, then PT ðchþ1 j prefhðsÞÞ is independent of tij and therefore

q lnðPT ðchþ1 j prefhðsÞÞÞ
qtij

¼ 0:

By combining these results, the SGAPheromoneUpdate procedure, shown in figure

4.8, is derived. In practice, any connection ði; jÞ used in the construction of a solu-

tion is reinforced by an amount aqf ðsÞDðtijÞ, and any connection considered dur-

ing the construction, has its pheromone values evaporated by an amount given by

aqf ðsÞPT ð j j prefhðsÞÞDðtijÞ. Here, with used connections we indicate those connec-

tions that belong to the built solution, whereas with considered connections we indi-

cate those that contributed to the computation of the probabilities given by equation

(4.1), during solution construction.

Note that, if the solutions are allowed to contain loops, a connection may be

updated more than once for the same solution.

In order to guarantee stability of the resulting algorithm, it is desirable to have a

bounded gradient ‘ ln PT ðsÞ. This means that a function F , for which Dð�Þ ¼ F 0ð�Þ=
F ð�Þ is bounded, should be used. Meuleau & Dorigo (2002) suggest using F ð�Þ ¼
expð�Þ, which leads to Dð�Þ1 1. It should be further noted that if, in addition,

procedure SGAPheromoneUpdate

foreach s A Sy do

foreach ði; jÞ A s do

tij tij þ aqf ðsÞDðtijÞ
end-foreach

end-foreach

foreach s ¼ hc1; . . . ; ch; . . .i A Sy do

foreach ði; jÞ : i ¼ ch, 1a h < jsj do
tij tij � aqf ðsÞPT ð j j prefhðsÞÞDðtijÞ

end-foreach

end-foreach

end-procedure

Figure 4.8
High-level pseudo-code for the SGAPheromoneUpdate procedure. The first two nested for loops add pher-
omones to all the connections used to build the solution (i.e., those connections that belong to the built
solution). The second two nested for loops decrease the pheromone on all the connections considered dur-
ing solution construction [i.e., those connections that contributed to the computation of the probabilities
given by equation (4.1) during solution construction]. Note that the internal loop is over all ði; jÞ because
those j which were not considered during solution construction are automatically excluded, since for them
it holds PT ð j j prefhðsÞÞ ¼ 0.

4.4 ACO and Model-Based Search 147

qf ¼ 1= f and a ¼ 1, the reinforcement part becomes 1= f as in the original AS (see

chapter 3, section 3.3.1).

The CE Update in ACO

As we have shown in section 4.4.2, the CE method requires solving the following in-

termediate problem:

Pyþ1 ¼ argmax
P AM

X
s ASy

qf ðsÞ ln PðsÞ: ð4:23Þ

Let us now consider this problem in more detail in case of an ACO-type proba-

bilistic model. Since at the maximum the gradient must be 0, we have

X
s ASy

qf ðsÞ‘ ln PT ðsÞ ¼ 0: ð4:24Þ

In some relatively simple cases, for example, when the solution s is represented by

an unconstrained string of bits of length n, that is, s ¼ ðs1; . . . ; si; . . . ; snÞ, and there is

a single parameter ti for the i-th position in the string, such that PT ðsÞ ¼
Q

i ptiðsiÞ,
the equation system [equation (4.24)] reduces to a set of independent equations:

d ln pti
dti

X
s ASy

si¼1

qf ðsÞ ¼ �
d lnð1� ptiÞ

dti

X
s ASy

si¼0

qf ðsÞ; i ¼ 1; . . . ; n; ð4:25Þ

which often may be solved analytically. For example, for pti ¼ ti it can be verified

that the solution of equation (4.25) is simply

pti ¼ ti ¼
P

s ASy
qf ðsÞsiP

s ASy
qf ðsÞ

; ð4:26Þ

and, in fact, a similar solution also applies to a more general class of Markov chain

models (Rubinstein, 2001).

Now, since the pheromone trails ti in equation (4.26) are random variables, whose

values depend on the particular sample, we may wish to make our algorithm more

robust by introducing some conservatism into the update. For example, rather than

discarding the old pheromone values, the new values may be taken to be a convex

combination of the old values and the solution to equation (4.26):

ti ð1� rÞti þ r

P
s ASy

qf ðsÞsiP
s ASy

qf ðsÞ
: ð4:27Þ

148 Chapter 4 Ant Colony Optimization Theory

The resulting update is identical to the one used in the hyper-cube framework for

ACO (see chapter 3, section 3.4.3).

However, for many cases of interest, equation (4.24) is coupled and an analytic

solution is unavailable. Nevertheless, in the actual implementations of the CE

method the update was of the form given by equation (4.26), with some brief remarks

about using equation (4.27) (Rubinstein, 2001), which may be considered as an ap-

proximation to the exact solution of the CE minimization problem [equation (4.18)].

Since, in general, the exact solution is not available, an iterative scheme such as

gradient ascent could be employed. As we have shown in the previous section, the

gradient of the log-probability may be calculated as follows:

9 if i ¼ ch and j ¼ chþ1, then

q lnðPT ðchþ1 j prefhðsÞÞÞ
qtij

¼ ð1� PT ð j j prefhðsÞÞÞDðtijÞ;

9 if i ¼ ch and j0 chþ1, then

q lnðPT ðchþ1 j prefhðsÞÞÞ
qtij

¼ �PT ð j j prefhðsÞÞDðtijÞ;

9 if i0 ch, then

q lnðPT ðchþ1 j prefhðsÞÞÞ
qtij

¼ 0;

and these values may be plugged into any general iterative solution scheme of the CE

minimization problem, for example, the one described by equation (4.19).

To conclude, we have shown that if we use equation (4.26) as a (possibly approxi-

mate) solution of equation (4.18), the same equations as used in the hyper-cube

framework for ACO algorithms are derived. If otherwise we use a single-step gradi-

ent ascent for solving equation (4.18), we obtain a generalization of the SGA update,

in which the quality function is permitted to change over time.

4.5 Bibliographical Remarks

The first convergence proof for an ACO algorithm, called Graph-based Ant System

(GBAS), was provided by Gutjahr (2000). GBAS is very similar to ACObs; tmin
except

that (1) tmin ¼ 0 and (2) the pheromone update rule changes the pheromones only

when, in the current iteration, a solution at least as good as the best found so far is

4.5 Bibliographical Remarks 149

generated. For GBAS, Gutjahr proves convergence in solution by showing that a

fixed ant constructs the optimal solution to the given problem instance with a prob-

ability larger or equal to 1� e. In particular, he proved that for each e > 0 it holds

that (1) for a fixed r and for a su‰ciently large number of artificial ants, the proba-

bility P that a fixed ant constructs the optimal solution at iteration y is Pb 1� e for

all yb y0, with y0 ¼ y0ðeÞ; (2) for a fixed number of ants and for an evaporation rate

r su‰ciently close to zero, the probability P that a fixed ant constructs the optimal

solution at iteration y is Pb 1� e for all yb y0, with y0 ¼ y0ðeÞ. Although the

theorem has the great merit to be the first theoretical work on ACO, its main limi-

tation is that the proof only applies to GBAS, an ACO algorithm which has never

been implemented and for which therefore no experimental results are available.

As a next step, Stützle & Dorigo (2002) proved the convergence in value result for

ACObs; tmin
, presented in theorem 4.1. They also proved some additional results re-

lated to convergence in solution: they provided bounds on the probability of con-

structing the optimal solution if fixed lower pheromone trail limits are used. As

stated in section 4.3.5, the main importance of this result is that it applies to two of

the experimentally most successful ACO algorithms,MMAS and ACS (see chapter

3, sections 3.3 and 3.4, respectively).

The first proof of convergence in solution, similar to the one given by theorems 4.2

and 4.3, was given by Gutjahr for variants of GBAS, which were called GBAS/tdlb

(for time-dependent lower pheromone bound) and GBAS/tdev (for time-dependent

evaporation rate). The first variant, GBAS/tdlb, uses a bound on the lower pher-

omone trail limits very similar to the one used in theorem 4.2. Di¤erently, in GBAS/

tdev it is the pheromone evaporation rate that is varied during the run of the algo-

rithm: for proving that GBAS/tdev converges in solution, pheromone evaporation is

decreased slowly, and in the limit it tends to zero.

The first work showing the relationship between AS and SGA was by Meuleau &

Dorigo (2002). In section 4.4.3 we presented an extension of that work by Zlochin

et al. (2001) and Dorigo et al. (2002). The CE method is an extension of the MIMIC

algorithm proposed by De Bonet et al. (1997) and developed by Rubinstein (1999,

2001). The relationship between ACO and CE was first formally described by Zlo-

chin et al. (2001).

4.6 Things to Remember

9 It is possible to prove asymptotic convergence for particular subsets of ACO algo-

rithms. In particular, asymptotic convergence in value was proved for ACS and

150 Chapter 4 Ant Colony Optimization Theory

MMAS, two of the experimentally best-performing ACO algorithms, while conver-

gence in solution was proved for GBAS and for ACObs; tminðyÞ. Proving convergence in

value intuitively means proving that the algorithm generates at least once the optimal

solution. Proving convergence in solution can be interpreted as proving that the al-

gorithm reaches a situation in which it generates over and over the same optimal

solution.

9 Convergence proofs tell us that the bias introduced in the stochastic algorithm does

not rule out the possibility of generating an optimal solution. They do not say any-

thing about the speed of convergence, that is, the computational time required to find

an optimal solution.

9 ACO algorithms belong to the class of MBS algorithms. In MBS algorithms can-

didate solutions are generated using a parameterized probabilistic model. This prob-

abilistic model is updated using the previously seen solutions in such a way that the

search will concentrate in the regions containing high-quality solutions. The con-

struction graph, together with the artificial ant procedures, defines the probabilistic

model, which is parameterized by the pheromone trails.

9 When interpreting ACO as an instance of MBS, it is possible to use methods such

as SGA and CE minimization to define rules to update pheromone trails. In this

view, AS can be seen as an algorithm that performs an approximate SGA in the

space of pheromone trails.

4.7 Thought and Computer Exercises

Exercise 4.1 Prove that theorem 4.2 can be extended to the case in which the func-

tion F ðtijÞ, defined in section 4.3, is a grade p polynomial of the form F ðtijÞ ¼
a0t

p
ij þ a1t

p�1
ij þ � � � þ aht

p�h
ij þ � � � þ ap, with a0 > 0, ah b 0, 0 < h < p and ap ¼ 0.

Exercise 4.2 In section 4.4.2 we wrote that even if the distribution Py belongs to the

familyM, the distribution P̂P as defined by equation (4.14), does not necessarily re-

main inM. Give an example showing that this is indeed the case.

Exercise 4.3 In section 4.4.3, an SGA update for ACO algorithms was derived. Try

to rederive the same equations in the more specific case of the TSP. A solution can be

found in Meuleau & Dorigo (2002).

Exercise 4.4 Convergence in solution can also be proved for ACOgb;rðyÞ, an ACO

algorithm that di¤ers from ACObs; tminðyÞ in that its pheromone evaporation rate is

modified at run time and its lower pheromone trail limits are set to 0. In particular,

4.7 Thought and Computer Exercises 151

assume that until some iteration y0 b 1, a fixed pheromone evaporation r is applied,

and that from y > y0 on we have

ry a 1� log y

logðyþ 1Þ ; Ey > y0;

and that

Xy
y¼1

ry ¼ þy:

Prove convergence in solution for this algorithm along the lines of the convergence

proof given in section 4.3.2 for ACObs; tminðyÞ.

Hint: You may have a look at the paper by Gutjahr (2002).

152 Chapter 4 Ant Colony Optimization Theory

5 Ant Colony Optimization for NP-Hard Problems

We shall refer to a problem as intractable if it is so hard that no polynomial time algorithm can

possibly solve it.

—Computers and Intractability, Michael R. Garey & David S. Johnson, 1979

This chapter gives an overview of selected applications of ACO to di¤erent NP-hard
optimization problems. The chapter is intended to serve as a guide to how ACO

algorithms can be adapted to solve a variety of well-known combinatorial optimiza-

tion problems rather than being an exhaustive enumeration of all possible ACO ap-

plications available in the literature. Our main focus is on presenting and discussing

interesting applications that either present a di¤erent perspective on how to apply

ACO algorithms or for which very good results have been obtained.

Most of the problems considered fall into one of the following categories: routing,

assignment, scheduling, and subset problems. For each of these categories a full sec-

tion is devoted to explain how ACO has been applied to the corresponding cate-

gory. We then review applications of ACO to a few additional NP-hard problems

such as shortest common supersequence, bin packing, protein folding, and constraint

satisfaction—problems that do not easily fit in the above-mentioned categories—and

to problems typically found in machine learning, such as the learning of classification

rules and of the structure of Bayesian networks.

For each problem we describe the construction graph, how constraints are han-

dled, the way pheromone trails and heuristic information are defined, how solutions

are constructed, the pheromone trail update procedure, and the computational re-

sults achieved. Additionally, when available in published papers, we give details

about the local search used with ACO.

We conclude the chapter with a discussion of some ‘‘ACO application principles’’

that can be used by practitioners as a guide when trying to apply ACO to an NP-
hard problem not yet considered in the literature.

5.1 Routing Problems

In this section we consider routing problems, that is, problems in which one or more

agents have to visit a predefined set of locations and whose objective function de-

pends on the ordering in which the locations are visited. The problems we discuss are

the sequential ordering problem and the vehicle routing problem.

5.1.1 Sequential Ordering

The sequential ordering problem consists in finding a minimum weight Hamiltonian

path on a directed graph with weights on arcs and nodes subject to precedence

constraints. The SOP can be formulated as a generalization of the asymmetric TSP

as follows:

9 A solution connects a starting node to a final node by a Hamiltonian path (in the

asymmetric TSP a solution is a Hamiltonian circuit).

9 Weights are assigned only to arcs. If given, node weights can be removed from the

original definition by redefining the weight cij of arc ði; jÞ by adding the node weight

pj of node j to each arc incident to j, resulting in new arc weights c 0ij ¼ cij þ pj.

9 Precedence constraints are defined among the nodes. If a node j has to precede

node i in the path, this is represented by assigning to arc ði; jÞ the weight c 0ij ¼ �1;
hence, if c 0ij b 0, then the weight gives the cost of arc ði; jÞ, while if c 0ij ¼ �1, then
node j must precede, not necessarily immediately, node i.

The application of ACO to the SOP is particularly interesting because a straight-

forward extension of one of the best-performing ACO algorithms for the TSP, ACS,

turns out to have world-class performance on a problem that, although closely con-

nected to the TSP, cannot be solved e‰ciently by the best available exact algorithms.

In fact, the main adaptations necessary to apply ACS to the SOP are minor mod-

ifications in the solution construction procedure and the implementation of a new

and e‰cient local search for the SOP. The resulting algorithm, called HAS–SOP

(Hybrid AS–SOP) is currently the best available algorithm for the SOP (Gambar-

della & Dorigo, 2000).

Construction graph The set of components contains the set of all the n nodes plus

the start node, node 0, and the final node, node nþ 1. As usual, the set of compo-

nents is fully connected. Solutions are Hamiltonian paths that start at node 0, end at

node nþ 1, and that comply with all the precedence constraints.

Constraints In the SOP the constraints require that all nodes of the graph be visited

once and only once and that all precedence constraints be satisfied. The constraints

are taken into account in the definition of the ants’ feasible neighborhood at con-

struction time, as explained below.

Pheromone trails A pheromone trail tij indicates the desirability of choosing node j

when an ant is at node i. This is the same definition as in the TSP application (see

chapter 2, section 2.3.2).

Heuristic information The heuristic information is the same as for the TSP, that is,

hij ¼ 1=c 0ij when c 0ij 0�1, and hij ¼ 0 otherwise.

Solution construction All ants are initially put on node 0 and build a Hamiltonian

path that connects node 0 to node nþ 1. Ants build solutions by choosing probabil-

154 Chapter 5 Ant Colony Optimization for NP-Hard Problems

istically the next node from their feasible neighborhood. In practice, ant k located on

node i chooses the node j, j A N k
i , to move to with a probability given by ACS’s

pseudorandom proportional rule [equation (3.10)]. The feasible neighborhood N k
i

contains all nodes j that ant k has not visited yet and that, if added to ant k’s partial

solution, do not violate any precedence constraint.

A particularity of HAS–SOP is the value given to the parameter q0 in equation

(3.10), which is set to q0 ¼ 1� s=n, where the parameter s, 1a sa n, gives the

expected number of nodes to be chosen according to the probabilistic part of equa-

tion (3.10); the parameter s allows defining q0 independently of the problem size.

Pheromone update HAS–SOP uses the same local and global pheromone update

procedures as ACS for the TSP (see chapter 3, section 3.4.1, for details).

Local search The local search is the most innovative part of HAS–SOP. It is a

specific 3-opt procedure, called SOP-3-exchange, which can handle e‰ciently multiple

precedence constraints during the local search without increasing computational

complexity. For a detailed description of the SOP-3-exchange procedure, see the

original paper by Gambardella & Dorigo (2000).

Results Computational results obtained with HAS–SOP are excellent. HAS–SOP

was compared to state-of-the-art algorithms for the SOP, the best-performing one

being a genetic algorithm called MPO/AI that was explicitly designed to solve

sequencing problems. Since MPO/AI was found to be significantly inferior to HAS–

SOP, MPO/AI was extended with the same SOP-3-exchange local search used by

HAS–SOP. MPO/AI plus SOP-3-exchange and HAS–SOP were compared using as

benchmark all the SOP instances available in the TSPLIB (Reinelt, 1991), accessible

at www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/. Also, in this case HAS–

SOP outperformed MPO/AI plus SOP-3-exchange, and it was able to find new

upper bounds for twelve TSPLIB instances. The most recent information on HAS–

SOP can be found at www.idsia.ch/~luca/has-sop_start.htm, maintained by Luca M.

Gambardella.

5.1.2 Vehicle Routing

The vehicle routing problem (VRP) is a central problem in distribution management

(Toth & Vigo, 2001). In the capacitated VRP (CVRP) n customers have to be served

from one central depot, which is typically identified by the index 0. Each customer i

has a non-negative demand bi of the same merchandise and for each pair of cus-

tomers ði; jÞ a travel time dij between the two customers is given. The customers are

served by a fleet of vehicles of equal capacity B. The goal in the CVRP is to find a set

of routes that minimizes the total travel time such that (1) each customer is served

5.1 Routing Problems 155

once by exactly one vehicle, (2) the route of each vehicle starts and ends at the depot,

and (3) the total demand covered by each vehicle does not exceed its capacity B.

The CVRP is an NP-hard problem because it contains the TSP as a subproblem.

In practice, it is much more di‰cult to solve than the TSP, the main reason being

that it consists of two nested problems. The first is a bin-packing problem where the

goal is to pack the customers into an a priori unknown number of routes (bins).

Then, for each of the routes a shortest tour visiting all the customers assigned to the

route has to be found, which involves solving a TSP.

The CVRP is the most basic form of a VRP. It is therefore not surprising that it

was also the first VRP to be tackled by an ACO approach. Bullnheimer et al. (1999b)

presented an adaptation of ASrank (ASrank-CVRP), which was later improved by

Reimann, Stummer, & Doerner (2002b) (ASrank-CVRPsav).

Several extensions of the basic CVRP exist, the most studied being the VRP with

time window constraints (VRPTW). In this version of the VRP, each customer i has

a time window ½ei; li� during which she must be served (a time window ½e0; l0� is asso-
ciated with the depot); here, ei is the earliest possible service time for customer i and

li is the latest possible time.

The objective function in the VRPTW is di¤erent from the one in the CVRP. The

VRPTW has two objectives: (1) to minimize the number of vehicles used and (2) to

minimize the total travel time. The two objectives are ordered hierarchically, that is,

a solution with fewer vehicles is always preferred over a solution with more vehicles

but a smaller total travel time. Two solutions with a same number of vehicles are

rated according to their total tour duration. Currently, the most successful ACO

algorithm for the VRPTW is MACS-VRPTW (Gambardella, Taillard, & Agazzi,

1999a), where MACS stays for multiple ACS. MACS-VRPTW uses two parallel,

interacting ant colonies, one for each objective. The central idea is that one colony,

called ACS-VEI, is trying to minimize the number of vehicles (routes) to be used,

while the other colony, called ACS-TIME, is trying to minimize, for a given number

of vehicles, the traveling time. MACS-VRPTW uses ACS for these single-objective

problems (for a description of ACS, see chapter 3, section 3.4.1). The two algorithms

run in parallel, with ACS-TIME using vmin vehicles and ACS-VEI searching for a

feasible solution with vmin � 1 vehicles. Each time ACS-VEI finds a feasible solution

with vmin � 1 vehicles, ACS-TIME and ACS-VEI are restarted with the new, reduced

number of vehicles.

In the following, we briefly describe ASrank-CVRP, ASrank-CVRPsav, and MACS-

VRPTW.

Construction graph In ASrank-CVRP and ASrank-CVRPsav, the construction graph

comprises one component for each of the customers and one component for the

156 Chapter 5 Ant Colony Optimization for NP-Hard Problems

depot. MACS-VRPTW uses multiple copies of the depot; the number of copies

(including the original depot) is equal to the number of vehicles that are currently in

use. The distances between the copies of the depot are zero. As usual, the compo-

nents are fully connected.

Constraints The constraints in the CVRP require that each customer be visited ex-

actly once and that the vehicle capacities not be exceeded. In the VRPTW, addi-

tionally the time window constraints need to be satisfied.

Pheromone trails In each algorithm, pheromone trails tij are associated only with

connections. The pheromone trails refer to the desirability of visiting customer j

directly after i. ACS-VEI and ACS-TIME use two di¤erent sets of pheromones.

Heuristic information ASrank-CVRP and ASrank-CVRPsav base the heuristic infor-

mation on the savings heuristic (Clarke & Wright, 1964). To explain how this heu-

ristic information is defined, consider first the savings algorithm for the CVRP. It

starts from a solution with one separate tour per customer, that is, with n tours. For

each pair ði; jÞ of customers a saving sij ¼ di0 þ d0j � dij is computed, where the

index 0 denotes the depot (see figure 5.1). The savings algorithm combines customers

into tours following the usual greedy strategy.

ASrank-CVRP uses as heuristic information a parameterized saving (Paessens,

1988) given by

hij ¼ di0 þ d0j � g � dij þ f � jdi0 � d0jj: ð5:1Þ

Good settings were reported to be g ¼ f ¼ 2. ASrank-CVRPsav uses the original

saving definition, that is, it sets hij ¼ sij .

The heuristic information hij in MACS-VRPTW is defined as a function of the

travel time dij , of the time window ½ei; li�, and of the number nsj of times a node j was

i j

0

i j

0

Figure 5.1
The savings algorithm for a situation with two customers i and j and a depot 0. On the left, customers i
and j are connected to the depot with two separated tours of total length d0i þ di0 þ d0j þ dj0. On the right
the two customers are connected to the depot with a single tour of length d0i þ dij þ dj0. The saving
sij ¼ di0 þ d0j � dij is given by the di¤erence between the lengths of the two tours on the left and the tour
on the right.

5.1 Routing Problems 157

not included in an ant’s solution in previous iterations of the algorithm (in fact,

ACS-VEI may build candidate solutions that do not include all customers). For

details, see Gambardella et al. (1999a).

Solution construction In ASrank-CVRP, ants build solutions using the same proba-

bilistic rule as in AS [equation (3.2)]. During solution construction, ASrank-CVRP

ants choose the next customer among the feasible ones from a candidate list of length

n=4, where n is the number of customers. (Candidate lists were defined in chapter 3,

section 3.4.1. They are discussed in more detail in section 5.7.7.) If no customer can

be added without making the tour infeasible, the tour is closed by returning to the

depot. A new tour is then started if there are unvisited customers left.

ASrank-CVRPsav follows the main steps of the savings algorithm in the solution

construction. It starts with n individual tours and then merges tours as long as fea-

sible. Then, instead of the deterministic choices based on the sij values as done in

the savings algorithm, the ants in ASrank-CVRPsav choose the next two tours to be

merged based on the random proportional action choice rule of AS [equation (3.2)].

At each construction step, ASrank-CVRPsav chooses customers from a candidate list

that consists of the pairs ði; jÞ corresponding to the n=4 largest savings sij .

In MACS-VRPTW, both colonies, ACS-TIME and ACS-VEI, use the same solu-

tion construction procedure which is similar to the one used by ACS. An ant starts

from a randomly chosen copy of the depot and at each step either adds a customer

that does not violate the time window constraints and the capacity constraints, or

returns to the depot (this means that ants are allowed to move to a still unvisited

copy of the depot even if they could still add unvisited customers to their partial so-

lution without violating any constraint). If no customer can be added, the ant returns

to one of the copies of the depot. If, after the construction of a solution is completed

(i.e., all the depot copies have been used), there remain some unscheduled customers,

MACS-VRPTW tries to include them in the incomplete solution. To do so, it uses an

insertion procedure which considers customers in order of nonincreasing demand and

inserts them, if possible, at a position such that the travel time is minimized.

Pheromone update The pheromone update in ASrank-CVRP and ASrank-CVRPsav

follows the pheromone update rule used in ASrank [equation (3.8)].

ACS-TIME and ACS-VEI of MACS-VRPTW use the global and local phero-

mone update rules of ACS [equations (3.11) and (3.12)], with a caveat. In fact,

ACS-VEI typically generates infeasible solutions that visit fewer than n customers.

Accordingly, the objective function optimized by ACS-VEI is the maximization of

the number of customers visited. In fact, if a solution that visits all n customers

is found, this corresponds to a solution with one vehicle less than the previous best-

so-far solution. Therefore, the global pheromone update rule updates pheromones

158 Chapter 5 Ant Colony Optimization for NP-Hard Problems

belonging to the solution that visited the largest number of customers. However,

according to Gambardella et al. (1999a), it is possible to greatly enhance the algo-

rithm’s performance by letting the global pheromone update rule also update pher-

omones belonging to the best-so-far (feasible) solution provided by ACS-TIME.

Local search ASrank-CVRP applies a 2-opt local search for the TSP to improve the

routes generated by the ants. ASrank-CVRPsav first applies a local search based on

an exchange move between tours, where each exchange move exchanges two cus-

tomers from two (di¤erent) routes; it then improves the resulting tours by applying

2-opt. MACS-VRPTW uses a more sophisticated local search that is based on cross-

exchange moves taken from Taillard, Badeau, Gendreau, Guertin, & Potvin (1997).

Results ASrank-CVRP and ASrank-CVRPsav were applied only to the CVRP. In

general, ASrank-CVRPsav was performing much better than ASrank-CVRP. ASrank-

CVRPsav was compared in Reimann et al. (2002b) and in a recent follow-up paper

(Reimann, Doerner, & Hartl, 2004) to several tabu search algorithms for this problem,

showing that it performs better than earlier tabu search algorithms.

MACS-VRPTW was, at the time of its publication, one of the best performing

metaheuristics for the VRPTW and it was able to improve the best-known solutions

for a number of well-known benchmark instances, both with and without time win-

dows. Only recently has the approach presented in Bräysy (2003) achieved competi-

tive results.

Remarks ACO algorithms have also been applied to a number of other VRP var-

iants, including a pickup and delivery problem under time window constraints in a

hub network (Dawid, Doerner, Hartl, & Reimann, 2002) or the VRP with backhauls

and time window constraints (Reimann, Doerner, & Hartl, 2002a). The main di¤er-

ences in these applications to extensions of the basic VRPs we described consist in

(1) the way the heuristic information and the pheromone trails are computed or

used, and (2) the details of the solution construction procedure. Recently, Reimann,

Doerner, & Hartl (2003) proposed an algorithm called ‘‘Unified Ant System’’ that

was applied to four VRP variants obtained by considering both, one, or none of the

two characteristics, ‘‘time windows’’ and ‘‘backhauls.’’ (The only di¤erences among

variants concern the use of di¤erent heuristic information.)

5.2 Assignment Problems

The task in assignment problems is to assign a set of items (objects, activities, etc.)

to a given number of resources (locations, agents, etc.) subject to some constraints.

Assignments can, in general, be represented as a mapping from a set I to a set J ,
and the objective function to minimize is a function of the assignments done.

5.2 Assignment Problems 159

To apply the ACO metaheuristic to assignment problems, a first step is to map the

problem on a construction graph GC ¼ ðC;LÞ, where C is the set of components

(usually the components consist of all the items and all the resources plus possibly

some additional dummy nodes) and L is the set of connections that fully connects the

graph. The construction procedure allows the ants to perform walks on the con-

struction graph that correspond to assigning items to resources.

For the practical application of the ACO metaheuristic to assignment problems

it is convenient to distinguish between two types of decision. The first refers to the

assignment order of the items, that is, the order in which the di¤erent items are

assigned to resources. The second decision refers to the actual assignment, that is, the

choice of the resource to which an item is assigned. Pheromone trails and heuristic

information may be associated with both decisions. In the first case, pheromone trails

and heuristic information can be used to decide on an appropriate assignment order.

In the second case, the pheromone trail tij and the heuristic information hij asso-

ciated with the pair ði; jÞ, where i is an item and j a resource, determine the desir-

ability of assigning item i to resource j.

All ACO algorithms for assignment problems have to take these two decisions into

account. In all the applications of ACO to assignment problems that we are aware

of, pheromone trails are used only for one of these two decisions. Typically, the

pheromone trails refer to the second one, the assignment step. For the first step,

deciding about the assignment order, most of the algorithms either use some heuris-

tically derived order or a random order.

5.2.1 Quadratic Assignment

The quadratic assignment problem is an important problem in theory and practice.

Many practical problems such as backboard wiring (Steinberg, 1961), campus and

hospital layout (Dickey & Hopkins, 1972; Elshafei, 1977), typewriter keyboard

design (Burkard & O¤ermann, 1977), and many others can be formulated as QAPs.

The QAP can best be described as the problem of assigning a set of facilities to a set

of locations with given distances between the locations and given flows between the

facilities. The goal is to place the facilities on locations in such a way that the sum of

the products between flows and distances is minimized.

More formally, given n facilities and n locations, two n� n matrices A ¼ ½aij � and
B ¼ ½brs�, where aij is the distance between locations i and j and brs is the flow

between facilities r and s, and the objective function

f ðpÞ ¼
Xn
i¼1

Xn
j¼1

bijapipj ; ð5:2Þ

160 Chapter 5 Ant Colony Optimization for NP-Hard Problems

where pi gives the location of facility i in the current solution p A SðnÞ, then the goal

in the QAP is to find an assignment of facilities to locations that minimizes the ob-

jective function. The term bijapipj describes the cost contribution of simultaneously

assigning facility i to location pi and facility j to location pj.

The QAP is an NP-hard optimization problem (Sahni & Gonzalez, 1976). It is

considered one of the hardest combinatorial optimization problems in practice: the

largest nontrivial QAP instance in QAPLIB, a benchmark library for the QAP ac-

cessible at www.seas.upenn.edu/qaplib/, solved to optimality at the time of writing,

has dimension n ¼ 36 (Brixius & Anstreicher, 2001; Nyström, 1999). The relatively

poor performance of exact algorithms explains the interest in metaheuristic ap-

proaches when the practical solution of a QAP is required. Therefore, it is not sur-

prising that the QAP has attracted a large number of research e¤orts in ACO. ACO

algorithms for the QAP comprise AS (Maniezzo et al., 1994; Maniezzo & Colorni,

1999), MMAS (Stützle, 1997b; Stützle & Hoos, 2000), and ANTS (Maniezzo,

1999). Overall, these research e¤orts have led to high-performing ACO algorithms;

in fact, the most recent ACO algorithms are among the best-performing metaheu-

ristics for the QAP. In addition, other ant-based algorithms like Hybrid AS (HAS)

(Gambardella et al., 1999b) and FANT (Fast Ant System) (Taillard, 1998) were ap-

plied to the QAP. Note, however, that HAS and FANT, although inspired by early

research e¤orts on AS, are not ACO algorithms because they depart in essential as-

pects from the structure of the ACO metaheuristic.

In the following, we describe the application of AS (AS-QAP),MMAS (MMAS-

QAP), and ANTS (ANTS-QAP) to the QAP. Some of the main design choices, such

as the definition of the construction graph and of the pheromone trails, are the same

for the three algorithms. Therefore, only significant di¤erences among the three algo-

rithms are indicated, where necessary. A more detailed description of applications of

ACO and, more in general, of ant algorithms to the QAP can be found in Stützle &

Dorigo (1999a).

Construction graph The set of components C comprises all facilities and locations.

The connections L fully connect the components. A feasible solution is an assign-

ment consisting of n pairs ði; jÞ between facilities and locations, with each facility and

each location being used exactly once. There are no explicit costs assigned to the

couplings.

Constraints The only constraint is that a feasible solution for the QAP assigns each

facility to exactly one location and vice versa. This constraint can be easily enforced

in the ants’ walk by building only couplings between still unassigned facilities and

locations.

5.2 Assignment Problems 161

Pheromone trails The pheromone trails tij refer to the desirability of assigning

facility i to location j (or the other way round, the two choices being equivalent).

Heuristic information MMAS-QAP does not use any heuristic information, where-

as AS-QAP and ANTS-QAP do.

In AS-QAP two vectors d and f are computed in which the i-th components di
and fi represent respectively the sum of the distances from location i to all other

locations and the sum of the flows from facility i to all other facilities. The lower di,

the distance potential of location i, the more central is the location; the higher fi, the

flow potential of facility i, the more important the facility. Flow potentials are used

to order facilities (see ‘‘Solution construction’’ below), while the inverse of distance

potentials hj ¼ 1=dj is used as a heuristic value to bias location choice. The motiva-

tion for using this type of heuristic information is that, intuitively, good solutions will

place facilities with high flow potential on locations with low distance potential.

ANTS-QAP uses lower bounds on the completion of a partial solution to derive

the heuristic desirability hij of adding a specific pair ði; jÞ. The lower bound is com-

puted by tentatively adding the pair to the current partial solution and by estimating

the cost of a complete solution containing that coupling by means of the LBD lower

bound (Maniezzo, 1999). This lower bound has the advantage of having a computa-

tional complexity of OðnÞ. The lower bound estimate gives the heuristic information:

the lower the estimate, the more attractive is the addition of a specific coupling. For

details on the lower bound computation see Maniezzo (1999). Note that in an earlier

variant of the ANTS-QAP algorithm (Maniezzo & Colorni, 1999), the well-known

Gilmore-Lawler lower bound (GLB) (Gilmore, 1962; Lawler, 1963) was applied at

each step; however, the GLB requires a computation time of order Oðn3Þ.
Solution construction AS-QAP sorts the facilities in nonincreasing order of flow

potentials and at each construction step an ant k assigns the next, still unassigned,

facility i to a free location j using the action choice rule of AS [equation (3.2)].

The only di¤erence between MMAS-QAP and AS-QAP concerning solution

construction is that MMAS-QAP sorts the facilities randomly and, as said before,

does not use any heuristic information.

In ANTS-QAP, the lower bound is computed once at the start of the algorithm.

Along with the lower bound computation one gets the values of the dual variables

corresponding to the constraints when formulating the QAP as an integer program-

ming problem (see Maniezzo [1999] for details). These values are used to define the

order in which locations are assigned. The action choice rule is the same as that used

by the ANTS algorithm [equation (3.13)].

Pheromone update The pheromones for all three algorithms are updated following

the corresponding rules defined for each of these algorithms (see chapter 3 for details).

162 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Local search All three ACO algorithms were combined with a 2-opt local search

procedure for the QAP.MMAS-QAP was also tested with a local search procedure

based on short runs of a tabu search algorithm. It was found that whether the 2-opt

or the tabu search should be preferred is a function of the particular instance class;

for more details, see box 5.1.

Results ACO algorithms were experimentally shown to be among the best avail-

able algorithms for structured real-life, and for large, randomly generated real-life-

like QAP instances. Their excellent performance is confirmed in a variety of studies

(Gambardella, 1999b; Maniezzo, 1999; Stützle & Hoos, 2000; Stützle & Dorigo,

1999a). Interestingly, ANTS-QAP was also shown to outperform tabu search algo-

rithms (Taillard, 1991) for a class of hard, randomly generated instances. Although

Box 5.1
About Local Search in ACO

Very often the best ACO algorithms are those that combine two components: solution construction
by artificial ants and a local search procedure (remember that, within the general definition of
the ACO metaheuristic given in chapter 2, section 2.1, local search is a particular type of the so-
called daemon actions). In general, the choice of which local search procedure to use is not only
problem-specific, but may also depend on the problem instances considered. As an example, we
consider two well-known QAP instances, tai50a and tai50b, and we compare two MMAS-
QAP algorithms using as local search two di¤erent procedures: a best-improvement 2-opt and short
runs of a tabu search. The resulting two algorithms, which are compared in the figure below, are
calledMMAS-QAP2-opt andMMAS-QAPTS, respectively. The results are averaged over ten runs
for each algorithm.

0

1

2

3

4

5

0 50 100 150 200 250 300

%
 d

ev
ia

tio
n

fr
om

 b
es

t k
no

w
n

CPU time [sec]

MMAS-QAP-2opt
MMAS-QAP-TS

0

1

2

3

4

5

0 50 100 150 200 250 300

%
 d

ev
ia

tio
n

fr
om

 b
es

t k
no

w
n

CPU time [sec]

MMAS-QAP-2opt
MMAS-QAP-TS

As can be observed in the figure, which local search performs better once coupled to MMAS-
QAP depends on the instance type: for tai50a, on the left,MMAS-QAPTS performs significantly
better thanMMAS-QAP2-opt, whereas, for tai50b, on the right,MMAS-QAP2-opt outperforms
MMAS-QAPTS.

5.2 Assignment Problems 163

the dimension of the considered random instances was limited to n ¼ 40, this is a

very noteworthy result, because tabu search algorithms typically perform much

better than other metaheuristics on these types of instances (Taillard, 1995).

Among ACO algorithms, ANTS-QAP andMMAS-QAP appear to perform sig-

nificantly better than AS-QAP (Stützle & Dorigo, 1999a), which confirms the obser-

vation made for the TSP application that the more recent and more sophisticated

ACO algorithms strongly improve over AS performance.

5.2.2 Generalized Assignment

In the generalized assignment problem, a set of tasks has to be assigned to a set of

agents in such a way that a cost function is minimized. Each agent j has only a lim-

ited capacity aj and each task i consumes, when assigned to agent j, a quantity bij of

the agent’s capacity. Also, the cost dij of assigning task i to agent j is given. The ob-

jective then is to find a feasible task assignment of minimum cost. The GAP was

described in chapter 2, section 2.3.3, where an outline was given of how, in principle,

ACO algorithms can be applied to it; we refer the reader to that description for more

details. The first ACO application to the GAP was presented by Lourenço & Serra

(1998) and is based onMMAS (MMAS-GAP).

Construction graph The set of components is given by C ¼ I W J and it is fully

connected; the construction graph is identical to that described in chapter 2, section

2.3.3.

Constraints The problem constraints may lead to a situation in which a partial as-

signment cannot be extended to a full assignment that satisfies all the agents’ capac-

ity constraints. MMAS-GAP deals with this problem by allowing construction of

infeasible solutions.

Pheromone trails The pheromone trail tij represents the desirability of assigning

task i to agent j.

Heuristic information MMAS-GAP uses heuristic information only for the phero-

mone initialization, but not while constructing solutions. In MMAS-GAP, phero-

mone trails are initialized using the heuristic information; their initial value is set to

t0 ¼ 1=dij .

Solution construction Solutions are constructed by iteratively assigning tasks to

agents. At each construction step, first the next task to be assigned is chosen ran-

domly; then the chosen task is assigned to an agent applying the pseudorandom

proportional action choice rule of ACS [see equation (3.10)]. In the solution con-

struction, care is taken in assigning tasks only to agents that still have enough

164 Chapter 5 Ant Colony Optimization for NP-Hard Problems

spare capacity. Only if no agent has enough spare capacity to accept the task is the

task assigned randomly to any of the agents, generating in this way an infeasible

assignment.

Pheromone update After each iteration, the iteration-best solution deposits phero-

mone. The way pheromones are updated in MMAS-GAP shows a particularity:

the amount of pheromone deposited depends only on the feasibility status of a solu-

tion, and not on the solution quality. If a solution is feasible, a constant quantity of

0.05 units of pheromone is deposited, otherwise 0.01 units are deposited.

Local search Several local search algorithms, including a simple iterative improve-

ment algorithm, a tabu search, and an ejection chain approach (Glover, 1996; Glover

& Laguna, 1997), were tested.

Particularities MMAS-GAP does not use a colony of ants: in each iteration only

one ant constructs a solution and deposits pheromone. In fact, this corresponds to

the parameter setting m ¼ 1 in ACO. Such a parameter setting can result in a faster

convergence of the ACO algorithm to good solutions, but it may result in worse

solution quality for long computation times. For a discussion of how the number of

ants influences the performance of ACO algorithms, see section 5.7.6.

A further particularity ofMMAS-GAP is that the amount of pheromone depos-

ited by an ant depends only on whether its solution is feasible or not (see ‘‘Phero-

mone update’’ above), that is, the amount of pheromone deposited does not depend

on how good a feasible solution is.

Results MMAS-GAP was shown to perform better than a GRASP algorithm that

used the same local search (Lourenço & Serra, 1998). A comparison of the compu-

tational results obtained with MMAS-GAP with those obtained by other meta-

heuristics showed that, at the time the research was done,MMAS-GAP could reach

state-of-the-art performance. However, since that time, better algorithms for the

GAP have been proposed; the best algorithm currently available is that of Yagiura,

Ibaraki, & Glover (2004).

5.2.3 Frequency Assignment

In the frequency assignment problem (FAP) are given a set of links, a set of fre-

quencies, and channel separation constraints that for each pair of links give a mini-

mum distance to be maintained between the frequencies assigned to the links. There

exist a number of di¤erent variants of the FAP (for an overview, see Aardal, van

Hoesel, Koster, Mannino, & Sassano, 2001). Maniezzo & Carbonaro (2000) applied

the ANTS algorithm to a version of the FAP in which, given a maximum number of

frequencies, the objective is to minimize the sum of the costs of violating the channel

5.2 Assignment Problems 165

separation constraints plus the costs of modifying the frequencies of links that have a

preassigned frequency.

Construction graph The set of components C comprises the set of links and the set

of available frequencies; as usual, the construction graph is fully connected.

Constraints The only constraint for the solution construction is that a frequency

must be assigned to each link. Violations of the channel separation constraint are

penalized by the objective function.

Pheromone trails Pheromone trails are associated with components representing the

links. A pheromone trail tij indicates the desirability of assigning a frequency j to

link i.

Heuristic information At each construction step of an ant, a lower bound based

on an adaptation of the orientation model (Borndörfer, Eisenblätter, Grötschel, &

Martin, 1998a) is computed and used as heuristic information.

Solution construction Solutions are constructed iteratively by assigning frequencies

to links, using the probabilistic decision policy of ANTS [equation (3.13)].

Pheromone update The pheromone update rule of ANTS is applied [equation

(3.15)].

Local search Each constructed solution is locally optimized using an iterative de-

scent algorithm that tries to improve the objective function by modifying at each step

the assignment of frequencies to links.

Results ANTS was compared to reimplementations of two simulated annealing

algorithms (Hurkens & Tiourine, 1995; Smith, Hurley, & Thiel, 1998), to a tabu

search, and to a constructive algorithm based on the DSATUR heuristic, originally

designed for the graph coloring problem (GCP) (Brelaz, 1979). Experimental results

were presented for a set of benchmark instances (CELAR, GRAPH, and PHILA-

DELPHIA problems), which were adapted to the FAP formulation used in

Maniezzo & Carbonaro (2000). ANTS performed particularly well on the CELAR

and GRAPH instances.

5.2.4 Other ACO Applications to Assignment Problems

Graph Coloring Problem

A number of other ACO applications to assignment-type problems have been pro-

posed. One of the first is an approach based on AS to the GCP by Costa & Hertz

(1997). Given an undirected graph G ¼ ðN;AÞ, the goal in the GCP is to find the

minimum number of colors to assign to nodes such that no pair of adjacent nodes is

assigned the same color. In their ACO algorithm, Costa and Hertz use pheromones

166 Chapter 5 Ant Colony Optimization for NP-Hard Problems

to indicate the desirability of assigning the same color to two nodes. For ants’ solu-

tion construction, they adapted the heuristics used in two well-known constructive

algorithms, the DSATUR heuristic (Brelaz, 1979) and the Recursive Largest First

(RLF) heuristic (Leighton, 1979). They experimentally compared eight variants of

their ACO algorithm on a set of randomly generated GCP instances with up to 300

nodes. With good parameter settings, all the considered variants significantly im-

proved over the underlying DSATUR and RLF heuristics, with those based on the

DSATUR heuristic yielding the overall best results. The performance of this last

ACO algorithm, in general, appears to be way behind good graph coloring algo-

rithms such as tabu search algorithms (Dorne & Hao, 1999) or several hybrid

approaches (Galinier & Hao, 1999; Paquete & Stützle, 2002). However, a more suc-

cessful ACO approach to the GCP could certainly be obtained by employing a local

search and by using ACO algorithms that are more advanced than AS.

University Course Timetabling Problem

In the university course timetabling problem (UCTP) one is given a set of time slots,

a set of events, a set of rooms, a set of features, a set of students, and two types of

constraints: hard and soft constraints. Hard constraints have to be satisfied by any

feasible solution, while soft constraints do not concern the feasibility of a solution

but determine its quality. The goal is to assign the events to the time slots and to the

rooms so that all hard constraints are satisfied and an objective function, whose

value depends on the number of violated soft constraints, is optimized. The only

UCTP attacked by ACO algorithms that we are aware of was proposed within the

research activities of the European project ‘‘Metaheuristics Network’’ (for details, see

www.metaheuristics.org). Two ACO algorithms were implemented, the most suc-

cessful of these being an adaptation of MMAS to the UCTP (MMAS-UCTP)

(Socha et al., 2002, 2003). In MMAS-UCTP the pheromone trail tij refers to the

desirability of assigning an event i to a time slot j; no heuristic information is used.

Solutions are constructed by first preordering the events and then assigning the

events to time slots using the probabilistic action choice rule of AS. Once the solution

construction is completed, the iteration-best solution is improved by a local search

procedure.MMAS-UCTP, when compared to the other metaheuristics tested in the

research done in the ‘‘Metaheuristics Network,’’ obtained good results and showed

particularly good performance on the largest instances (Socha et al., 2003).

5.3 Scheduling Problems

Scheduling, in the widest sense, is concerned with the allocation of scarce resources

to tasks over time. Scheduling problems are central to production and manufacturing

5.3 Scheduling Problems 167

industries, but also arise in a variety of other settings. In the following, we mainly

focus on shop scheduling problems, where jobs have to be processed on one or sev-

eral machines such that some objective function is optimized. In case jobs have to be

processed on more than one machine, the task to be performed on a machine for

completing a job is called an operation. For all the machine-scheduling models con-

sidered in the following it holds that (1) the processing times of all jobs and oper-

ations are fixed and known beforehand and (2) the processing of jobs and operations

cannot be interrupted (scheduling without preemption). For a general introduction to

scheduling, see Brucker (1998) or Pinedo (1995).

Scheduling problems play a central role in ACO research, and many di¤erent

types of scheduling problems have been attacked with ACO algorithms (see table

5.1). The performance, however, varies across problems. For some problems, such as

the single-machine total weighted tardiness problem (SMTWTP), the open shop

problem, and the resource constrained project scheduling problem, ACO is among

the best-performing approaches. For other, classic scheduling problems, however,

like the permutation flow shop problem and the job shop problem, the computa-

tional results obtained so far are far behind the state of the art.

The construction graph for scheduling problems is typically represented by the set

of jobs (for single-machine problems) or operations. However, often it is convenient

to add to the construction graph nodes that represent positions in a sequence that

jobs (operations) can take, and to view sequences as assignments of jobs (operations)

to these positions. This is important, because in many scheduling problems the ab-

solute position of a job in a sequence is important. However, there exists some com-

Table 5.1
Available ACO algorithms for scheduling problems discussed in the text

Problem Main references

JSP Colorni, Dorigo, Maniezzo, & Trubian (1994)

OSP Pfahringer (1996); Blum (2003b)

PFSP Stützle (1997a, 1998a)

SMTTP Bauer, Bullnheimer, Hartl, & Strauss (2000)

SMTWTP den Besten, Stützle, & Dorigo (2000); Merkle & Middendorf (2000)

RCPSP Merkle, Middendorf, & Schmeck (2000a, 2002)

GSP Blum (2002a, 2003a)

SMTTPSDST Gagné, Price, & Gravel (2002)

JSP is the job shop problem, OSP is the open-shop problem, PFSP is the permutation flow shop problem,
SMTTP is the single-machine total tardiness problem, SMTWTP is the single-machine total weighted tar-
diness problem, RCPSP is the resource-constrained project scheduling problem, GSP is the group shop
scheduling problem, and SMTTPSDST is the single-machine total tardiness problem with sequence de-
pendent setup times. Details on the ACO algorithms for these problems are given in the text.

168 Chapter 5 Ant Colony Optimization for NP-Hard Problems

putational evidence that for some problems the relative ordering of jobs in the se-

quence may be more important (Blum & Sampels, 2002a).

5.3.1 Single-Machine Total Weighted Tardiness Scheduling

In the single-machine total weighted tardiness problem n jobs have to be processed

sequentially on a single machine, without interruption. Each job has an associated

processing time pj, a weight wj, and a due date dj , and all jobs are available for

processing at time zero. The tardiness of job j is defined as Tj ¼ maxf0;CTj � djg,
where CTj is its completion time in the current job sequence. The goal in the

SMTWTP is to find a job sequence, that is, a permutation of the job indices, that

minimizes the sum of the weighted tardiness, given by
Pn

j¼1 wiTi. The unweighted

case, in which all the jobs have the same weight, is called the single-machine total

tardiness problem (SMTTP). It is well known that the SMTWTP is harder to solve

than the SMTTP. This is true from a theoretical perspective, because the SMTTP

can be solved in pseudopolynomial time (Lawler, 1977), while the SMTWTP with

no restrictions on the weights is NP-hard in the strong sense (Lenstra, Rinnooy

Kan, & Brucker, 1977). But it is also true from the experimental perspective: while

SMTWTP instances with more than 50 jobs often cannot be solved to optimality

with state-of-the-art branch & bound algorithms (Abdul-Razaq, Potts, & Wassen-

hove, 1990; Crauwels, Potts, & Wassenhove, 1998), the best available branch &

bound algorithms solve SMTTP instances with up to 500 jobs (Szwarc, Grosso, &

Della Croce, 2001).

ACO algorithms have been developed for both the SMTTP and the SMTWTP.

First, Bauer et al. (2000) applied ACS to the SMTTP (ACS-SMTTP), then den

Besten et al. (2000) and Merkle & Middendorf (2003a) in parallel developed ACS

applications to the SMTWTP, referred to respectively as ACS-SMTWTP-BSD and

ACS-SMTWTP-MM in the rest of this section. These ACO algorithms are very

similar to each other and share many characteristics.

Construction graph The set of components C consists of the n jobs and the n posi-

tions to which the jobs are assigned. The set L of arcs fully connects the graph.

Constraints The only constraint that has to be enforced is that all jobs have to be

scheduled.

Pheromone trails The pheromone trails tij refer to the desirability of scheduling a

job j as the i-th job, that is, the desirability of assigning job j to position i.

Heuristic information In ACS-SMTTP two priority rules were tested to define two

di¤erent types of heuristic information. The rules are (1) the earliest due date rule,

5.3 Scheduling Problems 169

which puts the jobs in nondecreasing order of the due dates dj, and (2) the modified

due date rule (Bauer et al., 2000), which puts the jobs in nondecreasing order of the

modified due dates given by mddj ¼ maxf p̂pþ pj; djg, where p̂p is the sum of the pro-

cessing times of the already sequenced jobs.

ACS-SMTWTP-BSD also considered, in addition to the earliest due date and to

the modified due date rules, the apparent urgency priority rule, which puts the jobs in

nondecreasing order of apparent urgency (Morton, Rachamadugu, & Vepsalainen,

1984), defined as

auj ¼ ðwj=pjÞ � expð�ðmaxfdj � CTj; 0gÞ=kpÞ;

where p is the average processing time of the remaining jobs, and k is a parameter set

as proposed in Potts & Wassenhove (1991). In each case, the heuristic information

was defined as hij ¼ 1=hj, where hj is either dj, mddj, or auj, depending on the priority

rule used.

ACS-SMTWTP-MM used a variation of Bauer and colleagues’ modified due date

rule. This new rule was defined as vmddj ¼ maxf p̂pþ pj ; djg � p̂p. The heuristic infor-

mation was set to be hij ¼ wj=vmddj. This variation is based on the observation that,

as p̂p increases, the values mddj become large, and the di¤erences between the heuris-

tic values for the remaining jobs become small; hence, ants can no longer di¤erenti-

ate e¤ectively between the alternatives based on the heuristic values. This problem is

reduced by using vmddj. Finally, in particular situations, it can be shown that a good

policy is to schedule the remaining jobs in a deterministic order. If such a situation

occurs, ants in ACS-SMTWTP-MM follow this deterministic rule.

Solution construction and pheromone update The ants construct a sequence by first

choosing a job for the first position, then a job for the second position, and so on

until all jobs are scheduled. The action choice and the pheromone update rules are

those of ACS, except for two details in ACS-SMTWTP-BSD and ACS-SMTWTP-

MM: the first uses appropriately defined candidate lists, while the second uses the

pheromone summation rule (which is explained in depth in box 5.2).

Local search In ACS-SMTTP a best-improvement local search that considers all

possible exchanges between pairs of jobs was applied to the best ant after each

iteration. ACS-SMTWTP-MM applied a truncated first-improvement strategy that

checked exactly once for each pair of jobs whether an exchange of their positions led

to an improved solution. ACS-SMTWTP-BSD combined ACS with a powerful local

search based on variable neighborhood descent (Hansen & Mladenović, 1999).

Results Of the three approaches, ACS-SMTWTP-BSD obtained the best perfor-

mance results. This algorithm was able to obtain on all benchmark instances from

170 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Box 5.2
The Pheromone Summation Rule

In permutation scheduling applications, pheromone trails tij typically refer to the desirability of
assigning job j to position i. Now, assume that, because of the stochastic nature of the algorithm,
although job j has a high pheromone value tij , it happens that it is job h, with a low tih, which is
assigned to position i of the schedule. Then, in many scheduling problems, as is the case, for ex-
ample, in the SMTWTP, it may be advantageous to assign job j to a position close to position i.
However, if for positions l > i the pheromone trails tlj happen to be low, it is probable that the job
gets sequenced toward the end of the schedule, far away from position i, leading to highly sub-
optimal schedules. Unfortunately, the situation in which the tlj ’s are low for positions l > i may
easily occur. For example, this is the case if no solution which assigns job j to a position l > i has
yet been found, or if such solutions were found many iterations before, so that the corresponding
pheromone values have decreased because of evaporation. An elegant solution to this problem has
been proposed by Merkle and Middendorf: the use of the so-called summation rule.

The summation rule consists of choosing the job j to assign to position i using the sum of all the
thj ’s, with ha i. In this way, if it happens that, notwithstanding a high value of pheromone tij , job j
is not allocated to position i, the high value tij continues to influence the probability of allocating
job j to the position i þ 1. In this way, job j has a high probability of being assigned to a position
close to i.

In ACS-SMTWTP-MM (see section 5.3.1), when using the summation rule, an ant chooses with
probability q0 to assign to position i a job that maximizes

Xi

k¼1
tkj

" #a
½hij �

b; ð5:3Þ

while with probability 1� q0 the job j is chosen according to a probability given by

pij ¼
½
P i

k¼1 tkj �
a½hij �

bP
h ANi
ð½
P i

k¼1 tkh�
a½hih�

bÞ
; ð5:4Þ

where Ni is the set of still unscheduled jobs. As said, the summation rule was experimentally shown
to lead to improved computational results for the SMTWTP (as well as for the SMTTP). In further
experiments, Merkle and Middendorf used a weighted summation rule as well as combinations of
the standard way of using pheromones with the weighted summation rule.

In the weighted summation rule, equation (5.4) becomes

pij ¼
½
P i

k¼1 g
i�ktkj �a½hij �

bP
h ANi
ð½
P i

k¼1 g
i�ktkh�a½hih�

bÞ
; ð5:5Þ

where the parameter g, g > 0, determines the influence of pheromone trails corresponding to earlier
positions. Setting g ¼ 1 gives the (unweighted) summation rule, a value g < 1 gives less influence to
pheromone trails corresponding to earlier decisions, while a value g > 1 increases their influence.

Merkle and Middendorf have combined the standard way of using pheromones with the
weighted summation rule by computing pheromone trails t 0ij as follows:

t 0ij ¼ c � xi � tij þ ð1� cÞ � yi �
Xi

k¼1
g i�ktkj ; ð5:6Þ

5.3 Scheduling Problems 171

ORLIB (mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html) the best-known solutions, which

are conjectured to be the optimal ones. ACS-SMTWTP-BSD is currently among the

best available algorithms for the SMTWTP; however, the iterated Dynasearch ap-

proaches of Congram et al. (2002) and Grosso, Della Croce, & Tadei (2004) appear

to be faster, reaching the same level of performance in a shorter computation time.

Good results were also reported for ACS-SMTWTP-MM, although it could not

reach the same solution quality of ACS-SMTWTP-BSD; the main reason is certainly

the less powerful local search algorithms used by Merkle and Middendorf. Experi-

ments with ACS-SMTWTP-MM applied to the SMTTP showed a significantly

better performance when compared to ACS-SMTTP, the main reason being the use

of more sophisticated heuristic information and the use of the summation rule

(Merkle & Middendorf, 2003a).

5.3.2 Job Shop, Open Shop, and Group Shop Scheduling

In job shop, open shop, and group shop scheduling problems we are given a finite set

O of operations that is partitioned into a set of subsetsM¼ fM1; . . . ;Mmg, where
each Mi corresponds to the operations to be processed by machine i, and into a set of

subsets J ¼ fJ1; . . . ; Jng, where each set Jj corresponds to the operations belonging

Box 5.2
(continued)

where xi ¼
P

h ANi

P i
k¼1 g

i�ktkh and yi ¼
P

h ANi
tih are factors to adjust for the di¤erent range of

values in the standard and in the summation rule and the parameter c adjusts the relative influence
of the local and the summation rule: for c ¼ 1 is obtained the standard rule, while for c ¼ 0 is
obtained the pure, weighted summation rule. Then, the probability of choosing a job j for position i
is computed using the usual equation:

pij ¼
½t 0ij �

a½hij �
bP

h ANi
ð½t 0ih�

a½hih�
bÞ
: ð5:7Þ

An experimental study of ACO algorithms for the SMTWTP and the resource-constrained proj-
ect scheduling problem (RCPSP), a scheduling problem that is presented in section 5.3.3, showed
that by setting appropriate values for the parameters g and c it is possible to obtain much better
results in comparison to those obtained with either the standard rule or with a pure (unweighted)
summation rule (Merkle, Middendorf, & Schmeck, 2000b).

Finally, we would like to emphasize that the usefulness of the summation rule depends on the
property that in good schedules the positions of jobs are similar. If this is not the case, pheromone
evaluation based on the summation rule may fail. In fact, Merkle & Middendorf (2002a) defined
the single-machine total earliness problem with multiple due dates, for which such property does
not hold and where the summation rule fails. For that problem, they showed that good perfor-
mance can be achieved by a relative pheromone evaluation rule that normalizes the pheromone value
tij with the relative amount of the pheromones on the remaining positions for job j.

172 Chapter 5 Ant Colony Optimization for NP-Hard Problems

to job j. Each operation is assigned a non-negative processing time and preemption

is not allowed.

The job shop, open shop, and group shop scheduling problems di¤er only in the

order that is imposed on the operations belonging to a job. In the job shop problem

(JSP), precedence constraints among all operations of a job exist and they induce

a total ordering of the operations of each job. On the contrary, in the open shop

problem (OSP), there are no precedence constraints, that is, any ordering of the

operations is allowed as long as only one operation of a job is processed at a time. In

the group shop scheduling problem (GSP), the operations of each job are addition-

ally partitioned into groups. The operations within one group can be processed in

any order, but the groups of a job are totally ordered; therefore, the order of the

groups within a job induces a partial order among the operations. The GSP is the

most general of these problems, as it contains the JSP and the OSP as special cases.

In the JSP each group contains only one operation and every OSP instance can be

seen as a GSP instance with only one group per job. An example of a simple GSP

instance is given in figure 5.2.

So far, ACO algorithms have been applied to the above-mentioned scheduling

problems with the minimization of the completion time of the last operation, also

called makespan, as objective function. Colorni et al. (1994) were the first to attack

one of these problems: they applied AS to the JSP (AS-JSP-CDMT). This first ap-

proach was followed by an application of Ant-Q (Gambardella & Dorigo, 1995;

Dorigo & Gambardella, 1996) to the OSP (AntQ-OSP) by Pfahringer (1996), and by

1 2 3

4 5 6

7 8

Figure 5.2
Disjunctive graph representation (Roy & Sussmann, 1964) of a simple group shop scheduling problem
instance with eight operations. The nodes in the graph correspond to the operations, groups having more
than one node are indicated by boxes. We have O ¼ f1; . . . ; 8g, J ¼ fJ1 ¼ f1; 2; 3g; J2 ¼ f4; 5; 6g; J3 ¼
f7; 8gg, M¼ fM1 ¼ f1; 4; 8g;M2 ¼ f2; 5; 7g;M3 ¼ f3; 6gg, and G ¼ fG1 ¼ f1; 2g;G2 ¼ f3g;G3 ¼ f4g;
G4 ¼ f5; 6g;G5 ¼ f7; 8gg. There are directed arcs between the groups belonging to the same job, and
operations within one group are connected by an undirected arc. Additionally, there are undirected
(dashed) arcs between all pairs of operations to be processed on a same machine. A feasible solution can be
obtained by directing the undirected arcs so that there is no cycle in the resulting graph.

5.3 Scheduling Problems 173

MMAS-HC-GSP, an MMAS algorithm for the GSP proposed by Blum (2002a,

2003a). In all these approaches the solution construction is based on schedule gener-

ation methods. These are algorithms that generate at each construction step a set of

operations that can be added to the partial schedule maintaining feasibility. Then,

according to some heuristic, one of the operations is chosen and appended to the

schedule. More details about schedule generation methods are given in box 5.3. The

main di¤erence between the algorithms concerns the way pheromone trails are de-

fined, the heuristic information chosen, the type of ACO algorithm used, and the use

of local search.

Construction graph The construction graph contains one node for every operation

plus two additional nodes that represent a source and a destination node. As usual, it

is fully connected.

Constraints The constraints in the problem require that the precedence constraints

between the operations are met and that all operations must be scheduled exactly

once.

Pheromone trails The available ACO algorithms use di¤erent ways of defining the

pheromone trails. AS-JSP-CDMT and AntQ-OSP use a pheromone representation

intended to learn a predecessor relationship. In this case, a pheromone trail tij exists

between every pair of operations and between the source and all operations; tij gives

the desirability of choosing operation j directly after operation i.MMAS-HC-GSP

applies a pheromone model where a pheromone trail tij is assigned to related opera-

tions; operations are related either if they are in the same group or if they are pro-

cessed on the same machine. In this case, tij refers to the desirability of scheduling

operation j after, but not necessarily immediately after, operation i.

Heuristic information Several types of heuristic information are applied in the vari-

ous algorithms. AS-JSP-CDMT uses the most work remaining heuristic (Haupt,

1989) that computes for each job j the total processing time of the operations still to

be scheduled (mwrj) and the heuristic information is then set to hj ¼ mwrj. AntQ-

OSP showed best performance using the earliest start heuristic, which favors opera-

tions with minimal valid starting time with respect to the partial schedule; in this case

we have hi ¼ 1=esti, where esti is the earliest possible starting time of operation i. The

earliest start heuristic is also used in MMAS-HC-GSP, where the heuristic infor-

mation is computed based on the value of 1=esti, which is then normalized such that

for all eligible operations the heuristic information is in the interval ½0; 1�.
Solution construction At the start all ants are put in the source node and the con-

struction phase terminates when all ants have reached the destination. Solutions are

constructed using a schedule generation method that restricts the set of eligible

174 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Box 5.3
Schedule Generation Methods

Schedule generation methods are probably the most frequently applied constructive heuristics for
solving shop scheduling problems in practice. As a side e¤ect, schedule generation methods build a
sequence s containing all the operations of O exactly once. (Note that a sequence s unambiguously
defines a solution to an instance of a shop scheduling problem.) For the problem instance given in
figure 5.2, for example, the sequence (1 2 4 8 5 7 6 3) defines group order 1 � 2 in group G1, 5 � 6
in group G4 and 8 � 7 in group G5. It also defines the order in which the operations are processed
on the machines.

From a high-level perspective, a schedule generation method works as depicted below. In the
algorithm we denote by o 0 �pred o the fact that the problem constraints enforce that an operation
o 0 has to be processed before operation o; s½i� denotes the operations assigned at position i in se-
quence s.

procedure ScheduleGenerationMethod

Orem O
s []
for i ¼ 1 to |O| do
S fo A Orem jqo 0 A Orem with o 0 �pred og
S 0 GenerateCandidateOperations(S)
o� ChooseOperation(S 0)
s½i� o�

Orem Oremnfo�g
end-for

The main procedures defining a schedule generation method are GenerateCandidateOperations and
ChooseOperation.

There are two main ways of implementing the GenerateCandidateOperations procedure. The pro-
posal of Gi¿er & Thompson (1960) is to compute first the earliest completion times of all the
operations in the set S. Then, one of the machines with minimal completion time ectmin is chosen
and the set S 0 is the set of all operations in S which need to be processed on the chosen machine
and whose earliest starting time is smaller than ectmin. A second typical approach is to compute first
the earliest possible starting time estmin of all operations in S. Then, S 0 consists of all operations in
S which can start at estmin.

Over the years quite a lot of research has been devoted to finding rules to be used in the Choo-

seOperation procedure. These rules, which are commonly called priority rules or dispatching rules,
are most often applied in a deterministic way, although examples of probabilistic use can be found.
None of the rules proposed in the literature can be considered to be the ‘‘best-performing’’ priority
rule, as their relative performance depends strongly on the structure of the problem instance to be
solved. A survey of priority rules can be found in Haupt (1989). In all the current ACO applications
to GSP problems the choice of the next operation from the set S 0 is biased by both heuristic infor-
mation and pheromone trails.

5.3 Scheduling Problems 175

operations to a set NðskÞ, where sk is the k-th ant’s partial solution. Each eligible

operation i A NðskÞ is rated according to the pheromone trail and the heuristic in-

formation and added according to the rules applicable in the corresponding ACO

algorithm. OnlyMMAS-HC-GSP departs in some details from the standard action

choice rule, because of the di¤erent meaning of the pheromone trails: If an operation

does not have any related and unscheduled operation left, it is chosen deterministi-

cally. Otherwise an ant chooses the next operation i with a probability

pk
i ¼

minj ARuðiÞ tij ½hi�
bP

l ANðskÞðminj ARuðlÞ tlj ½hi�
bÞ
; if i A NðskÞ;

0; otherwise;

8>><
>>: ð5:8Þ

where RuðiÞ is the set of operations that are related to i but not yet in the partial

schedule constructed so far.

Pheromone update The pheromone update follows the basic rules of the various

ACO algorithms; note that MMAS-HC-GSP includes the ideas of MMAS in the

hyper-cube framework for ACO and therefore only one ant is depositing pheromone

after each iteration. We refer the reader to the original sources for details on the

pheromone update.

Local search AS-JSP-CDMT and AntQ-OSP do not use local search. Concerning

MMAS-HC-GSP, several variants were tested, some of them including local search.

The best performance was reported for a variant that first improves all solutions

constructed by the ants, applying an iterative improvement algorithm, and then

applies to the best local optimum a tabu search algorithm which is terminated after

jOj=2 iterations. The local search algorithm adapts the JSP neighborhood introduced

by Nowicki & Smutnicki (1996a) to the GSP.

Particularities AS-JSP-CDMT and AntQ-OSP are rather straightforward applica-

tions of ACO algorithms. OnlyMMAS-HC-GSP includes some particular features,

apart from the local search, that try to enhance performance. In particular,MMAS-

HC-GSP maintains an elitist list of solutions comprising recent, very good solutions

and iterates through intensification and diversification phases of the search. Diversi-

fication is achieved through the application of pheromone reinitialization. Intensifi-

cation is achieved by letting the restart-best solution or some ant of the elitist list

deposit pheromone. Which ants are allowed to deposit pheromone is a function of

the value assumed by a variable called convergence factor and of the state of the

search with respect to convergence. Solutions which are member of the elitist list are

occasionally removed from the list to free space for di¤erent high-quality solutions.

A further feature is that at each iteration an ant in MMAS-HC-GSP randomly

176 Chapter 5 Ant Colony Optimization for NP-Hard Problems

chooses, before starting solution construction, one of two di¤erent mechanisms for

generating the set NðskÞ of eligible operations.
Results The computational results obtained with AS-JSP-CDMT and AntQ-OSP

are not satisfactory. This is particularly true for AS-JSP-CDMT, which is far behind

the performance of the currently best algorithms for the JSP (Nowicki & Smutnicki,

1996a; Balas & Vazacopoulos, 1998; Grabowski & Wodecki, 2001). AntQ-OSP was

compared to an earlier evolutionary algorithm (Fang, Ross, & Corne, 1994) on

small-size OSP instances, reaching a similar level of performance. However, it ap-

pears to be quite far from current state-of-the-art approaches for the OSP (Liaw,

2000). Blum extensively tested MMAS-HC-GSP on a large number of GSP in-

stances, including JSP and OSP instances (Blum, 2002b).MMAS-HC-GSP resulted

in being the current best-performing ACO algorithm for these types of scheduling

problems, in particular for those instances that are neither pure JSP nor pure OSP

problems. However, even when applied to the ‘‘pure’’ versions, MMAS-HC-GSP

has a very good performance. In fact, for the OSP it has a performance similar to

that of the state-of-the-art algorithm, a hybrid genetic algorithm proposed by Liaw

(2000); and for the JSP it is only beaten by neighborhood search based methods

(Balas & Vazacopoulos, 1998; Nowicki & Smutnicki, 1996a; Grabowski & Wodecki,

2001). Blum also comparedMMAS-HC-GSP with a tabu search approach for the

GSP. The result was that the tabu search approach appears to be slightly better than

MMAS-HC-GSP for GSP instances close to JSP instances, whileMMAS-HC-GSP

outperforms the tabu search approach on instances that are closer to OSP instances.

Remarks Recently, Blum (2003b) has proposed a hybridization between an ACO

algorithm and Beam search. In this approach, called Beam-ACO, at each algorithm

iteration each ant builds more than one solution, adopting a procedure which is a

probabilistic version of Beam search. The results obtained are very promising: Beam-

ACO seems to outperform the best algorithms for the OSP.

5.3.3 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) is a general schedul-

ing problem in which the set of activities A of a project must be scheduled mini-

mizing the makespan, subject to resource constraints and to precedence constraints

among the activities. More formally, in the RCPSP one is given a set of activities

A ¼ fa0; a1; . . . ; anþ1g, with given precedence constraints among the activities, and a

set of resource types R ¼ fr1; . . . ; rlg, each resource ri having an associated capacity

rci. Every activity ai has associated a processing time pi and resource requirements

ari1; . . . ; aril , where arij is the resource requirement for resource j. The goal in the

5.3 Scheduling Problems 177

RCPSP is to assign to each activity a start time such that the makespan is minimized,

subject to the constraints that all precedence constraints are satisfied (i.e., an activity

ai must not start before all its predecessors have finished being processed), and at

every instant the resource constraints are met. The RCPSP is the most general of the

scheduling problems treated so far with ACO, since, as can easily be verified, it con-

tains the GSP (as well as the permutation flow shop problem, which is briefly dis-

cussed in section 5.3.4) as a special case.

The RCPSP is NP-hard and it has attracted a large number of researchers in re-

cent years. A general overview of the RCPSP is given in Brucker et al. (1999) and a

comparison of RCPSP heuristics available up to the year 1998 is reported in Hart-

mann & Kolisch (2000). The ACO algorithm for the RCPSP (EAS-RCPSP), by

Merkle, Middendorf, & Schmeck (2002), is currently among the best-performing

metaheuristic approaches for the RCPSP.

Construction graph The construction graph comprises a node for each of the activ-

ities to be scheduled plus two dummy nodes corresponding to the (dummy) start

activity and the (dummy) end activity.

Constraints The constraints require that each activity is scheduled, all the prece-

dence constraints among the activities are satisfied, and all resource constraints are

met.

Pheromone trails The pheromone trails tij refer to the desirability of scheduling

activity j as the i-th activity.

Heuristic information The heuristic information hij indicates the heuristic desirabil-

ity of scheduling activity j as the i-th activity. Best performance in EAS-RCPSP was

obtained by using hij ¼ maxl AN LSl � LSj þ 1, where LSj is the latest possible start

time of activity j, which can be computed before solving the problem, using an upper

bound on the makespan (Elmaghraby, 1977), and N is the set of activities that are

eligible given a partial schedule. The heuristic information is based on a normalized

version of the latest start time (nLST) heuristic. The reason for using a normalized

version is that the relative di¤erences between the start times become small if only a

few activities are eligible in the final phases of the generation of the activity list; this

problem is reduced when normalizing the absolute start time values, which is done by

using their di¤erence to the maximum latest start time.

Several other possible ways of defining the heuristic information were considered

in EAS-RCPSP, but the one based on the nLST heuristic gave the best performance.

Solution construction The ants in EAS-RCPSP construct a schedule using schedule

generation methods that take the resource requirements in the RCPSP into account

178 Chapter 5 Ant Colony Optimization for NP-Hard Problems

(see box 5.3 for a general outline of schedule generation methods). The ants start

their solution construction by first assigning activity 0, the (dummy) start activity,

to position zero. At construction step i, an eligible activity j to be scheduled as the

i-th activity is chosen according to the action choice rule of AS as implemented by

equation (3.2), where the pheromone trails tij are defined according to equation (5.6);

that is, EAS-RCPSP uses a combination of the local pheromone evaluation method

and the weighted pheromone summation rule [equation (5.5)], as explained in box

5.2.

Two di¤erent ways of defining the set of eligible activities N at each construction

step were examined in EAS-RCPSP. The best performance was reported for a serial

schedule generation scheme (Kolisch & Hartmann, 1999), where N comprises all the

activities that have not been scheduled so far and for which all predecessors have

already been scheduled.

Pheromone update In EAS-RCPSP only the best-found schedule and the iteration-

best schedule are allowed to deposit an amount of ð2 � CTÞ�1 units of pheromone,

where CT is the makespan of the best-so-far or the iteration-best schedule. Before

the pheromone deposit, all pheromone trails are lowered by using pheromone

evaporation.

Local search A first-improvement 2-opt local search algorithm that exchanges activ-

ities at positions i and j, i0 j, is used.

Particularities There are several particular features in EAS-RCPSP. First, as al-

ready mentioned when describing solution construction, a combination of the stan-

dard way of using pheromones and the weighted summation rule is used. Second, the

parameter b, which regulates the influence of the heuristic information in the solution

construction, and the parameter r, which determines the amount of pheromone

evaporation, are modified at run time. Third, occasional forgetting of the best-so-far

solution is implemented. If the best-so-far ant was not improved for imax iterations, it

is replaced by the iteration-best ant. This avoids early convergence to a specific so-

lution. Fourth, forward and backward ants are used. While forward ants construct

solutions starting from the start activity, backward ants construct the activity list

starting from the end activity and moving on the reversed RCPSP instance (i.e., the

same instance with all the precedence constraints reversed). Forward and backward

ants use separate pheromone matrices. After a fixed number of iterations (a parame-

ter of the algorithm), the two colonies compare their results and the one with the

better results continues the search.

Results EAS-RCPSP achieved excellent performance. Two di¤erent experiments

were run to evaluate EAS-RCPSP. The first experimental setup corresponds to the

5.3 Scheduling Problems 179

case in which each algorithm is allowed to evaluate a maximum of 5000 schedules.

Under these experimental conditions, EAS-RCPSP was compared with a number of

other (heuristic) algorithms, including all algorithms tested in Hartmann & Kolisch

(2000) and a genetic algorithm presented in Hartmann & Kolisch (1999), and it was

found to perform significantly better than the competitors. In these experiments,

local search was applied only to the last best-so-far solution, obtained when the ACO

algorithm stops. In a second type of experiment, local search was applied to the best

solution after every iteration and the ACO algorithm was stopped after 20000 itera-

tions. In this case, for 278 out of 600 test instances, a solution was found that was at

least as good as the known best solution and for 130 of the largest instances, a new

best solution could be found.

5.3.4 Other ACO Applications to Scheduling Problems

Single-Machine Total Tardiness Problem with Sequence-Dependent Setup Times

Gagné et al. (2002) applied ACS to the single-machine total tardiness problem with

sequence-dependent setup times (SMTTPSDST). As in the SMTTP, the objective in

the SMTTPSDST is to minimize the total tardiness of the jobs (see section 5.3.1 for

ACO approaches to the SMTTP problem and its weighted version). SMTTPSDST

di¤ers from SMTTP in that in the former there are sequence-dependent setup times

tij , where tij is the time that would be required to start the processing of job j if it

followed immediately job i in the sequence. The pheromone trails tij refer in the

SMTTPSDST case to the desirability that job j follows directly job i. A particularity

of the ACO approach to the SMTTPSDST is that three types of heuristic informa-

tion are combined in the solution construction. The three types of heuristic infor-

mation are based on the setup times, the slack times (the slack time is the maximum

between the time span in which a job would be completed before its due date and

zero), and a lower bound on the total tardiness for completion of the sequence. Each

of the three heuristic information types is then normalized into the interval ½0; 1�.
Additionally, a candidate list is generated; it comprises the cand still unscheduled

jobs with the smallest slack times, where cand is a parameter. The job to be appended

is chosen based on the pseudorandom proportional action choice rule of ACS

[equation (3.10)]. Once a solution is completed, it is improved by a local search al-

gorithm. Computational results have shown that the proposed ACS algorithm per-

forms better than competitors (Tan & Narashiman, 1997; Rubin & Ragatz, 1995) on

the largest available benchmark instances.

Permutation Flow Shop Problem

In the permutation flow shop problem (PFSP) we are given n jobs that have to be

processed on m machines following the same order m1; . . . ;mm. The processing times

180 Chapter 5 Ant Colony Optimization for NP-Hard Problems

are fixed, non-negative, and may be 0 if a job is not processed on some machine. The

objective is to find a sequence, that is, a permutation of the numbers 1; . . . ; n, that

minimizes the completion time CTmax of the last job. An application of MMAS

to the PFSP (MMAS-PFSP) was presented by Stützle (1998a). Solutions are con-

structed as in the SMTWTP case, using the very same interpretation for the phero-

mone trails, that is, tij refers to the desirability of scheduling a job j in position i of

the permutation. However, no heuristic information is used. There are two features

of this approach that are worth emphasizing. First, the ACO algorithm applied is

a hybrid between MMAS and ACS: from MMAS it takes the idea of using ex-

plicit pheromone trail limits and the pheromone trail update rule (i.e., pheromone

trail evaporation and pheromone deposit are applied as usual in MMAS); from

ACS it takes the aggressive pseudorandom proportional action choice rule. Second,

MMAS-PFSP uses only one ant in each iteration. An experimental evaluation of

MMAS-PFSP was done only for short run times. It was found to outperform earlier

proposed simulated annealing and tabu search algorithms. However,MMAS-PFSP

performance is way behind the e‰cient tabu search algorithm of Nowicki & Smut-

nicki (1996b) for the PFSP. Recently, an extension ofMMAS-PFSP using the phero-

mone summation rule (see box 5.2) was proposed by Rajendran & Ziegler (2003),

achieving a somewhat better performance, but still not reaching the level of current

state-of-the-art algorithms.

5.4 Subset Problems

In subset problems, a solution to the problem under consideration is represented

as a subset of the set of available items (components) subject to problem-specific

constraints. Obviously, many problems not considered in this section could be in-

terpreted as subset problems. For example, in the TSP a solution may be seen as

consisting of a subset of the set of available arcs. However, these problems are often

represented, more conveniently, using other representations, such as a permutation

of the graph nodes, cities, in the TSP case. In the following, we consider some para-

digmatic subset problems that arise in a variety of applications. Despite the interest

in these problems, so far there have been only a few attempts to solve subset prob-

lems by ACO.

When compared to the applications presented so far, there are two main partic-

ularities involved with ACO applications to subset problems. First, in subset prob-

lems one is not particularly interested in an ordering of the components. Therefore,

the most recently incorporated item need not be necessarily considered when select-

ing the next item to be added to the solution under construction. As a result, in

5.4 Subset Problems 181

subset problems pheromone trails are typically associated with components and not

with connections. Second, the number of components in the solutions built by dif-

ferent ants may be di¤erent, so that the solution construction phase ends only when

all the ants have completed their solutions.

5.4.1 Set Covering

In the set covering problem (SCP) we are given an m� n matrix A ¼ ½aij� in which

all the matrix elements are either 0 or 1. Additionally, each column is given a non-

negative cost bj. We say that a column j covers a row i if aij ¼ 1. The goal in the

SCP is to choose a subset of the columns of minimal weight that covers every row.

Let J denote a subset of the columns and yj be a binary variable which is 1, if j A J ,
and 0 otherwise. The SCP can be defined formally as follows:

min f ðyÞ ¼
Xn
j¼1

bj � yj; ð5:9Þ

subject to

Xn
j¼1

aij � yj b 1; i ¼ 1 . . . ;m; ð5:10Þ

yj A f0; 1g; j ¼ 1; . . . ; n; ð5:11Þ

where the constraints given by equation (5.10) enforce that each row is covered by at

least one column.

At least two ACO approaches to the SCP have been proposed: one by Leguiza-

món & Michalewicz (2000), which we refer to as AS-SCP-LM, and another by Hadji

et al. (2000), which we refer to as AS-SCP-HRTB; the two approaches are similar in

many respects.

Construction graph The set C of components of the construction graph comprises

the set of columns plus a dummy node on which all ants are put in the first con-

struction step. The construction graph is, as usual, fully connected. Solutions are

subsets of the set of components.

Constraints The constraints say that each component can be visited by an ant at

most once and that a solution has to cover all the rows.

Pheromone trails Pheromone trails are associated with components; the pheromone

trail tj associated with component j measures the desirability of including compo-

nent j in a solution.

182 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Heuristic information In both ACO algorithms (Leguizamón & Michalewicz, 2000;

Hadji et al., 2000), the heuristic information is computed as a function of an ant’s

partial solution. Let ej be the cover value of column j, that is, the number of addi-

tional rows covered when adding column j to the current partial solution. Then,

bj=ej gives the cost per additional covered row when adding column j to the solution

under construction. The heuristic information hj is given by hj ¼ ej=bj.

Solution construction In AS-SCP-LM each ant starts with an empty solution and

constructs a solution by iteratively adding components until all rows are covered.

The action choice rule for choosing the next component is an adaptation of the prob-

abilistic action choice rule of AS [equation (3.2)] to the case in which pheromones are

assigned to components only. A component is then chosen with probability

pk
i ðtÞ ¼

ti½hi�
bP

l AN k tl ½hl �
b
; if i A N k

; ð5:12Þ

where N k
is the feasible neighborhood of ant k before adding component i; N k

consists of all columns that cover at least one still uncovered row. An ant has com-

pleted a solution when all rows are covered. AS-SCP-HRTB uses essentially the same

way of constructing solutions with the only di¤erence that in a first stage an ant adds

l randomly chosen components, where l is a parameter; this is done to increase di-

versification during solution construction. A further di¤erence between AS-SCP-LM

and AS-SCP-HRTB is that in the latter approach a postoptimization step is applied,

in which each ant removes redundant columns—columns that only cover rows which

are also covered by a subset of other columns in the final solution.

Pheromone update In both AS-SCP-LM and AS-SCP-HRTB, the pheromone up-

date rule used is an adaptation of the AS rule to the case in which pheromones are

assigned to components. Hence, equation (3.2), becomes

ti ð1� rÞti; Ei A C; ð5:13Þ

and the pheromone update rule of equation (3.3), becomes

ti ti þ
Xm
k¼1

Dtki ðtÞ: ð5:14Þ

In AS-SCP-HRTB the value Dtki ðtÞ is set to 1= f ðskÞ, where f ðskÞ is the objective

function value of ant’s k solution sk, if the component i is an element of sk, and 0

otherwise. AS-SCP-LM uses the same update rule with the only di¤erence that the

amount of pheromone deposited is multiplied by the sum of the costs of all columns

in the problem definition.

5.4 Subset Problems 183

Local search AS-SCP-HRTB applies a local search to the best solution constructed

in the last iteration of the algorithm. This local search procedure follows the local

search scheme of Jacobs & Brusco (1995).

Results The computational results obtained with AS-SCP-LM and AS-SCP-HRTB

are good, but they do not compete with current state-of-the-art heuristics for the SCP

such as those published in Caprara, Fischetti, & Toth (1999) and in Marchiori &

Steenbeek (2000).

Remarks Recently, also, the related set partitioning problem (SPP) was attacked by

an ACO algorithm (Maniezzo & Milandri, 2002). The SPP is the same problem as

the SCP, except for the constraints in equation (5.10) that are replaced by equality

constraints. However, the SPP appears to be a significantly harder problem than the

SCP, because finding a feasible solution is already NP-hard.

5.4.2 Weight Constrained Graph Tree Partition Problem

In the weight constrained graph tree partition problem (WCGTPP) we are given an

undirected graph GðN;AÞ of n nodes and l arcs. Each arc ði; jÞ is assigned a cost cij
and each node i is assigned a weight wi. The goal is to find a minimum cost spanning

forest F of p trees such that the weight of each tree falls in a given range ½W�;Wþ�.
The WCGTPP, a problem that arises in the design of telecommunications networks,

is NP-hard and, in general, not approximable (Cordone & Ma‰oli, 2003). Cordone

& Ma‰oli (2001) attacked the WCGTPP using an ACO algorithm based on ACS

(ACS-WCGTPP). Their algorithm has the particularity that it employs pheromone

trails of p di¤erent ‘‘colors,’’ one color for each of the p trees.

Construction graph There is one component for each node and, as usual, the con-

struction graph is fully connected.

Pheromone trails For each node j we have p pheromone trails tij. The value tij
indicates the desirability of including node j in tree Ti.

Heuristic information The heuristic information is computed by considering the

minimum cost cij of adding a node j to a tree Ti, that is, cij ¼ minv ATi
cvj. In addi-

tion, a penalty is computed as

pij ¼ 1þ p �max
wTi
þ wj �Wþ

wmax �Wþ ;
W� � wTi

� wj

W� � wmin

; 0

� �
;

where wmax is the weight of the heaviest possible tree, that is, the tree that spans the

whole graph except for the p� 1 nodes that have the p� 1 lowest weights asso-

184 Chapter 5 Ant Colony Optimization for NP-Hard Problems

ciated. The value wTi
is the weight of tree Ti and wmin is the weight of the lightest

tree, that is, the lightest node in G. The value p is a penalty factor that is adjusted at

run time (see ‘‘Particularities’’ below). The penalty ranges from 1 (corresponding to a

feasible move) to 1þ p (for the most unbalanced assignment). The heuristic infor-

mation is set to hij ¼ 1=ðcijpijÞ.
Constraints The constraints impose that every node has to be assigned to exactly

one tree, that is, the trees form a partition of the set of nodes. In addition, each tree

has to obey some lower and upper weight limits.

Solution construction Each ant produces a full solution which corresponds to a par-

tition of the graph into p trees. Ant k is initialized with one root node for each tree.

Then, at each construction step, one node is added to one of the trees using the

pseudorandom proportional rule of ACS [equation (3.10)]. With probability q0 ant k

adds to the tree Ti the node j that maximizes the value tij � hij , while with probability

1� q0 the random proportional action choice rule of AS [equation (3.2)] is applied.

Hence, at each construction step a simultaneous choice is made about the node to

add and the tree to which this node is added.

Pheromone update ACS-WCGTPP uses the local and global pheromone update

rules of ACS [equations (3.12) and (3.11), respectively]. The value t0 is set to

1=ðn � cMSF Þ, where cMSF is the cost of a minimum spanning forest. The amount of

pheromone to be deposited in the global pheromone update rule is determined by

1=ðcF gbpF gbÞ, where cF gb and pF gb are, respectively, the cost and the penalty associated

with F gb, the best spanning forest found so far.

Local search ACS-WCGTPP applies a local search procedure that is called swing-

ing forest. This procedure starts by considering moves of one node of a tree to a dif-

ferent tree (neighborhood N1) and exchanges of pairs of nodes contained in di¤erent

trees (neighborhood N2). If a local optimum is reached with respect to N1 and N2,

additional moves based on splitting and removing trees are considered.

Particularities Apart from using more than one pheromone trail, ACS-WCGTPP

modifies penalty factors at computation time as a function of the number of feasible

solutions constructed. Let mf be the number of feasible solutions among the m con-

structed ones. Then, p is adjusted by

p p � 2ðm�2mf Þ=m:

The e¤ect of this adjustment is either to decrease the penalty factor if many solutions

are feasible or to increase the penalty factor if many solutions are infeasible. In the

first case, it becomes easier to build infeasible solutions and, therefore, to move to

5.4 Subset Problems 185

di¤erent regions of the search space containing feasible solutions. In the second case,

the search is more strongly directed toward feasible solutions.

Of significant importance in the solution process is the choice of the root nodes. In

the first iteration, they are chosen so that they cover the graph as uniformly as pos-

sible. Then the greedy heuristic is applied to generate a spanning forest and the roots

move to the centroids of the trees. This is repeated until the roots stabilize or repeat

cyclically. This process is performed n ¼ jNj times using each node as a seed. The

best root assignment overall is used to initialize ACS-WCGTPP and only changes

when a new best-so-far solution is found.

Results The WCGTPP was not discussed before in the literature. Therefore, exper-

imental comparisons were limited to di¤erent variants of the proposed algorithm.

ACS-WCGTPP was tested with and without local search. Three variants using local

search were considered: (1) a variant in which the swinging forest procedure was ap-

plied only to the best solution returned by the ACS-WCGTPP algorithm; (2) a vari-

ant in which the iteration-best solutions were improved by applying a local search in

N1 plus the swinging forest procedure; and (3) a last variant, which is the same as the

second one, except that the iteration-best solutions are improved by a local search

using neighborhood N1 WN2. Overall, the best results with respect to solution qual-

ity were obtained by the third variant, which makes the strongest use of the local

search.

5.4.3 Arc-Weighted l-Cardinality Tree Problem

The l-cardinality tree problem is a generalization of the minimum spanning tree

problem, which consists in finding a subtree with exactly l arcs in a graph G ¼ ðN;AÞ
with arc or node weights, such that the sum of the weights is minimal. This problem

has a variety of applications such as oil-field leasing (Hamacher & Jörnsten, 1993),

facility layout problems (Foulds, Hamacher, & Wilson, 1998), or matrix decomposi-

tion (Borndörfer, Ferreira, & Martin, 1998b).

In the following, we focus on the arc-weighted l-cardinality tree problem

(AWlCTP), in which weights are associated only with arcs. The AWlCTP is

known to be NP-hard (Fischetti et al., 1994; Marathe, Ravi, Ravi, Rosenkrantz,

& Sundaram, 1996). Blum & Blesa (2003) proposed an MMAS algorithm for the

AWlCTP (MMAS-AWlCTP), implemented within the hyper-cube framework for

ACO. Their algorithm was compared with a tabu search algorithm and an evolu-

tionary algorithm.

Construction graph The problem components are the arcs, and the construction

graph is fully connected as usual.

186 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Pheromone trails Each arc (component) ði; jÞ is assigned a pheromone trail tij .

Hence, there are l ¼ jAj pheromone trails.

Heuristic information The heuristic information is based on the inverse of the arc

weights, that is, hij ¼ 1=wij, where wij is the weight of arc ði; jÞ.
Constraints The only constraints are that a tree with exactly l arcs needs to be ob-

tained, that is, a connected subgraph of G with l arcs and l þ 1 nodes.

Solution construction Initially, an arc is chosen randomly with a generic arc ði; jÞ
having a probability of being chosen given by tij=

P
ði;sÞ AA tis. Let xh be the

h-cardinality tree constructed after h construction steps; we have x1 ¼ hði; jÞi. Let
NðxhÞ be the set of arcs that (1) are not yet in xh and (2) that have exactly one end-

point in common with some arc in xh. At construction step hþ 1, hþ 1a l, an ant k

chooses an arc of NðxhÞ using the pseudorandom proportional action choice rule

of ACS [equation (3.10)], that is, with probability q0 ¼ 0:8 it chooses the arc ði; jÞ A
NðxhÞ that maximizes the ratio tij=wij ; otherwise a random proportional proba-

bilistic choice is made.

Pheromone update The pheromone update uses the update rules of MMAS,

adapted to the hyper-cube framework. The choice of which ant is allowed to deposit

pheromone is made between the iteration-best, the best-so-far, and the restart-best

ant, as a function of a convergence factor. The update rule is rather flexible in the

sense that it allows for interpolations between the iteration-best and the restart-best

solution, by giving weights to these solutions in the pheromone deposit.

Local search Each solution is improved using a best improvement local search

based on a neighborhood structure that comprises all neighboring solutions that

can be obtained by deleting one arc of an l-cardinality tree, resulting in an l � 1-

cardinality tree xl�1, and adding a di¤erent arc taken of the set Nðxl�1Þ. The

iteration-best solution was further locally optimized by applying 2l iterations of a

tabu search algorithm.

Results MMAS-AWlCTP was compared to a tabu search and an evolutionary

algorithm on a large set of benchmark instances for the AWlCTP. In general, none

of the algorithms dominated any of the others on the whole range of benchmark

instances. However, MMAS-AWlCTP was shown to perform better than the two

competitors, when l is smaller than 60% of the number of nodes (the largest possible

cardinality of a tree is n� 1 for a graph with n nodes), while for larger cardinalities it

was inferior to the tabu search and the evolutionary algorithms. For a detailed sum-

mary of the computational results, see Blum & Blesa (2003).

5.4 Subset Problems 187

5.4.4 Other ACO Applications to Subset Problems

Multiple Knapsack Problem

Recall from section 2.3.4 of chapter 2, that in the multiple knapsack problem we are

given a set I of items and a set R of resources. To each item i A I is associated a profit

bi and a requirement rij for resource j A R. The goal is to find a subset of the items

that maximizes the profit and that meets all the constraints. Constraints are given by

limits aj on the availability of resources j. AS was applied to the MKP by Leguiza-

món & Michalewicz (1999) (AS-MKP). Their approach mainly follows the steps al-

ready outlined in section 2.3.4, the main di¤erence being the way they compute the

heuristic information. AS-MKP uses a dynamic heuristic information, which relates

the average consumption of the remaining amount of resources by component i to

the profit of adding component i. More concretely, the heuristic information for AS-

MKP is defined as follows. Let skðtÞ be the (partial) solution of ant k at construction

step t. Then, ujðk; tÞ ¼
P

l A skðtÞ rlj is the amount of resource j that is consumed at

step t by ant k and vjðk; tÞ ¼ aj � ujðk; tÞ is the remaining amount of resource j. The

value vjðk; tÞ is used to define the tightness wijðk; tÞ of a component i with respect to

resource j: wijðk; tÞ ¼ rij=vjðk; tÞ. Finally, the average tightness of all constraints with
respect to component i is computed as wiðk; tÞ ¼

P
j wijðk; tÞ=l, where l is the number

of resource constraints. The lower this value, the less critical it is to add component i

with respect to the resource consumption. Finally, taking into account the profit pi of

adding a particular component i, AS-MKP defines the heuristic information as

hiðskðtÞÞ ¼
pi

wiðk; tÞ
:

AS-MKP was tested on MKP instances from ORLIB (mscmga.ms.ic.ac.uk/jeb/

orlib/mknapinfo.html) and compared favorably to an earlier evolutionary algorithm.

However, as was the case for the set covering problem, AS-MKP did not reach state-

of-the-art results (such as those obtained by the algorithm of Vasquez & Hao, 2001).

The inclusion of a local search might significantly improve the quality of the results

obtained.

Maximum Independent Set Problem

In a similar vein, Leguizamón & Michalewicz (1999) attacked the maximum inde-

pendent set problem (MIS). Given a graph G ¼ ðN;AÞ, the objective in MIS is to

find a largest subset of nodes such that none of the nodes are connected by an arc.

More formally, a subset N 0JN must be found such that for all i; j A N 0 it holds that

ði; jÞ B A and jN 0j is maximal. The main adaptation necessary to extend AS-MKP to

188 Chapter 5 Ant Colony Optimization for NP-Hard Problems

MIS is the heuristic information to be used. The heuristic information chosen by

Leguizamón and Michalewicz is hi ¼ jN
k
i j, where N

k
i is the set of components that

can be added to a partial solution sk after component i is added to sk. Comparisons

to an evolutionary algorithm and a GRASP algorithm showed promising results

(Leguizamón, Michalewicz, & Schütz, 2001).

Maximum Clique Problem

Given an undirected graph G ¼ ðN;AÞ with N being the set of nodes and A being the

set of arcs, a clique is a subset N 0JN of the set of nodes such that there exists an arc

for every pair of distinct nodes in N 0, that is, for all i; j A N 0, i0 j it holds that

ði; jÞ A A. The goal of the maximum clique problem (MCP) is to find a set N 0 of

maximum size. Fenet & Solnon (2003) have appliedMMAS to the MCP (MMAS-

MCP). The pheromone trails tij in MMAS-MCP refer to the desirability of as-

signing nodes i and j to a same clique. Cliques are constructed by first choosing a

random node and then, at each step, adding a node that is connected to all the nodes

of the clique under construction. The probability of choosing a node i is proportional

to
P

j AN 0 tij , that is, to the sum of the pheromone trails between node i and the nodes

already in the partial solution N 0. MMAS-MCP does not use any heuristic infor-

mation, as its use appeared to yield worse performance for long runs. Solution con-

struction ends when there are no more nodes to be added that are connected to all

the nodes in N 0. Finally, pheromone is deposited on all the arcs of the clique found

by the iteration-best ant.MMAS-MCP’s performance was compared in detail with

the best results obtained by Marchiori (2002) for genetic local search and iterated

local search algorithms. The results were thatMMAS-MCP found on many bench-

mark problems better-quality solutions, but, typically, at a higher computational

cost. The performance of MMAS-MCP is still way behind the current best algo-

rithm for the MCP, a reactive local search by Battiti & Protasi (2001), but further

improvements, like the use of an e¤ective local search, should greatly enhance the

results obtainable byMMAS-MCP.

Redundancy Allocation Problem

Liang & Smith (1999) attacked the problem of maximizing the reliability of a system.

In particular, they considered a system that is composed of a series of subsystems,

where each of the subsystems functions if k out of n components are working; the

overall system fails if one of the subsystems fails. The goal then is to assign to each

subsystem a set of components from the available ones for each subsystem (each

component has an associated reliability, a cost, and a weight), such that the overall

system reliability is maximized subject to cost and weight constraints. The ACO al-

gorithm used for this problem, EAS-RA, is based on elitist Ant System (see chapter

5.4 Subset Problems 189

3, section 3.3.2). In EAS-RA, solutions to each subsystem are constructed indepen-

dently of the others. A pheromone trail tij refers to the desirability of adding a com-

ponent j to subsystem i. For the solution construction no heuristic information is

taken into account. One important particularity of EAS-RA is that it uses an adap-

tive penalty function for penalizing violations of the cost and weight constraints. The

penalty function is adaptive because with increasing run time of the algorithm, the

penalization of a fixed amount of constraint violation increases. The computational

results indicate that EAS-RA can find a good system design.

5.5 Application of ACO to Other NP-Hard Problems

In this section we present some additional applications of ACO that do not fit in the

previous section but which present some particularly interesting features not present

in other ACO implementations.

5.5.1 Shortest Common Supersequence Problem

Given a set L of strings over an alphabet S, the shortest common supersequence

problem (SCSP) consists in finding a string of minimal length that is a supersequence

of each string in L. The string B is a supersequence of a string A if A can be ob-

tained from B by deleting in B zero or more characters. Consider, for example, the

set L ¼ fbbbaaa; bbaaab; cbaab; cbaaag over the alphabet S ¼ fa; b; cg. A shortest

supersequence for L is cbbbaaab (see figure 5.3). The SCSP is an NP-hard problem

with applications in DNA analysis or in the design of conveyor belt workstations

in machine production processes. Michel & Middendorf (1998, 1999) developed an

ACO algorithm for the SCSP (AS-SCSP), which showed very promising results when

compared to a number of alternative approaches.

c b b b ba a a

b b b a a a

b b a a a b

c b a a b

c b a a a

Figure 5.3
Graphical representation of a supersequence (given as the string cbbbaaab in the boxes, first line) and of
the four strings bbbaaa, bbaaab, cbaab, cbaaa from which it is generated. Each bullet indicates the charac-
ters in the strings that are covered by the supersequence.

190 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Construction graph The character at position j in string Li is denoted by sij . The

components of the construction graph are the sij ’s. The graph is fully connected.

Constraints The constraints enforce that a true supersequence of the strings in L has

to be built. These constraints are implicitly enforced through the construction policy

used by the ants.

Pheromone trails A pheromone trail tij is associated with each component sij . It

gives the desirability of choosing character sij when building the supersequence. All

pheromone trails are initialized to one.

Heuristic information AS-SCSP does not use any heuristic information. However, it

uses lookahead in its place, as explained in ‘‘Particularities’’ below.

Solution construction The construction policy of the ants can be informally de-

scribed as follows. Ants build supersequences of the strings in L, independently of

each other. Each ant k receives a copy of the original set of strings L and initializes

its supersequence to the empty string. At the first construction step, ant k adds to the

supersequence it is building a character that occurs at the front of at least one string

Li A L (i.e., it chooses at least one component si1). The choice of the character to add

is based on pheromone trails, as well as on some additional information, as explained

in ‘‘Particularities’’ below. Once a character is added, the same character is removed

from the front of the strings on which it occurred. Then the procedure is reapplied to

the modified set of strings L 0, until all characters have been removed from all strings

and the set L 0 consists of empty strings.

To describe the solution construction procedure more formally, we need to define

for each ant k an indicator vector vk ¼ ðvk1 ; . . . ; vkl Þ, with l ¼ jLj. Element vki of vk

points to the ‘‘front’’ position sivk
i
of string Li—the position that contains the char-

acter that is a candidate for inclusion in the supersequence.

Consider, for example, the set L ¼ fbbbaaa; bbaaab; cbaab; cbaaag. In this case,

the vector vk ¼ ð2; 2; 3; 3Þ represents a situation in which the first character of the

first and second strings, as well as the first two characters of the third and fourth

strings, is already included in a supersequence. The characters that are candidates for

inclusion in the supersequence are therefore a and b. In fact, s1vk
1
¼ s12 ¼ b, s2vk

2
¼

s22 ¼ b, s3vk
3
¼ s33 ¼ a, and s4vk

4
¼ s43 ¼ a.

At the beginning of solution construction, the vector vk is initialized to vk ¼
ð1; . . . ; 1Þ. The solution construction procedure is completed once the indicator vec-

tor has reached the value vk ¼ ðjL1j þ 1; . . . ; jLl j þ 1Þ. As we said above, at each

construction step the feasible neighborhood N k
vk , that is, the set of characters that

can be appended to the supersequence under construction, is composed of the char-

acters occurring at the positions pointed by the indicator vector: N k
vk ¼ fx A S j bi

5.5 Application of ACO to Other NP-Hard Problems 191

such that x ¼ sivk
i
g. The choice of which character in x A N k

vk to append to the super-

sequence is done according to the pseudorandom proportional action choice rule of

ACS [equation (3.10)], using as the pheromone trail value the sum of the pheromone

trails of all the occurrences of x in the l strings:

X
i:s

iv k
i

¼x
tiv k

i
: ð5:15Þ

Finally, the indicator vector is updated. That is, for i ¼ 1 to l:

vki ¼
vki þ 1; if sivk

i
¼ x;

vki ; otherwise;

�
ð5:16Þ

where x is the character appended to the supersequence.

Note that equation (5.15) gives a pheromone amount to character x that is the

larger (1) the higher is the amount of pheromone on components sij for which it

holds sij ¼ sivk
i
¼ x, and (2) the higher is the number of times character x occurs

at the current front of the strings in L (i.e., the larger the cardinality of the set

fsij j sij ¼ sivk
i
¼ xg). This latter rule (2) reflects the majority merge heuristic that

at each step chooses the character that occurs most often at the front of strings

(Foulser, Li, & Yang, 1992). Michel and Middendorf considered an additional vari-

ant that weighs each pheromone trail with jLij � vki þ 1, giving higher weight to

characters occurring in strings in which many characters still need to be matched by

the supersequence. This latter choice is inspired by the L-majority merge (LM) heu-

ristic that weighs each character with the length of the string Li and then selects the

character with the largest sum of weights of all its occurrences (Branke, Middendorf,

& Schneider, 1998). In fact, this latter variant was found to improve the algorithm’s

performance and was therefore retained in the final version of Michel and Mid-

dendorf ’s ACO algorithm for the SCSP.

Pheromone update The amount of pheromone ant k deposits is given by

Dtk ¼ gðrkÞ
jskj ;

where rk is the rank of ant k after ordering the ants according to the quality of their

solutions in the current iteration, g is some function of the rank, and sk is the solu-

tion built by ant k.

Pheromones are updated as follows. First, a vector zk ¼ ðzk1 ; . . . ; zkl Þ, with l ¼ jLj,
analogous to the one used for solution construction, is defined and initialized to

192 Chapter 5 Ant Colony Optimization for NP-Hard Problems

zk ¼ ð1; . . . ; 1Þ. Element zki of zk points to the character in string Li that is a candi-

date for receiving pheromone. Then, sk, the supersequence built by ant k, is scanned

from the first to the last position. Let xh denote the h-th character in sk, h ¼ 1; . . . ;

jskj. At each step of the scanning procedure, first is memorized the set Mk
h ¼

fsizk
i
j sizk

i
¼ xhg of elements in the strings belonging to L that are pointed by the in-

dicator vector and whose value is equal to xh; note that, by construction of the

supersequence, at least one such character xh exists. Next, the indicator vector is

updated. That is, for i ¼ 1 to l:

zki ¼
zki þ 1; if sizk

i
¼ xh;

zki ; otherwise.

�
ð5:17Þ

Once the supersequence has been entirely scanned, the amount of pheromone to be

deposited by ant k on each visited component can be determined as follows. For each

character xh the amount of pheromone deposited by ant k on component sij AMk
h is

given by

Dtkij ¼
Dtk

jMk
h j
� 2ðjskj � hþ 1Þ
jskj2 þ jskj

: ð5:18Þ

The left term of the right-hand side of equation (5.18) says that the pheromone for

the h-th character in sk is distributed equally among the components of the strings

in L, if xh occurred in more than one string. The right term of the right-hand side of

equation (5.18) is a scaling factor that ensures that the overall sum of pheromones

deposited by ant k is equal to Dtk; additionally, this scaling factor ensures that the

earlier a character occurs in sk, the larger the amount of pheromone it receives.

Hence, each character of a string receives an amount of pheromone that depends on

how early the character was chosen in the construction process of ant k, how good

ant k’s solution is, and the number of strings from which the character was chosen in

the same construction step.

Once all pheromone trails are evaporated and the above computations are done,

the contributions of all ants to the characters’ pheromone trails are summed and

added to the pheromone trail matrix.

Local search AS-SCSP does not make use of local search.

Particularities AS-SCSP di¤ers from standard ACO implementations in at least

three main aspects, as explained below.

9 First, it uses an optional lookahead function that takes into account the ‘‘quality’’

of the partial solutions (i.e., partial supersequences) that can be reached in the

5.5 Application of ACO to Other NP-Hard Problems 193

following construction steps. To do so, AS-SCSP tentatively adds the character x to

the supersequence and generates the vector vk that is obtained by the tentative addi-

tion of x. Then, the maximum amount of pheromone on any of the characters

pointed by vk is determined. In AS-SCSP, the lookahead function plays the role of

the heuristic information and is be therefore indicated by h, as usual. It is defined by

hðx; vkÞ ¼ maxftkij j sij ¼ sivk
i
¼ xg:

As usual with heuristic information, the value hðx; vkÞ is weighted by an exponent b

when using the pseudorandom proportional action choice rule. It is also possible to

extend the one-step lookahead to deeper levels.

9 Second, at each step of the solution construction procedure, an ant, although add-

ing a single character to the supersequence under construction, can visit in parallel

more than one component sij of the construction graph.

9 Last, the AS-SCSP algorithm has been implemented as a parallel algorithm, based

on an island model approach, where the whole ant colony is divided into several

subpopulations that occasionally exchange solutions. In this approach, two di¤erent

types of colonies are considered: forward and backward colonies. The backward col-

ony works on the set L̂L, obtained from the set L by reversing the order of the strings.

Results Three variants of AS-SCSP, which used (1) no lookahead, (2) lookahead of

depth one, and (3) lookahead of depth two, were compared with the LM heuristic

using the same three levels of lookahead and with a genetic algorithm designed for

the SCSP (GA-SCSP) (Branke et al., 1998). The comparison was done on three

classes of instances: (1) randomly generated strings, (2) strings that are similar to the

type of strings arising in a variety of applications, and (3) several special cases, which

are known to be hard for the LM heuristic. The computational results showed that

the AS-SCSP variants, when compared to LM variants or GA-SCSP, performed par-

ticularly well on the instances of classes (2) and (3). The addition of the lookahead

proved to increase strongly the solution quality for all instance classes, at the cost of

additional computation time. The addition of backward colonies gave substantial

improvements only for the special strings. Overall, AS-SCSP proved to be one of the

best-performing heuristics for the SCSP; this is true, in particular, for structured

instances, which occur in real-world applications.

5.5.2 Bin Packing

In the bin-packing problem (BPP) one is given a set of n items, each item i having a

fixed weight wi, 0 < wi < W , and a number of bins of a fixed capacity W . The goal

in the BPP is to pack the items in as few bins as possible. The BPP is NP-hard

194 Chapter 5 Ant Colony Optimization for NP-Hard Problems

(Garey & Johnson, 1979) and is an intensively studied problem in the area of ap-

proximation algorithms (Co¤man, Garey, & Johnson, 1997). Levine & Ducatelle

(2003) adaptedMMAS to its solution (MMAS-BPP).

Construction graph The fully connected construction graph includes one node for

each item and each bin used by the algorithm; since the number of bins is not deter-

mined before constructing a solution, the number of bins can be set to be the same as

the number of items or to some upper bound on the optimal solution. Each node

representing an item is assigned the weight wi of the item and each node representing

a bin is assigned its capacity W .

Constraints The constraints in the BPP say that all items have to be assigned to

some bin and that the capacity of any bin cannot be exceeded.

Pheromone trails In general, in the BPP the pheromone trails tij encode the desir-

ability of having item i in a same bin with item j. However, because in the BPP only

relatively few di¤erent item weights may occur when compared to the number of

items, items of a same weight wi may be grouped in a set Wi. The pheromone repre-

sentation used by MMAS-BPP takes advantage of this possibility. Let the weight

of items in Wi be denoted by ŵwi and fŵw1; . . . ; ŵwcg be the set of the di¤erent weights

of the items. The pheromone trails tij encode the desirability of having an item of

weight ŵwi in a same bin with an item of weight ŵwj. This representation takes into

account the fact that the essential information in the BPP concerns associations be-

tween item weights, that is, whether an item of weight ŵwi was packed together with

an item of weight ŵwj in one bin, while it is not important which particular item of

weight ŵwi was in a bin with some particular item of weight ŵwj.

Heuristic information In MMAS-BPP the bins are filled one after the other, and

the heuristic information for an item i is set to hi ¼ wi. The heuristic information

is inspired by the first-fit decreasing rule that first orders items according to non-

increasing weight and then, starting with the heaviest, places the items into the first

bin in which they fit.

Solution construction Each ant is initialized with a list of all the items to be placed

and one empty bin. It starts by filling the available bin and, once none of the re-

maining items can be added to the bin, it starts again with a new, empty bin and the

remaining items. The procedure is then iterated until all items are allocated to bins.

The probability that an ant k places an item of weight ŵwj into the current bin b is

pk
jbðtÞ ¼

tj½hj�
bP

h AN k
b
ðth½hh�

bÞ
; if j A N k

b ; ð5:19Þ

5.5 Application of ACO to Other NP-Hard Problems 195

and 0 otherwise. The feasible neighborhood N k
b of ant k for bin b consists of all

those items that still fit into bin b, while the value tj is given by

tj ¼

P
i A b tij

jbj ; if b0q;

1; otherwise.

8><
>: ð5:20Þ

In other words, tj is the average of the pheromone values between the item to be

added, of weight ŵwj, and the items that are already in the bin b; if the bin is still

empty, then tj is set to 1.

Pheromone update The pheromone update follows the update rule of theMMAS

algorithm, slightly modified because of the nature of BPP. In particular, tij is

increased every time items i and j are put in a same bin, resulting in the following

update rule:

tij ð1� rÞtij þmij f ðsbsÞ; ð5:21Þ

where mij indicates how often items i and j are in a same bin, and sbs is the best-so-

far solution. The amount of pheromone deposited is given by

f ðsÞ ¼
PN

i¼1ðFi=WÞf

N
; ð5:22Þ

where N is the number of bins, Fi is the total weight of the items in bin i, and W is

the bin capacity (hence, the factor Fi=W is the relative fullness of bin i). The value f

is a parameter that determines the relative weight of the relative fullness of the bins

and the number of bins. Following Falkenauer (1996), Levine and Ducatelle set

f ¼ 2. The use of this evaluation function allows better di¤erentiation between the

various solutions than simply counting the number of bins. In fact, typically, a very

large number of solutions use the same number of bins.

Local search Levine and Ducatelle implemented a local search algorithm that first

deletes the l least-filled bins, where l is an empirically determined parameter. Next,

for each bin the local search tests whether one or two items in the bin can be ex-

changed for items currently not allocated, making the bin fuller. Once such an

exchange is no longer possible, the remaining items are distributed using the first-fit

decreasing heuristic and the local search is repeated. For more details on the local

search, see Levine & Ducatelle (2003).

Results MMAS-BPP was applied to randomly generated instances ranging in size

from 120 to 8000 items, where each bin has a maximum capacity of 150 and the

196 Chapter 5 Ant Colony Optimization for NP-Hard Problems

item weights are generated according to a uniform random distribution over the set

f20; 21; . . . ; 99; 100g.MMAS-BPP was compared with the hybrid grouping genetic

algorithm (HGGA) by Falkenauer (1996), which was earlier shown to be among the

best-performing algorithms for the BPP, and with Martello and Toth’s reduction

method (MTP) (Martello & Toth, 1990). The computational results showed that

MMAS-BPP performs significantly better than both. In particular, MMAS-BPP

obtained much better solution quality than MTP in shorter time, and could obtain

slightly better solution quality than HGGA, but with a much lower computation

time.MMAS-BPP was also applied to solve a collection of di‰cult BPP instances

provided by Wäscher & Gau (1996): for five of these instances it could find new best-

known solutions.

5.5.3 2D-HP Protein Folding

A central problem in bioinformatics is the prediction of a protein’s structure based

on its amino acid sequence. Protein structures can be determined by rather time-

consuming, expensive techniques like magnetic resonance imaging or X-ray crystal-

lography, which require additional preprocessing like the isolation, purification, and

crystallization of the protein. Therefore, the prediction of protein structure by algo-

rithmic means is very attractive. However, an accurate algorithmic prediction of a

protein structure is di‰cult because of the requirement of good measures for the

quality of candidate structures and of e¤ective optimization techniques for finding

optimal structures. Therefore, often simplified models for protein folding are studied.

One such simplified model is the two-dimensional (2D) hydrophobic–polar protein

folding problem (2D-HP-PFP) introduced by Lau & Dill (1989). The 2D-HP-PFP

problem focuses on the hydrophobic interaction process in protein folding by repre-

senting an amino acid sequence by the pattern of hydrophobicity in the sequence. In

particular, a sequence can be written as fH;Pgþ, where H stands for a hydrophobic

amino acid and P represents polar amino acids (polar amino acids are classified as

hydrophilic). For convenience, the conformations into which this sequence can fold

are restricted to self-avoiding paths on a lattice (a self-avoiding path is a path with-

out intersections); in the 2D-HP-PFP model, a 2D square lattice is considered.

The objective function value f ðcÞ of a conformation c is defined to be the number

of hydrophobic amino acids that are adjacent on the lattice and not consecutive in

the sequence. The goal then becomes, given an amino acid sequence s ¼ s1s2 . . . sn
with each si A fH;Pg, to find a conformation that maximizes the objective function.

It is known that this problem is NP-hard for square (Crescenzi, Goldman, Papadi-

mitriou, Piccolboni, & Yannakakis, 1998) and cubic lattices (Berger & Leight, 1998).

5.5 Application of ACO to Other NP-Hard Problems 197

Figure 5.4 gives an example of conformation of a protein sequence which has an

objective function value of 6.

A first ACO algorithm for the 2D-HP-PFP was presented in Shmygelska et al.

(2002). This approach represented candidate solutions for the 2D-HP-PFP by se-

quences of local structure motifs that correspond to relative folding directions. There

are three possible such motifs, which are given in figure 5.5. Each of the motifs gives

the position of an amino acid relative to its two predecessors; hence, a candidate so-

lution for a protein of length n corresponds to a sequence of local structure motifs of

length n� 2.

Solutions are constructed by first randomly choosing, according to a uniform dis-

tribution, a start position l in the sequence. From position l, an ant extends the par-

tial conformation till position 1 is reached (obtaining a partial conformation for

positions s1 . . . sl) and then from position l to position n, resulting in a conformation

for the full sequence s1 . . . sn. When extending the conformation to the right of the

sequence, the direction into which siþ1 is placed with respect to si�1si is determined

using the random proportional action choice rule of AS [equation (3.2)].

Construction graph The construction graph consists of 3 � ðn� 2Þ local structure

motifs, one corresponding to each of the positions 2 to n� 1 in the sequence. The

‘‘3’’ comes from the fact that there are three di¤erent structure motifs. As usual, the

construction graph is fully connected.

Figure 5.4
Given is a sample conformation of a protein for the 2D-HP-PFP problem on a two-dimensional lattice.
White squares represent polar amino acids (P) and black squares represent a hydrophobic amino acid
(H). The protein sequence s ¼ PHPPHHPHPPHPHHPHPPHPHHPH is obtained starting at the leftmost white
square in the upper row. The solid lines connect consecutive amino acids in the sequence and the dotted
lines represent the adjacent positions of the hydrophobic amino acids.

198 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Constraints The constraints impose that every lattice position can be occupied by at

most one amino acid.

Pheromone trails Pheromones tij refer to the desirability of extending a sequence at

position i to the right by one of the possible folding directions j A fS;L;Rg, where
these letters stand for straight (S), left turn (L), and right turn (R). Pheromone trails

t 0ij are defined for extending a sequence at position i to the left. Because of symme-

tries in the problem, t 0iL ¼ tiR, t
0
iR ¼ tiL, and t 0iS ¼ tiS . The symmetries are due to the

fact that when extending a sequence to the right by a left turn, this corresponds to

extending a sequence to the left by a right turn.

Heuristic information The heuristic information is computed based on the number

hij of H �H adjacent positions that would result by placing the next amino acid

using motif j A fS;L;Rg. The value of hij is computed by testing all the seven possi-

ble neighbor positions of siþ1 in the 2D lattice. Figure 5.6 illustrates the positions

that are neighbors of the three possible extensions. The heuristic information is then

taken to be hij ¼ hij þ 1 to avoid the heuristic information becoming 0 and specific

placements being excluded from eligibility. Note that if siþ1 ¼ P, that is, at position

i þ 1 in the sequence we have a polar amino acid, then we have hij ¼ 0.

Solution construction As said above, a solution is constructed by extending partial

conformations. When extending the conformation to the right of the sequence, this is

done by using the pheromone trails tij plus the heuristic information as usual in the

random proportional action choice rule of AS [equation (3.2)]. When extending the

sequence to the left, the same is done but using instead pheromone trails t 0ij .

One problem that might occur during solution construction is that a partial con-

formation cannot be extended, because all neighboring positions are already occu-

pied. The measure taken to avoid this is the following. A lookahead procedure is

used to avoid placing an amino acid at a position where all neighboring positions on

s s s

s s

s
s s

s
i

i

i

i+1

i+1

i+1i-1

i-1

i-1

R
L

Straight Left turn Right turn

S

Figure 5.5
Structural motifs that define the solution components for the solution construction and the local search.
Here we consider the case that a sequence is extended from position i to position i þ 1.

5.5 Application of ACO to Other NP-Hard Problems 199

the lattice are already occupied. Additionally, once the lookahead procedure has

ruled out an otherwise apparently feasible extension, backtracking is invoked that

undoes half of the construction steps and then restarts the construction process from

the resulting sequence position.

Pheromone update In the pheromone update, as usual, the pheromone trails evap-

orate and a number of the best solutions obtained after each iteration are allowed to

deposit pheromone. Occasionally, also the best-so-far solution deposits pheromone if

no improved solution was found in the current iteration. The amount of pheromone

to be deposited is f ðcÞ= f �, where f � is an approximation of the optimal value. Ad-

ditional techniques, similar in spirit to the pheromone trail limits of MMAS, are

used to avoid search stagnation (see chapter 3, section 3.3.1).

Local search Two local search algorithms are applied. The first one is based on a

macro-mutation neighborhood described in Krasnogor, Hart, Smith, & Pelta, 1999),

while the second is a one-exchange neighborhood, in which two neighboring solu-

tions di¤er in exactly one motif. For details on the local search see Shmygelska et al.

(2002).

Results Computational results with this ACO approach have shown that for se-

quences with length up to 50 the optimal solutions or the best-known solutions can

be obtained.

s s si
i+1

i-1

s
i+1

s
i+1

Figure 5.6
Illustration of the neighbor positions to be considered for the three possible locations of sequence element
siþ1. The three tentative positions of siþ1 are indicated by the shaded circles and the seven neighbor posi-
tions to these three positions are indicated by white circles.

200 Chapter 5 Ant Colony Optimization for NP-Hard Problems

An improved version of this ACO algorithm was proposed recently by Shmygelska

& Hoos (2003). It di¤ers from the algorithm described here mainly in the use of a

construction process that probabilistically extends partial solutions in both direc-

tions, the use of an improved local search algorithm, and of an additional local

search phase with a simulated annealing-type acceptance criterion applied to the

iteration-best or the best-so-far solution. This latter algorithm obtained computa-

tional results that in many cases are very close to, and in some instances improve on,

those of current state-of-the-art algorithms for this problem (Hsu, Mehra, Nadler, &

Grassberger, 2003).

5.5.4 Constraint Satisfaction

Constraint satisfaction problems (CSPs) are an important class of combinatorial

problems with many important practical applications in spatial and temporal rea-

soning (Dechter, Meiri, & Pearl, 1991; Guesgen & Hertzberg, 1992), graph coloring

(Brelaz, 1979), frequency assignment (Gamst, 1986), and scheduling problems

(Sadeh, Sycara, & Xiong, 1995; Sadeh & Fox, 1996). See Dechter (2003) for an

overview.

A CSP is defined by a triple ðY;D; CÞ, where Y ¼ fy1; . . . ; yng is a finite set of

variables, D ¼ fD1; . . . ;Dng is a finite set of domains, where each variable yi has an

associated domain Di, and C ¼ fc1; . . . ; cmg is a finite set of constraints, that is, rela-

tions defined among a subset of the variables that restrict the set of values that these

variables can take simultaneously. Depending on the domains and the type of con-

straints, several classes of CSPs are obtained. In the following, we focus our attention

on finite discrete CSPs, that is, CSPs in which each domain is discrete and finite.

Additionally, in the following presentation we restrict ourselves to the case in which

all the constraints are binary, that is, they involve two variables. However, the pre-

sented algorithm can be applied also to nonbinary constraints, because any non-

binary CSP instance can be transformed into a binary CSP instance in a rather

straightforward way (see Dechter & Pearl, 1989; Rossi, Petrie, & Dhar, 1990; and

Bacchus, Chen, van Beek, & Walsh, 2002).

A variable instantiation is the assignment of a value d A Di to a variable yi, which

is denoted by the pair hyi; di, and a candidate solution s consists of a variable

instantiation for all variables. A candidate solution s violates a constraint ci A C if the
values assigned simultaneously to the variables involved in ci do not satisfy the con-

straint ci. The goal in a CSP is to find a candidate solution that satisfies all con-

straints or, if no such candidate solution exists, to prove it. ACO algorithms can be

used to find satisfying variable instantiations, but they cannot prove that there is no

satisfying instantiation if none exists.

5.5 Application of ACO to Other NP-Hard Problems 201

In the following, we present a general ACO algorithm applicable to CSPs, which is

based on MMAS (MMAS-CSP) (Solnon, 2002). Similar to many other approxi-

mate algorithms for CSPs, MMAS-CSP tries to minimize the number of violated

constraints. This means thatMMAS-CSP is actually solving a MAX-CSP problem

(Freuder & Wallace, 1992), where the goal is to maximize the number of satisfied

constraints or, equivalently, to minimize the number of unsatisfied constraints. If a

solution to the MAX-CSP is found that satisfies all constraints, then also a satisfying

solution for the CSP instance is found.

Construction graph For each possible variable-value instantiation hyi; di we have

one node in the construction graph and for any pair of nodes corresponding to dif-

ferent variables there is an arc.

Constraints The constraints (for generating a candidate solution) in the CSP en-

force that each variable is assigned exactly one value of its domain.

Pheromone trails Pheromone trails are associated with every arc in the construction

graph. A pheromone trail thi;dih j; ei associated with the arc ðhyi; di; hyj; eiÞ between
nodes hyi; di and hyj; ei intuitively represents the desirability of assigning the value

d to yi and e to yj, simultaneously.

Heuristic information The heuristic information is defined to be hhyj ; eiðskÞ ¼ 1=

ð1þ f ðsk Whyj; eiÞ � f ðskÞÞ, where sk Whyj; ei is the partial solution after adding

component hyj; ei to ant k’s partial solution sk and f ðskÞ is the number of con-

straints violated by sk. In other words, the heuristic information is inversely pro-

portional to the number of newly violated constraints after assigning the value e to

variable yj.

Solution construction Solutions are constructed in a way analogous to the one fol-

lowed in assignment problems (see section 5.2). Each ant iteratively constructs solu-

tions by assigning values to variables. At each construction step, an ant has to make

two decisions: (1) which variable to assign a value next and (2) which value to assign

to the chosen variable. In MMAS-CSP, the first decision is made based on the

smallest domain ordering heuristic that selects the unassigned variable with the

smallest number of consistent values with respect to the partial assignment already

built (in other words, for each variable the number of values of its domain that are

consistent with the partial assignment is computed and the variable that has the

smallest number is chosen). The second decision, the choice of value to assign, is

done using AS’s action choice rule [equation (3.2)], but using instead of the tij’s the

sum of the pheromone values on arcs connecting hyj; ei to the already instantiated

variables:

202 Chapter 5 Ant Colony Optimization for NP-Hard Problems

X
hyi ;di A sk

thyi ;dihyj ; ei:

This sum gives the desirability of assigning the value e to variable yj.

Pheromone update The pheromone update follows the general rules of MMAS

with the exception that more than one ant may deposit pheromone. In particular,

in MMAS-CSP all iteration-best ants deposit an amount 1= f ðskÞ of pheromone,

favoring in this way assignments that violate few constraints. Pheromone is deposited

on all arcs between any pair of visited nodes on the construction graph.

Local search MMAS-CSP improves candidate solutions using the min-conflicts

heuristic (MCH) (Minton, Johnston, Philips, & Laird, 1992). At each local search

step MCH chooses randomly, according to a uniform distribution, a variable that is

involved in some violated constraint and then assigns to it a new value that mini-

mizes the number of constraint violations. The local search is stopped after n ¼ jYj
steps without improvement.

Particularities MMAS-CSP uses a preprocessing step that is motivated by the fol-

lowing observations. If r, the parameter regulating pheromone evaporation, is very

low, then all pheromone values will be very similar in the first cycles of MMAS

because the pheromone trails are all initialized to a large value tmax. In turn, if the

di¤erences between the absolute values of the pheromones are very small, then the

probabilities of the various available extensions of a partial solution are close to a

uniform distribution (if we do not take into account the heuristic information).

Hence, in the first iterations of MMAS, pheromones do not give strong guidance

toward good solutions. However, good solutions can easily be found by local search

algorithms. MMAS-CSP exploits this observation by using a preprocessing phase,

where a local search is applied to candidate solutions that are generated using only

heuristic information in the solution construction [this can be achieved by setting

a ¼ 0 in equation (3.2)]. In MMAS-CSP this process is repeated until the average

cost of the nb best solutions seen so far does not improve anymore by more than a

given e or until a candidate solution satisfying all constraints is found. The nb best

solutions found in this preprocessing phase are then used to initialize the pheromone

trails. In theMMAS-CSP case, this preprocessing step was reported to considerably

improve performance.

Results MMAS-CSP was tested on hard, randomly generated binary CSPs taken

from the phase transition region (Smith & Dyer, 1996) and compared with an ex-

tension of MCH using random walk (WMCH) (Wallace & Freuder, 1996), and with

5.5 Application of ACO to Other NP-Hard Problems 203

a local search procedure that is currently one of the best-performing MCH vari-

ants for CSPs (Wallace, 1996). The experimental results showed that, while WMCH

performed better thanMMAS-CSP for instances with a low number of constraints,

for a higher number of constraints MMAS-CSP was the best. However, it is not

known howMMAS-CSP compares to other local search algorithms that are better-

performing than WMCH; in particular, it would be desirable to compare it to the

tabu search algorithm of Galinier & Hao (1997), which appears to be one of the best

available local search algorithms for binary CSPs. In any case,MMAS-CSP is one

of the first approaches showing that ACO algorithms can be applied to solve con-

straint satisfaction problems successfully.

Remarks There have been a few other approaches attacking CSPs. Solnon (2000)

applied an ACO algorithm to constraint satisfaction problems with a global permu-

tation constraint that enforces that all the variables are assigned di¤erent values, the

number of values being the same as the number of variables. This ACO algorithm

was shown to yield promising results for the car sequencing problem (Gottlieb,

Puchta, & Solnon, 2003). Schoofs & Naudts (2000) introduced an ACO algorithm

for binary CSPs that includes preprocessing techniques that can also sometimes show

that an instance is infeasible. A few approaches were also presented for the satisfi-

ability problem in propositional logic (SAT) that can be seen as a particular case of

CSP, where all variables’ domains comprise exactly two values (Pimont & Solnon,

2000; Lokketangen, 2000). However, these approaches so far have not achieved good

performance when compared to current state-of-the-art algorithms for SAT.

Recently, two applications of ACO to the MAX-SAT problem were presented.

MAX-SAT is an extension of the SAT problem in which instead of searching for a

feasible assignment, one searches for the assignment with the lowest number of un-

satisfied clauses. Roli, Blum, & Dorigo (2001) applied an ACO algorithm to MAX-

SAT and tested di¤erent ways of defining pheromone trails. They found that the best

way is to let pheromones indicate the desirability of having a particular truth-value

assignment. Zlochin & Dorigo (2002) compare ACO with a number of other model-

based approaches and show that, on this particular problem, all the model-based

algorithms reach a similar level of performance.

5.6 Machine Learning Problems

Many problems in the field of machine learning can be cast as optimization problems

and be solved by either classic exact algorithms or by heuristic approaches. Exam-

ples are the generation of classification rules, data clustering, regression, and several

204 Chapter 5 Ant Colony Optimization for NP-Hard Problems

others. ACO algorithms have been applied to a few such problems so far, opening

the application of this algorithmic technique to a new range of important problems.

Here we present two such applications, the learning of classification rules and the

learning of the structure of a Bayesian network. Note that there exist a few more

applications of ant algorithms, a class of algorithms that is loosely inspired by vari-

ous behavioral patterns of ants, to other machine learning–type problems, most

noteworthy to clustering problems (Lumer & Faieta, 1994; Kuntz, Snyers, & Layzell,

1999). An overview of these approaches is given in section 7.3 of chapter 7.

5.6.1 Learning of Classification Rules

Parpinelli, Lopes, & Freitas (2002a,b) designed an ACO algorithm called Ant-miner

for a particular data mining task: the generation of classification rules. The problem

they consider is the following. Given a set of attributes A ¼ fa1; . . . ; ang (the domain

of each attribute being a set Vi ¼ fvi1; . . . vifig of fi values), a set of l classes B ¼
fb1; . . . ; blg, and a training set TS ¼ fts1; . . . tshg, where each tsi is a case, the task is

to learn a set of IF-THEN rules, each rule taking the form

IF hterm15term25� � �i THEN hbii: ð5:23Þ

The IF part of the rule is called the antecedent, the THEN part is called the conse-

quent and gives the class predicted by the rule. Each term in the antecedent is a triple

ða; o; vÞ, where v is a value in the domain of attribute a, and o is an operator. Ant-

miner allows only for discrete attributes and the only possible operator is ‘‘¼’’, the
equality operator. If continuous attributes are to be used, their domains need to be

discretized in a preprocessing step.

Ant-miner builds an ordered set of IF-THEN rules by iteratively appending rules of

the form given by equation (5.23) to the rule set. Each rule to be appended is deter-

mined by running an ACO algorithm that is similar to AS but that uses only one ant.

To construct a rule, the ant starts with an empty rule and iteratively adds terms to

the rule using the probabilistic action choice rule of AS given by equation (3.2) in

chapter 3. Once rule construction has finished, first the rule is simplified by a pruning

process, the class predicted by this rule is chosen to be the one that covers the largest

number of cases in the training set, and then the pheromone trails are updated. The

ACO algorithm stops to generate new rules either when it enters stagnation or when

a maximum number of rule constructions has been reached. In a final step, the best

rule rulebest found in this process, where best is measured according to some evalua-

tion function f ð�Þ, is added to the set of rules and the training cases that are correctly

classified by the rule rulebest are removed from TS.

5.6 Machine Learning Problems 205

This process of adding new rules to the rule set is repeated until TS contains fewer

than uc cases, where uc is a parameter of the algorithm. An algorithmic outline of

Ant-miner is given in figure 5.7.

Construction graph The construction graph contains one node for every possible

term plus a dummy start node. The construction graph is fully connected.

Constraints The set of constraints enforces that one attribute can be used at most

once by each rule and that the minimum number of attributes in a rule is one.

Pheromone trails The pheromone trail tij indicates the desirability of adding the

term ðai;¼; vijÞ to the rule; the term ðai;¼; vijÞ says that the attribute ai takes

value vij .

Heuristic information The heuristic information is based on a measure of the en-

tropy associated with each term ðai;¼; vijÞ that can be added to a rule. In particular,

the entropy is defined as

procedure Ant-miner

TS InitializeTrainingSet

rule_list []

while ðjTSj > ucÞ do % uc is the number of uncovered cases

t InitializePheromones

i 1

rulebest q
while (termination condition not met) do

rulei ConstructRule

rulei PruneRule(rulei)

UpdatePheromones

if (f ðruleiÞ > f ðrulebestÞ)
rulebest rulei

end-if

i i þ 1

end-while

rule_list [rule_list, rulebest]

TS TS\ CoveredCases(rulebest)

end-while

end-procedure Ant-miner

Figure 5.7
High-level pseudo-code for Ant-miner.

206 Chapter 5 Ant Colony Optimization for NP-Hard Problems

hðB j ai ¼ vijÞ ¼ �
Xl

b¼1
Pðb j ai ¼ vijÞ � log2 Pðb j ai ¼ vijÞ; ð5:24Þ

where B is the set of classes and Pðb j ai ¼ vijÞ is the empirical probability of observ-

ing class b when having observed that attribute ai takes value vij . The higher the en-

tropy, the more uniformly distributed are the classes and the smaller should be the

probability that the ant adds the term ðai;¼; vijÞ to its rule. Ant-miner uses a nor-

malization of the entropy values to derive the heuristic information that is given by

hij ¼
log2 l � hðB j ai ¼ vijÞPn

i¼1 xi �
P fi

j¼1 log2 l � hðB j ai ¼ vijÞ
: ð5:25Þ

Here, xi is 1, if the attribute ai is not yet used by the ant and 0 otherwise. In the

heuristic information, the term log2 l is used as a scaling factor, because one can

show that it holds 0a hðB j ai ¼ vijÞa log2 l. Hence, the heuristic information gives

preference to terms that discriminate well between di¤erent classes. The heuristic in-

formation for all attribute-value pairs can be precomputed and stored in a table, be-

cause hðB j ai ¼ vijÞ is independent of the rule in which the term occurs.

Solution construction As said above, a rule is constructed by iteratively adding

terms. At each step of the rule construction, the probability of adding term ðai;¼; vijÞ
is given by

pij ¼
tijhijPn

i¼1ðxi
P fi

j¼1ðtijhijÞÞ
; if ðai;¼; vijÞ A N : ð5:26Þ

Here, N is the feasible neighborhood; it comprises all terms except (1) those that

contain an attribute that is already used in a partial rule (to avoid invalid rules such

as IF hðsex ¼ maleÞ5ðsex ¼ femaleÞi), and (2) those that would make the resulting

rule cover less than mc cases of the training set. Once the rule antecedent is com-

pleted, a rule-pruning procedure is applied, and then the class to be predicted by the

rule is set to be the one that covers the largest number of training cases satisfying the

rule antecedent.

Pheromone update The solution quality f ðruleÞ of a rule is computed as

f ðruleÞ ¼ TP

TPþ FN
� TN

FPþ TN
; ð5:27Þ

where TP and FP are, respectively, the number of true and false positives, and TN

and FN are, respectively, the number of true and false negatives. The left term in the

5.6 Machine Learning Problems 207

product gives the fraction of positive examples that are recognized as being positive,

while the right term gives the fraction of negative examples that are correctly classi-

fied as negative ones. The larger these fractions, the higher is f ðruleÞ. The phero-

mone update is performed in two steps. First, an amount of pheromone given by

tij � f ðruleÞ is added to each of the terms in the rule. Then pheromone values are

normalized: each tij is divided by the sum over all tij . This implicit form of phero-

mone evaporation keeps the total amount of pheromone always equal to 1. The net

result of the overall pheromone update is that the value tij of terms ðai;¼; vijÞ that do
not receive pheromone decreases, while the other terms have their amount of phero-

mone increased.

Local search Ant-miner does not use any local search.

Results Ant-miner was compared to CN2 (Clark & Niblett, 1989; Clark & Boswell,

1991), a classification rule discovery algorithm that uses a strategy for generating

rule sets similar to that of Ant-miner. The comparison was done using six data sets

from the UCI Machine Learning Repository that is accessible at www.ics.uci.edu/

~mlearn/MLRepository.html. The results were analyzed according to the predictive

accuracy of the rule sets and the simplicity of the discovered rule set, which is mea-

sured by the number of rules in the rule set and the average number of terms per rule.

While Ant-miner had a better predictive accuracy than CN2 on four of the data sets

and a worse one on only one of the data sets, the most interesting result is that Ant-

miner returned much simpler rules than CN2. For more details on the computational

results and a study of the influence of several design choices on Ant-miner perfor-

mance, see Parpinelli et al. (2002b). Similar conclusions could also be drawn from

a comparison of Ant-miner to C4.5 (Quinlan, 1993a), a well-known decision tree

algorithm (Parpinelli et al., 2002a).

5.6.2 Learning the Structure of Bayesian Networks

Bayesian networks give a graphical representation of knowledge in probabilistic

domains, which is becoming increasingly important in artificial intelligence (Pearl,

1998; Jensen, 2001). A Bayesian network is a directed, acyclic graph G ¼ ðN;AÞ,
where the set of nodes N is in one-to-one correspondence to a set of random vari-

ables X ¼ fx1; . . . ; xng and the set of arcs A represents direct dependence rela-

tionships between the variables. With each of the variables, a set of conditional

probability distributions Pðxi jParðxiÞÞ is associated, where ParðxiÞ denotes the

parents of node xi, that is, those nodes xj for which there exists a directed arc ð j; iÞ
from j to i. The joint probability distribution across the variables can then be

written as

208 Chapter 5 Ant Colony Optimization for NP-Hard Problems

Pðx1; x2; . . . ; xnÞ ¼
Yn
i¼1

Pðxi jParðxiÞÞ ð5:28Þ

The problem of learning the structure of a Bayesian network is to find a directed

acyclic graph, that is, a Bayesian network, that best matches a training set TS ¼
fts1; . . . tsng, where each element of TS consists of values for the random variables

that are defined to describe the situation of interest. A commonly used technique for

this task is to evaluate the quality of a Bayesian network using a scoring function

f ð�Þ. In this case, the goal of the design of a Bayesian network is to find a graph that

maximizes the scoring function. De Campos, Fernández-Luna, Gámez, & Puerta

(2002a) presented an ACS algorithm for this task (ACS-BN). Their algorithm starts

from a graph without any arcs and iteratively adds (directed) arcs subject to the

constraint that the resulting graph must be acyclic. Hence, ACS-BN searches in the

search space defined by directed acyclic graphs. The quality of the graph (Bayesian

network) and the heuristic information are based on a transformation of the K2

metric (Cooper & Herskovits, 1992).

Construction graph There is one node for each of the n2 directed arcs between every

pair of variables. Each node ij of the construction graph corresponds to a directed

arc ði; jÞ. As usual, the construction graph is fully connected.

Constraints The only constraint is that the final graph (i.e., the Bayesian network)

is required to be an acyclic graph.

Pheromone trails A pheromone trail tij is associated with every node ij, that is, with

every directed arc ði; jÞ.
Heuristic information The heuristic information hij is set equal to the improvement

of the scoring function obtained by adding a directed arc ði; jÞ to the solution under

construction. The scoring function depends on an ant’s partial solution. For details

on how it is derived, see de Campos et al. (2002a).

Solution construction ACS-BN iteratively adds directed arcs to the Bayesian net-

work as long as there exist arcs for which the heuristic information is positive; a

negative heuristic information for an arc indicates that adding this arc would worsen

the value of the scoring function. At each construction step, first a candidate list of

arcs is formed. An arc ði; jÞ is included in the candidate list if (1) it is not already

included in G, (2) its addition to the graph does not create cycles in the graph, and

(3) it holds that hij > 0. The selection of the next arc to be added is then done in the

candidate list using the pseudorandom proportional rule of ACS [equation (3.10)].

The solution construction is stopped when the candidate list becomes empty.

5.6 Machine Learning Problems 209

Pheromone update The pheromone trails in ACS-BN are initialized by first running

the K2SN heuristic (de Campos & Puerta, 2001) and using the resulting score for the

definition of the initial pheromone level. The pheromone update follows strictly the

rules of ACS.

Local search ACS-BN makes use of the HCST iterative improvement algorithm

(Heckerman, Geiger, & Chickering, 1995), where the neighborhood of a graph G

consists of all those graphs that can be obtained from G by deleting, adding, or

reversing one arc. Two variants of ACS-BN were presented that di¤er only in the

frequency of applying local search. A first variant applied local search only to the

solutions constructed in the last iteration of the algorithm, while a second variant

applied local search every ten iterations and in the last iteration to all ants.

Results ACS-BN was compared to an iterative improvement algorithm, to two

model-based search algorithms (Baluja & Caruana, 1995; Mühlenbein, 1998), and to

an ILS algorithm on three benchmark instances. The result was that ACS-BN out-

performed all the competitors.

Remarks A di¤erent possibility for constructing Bayesian networks is to search for

a good sequence of the variables and to build the graph taking into account this

sequence. De Campos et al. (2002b) presented an ACO that searches in the space of

variable sequences and compared its performance to ACS-BN on two instances. The

result was that ACS-BN had a slightly better performance.

Reasoning processes in Bayesian networks are often carried out on a secondary

graph, known as the junction tree. Gámez & Puerta (2002) attacked the problem of

finding a best elimination sequence of the nodes in the graph that arises in the gen-

eration of a junction tree. This problem was tackled using ACS; experimental tests

showed that, when compared to greedy construction heuristics, as well as to genetic

algorithms based on the work of Larrañaga, Kuijpers, Poza, & Murga (1997), ACS

typically reached the best average performance and was faster than the genetic algo-

rithms (Gámez & Puerta, 2002).

5.6.3 Other ACO Applications to Machine Learning Problems

Casillas et al. (2000) applied ACO to the problem of learning rules in a fuzzy system.

They formulate this problem as a combinatorial optimization problem based on the

cooperative rules methodology and show that it can be transformed into an assign-

ment problem that is similar to a quadratic assignment problem. To tackle this prob-

lem, they applied AS and ACS and tested two variants of ACS, one without local

search and another applying local search to the iteration-best ant. Experimental re-

sults were presented on some benchmark problems, as well as on problems stemming

210 Chapter 5 Ant Colony Optimization for NP-Hard Problems

from real-world applications. Compared to other greedy techniques and other meta-

heuristic algorithms (Casillas et al., 2002; Cordón & Herrera, 2000; Nozaki, Ishi-

buchi, & Tanaka, 1997; Wang & Mendel, 1992), the ACO approaches were found to

give, with one exception, the best results with respect to the generalization behavior

and, especially in the case of ACS, good solutions were found very quickly.

5.7 Application Principles of ACO

Despite being a rather recent metaheuristic, ACO algorithms have been applied to a

large number of di¤erent combinatorial optimization problems, as shown by the list

of applications presented earlier. Based on this experience, we have identified some

basic issues that play an important role in several of these applications. These are

discussed in the following subsections.

5.7.1 Construction Graph

One of the first issues when applying ACO to a combinatorial optimization problem

is the definition of the construction graph. Most of the time this is done implicitly,

and the construction graph used depends on the construction heuristic used by the

artificial ants. So, in all the cases considered in this book, the choice of the compo-

nents C (see chapter 2, section 2.2.1), which define the construction graph, is always

the most ‘‘natural’’ with respect to the considered problem and to the chosen con-

struction heuristic.

Nevertheless, it is possible to provide a general procedure (Blum & Dorigo, 2004)

that applies to any combinatorial optimization problem, and that is based on the

following definition:

Definition 5.1. A combinatorial optimization problem ðS; f ;WÞ is defined by

9 a set of discrete variables Xi with values xi A Di ¼ fd i
1; . . . ; d

i
jDi jg, i ¼ 1; . . . ; n;

9 a set W of constraints among variables;

9 an objective function to be minimized f : D1 � � � � �Dn ! R;

9 the set of all the possible feasible assignments:

S ¼ fs ¼ fðX1; x1Þ; . . . ; ðXn; xnÞg j xi A Di; s satisfies all the constraintsg:

A solution s� A S is called a globally optimal solution if f ðs�Þa f ðsÞ, Es A S. The set

of all globally optimal solutions is denoted by S�JS. To solve a combinatorial opti-

mization problem one has to find a solution s� A S�.

5.7 Application Principles of ACO 211

Given the above definition, we call component the combination of a decision

variable Xi and one of its domain values xi A Di. The construction graph is the

completely connected graph of all the solution components. Unlike the more gen-

eral description given in section 2.2.1, pheromone trails can only be assigned to

components.

It is easy to see that, in many cases, the construction graph obtained using the

above definition is equivalent to the one that has been implicitly used in the litera-

ture. Consider, for example, a TSP with n cities: If the discrete variables Xi, i ¼
1; . . . ; n are the n cities and their values xi are the integer numbers j ¼ 1; . . . ; n, i0 j,

then for each city i there are n� 1 pheromone values corresponding to the n� 1

connections to the other cities.

5.7.2 Pheromone Trails Definition

An initial, very important choice when applying ACO is the definition of the in-

tended meaning of the pheromone trails. Let us explain this issue with an example.

When applying ACO to the TSP, the standard interpretation of a pheromone trail tij,

used in all published ACO applications to the TSP, is that it refers to the desirability

of visiting city j directly after a city i. That is, it provides some information on the

desirability of the relative positioning of city i and j. Yet, another possibility, not

working so well in practice, would be to interpret tij as the desirability of visiting city

i as the j-th city in a tour, that is, the desirability of the city’s absolute positioning.

Conversely, when applying ACO to the SMTWTP (see section 5.3.1) better results

are obtained when using the absolute position interpretation of the pheromone trails,

that is, the interpretation in which tij represents the desirability of putting job j on

the i-th position (den Besten, 2000). This is intuitively due to the di¤erent role that

permutations have in the two problems. In the TSP, permutations are cyclic, that is,

only the relative order of the solution components is important and a permutation

p ¼ ð1 2 . . . nÞ has the same tour length as the permutation p 0 ¼ ðn 1 2 . . . n� 1Þ—it

represents the same tour. Therefore, a relative position-based pheromone trail is the

appropriate choice. On the contrary, in the SMTWTP (as well as in many other

scheduling problems), p and p 0 represent two di¤erent solutions with most probably

very di¤erent costs. Hence, in the SMTWTP the absolute position-based pheromone

trails are a better choice. Nevertheless, it should be noted that, in principle, both

choices are possible, because any solution of the search space can be generated with

both representations.

The influence of the way pheromones are defined has also been studied in a few

other researches. One example is the study of Blum and Sampels on di¤erent possi-

212 Chapter 5 Ant Colony Optimization for NP-Hard Problems

bilities of how to define pheromone trails for the group shop scheduling problem

(Blum & Sampels, 2002a). They examined representations where pheromones refer to

absolute positions (same as in the SMTWTP case), to predecessor relations (similar

to the TSP case), or to relations among machines (as presented for MMAS-HC-

GSP in section 5.3.2). What they found was that the last-named representation gave

by far better results than the first two ways of defining pheromones.

The definition of the pheromone trails is crucial and a poor choice at this stage of

the algorithm design will result in poor performance. Fortunately, for many prob-

lems the intuitive choice is also a very good one, as was the case for the previous

example applications. Yet, sometimes the use of the pheromones can be somewhat

more involved, which is, for example, the case with the ACO application to the

shortest common supersequence problem (Michel & Middendorf, 1999).

5.7.3 Balancing Exploration and Exploitation

Any e¤ective metaheuristic algorithm has to achieve an appropriate balance between

the exploitation of the search experience gathered so far and the exploration of un-

visited or relatively unexplored search space regions. In ACO, several ways exist of

achieving such a balance, typically through the management of the pheromone trails.

In fact, the pheromone trails induce a probability distribution over the search space

and determine which parts of the search space are e¤ectively sampled, that is, in

which part of the search space the constructed solutions are located with higher fre-

quency. Note that, depending on the distribution of the pheromone trails, the sam-

pling distribution can vary from a uniform distribution to a degenerate distribution

which assigns probability 1 to a solution and 0 probability to all the others. In fact,

this latter situation corresponds to stagnation of the search, as explained in chapter 3,

section 3.3.1.

The simplest way to exploit the ants’ search experience is to make the pheromone

update a function of the solution quality achieved by each particular ant. Yet, this

bias alone is often too weak to obtain good performance, as was shown experimen-

tally on the TSP (Stützle, 1999; Stützle & Hoos, 2000). Therefore, in many ACO

algorithms an elitist strategy was introduced whereby the best solutions found during

the search contribute strongly to pheromone trail updating.

A stronger exploitation of the ‘‘learned’’ pheromone trails can also be achieved

during solution construction by applying the pseudorandom proportional rule of

ACS, as explained in chapter 3, section 3.4.1. Search space exploration is achieved in

ACO primarily by the ants’ randomized solution construction. Let us consider for a

moment an ACO algorithm that does not use heuristic information (this can be easily

5.7 Application Principles of ACO 213

achieved by setting b ¼ 0). In this case, the pheromone updating activity of the ants

will cause a shift from the initial, rather uniform sampling of the search space to a

sampling focused on specific search space regions. Hence, exploration of the search

space will be higher in the initial iterations of the algorithm, and will decrease as the

computation goes on. Obviously, attention must be paid to avoid too strong a focus

on apparently good regions of the search space, which can cause the ACO algorithm

to enter a stagnation situation.

There are several ways to avoid such stagnation situations, thus maintaining a

reasonable level of exploration of the search space. For example, in ACS the ants

use a local pheromone update rule during the solution construction to make the

path they have taken less desirable for successive ants and, thus, to diversify search.

MMAS introduces an explicit lower limit on the pheromone trail level so that a

minimal level of exploration is always guaranteed. MMAS also uses a reinitializa-

tion of the pheromone trails, which is a way of enforcing search space exploration.

Experience has shown that pheromone trail reinitialization, when combined with

appropriate choices for the pheromone trail update (Stützle & Hoos, 2000), can be

very useful to refocus the search on a di¤erent search space region.

In fact, many powerful ACO applications include schedules of how to choose be-

tween iteration-best, best-so-far, and the restart-best solution for the pheromone

update. (The restart-best solution is the best solution found since the last time the

pheromone trails were initialized.) The first studies on such strategies were done

by Stützle (1999) and Stützle & Hoos (2000) and considerable improvements over

only using iteration-best or best-so-far update were observed. Recently, several high-

performing ACO implementations used these or similar features (Blum, 2003a; Blum

& Blesa, 2003; Merkle et al., 2002).

Finally, an important, though somewhat neglected, role in the balance of explora-

tion and exploitation is that of the parameters a and b, which determine the relative

influence of pheromone trail and heuristic information. Consider first the influence of

parameter a. For a > 0, the larger the value of a, the stronger the exploitation of the

search experience; for a ¼ 0 the pheromone trails are not taken into account at all;

and for a < 0 the most probable choices taken by the ants are those that are less de-

sirable from the point of view of pheromone trails. Hence, varying a could be used to

shift from exploration to exploitation and vice versa. The parameter b determines the

influence of the heuristic information in a similar way. In fact, systematic variations

of a and b could, similarly to what is done in the strategic oscillations approach

(Glover, 1990), be part of a simple and useful strategy to balance exploration and

exploitation.

214 Chapter 5 Ant Colony Optimization for NP-Hard Problems

A first approach in that direction is followed by Merkle et al. (2002) in their ACO

algorithm for the RCPSP (see section 5.3.3). They decrease the value of b from some

initial value to zero and they showed that such a schedule for b led to significantly

better results than any fixed value for the parameter they tested.

5.7.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solu-

tion construction is important because it gives the possibility of exploiting problem-

specific knowledge. Static and dynamic heuristic information are the main types of

heuristic information used by ACO algorithms. In the static case, the values h are

computed once at initialization time and then remain unchanged throughout the

whole algorithm’s run. An example is the use, in the TSP applications, of the length

dij of the arc connecting cities i and j to define the heuristic information hij ¼ 1=dij .

Static heuristic information has the advantage that (1) it is often easy to compute

and, in any case, it has to be computed only once, at initialization time, and (2) at

each iteration of the ACO algorithm, a table can be precomputed with the values of

tijðtÞhb
ij , which can result in significant savings of computation time. In the dynamic

case, the heuristic information depends on the partial solution constructed so far and

therefore has to be computed at each step of an ant’s walk. This determines a higher

computational cost that may be compensated by the higher accuracy of the com-

puted heuristic values. For example, in the ACO application to the SMTWTP it was

found that the use of dynamic heuristic information based on the modified due date

or on the apparent urgency heuristic (see section 5.3.1) resulted in a better overall

performance than the one obtained using only static heuristic information (based on

the earliest due date heuristic).

Another way of computing heuristic information was introduced in the ANTS

algorithm (see chapter 3, section 3.4.2; see also Maniezzo, 1999), where it is com-

puted using lower bounds on the solution cost of the completion of an ant’s partial

solution. This method has the advantage that it facilitates the exclusion of certain

choices because they lead to solutions that are worse than the best found so far. It

allows therefore the combination of knowledge on the calculation of lower bounds

from mathematical programming with the ACO paradigm. Nevertheless, a disadvan-

tage is that the computation of the lower bounds can be time-consuming, especially

because they have to be calculated at each construction step by each ant.

Finally, it should be noted that, although the use of heuristic information is im-

portant for a generic ACO algorithm, its importance is often strongly diminished

if local search is used to improve solutions. This is because local search takes into

5.7 Application Principles of ACO 215

account information about the cost of improving solutions in a more direct way.

Fortunately, this means that ACO algorithms can also achieve, in combination with

a local search algorithm, very good performance for problems for which it is di‰cult

to define a priori a very informative heuristic information.

5.7.5 ACO and Local Search

In many applications to NP-hard combinatorial optimization problems, ACO algo-

rithms perform best when coupled with local search algorithms (which is, in fact, a

particular type of daemon action of the ACO metaheuristic). Local search algo-

rithms locally optimize the ants’ solutions and these locally optimized solutions are

used in the pheromone update.

The use of local search in ACO algorithms can be very interesting as the two

approaches are complementary. In fact, ACO algorithms perform a rather coarse-

grained search, and the solutions they produce can then be locally optimized by an

adequate local search algorithm. The coupling can therefore greatly improve the

quality of the solutions generated by the ants.

On the other side, generating initial solutions for local search algorithms is not an

easy task. For example, it has been shown that, for most problems, repeating local

searches from randomly generated initial solutions is not e‰cient (see, e.g., Johnson

& McGeoch, 1997). In practice, ants probabilistically combine solution components

which are part of the best locally optimal solutions found so far and generate new,

promising initial solutions for the local search. Experimentally, it has been found

that such a combination of a probabilistic, adaptive construction heuristic with local

search can yield excellent results (Boese, Kahng, & Muddu, 1994; Dorigo & Gam-

bardella, 1997b; Stützle & Hoos, 1997).

It is important to note that when using local search a choice must be made con-

cerning pheromone trail update: either pheromone is added to the components or

connections of the locally optimal solution, or to the starting solutions for the

local search. The quasi-totality of published research has used the first approach.

Although it could be interesting to investigate the second approach, some recent

experimental results suggest that its performance is worse.

Despite the fact that the use of local search algorithms has been shown to be cru-

cial to achieving best performance in many ACO applications, it should be noted

that ACO algorithms also show very good performance where local search algorithms

cannot be applied easily. Such examples are the applications to network routing

described in chapter 6 and the application to the shortest common supersequence

problem discussed in section 5.5.1 of this chapter (Michel & Middendorf, 1999).

216 Chapter 5 Ant Colony Optimization for NP-Hard Problems

5.7.6 Number of Ants

Why use a colony of ants instead of one single ant? In fact, although a single ant is

capable of generating a solution, e‰ciency considerations suggest that the use of a

colony of ants is often a desirable choice. This is particularly true for geographically

distributed problems (see network routing applications described in chapter 6), be-

cause the di¤erential path length e¤ect exploited by ants in the solution of this class

of problems can only arise in the presence of a colony of ants. It is also interesting to

note that in routing problems ants solve many shortest-path problems in parallel

(one between each pair of nodes) and a colony of ants must be used for each of these

problems.

On the other hand, in the case of combinatorial optimization problems, the di¤er-

ential length e¤ect is not exploited and the use of m ants, m > 1, that build r solu-

tions each (i.e., the ACO algorithm is run for r iterations) could be equivalent to the

use of one ant that generates m � r solutions. Nevertheless, experimental evidence

suggests that, in the great majority of situations, ACO algorithms perform better

when the number m of ants is set to a value m > 1.

In general, the best value for m is a function of the particular ACO algorithm

chosen as well as of the class of problems being attacked, and most of the times it

must be set experimentally. Fortunately, ACO algorithms seem to be rather robust

with respect to the actual number of ants used.

5.7.7 Candidate Lists

One possible di‰culty encountered by ACO algorithms is when they are applied to

problems with a large neighborhood in the solution construction. In fact, a large

neighborhood means the ants have a large number of possible moves from which to

choose, which determines an increase in the computation time.

In such situations, the computation time can be kept within reasonable limits by

the use of candidate lists. Candidate lists constitute a small set of promising neigh-

bors of the current partial solution. They are created using a priori available knowl-

edge on the problem, if available, or dynamically generated information. Their use

allows ACO algorithms to focus on the more interesting components, strongly re-

ducing the dimension of the search space.

As an example, consider the ACO application to the TSP. For the TSP it is known

that very often optimal solutions can be found within a surprisingly small subgraph

consisting of all the cities and of those arcs that connect each city to only a few of its

nearest neighbors. For example, for the TSPLIB instance pr2392.tsp with 2392

cities an optimal solution can be found within a subgraph constructed using for each

5.7 Application Principles of ACO 217

city only the eight nearest neighbors (Reinelt, 1994). This knowledge can be used for

defining candidate lists, which was first done in the context of ACO algorithms in

Gambardella & Dorigo (1996). A candidate list includes for each city its cl nearest

neighbors. During solution construction an ant tries to choose the city to move to

only from among the cities in the candidate list. Only if all these cities have already

been visited can the ant choose from the cities not in the candidate list.

So far, in ACO algorithms the use of candidate lists or similar approaches is still

rather unexplored. Inspiration from other techniques like tabu search (Glover &

Laguna, 1997) or GRASP (Feo & Resende, 1995), where strong use of candidate lists

is made, could be useful for the development of e¤ective candidate list strategies

for ACO.

5.7.8 Steps to Solve a Problem by ACO

From the currently known ACO applications we can identify some guidelines for

attacking problems by ACO. These guidelines can be summarized in the following

six design tasks:

1. Represent the problem in the form of sets of components and transitions or by

means of a weighted graph, on which ants build solutions.

2. Define appropriately the meaning of the pheromone trails trs, that is, the type of

decision they bias. This is a crucial step in the implementation of an ACO algorithm

and, often, a good definition of the pheromone trails is not a trivial task and typically

requires insight into the problem to be solved.

3. Define appropriately the heuristic preference for each decision that an ant has to

take while constructing a solution, that is, define the heuristic information hrs asso-

ciated with each component or transition. Notice that heuristic information is cru-

cial for good performance if local search algorithms are not available or cannot be

applied.

4. If possible, implement an e‰cient local search algorithm for the problem to be

solved, because the results of many ACO applications to NP-hard combinatorial

optimization problems show that the best performance is achieved when coupling

ACO with local optimizers (Dorigo & Di Caro, 1999b; Dorigo & Stützle, 2002).

5. Choose a specific ACO algorithm (those currently available were described in

chapter 3) and apply it to the problem being solved, taking the previous aspects into

account.

6. Tune the parameters of the ACO algorithm. A good starting point for parameter

tuning is to use parameter settings that were found to be good when applying the

218 Chapter 5 Ant Colony Optimization for NP-Hard Problems

ACO algorithm to similar problems or to a variety of other problems. An alternative

to time-consuming personal involvement in the tuning task is to use automatic pro-

cedures for parameter tuning (Birattari et al., 2002b).

It should be clear that the above steps can only give a very rough guide to the im-

plementation of ACO algorithms. In addition, often the implementation is an itera-

tive process, where with some further insight into the problem and the behavior of

the algorithm, some choices taken initially need to be revised. Finally, we want to

insist on the fact that probably the most important of these steps are the first four,

because a poor choice at this stage typically can not be overcome with pure parame-

ter fine-tuning.

5.8 Bibliographical Remarks

The first combinatorial problem tackled by an ACO algorithm was the traveling

salesman problem. Since the first application of AS in Dorigo’s PhD dissertation in

1992, the TSP became a common test bed for several contributions proposing ACO

algorithms that perform better than AS (Dorigo & Gambardella, 1997b; Stützle &

Hoos, 2000; Bullnheimer et al., 1999c; Cordón et al., 2000); these contributions and

their application to the TSP have been described in chapter 3. After these first appli-

cations, a large number of di¤erent problems were attacked by ACO algorithms. As

with other metaheuristics for NP-hard combinatorial optimization problems, the

next wave of applications was directed at a number of other academic benchmark

problems.

The first of these were the quadratic assignment problem and the job shop prob-

lem, in 1994. As for the TSP, also in this case the first ACO algorithm to be applied

was AS (Maniezzo et al., 1994; Colorni et al., 1994). This choice was dictated by the

fact that, at that time, AS was still the only ACO algorithm available.

After these first studies, the QAP continued to receive significant attention in re-

search e¤orts striving to improve ACO algorithms (for an overview, see section 5.2.1

or the overview article by Stützle & Dorigo, 1999a). Di¤erently, the JSP received

somewhat less attention in the following years, and only recently have researchers

started again to attack it with ACO algorithms (Teich, Fischer, Vogel, & Fischer,

2001; Blum, 2002a, 2003a). One reason for this may be that ACO algorithms for the

QAP quickly reached world-class performance, while the early applications of ACO

to the JSP were much less successful.

However, there is a significant temporal gap between the first publications about

AS in the early ’90s (Dorigo, Maniezzo, & Colorni, 1991a,b; Dorigo, 1992; Colorni,

5.8 Bibliographical Remarks 219

Dorigo, & Maniezzo, 1992a,b) and the moment at which the methodology started to

be widely known. In fact, research on ACO started flourishing only after the first

journal publication about AS (Dorigo et al., 1996). In 1996, Pfahringer presented

a widely unknown application to the open shop problem of the Ant-Q algorithm, a

predecessor of ACS developed by Gambardella & Dorigo (1995) (see also chapter 3,

section 3.4.1, and Dorigo & Gambardella, 1996). From 1997, the variety of ACO

applications increased steadily (in part, these researches were published in conference

proceedings or journals only in later years; however, technical reports were available

much earlier). These include classic vehicle routing problems (Bullnheimer et al.,

1999b), sequential ordering (Gambardella & Dorigo, 2000), flow shop scheduling

(Stützle, 1998a), and graph coloring (Costa & Hertz, 1997) problems. For some of

these applications, excellent computational results were reported, which is especially

true for the ACS application to the sequential ordering problem of Gambardella and

Dorigo. Slightly later, ACO was applied to the shortest common supersequence

problem (Michel & Middendorf, 1998, 1999) and the generalized assignment prob-

lem (Lourenço & Serra, 1998). From then on, there was an explosion in the number

of di¤erent problems attacked, as can be appreciated by browsing the proceedings of

the first three workshops, ‘‘From Ant Colonies to Artificial Ants’’ (Dorigo, Mid-

dendorf, & Stützle, 2000b; Dorigo et al., 2002a) or journal special issues (Dorigo,

Stützle, & Di Caro, 2000c; Dorigo, Gambardella, Middendorf, & Stützle, 2002b). Of

interest, as discussed in chapter 7, ACO algorithms are now moving to the real

world, with the recent development of interesting applications to solve industrial

routing, scheduling, and sequencing problems.

To make the historical overview of the development of ACO applications com-

plete, we should mention the applications to the routing problem in telecommunica-

tions networks, starting in 1996 with the work of Schoonderwoerd et al. (1996) and

the work on AntNet by Di Caro & Dorigo (1998c). These applications play an

important role in the development of ACO and the particularly successful AntNet

algorithm is presented in detail in chapter 6.

5.9 Things to Remember

9 ACO has been applied to many di¤erent problems. In this chapter we have pre-

sented some of these applications, focusing on the most interesting ones with respect

to the goal of illustrating how to adapt ACO to e‰ciently solve NP-hard combina-

torial problems.

9 Currently, ACO algorithms achieve state-of-the-art performance for several ap-

plication problems. These include the sequential ordering problem, the resource-

220 Chapter 5 Ant Colony Optimization for NP-Hard Problems

constrained project scheduling problem, the quadratic assignment problem, the

vehicle routing problem with time window constraints, the bin-packing problem, the

shortest common supersequence problem, and the single-machine total weighted tar-

diness problem. For many other problems they produce results very close to those of

the currently best-performing algorithms.

9 There exist a variety of problems for which other algorithms appear to be superior

to ACO algorithms. Examples are the job shop problem and the graph coloring

problem. It is an interesting research question to understand for which types of

problems this is the case and which are the problems that are particularly suited for

ACO algorithms.

9 A number of application principles and guidelines that suggest how to develop

successful ACO applications have been derived exploiting the experience gained so

far by ACO researchers.

5.10 Computer Exercises

Exercise 5.1 Try to reach a state-of-the-art ACO algorithm for the permutation

flow shop problem (PFSP) by improving over the existingMMAS-PFSP algorithm.

Some guidelines on how to improve overMMAS-PFSP can be the following.

1. Implement a basic ACO algorithm for the PFSP; implement basic solution con-

struction heuristics, for example, the NEH heuristic (Nawaz, Enscore, & Ham, 1983).

2. Implement an e‰cient local search algorithm for the PFSP. For details on how to

implement an e‰cient local search procedure for the PFSP, see Nowicki & Smut-

nicki (1996b), who describe a tabu search algorithm for the PFSP. Reimplement also

the original tabu search algorithm of Nowicki and Smutnicki; the reimplementation

can be used to benchmark the performance of the ACO algorithm (take care that

you reach the same level of performance as the original TS algorithm).

3. Try to enhance the solution construction by the summation rule taken from ACS-

SMTWTP-MM (Merkle & Middendorf, 2003a). Note that improved performance

may be obtained by appropriately combining the summation rule with a local eval-

uation rule.

4. Perform preliminary tests combining the ACO algorithm with the local search.

Note that short TS runs may result in better overall performance of the ACO algo-

rithm, similar to what is observed for the QAP (see also box 5.1).

5. If the previous steps did not result in excellent performance, try to improve the

ACO algorithm by considering additional diversification/intensification techniques.

5.10 Computer Exercises 221

Exercise 5.2 As we said in section 5.2.4, concerning the graph coloring problem, a

more successful ACO approach to the GCP could be obtained by exploiting a local

search and by using ACO algorithms that are more advanced than AS. The exercise

is then:

1. Reimplement the ACO algorithm proposed by Costa & Hertz (1997) and add

di¤erent types of local search such as those proposed in Fleurent & Ferland (1996)

and in Johnson, Aragon, McGeoch, & Schevon, 1991).

2. Try to solve the graph coloring problem using either ACS or MMAS. Com-

pare your results with those of Costa & Hertz (1997). Add a local search to your

algorithms.

Exercise 5.3 Reimplement AS-MKP (see discussion in section 5.4.4), then imple-

ment a local search for the multiple knapsack problem and add it to AS-MKP.

Compare the results with those of Leguizamón & Michalewicz (1999) and Vasquez &

Hao (2001).

Exercise 5.4 Reimplement MMAS-MCP (see section 5.4.4), implement the reac-

tive local search by Battiti & Protasi (2001), and use it as local search forMMAS-

MCP. Compare the results obtained with the new ACO algorithm with those with

the original algorithm of Battiti and Protasi.

Exercise 5.5 Reimplement MMAS-CSP (see section 5.5.4) and compare it to the

TS algorithm of Galinier & Hao (1997).

222 Chapter 5 Ant Colony Optimization for NP-Hard Problems

6 AntNet: An ACO Algorithm for Data Network Routing

An estimated lower bound on the size of the indexable Web is 320 million pages.

—Steve Lawrence and C. Lee Giles Science, 280, 1998

Number of web pages indexed by Google in June 2003: more than 3 billion.

—www.google.com

In this chapter we discuss AntNet, an ACO algorithm designed to help solve the rout-

ing problem in telecommunications networks. Network routing refers to the activ-

ities necessary to guide information in its travel from source to destination nodes. It

is an important and di‰cult problem. Important because it has a strong influence

on the overall network performance. Di‰cult because networks’ characteristics, such

as tra‰c load and network topology, may vary stochastically and in a time-varying

way. It is in particular these characteristics of the problem, in addition to the physical

distributedness of the overall problem on a real network, that make ACO algorithms

a particularly promising method for its solution. In fact, the ACO processing para-

digm is a good match for the distributed and nonstationary (in topology and tra‰c

patterns) nature of the problem, presents a high level of redundancy and fault-

tolerance, and can handle multiple objectives and constraints in a flexible way.

Although AntNet is not the only ACO algorithm developed for routing problems,

and not even the historically first one, we focus on it because it is the sole algorithm

to have reached, at least at the experimental/simulation level at which it was tested,

state-of-the-art performance. We give a detailed description of AntNet’s data struc-

tures and control procedures, and a brief overview of the results obtained using a

network simulation environment.

6.1 The Routing Problem

Communications networks can be classified as either circuit-switched or packet-

switched. The typical example of a circuit-switched network is the telephone net-

work, in which a virtual or physical circuit is set up at the communication start and

remains the same for the communication duration. Di¤erently, in packet-switched

networks, also called data networks, each data packet can, in principle, follow a dif-

ferent route, and no fixed virtual circuits are established. In this case the typical

examples are local area computer networks and the Internet.

Arguably, the main function of a data network, on which we focus in this chapter,

is to assure the e‰cient distribution of information among its users. This can be

achieved through the exploitation of an adequate network control system. One of the

most important components of such a system, in conjunction with the admission,

flow, and congestion control components, is routing (Walrand & Varaiya, 1996).

Routing refers to the distributed activity of building and using routing tables. The

routing table is a common component of all routing algorithms: it holds the infor-

mation used by the algorithm to make the local forwarding decisions. The type of

information it contains and the way this information is used and updated strongly

depend on the algorithm’s characteristics. One routing table is maintained by each

node in the network: it tells the node’s incoming data packets which among the out-

going links to use to continue their travel toward their destination node. One of the

most distinctive aspects of the network routing problem is the nonstationarity of the

problem’s characteristics. In particular, the characteristics of tra‰c over a network

change all the time, and in some important cases (e.g., the Internet) the tra‰c can

fluctuate in ways di‰cult to predict. Additionally, the nodes and links of a network

can suddenly go out of service, and new nodes and links can be added at any mo-

ment. Therefore, network routing is very di¤erent from the NP-hard problems we

encountered in previous chapters. In fact, although in some simplified situations it is

possible to reduce the routing problem to a standard combinatorial optimization

problem, in realistic settings the dynamics of the tra‰c, and therefore of the costs

associated with network links, is such that it might even be impossible to give a for-

mal definition of what an optimal solution is.

6.1.1 A Broad Classification of Routing Algorithms

Routing algorithms can be broadly classified as centralized versus distributed and as

static versus adaptive.

In centralized algorithms, a main controller is responsible for updating all the

node’s routing tables and for making every routing decision. Centralized algorithms

can be used only in particular cases and for small networks. In general, the delays

necessary to gather information about the network status and to broadcast the deci-

sions and the updates make them infeasible in practice. Moreover, centralized sys-

tems are not fault-tolerant: if the main controller does not work properly, all the

network is a¤ected. In contrast, in distributed routing, the computation of paths is

shared among the network nodes, which exchange the necessary information. The

distributed paradigm is currently used in the great majority of networks.

In static routing, the path taken by a data packet is determined only on the basis

of its source and destination, without regard to the current network tra‰c. The path

chosen is usually the minimum cost path according to some cost criterion, and can be

changed only to account for faulty links or nodes. Adaptive routing is, in principle,

more attractive, because it can adapt the routing policy to time and spatially varying

tra‰c conditions. As a drawback, adaptive algorithms can cause oscillations in the

224 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

selection of paths. This can cause circular paths, as well as large fluctuations in mea-

sured performance (Bertsekas & Gallager, 1992).

Another interesting way of looking at routing algorithms is from an optimization

perspective. In this case the main choice is between optimal routing and shortest path

routing.

Optimal routing has a network-wide perspective and its goal is to optimize a func-

tion of all individual link flows (usually this function is a sum of link costs assigned

on the basis of average packet delays) (Bertsekas & Gallager, 1992).

Shortest-path routing has a source-destination pair perspective: there is no global

cost function to optimize. Its objective is to determine the shortest path (minimum

cost) between two nodes, where the link costs are computed (statically or adaptively)

according to some statistical description of the tra‰c flow crossing the links. Con-

sidering the di¤erent content stored in each routing table, shortest-path algorithms

can be further subdivided into two classes called distance-vector and link-state

(Steenstrup, 1995).

Distance-vector algorithms make use of routing tables consisting of a set of triples

of the form (destination, estimated distance, and next hop), defined for all the desti-

nations in the network and for all the neighbor nodes of the considered switch. In

this case, the required topologic information is represented by the list of identifiers

of the reachable nodes. The average per node memory occupation is in the order of

Oðj � nÞ, where j is the average connectivity degree (i.e., the average number of

neighbor nodes considered over all the nodes) and n is the number of nodes in the

network. The algorithm works in an iterative, asynchronous, and distributed way.

The information that every node sends to its neighbors is the list of its last estimates

of the distances (intended as costs) from itself to all the other nodes in the network.

After receiving this information from a neighbor node j, the receiving node i updates

its table of distance estimates overwriting the entry corresponding to node j with the

received values. Routing decisions at node i are made choosing as the next hop node

the one satisfying the expression arg minj AN i
fdij þDjg, where dij is the assigned cost

to the link connecting node i with its neighbor j and Dj is the estimated shortest

distance from node j to the destination. It can be shown that this algorithm con-

verges in finite time to the shortest paths with respect to the used metric if no link

cost changes after a given time (Bellman, 1958; Ford & Fulkerson, 1962; Bertsekas &

Gallager, 1992); this algorithm is also known as distributed Bellman-Ford.

Link-state algorithms make use of routing tables containing much more informa-

tion than that used in distance-vector algorithms. In fact, at the core of link-state

algorithms there is a distributed and replicated database. This database is essentially

a dynamic map of the whole network, describing the details of all its components and

6.1 The Routing Problem 225

their current interconnections. Using this database as input, each node calculates its

best paths using an appropriate algorithm such as Dijkstra’s (Dijkstra, 1959), and

then uses knowledge about these best paths to build the routing tables. The memory

requirement for each node in this case is Oðn2Þ. In the most common form of link-

state algorithm, each node acts autonomously, broadcasting information about its

link costs and states and computing shortest paths from itself to all the destinations

on the basis of its local link cost estimates and of the estimates received from other

nodes. Each routing information packet is broadcast to all the neighbor nodes which

in turn send the packet to their neighbors, and so on. A distributed flooding mecha-

nism (Bertsekas & Gallager, 1992) supervises this information transmission, trying to

minimize the number of retransmissions.

It should be clear to the reader, from what was said in chapter 1, that ACO algo-

rithms can easily be adapted to solve routing problems following the shortest-path/

distance-vector paradigm.

6.1.2 The Communication Network Model

Before we can describe the AntNet algorithm, it is necessary to accurately define

the problem we are going to consider. In particular, we need to define the network

architecture and protocols, as well as the characteristics of the input data tra‰c. In

turn, this also defines the characteristics of the network simulator that is used for the

experiments.

In this chapter, we focus on irregular topology packet-switched data networks with

an IP-like network layer (in the ISO-OSI terminology (Tanenbaum, 1996)) and a

very simple transport layer. In particular, we focus on wide area networks (WANs),

of which the Internet is a noteworthy instance. In WANs, hierarchical organization

schemes are adopted. Roughly speaking, subnetworks are seen as single host nodes

connected to interface nodes called gateways. Gateways perform fairly sophisticated

network layer tasks, including routing. Groups of gateways, connected by an arbi-

trary topology, define logical areas. Inside each area, all the gateways are at the same

hierarchical level and ‘‘flat’’ routing is performed among them. Areas communicate

only by means of area border gateways. In this way, the computational complexity

of the routing problem, as seen by each gateway, is much reduced, at the cost of an

increase in the complexity of the design and management of the routing protocols.

The instances of the communication networks that we consider in the following

can be mapped on directed weighted graphs with n processing/forwarding nodes. All

the links between pairs of nodes are viewed as bit pipes characterized by a bandwidth

(bit/s) and a transmission delay (s). Every node is of type store-and-forward and has

226 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

a bu¤er space where the incoming and outgoing packets are stored. This bu¤er is a

shared resource among all the queues attached to every incoming and outgoing

link of the node. All the traveling packets are subdivided into two classes: data and

routing packets. Additionally, there are two priority levels in queues. Usually, data

packets are served in the low-priority queues, while routing packets are served in the

high-priority queues. The workload is defined in terms of applications whose arrival

rate is given by a probabilistic model. By application (or session, or connection in the

following), we mean a process sending data packets from an origin node to a desti-

nation node. The number of packets to send, their sizes, and the intervals between

them are assigned according to some defined stochastic process. We do not make any

distinction among nodes, which act at the same time as hosts (session endpoints) and

gateways/routers (forwarding elements). The adopted workload model incorporates

a simple flow control mechanism implemented by using a fixed production window

for the session’s packets generation. The window determines the maximum number

of data packets that can be waiting to be sent. Once sent, a packet is considered to

be acknowledged. This means that the transport layer neither manages error con-

trol, nor packet sequencing, nor acknowledgments and retransmissions. (This choice,

which is the same as in the ‘‘Simple_Tra‰c’’ model in the MaRS network simulator

(Alaettinoğlu, Shankar, Dussa-Zieger, & Matta, 1992), can be seen as a very basic

form of file transfer protocol (FTP).)

For each incoming packet, the node’s routing component uses the information

stored in the local routing table to choose the outgoing link to be used to forward the

packet toward its destination node. When the link resources become available, they

are reserved and the transfer is set up. The time it takes to move a packet from one

node to a neighboring one depends on the packet size and on the link’s transmission

characteristics. If, on a packet’s arrival, there is not enough bu¤er space to hold it,

the packet is discarded. Otherwise, a service time is stochastically generated for the

newly arrived packet. This time represents the delay between the packet arrival time

and the time when it will be put in the bu¤er queue of the outgoing link the local

routing component has selected for it.

Situations causing a temporary or steady alteration of the network topology or of

its physical characteristics (link or node failure, adding or deleting of network com-

ponents, and so on) are not taken into account in the discussed implementation,

though it is easy to add them.

In order to run experiments with AntNet, a complete network simulator was de-

veloped in Cþþ by Gianni Di Caro (Di Caro, 2003; Di Caro & Dorigo, 1998c). It is

a discrete event simulator using as its main data structure an event list, which holds

6.1 The Routing Problem 227

the next future events. The simulation time is a continuous variable and is set by the

currently scheduled event. The aim of the simulator is to closely mirror the essential

features of the concurrent and distributed behavior of a generic communication net-

work without sacrificing e‰ciency and flexibility in code development.

6.2 The AntNet Algorithm

AntNet, the routing algorithm we discuss in this chapter, is a direct extension of the

Simple Ant Colony Optimization algorithm discussed in chapter 1. As will become

clear in the following, AntNet is even closer to the real ants’ behavior that inspired

the development of the ACO metaheuristic than the ACO algorithms for NP-hard
problems that we discussed in previous chapters.

Informally, the AntNet algorithm and its main characteristics can be summarized

as follows.

9 At regular intervals, and concurrently with the data tra‰c, from each network

node artificial ants are asynchronously launched toward destination nodes selected

according to the tra‰c distribution [see equation (6.2)].

9 Artificial ants act concurrently and independently, and communicate in an indirect

way (i.e., stigmergically; see chapter 7, section 7.3), through the pheromones they

read and write locally on the nodes.

9 Each artificial ant searches for a minimum cost path joining its source and desti-

nation node.

9 Each artificial ant moves step by step toward its destination node. At each inter-

mediate node a greedy stochastic policy is applied to choose the next node to move

to. The policy makes use of (1) node-local artificial pheromones, (2) node-local

problem-dependent heuristic information, and (3) the ant’s memory.

9 While moving, the artificial ants collect information about the time length, the

congestion status, and the node identifiers of the followed path.

9 Once they have arrived at the destination, the artificial ants go back to their source

nodes by moving along the same path as before but in the opposite direction.

9 During this backward travel, node-local models of the network status and the

pheromones stored on each visited node are modified by the artificial ants as a func-

tion of the path they followed and of its goodness.

9 Once they have returned to their source node, the artificial ants are deleted from

the system.

228 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

In the following subsections the above scheme is explained, all its components

are described and discussed, and a more detailed description of the algorithm is

given.

6.2.1 AntNet: Data Structures

In AntNet, artificial ants move on the construction graph GC ¼ ðC;LÞ, with the

constraint of never using the set of links that do not belong to the network graph (see

also chapter 2, section 2.2.1). In practice, therefore, artificial ants move on the net-

work graph.

Like all ACO algorithms, AntNet exploits artificial pheromone trails. These are

maintained in an artificial pheromone matrix T i associated with each node i of the

data network. The elements tijd ’s of T i indicate the learned desirability for an ant in

node i and with destination d to move to node j. In AntNet pheromones have three

indices because the considered problem consists of the solution of many, nðn� 1Þ=2,
minimum cost paths problems simultaneously. Therefore, an ant on a node i can in

principle have any of the remaining n� 1 nodes as destination. Hence the notation

tijd , in which di¤erent pheromones are associated with di¤erent destination nodes

(this notation di¤ers from the one used in chapter 3 in which pheromones do not

correspond to specific destinations and are therefore denoted by tij ’s).

Another specificity of AntNet, shared with ACO algorithms within the hyper-cube

framework (see chapter 3, section 3.4.3), is that tijd ’s are normalized to 1:

X
j AN i

tijd ¼ 1; d A ½1; n� and Ei;

where N i is the set of neighbors of node i, and n ¼ jCj.
Additionally, AntNet maintains at each node i a simple parametric statistical

model Mi of the tra‰c situation over the network as seen by node i. This local

model is used to evaluate the paths produced by the artificial ants. In fact, unlike the

typical situation found in applications of ACO to NP-hard problems, in network

routing it is rather di‰cult to evaluate the quality of a path having as sole informa-

tion the time it took for the artificial ant to traverse it: this is because the time it takes

to go from a source to a destination node depends not only on the routing deci-

sions but also on the network tra‰c. The model Miðmid ; s2
id ;W idÞ is adaptive and

described by the sample mean mid and the variance s2
id computed over the trip times

experienced by the artificial ants, and by a moving observation window W id used to

store the best value Wbestid of the artificial ants’ trip time. For each destination d in

the network, the estimated mean and variance, mid and s2
id , give a representation of

6.2 The AntNet Algorithm 229

the expected time to go from node i to node d and of its stability. To compute these

statistics AntNet uses the following exponential models:

mid mid þ vðoi!d � midÞ;

s2
id s2

id þ vððoi!d � midÞ
2 � s2

idÞ; ð6:1Þ

where oi!d is the new observed agent’s trip time from node i to destination d. The

factor v (read: varsigma) weighs the number of most recent samples that will really

a¤ect the average. The weight of the k-th sample used to estimate the value of mid
after j samplings, with j > k, is: vð1� vÞ j�k. In this way, for example, if v ¼ 0:1,

approximately only the latest fifty observations will really influence the estimate, for

v ¼ 0:05, the latest 100, and so on. Therefore, the number of e¤ective observations is

approximately 5=v.

As we said, W id is used to store the value Wbestid of the best ants’ trip time from

node i toward destination d as observed in the last w samples. The value Wbestid rep-

resents a short-term memory expressing an estimate of the optimal time to go to

node d from the current node. After each new sample, the length w of the window is

incremented modulus wmax, where wmax is the maximum allowed size of the obser-

vation window and is set to wmax ¼ 5c=v, with ca 1, so that, when c ¼ 1, the value

Wbestid and the exponential estimates refer to the same set of observations.

In this way, the long-term exponential mean and the short-term windowing are

referring to a comparable set of observations.

T andM, illustrated in figure 6.1, can be seen as memories local to nodes captur-

ing di¤erent aspects of the network dynamics. The model M maintains absolute

distance/time estimates to all the nodes, while the pheromone matrix gives relative

goodness measures for each link-destination pair under the current routing policy

implemented over all the network.

6.2.2 AntNet: The Algorithm

AntNet is conveniently described in terms of two sets of artificial ants, called in the

following forward and backward ants. Ants in each set possess the same structure,

but they are di¤erently situated in the environment; that is, they can sense di¤erent

inputs and they can produce di¤erent, independent outputs. Ants communicate in an

indirect way, according to the stigmergy paradigm, through the information they

concurrently read and write on the network nodes they visit.

The AntNet algorithm, whose high-level description in pseudo-code is given in

figure 6.2, can be described as being composed of two main phases: solution con-

struction, and data structures update. These are described in the following.

230 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

Solution Construction

At regular intervals Dt from every network node s, a forward ant Fs!d is launched

toward a destination node d to discover a feasible, low-cost path to that node and to

investigate the load status of the network along the path. Forward ants share the

same queues as data packets, so that they experience the same tra‰c load. Destina-

tions are locally selected according to the data tra‰c patterns generated by the local

workload: if fsd is a measure (in bits or in the number of packets) of the data flow

s! d, then the probability of creating at node s a forward ant with node d as desti-

nation is

psd ¼
fsdPn
i¼1 fsi

: ð6:2Þ

In this way, ants adapt their exploration activity to the varying data tra‰c

distribution.

While traveling toward their destination nodes, the forward ants keep memory of

their paths and of the tra‰c conditions found. The identifier of every visited node i

and the time elapsed since the launching time to arrive at this i-th node are stored in

a memory stack Ss!dðiÞ. The ant builds a path performing the following steps:

Figure 6.1
Data structures used by the artificial ants in AntNet for the case of a node i with Ni ¼ jNij neighbors and
a network with n nodes. The pheromone matrix T i ¼ ½tijd � is isomorphic to the routing table used by the
ants. The structure Mi ¼ ½Sti; d �, d ¼ 1; . . . n, d0 i, containing the statistics mid ; s

2
id ;W id about the local

tra‰c, plays the role of a local adaptive model for the expected delay toward each possible destination.

6.2 The AntNet Algorithm 231

procedure AntNet(t; tend ; Dt)

input t % current time

input tend % time length of the simulation

input Dt % time interval between ants generation

foreach i A C do % concurrent activity over the network

M InitLocalTrafficModel

T InitNodeRoutingTable

while ta tend do

in_parallel % concurrent activity on each node

if ðt mod DtÞ ¼ 0 then

destination SelectDestination(tra‰c_distribution_at_source)

LaunchForwardAnt(source, destination)

end-if

foreach (ActiveForwardAnt[source, current, destination]) do

while (current0 destination) do

next_hop SelectLink(current, destination, link_queues, T)
PutAntOnLinkQueue(current, next_hop)

WaitOnDataLinkQueue(current, next_hop)

CrossLink(current, next_hop)

Memorize(next_hop, elapsed_time)

current next_hop

end-while

LaunchBackwardAnt(destination, source, memory_data)

end-foreach

foreach (ActiveBackwardAnt[source, current, destination]) do

while (current0 destination) do

next_hop PopMemory

WaitOnHighPriorityLinkQueue(current, next_hop)

CrossLink(current, next_hop)

from current

current next_hop

UpdateLocalTrafficModel(M, current, from, source, memory_data)

r GetNewPheromone(M, current, from, source, memory_data)

UpdateLocalRoutingTable(T , current, source, r)
end-while

end-foreach

end-in_parallel

end-while

end-foreach

end-procedure

1. At each node i, each forward ant headed toward a destination d selects the node

j to move to, choosing among the neighbors it did not already visit, or over all the

neighbors in case all of them had previously been visited. The neighbor j is selected

with a probability Pijd computed as the normalized sum of the pheromone tijd with a

heuristic value hij taking into account the state (the length) of the j-th link queue of

the current node i:

Pijd ¼
tijd þ ahij

1þ aðjN ij � 1Þ : ð6:3Þ

The heuristic value hij is a ½0; 1� normalized value function of the length qij (in bits

waiting to be sent) of the queue on the link connecting the node i with its neighbor j:

hij ¼ 1� qijPjN i j
l¼1 qil

: ð6:4Þ

The value of a weighs the importance of the heuristic value with respect to the

pheromone values stored in the pheromone matrix T (similar to what is done in the

ANTS algorithm; see chapter 3, section 3.4.2). The value hij reflects the instanta-

neous state of the node’s queues and, assuming that the queue’s consuming process is

almost stationary or slowly varying, hij gives a quantitative measure associated with

the queue waiting time. The pheromone values, on the other hand, are the outcome

of a continual learning process and capture both the current and the past status of

the whole network as seen by the local node. Correcting these values with the values

of h allows the system to be more ‘‘reactive,’’ and at the same time it avoids follow-

ing all the network fluctuations. An ant’s decisions are therefore taken on the basis

of a combination of a long-term learning process and an instantaneous heuristic

prediction.

2. If a cycle is detected, that is, if an ant returns to an already visited node, the

cycle’s nodes are removed and all the memory about them is deleted. If the cycle

lasted longer than the lifetime of the ant before entering the cycle, that is, if the cycle

is greater than half the ant’s age, the ant is deleted. In fact, in this case the agent

wasted a lot of time, probably because of a wrong sequence of decisions and not be-

cause of congestion states. Therefore, the agent is carrying an old and misleading

Figure 6.2
AntNet’s high-level description in pseudo-code. All the described actions take place in a completely dis-
tributed and concurrent way over the network nodes (while, in the text, AntNet has been described from
an individual ant’s perspective). All the constructs at the same level of indentation inside the context of the
statement in_parallel are executed concurrently. The processes of data generation and forwarding are
not described, but they can be thought as acting concurrently with the ants.

6.2 The AntNet Algorithm 233

memory of the network’s state and it could be counterproductive to use it to update

the pheromone trails (see below).

3. When the destination node d is reached, the agent Fs!d generates another agent

(backward ant) Bd!s, transfers to it all of its memory, and is deleted. A forward ant

is also deleted if its lifetime becomes greater than a value max_life before it reaches

its destination node, where max_life is a parameter of the algorithm.

4. The backward ant takes the same path as that of its corresponding forward ant,

but in the opposite direction. Backward ants do not share the same link queues as

data packets; they use higher-priority queues reserved for routing packets, because

their task is to quickly propagate to the pheromone matrices the information accu-

mulated by the forward ants.

Data Structures Update

Arriving at a node i coming from a neighbor node, the backward ant updates the two

main data structures of the node, the local model of the tra‰c Mi and the phero-

mone matrix T i, for all the entries corresponding to the (forward ant) destination

node d. With some precautions, updates are performed also on the entries corre-

sponding to every node d 0 A Si!d , d
00 d on the ‘‘subpaths’’ followed by ant Fs!d

after visiting the current node i. In fact, if the elapsed trip time of a subpath is sta-

tistically ‘‘good’’ (i.e., less than mid þ Iðmid ; sidÞ, where I is an estimate of a confi-

dence interval for mid), then the time value is used to update the corresponding

statistics and the pheromone matrix. On the contrary, trip times of subpaths that are

not deemed good, in the same statistical sense as defined above, are not used because

they might give a wrong estimate of the time to go toward the subdestination node.

In fact, all the forward ant routing decisions were made only as a function of the

destination node. In this perspective, subpaths are side e¤ects, and they are poten-

tially suboptimal because of local variations in the tra‰c load. Obviously, in the case

of a good subpath, it can be used: the ant discovered, at zero cost, an additional good

route. In the following, we describe the wayMi and T i are updated with respect to a

generic ‘‘destination’’ node d 0 A Si!d . A simple example of the way AntNet’s ants

updateMi and T i is given in figure 6.3.

9 Mi is updated with the values stored in the backward ant’s memory. The time

elapsed to arrive (for the forward ant) to the destination node d 0 starting from the

current node is used to update, according to equation (6.1), the mean and variance

estimates, mid 0 and s2
id 0 , as well as the best value over the observation window W id 0 .

In this way, a parametric model of the traveling time from node i to destination d 0 is

maintained. The mean value of this time and its dispersion can vary strongly,

depending on the tra‰c conditions: a poor time (path) under low tra‰c load can be

234 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

a very good one under heavy tra‰c load. The statistical model has to be able to

capture this variability and to follow in a robust way the fluctuations of the tra‰c.

This model plays a critical role in the pheromone matrix updating process, as ex-

plained in the following.

9 The pheromone matrix T i is updated by incrementing the pheromone tifd 0 (i.e., the

pheromone suggesting to choose neighbor f when destination is d 0) and decrement-

ing, by normalization, the other pheromones tijd 0 , j A N i, j0 f . The way the pher-

omones are updated depends on a measure of goodness associated with the trip time

Ti!d 0 experienced by the forward ant, and is given below. This time represents the

only available explicit feedback signal to score paths. It gives a clear indication about

the goodness of the followed path because it is proportional to its length from a

physical point of view (number of hops, transmission capacity of the used links,

processing speed of the crossed nodes) and from a tra‰c congestion point of view

(because the forward ants share the same queues as data packets). Note that the time

measure T cannot be associated with an exact error measure, given that the ‘‘opti-

mal’’ trip times are not known, because they depend on the whole network load

status. In fact, when the network is in a congested state, all the trip times will score

poorly with respect to the times observed in low load situations. Nevertheless, a path

with a high trip time should be scored as a good path if its trip time is significantly

lower than the other trip times observed in the same congested situation. Therefore,

T can only be used as a reinforcement signal. This gives rise to a credit assignment

problem typical of the reinforcement learning field (Bertsekas & Tsitsiklis, 1996;

Kaelbling, Littman, & Moore, 1996).

Backward ant (1 4)

Forward ant (1 4)

1 2 3 4

Figure 6.3
Example of the way AntNet’s ants update node data structures. The forward ant, F1!4, moves along
the path 1! 2! 3! 4 and, arrived at node 4, launches the backward ant B4!1 which travels in the
opposite direction. At each node i, i ¼ 3; . . . ; 1, the backward ant uses its memory contents S1!4ðiÞ to
update the values for Miðmi4; s2

i4;W i4Þ, and, in case of good subpaths, to update also the values for
Miðmid 0 ; s2

id 0 ;W id 0 Þ, d 0 ¼ i þ 1; . . . ; 3. At the same time, the pheromone matrix is updated by incrementing
the pheromone tij4, j ¼ i þ 1, of the last node j the ant B4!1 came from, and decrementing the values of
the pheromones of the other neighbors (not shown in the figure). The increment will be a function of the
trip time experienced by the forward ant going from node i to destination node 4. As forMi , if the trip
time associated by the forward ant with the subpaths to the other nodes d 0 ¼ i þ 1; . . . ; 3 is statisti-
cally good, then also the corresponding pheromone matrix entries are updated. Adapted from Di Caro &
Dorigo (1998c).

6.2 The AntNet Algorithm 235

The reinforcement r1 rðT ;MiÞ, 0 < ra 1, is used to update the pheromones. It is

computed by taking into account some average of the values observed so far and of

their dispersion to score the goodness of the trip time T , such that the smaller the T ,

the higher the r (the exact definition of r is discussed in the next subsection). The

value r is used by the backward ant Bd!s moving from node f to node i to increase

the pheromone values tifd 0 . The pheromone tifd 0 is increased by r as follows:

tifd 0 tifd 0 þ r � ð1� tifd 0 Þ: ð6:5Þ

In this way, given a same value r, small pheromone values are increased proportion-

ally more than large pheromone values, favoring in this way a quick exploitation of

new, and good, discovered paths.

Pheromones tijd 0 for destination d 0 of the other neighboring nodes j, j A N i, j0 f ,

evaporate implicitly by normalization. That is, their values are reduced so that the

sum of pheromones on links exiting from node i will remain 1:

tijd 0 tijd 0 � r � tijd 0 ; j A N i; j0 f : ð6:6Þ

It is important to remark that every discovered path increases its selection probabil-

ity. In this way, not only does the (explicit) assigned value r play a role but also the

(implicit) ant’s arrival rate. In this respect, AntNet is closer to real ants’ behavior

than the other ACO algorithms for NP-hard problems we have studied in the pre-

vious chapters: in fact, it exploits the di¤erential path length e¤ect described in chap-

ter 1. This strategy is based on trusting paths that receive either high reinforcements,

independent of their frequency, or low and frequent reinforcements. In fact, for any

tra‰c load condition, a path receives one or more high reinforcements only if it is

much better than previously explored paths. On the other hand, during a transient

phase after a sudden increase in network load all paths will likely have high tra-

versing times with respect to those learned by the model M in the preceding, low-

congestion, situation. Therefore, in this case good paths can only be di¤erentiated by

the frequency of ants’ arrivals. Assigning always a positive, but low, reinforcement

value in the case of paths with high traversal time allows the implementation of the

above mechanism based on the frequency of the reinforcements, while, at the same

time, it avoids giving excessive credit to paths with high traversal time due to their

poor quality.

6.2.3 How to Evaluate the Quality of an Ant’s Trip

The value r is a critical quantity that has to be assigned after considering three main

aspects: (1) paths should receive an increment in their selection probability propor-

236 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

tional to their goodness, (2) the goodness is a relative measure, which depends on

the tra‰c conditions that can be estimated by means of the models Mi, and (3) it

is important not to follow all the tra‰c fluctuations. This last aspect is particularly

important. Uncontrolled oscillations in the routing tables are one of the main prob-

lems in shortest-path routing (Wang & Crowcroft, 1992). It is very important to be

able to set the best trade-o¤ between stability and adaptivity.

Several ways to assign the r values, trying to take into account the above three

requirements, have been investigated:

9 The simplest way is to set r ¼ constant: independently of the ant’s ‘‘experiment

outcomes,’’ the discovered paths are all rewarded in the same way. In this simple but

meaningful case the core of the algorithm is based on the capability of ‘‘real’’ ants to

discover shortest paths via stigmergic communication mediated by pheromone trails.

In other words, what is at work is the di¤erential path length e¤ect: ants traveling

along faster paths will arrive at a higher rate than other ants, hence their paths will

receive a higher cumulative reward. The obvious problem with this approach lies in

the fact that, although ants following longer paths arrive delayed, they will never-

theless have the same e¤ect on the pheromone matrices as the ants that followed

shorter paths.

9 A more elaborate approach is to define r as a function of the ant’s trip time T and

of the parameters of the local statistical model Mi. The following functional form

gave good results, and was used in the experiments reported later in this chapter:

r ¼ c1
Wbest

T

� �
þ c2

Isup � Iinf

ðIsup � Iinf Þ þ ðT � Iinf Þ

� �
: ð6:7Þ

Isup and Iinf are estimates of the limits of an approximate confidence interval for m.

Iinf is set to Wbest, while Isup ¼ mþ zðs=
ffiffiffiffi
w
p
Þ, with z ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ

p
where n gives the

selected confidence level. This expression is obtained using the Tchebyche¤ inequal-

ity that allows the definition of a confidence interval for a random variable following

any distribution (Papoulis, 2001). Although usually, for specific probability densities,

the Tchebyche¤ bound is not very tight, here its use is justified by the fact that only a

raw estimate of the confidence interval is needed and that in this way there is no need

to make any assumption on the distribution of m.

The first term in equation (6.7) simply evaluates the ratio between the best trip

time observed over the current observation window and the current trip time. The

second term evaluates how far the value T is from Iinf in relation to the extension of

the confidence interval, that is, considering the stability in the latest trip times. Note

that the denominator of this term could go to zero, when T ¼ Isup ¼ Iinf . In this case

6.2 The AntNet Algorithm 237

the whole term is set to zero. The coe‰cients c1 and c2 are parameters which weigh

the importance of each term.

The value r obtained from equation (6.7) is finally transformed by means of a

squash function sðxÞ:

r ¼ sðrÞ
sð1Þ ; ð6:8Þ

where

sðxÞ ¼ 1þ exp
a

xjN ij

� �� ��1
; x A ð0; 1�; a A Rþ: ð6:9Þ

Squashing the r-values allows the system to be more sensitive in rewarding good

(high) values of r, while having the tendency to saturate the rewards for bad (near to

zero) r-values: the scale is compressed for lower values and expanded in the upper

part. In such a way an emphasis is put on good results.

6.3 The Experimental Settings

In this section we describe the test bed used to compare AntNet with some of the

best-known routing algorithms. Note that, because the functioning of a data network

is governed by many components which may interact in nonlinear and unpredictable

ways, the choice of a meaningful test bed is not an easy task: the approach followed

is to define a limited set of classes of tunable components. These are: the topology

and the physical properties of the network, the tra‰c patterns, the metrics chosen for

performance evaluation, the competing routing algorithms chosen, and their param-

eter values. In the following, for each class the choices are explained.

6.3.1 Topology and Physical Properties of the Net

The experiments presented in section 6.4 were run on models based on two real-

world network instances: the US National Science Foundation network, NSFnet,

and the Japanese NTT company backbone, NTTnet.

9 NSFnet is the old USA T1 backbone (1987). NSFnet is a WAN composed of

fourteen nodes and twenty-one bidirectional links with a bandwidth of 1.5 Mbit/s. Its

topology is shown in figure 6.4. Propagation delays range from 4 to 20 ms. NSFnet is

a well-balanced network, where a network is said to be well-balanced if the distribu-

tion of the shortest paths between all the pairs of nodes has a small variance.

238 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

9 NTTnet is a network modeled on the NTT (Nippon Telephone and Telegraph

company) fiberoptic corporate backbone at the end of the ’90s. It is a 57-node, 162

bidirectional links network. Link bandwidth is of 6 Mbit/s, while propagation delays

range from 1 to 5 ms. Its topology is shown in figure 6.5. NTTnet is not a well-

balanced network.

All the networks are simulated with link-fault and node-fault probabilities set to

zero, local node bu¤ers of 1 Gbit capacity, and data packet maximum time to live

(TTL) set to 15 seconds.

6.3.2 Tra‰c Patterns

Tra‰c is defined in terms of open sessions between pairs of di¤erent nodes. Tra‰c

patterns can show a huge variety of forms, depending on the characteristics of each

session and on their distribution from geographic and temporal points of view. Each

session is characterized by the number of transmitted packets, and by their size and

interarrival time distributions. Sessions over a network can be characterized by their

interarrival time distribution and by their geographic distribution. The latter is

Figure 6.4
NSFnet. Each arc in the graph represents a pair of directed links. Link bandwidth is 1.5 Mbit/s; propaga-
tion delays range from 4 to 20 ms.

Figure 6.5
NTTnet. Each arc in the graph represents a pair of directed links. Link bandwidth is 6 Mbit/s, propagation
delays range from 1 to 5 ms.

6.3 The Experimental Settings 239

controlled by the probability assigned to each node to be selected as a session start or

endpoint.

In the experiments three basic patterns for the temporal distribution of the sessions

and three for their spatial distribution were considered.

Temporal Distributions

9 Poisson (P): for each node a Poisson process regulates the arrival of new sessions

(i.e., session interarrival times follow a negative exponential distribution).

9 Fixed (F): at the beginning of the simulation, for each node a fixed number of

one-to-all sessions is set up and left constant for the whole simulation.

9 Temporary (TMPHS): a temporary, heavy-load tra‰c condition is generated,

turning on some nodes that act like hot spots (see below).

Spatial Distributions

9 Uniform (U): the assigned temporal characteristics for session arrivals are set to

be identical in all the network nodes.

9 Random (R): the assigned temporal characteristics for session arrivals are set

randomly over the network nodes.

9 Hot spots (HS): some nodes behave as hot spots, concentrating a high rate of

input/output tra‰c. A fixed number of sessions are opened from the hot spots to all

the other nodes.

General tra‰c patterns are obtained combining the above temporal and spatial

characteristics. Therefore, for example, UP tra‰c means that on each node an iden-

tical Poisson process regulates the arrival of new sessions, while in the RP case the

characteristics of the Poisson process are di¤erent for each node, and UP-HS means

that a hot spots tra‰c model is superimposed on a UP tra‰c.

The bit streams generated by each session were chosen to have a time-varying bit

rate (called generic variable bit rate, GVBR, in the following). The term GVBR is a

broad generalization of the term varying bit rate, VBR, normally used to designate

a bit stream with a variable bit rate but with known average characteristics and

expected/admitted fluctuations. Here, a GVBR session generates packets whose sizes

and interarrival times are variable and follow a negative exponential distribution.

The information about these characteristics is never directly used by the routing

algorithms, as in IP-based networks.

The values used in the experiments to shape tra‰c patterns are ‘‘reasonable’’

values for session generations and data packet production, taking into consideration

240 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

network usage and computing power at the time the experiments were carried out

(Di Caro & Dorigo, 1998c). The mean of the packet size distribution was set to 4096

bits in all the experiments. Basic temporal and spatial distributions are chosen to be

representative of a wide class of possible situations that can be arbitrarily composed

to generate a meaningful subset of real tra‰c patterns.

6.3.3 Metrics for Performance Evaluation

The metrics used for performance evaluation are throughput (correctly delivered

bit/s) and delay distribution for data packets (s). These are the standard metrics for

performance evaluation, when considering only sessions with equal costs, benefits,

and priority and without the possibility of requests for special services like real time.

Simulation results for throughput are reported as average values without an asso-

ciated measure of variance. The intertrial variability is in fact always very low, within

a few percentage points of the average value. Simulation results concerning packet

delays are reported either using the whole empirical distribution or the 90th percen-

tile, which allows comparison of algorithms on the basis of the upper value of delay

they were able to keep 90% of the correctly delivered packets. In fact, packet delays

can be spread over a wide range of values. This is an intrinsic characteristic of data

networks: packet delays can range from very low values for sessions open between

adjacent nodes connected by fast links, to much higher values in the case of sessions

involving nodes very far apart connected by many slow links. Because of this, very

often the empirical distribution of packet delays cannot be meaningfully parame-

terized in terms of mean and variance, and the 90th percentile statistic, or still better,

the whole empirical distribution, is much more meaningful.

6.3.4 Competing Routing Algorithms and Their Parameters

AntNet performance was compared with state-of-the-art routing algorithms taken

from the telecommunications and machine learning literature. The algorithms were

reimplemented to make them as e‰cient as possible. They belong to the various pos-

sible combinations of static and adaptive, distance-vector, and link-state classes, and

are listed below:

OSPF (static, link-state) is an implementation of the current Interior Gateway Pro-

tocol (IGP) of Internet (Moy, 1998). It is essentially a static shortest path algorithm.

SPF (adaptive, link-state) is the prototype of link-state algorithms with a dynamic

metric for link cost evaluations. A similar algorithm was implemented in the second

version of ARPANET (McQuillan, Richer, & Rosen, 1980) and in its successive

revisions (Khanna & Zinky, 1989).

6.3 The Experimental Settings 241

BF (adaptive, distance-vector) is the asynchronous distributed Bellman-Ford algo-

rithm with dynamic metrics (Bertsekas & Gallager, 1992; Shankar et al., 1992).

Q-R (adaptive, distance-vector) is the Q-Routing algorithm proposed by Boyan &

Littman (1994) (an online asynchronous version of the Bellman-Ford algorithm).

PQ-R (adaptive, distance-vector) is the Predictive Q-Routing algorithm of Choi &

Yeung (1996).

Daemon (adaptive, optimal routing) is an approximation of an ideal algorithm

defining an empirical upper bound on the achievable performance. The algorithm

exploits a ‘‘daemon’’ able to read in every instant the state of all the queues in the

network and then calculates instantaneous ‘‘real’’ costs for all the links and assigns

paths on the basis of a network-wide shortest-paths recalculation for every packet

hop.

All the algorithms used have a collection of parameters to be set. Common param-

eters are routing packet size and elaboration time. Settings for these parameters are

shown in table 6.1.

Concerning the other main parameters, specific for each algorithm, for the AntNet

competitors either the best settings available in the literature were used or the

parameters were tuned as much as possible to obtain better results. For OSPF, SPF,

and BF, the length of the time interval between consecutive routing information

broadcasts and the length of the time window to average link costs are the same, and

they are set to 0.8 or 3.0 seconds, depending on the experiment for SPF and BF, and

to 30 seconds for OSPF. For Q-R and PQ-R the transmission of routing information

is totally data-driven. The learning and adaptation rate used were the same as those

used by the algorithms’ authors (Boyan & Littman, 1994; Choi & Yeung, 1996).

Concerning AntNet, the algorithm is very robust to internal parameter settings.

The parameter set was not fine-tuned and the same set of values was used in all the

Table 6.1
Routing packets size for the implemented algorithms (except for the Daemon algorithm, which does not
generate routing packets)

AntNet OSPF & SPF BF Q-R & PQ-R

Packet size (byte) 24þ 8H 64þ 8jNi j 24þ 12n 12

H is the incremental number of hops made by the forward ant, jNij is the number of neighbors of node i,
and n is the number of network nodes. The values assigned to these parameters are either the same as used
in previous simulation works (Alaettinoğlu et al., 1992) or were chosen on the basis of heuristic evaluations
(e.g., the size of forward ants was set to be the same size as that of a BF packet plus 8 bytes for each hop to
store the information about the node address and the elapsed time).

242 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

di¤erent experiments presented in the next section. The settings for all parameters

used by AntNet are summarized in box 6.1.

6.4 Results

In this section we compare AntNet with the competing routing algorithms described

in section 6.3.4. The performance of the algorithms was studied for increasing tra‰c

load and for temporary saturation conditions. In the experiments reported here, the

saturating input tra‰c, whose level is a function of the routing algorithm used, was

determined using AntNet as routing algorithm.

All reported data are averaged over ten trials lasting 1000 virtual seconds of sim-

ulation time, which was found to be a time interval long enough to make e¤ects due

to transients negligible and to get enough statistical data to evaluate the behavior of

the routing algorithm. Before being fed with data tra‰c, the algorithms are given 500

preliminary simulation seconds with no data tra‰c to build initial routing tables. In

this way, each algorithm builds the routing tables according to its own ‘‘vision’’

about minimum cost paths in relation to the physical characteristics of the network.

Box 6.1
Parameter Settings for AntNet

In this box we report ‘‘good’’ values for AntNet’s parameters. ‘‘Good’’ means that the value of
these parameters was not optimized experimentally, so that it is to be expected that AntNet per-
formance can be slightly increased by their careful optimization. Nevertheless, AntNet’s perfor-
mance was found to be rather robust with respect to limited variations in these parameter values.

9 v ¼ 0:005: exponential mean coe‰cient found in equation (6.1).

9 Dt ¼ 0:3 second: time interval between two consecutive ant generations.

9 a ¼ 0:45: relative weight of heuristic information with respect to pheromones, found in equation
(6.3). In all the experiments that were run it was observed that the use of the heuristic value is a very
e¤ective mechanism: depending on the characteristics of the problem, the best value to assign to the
weight a can vary, but if a ranges between 0.2 and 0.5, performance doesn’t change appreciably.
For lower values, the e¤ect of hij is vanishing, while for higher values the resulting routing tables
oscillate and, in both cases, performance degrades.

9 max_life ¼ 15: number of hops after which an ant is removed from the system.

9 wmax ¼ 5ðc=vÞ, with c ¼ 0:3: max length of the observation windows (see section 6.2.1).

9 c1 ¼ 0:7, c2 ¼ 0:3: constants found in equation (6.7), to compute the value r used to update
pheromones. Experiments have shown that c2 should not be too big (i.e., smaller than 0.35), other-
wise performance starts to degrade appreciably. The behavior of the algorithm is quite stable for c2
values in the range 0.15 to 0.35, but setting c2 below 0.15 slightly degrades performance.

9 Iinf ¼Wbest, Isup ¼ mþ zðs=
ffiffiffiffi
w
p
Þ, with z ¼ 1:7: values found in equation (6.7).

9 a ¼ 10: constant found in equation (6.9).

6.4 Results 243

Parameter values for tra‰c characteristics are given in the figure captions with the

following meaning: MSIA is the mean of the session interarrival time distribution for

the Poisson (P) case, MPIA is the mean of the packet interarrival time distribution,

HS is the number of hot-spot nodes, and MPIA-HS is the equivalent of MPIA for

the hot-spot sessions. As we said (see section 6.3.2), the shape of the session bit

streams is of the GVBR type.

It should be noted that when using AntNet, data packets are routed in a proba-

bilistic way. This has been observed to improve AntNet performance, in some cases

even by 30% to 40%, which means that the way the routing tables are built in AntNet

is well matched with a probabilistic distribution of the data packets over all the

good paths. Data packets are prevented from choosing links with very low proba-

bility by remapping the elements of the routing table P by means of a power function

f ðxÞ ¼ xd, d > 1, which emphasizes high probability values and reduces lower ones.

This value was set to d ¼ 1:2 in the experiments. Di¤erently, the use of probabilistic

data routing was found not to improve the performance of the algorithms used for

comparison. Therefore, in all the other algorithms the routing of data was done de-

terministically by choosing at each hop the best neighbor among those indicated in

the routing table.

Results for throughput and packet delays for all the considered network topologies

are described in the two following subsections. Results concerning the network

resources utilization are reported in section 6.4.3.

6.4.1 NSFnet

Experiments on NSFnet were run using UP, RP, UP-HS, and TMPHS-UP tra‰c

patterns. In all the cases considered, di¤erences in throughput were found to be of

minor importance with respect to those shown by packet delays. For each of the UP,

RP, and UP-HS cases, three distinct groups of ten trial experiments were run, grad-

ually increasing the generated workload (in terms of reducing the session interarrival

time). This amounts, as explained above, to studying the behavior of the algorithms

when moving the tra‰c load toward a saturation region.

In the UP case, di¤erences in throughput (figure 6.6a) were found to be small: the

best performing algorithms were BF and SPF, which attained performances only

about 10% inferior to that of Daemon and of the same amount better than those of

AntNet, Q-R, and PQ-R, while OSPF behaved slightly better than the last-named.

Concerning delays (figure 6.6b), the results were rather di¤erent: OSPF, Q-R, and

PQ-R performed poorly, while BF and SPF had a performance on the order of 50%

worse than that obtained by AntNet and 65% worse than Daemon.

244 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

In the RP case (figure 6.7a), throughputs generated by AntNet, SPF, and BF were

very similar, although AntNet presented a slightly better performance. OSPF and

PQ-R behaved only slightly worse, while Q-R was the worst algorithm. Daemon was

able to obtain only slightly better results than AntNet. Again, looking at packet

delay results (figure 6.7b) OSPF, Q-R, and PQ-R performed very badly, while SPF

showed results a bit better than those of BF but approximately 40% worse than those

of AntNet. Daemon was in this case far better, which indicates that the test bed was

very di‰cult.

For the case of UP-HS load, throughputs (figure 6.8a) for AntNet, SPF, BF, Q-R,

and Daemon were found to be very similar, while OSPF and PQ-R gave much worse

results. Again (figure 6.8b), packet delay results for OSPF, Q-R and PQ-R were much

worse than those of the other algorithms (they were so much worse that they did not

fit the scale chosen to highlight the di¤erences between the other algorithms). AntNet

was once again the best-performing algorithm (except, as usual, for Daemon). In this

case, di¤erences with SPF were found to be around 20%, and about 40% with respect

to BF. Daemon performed about 50% better than AntNet and scaled much better

than AntNet, which, again, indicates that the test bed was rather di‰cult.

The last graph for NSFnet shows how the algorithms behave in the case of a

TMPHS-UP situation (figure 6.9). At time t ¼ 400 four hot spots were turned on and

superimposed on the existing light UP tra‰c. The transient was kept on for 120 sec-

onds. In this case, only one, typical, situation is reported in detail to show how the

di¤erent algorithms reacted. Reported values are the ‘‘instantaneous’’ values for

0
2
4
6
8

10
12
14
16
18

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

2.4 2.2 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

90
-t

h
pe

rc
en

til
e

of
 p

ac
ke

t d
el

ay
s

(s
ec

)

2.4 2.2 2

(a) (b)

Figure 6.6
NSFnet: comparison of algorithms for increasing load for UP tra‰c. The load is increased reducing the
MSIA value from 2.4 to 2.0 seconds (MPIA ¼ 0.005 second). Statistics are computed over ten trials: (a)
average throughput; (b) 90th percentile of the packet delays empirical distribution.

6.4 Results 245

0

2

4

6

8

10

12

14
A

nt
N

et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

2.8 2.6 2.4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on90

-t
h

pe
rc

en
til

e
of

 p
ac

ke
t d

el
ay

s
(s

ec
)

2.8 2.6 2.4

(a) (b)

Figure 6.7
NSFnet: comparison of algorithms for increasing load for RP tra‰c. The load is increased reducing the
MSIA value from 2.8 to 2.4 seconds (MPIA ¼ 0.005 second). Statistics are computed over ten trials: (a)
average throughput; (b) 90th percentile of the packet delays empirical distribution.

0
2
4
6
8

10
12
14
16
18
20

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

2.4 2.2 2

0.0

0.1

0.2

0.3

0.4

0.5

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on90

-t
h

pe
rc

en
til

e
of

 p
ac

ke
t d

el
ay

s
(s

ec
)

2.4 2.2 2

(a) (b)

Figure 6.8
NSFnet: comparison of algorithms for increasing load for UP-HS tra‰c. The load is increased reducing
the MSIA value from 2.4 to 2.0 seconds (MPIA ¼ 0.3 second, HS ¼ 4, MPIA-HS ¼ 0.04 second). Statis-
tics are computed over ten trials: (a) average throughput; (b) 90th percentile of the packet delays empirical
distribution.

246 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

throughput and packet delays computed as the average over 5-second moving win-

dows. All algorithms had a similar very good performance as far as throughput is

concerned, except for OSPF and PQ-R, which lost a small percentage of the packets

during the transitory period. The graph of packet delays confirms previous results:

SPF and BF have a similar behavior, about 20% worse than AntNet and 45% worse

than Daemon. The other three algorithms show a big out-of-scale jump not being

able to properly dump the sudden load increase.

6.4.2 NTTnet

The same set of experiments run on the NSFnet was repeated on the NTTnet. In this

case the results are even sharper than those obtained with NSFnet: AntNet perfor-

mance is much better than that of all its competitors.

For the UP, RP, and UP-HS cases, di¤erences in throughput are not significant

(figures 6.10a, 6.11a, and 6.12a). All the algorithms, except the OSPF, practically

behave in the same way as the Daemon algorithm. Concerning packet delays (figures

6.10b, 6.11b, and 6.12b), di¤erences between AntNet and each of its competitors are

6.0

8.0

10.0

12.0

14.0

16.0

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

OSPF
SPF

BF
Q-R

PQ-R
AntNet

Daemon

0.03

0.04

0.05

0.06

200 300 400 500 600 700 800 900 1000

P
ac

ke
t D

el
ay

 (
se

c)

Simulation Time (sec)

Figure 6.9
NSFnet: comparison of algorithms for transient saturation conditions with TMPHS-UP tra‰c (MSIA ¼
3.0 seconds, MPIA ¼ 0.3 second, HS ¼ 4, MPIA-HS ¼ 0.04). Statistics are computed over ten trials:
(up) average throughput; (down) packet delays averaged over 5-second moving windows. Reprinted by
permission from Di Caro & Dorigo (1998c), 6 Morgan Kaufmann Publisher.

6.4 Results 247

0
5

10
15
20
25
30
35
40
45
50

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

3.1 2.9 2.7

0.0

2.0

4.0

6.0

8.0

10. 0

12. 0

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

90
-t

h
pe

rc
en

til
e

of
 p

ac
ke

t d
el

ay
s

(s
ec

)

3.1 2.9 2.7

(a) (b)

Figure 6.10
NTTnet: comparison of algorithms for increasing load for UP tra‰c. The load is increased reducing the
MSIA value from 3.1 to 2.7 seconds (MPIA ¼ 0.005 second). Statistics are computed over ten trials: (a)
average throughput; (b) 90th percentile of the packet delays empirical distribution.

0
5

10
15
20
25
30
35
40
45
50

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

3.1 2.9 2.7

0.0

2.0

4.0

6.0

8.0

10.0

12.0

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

90
-t

h
pe

rc
en

til
e

of
 p

ac
ke

t d
el

ay
s

(s
ec

)

3.1 2.9 2.7

(a) (b)

Figure 6.11
NTTnet: comparison of algorithms for increasing load for RP tra‰c. The load is increased reducing the
MSIA value from 3.1 to 2.7 seconds (MPIA ¼ 0.005 second). Statistics are computed over ten trials: (a)
average throughput; (b) 90th percentile of the packet delays empirical distribution.

248 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

at least one order of magnitude in favor of AntNet. AntNet keeps delays at low

values, very close to those obtained by Daemon, whereas SPF, BF, Q-R, and PQ-R

perform poorly and OSPF completely collapses.

Note that in the UP-HS case, OSPF, which is the worst algorithm in this case,

shows an interesting behavior. The increase in the generated data throughput deter-

mines a decrease or a very slow increase in the delivered throughput while delays

decrease (see figure 6.12). In this case the load was too high for the algorithm and

the balance between the two, conflicting, objectives, throughput and packet delays,

showed an inverse dynamics: having a lot of packet losses made it possible for the

surviving packets to obtain lower trip delays.

The TMPHS-UP experiment (figure 6.13), concerning sudden load variation, con-

firms the previous results. OSPF is not able to follow properly the variation both for

throughput and delays. All the other algorithms were able to follow the sudden in-

crease in the input throughput, but only AntNet (and Daemon) show a very regular

behavior. Di¤erences in packet delays are striking. AntNet performance is very close

to that obtained by Daemon (the curves are practically superimposed at the scale

used in the figure). Among the other algorithms, SPF and BF are the best, although

their response is rather irregular and, in any case, much worse than AntNet’s. OSPF

and Q-R are out-of-scale and show a very delayed recovering curve. PQ-R, after a

huge jump, which takes the graph out-of-scale in the first 40 seconds after hot spots

are switched on, shows a trend approaching that of BF and SPF.

0
5

10
15
20
25
30
35
40
45
50

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

4.1 3.9 3.7

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

A
nt

N
et

O
S

P
F

S
P

F

B
F

Q
-R

P
Q

-R

D
ae

m
on

90
-t

h
pe

rc
en

til
e

of
 p

ac
ke

t d
el

ay
s

(s
ec

)

4. 1 3.9 3.7

(a) (b)

Figure 6.12
NTTnet: comparison of algorithms for increasing load for UP-HS tra‰c. The load is increased reducing
the MSIA value from 4.1 to 3.7 seconds (MPIA ¼ 0.3 second, HS ¼ 4, MPIA-HS ¼ 0.05 second). Statis-
tics are computed over ten trials: (a) average throughput; (b) 90th percentile of the packet delays empirical
distribution.

6.4 Results 249

6.4.3 Routing Overhead

Table 6.2 reports results concerning the overhead generated by the routing packets.

For each algorithm, the network load generated by the routing packets is reported

as the ratio between the bandwidth occupied by the routing packets and the total

available network bandwidth. Each row in the table refers to one of the experiments

discussed in the two previous subsections. Routing overhead is computed for the ex-

periment with the heaviest load in the increasing load series.

All data are scaled by a factor of 10�3. The data in the table show that the routing

overhead is negligible for all the algorithms with respect to the available bandwidth.

Among the adaptive algorithms, BF shows the lowest overhead, closely followed by

SPF. AntNet generates a slightly bigger consumption of network resources, but this

is widely compensated by the higher performance it provides. Q-R and PQ-R pro-

duce an overhead a bit higher than that of AntNet. The routing load caused by the

di¤erent algorithms is a function of many factors, specific to each algorithm. Q-R

and PQ-R are data-driven algorithms: if the number of data packets or the length of

the followed paths (because of topology or bad routing) grows, so will the number of

15.0

25.0

35.0

45.0

55.0

T
hr

ou
gh

pu
t (

10
6 b

it/
se

c)

OSPF
SPF

BF
Q-R

PQ-R
AntNet

Daemon

0.0

0.2

0.4

0.6

0.8

200 300 400 500 600 700 800 900 1000

P
ac

ke
t D

el
ay

 (
se

c)

Simulation Time (sec)

Figure 6.13
NTTnet: comparison of algorithms for transient saturation conditions with TMPHS-UP tra‰c (MSIA ¼
4.0 second, MPIA ¼ 0.3 second, HS ¼ 4, MPIA-HS ¼ 0.05). Statistics are computed over ten trials: (up)
average throughput; (down) packet delays averaged over 5-second moving windows. Reprinted by per-
mission from Di Caro & Dorigo (1998c), 6 Morgan Kaufmann Publishers.

250 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

generated routing packets. BF, SPF, and OSPF have a more predictable behavior:

the generated overhead is mainly a function of the topologic properties of the net-

work and of the generation rate of the routing information packets. AntNet produces

a routing overhead function of the ants’ generation rate and of the length of the

paths they travel.

The ant tra‰c can be roughly characterized as a collection of additional tra‰c

sources, one for each network node, producing very small packets (and related ac-

knowledgment packets) at a constant bit rate with destinations matching the input

data tra‰c. On average, ants will travel over rather ‘‘short’’ paths and their size will

grow by only 8 bytes at each hop. Therefore, each ‘‘ant routing tra‰c source’’ rep-

resents a very light additional tra‰c source with respect to network resources when

the ant launching rate is not excessively high. In figure 6.14, the sensitivity of AntNet

with respect to the ant launching rate is reported for a sample case of a UP data

tra‰c model on NSFnet (previously studied in figure 6.6). The interval Dt between

two consecutive ant generations is progressively decreased (Dt is the same for all

nodes). Dt values are sampled at constant intervals over a logarithmic scale ranging

from about 0.006 to 25 seconds. The lower, dashed, curve interpolates the generated

routing overhead expressed, as before, as the fraction of the available network band-

width used by routing packets. The upper, solid, curve plots the data for the obtained

power normalized to its highest value observed during the trials, where the power is

defined as the ratio between the delivered throughput and the 90th percentile of the

packet delay distribution. The value used for delivered throughput is the throughput

value at time 1000 averaged over ten trials, while for packet delay the 90th percentile

of the empirical distribution was used.

In figure 6.14, it can be seen how an excessively small Dt causes an excessive

growth of the routing overhead, with consequent reduction of the algorithm power.

Similarly, when Dt is too big, the power slowly diminishes and tends toward a

Table 6.2
Routing overhead: ratio between the bandwidth occupied by the routing packets and the total available
network bandwidth

AntNet OSPF SPF BF Q-R PQ-R

NSFnet—UP 2.39 0.15 0.86 1.17 6.96 9.93

NSFnet—RP 2.60 0.15 1.07 1.17 5.26 7.74

NSFnet—UP-HS 1.63 0.15 1.14 1.17 7.66 8.46

NTTnet—UP 2.85 0.14 3.68 1.39 3.72 6.77

NTTnet—RP 4.41 0.14 3.02 1.18 3.36 6.37

NTTnet—UP-HS 3.81 0.14 4.56 1.39 3.09 4.81

All data are scaled by a factor of 10�3. Adapted from Di Caro & Dorigo (1998c).

6.4 Results 251

plateau because the number of ants is not enough to generate and maintain up-to-

date statistics of the network status. In the middle of these two extreme regions a

wide range of Dt intervals gives rise to similar, very good power values, while, at the

same time, the routing overhead quickly falls toward negligible values. It should be

noted that the value for Dt used in the experiments, Dt ¼ 0:3, is not optimal. The

reason for using a suboptimal parameter is that the analysis, whose results are shown

in figure 6.14, was performed only after all the experiments were run, and the already

good results obtained with the suboptimal parameter value did not motivate the

authors to re-run the experiments.

6.5 AntNet and Stigmergy

In AntNet, the continual online adaptation of pheromone matrices (and therefore of

the corresponding routing tables) is the emerging result of a collective learning pro-

cess. In fact, each forward-backward ant pair is complex enough to find a good route

0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1 10 100

Interval ∆t between two consecutive ants generation on each node [sec]

Normalized power
Routing overhead

Figure 6.14
AntNet normalized power versus normalized routing overhead as a function of the interval Dt between two
consecutive ants generation. Power is defined as the ratio between delivered throughput and the 90th per-
centile of the distribution of packet delays, and it is normalized to its highest value observed during the
trials. Routing overhead is normalized by taking the ratio between the bandwidth used by the artificial ants
and the available bandwidth over the whole network. Adapted from Di Caro & Dorigo (1998c).

252 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

and to adapt the pheromone matrices for a single-source destination path, but it

cannot solve the global routing optimization problem. It is the interaction between

the ants that determines the emergence of a global e¤ective behavior from the point

of view of network performance. Ants cooperate in their problem-solving activity by

communicating in an indirect and noncoordinated asynchronous way. Each ant acts

independently. Good routes are discovered by applying a policy that is a function of

the information accessed through the network nodes visited, and the information

collected about the route is eventually released on the same nodes. Therefore, com-

munication among artificial ants is mediated in an explicit and implicit way by the

‘‘environment,’’ that is, by the node’s data structures and by the tra‰c patterns

recursively generated by the data packets’ utilization of the routing tables. In other

words, ants exploit stigmergic communication (see chapter 1, section 1.4, for a defi-

nition of stigmergy). The stigmergic communication paradigm matches well the in-

trinsically distributed nature of the routing problem.

Cooperation among artificial ants goes on at two levels: (1) by modifications of the

pheromone matrices, and (2) by modifications of local models that determine the

way the ants’ performance is evaluated. The way pheromone matrices are modified

depends, among others, on the value of the reinforcement r. As we have seen in sec-

tion 6.2.3, in AntNet this value is set to be a function of the ant’s trip time and of the

node-local statistical models [according to equations (6.7), (6.8), and (6.9)]. It is in-

teresting, however, to note that reasonably good results are obtained when setting the

value r to a constant. Results of experiments run with this strategy are presented in

figure 6.15. These results suggest that the ‘‘implicit’’ component of the algorithm,

based on the ant arrival rate (di¤erential path length e¤ect), plays a very important

role. Of course, to compete with state-of-the-art algorithms, the available informa-

tion about path costs has to be used.

As shown in the previous section, the results obtained with the above stigmergic

model of computation are excellent. In terms of throughput and average delay, Ant-

Net performs better than both classic and recently proposed routing algorithms on a

wide range of experimental conditions (see Di Caro & Dorigo, 1998a,b,c,e,f, for fur-

ther experimental results).

Finally, it is interesting to remark that the used stigmergy paradigm makes Ant-

Net’s artificial ants very flexible from a software engineering point of view. In this

perspective, once the interface with the node’s data structure is defined, the internal

policy of the ants can be transparently updated. Also, the ants could be upgraded to

become richer mobile agents that carry out multiple concurrent tasks as, for example,

collecting information for distributed network management or for Web data-mining

tasks (see Di Caro, 2003, for the first results in this direction).

6.5 AntNet and Stigmergy 253

6.6 AntNet, Monte Carlo Simulation, and Reinforcement Learning

The structure of AntNet allows one to draw some parallels with both parallel Monte

Carlo simulation and with some well-known reinforcement learning (RL) algorithms.

This is what is discussed in the rest of this section.

6.6.1 AntNet as an Online Monte Carlo System with Biased Exploration

The AntNet routing system can be seen as a collection of mobile agents collecting

data about network status by concurrently performing online Monte Carlo simula-

tions (Rubinstein, 1981; Streltsov & Vakili, 1996). In Monte Carlo methods, repeated

experiments with stochastic transition components are run to collect data about the

statistics of interest. Similarly, in AntNet, ants explore the network by performing

random experiments (i.e., building paths from source to destination nodes using a

stochastic policy dependent on the past and current network states), and collect on-

line information on network status. A built-in variance reduction e¤ect is determined

by the way ants’ destinations are assigned, biased by the most frequently observed

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0.001 0.01 0.1 1 10 100

T
hr

ou
gh

pu
t /

 d
el

ay
 9

0-
th

 p
er

ce
nt

ile
 [1

06 b
it/

se
c2]

Interval ∆t between two consecutive ant generations on each node [sec]

AntNet with r ≠ const
AntNet with r = const

Figure 6.15
AntNet power for constant (r ¼ const) and quality-based (r0 const) pheromone updates as a function of
the interval Dt between two consecutive ants generation (ants’ launching rate). Power is defined as the ratio
between delivered throughput and the 90th percentile of the distribution of packet delays.

254 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

data destinations, and by the way the ants’ policy makes use of current and past

tra‰c information. In this way, the explored paths match the most interesting paths

from a data tra‰c point of view, which results in a very e‰cient variance reduction

e¤ect in the stochastic sampling of the paths. Unlike the usual o¿ine Monte Carlo

systems, in AntNet the state space sampling is performed online, that is, the sampling

of the statistics and the controlling of the nonstationary tra‰c process are performed

concurrently.

This way of exploring the network concurrently with data tra‰c is very di¤erent

from what happens in the other algorithms where there is either no exploration at all

(OSPF, SPF, and BF), or exploration is both tightly coupled to data tra‰c and of a

local nature (Q-R and PQ-R). As shown in section 6.4.3, the extra tra‰c associated

with the exploration is negligible for a wide range of values which allow very good

performance.

6.6.2 AntNet and Reinforcement Learning

The characteristics of the routing problem allow one to interpret it as a distributed,

stochastic time-varying RL problem (Sutton & Barto, 1998). This fact, as well as the

structure of AntNet, makes it natural to draw some parallels between AntNet and

classic RL approaches.

A first way to relate the structure of AntNet to that of an RL algorithm is

connected to the way the outcomes of the experiments, the trip times Tk!d , are

processed. The transformation from the raw values Tk!d to the more refined rein-

forcements r are reminiscent of what happens in actor-critic systems (Barto, Sutton,

& Anderson, 1983): the raw feedback signal from the environment is processed by a

critic module, which is learning a model (the node’s componentM) of the underlying

process, and then is fed to the actor module that implements the policy (the phero-

mone matrix T) and updates it according to the critic signal which consists of an

evaluation of the policy followed by the ants. In our case, the critic is both adaptive,

to take into account the variability of the tra‰c process, and rather simple, to meet

computational requirements.

Another way of seeing AntNet as a classic RL system is related to its interpreta-

tion as a parallel replicated Monte Carlo system, as discussed in the previous sub-

section. In fact, as was shown first by Singh & Sutton (1996), a first-visit Monte

Carlo simulation system (only the first visit to a state is used to estimate its value

during a trial) is equivalent to a batch temporal di¤erence (TD) method (Sutton,

1988) with replacing traces and decay parameter l ¼ 1. Although AntNet is a first-

visit Monte Carlo simulation system, there are some important di¤erences with the

6.6 AntNet, Monte Carlo Simulation, and Reinforcement Learning 255

type of Monte Carlo used by Singh and Sutton (and in other RL works), mainly due

to di¤erences in the considered class of problems. In AntNet, outcomes of experi-

ments are used both to update local models able to capture the variability of the

whole network status (only partially observable) and to generate a sequence of sto-

chastic policies. On the contrary, in the Monte Carlo system considered by Singh and

Sutton, outcomes of the experiments are used to compute maximum-likelihood esti-

mates of the expected mean and variance of the states’ returns (i.e., the total reward

following a visit of a state) of a Markov chain.

In spite of these di¤erences, the weak parallel with TD(l) methods is rather inter-

esting, and allows highlighting an important di¤erence between AntNet and its

competitors (and general TD methods): in AntNet there is no backchaining of the

information from one state (i.e., a triple [current node, destination node, next hop

node]) to its predecessors. Each state is rewarded only on the basis of the ant’s trip

time information strictly relevant to it. This approach is completely di¤erent from

that followed by Q-R, PQ-R, and BF, which are TD methods, and, from a di¤erent

perspective, by SPF. In fact, these algorithms build the distance estimates at each

node by using the predictions made at other nodes. In particular, Q-R and PQ-R,

which propagate the estimation information only one step back, are precisely dis-

tributed versions of the TD(0) class of algorithms. They could be transformed into

generic TD(l), 0 < la 1, by transmitting backward to all the previously visited

nodes the information collected by the routing packet generated after each data hop.

Of course, this would greatly increase the routing tra‰c generated, because it has to

be done after each hop of each data packet, making the approach at least very costly,

if feasible at all.

In general, using temporal di¤erence methods in the context of routing presents an

important problem: the key condition of the method, the self-consistency between the

estimates of successive states, may not be strictly satisfied in the general case. Here,

by self-consistency between the estimates of successive states, we mean, for example,

that the prediction made at node k about the time to go to the destination node d

should be additively related to the prediction for the same destination from each one

of k’s neighbors, each neighbor being one of the ways to go to d. The lack of self-

consistency in routing applications is due to the fact that (1) the dynamics at each

node is related in a highly nonlinear way to the dynamics of all its neighbors, (2) the

tra‰c process evolves concurrently over all the nodes, and (3) there is a recursive in-

teraction between the tra‰c patterns and the control actions (i.e., the modifications

of the pheromone matrices). This aspect can explain in part the poor performance of

the pure TD(0) algorithms Q-R and PQ-R.

256 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

6.7 Bibliographical Remarks

This chapter is strongly based on the work presented in Di Caro & Dorigo (1998c).

Additional results obtained with AntNet on di¤erent network topologies can be

found in a number of publications by Di Caro & Dorigo (1998a,b,e,f). A recent

extension of AntNet in the direction of allowing network resources reservation is

AntNetþþ. AntNetþþ is a multiagent architecture for distributed learning and

control in networks providing at the same time several types of services (e.g., best-

e¤ort and resource reservation at the same time) and is described in Dr. Di Caro’s

doctoral thesis (Di Caro, in preparation).

Schoonderwoerd and colleagues (1996) were the first to consider routing as a pos-

sible application domain for ACO algorithms. Their ant-based control (ABC) ap-

proach, which was applied to routing in telephone networks, di¤ers from AntNet in

many respects. The main di¤erences are a direct consequence of the di¤erent network

model they considered, which has the following characteristics: (1) connection links

potentially carry an infinite number of full-duplex, fixed bandwidth channels, and (2)

transmission nodes are crossbar switches with limited connectivity (i.e., there is no

necessity for queue management in the nodes). In such a model, bottlenecks are put

on the nodes, and the congestion degree of a network can be expressed in terms of

connections still available at each switch. As a result, the network is cost-symmetric:

the congestion status over available paths is completely bidirectional. The path

(n0; n1; n2; . . . ; nk) connecting nodes n0 and nk will exhibit the same level of conges-

tion in both directions because the congestion depends only on the state of the nodes

in the path. Moreover, dealing with telephone networks, each call occupies exactly

one physical channel across the path. Therefore, ‘‘calls’’ are not multiplexed over

the links, but they can be accepted or refused, depending on the possibility of re-

serving a physical circuit connecting the caller and the receiver. All these modeling

assumptions make the problem of Schoonderwoerd et al. very di¤erent from the

cost-asymmetric routing problem for data networks discussed in this chapter. This

di¤erence is reflected in many algorithmic di¤erences between ABC and AntNet, the

most important of which is that in ABC ants update pheromone trails after each

step, without waiting for the completion of an ant’s trip, as done in AntNet. This

choice, which makes ABC behavior closer to real ants’ behavior and which is remi-

niscent of the pheromone trail updating strategy implemented in the ant-density

variant of AS (see chapter 3, section 3.3.1), was made possible by the cost-symmetry

assumption made by the authors. Other di¤erences are that ABC does not use local

models to score the ants’ trip times, nor local heuristic information and ant-private

6.7 Bibliographical Remarks 257

memory to improve the ants’ decision policies. Also, it does not recover from cycles

and does not use the information contained in all the ant subpaths.

Subramanian and colleagues (1997) have proposed an ant-based algorithm for

packet-switched nets. Their algorithm is a straightforward extension of ABC, ob-

tained by adding so-called uniform ants, an additional exploration mechanism that

should avoid a rapid suboptimal convergence of the algorithm. A major limitation of

these authors’ work is that, although the algorithm they propose is based on the same

cost-symmetry hypothesis as ABC, they apply it to packet-switched networks where

this requirement is very often not met.

Heusse, Snyers, Guérin, & Kuntz (1998) have proposed the Cooperative Asym-

metric Forward (CAF) model for routing in networks with asymmetric costs. CAF

is an ant-based approach that is intended to build routing tables that permit use of

a collection of paths between each pair of nodes. Unlike what happens in ABC and

AntNet, in CAF routing tables are based on cost estimates to destination nodes.

Depending on the objective pursued, CAF may use di¤erent metrics. Originally it

was studied using the delay metric, but it was later more deeply studied using the

load metric in the context of connection-oriented networks (Heusse & Kermarrec,

2000). CAF is strongly focused on convergence speed, and a complete presentation

of this technique, which involves a large amount of cooperation between two types of

agents, may be found in Heusse (2001).

Recently there has been a surge in interest concerning the use of ACO, and

in particular of AntNet-like, algorithms for routing in mobile ad hoc networks

(MANETs). Preliminary results, presented, for example, in Fujita, Saito, Matsui, &

Matsuo (2002), Güneş, Sorges, & Bouazizi (2002), Güneş & Spaniol (2002), Baras &

Mehta (2003), and Heissenbüttel & Braun (2003), are very promising and suggest

that routing problems in these highly dynamic types of networks are a possible novel

area for the successful application of ACO.

6.8 Things to Remember

9 Network routing is a di‰cult problem because of its stochastic and time-varying

nature.

9 The distributed nature of network routing is well matched by the multiagent nature

of ACO algorithms.

9 AntNet is an ACO algorithm especially designed to solve routing problems in data

networks. Its main di¤erences with classic ACO algorithms applied to NP-hard
problems are (1) its use of the network graph as the construction graph; (2) its asyn-

258 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

chronous nature (ants do not move synchronously on the graph as in NP-hard
applications), which allows the exploitation of the di¤erential path length e¤ect

observed in real ants; (3) the extra machinery required to evaluate meaningfully the

quality of the paths produced by the ants; and (4) the fact that it is used to solve

online problems.

9 In the simulation conditions and on the problems described in section 6.3, AntNet

reaches a performance that is comparable to, or better than that of state-of-the-

art algorithms such as OSPF, SPF, adaptive Bellman-Ford, Q-Routing, and PQ-

Routing:

� Under low load conditions, all the algorithms tested have similar performance. In

this case, also considering the huge variability in the possible tra‰c patterns, it is

very hard to assess whether an algorithm is significantly better than another or not.

� Under high, near-saturation loads, all the tested algorithms are able to deliver

the input throughput in a quite similar way, that is, in most of cases all the gen-

erated tra‰c is routed without big losses. On the contrary, the study of packet delay

distributions has shown remarkable di¤erences among the algorithms, in favor of

AntNet.

� Under saturation, packet losses or packet delays, or both, become too big, causing

the network operations to slow down. Therefore, saturation has to be only a tempo-

rary situation. If it is not, structural changes to the network characteristics, like

adding new and faster connection lines, rather than improvements of the routing al-

gorithm, should be in order. For these reasons, the responsiveness of the algorithms

to tra‰c loads causing only a temporary saturation was studied. Here also, AntNet

had a better performance than the competing algorithms.

6.9 Computer Exercises

Exercise 6.1 Reimplement the AntNet algorithm using as network tra‰c simulator

a public domain software such as, for example, OMNeT++ or NS2. OMNeT++ is

available at whale.hit.bme.hu/omnetpp/; NS2 is available at www.isi.edu/nsnam/ns/.

Exercise 6.2 In AntNet, at each intermediate node visited while building a path to

their destination node, forward ants wait in line in the data packet queues. Although

this allows them to simulate exactly the behavior of data packets, it causes delays in

the subsequent propagation of the collected information (to be done by the corre-

sponding backward ants). A possibility of avoiding this inherent delay would be to

let forward ants use the same high-priority queues used by backward ants and to let

6.9 Computer Exercises 259

backward ants make use of the current status of the local-link queues, that is, the

number of bits waiting to be sent, to estimate the time that would have been required

for a forward ant to cross the link at the current moment using the data queues. In

this way, forward ants are much quicker in building a path from source to destina-

tion, and at the same time the backward ants update the local models and the routing

tables with more up-to-date information.

Implement a variant of AntNet in which artificial ants use the above-mentioned

estimates to evaluate the quality of their paths and compare it to the standard Ant-

Net. Do you expect an increase or a decrease in performance? Are the results you

obtain a function of the degree of variability of the data tra‰c?

Hint: You can find a discussion of this extension of AntNet in Di Caro & Dorigo

(1998f), where it is called AntNet-CO, and in Di Caro (2003), where it is called

AntNet-FA.

Exercise 6.3 Investigate the behavior of AntNet when each artificial ant can have a

di¤erent value for the parameter a [a, found in equation (6.3), weighs the importance

of the heuristic values with respect to the pheromone values].

Exercise 6.4 Study the behavior of AntNet when changing the values of the pa-

rameters listed in box 6.1.

Exercise 6.5 In AntNet, whenever an ant uses a link, the associated pheromone is

incremented. Try to implement a version of AntNet in which ants can also cause a

decrease in pheromones (i.e., negative updates are possible). The idea is that if an ant

generates a very bad path, it could be sensible to decrease the probability of choosing

it by future ants. Compare this version of AntNet with the standard one.

Exercise 6.6 Test the behavior of AntNet in the absence of data tra‰c. Check

that it converges to routing tables implementing shortest paths among all node

pairs. Does convergence to shortest paths depend on the way the reinforcement r is

computed?

260 Chapter 6 AntNet: An ACO Algorithm for Data Network Routing

7 Conclusions and Prospects for the Future

Go to the ant, thou sluggard; consider her ways, and be wise. Which having no guide, overseer, or

ruler, Provideth her meat in the summer, and gathereth her food in the harvest.

—Proverbs 6: 6–8

At the time of completing this monograph on ant colony optimization (early summer

2003), it was 13 years since the first ideas that led to ACO were developed at the

Politecnico di Milano in Milan, Italy, and just 4 years since ACO was formalized as

a metaheuristic. In this short time span many things have happened and ACO is now

a well-recognized member of the family of metaheuristic methods for discrete opti-

mization problems.

In this final chapter we briefly summarize what we know about ACO and we give

a short overview of the current main research trends. We conclude by putting ACO

in the context of the wider research field of ant algorithms.

7.1 What Do We Know about ACO?

What we have learned in the first 13 years of life of ACO is a lot. Even more is what

we still need to learn and discover. In this section we briefly summarize our current

knowledge of the ACO metaheuristic, and in the next section we overview what are,

in our opinion, the most promising current research trends.

7.1.1 Theoretical Developments

To repeat the epigraph at the beginning of chapter 4: In theory, there is no di¤erence

between theory and practice. But in practice, there is a di¤erence! Apart from being

amusing, this aphorism contains much wisdom. It is true, in fact, that the theory

developed for ACO (the same is true for other metaheuristics, though) has little use

in practical terms. Nevertheless, what we have learned about theory will hopefully

be useful for better understanding the working of our algorithms and, maybe, for

designing better-performing ones in the future.

Summarizing, what we know about the theory aspects of ACO is the following:

9 Convergence proofs. We know that some of the best-performing ACO algorithms

(MMAS and ACS), both with and without local search, converge in value. As ex-

plained in chapter 4, convergence in value means that they will find, sooner or later,

the optimal solution. This is a rather weak result, since it also applies to random

search, and you can force the same property on any ACO algorithm by adding, for

example, a procedure called every constant number of steps and that generates a

random solution. The interesting point is, however, that the proof applies to two

algorithms,MMAS and ACS, that were not designed to converge, and that at the

same time have good performance over many di¤erent combinatorial optimization

problems.

We also know that it is possible to force an ACO algorithm to converge in solution

(i.e., generate over and over the same, optimal solution). This result can be obtained

by letting the pheromones evaporate very slowly, so that the optimal solution has

probability 1 of being generated before it might become impossible to generate it.

This result has only theoretical interest. In fact, in optimization we are interested in

generating the optimal solution once, and the fact that the algorithm generates it

over and over has no practical interest.

9 Model-based search framework. An interesting question when a new algorithm or

a new metaheuristic is proposed is its relation to other already existing algorithms

or metaheuristics. By putting ACO in the framework of model-based search, a first,

rather general answer to this question has been given: ACO algorithms have some

general characteristics in common with such di¤erent algorithms as population based

incremental learning (Baluja & Caruana, 1995), mutual-information–maximizing in-

put clustering (MIMIC) (De Bonet et al., 1997), cross-entropy (Rubinstein, 1999),

stochastic gradient descent (Robbins & Monroe, 1951), and estimation of distribu-

tion algorithms (Larrañaga & Lozano, 2001).

7.1.2 Experimental Results and Real-World Applications

As we have seen in chapter 5, ACO algorithms have been tested on a large number of

academic problems. These include problems related to the traveling salesman, as well

as assignment, scheduling, subset, and constraint satisfaction problems. For many of

these, world-class performance has been achieved. For example, ACO algorithms

are, at the time of writing, state-of-the-art (i.e., their performance is comparable to,

or better than, that of the best existing methods other than ACO) for the sequential

ordering problem (Gambardella & Dorigo, 2000), the vehicle routing problem with

time window constraints (Gambardella et al., 1999), the quadratic assignment prob-

lem (Maniezzo, 1999; Stützle & Hoos, 2000), the group shop scheduling problem

(Blum, 2003a), the arc-weighted l-cardinality tree problem (Blum & Blesa, 2003), and

the shortest common supersequence problem (Michel & Middendorf, 1999). Addi-

tionally, very good performance has been obtained by AntNet (see chapter 6) on

network routing problems (Di Caro & Dorigo, 1998c).

This success with academic problems has raised the attention of a number of

companies that have started to use ACO algorithms for real-world applications.

Among the first to exploit algorithms based on the ACO metaheuristic is EuroBios

(www.eurobios.com). They have applied ACO to a number of di¤erent scheduling

262 Chapter 7 Conclusions and Prospects for the Future

problems such as a continuous two-stage flow shop problem with finite reservoirs.

The modeled problem included various real-world constraints such as setup times,

capacity restrictions, resource compatibilities, and maintenance calendars. Another

company that has played, and still plays, a very important role in promoting the real-

world application of ACO is AntOptima (www.antoptima.com). AntOptima’s re-

searchers have developed a set of tools for the solution of vehicle routing problems

whose optimization algorithms are based on ACO. Particularly successful products

based on these tools are (1) Dyvoil, for the management and optimization of heating

oil distribution with a nonhomogeneous fleet of trucks, used for the first time by Pina

Petroli in Switzerland, and (2) AntRoute, for the routing of hundreds of vehicles of

Migros, the leading Swiss supermarket chain. Still another vehicle routing applica-

tion was developed by BiosGroup for the French company Air Liquide. Other in-

teresting real-world applications are those of Gravel, Price, & Gagné (2002), who

have applied ACO to an industrial scheduling problem in an aluminum casting cen-

ter, and by Bautista & Pereira (2002), who successfully applied ACO to solve an as-

sembly line balancing problem with multiobjective function and constraints between

tasks for a bike assembly line.

7.2 Current Trends in ACO

Today, several hundred papers have been written on the applications of ACO. It is a

true metaheuristic, with dozens of application areas. While both the performance of

ACO algorithms and our theoretical understanding of their working have signifi-

cantly increased, as shown in previous chapters, there are several areas in which until

now only preliminary steps have been taken and where much more research will have

to be done.

One of these research areas is the extension of ACO algorithms to more complex

optimization problems that include (1) dynamic problems, in which the instance data,

such as objective function values, decision parameters, or constraints, may change

while solving the problem; (2) stochastic problems, in which one has only proba-

bilistic information about objective function value(s), decision variable values, or

constraint boundaries, due to uncertainty, noise, approximation, or other factors;

and (3) multiple objective problems, in which a multiple objective function evaluates

competing criteria of solution quality.

Active research directions in ACO include also the e¤ective parallelization of ACO

algorithms and, on a more theoretical level, the understanding and characterization

of the behavior of ACO algorithms while solving a problem.

7.2 Current Trends in ACO 263

7.2.1 Dynamic Optimization Problems

A dynamic problem is a problem defined as a function of some quantities whose

value is set by the dynamics of an underlying system. In other words, some of the

characteristics of the problem change over time. A paradigmatic example is network

routing, as discussed in chapter 6 (it should be noted that the network routing prob-

lems discussed in chapter 6 are both dynamic and stochastic: dynamic because tra‰c

changes over time, and stochastic because the value assumed by tra‰c at di¤erent

temporal instants is a stochastic variable).

Another dynamic problem that has been considered in the literature on ACO is the

dynamic traveling salesman problem. In the dynamic TSP, cities may be deleted or

added over time (see chapter 2, section 2.3.6). Guntsch & Middendorf (2001) and

Guntsch, Middendorf, & Schmeck (2001) consider the case in which a certain per-

centage of the cities are deleted and replaced by new cities. The problem is then how

to recompute quickly a good tour for the new TSP problem. Guntsch and colleagues

propose three strategies. The first consists of a simple restart of the algorithm after all

pheromone trails are reinitialized. The second and third strategies are based on the

hypothesis that, at least for dynamic TSPs in which the percentage of cities replaced

is not too high, it is useful to exploit the information contained in the pheromone

trails. One of the two strategies reinitializes the pheromone trails exploiting heuristic

information, while the other makes use of pheromone information. The experimental

results, conducted on two instances from the TSPLIB (Reinelt, 1991), show that, if

given enough computation time, the simple restart strategy performs better. Other-

wise, if the time between two insertions/deletions is short, then the simple restart

strategy has not enough time to find a new solution and the two restart strategies that

partially reuse the pheromone information perform better.

Guntsch & Middendorf (2002b) have also proposed the use of population-based

ACO for both dynamic TSPs and dynamic QAPs, where the dynamic QAP they

consider is a QAP where in each fixed number of iterations some percentage of the

locations is deleted and replaced by new locations. Population-based ACO di¤ers

from standard ACO as described in chapter 3 in that it maintains a population of

pop solutions, used for updating the pheromone matrix. The algorithm works as fol-

lows: At the start of the algorithm, the population is empty. For the first pop itera-

tions the iteration-best solution is added to the growing population without any

constraints and no solution leaves the population. Whenever a solution enters the

population, the pheromone matrix (which is initialized uniformly with a value t0) is

updated by adding a constant quantity of pheromone Dt to each element of the

pheromone matrix which was used to build the solution. Beginning with iteration

264 Chapter 7 Conclusions and Prospects for the Future

popþ 1, the iteration-best solution becomes a candidate for insertion in the popula-

tion. Guntsch and Middendorf propose a few mechanisms to decide whether to insert

the iteration-best solution or not. These are based on simple heuristics such as re-

moving the oldest solution in the population, or removing the worst one, or remov-

ing solutions with a probability inversely proportional to their quality, and other

combinations thereof. When a solution is removed from the population, the pher-

omone matrix is updated by removing a constant quantity of pheromone Dt from

each element of the pheromone matrix which was originally used to build the re-

moved solution.

The interesting point of using population-based ACO for dynamic problems is

that, because all the information necessary to generate the pheromone matrix is

maintained in the population, in case the problem instance dynamically changes, it

is easy to apply a repair operator to the solutions in the population and then to re-

generate the pheromone matrix using the repaired solutions. In Guntsch & Midden-

dorf (2002a) some preliminary tests of this idea are run on two problem instances,

one TSP and one QAP. Comparisons with a restart algorithm, that is, an algorithm

that does not make any repair, but simply restarts after each modification in the

problem instance, showed that the population-based ACO approach is competitive

either when the changes to the problem are large (i.e., many cities/locations are sub-

stituted so that the new optimal solution is very di¤erent from the old one), or when

the time interval between two changes is short, so that the restart algorithm has not

enough time to find new good solutions.

Last, Eyckelhof & Snoek (2002) have considered another type of dynamic TSP

in which the number of cities remains constant and what changes is the distance

between some pairs of cities (this is intended to represent sudden changes in tra‰c

between selected locations). Their preliminary experimental results show that AS,

as well as the few extensions they propose, work reasonably well on some simple test

problems.

7.2.2 Stochastic Optimization Problems

By stochastic optimization we mean here those optimization problems for which

some of the variables used to define them have a stochastic nature. This could be the

problem components, as defined in chapter 2, section 2.2.1, which can have some

probability of being part of the problem or not, or the values taken by some of the

variables describing the problem, or the value returned by the objective function.

To the best of our knowledge, the only stochastic optimization problems to which

ACO has been applied are (1) network routing, which was already discussed at

7.2 Current Trends in ACO 265

length in chapter 6 and which is also a dynamic optimization problem, and (2) the

probabilistic TSP (PTSP).

The first application of ACO to the PTSP was done by Bianchi, Gambardella, &

Dorigo (2002a,b). In the PTSP, a TSP problem in which each city has a given prob-

ability of requiring a visit, the goal is to find an a priori tour of minimal expected

length over all the cities, with the strategy of visiting a random subset of cities in

the same order as they appear in the a priori tour. The ACO algorithm chosen by

Bianchi et al. to solve the PTSP was ACS. In fact, they implemented two versions

of ACS: the standard one (see chapter 3, section 3.4.1) and pACS, which di¤ers from

ACS only in the way the objective function is computed. In ACS, it is computed in

the standard way for the case in which each city has probability 1 to require a visit,

whereas in pACS the probabilities with which cities require a visit are taken into ac-

count. In practice, pACS uses the exact objective function, which can be computed in

Oðn2Þ (Jaillet, 1985, 1988), while ACS uses an approximation of the objective func-

tion, which can be computed in OðnÞ.
pACS was first experimentally shown to outperform some problem-specific heu-

ristics, and it was then compared with ACS. The experimental results, which were

run on homogeneous instances of the PTSP (i.e., all cities have the same probability

of requiring a visit), show that pACS is the best among the two algorithms except

for probabilities close to 1, in which case ACS is more e‰cient than pACS. This is

due to the fact that the computation of the exact objective function is CPU–time-

consuming, and this overhead is not justified in those cases in which the approximate

objective function, which can be computed much faster, is close enough to the exact

one.

More recently, Branke & Guntsch (2003) have considered two ways of improv-

ing the performance of ACO for the PTSP: they experimentally show that a coarse

and fast-to-compute approximation of the exact objective function and the use of

problem-specific heuristics to guide the ants during tour construction improve the

algorithm performance.

7.2.3 Multiobjective Optimization Problems

Many problems from real-world applications require the evaluation of multiple,

often conflicting, objectives. In such problems, which are called multiobjective opti-

mization problems (MOOPs), the goal becomes to find a solution that gives the best

compromise between the various objectives.

The selection of a compromise solution has to take into account the preferences of

the decision maker. There are di¤erent ways to determine such compromise solu-

tions. Under some mild assumptions on the preferences of the decision maker

266 Chapter 7 Conclusions and Prospects for the Future

(Steuer, 1986), compromise solutions belong to the set of e‰cient (or Pareto-optimal)

solutions. A solution is called e‰cient if it is not dominated by any other solution,

and the Pareto-optimal set is the set that contains all the e‰cient solutions. Hence,

one possibility to solve MOOPs is to find the Pareto-optimal set, or at least a good

approximation of it. The solutions in the set can then be given to the decision maker,

who will choose among them according to personal criteria.

Di¤erently, if the decision maker can give weights or priorities to the objectives

before solving the problem, then the MOOP can be transformed into a single objec-

tive problem. In fact, in the first case the di¤erent objectives can be combined in a

single objective given by their weighted sum, while in the second case the di¤erent

solutions can be ordered according to priorities and compared lexicographically.

The first applications of ACO to the solution of multiobjective optimization

problems are based on prioritized objectives. One such approach is the two-colony

approach of Gambardella et al. (1999a) to the vehicle routing problem with time

window constraints, which was presented in chapter 5, section 5.1.2.

A multicolony approach was also proposed by Mariano & Morales (1999) for the

design of water irrigation networks. Their approach di¤ers from that of Gambardella

et al. in that (1) the first colony constructs only a partial solution to the problem that

is completed to a full solution by the second colony; and (2) the solutions used to

update the pheromone trails are all the nondominated solutions found after the sec-

ond colony has completed the solution construction.

Other applications of ACO to MOOPs using prioritized objectives are those of

T’kindt, Monmarché, Tercinet, & Laügt (2002) and Gravel et al. (2002). T’kindt et

al. applied MMAS to a biobjective two-machine permutation flow shop problem.

Computational results showed that MMAS yields excellent performance from a

solution quality point of view. Gravel et al. applied an ACO algorithm to a four-

objectives problem arising in a real-world scheduling problem for a aluminum cast-

ing center. They used the objectives to construct the heuristic information to be used

by the ACO algorithm. For the pheromone update, only the most important objec-

tive was taken into account.

Doerner, Hartl, & Reimann (2001, 2003) used two cooperative ant colonies for

solving biobjective transportation problems. They combined the two objective func-

tions into a single one using a weighted sum approach. However, they used two col-

onies, which exploit di¤erent heuristic information for the solution construction;

each of the heuristic information used takes into account one of the objectives. From

an algorithmic point of view, the two approaches presented in Doerner, Hartl &

Reimann (2001, 2003) di¤er mainly in the way information is exchanged between the

colonies and in the way these colonies interact. Computational results suggest that

7.2 Current Trends in ACO 267

the multiple-colony approach leads to improved performance when compared to the

use of a single colony with single heuristic information.

Few ACO approaches exist that try to approximate the set of Pareto-optimal

solutions. Doerner, Gutjahr, Hartl, Strauss, & Stummer (2003) apply an extension of

ACS to a portfolio optimization problem. In their approach, for each of the ob-

jectives there is one pheromone matrix. An ant constructs a solution based on a

weighted combination of the pheromone matrices; the weights used by each ant are

chosen randomly when the ant is generated and kept fixed over its lifetime. After all

ants have finished their solution construction, the pheromone matrices for each ob-

jective are updated by allowing the two ants with the best solutions for the corre-

sponding objective to deposit pheromone. Experimental results obtained on instances

with five and ten objectives showed that the proposed ACS algorithm performed

better than the Pareto-simulated annealing proposed in Czyzak & Jaszkiewicz (1998)

and the nondominated sorting genetic algorithm (Deb, 2001).

Iredi, Merkle, & Middendorf (2001) applied ACO algorithms to a biobjective

single-machine total tardiness scheduling problem with changeover costs cij when

switching from a job i to a job j. They used a multicolony ACO algorithm, in which

each of the multiple colonies specializes in a di¤erent region of the Pareto front. Each

colony uses two pheromone matrices, one corresponding to the total tardiness crite-

rion and one to the changeover costs. For the solution construction, an ant uses a

weighted combination of the pheromones and of the heuristic information with re-

spect to the two criteria. After all ants of all colonies have completed their solution,

the set of all nondominated solutions from all colonies is determined; only ants in

this set are allowed to deposit pheromone. Experimental tests were done considering

various possibilities for defining the region of the Pareto front to which the colonies

specialize and the strategies for the pheromone update. This work was extended

by Guntsch & Middendorf (2002b), who adapted population-based ACO to multi-

objective problems and applied it to the same problem treated in the Iredi et al.

paper as well as to a variant of this problem with four objectives (Guntsch &

Middendorf, 2003).

7.2.4 Parallelization

Even when using metaheuristics, the solution of real-world optimization problems

may require long computation times. Parallel implementations of ACO algorithms,

for running on distributed (parallel) computing hardware, are therefore desirable.

ACO is inherently a distributed methodology which makes use of many individual

and local procedures, so it is particularly suited to parallelization. Although a num-

ber of parallel versions of ACO have been implemented and tested in limited settings

268 Chapter 7 Conclusions and Prospects for the Future

(see chapter 3, section 3.5), it is still an open question as to how to implement e‰-

cient parallel versions of ACO, and what type of performance improvement can be

obtained over sequential versions.

An interesting research direction would also be to develop and test truly distrib-

uted ACO algorithms running on parallel hardware. In particular, ACO software

running on Beowulf-style clusters of PCs (Sterling, Salmon, Becker, & Savarese,

1999) and GRID computing systems would be very useful to allow experimentation

with real-world problems presenting multiobjective, dynamic, and stochastic charac-

teristics, as discussed earlier.

Finally, a recent work by Merkle & Middendorf (2002b) has opened the way to

implementations of ACO algorithms on run-time reconfigurable processor arrays.

7.2.5 Understanding ACO’s Behavior

ACO algorithms are complex systems whose behavior is determined by the interac-

tion of many components such as parameters, macroscopic algorithm components

(e.g., the form of the probabilistic rule used by ants to build solutions, or the type of

pheromone update rule used), and problem characteristics. Because of this, it is very

di‰cult to predict their performance when they are applied to the solution of a novel

problem.

Recently, researchers have started to try to understand ACO algorithm behavior

by two typical approaches of science: (1) the study of the complex system under con-

sideration in controlled and simplified experimental conditions, and (2) the study of

the conditions under which the performance of the studied system degrades. Con-

tributions along these two lines of research are briefly discussed in the following.

Study of ACO in Controlled and Simplified Experimental Conditions

The analysis of ACO algorithm behavior on simple problems is interesting because

the behavior of the algorithm is not obscured by factors due to the complexity of the

problem itself. A first such analysis was presented in chapter 1 (see also Dorigo &

Stützle, 2001), where Simple-ACO was applied to the problem of finding the shortest

path in a graph. The experimental results show that many algorithm components,

which are essential to more advanced ACO models applied to challenging tasks, are

also important for e‰ciently finding shortest paths.

In a similar vein, Merkle & Middendorf (2003b) apply ACO to the linear assign-

ment problem, a permutation problem that is solvable in polynomial time (Papadi-

mitriou & Steiglitz, 1982). By varying the cost matrix, they are able to generate

classes of instances that di¤er in the number and structure of the optimal solutions.

They tested three di¤erent ways of using the pheromones for the construction of a

7.2 Current Trends in ACO 269

permutation and explored three di¤erent ways of filling the permutation (forward

construction, backward construction, and assigning the positions in a random order).

The experiments enabled the identification of situations in which particular construc-

tion rules fail to achieve good behavior and the explaination of why this can be the

case.

Merkle & Middendorf (2002c) also proposed a deterministic model of ACO algo-

rithms based on the ants’ expected behavior and used it to model the dynamics of

an ACO algorithm that uses iteration-best update when applied to a special type

of permutation problem that consists of several, independent subproblems. They

studied the behavior of the ACO model analytically and performed a fixed point

analysis of the pheromone matrices, showing that the position of the fixed points in

the state space of the system has a strong influence on the algorithm’s optimization

behavior.

Finally, Blum & Dorigo (2003, 2004) experimentally and theoretically studied the

behaviour of AS applied to unconstrained binary problems, that is, binary problems

for which the values of di¤erent decision variables are independent of each other.

They were able to prove that, in this setting, the expected quality of the solutions

generated by AS increases monotonically over time. Although their result cannot be

transferred to the application of AS to constrained problems, in Blum & Dorigo

(2003) they give empirical evidence that it holds for one of the most studied con-

strained problems: the TSP.

Study of the Conditions under which ACO Algorithm Performance Degrades

The study of problems in which a stochastic algorithm’s performance degrades is an

important research direction to understand an algorithm’s behavior. Work in this

direction has recently been done by Blum, Sampels, & Zlochin (2002), who have

shown analytically that the expected quality of the solutions found by AS on partic-

ular instances of the arc-weighted l-cardinality tree problem (see chapter 5, section

5.4.3) may decrease over time. In their example this was the case because for the

particular instance chosen there are two equally good competing solutions, and a

third, bad solution is taking profit from this. However, in this particular case, the use

of di¤erent update rules like iteration-best update would not lead to such behavior.

This type of analysis is extended by Blum & Sampels (2002b) to ACO algorithms for

the group shop scheduling problem (see also chapter 5, section 5.3.2). They show

experimentally that for particular choices in the definition of the pheromone trails,

the average quality of the solutions returned by ACO algorithms may decrease for a

number of iterations, even if iteration-best update is used. A more detailed analysis

showed that this e¤ect becomes stronger when the problem becomes more con-

270 Chapter 7 Conclusions and Prospects for the Future

strained. Hence, the problem constraints, together with the chosen meaning given to

the pheromone trails, determine how strong this detrimental e¤ect, which Blum and

Sampels call model bias, is.

7.3 Ant Algorithms

The ideas presented in this book are part of a growing discipline known collectively

as ant algorithms. Ant algorithms have been defined in Dorigo et al. (2000a) and

Dorigo (2001) as multiagent systems inspired by the observation of real ant colony

behavior exploiting stigmergy.

Stigmergy, defined in chapter 1, section 1.4, plays an important role in ant algo-

rithms research because the implementation of ant algorithms is made possible by the

use of so-called stigmergic variables, that is, variables that contain the information

used by the artificial ants to communicate indirectly. In some cases, as in the foraging

behavior discussed in chapter 1 and at the base of ACO, the stigmergic variable is

a specifically defined variable used by ants to adaptively change the way they build

solutions to a considered problem.

But ant foraging is not the only social insect behavior that has inspired computer

scientists and roboticists. Other examples, that we shall discuss only briefly here, are

brood sorting and division of labor. In these cases, as discussed in the following, the

stigmergic variable is one of the problem variables: a change in its value determines

not only a change in the way a solution to the problem is built but also a direct

change in the solution of the problem itself. A more comprehensive discussion of ant

algorithms and stigmergy can be found in Bonabeau, Dorigo, & Theraulaz (1999,

2000) and in Dorigo et al. (2000a). In the following subsections we briefly describe

some of the current directions in ant algorithms research.

7.3.1 Other Models Inspired by Foraging and Path Marking

As we know by now, the foraging behavior of ant colonies is at the basis of the ACO

metaheuristic. But foraging, and more generally path-marking, behaviors have also

inspired other types of algorithms. For example, Wagner, Lindenbaum, & Bruck-

stein proposed two algorithms for exploring a graph called, respectively, Edge Ant

Walk (Wagner, Lindenbaum, & Bruckstein, 1996) and Vertex Ant Walk (Wagner,

Lindenbaum, & Bruckstein, 1998) in which one or more artificial ants walk along

the arcs of the graph, lay a pheromone trail on the visited arcs (or nodes), and use the

pheromone trails deposited by previous ants to direct their exploration. Although the

general idea behind the algorithm is similar to the one that inspired ACO, the actual

7.3 Ant Algorithms 271

implementation is very di¤erent. In the work of Wagner et al., pheromone trail is the

stigmergic variable and is used as a kind of distributed memory that directs the ants

toward unexplored areas of the search space. In fact, their goal is to cover the graph,

that is, to visit all the nodes, without knowing the graph topology. They were able

to prove a number of theoretical results, for example, concerning the time com-

plexity for covering a generic graph. Also, they recently extended their algorithms

(Wagner, Lindenbaum, & Bruckstein, 2000) so that they can be applied to dynami-

cally changing graphs. A possible and promising application of this work is Internet

search, where the problem is to keep track of the hundreds of thousands of pages

added every day (Lawrence & Giles, 1998) (as well as of those that disappear).

7.3.2 Models Inspired by Brood Sorting

Brood sorting is an activity which can be observed in many ant species (e.g., in Lep-

tothorax unifasciatus [Franks & Sendova-Franks, 1992], in Lasius niger [Chrétien,

1996], and in Pheidole pallidula [Deneubourg, Goss, Franks, Sendova-Franks,

Detrain, & Chrétien, 1991]), which compactly cluster their smaller eggs and micro-

larvae at the center of the nest brood area and the largest larvae at the periphery of

the brood cluster. Deneubourg et al. (1991) proposed a model of this phenomenon

in which an ant picks up and drops an item according to the number of similar sur-

rounding items. For example, if an ant carries a small egg, it will, with high proba-

bility, drop the small egg in a region populated by small eggs. On the contrary, if an

ant is unloaded and finds a large larva surrounded by small eggs, it will, with high

probability, pick up the larva. In all other situations the probability with which an

ant picks up or drops an item is set to a small value.

Lumer & Faieta (1994) and Kuntz, Snyers, & Layzell (1999) have applied this

model to the following clustering problem. Given are a set of points in an n-

dimensional space and a metric d which measures the distance between pairs of

points. The points must be projected onto the plane in such a way that if any two

projected points in the plane are neighbors, their corresponding points in the n-

dimensional space are neighbors under the metric d. The initial projection is random

and the artificial ants then perform random walks on the plane and pick up or drop

projected data items using rules from the model of Deneubourg et al. (1991). The

results obtained are promising: they are qualitatively equivalent to those obtained by

classic techniques like spectral decomposition or stress minimization (Kuntz et al.,

1999), but at a lower computational cost. Recently, Handl & Meyer (2002) extended

Lumer and Faieta’s algorithm and proposed an application to the classification of

Web documents and to their visualization in the form of topic maps (Fabrikant,

2000).

272 Chapter 7 Conclusions and Prospects for the Future

The model of Deneubourg et al. (1991) has also inspired a number of researchers

in collective robotics who have implemented robotic systems capable of building

clusters of objects without the need for any centralized control (Beckers, Holland, &

Deneubourg, 1994; Martinoli & Mondada, 1998). Holland & Melhuish (1999) have

extended the model of Deneubourg et al. so that it can be used by a colony of robots

to sort objects.

In all these applications the stigmergic variable is represented by the physical dis-

tribution of the items: di¤erent configurations of the items determine di¤erent actions

by the artificial agents.

7.3.3 Models Inspired by Division of Labor

In ant colonies individual workers tend to specialize in certain tasks (Robinson,

1992). Nevertheless, ants can adapt their behavior to the circumstances: a soldier ant

can become a forager, a nurse ant a guard, and so on. Such a combination of spe-

cialization and flexibility in task allocation is appealing for multiagent optimization

and control, particularly in resource or task allocation problems that require contin-

uous adaptation to changing conditions. Robinson (1992) developed a threshold

model in which workers with low response thresholds respond to lower levels of

stimuli than do workers with high response thresholds. In this model the stimuli play

the role of stigmergic variables.

A response threshold model of division of labor in which task performance reduces

the intensity of stimuli has been used to solve dynamic task-scheduling problems

(Bonabeau et al., 1999; Bonabeau, Sobkowski, Theraulaz, & Deneubourg, 1997a).

When workers with low thresholds perform their normal tasks, the task-associated

stimuli never reach the thresholds of the high-threshold workers. But if, for any rea-

son, the intensity of task-associated stimuli increases, high-threshold workers engage

in task performance. Bonabeau et al. (1999) and Campos, Bonabeau, Theraulaz, &

Deneubourg (2000) present an application of these ideas to the problem of choosing

a paint booth for trucks coming out of an assembly line in a truck factory. In this

system each paint booth is considered an insect-like agent that, although special-

ized in one color, can, if needed, change its color (though it is expensive). The ant

algorithm minimizes the number of booth setups (i.e., paint changeovers). This and

similar scheduling and task allocation problems were also recently investigated by

Nouyan (2002) and Cicirello & Smith (2001, 2003).

The threshold model was also used by Krieger & Billeter (2000) and Krieger,

Billeter, & Keller (2000) to organize a group of robots. They designed a group

of Khepera robots (miniature mobile robots aimed at ‘‘desktop’’ experiments

[Mondada, Franzi, & Ienne, 1993]) to collectively perform an object-retrieval task.

7.3 Ant Algorithms 273

In one of the experiments they performed, the objects were spread in the environ-

ment and the robots’ task was to take them back to their ‘‘nest’’ where they were

dropped in a basket. The available ‘‘energy’’ of the group of robots decreased regu-

larly with time, but was increased when pucks were dropped into the basket. More

energy was consumed during retrieval trips than when robots were immobile in the

nest. Each robot had a threshold for the retrieval task: when the energy of the colony

went below the threshold of a robot, the robot left the nest to look for objects in the

environment. Krieger and Billeter’s experiment has shown the viability of the

threshold-based ant algorithm in a rather simple environment. Further experimenta-

tion is necessary to test the methodology on more complex tasks.

7.3.4 Models Inspired by Cooperative Transport

The behavior of ant colonies has also inspired roboticists interested in the design of

distributed control algorithms for groups of robots (Martinoli & Mondada, 1998).

An example of a task that has been used as a benchmark for ant algorithms applied

to distributed robotics problems is cooperative box pushing (Kube & Zhang, 1994).

In several ant species, when it is impossible for a single ant to retrieve a large item,

nest mates are recruited to help through direct contact or chemical marking (Franks,

1986; Mo¤ett, 1988; Sudd, 1965), implementing in this way a form of cooperative

transport. The ants move around the item they want to carry, changing position and

alignment until they succeed in carrying it toward the nest. An ant algorithm which

reproduces the behavior of real ants in a group of robots whose task is to push a box

toward a goal has been implemented and tested by Kube & Zhang (1994). Another

example of application of ant algorithms is the related problem of pulling an object.

This has been achieved (Dorigo, Trianni, Şahin, Labella, Gross, Baldassare, Nolfi;

Deneubourg, Mondada, Floreano, & Gambardella, 2003) within the Swarm-bots

project (www.swarm-bots.org), a project dedicated to the study of ant algorithms for

autonomous robotics applications.

274 Chapter 7 Conclusions and Prospects for the Future

Appendix: Sources of Information about the ACO Field

There are a number of sources for information about the ACO field. The most im-

portant ones are listed in the following.

9 Webpages

� www.aco-metaheuristic.org: These are the o‰cial webpages dedicated to collecting

information about ACO.

� www.metaheuristics.org: These are the webpages of the ‘‘Metaheuristics Network’’

project. This European Union–funded project is dedicated to the theoretical analysis

and experimental comparison of metaheuristics.

9 Software. Software, distributed under the GNU license, is available at: www.aco-

metaheuristic.org/aco-code/

9 Popular press. ACO is often covered by the popular press. Pointers to populari-

zation articles can be found at: www.aco-metaheuristic.org/aco-in-the-press.html

9 Mailing list. A moderated mailing list dedicated to the exchange of information

related to ACO is accessible at: www.aco-metaheuristic.org/mailing-list.html

9 Conferences and journals

� ‘‘ANTS 2004—Fourth International Workshop on Ant Colony Optimization and

Swarm Intelligence.’’ The ANTS biannual series of workshops (see iridia.ulb.ac.be/

~ants), held for the first time in 1998, is the oldest conference in the ACO and swarm

intelligence fields.

� ‘‘From Worker to Colony: International Workshop on the Mathematics and

Algorithms of Social Insects.’’ This workshop was held for the first time in Cam-

bridge, UK, in 2001, and the second workshop took place at the Georgia Institute of

Technology, Atlanta, in December 2003.

� Special sessions or special tracks on ACO are organized in many conferences. Ex-

amples are the IEEE Congress on Evolutionary Computation (CEC) and the Genetic

and Evolutionary Computation (GECCO) series of conferences.

� Papers on ACO can regularly be found in many other conferences such as ‘‘Parallel

Problem Solving from Nature’’ conferences, INFORMS meetings, ECCO confer-

ences, the Metaheuristics International Conference, the European Workshop on

Evolutionary Computation in Combinatorial Optimization, and many others, and in

many journals, such as Artificial Life; Evolutionary Computation; IEEE Transactions

on Systems, Man, and Cybernetics; IEEE Transactions on Evolutionary Computation;

INFORMS Journal on Computing; Journal of Operations Research Society; European

Journal of Operational Research; and so on.

References

Aardal, K. I., van Hoesel, S. P. M., Koster, A. M. C. A., Mannino, C., & Sassano, A. (2001). Models and
solution techniques for the frequency assignment problem. Technical report 01-40, Konrad-Zuse-Zentrum
für Informationstechnik, Berlin.

Aarts, E. H. L., Korst, J. H. M., & van Laarhoven, P. J. M. (1997). Simulated annealing. In E. H. L.
Aarts & J. K. Lenstra (Eds.), Local Search in Combinatorial Optimization (pp. 91–120). Chichester, UK,
John Wiley & Sons.

Aarts, E. H. L., & Lenstra, J. K. (Eds.). (1997). Local Search in Combinatorial Optimization. Chichester,
UK, John Wiley & Sons.

Abdul-Razaq, T. S., Potts, C. N., & Wassenhove, L. N. V. (1990). A survey of algorithms for the single
machine total weighted tardiness scheduling problem. Discrete Applied Mathematics, 26(2), 235–253.

Alaettinoğlu, C., Shankar, A. U., Dussa-Zieger, K., & Matta, I. (1992). Design and implementation of
MaRS: A routing testbed. Technical report UMIACS-TR-92-103, CS-TR-2964, Institute for Advanced
Computer Studies and Department of Computer Science, University of Maryland, College Park.

Anstreicher, K. M., Brixius, N. W., Goux, J.-P., & Linderoth, J. (2002). Solving large quadratic assign-
ment problems on computational grids. Mathematical Programming, 91(3), 563–588.

Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (1995). Finding cuts in the TSP. Technical report
95-05, DIMACS Center, Rutgers University, Piscataway, NJ.

Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (1998). On the solution of traveling salesman prob-
lems. Documenta Mathematica, Extra Volume ICM III, 645–656.

Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (1999). Finding tours in the TSP. Technical report
99885, Forschungsinstitut für Diskrete Mathematik, University of Bonn, Germany.

Applegate, D., Cook, W., & Rohe, A. (2003). Chained Lin-Kernighan for large traveling salesman prob-
lems. INFORMS Journal on Computing, 15(1), 82–92.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (1999).
Complexity and Approximation—Combinatorial Optimization Problems and Their Approximability Prop-
erties. Berlin, Springer-Verlag.

Bacchus, F., Chen, X., van Beek, P., & Walsh, T. (2002). Binary vs non-binary constraints. Artificial In-
telligence, 140(1–2), 1–37.

Baird, L. C., & Moore, A. W. (1999). Gradient descent for general reinforcement learning. In M. Kearns,
S. Solla, & D. Cohn (Eds.), Advances in Neural Information Processing Systems, 11 (pp. 968–974). Cam-
bridge, MA, MIT Press.

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop schedul-
ing. Management Science, 44(2), 262–275.

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm. In
A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning
(ML-95) (pp. 38–46). Palo Alto, CA, Morgan Kaufmann.

Baras, J. S., & Mehta, H. (2003). A probabilistic emergent routing algorithm for mobile ad hoc networks.
In Proceedings of WiOpt03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Sophia-
Antipolis, France, INRIA.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve di‰-
cult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 834–846.

Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique problem. Algorithmica,
29(4), 610–637.

Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA Journal on Computing, 6(2), 126–140.

Bauer, A., Bullnheimer, B., Hartl, R. F., & Strauss, C. (2000). Minimizing total tardiness on a single
machine using ant colony optimization. Central European Journal for Operations Research and Economics,
8(2), 125–141.

Baum, E. B. (1986). Towards practical ‘‘neural’’ computation for combinatorial optimization problems. In
J. S. Denker (Ed.), Neural Networks for Computing, vol. 151 (pp. 53–58). New York, American Institute of
Physics Conference Proceedings.

Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing. In M. Dorigo, G. Di Caro,
& M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to Artificial Ants: Third Interna-
tional Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer Science (pp. 65–75). Berlin,
Springer-Verlag.

Baxter, J. (1981). Local optima avoidance in depot location. Journal of the Operational Research Society,
32, 815–819.

Beckers, R., Deneubourg, J.-L., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger
(hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Be-
havior, 6(6), 751–759.

Beckers, R., Holland, O. E., & Deneubourg, J.-L. (1994). From local actions to global tasks: Stigmergy
and collective robotics. In R. Brooks & P. Maes (Eds.), Artificial Life IV (pp. 181–189). Cambridge, MA,
MIT Press.

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87–90.

Bellman, R., Esogbue, A. O., & Nabeshima, I. (1982). Mathematical Aspects of Scheduling and Applica-
tions. New York, Pergamon Press.

Bentley, J. L. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Com-
puting, 4(4), 387–411.

Berger, B., & Leight, T. (1998). Protein folding in the hydrophobic-hydrophilic (hp) model is NP-complete.
Journal of Computational Biology, 5(1), 27–40.

Bertsekas, D. (1995a). Dynamic Programming and Optimal Control. Belmont, MA, Athena Scientific.

Bertsekas, D. (1995b). Nonlinear Programming. Belmont, MA, Athena Scientific.

Bertsekas, D., & Gallager, R. (1992). Data Networks. Englewood Cli¤s, NJ, Prentice Hall.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Belmont, MA, Athena Scientific.

Bianchi, L., Gambardella, L. M., & Dorigo, M. (2002a). An ant colony optimization approach to the
probabilistic traveling salesman problem. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernández-
Villacanas, & H.-P. Schwefel (Eds.), Proceedings of PPSN-VII, Seventh International Conference on Par-
allel Problem Solving from Nature, vol. 2439 of Lecture Notes in Computer Science (pp. 883–892). Berlin,
Springer-Verlag.

Bianchi, L., Gambardella, L. M., & Dorigo, M. (2002b). Solving the homogeneous probabilistic traveling
salesman problem by the ACO metaheuristic. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceed-
ings of ANTS 2002—From Ant Colonies to Artificial Ants: Third International Workshop on Ant Algo-
rithms, vol. 2463 of Lecture Notes in Computer Science (pp. 176–187). Berlin, Springer-Verlag.

Birattari, M., Di Caro, G., & Dorigo, M. (2002a). Toward the formal foundation of ant programming. In
M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to Artifi-
cial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer Science
(pp. 188–201). Berlin, Springer-Verlag.

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002b). A racing algorithm for configuring
metaheuristics. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balak-
rishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke,
& N. Jonoska (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2002) (pp. 11–18). San Francisco, Morgan Kaufmann.

Bland, R. G., & Shallcross, D. F. (1989). Large traveling salesman problems arising from experiments in
X-ray crystallography: A preliminary report on computation. Operations Research Letters, 8, 125–128.

Blum, C. (2002a). ACO applied to group shop scheduling: A case study on intensification and diversifica-
tion. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to

278 References

Artificial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer
Science (pp. 14–27). Berlin, Springer-Verlag.

Blum, C. (2002b). Metaheuristics for Group Shop Scheduling. DEA thesis, Université Libre de Bruxelles,
Brussels.

Blum, C. (2003a). An ant colony optimization algorithm to tackle shop scheduling problems. Technical
report TR/IRIDIA/2003-1, IRIDIA, Université Libre de Bruxelles, Brussels.

Blum, C. (2003b). Beam-ACO. Hybridizing ant colony optimization with beam search. An application
to open shop scheduling. Technical report TR/IRIDIA/2003-17, IRIDIA, Université Libre de Bruxelles,
Brussels.

Blum, C., & Blesa, M. J. (2003). Metaheuristics for the edge-weighted k-cardinality tree problem. Techni-
cal report LSI-03-1-R, Departament de Llenguatges i Sistemes Informátics, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Blum, C., & Dorigo, M. (2003). Deception in ant colony optimization. Part I: Definition and examples.
Technical report TR/IRIDIA/2003-18, IRIDIA, Université Libre de Bruxelles, Brussels.

Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Trans-
actions on Systems, Man, and Cybernetics–Part B, to appear.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys, 35(3), 268–308.

Blum, C., Roli, A., & Dorigo, M. (2001). HC–ACO: The hyper-cube framework for Ant Colony Opti-
mization. In Proceedings of MIC’2001—Metaheuristics International Conference, vol. 2 (pp. 399–403).

Blum, C., & Sampels, M. (2002a). Ant colony optimization for FOP shop scheduling: A case study on
di¤erent pheromone representations. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba,
P. Marrow, & M. Shackleton (Eds.), Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’02) (pp. 1558–1563). Piscataway, NJ, IEEE Press.

Blum, C., & Sampels, M. (2002b). When model bias is stronger than selection pressure. In J. J. Merelo, P.
Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, & H.-P. Schwefel (Eds.), Proceedings of PPSN-VII,
Seventh International Conference on Parallel Problem Solving from Nature, vol. 2439 in Lecture Notes in
Computer Science (pp. 893–902). Berlin, Springer-Verlag.

Blum, C., Sampels, M., & Zlochin, M. (2002). On a particularity in model-based search. In W. B. Lang-
don, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J.
Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, & N. Jonoska (Eds.), Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2002) (pp. 35–42). San Francisco, Mor-
gan Kaufmann.

Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial
global optimization. Operations Research Letters, 16, 101–113.

Bolondi, M., & Bondanza, M. (1993). Parallelizzazione di un algoritmo per la risoluzione del problema del
commesso viaggiatore. Master’s thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Sys-
tems. New York, Oxford University Press.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behav-
ior. Nature, 406, 39–42.

Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz, P., & Theraulaz, G. (1998). Routing in tele-
communication networks with ‘‘smart’’ ant-like agents. In S. Albayrak & F. Garijo (Eds.), Proceedings of
IATA’98, Second International Workshop on Intelligent Agents for Telecommunication Applications, vol.
1437 of Lecture Notes in Artificial Intelligence (pp. 60–72). Berlin, Springer-Verlag.

Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1997a). Adaptive task allocation
inspired by a model of division of labor in social insects. In D. Lundha, B. Olsson, & A. Narayanan (Eds.),
Bio-Computation and Emergent Computing (pp. 36–45). Singapore, World Scientific Publishing.

References 279

Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997b). Self-organization in
social insects. Tree, 12(5), 188–193.

Borndörfer, R., Eisenblätter, A., Grötschel, M., & Martin, A. (1998a). The orientation model for frequency
assignment problems. Technical report 98-01, Konrad Zuse Zentrum für Informationstechnik, Berlin.

Borndörfer, R., Ferreira, C., & Martin, A. (1998b). Decomposing matrices into blocks. SIAM Journal on
Optimization, 9(1), 236–269.

Boyan, J., & Littman, M. (1994). Packet routing in dynamically changing networks: A reinforcement
learning approach. In J. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information Pro-
cessing Systems 6 (NIPS6) (pp. 671–678). San Francisco, Morgan Kaufmann.

Branke, J., & Guntsch, M. (2003). New ideas for applying ant colony optimization to the proba-
bilistic TSP. In G. R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni, J. J. R. Cardalda, D. W. Corne,
J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, & E. Marchiori (Eds.), Applications of Evolutionary Com-
puting, Proceedings of EvoWorkshops 2003, vol. 2611 of Lecture Notes in Computer Science (pp. 165–175).
Berlin, Springer-Verlag.

Branke, J., Middendorf, M., & Schneider, F. (1998). Improved heuristics and a genetic algorithm for
finding short supersequences. OR Spektrum, 20(1), 39–46.

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle routing problem with time
windows. INFORMS Journal on Computing, 15(4), 347–368.

Brelaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22,
251–256.

Brixius, N. W., & Anstreicher, K. M. (2001). The Steinberg wiring problem. Technical report, College of
Business Administration, University of Iowa, Iowa City.

Brucker, P. (1998). Scheduling Algorithms. Berlin, Springer-Verlag.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project
scheduling: Notation, classification, models, and methods. European Journal of Operational Research,
112(1), 3–41.

Brucker, P., Hurink, J., & Werner, F. (1996). Improving local search heuristics for some scheduling prob-
lems—Part I. Discrete Applied Mathematics, 65(1–3), 97–122.

Bruinsma, O. H. (1979). An Analysis of Building Behaviour of the Termite Macrotemes subhyalinus. PhD
thesis, Lanbouwhogeschool te Wageningen, Netherlands.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the Ant System—A
computational study. Technical report, Institute of Management Science, University of Vienna, Austria.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999a). Applying the Ant System to the vehicle routing
problem. In S. Voss, S. Martello, I. H. Osman, & C. Roucairol (Eds.), Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization (pp. 285–296). Dordrecht, Netherlands, Kluwer Aca-
demic Publishers.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999b). An improved ant system algorithm for the vehicle
routing problem. Annals of Operations Research, 89, 319–328.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999c). A new rank-based version of the Ant System: A
computational study. Central European Journal for Operations Research and Economics, 7(1), 25–38.

Bullnheimer, B., Kotsis, G., & Strauss, C. (1998). Parallelization strategies for the Ant System. In R. D.
Leone, A. Murli, P. Pardalos, & G. Toraldo (Eds.), High Performance Algorithms and Software in Non-
linear Optimization, No. 24 in Kluwer Series of Applied Optmization (pp. 87–100). Dordrecht, Nether-
lands, Kluwer Academic Publishers.

Burkard, R. E., & O¤ermann, J. (1977). Entwurf von Schreibmaschinentastaturen mittels quadratischer
Zuordnungsprobleme. Zeitschrift für Operations Research, 21, B121–B132.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (Eds.). (2001).
Self-Organization in Biological Systems. Princeton, NJ, Princeton University Press.

280 References

Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (2000). Dynamic scheduling and division
of labor in social insects. Adaptive Behavior, 8(3), 83–96.

Cantú-Paz, E. (2000). E‰cient and Accurate Parallel Genetic Algorithms. Boston, Kluwer Academic
Publishers.

Caprara, A., Fischetti, M., & Toth, P. (1999). A heuristic method for the set covering problem. Operations
Research, 47(5), 730–743.

Casillas, J., Cordón, O., & Herrera, F. (2000). Learning cooperative fuzzy linguistic rules using ant colony
algorithms. Technical report DECSAI-00-01-19, Department of Computer Science and Artificial Intelli-
gence, University of Granada, Granada, Spain.

Casillas, J., Cordón, O., & Herrera, F. (2002). COR: A methodology to improve ad hoc data-driven lin-
guistic rule learning methods by inducing cooperation among rules. IEEE Transactions on Systems, Man,
and Cybernetics, 32(4), 526–537.

Cerný, V. (1985). A thermodynamical approach to the traveling salesman problem. Journal of Opti-
mization Theory and Applications, 45(1), 41–51.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., & Menon, R. (2000). Parallel Program-
ming in OpenMP. San Francisco, Morgan Kaufmann.

Choi, S., & Yeung, D.-Y. (1996). Predictive Q-routing: A memory-based reinforcement learning approach
to adaptive tra‰c control. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in Neural Infor-
mation Processing Systems 8 (NIPS8) (pp. 945–951). Cambridge, MA, MIT Press.

Chrétien, L. (1996). Organisation spatiale du matériel provenant de l’excavation du nid chez Messor bar-
barus et des cadavres d’ouvrières chez Lasius niger (Hymenopterae: Formicidae). PhD thesis, Université
Libre de Bruxelles, Brussels.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem. Tech-
nical report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh.

Cicirello, V. A., & Smith, S. F. (2001). Ant colony control for autonomous decentralized shop floor rout-
ing. In Proceedings of the 5th International Symposium on Autonomous Decentralized Systems (pp. 383–
390). Los Alamitos, CA, IEEE Computer Society Press.

Cicirello, V. A., & Smith, S. F. (2003). Wasp-like agents for distributed factory coordination. Autonomous
Agents and Multi-Agent Systems, to appear.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Proceedings of
the European Working Session on Learning (EWSL-91), vol. 482 of Lecture Notes in Artificial Intelligence
(pp. 151–163). Berlin, Springer-Verlag.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research, 12, 568–581.

Co¤man, E. G., Jr., Garey, M. R., & Johnson, D. S. (1997). Approximation algorithms for bin packing:
A survey. In D. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems (pp. 46–93). Boston,
PWS Publishing.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992a). Distributed optimization by ant colonies. In F. J.
Varela & P. Bourgine (Eds.), Proceedings of the First European Conference on Artificial Life (pp. 134–142).
Cambridge, MA, MIT Press.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992b). An investigation of some properties of an ant algo-
rithm. In R. Männer & B. Manderick (Eds.), Proceedings of PPSN-II, Second International Conference on
Parallel Problem Solving from Nature (pp. 509–520). Amsterdam, Elsevier.

Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant System for job-shop scheduling.
JORBEL—Belgian Journal of Operations Research, Statistics and Computer Science, 34(1), 39–53.

Congram, R. K., Potts, C. N., & de Velde, S. L. V. (2002). An iterated dynasearch algorithm for the single–
machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 14(1), 52–67.

References 281

Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., & Schrijver, A. (1998). Combinatorial Optimiza-
tion. New York, John Wiley & Sons.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9(4), 309–348.

Cordón, O., de Viana, I. F., & Herrera, F. (2002). Analysis of the best-worst Ant System and its variants
on the TSP. Mathware and Soft Computing, 9(2–3), 177–192.

Cordón, O., de Viana, I. F., Herrera, F., & Moreno, L. (2000). A new ACO model integrating evolution-
ary computation concepts: The best-worst Ant System. In M. Dorigo, M. Middendorf, & T. Stützle (Eds.),
Abstract Proceedings of ANTS 2000—From Ant Colonies to Artificial Ants: Second International Workshop
on Ant Algorithms (pp. 22–29). Brussels, IRIDIA, Université Libre de Bruxelles.

Cordón, O., & Herrera, F. (2000). A proposal for improving the accuracy of linguistic modeling. IEEE
Transactions on Fuzzy Systems, 8(3), 335–344.

Cordone, R., & Ma‰oli, F. (2001). Coloured Ant System and local search to design local telecommuni-
cation networks. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R.
Raidl, & H. Tijink (Eds.), Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001,
vol. 2037 of Lecture Notes in Computer Science (pp. 60–69). Berlin, Springer-Verlag.

Cordone, R., & Ma‰oli, F. (2003). On the complexity of graph tree partition problems. Discrete Applied
Mathematics, 134(1–3), 51–65.

Corne, D., Dorigo, M., & Glover, F. (Eds.). (1999). New Ideas in Optimization. London, McGraw Hill.

Costa, D., & Hertz, A. (1997). Ants can colour graphs. Journal of the Operational Research Society, 48,
295–305.

Crauwels, H. A. J., Potts, C. N., & Wassenhove, L. N. V. (1998). Local search heuristics for the single
machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 10(3), 341–350.

Crescenzi, P., Goldman, D., Papadimitriou, C. H., Piccolboni, A., & Yannakakis, M. (1998). On the
complexity of protein folding. Journal of Computational Biology, 5(3), 423–466.

Croes, G. A. (1958). A method for solving traveling salesman problems. Operations Research, 6, 791–812.

Czyzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A metaheuristic technique for multiple
objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7, 34–47.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a large-scale traveling salesman
problem. Operations Research, 2, 393–410.

Davenport, A., Tsang, E., Wang, C. J., & Zhu, K. (1994). GENET: A connectionist architecture for
solving constraint satisfaction problems by iterative improvement. In Proceedings of the 14th National
Conference on Artificial Intelligence (pp. 325–330). Menlo Park, CA, AAAI Press/MIT Press.

Dawid, H., Doerner, K., Hartl, R. F., & Reimann, M. (2002). Ant systems to solve operational problems.
In H. Dawid, K. Doerner, G. Dor¤ner, T. Fent, M. Feurstein, R. F. Hartl, A. Mild, M. Natter, M.
Reimann, & A. Taudes (Eds.), Quantitative Models of Learning Organizations (pp. 65–82). Vienna,
Springer-Verlag.

De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMIC: Finding optima by estimating probability den-
sities. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in Neural Information Processing Sys-
tems 9 (NIPS9), vol. 9 (pp. 424–431). Cambridge, MA, MIT Press.

de Campos, L. M., Fernández-Luna, J. M., Gámez, J. A., & Puerta, J. M. (2002a). Ant colony optimiza-
tion for learning Bayesian networks. International Journal of Approximate Reasoning, 31(3), 291–311.

de Campos, L. M., Gámez, J. A., & Puerta, J. M. (2002b). Learning Bayesian networks by ant colony
optimisation: Searching in the space of orderings. Mathware and Soft Computing, 9(2–3), 251–268.

de Campos, L. M., & Puerta, J. M. (2001). Stochastic local search and distributed search algorithms for
learning Bayesian networks. In III International Symposium on Adaptive Systems (ISAS): Evolutionary
Computation and Probabilisitic Graphical Models (pp. 109–115). La Habana, Cuba: Institute of Cybernet-
ics, Mathematics and Physics.

282 References

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Chichester, UK, John Wiley
& Sons.

Dechter, R. (2003). Constraint Processing. San Francisco, Morgan Kaufmann.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49(1–3),
61–95.

Dechter, R., & Pearl, J. (1989). Tree clustering schemes for constraint-processing. Artificial Intelligence,
38(3), 353–366.

Delisle, P., Krajecki, M., Gravel, M., & Gagné, C. (2001). Parallel implementation of an ant colony
optimization metaheuristic with OpenMP. In Proceedings of the 3rd European Workshop on OpenMP
(EWOMP’01), Barcelona, Spain.

Dell’Amico, M., Ma‰oli, F., & Martello, S. (Eds.). (1997). Annotated Bibliographies in Combinatorial
Optimization. Chichester, UK, John Wiley & Sons.

den Besten, M. (2000). Ants for the single machine total weighted tardiness problem. Master’s thesis,
University of Amsterdam.

den Besten, M. L., Stützle, T., & Dorigo, M. (2000). Ant colony optimization for the total weighted
tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P.
Schwefel (Eds.), Proceedings of PPSN-VI, Sixth International Conference on Parallel Problem Solving from
Nature, vol. 1917 of Lecture Notes in Computer Science (pp. 611–620). Berlin, Springer-Verlag.

Deneubourg, J.-L. (2002). Personal communication. Université Libre de Bruxelles, Brussels.

Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J.-M. (1990). The self-organizing exploratory pattern of
the Argentine ant. Journal of Insect Behavior, 3, 159–168.

Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1991). The
dynamics of collective sorting: Robot-like ants and ant-like robots. In J.-A. Meyer & S. W. Wilson (Eds.),
Proceedings of the First International Conference on Simulation of Adaptive Behavior: From Animals to
Animats (pp. 356–363). Cambridge, MA, MIT Press.

Di Caro, G. (in preparation). Systems of Ant-like Agents for Adaptive Network Control and Combinatorial
Optimization. PhD thesis, Université Libre de Bruxelles, Brussels.

Di Caro, G., & Dorigo, M. (1997). AntNet: A mobile agents approach to adaptive routing. Technical
report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Brussels.

Di Caro, G., & Dorigo, M. (1998a). An adaptive multi-agent routing algorithm inspired by ants behavior.
In K. A. Hawick & H. A. James (Eds.), Proceedings of PART98—5th Annual Australasian Conference on
Parallel and Real-Time Systems (pp. 261–272). Singapore, Springer-Verlag.

Di Caro, G., & Dorigo, M. (1998b). Ant colonies for adaptive routing in packet-switched communications
networks. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of PPSN-V, Fifth
International Conference on Parallel Problem Solving from Nature, vol. 1498 of Lecture Notes in Computer
Science (pp. 673–682). Berlin, Springer-Verlag.

Di Caro, G., & Dorigo, M. (1998c). AntNet: Distributed stigmergetic control for communications net-
works. Journal of Artificial Intelligence Research, 9, 317–365.

Di Caro, G., & Dorigo, M. (1998d). Extending AntNet for best-e¤ort quality-of-service routing. Unpub-
lished presentation at ANTS’98—From Ant Colonies to Artificial Ants: First International Workshop on
Ant Colony Optimization, Brussels.

Di Caro, G., & Dorigo, M. (1998e). Mobile agents for adaptive routing. In H. El-Rewini (Ed.), Proceed-
ings of the 31st International Conference on System Sciences (HICSS-31) (pp. 74–83). Los Alamitos, CA,
IEEE Computer Society Press.

Di Caro, G., & Dorigo, M. (1998f). Two ant colony algorithms for best-e¤ort routing in datagram net-
works. In Y. Pan, S. G. Akl, & K. Li (Eds.), Proceedings of the Tenth IASTED International Conference
on Parallel and Distributed Computing and Systems (PDCS’98) (pp. 541–546). Anaheim, CA, IASTED/
ACTA Press.

References 283

Dickey, J. W., & Hopkins, J. W. (1972). Campus building arrangement using TOPAZ. Transportation
Science, 6, 59–68.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematik, 1,
269–271.

Doerner, K., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2003). Pareto ant colony opti-
mization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research,
to appear.

Doerner, K., Hartl, R. F., & Reimann, M. (2001). Cooperative ant colonies for optimizing resource allo-
cation in transportation. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G.
R. Raidl, & H. Tijink (Eds.), Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001,
vol. 2037 of Lecture Notes in Computer Science (pp. 70–79). Berlin, Springer-Verlag.

Doerner, K., Hartl, R. F., & Reimann, M. (2003). Competants for problem solving: The case of full
truckload transportation. Central European Journal for Operations Research and Economics, 11(2),
115–141.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [in Italian]. PhD thesis, Dipartimento
di Elettronica, Politecnico di Milano, Milan.

Dorigo, M. (2001). Ant algorithms solve di‰cult optimization problems. In J. Kelemen (Ed.), Proceedings
of the Sixth European Conference on Artificial Life, vol. 2159 of Lecture Notes in Artificial Intelligence
(pp. 11–22). Berlin, Springer-Verlag.

Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000a). Ant algorithms and stigmergy. Future Generation
Computer Systems, 16(8), 851–871.

Dorigo, M., & Di Caro, G. (1999a). Ant colony optimization: A new meta-heuristic. In P. J. Angeline, Z.
Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (Eds.), Proceedings of the 1999 Congress on Evolu-
tionary Computation (CEC’99) (pp. 1470–1477). Piscataway, NJ, IEEE Press.

Dorigo, M., & Di Caro, G. (1999b). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo,
& F. Glover (Eds.), New Ideas in Optimization (pp. 11–32). London, McGraw Hill.

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artifi-
cial Life, 5(2), 137–172.

Dorigo, M., Di Caro, G., & Sampels, M. (Eds.). (2002a). Proceedings of ANTS 2002—From Ant Colonies
to Artificial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer
Science. Berlin, Springer-Verlag.

Dorigo, M., & Gambardella, L. M. (1996). A study of some properties of Ant-Q. In H. Voigt, W. Ebeling,
I. Rechenberg, & H. Schwefel (Eds.), Proceedings of PPSN-IV, Fourth International Conference on Parallel
Problem Solving from Nature, vol. 1141 of Lecture Notes in Computer Science (pp. 656–665). Berlin,
Springer-Verlag.

Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the traveling salesman problem. BioSystems,
43(2), 73–81.

Dorigo, M., & Gambardella, L. M. (1997b). Ant Colony System: A cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

Dorigo, M., Gambardella, L. M., Middendorf, M., & Stützle, T. (Eds.). (2002b). Special section on ‘‘Ant
Colony Optimization.’’ IEEE Transactions on Evolutionary Computation, 6(4), 317–365.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). Positive feedback as a search strategy. Technical report
91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991b). The Ant System: An autocatalytic optimizing process.
Technical report 91-016 revised, Dipartimento di Elettronica, Politecnico di Milano, Milan.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 26(1), 29–41.

284 References

Dorigo, M., Middendorf, M., & Stützle, T. (Eds.). (2000b). Abstract Proceedings of ANTS 2000—From
Ant Colonies to Artificial Ants: Second International Workshop on Ant Algorithms. Brussels, IRIDIA,
Université Libre de Bruxelles.

Dorigo, M., & Stützle, T. (2001). An experimental study of the simple ant colony optimization algorithm.
In N. Mastorakis (Ed.), 2001 WSES International Conference on Evolutionary Computation (EC’01) (pp.
253–258). WSES Press.

Dorigo, M., & Stützle, T. (2002). The ant colony optimization metaheuristic: Algorithms, applications and
advances. In F. Glover & G. Kochenberger (Eds.), Handbook of Metaheuristics, vol. 57 of International
Series in Operations Research & Management Science (pp. 251–285). Norwell, MA, Kluwer Academic
Publishers.

Dorigo, M., Stützle, T., & Di Caro, G. (Eds.). (2000c). Special issue on ‘‘Ant Algorithms.’’ Future Gener-
ation Computer Systems, 16, 851–956.

Dorigo, M., Trianni, V., Şahin, E., Labella, T., Gross, R., Baldassarre, G., Nolfi, S., Deneubourg, J.-L.,
Mondada, F., Floreano, D., & Gambardella, L. M. (2003). Evolving self-organizing behaviors for a
Swarm-bot. Technical report IRIDIA/2003-11, IRIDIA, Université Libre de Bruxelles, Brussels.

Dorigo, M., Zlochin, M., Meuleau, N., & Birattari, M. (2002c). Updating ACO pheromones using sto-
chastic gradient ascent and cross-entropy methods. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, &
G. R. Raidl (Eds.), Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2002, vol. 2279
of Lecture Notes in Computer Science (pp. 21–30). Berlin, Springer-Verlag.

Dorne, R., & Hao, J. (1999). Tabu search for graph coloring, t-colorings and set t-colorings. In S. Voss, S.
Martello, I. Osman, & C. Roucairol (Eds.), Meta-heuristics: Advances and Trends in Local Search Para-
digms for Optimization (pp. 77–92). Boston, Kluwer Academic Publishers.

Elmaghraby, S. E. (1977). Activity Networks. New York, John Wiley & Sons.

Elshafei, A. N. (1977). Hospital layout as a quadratic assignment problem. Operations Research Quarterly,
28, 167–179.

Eyckelhof, C. J., & Snoek, M. (2002). Ant systems for a dynamic TSP: Ants caught in a tra‰c jam. In M.
Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to Artificial
Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer Science
(pp. 88–99). Berlin, Springer-Verlag.

Fabrikant, S. I. (2000). Spatial Metaphors for Browsing Large Data Archives. PhD thesis, Department of
Geography, University of Colorado at Boulder.

Faigle, U., & Kern, W. (1992). Some convergence results for probabilistic tabu search. ORSA Journal on
Computing, 4(1), 32–37.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2(1),
5–30.

Fang, H.-L., Ross, P., & Corne, D. (1994). A promising hybrid GA/heuristic approach for open-shop
scheduling problems. In A. G. Cohn (Ed.), Proceedings of the 11th European Conference on Artificial In-
telligence (pp. 590–594). Chichester, John Wiley & Sons.

Fenet, S., & Solnon, C. (2003). Searching for maximum cliques with ant colony optimization. In G. R.
Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni, J. J. R. Cardalda, D. W. Corne, J. Gottlieb, A. Guillot,
E. Hart, C. G. Johnson, & E. Marchiori (Eds.), Applications of Evolutionary Computing, Proceedings
of EvoWorkshops 2003, vol. 2611 of Lecture Notes in Computer Science (pp. 236–245). Berlin, Springer-
Verlag.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally di‰cult set cov-
ering problem. Operations Research Letters, 8, 67–71.

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6, 109–133.

Festa, P., & Resende, M. G. C. (2002). GRASP: An annotated bibliography. In P. Hansen & C. C.
Ribeiro (Eds.), Essays and Surveys on Metaheuristics (pp. 325–367). Boston, Kluwer Academic Publishers.

References 285

Fischetti, M., Hamacher, H. W., Jörnsten, K., & Ma‰oli, F. (1994). Weighted k-cardinality trees: Com-
plexity and polyhedral structure. Networks, 24, 11–21.

Fleurent, C., & Ferland, J. A. (1996). Genetic and hybrid algorithms for graph coloring. Annals of Oper-
ations Research, 63, 437–461.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4, 61–75.

Fogel, D. B. (1995). Evolutionary Computation. Piscataway, NJ, IEEE Press.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through Simulated Evolution. New
York, John Wiley & Sons.

Ford, L., & Fulkerson, D. (1962). Flows in Networks. Princeton, NJ, Princeton University Press.

Foulds, L., Hamacher, H., & Wilson, J. (1998). Integer programming approaches to facilities layout
models with forbidden areas. Annals of Operations Research, 81, 405–417.

Foulser, D. E., Li, M., & Yang, Q. (1992). Theory and algorithms for plan merging. Artificial Intelligence,
57(2–3), 143–181.

Frank, J. (1996). Weighting for Godot: Learning heuristics for GSAT. In Proceedings of the AAAI
National Conference on Artificial Intelligence (pp. 338–343). Menlo Park, CA, AAAI Press/MIT Press.

Franks, N. R. (1986). Teams in social insects: Group retrieval of prey by army ants (Eciton burchelli,
Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 18, 425–429.

Franks, N. R., & Sendova-Franks, A. B. (1992). Brood sorting by ants: Distributing the workload over the
work surface. Behavioral Ecology and Sociobiology, 30, 109–123.

Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelligence, 58(1–3),
21–70.

Fujita, K., Saito, A., Matsui, T., & Matsuo, H. (2002). An adaptive ant-based routing algorithm used
routing history in dynamic networks. In L. Wang, K. C. T. Furuhashi, J.-H. Kim, & X. Yao (Eds.), 4th
Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), vol. 1 (pp. 46–50). Orchid
Country Club, Singapore, 18–22 Nov. 2002.

Gagné, C., Price, W. L., & Gravel, M. (2002). Comparing an ACO algorithm with other heuristics for
the single machine scheduling problem with sequence-dependent setup times. Journal of the Operational
Research Society, 53, 895–906.

Galinier, P., & Hao, J.-K. (1997). Tabu search for maximal constraint satisfaction problems. In G. Smolka
(Ed.), Principles and Practice of Constraint Programming—CP97, vol. 1330 of Lecture Notes in Computer
Science (pp. 196–208). Berlin, Springer-Verlag.

Galinier, P., & Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combi-
natorial Optimization, 3(4), 379–397.

Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the traveling
salesman problem. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference
on Machine Learning (ML-95) (pp. 252–260). Palo Alto, CA, Morgan Kaufmann.

Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by ant colonies. In
T. Baeck, T. Fukuda, & Z. Michalewicz (Eds.), Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation (ICEC’96) (pp. 622–627). Piscataway, NJ, IEEE Press.

Gambardella, L. M., & Dorigo, M. (1997). HAS-SOP: An hybrid Ant System for the sequential ordering
problem. Technical report IDSIA-11-97, IDSIA, Lugano, Switzerland.

Gambardella, L. M., & Dorigo, M. (2000). Ant Colony System hybridized with a new local search for the
sequential ordering problem. INFORMS Journal on Computing, 12(3), 237–255.

Gambardella, L. M., Taillard, É. D., & Agazzi, G. (1999a). MACS-VRPTW: A multiple ant colony sys-
tem for vehicle routing problems with time windows. In D. Corne, M. Dorigo, & F. Glover (Eds.), New
Ideas in Optimization (pp. 63–76). London, McGraw Hill.

Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1999b). Ant colonies for the quadratic assignment
problem. Journal of the Operational Research Society, 50(2), 167–176.

286 References

Gámez, J. A., & Puerta, J. M. (2002). Searching the best elimination sequence in Bayesian networks by
using ant colony optimization. Pattern Recognition Letters, 23(1–3), 261–277.

Gamst, A. (1986). Some lower bounds for a class of frequency assignment problems. IEEE Transactions of
Vehicular Technology, 35(1), 8–14.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, Freeman.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

Gi¿er, B., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations
Research, 8, 487–503.

Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. Journal
of the SIAM, 10, 305–313.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8,
156–166.

Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1(3), 190–206.

Glover, F. (1990). Tabu search—Part II. ORSA Journal on Computing, 2(1), 4–32.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods for traveling sales-
man problems. Discrete Applied Mathematics, 65(1–3), 223–253.

Glover, F., & Hanafi, S. (2002). Tabu search and finite convergence. Discrete Applied Mathematics,
119(1–2), 3–36.

Glover, F., & Kochenberger, G. (Eds.). (2002). Handbook of Metaheuristics. Norwell, MA, Kluwer Aca-
demic Publishers.

Glover, F., & Laguna, M. (1997). Tabu Search. Boston, Kluwer Academic Publishers.

Glover, F., Laguna, M., & Martı́, R. (2002). Scatter search and path relinking: Advances and applications.
In F. Glover & G. Kochenberger (Eds.), Handbook of Metaheuristics, vol. 57 of International Series in
Operations Research & Management Science (pp. 1–35). Norwell, MA, Kluwer Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA,
Addison-Wesley.

Golden, B. L., & Stewart, W. R. (1985). Enpirical analysis of heuristics. In E. L. Lawler, J. K. Lenstra, A.
H. G. Rinnooy Kan, & D. B. Shmoys (Eds.), The Traveling Salesman Problem (pp. 307–360). Chichester,
UK, John Wiley & Sons.

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine
ant. Naturwissenschaften, 76, 579–581.

Gottlieb, J., Puchta, M., & Solnon, C. (2003). A study of greedy, local search, and ant colony optimiza-
tion approaches for car sequencing problems. In G. R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni,
J. J. R. Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, & E. Marchiori (Eds.),
Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003, vol. 2611 of Lecture Notes in
Computer Science (pp. 246–257). Berlin, Springer-Verlag.

Grabowski, J., & Wodecki, M. (2001). A new very fast tabu search algorithm for the job shop problem.
Technical report 21/2001, Wroclaw University of Technology, Institute of Engineering Cybernetics, Wro-
claw, Poland.

Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes
natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des ter-
mites constructeurs. Insectes Sociaux, 6, 41–81.

Gravel, M., Price, W. L., & Gagné, C. (2002). Scheduling continuous casting of aluminum using a mul-
tiple objective ant colony optimization metaheuristic. European Journal of Operational Research, 143(1),
218–229.

References 287

Grosso, A., Della Croce, F., & Tadei, R. (2004). An enhanced dynasearch neighborhood for the single-
machine total weighted tardiness scheduling problem. Operations Research Letters, 32(1), 68–72.

Grötschel, M. (1981). On the symmetric travelling salesman problem: Solution of a 120-city problem.
Mathematical Programming Study, 12, 61–77.

Grötschel, M., & Holland, O. (1991). Solution of large-scale symmetric traveling salesman problems.
Mathematical Programming, 51, 141–202.

Guesgen, H., & Hertzberg, J. (1992). A Perspective of Constraint-Based Reasoning, vol. 597 of Lecture
Notes in Artificial Intelligence. Berlin, Springer-Verlag.

Güneş, M., Sorges, U., & Bouazizi, I. (2002). ARA—The ant-colony based routing algorithm for
MANETS. In S. Olariu (Ed.), 2002 ICPP Workshop on Ad Hoc Networks (IWAHN 2002) (pp. 79–85).
Los Alamitos, CA, IEEE Computer Society Press.

Güneş, M., & Spaniol, O. (2002). Routing algorithms for mobile multi-hop ad-hoc networks. In H.
Turlakov & L. Boyanov (Eds.), International Workshop on Next Generation Network Technologies (pp.
10–24). Rousse, Bulgaria: Central Laboratory for Parallel Processing—Bulgarian Academy of Sciences.

Guntsch, M., & Middendorf, M. (2001). Pheromone modification strategies for ant algorithms applied to
dynamic TSP. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, &
H. Tijink (Eds.), Applications of Evolutionary Computing, vol. 2037 of Lecture Notes in Computer Science
(pp. 213–222). Berlin, Springer-Verlag.

Guntsch, M., & Middendorf, M. (2002a). Applying population based ACO to dynamic optimization
problems. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colo-
nies to Artificial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in
Computer Science (pp. 111–122). Berlin, Springer-Verlag.

Guntsch, M., & Middendorf, M. (2002b). A population based approach for ACO. In S. Cagnoni,
J. Gottlieb, E. Hart, M. Middendorf, & G. R. Raidl (Eds.), Applications of Evolutionary Computing,
vol. 2279 of Lecture Notes in Computer Science (pp. 71–80). Berlin, Springer-Verlag.

Guntsch, M., Middendorf, M., & Schmeck, H. (2001). An ant colony optimization approach to dynamic
TSP. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S.
Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001) (pp. 860–867). San Francisco, Morgan Kaufmann.

Guntsch, M. G., & Middendorf, M. (2003). Solving multi-criteria optimization problems with population-
based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Evolutionary
Multi-Criterion Optimization, vol. 2632 of Lecture Notes in Computer Science (pp. 464–478). Berlin,
Springer-Verlag.

Gutjahr, W. J. (2000). A graph-based Ant System and its convergence. Future Generation Computer Sys-
tems, 16(8), 873–888.

Gutjahr, W. J. (2002). ACO algorithms with guaranteed convergence to the optimal solution. Information
Processing Letters, 82(3), 145–153.

Hadji, R., Rahoual, M., Talbi, E., & Bachelet, V. (2000). Ant colonies for the set covering problem. In M.
Dorigo, M. Middendorf, & T. Stützle (Eds.), Abstract Proceedings of ANTS 2000—From Ant Colonies to
Artificial Ants: Second International Workshop on Ant Algorithms (pp. 63–66). Brussels, Université Libre
de Bruxelles.

Hahn, P., & Krarup, J. (2001). A hospital facility layout problem finally solved. Journal of Intelligent
Manufacturing, 12(5–6), 487–496.

Hahn, P. M., Hightower, W. L., Johnson, T. A., Guignard-Spielberg, M., & Roucairol, C. (2001). Tree
elaboration strategies in branch and bound algorithms for solving the quadratic assignment problem.
Yugoslavian Journal of Operational Research, 11(1), 41–60.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations Research, 13(2),
311–329.

Haken, H. (1983). Synergetics. Berlin, Springer-Verlag.

288 References

Hamacher, H. W., & Jörnsten, K. (1993). Optimal relinquishment according to the Norwegian petrol law:
A combinatorial optimization approach. Technical report 7/93, Norwegian School of Economics and
Business Administration, Bergen, Norway.

Hanafi, S. (2000). On the convergence of tabu search. Journal of Heuristics, 7(1), 47–58.

Handl, J., & Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval inter-
face. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, & H.-P. Schwefel (Eds.),
Proceedings of PPSN-VII, Seventh International Conference on Parallel Problem Solving from Nature, vol.
2439 in Lecture Notes in Computer Science (pp. 913–923). Berlin, Springer-Verlag.

Hansen, P., & Mladenović, N. (1999). An introduction to variable neighborhood search. In S. Voss, S.
Martello, I. H. Osman, & C. Roucairol (Eds.), Meta-Heuristics—Advances and Trends in Local Search
Paradigms for Optimization (pp. 433–458). Dordrecht, Netherlands, Kluwer Academic Publishers.

Hansen, P., & Ribeiro, C. (Eds.). (2001). Essays and Surveys on Metaheuristics. Boston, Kluwer Academic
Publishers.

Hartmann, S., & Kolisch, R. (1999). Self adapting genetic algorithm with an application to project sched-
uling. Technical report 506, University of Kiel, Kiel, Germany.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for resource
constrained project scheduling. European Journal of Operational Research, 127(2), 394–407.

Haupt, R. (1989). A survey of priority rule-based scheduling. OR Spektrum, 11, 3–6.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3), 197–244.

Heissenbüttel, M., & Braun, T. (2003). Ants-based routing in large-scale mobile ad-hoc networks. In
K. Irmscher & R.-P. Fähnrich (Eds.), Proceedings of Kommunikation in verteilten Systemen (KiVS ’03)
(pp. 91–99). Berlin, VDE Verlag GmbH.

Helsgaun, K. (2000). An e¤ective implementation of the Lin-Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1), 106–130.

Hertz, A., Taillard, É. D., & de Werra, D. (1997). A tutorial on tabu search. In E. H. L. Aarts & J. K.
Lenstra (Eds.), Local Search in Combinatorial Optimization (pp. 121–136). Chichester, UK, John Wiley &
Sons.

Heusse, M. (2001). Routage et équilibrage de charge par agents dans les réseaux de communication. PhD
thesis, École des Hautes Études en Sciences Sociales, Paris.

Heusse, M., & Kermarrec, Y. (2000). Adaptive routing and load balancing of ephemeral connections.
In Proceedings of the 1st IEEE European Conference on Universal Multiservice Networks ECUMN’2000
(pp. 100–108). Piscataway, NJ, IEEE Press.

Heusse, M., Snyers, D., Guérin, S., & Kuntz, P. (1998). Adaptive agent-driven routing and load balancing
in communication networks. Advances in Complex Systems, 1(2), 237–254.

Hochbaum, D. S. (Ed.). (1997). Approximation Algorithms for NP-Hard Problems. Boston, PWS Publish-
ing Company.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan Press.

Holland, O., & Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Arti-
ficial Life, 5(2), 173–202.

Hromkovic, J. (2003). Algorithmics for Hard Problems, 2nd ed. Berlin, Springer-Verlag.

Hsu, H.-P., Mehra, V., Nadler, W., & Grassberger, P. (2003). Growth algorithms for lattice hetero-
polymers at low temperatures. Journal of Chemical Physics, 118(1), 444–451.

Hurkens, C. A. J., & Tiourine, S. R. (1995). Upper and lower bounding techniques for frequency assign-
ment problems. Technical report 95-34, Department of Mathematics and Computing Science, Eindhoven
University of Technology, Netherlands.

Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-criterion optimization with multi colony ant algo-
rithms. In E. Zitzler, K. Deb, L. Thiele, C. C. Coello, & D. Corne (Eds.), First International Conference on

References 289

Evolutionary Multi-Criterion Optimization (EMO’01), vol. 1993 of Lecture Notes in Computer Science
(pp. 359–372). Berlin, Springer-Verlag.

Jacobs, L. W., & Brusco, M. J. (1995). A local search heuristic for large set covering problems. Naval Re-
search Logistics, 42, 1129–1140.

Jaillet, P. (1985). Probabilistic Traveling Salesman Problems. PhD thesis, MIT, Cambridge, MA.

Jaillet, P. (1988). A priori solution of a travelling salesman problem in which a random subset of the cus-
tomers are visited. Operations Research, 36(6), 929–936.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. Berlin, Springer-Verlag.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization by simulated
annealing: An experimental evaluation: Part II, Graph coloring and number partitioning. Operations
Research, 39(3), 378–406.

Johnson, D. S., Gutin, G., McGeoch, L. A., Yeo, A., Zhang, W., & Zverovitch, A. (2002). Experimental
analysis of heuristics for the ATSP. In G. Gutin & A. Punnen (Eds.), The Traveling Salesman Problem and
Its Variations (pp. 445–487). Norwell, MA, Kluwer Academic Publishers.

Johnson, D. S., & McGeoch, L. A. (1997). The travelling salesman problem: A case study in local opti-
mization. In E. H. L. Aarts & J. K. Lenstra (Eds.), Local Search in Combinatorial Optimization (pp. 215–
310). Chichester, UK, John Wiley & Sons.

Johnson, D. S., & McGeoch, L. A. (2002). Experimental analysis of heuristics for the STSP. In G. Gutin &
A. Punnen (Eds.), The Traveling Salesman Problem and Its Variations (pp. 369–443). Norwell, MA,
Kluwer Academic Publishers.

Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M. (1988). How easy is local search? Journal of
Computer System Science, 37, 79–100.

Jünger, M., Reinelt, G., & Thienel, S. (1994). Provably good solutions for the traveling salesman problem.
Zeitschrift für Operations Research, 40, 183–217.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4, 237–285.

Karaboga, D., & Pham, D. T. (2000). Intelligent Optimisation Techniques. Berlin, Springer-Verlag.

Khanna, A., & Zinky, J. (1989). The revised ARPANET routing metric. ACM SIGCOMM Computer
Communication Review, 19(4), 45–56.

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220, 671–680.

Knox, J. (1994). Tabu search performance on the symmetric travelling salesman problem. Computers &
Operations Research, 21(8), 867–876.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solving the resource constrained project
scheduling: Classification and computational analysis. In J. Weglarz (Ed.), Handbook on Recent Advances
in Project Scheduling (pp. 197–212). Dordrecht, Netherlands, Kluwer Academic Publishers.

Krasnogor, N., Hart, W. E., Smith, J., & Pelta, D. A. (1999). Protein structure prediction with evolution-
ary algorithms. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E.
Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, (pp. 1596–
1601). San Francisco, Morgan Kaufmann.

Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organised task allocation in a population
of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.

Krieger, M. J. B., Billeter, J.-B., & Keller, L. (2000). Ant-like task allocation and recruitment in coopera-
tive robots. Nature, 406, 992–995.

Krüger, F., Merkle, D., & Middendorf, M. (1998). Studies on a parallel Ant System for the BSP model.
Unpublished manuscript.

Kube, C. R., & Zhang, H. (1994). Collective robotics: From social insects to robots. Adaptive Behavior, 2,
189–218.

290 References

Kullback, S. (1959). Information Theory and Statistics. New York, John Wiley & Sons.

Kuntz, P., Snyers, D., & Layzell, P. (1999). A stochastic heuristic for visualizing graph clusters in a bi-
dimensional space prior to partitioning. Journal of Heuristics, 5(3), 327–351.

Laguna, M., & Martı́, R. (2003). Scatter Search: Methodology and Implementations in C, vol. 24 of Oper-
ations Research/Computer Science Interface. Boston, Kluwer Academic Publishers.

Larrañaga, P., Kuijpers, C., Poza, M., & Murga, R. (1997). Decomposing Bayesian networks by genetic
algorithms. Statistics and Computing, 7(1), 19–34.

Larrañaga, P., & Lozano, J. A. (2001). Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation. Genetic Algorithms and Evolutionary Computation. Dordrecht, Netherlands, Kluwer Aca-
demic Publishers.

Lau, K. F., & Dill, K. A. (1989). A lattice statistical mechanics model of the conformation and sequence
space of proteins. Macromolecules, 22, 3986–3997.

Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9, 586–599.

Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids. New York, Holt, Rinehart, and
Winston.

Lawler, E. L. (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness.
Annals of Discrete Mathematics, 1, 331–342.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1985). The Travelling Salesman
Problem. Chichester, UK, John Wiley & Sons.

Lawrence, S., & Giles, C. L. (1998). Searching the world wide web. Science, 280, 98–100.

Leguizamón, G., & Michalewicz, Z. (1999). A new version of Ant System for subset problems. In P. J.
Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (Eds.), Proceedings of the 1999 Congress
on Evolutionary Computation (CEC’99) (pp. 1459–1464). Piscataway, NJ, IEEE Press.

Leguizamón, G., & Michalewicz, Z. (2000). Ant Systems for subset problems. Unpublished manuscript.

Leguizamón, G., Michalewicz, Z., & Schütz, M. (2001). A ant system for the maximum independent set
problem. In Proceedings of the VII Argentinian Congress on Computer Science, El Calafate, Santa Cruz,
Argentina, vol. 2 (pp. 1027–1040).

Leighton, F. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of the
National Bureau of Standards, 85, 489–506.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling prob-
lems. In P. L. Hammer, E. L. Johnson, B. H. Korte, & G. L. Nemhauser (Eds.), Studies in Integer Pro-
gramming, vol. 1 of Annals of Discrete Mathematics (pp. 343–362). Amsterdam, North-Holland.

Levine, J., & Ducatelle, F. (2003). Ant colony optimisation and local search for bin packing and cutting
stock problems. Journal of the Operational Research Society, to appear.

Liang, Y.-C., & Smith, A. E. (1999). An Ant System approach to redundancy allocation. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (Eds.), Proceedings of the 1999 Congress on Evo-
lutionary Computation (CEC’99) (pp. 1478–1484). Piscataway, NJ, IEEE Press.

Liaw, C.-F. (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of
Operational Research, 124(1), 28–42.

Lin, S. (1965). Computer solutions for the traveling salesman problem. Bell Systems Technology Journal,
44, 2245–2269.

Lin, S., & Kernighan, B. W. (1973). An e¤ective heuristic algorithm for the travelling salesman problem.
Operations Research, 21, 498–516.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. New York, Springer-Verlag.

Lokketangen, A. (2000). Satisfied ants. In M. Dorigo, M. Middendorf, & T. Stützle (Eds.), Abstract Pro-
ceedings of ANTS 2000—From Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms (pp. 73–77). Université Libre de Bruxelles, Brussels.

References 291

Lourenço, H., & Serra, D. (1998). Adaptive approach heuristics for the generalized assignment problem.
Technical report No. 304, Universitat Pompeu Fabra, Department of Economics and Management, Bar-
celona, Spain.

Lourenço, H., & Serra, D. (2002). Adaptive search heuristics for the generalized assignment problem.
Mathware and Soft Computing, 9(2–3), 209–234.

Lourenço, H. R., Martin, O., & Stützle, T. (2002). Iterated local search. In F. Glover & G. Kochenberger
(Eds.), Handbook of Metaheuristics, vol. 57 of International Series in Operations Research & Management
Science (pp. 321–353). Norwell, MA, Kluwer Academic Publishers.

Lumer, E., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In J.-A. Meyer
& S. W. Wilson (Eds.), Proceedings of the Third International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats (pp. 501–508). Cambridge, MA, MIT Press.

Lundy, M., & Mees, A. (1986). Convergence of an annealing algorithm. Mathematical Programming, 34,
111–124.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic
assignment problem. INFORMS Journal on Computing, 11(4), 358–369.

Maniezzo, V. (2000). Personal communication.

Maniezzo, V., & Carbonaro, A. (2000). An ANTS heuristic for the frequency assignment problem. Future
Generation Computer Systems, 16(8), 927–935.

Maniezzo, V., & Colorni, A. (1999). The Ant System applied to the quadratic assignment problem. IEEE
Transactions on Data and Knowledge Engineering, 11(5), 769–778.

Maniezzo, V., Colorni, A., & Dorigo, M. (1994). The Ant System applied to the quadratic assignment
problem. Technical report IRIDIA/94-28, IRIDIA, Université Libre de Bruxelles, Brussels.

Maniezzo, V., & Milandri, M. (2002). An ant-based framework for very strongly constrained problems. In
M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to Artifi-
cial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer Science
(pp. 222–227). Berlin, Springer-Verlag.

Marathe, M. V., Ravi, R., Ravi, S. S., Rosenkrantz, D. J., & Sundaram, R. (1996). Spanning trees short or
small. SIAM Journal on Discrete Mathematics, 9(2), 178–200.

Marchiori, E. (2002). Genetic, iterated, and multistart local search for the maximum clique problem. In S.
Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, & G. R. Raidl (Eds.), Applications of Evolutionary Com-
puting, Proceedings of EvoWorkshops 2002, vol. 2279 of Lecture Notes in Computer Science (pp. 112–121).
Berlin, Springer-Verlag.

Marchiori, E., & Steenbeek, A. (2000). An evolutionary algorithm for large scale set covering problems
with application to airline crew scheduling. In Real World Applications of Evolutionary Computing, vol.
1083 of Lecture Notes in Computer Science (pp. 367–381). Berlin, Springer-Verlag.

Mariano, C. E., & Morales, E. (1999). MOAQ: An Ant-Q algorithm for multiple objective optimization
problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith
(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), vol. 1 (pp.
894–901). San Francisco, Morgan Kaufmann.

Martello, S., & Toth, P. (1990). Knapsack Problems, Algorithms and Computer Implementations. Chi-
chester, John Wiley & Sons.

Martin, O., & Otto, S. W. (1996). Combining simulated annealing with local search heuristics. Annals of
Operations Research, 63, 57–75.

Martin, O., Otto, S. W., & Felten, E. W. (1991). Large-step Markov chains for the traveling salesman
problem. Complex Systems, 5(3), 299–326.

Martinoli, A., & Mondada, F. (1998). Probabilistic modelling of a bio-inspired collective experiment with
real robots. In T. L. R. Dillman, P. Dario, & H. Wörn (Eds.), Proceedings of the Fourth International
Symposium on Distributed Autonomous Robotic Systems (DARS-98) (pp. 289–308). Berlin, Springer-
Verlag.

292 References

McQuillan, J. M., Richer, I., & Rosen, E. C. (1980). The new routing algorithm for the ARPANET. IEEE
Transactions on Communications, 28, 711–719.

Merkle, D., & Middendorf, M. (2000). An ant algorithm with a new pheromone evaluation rule for total
tardiness problems. In S. Cagnoni, R. Poli, G. D. Smith, D. Corne, M. Oates, E. Hart, P. L. Lanzi, E. J.
Willem, Y. Li, B. Paechter, & T. C. Fogarty (Eds.), Real-World Applications of Evolutionary Computing,
vol. 1803 of Lecture Notes in Computer Science (pp. 287–296). Berlin, Springer-Verlag.

Merkle, D., & Middendorf, M. (2002a). Ant colony optimization with the relative pheromone evaluation
method. In S. Gagnoni, J. Gottlieb, E. Hart, M. Middendorf, & G. Raidl (Eds.), Applications of Evolu-
tionary Computing: Proceedings of EvoWorkshops 2002, vol. 2279 of Lecture Notes in Computer Science
(pp. 325–333). Berlin, Springer-Verlag.

Merkle, D., & Middendorf, M. (2002b). Fast ant colony optimization on runtime reconfigurable processor
arrays. Genetic Programming and Evolvable Machines, 3(4), 345–361.

Merkle, D., & Middendorf, M. (2002c). Modeling the dynamics of ant colony optimization. Evolutionary
Computation, 10(3), 235–262.

Merkle, D., & Middendorf, M. (2003a). Ant colony optimization with global pheromone evaluation for
scheduling a single machine. Applied Intelligence, 18(1), 105–111.

Merkle, D., & Middendorf, M. (2003b). On the behavior of ACO algorithms: Studies on simple problems.
In M. G. C. Resende & J. P. de Sousa (Eds.), Metaheuristics: Computer Decision-Making, Combinatorial
Optimization (pp. 465–480). Boston, Kluwer Academic Publishers.

Merkle, D., Middendorf, M., & Schmeck, H. (2000a). Ant colony optimization for resource-constrained
project scheduling. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, & H.-G. Beyer
(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) (pp. 893–
900). San Francisco, Morgan Kaufmann.

Merkle, D., Middendorf, M., & Schmeck, H. (2000b). Pheromone evaluation in ant colony optimization.
In Proceedings of the 26th Annual Conference of the IEEE Electronics Society (pp. 2726–2731). Piscat-
away, NJ, IEEE Press.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained
project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333–346.

Merz, P., & Freisleben, B. (1997). Genetic local search for the TSP: New results. In T. Bäck, Z. Michale-
wicz, & X. Yao (Eds.), Proceedings of the 1997 IEEE International Conference on Evolutionary Computa-
tion (ICEC’97) (pp. 159–164). Piscataway, NJ, IEEE Press.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calcu-
lations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

Meuleau, N., & Dorigo, M. (2002). Ant colony optimization and stochastic gradient descent. Artificial
Life, 8(2), 103–121.

Michalewicz, Z. (1994). Genetic AlgorithmsþData Structures ¼ Evolution Programs. Berlin, Springer-
Verlag.

Michalewicz, Z., & Fogel, D. B. (2000). How to Solve It: Modern Heuristics. Berlin, Springer-Verlag.

Michel, R., & Middendorf, M. (1998). An island model based Ant System with lookahead for the shortest
supersequence problem. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of
PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, vol. 1498 of Lecture
Notes in Computer Science (pp. 692–701). Berlin, Springer-Verlag.

Michel, R., & Middendorf, M. (1999). An ACO algorithm for the shortest supersequence problem. In D.
Corne, M. Dorigo, & F. Glover (Eds.), New Ideas in Optimization (pp. 51–61). London, McGraw Hill.

Middendorf, M., Reischle, F., & Schmeck, H. (2002). Multi colony ant algorithms. Journal of Heuristics,
8(3), 305–320.

Minton, S., Johnston, M., Philips, A., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method
for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1–3), 161–205.

References 293

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA, MIT Press.

Mitchell, T. (1997). Machine Learning. Boston, McGraw Hill.

Mockus, J., Eddy, E., Mockus, A., Mockus, L., & Reklaitis, G. V. (1997). Bayesian Heuristic Approach to
Discrete and Global Optimization. Dordrecht, The Netherlands, Kluwer Academic Publishers.

Mo¤ett, M. W. (1988). Cooperative food transport by an Asiatic ant. National Geographic Research, 4,
386–394.

Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for investigation in
control algorithms. In T. Yoshikawa & F. Miyazaki (Eds.), Proceedings of the Third International Sympo-
sium on Simulation on Experimental Robotics (ISER-93), vol. 200 of Lecture Notes in Control and Infor-
mation Sciences (pp. 501–513). Berlin, Springer-Verlag.

Morris, P. (1993). The breakout method for escaping from local minima. In Proceedings of the 11th Na-
tional Conference on Artificial Intelligence (pp. 40–45). Menlo Park, CA, AAAI Press/MIT Press.

Morton, T. E., Rachamadugu, R. M., & Vepsalainen, A. (1984). Accurate myopic heuristics for tardiness
scheduling. GSIA working paper 36-83-84, Carnegie Mellon University, Pittsburgh.

Moy, J. T. (1998). OSPF Anatomy of an Internet Routing Protocol. Boston, Addison-Wesley.

Mühlenbein, H. (1998). The equation for response to selection and its use for prediction. Evolutionary
Computation, 5(3), 303–346.

Mühlenbein, H., & Paass, G. (1996). From recombination of genes to the estimation of distributions. In
W. Ebeling, I. Rechenberg, H.-P. Schwefel, & H.-M. Voigt (Eds.), Proceedings of PPSN-IV, Fourth Inter-
national Conference on Parallel Problem Solving from Nature, vol. 1141 of Lecture Notes in Computer
Science (pp. 178–187). Berlin, Springer-Verlag.

Navarro Varela, G., & Sinclair, M. C. (1999). Ant colony optimisation for virtual-wavelength-path routing
and wavelength allocation. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala
(Eds.), Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99) (pp. 1809–1816). Pis-
cataway, NJ, IEEE Press.

Nawaz, M., Enscore, E., Jr., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. OMEGA, 11(1), 91–95.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and Combinatorial Optimization. Chichester, UK, John
Wiley & Sons.

Nicolis, G., & Prigogine, I. (1977). Self-Organisation in Non-Equilibrium Systems. New York, John Wiley
& Sons.

Nouyan, S. (2002). Agent-based approach to dynamic task allocation. In M. Dorigo, G. Di Caro, & M.
Sampels (Eds.), Proceedings of ANTS 2002—From Ant Colonies to Artificial Ants: Third International
Workshop on Ant Algorithms, vol. 2463 of Lecture Notes in Computer Science (pp. 28–39). Berlin,
Springer-Verlag.

Nowicki, E., & Smutnicki, C. (1996a). A fast taboo search algorithm for the job-shop problem. Manage-
ment Science, 42(2), 797–813.

Nowicki, E., & Smutnicki, C. (1996b). A fast tabu search algorithm for the permutation flow-shop prob-
lem. European Journal of Operational Research, 91(1), 160–175.

Nozaki, K., Ishibuchi, H., & Tanaka, H. (1997). A simple but powerful heuristic method for generating
fuzzy rules from numerical data. Fuzzy Sets and Systems, 86, 251–270.

Nyström, M. (1999). Solving certain large instances of the quadratic assignment problem: Steinberg’s
examples. Technical report, Department of Computer Science, California Institute of Technology,
Pasadena.

Osman, I., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63,
513–628.

Osman, I. H., & Kelly, J. P. (Eds.). (1996). Meta-Heuristics: Theory and Applications. Boston, Kluwer
Academic Publishers.

294 References

Padberg, M. W., & Grötschel, M. (1985). Polyhedral computations. In E. L. Lawler, J. K. Lenstra, A. H.
G. Rinnooy Kan, & D. B. Shmoys (Eds.), The Traveling Salesman Problem (pp. 307–360). Chichester,
UK, John Wiley & Sons.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal of Opera-
tional Research, 34, 336–344.

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial Optimization—Algorithms and Complexity.
Englewood Cli¤s, NJ, Prentice Hall.

Papoulis, A. (1991). Probability, Random Variables and Stochastic Process, 3rd ed. New York, McGraw
Hill.

Paquete, L., & Stützle, T. (2002). An experimental investigation of iterated local search for coloring
graphs. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, & G. R. Raidl (Eds.), Applications of Evolu-
tionary Computing, Proceedings of EvoWorkshops 2002, vol. 2279 of Lecture Notes in Computer Science
(pp. 122–131). Berlin, Springer-Verlag.

Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002a). An ant colony algorithm for classification rule
discovery. In H. A. Abbass, R. A. Sarker, & C. S. Newton (Eds.), Data Mining: A Heuristic Approach (pp.
191–208). Hershey, PA, Idea Group Publishing.

Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002b). Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation, 6(4), 321–332.

Pearl, J. (1998). Probabilisitic Reasoning in Intelligent Systems: Networks of Plausible Inference. San
Mateo, CA, Morgan Kaufmann.

Pelikan, M., Goldberg, D. E., & Lobo, F. (1999). A survey of optimization by building and using proba-
bilistic models. Technical report IlliGAL, 99018, University of Illinois at Urbana-Champaign, Urbana, IL.

Pfahringer, B. (1996). Multi-agent search for open shop scheduling: Adapting the Ant-Q formalism.
Technical report TR-96-09, Austrian Research Institute for Artificial Intelligence, Vienna.

Pimont, S., & Solnon, C. (2000). A generic ant algorithm for solving constraint satisfaction problems. In
M. Dorigo, M. Middendorf, & T. Stützle (Eds.), Abstract proceedings of ANTS 2000—From Ant Colonies
to Artificial Ants: Second International Workshop on Ant Algorithms (pp. 100–108). Université Libre de
Bruxelles, Brussels.

Pinedo, M. (1995). Scheduling—Theory, Algorithms, and Systems. Englewood Cli¤s, NJ, Prentice Hall.

Potts, C. N., & Wassenhove, L. N. V. (1991). Single machine tardiness sequencing heuristics. IIE Trans-
actions, 23, 346–354.

Quinlan, J. (1993a). C4.5: Programs for Machine Learning. San Francisco, Morgan Kaufmann.

Quinlan, J. (1993b). Combining instance-based and model-based learning. In Proceedings of the Tenth
International Conference on Machine Learning (ML-93) (pp. 236–243). San Mateo, CA, Morgan
Kaufmann.

Rajendran, C., & Ziegler, H. (2003). Ant-colony algorithms for permutation flowshop scheduling to mini-
mize makespan/total flowtime of jobs. European Journal of Operational Research, to appear.

Rechenberg, I. (1973). Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien der biol-
ogischen Information. Freiburg, Germany, Fromman Verlag.

Reeves, C. (Ed.). (1995). Modern Heuristic Techniques for Combinatorial Problems. London, McGraw
Hill.

Reimann, M., Doerner, K., & Hartl, R. F. (2002a). Insertion based ants for the vehicle routing problem
with backhauls and time windows. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS
2002—From Ant Colonies to Artificial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of
Lecture Notes in Computer Science (pp. 135–148). Berlin, Springer-Verlag.

Reimann, M., Doerner, K., & Hartl, R. F. (2003). Analyzing a unified Ant System for the VRP and some
of its variants. In G. R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni, J. J. R. Cardalda, D. W. Corne,
J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, & E. Marchiori (Eds.), Applications of Evolutionary

References 295

Computing, Proceedings of EvoWorkshops 2003, vol. 2611 of Lecture Notes in Computer Science (pp. 300–
310). Berlin, Springer-Verlag.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: Savings based ants divide and conquer the
vehicle routing problem. Computers & Operations Research, 31(4), 563–591.

Reimann, M., Stummer, M., & Doerner, K. (2002b). A savings based Ant System for the vehicle routing
problem. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V.
Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, & N.
Jonoska (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002)
(pp. 1317–1325). San Francisco, Morgan Kaufmann.

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA Journal on Computing, 3,
376–384.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP Applications, vol. 840 of
Lecture Notes in Computer Science. Berlin, Springer-Verlag.

Resende, M. G. C., Pitsoulis, L. S., & Pardalos, P. M. (2000). Fortran subroutines for computing
approximate solutions of weighted MAX-SAT problems using GRASP. Discrete Applied Mathematics,
100(1–2), 95–113.

Resende, M. G. C., & Ribeiro, C. C. (2002). Greedy randomized adaptive search procedures. In F. Glover
& G. Kochenberger (Eds.), Handbook of Metaheuristics, International Series in Operations Research &
Management Science (pp. 219–249). Norwell, MA, Kluwer Academic Publishers.

Resnick, M. (1994). Turtles, Termites, and Tra‰c Jams. Cambridge, MA, MIT Press.

Robbins, H., & Monroe, H. (1951). A stochastic approximation method. Annals of Mathematics and Sta-
tistics, 22, 400–407.

Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology,
37, 637–665.

Roli, A., Blum, C., & Dorigo, M. (2001). ACO for maximal constraint satisfaction problems. In Proceed-
ings of MIC’2001—Meta–heuristics International Conference, vol. 1 (pp. 187–191). Porto, Portugal.

Romeo, F., & Sangiovanni-Vincentelli, A. (1991). A theoretical framework for simulated annealing.
Algorithmica, 6(3), 302–345.

Rossi, F., Petrie, C., & Dhar, V. (1990). On the equivalence of constraint satisfaction problems. In L.
Carlucci Aiello (Ed.), Proceedings of the 9th European Conference on Artificial Intelligence (pp. 550–556).
London, Pitman Publishing.

Roy, B., & Sussmann, B. (1964). Les problèmes d’ordonnancement avec constraintes disjonctives. Techni-
cal report DS No. 9bis, SEMA, Paris.

Rubin, P. A., & Ragatz, G. L. (1995). Scheduling in a sequence dependent setup environment with genetic
search. Computers & Operations Research, 22(1), 85–99.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. New York, John Wiley & Sons.

Rubinstein, R. Y. (1999). The cross-entropy method for combinatorial and continuous optimization.
Methodology and Computing in Applied Probability, 1(2), 127–190.

Rubinstein, R. Y. (2001). Combinatorial optimization via the simulated cross-entropy method. In S. I.
Gass & C. M. Harris (Eds.), Encyclopedia of Operations Research and Management Science. Boston,
Kluwer Academic Publishers.

Sadeh, N., & Fox, M. (1996). Variable and value ordering heuristics for the job shop scheduling constraint
satisfaction problem. Artificial Intelligence, 86(1), 1–41.

Sadeh, N., Sycara, K., & Xiong, Y. (1995). Backtracking techniques for the job shop scheduling constraint
satisfaction problem. Artificial Intelligence, 76(1–2), 455–480.

Sahni, S., & Gonzalez, T. (1976). P-complete approximation problems. Journal of the ACM, 23(3),
555–565.

296 References

Sait, S. M., & Youssef, H. (1999). Iterative Computer Algorithms with Applications to Engineering. Los
Alamitos, CA, IEEE Computer Society Press.

Schoofs, L., & Naudts, B. (2000). Solving CSPs with ant colonies. In M. Dorigo, M. Middendorf, & T.
Stützle (Eds.), Abstract proceedings of ANTS 2000—From Ant Colonies to Artificial Ants: Second Interna-
tional Workshop on Ant Algorithms (pp. 134–137). Université Libre de Bruxelles, Brussels.

Schoonderwoerd, R., Holland, O., & Bruten, J. (1997). Ant-like agents for load balancing in telecom-
munications networks. In Proceedings of the First International Conference on Autonomous Agents (pp.
209–216). New York, ACM Press.

Schoonderwoerd, R., Holland, O., Bruten, J., & Rothkrantz, L. (1996). Ant-based load balancing in tele-
communications networks. Adaptive Behavior, 5(2), 169–207.

Schreiber, G. R., & Martin, O. C. (1999). Cut size statistics of graph bisection heuristics. SIAM Journal on
Optimization, 10(1), 231–251.

Schrjiver, A. (2002). On the history of combinatorial optimization. Preprint available at www.cwi.nl/~lex/.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester, UK, John Wiley & Sons.

Selman, B., & Kautz, H. (1993). Domain-independent extensions to GSAT: Solving large structured
satisfiability problems. In Proceedings of the 13th International Joint Conference on Artificial Intelligence
(pp. 290–295). San Francisco, Morgan Kaufmann.

Shang, Y., & Wah, B. W. (1998). A discrete Lagrangian-based global-search method for solving satisfi-
ability problems. Journal of Global Optimization, 12(1), 61–99.

Shankar, A. U., Alaettinoğlu, C., Dussa-Zieger, K., & Matta, I. (1992). Performance comparison of rout-
ing protocols under dynamic and static file transfer connections. ACM Computer Communication Review,
22(5), 39–52.

Shmygelska, A., Aguirre-Hernández, R., & Hoos, H. H. (2002). An ant colony optimization algorithm for
the 2D HP protein folding problem. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), ANTS 2002, vol.
2463 of Lecture Notes in Computer Science (pp. 40–52). Berlin, Springer-Verlag.

Shmygelska, A., & Hoos, H. H. (2003). An improved ant colony optimization algorithm for the 2D HP
protein folding problem. In Y. Xiang, & B. Chaib-draa (Eds.), Advances in Artificial Intelligence, vol. 2671
of Lecture Notes in Artificial Intelligence (pp. 400–417). Berlin, Springer-Verlag.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces. Machine
Learning, 22(1–3), 123–158.

Smith, B. M., & Dyer, M. E. (1996). Locating the phase transition in binary constraint satisfaction prob-
lems. Artificial Intelligence, 81(1–2), 155–181.

Smith, D. H., Hurley, S., & Thiel, S. U. (1998). Improving heuristics for the frequency assignment prob-
lem. European Journal of Operational Research, 107(1), 76–86.

Socha, K., Knowles, J., & Sampels, M. (2002). A MAX -MIN Ant System for the university course
timetabling problem. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Proceedings of ANTS 2002—From
Ant Colonies to Artificial Ants: Third International Workshop on Ant Algorithms, vol. 2463 of Lecture
Notes in Computer Science (pp. 1–13). Berlin, Springer-Verlag.

Socha, K., Sampels, M., & Manfrin, M. (2003). Ant algorithms for the university course timetabling
problem with regard to the state-of-the-art. In G. R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni,
J. J. R. Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, & E. Marchiori (Eds.),
Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003, vol. 2611 of Lecture Notes in
Computer Science (pp. 334–345). Berlin, Springer-Verlag.

Solnon, C. (2000). Solving permutation constraint satisfaction problems with artificial ants. In W. Horn
(Ed.), Proceedings of the 14th European Conference on Artificial Intelligence (pp. 118–122). Amsterdam,
IOS Press.

Solnon, C. (2002). Ants can solve constraint satisfaction problems. IEEE Transactions on Evolutionary
Computation, 6(4), 347–357.

References 297

Steenstrup, M. E. (Ed.). (1995). Routing in Communications Networks. Englewood Cli¤s, NJ, Prentice
Hall.

Steinberg, L. (1961). The backboard wiring problem: A placement algorithm. SIAM Review, 3, 37–50.

Sterling, T., Salmon, J., Becker, D. J., & Savarese, D. F. (1999). How to Build a Beowulf. Cambridge, MA,
MIT Press.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Application. Wiley Series in
Probability and Mathematical Statistics. New York, John Wiley & Sons.

Streltsov, S., & Vakili, P. (1996). Variance reduction algorithms for parallel replicated simulation of uni-
formized Markov chains. Discrete Event Dynamic Systems: Theory and Applications, 6, 159–180.

Stützle, T. (1997a). An ant approach to the flow shop problem. Technical report AIDA-97-07, FG Intel-
lektik, FB Informatik, TU Darmstadt, Germany.

Stützle, T. (1997b). MAX -MIN Ant System for the quadratic assignment problem. Technical report
AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany.

Stützle, T. (1998a). An ant approach to the flow shop problem. In Proceedings of the Sixth European
Congress on Intelligent Techniques & Soft Computing (EUFIT’98), vol. 3 (pp. 1560–1564). Aachen, Ger-
many, Verlag Mainz, Wissenschaftsverlag.

Stützle, T. (1998b). Parallelization strategies for ant colony optimization. In A. E. Eiben, T. Bäck, M.
Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of PPSN-V, Fifth International Conference on Parallel
Problem Solving from Nature, vol. 1498 of Lecture Notes in Computer Science (pp. 722–731). Berlin,
Springer-Verlag.

Stützle, T. (1999). Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New
Applications, vol. 220 of DISKI. Sankt Augustin, Germany, Infix.

Stützle, T., & Dorigo, M. (1999a). ACO algorithms for the quadratic assignment problem. In D. Corne,
M. Dorigo, & F. Glover (Eds.), New Ideas in Optimization (pp. 33–50). London, McGraw Hill.

Stützle, T., & Dorigo, M. (1999b). ACO algorithms for the traveling salesman problem. In K. Miettinen,
M. M. Mäkelä, P. Neittaanmäki, & J. Périaux (Eds.), Evolutionary Algorithms in Engineering and Com-
puter Science (pp. 163–183). Chichester, UK, John Wiley & Sons.

Stützle, T., & Dorigo, M. (2002). A short convergence proof for a class of ACO algorithms. IEEE Trans-
actions on Evolutionary Computation, 6(4), 358–365.

Stützle, T., & Hoos, H. H. (1996). Improving the Ant System: A detailed report on theMAX-MIN Ant
System. Technical report AIDA-96-12, FG Intellektik, FB Informatik, TU Darmstadt, Germany.

Stützle, T., & Hoos, H. H. (1997). TheMAX -MIN Ant System and local search for the traveling sales-
man problem. In T. Bäck, Z. Michalewicz, & X. Yao (Eds.), Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation (ICEC’97) (pp. 309–314). Piscataway, NJ, IEEE Press.

Stützle, T., & Hoos, H. H. (1999). MAX -MIN Ant System and local search for combinatorial opti-
mization problems. In S. Voss, S. Martello, I. Osman, & C. Roucairol (Eds.), Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization (pp. 137–154). Dordrecht, Netherlands, Kluwer
Academic Publishers.

Stützle, T., & Hoos, H. H. (2000).MAX-MIN Ant System. Future Generation Computer Systems, 16(8),
889–914.

Stützle, T., & Linke, S. (2002). Experiments with variants of ant algorithms. Mathware and Soft Comput-
ing, 9(2–3), 193–207.

Subramanian, D., Druschel, P., & Chen, J. (1997). Ants and reinforcement learning: A case study in rout-
ing in dynamic networks. In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(pp. 832–838). San Francisco, Morgan Kaufmann.

Sudd, J. H. (1965). The transport of prey by ants. Behaviour, 25, 234–271.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di¤erences. Machine Learning, 3,
9–44.

298 References

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA, MIT
Press.

Szwarc, W., Grosso, A., & Della Croce, F. (2001). Algorithmic paradoxes of the single machine total tar-
diness problem. Journal of Scheduling, 4(2), 93–104.

Taillard, É. D. (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing, 17,
443–455.

Taillard, É. D. (1995). Comparison of iterative searches for the quadratic assignment problem. Location
Science, 3, 87–105.

Taillard, É. D. (1998). FANT: Fast Ant System. Technical report IDSIA-46-98, IDSIA, Lugano,
Switzerland.

Taillard, É. D., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J.-Y. (1997). A tabu search heuristic for
the vehicle routing problem with soft time windows. Transportation Science, 31, 170–186.

Tan, K. C., & Narashiman, R. (1997). Minimizing tardiness on a single processor with sequence-
dependent setup times: A simulated annealing approach. OMEGA, 25(6), 619–634.

Tanenbaum, A. (1996). Computer Networks. Englewood Cli¤s, NJ, Prentice Hall.

Teich, T., Fischer, M., Vogel, A., & Fischer, J. (2001). A new ant colony algorithm for the job shop
scheduling problem. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S.
Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2001) (pp. 803). San Francisco, Morgan Kaufmann.

Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5, 97–116.

T’kindt, V., Monmarché, N., Tercinet, F., & Laügt, D. (2002). An ant colony optimization algorithm to
solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research,
142(2), 250–257.

Toth, P., & Vigo, D. (Eds.). (2001). The Vehicle Routing Problem. SIAM Monographs on Discrete Math-
ematics and Applications. Philadelphia, Society for Industrial & Applied Mathematics.

van der Put, R. (1998). Routing in the faxfactory using mobile agents. Technical report R&D-SV-98-276,
KPN Research, The Netherlands.

Vasquez, M., & Hao, J.-K. (2001). A hybrid approach for the 0-1 multidimensional knapsack problem. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (pp. 328–333). San Fran-
cisco, Morgan Kaufmann.

Vazirani, V. V. (2001). Approximation Algorithms. Berlin, Springer-Verlag.

Voss, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.). (1999). Meta-Heuristics: Advances and Trends
in Local Search Paradigms for Optimization. Dordrecht, Netherlands, Kluwer Academic Publishers.

Voudouris, C. (1997). Guided Local Search for Combinatorial Optimization Problems. PhD thesis, Depart-
ment of Computer Science, University of Essex, Colchester, UK.

Voudouris, C., & Tsang, E. (1995). Guided local search. Technical report CSM-247, Department of
Computer Science, University of Essex, Colchester, UK.

Voudouris, C., & Tsang, E. P. K. (1999). Guided local search. European Journal of Operational Research,
113(2), 469–499.

Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (1996). Smell as a computational resource—A
lesson we can learn from the ant. In M. Y. Vardi (Ed.), Proceedings of the Fourth Israeli Symposium on
Theory of Computing and Systems (ISTCS-99) (pp. 219–230). Los Alamitos, CA, IEEE Computer Society
Press.

Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (1998). E‰cient graph search by a smell-oriented
vertex process. Annals of Mathematics and Artificial Intelligence, 24, 211–223.

Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (2000). ANTS: Agents, networks, trees and sub-
graphs. Future Generation Computer Systems, 16(8), 915–926.

References 299

Wallace, R. J. (1996). Analysis of heuristic methods for partial constraint satisfaction problems. In E.
Freuder (Ed.), Principles and Practice of Constraint Programming—CP’96, vol. 1118 of Lecture Notes in
Computer Science (pp. 482–496). Berlin, Springer-Verlag.

Wallace, R. J., & Freuder, E. C. (1996). Heuristic methods for over-constrained constraint satisfaction
problems. In M. Jampel, E. Freuder, & M. Maher (Eds.), OCS’95: Workshop on Over-Constrained Sys-
tems at CP’95, vol. 1106 of Lecture Notes in Computer Science (pp. 207–216). Berlin, Springer-Verlag.

Walrand, J., & Varaiya, P. (1996). High-performance communication networks. San Francisco, Morgan
Kaufmann.

Walters, T. (1998). Repair and brood selection in the traveling salesman problem. In A. Eiben, T. Bäck,
M. Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of PPSN-V, Fifth International Conference on Par-
allel Problem Solving from Nature, vol. 1498 of Lecture Notes in Computer Science (pp. 813–822). Berlin,
Springer-Verlag.

Wang, L. X., & Mendel, J. M. (1992). Generating fuzzy rules by learning from examples. IEEE Trans-
actions on Systems, Man, and Cybernetics, 22(6), 1414–1427.

Wang, Z., & Crowcroft, J. (1992). Analysis of shortest-path routing algorithms in a dynamic network
environment. ACM Computer Communication Review, 22(2), 63–71.

Wäscher, G., & Gau, T. (1996). Heuristics for the integer one-dimensional cutting stock problem: A com-
putational study. OR Spektrum, 18, 131–144.

Watkins, C. J., & Dayan, P. (1992). Q-Learning. Machine Learning, 8, 279–292.

White, T., Pagurek, B., & Oppacher, F. (1998). Connection management using adaptive mobile agents. In
H. R. Arabnia (Ed.), Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’98) (pp. 802–809). Las Vegas, NV, CSREA Press.

Whitley, D., Gordon, S., & Mathias, K. (1994). Lamarckian evolution, the Baldwin e¤ect and function
optimization. In Y. Davidor, H. Schwefel, & R. Männer (Eds.), Proceedings of PPSN-III, Third Interna-
tional Conference on Parallel Problem Solving from Nature, vol. 866 of Lecture Notes in Computer Science
(pp. 6–15). Berlin, Springer-Verlag.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3), 229–256.

Yagiura, M., Ibaraki, T., & Glover, F. (2004). An ejection chain approach for the generalized assignment
problem. INFORMS Journal on Computing, to appear.

Zachariasen, M., & Dam, M. (1996). Tabu search on the geometric traveling salesman problem. In I. H.
Osman & J. P. Kelly (Eds.), Meta-heuristics: Theory and Applications (pp. 571–587). Boston, Kluwer
Academic Publishers.

Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2001). Combinatorial optimization using model-
based search. Technical report IRIDIA/2001-15, IRIDIA, Université Libre de Bruxelles, Brussels. To ap-
pear in Annals of Operations Research, 2004.

Zlochin, M., & Dorigo, M. (2002). Model-based search for combinatorial optimization: A comparative
study. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacanas, & H.-P. Schwefel (Eds.),
Proceedings of PPSN-VII, Seventh International Conference on Parallel Problem Solving from Nature, vol.
2439 of Lecture Notes in Computer Science (pp. 651–661). Berlin, Springer-Verlag.

300 References

Index

2-exchange. See Neighborhood, 2-exchange
2-opt, 93
2.5-opt, 94
3-opt, 94
l-branching factor, 87

ACO, 33–38
algorithm (see ACO algorithm)
ant’s behavior, 35–37
application principles (see Application principles
of ACO)
components, 35
connections, 35
construction graph, 35–36
hyper-cube framework (see Hyper-cube
framework for ACO)
memory (of an ant), 36
metaheuristic, 33–38, 60
neighborhood, 36
problem representation, 34–35
start state, 36
states, 35
studies of the behavior of, 269–271
termination conditions, 36

ACO algorithm
ABC (see Ant-based control)
ACObs; tmin

, 122, 127–128
ACObs; tminðyÞ, 122, 130
ACS (see Ant Colony System)
ACS-BN, 209–210
ACS-SMTTP, 169
ACS-SMTWTP-BSD, 169–172
ACS-SMTWTP-MM, 169–172
ACS-TIME, 156–159
ACS-VEI, 156–158
ACS-WCGTPP, 184–186
Ant-miner, 205–208
Ant-Q, 78
AntNet (see AntNet)
AntQ-OSP, 173–177
ANTS (see Approximate Nondeterministic Tree-
Search)
ANTS-QAP, 161–164
AS (see Ant System)
AS-JSP-CDMT, 173–177
AS-MKP, 188
AS-QAP, 161–164
AS-SCP-HRTB, 182–184
AS-SCP-LM, 182–184
AS-SCSP, 190–194
ASrank (see Rank-based Ant System)
ASrank-CVRP, 156–159
ASrank-CVRPsav, 156–159
BWAS (see Best-worst Ant System)

EAS (see Elitist Ant System)
EAS-RA, 189–190
EAS-RCPSP, 178–180
FANT (see Fast Ant System)
GBAS (see Graph-based Ant System)
HAS-SOP, 154–155
Hyper-cube framework (see Hyper-cube
framework for ACO)
MACS-VRPTW, 156–159
MMAS (seeMAX–MIN Ant System)
MMAS-AWlCTP, 186–187
MMAS-BPP, 195–197
MMAS-CSP, 202–204
MMAS-GAP, 164–165
MMAS-HC-GSP, 174–177
MMAS-MCP, 189
MMAS-PFSP, 181
MMAS-QAP, 161–164
MMAS-UCTP, 167
population-based (see Population-based ACO)
S-ACO (see Simple-ACO)
ACO code, 84
ACO implementation, 99–113
data initialization, 104–105
data structures, 100–104
distance matrix, 100
memory requirement, 103–104
nearest neighbor lists, 101–102
other ACO algorithms, 112–113
parameter settings with local search, 96
parameter settings without local search, 71
pheromone trails, 102
pheromone update, 111–112
representation of ants, 103
solution construction, 106–110
speeding up pheromone update, 102–103
termination condition, 105
ACO plus local search, 92–99, 163
Darwinian pheromone update, 98–99
how to add local search, 93
Lamarckian pheromone update, 98–99
role of heuristic information, 97–98
role of the number of ants, 96–97
role of the strength of the local search, 95–96
Action choice rule
pseudorandom proportional, 77
random proportional, 70
Ant algorithms, 271–274
Ant colony optimization. See ACO
Ant Colony System, 76–79
behavior of, 91
convergence, 136–138
global pheromone trail update, 77
local pheromone trail update, 78

Ant System, 70–73
ant-cycle, 70
ant-density, 70
ant-quantity, 70
behavior of, 88
elitist strategy, 73

Ant-based control, 257
AntNet, 228–238
algorithm, 230–236
data structures, 229–230
data structures update, 234–236
evaluation of path quality, 236–238
parameter settings, 243
solution construction, 231–234

AntOptima, 263
Application principles of ACO, 211–219
balancing exploration and exploitation, 213–214
candidate lists, 217–218
construction graph, 211–212
heuristic information, 215–216
local search, 216
number of ants, 217
pheromone trail definition, 212–213
steps to solve a problem by ACO, 218–219

Approximate algorithm, 29–32
Approximate Nondeterministic Tree-Search, 79–

81
Approximation algorithm, 31
Arc-weighted l-cardinality tree problem, 186–187,

270
Assignment problems, 159–167
FAP (see Frequency assignment problem)
GAP (see Generalized assignment problem)
GCP (see Graph coloring problem)
QAP (see Quadratic assignment problem)
UCTP (see University course timetabling
problem)

Autocatalysis, 4, 19
Autocatalytic process, 4
Average l-branching factor, 87

Bayesian networks, 208–209
Bellicositermes natalensis, 21
Benchmark library
QAPLIB, 161
TSPLIB, 66

Beowulf-style cluster, 269
Best-improvement rule, 31
Best-so-far pheromone trail update. See

Pheromone update, best-so-far
Best-worst Ant System, 115–116
Bin packing problem, 194–197
BiosGroup, 263
Brood sorting, 272–273

Candidate list, 79. See also Application principles
of ACO, candidate lists

Candidate solution, 26, 34
Car sequencing problem, 204
Clustering problem, 272
Combinatorial optimization problem, 25–27, 34, 60
assignment problem (see Assignment problems)
dynamic, 33–34, 264–265
machine learning problem (see Learning)
other combinatorial problems (see Other NP-
hard problems)

routing problem (see Routing problems)
scheduling problem (see Scheduling problems)
subset problem (see Subset problems)
static, 33–34, 68
Communication network, 226–228
Computational complexity, 26–28
worst-case complexity, 27
Constraint satisfaction problem, 201–204
Constraints, 26, 34
Constructive algorithms, 29–31
Convergence, 122, 261
convergence in solution, 122, 130–134
convergence in value, 122, 128–130
Cooperative asymmetric forward model, 258
Cooperative transport, 274
Cross-entropy method, 143–145, 148–149
Cubitermes sp., 21

Data network, 223
Daemon actions, 37–38
Di¤erential path length, 4, 14, 19, 21, 236
Disjunctive graph, 173
Dispatching rule, 175
Distance-vector algorithms, 225
Division of labor, 273–274
Double bridge, 2–3
experiment, 2–5, 7–9
extended, 15–16
Dynamic optimization problem, 264–265
Dynamic traveling salesman problem, 46, 264–265

Edge ant walk, 271
Elitist Ant System, 73
Elitist list, 176
Entropy, 87
Estimation of distributions algorithms, 139
EuroBios, 262
Evaporation. See Pheromone evaporation
Evolutionary computation, 55–57
Evolutionary programming, 56
Evolution strategies, 56
Exact algorithm, 29
Exponential time algorithm, 27

302 Index

Fast Ant System, 116
Feasible solution, 26
globally optimal, 26, 34

First-improvement rule, 31
Foraging and path marking, 271–272
Frequency assignment problem, 165–166

Generalized assignment problem, 42–43, 164–
165

Genetic algorithms, 56
Global-best pheromone trail update, 125. See also

Pheromone update, best-so-far
Gradient-descent, 32
Graph coloring problem, 166–167
Graph-based Ant System, 149–150
GRASP. See Greedy randomized adaptive search

procedures
Greedy construction heuristic, 30, 47
Greedy randomized adaptive search procedures,

54–55
GRID computing systems, 269
Group shop problem, 172–177
Guided local search, 51–53

Hamiltonian circuit, 40, 65, 154
Hamiltonian path, 41, 154
Heuristic information, 36, 97–98. See also

Application principles of ACO, heuristic
information
dynamic, 215
static, 215

Heuristic methods, 29
Hill-climbing, 32
Hybrid Ant System, 116
Hyper-cube framework for ACO, 81–82

Intractable problem, 27
Iridomyrmex humilis, 2–3
Iterated local search, 53–54
Iteration-best pheromone trail update. See

Pheromone update, iteration-best
Iterative improvement, 32, 47

Job shop problem, 172–177

k-exchange. See Neighborhood, k-exchange
Kullback-Leibler divergence, 143

Lasius niger, 2, 12, 272
Learning
of classification rules, 205–208
rules in a fuzzy system, 210–211
the structure of Bayesian networks, 208–210

Leptothorax unifasciatus, 272

Linear assignment problem, 269
Linepithema humile, 2
Link-state algorithms, 225–226
Local maximum, 31
Local minimum, 31
Local optimum, 31–32
Local search, 29–32. See also 2-opt, 2.5-opt, 3-opt,
SOP-3-exchange

Loop elimination, 11, 13–14
Lower bound, 79–80

Makespan, 173
MAX–MIN Ant System, 74–76
behavior of, 90–91
convergence of, 136
pheromone trail initialization, 76
pheromone trail limits, 75
pheromone trail reinitialization, 76
MAX-SAT. See Maximum satisfiability problem
Maximization problem, 26
Maximum clique problem, 189
Maximum independent set, 188–189
Maximum likelihood, 144
Maximum satisfiability problem, 204
Metaheuristics Network, 167
Metaheuristics, 32–33
classification of, 47
MIMIC. See Mutual-information-maximizing
input clustering

Minimization problem, 26
Minimum cost path, 9–11
Model-based search, 138–140, 262
Monte Carlo method, 6, 254–255
Multiobjective optimization problem, 266–268
Multiple knapsack problem, 44–45, 188
Mutual-information-maximizing input clustering,
143

Nearest neighbor procedure, 30
Neighborhood
2-exchange, 32
ant’s feasible, 36
examination scheme, 31
k-exchange, 32
local search, 31–32
solution construction, 36, 70
structure, 31
Network
delay distribution, 241
NSFnet, 238–239, 244–247
NTTnet, 239, 247–250
packet-switched, 223
throughput, 241
wide-area, 226

Index 303

Network routing, 45–46, 223–224
adaptive, 224
distributed, 224
optimal, 225
overhead, 250–252
shortest path, 225
static, 224
tables, 224
NP-complete problem, 28
NP-completeness, 27–28
NP-hard problem, 28

Objective function, 26, 34
Open shop problem, 172–177
Other NP-hard problems, 190–204
2D-HP-PFP (see Two-dimensional hydrophobic-
polar protein folding problem)
BPP (see Bin packing problem)
CSP (see Constraint satisfaction problem)
SCSP (see Shortest common supersequence
problem)

Parallelization, 82–84, 268–269
coarse-grained, 82–83
communication overhead, 82
fine-grained, 82–83

Pareto-optimal set, 267
PBIL. See Population based incremental learning
Permutation flow shop problem, 180–181
Pheidole pallidula, 272
Pheromone evaporation, 5, 12, 14
Pheromone summation rule, 171–172
Pheromone trail, 12, 36
Pheromone update, 5, 37–38
best-so-far, 73, 125–126, 214
Darwinian, 98–99
iteration-best, 74–75, 125–126, 214
Lamarckian, 98–99
restart-best, 214

Polynomial time algorithm, 27
Polynomial time reduction, 28
Population based incremental learning, 57
Population-based ACO, 264
Positive feedback, 4, 22
Priority rule, 175
Probabilistic decision rule, 36
Probabilistic traveling salesman problem, 266
Problem representation. See ACO, problem

representation
Pseudo-code
ACO metaheuristic, 38
ACO metaheuristic for static problems, 68
Ant-miner, 206
AntNet, 232

evolutionary computation, 57
gradient ascent, 142
greedy randomized adaptive search procedures,
55

guided local search, 52
iterated local search, 54
scatter search, 59
simulated annealing, 49
tabu search, 51
Pseudorandom proportional rule. See Action

choice rule, pseudorandom proportional

Quadratic assignment problem, 29, 160–164, 210

Random proportional rule. See Action choice rule,
random proportional

Rank-based Ant System, 73–74
Real ants, 1–7
pheromone, 1
shortest path, 7
trail pheromone, 2
Redundancy allocation problem, 189–190
Reinforcement learning, 78, 140, 255–256
Relative pheromone evaluation rule, 172
Resource constrained project scheduling problem,

177–180
Restart-best pheromone trail update. See

Pheromone update, restart-best
Routing. See Network routing
Routing problems, 153–159. See also Network

routing
CVRP (see Vehicle routing problems,
capacitated)

SOP (see Sequential ordering problem)
TSP (see Traveling salesman problem)
VRPTW (see Vehicle routing problems, with time
window constraints)

Ravings heuristic, 157

Scatter search, 58–60
Schedule generation methods, 175
Scheduling problems, 167–181
GSP (see Group shop problem)
JSP (see Job shop problem)
OSP (see Open shop problem)
PFSP (see Permutation flow shop problem)
RCPSP (see Resource constrained project
scheduling problem)

SMTTP (see Single machine total tardiness
problem)

SMTTPSDST (see Single machine total tardiness
problem with sequence dependent setup times)

SMTWTP (see Single machine total weighted
tardiness problem)

304 Index

Search problem, 27
Sequential ordering problem, 41–42, 153–155
Set covering problem, 182–184
Set partitioning problem, 184
Shortest common supersequence problem, 190–

194
Shortest path, 21
problem, 25, 269

Simple tabu search algorithm, 50–51
Simple-ACO, 12–15
Simulated annealing, 47–49
Single machine total tardiness problem, 169–172
Single machine total tardiness problem with

sequence dependent setup times, 180
Single machine total weighted tardiness problem,

169–172
Solution construction
parallel, 72, 78, 107
sequential, 72, 78, 107

SOP-3-exchange, 155
Speed of convergence, 122
Stagnation, 71, 74, 86, 214
Stigmergic communication, 4, 237, 253
Stigmergic variables, 271
Stigmergy, 1, 4, 21–22, 252–253, 271
Stochastic gradient ascent, 141–143, 145–147
Stochastic optimization problem, 265–266
Subset problems, 181–190
AWlCTP (see Arc-weighted l-cardinality tree
problem)
MCP (see Maximum clique problem)
MIS (see Maximum independent set)
MKP (see Multiple knapsack problem)
RAP (see Redundancy allocation problem)
SCP (see Set covering problem)
SPP (see Set partitioning problem)
WCGTPP (see Weight constrained graph tree
partition problem)

Swarm-bots, 274

Tabu search, 49–51
Temporal di¤erence method, 255–256
Tractable problem, 27
Traveling salesman problem, 26, 40–41, 65–66, 69,

114–115
Two-dimensional hydrophobic-polar protein

folding problem, 197–201

Uniform ants, 258
University course timetabling problem, 167

Vehicle routing problems, 155–159, 263
capacitated, 155–159
pickup and delivery, 159

with backhauls and time window constraints, 159
with time window constraints, 156–159
Vertex ant walk, 271

Weight constrained graph tree partition problem,
184–186

Index 305

	Preface
	Acknowledgments
	1 From Real to Artificial Ants
	1.1 Ants’ Foraging Behavior and Optimization
	1.2 Toward Arti•cial Ants
	1.3 Artificial Ants and Minimum Cost Paths
	1.4 Bibliographical Remarks
	1.5 Things to Remember
	1.6 Thought and Computer Exercises
	2 The Ant Colony Optimization Metaheuristic
	2.1 Combinatorial Optimization
	2.2 The ACO Metaheuristic
	2.3 How Do I Apply ACO?
	2.4 Other Metaheuristics
	2.5 Bibliographical Remarks
	2.6 Things to Remember
	2.7 Thought and Computer Exercises
	3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem
	3.1 The Traveling Salesman Problem
	3.2 ACO Algorithms for the TSP
	3.3 Ant System and Its Direct Successors
	3.4 Extensions of Ant System
	3.5 Parallel Implementations
	3.6 Experimental Evaluation
	3.7 ACO plus Local Search
	3.8 Implementing ACO Algorithms
	3.9 Bibliographical Remarks
	3.10 Things to Remember
	3.11 Computer Exercises
	4 Ant Colony Optimization Theory
	4.1 Theoretical Considerations on ACO
	4.2 The Problem and the Algorithm
	4.3 Convergence Proofs
	4.4 ACO and Model-Based Search
	4.5 Bibliographical Remarks
	4.6 Things to Remember
	4.7 Thought and Computer Exercises
	5 Ant Colony Optimization for NP-Hard Problems
	5.1 Routing Problems
	5.2 Assignment Problems
	5.3 Scheduling Problems
	5.4 Subset Problems
	5.5 Application of ACO to Other NP-Hard Problems
	5.6 Machine Learning Problems
	5.7 Application Principles of ACO
	5.8 Bibliographical Remarks
	5.9 Things to Remember
	5.10 Computer Exercises
	6 AntNet: An ACO Algorithm for Data Network Routing
	6.1 The Routing Problem
	6.2 The AntNet Algorithm
	6.3 The Experimental Settings
	6.4 Results
	6.5 AntNet and Stigmergy
	6.6 AntNet, Monte Carlo Simulation, and Reinforcement Learning
	6.7 Bibliographical Remarks
	6.8 Things to Remember
	6.9 Computer Exercises
	7Conclusions and Prospects for the Future
	7.1 What Do We Know about ACO?
	7.2 Current Trends in ACO
	7.3 Ant Algorithms
	Appendix: Sources of Information about the ACO Field
	References
	Index

